
Sun Java System Web Server 7.0
Update 1 Developer's Guide to
Java Web Applications

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–1066

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080421@19860

Contents

Preface ...11

1 Web Server Technologies Overview ...19
Technologies and Enhancements in Web Server 7.0 .. 19

Supported Standards, Protocols, and Technologies .. 20
Tools Support ... 22
Lifecycle Listeners and Modules .. 23
Session Replication .. 23

API Changes from Web Server 6.1 to Web Server 7.0 ... 23

2 Web Applications Overview ...25
Java Web Applications .. 25
Developing and Deploying Web Applications .. 25

Creating Web Applications .. 25
About Securing Web Applications ... 26
About Deploying Applications ... 27
About Virtual Servers .. 27
About Default Web Applications ... 27
Servlet Result Caching ... 27
JSP Cache Tags ... 28
Database Connection Pooling .. 28

▼ To Configure a Simple Connection Pool ... 28
Sample Applications in Web Server 7.0 .. 29

Sample Directories ... 29
Building the Samples ... 31
Documentation for the Samples .. 31

3

3 Web Services Overview ..33
Introducing Web Services .. 33
Technologies Supported in Web Server 7.0 ... 34

Java Web Services Developer Pack 2.0 Technologies .. 34
Message Security (JSR-196) .. 35

Creating Web Services .. 35
Web Services Tools .. 35

▼ To Create Web Services from a Java Source .. 35
▼ To Create Web Services from Java Classes .. 36
▼ To Create Web Services from a WSDL file .. 36

Securing Web Services .. 36
Understanding Message Security in the Web Server ... 37
Securing a Web Service ... 39
Admin Console Tasks for Message Security ... 40

▼ To Create a Message Security Provider ... 40
▼ To Delete a Message Security Provider .. 42

Deploying Web Services ... 43
Testing Web Services .. 43

▼ To Invoke a Web Service Client ... 43
Web Services Samples ... 44

4 Developing Servlets ..45
About Servlets .. 45
Servlet Output .. 46
Caching Servlet Results ... 46

Features of Caching ... 47
Default Cache Configuration ... 48
CacheHelper Interface .. 48
Caching Example ... 49
CacheKeyGenerator Interface .. 50

Maximizing Servlet Performance .. 51
Servlet Internationalization Issues .. 52

Servlet Request ... 52
Servlet Response ... 52

Migrating Legacy Servlets ... 53

Contents

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •4

JSP file by Extension .. 53
Servlet by Extension of Servlet by Directory ... 53
Registering Servlets .. 54

5 Developing JavaServer Pages ...57
Introducing JSPs .. 57
Compiling JSPs Using the Command-Line Compiler .. 58

Package Names Generated by the JSP Compiler .. 60
Other JSP Configuration Parameters .. 60

Debugging JSPs .. 61
JSP Tag Libraries and Standard Portable Tags ... 61
JSP Cache Tags ... 61

cache Tag .. 62
flush Tag .. 64

JSP Search Tags .. 65
searchForm Tag ... 65
CollElem Tag .. 66
collection Tag ... 67
colIItem Tag .. 68
queryBox Tag .. 68
submitButton Tag ... 69
formAction Tag ... 69
formSubmission Tag ... 70
formActionMsg Tag ... 70
search Tag .. 71
resultIteration Tag ... 71
Item Tag .. 72
resultStat Tag ... 72
resultNav Tag .. 72

JSP Internationalization Issues .. 73
JSP Character Encoding .. 73

6 Session Managers ..75
Introducing Sessions ... 75

Sessions and Cookies ... 76

Contents

5

Sessions and URL Rewriting ... 76
Sessions and Security ... 76

Using Sessions .. 77
Creating or Accessing a Session ... 77
Examining Session Properties .. 78
Binding Data to a Session .. 79
Invalidating a Session .. 80

Session Managers .. 81
memory Option .. 81
file Session Manager ... 82
IWS60 Session Manager ... 83
MMap Session Manager (UNIX Only) ... 89

7 Developing Lifecycle Listeners ..91
Server Lifecycle Events .. 91
The LifecycleListener Interface ... 92
The LifecycleEvent Class .. 92
The Server Lifecycle Event Context ...92
Deploying a Lifecycle Module .. 93
Considerations for Lifecycle Modules .. 94
Sample Lifecycle Configuration ... 95

8 Securing Web Applications ..97
Supported Security Features .. 97
Common Security Terminology .. 98

Authentication ... 98
Authorization ... 98
Realms ... 98
Java EE Application Role Mapping .. 99

Security Features Specific to the Web Server .. 99
Web Server Security Model ... 99
Web Application and URL Authorizations .. 102

Container Security .. 102
Programmatic Security .. 102
Declarative Security ... 102

Contents

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •6

User Authentication by Servlets .. 103
HTTP Basic Authentication ... 103
SSL Mutual Authentication ... 103
Form-Based Login ... 104

User Authentication for Single Sign-On ... 104
User Authorization by Servlets .. 105

Defining Roles .. 106
Defining Servlet Authorization Constraints ... 106

Fetching the Client Certificate ... 107
Using Web Services Message Security .. 107

Configuring the Web Server for Message Security .. 107
Using Message Security Provider in an Application .. 115

Programmatic Login ... 116
Precautions ... 116
Granting Programmatic Login Permission .. 116
ProgrammaticLogin Class .. 117

Enabling the Java Security Manager .. 117
The server.policy File ... 118

Default Permissions ... 118
Changing Permissions for an Application .. 119

Related Information .. 120

9 Deploying Web Applications ...121
Web Application Structure .. 121
Deployment Tools ... 122

Using Sun Java Studio Enterprise 8.1 ... 122
Using NetBeans IDE 5.5 .. 123

▼ To Install NetBeans IDE 5.5 ... 123
▼ To Register Web Server 7.0 in the NetBeans IDE 5.5 .. 123
▼ Deploying Web Applications ... 124

Creating Web Deployment Descriptors ... 125
Deploying Web Applications ... 125

▼ To Deploy Using Admin Console ... 125
Deploying Using wadm ... 126

Deploying Using JSR 88 .. 128

Contents

7

Managing Web Applications ... 128
▼ To Enable or Disable a Deployed Web Application ... 128

Enabling Web Applications .. 129
▼ To Remove a Deployed Web Application ... 129

Dynamic Reloading of Web Applications .. 129
▼ To Set Dynamic Reloading of Web Application .. 130
▼ To Load a New Servlet or Reload a Deployment Descriptor .. 130

Classloaders .. 131

10 Debugging Web Applications ..135
Enabling Debugging ... 135

▼ To Enable Debugging Through Admin Console .. 135
▼ To Enable Debugging by Editing server.xml ... 136

JPDA Options .. 136
Using Developer Tools for Debugging ... 137

▼ To Debug using NetBeans 5.5 ... 137
Debugging JSPs .. 137
Generating a Stack Trace for Debugging .. 137
Using Logging for Debugging .. 138

▼ To Change the Log Settings .. 138
Using Profiling for Debugging ... 138

Using the HPROF Profiler .. 138
▼ To Install the HPROF Profiler ... 139

Using the Optimizeit Profiler ... 140

A Deployment Descriptor Files ...143
About Deployment Descriptor Files ... 143
Migration Issues .. 143
Java EE Standard Descriptors .. 144

sun-web.xml ... 144
default-web.xml .. 144

Sun Java System Web Server Descriptors ... 144
The sun-web-app_2_5-0.dtd File .. 144

Subelements .. 145
Data .. 145

Contents

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •8

Attributes .. 146
Elements in the sun-web.xml File ... 146

General Elements ... 147
Security Elements ... 151
Session Elements .. 153
Reference Elements .. 159
Caching Elements .. 167
Classloader Element .. 176
JSP Element ... 177
Internationalization Elements .. 179
Alphabetical List of sun-web.xml Elements ... 183

Sample Web Application XML Files ... 186
Sample web.xml File .. 186
Sample sun-web.xml File .. 187

Index ... 189

Contents

9

10

Preface

This book explains how Web Applications are created, deployed, and supported in Sun JavaTM

System Web Server 7.0. The book also includes basic information about Web Services.

Who Should Use This Book
The intended audience for this guide is the person who develops and deploys web applications
in a corporate enterprise. This guide assumes you are familiar with the following topics:

■ Java SE
■ HTML
■ The Java programming language
■ Software development processes, including debugging and source code control

Before You Read This Book
Sun Java can be installed as a stand-alone product or as a component of Sun Java Enterprise
System (Java ES), a software infrastructure that supports enterprise applications distributed
across a network or Internet environment. If you are installing Sun Java as a component of
Java ES, you should be familiar with the system documentation at
http://docs.sun.com/coll/1286.3.

Web Server Documentation Set
The Sun Java documentation set describes how to install and administer the Web Server. You
can access Sun Java Update 1 documentation at http://docs.sun.com/coll/1653.1. For an
introduction to Sun Java Update 1, refer to the books in the order in which they are listed in the
following table.

11

http://docs.sun.com/coll/1286.3
http://docs.sun.com/coll/1653.1

TABLE P–1 Books in the Sun Java Documentation Set

Documentation Title Contents

Sun Java System Web Server 7.0 Update 1 Documentation
Center

Web Server documentation topics organized by tasks and subject

Sun Java System Web Server 7.0 Update 1 Release Notes ■ Late-breaking information about the software and documentation
■ Supported platforms and patch requirements for installing Web

Server

Sun Java System Web Server 7.0 Update 2 Installation and
Migration Guide

Performing installation and migration tasks:
■ Installing Web Server and its various components,

■ Migrating data from Sun ONE Web Server 6.0 or 6.1 to Sun Java
System Web Server 7.0

Sun Java System Web Server 7.0 Update 1 Administrator’s
Guide

Performing the following administration tasks:
■ Using the Administration GUI and command-line interface

■ Configuring server preferences

■ Using server instances

■ Monitoring and logging server activity

■ Using certificates and public key cryptography to secure the server

■ Configuring access control to secure the server

■ Using Java Platform Enterprise Edition (Java EE) security features

■ Deploying applications

■ Managing virtual servers

■ Defining server workload and sizing the system to meet performance
needs

■ Searching the contents and attributes of server documents, and
creating a text search interface

■ Configuring the server for content compression

■ Configuring the server for web publishing and content authoring
using WebDAV

Sun Java System Web Server 7.0 Update 2 Developer’s
Guide

Using programming technologies and APIs to do the following:
■ Extend and modify Sun Java System Web Server

■ Dynamically generate content in response to client requests and
modify the content of the server

Sun Java System Web Server 7.0 Update 1 NSAPI
Developer’s Guide

Creating custom Netscape Server Application Programmer’s Interface
(NSAPI) plug-ins

Preface

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •12

TABLE P–1 Books in the Sun Java Documentation Set (Continued)
Documentation Title Contents

Sun Java System Web Server 7.0 Update 1 Developer’s
Guide to Java Web Applications

Implementing Java Servlets and JavaServer PagesTM (JSPTM) technology in
Sun Java System Web Server

Sun Java System Web Server 7.0 Update 1 Administrator’s
Configuration File Reference

Editing configuration files

Sun Java System Web Server 7.0 Update 1 Performance
Tuning, Sizing, and Scaling Guide

Tuning Sun Java System Web Server to optimize performance

Sun Java System Web Server 7.0 Update 1 Troubleshooting
Guide

Troubleshooting Web Server

Related Books
The URL for all documentation about Sun Java Enterprise System (Java ES) and its components
is http://docs.sun.com/coll/1286.3.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Preface

13

http://docs.sun.com/coll/1286.3

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation directory for Sun
Java

Sun Java Enterprise System (Java ES) installations on the
SolarisTM platform:

/opt/SUNWwbsvr7

Java ES installations on the Linux and HP-UX platform:

/opt/sun/webserver/

Java ES installations on the Windows platform:

system-drive:\Program Files\Sun\JavaES5\WebServer7

Other Solaris, Linux, and HP-UX installations, non-root
user:

home-directory/sun/webserver7

Other Solaris, Linux, and HP-UX installations, root user:

/sun/webserver7

Windows, all installations:

system-drive:\Program Files\Sun\WebServer7

instance-dir Directory that contains the instance-specific
subdirectories.

For Java ES installations, the default location for instances
on Solaris:

/var/opt/SUNWwbsvr7

For Java ES installations, the default location for instances
on Linux and HP-UX:

/var/opt/sun/webserver7

For Java ES installations, the default location for instance
on Windows:

system-drive:\Program Files\Sun\JavaES5\WebServer7

For stand-alone installations, the default location for
instance on Solaris, Linux, and HP-UX:install-dir

For stand-alone installations, the default location for
instance on Windows:

system-drive:\Program Files\sun\WebServer7

Preface

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •14

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use either the y
argument or the n argument.

${ } Indicates a variable reference. ${com.sun.javaRoot} References the value of the com.sun.javaRoot
variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press the A
key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and then press
the subsequent keys.

Preface

15

TABLE P–4 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item selection in a
graphical user interface.

File → New → Templates From the File menu, choose New. From the
New submenu, choose Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “Web Server,” type the following:

Web Server site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Preface

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •16

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-1066.

Preface

17

http://docs.sun.com

18

Web Server Technologies Overview

This chapter provides a basic overview on various technologies that are supported in the Web
Server.

Technologies and Enhancements in Web Server 7.0
Web Server is a major new release with significant enhancements in the administration
infrastructure. This release is the first 64-bit version of Web Server supported on both the
Solaris SPARC® and AMD64 platforms.

Web Server 7.0 provides:
■ Comprehensive command-line interface support
■ Consolidated configuration
■ Enhanced security
■ Web-based Distributed Authoring and Versioning (WDAV)
■ Access control lists (ACL)
■ URL rewriting
■ Clustering support

This product also comes with a robust built-in migration tool that helps migrate applications
and configurations from Web Server 6.0 and 6.1 to Sun Java System Web Server 7.0.

Sun Java System Web Server 7.0 introduces the following new features:
■ Management infrastructure
■ Java Web Services Developer Pack 2.0 support
■ Session replication support
■ Extensive real-time monitoring support
■ Integrated reverse proxy plug-in and FastCGI plug-in support

For more features and information, see “What’s New in This Release” in Sun Java Enterprise
System 5 Release Notes for UNIX.

1C H A P T E R 1

19

Supported Standards, Protocols, and Technologies

Servlet 2.5 Support
Java servlets are server-side Java programs that generate content in response to a client request.
Servlets can be thought of as applets that run on the server side without a user interface. Servlets
are invoked through URL invocation or by other servlets.

Sun Java System Web Server 7.0 supports the Java Servlet 2.5 specification.

Note – Java Servlet API version 2.5 is fully backward compatible with versions 2.1, 2.2, 2.3, and
2.5. Therefore, all existing servlets continues to work without modification or recompilation.

To develop servlets, use Sun's Java Servlet API. For information about using the Java Servlet
API, see the documentation provided by Sun at
http://java.sun.com/products/servlet/index.html.

For the Java Servlet 2.5 specification, see
http://java.sun.com/products/servlet/download.html.

For information about developing servlets in Sun Java System Web Server, see Chapter 4,
“Developing Servlets,”

JSP 2.1 Support
Web Server 7.0 supports the JavaServer Pages (JSP) 2.1 specification. A JSP page is, much like an
HTML page, that can be viewed in a web browser. However, in addition to HTML tags, JSP can
include a set of JSP tags and directives intermixed with Java code that extend the ability of the
web page designer to incorporate dynamic content in a page. These additional features provide
functionality such as displaying property values and using simple conditionals.

JSP pages can access full Java functionality using the following methods:
■ Embedding Java code directly into scriptlets
■ Using server-side tags that include Java servlets

Servlets are Java classes that must be compiled. Servlets can be defined and compiled by a Java
programmer, who then publishes the interface to the servlet. The web page designer can access a
precompiled servlet from a JSP page. For information about creating JSPages, see
http://java.sun.com/products/jsp/index.html

JSTL 1.2
The Java Server Pages Standard Tag Library (JSTL) encapsulates as simple tags the core
functionality common to many web applications. JSTL has support for common, structural

Technologies and Enhancements in Web Server 7.0

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •20

http://java.sun.com/products/servlet/index.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/jsp/index.html

tasks such as iteration and conditionals, tags for manipulating XML documents,
internationalization tags, and SQL tags. It also provides a framework for integrating existing
custom tags with JSTL tags.

For more information on JSTL 1.2, see
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL.html#wp74644.

Java Web Services Developer Pack 2.0 Support
Web Services uses a Web Services Description Language (WSDL) file to describe the service and
a registry service to register and lookup the services. The Simple Object Access Protocol (SOAP)
binding is the standard interoperable binding for accessing Web Services. Based on Java Web
Services Developer Pack (Java WSDP), Web Server supports integrated Java Web Services
runtime and tools, and therefore supports portable Web Services implementations. For more
information, see Chapter 3, “Web Services Overview.”

JNDI Naming
Web Server 7.0 provides Java Naming and Directory InterfaceTM (JNDI) API support that
enables web applications to look up for Java Enterprise Edition (Java EE) services such as Java
DataBase Connectivity (JDBCTM) data sources. All functional aspects of this JNDI
implementation are essential. However, the web server's implementation does not support the
CosNaming service required for remote objects as well as lookup of UserTransaction, ORB, JMS
resources, or the EJB references.

JDBC Connection Pooling
In Web Server, JDBCRESOURCE and JDBCCONNECTIONPOOL elements in server.xml have been
merged into one element called jdbc-resource to simplify JDBC configuration. Many of the
configuration parameters have been renamed. For more information on the jdbc-resource
element, see Chapter 3, “Elements in server.xml,” in Sun Java System Web Server 7.0 Update 1
Administrator’s Configuration File Reference.

Using JNDI to Access the jdbc-resourceWithin a Web Application

Using JNDI, a web application can access a JDBC connection pool by looking up the
jdbc-resource that configures it. The jdbc-resources can access the name in its web
descriptor. The following web descriptors example refer to the connection pool created in the
earlier example.

WEB-INF/web.xml

<web-app>

...

<resource-ref>

<description>JDBC Connection Pool</description>

Technologies and Enhancements in Web Server 7.0

Chapter 1 • Web Server Technologies Overview 21

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL.html#wp74644

<res-ref-name>jdbc/myJdbc</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

...

</web-app>

WEB-INF/sun-web.xml

<sun-web-app>

...

<resource-ref>

<res-ref-name>jdbc/myJdbc</res-ref-name>

<jndi-name>jdbc/MyPool</jndi-name>

</resource-ref>

...

</sun-web-app>

In the above example, jdbc/myJdbc is the name by which the pool is referenced in the web
application and jdbc/MyPool is the JNDI name of the jdbc-resources configuration.

The following is an example for using the pool in a web application.

Context initContext = new InitialContext();

Context webContext = (Context)initContext.lookup("java:/comp/env");

DataSource ds = (DataSource) webContext.lookup("jdbc/myJdbc");
Connection dbCon = ds.getConnection();

Tools Support
Web Server 7.0 provides support for the following tools:

■ Sun Java Studio Enterprise 8.1– Java Studio Enterprise 8.1 enables you create Java, Web, and
EJB projects from existing code.

■ NetBeans IDE 5.5 – NetBeans IDE 5.5 is an integrated development environment to create,
deploy the Java EE based web applications.
For more information, see “Using NetBeans IDE 5.5” on page 123.

■ Sun Java Studio Enterprise 8.1– Web Server 7.0 supports Sun Java Studio Enterprise 8.1,
Standard Edition. You can use Sun Java Studio to assemble and deploy web applications. For
more information, see “Using Sun Java Studio Enterprise 8.1” on page 122.

■ JSR 88 Support for Application Deployment - You can write your own Java Specification
Request (JSR) 88 client to deploy applications to the Web Server 7.0. For more information,
see http://jcp.org/en/jsr/detail?id=88.

Technologies and Enhancements in Web Server 7.0

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •22

http://jcp.org/en/jsr/detail?id=88

Lifecycle Listeners and Modules
Sun Java System Web Server 7.0 enables you to write customized classes for the various phases
of the server lifecycle. For instance, a user may have a startup code that ensures that a remote
data source is available for the applications. Such classes are notified of server lifecycle events
supporting Java based tasks within the Web Server environment. These tasks automatically
perform actions such as starting the server and sending notification if the server shuts down.
You can use this support to instantiate singletons, RMI servers, and so forth. For more
information, see “List of Elements” in Sun Java System Web Server 7.0 Update 1 Administrator’s
Configuration File Reference

Session Replication
The intention of session replication is to provide sufficient session failover support through
in-memory-backup of HTTP sessions to another server instance of the same cluster. This
feature covers most usage scenarios. For more information, see “Configuring Session
Replication” in Sun Java System Web Server 7.0 Update 1 Administrator’s Guide

API Changes from Web Server 6.1 to Web Server 7.0
Sun Java System Web Server has the following core components:

■ Web container implements the JSP 2.1, Servlet 2.5, and JSTL 1.2 specification which are part
of Java EE 1.4.

■ Monitoring and configuring interfaces.

For more information about non-Java APIs and programming technologies, see the Sun Java
System Web Server 7.0 Update 2 Developer’s Guide and the Sun Java System Web Server 7.0
Update 1 NSAPI Developer’s Guide.

API Changes from Web Server 6.1 to Web Server 7.0

Chapter 1 • Web Server Technologies Overview 23

24

Web Applications Overview

This chapter provides a basic overview of how web applications are supported in Web Server.
This chapter includes the following sections:

■ “Java Web Applications” on page 25
■ “Developing and Deploying Web Applications” on page 25
■ “Sample Applications in Web Server 7.0” on page 29

Java Web Applications
Web Server supports the JavaTM Servlet 2.5 API specification and the JavaServer PagesTM (JSPTM)
2.1 specification, which allows servlets and JSPs to be included in web applications.

A web application is a collection of servlets, JavaServer Pages, HTML documents, and other web
resources that include image files, compressed archives, and other data. A web application can
be packaged into a web archive (WAR) file or exist in an open directory structure.

Web Server 7.0 also supports, SHTML and CGI, which are not Java Platform, Enterprise
Edition (Java EE) application components. For more information about APIs and
programming technologies, see Sun Java System Web Server 7.0 Update 2 Developer’s Guide.

Developing and Deploying Web Applications
This section describes how to create, secure, and deploy web applications using Web Server.

Creating Web Applications
This section lists the general actions to create a web application, and provides pointers to more
information.

2C H A P T E R 2

25

1. Create a directory for all of the web application's files. This directory is the web application's
document root.

2. Create any needed HTML files, image files, and other static content.

3. Place these files in the document root directory or a subdirectory where they can be accessed
by other parts of the application.

4. Create any needed JSP files.

For more information, see Chapter 5, “Developing JavaServer Pages,”

5. Create any needed servlets.

For more information, see Chapter 4, “Developing Servlets.”

6. Compile the servlets.

For details about precompiling JSPs, see “Compiling JSPs Using the Command-Line
Compiler” on page 58.

7. Organize the web application as described in “Web Application Structure” on page 121.

8. Create the deployment descriptor files.

For more information, see “Creating Web Deployment Descriptors” on page 125.

9. (Optional) Package the web application in a .war file. For example:

jar -cvf module_name.war *.

10. Deploy the web application. For more information, see “Deploying Web Applications” on
page 125.

You can create a web application manually or you can use Java System Enterprise Studio.
For more information about developing web applications in Sun Java Enterprise Studio, see
http://developers.sun.com/

prodtech/javatools/jscreator/learning/tutorials/2/helloweb.html

About Securing Web Applications
You can write secure web applications for the Sun Java System Web Server with components
that perform user authentication and access authorization. You can build security into web
applications using the following mechanisms:

■ User authentication by servlets
■ User authentication for single sign-on
■ User authorization by servlets
■ Requesting the client certificate

For detailed information about these mechanisms, see Chapter 8, “Securing Web Applications.”

Developing and Deploying Web Applications

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •26

http://developers.sun.com/prodtech/javatools/jscreator/learning/tutorials/2/helloweb.html
http://developers.sun.com/prodtech/javatools/jscreator/learning/tutorials/2/helloweb.html

About Deploying Applications
A web application is a collection of servlets, JSP, HTML documents, and other web resources
that might include image files, compressed archives, and other data. A web application can be
packaged into a Web ARchive file (a WAR file) or exist in an open directory structure. For more
information, see Chapter 9, “Deploying Web Applications.”

About Virtual Servers
A virtual server is a virtual web server that uses a unique combination of IP address, port
number, and host name to identify it. You might have several virtual servers all of which use the
same IP address and port number but are distinguished by their unique host names.

When you first install Web Server, a default virtual server is created. You can also assign a
default virtual server to each new HTTP listener you create. For details, see Sun Java System
Web Server 7.0 Update 1 Administrator’s Guide.

About Default Web Applications
A web application that is deployed in a virtual server at a URL / becomes the default web
application for that virtual server. To access the default web application for a virtual server, type
the URL for the virtual server but do not supply a context root. For example:

http://myvirtualserver:3184/

If none of the web applications under a virtual server are deployed at the URI ”/”, the virtual
server serves HTML or JSP content from its document root, which is usually instance_dir/docs.
To access this HTML or JSP content, point your browser to the URL for the virtual server
specify the target file rather than a context root. For example:

http://myvirtualserver:3184/hellothere.jsp

Servlet Result Caching
The Web Server can cache servlet or JSP results to make subsequent calls to the same servlet or
JSP page faster.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 46.

Developing and Deploying Web Applications

Chapter 2 • Web Applications Overview 27

JSP Cache Tags
JSP cache tags enable you to cache JSP page fragments within the Java engine. Each can be
cached using different cache criteria. For example, if you have page fragments to view stock
quotes and weather information, you can cache the stock quote fragment for 15 minutes, and
the weather report fragment for 25 minutes.

For more information about JSP caching, see “JSP Cache Tags” on page 61.

Database Connection Pooling
Database connection pooling enhances the performance of servlet or JSP database interactions.
For more information about the JavaTM DataBase Connectivity (JDBCTM) software, see
“Configuring JDBC Resources” in Sun Java System Web Server 7.0 Update 1 Administrator’s
Guide.

The simplest connection pool can be configured by using the given. In this example, the
connection pool is assigned to use the ORACLE JDBC driver.

▼ To Configure a Simple Connection Pool
In this example procedure, the connection pool uses the ORACLE JDBC driver.

Start wadm
$./bin/wadm --user=admin

Please enter admin-user-password>user-admin-password
Sun Java System Web Server 7.0 B01/02/2006 14:22

wadm>

Verify the list of available configurations.
wadm>list-configs

Create the jdbc-resource configuration.
For more information about all possible elements, see Sun Java System Web Server 7.0
Administrator's Configuration File Reference.
wadm>create-jdbc-resource --config=test

--datasource-class=oracle.jdbc.pool.OracleDataSource jdbc/MyPool

Add properties to jdbc-resource.
Properties are primarily used to configure the driver's vendor-specific properties. In the
following example, the values for the properties url, user, and password are added to
jdbc-resource.
wadm>list-jdbc-resource-userprops --config=test --jndi-name=jdbc/MyPool

password=mypassword user=myuser url=jdbcZ:oracle:thin:@hostname:1421MYSID

1

2

3

4

Developing and Deploying Web Applications

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •28

Enable the connection validation.
wadm>set-jdbc-resource-prop --config=test --jndi-name=jdbc/MyPool

connection-validation-table-name=test connection-validation=table

CLI201 Command "set-jdbc-resource-prop" ran successfully

Change the pool setting.

In this example, the maximum number of connections is set to 100.
wadm>set-jdbc-resource-prop --config=test --jndi-name=jdbc/MyPool max-connections=100

CLI201 Command "set-jdbc-resource-prop" ran successfully.

Deploy the configuration.
wadm>deploy-config test

CLI201 Command "deploy-config" ran successfully.

You can install a JDBC driver with Java Archive (JAR) files in one of the following ways:

■ Copy the driver's JAR file into the server's instance library directory. JAR files in the instance
library directory will automatically load and available for server.

■ Modify the JVM class-path- suffix to include JDBC drivers jar file. The new value will
overwrite the old value of the element. For example,
wadm> set-jvm-prop --config=test

class-path-suffix=/export/home/lib/classes12.jar

Sample Applications in Web Server 7.0
Sun Java System Web Server 7.0 includes a set of sample applications, which can be found in the
install_dir/samplesfollowing directory.

Sample Directories
All of the sample applications are arranged in a specific and well-defined directory structure. In
general, the top-level directory of a sample application includes the following:

■ src: A directory containing all the Java source files, deployment descriptors, JSPs, and
HTML files. Samples that use a database provide a script to populate data in the database.

■ docs: A directory containing all documentation for the application.
■ .WAR file: The deployable .WAR file for the sample application.
■ build.xml: A file for the ANT system to build the sample application

5

6

7

Sample Applications in Web Server 7.0

Chapter 2 • Web Applications Overview 29

TABLE 2–1 Sample Directories

Directory Contents

caching JSP and servlet examples that demonstrate how to cache results of JSP and
servlet execution.

fastcgi A sample to demonstrate how to use the FastCGI plug-in shipped with the
Web Server 7.0 (using PHP).

i18n A basic Java EE web application that demonstrates how to dynamically
change the display language based on user preference.

Javamail A servlet that uses the Javamail API to send an email message.

JDBC Java DataBase Connectivity examples are included in the following
directories:
■ blob: A servlet that accesses BLOBs through the JDBC API

■ simple: A basic servlet that accesses an RDBMS through the JDBC API.

■ transactions: A servlet that uses the transaction API with JDBC to
control a local transaction

JDBC rowset Example showing how to use JSR-114 JDBC rowset.

JNDI Java Naming and Directory Interface examples are in the following
directories:
■ custom: Demonstrates how to use the custom resource
■ external: Demonstrates how to use the external resource
■ readenv: Demonstrates the environment entries specified in the

web.xml file
■ url: A servlet that uses the URL resource facility to access a resource.

JSF 1.2 Example showing how to use Java Server Faces components to quickly build
web application user interfaces.

JSTL Basic examples that demonstrate usage of the JSP Standard Tag Library.

NSAPI plugins NSAPI examples.

RMI-IIOP Basic example that demonstrates using a servlet to access a stateless EJBTM

using RMI/IIOP running in Web Server.

Sample Applications in Web Server 7.0

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •30

TABLE 2–1 Sample Directories (Continued)
Directory Contents

Security Examples demonstrating how to secure Java EE web applications through
standard authentication mechanisms and access controls. Security
examples are included in the following directories:
■ basic-auth: Demonstrates how to develop, configure, and exercise

basic authentication

■ client-cert: Demonstrates how to develop, configure, and exercise
client certificate authentication

■ form-auth: Demonstrates how to develop, configure, and exercise
form-based authentication

■ jdbcrealm: Demonstrates how to develop, configure, and exercise
JDBC realm authentication

Servlet and JSP example Servlet 2.5 and JSP 2.1 examples combined into a single web application.

WS-I 1.1 Web Services interoperability 1.1 samples.

websecurity Web Services security samples.

Building the Samples
An ANT-based build system is used to build the individual sample application. The build.xml
file has target to compile the sources, to clean, and to build the war file. It also has targets to
deploy and undeploy the application, using the corresponding CLI commands provided by the
Web Server. Register application resources in the deployment target.

Documentation for the Samples
Documentation is installed along with the samples during the installation. The index.html in
the document root of the default Web Server instance contains links to the samples
documentation. In addition, you can access the documentation HTML files directly in the
samples directory.

Sample Applications in Web Server 7.0

Chapter 2 • Web Applications Overview 31

32

Web Services Overview

This chapter focuses on web services tasks that are performed by developers. For administrator
tasks, including configuration and management information, see Appendix C, “Web Services,”
in Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

Introducing Web Services
Web Services uses a Web Services Description Language (WSDL) file to describe the service and
registry service to register and look up the services. The Simple Object Access Protocol (SOAP)
binding is the standard interoperable binding for accessing Web Services. Several registry
protocols available, but UDDI (Universal Description, Discovery and Integration) is probably
the most recognizable based on Java Web Services Developer Pack, Web Server because it
supports integrated Java Web Services runtime and tools, and therefore supports portable Web
Services implementations, making it interoperable with .NET clients and services using the
WS-I Basic Profile. For more information on Web Services, see
http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html.

WS-Security is an OASIS proposal for adding message-layer security to SOAP messages. It
defines standardized locations and syntax by which security tokens such as X.509 certificates
and Kerberos tickets can be carried within SOAP Headers in order to secure the contents of the
SOAP message exchanges. WS-Security leverages the existing XML Digital Signature and XML
Encryption specifications for capturing the results of signing and encryption operations in
XML syntax. In essence, WS-Security standardizes the XML Signature and XML Encryption
data blocks that are carried with a SOAP message. Web Server supports the integrated
WS-Security standard. In addition, this release supports JSR-196 as applicable to Web Services.
Web Server provides the ability to bind SOAP-layer message-security providers and
message-protection policies to the container. This binding allows the container to enforce the
security on behalf of the applications.

3C H A P T E R 3

33

http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html

Technologies Supported in Web Server 7.0
This section describes the technologies supported by Web Server 7.0. For more information, see
http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html.

This section contains the following topics:

■ “Java Web Services Developer Pack 2.0 Technologies” on page 34
■ “Message Security (JSR-196)” on page 35

Java Web Services Developer Pack 2.0 Technologies
Java Web Services Developer Pack, provides an integrated development and test environment.
The technologies included with Web Server are:

■ JAX-WS 2.0 (JSR 224)-The Java API for XML-based JAX-WS 2.0 is the key specification for
component-based web service development, and governs the standard mappings between
WSDL/XML schema and the Java platform. It is the next generation of JAX-RPC.

■ JAXB 2.0.3– The Java architecture for XML Binding 2.0.3 (“JAXB”) defines an extensible
mapping between the Java and XML schema type models and facilitates XML serialization
of Java objects.

■ JAXP 1.3.1: The Java API for XML Processing 1.3.1 (“JAXP”) provides a standard
framework for parsing and transforming XML documents and streams using the Simple
API for XML (SAX), the Document Object Model (DOM), and Extensible Stylesheets
Language Transformations (XSLT).

■ SOAP 1.2– SOAP is a means for encoding remote procedure calls (RPCs) and
document-style information as XML.

■ WSDL 1.1– WSDL is an XML-based standard for describing the external interface to a web
service.

■ SAAJ 1.3– SOAP with Attachments API for Java (SAAJ) defines a simple object model for
creating, manipulating, and sending SOAP messages.

■ XWSS-XML Web Services Security (XWSS) provides a framework within which a Web
service developer can secure applications. For more information, see
http://java.sun.com/webservices/index.jsp.

■ Fast Infoset- The Fast Infoset specification (ITU-T Rec. X.891 | ISO/IEC 24824-1) describes
an open, standards-based binary XML format that is based on the XML Information Set. It is
an efficient alternative to XML. For more information, see http://java.sun.com/
webservices/docs/2.0/fastinfoset/fastinfoset1.0.1-manual.html.

Technologies Supported in Web Server 7.0

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •34

http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html
http://java.sun.com/webservices/index.jsp
http://java.sun.com/webservices/docs/2.0/fastinfoset/fastinfoset1.0.1-manual.html
http://java.sun.com/webservices/docs/2.0/fastinfoset/fastinfoset1.0.1-manual.html

Message Security (JSR-196)
In message security, security information is inserted into messages so that it travels through the
networking layers and arrives with the message at the message destination. Message security
differs from transport layer security. Message security can be used to decouple message
protection from message transport so that the message remains protected after transmission.
For more information on security, see
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security2.html#wp268799.

JSR-196, as applicable to Web Services, defines a standard service provider interface by which
authentication mechanism providers may be integrated with containers. Providers integrated
through this interface establish the authentication identities used in container access decisions
while servicing the request.

Creating Web Services
Web Services is created in different ways, depending on whether the starting point of
development is a Java source file, a Java class file, or a WSDL file.

Web Services Tools
Use different tools is used to generate JAX-WS artifacts, depending on whether the starting
point of Web Services development is a Java source file, a Java class file, or a WSDL file.

■ apt— The Annotation Processing Tool (APT) tool is part of Java SE 5. It programmatically
processes the annotations and generates the JAX-WS portable artifacts from an annotated
Java source file.

■ wsgen- The wsgen tool reads a service endpoint implementation class and generates all of
the portable artifacts for a JAX-WS web service.

■ wsimport- The wsimport tool reads a WSDL and generates all the required artifacts for web
service development, deployment, and invocation.

Note – After using the tools, the web.xml, sun-jaxws.xml, the implementation class, and the
portable JAX-WS artifacts must be bundled into a WAR that can be deployed onto a container.

The following procedures describes how to use these methods.

▼ To Create Web Services from a Java Source
Use apt to generate Java artifacts such as the WSDL file, and schema documents.1

Creating Web Services

Chapter 3 • Web Services Overview 35

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security2.html#wp268799

Package the web.xml, sun-jaxws.xml, service endpoint interface and implementation class,
value types, and generated classes, if any, into a WAR file.

Deploy the WAR file to Web Server.

▼ To Create Web Services from Java Classes
Use wsgen to generate portable artifacts.

Package the web.xml, sun-jaxws.xml, service endpoint interface and implementation class,
value types, and generated classes, if any, into a WAR file.

Deploy the WAR file to Web Server.

▼ To Create Web Services from a WSDL file
Use wsimport to generate portable artifacts.

Implement the service endpoint.

Package the WSDL file, schema documents, web.xml, sun-jaxws.xml, service endpoint
interface and implementation class, value types, and generated classes, if any, into a WAR file.

Deploy the WAR file to a web container.

Securing Web Services
Web Services Security SOAP Message Security (WS-Security) is an international standard for
interoperable web services security that was developed in OASIS by a collaboration of all the
major providers of web services technology (including Sun Microsystems). WS-Security is a
message security mechanism that uses XML Encryption and XML Digital Signature to secure
web services messages sent over SOAP. The WS-Security specification defines the use of various
security tokens including X.509 certificates, SAML assertions, and username and password
tokens to authenticate and encrypt SOAP Web Services messages. This section also includes the
following sections:

■ Understanding message security in the Web Server
■ Securing a web service
■ Securing a sample application
■ Configuring the Web Server for message security

2

3

1

2

3

1

2

3

4

Securing Web Services

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •36

■ Admin Console tasks for message security

Understanding Message Security in the Web Server
The Web Server offers integrated support for the WS-Security standard in the server-side
container. This functionality is integrated with Web Services security and enforced by the
container of the Web Server on behalf of applications. Web Server can protect any web service
application without requiring changes to the implementation of the application. The Web
Server achieves this effect by providing facilities to bind SOAP layer message security providers
and message protection policies to container and to applications deployed in container.

Assigning Message Security Roles
In the Web Server, the system administrator and application deployer roles are expected to take
primary responsibility for configuring message security. In some situations, the application
developer also contribute, although in the typical case either of the roles might secure an
existing application without changing its implementation and therefore without involving the
developer. The responsibilities of the various roles are defined in the following sections.

System Administrator Tasks

The system administrator is responsible for the following tasks:

■ Configuring message security providers on the Web Server
■ Managing user databases
■ Managing the keystore and truststore files
■ Deploying the samples program fromwsdl-soap12, which demonstrates the message layer

web services security

A system administrator uses the Admin Console to manage server security settings. Web Server
stores certificates and private keys in an NSS database, the administrator can manage them
using certutil. For an overview of message security tasks, see “Configuring the Web Server for
Message Security” on page 107.

Application Deployer Tasks

The application deployer is responsible for the following tasks:

■ Specifying at application assembly any required application-specific message protection
policies if such policies have not already been specified by upstream roles (the developer or
assembler).

■ Modifying Sun deployment descriptors to specify application-specific message protection
policies information message-security-binding elements to a web service endpoint.

Securing Web Services

Chapter 3 • Web Services Overview 37

The application developer can setup message security but is not responsible for doing so. The
system administrator can set the message security so that all Web Services are secured. The
application deployer can set the message security when the provider or protection policy bound
to the application must be different from that bound to the container.

Application Developer Tasks

The application developer or assembler is responsible for the following tasks:

■ Determining whether an application-specific message protection policy is required by the
application. If the policy is required, the developer or assembler works with the application
deployer and ensures that the required policy is specified during application assembly.

Security Tokens and Security Mechanisms
The WS-Security specification provides an extensible mechanism for using security tokens to
authenticate and encrypt SOAP Web Services messages. Use the SOAP-layer message security
providers installed with the Web Server to employ username, password and X.509 certificate
security tokens to authenticate and encrypt SOAP Web Services messages.

Username Tokens

The Web Server uses username tokens in the SOAP messages to establish the authentication
identity of the message sender. The recipient of a message containing a Username token within
an embedded password validates that the message sender is authorized to act as the user
(identified in the token) by confirming that the sender knows the users secret password.

When using a Username token, a valid user database must be configured on the Web Server.

Digital Signatures

The Web Server uses XML Digital signatures to bind an authentication identity to the message
content. Clients use digital signatures to establish their caller identity, analogous to basic
authentication or SSL client certificate authentication. Digital signatures are verified by the
message receiver to authenticate the source of the message content, which might be different
from the sender of the message. When using digital signatures, valid keystore and truststore
files must be configured on the Web Server.

Encryption

The purpose of encryption is to modify the data such that it can only be understood by its
intended audience. This modification is accomplished by substituting an encrypted element for
the original content. When predicated on public key cryptography, encryption establishes the
identity of the parties who can read the message.

Securing Web Services

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •38

Message Protection Policies

Message protection policies are defined for request message processing and response message
processing. These policies are expressed in terms of requirements for source or recipient
authentication. A source authentication policy requires that the identity of the entity that sent a
message or that defined the content of a message be established in the message so that the
message receiver can authenticate it. A recipient authentication policy represents a requirement
that the message be sent such that the identity of the entities that can receive the message can be
established by the message sender. The providers apply specific message security mechanisms
so that the message protection policies are in SOAP Web Services messages.

Request and response message protection policies are defined when a provider is configured in
a container. You can also configure application-specific message protection policies at the
granularity of the web service port or operation within the Sun deployment descriptors of the
application or application client. Where message protection policies are defined, the request
and response message protection policies of the client must match the request and response
message protection policies of the server.

Securing a Web Service
Web Services deployed on the Web Server are secured by binding SOAP-layer message security
providers and message protection policies to the container in which the applications are
deployed or to web service endpoints served by the applications. When the Web Server is
installed, SOAP-layer message security providers are configured in the server-side container of
the Web Server. The container or individual applications in the container can bind to them or
to individual applications in the container. During installation, the providers are configured
with a simple message protection policy that, if bound to a container or to an application, would
cause the source of the content in all request and response messages to be authenticated by an
XML digital signature.

Use the Admin Console and CLI to perform the following tasks:

■ To bind the existing providers for use by the server-side containers of the Web Server
■ To modify the message protection policies enforced by the providers
■ To create new provider configurations with alternative message protection policies

By default, message layer security is disabled on the Web Server. For more information about
how to configure message layer security for the Web Server, see“Configuring the Web Server
for Message Security” on page 107. For more information about how to use Web Services
security to protect all Web Services applications deployed on the Web Server, see “ Enabling
Providers for Message Security” on page 42.

Once this security is established, Web Services security will be applied to all Web Services
applications deployed on the Web Server.

Securing Web Services

Chapter 3 • Web Services Overview 39

Configuring Application-Specific Web Services Security
Configure application-specific web services during application assembly by defining
message-security-binding elements in the applications Sun deployment descriptors. Use these
message-security-binding elements to associate a specific provider or message protection policy
with a web services endpoint or service reference. You can also qualify these elements so that
they apply to a specific port or method of the corresponding endpoint or referenced service.

Admin Console Tasks for Message Security
All the steps for setting up the Web Server for using message security can be accomplished
using the Admin Console or the wadm command-line tool. For more information on message
security, see Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

Support for message-layer security is integrated into the Web Server in the form of pluggable
authentication modules. By default, message layer security is disabled on the Web Server. The
tasks in this section provide the details for enabling, creating, editing, and deleting message
security configurations and providers.
■ To create a message security provider
■ To enable providers for message security
■ To delete a message security provider
■ To enable message security for stand-alone clients

In most cases, you need to restart or reconfigure the Web Server after performing these tasks,
especially to apply the change to applications already deployed on Web Server.

▼ To Create a Message Security Provider
You can add or edit or modify the message protection policy. The provider type,
implementation class, and provider-specific configuration properties should be modified.

Login to the Admin Console.

Select the configuration you want to modify and click Edit Configuration.

Click the Java tab.

Click the Authentication tab and scroll down to the SOAP Authentication.

■ To modify an existing provider, select the provider name and edit the values.

Click New to add a provider.

Add the new provider information
In this page, following information is available for modification.

1

2

3

4

5

6

Securing Web Services

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •40

Note – Only Name and class Name are required. If these two fields are not specified, no
authentication is applied to request or response messages. All other values are optional.

■ Name: Identifier for this provider. You can use this identifier name to specify the default
provider when using wadm.

■ Class Name: The Java implementation class of the provider. Server-side providers must
implement the com.sun.enterprise.security.jauth.ServerAuthModule interface.

The request policy defines the authentication policy requirements associated with request
processing performed by the authentication provider. Type the policies in message-sender
order. For example, a requirement that encryption occur after content means that the
message receiver expects to decrypt the message before validating the signature.

■ Request Authentication Source— Possible values are:
■ sender: Message-layer sender authentication, such as username and password
■ content: Content authentication, for example, digital signature
■ null: Source authentication of the request is not required

Click the Add Property button to add additional properties.

The provider shipped with the Web Server requires the server-config property. If other
providers are used, refer to their documentation for more information on properties and valid
values.

■ server.config: The directory and file name of an XML file that contains the server
configuration information. This file is in the following location
install_dir/samples/java/webapps/webservices/security/etc

/wss-server-config-2.0.xml.

Click OK.

To set the response policy, replace the word request in the following commands
with response.
■ Create a message security provider msgsecurity-provider:

../bin/wadm create-soap-auth-provider --port=8989 --user=admin

--password-file=/tmp/admin.passwd --config=test

--class=com.sun.xml.wss.provider.ServerSecurityAuthModule

--request-policy-auth-source=content

--request-policy-auth-recipient=before-content

--request-policy-auth-recipient=before-content

--request-policy-auth-recipient=before-content msgsecurity-provider

7

8

Example 3–1

Securing Web Services

Chapter 3 • Web Services Overview 41

■ Add the required property server.config:
../bin/wadm set-soap-auth-provider-prop --port=8989 --user=admin

--password-file=/tmp/admin.passwd --config=test

--provider=msgsecurity-provider request-policy-auth-source=sender

■ List the provider properties:
../bin/wadm get-soap-auth-provider-prop --port=8989 --user=admin

--password-file=/tmp/admin.passwd --config=test

--provider=msgsecurity-provider

For more information about wadm commands and properties, see Sun Java System Web
Server 7.0 Update 1 Administrator’s Configuration File Reference

Enabling Providers for Message Security
You can enable the message security Web Services endpoints by specifying the default provider
on the server side or by specifying in the message-binding element in sun-web.xml.

If you enable a default provider for message security, you also need an appropriate message
security on the client side.

Note – You cannot specify a default provider using the Admin Console. You have to specify the
default provider through the wadm command-line interface.

../bin/wadm set-config-prop --port=8989 --user=admin

--password-file=/tmp/admin.passwd --config=test

default-soap-auth-provider-name=msgsecurity-provider

▼ To Delete a Message Security Provider

Login to the Admin Console.

Select the configuration you want to modify and click Edit Configuration.

Click the Java tab.

Click the Authentication tab and scroll down to SOAP Authentication.

Click Delete.

To Delete a Message Provider

To delete a message security provider through the command-line interface, type the following
command:

1

2

3

4

5

Example 3–2

Securing Web Services

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •42

wadm delete-soap-auth-provider --port=8989 --user=admin

--password-file=/tmp/admin.passwd --config=test msgsecurity-provider

Enabling Message Security Clients
Configure the message protection policies of client so that they are equivalent to the message
protection policies of the server-side providers with which they interact. A typical stand-alone
client is illustrated by the bundled sample fromwsdl-soap12.

Deploying Web Services
You deploy a web service endpoint to the Web Server just as you would deploy any servlet or
application. You can use the wadm deploy command to publish the web service. The Sun
sun-web.xml deployment descriptor file provides optional web service enhancements using
webservice-endpoint. For more information, see “Deploying the Server Configuration” in
Sun Java System Web Server 7.0 Update 1 Administrator’s Guide and Java Web Services
Developer Pack 2.0
(http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html).

Testing Web Services
To test Web Services you invoke a web service endpoint deployed on a web service client. A web
service client is a Java program that makes a request to the service through a stub that acts as a
proxy for the remote service. This stub is generated by the wsimport tool based on the WSDL
file of the service.

▼ To Invoke a Web Service Client
WSDL of the deployed web service from URL http://host:port/context-root/endpoint?wsdl

Call wsimport to generate the client-side artifacts using the deployed Web Services's WSDL.

Implement the client to invoke the web service.
Clients can run a deployed web service by accessing its service-endpoint-address URL, which
has the following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the web.xml file. The servlet-mapping-url-pattern is
defined in the web.xml file.

1

2

3

Testing Web Services

Chapter 3 • Web Services Overview 43

http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html
http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html
http://java.sun.com/webservices/docs/2.0/tutorial/doc/index.html

In the following example, the context-root is my-ws and the servlet-mapping-url-pattern
is /simple. You can view the WSDL file of the deployed service in a browser by adding ?WSDL to
the end of the URL, for example,

http://localhost:8080/my-ws/simple?WSDL.

Web Services Samples
The fromwsdl-soap1 application features a simple web service that is implemented by a Java
Servlet endpoint. The service endpoint interface defines a single operation, addNumbers, which
takes two positive integers, and returns an integer that is the sum of the two input integers.

The fromwsdl-soap12 sample application demonstrates how to use the WS-Security
functionality to secure an existing Web Services application. The instructions helps you to
enable the WS-Security functionality of the Web Server so that it is used to secure the
fromwsdl-soap12 application.

The fromwsdl-soap12 sample application is installed in the
install_dir/samples/java/webapps/webservices/security/fromwsdl-soap12/ directory.

Web Services Samples

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •44

Developing Servlets

This chapter describes how to create servlets to control web application interactions running on
a Web Server. In addition, this chapter describes the Web Server features used to augment the
Java Servlet 2.5 standards.

This chapter has the following sections:

■ “About Servlets” on page 45
■ “Servlet Output” on page 46
■ “Caching Servlet Results” on page 46
■ “Maximizing Servlet Performance” on page 51
■ “Servlet Internationalization Issues” on page 52
■ “Migrating Legacy Servlets” on page 53

About Servlets
Servlets, like applets, are reusable Java applications. Servlets, however, run on a web server
rather than in a web browser.

Servlets provide a component-based, platform-independent method for building web-based
applications without the performance overheads, process limitations, and platform-specific
liabilities of CGI programs.

Servlets supported by the Web Server are based on the Java Servlet 2.5 specification. Servlets are
created compiled and packed into a Java web application archive WAR file and then deployed to
the Web Server and managed at runtime by the servlet engine

Basic characteristics of servlets include the following:

■ Operate on input data that is encapsulated in a request object
■ Respond to a query with data encapsulated in a response object
■ Provide user session information persistence between interactions

4C H A P T E R 4

45

■ Allow dynamic reloading while the server is running
■ Can be addressed with URLs. For examples, buttons on an application's pages often point to

servlets
■ Can call other servlets and/or JSP pages

Servlet Output
By default, the System.out and System.err output of servlets is sent to the server log. During
startup, server log messages are echoed to the System.err output. On Windows, no console is
created for the System.err output.

You can change these defaults using the Admin Console. For more information, see “Setting Up
Logging for Your Server” in Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

Caching Servlet Results
Web Server can cache the results of invoking a servlet, a JSP page, or any URL pattern to make
subsequent invocations of the same servlet, JSP page, or URL pattern faster. The Web Server
caches the request results for a specific amount of time. In this way, if another data call occurs,
the Web Server can return the cached data instead of performing the operation again. For
example, if your servlet returns a stock quote that updates every 5 minutes, you set the cache to
expire after 300 seconds.

If caching is enabled, Web Server can cache the results produced by the servlet
javax.servlet.RequestDispatcher.include() or
javax.servlet.RequestDispatcher.forward(). In Sun ONE releases, the result generated by
a resource for which caching was enabled was never cached if that resource was the target of a
javax.servlet.RequestDispatcher.include() or
javax.servlet.RequestDispatcher.forward(). This result cached only if the resource was
the target of the initial request.

<sun-web-app>

<cache enable="true">
<cache-mapping>

<servlet-name>TestServlet</servlet-name>

<dispatcher>REQUEST</dispatcher>

<dispatcher>FORWARD</dispatcher>

</cahce-mapping>

</cache>

</sun-web-app>

Whether to cache results and how to cache them depends on the data involved. For example,
you do not need to cache the results of a quiz submission because the input to the servlet is

Servlet Output

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •46

different each time. However, you could cache a high-level report showing demographic data
taken from quiz results that is updated once an hour.

You can define how a Web Server web application handles response caching by editing specific
fields in the sun-web.xml file. In this way, you can create programmatically standard servlets
that still take advantage of this feature.

For more information about JSP caching, see “JSP Cache Tags” on page 61.

Features of Caching
Web Server has the following web application response caching capabilities:

■ Caching is configurable based on the servlet name or the URI.
■ When caching is based on the URI, the URI can include user-specified parameters in the

query string. For example, a response from /garden/catalog?category=roses is different
from a response from /garden/catalog?category=lilies. These responses are stored
under different keys in the cache.

■ Cache size, entry timeout, and other caching behaviors are configurable.
■ Entry timeout is measured from the time an entry is created or refreshed. You can override

this timeout for an individual cache mapping by specifying the cache-mapping element
timeout.

■ You can determine caching criteria programmatically by writing a cache helper class. For
example, if a servlet only stores the time when a back-end data source was last modified, you
can write a helper class to retrieve the last-modified timestamp from the data source and
decide whether to cache the response based on that timestamp. See “CacheHelper Interface”
on page 48.

■ You can determine cache key generation programmatically by writing a cache key generator
class. See “CacheKeyGenerator Interface” on page 50.

■ All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

■ The newly updated classes affect data what gets cached. The web container clears the cache
during dynamic deployment or reloading of classes.

■ The following HttpServletRequest request attributes are:
■ com.sun.appserv.web.cachedServletName, the cached servlet target
■ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

Caching Servlet Results

Chapter 4 • Developing Servlets 47

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP page, the
default cache configuration is as follows:
■ The default cache timeout is 30 seconds.
■ Only the HTTP GET method is eligible for caching.
■ HTTP requests with cookies or sessions automatically disable caching.
■ No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
■ The default key consists of the servlet path minus pathInfo and the query string.
■ A least-recently-used list is maintained to delete cache entries if the maximum cache size is

exceeded.
■ Key generation concatenates the servlet path with key field values, if any are specified.

CacheHelper Interface
The CacheHelper interface includes the following information:

package com.sun.appserv.web.cache;

import java.util.Map

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

/** CacheHelper interface is an user-extensible interface to customize:

* a) the key generation b) whether to cache the response.

*/

public interface CacheHelper {

// name of request attributes

public static final String ATTR_CACHE_MAPPED_SERVLET_NAME =

"com.sun.appserv.web.cachedServletName";
public static final String ATTR_CACHE_MAPPED_URL_PATTERN =

"com.sun.appserv.web.cachedURLPattern";
public static final int TIMEOUT_VALUE_NOT_SET = -2;

/** initialize the helper

* @param context the web application context this helper belongs to

* @exception Exception if a startup error occurs

*/

public void init(ServletContext context, Map props) throws Exception;

/** getCacheKey: generate the key to be used to cache this request

* @param request incoming <code>HttpServletRequest</code> object

* @returns the generated key for this requested cacheable resource.

*/

public String getCacheKey(HttpServletRequest request);

/** isCacheable: is the response to given request cacheable?

* @param request incoming <code>HttpServletRequest</code> object

Caching Servlet Results

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •48

* @returns <code>true</code> if the response could be cached. or

* <code>false</code> if the results of this request must not be cached.

*/

public boolean isCacheable(HttpServletRequest request);

/** isRefreshNeeded: is the response to given request to be refreshed?

* @param request incoming <code>HttpServletRequest</code> object

* @returns <code>true</code> if the response needs to be refreshed.

* or return <code>false</code> if the results of this request

* dont need to be refreshed.

*/

public boolean isRefreshNeeded(HttpServletRequest request);

/** get timeout for the cached response.

* @param request incoming <code>HttpServletRequest</code> object

* @returns the timeout in seconds for the cached response; a return

* value of -1 means the response never expires and a value of -2 indicates

* helper cannot determine the timeout (container assigns default timeout)

*/

public int getTimeout(HttpServletRequest request);

/**

* Stop the helper from active use

* @exception Exception if an error occurs

*/

public void destroy() throws Exception;

}

Caching Example
The following example cache element in the sun-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet name>

<timeout name="timefield">120</timeout>
<http-method>GET</http-method>

<http-method>POST</http-method>

</cache-mapping>

<cache-mapping>

<url-pattern> /catalog/* </url-pattern>

<!-- cache the best selling category; cache the responses to

-- this resource only when the given parameters exist. Cache

-- only when the catalog parameter has qliliesq or qrosesq

-- but no other catalog varieties:

-- /orchard/catalogbest&category=lilies

-- /orchard/catalogbest&category=roses

-- but not the result of

-- /orchard/catalog?best&category=wild

Caching Servlet Results

Chapter 4 • Developing Servlets 49

-->

<constraint-field name=best scope=request.parameter/>

<constraint-field name=category scope=request.parameter>

<value> roses </value>

<value> lilies </value>

</constraint-field>

<!-- Specify that a particular field is of given range but the

-- field does not need to be present in all the requests -->

<constraint-field name=SKUnum scope=request.parameter>

<value match-expr=qin-range> 1000 - 2000 </value>

</constraint-field>

<!-- cache when the category matches with any value other than

-- a specific value -->

<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">bogus</value>

</constraint-field>

</cache-mapping>

<cache-mapping>

<servlet-name> InfoServlet </servlet name>

<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>

</cache>

For more information about the sun-web.xml caching settings, see “Caching Elements” on
page 167.

CacheKeyGenerator Interface
The built-in default CacheHelper implementation enables web applications to customize the
key generation. An application component in a servlet or JSP can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” on page 170.

The CacheKeyGenerator interface contains the following information:

package com.sun.appserv.web.cache;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

/** CacheKeyGenerator: a helper interface to generate the key that

* is used to cache this request.

*

* Name of the ServletContext attribute implementing the

* CacheKeyGenerator is configurable via a property of the

* default-helper in sun-web.xml:

Caching Servlet Results

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •50

* <default-helper>

* <property

* name="cacheKeyGeneratorAttrName"
* value="com.acme.web.MyCacheKeyGenerator" />

* </default-helper>

*

* Caching engine looks up the specified attribute in the servlet

* context; the result of the lookup must be an implementation of the

* CacheKeyGenerator interface.

*/

public interface CacheKeyGenerator {

/** getCacheKey: generate the key to be used to cache the

* response.

* @param context the web application context

* @param request incoming <code>HttpServletRequest</code>

* @returns key string used to access the cache entry.

* if the return value is null, a default key is used.

*/

public String getCacheKey(ServletContext context,

HttpServletRequest request);

}

Maximizing Servlet Performance
Consider the following guidelines for improving servlet performance:
■ Increase the Java heap size to help garbage collection. The Java heap size can be adjusted by

adjusting the values specified to the —Xms and —Xmx jvm- options in server.xml. For
example, <jvm-options>-Xms128m-Xmx256m</jvm-options> sets the minimum Java heap
size to 128 MB and 256 MB. For more information, see Sun Java System Web Server 7.0
Update 1 Administrator’s Guide.

■ Set the stack space if applications use deep recursion, or in any cases where very complex JSP
pages are used.
You can set the stack space using set-thread-pool-prop wadm command.
For example, $wadm set-thread-pool-prop [other args] stack-size=544288. For
more information, see Sun Java System Web Server 7.0 Update 1 NSAPI Developer’s Guide.

■ Use the NSAPI cache improve servlet performance in cases where the obj.conf
configuration file has many directives. To enable the NSAPI cache, include the following
line in magnus.conf:

Init fn="nsapi-cache-init" enable=true

■ Check whether the session ID generator that is used for servlet sessions employs
cryptographically unique random number generation algorithms. This method might
present a performance problem on older, slow machines. For more information, see
Chapter 6, “Session Managers.”

Maximizing Servlet Performance

Chapter 4 • Developing Servlets 51

■ Reduce the number of directories in the classpath.
■ Disable dynamic reloading.
■ Disable the Java Security Manager.

Servlet Internationalization Issues
This section describes how Web Server determines the character encoding for the servlet
request and the servlet response. For information about encodings, see
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html.

Servlet Request
When processing the servlet request, the server uses the following order of precedence, first to
last, to determine the character encoding for the request parameters:

1. The ServletRequest.setCharacterEncoding() method.
2. A hidden field in the form, if specified using the form-hint-field attribute of the

parameter-encoding element in the sun-web.xml file. For more information about this
element, see “parameter-encoding Element” on page 180.

3. The character encoding specified in the default-charset attribute of the
parameter-encoding element in the sun-web.xml file. For more information about this
element, see “parameter-encoding Element” on page 180.

Servlet Response
When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

1. The ServletResponse.setContentType () method or the ServletResponse.setLocale
() method.

2. The default encoding, which is ISO-8859–1.

To specify the character encoding that should be set in the Content-type header of the
response if the response locale is set using the ServletResponse.setLocale method, use the
locale-charset-map under the locale-charset-info element in the sun-web.xml file. For
more information about this element, see “locale-charset-info Element” on page 180

Servlet Internationalization Issues

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •52

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

Migrating Legacy Servlets
Netscape Enterprise Server/ iPlanet Web Server versions 4.0 and 4.1 supported the Java Servlet
2.1 specification. This specification did not include web applications. A deployment scheme was
developed to make servlet deployment simpler. With the advent of Java web applications (WAR
files) and their deployment descriptors, maintaining a proprietary deployment system is no
longer necessary.

iPlanet Web Server 6.0 supported both types of deployment schemes, but the 4.x
implementation (referred to as legacy servlets) was marked as deprecated (See Chapter 8 Legacy
Servlet and JSP Configuration of the iPlanet Web Server, Enterprise Edition Programmer's
Guide to Servlets).

Web Server versions 6.1 and 7.0 no longer support legacy servlets. The legacy properties files for
the server you want to migrate (servlet.properties, context.properties, and
rules.properties) are removed during migration.

Because no one-to-one mapping is possible for all of the features, legacy servlets cannot be
migrated automatically. This section describes the main features involved in migrating legacy
servlets to web applications.

This section includes the following topics:

■ “JSP file by Extension” on page 53
■ “Servlet by Extension of Servlet by Directory” on page 53
■ “Registering Servlets” on page 54

JSP file by Extension
In Web Server, JSP file by extension works as it did in previous releases. Any file name in the
document tree with a suffix of .jsp is treated as a JSP environment as long as the Java is turned
on for the virtual server.

Servlet by Extension of Servlet by Directory
Servlet extension is not supported in Web Server. You can deploy a web application to respond
to a directory, but all of the servlets must be in the WEB-INF/classes directory of the web
application. You can no longer copy a servlet in the .class file into the document tree and have
it run as a servlet or have all of the contents of a directory run as a servlet. The web application
treats only .class files as servlets.

Migrating Legacy Servlets

Chapter 4 • Developing Servlets 53

Registering Servlets
The legacy servlet system used a two-step process of registering servlets (servlet.properties)
and mapping them to a URL (rules.properties). In Web Server, the servlets must be moved
into a web application. These settings will be maintained in the web.xml file of that web
application.

A registered servlet has entries in both the servlet.properties and rules.properties files.

The following example uses a servlet file called BuyNow1A.class, which responds to /buynow. It
is assumed that the web application is deployed at '/'

The servlet.properties file containing:

EXAMPLE 4–1 Registering Servlets Example

servlet.BuyNowServlet.classpath=D:/Netscape/server4/docs/

servlet/buy;D:/Netscape/server4/docs/myclasses

servlet.BuyNowServlet.code=BuyNow1A

servlet.BuyNowServlet.initArgs=arg1=45,arg2=online,arg3="quick shopping"

The rules.properties file has:

/buynow=BuyNowServlet

These settings must be translated to a web.xml setting. The servlet.properties setting
translates into the servlet element.

The classpath is automated so no classpath setting is necessary. All classes to be used must be in
the WEB-INF/classes directory or in a .jar file in the WEB-INF/lib directory of the web
application.

The servlet-name element appears between the dots in the servlets.properties file. The
code translates to the servlet-class, IntArgs translate to init-params. This entry will
translate to the following entry:

<servlet>

<servlet-name> BuyNowServlet </servlet-name>

<servlet-class> BuyNow1A </servlet-class>

<init-param>

<param-value> arg1 </param-name>

<param-value> 45 </pram-value>

</init-param>

<init-param>

<param-name> arg2 </param-name>

<param-value> online </param-value>

</init-param>

<init-param>

Migrating Legacy Servlets

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •54

EXAMPLE 4–1 Registering Servlets Example (Continued)

<param-name> arg3 </param-name>

<param-value> ’quick shopping" </param-value>

</init-param>

</servlet>

The rules.properties entries translate to servlet-mapping elements. This entry translates to
the following entry:

<servlet-mapping>

<servlet-name> BuyNowServlet </servlet-name>

<url-pattern> /buynow </url-pattern>

</servlet-mapping>

Some other entries in the servlet.properties file map to the web.xml file. This includes the
following information:

■ Servlets.startup: This servlet should contain the load-on-startup element.
■ Servlets.config.reloadInterval: This setting translates to the dynamicreloadinterval

attribute of the jvm element in servlet.xml. This instance-wide setting affects all virtual
servers and all web applications.

■ Servlet.sessionmgr: This element translates to the session-manager element in the
sun-web.xml.

Migrating Legacy Servlets

Chapter 4 • Developing Servlets 55

56

Developing JavaServer Pages

This chapter describes how to use JavaServer Pages (JSPTM) page templates in a Web Server
application.

This chapter has the following sections:

■ “Introducing JSPs” on page 57
■ “Compiling JSPs Using the Command-Line Compiler” on page 58
■ “Debugging JSPs” on page 61
■ “JSP Tag Libraries and Standard Portable Tags” on page 61
■ “JSP Cache Tags” on page 61
■ “JSP Search Tags” on page 65
■ “JSP Internationalization Issues” on page 73

Introducing JSPs
JSPs are browser pages in HTML or XML. These pages contain Java code, which enables them
to perform complex processing, conditionalize output, and communicate with other
application objects. JSPs in Web Server are based on the JSP 2.1 specification.

In a Web Server application, you can call a JSP from a servlet to handle the user interaction
output. Because JSPs have the same application environment access as any other application
component, you can use a JSP as an interaction destination.

JSPs are made up of JSP elements and template data. Template data is anything not in the JSP
specification, including text and HTML tags. For example, minimal JSP file requires no
processing by the JSP engine and is a static HTML page.

Web Server compiles JSPs into HTTP servlets the first time they are called or they can be
precompiled for better performance. This processing makes them available to the application
environment as standard objects and enables them to be called from a client using a URL.

5C H A P T E R 5

57

JSPs run inside the Web Server JSP engine, which is responsible for interpreting tags that are
specific to JSP and performing the actions they specify in order to generate dynamic content.
This content, along with any template data surrounding it, is assembled into an output page and
is returned to the caller.

Compiling JSPs Using the Command-Line Compiler
Web Server provides the following ways of compiling JSP 2.1-compliant source files into
servlets:

■ JSP are automatically compiled at runtime.
■ The jspc command-line tool, described in this section, enables you to precompile JSPs at

the command line.

You must disable dynamic reloading of JSP when deploying a web application archive that has
precompiled JSP without the corresponding jsp source files. To do this, set the
reload-interval property to -1 in the jsp-config element of the sun-web.xml file. For more
information, see “JSP Element” on page 177.

The jspc command-line tool is located under install_dir/bin. The format of the jspc
command is as follows:

jspc [options] file_specifier

The following table shows what file_specifier can contain in the jspc command.

TABLE 5–1 File Specifiers for the jspcCommand

File Specifier Description

files One or more JSP files to be compiled.

-webapp dir A directory containing a web application. All JSPs in the directory and its
subdirectories are compiled. You cannot specify a WAR, JAR, or ZIP file.
You must first extract such files to an open directory structure.

The following table shows the basic options for the jspc command.

TABLE 5–2 Basic jspcOptions

Option Description

-help Enables quiet mode (same as -v0). Only fatal error messages are displayed.

-v Verbose mode.

Compiling JSPs Using the Command-Line Compiler

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •58

TABLE 5–2 Basic jspcOptions (Continued)
Option Description

-d dir Specifies the output directory for the compiled JSPs. Package directories are
automatically generated based on the directories containing the
uncompiled JSPs. The default top-level directory is the directory from
which jspc is invoked.

-l Specifies the name of the JSP on failure.

-s Specifies the name of the JSP on success.

-p name Specifies the name of the target package for all specified JSPs, overriding the
default package generation performed by the -d option.

-c name Specifies the target class name of the first JSP compiled. Subsequent JSPs are
unaffected.

-mapped Generates separate write() calls for each HTML line in the JSP.

die(#) Generates an error return code (#) on fatal errors (default 1).

-uribase dir Specifies the URI directory to which compilations are relative. Applies only
to explicitly declared JSP files.

This path is the location of each JSP file relative to the uriroot. If this
location cannot be determined, the default is /.

-uriroot dir A directory containing a web application. All JSPs in the directory and its
subdirectories are compiled. You cannot specify a WAR, JAR, or ZIP file.
You must first extract such files to an open directory structure.

-compile Compiles the generated servlets.

-genclass Generates class files in addition to Java files.

-webinc file Creates a partial servlet mappings in the file.

-web.xml file Creates a complete web.xml structure in the file.

-ieplugin clsid Java Plug-in classid for Internet Explorer.

classpath path Overrides the java.class.path system property

xpoweredBy Add the X-Powered-By response header.

-trimSpaces Trims spaces in text templates between actions and directives.

-smap Generates SMAP info for JSR 45 debugging.

-dumpsmap Dumps SMAP info for JSR45 debugging into a file.

-compilerSourceVM release Provides source compatibility with specified JDKTM release.

-compilerTargetVMrelease Generates class files for specified VM version.

Compiling JSPs Using the Command-Line Compiler

Chapter 5 • Developing JavaServer Pages 59

For example, this command compiles the hello JSP file and writes the compiled JSP under
hellodir:

jspc -d hellodir -genclass hello.jsp

This command compiles all of the JSP files in the web application under webappdir into class
files under jspclassdir:

jspc -d jspclassdir -genclass -webapp webappdir

To use either of these precompiled JSPs in a web application, put the classes under hellodir or
jspclassdir into a JAR file, place the JAR file under WEB-INF/lib, and set the
reload-interval property to -1 in the sun-web.xml file.

Package Names Generated by the JSP Compiler
When a JSP is compiled, a package is created for it. The package name starts with jspc. For
example, the generated package name for ~/SOURCE/JSP/myjsps/hello.jsp is precompiled as
jspc -webapp ~/SOURCE -d ~/test1/test2/test3. The generated servlet is located in
~/test1/test2/test3/org/apache/jsp/JSP/myjsps/hello_jsp.java and defined in
org.apache.jsp.JSP.myjsps. The path for hello.jsp is derived from the directory in which
the JSP is located.

In another example, the same hello.jsp is precompiled using the —p option, and is
precompiled as jspc -webapp ~/SOURCE -d ~/test1/test2/test3 -p app1.app2.app3. The
generated servlet is located in
~/test1/test2/test3/app1/app2/app3/JSP/myjsps/hello_jsp.java and defined inside
package app1.app2.app3.JSP.myjsps. Note that the package specified with the -p option
(app1.app2.app3) overrides the standard org.apache.jsp but does not affect the package
derived from the directory in which the JSP is located. Also, note that the -d option does not
affect on the generated package name.

Other JSP Configuration Parameters
For information about the various JSP configuration parameters you can use, see the section
“jsp-config Element” on page 177. The JSP compiler uses the default values for parameters
that are not included in the file.

Compiling JSPs Using the Command-Line Compiler

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •60

Debugging JSPs
When you use Sun Java Studio Enterprise 8.1 to debug JSPs, you can set breakpoints in a JSP.

For information about setting up debugging in Sun Java Studio Enterprise 8.1, see “Using
Developer Tools for Debugging” on page 137.

JSP Tag Libraries and Standard Portable Tags
Web Server supports tag libraries and standard portable tags. For more information about tag
libraries, see the JSP 2.1 specification at

http://java.sun.com/products/jsp/download.html.

JSP Cache Tags
JSP cache tags enable you to cache JSP page fragments within the Java engine. Each fragment
can be cached using different cache criteria. For example, suppose you have page fragments to
view stock quotes and weather information. The stock quote fragment can be cached for 10
minutes, the weather report fragment for 30 minutes, and so on.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 46.

JSP caching uses the custom tag library support provided by JSP 2.1. JSP caching is
implemented by a tag library packaged into the install_dir/lib/.jar file, which is always on the
server classpath. The sun-web-cache.tld tag description file is in the install_dir/lib/tlds
directory and can be copied into the WEB-INF directory of your web application.

JSP caching is available in three different scopes: request, session, and application. The
default is application.

To use a cache with the request scope, a web application must specify the
com.sun.appserv.web.taglibs.cache.CacheRequestListener in its deployment descriptor,
as follows:

<listener>

<listener-class>

com.sun.appserv.web.taglibs.cache.CacheRequestListener

</listener-class>

</listener>

To use a cache in session scope, a web application must specify the
com.sun.appserv.web.taglibs.cache.CacheSessionListener in its deployment descriptor,
as follows:

JSP Cache Tags

Chapter 5 • Developing JavaServer Pages 61

http://java.sun.com/products/jsp/download.html

<listener>

<listener-class>

com.sun.appserv.web.taglibs.cache.CacheSessionListener

</listener-class>

</listener>

To use a cache with the application scope, a web application does not need to specify any
listener. The com.sun.appserv.web.taglibs.cache.CacheContextListener is already
specified in the sun-web-cache.tld file.

The JSP cache tags are as follows:

■ “cache Tag” on page 62
■ “flush Tag” on page 64

cache Tag
The cache tag enables you to cache fragments of your JSP pages. It caches the body between the
beginning and ending tags according to the attributes specified. The first time the tag is
encountered, the body content is executed and cached. Each subsequent time is run, the cached
content is checked to see whether it needs to be refreshed. If so, it is executed again, and the
cached data is refreshed. Otherwise, the cached data is served.

Attributes
The following table describes attributes for the cache tag.

TABLE 5–3 cache Attributes

Attribute Default Description

key servletPath_suffix (Optional) The name used by the container to access the cached
entry. The cache key is added to the servlet path to generate a key
to access the cached entry. If no key is specified, a number is
generated according to the position of the tag in the page.

timeout 60s (Optional) The time in seconds after which the body of the tag is
executed and the cache is refreshed. By default, this value is
interpreted in seconds. To specify a different unit of time, add a
suffix to the timeout value as follows: s for seconds, m for
minutes, h for hours, and d for days. For example, 2h specifies
two hours.

JSP Cache Tags

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •62

TABLE 5–3 cache Attributes (Continued)
Attribute Default Description

nocache false (Optional) If set to true, the body content is executed and served
as if no cache tag is active. This offers a way to programmatically
decide whether the cached response should be sent or whether
the body must be executed, even if the response is not cached.

refresh false (Optional) If set to true, the body content is executed and the
response is cached again. This setting enables you to lets you
programmatically refresh the cache immediately, regardless of
the timeout setting.

scope application Specifies the scope of the cache. Valid values are request,
session, and application.

Example
The following example represents a cached JSP page.

<%@ taglib prefix="mypfx" uri="/com/sun/web/taglibs/cache" %>

<%

String cacheKey = null;

if (session != null)

cacheKey = (String)session.getAttribute("loginId");
// check for nocache

boolean noCache = false;

String nc = request.getParameter("nocache");
if (nc != null)

noCache = "true";
// force reload

boolean reload=false;

String refresh = request.getParameter("refresh");
if (refresh != null)

reload = true;

%>

<mypfx:cache key="<%= cacheKey %/>" nocache="<%= noCache %/>"
refresh="<%= reload %/>" timeout="10m"/>

<%

String page = request.getParameter("page");
if (page.equals("frontPage") {

// get headlines from database

} else {

.....

%>

</mypfx:cache/>

<mypfx:cache timeout="1h"/>
<h2> Local News </h2>

<%

JSP Cache Tags

Chapter 5 • Developing JavaServer Pages 63

// get the headline news and cache them

%>

</mypfx:cache/>

flush Tag
This tag forces the cache to be flushed. If a key is specified, only the entry with that key is
flushed. If no key is specified, the entire cache is flushed.

Attributes
The following table describes attributes for the flush tag. The left column lists the attribute
name, the middle column indicates the default value, and the right column describes what the
attribute does.

TABLE 5–4 flush Attributes

Attribute Default Description

key servletPath_suffix (Optional) The name used by the container to access the cached
entry. The cache key is added to the servlet path to generate a key
to access the cached entry. If no key is specified, a number is
generated according to the position of the tag in the page.

scope application Specifies the scope of the cache. Valid values are request,
session, and application.

Examples
To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<% if (session != null && session.getAttribute("clearCache") != null) { %/>

<mypfx:flush />

<% } %/>

JSP Cache Tags

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •64

JSP Search Tags
Web Server includes a set of JSP tags that can be used to customize the search query and search
results pages in the search interface. This section describes the tags and how they are used.

The search tag library is packaged into the install_dir/lib/webserv-rt.jar file, which is
always on the server classpath. The sun-web-search.tld tag description file can be found in
the install_dir/lib/tlds directory, you can copy this file into the WEB-INF directory of your
web application.

The search tags are as follows:

■ “searchForm Tag” on page 65
■ “CollElem Tag” on page 66
■ “collection Tag” on page 67
■ “colIItem Tag” on page 68
■ “queryBox Tag” on page 68
■ “submitButton Tag” on page 69
■ “formAction Tag” on page 69
■ “formSubmission Tag” on page 70
■ “formActionMsg Tag” on page 70
■ “search Tag” on page 71
■ “resultIteration Tag” on page 71
■ “Item Tag” on page 72
■ “resultStat Tag” on page 72
■ “resultNav Tag” on page 72

Note – The Web Server search feature is compliant for internalization, and supports multiple
character encoding schemes in the same collection. Custom JSPs that expose search can be in
any encoding.

searchForm Tag
This tag constructs an HTML form that contains default, hidden form elements such as the
current search result index and number of records per page by default. The default names for
the form, index, and number of records are searchform, si, and ns.

Attributes
The searchForm tag uses the following attributes:

■ Name- Specifies the name of the form. The default is searchform. The name of a form is the
identifier for all other tags.

■ Action (Optional) - Specifies the form action.

JSP Search Tags

Chapter 5 • Developing JavaServer Pages 65

■ Method (Optional) - Specifies the method of submission, GET or POST. The default is GET.
■ elemStart (Optional) - Specifies the name of the hidden Start element. If not specified, the

default si will be used.
■ Start (Optional) - An integer indicating the starting index for displaying the search result.

The default is 1.
■ elemNumShown (Optional) - The name of the nShown element. If not specified, the default

ns is used.
■ numShown. (Optional) - An integer indicating the number of results to be shown per page.

The value of the attribute will be retrieved by requesting parameter elemNumShown. The
default is 10.

Usage
<s1ws:form action="results.jsp" />

...

</s1ws:searchForm>

This example creates an HTML form tag <form name="searchform" action="results.jsp"
method="GET">, along with two hidden input boxes:

■ A hidden input box for starting the index named si with a value from the si parameter or
default 1

■ A hidden input box for the number of records per page named ns with a value from the ns
parameter or default 20

CollElem Tag
This tag creates a hidden inputbox or select box, or multiple checkboxes, depending on the
attribute input. If only one collection exists, the tag will create a hidden inputbox by default.

Attributes
The CollElem tag uses the following attributes:

■ Name- Specifies the name of the form element created. The default is c.
■ Items (Optional) - A comma-delimited string representing search collections available. The

tag retrieves all collections available on the server if the attribute is empty.
■ Type (Optional) - The type of form element used for displaying collections. Valid options

are hidden, select, and checkbox. The default value is hidden if one collection exists, and
checkbox if there are multiple collections.

■ Rows (Optional) - Represents size if the type is select, or the number of rows. The default
behavior is to satisfy the Cols attribute first. That is, the collections will be listed in columns
as specified by the Cols attribute.

JSP Search Tags

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •66

■ Cols - Represents number of columns and is only required if type is checkbox. If Cols and
Rows are not specified, the collections will be listed horizontally.

■ Defaults - Specifies a comma-delimited string containing 1s or 0s indicating the selection
status of the search collections. An item is selected if the setting is 1, and not selected if the
setting is 0. If there is a form action exists , these values will be retrieved from the form
elements.

■ cssClass (Optional) - The class name used in every HTML tag created in this tag. This
attribute is particularly useful when the type is checkbox, since an HTML table is used for
the layout. See the sample code for details.

Usage
<s1ws:collElem type="checkbox" cols="2" values="1,0,1,0" cssClass="body" />

This example creates checkboxes in 2 columns with a default name c with the first and third
items selected. Fonts and any other HTML styles are defined in the css class body, which
includes tr.body, td.body, and input.body.

collection Tag
This tag retrieves the name of the search collections on the server, iterates through them , and
passes each of them to the collectionitem tag. Use this tag with collection item tags write your
own HTML search collections.

Attributes
Optional - A comma-delimited string representing the search collections available. The tag
retrieves all collections available on the server if the attribute is empty.

Usage
<table border=0>

<s1ws:collection>

<tr><td><input type=checkbox name="c"
value="<s1ws:collItem property="name" />">
<s1ws:collItem property="display name" /

></td></tr>

</s1ws:collection>

</table>

The above code will display all collections with checkboxes.

<select name=elementname>

<s1ws:collection>

<option value="<s1ws:collItem property="name" />">

JSP Search Tags

Chapter 5 • Developing JavaServer Pages 67

<s1ws:colleItem property="display name" />

</s1ws:collection>

</select>

This function iterates through the available collections and passes each item to the collection
item tag, which in turn displays the name and display name of the item.

colIItem Tag
This tag displays the name and label of one collection item. This tag must be used inside the
collection tag.

Attributes
Property - Specifies a keyword indicating which property the tag should output. Valid inputs
include name, display name, and description. Default is name.

Usage
<select name=elementname>

<s1ws:collection>

<option value="<s1ws:collItem property="name" />">
<s1ws:collItem property="display name" />

</s1ws:collection>

</select>

This function iterates through the available collections and passes each item to the collection
item tag, which in turn displays the name and display name of the item.

queryBox Tag
This tag creates an input box.

Attributes
The queryBox tag uses the following attributes:

■ name. (Optional) The name of the inputbox. The default is qt.
■ default. (Optional) The default value for the query box. If the form is submitted, its value

will be set using this setting.
■ size. (Optional) The size of the inputbox. The default is 50.
■ maxlength. (Optional) The maxlength of the inputbox. The default is 50.
■ cssClass. (Optional) The CSS class.

JSP Search Tags

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •68

Usage
<s1ws:queryBox size="30"/>

This example creates an inputbox with default name qt and size=30.

submitButton Tag
This tag creates a submit button.

Attributes
The submitButton tag uses the following attributes:

■ name. (Optional) The name of the button. The default is sb.
■ default. (Optional) The default value of the button, which will be search.
■ cssClass. (Optional) The CSS class name.
■ style. The CSS style.
■ image. The optional image for the button.

Usage
<s1ws:submitButton cssClass="navBar" style="padding: 0px; margin: 0px; width: 50px">

This example creates a submit button with default name sb.

formAction Tag
This tag performs the following sections:

■ This tag handles form action.
■ It retrieves all elements on the search form.
■ Validates that there is at least one collection is selected and the query is not empty, and

passes the values on to search and results tags as parents or through the page context.

Attributes
The formAction tag uses the following attributes:

■ formId. Specifies the name of the form. If not specified, the default form searchForm will be
used.

■ ElemColl. (Optional) The name of the Collection element. The default name c is used.
■ elemQuery. (Optional) The name of the Start element. The default name qt is used.
■ elemStart. (Optional) The name of the Start element. The default name si is used.

JSP Search Tags

Chapter 5 • Developing JavaServer Pages 69

■ elemNumShown. (Optional) The name of the numShown element. The default name ns is
used.

Usage
<s1ws:formAction />

formSubmission Tag
This tag tests whether the form submission is successful.

Attributes
The formsubmission tag uses the following attributes:

■ formId. Specifies the name of the form in question. This name must the name assigned with
<formAction>.

■ success. Indicates if the form submission is successful. The values true or yes represents
successful action. All other inputs are rendered as failure.

Usage
<s1ws:formSubmission success="true" >

<s1ws:search>

...

</s1ws:formSubmission>

formActionMsg Tag
This tag prints out an error message from formAction, if any.

Attributes
The formActionMsg tag uses the following attributes:

■ formId. (Optional) Specifies the name of the form in question. If not specified, the default
ID is searchForm.

■ elem. (optional) Specifies the name of the element. Valid inputs are query and collection.
When specified, the tag returns an error message, if any, regarding the element. Otherwise,
all of the error messages generated are printed out.

JSP Search Tags

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •70

Usage
<FormActionMsg elem="query">

This tag displays the message query text not specified if a query is not submitted.

The message is printed from the form action where the tag is placed.

search Tag
This tag executes a search query and returns search results. The search tag retrieves a query
string and collections from either a form parent tag or the query and collection attributes.
The search results are saved in the page context with a page or session scope.

Attributes
The search tag uses the following attributes:
■ formId. Specifies the name of the form used for the search. The default form is used if the

attribute is left empty. If this tag is used without a form, this attribute must be set to provide
an identifier for the resultIterate tag.

■ collection. (Optional) A comma-delimited string representing collections used for a search.
If form action exists, this attribute is ignored and the values are retrieved by requesting the
collection element.

■ query. (Optional) Specifies the query text. If not provided, the text is retrieved from the
query element.

■ scope. Specifies an integer indicating the scope of the search results. The value 1, which is the
default, indicates page scope. 2 indicates session scope.

Usage
<s1ws:search />

This search tag uses the default parameters and executes a search. The search results are saved
in pageContext with a page scope.

<s1ws:search Collection="col1, col2" Query="Java Web Service" scope="2" />

This search tag executes a search in col1 and col2 using "Java Web Service" as the query
string. The search results are saved in pageContext with a session scope.

resultIteration Tag
This tag retrieves the search results from either the parent search tag or the page context. The
tag iterates through the results and passing the searchitems to the item tags.

JSP Search Tags

Chapter 5 • Developing JavaServer Pages 71

Attributes
The resultIteration tag uses the following attributes:

■ formId. Specifies the name of the form associated with the search results. The default form is
used if the attribute is left empty. If this tag is used without a form, this attribute must be set
as a reference to the search tag.

■ start. Specifies an integer representing the starting position in the search results. The default
is 0. The value is retrieved from the parent formAction tag or pageContext, or the
parameter value.

■ numShown. Specifies an integer indicating the number of results to be shown in one page.
The default is 20. The value is retrieved from the parent formAction tag or pageContext.

Item Tag
This tag retrieves a searchitem from the Results parent tag and outputs its properties as
specified by the property attribute.

Attributes
Property. Specifies a case-sensitive string representing field names in a search item, such as title,
number, score, filename, URL, size, and date.

resultStat Tag
This tag returns numbers indicating number of records returned and the range currently
displayed.

Attributes
The resultStat tag uses the following attributes:

■ formId. Specifies the name of the form associated. The default form is used if the attribute is
left empty. If this tag is used without a form, this attribute must be set as a reference to the
search tag.

■ type. Specifies the type of statistics data. Valid inputs are start, end, range (for example,
1-20), and total.

resultNav Tag
This tag creates a navigation bar.

JSP Search Tags

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •72

Attributes
The resultNav tag uses the following attributes:

■ formId. Specifies the name of the form associated with the navigation bar. The default form
is used if the attribute is left empty. If this tag is used without a form, this attribute must be
set as a reference to the search tag.

■ type. Specifies the type of navigation bar. Valid values are full, previous, and next. A full
navigation bar appears as follows : previous 1 2 3 4 5 6 7 8 9 10 next, where 5 is
currently selected. The number of page number links is determined by the offset attribute
and the number of pages available.

■ caption. Only necessary if the type is previous or next and the default text is not needed.
caption can be any HTML file.

■ offset. Specifies the number of page links around the selected page. For example, if
offset=2, the navigation bar would appear as follows: previous 3 4 5 6 7 next. Only
required for type "full."

JSP Internationalization Issues
This section covers internationalization as it applies to the JSPs.

JSP Character Encoding
A JSP page uses a character encoding. For valid encodings to use, see
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html.

The encoding can be described explicitly using the pageEncoding attribute of the page
directive. The character encoding defaults to the encoding indicated in the contentType
attribute of the page directive, if it is given.

JSP Internationalization Issues

Chapter 5 • Developing JavaServer Pages 73

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

74

Session Managers

Session objects maintain state and user identity across multiple page requests over the normally
stateless HTTP protocol. A session persists for a specified period of time, across more than one
connection or page request from the user. A session usually corresponds to one user, who might
visit a site many times. The server can maintain a session either by using cookies or by rewriting
URLs. Servlets can access the session objects to retrieve state information about the session.

This chapter describes sessions and session managers, and has the following sections:
■ “Introducing Sessions” on page 75
■ “Using Sessions” on page 77
■ “Session Managers” on page 81

Introducing Sessions
The term user session refers to a series of user application interactions that are tracked by the
server. Sessions are used for maintaining user specific state, including persistent objects such as
handles to database result sets and authenticated user identities, among many interactions. For
example, a session can be used to track a validated user login, followed by a series of directed
activities for a particular user.

The session itself resides in the server. For each request, the client transmits the session ID in a
cookie or, if the browser does not allow cookies, the server automatically writes the session ID
into the URL.

The Web Server supports the servlet standard session interface, called HttpSession, for all
session activities.

This section includes the following topics:
■ “Sessions and Cookies” on page 76
■ “Sessions and URL Rewriting” on page 76
■ “Sessions and Security” on page 76

6C H A P T E R 6

75

Note – As of Web Server, form-login sessions are no longer supported. You can use single
sign-on sessions instead.

Sessions and Cookies
A cookie is a small collection of information that can be transmitted to a calling browser, which
retrieves it on each subsequent call from the browser so that the server can recognize calls from
the same client. A cookie is returned with each call to the site that created it, unless it expires.

Sessions are maintained automatically by a session cookie that is sent to the client when the
session is first created. The session cookie contains the session ID, which identifies the client to
the server on each successive interaction. If a client does not support or allow cookies, the server
rewrites the URLs where the session ID appears in the URLs from that client.

You can configure whether and how sessions use cookies. For more information on related
elements in the sun-web.xml file, see “session-properties Element” on page 157 and
“cookie-properties Element” on page 158.

Sessions and URL Rewriting
You can also configure whether sessions use URL rewriting. For more information, see the
sun-web.xml element “session-properties Element” on page 157.

Sessions and Security
The Web Server security model is based on an authenticated user session. Once a session has
been created, the application user is authenticated if authentication is used and is logged into
the session.

Additionally, you can specify that a session cookie is only passed on an HTTPS secured
connection , so the session can only remain active on a secure channel.

For more information about security, see Chapter 8, “Securing Web Applications.”

Introducing Sessions

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •76

Using Sessions
To use a session, first create a session using the HttpServletRequest method getSession().
Once the session is established, examine and set its properties using the provided methods. If
desired, set the session to time out after being inactive for a defined time period, or invalidate it
manually. You can also bind objects to the session, which store them for use by other
components.

This section includes the following topics:

■ “Creating or Accessing a Session” on page 77
■ “Examining Session Properties” on page 78
■ “Binding Data to a Session” on page 79
■ “Invalidating a Session” on page 80

Creating or Accessing a Session
To create a new session or gain access to an existing session, use the HttpServletRequest
method getSession(), as shown in the following example:

HttpSession mySession = request.getSession();

getSession() returns the valid session object associated with the request, identified in the
session cookie that is encapsulated in the request object. Calling the method with no arguments
creates a session that is associated with the request if one does not already exist. Additionally,
calling the method with a Boolean argument creates a session only if the argument is true.

The following example shows the doPost() method from a servlet that only performs the
servlet's main functions if the session is present. Note that the false parameter to getSession()

prevents the servlet from creating a new session if one does not already exist

public void doPost (HttpServletRequest req, HttpServletResponse

res) throws ServletException, IOException

{

if (HttpSession session = req.getSession(false)) {

// session retrieved, continue with servlet operations

}

else{

// no session, return an error page

}

}

Using Sessions

Chapter 6 • Session Managers 77

Note – The getSession() method should be called before anything is written to the response
stream.

For more information about getSession(), see the Java Servlet 2.5 specification.

Examining Session Properties
Once a session ID has been established, use the methods in the HttpSession interface to
examine session properties. Use the methods in the HttpServletRequest interface to examine
request properties that relate to the session.

The following table shows the methods used to examine session properties.

TABLE 6–1 HttpSessionMethods

HttpSession Method Description

getCreationTime() Returns the session time in milliseconds since January 1, 1970, 00:00:00
GMT.

getId() Returns the assigned session identifier. An HTTP session's identifier is a
unique string that is created and maintained by the server.

getLastAccessedTime() Returns the last time the client sent a request carrying the assigned session
identifier (or -1 for a new session) in milliseconds since January 1, 1970,
00:00:00 GMT.

isNew() Returns a Boolean value indicating that the session is new. A new session is
one that the server has created and the client has not sent a request to it.
This state means the client has not acknowledged or joined the session and
may not return the correct session identification information when making
its next request.

For example:

String mySessionID = mySession.getId();

if (mySession.isNew()) {

log.println(currentDate);

log.println("client has not yet joined session " + mySessionID);

}

The following table shows the methods used to examine servlet request properties.

Using Sessions

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •78

TABLE 6–2 HttpServletRequestMethods

HttpServletRequest Method Description

getRequestedSessionId() Returns the session ID specified with the request. This value might
differ from the session ID in the current session if the session ID
given by the client is invalid and a new session was created. Returns
null if the request does not have a session associated with it.

isRequestedSessionIdValid() Checks whether the request is associated with a currently valid
session. If the session requested is not valid, it is not returned
through the getSession() method.

isRequestedSessionIdFromCookie() Returns true if the request's session ID provided by the client is a
cookie, or false otherwise.

isRequestedSessionIdFromURL() Returns true if the request's session ID provided by the client is a
part of a URL, or false otherwise.

For example:

if (request.isRequestedSessionIdValid()) {

if (request.isRequestedSessionIdFromCookie()) {

// this session is maintained in a session cookie

}

// any other tasks that require a valid session

} else {

// log an application error

}

Binding Data to a Session
You can bind objects to sessions to make them available across multiple user interactions.

The following table shows the HttpSession methods that provide support for binding objects
to the session object.

TABLE 6–3 HttpSessionMethods

HttpSession Method Description

getAttribute() Returns the object bound to a given name in the session, or null if there is no
such binding.

getAttributeNames() Returns an array of names of all attributes bound to the session.

Using Sessions

Chapter 6 • Session Managers 79

TABLE 6–3 HttpSessionMethods (Continued)
HttpSession Method Description

setAttribute() Binds the specified object into the session with the given name. Any existing
binding with the same name is overwritten. For an object bound into the
session to be distributed, it must implement the serializable interface.

removeAttribute() Unbinds an object in the session with the given name. If there is no object
bound to the given name, this method does nothing.

Binding Notification with HttpSessionBindingListener

Some objects require you to know when they are placed in or removed from a session. To obtain
this information, implement the HttpSessionBindingListener interface in those objects.
When your application stores or removes data with the session, the servlet engine checks
whether the object being bound or unbound implements HttpSessionBindingListener. If it
does, the Web Server notifies the object under consideration, through the
HttpSessionBindingListener interface, that it is being bound into or unbound from the
session.

Invalidating a Session
Direct the session to invalidate itself automatically after being inactive for a defined time period.
Alternatively, invalidate the session manually with the HttpSession method invalidate().

Invalidating a Session Manually
To invalidate a session manually, call the following method:

session.invalidate();

All objects bound to the session are removed.

Setting a Session Timeout
Session timeout is set using the session-timeout element in the web.xml deployment
descriptor file. For more information, see the Java Servlet 2.5 specification.

Using Sessions

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •80

Session Managers
Web Server provides the following session management options, which are described in this
section:

■ memory, the default session manager
■ file, a provided manager that store sessions on the file system
■ IWS60, a provided session manager that allows backward compatibility with any custom

session managers you may have created using Web Server
■ MMAP (UNIX Only), a provided persistent memory map (mmap) file-based session manager

that works in both single-process and multi-process mode

memoryOption
The memory is the default memory based session manager.

Enabling memory

You can specify memory explicitly to change its default parameters. To do so, edit the
sun-web.xml file for the web application as in the following example. Note that
persistence-type must be set to memory.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”memory”>

<manager-properties>

<property name="reapIntervalSeconds" value="20" />

</manager-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

For more information about the sun-web.xml file, see Chapter 9, “Deploying Web
Applications.”

Manager Properties for Memory
The following table describes manager-properties properties for the memory based session
manager.

Session Managers

Chapter 6 • Session Managers 81

TABLE 6–4 manager-properties for memory

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed web
site, or you could lose the last few hits each time you
restart the server.

maxSessions -1 Specifies the maximum number of active sessions,
or -1 (the default) for no limit.

sessionFilename SESSIONS Specifies the absolute or relative path name of the
file in which the session state is preserved between
application restarts, if preserving the state is
possible. A relative path name is relative to the
temporary directory for this web application.

file Session Manager
The file is another file-system-based session manager provided with Web Server. For session
persistence, file can use a file to which each session is serialized. You can also create your own
persistence mechanism.

Enabling the file Session Manager
You can specify file explicitly to change its default parameters. To do so, edit the sun-web.xml
file for the web application as in the following example. Note that persistence-type must be
set to file.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”file”>

<manager-properties>

<property name=reapIntervalSeconds value=20 />

</manager-properties>

<store-properties>

<property name=directory value=sessions />

</store-properties>

</session-manager>

...

</session-config>

Session Managers

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •82

...

</sun-web-app>

For more information about the sun-web.xml file, see Chapter 9, “Deploying Web
Applications.”

Manager Properties for file
The following table describes manager-properties properties for the file session manager.

TABLE 6–5 manager-properties for file

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed web
site, or you could lose the last few hits each time you
restart the server.

maxSessions -1 Specifies the maximum number of active sessions,
or -1 (the default) for no limit.

IWS60 Session Manager
The IWS60 session manager ensures backward compatibility with any 6.0 session managers that
you may have created.

IWS60 works in both single-process and multi-process mode. It can be used for sharing session
information across multiple processes possibly running on different machines.

Note – The MaxProcs directive in the magnus.conf file determines whether the server is running
in single-process or multi-process mode. If the value of MaxProcs is higher than 1 and no
session manager is configured, then by default the session manager used is the IWS60 with
file-based persistence. The Maxprocs is deprecated in Web Server 7.0.

For session persistence, IWS60 can use a database or a distributed file system (DFS) path that is
accessible from all servers in a server farm. Each session is serialized to the database or
distributed file system. You can also create your own persistence mechanism.

If Web Server is running in single-process mode, then by default, no session persistence mode is
defined and therefore sessions are not persistent.

Session Managers

Chapter 6 • Session Managers 83

If Web Server is running in multi process mode, sessions are persistent by default. If a
persistence mode is not defined, IWS60 uses a DFS.

Multi-process mode is supported only on UNIX platforms. All multi process mode features of
IWS60 are ignored on Windows.

Enabling IWS60

You can enable IWS60 to change its default parameters. You can also enable IWS60 for a
particular context if the server is running in single-process mode. To do so, edit the
sun-web.xml file for the web application as in the following example. The persistence-type
must be set to s1ws60.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”s1ws60”>

<manager-properties>

<property name=”classname” value=”com.iplanet.server.http.

session.IWSSessionManager”/>

// other manager-related properties

</manager-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

In the case of persistent sessions:

<sun-web-app>

...

<session-config/>

<session-manager persistence-type=”s1ws60”>

<manager-properties>

<property name=”classname” value=”com.iplanet.server.http.

session.IWSSessionManager”/>

// other manager-related properties

</manager-properties>

<store-properties>

<property name=”classname” value=”com.iplanet.server.http.

session.FileStore”/>

<property name=”directory” value=”<directory name to store the_

persistant_sessions>”/>

// other store-related properties

</store-properties>

</session-manager>

...

Session Managers

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •84

</session-config>

...

</sun-web-app>

For more information about the sun-web.xml file, see Chapter 9, “Deploying Web
Applications.”

Manager Properties for IWS60
The following table describes manager-properties properties for the IWS60 session manager.

TABLE 6–6 manager-properties for IWS60

Property Name Default Value Description

maxSessions 1000 The maximum number of sessions
maintained by the session manager at any
given time. The session manager refuses to
create any more new sessions if
maxSessions are already number of sessions
present at that time.

timeOut 1800 The amount of time in seconds after a
session is accessed by the client before the
session manager destroys it. Those sessions
that are not accessed for at least timeOut
seconds are destroyed by the reaper method.

reapInterval 600 The amount of time in seconds that the
SessionReaper thread sleeps before calling
the reaper method again.

maxLocks 10 The number of cross-process locks to use for
synchronizing access to individual sessions
across processes. The default value is used if
the value 0 is specified. This parameter is
ignored in single-process mode.

Session Managers

Chapter 6 • Session Managers 85

TABLE 6–6 manager-properties for IWS60 (Continued)
Property Name Default Value Description

session-data-

store

The name of the class that determines the
means of session persistence. The classes
supplied with Web Server are:
■ com.iplanet.server.http.session.JdbcStore

■ com.iplanet.server.http.session.FileStore

If you do not specify the
session-data-store parameter,
sessions are not persistent in
single-process mode, and FileStore is
the default in multi-process mode.
The JdbcStore and FileStore classes
are subclasses of the
session-data-store class. You can
create your own class that implements
session persistence by extending
SessionDataStore.

session-failover-

enabled

Specifies whether sessions are reloaded from
the persistent store for every request, and
always forced to true in multi process mode.

Applicable only if the session-data-store
parameter is set to the JdbcStore or
FileStore class.

session-data-dir The following text is single path.

server_root/server_id/SessionData
/virtual_server_id/web_app_URI

The directory in which session data for all
servers and web applications is kept.

Applicable only if the session-data-store
parameter is set to the FileStore class.

provider sun.jdbc.odbc.JdbcOdbcDriver The JDBC driver. For more information
about the JDBC API, see
http://java.sun.com/

products/jdbc/index.jsp

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

url jdbc:odbc:LocalServer Specifies the data source.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

table sessions Name of the SQL table that store sessions.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

Session Managers

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •86

http://java.sun.com/products/jdbc/index.jsp
http://java.sun.com/products/jdbc/index.jsp

TABLE 6–6 manager-properties for IWS60 (Continued)
Property Name Default Value Description

username none The login user name for the database.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

password none The login password for the database.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

reaperActive true When set to true, the session manager runs
session reaper to remove expired sessions
from the database. The default is true. Only
one server in the cluster should run the
reaper.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

accessTimeColumn AccessTime The name of the column that holds the last
access time in minutes. The SQL type is
NUMERIC(9).

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

timeOutColumn TimeOut The name of the column that holds the
session timeout in minutes. The SQL type is
NUMERIC(9).

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

sessionIdColumn SessionID The name of the column that holds the
session ID. The SQL type is VARCHAR(100).

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

valueColumn Value The name of the column that holds the
session object. The SQL type is
VARBINARY(4096). This column must be
large enough to accommodate all of your
session data.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

Session Managers

Chapter 6 • Session Managers 87

TABLE 6–6 manager-properties for IWS60 (Continued)
Property Name Default Value Description

lookupPool 4 The number of dedicated connections that
perform lookup operations on the database.
For higher performance, use a precompiled
SQL statement for each of these
connections.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

insertPool 4 The number of dedicated connections that
perform insert operations on the database.
Each of these connections would have a
precompiled SQL statement for higher
performance.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

updatePool 4 The number of dedicated connections that
perform update operations on the database.
For higher performance, use a precompiled
SQL statement for each of these
connections.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

deletePool 2 The number of dedicated connections that
perform delete operations on the database.
For higher performance, use a precompiled
SQL statement for each of these
connections.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

Note – Prior to using JdbcStore, you must create the table in which the session information is
stored. The name of the table is specified by the table parameter, and the table’s four columns
are specified by the accessTimeColumn, timeOutColumn, sessionIdColumn, and valueColumn

parameters.

Note – FileStore, JdbcStore, IWSSessionManager, IWSHttpSession,
IWSHttpSessionManager, and SessionDataStore have been deprecated in Web Server.

Session Managers

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •88

Source Code for IWS60
The IWS60 session manager creates an IWSHttpSession object for each session. The source files
for IWSSessionManager.java and IWSHttpSession.java are in the install_dir/lib directory.
The source code files for IWSSessionManager.java and IWSHttpSession.java are provided,
so you can use them as the starting point for defining your own session managers and session
objects.

IWSSessionManager extends IWSHttpSessionManager. The class file for
IWSHttpSessionManager is in the JAR file webserv-rt.jar in the directory install_dir/lib.
The IWS60 implements all of the methods in IWSHttpSessionManager that need to be
implemented, so you can use IWSSessionManager as an example of how to extend
IWSHttpSessionManager. When compiling your subclass of IWSSessionManager or
IWSHttpSessionManager, be sure that the JAR file webserv-rt.jar is in your compiler’s
classpath.

The JdbcStore.java and FileStore.java source files and the source file for the parent class,
SessionDataStore.java, are provided so you can modify the session persistence mechanism
of IWS60. These files are also located in the install-dir/lib directory.

MMap Session Manager (UNIX Only)
MMap is a persistent memory map (mmap), file-based session manager that works in both
single-process and multi-process mode.

Note – The MaxProcs directive in the magnus.conf file determines whether the server is running
in single-process or multi-process mode. The Maxprocs is deprecated in Web Server 7.0.

Enabling MMap

You can enable MMap to change its default parameters. You can also enable MMap for a particular
context if the server is running in single-process mode. To do so, edit the sun-web.xml file for
the web application as in the following example. Note that persistence-type must be set to
mmap.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”mmap”>

...

</session-manager>

...

</session-config>

...

</sun-web-app>

Session Managers

Chapter 6 • Session Managers 89

For more information about the sun-web.xml file, see Chapter 9, “Deploying Web
Applications.”

Manager Properties for MMap
The following table describes manager-properties properties for the MMap session manager.

TABLE 6–7 manager-propertiesProperties for MMap

Property Name Default Value Description

maxSessions 1000 The maximum number of sessions maintained
by the session manager at any given time. The
session manager refuses to create any more new
sessions if maxSessions number of sessions are
already present at that time.

maxValuesPerSession 10 The maximum number of values or objects a
session can hold.

maxValueSize 4096 The maximum size of each value or object that
can be stored in the session.

timeOut 1800 The amount of time in seconds after a session is
last accessed by the client before the session
manager destroys it. Those sessions that haven’t
been accessed for at least timeOut seconds are
destroyed by the reaper method.

reapInterval 600 The amount of time in seconds that the
SessionReaper thread sleeps before calling the
reaper method again.

maxLocks 1 The number of cross-process locks to use for
synchronizing access to individual sessions
across processes. The default value is used if the
value 0 is specified. This parameter is ignored in
single-process mode.

Note – MMap can only store objects that implement java.io.Serializable.

Session Managers

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •90

Developing Lifecycle Listeners

This chapter provides a basic overview, and a description of various features of lifecycle
listeners in Web Server. It includes the following sections:

■ “Server Lifecycle Events” on page 91
■ “The LifecycleListener Interface” on page 92
■ “The LifecycleEvent Class” on page 92
■ “The Server Lifecycle Event Context” on page 92
■ “Deploying a Lifecycle Module” on page 93
■ “Considerations for Lifecycle Modules” on page 94
■ “Sample Lifecycle Configuration” on page 95

Server Lifecycle Events
Web Server goes through different events in its lifecycle:

■ init - This event includes reading configuration, initializing built-in subsystems, naming,
security and logging services, and creating the web container.

■ startup - loading and initializing deployed applications.
■ service - The server is ready to service requests shut down: stopping and destroying

loaded applications. The system is preparing to shut down.
■ terminating - The container is being closed, which terminates the built-in subsystems and

server runtime environment.
■ reconfig - A transient server state in which a server thread is dynamically reconfiguring

while the rest of the server in the service state. This state can occur several times during the
life of the server.

7C H A P T E R 7

91

The LifecycleListener Interface
Web Server enables you to write classes and customize various phases of the server lifecycle. For
instance, you may have a startup code that ensures a remote data source is available for the
applications. Such classes are notified by server lifecycle events. The Web Server defines a
LifecycleListener interface that users can implement and register with the Server.

The syntax of this interface is as follows public void handleEvent(LifecycleEvent event):

receives a lifecycle event.

In its event parameter, the programmatic interface for LifecycleListener provides the
following features to the implementation classes:

■ Access to initialization parameters
■ A handler to the server run time environment for naming, logging and accessing resources
■ Exception-handling mechanics

The LifecycleEventClass
The LifecycleEventclass is an interface from the point of view to the developer, even if
programmatically it is a class. This interface is the means by which these events are represented.
This class informs you of the kind of event that happened through the getEventType() method
and the data associated with the event (through the getData() method).

The Server Lifecycle Event Context

The LifecycleEventContext interface provides an access to the server runtime environment
including the JNDI naming context and logging service. The following methods are defined in
this interface:

■ public String[] getCmdLineArgs()- Returns the server command line arguments.
■ public javax.naming.Context getNamingContext()- Returns the naming context.
■ public String getInstallRoot()- Returns the installation root.
■ public String getInstanceName()- Returns the server instance name.
■ public void log(java.util.logging.Level level, String message)- Logs the

message to the server log, with verbosity level.
■ public void log(java.util.logging.Level level, String message, Throwable

throwable)- Logs the message and the stack trace for throwable, with verbosity level.

The following two methods are also used by this interface to keep backward compatibility with
the 6.1 version of Web Server:

The LifecycleListener Interface

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •92

■ public void log(String message, Throwable throwable): - Logs the message and the
stack trace for throwable, with verbosity level.

■ public javax.naming.Context getInitialContext() - Similar to getNamingContext()

Deploying a Lifecycle Module
Server lifecycle listener classes are visible in the serve applications management area. You can
add, delete, update, enable, and disable listener classes and set their parameters. Web Server will
not support dynamic deployment of startup and shutdown classes. Any changes to these classes
or their configuration requires server restart.

TABLE 7–1 Elements of the lifecycle

Configurable element / attribute
Data type and
Units Range of values Remarks

lifecycle-module.name String Any
non-null/non-empty
unique string in
lifecycle modules.

Must be specified
while registering this
lifecycle module.

lifecycle-module.class String Fully qualified Java
class name.

Must implement the
LifecycleListener

interface.

lifecycle-module.enabled Boolean true or false. Default is true.

lifecycle-module.load-order Integer 0-100 Reserved.
100-MAXINT.

Order of loading the
lifecycle event
listeners in
numerical order.
Choose a load-order
greater than or equal
to 100 to avoid
conflicts with
internal lifecycle
modules.

lifecycle-module.is-failure-fatal Boolean true or false If you want the
server to treat
exceptions thrown
from the listener
classes as fatal and
prevent continuation
of normal startup, set
this element to true.

Deploying a Lifecycle Module

Chapter 7 • Developing Lifecycle Listeners 93

TABLE 7–1 Elements of the lifecycle (Continued)

Configurable element / attribute
Data type and
Units Range of values Remarks

lifecycle-module.class-path String Optional Points to the
user-specified
classpath for the
listener class.

lifecycle-module.description Element Optional Describes the
lifecycle module.

property.name String Optional User-specified
parameter name. Part
of the property
element.

property.value String. Optional User-specified
parameter value. Part
of the property
element.

property.description String Optional User-specified
description. Part of
the property
element.

Considerations for Lifecycle Modules
When using keep the following points in mind of lifecycle module:

■ The server lifecycle listener classes are called synchronously from the main server thread.
Therefore, take extra precautions must be taken to ensure that the listener classes don't
block the server.

■ The listener classes may create threads if appropriate. The threads must be stopped during
the shutdown and termination phases.

■ The resources allocated during initialization or startup events should be cleared.
■ The listener classes are loaded in the context of server's root class loader, which loads

server-wide resources as well. Therefore, all the support classes needed by these server
lifecycle event listener must be available at this class loader or its parent, the system class
loader. As a consequence, you must ensure that the Java security manager policy files are
appropriately set up, Otherwise, a lifecycle listener class trying to perform a
System.exec()may get a security access violation.

Considerations for Lifecycle Modules

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •94

Sample LifecycleConfiguration
The following example shows a portion of the server.xml that defines a lifecycle listener.

<lifecycle-module>

<class-name>com.sun.ias.server.LifecycleListenerImpl</class-name>

<is-failure-fatal>false</is-failure-fatal>

<description>Sample lifecycle module</description>

<property>

<name>foo</name>

<value>fooval</value>

<property>

</lifecycle-module>

The following example shows a sample LifecycleListener implementation

/**

*PROPERITARY/CONFIDENTIAL. Use of this product is subject to license terms

*

*Copyright 2006-2007 by SunMicrosystems, Inc.,

*4150 Network Circle, Santa Clara, California, 95054, U.S.A

*All rights reserved.

package com.sun.ias.server;

import java.util.Properties;

import java.util.logging.Level;

import com.sun.appserv.server.LifecycleEventContext;

import com.sun.appserv.server.ServerLifecycleException;

import com.sun.appserv.server.LifecycleEvent;

import com.sun.appserv.server.LifecycleListener;

/**

* LifecycleListenerImpl is a dummy implementation for the LifecycleListener

* interface.

* This implementation stubs out various lifecycle interface methods.

*/

public class LifecycleListenerImpl implements LifecycleListener {

/** receive a server lifecycle event

* @param event associated event

* @throws <code>ServerLifecycleException</code> for exception condition.

*

* /

public void handleEvent(LifecycleEvent event) throws ServerLifecycleException {

LifecycleEventContex ctx=event.getLifecycleEventContext();

ctx.log(level.INFO, "got event" + event.getEventType() + "event data:" +

event.getData());

Properties props;

Sample Lifecycle Configuration

Chapter 7 • Developing Lifecycle Listeners 95

if (Lifecycleevent.INIT_EVENT == event.getEventType()) {

System.out.println("LifecycleListener: INIT_EVENT");

props = (Properties) event.getData();

//handle INIT_EVENT

return;

}

if (LifecycleEvent.STARTUP_EVENT == event.getEventType()) {

System.out.println("LifecycleListener: START_EVENT");
//handle STARTUP_EVENT

return;

}

if (LifecycleEvent.READY_EVENT == event.getEventType()) {

System.out.println("LifecycleListener: READY_EVENT");
//handle READY_EVENT

return;

}

if (LifecycleEvent.SHUTDOWN_EVENT == event.getEventType()) {

System.out.println("LifecycleListener: SHUTDOWN_EVENT");
//handle SHUTDOWN_EVENT

return;

} if (LifecycleEven.TERMINATION_EVENT == event.getEventType()) {

System.out.println("LifecycleListener: TERMINATION_EVENT");
//handle TERMINATION_EVENT

return;

}

}

}

Sample Lifecycle Configuration

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •96

Securing Web Applications

This chapter describes the basic goals and features of Web Server security features related to the
Java Servlet Container. It also describes how to write secure Java web applications containing
components that perform user authentication and access authorization tasks.

This chapter has the following sections:

■ “Supported Security Features” on page 97
■ “Common Security Terminology” on page 98
■ “Security Features Specific to the Web Server” on page 99
■ “Container Security” on page 102
■ “User Authentication by Servlets” on page 103
■ “User Authentication for Single Sign-On” on page 104
■ “User Authorization by Servlets” on page 105
■ “Fetching the Client Certificate” on page 107
■ “Using Web Services Message Security” on page 107
■ “Programmatic Login” on page 116
■ “Enabling the Java Security Manager” on page 117
■ “The server.policy File” on page 118
■ “Related Information” on page 120

Supported Security Features
Web Server provides highly secure, interoperable, and distributed component computing based
on the Java EE security model. The security goals for Web Server include the following:

■ Full compliance with the Java Servlet 2.5 security model, including role-based authorization.
For more information, see the Security chapter in the Java Servlet 2.5 specification at
http://java.sun.com/products/servlet/download.html.

■ Support for single sign-on across all Web Server applications within a single security
domain.

8C H A P T E R 8

97

http://java.sun.com/products/servlet/download.html

■ Support for several underlying authentication realms, such as simple file and LDAP.
Certificate authentication is also supported for SSL client authentication. Solaris OS
platform authentication is also supported.

■ Support for declarative security through Web Server specific XML-based role mapping.
■ Support for Java Security Manager enforcement.

For more information about Java EE security, see the Chapter 6, “Certificates and Keys,” in Sun
Java System Web Server 7.0 Update 1 Administrator’s Guide.

Common Security Terminology
This section provides an overview of the common security terminology.

The most common security processes are authentication, authorization, realm assignment, and
role mapping.

■ “Authentication” on page 98
■ “Authorization” on page 98
■ “Realms” on page 98
■ “Java EE Application Role Mapping” on page 99

Authentication
Authentication verifies the user. For example, when the user provides a user name and
password in a web browser, if those credentials match the permanent profile stored in the active
realm, the user is authenticated. The user is associated with a security identity for the remainder
of the session. For more information on authentication realms, see “Managing Authentication
Realms” in Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

Authorization
Authorization permits a user to perform desired operations after being authenticated. For
example, a human resources application might authorize managers to view personal employee
information for all employees, but allow employees to view only their own personal
information.

Realms
A realm, also called a security policy domain or a security domain in the Java EE specification, is
a scope over which a common security policy is defined and enforced by the security
administrator of the security service. Supported realms in Web Server are file, ldap,
certificate, solaris, custom, and native.

Common Security Terminology

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •98

Java EE Application Role Mapping
In the Java EE/Servlet security model, a client may be defined in terms of a security role. For
example, a company might use its employee database to generate both a company-wide phone
book application and payroll information obviously, While all employees might have access to
phone numbers and email addresses, only some employees would have access to the salary
information. Employees with the right to view or change salaries might be defined as having a
special security role.

A role is different from a user group in that a role defines a function in an application, while a
group is a set of users who are related in some way. For example, members of the groups
astronauts, scientists, and pilots all fit into the role of SpaceShuttlePassenger.

In Web Server, roles correspond to users, groups or both used and groups configured in the
active realm.

Security Features Specific to the Web Server
In addition to supporting the Java EE 1.4 security model, Web Server also supports the
following features that are specific to the Web Server:

■ Single sign-on across all Web Server applications within a single security domain
■ Programmatic login
■ The parallel Access Control List (ACL)-based security model, in addition to the Java

EE/Servlet security model
■ Support for secure ACL-based Java web applications, in addition to native content

This section discusses the following:

■ “Web Server Security Model” on page 99
■ “Web Application and URL Authorizations” on page 102

Web Server Security Model
Secure applications require a client to be authenticated as a valid application user and have
authorization to access servlets and JSPs.

Applications with a secure web container may enforce the following security processes for
clients:

■ Authenticate the caller
■ Authorize the caller for access to each servlet/JSP based on the applicable access control

configuration

Security Features Specific to the Web Server

Chapter 8 • Securing Web Applications 99

Authentication is the process of confirming an identity. Authorization means granting access to
a restricted resource to an identity. Access control mechanisms enforce these restrictions.
Authentication and authorization can be enforced by a number of security models and services.

Web Server provides authentication and authorization support through the following
mechanisms, which are discussed in this section:

■ ACL-based authentication and authorization
■ Java EE/Servlet-based authentication and authorization

Whether performed by the ACL subsystem or the Java EE/Servlet authentication subsystem,
authentication and authorization are still the two fundamental operations that define secure
web content.

ACL-Based Authentication and Authorization
ACL-based access control is described at length in the “Configuring Access Control” in Sun
Java System Web Server 7.0 Update 1 Administrator’s Guide. This section provides a brief
overview of the key concepts.

Web Server supports authentication and authorization through the use of locally stored ACLs,
which describe what access rights a user has for a resource. For example, an entry in an ACL can
grant a user named John read permission to a particular folder named misc:

acl "path=/export/user/990628.1/docs/misc/";
authenticate (user,group) {

database = "default";
method = "basic";

};

deny (all)

(user = "John");
allow (read);

The core ACLs in Web Server support three types of authentication: basic, certificate, and
digest.

Basic authentication relies .

■ On lists of user names and passwords passed as cleartext.
■ Certificates bind a name to a public key.
■ Digest authentication uses encryption techniques to encrypt the user’s credentials.

The ACL-based access control model includes the following features:

■ ACL-based authentication uses the following configuration files:
■ install_dir/config/*.acl files

Security Features Specific to the Web Server

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •100

■ install_dir/config/server.xml

Authentication is performed by auth-db modules that are configured in the server.xml file.
■ Authorization is performed by access control rules set in the install_dir/config/*.acl files,

if ACLs are configured.

In addition, the Web Server SSL engine supports external crypto hardware to offload SSL
processing and to provide optional tamper-resistant key storage.

For more information about ACL-based access control and the use of external crypto hardware,
see the Web Server Administrator’s Guide.

Java EE/Servlet-Based Authentication and Authorization
, In addition to providing ACL-based authentication, Web Server also implements the security
model defined in the Java EE 1.4 specification to provide several features that help you develop
and deploy secure Java web applications.

A typical Java EE-based web application consists of the following parts, access to any or all of
which can be restricted:

■ Servlets
■ JavaServer Pages (JSP) components
■ HTML documents
■ Miscellaneous resources, such as image files and compressed archives

The Java EE servlet-based access control infrastructure relies on the use of security realms.
When a user tries to access the main page of an application through a web browser, the web
container prompts for the user's credential information. The container then passes the
information for verification to the realm that is currently active in the security service.

A realm, represents a set of known users along with optional group membership information.
The main implementation also encapsulates a mechanism for performing authentication
against the data set.

The main features of the Java EE/Servlet-based access control model are described below:

■ Java EE/Servlet-based authentication uses the following configuration files:
■ The web application deployment descriptor files web.xml and sun-web.xml

■ install_dir/config/server.xml

Authentication is performed by Java security realms that are configured through
<auth-realm> entries in the server.xml file.

■ Authorization is performed by access control rules in the deployment descriptor file,
web.xml, in case any such rules have been set.

Security Features Specific to the Web Server

Chapter 8 • Securing Web Applications 101

Web Application and URL Authorizations
Secure web applications may have authentication and authorization properties. The web
container supports three types of authentication: basic, certificate, and form-based. The core
ACLs support basic, certificate, and digest. For more information about ACL configuration, see
the Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

When a browser requests an application URL that requires authentication, the web container
collects the user authentication information, for example, user name and password and passes it
to the security service for authentication.

For Java EE web applications, Web Server checks the application's web.xml file for information
on which parts of the application are protected, and which roles are authorized to access. It also
checks sun-web.xml to see whether the currently authenticated user belongs to one of the
required roles, either directly through user mapping or indirectly through group mapping.

Container Security
The component containers are responsible for providing Java EE application security. Two
security forms are provided by the container: programmatic security and declarative security.

Programmatic Security
In programmatic security, a servlet uses method calls to the security API, as specified by the Java
EE security model, to make business logic decisions based on the caller or remote user's security
role. Programmatic security should only be used when declarative security alone is insufficient
to meet the application's security model.

The Java EE 1.4 specification defines programmatic security with respect to servlets as
consisting of two methods of the servlet HttpServletRequest interface. Web Server supports
these interfaces as defined in the specification.

In addition to the programmatic security defined in the Java EE specifications, Web Server also
supports programmatic login. For more information, see “Programmatic Login” on page 116

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the Java EE
application's security structure, including security roles, access control, and authentication
requirements.

Container Security

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •102

Web Server supports the DTDs specified by the Java EE 1.4 specification, and has additional
security elements included in its own deployment descriptors. Declarative security is the
application deployers responsibility.

User Authentication by Servlets
Web Server supports the web-based login mechanisms required by the Java EE 1.4 specification
:

■ “HTTP Basic Authentication” on page 103
■ “SSL Mutual Authentication” on page 103
■ “Form-Based Login” on page 104

The login-config element in the web.xml deployment descriptor file describes the
authentication method used, the application's realm name displayed by the HTTP basic
authentication, and the form login mechanisms attributes.

The login-config element syntax is as follows:

<!ELEMENT login-config (auth-method?,realm-name?,form-login-config?)>

Note – The auth-method subelement of login-config is optional. However, but if it is not
included, the server defaults to HTTP Basic Authentication, which is not very secure.

For more information about web.xml elements, see the Java Servlet 2.5 specification at

http://java.sun.com/products/servlet/download.html

For more information on sun-web.xml elements, see Chapter 9, “Deploying Web Applications.”

HTTP Basic Authentication
HTTP basic authentication (RFC 2617) is supported by Web Server. Because passwords are sent
with base64 encoding, this authentication type is not very secure. Use SSL or another equivalent
transport encryption to protect the password during transmission.

SSL Mutual Authentication
SSL 3.0 and the means to perform mutual client/server certificate-based authentication is a Java
EE 1.4 specification requirement. This security mechanism provides user authentication using
HTTPS (HTTP over SSL). For more information, see “Creating a Configuration” in Sun Java
System Web Server 7.0 Update 1 Administrator’s Guide.

User Authentication by Servlets

Chapter 8 • Securing Web Applications 103

http://java.sun.com/products/servlet/download.html

Form-Based Login
The login screen's look and feel cannot be controlled with the HTTP browsers built-in
mechanisms. Java EE can to package a standard HTML or servlet JSP based form for logging in.
The login form is associated with a web protection domain and is used to authenticate
previously unauthenticated users.

Because passwords are sent unless protected by the underlying transport, this authentication
type is not very secure. Use of SSL or another equivalent transport encryption to protect the
password during transmission.

For the authentication to proceed appropriately, the login form action must always be
j_security_check. For more information, see Chapter 4, “Developing Servlets.”

The following HTML sample shows how to program the form in an HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">

</form>

You can specify the parameter encoding for the form. For details, see “parameter-encoding
Element” on page 180.

User Authentication for Single Sign-On
Single sign-on across applications on the Web Server is supported by the Web Server servlets
and JSPs. This feature allows multiple applications that require the same user sign-on
information to share this information between them, rather than having the user sign on
separately for each application. These applications are created to authenticate the user once.
When needed, this authentication information is propagated to all other involved applications.

An example application using the single sign-on scenario could be a consolidated airline
booking service that searches all airlines and provides links to different airline web sites. Once
the user signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

■ Single sign-on applies to web applications configured for the same realm and virtual server.
The realm is defined by the realm-name element in the web.xml file. For information about
virtual servers, see the Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

■ As long as users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

User Authentication for Single Sign-On

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •104

■ As soon users access a protected resource in any web application associated with a virtual
server, they are challenged to authenticate using the login method defined for the web
application currently being accessed.

■ Once authenticated, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

■ When the user logs out of one web application, for example, by invalidating or timing out
the corresponding session if form-based login is used, the user's sessions in all web
applications are invalidated. Any subsequent attempt to access a protected resource in any
application requires the users authorization.

■ The single sign-on feature uses HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that
support cookies.

To configure single sign-on, set the following properties in the single-sign-on element of the
server.xml file:

■ enabled: If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is false.

■ idle-timeout: Specifies the time after which a users single sign-on record becomes eligible
for purging if no client activity is received. Because single sign-on applies across several
applications on the same virtual server, access to any of the applications keeps the single
sign-on record active. The default value is 5 minutes (300 seconds). Higher values provide
longer single sign-on persistence for the users at the expense of more memory use on the
server.

To configure single sign-on through CLI, see the enable-single-signon(1) and
disable-single-signon(1) man pages.

The following example shows a configuration with all default values:

<single-sign-on>

<enabled>1</enabled>

<idle-timeout>300</idle-timeout>

</single-sign-on>

User Authorization by Servlets
Servlets can be configured to permit access to users with the appropriate authorization level.

■ “Defining Roles” on page 106
■ “Defining Servlet Authorization Constraints” on page 106

User Authorization by Servlets

Chapter 8 • Securing Web Applications 105

Defining Roles
Security roles define an application function, made up of a number of users, groups, or both
users and groups. The relationship between users and groups is determined by the specific
realm implementation being used.

You can define roles in the Java EE deployment descriptor file, web.xml, and the corresponding
role mappings in the Web Server deployment descriptor file, sun-web.xml. For more
information about sun-web.xml, see Chapter 9, “Deploying Web Applications.”

Each security-role-mapping element in the sun-web.xml file maps a role name permitted by
the web application to principals and groups. For example, a sun-web.xml file for a deployed
web application might contain the following:

<sun-web-app>

<security-role-mapping>

<role-name>manager</role-name>

<principal-name>jgarcia</principal-name>

<principal-name>mwebster</principal-name>

<group-name>team-leads</group-name>

</security-role-mapping>

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name>dsmith</principal-name>

</security-role-mapping>

</sun-web-app>

Note that the role-name in this example must match the role-name in the security-role
element of the corresponding web.xml file.

For web applications, the roles are always specified in the sun-web.xml file. A role can be
mapped to specific principals, to groups or both principals and groups. The principal or group
names used must be valid principals or groups in the current realm.

Defining Servlet Authorization Constraints
At the servlet level, you can define access permissions using the auth-constraint element of
the web.xml file.

The auth-constraint element on the resource collection must be used to indicate the user
roles permitted to the resource collection. Refer to the Java Servlet specification for details on
configuring servlet authorization constraints.

User Authorization by Servlets

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •106

Fetching the Client Certificate
When you enable SSL and require client certificate authorization, your servlets have access to
the client certificate as shown in the following example:

if (request.isSecure()) {

java.security.cert.X509Certificate[] certs;

certs = request.getAttribute("javax.servlet.request.X509Certificate");
if (certs != null) {

clientCert = certs[0];

if (clientCert != null) {

// Get the Distinguised Name for the user.

java.security.Principal userDN = clientCert.getSubjectDN();

...

}

}

}

The userDn is the fully qualified distinguished name for the user.

Using Web Services Message Security
In message security, security information is inserted into messages that travel through the
networking layers and reaches the message destinations.
■ Setting up wadm

■ Configuring Message Security Provider
■ Message Security Provider in Application

Configuring the Web Server for Message Security
This section describes the following topics:
■ Actions of Request and Response Policy Configurations
■ To configure other security facilities
■ Security Enhancements to server.xml

■ Security Enhancements to sun-web.xml

Actions of Request and Response Policy Configurations
The following table shows message protection policy configuration and the resulting message
security operations performed by the WS-Security SOAP message security providers for that
configuration.

Using Web Services Message Security

Chapter 8 • Securing Web Applications 107

TABLE 8–1 Message Protection Policy Configuration

Message Protection Policy Resulting WS-Security SOAP Message Protection
Operation

auth-source= "sender" The message contains the wase:security header that
contains a wsse:UsernameToken with password.

auth-source="content" The content of the SOAP message body is signed. The
message contains a wsse:Security header that
contains the message body signature represented as a
ds:Signature.

auth-source="sender"
auth-recipient="before-content" OR

auth-recipient="after-content"

The content of the SOAP message body is encrypted
and replaced with the resulting xend:EncryptedData.
The message contains a wsse:Security header that
contains a wsse:UsernameToken with password and
an xenc:EncryptedKey. The xenc:EncryptedKey
contains the key used to encrypt the SOAP message
body. The key is encrypted in the public key of the
recipient.

auth-source= "content"
auth-recipient= "before-content"

The content of the SOAP message body is encrypted
and replaced with the resulting xend:EncryptedData.
The xenc:EncryptedData is signed. The message
contains a wsse:Security header that contains an
xenc:EncryptedKey and a ds:Signature. The
xenc:EncryptedKey contains the key used to encrypt
the SOAP message body. The key is encrypted in the
public key of the recipient.

auth-source="content"

auth-recipient="after-content"

The content of the SOAP message body is signed, then
encrypted, and then replaced with the resulting
xend:EncryptedData. The message contains a
wsse:Security header that contains an
xenc:EncryptedKey and a ds:Signature. The
xenc:EncryptedKey contains the key used to encrypt
the SOAP message body. The key is encrypted in the
public key of the recipient.

auth-recipient="before-content"
OR

auth-recipient="after-content"

The content of the SOAP message body is encrypted
and replaced with the resulting xend:EncryptedData.
The message contains a wsse:Security header that
contains an xenc:EncryptedKey. The
xenc:EncryptedKey contains the key used to encrypt
the SOAP message body. The key is encrypted in the
public key of the recipient.

No policy specified No security operations are performed by the modules.

Using Web Services Message Security

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •108

▼ To Configure Other Security Facilities
The Web Server implements message security using message security providers integrated in its
SOAP processing layer. The message security providers depend on other security facilities of
Web Server.

If using a username token, configure a user database, if necessary.
When using a username and password token, an appropriate realm must be configured and an
appropriate user database must be configured for the realm.

Manage certificates and private keys, if necessary.
After configuring the Web Server facilities for use by message security providers as described in
“Managing Certificates” in Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

Security Enhancements to server.xml
The server element in server.xml contains one or more soap-auth-provider elements, each
of which contains a list of configured soap message security providers. The server element also
includes a default-soap-auth-provider-name for the default SOAP message-level
authentication provider.

See Chapter 3, “Elements in server.xml,” in Sun Java System Web Server 7.0 Update 1
Administrator’s Configuration File Reference for more information.

Administration Command-Line Interface (CLI) support is provided to add, remove, and list the
soap-auth-provider element in server.xml. The CLI also supports adding a
deafult-soap-auth-provider-name to server.xml.

Security Enhancements to sun-web.xml

Security-related additions to sun-web.xml are described in detail in the following sections.

webservice-endpoint Element

The syntax for the webservice-endpoint element is as follows:

<!ELEMENT webservice-endpoint (port-component name, endpoint-address-uri?,

(login-config|message-security-binding)?,transport-guarantee?,

service-gname?,tie-class?, servlet-imp-class?)>

TABLE 8–2 webservice-endpointElement

Element Name Occurrences Description Type

1

2

Using Web Services Message Security

Chapter 8 • Securing Web Applications 109

TABLE 8–2 webservice-endpointElement (Continued)
port-component-name 1 Unique name of

a Web Service
within a module.
This name
should be the
same as the
endpoint: name
in
sun-jaxws.xml.

PCDATA

endpoint-address-uri 0 or 1 Unused for Web
Server

PCDATA

login-config Unused for Web
Server

message-security-binding 0 or 1 Used to bind a
Web Service
endpoint or port
to a specific
security
provider. This
element can also
be used to
provide a
definition of
message security
requirements to
be enforced by
the security
provider.

See Table 8–3

message-security—binding

transport-guarantee 0 or 1 Unused for Web
Server

PCDATA

service-qname 0 or 1 Unused for Web
Server

tie-class 0 or 1 Unused for Web
Server

PCDATA

servlet-impl-class 0 or 1 Unused for Web
Server

Class name

message-security-binding Element

The message-security-binding element is used to bind a web service endpoint or port to a
specific security provider.

The syntax for this element is as follows:

Using Web Services Message Security

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •110

<!ELEMENT message-security-binding (message-security*)>

<!ATLIST message-security-binding

auth-layer %message-layer;#REQUIRED

provider-id CDATA #IMPLIED >

TABLE 8–3 message-security-bindingElement

Element name Occurrences Description Type

message-security 0 or more Specifies the message
security requirements of
request and response for
the endpoint or port

See Table 8–5

TABLE 8–4 Attributes of the message-security-binding Element

Attribute name Description Type Default

auth-layer Layer at which the
security should be
enforced

Entity
message-layer

This attribute is required.

provider-id Identifies the
provider-config that
should be used

CDATA If a value is not specified, then the
default provider is used. If no default
provider exists at the layer, the
authentication requirements defined
in the message-security-binding
are not enforced.

message-security Element

The syntax for the message-security element is as follows:

<!ELEMENT message-security (message+, request-protection?, response-protection?

)>

TABLE 8–5 message-securityElement

Element name Occurrences Description Type

message 1 or more Describes the methods or
operations to which the
security requirements
apply

Table 8–6

request-protection 0 or 1 Describes the
authentication
requirements applicable
to a request

Table 8–7

Using Web Services Message Security

Chapter 8 • Securing Web Applications 111

TABLE 8–5 message-securityElement (Continued)
response-protection 0 or 1 Describes the

authentication
requirements applicable
to a response

Table 8–8

message Element

The syntax for the message element is as follows: <!ELEMENT (java-method?
|operation-name?)>.

TABLE 8–6 message element

Element name occurrences Description Type

java-method 0 or 1 Java methods on which
the security should be
enforced

Table 8–9

operation-name 0 or 1 WSDL name of an
operation of the web
service

PCDATA

Attributes of request-protection Element

The syntax for the request-protection element is as follows.

<!ELEMENT request-protection EMPTY>

<!ATTLIST request-protection

auth-source (sender|content)#IMPLIED

auth-recipient (before-content |after-content)#IMPLIED

TABLE 8–7 request-protectionElement

Attribute name Description Value Default

auth-source Defines a requirement for
message layer sender
authentication for
example, username and
password or content
authentication, for
example, digital signature

sender or content Implied

Using Web Services Message Security

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •112

TABLE 8–7 request-protectionElement (Continued)
auth-recipient Defines a requirement for

message layer
authentication of the
receiver of a message to its
sender for example, by
XML encryption.

A before-content

attribute value indicates
that recipient
authentication occurs
before any content
authentication.

before-content or
after-content

Implied

response-protection Element

The syntax for the response-protection element is as follows:

<<!ELEMENT response-protection EMPTY>

<!ATTLIST response-protection

auth-source (sender|content)#IMPLIED

auth-recipient (before-content |after-content)#IMPLIED

TABLE 8–8 Attributes of the response-protectionElement

Attribute name Description Value Default

auth-source Defines a requirement for
message layer sender
authentication, for
example, username and
password) or content
authentication, for
example, digital signature

sender or content Implied

Using Web Services Message Security

Chapter 8 • Securing Web Applications 113

TABLE 8–8 Attributes of the response-protection Element (Continued)
auth-recipient Defines a requirement for

message layer
authentication of the
receiver of a message to its
sender, for example by
XML encryption.

The before-content
attribute value indicates
that recipient
authentication occurs
before any content
authentication with
respect to the target of the
containing auth-policy.

before-content or

after-content

Implied

java-method Element

The syntax for the java-method element is as follows:

<!ELEMENT java-method (method-name,method-params?)>

TABLE 8–9 java-methodElement

Element name Occurrences Description Value

method-name 1 Name of the service
method

PCDATA

method-params 0 or 1 List of the fully qualified
Java type names of the
method parameters.

Table 8–10

method-params Element

The syntax for method-params (method-param*) element is as follows:

TABLE 8–10 Attributes of the method-paramsElement

Element name Occurrences Description Value

method-params 0 or more Fully qualified Java type
name of a method
parameter

PCDATA

Using Web Services Message Security

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •114

message-layer Entity

The message-layer entity defines the value of the value of the auth-layer attribute.

The syntax for message-layer entity is:<!Entity %message-layer "(SOAP)"

Using Message Security Provider in an Application
The following sub-web.xml example shows how to use the server.xml message security
provider provider1 in a web application.

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright 2006-2007 Sun Microsystems,Inc. All rights reserved.

Use is subject to license terms.

-->

<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.

//DTD Application Server 8.1 Servlet 2.5//EN"
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd">
<sun-web-app>

<context-root>/jaxws-fromwsdl-soap12</context-root>

<servlet>

<servlet-name>fromwsdl</servlet-name>

<webservices-endpoint>

<port-component-name>fromwsdl-soap12</port-component-name>

<message-security-binding auth-layer="SOAP"
<provider-id>provider1</provider-id>

</message-security-binding>

</webservices-endpoint>

</servlet>

</sun-web-app>

Note – The port-component-name element should be the same as the name attribute in the
endpoint element in sun-jaxws.xml. If the provider-id element is not specified in
sun-web.xml, then the default-soap-auth-provider-name configured in server.xml is be
used as the provider.

Deploy the sample web application fromwsdl-soap12.war on to the Web Server.

Using Web Services Message Security

Chapter 8 • Securing Web Applications 115

Programmatic Login
Programmatic login enables a deployed Java EE application to invoke a login method. If the
login is successful, a SecurityContext is established as if the client had authenticated using any
of the conventional Java EE mechanisms.

Programmatic login is useful for application with unique needs that cannot be accommodated
by any of the Java EE standard authentication mechanisms.

This section discusses the following topics:
■ “Precautions” on page 116
■ “Granting Programmatic Login Permission” on page 116
■ “ ProgrammaticLogin Class” on page 117

Precautions
The Web Server is not involved in how the login information (user name and password) is
obtained by the deployed application. The application developer must ensure that the resulting
system meets security requirements. If the application code reads the authentication
information across the network, the application must to determine whether to trust the user.

Programmatic login enables the application developer to bypass the Web Server-supported
authentication mechanisms and feed authentication data directly to the security service. While
flexible, this capability should not be used without some understanding of security issues.

Because this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. The application developer must also
verify the status of the login attempt and to alter the behavior of the application accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated using the programmatic login method,
access is denied immediately and the application might fail if not properly coded to account for
this occurrence.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application. This permission is not granted by default to deployed
applications because it is not a standard Java EE mechanism.

Programmatic Login

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •116

To grant the required permission to the application, add the following code to the
instance_dir/config/server.policy file:

grant codeBase "file:jar_file_path" {

permission com.sun.appserv.security.ProgrammaticLoginPermission

"login";
};

The jar_file_path is the path to the application's JAR file.

Note – If the Security Manager is disabled, it is not mandatory to grant permission.

For more information about the server.policy file, see “The server.policy File” on page 118.

ProgrammaticLoginClass
The com.sun.appserv.security.ProgrammaticLogin class enables a user to log in
programmatically.

The login method for servlets or JSPs has the following signature:

public Boolean login(String user, String password,

javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

This method performs the authentication. It returns true if the login succeeded, false if the login
failed.

Enabling the Java Security Manager
Web Server supports the Java Security Manager. The Java Security Manager is disabled by
default when you install the product, which can improve performance significantly for some
types of applications. Enabling the Java Security Manager might improve security by restricting
the rights granted to your Java EE web applications. To enable the Java Security Manager, add
the following JVM options to the server.xml file.

<jvm-options>-Djava.security.manager</jvm-options>

<jvm-options>-Djava.security.policy=instance_dir

/config/server.policy</jvm-options>

where instance_dir is the path to the installation directory of this server instance.

Enabling the Java Security Manager

Chapter 8 • Securing Web Applications 117

Whether you should run with the Security manager depends on your application and
deployment needs.

Running with the Security Manager helps catch some specification issues with Java EE
applications. All Java EE applications should be able to run with the Security Manager active
and with only the default permissions. Therefore, the Security Manager should be turned on
during development. Applications that can easily be deployed in environments where the
Security Manager is always active, such as some versions of Sun Java System Application Server.
Running with the Security Manager also helps isolate applications and may catch inappropriate
operations.

The main drawback of running with the Security Manager is that it negatively affects
performance. Depending on the application details and the deployment environment, this
impact could be minor or quite significant.

The server.policy File
Each Web Server instance has its own standard Java Platform, Standard Edition (Java SETM

platform) policy file, located in the instance_dir/config directory. The file is named
server.policy.

Web Server is a Java EE 1.4-compliant web server. As such, it follows the recommendations and
requirements of the Java EE specification, including the optional presence of the Security
Manager, which is the Java component that enforces the policy, and a limited permission set for
Java EE application code.

This section includes the following topics:

■ “Default Permissions” on page 118
■ “Changing Permissions for an Application” on page 119

Default Permissions
Internal server code is granted all permissions by the AllPermission grant blocks to various
parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously.

A few permissions above the minimal set are also granted in the default server.policy file.
These permissions are necessary due to various internal dependencies of the server
implementation. Java EE application developers should not rely on these additional
permissions.

The server.policy File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •118

Changing Permissions for an Application
The default policy for each instance limits the permissions of Java EE-deployed applications to
the minimal set of permissions required for these applications to operate correctly. If you
develop applications that require more than this default set of permissions, you can edit the
server.policy file to add the custom permissions that your applications need.

You should add the extra permissions only to the applications that require them, not to all
applications deployed to a server instance. Do not add extra permissions to the default set,
which is the grant block with no codebase, which applies to all code. Instead, add a new grant
block with a codebase specific to the application requiring the extra permissions, and only add
the minimally necessary permissions in that block.

Note – Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the Security Manager, yet you still get the
performance overhead associated with it.

As noted in the Java EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log. If this information is not
sufficient, you can add the -Djava.security.debug=all JVM option to the server instance. For
details, see the Sun Java System Web Server 7.0 Update 1 Administrator’s Guide.

You can use the Java SE standard policy tool or any text editor to edit the server.policy file.
For more information, see

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html.

For detailed information about the permissions you can set in the server.policy file, see:

http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html.

For the Javadoc for the Permission class is see

http://java.sun.com/j2se/1.4.2/docs/api/java/security/Permission.html.

The server.policy File

Chapter 8 • Securing Web Applications 119

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Permission.html

Related Information
The following table describes where you can find more information about security and security
configuration topics in the Web Server documentation:

TABLE 8–11 More Information on Security-related Issues

Subject Location

Configuring Java security and
realm-based authentication

The chapter “Securing Your Web Server” in the Sun Java System
Web Server 7.0 Update 1 Administrator’s Guide.

Certificates and public key cryptography The chapter “Using Certificates and Keys” in the Sun Java System
Web Server 7.0 Update 1 Administrator’s Guide.

ACL-based security The chapter “Controlling Access to Your Server” in the Sun Java
System Web Server 7.0 Update 1 Administrator’s Guide.

Configuring authentication services

in the server.xml files
The chapter “Controlling Access to Your Server” in the Sun Java
System Web Server 7.0 Update 1 Administrator’s Guide and Sun Java
System Web Server 7.0 Update 1 Administrator’s Configuration File
Reference.

Related Information

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •120

Deploying Web Applications

This chapter describes how web applications are assembled and deployed in Web Server. The
chapter has the following sections:

■ “Web Application Structure” on page 121
■ “Deployment Tools” on page 122
■ “Creating Web Deployment Descriptors” on page 125
■ “Deploying Web Applications” on page 125
■ “Deploying Using JSR 88” on page 128
■ “Managing Web Applications” on page 128
■ “Enabling Web Applications” on page 129
■ “Dynamic Reloading of Web Applications” on page 129
■ “Classloaders” on page 131

Web Application Structure
Web applications have a directory structure, which is fully accessible from a mapping to the
application's document root (for example, /hello). The document root contains JSP files,
HTML files, and static files such as image files.

A WAR file (web archive file) contains a complete web application in compressed form.

A special directory under the document root, WEB-INF, contains everything related to the
application that is not in the public document tree of the application. No file contained in
WEB-INF can be served directly to the client. The contents of WEB-INF include:

■ /WEB-INF/classes/* - The directory for servlet and other classes.
■ /WEB-INF/web.xml and /WEB-INF/sun-web.xml - XML-based deployment descriptors that

specify the web application configuration, including mappings, initialization parameters,
and security constraints.

9C H A P T E R 9

121

The web application directory structure follows the structure outlined in the Java EE
specification. The following example shows a sample directory structure of a simple web
application.

+ hello/

|--- index.jsp

|--+ META-INF/

| |--- MANIFEST.MF

--+ WEB-INF/

|--- web.xml

--- sun-web.xml

Deployment Tools

Using Sun Java Studio Enterprise 8.1
Web Server supports Sun Java Studio Enterprise 8.1, Standard Edition. You can use Sun Java
Studio to assemble and deploy web applications. Sun Java Studio Enterprise 8.1 is based on
NetBeansTM software, and integrated with the Sun Java platform. Sun Java Studio Enterprise 8.1
also supports NetBeans 5.5.

Sun Java Studio support is available on all platforms supported by Sun Java Studio Enterprise
8.1. The plug-in for the Web Server is obtained in the following ways:

■ From the Companion CD in the Sun Java Studio Enterprise 8.1 Media Kit
■ By using the AutoUpdate feature of Sun Java Studio
■ From the download center for Web Server at

http://www.sun.com/software/download/index.jsp

Note – The Sun Java Studio Enterprise 8.1 for Web Server works only with a local Web Server
(that is, with the IDE and the Web Server on the same machine).

For information about using the web application features in Sun Java Studio Enterprise 8.1,
explore the resources at http://developers.sun.com/
prodtech/javatools/jsstandard/reference/docs/index.html.

The behavior of the Sun Java Studio Enterprise 8.1 plug-in for Web Server is the same as that for
Sun Java System Application Server 8. If you’re using the Web Application Tutorial at the site
listed above, for instance, you would set the Web Server instance as the default, and then take
the same actions described in the tutorial.

Deployment Tools

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •122

http://www.sun.com/software/download/index.jsp
http://developers.sun.com/prodtech/javatools/jsstandard/reference/docs/index.html
http://developers.sun.com/prodtech/javatools/jsstandard/reference/docs/index.html

For more information about Sun Java Studio Enterprise 8.1, visit
http://www.sun.com/software/sundev/jde/

Note – For basic information about using Sun Java Studio Enterprise 8.1 to debug web
applications, see “Using Developer Tools for Debugging” on page 137.

Using NetBeans IDE 5.5
NetBeans IDE 5.5 is an integrated development environment to create, deploy, and software
Java EE web applications. This section describes how to use the NetBeans IDE 5.5 to create and
deploy the web applications for Web Server.

▼ To Install NetBeans IDE 5.5

Download NetBeans IDE 5.5 from http://webserver.netbeans.org and install it.

After installation, launch the NetBeans IDE 5.5.

Download the latest plug-in.

Extract the org-netbeans-modules-j2ee-sun-ws7.nbm file.

Select Update Center of NetBeans, from the Tools menu.

Select Install Manually Downloaded Modules (.nbm Files) and click Next.

Add the downloaded .nbmfiles and click Next.

Select Web Server and click Next.

Select the Include option and click Yes to install the plug-in.
The Web Server 7.0 plug-in is installed in the IDE.

▼ To Register Web Server 7.0 in the NetBeans IDE 5.5

Start the NetBeans.

Select Server node in the Runtime tab. Press mouse button and choose Add Server from the
popup menu.

Select the Web Server to register the Web Server and click Next.

1

2

3

4

5

6

7

8

9

1

2

3

Deployment Tools

Chapter 9 • Deploying Web Applications 123

http://www.sun.com/software/sundev/jde/
http://webserver.netbeans.org

Provide the details of the Web Server installed on the local system or remote machine.

Note – The plug-in requires a local Web Server installation on the same machine, even if you are
registering a remote Web server. The local installation is required for some of the Web Server
jar files.

(Optional) If the Web Server contains multiple configuration, select the configuration.

■ Select the Web Server node form the IDE drop-down list.

■ Choose the configuration to use.

Note – The drop-down list contains configuration which have at least one virtual server and one
instance.

Once the server is registered, it is listed in the Server node of the Runtime tab. Right click and
choose Start.

You can expand the nodes and see all the web applications and resources.

▼ Deploying Web Applications

Start the NetBeans.

Select New Project from the File menu.

Select Web in the category list, and in the projects list, select web application. Then click Next.

From the Server drop-down list, select Web Server.

Click Next to complete the web project creation.
Once the project is created, web project is displayed in the Projects tab. You can find all basic
files created in the Web Server specific sun-web.xml deployment descriptor .

The web application is now ready to compile, deploy.

4

5

6

7

1

2

3

4

5

Deployment Tools

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •124

Creating Web Deployment Descriptors
Web Server web applications include two deployment descriptor files:

■ A Java EE standard file (web.xml) described in the Java Servlet 2.5 specification. You can
find the specification at: http://java.sun.com/products/servlet/download.html.

■ An optional Web Server - specific file (sun-web.xml) described later in this chapter.

The easiest way to create the web.xml and sun-web.xml files is to deploy a web application using
Sun Java Studio Enterprise 8.1. For sample web.xml and sun-web.xml files, see “Sample Web
Application XML Files” on page 186

Deploying Web Applications
You can deploy a web application using either the Admin console or the command-line
interface.

▼ To Deploy Using Admin Console
Select the virtual server, in which you need to deploy the web application.

Access the Admin Console.

Click the Add Web Application tab in the home page.
The Add Web Application screen appears.

Specify the location or package file path to upload to the Web Server.

Type the URI for your web application.
Specify the URI. This URI is the application's context root and is relative to the server host.

Select JSP pre-compilation.

Click OK.
The Web Application page appears.

Click Save.

Click the Deployment Pending link in the top right of the screen.
The Configuration Deployment screen displays.

Before You Begin

1

2

3

4

5

6

7

8

Deploying Web Applications

Chapter 9 • Deploying Web Applications 125

http://java.sun.com/products/servlet/download.html

Click Deploy.

The web application is deployed.

For more information about using the Administration Console, see the Sun Java System Web
Server 7.0 Update 1 Administrator’s Guide

Deploying Using wadm

Note – Before you can manually deploy a web application, make sure that the server_root/bin
directory is in your path.

You can use the wadm utility at the command line to deploy a WAR file into a virtual server web
application environment as follows:

wadm [--user=admin-user] [--password-file=admin-pswd-file]
[--host=admin-host]
[--port=admin-port][--no-ssl]
[--rcfile=rcfile][--no-prompt][--commands-file=]filename

For more information about how to add, enable, and disable web applications, see the
add-webapp(1).

The following table describes the command parameters. The left column lists the parameter,
and the right column describes the parameter.

TABLE 9–1 Command Parameters

Parameter Description

--user Specify the user name of the authorized Web Server administrator.

--password-file Specify the password file. The password file contains the password to
authenticate administrators to the administration server. This file must
contain the line wadm_password=password. If you do not specify this
option, you will be prompted for a password while executing this command.

--host Specify the name of the machine where the administration server is
running. The default host is localhost.

--port Specify the port number of the administration server. The default non-SSL
port is 8800 and the default SSL port is 8989.

--no-ssl Specify this option to use a plain text connection to communicate with the
administration server. The default connection is SSL.

9

Deploying Web Applications

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •126

TABLE 9–1 Command Parameters (Continued)
Parameter Description

--rcfile Specify the name of the rcfile that has to be loaded while starting the wadm
utility. rcfile can contain environment commands like set and unset, or a
JACL script that needs to be run while starting wadm. The default file is
~/.wadmrc

--no-prompt If you specify this option, wadm will prompt you for password while
executing this command. Use this option if you have defined all passwords
in a password file and specified the file using the --password-file option.

When you execute the wadm command, two things happen:

■ A web application with the given uri_path and directory gets added to the server.xml file.
■ The WAR file is extracted in the target directory.

The following shows a sample command.

wadm add-webapp --user=admin --password-file=admin.pwd --host=serverhost

--port=8989 --config=config1 --vs=config1_vs_1 --uri=/testapp /abc/sample.war

After you have deployed an application, you can access it from a browser as follows:

http://vs_urlhost[:vs_port]/uri_path/[index_page]

The following table describes the parts of the URL.)

TABLE 9–2 Parts of the URL

Part Description

vs_urlhost One of the urlhosts values for the virtual server.

vs_port (Optional) Only needed if the virtual server uses a non default port.

uri_path The same path you used to deploy the application. This is also the context
path.

index_page (Optional) The page in the application that end users are meant to access
first.

The following two examples show sample URLs:

http://sun.com:80/hello/index.jsp

http://sun.com/hello/

Deploying Web Applications

Chapter 9 • Deploying Web Applications 127

Deploying Using JSR 88
JSR 88 defines the contracts that enable the tool of multiple providers to configure and deploy
applications on any platform product. The implementation requires both tools and Java EE
platform products.

You can write your own JSR 88 client to deploy an application to the Web Server. For more
information about JSR 88, see http://jcp.org/en/jsr/detail?id=88.

Managing Web Applications
Once deployed, the application or module exists in the central repository and can be referenced
by a number of server instances. Initially, the server instances or clusters that you deployed as
targets reference the application or module. To change the server instances and clusters that
reference an application or module after it is deployed, change an application or modules
targets using the Admin Console or change the application references using the wadm.

Because the application is stored in the central repository, adding or deleting targets adds or
deletes the same version of an application on different targets. However, an application
deployed to more than one target can be enabled on one target and disabled on another target.
Therefore, even if an application is referenced by a target, it is not available to you unless it is
enabled on that target. In Web Server you can enable or disable a web application either using
the Admin Console or command-line interface.

▼ To Enable or Disable a Deployed Web Application
Access the Admin Console.

Select the server instance and click the edit Virtual Server tab.

Click the Web applications tab.

In the Web Applications table, select the web application.

■ To enable the application, click Enable.

■ To disable the application, click Disable.

1

2

3

4

Deploying Using JSR 88

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •128

http://jcp.org/en/jsr/detail?id=88

Tip – Use the enable-webapp and disable-webapp commands to enable or disable the web
application through the command-line interface. For more information, see the
enable-webapp(1) and disable-webapp(1) man pages.

Click Save.

Enabling Web Applications
Web Server allows you to enable or disable a web application. You can do so in either of the
following ways, as discussed in this section:

Enabling and Disabling Using the Admin Console
To enable or disable a deployed web application using the Admin Console, perform the
following steps:

▼ To Remove a Deployed Web Application
Access the Admin Console.

Select the server instance and click the edit Virtual Server tab.

Click the Web applications tab.

In the Web Applications table, select the web application or applications you want to remove
and click Remove.

Tip – To remove a deployed web application through the command-line interface, use the
remove-webapp command. For more information, see the remove-webapp(1) man page.

In the dialog box that appears, click OK.

Dynamic Reloading of Web Applications
To set dynamic reloading of web application, you must do the following:

5

1

2

3

4

5

Dynamic Reloading of Web Applications

Chapter 9 • Deploying Web Applications 129

▼ To Set Dynamic Reloading of Web Application
Access the Admin Console. Select the server instances and click the Edit Configuration tab.

Click the Java tab.

Click the Servlet Container tab.

In the Dynamic Reload Interval field, type an integer, that specifies the interval (in seconds) after
which a deployed application will be checked for modifications and reloaded if necessary.

■ To enable dynamic reloading, you must specify a value greater than 0.

To disable dynamic reloading set the field to —1

Click Save.

Tip – To configure through the CLI, use the set-servlet-container-prop(1) command.

▼ To Load a New Servlet or Reload a Deployment
Descriptor

Create an empty file named .reload at the root of the deployed module.
For example:
instance_dir/webapps/vs_id/uri/.reload

where vs_id is the virtual server ID in which the web application is deployed, and uri is the value
of the uri attribute of the webapp/ element.

Type touch .reload to explicitly update the .reload file's timestamp each time you make the
above changes.
For JSPs, changes are reloaded automatically at a frequency set in the reload-interval
property of the jsp-config element in the sun-web.xml file. To disable dynamic reloading of
JSPs, set the reload-interval property to -1.

1

2

3

4

5

1

2

Dynamic Reloading of Web Applications

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •130

Classloaders
Web Server classloaders help you determine where and how you can position supporting JAR
and resource files of your modules and applications.

In a Java Virtual Machine (JVM), the classloaders dynamically load a specific Java class file
needed for resolving a dependency. For example, when an instance of java.util.Enumeration
needs to be created, one of the classloaders loads the relevant class into the environment.

Classloaders in the Web Server runtime follow the hierarchy shown in the following figure.

Classloaders

Chapter 9 • Deploying Web Applications 131

This hierarchy is a delegation hierarchy not a Java inheritance hierarchy. In the delegation
design, a classloader delegates classloading to its parent before attempting to load a class itself. If
the parent classloader cannot load a class, the findClass()method is called on the classloader
subclass. In effect, a classloader is responsible for loading only the classes not available to the
parent.

The exception is the web application classloader, which follows the delegation model in the
Servlet specification. The web application Classloader looks in the local classloader before
delegating to its parent. You can make the web application Classloader delegate to its parent

Bootstrap
Classloader

System
Classloader

Common
Classloader

Web Application
Classloader

JSP
Classloader

There is a separate instance of this classloader for
each web application

There is a separate instance of this classloader per JSP

FIGURE 9–1 Classloader Runtime Hierarchy

Classloaders

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •132

first by setting delegate="true" in the class-loader element of the sun-web.xml file. For
more information, see “Classloader Element” on page 176.

The following table describes Web Server classloaders.

TABLE 9–3 Web Server Classloaders

Classloader Description

Bootstrap The Bootstrap Classloader loads the JDK classes. Only one instance of this
classloader exists in the entire server.

System The System Classloader loads the core Web Server classes. It is created based on
the class-path-prefix, server-class-path, and class-path-suffix

attributes of the <jvm/> element in the server.xml file.

The environment classpath is included if env-classpath-ignored="false" is
set in the <jvm/> element. Only one instance of this classloader exists in the
entire server.

If any changes are made to these attributes or classes, the server must be
restarted for the changes to take effect.

For more information about the <jvm/> element in server.xml, see the Sun
Java System Web Server 7.0 Update 1 Administrator’s Configuration File
Reference.

Common The Common Classloader loads classes in the instance_dir/lib/classes
directory, followed by JAR and ZIP files in the instance_dir/lib directory. The
directories are optional. If they don't exist, the Common Classloader is not
created. If any changes are made to these classes, restart the server.

Web Application The Web Application Classloader loads the servlets and other classes in a
specific web application from WEB-INF/lib and WEB-INF/classes and from
any additional classpaths specified in the extra-class-path attribute of the
class-loader element in sun-web.xml. For more information, see
“Classloader Element” on page 176.

An instance of this classloader is created for each web application. If dynamic
reloading has been enabled, any changes made to these attributes or classes are
reloaded by the server without the need for a restart. For more information, see
“Dynamic Reloading of Web Applications” on page 129

JSP The JSP Classloader loads the compiled JSP classes of JSPs. An instance of this
classloader is created for each JSP file. Any changes made to a JSP are
automatically detected and reloaded by the server unless dynamic reloading of
JSPs has been disabled by setting the reload-interval property to -1 in the
jsp-config element of the sun-web.xml file. For more information, see
“jsp-config Element” on page 177.

Classloaders

Chapter 9 • Deploying Web Applications 133

134

Debugging Web Applications

This chapter provides guidelines for debugging web applications in Web Server. The chapter
includes the following sections:
■ “Enabling Debugging” on page 135
■ “JPDA Options” on page 136
■ “Using Developer Tools for Debugging” on page 137
■ “Debugging JSPs” on page 137
■ “Generating a Stack Trace for Debugging” on page 137
■ “Using Logging for Debugging” on page 138
■ “Using Profiling for Debugging” on page 138

Debugging applications requires you to edit the server.xml file as described in this chapter. For
more general information, see Sun Java System Web Server 7.0 Update 1 Administrator’s
Configuration File Reference.

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. You can enable
debugging through Admin Console or by editing server.xml.

Sun Java System Web Server debugging is based on the JPDA (JavaTM Platform Debugger
Architecture software). For more information, see “JPDA Options” on page 136

▼ To Enable Debugging Through Admin Console
Access the Admin Console.

Click the Edit Java Settings tab in the home page.

Click the JVM Settings tab.

10C H A P T E R 1 0

1

2

3

135

Select the Enable Debug option to enable debugging.
For more information about debug options, see “JPDA Options” on page 136

Click Save.

▼ To Enable Debugging by Editing server.xml

Set the following attributes of the jvm element in the server.xml file:

■ Set debug="true" to turn on debugging.

■ Add any desired JPDA debugging options in the debugoptions attribute. See “JPDA
Options”on page 136.

■ To specify the port to use when attaching the JVM to a debugger. Specify
address=port_number in the debugoptions attribute.

For details about the server.xml file, see the Sun Java System Web Server 7.0 Update 1
Administrator’s Configuration File Reference.

JPDA Options
The default JPDA options are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n

If you change the value of suspend=y, the JVM starts in suspended mode and stays suspended
until a debugger attaches to it. Use this option if you want to start debugging as soon as the JVM
starts.

To specify the port to use when attaching the JVM to a debugger, specify
address=port_number. You can also use the shared memory transport dt_shmem on the Win32
platform.

For more information on list of JPDA debugging options, see

http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

4

5

●

JPDA Options

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •136

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Using Developer Tools for Debugging
Sun Java Studio Enterprise 8.1 technology can be used for remote debugging if you want to
manually attach the IDE to a remote Web Server started in debug mode.

▼ To Debug using NetBeans 5.5
Press mouse button the Web project name in the IDE. Choose Debug Project from the context
menu.
Web Server will then start in debug mode and the IDE will pause executing the program at the
breakpoint you have set in your application.

Debugging JSPs
When you use Sun Java Studio Enterprise 8.1 to debug JSPs, you can set breakpoints in either
the JSP code or the generated servlet code. You can switch between them and see the same
breakpoints in both the JSP code and the servlet code.

To set up debugging in Sun Java Studio Enterprise 8.1, see “Using Developer Tools for
Debugging” on page 137.

Generating a Stack Trace for Debugging
For information about how to generate a Java stack trace for debugging, see

http://developer.java.sun.com/

developer/technicalArticles/Programming/Stacktrace/.

If the -Xrs flag is set for reduced signal usage in the server.xml file (under jvm), comment it
out before generating the stack trace. If the -Xrs flag is used, the server might dump core and
restart when you send the signal to generate the trace.

The stack trace goes to the system log file or to stderr based on the log attributes in server.xml.

For more information about the server.xml file, see the Sun Java System Web Server 7.0
Update 1 Administrator’s Guide.

●

Generating a Stack Trace for Debugging

Chapter 10 • Debugging Web Applications 137

http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/
http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/

Using Logging for Debugging
You can use the Web Server log files to help debug your applications. For general information
about logging, see the Sun Java System Web Server 7.0 Update 1 Administrator’s Guide. For
information about server.xml file, see the Sun Java System Web Server 7.0 Update 1
Administrator’s Configuration File Reference.

You can change logging settings in one of these ways:

▼ To Change the Log Settings
Access the Admin Console.

Click the View Server Logs tab in the home page.

Set the log preferences.

Click Save to apply your changes.

Using Profiling for Debugging
You can use a profiler to perform remote profiling on the Web Server to discover choke point in
server-side performance. This section describes how to configure these profilers for use with
Web Server:
■ “Using the HPROF Profiler” on page 138
■ “Using the Optimizeit Profiler” on page 140

Using the HPROF Profiler
HPROF is a simple profiler agent shipped with the Java 2 SDK. It is a dynamically linked library
that interacts with the JavaTM Virtual Machine Profiler Interface (JVMPI) and writes out
profiling information either to a file or to a socket in ASCII or binary format. This information
can be further processed by a profiler front-end tool such as HAT.

HPROF can present CPU usage, heap allocation statistics, and monitor contention profiles. In
addition, it can also report complete heap dumps and states of all of the monitors and threads in
the Java virtual machine. For more details on the HPROF profiler, see the JDK documentation
at:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

Once HPROF is installed, its libraries are loaded into the server process.

1

2

3

4

Using Logging for Debugging

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •138

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

You can configure Web Server

▼ To Install the HPROF Profiler

Access the Admin Console.

Click the Edit Java Settings tab in the home page.
The JVM General Settings screen appears.

Click Profilers.

Click New.
The Create JVM Profiler popup appears.

Type the Name and select the JVM Profiler option to enable the profiler. Leave the Class Path
and Native Library Path fields blank.

Click New to configure the JVM options.

Click OK.
Edit the server.xml file as appropriate
<! --hprof options -->

<profiler name="hprof" enabled="true"
<jvm-options>

-Xrunhprof:file=log.txt,options

</jvm-options>

</profiler>

Note – Do not use the -Xrs flag.

Here is an example of options you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file option is important because it determines where the stack dump is written in step 6.

The syntax of HPROF options is as follows:

-Xrunhprof[:help]|[:option=value,option2=value2, ...]

Using help lists options that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default

heap=dump|sites|all heap profiling allcpu=samples|old CPU

1

2

3

4

5

6

7

Using Profiling for Debugging

Chapter 10 • Debugging Web Applications 139

usage offformat=a|b ascii or binary output

afile=<file> write data to file java.hprof(.txt for ascii)

net=<host>:<port> send data over a socket write to filedepth=<size>

stack trace depth 4cutoff=<value>

output cutoff point 0.0001lineno=y|n line number in traces?

ythread=y|n thread in traces? ndoe=y|n dump on exit? y

Change the PRODUCT_BIN assignment in the /install_dir/instance_dir/bin/startserv file from:
PRODUCT_BIN=webservd-wdog to PRODUCT_BIN=webservd

Start the server by running the startserv script.
As the server runs in the foreground, the command prompt returns only after the server has
been stopped.

Find the process ID of the server process in another window or terminal.
% ps -ef | grep webservd

This command lists two webservd processes. Look at the PPID (parent process ID) column and
identify which of the two processes is the parent process and which is the child process. Note the
PID (process ID) of the child process ID.

Send a SIGQUIT signal (signal 3) to the child process:
% kill -QUIT child_PID

Run the stopserv script from another window to stop the Web Server.
% ./stopserv

Stopping the server writes an HPROF stack dump to the file you specified using the file HPROF
option. For general information about using a stack dump, see “Generating a Stack Trace for
Debugging” on page 137.

Using the Optimizeit Profiler
Information about Optimizeit is available at:

http://www.borland.com/optimizeit/

Once Optimizeit is installed, its libraries are loaded into the server process.

To enable remote profiling with Optimizeit, do one of the following:

■ Go to the Common Tasks page in the Admin Console, click the Edit Java Settings tab, click
the Profiler link, and edit the following fields before selecting OK:
■ Profiler: Enable

8

9

10

11

12

Using Profiling for Debugging

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •140

■ Classpath: Optimizeit_dir/lib/optit.jar
■ Native Lib Path: Optimizeit_dir/lib
■ JVM Option: For each of these options, type the option in the JVM Option field, select

Add, then check its box in the JVM Options list:
■ -DOPTITHOME=Optimizeit_dir
■ -Xrunoii

■ -Xbootclasspath/a:Optimizeit_dir/lib/oibcp.jar

or

Enable remote profiling by editing server.xml file

<!-- Optimizeit options -->

<profiler classpath="Optimizeit_dir/lib/optit.jar"
nativelibrarypath="Optimizeit_dir/lib" enabled="true">
<jvm-options>

-DOPTIT_HOME=Optimizeit_dir -Xboundthreads -Xrunoii

-Xbootclasspath/a:Optimizeit_dir/lib/oibcp.jar

</jvm-options>

</profiler>

In addition, you might need to set the following in your server.policy file:

grant codeBase "file:Optimizeit_dir/lib/optit.jar" {

permission java.security.AllPermission;

};

For more information about the server.policy file, see “The server.policy File” on
page 118.

When the server starts up with this configuration, you can attach the profiler.

Note – If any of the configuration options are missing or incorrect, the profiler might
experience problems that affect the performance of the Web Server.

Using Profiling for Debugging

Chapter 10 • Debugging Web Applications 141

142

Deployment Descriptor Files

This chapter includes the following sections:

■ “About Deployment Descriptor Files” on page 143
■ “Migration Issues” on page 143
■ “Java EE Standard Descriptors” on page 144
■ “Sun Java System Web Server Descriptors” on page 144
■ “The sun-web-app_2_5-0.dtd File” on page 144
■ “Elements in the sun-web.xml File” on page 146
■ “Sample Web Application XML Files” on page 186

About Deployment Descriptor Files
The deployment descriptor conveys the elements and configuration information of a web
application between application developers, application assemblers, and deployers. For Java
Servlets v.2.5, the deployment descriptor is defined in terms of an XML schema document.

Migration Issues
Migration creates a detailed log in the user-specified log file. For every instance, a log is created
in the following syntax: MIGRATION_<server instance
name>_MMM_DD_YYYY_HH_MM_AM/PM.log.

If no log directory exists, the log file is stored at install_dir/admin-server/logs.

AA P P E N D I X A

143

Java EE Standard Descriptors
This section describes the Java EE descriptors.

sun-web.xml

You define roles in the deployment descriptor file web.xml and the corresponding role
mappings in the sun-web.xml deployment descriptor file for individually deployed web
modules.

default-web.xml

default-web.xml is a global web deployment descriptor file that is shared by deployed web
applications. It is used to configure the DefaultServlet and JspServlet servlets. In addition, it
specifies: MIME mappings based on extensions Welcome files Global filters and security
constraints Individual web applications inherit and might override the configuration settings
inherited from default-web.xml with their own web.xml. The default-web.xml for each
server instance is shared by all web applications deployed on the server instance. Depending on
the configuration capabilities of the hosting application, a virtual server might replace the
server-wide default-web.xml with its own. In that case, a virtual server's default-web.xml is
shared by all web application deployed on the virtual server.

Sun Java System Web Server Descriptors
This section describes the Web Server descriptors.

The sun-web-app_2_5-0.dtd File
The sun-web-app_2_5-0.dtd file defines the structure of the sun-web.xml file, including the
elements it can contain and the subelements and attributes these elements can have. The
sun-web-app_2_5-0.dtd file is located in the install_dir/lib/dtds directory.

Note – Do not edit the sun-web-app_2_5-0.dtd file. Its contents change only with new versions
of Web Server.

For general information about DTD files and XML, see the XML specification at
http://www.w3.org/TR/2004/REC-xml-20040204.

Each element defined in a DTD file, which might be present in the corresponding XML file can
contain subelements, and attributes described in the following sections.

Java EE Standard Descriptors

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •144

http://www.w3.org/TR/2004/REC-xml-20040204

■ “Subelements” on page 145
■ “Data” on page 145
■ “Attributes” on page 146

Subelements
Elements can contain subelements. For example, the following file fragment defines the cache
element:

<!ELEMENT cache (cache-helper*, default-helper?, property*, cache-mapping*)>

The ELEMENT tag specifies that a cache element can contain cache-helper, default-helper,
property, and cache-mapping subelements.

The following table shows how optional suffix characters of subelements determine the
requirement rules, or number of allowed occurrences, for the subelements.

TABLE A–1 Requirement Rules and Subelement Suffixes

Subelement Suffix Requirement Rule

element* Can contain zero or more of this subelement.

element? Can contain zero or one of this subelement.

element+ Must contain one or more of this subelement.

element (no suffix) Must contain only one of this subelement.

If an element cannot contain other elements, EMPTY or (#PCDATA) appears instead of a list of
element names in parentheses.

Data
Some elements contain character data instead of subelements. These elements have definitions
of the following format:

<!ELEMENT element-name (#PCDATA)/>

For example:

<!ELEMENT description (#PCDATA)/>

In the sun-web.xml file, white space is treated as part of the data in a data element. Therefore,
no extra white space should appear before or after the data delimited by a data element. For
example:

The sun-web-app_2_5-0.dtd File

Appendix A • Deployment Descriptor Files 145

<description/>class name of session manager</description>

Attributes
Elements that have ATTLIST tags contain attributes (name-value pairs). For example:

<!ATTLIST cachemax-capacity CDATA "4096"
timeout CDATA "30"
enabled %boolean; "false">

A cache element can contain max-capacity, timeout, and enabled attributes.

The #REQUIRED label means that a value must be supplied. The #IMPLIED label means that the
attribute is optional, and that Web Server generates a default value. Wherever possible, explicit
defaults for optional attributes (such as "true") are listed.

Attribute declarations specify the type of the attribute. For example, CDATA means character
data, and %boolean is a predefined enumeration.

Elements in the sun-web.xml File
This section describes the XML elements in the sun-web.xml file. Elements are grouped as
follows:
■ “General Elements” on page 147
■ “Security Elements” on page 151
■ “Session Elements” on page 153
■ “Reference Elements” on page 159
■ “Caching Elements” on page 167
■ “Classloader Element” on page 176
■ “JSP Element” on page 177
■ “Internationalization Elements” on page 179

This section also includes an alphabetical list of the elements for quick reference. See
“Alphabetical List of sun-web.xml Elements” on page 183.

Note – Subelements must be defined in the order in which they are listed in each section, unless
otherwise noted.

Each sun-web.xml file must begin with the following DOCTYPE header:

<!DOCTYPE sun-web-app PUBLIC -//Sun Microsystems, Inc.//DTD Application Server

8.1 Servlet 2.5//EN"
http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd">

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •146

For an alphabetical list of elements in sun-web.xml, see “Alphabetical List of sun-web.xml
Elements” on page 183

General Elements
General elements are as follows:

■ “sun-web-app Element” on page 147
■ “property Element” on page 150
■ “description Element” on page 150

sun-web-app Element
This element Web Server- specific configuration for a web application. This element is the root
element. The sun-web.xml file contain only one sun-web-app.

Subelements
The following table describes subelements for the sun-web-app element.

TABLE A–2 sun-web-app Subelements

Element Required Description

“context-root Element” on
page 149

zero or more Contains the web context roots for the web
application

“servlet Element” on
page 151

zero or more Specifies a principal name for a servlet, which is used
for the run-as role defined in web.xml

“session-config Element” on
page 153

zero or one Specifies the session manager, session cookie, and
other session-related information

“resource-env-ref Element”
on page 159

zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding Java EE
XML file

“resource-ref Element” on
page 165

zero or more Maps the absolute JNDI name to the resource-ref
in the corresponding Java EE XML file

“service-ref Element” on
page 160

zero or more Specifies runtime settings for a web service reference

“cache Element” on page 167 zero or one Configures caching for web application components

“class-loader Element” on
page 176

zero or one Specifies classloader configuration information

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 147

TABLE A–2 sun-web-app Subelements (Continued)
Element Required Description

“jsp-config Element” on
page 177

zero or one Specifies JSP configuration information

“locale-charset-info
Element” on page 180

zero or one Specifies internationalization settings

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value

“message-destination-name
Element” on page 182

zero or more Specifies a logical message destination

“webservice-description
Element” on page 182

zero or more Specifies a web service description

Attributes

none

Properties

The following table describes the properties for the sun-web-app element.

TABLE A–3 sun-web-appProperties

Property Name Default Value Description

crossContextAllowed true If true, allows this web
application to access the
contexts of other web
applications using the
ServletContext.getContext()

method.

encodeCookies true If true, Web Server URL
encodes cookies before sending
them to the client. If you don’t
want cookies to be encoded, add
the following setting to
sun-web.xmldirectly under the
<sun-web-app> tag:

<property

name="encodeCookies"
value="false"/>

Do not embed this setting in any
other tag.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •148

TABLE A–3 sun-web-appProperties (Continued)
Property Name Default Value Description

tempdir instance_dir/generated/ Specifies a temporary directory
for use by this web application.
This value is used to construct
the value of the
javax.servlet.context.tempdir

context attribute. Compiled
JSPs are also placed in this
directory.

singleThreadedServletPoolSize 5 Specifies the maximum number
of servlet instances allocated for
each SingleThreadModel

servlet in the web application.

reuseSessionID false If true, this property causes the
web application to reuse the
JSESSIONID value (if present) in
the request header as the session
ID when creating sessions. The
default behavior of web
applications is not to reuse
session IDs. Instead,
applications generate
cryptographically random
session IDs for new sessions.

relativeRedirectAllowed false If true, allows the web
application to send a relative
URL to the client using the
HttpResponse.sendRedirect()

API (that is, it suppresses the
container from translating a
relative URL to a fully qualified
URL).

context-root Element
This element contains the web context root of the application or web applications. This
overrides the corresponding element in the web.xml file.

Subelements

none

Attributes

none

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 149

property Element
Specifies a property that has a name and a value. A property adds configuration information to
its parent element that is:

■ optional with respect to Web Server but Needed by a system or object that Web Server
doesn't have knowledge of, such as an LDAP server or a Java class

For example, a manager-properties element can include property subelements:

<manager-properties>

<property name="reapIntervalSeconds" value="20" />

</manager-properties>

The properties that manager-properties element uses depends on the value of the parent
session-manager element persistence-type attribute. For details, see the description of the
session-manager element.

Subelement

The following table describes subelement for the property element.

TABLE A–4 property Subelement

Element Required Description

“description Element” on
page 150

zero or one Contains a text description of this element.

Attributes

The following table describes attributes for the property element.

TABLE A–5 propertyAttributes

Attribute Default Description

name none Specifies the name of the property or variable

value none Specifies the value of the property or variable

description Element
This element contains a text description of the parent element.

Subelements

none

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •150

Attributes

none

Security Elements
The security elements are as follows:

■ “security-role-mapping Element” on page 151
■ “servlet Element” on page 151
■ “servlet-name Element” on page 152
■ “role-name Element” on page 152
■ “principal-name Element” on page 152
■ “group-name Element” on page 153

security-role-mapping Element
This element maps roles to users or groups in the currently active realm.

Subelements

The following table describes subelements for the security-role-mapping element.

TABLE A–6 security-role-mapping Subelements

Element Required Description

“role-name Element” on
page 152

only one Contains the role name

“principal-name Element” on
page 152

requires at least one
principal-name or
group-name

Contains a principal (user) name in the current
realm

“group-name Element” on
page 153

requires at least one
principal-name or
group-name

Contains a group name in the current realm

Attributes

none

servlet Element
This element specifies a principal name for a servlet, which is used for the run-as role defined in
web.xml.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 151

Subelements

The following table describes subelements for the servlet element.

TABLE A–7 servlet Subelements

Element Required Description

“servlet-name Element” on
page 152

only one Contains the name of a servlet, which is matched to
a servlet-name in web.xml.

“principal-name Element” on
page 152

only one Contains a principal (user) name in the current
realm.

Attributes

none

servlet-name Element
This element contains data that specifies the name of a servlet, which is matched to a
servlet-name in web.xml. This name must be present in web.xml.

Subelements

none

Attributes

none

role-name Element
This element contains data that specifies the role-name in the security-role element of the
web.xml file.

Subelements

none

Attributes

none

principal-name Element
This element contains data that specifies a principal (user) name in the current realm.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •152

Subelements

none

Attributes

none

group-name Element
This element contains data that specifies a group name in the current realm.

Subelements

none

Attributes

none

Session Elements
Session elements are as follows:

■ “session-config Element” on page 153
■ “session-manager Element” on page 154
■ “manager-properties Element” on page 155
■ “store-properties Element” on page 156
■ “session-properties Element” on page 157
■ “cookie-properties Element” on page 158

Note – The session manager interface is unstable. An unstable interface might be experimental
or transitional. This interface therefore change change incompatibly, be removed, or be
replaced by a more stable interface in the next release.

session-config Element
This element specifies session configuration information.

Subelements

The following table describes subelements for the session-config element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 153

TABLE A–8 session-config Subelements

Element Required Description

“session-manager Element”
on page 154

zero or one Specifies session manager configuration
information

“session-properties
Element” on page 157

zero or one Specifies session properties

“cookie-properties Element”
on page 158

zero or one Specifies session cookie properties

Attributes

none

session-manager Element
Specifies session manager information.

Note – As of Web Server, you cannot define a session manager either for a single sign-on session
or for a virtual server. You must define session managers at the level of web applications.

Subelements

The following table describes subelements for the session-manager element.

TABLE A–9 session-manager Subelements

Element Required Description

“manager-properties
Element” on page 155

zero or one Specifies session manager properties.

“store-properties Element”
on page 156

zero or one Specifies session persistence (storage) properties.

Attribute

The following table describes the persistence-type attribute for the session-manager element.
The left column lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •154

TABLE A–10 session-managerAttribute

Attribute Default Value Description

persistence-type memory (Optional) Specifies the session persistence
mechanism. Allowed values are memory, file,
s1ws60, and mmap.

Setting the value of persistence type to memory is
equivalent to using Web Server’s IWS60 without any
store.

Setting the value of persistence type to file is
equivalent to using Web Server’s IWS60 with
FileStore.

manager-properties Element
This element specifies session manager properties.

Subelement

The following table describes the property subelement for the manager-properties element.

TABLE A–11 manager-properties Subelements

Element Required Description

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value.

Attributes

none

Properties

The following table describes properties for the manager-properties element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 155

TABLE A–12 manager-propertiesProperties

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions.

Set this value lower than the frequency at which
session data changes . For example, this value should
be as low as possible 1 second for a hit counter
servlet on a frequently accessed web site or you
could lose the last few hits each time you restart the
server.

maxSessions -1 Specifies the maximum number of active sessions,
or -1 (the default) for no limit.

sessionFilename none; state is not
preserved across
restarts

Specifies the absolute or relative path name of the
file in which the session state is preserved between
application restarts, if preserving the state is
possible. A relative path name is relative to the
temporary directory for this web application.

Applicable only if the persistence-type attribute
of the “session-manager Element” on page 154
element is memory.

store-properties Element
Specifies session persistence (storage) properties.

Subelement

The following table describes the property subelement for the store-properties element.

TABLE A–13 store-properties Subelement

Element Required Description

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value.

Attributes

none

Properties

The following table describes properties for the store-properties element.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •156

TABLE A–14 store-propertiesProperties

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between
checks for expired sessions for those
sessions that are currently swapped out.

Set this value lower than the frequency at
which session data changes is
recommended. For example, this value
should be as low as possible 1 second for a
hit counter servlet on a frequently accessed
web site or you could lose the last few hits
each time you restart the server.

directory directory specified by

javax.servlet.context

.tempdir context attribute

Specifies the absolute or relative path name
of the directory into which individual
session files are written. A relative path is
relative to the temporary work directory
for this web application.

session-properties Element
This element specifies session properties.

Subelements

The following table describes the property subelement for the session-properties element.

TABLE A–15 session-properties Subelements

Element Required Description

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value.

Attributes

none

Properties

The following table describes properties for the session-properties element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 157

TABLE A–16 session-properties Properties

Property Name Default Value Description

timeoutSeconds 600 Specifies the default maximum inactive interval (in
seconds) for all sessions created in this web
application. If set to 0 session expires immediately.

If a session-timeout element is specified in the
web.xml file, the session-timeout value overrides
any timeoutSeconds value. If neither
session-timeout nor timeoutSeconds is specified,
the timeoutSeconds default is used.

Note that the session-timeout element in web.xml

is specified in minutes, not seconds.

enableCookies true Uses cookies for session tracking if set to true.

enableURLRewriting true Enables URL rewriting. This provides session
tracking via URL rewriting when the browser does
not accept cookies. You must also use an encodeURL

or encodeRedirectURL call in the servlet or JSP.

cookie-properties Element
This element specifies session cookie properties.

Subelement

The following table describes the property subelement for the cookie-properties element.

TABLE A–17 cookie-properties Subelement

Element Required Description

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value

Attributes

none

Properties

The following table describes properties for the cookie-properties element.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •158

TABLE A–18 cookie-propertiesProperties

Property Name Default Value Description

cookiePath Context path at which
the web application is
installed.

Specifies the path name that is set when the session
tracking cookie is created. The browser sends the
cookie if the path name for the request contains this
path name. If set to / (root), the browser sends
cookies to all URLs served by the Web Server. You
can set the path to a narrower mapping to limit the
request URLs to which the browser sends cookies.

cookieMaxAgeSeconds -1 Specifies the expiration time (in seconds) after
which the browser expires the cookie. The default
value of -1 indicates that the cookie never expires.

cookieDomain unset Specifies the domain for which the cookie is valid.

cookieComment Sun Java System Web
Server session tracking
cookie

Specifies the comment that identifies the session
tracking cookie in the cookie file. Applications can
provide a more specific comment for the cookie.

Reference Elements
Reference elements are as follows:

■ “resource-env-ref Element” on page 159
■ “resource-env-ref-name Element” on page 160
■ “resource-ref Element” on page 165
■ “service-ref Element” on page 160
■ “res-ref-name Element” on page 165
■ “default-resource-principal Element” on page 166
■ “name Element” on page 166
■ “password Element” on page 166
■ “jndi-name Element” on page 167

resource-env-ref Element
This element maps the “res-ref-name Element” on page 165 in the corresponding Java EE
web.xml file resource-env-ref entry to the absolute jndi-name of a resource.

Subelements

The following table describes subelements for the resource-env-ref element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 159

TABLE A–19 resource-env-ref Subelements

Element Required Description

“resource-env-ref-name
Element” on page 160

only one Specifies the res-ref-name in the corresponding
Java EE web.xml file resource-env-ref entry.

“jndi-name Element” on
page 167

only one Specifies the absolute jndi-name of a resource.

Attributes

none

resource-env-ref-name Element
Contains data that specifies the “res-ref-name Element” on page 165 in the corresponding Java
EE web.xml file resource-env-ref entry.

Subelements

none

Attributes

none

service-ref Element
This element specifies the runtime settings for a web service reference. Runtime information is
only needed in the following cases:

■ To define the port used to resolve a container-managed port
■ To define the default Stub/Call property settings for Stub objects
■ To define the URL of a final WSDL document to be used instead of the one associated with

service-ref in the standard Java EE deployment descriptor

TABLE A–20 service-ref Subelements

Element Required Description

“service-ref-name Element” on
page 161

only one Specifies the web service reference
name relative to java:comp/env

“port-info Element” on page 161 zero or more Specifies information for a port
within a web service reference

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •160

TABLE A–20 service-ref Subelements (Continued)
“call-property Element” on
page 163

zero or more Specifies JAX-RPC property values
that can be set on a javax.xml.rpc.
Call object before it is returned to
the web service client

“service-impl-class Element”
on page 164

zero or more Specifies the name of the generated
service implementation class

“service-qname Element” on
page 164

zero or one Specifies the WSDL service element
that is being referenced.

service-ref-name Element
This element specifies the web service reference name relative to java:comp/env.

Subelements

none

Attributes

none

port-info Element
Either a service-endpoint-interface or a wsdl-port or both ports must be specified. If both
ports are specified, wsdl-port specifies the port that the container chooses for
container-managed port selection. The same wsdl-port value must not appear in more than
one port-info element within the same service-ref. If a service-endpoint-interface is
using container-managed port selection, its value must not appear in more than one port-info
element within the same service-ref.

Subelements

The following table describes subelements for the port-info element.

TABLE A–21 port-info Subelements

Element Required Description

“service-endpoint-interface
Element” on page 162

zero or one Specifies the web service reference
name relative to java:comp/env.

“wsdl-port Element” on page 162 zero or one Specifies the WSDL port.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 161

TABLE A–21 port-info Subelements (Continued)
“stub-property Element” on
page 163

zero or one Specifies JAX-RPC property values
that are set on
thejavax.xml.rpc.Stub object
before it is returned to the web
service client.

“call-property Element” on
page 163

zero or one Specifies JAX-RPC property values
that are set on
thejavax.xml.rpc.Stub object
before it is returned to the web
service client.

“message-security-binding
Element” on page 110

zero or one Specifies a custom authentication
provider binding.

service-endpoint-interface Element
This element specifies the web service reference name relative to java:comp/env.

Subelements

none

Attributes

none

wsdl-port Element
Specifies the WSDL port.

Subelements

The following table describes subelements for the wsdl-port element

TABLE A–22 wsdl-port Subelements

Element Required Description

“namespaceURI Element” on
page 162

only one Specifies the namespace URI.

“localpart Element” on page 163 only one Specifies the local part of a
QNAME.

namespaceURI Element
This element specifies the namespace URI.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •162

Subelements

none

Attributes

none

localpart Element
Specifies the local part of a QNAME.

Subelements

none

Attributes

none

stub-property Element
This element specifies JAX-RPC property values that are set on a javax.xml.rpc. Stub object
before it is returned to the web service client. The property names can be any properties
supported by the JAX-RPC Stub implementation.

Subelements

The following table describes subelements for the stub-property element.

TABLE A–23 stub-property subelements

Element Required Description

“name Element” on page 166 only one Specifies the name of the entity.

“value Element” on
page 176

only one Specifies the value of the entity.

call-property Element
This element specifies JAX-RPC property values that can be set on a javax.xml.rpc call object
before it is returned to the web service client. The property names can be any properties
supported by the JAX-RPC Call implementation.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 163

TABLE A–24 call-property Subelements

Element Required Description

“name Element” on page 166 only one Specifies the name of the entity.

“value Element” on
page 176

only one Specifies the value of the entity.

wsdl-override Element
This element specifies a valid URL pointing to a final WSDL document. If not specified, the
WSDL document associated with the service-ref in the standard J2EE deployment descriptor
is used.

Subelements

none

Attributes

none

service-impl-class Element
Specifies the name of the generated service implementation class.

Subelements

none

Attributes

none

service-qname Element
This element specifies the WSDL service element that is being referred to

Subelements

The following table describes subelements for the service-qname element.

TABLE A–25 service-qname Subelements

Element Required Description

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •164

TABLE A–25 service-qname Subelements (Continued)
“namespaceURI Element” on
page 162

only one Specifies the namespace URI.

“localpart Element” on page 163 only one Specifies the local part of a
QNAME.

resource-ref Element
This element maps the “res-ref-name Element” on page 165 in the corresponding Java EE
web.xml file resource-ref entry to the absolute “jndi-name Element” on page 167 of a
resource.

Subelements

The following table describes subelements for the resource-ref element. The left column lists
the subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE A–26 resource-ref Subelements

Element Required Description

“res-ref-name Element” on
page 165

only one Specifies the res-ref-name in the corresponding
Java EE web.xml file resource-ref entry

“jndi-name Element” on
page 167

only one Specifies the absolute jndi-name of a resource

“default-resource-principal
Element” on page 166

zero or one Specifies the default principal (user) for the resource

Attributes

none

res-ref-name Element
This element contains data that specifies the res-ref-name in the corresponding Java EE
web.xml file resource-ref entry.

Subelements

none

Attributes

none

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 165

default-resource-principal Element
This element specifies the default principal (user) for the resource.

If this element is used in conjunction with a JMS Connection Factory resource, the name and
password subelements must be valid entries in Message Queue's broker user repository.

Subelements

The following table describes subelements for the default-resource-principal element.

TABLE A–27 default-resource-principal Subelements

Element Required Description

“name Element” on page 166 only one Contains the name of the principal

“password Element” on
page 166

only one Contains the password for the principal

Attributes

none

name Element
This element contains data that specifies the name of the principal.

Subelements

none

Attributes

none

password Element
This element contains data that specifies the password for the principal.

Subelements

none

Attributes

none

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •166

jndi-name Element
This element contains data that specifies the absolute jndi-name of a URL resource or a
resource in the server.xml file.

Note – To avoid collisions with names of other enterprise resources in JNDI, and to avoid
portability problems, all names in a Web Server application should begin with the string
java:comp/env.

Subelements

none

Attributes

none

Caching Elements
For details about response caching as it pertains to servlets, see “Caching Servlet Results” on
page 46 and “JSP Cache Tags” on page 61.

Caching elements are as follows:
■ “cache Element” on page 167
■ “cache-helper Element” on page 169
■ “default-helper” on page 170
■ “cache-mapping Element” on page 171
■ “url-pattern Element” on page 172
■ “cache-helper-ref Element” on page 172
■ “timeout Element” on page 173
■ “refresh-field Element” on page 173
■ “http-method Element” on page 174
■ “key-field Element” on page 174
■ “constraint-field Element” on page 175
■ “value Element” on page 176

cache Element
This element configures caching for web application components.

Subelements

The following table describes subelements for the cache element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 167

TABLE A–28 cache Subelements

Element Required Description

“cache-helper Element” on
page 169

zero or more Specifies a custom class that implements the
CacheHelper interface.

“default-helper” on page 170 zero or one Allows you to change the properties of the default,
built-in cache-helper class.

“property Element” on
page 150

zero or more Specifies a cache property, which has a name and a
value.

“cache-mapping Element” on
page 171

zero or more Maps a URL pattern or a servlet name to its
cacheability constraints.

Attributes

The following table describes attributes for the cache element.

TABLE A–29 cacheAttributes

Attribute Default Value Description

max-entries 4096 (Optional) Specifies the maximum number of
entries the cache can contain. Must be a positive
integer.

timeout-in-seconds 30 (Optional) Specifies the maximum amount of time
in seconds that an entry can remain in the cache
after it is created or refreshed. Can be overridden by
a timeout element.

enabled false (Optional) Determines whether servlet and JSP
caching is enabled. Legal values are on, off, yes, no,
1, 0, true, false.

Properties

The following table describes properties for the cache element.

TABLE A–30 cacheProperties

Property Name Default Value Description

cacheClassName com.sun.appserv.web

.cache.LruCache

Specifies the fully qualified name of the
class that implements the cache
functionality. For a list of valid values,
see“Cache Class Names” on page 169.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •168

TABLE A–30 cacheProperties (Continued)
Property Name Default Value Description

MultiLRUSegmentSize 4096 Specifies the number of entries in a
segment of the cache table that should
have its own LRU (least recently used)
list. Applicable only if cacheClassName
is set to com.sun.appserv.web

.cache.MultiLruCache.

MaxSize unlimited; Long.MAX_VALUE Specifies an upper bound on the cache
memory size in bytes (KB or MB units).
Example values are 32 KB or 2 MB.
Applicable only if cacheClassName is set
to com.sun.appserv.web.

cache.BoundedMultiLruCache.

Cache Class Names

The following table lists possible values of the cacheClassName property.

TABLE A–31 cacheClassNameValues

Value Description

com.sun.appserv.web.cache.LruCache A bounded cache with an LRU (least recently
used) cache replacement policy.

com.sun.appserv.web.cache.BaseCache An unbounded cache suitable if the maximum
number of entries is known.

com.sun.appserv.web.cache.MultiLruCache A cache suitable for a large number of entries
(>4096). Uses the MultiLRUSegmentSize
property.

com.sun.appserv.web.cache.BoundedMultiLruCache A cache suitable for limiting the cache size by
memory rather than number of entries. Uses the
MaxSize property.

cache-helper Element
This element specifies a class that implements the CacheHelper interface. For details, see
“CacheHelper Interface” on page 48.

Subelement

The following table describes the property subelements for the cache-helper element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 169

TABLE A–32 cache-helper Subelement

Element Required Description

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value.

Attributes

The following table describes attributes for the cache-helper element.

TABLE A–33 cache-helperAttributes

Attribute Default Value Description

name default Specifies a unique name for the helper class, which is
referenced in the cache-mapping element.

class-name none Specifies the fully qualified class name of the cache
helper, which must implement the
com.sun.appserv.web.CacheHelper interface.

default-helper
This element allows you to change the properties of the built-in default cache-helper class.

Subelement

The following table describes the property subelements for the default-helper element.

TABLE A–34 default-helper Subelements

Element Required Description

“property Element” on
page 150

zero or more Specifies a property, which has a name and a value.

Attributes

none

Property

The following table describes the cacheKeyGeneratorAttrName properties for the
default-helper element.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •170

TABLE A–35 default-helperProperties

Property Name Default Value Description

cacheKeyGeneratorAttrName Uses the built-in
default cache-helper
key generation, which
concatenates the
servlet path with
key-field values, if
any

The caching engine looks in the ServletContext
for an attribute with a name equal to the value
specified for this property to determine whether a
customized CacheKeyGenerator implementation is
used. An application provide a customized key
generator rather than using the default helper.

See “CacheKeyGenerator Interface” on page 50 .

cache-mapping Element
This element maps a URL pattern or a servlet name to its cacheability constraints.

Subelements

The following table describes subelements for the cache-mapping element.

TABLE A–36 cache-mapping Subelements

Element Required Description

“servlet-name Element” on
page 152

requires one servlet-name or
url-pattern

Contains the name of a servlet.

“url-pattern Element” on
page 172

requires one servlet-name or
url-pattern

Contains a servlet URL pattern for which
caching is enabled.

“cache-helper-ref Element”
on page 172

required if timeout,
refresh-field,http-method,
key-field, and
constraint-field are not
used

Contains the name of the cache-helper
used by the parent cache-mapping element.

“cache-mapping Element” on
page 171

zero or more Specifies the RequestDispatcher methods
for which caching is to be enabled on the
target resource. Valid values are REQUEST,
FORWARD, INCLUDE, and ERROR
(default: REQUEST).

“timeout Element” on
page 173

zero or one if
cache-helper-ref is not used

Contains the cache-mapping specific
maximum amount of time in seconds that
an entry can remain in the cache after it is
created or refreshed

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 171

TABLE A–36 cache-mapping Subelements (Continued)
Element Required Description

“refresh-field Element” on
page 173

zero or one if
cache-helper-ref is not used

Specifies a field that gives the application
component a programmatic way to refresh a
cached entry.

“http-method Element” on
page 174

zero or more if
cache-helper-ref is not used

Contains an HTTP method that is eligible
for caching.

“key-field Element” on
page 174

zero or more if
cache-helper-ref is not used

Specifies a component of the key used to
look up and extract cache entries.

“constraint-field Element”
on page 175

zero or more if
cache-helper-ref is not used

Specifies a cacheability constraint for the
given url-pattern or servlet-name.

Attributes

none

url-pattern Element
This element contains data that specifies a servlet URL pattern for which caching is enabled. See
the Java Servlet 2.5 specification.

Subelements

none

Attributes

none

cache-helper-ref Element
This element contains data that specifies the name of the cache-helper used by the parent
cache-mapping element.

Subelements

none

Attributes

none

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •172

timeout Element
Contains data that specifies the cache-mapping specific maximum amount of time in seconds
that an entry can remain in the cache after it is created or refreshed. If not specified, the default
is the value of the timeout attribute of the cache element.

Subelements

none

Attributes

The following table describes attributes for the timeout element.

TABLE A–37 timeoutAttributes

Attribute Default Value Description

name none Specifies the timeout input parameter, whose value
is interpreted in seconds. The field's type must be
java.lang.Long or java.lang.Integer.

scope context.attribute (Optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

refresh-field Element
This element specifies a field that gives the application component a programmatic way to
refresh a cached entry.

Subelements

none

Attributes

The following table describes attributes for the refresh-field element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 173

TABLE A–38 refresh-fieldAttributes

Attribute Default Value Description

name none Specifies the input parameter name. If the parameter
is present in the specified scope and its value is true,
the cache will be refreshed.

scope request.parameter (Optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

http-method Element
This element contains data that specifies an HTTP method that is eligible for caching. The
default is GET.

Subelements

none

Attributes

none

key-field Element
Specifies a component of the key used to look up and extract cache entries. The web container
looks for the named parameter, or field, in the specified scope.

If this element is not present, the web container uses the Servlet Path, the path section that
corresponds to the servlet mapping that activated the current request. See the Servlet 2.5
specification, section SRV 4.4, for details on the Servlet Path.

Subelements

none

Attributes
The following table describes attributes for the key-field element.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •174

TABLE A–39 key-fieldAttributes

Attribute Default Value Description

name none Specifies the input parameter name.

scope request.parameter (Optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

constraint-field Element
Specifies a cache ability constraint for the given url-pattern or servlet-name.

All constraint-field constraints must pass for a response to be cached. If value constraints
are listed, at least one of them must pass.

Subelement

The following table describes the value subelements for the constraint-field element.

TABLE A–40 constraint-field Subelements

Element Required Description

“value Element” on page 176 zero or more Contains a value to be matched to the input
parameter value

Attributes

The following table describes attributes for the constraint-field element.

TABLE A–41 constraint-fieldAttributes

Attribute Default Value Description

name none Specifies the input parameter name.

scope request.parameter (Optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

cache-on-match true (Optional) If true, caches the response if matching
succeeds. Overrides the same attribute in a value
subelement.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 175

TABLE A–41 constraint-fieldAttributes (Continued)
Attribute Default Value Description

cache-on-match-failure false (Optional) If true, caches the response if matching
fails. Overrides the same attribute in a value
subelement.

value Element
This element specifies the value of the entity

Subelements

none

Attributes

none

Classloader Element
The Classloader element is named class-loader.

■ “class-loader Element” on page 176

class-loader Element
This element configures the classloader for the web application.

Subelements

none

Attributes

The following table describes attributes for the class-loader element.

TABLE A–42 class-loaderAttributes

Attribute Default Value Description

extra-class-path null (Optional) Specifies additional classpath
settings for this web application. If this path is
not an absolute path, it is treated as relative to
<web-app> <path> value.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •176

TABLE A–42 class-loaderAttributes (Continued)
Attribute Default Value Description

delegate false (Optional) If true, the web application follows
the standard classloader delegation model and
delegates to its parent classloader first before
looking in the local classloader. If false, the
web application follows the delegation model
specified in the Servlet specification and looks
in its classloader before looking in the parent
classloader.

For a web component of a web service, you
must set this value to true.

Legal values are on, off, yes, no, 1, 0, true,
false.

dynamic-reload-interval value of the
dynamicreloadinterval

attribute of the <jvm>
element in server.xml

(Optional) Enables an application to override
the dynamicreloadinterval setting in
server.xml.

Specifies the frequency (in seconds) at which a
web application is checked for modifications,
and then reloaded if modifications have been
made. Setting this value to less than or equal to
0 disables dynamic reloading of the application.
If not specified, the value from server.xml is
used.

For more information about server.xml, see
Sun Java System Web Server 7.0 Update 1
Administrator’s Configuration File Reference.

JSP Element
The JSP elements is jsp-config.

■ “jsp-config Element” on page 177

jsp-config Element
This element specifies JSP configuration information that enables web application to customize
the compilation and execution of its JSP files.

Subelement

The following table describes the name subelement for the jsp-config element.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 177

TABLE A–43 jsp-config Subelements

Element Required Description

“name Element” on page 166 zero or more Specifies a property.

Attributes

none

Properties

The following table describes properties for the jsp-config element.

TABLE A–44 jsp-configProperties

Property Name Default Value Description

ieClassId clsid:8AD9C840-

044E-11D1-B3E9-

00805F499D93

The Java Plug-in COM class ID for Internet
Explorer. Used by the <jsp:plugin> tags.

javaCompilerPlugin internal JDK compiler
(javac)

This property is deprecated in this release. By this,
we mean this is supported in 7.0 but will NOT be
supported in future release

If JSP Pages import classes from unnamed packages,
the default-JDK compiler will throw a compile time
error when JSP- generated servlets are compiled. To
compile JSP- generated servlets, set the
javaCompilerPlugin property to
org.apache.jasper.compiler.SunJavaCompiler.
Note: The jspc command-line compiler for JSPs no
longer supports -javac option. Since this property
is deprecated, you are strongly encouraged to
modify JSPs so that the imported classes have a
package name.

See also the -deprecatedjavac switch of jspc,
described in “Compiling JSPs Using the
Command-Line Compiler” on page 58.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •178

TABLE A–44 jsp-configProperties (Continued)
Property Name Default Value Description

javaEncoding UTF8 Specifies the encoding for the generated Java servlet.
This encoding is passed to the Java compiler used to
compile the servlet as well. By default, the web
container tries to use UTF8. If that fails, it tries to
use the javaEncoding value.

For encodings you can use, see:

http://java.sun.com/

j2se/1.5.0/docs/guide/intl/encoding.doc.html

classdebuginfo false Specifies whether the generated Java servlets should
be compiled with the debug option set (-g for
javac).

keepgenerated true If set to true, keeps the generated Java files. If false,
deletes the Java files.

mappedfile false If set to true, generates separate write calls for each
HTML line and comments that describe the location
of each line in the JSP file. By default, all adjacent
write calls are combined and no location comments
are generated.

scratchdir Default work directory
for the web
application

The working directory created for storing all of the
generated code.

reload-interval 0 Specifies the frequency (in seconds) at which JSP
files are checked for modifications. Setting this value
to 0 checks JSPs for modifications on every request.
Setting this value to -1 disables checks for JSP
modifications and JSP recompilation.

initial-capacity 32 Specifies the initial size of the hash table of compiled
JSP classes (see the following example).

The following example illustrates the use of the initial-capacity property described in the
table above. The example shows how you would configure a value of 1024:

<jsp-config> <property name=”initial-capacity” value=”1024” /></jsp-config>

Internationalization Elements
The internationalization elements are as follows:

■ “parameter-encoding Element” on page 180
■ “locale-charset-info Element” on page 180

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 179

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

■ “locale-charset-map Element” on page 181

parameter-encoding Element
This element specifies a hidden field or default character set that determines the character
encoding the web container uses to decode parameters for request.getParameter calls when
the character set is not set in the request's Content-Type.

For encodings you can use, see

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html.

Attributes

The following table describes attributes for the parameter-encoding element.

TABLE A–45 parameter-encoding Attributes

Attribute Default Value Description

form-hint-field none The value of the hidden field in the form that
specifies the parameter encoding.

default-charset none This value is used for parameter encoding if neither
request.setCharacterEncoding() is called nor
form-hint-field is found in the request.

Subelements

none

Attributes

none

locale-charset-info Element
Specifies the mapping between the locale and the character encoding that should be set in the
Content-type header of the response if a servlet or JSP sets the response locale using the
ServletResponse.setLocale method. This setting overrides the web container's default
locale-to-charset mapping.

Subelements

The following table describes subelements for the locale-charset-info element.

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •180

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

TABLE A–46 locale-charset-info Subelements

Element Required Description

“locale-charset-map
Element” on page 181

one or more Maps a locale to a character set.

“parameter-encoding
Element” on page 180

zero or one Deprecated. Use the parameter-encoding element
under sun-web-app instead. This setting is
supported only for backward compatibility with
applications developed under Web Server

Attributes

The following table describes the default-locale attributes for the locale-charset-info.

TABLE A–47 locale-charset-infoAttributes

Attribute Value Default Value

default-locale none

locale-charset-map Element
This element maps a locale to a specific character encoding.

For encodings you can use, see:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Attributes

The following table describes attributes for the locale-charset-map element.

TABLE A–48 locale-charset-mapAttributes

Attribute Default Value Description

locale none Specifies the locale name.

agent none Ignored in Web Server

charset none Specifies the character set for that locale.

The following table provides a locale-charset-map example, listing the locale and the
corresponding charset:

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 181

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

TABLE A–49 locale-charset-mapExample

Locale Charset

ja EUC-JP

zh UTF-8

message-destination Element
This element specifies the name of a logical message-destination defined within an application.
The message-destination-name matches the corresponding message-destination-name in
the corresponding Java EE deployment descriptor file.

Subelements

The following table describes subelements for the message-destination element.

TABLE A–50 message-destination Subelements

Elements Required Description

“message-destination-name
Element” on page 182

only one Specifies the name of a logical
message destination defined within
the corresponding Java EE
deployment descriptor file

“jndi-name Element” on page 167 only one Specifies the jndi-name of the
associated entity

message-destination-name Element
This element specifies the name of a logical message destination defined within the
corresponding Java EE deployment descriptor file.

Subelements

none

webservice-description Element
This element specifies a name and optional publish location for a web service.

Subelements

The following table describes subelements for the webservice-description element

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •182

TABLE A–51 webservice-description Subelements

Element Required Description

“webservice-description-name
Element” on page 183

only one Specifies a unique name for the web
service within a web

“wsdl-publish-location
Element” on page 183

zero or one Specifies the URL of a directory to
which the web services WSDL is
published during deployment

Attributes

none

webservice-description-name Element
This element specifies a unique name for the web service within a web.

Subelements

none

Attributes
none

wsdl-publish-location Element
This element specifies the URL of a directory to which a web service's WSDL is published
during deployment. Any required files are published to this directory, preserving their location
relative to the module-specific WSDL directory (META-INF/wsdl or WEB-INF/wsdl).

Subelements
none

Attributes
none

Alphabetical List of sun-web.xml Elements
This section provides an alphabetical list for the easy lookup of sun-web.xml elements.

“cache Element” on page 167

“cache-helper Element” on page 169

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 183

“cache-helper-ref Element” on page 172

“cache-mapping Element” on page 171

“class-loader Element” on page 176

“constraint-field Element” on page 175

“context-root Element” on page 149

“cookie-properties Element” on page 158

“default-helper” on page 170

“default-resource-principal Element” on page 166

“description Element” on page 150

“group-name Element” on page 153

“http-method Element” on page 174

“jndi-name Element” on page 167

“jsp-config Element” on page 177

“key-field Element” on page 174

“locale-charset-info Element” on page 180

“locale-charset-map Element” on page 181

“manager-properties Element” on page 155

“message-destination Element” on page 182

“message-destination-name Element” on page 182

“message-security-binding Element” on page 110

“name Element” on page 166

“parameter-encoding Element” on page 180

“password Element” on page 166

“principal-name Element” on page 152

“property Element” on page 150

“refresh-field Element” on page 173

Elements in the sun-web.xml File

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •184

“res-ref-name Element” on page 165

“resource-env-ref Element” on page 159

“resource-env-ref-name Element” on page 160

“resource-ref Element” on page 165

“role-name Element” on page 152

“security-role-mapping Element” on page 151

“servlet Element” on page 151

“servlet-name Element” on page 152

“service-ref Element” on page 160

“session-config Element” on page 153

“session-manager Element” on page 154

“session-properties Element” on page 157

“store-properties Element” on page 156

“sun-web-app Element” on page 147

“timeout Element” on page 173

“url-pattern Element” on page 172

“value Element” on page 176

“webservice-description Element” on page 182

“webservice-description-name Element” on page 183

“webservice-endpoint Element” on page 109

Note – For a list of sun-web.xml elements by category, see “Elements in the sun-web.xml File”
on page 146.

Elements in the sun-web.xml File

Appendix A • Deployment Descriptor Files 185

Sample Web Application XML Files
This section includes sample web.xml and sun-web.xml files

■ “Sample web.xml File” on page 186
■ “Sample sun-web.xml File” on page 187

Sample web.xml File
The following is the sample web.xml file.

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.5">-
<!--

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

-->

-

<web-app>

<display-name>webapps-caching</display-name>

-

<servlet>

<servlet-name>ServCache</servlet-name>

<servlet-class>samples.webapps.caching.ServCache</servlet-class>

<load-on-startup>0</load-on-startup>

</servlet>

-

<servlet-mapping>

<servlet-name>ServCache</servlet-name>

<url-pattern>/ServCache</url-pattern>

</servlet-mapping>

-

<session-config>

<session-timeout>30</session-timeout>

</session-config>

-

<taglib>

<taglib-uri>/com/sun/web/taglibs/cache</taglib-uri>

<taglib-location>/WEB-INF/sun-web-cache.tld</taglib-location>

</taglib>

</web-app>

Sample Web Application XML Files

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •186

Sample sun-web.xml File
The following example shows a sample sun-web.xml file.

<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 8.1

Servlet 2.5//EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd">
<!--

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

-->

-

<sun-web-app>

-

<session-config>

<session-manager/>

</session-config>

-

<cache enabled="true" timeout-in-seconds="300">
-

<cache-mapping>

<servlet-name>ServCache</servlet-name>

<key-field name="inputtext" scope="request.parameter"/>
-

<constraint-field name="inputtext" scope="request.parameter">
<value>one</value>

<value>two</value>

</constraint-field>

</cache-mapping>

</cache>

</sun-web-app>

Sample Web Application XML Files

Appendix A • Deployment Descriptor Files 187

188

Index

A
about

JSPs, 57-58
servlets, 45-46
sessions, 75-76
web applications, 25

accessing a session, 77-78
Admin Console, more information about, 12
Administration Console, using to, use Optimizeit

profiler, 140
Administration interface, using to, enable or disable

web applications, 129
AllPermission, 118
application permissions, 118-119

default, 118
application role mapping, 99
ATTLIST tags, 146
auth-constraint, 106
authentication, 98, 100

ACL-based, 100-101
by servlets, 103-104
for single sign-on, 104-105
HTTP basic, 103
Java EE/Servlet-based, 101
secure web applications, 102
SSL mutual, 103

authorization, 98, 100
ACL-based, 100-101
by servlets, 105-106
client certificate, 107
constraints, 106
Java EE/Servlet-based, 101

authorization (Continued)
secure web applications, 102

B
binding objects to sessions, 79-80
Bootstrap Classloader, 133

C
cache class names, 169
cache element, 167-169
cache-helper, 169-170
cache-helper-ref, 172
cache-mapping, 171-172
cache tags, 61-64
cacheClassName property, 169
CacheHelper interface, 48-49
CacheKeyGenerator interface, 50-51
caching

default cache configuration, 48
example, 49-50
JSP, 61-64
servlet results, 46-51
Sun Java System Web Server features, 47

class-loader, 133, 176-177
classloaders, 131-133

Bootstrap, 133
Common, 133
JSP, 133
runtime hierarchy, 131

189

classloaders (Continued)
System, 133
Web Application, 132, 133

client
certificates, 107

Common Classloader, 133
compiling JSPs, 58-60
configuring, 138

servlet authorization constraints, 106
constraint-field, 175-176
cookie-properties, 158-159
cookies, 75, 76, 105, 158
cookies, encoding, 148
creating

sessions, 77-78
web deployment descriptors, 125

customizing search, 65-73

D
debugging

enabling, 135-136
generating stack trace for, 137
JPDA options, 136
JSPs, 137
using log files, 138
using NetBeans, 137
using profilers, 138-141
web applications, 135-141

default-helper, 170-171
default-resource-principal, 166
defining

security roles, 106
servlet authorization constraints, 106

deleting web applications, 126
deploying web applications, 121-133
deployment descriptor files

sun-web.xml, 125
description element, 150-151
disabling web applications, 129
DTD files, 144

attributes, 146
data, 145-146
subelements, 145

DTD files (Continued)
sun-web-app_2_4-1.dtd, 144-146

dynamic-reload-interval attribute, 177
dynamic reloading of web applications, 129-130
dynamicreloadinterval, 177

E
editing server.xml

for debugging, 135
to configure single sign-on, 105

elements in sun-web.xml, 146-185
alphabetical list of, 183-185
caching, 167-176
classloader, 176-177
general, 147-151
internationalization, 179-183
JSP, 177-179
reference, 159-167
security, 151-153
session, 153-159

enabling
debugging, 135-136
IWS60, 84-85
memory, 81
the Java Security Manager, 117-118
web applications, 129

encodeCookies, 148
examples

caching, 49-50
sun-web.xml file, 187
web.xml file, 186

F
fetching client certificates, 107
file, manager properties, 83
FileStore.java, 89
form-based login, 104

Index

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •190

G
group-name, 153

H
HPROF profiler, 138-140
HTTP basic authentication, 103
http-method, 174
HTTPS authentication, 103

I
improving servlet performance, 51-52
internationalizing search, 65
invalidating a session, 80
IWS60, 83-89

enabling, 84-85
manager properties, 85-89
source code, 89

IWSHttpSession, 89
IWSHttpSession.java, 89
IWSSessionManager.java, 89

J
Java class file, loading, 131-133
Java EE

application role mapping, 99
security model, 97-98

Java Security Manager, enabling, 117-118
Java Servlet 2.5 security model, 97
JDBC driver, for session management, 86
JdbcStore.java, 89
JDPA options, 136
jndi-name, 167
JSP

about, 57-58
caching, 61-64
classloader, 133
command-line compiler, 58-60
debugging, 137
package names, 60

JSP (Continued)
parameters, 60
standard portable tags, 61
tag libraries, 61
using, 57-73

jsp-config, 58, 177-179
JSP tags, 61

cache, 61-64
library location, 61
search, 65-73

jspc command, 58
basic options, 58
example of, 60
file specifiers, 58
format of, 58

jspc command-line tool, 58

K
key-field, 174

L
library location, JSP tags, 61
list of sun-web.xml elements, 183-185
locale-charset-info, 180-181
locale-charset-map, 181-182
logging, 138
login mechanisms

form-based, 104
HTTP basic authentication, 103
SSL mutual authentication, 103

M
manager-properties, 155-156
memory, 81-82

enabling, 81-82
manager properties, 81-82

MMap, 89-90
MMapSessionManager, manager properties, 90

Index

191

N
name element, 166
NetBeans, using for, debugging, 137

O
Optimizeit profiler, 140-141

P
package names for JSPs, 60
parameter-encoding, 180
password element, 166
performance, improving for servlets, 51-52
permissions

changing for an application, 119
default, 118
setting in server.policy file, 119

persistent session manager, 89-90
portable tags, JSP, 61
principal-name, 152-153
profiling, 138-141

HPROF profiler, 138-140
Optimizeit profiler, 140-141

programmatic login, 116-117
property element, 150

R
realms, 98
reaper method, 85, 90
refresh-field, 173-174
reloading web applications, 129-130
res-ref-name, 165
resource-env-ref, 159-160
resource-env-ref-name, 160
resource-ref, 165
role mappings, 106
role-name, 106, 152

S
search, internationalizing, 65
search tags, 65-73

collection, 67-68
CollElem, 66-67
collItem, 68
formAction, 69-70
formActionMsg, 70-71
formSubmission, 70
Item, 72
library location, 65
queryBox, 68-69
resultIteration, 71-72
resultNav, 72-73
resultStat, 72
Search, 71
searchForm, 65-66
submitButton, 69

Secure Socket Layer (SSL), 103, 104, 107
security, 97-120

and sessions, 76
Java EE security model, 97-98
terminology, 98-99
web applications, 97-120
Web Server features, 99-102
Web Server goals, 97-98
Web Server security model, 99-102

Security Manager, Java, 117-118
security-role-mapping, 106, 151
server.policy file, 118-119
server.xml, editing, for debugging, 135
servlet element, 151-152
servlet-name, 152
servlets, 45-55

about, 45-46
authorization by, 105-106
authorization constraints, 106
caching, 48, 49-50
caching results, 46-51
example of accessing, 127
improving performance, 51-52
output, 46
performance, 51-52
session managers, 75-90

Index

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •192

servlets (Continued)
sessions, 75
using, 45-55

session-config, 153-154
session cookie, 76
session-manager, 154-155
session managers, 75-90

IWS60, 83-89
memory, 81-82
MMap, 89-90
persistent, 89-90

session-properties, 157-158
session properties, examining, 78-79
session timeout, 80, 158
sessions

about, 75
and cookies, 76
and security, 76
and URL rewriting, 76
binding objects to, 79-80
creating or accessing, 77-78
examining session properties, 78-79
ID generator, 51
invalidating, 80
timeout, 80, 158

SHTML, using, 25
single sign-on, 99, 104-105
specifications

Java Servlet, 25
JSP, 25

SSL, 104, 107
SSL mutual authentication, 103
stack trace, generating for debugging, 137
store-properties, 156-157
sun-web-app, 147
sun-web-app_2_4-1.dtd, 144-146
sun-web.xml elements, 146-185

alphabetical quick-reference list, 183-185
cache, 167-169
cache-helper, 169-170
cache-helper-ref, 172
cache-mapping, 171-172
class-loader, 176-177
constraint-field, 175-176

sun-web.xml elements (Continued)
cookie-properties, 158-159
default-helper, 170-171
default-resource-principal, 166
http-method, 174
jndi-name, 167
jsp-config, 177-179
key-field, 174
manager-properties, 155-156
name, 166
parameter-encoding, 180
password, 166
principal name, 152-153
refresh-field, 173-174
res-ref-name, 165
resource-env-ref, 159-160
resource-env-ref-name, 160
resource-ref, 165
role-name, 152
security-role, 106
security-role-mapping, 151
servlet, 151-152
servlet-name, 152
session-config, 153-154
session-manager, 154-155
session-properties, 157-158
store-properties, 156-157
sun-web-app, 147
timeout, 173
value, 176

sun-web.xml file
about, 106, 125
changes to, 127
creating, 125
defining roles, 106
elements in, 146-185
example, 187
structure of, 144-146

System Classloader, 133

T
tag libraries, JSP, 61

Index

193

tags, JSP
cache, 61-64
search, 65-73

timeout element, 173

U
URL, parts of, 127
url-pattern, 172
URL rewriting and sessions, 76
using

JSPs, 57-73
NetBeans, 137
servlets, 45-55

V
value element, 176

W
wadm utility, 126
WAR files, 26, 121, 126
Web Application Classloader, 133
web applications, 25-31

about, 25
debugging, 135-141
deploying, 121-133
directory structure of, 121-122
dynamic reloading of, 129-130
enabling and disabling, 129
Java Servlet and JSP specifications, 25
response caching, 47
securing, 97-120

web deployment descriptors, 125
WEB-INF directory, 121
web.xml elements

auth-constraint, 106
login-config, 103
more information about, 103
realm-name, 104
res-ref-name, 159

web.xml elements (Continued)
run-as role, 147
security-role, 152
servlet-name, 152
session-timeout, 158

web.xml file, 125
creating, 125
example, 186
more information about, 103

webserv-rt.jar, 61, 65, 89

Index

Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications •194

	Sun Java System Web Server 7.0 Update 1 Developer's Guide to Java Web Applications
	Preface
	Who Should Use This Book
	Before You Read This Book
	Web Server Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Web Server Technologies Overview
	Technologies and Enhancements in Web Server 7.0
	Supported Standards, Protocols, and Technologies
	Servlet 2.5 Support
	JSP 2.1 Support
	JSTL 1.2
	Java Web Services Developer Pack 2.0 Support
	JNDI Naming
	JDBC Connection Pooling
	Using JNDI to Access the jdbc-resource Within a Web Application

	Tools Support
	Lifecycle Listeners and Modules
	Session Replication

	API Changes from Web Server 6.1 to Web Server 7.0

	Web Applications Overview
	Java Web Applications
	Developing and Deploying Web Applications
	Creating Web Applications
	About Securing Web Applications
	About Deploying Applications
	About Virtual Servers
	About Default Web Applications
	Servlet Result Caching
	JSP Cache Tags
	Database Connection Pooling
	To Configure a Simple Connection Pool

	Sample Applications in Web Server 7.0
	Sample Directories
	Building the Samples
	Documentation for the Samples

	Web Services Overview
	Introducing Web Services
	Technologies Supported in Web Server 7.0
	Java Web Services Developer Pack 2.0 Technologies
	Message Security (JSR-196)

	Creating Web Services
	Web Services Tools
	To Create Web Services from a Java Source
	To Create Web Services from Java Classes
	To Create Web Services from a WSDL file

	Securing Web Services
	Understanding Message Security in the Web Server
	Assigning Message Security Roles
	System Administrator Tasks
	Application Deployer Tasks
	Application Developer Tasks

	Security Tokens and Security Mechanisms
	Username Tokens
	Digital Signatures
	Encryption
	Message Protection Policies

	Securing a Web Service
	Configuring Application-Specific Web Services Security

	Admin Console Tasks for Message Security
	 To Create a Message Security Provider
	Enabling Providers for Message Security
	To Delete a Message Security Provider
	Enabling Message Security Clients

	Deploying Web Services
	Testing Web Services
	To Invoke a Web Service Client

	Web Services Samples

	Developing Servlets
	About Servlets
	Servlet Output
	Caching Servlet Results
	Features of Caching
	Default Cache Configuration
	CacheHelper Interface
	Caching Example
	CacheKeyGenerator Interface

	Maximizing Servlet Performance
	Servlet Internationalization Issues
	Servlet Request
	Servlet Response

	Migrating Legacy Servlets
	JSP file by Extension
	Servlet by Extension of Servlet by Directory
	Registering Servlets

	Developing JavaServer Pages
	Introducing JSPs
	Compiling JSPs Using the Command-Line Compiler
	Package Names Generated by the JSP Compiler
	Other JSP Configuration Parameters

	Debugging JSPs
	JSP Tag Libraries and Standard Portable Tags
	JSP Cache Tags
	cache Tag
	Attributes
	Example

	flush Tag
	Attributes
	Examples

	JSP Search Tags
	searchForm Tag
	Attributes
	Usage

	CollElem Tag
	Attributes
	Usage

	collection Tag
	Attributes
	Usage

	colIItem Tag
	Attributes
	Usage

	queryBox Tag
	Attributes
	Usage

	submitButton Tag
	Attributes
	Usage

	formAction Tag
	Attributes
	Usage

	formSubmission Tag
	Attributes
	Usage

	formActionMsg Tag
	Attributes
	Usage

	search Tag
	Attributes
	Usage

	resultIteration Tag
	Attributes

	Item Tag
	Attributes

	resultStat Tag
	Attributes

	resultNav Tag
	Attributes

	JSP Internationalization Issues
	JSP Character Encoding

	Session Managers
	Introducing Sessions
	Sessions and Cookies
	Sessions and URL Rewriting
	Sessions and Security

	Using Sessions
	Creating or Accessing a Session
	Examining Session Properties
	Binding Data to a Session
	Binding Notification with HttpSessionBindingListener

	Invalidating a Session
	Invalidating a Session Manually
	Setting a Session Timeout

	Session Managers
	memory Option
	Enabling memory
	Manager Properties for Memory

	file Session Manager
	Enabling the file Session Manager
	Manager Properties for file

	IWS60 Session Manager
	Enabling IWS60
	Manager Properties for IWS60
	Source Code for IWS60

	MMap Session Manager (UNIX Only)
	Enabling MMap
	Manager Properties for MMap

	Developing Lifecycle Listeners
	Server Lifecycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules
	Sample Lifecycle Configuration

	Securing Web Applications
	Supported Security Features
	Common Security Terminology
	Authentication
	Authorization
	Realms
	Java EE Application Role Mapping

	Security Features Specific to the Web Server
	Web Server Security Model
	ACL-Based Authentication and Authorization
	Java EE/Servlet-Based Authentication and Authorization

	Web Application and URL Authorizations

	Container Security
	Programmatic Security
	Declarative Security

	User Authentication by Servlets
	HTTP Basic Authentication
	SSL Mutual Authentication
	Form-Based Login

	User Authentication for Single Sign-On
	User Authorization by Servlets
	Defining Roles
	Defining Servlet Authorization Constraints

	Fetching the Client Certificate
	Using Web Services Message Security
	Configuring the Web Server for Message Security
	Actions of Request and Response Policy Configurations
	To Configure Other Security Facilities

	Security Enhancements to server.xml
	Security Enhancements to sun-web.xml
	webservice-endpoint Element
	message-security-binding Element
	message-security Element
	message Element
	Attributes of request-protection Element
	response-protection Element
	java-method Element
	method-params Element
	message-layer Entity

	Using Message Security Provider in an Application

	Programmatic Login
	Precautions
	Granting Programmatic Login Permission
	ProgrammaticLogin Class

	Enabling the Java Security Manager
	The server.policy File
	Default Permissions
	Changing Permissions for an Application

	Related Information

	Deploying Web Applications
	Web Application Structure
	Deployment Tools
	Using Sun Java Studio Enterprise 8.1
	Using NetBeans IDE 5.5
	 To Install NetBeans IDE 5.5
	 To Register Web Server 7.0 in the NetBeans IDE 5.5
	 Deploying Web Applications

	Creating Web Deployment Descriptors
	Deploying Web Applications
	 To Deploy Using Admin Console
	Deploying Using wadm

	Deploying Using JSR 88
	Managing Web Applications
	To Enable or Disable a Deployed Web Application
	Enabling Web Applications
	Enabling and Disabling Using the Admin Console

	To Remove a Deployed Web Application

	Dynamic Reloading of Web Applications
	To Set Dynamic Reloading of Web Application
	To Load a New Servlet or Reload a Deployment Descriptor

	Classloaders

	Debugging Web Applications
	Enabling Debugging
	 To Enable Debugging Through Admin Console
	To Enable Debugging by Editing server.xml

	JPDA Options
	Using Developer Tools for Debugging
	To Debug using NetBeans 5.5

	Debugging JSPs
	Generating a Stack Trace for Debugging
	Using Logging for Debugging
	To Change the Log Settings

	Using Profiling for Debugging
	Using the HPROF Profiler
	To Install the HPROF Profiler

	Using the Optimizeit Profiler

	Deployment Descriptor Files
	About Deployment Descriptor Files
	Migration Issues
	Java EE Standard Descriptors
	sun-web.xml
	default-web.xml

	Sun Java System Web Server Descriptors
	The sun-web-app_2_5-0.dtd File
	Subelements
	Data
	Attributes

	Elements in the sun-web.xml File
	General Elements
	sun-web-app Element
	Subelements
	Attributes
	Properties

	context-root Element
	Subelements
	Attributes

	property Element
	Subelement
	Attributes

	description Element
	Subelements
	Attributes

	Security Elements
	security-role-mapping Element
	Subelements
	Attributes

	servlet Element
	Subelements
	Attributes

	servlet-name Element
	Subelements
	Attributes

	role-name Element
	Subelements
	Attributes

	principal-name Element
	Subelements
	Attributes

	group-name Element
	Subelements
	Attributes

	Session Elements
	session-config Element
	Subelements
	Attributes

	session-manager Element
	Subelements
	Attribute

	manager-properties Element
	Subelement
	Attributes
	Properties

	store-properties Element
	Subelement
	Attributes
	Properties

	session-properties Element
	Subelements
	Attributes
	Properties

	cookie-properties Element
	Subelement
	Attributes
	Properties

	Reference Elements
	resource-env-ref Element
	Subelements
	Attributes

	resource-env-ref-name Element
	Subelements
	Attributes

	service-ref Element
	service-ref-name Element
	Subelements
	Attributes

	port-info Element
	Subelements

	service-endpoint-interface Element
	Subelements
	Attributes

	wsdl-port Element
	Subelements

	namespaceURI Element
	Subelements
	Attributes

	localpart Element
	Subelements
	Attributes

	stub-property Element
	Subelements

	call-property Element
	wsdl-override Element
	Subelements
	Attributes

	service-impl-class Element
	Subelements
	Attributes

	service-qname Element
	Subelements

	resource-ref Element
	Subelements
	Attributes

	res-ref-name Element
	Subelements
	Attributes

	default-resource-principal Element
	Subelements
	Attributes

	name Element
	Subelements
	Attributes

	password Element
	Subelements
	Attributes

	jndi-name Element
	Subelements
	Attributes

	Caching Elements
	cache Element
	Subelements
	Attributes
	Properties
	Cache Class Names

	cache-helper Element
	Subelement
	Attributes

	default-helper
	Subelement
	Attributes
	Property

	cache-mapping Element
	Subelements
	Attributes

	url-pattern Element
	Subelements
	Attributes

	cache-helper-ref Element
	Subelements
	Attributes

	timeout Element
	Subelements
	Attributes

	refresh-field Element
	Subelements
	Attributes

	http-method Element
	Subelements
	Attributes

	key-field Element
	Subelements

	Attributes
	constraint-field Element
	Subelement
	Attributes

	value Element
	Subelements
	Attributes

	Classloader Element
	class-loader Element
	Subelements
	Attributes

	JSP Element
	jsp-config Element
	Subelement
	Attributes
	Properties

	Internationalization Elements
	parameter-encoding Element
	Attributes
	Subelements
	Attributes

	locale-charset-info Element
	Subelements
	Attributes

	locale-charset-map Element
	Attributes

	message-destination Element
	Subelements

	message-destination-name Element
	Subelements

	webservice-description Element
	Subelements
	Attributes

	webservice-description-name Element
	Subelements
	Attributes

	wsdl-publish-location Element
	Subelements
	Attributes

	Alphabetical List of sun-web.xml Elements

	Sample Web Application XML Files
	Sample web.xml File
	Sample sun-web.xml File

	Index

