
Sun Java System Web Server 7.0
Update 6 Performance Tuning,
Sizing, and Scaling Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–7979
July 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, JavaServer Pages, JSP, JVM, JDBC, Java HotSpot, Java, and Solaris are
trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc. Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States
and other countries.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, JavaServer Pages, JSP, JVM, JDBC, Java HotSpot, Java et Solaris sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Netscape est une marque de Netscape Communications
Corporation aux Etats-Unis et dans d'autres pays.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090828@22749

Contents

Preface ...11

1 Performance and Monitoring Overview ..19
Performance Issues .. 19
Configuration .. 20
Virtual Servers ... 20
Server Farms ... 21
64–Bit Servers .. 21
SSL Performance .. 21
Monitoring Server Performance .. 22

About Statistics ... 23
Monitoring Current Activity Using the Admin Console .. 25
Monitoring Current Activity Using the CLI ... 26
Monitoring Current Activity Using stats.xml .. 29
Monitoring Current Activity Using perfdump .. 31
Monitoring Current Activity Using the Java ES Monitoring Console 37

2 Tuning Sun Java System Web Server .. 39
General Tuning Tips ... 39
Understanding Threads, Processes, and Connections ... 40

Connection-Handling Overview ... 40
Custom Thread Pools .. 42
The Native Thread Pool ... 43
Process Modes .. 44

Mapping Web Server 6.1 Tuning Parameters to Web Server 7.0 ... 46
Using Monitoring Data to Tune Your Server .. 48

Connection Queue Information .. 50

3

HTTP Listener (Listen Socket) Information .. 52
Keep-Alive Information .. 54
Session Creation and Thread Information ... 58
File Cache Statistics Information ... 60
Thread Pool Information .. 67
DNS Cache Information ... 70
Java Virtual Machine (JVM) Information .. 72
Web Application Information .. 73
JDBC Resource Information .. 74

Tuning the ACL User Cache .. 79
Tuning Java Web Application Performance .. 80

Using Precompiled JSPs .. 80
Using Servlet/JSP Caching .. 81
Configuring the Java Security Manager ... 81
Configuring Class Reloading .. 81
Avoiding Directories in the Classpath ... 81
Configuring the Web Application’s Session Settings ... 82

Tuning CGI Stub Processes (UNIX/Linux) ... 83
Using find-pathinfo-forward ... 83
Using nostat ... 84
Using Busy Functions ... 85
Using Large Pages Support ... 85
Tuning Your Web Application .. 86

Java Programming Guidelines .. 87
Avoid Serialization and Deserialization .. 87
Use StringBuffer to Concatenate Strings ... 87
Assign null to Variables That Are No Longer Needed ... 87
Declare Methods as final Only If Necessary .. 88
Declare Constants as static final ... 88
Avoid Finalizers .. 88
Declare Method Arguments final ... 88
Synchronize Only When Necessary ... 88
Use DataHandlers for SOAP Attachments ... 89

Java Server Page and Servlet Tuning ... 89
Suggested Coding Practices .. 89

Tuning Web Container Within Web Server 7.0 .. 90

Contents

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 20094

Deployment Settings ... 91
J2SE 5.0 Monitoring Tools .. 95
Binary Logging Header ... 95

3 Common Performance Problems ..97
check-acl Server Application Functions ... 97
Low-Memory Situations ... 98
Too Few Threads ... 98
Cache Not Utilized .. 99
Keep-Alive Connections Flushed .. 99
Large Memory Footprint .. 100
Log File Modes ... 100

4 Platform-Specific Issues and Tips ...101
Solaris Platform-Specific Issues ... 101

Files Open in a Single Process (File Descriptor Limits) ... 101
Failure to Connect to HTTP Server ... 102
Connection Refused Errors .. 103
Tuning TCP Buffering ... 103
Using the Solaris Network Cache and Accelerator (SNCA) ... 103

Solaris File System Tuning ... 105
High File System Page-In Rate .. 105
Reduce File System Housekeeping ... 105
Long Service Times on Busy Disks or Volumes ... 105

Solaris Platform-Specific Performance Monitoring .. 106
Short-Term System Monitoring .. 106
Long-Term System Monitoring ... 107
“Intelligent” Monitoring ... 107

Solaris 10 Platform-Specific Tuning Information ... 107
Tuning Solaris for Performance Benchmarking .. 108
Tuning UltraSPARC T1–Based Systems for Performance Benchmarking 109

Tuning Operating System and TCP Settings .. 109
Disk Configuration .. 110
Network Configuration ... 110
Web Server Start Options ... 111

Contents

5

5 Sizing and Scaling Your Server .. 113
64-Bit Server ... 113
Processors ... 113
Memory .. 114
Drive Space ... 114
Networking .. 114

6 Scalability Studies ...115
Study Goals ... 115
Study Conclusion .. 116
Hardware .. 116
Software .. 117
Configuration and Tuning ... 117

Network Configuration ... 118
Web Server Tuning .. 119

Performance Tests and Results .. 120
Static Content Test ... 120
Dynamic Content Test: Servlet .. 122
Dynamic Content Test: C CGI ... 123
Dynamic Content Test: Perl CGI ... 125
Dynamic Content Test: NSAPI .. 126
PHP Scalability Tests ... 127
SSL Performance Test: Static Content ... 131
SSL Performance Test: Perl CGI ... 132
SSL Performance Test: C CGI ... 133
SSL Performance Test: NSAPI .. 134
E-Commerce Web Application Test ... 135

Index ... 141

Contents

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 20096

Tables

TABLE 1–1 Methods of Monitoring Performance ... 22
TABLE 2–1 Parameter Mapping to server.xml .. 47
TABLE 2–2 Connection Queue Statistics .. 50
TABLE 2–3 Keep-Alive Statistics .. 54
TABLE 2–4 File Cache Statistics ... 61
TABLE 2–5 Thread Pools Statistics .. 68
TABLE 2–6 DNS Cache Statistics ... 71
TABLE 2–7 Java Virtual Machine (JVM) Statistics .. 72
TABLE 2–8 Web Application Statistics ... 74
TABLE 2–9 JDBC Resource Statistics .. 75
TABLE 4–1 Tuning Solaris for Performance Benchmarking .. 108
TABLE 4–2 Tuning 64–bit Systems for Performance Benchmarking 109
TABLE 6–1 Web Server Tuning Settings ... 119
TABLE 6–2 SSL Session Cache Tuning Settings ... 119
TABLE 6–3 File Cache Configuration ... 121
TABLE 6–4 Static Content Scalability .. 121
TABLE 6–5 JVM Tuning Settings ... 122
TABLE 6–6 Dynamic Content Test: Servlet Scalability ... 123
TABLE 6–7 CGI Tuning Settings ... 124
TABLE 6–8 Dynamic Content Test: C CGI Scalability .. 124
TABLE 6–9 CGI Tuning Settings ... 125
TABLE 6–10 Dynamic Content Test: Perl CGI Scalability .. 126
TABLE 6–11 Dynamic Content Test: NSAPI Scalability ... 127
TABLE 6–12 Tuning Settings for FastCGI Plug-in Test .. 128
TABLE 6–13 PHP Scalability with Fast CGI .. 128
TABLE 6–14 NSAPI Plug-in Configuration for PHP .. 129
TABLE 6–15 PHP Scalability with NSAPI ... 130
TABLE 6–16 SSL Performance Test: Static Content Scalability .. 131

7

TABLE 6–17 SSL Performance Test: Perl CGI Scalability ... 132
TABLE 6–18 SSL Performance Test: C CGI Scalability ... 133
TABLE 6–19 SSL Performance Test: NSAPI Scalability .. 135
TABLE 6–20 Performance Test Pass Criteria .. 137
TABLE 6–21 E-Commerce Web Application Scalability .. 138

Tables

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 20098

Figures

FIGURE 2–1 Web Server Connection Handling .. 41

9

10

Preface

This guide discusses adjustments you can make that may improve the performance of Sun Java
System Web Server (henceforth known as Web Server). The guide provides tuning, scaling, and
sizing tips and suggestions; possible solutions to common performance problems; and data
from scalability studies. It also addresses miscellaneous configuration and platform-specific
issues.

Who Should Use This Book
This guide is intended for advanced administrators only. Be sure to read this guide and other
relevant server documentation before making any changes. Be very careful when tuning your
server, and always back up your configuration files before making any changes.

Web Server Documentation Set
The Web Server documentation set describes how to install and administer the Web Server.
You can access the Web Server 7.0 Update 6 documentation at http://docs.sun.com/coll/
1653.6.

The Sun Java System Web Server documents are now in wiki format at http://
wikis.sun.com/display/WebServerdocs/Home. This wiki is intended to promote
collaboration and contribution on documentation content for Web Server. You are welcome to
contribute, by posting your comments or by directly editing the wiki page, as long as the
content is relevant to an appropriate standard.

For an introduction to Web Server , refer to the books in the order in which they are listed in the
following table.

TABLE P–1 Books in the Web Server Documentation Set

Documentation Title Contents

Sun Java System Web Server Documentation Wiki This wiki is intended to promote collaboration and contribution on
documentation content for Web Server.

11

http://docs.sun.com/coll/1653.6
http://docs.sun.com/coll/1653.6
http://wikis.sun.com/display/WebServerdocs/Home
http://wikis.sun.com/display/WebServerdocs/Home
http://wikis.sun.com/display/WebServerdocs/Home

TABLE P–1 Books in the Web Server Documentation Set (Continued)
Documentation Title Contents

Sun Java System Web Server 7.0 Update 6 Documentation
Center

Web Server documentation topics organized by tasks and subject

Sun Java System Web Server 7.0 Update 6 Release Notes ■ Late-breaking information about the software and documentation
■ Supported platforms and patch requirements for installing Web

Server

Sun Java System Web Server 7.0 Update 6 Installation and
Migration Guide

Performing installation and migration tasks:
■ Installing Web Server and its various components,

■ Migrating data from Sun ONE Web Server 6.0 or 6.1 to Sun Java
System Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Administrator’s
Guide

Performing the following administration tasks:
■ Using the Administration GUI and command-line interface

■ Configuring server preferences

■ Using server instances

■ Monitoring and logging server activity

■ Using certificates and public key cryptography to secure the server

■ Configuring access control to secure the server

■ Using JavaTM Platform Enterprise Edition (Java EE) security features

■ Deploying applications

■ Managing virtual servers

■ Defining server workload and sizing the system to meet performance
needs

■ Searching the contents and attributes of server documents, and
creating a text search interface

■ Configuring the server for content compression

■ Configuring the server for web publishing and content authoring
using WebDAV

Sun Java System Web Server 7.0 Update 6 Developer’s
Guide

Using programming technologies and APIs to do the following:
■ Extend and modify Sun Java System Web Server

■ Dynamically generate content in response to client requests and
modify the content of the server

Sun Java System Web Server 7.0 Update 6 NSAPI
Developer’s Guide

Creating custom Netscape Server Application Programmer’s Interface
(NSAPI) plug-ins

Preface

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200912

http://docs.sun.com/doc/820-7982
http://docs.sun.com/doc/820-7982
http://docs.sun.com/doc/820-7978
http://docs.sun.com/doc/820-7981
http://docs.sun.com/doc/820-7981
http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/821-0038
http://docs.sun.com/doc/821-0038
http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7980

TABLE P–1 Books in the Web Server Documentation Set (Continued)
Documentation Title Contents

Sun Java System Web Server 7.0 Update 6 Developer’s
Guide to Java Web Applications

Implementing Java Servlets and JavaServer PagesTM (JSPTM) technology in
Sun Java System Web Server

Sun Java System Web Server 7.0 Update 6 Administrator’s
Configuration File Reference

Editing configuration files

Sun Java System Web Server 7.0 Update 6 Performance
Tuning, Sizing, and Scaling Guide

Tuning Sun Java System Web Server to optimize performance

Sun Java System Web Server 7.0 Update 6 Troubleshooting
Guide

Troubleshooting Web Server

Sun Java System Web Server 7.0 Update 6 CLI Reference
Manual

Administration commands that allow you to administer the Web Server
through the CLI

Related Books
The URL for all documentation about Sun Java Enterprise System (Java ES) and its components
is http://docs.sun.com/coll/1286.3.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Preface

13

http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7979
http://docs.sun.com/doc/820-7979
http://docs.sun.com/doc/820-7977
http://docs.sun.com/doc/820-7977
http://docs.sun.com/doc/820-7984
http://docs.sun.com/doc/820-7984
http://docs.sun.com/coll/1286.3

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation directory for Web
Server

Sun Java Enterprise System (Java ES) installations on the
SolarisTM platform:

/opt/SUNWwbsvr7

Java ES installations on the Linux and HP-UX platform:

/opt/sun/webserver/

Java ES installations on the Windows platform:

system-drive:\Program Files\Sun\JavaES5\WebServer7

Other Solaris, Linux, and HP-UX installations, non-root
user:

home-directory/sun/webserver7

Other Solaris, Linux, and HP-UX installations, root user:

/sun/webserver7

Windows, all installations:

system-drive:\Program Files\Sun\WebServer7

instance-dir Directory that contains the instance-specific
subdirectories.

For Java ES installations, the default location for instances
on Solaris:

/var/opt/SUNWwbsvr7

For Java ES installations, the default location for instances
on Linux and HP-UX:

/var/opt/sun/webserver7

For Java ES installations, the default location for instance
on Windows:

system-drive:\Program Files\Sun\JavaES5\WebServer7

For stand-alone installations, the default location for
instance on Solaris, Linux, and HP-UX:install-dir

For stand-alone installations, the default location for
instance on Windows:

system-drive:\Program Files\sun\WebServer7

Preface

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200914

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use either the y
argument or the n argument.

${ } Indicates a variable reference. ${com.sun.javaRoot} References the value of the com.sun.javaRoot
variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press the A
key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and then press
the subsequent keys.

Preface

15

TABLE P–4 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item selection in a
graphical user interface.

File → New → Templates From the File menu, choose New. From the
New submenu, choose Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “Web Server,” type the following:

Web Server site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Preface

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200916

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments:

■ Go to http://docs.sun.com and click Feedback.
■ Go to http://wikis.sun.com/display/WebServerdocs/Home and post your comments or

directly edit the wiki page.

Preface

17

http://docs.sun.com
http://wikis.sun.com/display/WebServerdocs/Home

18

Performance and Monitoring Overview

Sun Java System Web Server (hereafter Web Server) is designed to meet the needs of the most
demanding, high-traffic sites in the world. It can serve both static and dynamically generated
content. Web Server can also run in SSL mode, enabling the secure transfer of information.

This guide helps you to define your server workload and size a system to meet your
performance needs. Because your environment is unique, the impacts of the suggestions
provided in this guide will depend on your specific environment. Ultimately you must rely on
your own judgement and observations to select the adjustments that are best for you.

This chapter provides a general discussion of server performance considerations, and more
specific information about monitoring server performance.

This chapter includes the following topics:

■ “Performance Issues” on page 19
■ “Configuration” on page 20
■ “Virtual Servers” on page 20
■ “Server Farms” on page 21
■ “64–Bit Servers” on page 21
■ “SSL Performance” on page 21
■ “Monitoring Server Performance” on page 22

Performance Issues
The first step toward sizing your server is to determine your requirements. Performance means
different things to users than it means to webmasters. Users want fast response times (typically
less than 100 milliseconds), high availability (no “connection refused” messages), and as much
interface control as possible. Webmasters and system administrators, on the other hand, want
to see high connection rates, high data throughput, and uptime approaching 100%. In addition,
for virtual servers the goal might be to provide a targeted level of performance at different price
points. You need to define what performance means for your particular situation.

1C H A P T E R 1

19

Here are some areas to consider:

■ The number of peak concurrent users
■ Security requirements

Encrypting your Web Server’s data streams with SSL makes an enormous difference to your
site’s credibility for electronic commerce and other security conscious applications, but it
can also seriously impact your CPU load. For more information, see “SSL Performance” on
page 21.

■ The size of the document tree
■ Dynamic or static content

The content you serve affects your server’s performance. A Web Server delivering mostly
static HTML can run much faster than a server that must execute CGIs for every query.

Configuration
Certain tuning parameters are set at the configuration level, so that every server instance that is
based on the configuration has the same tuning information. In addition, some monitoring
information is available at the configuration level, so you can monitor the performance of all
instances based on the configuration. However, the bulk of the monitoring information is
available at the individual server instance, or virtual server level. If you are using a single Web
Server instance per configuration, meaning your server is not part of a server farm, the
configuration-level statistics show the information for the single server instance based on that
configuration.

Virtual Servers
Virtual servers add another layer to the performance improvement process. Certain settings are
tunable for the configuration, while others are based on an individual virtual server.

You can also use the quality of service (QoS) features to set resource utilization constraints for
an individual virtual server. For example, you can use QoS features to limit the amount of
bandwidth and the number of connections allowed for a virtual server. You can set these
performance limits, track them, and optionally enforce them.

For more information about using the quality of service features, see Sun Java System Web
Server 7.0 Update 6 Administrator’s Guide.

Configuration

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200920

http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7985

Server Farms
The clustering features of Web Server allow you to easily deploy to a server farm. Because all
servers in a server farm share identical configurations, tuning is not done on a server-by-server
basis.

64–Bit Servers
The performance for the 64–bit Web Server is not necessarily better than the performance for
the 32–bit Web Server, but the 64–bit server scales better. Because the 32–bit Web Server
process is confined to 4 GB of address space, it can run out of address space when attempting to
support simultaneous sessions beyond a certain limit. Even if the host machine has available
memory and CPU resources, the 32–bit Web Server might not be able to take advantage of it
because of the address space limit. The 64–bit Web Server can run more applications and
servlets than the 32-bit server. Also, the 64–bit Web Server can cache several GBs of static
content, while the 32-bit Web Server is confined to 4 GB of address space.

In general, the tuning for the 64–bit Web Server is similar to the tuning for the 32–bit Web
Server. The differences are mostly tuned at the operating system level. Tuning specifics are
discussed in “Tuning UltraSPARC T1–Based Systems for Performance Benchmarking” on
page 109.

SSL Performance
SSL always has a significant impact on throughput, so for best performance minimize your use
of SSL, or consider using a multi-CPU server to handle it.

For SSL, the Web Server uses the NSS library. However, there are other options available for
SSL:

■ If you are using the Solaris 10 operating system, kernel SSL (KSSL) is available. It does not
contain all the algorithms available, as does NSS, but it often provides better performance.

■ A cryptographic card hardware accelerator for SSL can also improve performance.
■ If you are using the 64–bit Web Server on Solaris, you can use the cryptographic accelerator

of the UltraSPARC T1 processor.

SSL Performance

Chapter 1 • Performance and Monitoring Overview 21

Monitoring Server Performance
Making the adjustments described in this guide without measuring their effects doesn’t make
sense. If you don’t measure the system’s behavior before and after making a change, you won’t
know whether the change was a good idea, a bad idea, or merely irrelevant. You can monitor the
performance of Web Server in several different ways.

TABLE 1–1 Methods of Monitoring Performance

Monitoring Method How to Enable How to Access Advantages and Requirements

Statistics through the
Admin Console

Enabled by default In the Admin Console, for a
configuration, click the
Monitor tab

Accessible when session
threads are hanging.
Administration Server
must be running.

Statistics through
individual wadm
commands

Enabled by default Through wadm commands:

get-config-stats

get-virtual-server-stats

get-webapp-stats

get-servlet-stats

Accessible when session
threads are hanging.
Administration Server
must be running.

XML-formatted statistics
(stats-xml) through a
browser

Enable through
Admin Console or
through editing a
configuration file

Through a URI Administration Server
need not be running.

XML-formatted statistics
(stats-xml) through the
command-line interface

Enabled by default Through the wadm command
get-stats-xml

Accessible when session
threads are hanging.
Administration Server
must be running.

perfdump through a
browser

Enable through
Admin Console or
through editing a
configuration file

Through a URI Administration Server
need not be running.

perfdump through the
command-line interface

Enabled by default Through wadm command
get-perfdump

Accessible when session
threads are hanging.
Administration Server
must be running.

Java ES Monitoring Enabled by default Through the Java ES
Monitoring Console

Only for Java ES
installations.
Administration Server
must be running.

Monitoring the server does have some impact on computing resources. In general, using
perfdump through the URI is the least costly, followed by using stats-xml through a URI.

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200922

Because using the Administration Server requires computing resources, the command-line
interface and the Admin Console are the most costly monitoring methods.

For more information on these monitoring methods, see the following sections:
■ “About Statistics” on page 23
■ “Monitoring Current Activity Using the Admin Console” on page 25
■ “Monitoring Current Activity Using the CLI” on page 26
■ “Monitoring Current Activity Using stats.xml” on page 29
■ “Monitoring Current Activity Using perfdump” on page 31
■ “Monitoring Current Activity Using the Java ES Monitoring Console” on page 37

About Statistics
You can monitor many performance statistics through the Admin Console user interface,
through the command-line interface, through the stats-xml URI, and through perfdump. For
all these monitoring methods, the server uses the statistics it collects. None of these monitoring
methods will work if statistics are not collected.

The statistics give you information at the configuration level, the server instance level, or the
virtual server level. The statistics are broken up into functional areas.

For the configuration, statistics are available in the following areas:

■ Requests
■ Errors
■ Response Time

For the server instance, statistics are available in the following areas:

■ Requests
■ Errors
■ Response Time
■ General
■ Java Virtual Machine (JVMTM)
■ Connection Queue
■ Keep Alive
■ DNS
■ File Cache
■ Thread Pools
■ Session Replication
■ Session Threads, including Profiling data (available if profiling is enabled)

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 23

■ Java DataBase Connectivity (JDBCTM) (available if a JDBC resource is created and the
connection pool is accessed)

For the virtual server, statistics are available in the following areas:
■ General
■ Response
■ Web Applications
■ Profiling Data (available if profiling is enabled)
■ Servlet and Servlet Response Cache (available if the Servlet cache is enabled in

sun.web.xml)

Some statistics default to zero if Quality of Service (QoS) is not enabled, for example, the count
of open connections, the maximum open connections, the rate of bytes transmitted, and the
maximum byte transmission rate.

Enabling Statistics
Statistics are activated by default on Web Server. However, if you have disabled them, you need
to enable them again to monitor your server for performance. To enable statistics, use Admin
Console or the wadm command-line utility (CLI).

Note – Collecting statistics causes a slight hit to performance.

▼ To Enable Statistics from the Admin Console

From the Admin Console Common Tasks page, select the configuration.

Click Edit Configuration.

Click the General tab.

Click the Monitoring Settings sub tab.

On the Monitoring Settings page, under General Settings, select the Statistics Enabled
checkbox.

Configure the interval and profiling.

■ The Interval is the period in seconds between statistics updates. A higher setting with less
frequent updates improves performance. The minimum value is .001 seconds; the default
value is 5 seconds.

■ Profiling is activated by default. Deactivating it results in slightly less monitoring overhead.

1

2

3

4

5

6

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200924

Restart the server.

▼ To Enable Statistics from the CLI

Enter the following CLI command to enable statistics collection:

./wadm set-stats-prop --user=admin_user –password-file=password-file
--config=myconfig enabled=true

To disable statistics, set enabled to false.

To set the interval and enable profiling, use the set-stats-prop interval and profiling

properties. For more information, see the help for set-stats-prop.

Restart the server.

Monitoring Current Activity Using the Admin Console
Frequently-used statistics are available through the Admin Console, viewed as general statistics,
instance statistics, and virtual server statistics.

▼ To Monitor Statistics from the Admin Console

In the Admin Console, from the Common Tasks page, select the Monitoring tab.

Select the configuration.

The configuration statistics are displayed.

From the drop-down list, select a View interval.

The statistics displayed in your browser are automatically updated at this interval.

Select the type of statistics to display.

The initial list of statistics types includes General Statistics, Instance Statistics, and Virtual
Server Statistics.

If you choose Instance Statistics, click the name of the instance to monitor. Detailed statistics
are then displayed, including information on processes and session replications.

If you choose Virtual Server Statistics, click the name of the virtual server to monitor. Statistics
for the virtual server are displayed, including response statistics and web application statistics.
This information is not provided through perfdump.

7

1

2

3

1

2

3

4

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 25

Monitoring Current Activity Using the CLI
You can also view statistics information using the wadm commands get-config-stats,
get-virtual-server-stats, get-webapp-stats and get-servlet-stats. Note that the
examples below do not contain all possible command options. For the complete syntax, see the
help for the command.

▼ To Monitor Statistics from the CLI

To deploy statistics for configuration on a single node, enter:
./wadm get-config-stats --user=admin-user --password-file=admin-password-file
--config=config-name --node=node-name

Using the node option in this syntax restricts the output to a single node. To view the statistics at
the configuration level, use the command without the node option.

The following shows an example of the output for a single node:
timeStarted=1168035653

secondsRunning=1404

countRequests=690546

rpsLast1MinAvg=4491.7666

rpsLast5MinAvg=1844.6061

rpsLast15MinAvg=637.37305

countErrors=0

epsLast1MinAvg=0.0

epsLast5MinAvg=0.0

epsLast15MinAvg=0.0

maxResponseTime=0.30789953

rtLast1MinAvg=5.3970284

rtLast5MinAvg=5.208407

rtLast15MinAvg=35.56042

countBytesReceived=96800935

countBytesTransmitted=689929574

countChildDied=0

countVirtualServers=2

instanceName=https-test

process.1.countThreadPools=2

process.1.jdbcPoolCount=1

process.1.countThreads=64

process.1.fractionSystemMemoryUsage=2887.0

process.1.countConnectionQueues=1

process.1.sizeResident=0

process.1.countIdleThreads=32

process.1.mode=1

process.1.sizeVirtual=0

process.1.countConfigurations=1

process.1.pid=15874

1

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200926

process.1.timeStarted=Jan 5, 2007 2:20:53 PM

process.1.DNSCache.countCacheHits=687804

process.1.DNSCache.countAsyncNameLookup=0

process.1.DNSCache.countAsyncLookupsInProgress=0

process.1.DNSCache.flagAsyncEnabled=false

process.1.DNSCache.countAsyncAddrLookups=0

process.1.DNSCache.flagCacheEnabled=true

process.1.DNSCache.countCacheMisses=75

process.1.JDBCPool.1.countQueued=32

process.1.JDBCPool.1.countFreeConnections=0

process.1.JDBCPool.1.peakConnections=32

process.1.JDBCPool.1.millisecondsPeakWait=72

process.1.JDBCPool.1.countWaitQueueTimeouts=288

process.1.JDBCPool.1.peakQueued=64

process.1.JDBCPool.1.maxConnections=32

process.1.JDBCPool.1.currentConnections=32

process.1.JDBCPool.1.millisecondsAverageQueued=1.0

process.1.JDBCPool.1.countTotalFailedValidationConnections=0

process.1.JDBCPool.1.countLeasedConnections=32

process.1.JDBCPool.1.countTotalLeasedConnections=414

process.1.JDBCPool.1.countConnectionIdleTimeouts=1

process.1.JDBCPool.1.name=jdbc/jdbc-simple_1

process.1.connectionQueue.1.countQueued15MinuteAverage=4.3203125

process.1.connectionQueue.1.countQueued=0

process.1.connectionQueue.1.countQueued1MinuteAverage=0.046875

process.1.connectionQueue.1.countTotalQueued=79171

process.1.connectionQueue.1.countQueued5MinuteAverage=4.03125

process.1.connectionQueue.1.countOverflows=0

process.1.connectionQueue.1.maxQueued=1288

process.1.connectionQueue.1.ticksTotalQueued=724956383

process.1.connectionQueue.1.countTotalConnections=863

process.1.connectionQueue.1.peakQueued=64

process.1.connectionQueue.1.name=cq1

process.1.fileCache.countContentMisses=7

process.1.fileCache.maxMmapCacheSize=0

process.1.fileCache.sizeHeapCache=27520

process.1.fileCache.countMisses=22

process.1.fileCache.countContentHits=620662

process.1.fileCache.maxEntries=1024

process.1.fileCache.flagEnabled=true

process.1.fileCache.secondsMaxAge=30

process.1.fileCache.sizeMmapCache=0

process.1.fileCache.countInfoHits=1862013

process.1.fileCache.maxHeapCacheSize=10747924

process.1.fileCache.countOpenEntries=0

process.1.fileCache.countHits=2482682

process.1.fileCache.maxOpenEntries=1024

process.1.fileCache.countEntries=12

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 27

process.1.fileCache.countInfoMisses=19

process.1.jvm.countGarbageCollections=96

process.1.jvm.sizeHeap=67762048

process.1.jvm.countThreads=79

process.1.jvm.countClassesUnloaded=0

process.1.jvm.vMVendor=Sun Microsystems Inc.

process.1.jvm.countTotalClassesLoaded=3170

process.1.jvm.vMName=Java HotSpot(TM) Server VM

process.1.jvm.countTotalThreadsStarted=81

process.1.jvm.countClassesLoaded=3170

process.1.jvm.peakThreads=79

process.1.jvm.millisecondsGarbageCollection=1981

process.1.jvm.vMVersion=1.5.0_09-b03

process.1.keepalive.countConnections=32

process.1.keepalive.maxConnections=200

process.1.keepalive.countFlushes=0

process.1.keepalive.countRefusals=0

process.1.keepalive.countTimeouts=6

process.1.keepalive.countHits=686943

process.1.keepalive.secondsTimeout=30

process.1.threadPool.1.countQueued=0

process.1.threadPool.1.countThreadsIdle=1

process.1.threadPool.1.threadPoolId=NativePool

process.1.threadPool.1.maxThreads=128

process.1.threadPool.1.countThreads=1

process.1.threadPool.1.maxQueued=0

process.1.threadPool.1.peakQueued=0

process.1.threadPool.1.name=NativePool

process.1.threadPool.2.countQueued=0

process.1.threadPool.2.countThreadsIdle=1

process.1.threadPool.2.threadPoolId=my-custom-pool

process.1.threadPool.2.maxThreads=128

process.1.threadPool.2.countThreads=1

process.1.threadPool.2.maxQueued=0

process.1.threadPool.2.peakQueued=0

process.1.threadPool.2.name=my-custom-pool

To obtain statistics for a virtual server, enter:
./wadm get-virtual-server-stats --user=admin-user
--password-file=admin-password-file --config=config-name --vs=virtual-server-name

Because the node option is not used, this syntax provides aggregate statistics for the virtual
server across all the nodes where the configuration has been deployed. Using the node option
restricts the output to a single node.

To obtain statistics for a deployed web application, enter:
./wadm get-webapp-stats --user=admin-user --password-file=admin-password-file
--config=config-name --node=node-name --vs=virtual-server-name --uri=URI

2

3

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200928

The syntax obtains statistics for a given web application deployed on the given virtual server of
the given instance. To obtain the aggregated web application statistics for a given configuration
across all the nodes where the configuration has been deployed, use the command without the
node option.

The following example shows the output for the URI hello:
countActiveSessions=1

countExpiredSessions=0

countJsps=1

countRejectedSessions=0

countReloadedJsps=1

countSessions=1

peakActiveSessions=1

secondsSessionAliveAverage=0

secondsSessionAliveMax=0

uri=/hello

vsName=myvs.sun.com

Monitoring Current Activity Using stats.xml
You can also display statistics using stats-xml, which displays statistics in XML format. The
output of stats-xml is in XML so that various tools can easily parse the statistics. You can view
the stats-xml output through a URI, which you have to enable, or you can view the stats-xml
output through the CLI, which is enabled by default.

▼ To Enable the stats-xml URI from the Admin Console
If you enable the stats-xml URI, you can access statistics for your server in XML format
through a browser. Note that when you use the stats-xml URI, you can access statistics even
when the Administration Server is not running. Also, with the stats-xml URI activated, users
can see the statistics information for your server, unless you take precautions to deny access.

On the Common Tasks page, select the configuration from the pull-down menu on the left.

Select the virtual server from the pull-down menu on the right, then click Edit Virtual Server.

On the Server Settings tab, click the Monitoring Settings sub tab.

Select the XML Report enabled checkbox.

Provide a URI, for example, /stats-xml.

Click Save.

Deploy the configuration.

1

2

3

4

5

6

7

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 29

Access the stats-xmlURI, for example:
http://yourhost:port/stats-xml

The statistics are displayed in XML format.

▼ To Enable the stats-xml URI from the CLI

Use the following command to enable stats-xml:
./wadm enable-stats-xml --user=admin-user --password-file=admin-password-file
[--uri-prefix=prefix]--config=config-name --vs=virtual-server-name

Use the uri-prefix option to set the stats-xml URI.

Deploy the configuration using the wadm deploy-config command.

Access the stats-xmlURI, for example:
http://yourhost:port/stats-xml

The statistics are displayed in XML format.

▼ To Limit the stats-xml Statistics Displayed in the URI
You can modify the stats-xml URI to limit the data it provides.

Modify the stats-xmlURI to limit the information by setting elements to 0 or 1. An element set
to 0 is not displayed on the stats-xml output. For example:
http://yourhost:port/stats-xml?thread=0&process=0

This syntax limits the stats-xml output so that thread and process statistics are not included.
By default all statistics are enabled (set to 1).

Most of the statistics are available at the server level, but some are available at the process level.
Use the following syntax elements to limit stats-xml:

■ cache-bucket

■ connection-queue

■ connection-queue-bucket (process-level)
■ cpu-info

■ dns-bucket

■ jdbc-resource-bucket

■ keepalive-bucket

■ process

■ profile

■ profile-bucket (process-level)
■ request-bucket

■ servlet-bucket

8

1

2

3

●

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200930

■ session-replication

■ thread

■ thread-pool

■ thread-pool-bucket (process-level)
■ virtual-server

■ web-app-bucket

▼ To View stats-xml Output from the CLI
In addition to a URI, you can also access stats-xml output through the command-line
interface which is enabled by default. Unlike viewing stats-xml output through the URI, the
Administration Server must be running to view stats-xml output at the command-line.
However, if request processing threads are hanging in your server, and you cannot use the URI,
you can still access stats-xml output through the CLI.

To view the stats-xml output through the command-line interface, enter:

./wadm get-stats-xml --user=admin-user --password-file=admin-password-file
--config=config-name --node=node-name

Monitoring Current Activity Using perfdump
perfdump is a Server Application Function (SAF) built into Web Server that collects various
pieces of performance data from the Web Server internal statistics and displays them in ASCII
text. The perfdump output does not display all the statistics available through the
command-line statistics or the Admin Console, but it can still be a useful tool. For example, you
can still use perfdump even if the Administration Server is not running. You can view the
perfdump output through the CLI, which is enabled by default, or you can view the perfdump
output through a URI, which you have to enable. If you enable the URI, you must control access
to the perfdump URI, otherwise it can be visible to users.

With perfdump, the statistics are unified. Rather than monitoring a single process, statistics are
multiplied by the number of processes, which gives you an accurate view of the server as a
whole.

For information on tuning the information displayed by perfdump, see “Using Monitoring
Data to Tune Your Server” on page 48.

▼ To Enable the perfdump URI from the Admin Console
You can enable perfdump URI for a virtual server through the Admin Console.

●

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 31

Note – The statistics displayed by perfdump are for the server as a whole. If you enable perfdump
on one virtual server, it displays statistics for the whole server, not an individual virtual server.

From Common Tasks, select a configuration.

Select the virtual server and click Edit Virtual Server.

Click the Monitoring Settings tab.

Select the Plain Text Report Enabled checkbox.

Provide a URI for accessing the report, for example /.perf.

Click Save.

Deploy the configuration.

To access perfdump, access the URI on the virtual server.
For example: http://localhost:80/.perf

You can request the perfdump statistics and specify how frequently the browser should
automatically refresh as measured in seconds. The following example sets the refresh to every 5
seconds:

http://yourhost/.perf?refresh=5

▼ To Enable the perfdump URI from the CLI

Use the following command to enable perfdump:
./wadm enable-perfdump --user=admin-user --password-file=admin-password-file
[--uri=uri]--config=config-name--vs=virtual-server-name

Use the uri option to set the pefdump URI.

Deploy the configuration using the wadm deploy-config command.

To access perfdump, access the URI on the virtual server.
For example: http://localhost:80/.perf

You can request the perfdump statistics and specify how frequently the browser should
automatically refresh as measured in seconds. The following example sets the refresh to every 5
seconds:

http://yourhost/.perf?refresh=5

1

2

3

4

5

6

7

8

1

2

3

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200932

▼ To View the perfdump Data from the CLI
In addition to a URI, you can also access perfdump output through the command-line interface.
It is enabled by default. Unlike viewing perfdump output through the URI, the Administration
Server must be running to view perfdump output at the command-line. However, if request
processing threads are hanging in your server and you cannot use the URI, you can still access
perfdump output through the CLI.

To view the perfdump output through the command-line interface, enter:
./wadm get-perfdump --user=admin-user --password-file=admin-password-file
--config=config-name --node=node-name

The output appears in your command window.

Sample perfdump Output
The following is sample perfdump output:

webservd pid: 29133

Sun Java System Web Server 7.0 B07/13/2006 17:09 (SunOS DOMESTIC)

Server started Fri Jul 14 14:34:15 2006

Process 29133 started Fri Jul 14 14:34:17 2006

ConnectionQueue:

Current/Peak/Limit Queue Length 2/237/1352

Total Connections Queued 67364017

Average Queue Length (1, 5, 15 minutes) 4.52, 4.73, 4.85

Average Queueing Delay 13.63 milliseconds

ListenSocket ls1:

Address https://0.0.0.0:2014

Acceptor Threads 1

Default Virtual Server https-test

KeepAliveInfo:

KeepAliveCount 198/200

KeepAliveHits 0

KeepAliveFlushes 0

KeepAliveRefusals 56844280

KeepAliveTimeouts 365589

KeepAliveTimeout 10 seconds

SessionCreationInfo:

●

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 33

Active Sessions 128

Keep-Alive Sessions 0

Total Sessions Created 128/128

Server cache disabled

Native pools:

NativePool:

Idle/Peak/Limit 1/1/128

Work Queue Length/Peak/Limit 0/0/0

TestPool:

Idle/Peak/Limit 5/5/10

Work Queue Length/Peak/Limit 0/0/15

DNSCacheInfo:

enabled yes

CacheEntries 4/1024

HitRatio 62854802/62862912 (99.99%)

Async DNS disabled

Performance Counters:

--

Average Total Percent

Total number of requests: 62647125

Request processing time: 0.0343 2147687.2500

default-bucket (Default bucket)

Number of Requests: 62647125 (100.00%)

Number of Invocations: 3374170785 (100.00%)

Latency: 0.0008 47998.2500 (2.23%)

Function Processing Time: 0.0335 2099689.0000 (97.77%)

Total Response Time: 0.0343 2147687.2500 (100.00%)

Sessions:

Process Status Client Age VS Method URI Function

29133 response 192.6.7.7 115 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 192.6.7.7 8 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 192.6.7.7 4 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 10.5.8.19 4 https-test GET /perf service-dump

29133 response 192.6.7.7 3 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 192.6.7.7 3 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200934

29133 response 192.6.7.7 2 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 192.6.7.7 2 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 192.6.7.7 2 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 response 192.6.7.7 2 https-test GET /qa_webapp/CheckNetwork.class service-j2ee

29133 request 192.6.7.7 0

29133 request 192.6.7.7 0

29133 request 192.6.7.7 0

29133 request 192.6.7.7 0

29133 request 192.6.7.7 0

29133 response 192.6.7.7 0 https-test GET /file1.shtml shtml_send

29133 request 192.6.7.7 0

29133 request 192.6.7.7 0

29133 response 192.6.7.7 0 https-test GET /find-pathinfo-forward/pathinfo.pl/p/info send-cgi

29133 request 192.6.7.7 0

29133 updating 192.6.7.7

29133 updating 192.6.7.7

29133 updating 192.6.7.7

29133 updating 192.6.7.7

.

.

.

Using Performance Buckets
Performance buckets allow you to define buckets and link them to various server functions.
Every time one of these functions is invoked, the server collects statistical data and adds it to the
bucket. For example, send-cgi and service-j2ee are functions used to serve the CGI and Java
servlet requests respectively. You can either define two buckets to maintain separate counters
for CGI and servlet requests, or create one bucket that counts requests for both types of
dynamic content. The cost of collecting this information is minimal, and the impact on the
server performance is usually negligible. This information can later be accessed using perfdump.
The following information is stored in a bucket:

■ Name of the bucket. This name associates the bucket with a function.
■ Description. A description of the functions with which the bucket is associated.
■ Number of requests for this function. The total number of requests that caused this

function to be called.
■ Number of times the function was invoked. This number might not coincide with the

number of requests for the function, because some functions might be executed more than
once for a single request.

■ Function latency or the dispatch time. The time taken by the server to invoke the function.
■ Function time. The time spent in the function itself.

The default-bucket is predefined by the server. It records statistics for the functions not
associated with any user-defined bucket.

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 35

Configuration

You must specify all configuration information for performance buckets in the magnus.conf
and obj.conf files. Only the default-bucket is automatically enabled.

First, you must enable performance statistics collection and perfdump.

The following examples show how to define new buckets in magnus.conf:

Init fn="define-perf-bucket" name="acl-bucket" description="ACL bucket"

Init fn="define-perf-bucket" name="file-bucket" description="Non-cached responses"

Init fn="define-perf-bucket" name="cgi-bucket" description="CGI Stats"

The previous examples create three buckets: acl-bucket, file-bucket, and cgi-bucket. To
associate these buckets with functions, add bucket=bucket-name to the obj.conf function for
which to measure performance.

Example

PathCheck fn="check-acl" acl="default" bucket="acl-bucket"
...

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file" bucket="file-bucket"
...

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"
</Object>

For more information, see “The bucket Parameter” in Sun Java System Web Server 7.0 Update 6
Administrator’s Configuration File Reference.

Performance Report

The server statistics in buckets can be accessed using perfdump. The performance buckets
information is located in the last section of the report returned by perfdump.

The report contains the following information:

■ Average, Total, and Percent columns give data for each requested statistic.
■ Request Processing Time is the total time required by the server to process all requests it

has received so far.
■ Number of Requests is the total number of requests for the function.

Monitoring Server Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200936

http://docs.sun.com/doc/820-7986/gdtlq?a=view
http://docs.sun.com/doc/820-7986/gdtlq?a=view

■ Number of Invocations is the total number of times that the function was invoked. This
number differs from the number of requests because a function can be called multiple times
while processing one request. The percentage column for this row is calculated in reference
to the total number of invocations for all of the buckets.

■ Latency is the time in seconds that Web Server uses to call the function.
■ Function Processing Time is the time in seconds that Web Server spends inside the

function. The percentage of Function Processing Time and Total Response Time is
calculated with reference to the total Request Processing Time.

■ Total Response Time is the sum in seconds of Function Processing Time and Latency.

The following is an example of the performance bucket information available through
perfdump:

Performance Counters:

--

Average Total Percent

Total number of requests: 62647125

Request processing time: 0.0343 2147687.2500

default-bucket (Default bucket)

Number of Requests: 62647125 (100.00%)

Number of Invocations: 3374170785 (100.00%)

Latency: 0.0008 47998.2500 (2.23%)

Function Processing Time: 0.0335 2099689.0000 (97.77%)

Total Response Time: 0.0343 2147687.2500 (100.00%)

Monitoring Current Activity Using the Java ES
Monitoring Console
The statistics available through the Web Server Admin Console and the command-line
interface are also available through the Java ES Monitoring Console. Though the information is
the same, it is presented in a different format, using the Common Monitoring Data Model
(CMM). Though this guide covers monitoring using tools available in the Web Server, you can
also monitor your server using the Java ES monitoring tools. For more information on using the
Java ES monitoring tools, see Sun Java Enterprise System 5 Monitoring Guide. Use the same
settings to tune the server, regardless of what monitoring method you use.

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 37

38

Tuning Sun Java System Web Server

This chapter describes specific adjustments you can make that might improve Sun Java System
Web Server performance. It provides an overview of Web Server's connection-handling process
so that you can better understand the tuning settings. The chapter includes the following topics:
■ “General Tuning Tips” on page 39
■ “Understanding Threads, Processes, and Connections” on page 40
■ “Mapping Web Server 6.1 Tuning Parameters to Web Server 7.0” on page 46
■ “Using Monitoring Data to Tune Your Server” on page 48
■ “Tuning the ACL User Cache” on page 79
■ “Tuning Java Web Application Performance” on page 80
■ “Tuning CGI Stub Processes (UNIX/Linux)” on page 83
■ “Using find-pathinfo-forward” on page 83
■ “Using nostat” on page 84
■ “Using Busy Functions” on page 85

Note – Be very careful when tuning your server. Always back up your configuration files before
making any changes.

General Tuning Tips
As you tune your server, it is important to remember that your specific environment is unique.
The impacts of the suggestions provided in this guide will vary, depending on your specific
environment. Ultimately you must rely on your own judgement and observations to select the
adjustments that are best for you.

As you work to optimize performance, keep the following guidelines in mind:
■ Work methodically

As much as possible, make one adjustment at a time. Measure your performance before and
after each change, and rescind any change that doesn’t produce a measurable improvement.

2C H A P T E R 2

39

■ Adjust gradually

When adjusting a quantitative parameter, make several changes in succession, rather than
trying to make a drastic change all at once. Different systems face different circumstances,
and you might pass by your system’s best setting if you change the value too rapidly.

■ Start fresh

At each major system change, be it a hardware or software upgrade or deployment of a
major new application, review all previous adjustments to see whether they still apply. After
a Solaris upgrade, you should start over with an unmodified /etc/system file.

■ Stay informed

Read the Sun Java System Web Server 7.0 Update 6 Release Notes and the release notes for
your operating system whenever you upgrade your system. The release notes often provide
updated information about specific adjustments.

Understanding Threads, Processes, and Connections
Before tuning your server, you should understand the connection-handling process in Web
Server. Request processing threads handle Web Server connections. You can configure Request
handling threads from the Admin Console or by editing the server.xml configuration file. This
section includes the following topics:

■ “Connection-Handling Overview” on page 40
■ “Custom Thread Pools” on page 42
■ “The Native Thread Pool” on page 43
■ “Process Modes” on page 44

Connection-Handling Overview
In Web Server, acceptor threads on a listen socket accept connections and put them into a
connection queue. Request processing threads in a thread pool then pick up connections from
the queue and service the requests.

Understanding Threads, Processes, and Connections

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200940

http://docs.sun.com/doc/820-7978

A request is not thread-safe if processing the request requires interaction between a number of
threads. A part of the request which is not thread-safe is transferred to a NativePool, which is a
collection of threads which can interact with each other. The NativePool processes the request
and communicates the request back to the request processing thread.

At startup, the server only creates the number of threads defined in the thread pool minimum
threads, by default set to number of processors. As the load increases, the server creates more
threads. The policy for adding new threads is based on the connection queue state.

Each time a new request is created, the number of requests waiting in the queue, often
considered the backlog of connections, is compared to the number of request processing
threads already created. If the number of requests is greater than the number of threads, more
threads are created.

The process of adding new session threads is strictly limited by the maximum threads value. For
more information on maximum threads, see “Maximum Threads (Maximum Simultaneous
Requests)” on page 59.

You can change the settings that affect the number and timeout of threads, processes, and
connections in the Admin Console, on the configuration's Performance tab (HTTP settings),
and on the HTTP listener. You can also use the wadm commands set-thread-pool-prop and
set-http-listener-prop and set-keep-alive-prop.

Low Latency and High Concurrency Modes
The server can run in one of two modes, depending upon the load. It changes modes to
accommodate the load most efficiently.

■ In low latency mode, for keep-alive connections, session threads themselves poll for new
requests.

■ In high concurrency mode, after finishing the request, session threads give the connection to
the keep-alive subsystem. In high concurrency mode, the keep-alive subsystem polls for new
requests for all keep-alive connections.

Web Server

Acceptor
Threads

Thread Pool

Requests

Connection
Queue

Request
Processing

Threads

FIGURE 2–1 Web Server Connection Handling

Understanding Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 41

When the server is started, it starts in low latency mode. When the load increases, the server
moves to high concurrency mode. The decision to move from low latency mode to high
concurrency mode and back again is made by the server, based on connection queue length,
average total sessions, average idle sessions, and currently active and idle sessions.

Disabled Thread Pools
If a thread pool is disabled, no threads are created in the pool, no connection queue is created,
and no keep-alive threads are created. When the thread pool is disabled, the acceptor threads
themselves process the request.

Connection–Handling magnus.conf Directives for NSAPI
In addition to the settings discussed above, you can edit the following directives in the
magnus.conf file to configure additional request-processing settings for NSAPI plug-ins:

■ KernelThreads – Determines whether NSAPI plug-ins always run on kernel-scheduled
threads (Windows only)

■ TerminateTimeout – Determines the maximum amount of time to wait for NSAPI plug-ins
to finish processing requests when the server is shut down

For detailed information about these directives, see the Sun Java System Web Server 7.0
Update 6 Administrator’s Configuration File Reference.

Note – For the safest way to edit configuration files such as magnus.conf, use the wadm
commands get-config-file and set-config-file to pull a local copy for editing and push it
back to the Web Server. For more information on these commands, see the help for these
commands.

Custom Thread Pools
By default, the connection queue sends requests to the default thread pool. However, you can
also create your own thread pools in magnus.conf using a thread pool Init function. These
custom thread pools are used for executing NSAPI Service Application Functions (SAFs), not
entire requests.

If the SAF requires the use of a custom thread pool, the current request processing thread
queues the request, waits until the other thread from the custom thread pool completes the SAF,
then the request processing thread completes the rest of the request.

For example, the obj.conf file contains the following:

Understanding Threads, Processes, and Connections

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200942

http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7986

NameTrans fn="assign-name" from="/testmod" name="testmod" pool="my-custom-pool"
...

<Object name="testmod">
ObjectType fn="force-type" type="magnus-internal/testmod"
Service method=(GET|HEAD|POST) type="magnus-internal/testmod"
fn="testmod_service" pool="my-custom-pool2"
</Object>

In this example, the request is processed as follows:

1. The request processing thread, referred to as A1 in this example, picks up the request and
executes the steps before the NameTrans directive.

2. If the URI starts with /testmod, the A1 thread queues the request to the my-custom-pool
queue. The A1 thread waits.

3. A different thread in my-custom-pool, called the B1 thread in this example, picks up the
request queued by A1. B1 completes the request and returns to the wait stage.

4. The A1 thread wakes up and continues processing the request. It executes the ObjectType
SAF and moves on to the Service function.

5. Because the Service function must be processed by a thread in my-custom-pool2, the A1
thread queues the request to my-custom-pool2.

6. A different thread in my-custom-pool2, called C1 in this example, picks up the queued
request. C1 completes the request and returns to the wait stage.

7. The A1 thread wakes up and continues processing the request.

In this example, three threads, A1, B1, and C1 work to complete the request.

Additional thread pools are a way to run thread-unsafe plug-ins. By defining a pool with a
maximum number of threads set to 1, only one request is allowed into the specified service
function. In the previous example, if testmod_service is not thread-safe, it must be executed
by a single thread. If you create a single thread in the my-custom-pool2, the SAF works in a
multi-threaded Web Server.

For more information on defining thread pools, see “thread-pool-init” in Sun Java System Web
Server 7.0 Update 6 Administrator’s Configuration File Reference.

The Native Thread Pool
On Windows, the native thread pool (NativePool) is used internally by the server to execute
NSAPI functions that require a native thread for execution.

Web Server uses Netscape Portable Runtime (NSPR), which is an underlying portability layer
providing access to the host OS services. This layer provides abstractions for threads that are
not always the same as those for the OS-provided threads. These non-native threads have lower
scheduling overhead, so their use improves performance. However, these threads are sensitive

Understanding Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 43

http://docs.sun.com/doc/820-7986/abvct?a=view
http://docs.sun.com/doc/820-7986/abvct?a=view

to blocking calls to the OS, such as I/O calls. To make it easier to write NSAPI extensions that
can make use of blocking calls, the server keeps a pool of threads that safely support blocking
calls. These threads are usually native OS threads. During request processing, any NSAPI
function that is not marked as being safe for execution on a non-native thread is scheduled for
execution on one of the threads in the native thread pool.

If you have written your own NSAPI plug-ins such as NameTrans, Service, or PathCheck
functions, these execute by default on a thread from the native thread pool. If your plug-in
makes use of the NSAPI functions for I/O exclusively or does not use the NSAPI I/O functions
at all, then it can execute on a non-native thread. For this to happen, the function must be
loaded with a NativeThread="no" option, indicating that it does not require a native thread.

For example, add the following to the load-modules Init line in the magnus.conf file:

Init funcs="pcheck_uri_clean_fixed_init" shlib="C:/Sun/webserver7/lib/custom.dll"
fn="load-modules" NativeThread="no"

The NativeThread flag affects all functions in the funcs list, so if you have more than one
function in a library, but only some of them use native threads, use separate Init lines. If you set
NativeThread to yes, the thread maps directly to an OS thread.

For information on the load-modules function, see “load-modules” in Sun Java System Web
Server 7.0 Update 6 Administrator’s Configuration File Reference.

Process Modes
You can run Sun Java System Web Server in one of the following modes:

■ “Single-Process Mode” on page 44
■ “Multi-Process Mode” on page 45

Note – Multi-process mode is deprecated for Java technology-enabled servers. Most applications
are now multi-threaded, and multi-process mode is usually not needed. However,
multi-process mode can significantly improve overall server throughput for NSAPI
applications that do not implement fine-grained locking.

Single-Process Mode
In the single-process mode, the server receives requests from web clients to a single process.
Inside the single server process, acceptor threads are running that are waiting for new requests
to arrive. When a request arrives, an acceptor thread accepts the connection and puts the
request into the connection queue. A request processing thread picks up the request from the
connection queue and handles the request.

Understanding Threads, Processes, and Connections

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200944

http://docs.sun.com/doc/820-7986/abvcn?a=view
http://docs.sun.com/doc/820-7986/abvcn?a=view

Because the server is multi-threaded, all NSAPI extensions written to the server must be
thread-safe. This means that if the NSAPI extension uses a global resource, like a shared
reference to a file or global variable, then the use of that resource must be synchronized so that
only one thread accesses it at a time. All plug-ins provided with the Web Server are thread-safe
and thread-aware, providing good scalability and concurrency. However, your legacy
applications might be single-threaded. When the server runs the application, it can only execute
one at a time. This leads to server performance problems when put under load. Unfortunately,
in the single-process design, there is no real workaround.

Multi-Process Mode
You can configure the server to handle requests using multiple processes with multiple threads
in each process. This flexibility provides optimal performance for sites using threads, and also
provides backward compatibility to sites running legacy applications that are not ready to run
in a threaded environment. Because applications on Windows generally already take advantage
of multi-thread considerations, this feature applies to UNIX and Linux platforms.

The advantage of multiple processes is that legacy applications that are not thread-aware or
thread-safe can be run more effectively in Sun Java System Web Server. However, because all of
the Sun Java System extensions are built to support a single-process threaded environment, they
might not run in the multi-process mode. The Search plug-ins fail on startup if the server is in
multi-process mode, and if session replication is enabled, the server will fail to start in
multi-process mode.

In the multi-process mode, the server spawns multiple server processes at startup. Depending
on the configuration, each process contains one or more threads, that receive incoming
requests. Since each process is completely independent, each one has its own copies of global
variables, caches, and other resources. Using multiple processes requires more resources from
your system. Also, if you try to install an application that requires shared state, it has to
synchronize that state across multiple processes. NSAPI provides no helper functions for
implementing cross-process synchronization.

When you specify a MaxProcs value greater than 1, the server relies on the operating system to
distribute connections among multiple server processes (see “MaxProcs (UNIX/Linux)” on
page 46 for information about the MaxProcs directive). However, many modern operating
systems do not distribute connections evenly, particularly when there are a small number of
concurrent connections.

Because Sun Java System Web Server cannot guarantee that load is distributed evenly among
server processes, you might encounter performance problems if you set Maximum Threads to 1
and MaxProcs greater than 1 to accommodate a legacy application that is not thread-safe. The
problem is especially pronounced if the legacy application takes a long time to respond to
requests, for example, when the legacy application contacts a back-end database. In this
scenario, it might be preferable to use the default value for Maximum Threads and serialize

Understanding Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 45

access to the legacy application using thread pools. For more information about creating a
thread pool, see “thread-pool-init” in Sun Java System Web Server 7.0 Update 6 Administrator’s
Configuration File Reference.

If you are not running any NSAPI in your server, you should use the default settings: one
process and many threads. If you are running an application that is not scalable in a threaded
environment, you should use a few processes and many threads, for example, 4 or 8 processes
and 128 or 512 threads per process.

MaxProcs (UNIX/Linux)

To run a UNIX or Linux server in multi-process mode, set the MaxProcs directive to a value
that is greater than 1. Multi-process mode might provide higher scalability on multi-processor
machines and improve the overall server throughput on large systems such as the Sun FireTM

T2000 server. If you set the value to less than 1, it is ignored and the default value of 1 is used.

Use the MaxProcs directive to improve overall server throughput for the following types of
applications:

■ NSAPI applications that do not implement fine-grained locking
■ Java applications that do not require session management

Do not use the MaxProcs directive when the Sun Java System Web Server performs session
management for Java applications.

You can set the value for MaxProcs by editing the MaxProcs parameter in magnus.conf.

Note – You will receive duplicate startup messages when running your server in MaxProcs mode.

Mapping Web Server 6.1 Tuning Parameters to Web Server 7.0
Many of the tuning parameters that were tunable by editing the magnus.conf and nsfc.conf

files in Web Server 6.1 have moved to the server.xml file. These tuning parameters are now
tunable through the Admin Console and command-line interface. The following table shows
selected tuning parameters, including the Web Server 6.1 parameter, the new server.xml

element used for tuning, and the way to change the parameters through the user interface.
Editing the server.xml file directly can be error-prone, so using the user interface to set values
is preferable. For a complete list of all elements in server.xml, see Chapter 3, “Elements in
server.xml,” in Sun Java System Web Server 7.0 Update 6 Administrator’s Configuration File
Reference.

Mapping Web Server 6.1 Tuning Parameters to Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200946

http://docs.sun.com/doc/820-7986/abvct?a=view
http://docs.sun.com/doc/820-7986/abvct?a=view
http://docs.sun.com/doc/820-7986/abaar?a=view
http://docs.sun.com/doc/820-7986/abaar?a=view
http://docs.sun.com/doc/820-7986/abaar?a=view

TABLE 2–1 Parameter Mapping to server.xml

Web Server 6.1 parameter
Web Server 7.0 server.xml

element or attribute Admin Console Location wadm command

AcceptTimeout in
magnus.conf

io-timeout element of
the http element

Configuration's
Performance tab ⇒
HTTP Settings page

set-http-prop

command's io-timeout
property

ACLGroupCacheSize in
magnus.conf

max-groups-per-user

element of the acl-cache
element

Configuration's
Performance tab ⇒
Cache Settings page

set-acl-cache-prop

command's
max-groups-per-user

property

ACLUserCacheSize in
magnus.conf

max-users element of the
acl-cache element

Configuration's
Performance tab ⇒
Cache Settings page

set-acl-cache-prop

command's max-users
property

ConnQueueSize in
magnus.conf

queue-size element of
the thread-pool element

Configuration's
Performance tab ⇒
HTTP tab

set-thread-pool-prop

command's queue-size
property

dns-cache-init Init SAF enabled element of the
dns-cache element

Configuration's
Performance tab ⇒
DNS tab

set-dns-cache-prop

command's enabled
property

dns-cache-init Init SAF
cache size

max-entries element of
the dns-cache element

Configuration's
Performance tab ⇒
DNS tab

set-dns-cache-prop

command's max-entries
property

FileCacheEnabled in
nsfc.conf

enabled element of the
file-cache element

Configuration's
Performance tab ⇒
Cache tab

set-file-cache-prop

command's enabled
property

KeepAliveThreads in
magnus.conf

threads element of the
keep-alive element

Configuration's
Performance tab ⇒
HTTP tab

set-keep-alive-prop

command's threads
property

KeepAliveTimeout in
magnus.conf

timout element of the
keep-alive element

Configuration's
Performance tab ⇒
HTTP tab

set-keep-alive-prop

command's timeout
property

KernelThreads in
magnus.conf (Windows only)

Unchanged

ListenQ in magnus.conf listen-queue-size

element of the
http-listener element

Configuration's
HTTP Listeners tab

set-http-listener-prop

command's
listen-queue-size

LogVerbose in magnus.conf log-level element of the
log element

Configuration's
General Tab ⇒ Log
Settings

set-error-log-prop

command's log-level
property

Mapping Web Server 6.1 Tuning Parameters to Web Server 7.0

Chapter 2 • Tuning Sun Java System Web Server 47

TABLE 2–1 Parameter Mapping to server.xml (Continued)

Web Server 6.1 parameter
Web Server 7.0 server.xml

element or attribute Admin Console Location wadm command

MaxAge in nsfc.conf file max-age element of the
file-cache element

Configuration's
Performance tab ⇒
Cache tab

set-file-cache-prop

command's max-age
property

MaxFiles in nsfc.conf file max-entries element of
the file-cache element

Configuration's
Performance tab ⇒
Cache tab

set-file-cache-prop

command's max-entries
property

MaxKeepAliveConnections in
magnus.conf

max-connections

element of the
keep-alive element

Configuration's
Performance tab ⇒
HTTP tab

set-keep-alive-prop

command's
max-connections

property

MaxProcs in magnus.conf Deprecated for Java
technology-enabled
servers

NativePoolMaxThreads in
magnus.conf

Unchanged

NativePoolMinThreads in
magnus.conf

Unchanged

NativePoolQueueSize in
magnus.conf

Unchanged

NativePoolStackSize in
magnus.conf

Unchanged

RqThrottle in magnus.conf max-threads element of
the thread-pool element

Configuration's
Performance tab ⇒
HTTP tab

set-thread-pool-prop

command's max-threads
property

RqThrottleMin in
magnus.conf

min-threads element of
the thread-pool element

Configuration's
Performance tab ⇒
HTTP tab

set-thread-pool-prop

command's min-threads
property

TerminateTimeout in
magnus.conf

Unchanged

Using Monitoring Data to Tune Your Server
This section describes the performance information available through the Admin Console,
perfdump, the command-line interface, and stats-xml. It discusses how to analyze that
information and tune parameters to improve your server’s performance.

Web Server automatically selects many server defaults based on the system resources. The
number of acceptor threads and keep-alive threads defaults to the number of CPUs. The

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200948

server/thread-pool/max-threads defaults to greater of 128 or the number of CPUs. The
server/thread-pool/min-threads defaults to lesser the value of
server/thread-pool/max-threads or the number of CPUs. The
server/access-log-buffer/max-buffers-per-file defaults to the number of CPUs. The
server configures the connection queue size, maximum number of keep-alive connections, and
the maximum number of open files in the file cache, based on the total number of available file
descriptors in the system. The values for these are obtained from the server log file when the log
level is set to fine. All the server chosen defaults are tunable.

The default tuning parameters are appropriate for all sites except those with very high volume.
The only settings that large sites might regularly need to change are the thread pool and keep
alive settings. Tune these settings at the configuration level in the Admin Console or using wadm
commands. It is also possible to tune the server by editing the elements directly in the
server.xml file, but editing the server.xml file directly can lead to complications.

perfdump monitors statistics in the following categories, which are described in the following
sections. In most cases these statistics are also displayed in the Admin Console, command-line
interface, and stats-xml output. The following sections contain tuning information for all
these categories, regardless of which method you use to monitor the data:

■ “Connection Queue Information” on page 50
■ “HTTP Listener (Listen Socket) Information” on page 52
■ “Keep-Alive Information” on page 54
■ “Session Creation and Thread Information” on page 58
■ “File Cache Statistics Information” on page 60
■ “Thread Pool Information” on page 67
■ “DNS Cache Information” on page 70

In addition, the statistics information displayed through the Admin Console, the
command-line interface, and stats-xml contains other categories not contained in the
perfdump output. Tuning these statistics is discussed in the following sections:

■ “Java Virtual Machine (JVM) Information” on page 72
■ “Web Application Information” on page 73
■ “JDBC Resource Information” on page 74

Once you have viewed the statistics you need, you can tune various aspects of your server’s
performance at the configuration level using the Admin Console's Performance tab. The Admin
Console Performance tab includes settings for many performance categories, including:

■ HTTP Settings (includes Thread Pool and Keep Alive)
■ DNS Settings
■ SSL and TLS Settings
■ Cache Settings
■ CGI Settings
■ Access Log Buffer Settings

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 49

You can also view and set tuning parameters using the appropriate wadm commands. When you
set tuning properties using wadm commands, the names of the properties are the same as
displayed in stats.xml.

Connection Queue Information
In Web Server, a connection is first accepted by acceptor threads associated with the HTTP
listener. The acceptor threads accept the connection and put it into the connection queue.
Then, request processing threads take the connection in the connection queue and process the
request. For more information, see “Connection-Handling Overview” on page 40.

Connection queue information shows the number of sessions in the connection queue, and the
average delay before the connection is accepted by the request processing thread.

The following is an example of how these statistics are displayed in perfdump:

ConnectionQueue:

Current/Peak/Limit Queue Length 0/1853/160032

Total Connections Queued 11222922

Average Queue Length (1, 5, 15 minutes) 90.35, 89.64, 54.02

Average Queueing Delay 4.80 milliseconds

The same information is displayed in a different format through the Admin Console or
command-line interface, with some slight differences. The following table shows the
information displayed in the Admin Console when accessing monitoring information for the
server instance:

TABLE 2–2 Connection Queue Statistics

Present Number of Connections Queued 0

Total Number of Connections Queued 11222922

Average Connections Over Last 1 Minute 90.35

Average Connections Over Last 5 Minutes 89.64

Average Connections Over Last 15 Minutes 54.02

Maximum Queue Size 160032

Peak Queue Size 1853

Number of Connections Overflowed 0

Ticks Spent 5389284274

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200950

TABLE 2–2 Connection Queue Statistics (Continued)
Total Number of Connections Added 425723

Current /Peak /Limit Queue Length
Current/Peak/Limit queue length shows, in order:

■ The number of connections currently in the queue.
■ The largest number of connections that have been in the queue simultaneously.
■ The maximum size of the connection queue. This number is:

Maximum Queue Size = Thread Pool Queue Size + Maximum Threads + Keep-Alive Queue
Size
Once the connection queue is full, new connections are dropped.

Tuning

If the peak queue length, also known as the maximum queue size, is close to the limit, you can
increase the maximum connection queue size to avoid dropping connections under heavy load.

You can increase the maximum connection queue size in the Admin Console by changing the
value of the thread pool Queue Size field on the configuration's Performance tab ⇒ HTTP sub
tab. The default is selected based on the total number of available file descriptors in the system.

To change the queue size using the command-line interface, use the wadm
set-thread-pool-prop command's queue-size property.

Total Connections Queued
Total Connections Queued is the total number of times a connection has been queued. This
number includes newly-accepted connections and connections from the keep-alive system.

This setting is not tunable.

Average Queue Length
The Average Queue Length shows the average number of connections in the queue over the
most recent one-minute, five-minute, and 15–minute intervals.

This setting is not tunable.

Average Queuing Delay
The Average Queueing Delay is the average amount of time a connection spends in the
connection queue. This represents the delay between when a request connection is accepted by
the server and when a request processing thread begins servicing the request. It is the Ticks
Spent divided by the Total Connections Queued, and converted to milliseconds.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 51

This setting is not tunable.

Ticks Spent
A tick is a system-dependent value and provided by the tickPerSecond attribute of the server
element in stats.xml. The ticks spent value is the total amount of time that connections spent
in the connection queue and is used to calculate the average queuing delay.

This setting is not tunable.

Total Number of Connections Added
The new connections added to the connection queue. This setting is not tunable.

HTTP Listener (Listen Socket) Information
The following HTTP listener information includes the IP address, port number, number of
acceptor threads, and the default virtual server. For tuning purposes, the most important field in
the HTTP listener information is the number of acceptor threads.

You can have many HTTP listeners enabled for virtual servers, but at least one is enabled for
your default server instance (usually http://0.0.0.0:80). The monitoring information
available through the Admin Console does not show the HTTP listener information, because
that information is available in the Admin Console on the configuration's HTTP Listeners tab.

The following is an example of how the HTTP listeners information appears in perfdump:

ListenSocket ls1:

Address https://0.0.0.0:2014

Acceptor Threads 1

Default Virtual Server https-test

If you have created multiple HTTP listeners, perfdump displays all of them.

To edit an HTTP listener using the Admin Console, for the configuration, select the HTTP
Listeners tab. Click the listener name to edit the listener.

To configure an HTTP listener using the command-line interface, use the command wadm

set-http-listener-prop.

For more information about adding and editing listen sockets, see the Sun Java System Web
Server 7.0 Update 6 Administrator’s Guide.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200952

http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7985

Address
The Address field contains the base address on which this listen socket is listening. A host can
have multiple network interfaces and multiple IP addresses. The address contains the IP
address and the port number.

If your listen socket listens on all network interfaces for the host machine, the IP part of the
address is 0.0.0.0.

Tuning

This setting is tunable when you edit an HTTP listener. If you specify an IP address other than
0.0.0.0, the server makes one less system call per connection. Specify an IP address other than
0.0.0.0 for best possible performance.

Acceptor Threads
Acceptor threads are threads that wait for connections. The threads accept connections and put
them in a queue where they are then picked up by worker threads. For more information, see
“Connection-Handling Overview” on page 40.

Ideally, you want to have enough acceptor threads so that there is always one available when a
user needs one, but few enough so that they do not burden the system. A good rule is to have
one acceptor thread per CPU on your system. You can increase this value to about double the
number of CPUs if you find indications of TCP/IP listen queue overruns.

Tuning

This setting is tunable when you edit an HTTP listener. The number of acceptor threads
defaults to the number of CPUs on your system.

Other HTTP listener settings that affect performance are the size of the send buffer and receive
buffer. For more information regarding these buffers, see your operating system
documentation.

Default Virtual Server
Virtual servers work using the HTTP 1.1 Host header. If the end user’s browser does not send
the Host header, or if the server cannot find the virtual server specified by the Host header, Web
Server handles the request using a default virtual server. You can configure the default virtual
server to send an error message or serve pages from a special document root.

Tuning

This setting is tunable when you edit an HTTP listener.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 53

Keep-Alive Information
This section provides information about the server’s HTTP-level keep-alive system.

Note – The name keep alive should not be confused with TCP keep-alives. Also, note that the
name keep-alive was changed to PersistentConnections in HTTP 1.1, but Web Server
continues to refer to these connections as keep-alive connections. Most modern browsers
request a web page from the server through persistent connections with the web server. The
connection is kept alive even after processing a request, so that it will be easier to process a
similar request.

The following example shows the keep-alive statistics displayed by perfdump:

KeepAliveInfo:

KeepAliveCount 198/200

KeepAliveHits 0

KeepAliveFlushes 0

KeepAliveRefusals 56844280

KeepAliveTimeouts 365589

KeepAliveTimeout 10 seconds

The following table shows the keep-alive statistics displayed in the Admin Console:

TABLE 2–3 Keep-Alive Statistics

Number of Connections Processed 0

Total Number of Connections Added 198

Maximum Connection Size 200

Number of Connections Flushed 0

Number of Connections Refused 56844280

Number of Idle Connections Closed 365589

Connection Timeout 10

Both HTTP 1.0 and HTTP 1.1 support the ability to send multiple requests across a single
HTTP session. A web server can receive hundreds of new HTTP requests per second. If every
request is allowed to keep the connection open indefinitely, the server can become overloaded
with connections. On UNIX and Linux systems, this can lead to a file table overflow very easily.

To resolve this problem, the server maintains a counter for the maximum number of waiting
keep-alive connections. A waiting keep-alive connection has fully completed processing the
previous request, and is now waiting for a new request to arrive on the same connection. If the

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200954

server has more than the maximum waiting connections open when a new connection waits for
a keep-alive request, the server closes the oldest connection. This algorithm keeps an upper
bound on the number of open waiting keep-alive connections that the server can maintain.

Sun Java System Web Server does not always honor a keep-alive request from a client. The
following conditions cause the server to close a connection, even if the client has requested a
keep-alive connection:

■ The keep alive timeout is set to 0.
■ The keep alive maximum connections count is exceeded.
■ Dynamic content, such as a CGI, does not have an HTTP content-length header set. This

applies only to HTTP 1.0 requests. If the request is HTTP 1.1, the server honors keep-alive
requests even if the content-length is not set. The server can use chunked encoding for
these requests if the client can handle them (indicated by the request header
transfer-encoding: chunked).

■ The request is not HTTP GET or HEAD.
■ The request was determined to be bad. For example, if the client sends only headers with no

content.

The keep-alive subsystem in Web Server is designed to be massively scalable. The
out-of-the-box configuration can be less than optimal if the workload is non-persistent (that is,
HTTP 1.0 without the KeepAlive header), or for a lightly loaded system that’s primarily
servicing keep-alive connections.

Keep-Alive Count
This section in perfdump has two numbers:

■ Number of connections in keep-alive mode, also known as the total number of connections
added

■ Maximum number of connections allowed in keep-alive mode simultaneously, also known
as the maximum connection size

Tuning

You can tune the maximum number of connections that the server allows to wait at one time
before closing the oldest connection in the Admin Console by editing the Maximum
Connections field on the configuration's Performance tab ⇒ HTTP tab, under Keep Alive
Settings. The default is based on the number of available file descriptors in the system. In the
command-line interface, use the max-connections property in the wadm
set-keep-alive-prop command.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 55

Note – The number of connections specified by the maximum connections setting is divided
equally among the keep-alive threads. If the maximum connections setting is not equally
divisible by the keep-alive threads setting, the server might allow slightly more than the
maximum number of simultaneous keep-alive connections.

Keep-Alive Hits
The keep-alive hits, or the number of connections processed, is the number of times a request
was successfully received from a connection that was kept alive.

This setting is not tunable.

Keep-Alive Flushes
The number of times the server had to close a connection because the total number of
connections added exceeded the keep-alive maximum connections setting. The server does not
close existing connections when the keep-alive count exceeds the maximum connection size.
Instead, new keep-alive connections are refused and the number of connections refused count
is incremented.

Keep-Alive Refusals
The number of times the server could not complete the connection to a keep-alive thread,
possibly due to too many persistent connections (or when total number of connections added
exceeds the keep-alive maximum connections setting). The suggested tuning is to increase the
keep-alive maximum connections.

Keep-Alive Timeouts
The number of times the server closed idle keep-alive connections because client connections
timed out without any activity. This statistic is useful to monitor; no specific tuning is advised.

Keep-Alive Timeout
The time, measured in seconds, before idle keep-alive connections are closed. Set this value in
the Admin Console in the Timeout field on the configuration's Performance tab ⇒ HTTP tab,
under Keep Alive Settings. The default is 30 seconds, meaning the connection times out if idle
for more than 30 seconds. The maximum is 3600 seconds (60 minutes). In the command-line
interface, use the timeout property in the wadm set-keep-alive-prop command.

Keep-Alive Poll Interval
The keep-alive poll interval specifies the interval in seconds at which the system polls keep-alive
connections for further requests. The default is 0.001 second, the lowest value allowed. It is set
to a low value to enhance performance at the cost of CPU usage.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200956

To tune the poll interval, edit the Poll Interval field on the configuration's Performance tab ⇒
HTTP tab, under Keep Alive Settings. In the command-line interface, use the poll-interval
property in the wadm set-keep-alive-prop command.

Keep-Alive Threads
You can configure the number of threads used in the keep-alive system in the Admin Console
by editing the Threads field on the configuration's Performance tab ⇒ HTTP tab, under Keep
Alive Settings. The default is set to the number of processors in the system. In the
command-line interface, use the threads property in the wadm set-keep-alive-prop
command.

Tuning for HTTP 1.0-Style Workload
Since HTTP 1.0 results in a large number of new incoming connections, the default acceptor
threads of 1 per listen socket would be suboptimal. Increasing this to a higher number should
improve performance for HTTP 1.0-style workloads. For instance, for a system with 2 CPUs,
you might want to set it to 2. You might also want to reduce the keep-alive connections, for
example, to 0.

HTTP 1.0-style workloads can have many connections established and terminated.

If users are experiencing connection timeouts from a browser to Web Server when the server is
heavily loaded, you can increase the size of the HTTP listener backlog queue by setting the
HTTP listener listen queue size to a larger value, such as 8192.

The HTTP listener listen queue specifies the maximum number of pending connections on a
listen socket. Connections that time out on a listen socket whose backlog queue is full fail.

Tuning for HTTP 1.1-Style Workload
While tuning server-persistent connection handling, balancing throughput and latency is a
challenge. The keep-alive poll interval and timeout control latency. Lowering the value of these
settings is intended to lower latency on lightly loaded systems, for example, to reduce page load
times. Increasing the values of these settings is intended to raise aggregate throughput on
heavily loaded systems, for example, by increasing the number of requests per second the server
can handle. However, if there's too much latency and too few clients, aggregate throughput
suffers as the server sits idle unnecessarily. As a result, the general keep-alive subsystem tuning
rules at a particular load are as follows:
■ If there's idle CPU time, decrease the poll interval.
■ If there's no idle CPU time, increase the poll interval.

Also, chunked encoding could affect the performance for HTTP 1.1 workload. Tuning the
response buffer size can positively affect the performance. A higher response buffer size in the
configuration's Performance tab ⇒ HTTP tab would result in sending a Content-length:
header, instead of chunking the response. To set the buffer size using the CLI, use the wadm
set-http-prop command's output-buffer-size property.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 57

You can also set the buffer size for a Service-class function in the obj.conf file, using the
UseOutputStreamSize parameter. UseOutputStreamSize overrides the value set using the
output-buffer-size property. If UseOutputStreamSize is not set, Web Server uses the
output-buffer-size setting. If the output-buffer-size is not set, Web Server uses the
output-buffer-size default value of 8192.

The following example shows using the CLI to increase the output buffer size, then deploying
the configuration (used if UseOutputStreamSize is not specified in obj.conf):

./wadm set-http-prop --user=admin-user --password-file=admin-password-file
--config=config-name output-buffer-size=16384

./wadm deploy-config --user=admin-user --password-file=admin-password-file
--config=config-name

The following example shows setting the buffer size for the nsapi_test Service function:

<Object name="nsapitest">
ObjectType fn="force-type" type="magnus-internal/nsapitest"
Service method=(GET) type="magnus-internal/nsapitest" fn="nsapi_test"
UseOutputStreamSize=12288

</Object>

Session Creation and Thread Information
Session (thread) creation statistics are displayed in perfdump as follows:

SessionCreationInfo:

Active Sessions 128

Keep-Alive Sessions 0

Total Sessions Created 128/128

Active Sessions shows the number of sessions (request processing threads) currently
servicing requests.

Keep-Alive Sessions shows the number of HTTP request processing threads serving
keep-alive sessions.

Total Sessions Created in perfdump shows both the number of sessions that have been
created and the maximum threads. Web Server can also service certain type of requests such as
cached static content from the keep alive threads. Therefore, the maximum threads is the sum
of the maximum threads configured in the thread-pool element in the server.xml file and the
number of keep alive threads. For more information, see “Accelerator Hit Ratio” on page 62.

The equivalent information as the Total Number of Threads is available through the Admin
Console from the Monitoring tab ⇒ Instances sub tab, under General Statistics. To see the

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200958

maximum threads allowed, see the Maximum Threads field on the configuration's Performance
tab ⇒ HTTP sub tab, under Thread Pool Settings.

To get the equivalent of the perfdump Active Sessions, you can subtract the Number of Idle
Threads from the Total Number of Threads.

Maximum Threads (Maximum Simultaneous Requests)
The maximum threads setting specifies the maximum number of simultaneous transactions
that the Web Server can handle. The default value is greater of 128 or the number of processors
in the system. Changes to this value can be used to throttle the server, minimizing latencies for
the transactions that are performed. The Maximum Threads value acts across multiple virtual
servers, but does not attempt to load balance. It is set for each configuration.

Reaching the maximum number of configured threads is not necessarily undesirable, and you
do not need to automatically increase the number of threads in the server. Reaching this limit
means that the server needed this many threads at peak load, but as long as it was able to serve
requests in a timely manner, the server is adequately tuned. However, at this point connections
queue up in the connection queue, potentially overloading it. If you monitor your server's
performance regularly and notice that total sessions created number is often near the maximum
number of threads, consider increasing your thread limits.

To compute the number of simultaneous requests, the server counts the number of active
requests, adding one to the number when a new request arrives, subtracting one when it finishes
the request. When a new request arrives, the server checks to see if it is already processing the
maximum number of requests. If it has reached the limit, it defers processing new requests until
the number of active requests drops below the maximum amount.

In theory, you can set the maximum threads to 1 and still have a functional server. Setting this
value to 1 would mean that the server could only handle one request at a time, but since HTTP
requests for static files generally have a very short duration. Response time can be as low as 5
milliseconds. Processing one request at a time still allows you to process up to 200 requests per
second.

However, in actuality, Internet clients frequently connect to the server and then do not
complete their requests. In these cases, the server waits 30 seconds or more for the data before
timing out. You can define this timeout period using the IO Timeout setting on the
configuration's Performance tab ⇒ HTTP Settings page. You can also use the command wadm

set-http-prop and set the io-timeout property. The default value is 30 seconds. By setting the
default value to less than 30 seconds you can free up threads sooner, but you might also
disconnect users with slower connections. Also, some sites perform heavyweight transactions
that take minutes to complete. Both of these factors add to the maximum simultaneous requests
that are required. If your site is processing many requests that take many seconds, you might
need to increase the number of maximum simultaneous requests.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 59

Suitable maximum threads values range from 100-500, depending on the load. Maximum
Threads represents a hard limit for the maximum number of active threads that can run
simultaneously, which can become a bottleneck for performance.

The thread pool minimum threads is the minimum number of threads the server initiates upon
startup. The default is set to number of processors.

Note – When configuring Web Server to be used with the Solaris Network Cache and
Accelerator (SNCA), setting the maximum threads and the queue size to 0 provides better
performance. Because SNCA manages the client connections, it is not necessary to set these
parameters. These parameters can also be set to 0 with non-SNCA configurations, especially for
cases in which short latency responses with no keep-alives must be delivered. It is important to
note that the maximum threads and queue size must both be set to 0.

For information about using SNCA, see “Using the Solaris Network Cache and Accelerator
(SNCA)” on page 103.

Tuning
You can increase your thread limits in the Admin Console by editing the Maximum Threads
field on the configuration's Performance tab ⇒ HTTP tab, under Thread Pool Settings. In the
command-line interface, use the wadm set-thread-pool-prop command's max-threads
property. The default value is greater of 128 or the number of processors in the system.

File Cache Statistics Information
The cache information section provides statistics on how your file cache is being used. The file
cache caches static content so that the server handles requests for static content quickly. The file
cache contains information about files and static file content. The file cache also caches
information that is used to speed up processing of server-parsed HTML. For servlets and JSPs,
other kinds of caching are used.

For sites with scheduled updates to content, consider shutting down the cache while the content
is being updated, and starting it again after the update is complete. Although performance slows
down, the server operates normally when the cache is off.

For performance reasons, Web Server caches as follows:

■ For small files, it caches the content in memory (heap).
■ For medium files, it caches the content using mmap.
■ For large files, it caches the open file descriptors to avoid opening and closing files.

The following is an example of how the cache statistics are displayed in perfdump:

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200960

CacheInfo:

File Cache Enabled yes

File Cache Entries 141/1024

File Cache Hit Ratio 652/664 (98.19%)

Maximum Age 30

Accelerator Entries 120/1024

Acceleratable Requests 281/328 (85.67%)

Acceleratable Responses 131/144 (90.97%)

Accelerator Hit Ratio 247/281 (87.90%)

The following table shows the file cache statistics as displayed in the Admin Console:

TABLE 2–4 File Cache Statistics

Total Cache Hits 46

Total Cache Misses 52

Total Cache Content Hits 0

Number of File Lookup Failures 9

Number of File Information Lookups 37

Number of File Information Lookup Failures 50

Number of Entries 12

Maximum Cache Size 1024

Number of Open File Entries 0

Number of Maximum Open Files Allowed 1024

Heap Size 36064

Maximum Heap Cache Size 10735636

Size of Memory Mapped File Content 0

Maximum Memory Mapped File Size 0

Maximum Age of Entries 30

Accelerator Entries
The number of files that have been cached in the accelerator cache.

Tuning

You can increase the maximum number of accelerator cache entries by increasing the number
of file cache entries as described in “File Cache Entries” on page 63. Note that this number will

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 61

typically be smaller than the File Cache Entries number because the accelerator cache only
caches information about files and not directories. If the number is significantly lower than the
File Cache Entries number, you can improve the accelerator cache utilization by following the
tuning information described in “Acceleratable Requests” on page 62 and “Acceleratable
Responses” on page 62.

Acceleratable Requests
The number of client requests that were eligible for processing by the accelerator cache. Only
simple GET requests are processed by the accelerator cache. The accelerator cache does not
process requests that explicitly disable caching, for example, requests sent when a user clicks
Reload in the browser and requests that include a query string, that is, requests for URLs that
include a ? character.

Tuning

To maximize the number of acceleratable requests, structure your web sites to use static files
when possible and avoid using query strings in requests for static files.

Acceleratable Responses
The number of times the response to an acceleratable request was eligible for addition to the
accelerator cache.

Tuning

When the server serves a static file from the file cache, the accelerator cache may be able to cache
the response for faster processing on subsequent requests. To maximize performance,
maximize the number of responses that can be accelerated. In the default configuration, all
responses to requests for static files can be cached in the accelerator cache. The following
configuration changes may prevent a response from being accelerated:

■ ACLs that deny read access
■ Additional directives in the default object of the obj.conf file, including third party plug-ins
■ Using <Client> or <If> in the default object of the obj.conf file
■ Custom access log formats
■ Java Servlet filters

To maximize the number of responses that can be accelerated, avoid such configurations.

Accelerator Hit Ratio
The number of times the response for a request that can be accelerated was found in the
accelerator cache. Web Server can also serve requests from the accelerator cache

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200962

asynchronously directly from the keep-alive threads thereby bypassing the connection queue
altogether. This leads to improved performance for these requests and at the same time reduces
contention on the connection queue.

Tuning

Higher hit ratios result in better performance. To maximize the hit ratio, see the tuning
information for “Acceleratable Responses” on page 62.

File Cache Enabled
If the cache is disabled, the rest of this section is not displayed in perdump. In the Admin
Console, the File Cache Statistics section shows zeros for the values.

Tuning

The cache is enabled by default. You can disable it in the Admin Console by deselecting the File
Cache Enabled box on the configuration's Performance tab ⇒ Cache sub tab, under File Cache.
To disable it using the command-line-interface, use wadm set-file-cache-prop and set the
enabled property to false.

File Cache Entries
The number of current cache entries and the maximum number of cache entries are both
displayed in perfdump. In the Admin Console, they are called the Number of Entries and the
Maximum Cache Size. A single cache entry represents a single URI.

Tuning

The optimal file cache size is dependent on whether you are running a 32-bit or a 64-bit server.
The available address space for a 32–bit server is limited to 4GB. The max-entries for file cache
is based on the amount of Java heap, the number of threads (as specified by
thread-pool/max-threads), and the connection queue size. It is recommended to cache small,
frequently accessed static files in the file cache and use perfdump to ensure that the file cache hit
ratio is close to 100%. To achieve this, you may increase file cache size and fine tune the
max-entries for optimal performance. In a 64-bit server, due to the increased availability of
address space, you can cache more static content in the file cache.

You can set the maximum number of cached entries in the Admin Console in the Maximum
Entries field on the configuration's Performance tab ⇒ Cache tab, under File Cache. In the
command-line interface, use wadm set-file-cache-prop and set the max-entries property.
The default is 1024. The range of values is 1-1048576.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 63

File Cache Hit Ratio (Cache Hits / Cache Lookups)
The hit ratio available through perfdump gives you the number of file cache hits compared to
cache lookups. Numbers approaching 100% indicate that the file cache is operating effectively,
while numbers approaching 0% indicate that the file cache is not serving many requests.

To figure this number yourself using the statistics provided through the Admin Console, divide
the Total Cache Hits by the sum of the Total Cache Hits and the Total Cache Misses.

This setting is not tunable.

Maximum Age
This field displays the maximum age of a valid cache entry. The parameter controls how long
cached information is used after a file has been cached. An entry older than the maximum age is
replaced by a new entry for the same file.

Tuning

Set the maximum age based on whether the content is updated (existing files are modified) on a
regular schedule. For example, if content is updated four times a day at regular intervals, you
can set the maximum age to 21600 seconds (6 hours). Otherwise, consider setting the
maximum age to the longest time you are willing to serve the previous version of a content file
after the file has been modified. If your web site’s content changes infrequently, you might want
to increase this value for improved performance.

Set the maximum age in the Admin Console in the Maximum Age field on the configuration's
Performance tab ⇒ Cache tab, under File Cache. In the command-line interface, use wadm
set-file-cache-prop and change the max-age property. The default value is 30 seconds. The
range of values is 0.001-3600.

Maximum Heap Cache Size
The optimal cache heap size depends upon how much system memory is free. A larger heap size
means that the Web Server can cache more content and therefore obtain a better hit ratio.
However, the heap size should not be so large that the operating system starts paging cached
files.

Tuning

Set the maximum heap size in the Admin Console in the Maximum Heap Space Size field on the
configuration's Performance tab ⇒ Cache tab, under File Cache. In the command-line
interface, use wadm set-file-cache-prop and change the max-heap-space property. The
default value is 10485760 bytes. The range of values is 0-9223372036854775807. In a 32–bit
Web Server, since processes have four GBs of address space for the file cache, the value should
be well under four GB.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200964

Using the nocache Parameter
You can use the parameter nocache for the Service function send-file to specify that files in a
certain directory are not cached. Make this change by editing obj.conf. For example, if you
have a set of files that changes too rapidly for caching to be useful, you can put them into a
directory and instruct the server not to cache files in that directory by editing obj.conf.

Example
<Object name=default>

...

NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir"
name="myname"
...

Service method=(GET|HEAD|POST) type=*~magnus-internal/*

fn=send-file

...

</Object>

<Object name="myname">
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

nocache=""
</Object>

In the previous example, the server does not cache static files from /export/mydir/ when
requested by the URL prefix /myurl. For more information on editing obj.conf, see Sun Java
System Web Server 7.0 Update 6 Administrator’s Configuration File Reference.

Using sendfile-size to Pace Large Files
When file-cache/sendfile is set to true, Web Server uses the operating system sendfile call
to service large static files from the file cache. The performance of serving such files from the file
cache can be improved by limiting the number of bytes sent by a single sendfile call. Using a
non zero value for file-cache/sendfile-size will send the file in chunks, where the chunk
size is at the most the size of sendfile-size.

Tuning

While serving large files, for example, movie files, consider tuning the
file-cache/sendfile-size. A sendfile-size of 1MB can provide improved performance
compared to the default sendfile-size of zero. You can set the sendfile-size in Admin
Console by editing Sendfile Size field on the configuration's Performance tab ⇒ Cache tab,
under File Cache. In the command-line interface, use wadm set-file-cache-prop command's
sendfile-size property.

File Cache Dynamic Control and Monitoring
File Cache stores file contents in the memory. You can add an object to obj.conf to
dynamically monitor and control the file cache while the server is running.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 65

http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7986

▼ To Control and Monitor the File Cache

Add a NameTransdirective to the default object:
NameTrans fn="assign-name" from="/nsfc" name="nsfc"

Add an nsfcobject definition:
<Object name="nsfc">
Service fn="service-nsfc-dump"
</Object>

This configuration enables the file cache control and monitoring function (nsfc-dump) to be
accessed through the URI /nfsc. To use a different URI, change the from parameter in the
NameTrans directive.

The following is an example of the information you receive when you access the URI:

Sun Java System File Cache Status (pid 3602)

The file cache is enabled.

Cache resource utilization

Number of cached file entries = 174968 (152 bytes each, 26595136 total bytes)

Heap space used for cache = 1882632616/1882632760 bytes

Mapped memory used for medium file contents = 0/1 bytes

Number of cache lookup hits = 47615653/48089040 (99.02 %)

Number of hits/misses on cached file info = 23720344/324195

Number of hits/misses on cached file content = 16247503/174985

Number of outdated cache entries deleted = 0

Number of cache entry replacements = 0

Total number of cache entries deleted = 0

Parameter settings

ReplaceFiles: false

ReplaceInterval: 1 milliseconds

HitOrder: false

CacheFileContent: true

TransmitFile: false

MaxAge: 3600 seconds

MaxFiles: 600000 files

SmallFileSizeLimit: 500000 bytes

MediumFileSizeLimit: 1000001 bytes

BufferSize: 8192 bytes

CopyFiles: false

Directory for temporary files: /tmp

Hash table size: 1200007 buckets

1

2

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200966

You can include a query string when you access the URI. The following values are recognized:

■ ?list: Lists the files in the cache.
■ ?refresh=n: Causes the client to reload the page every n seconds.
■ ?restart: Causes the cache to be shut down and then restarted.
■ ?start: Starts the cache.
■ ?stop: Shuts down the cache.

If you choose the ?list option, the file listing includes the file name, a set of flags, the current
number of references to the cache entry, the size of the file, and an internal file ID value. The
flags are as follows:

■ C: File contents are cached.
■ D: Cache entry is marked for delete.
■ E: PR_GetFileInfo() returned an error for this file.
■ I: File information including size and modification date is cached.
■ M: File contents are mapped into virtual memory.
■ O: File descriptor is cached (when TransmitFile is set to true).
■ P: File has associated private data and appears on shtml files.
■ T: Cache entry has a temporary file.
■ W: Cache entry is locked for write access.

Thread Pool Information
If you are using the default settings, threads from the default thread pool process the request.
However, you can also create custom thread pools and use them to run custom NSAPI
functions. By default, Web Server creates one additional pool, named NativePool. In most
cases, the native thread pool is only needed on the Windows platform. For more information on
thread pools, see “Understanding Threads, Processes, and Connections” on page 40.

Native Thread Pool
The following example shows native thread pool information as it appears in perfdump:

Native pools:

NativePool:

Idle/Peak/Limit 1/1/128

Work Queue Length/Peak/Limit 0/0/0

my-custom-pool:

Idle/Peak/Limit 1/1/128

Work Queue Length/Peak/Limit 0/0/0

If you have defined additional custom thread pools, they are shown under the Native Pools
heading in perfdump.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 67

The following table shows the thread pool statistics as they appear in the Admin Console. If you
have not defined additional thread pools, only the NativePool is shown:

TABLE 2–5 Thread Pools Statistics

Name NativePool

Idle Threads 1

Threads 1

Requests Queued 0

Peak Requests Queued 0

Idle /Peak /Limit
Idle, listed as Idle Threads in the Admin Console, indicates the number of threads that are
currently idle. Peak indicates the peak number of threads in the pool. Limit, listed as Threads in
the Admin Console, indicates the maximum number of native threads allowed in the thread
pool, and for NativePool is determined by the setting of NativePoolMaxThreads in the
magnus.conf file.

Tuning

You can modify the maximum threads for NativePool by editing the NativePoolMaxThreads
parameter in magnus.conf. For more information, see “NativePoolMaxThreads Directive” on
page 70.

Work Queue Length /Peak /Limit
These numbers refer to a queue of server requests that are waiting for the use of a native thread
from the pool. The Work Queue Length is the current number of requests waiting for a native
thread, which is represented as Requests Queued in the Admin Console.

Peak indicates peak requests queued in the Admin Console and is the highest number of
requests that were ever queued up simultaneously for the use of a native thread since the server
was started. This value can be viewed as the maximum concurrency for requests requiring a
native thread.

Limit is the maximum number of requests that can be queued at one time to wait for a native
thread, and is determined by the setting of NativePoolQueueSize.

Tuning

You can modify the queue size for NativePool by editing the NativePoolQueueSize directive in
magnus.conf. For more information, see “NativePoolQueueSize Directive” on page 69.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200968

NativePoolStackSize Directive
The NativePoolStackSize determines the stack size in bytes of each thread in the native
(kernel) thread pool.

Tuning

You can modify the NativePoolStackSize by editing the NativePoolStackSize directive in
magnus.conf.

NativePoolQueueSize Directive
The NativePoolQueueSize determines the number of threads that can wait in the queue for the
thread pool. If all threads in the pool are busy, then the next request-handling thread that needs
to use a thread in the native pool must wait in the queue. If the queue is full, the next
request-handling thread that tries to get in the queue is rejected, with the result that it returns a
busy response to the client. It is then free to handle another incoming request instead of being
tied up waiting in the queue.

Setting the NativePoolQueueSize lower than the maximum threads value causes the server to
execute a busy function instead of the intended NSAPI function whenever the number of
requests waiting for service by pool threads exceeds this value. The default returns a “503
Service Unavailable” response and logs a message, depending on your log level setting. Setting
the NativePoolQueueSize higher than the maximum threads causes the server to reject
connections before a busy function can execute.

This value represents the maximum number of concurrent requests for service that require a
native thread. If your system is unable to fulfill requests due to load, allowing more requests
queue up increases the latency for requests, and could result in all available request threads
waiting for a native thread. In general, set this value to be high enough to avoid rejecting
requests by anticipating the maximum number of concurrent users who would execute requests
requiring a native thread.

The difference between this value and the maximum threads is the number of requests reserved
for non-native thread requests, such as static HTML and image files. Keeping a reserve and
rejecting requests ensures that your server continues to fill requests for static files, which
prevents it from becoming unresponsive during periods of very heavy dynamic content load. If
your server consistently rejects connections, this value is either set too low, or your server
hardware is overloaded.

Tuning

You can modify the NativePoolQueueSize by editing the NativePoolQueueSize directive in
magnus.conf.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 69

NativePoolMaxThreads Directive
NativePoolMaxThreads determine the maximum number of threads in the native (kernel)
thread pool.

A higher value allows more requests to execute concurrently, but has more overhead due to
context switching, so bigger is not always better. Typically, you do not need to increase this
number, but if the CPU is not saturated and you see requests queue up, then increase this
number.

Tuning

You can modify the NativePoolMaxThreads by editing the NativePoolMaxThreads parameter
in magnus.conf.

NativePoolMinThreads Directive
Determines the minimum number of threads in the native (kernel) thread pool.

Tuning

You can modify the NativePoolMinThreads by editing the NativePoolMinThreads parameter
in magnus.conf.

DNS Cache Information
The DNS cache caches IP addresses and DNS names. Web Server uses DNS caching for logging
and for access control by IP address. DNS cache is enabled by default. The following example
shows DNS cache information as displayed in perfdump:

DNSCacheInfo:

enabled yes

CacheEntries 4/1024

HitRatio 62854802/62862912 (99.99%)

AsyncDNS Data:

enabled yes

NameLookups 0

AddrLookups 0

LookupsInProgress 0

The following example shows the DNS Cache information as displayed in the Admin Console:

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200970

TABLE 2–6 DNS Cache Statistics

Total Cache Hits 62854802

Total Cache Misses 6110

Number of Asynchronous Lookups 0

Lookups in Progress 4

Asynchronous Lookups Enabled 1

Number of Asynchronous Address Lookups
Performed

0

Enabled
If the DNS cache is disabled, the rest of this section is not displayed in perfdump. In the Admin
Console, the page displays zeros.

Tuning

By default, the DNS cache is on. You can enable or disable DNS caching in the Admin Console
on the configuration's Performance tab ⇒ DNS sub tab, under DNS Cache Settings and
selecting or deselecting the DNS Cache Enabled box. To enable or disable it using the
command-line-interface, use wadm set-dns-cache-prop and set the enabled property.

Cache Entries (Current Cache Entries / Maximum Cache Entries)
This section in perfdump shows the number of current cache entries and the maximum number
of cache entries. In the Admin Console the current cache entries are shown as Total Cache Hits.
A single cache entry represents a single IP address or DNS name lookup. The cache should be as
large as the maximum number of clients that access your web site concurrently. Note that
setting the cache size too high wastes memory and degrades performance.

Tuning

You can set the maximum size of the DNS cache in the Admin Console in the Maximum Cache
Size field on the configuration's Performance tab ⇒ DNS sub tab, under DNS Cache Settings.
To set it using the command-line-interface, use wadm set-dns-cache-prop and set the
max-entries property. The default cache size is 1024. The value range is 2-32768.

Hit Ratio of Cache Hits and Lookups
The hit ratio in perfdump displays the number of cache hits compared to the number of cache
lookups. You can compute this number using the statistics in the Admin Console by dividing
the Total Cache Hits by the sum of the Total Cache Hits and the Total Cache Misses.

This setting is not tunable.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 71

Async DNS Enabled/Disabled
Async DNS enabled/disabled displays whether the server uses its own asynchronous DNS
resolver instead of the operating system's synchronous resolver. By default, Async DNS is
disabled. If it is disabled, this section does not appear in perfdump. To enable it using the Admin
Console, on the configuration's Performance tab ⇒ DNS tab, under DNS Lookup Settings,
select Asynchronous DNS. To enable it using the command-line interface, use wadm
set-dns-prop and set the async property to true.

Java Virtual Machine (JVM) Information
JVM statistics are displayed through the Admin Console, the CLI, and stats-xml only. They
are not shown in perfdump.

The following table shows an example of the JVM statistics displayed in the Admin Console:

TABLE 2–7 Java Virtual Machine (JVM) Statistics

Virtual Machine Name Java HotSpotTM Server VM

Virtual Machine Vendor Sun Microsystems Inc.

Virtual Machine Version 1.5.0_06-b05

Heap Memory Size 5884856

Elapsed Garbage Collection Time (milli seconds) 51

Present Number of Classes Loaded 1795

Total Number of Classes Loaded 1795

Total Number of Classes Unloaded 0

Number of Garbage Collections Occurred 3

Number of Live Threads 8

Number of Started Threads 9

Peak Live Thread Count 8

Most of these statistics are not tunable. They provide information about the JVM's operation.

Another source of tuning information on the JVM is the package java.lang.management,
which provides the management interface for monitoring and management of the JVM. For
more information on this package, see http://java.sun.com/
j2se/1.5.0/docs/api/java/lang/management/package-summary.html.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200972

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/management/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/management/package-summary.html

Java Heap Tuning
As with all Java programs, the performance of the web applications in the Web Server is
dependent on the heap management performed by the JVM. Balancing times and throughput is
a challenge. For more information, read the performance documentation for the Java HotSpot
virtual machine, which can be found at http://java.sun.com/docs/hotspot/index.html.

Specific documents of interest include “Tuning Garbage Collection with the 5.0 Java Virtual
Machine” (http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html) and
“Ergonomics in the 5.0 Java Virtual Machine” (http://java.sun.com/docs/hotspot/gc5.0/
ergo5.html).

JVM options can be specified in the Admin Console on the configuration's Java tab ⇒ JVM
Settings sub tab. In the CLI, use the wadm commands set-jvm-prop and
set-jvm-profiler-prop.

Web Application Information
Web application statistics are displayed through the Admin Console, wadm get-config-stats
command), and stats-xml only. They are not shown in perfdump.

▼ To Access Web Application Statistics From the Admin Console

From the Common Tasks page, choose the Monitoring tab.

Click the configuration name to view web application statistics for the configuration. To view
web application statistics for the instance, click the Instance sub tab and the instance name.

On the Monitoring Statistics page, click Virtual Server Statistics.

Click the virtual server name.

On the Virtual Server Monitoring Statistics page, click Web Applications.

Select the web application for which to view statistics from the Web Application pull-down
menu.

Web Application Statistics
The following table shows an example of the Web Application statistics displayed in the Admin
Console:

1

2

3

4

5

6

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 73

http://java.sun.com/docs/hotspot/index.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/ergo5.html
http://java.sun.com/docs/hotspot/gc5.0/ergo5.html

TABLE 2–8 Web Application Statistics

Number of JSPs Loaded 1

Number of JSPs Reloaded 1

Total Number of Sessions Serviced 2

Number of Sessions Active 2

Peak Number of Active Sessions 2

Number of Sessions Rejected 0

Number of Sessions Expired 0

Average Time (seconds) that expired sessions had
been alive

0

Longest Time (seconds) for which an expired session
was alive

0

For more information on tuning, see “Tuning Java Web Application Performance” on page 80.
Also see Sun Java System Web Server 7.0 Update 6 Developer’s Guide to Java Web Applications.

JDBC Resource Information
A JDBC resource is a named group of JDBC connections to a database. A JDBC resource defines
the properties used to create a connection pool. Each JDBC resource uses a JDBC driver to
establish a connection to a physical database when the server is started. A pool of connections is
created when the first request for connection is made on the pool after you start Web Server.

A JDBC-based application or resource draws a connection from the pool, uses it, and when no
longer needed, returns it to the connection pool by closing the connection. If two or more JDBC
resources point to the same pool definition, they use the same pool of connections at run time.

The use of connection pooling improves application performance by doing the following:

■ Creating connections in advance. The cost of establishing connections is moved outside of
the code that is critical for performance.

■ Reusing connections. The number of times connections are created is significantly lowered.
■ Controlling the amount of resources a single application can use at any moment.

JDBC resources can be created and edited using the Admin Console's Java tab ⇒ Resources sub
tab for the configuration. You can also use the wadm create-jdbc-resource and
set-jdbc-resource-prop commands. For more information, see the Sun Java System Web
Server 7.0 Update 6 Administrator’s Guide.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200974

http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7985

Note – Each defined pool is instantiated during Web Server startup. However, the connections
are only created the first time the pool is accessed. Jump-start a pool before putting it under
heavy load.

JDBC resource statistics are available through the Admin Console, CLI, and stats.xml only.
They are not shown in perfdump. Some of the monitoring data is unavailable through the
Admin Console and can only be viewed through the CLI using wadm get-config-stats and
through the stats.xml output.

A pool is created on demand, that is, it is created the first time it is used. The monitoring
statistics are not displayed until the first time the pool is used.

JDBC Resource Statistics Available Through the Admin Console
The following table shows an example of the JDBC resource statistics displayed through the
Admin Console:

TABLE 2–9 JDBC Resource Statistics

Connections 32

Free Connections 0

Leased Connections 32

Average Queue Time 1480.00

Queued Connections 40

Connection Timeout 100

To change the settings for a JDBC resource through the Admin Console, for the configuration,
choose the Java tab ⇒ Resources sub tab. Select the JDBC resource. The settings are available on
the Edit JDBC Resource page. To change the JDBC resource through the
command-line-interface, use wadm set-jdbc-resource-prop.

Connections
This number shows the current JDBC connections, including both free and busy connections.

Tuning – This setting cannot be tuned, but it is a good indicator of recent pool activity. If the
number of connections is consistently higher than the minimum number of connections,
consider increasing the minimum number of connections to be closer to the number of current
JDBC connections. To change the minimum connections for a JDBC resource through the
Admin Console, on the Edit JDBC Resources page, edit the Minimum Connections setting. To
change the JDBC resource's minimum connections through the command-line-interface, use
wadm set-jdbc-resource-prop and change the min-connections property.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 75

Free Connections

This number shows the current number of free connections in the pool. All free connections
over the minimum pool size are closed if they are idle for more than the maximum idle timeout.
The free connections are not tunable.

Leased Connections

This number shows the current number of connections in use.

Tuning – If number of leased connections is consistently lower than the minimum
connections, consider reducing the minimum connections for the JDBC resource. If number of
leased connections is consistently higher than minimum connections, consider increasing the
minimum connections. If number of leased connections is consistently at the JDBC resource's
maximum number of connections, consider increasing the maximum number of connections.
The upper limit for the number of leased connections is the number of maximum connections.

To change the minimum or maximum connections for a JDBC resource through the Admin
Console, on the Edit JDBC Resource page, edit the Minimum Connections or Maximum
Connections fields. To change the JDBC resource's minimum or maximum connections
through the command-line-interface, use wadm set-jdbc-resource-prop and change the
min-connections or max-connections properties.

Queued Connections

This number shows the current number of requests for connections that are waiting to receive a
connection from the JDBC pool. Connection requests are queued if the current number of
leased connections has reached the maximum connections.

Tuning – If this number is consistently greater than zero, consider increasing the JDBC
resource's maximum connections. To change the maximum connections for a JDBC resource
through the Admin Console, edit the Maximum Connections field on the Edit JDBC Resource
page. To change the JDBC resource's maximum connections through the
command-line-interface, use wadm set-jdbc-resource-prop and change the
max-connections property.

JDBC Resource Statistics Not Available in the Admin Console
Some JDBC statistics are available through the wadm get-config-stats command using the
--node option, through stats-xml, and through SNMP, but not through the Admin Console.

maxConnections – The configured maximum size of the pool. Use as a reference for other
statistics. To change the maximum connections for a JDBC resource through the Admin
Console, on the Edit JDBC Resource page, edit the Maximum Connections field. To change the
JDBC resource's maximum connections through the command-line-interface, use wadm
set-jdbc-resource-prop and change the max-connections property.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200976

peakConnections – The highest number of connections that have been leased concurrently
during the history of the pool. This number is a good indication on the upper limit on pool
usage. It is limited by the maximum connections setting.

countTotalLeasedConnections – The total number of times a connection has been handed out
by the pool. Indicates total pool activity. Not tunable.

countTotalFailedValidationConnections – If connection validation is enabled, shows the
number of times a connection has been detected as invalid by the pool. If this number is
relatively high, it could signal database or network problems. Not tunable.

peakQueued – The highest number of connection requests that have been queued
simultaneously at any time during the lifetime of the pool. Not tunable.

millisecondsPeakWait – The maximum time in milliseconds that any connection request has
been in the wait queue. A high number is an indication of high pool activity. The upper limit is
the JDBC resource setting wait timeout.

countConnectionIdleTimeouts – The number of free connections that have been closed by the
pool because they exceeded the configured JDBC idle timeout. To change the idle timeout for a
JDBC resource through the Admin Console, on the Edit JDBC Resource page, edit the Idle
Timeout field. To change the JDBC resource's idle timeout through the
command-line-interface, use wadm set-jdbc-resource-prop and change the idle-timeout
property.

JDBC Resource Connection Settings
Depending on your application’s database activity, you might need to size JDBC resource
connection pool settings. Attributes of a JDBC resource which affect performance are listed
below, along with performance considerations when setting values.

■ Minimum connections
The size the pool keeps during the life of the server instance, and the initial size of the pool.
Defaults to 8. This number should be as close as possible to the expected average size of the
pool. Use a high number for a pool that is expected to be under heavy load, to minimize
creation of connections during the life of the application and minimize pool resizing. Use a
lower number if the pool load is expected to be small, to minimize resource consumption.

■ Maximum connections
The maximum number of connections that a pool can have at any given time. Defaults to 32.
Use this setting to enforce a limit in the amount of connection resources that a pool or
application can have. This limit is also beneficial to avoid application failures due to
excessive resource consumption.

■ Idle timeout

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 77

The maximum amount in seconds that a connection is ensured to remain unused in the
pool. After the idle timeout, connections are automatically closed. If necessary, new
connections are created up to the minimum number of connections to replace the closed
connection. Note that this setting does not control connection timeouts enforced at the
database server side. Defaults to 60 seconds.

Setting this attribute to –1 prevents the connections from being closed. This setting is used
for pools that expect continuous high demand. Otherwise, keep this timeout shorter than
the database server-side timeout (if such timeouts are configured on the specific vendor
database), to prevent accumulation of unusable connections in the pool.

■ Wait timeout

The amount of time in seconds that a request waits for a connection in the queue before
timing out. After this timeout, the user sees an error. Defaults to 60.

Setting this attribute to –1 causes a request for a connection to wait indefinitely. This setting
could also improve performance by keeping the pool from having to account for connection
timers.

■ Validation method

The method used by the pool to determine the health of a connections in the pool. Defaults
to off.

If a validation method is used, the pool executes a sanity check on a connection before
leasing it to an application.

The effectiveness and performance impact depends on the method selected:
■ meta-data is less expensive than table in terms of performance, but usually less

effective as most drivers cache the result and do not use the connection, providing false
results.

■ table is almost always effective, as it forces the driver to perform an SQL call to the
database, but it is also the most costly.

■ auto-commit can provide the best balance of effectiveness and performance cost, but a
number of drivers also cache the results of this method.

■ Validation Table Name

The user-defined table to use for validation when the validation method is table. Defaults
to test.

If this method is used, the table used should be dedicated only to validation, and the number
of rows in the table should be kept to a minimum.

■ Fail All Connections

Indicates whether all connections in the pool are re-created when one is found to be invalid,
or only the invalid one. Only applicable if you have selected a connection validation method.
Disabled by default.

Using Monitoring Data to Tune Your Server

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200978

If enabled, all of the re-creation is done in one step, and the thread requesting the
connection is heavily affected. If disabled, the load of re-creating connections is distributed
between the threads requesting each connection.

■ Transaction Isolation Level
Specifies the Transaction Isolation Level on the pooled database connections.
By default, the default isolation level of the connection is left intact. Setting it to any value
does incur the small performance penalty caused by the method call.

■ Guarantee Isolation
Only applicable if a transaction isolation level is specified. Defaults to disabled.
Leaving this setting disabled causes the isolation level to be set only when the connection is
created. Enabling sets the level every time the connection is leased to an application. In most
cases, leave this setting disabled.

Tuning the ACL User Cache
The ACL user cache is active by default. Because of the default size of the cache (200 entries), the
ACL user cache can be a bottleneck, or can simply not serve its purpose on a site with heavy
traffic. On a busy site, more than 200 users can hit ACL-protected resources in less time than the
lifetime of the cache entries. When this situation occurs, Web Server must query the LDAP
server more often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the maximum users of the ACL cache on the
configuration's Performance tab ⇒ Cache sub tab. You can also set the number of users by
setting the max-users property using the command wadm set-acl-cache-prop. Note that
increasing the cache size uses more resources; the larger you make the cache, the more RAM
you'll need to hold it.

There can also be a potential (but much harder to hit) bottleneck with the number of groups
stored in a cache entry (four by default). If a user belongs to five groups and hits five ACLs that
check for these different groups within the ACL cache lifetime, an additional cache entry is
created to hold the additional group entry. When there are two cache entries, the entry with the
original group information is ignored.

While it would be extremely unusual to hit this possible performance problem, the number of
groups cached in a single ACL cache entry can be tuned with Maximum Groups setting on the
configuration's Performance tab ⇒ Cache sub tab. Or you can use the max-groups-per-user
property of the wadm set-acl-cache-prop command.

The maximum age setting of the ACL cache determines the number of seconds before the cache
entries expire. Each time an entry in the cache is referenced, its age is calculated and checked
against the maximum age setting. The entry is not used if its age is greater than or equal to the
maximum age. The default value is 120 seconds. If your LDAP is not likely to change often, use a

Tuning the ACL User Cache

Chapter 2 • Tuning Sun Java System Web Server 79

large number for the maximum age. However, if your LDAP entries change often, use a smaller
value. For example, when the value is 120 seconds, the Web Server might be out of sync with the
LDAP server for as long as two minutes. Depending on your environment, that might or might
not be a problem.

Tuning Java Web Application Performance
This section contains information to help you improve the performance of your Java Web
Applications. This section includes the following topics:

■ “Using Precompiled JSPs” on page 80
■ “Using Servlet/JSP Caching” on page 81
■ “Configuring the Java Security Manager” on page 81
■ “Configuring Class Reloading” on page 81
■ “Avoiding Directories in the Classpath” on page 81
■ “Configuring the Web Application’s Session Settings” on page 82

In addition, see the following sections for other tuning information related to the Java Web
Applications:

■ “Java Virtual Machine (JVM) Information” on page 72
■ “JDBC Resource Information” on page 74

Using Precompiled JSPs
Compiling JSPs is a resource-intensive and relatively time-consuming process. By default, the
Web Server periodically checks to see if your JSPs have been modified and dynamically reloads
them. This allows you to deploy modifications without restarting the server. The
reload-interval property of the jsp-config element in sun-web.xml controls how often the
server checks JSPs for modifications. However, there is a small performance penalty for that
checking.

When the server detects a change in a .jsp file, only that JSP is recompiled and reloaded; the
entire web application is not reloaded.

If your JSPs don't change, you can improve performance by pre-compiling your JSPs.

When adding a web application, either through the Admin Console or CLI, choose the
precompile JSPs option. Enabling precompiled JSPs allows all the JSPs present in the web
application to be pre-compiled, and their corresponding servlet classes are grouped in the web
application's WEB-INF/lib or WEB-INF/classes directory. When a JSP is accessed, it is not
compiled and instead, its pre-compiled servlet is used. For more information on JSPs, see Sun
Java System Web Server 7.0 Update 6 Developer’s Guide to Java Web Applications. Also see
“Configuring Class Reloading” on page 81.

Tuning Java Web Application Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200980

http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983

Using Servlet/JSP Caching
If you spend a lot of time re-running the same servlet/JSP, you can cache its results and return
results out of the cache the next time it is run. This is useful for common queries that all visitors
to your site run: you want the results of the query to be dynamic because the results might
change daily, but you don't need to run the logic for every user.

To enable caching, you configure the caching parameters in the sun-web.xml file of your
application. For more details, see “Caching Servlet Results” in Sun Java System Web Server 7.0
Update 6 Developer’s Guide to Java Web Applications.

Configuring the Java Security Manager
Web Server supports the Java Security Manager. The main drawback of running the Security
Manager is that it negatively impacts performance. The Java Security Manager is disabled by
default when you install the product. Running the Web Server without the Security Manager
might improve performance significantly for some types of applications. Based on your
application and deployment needs, you should evaluate whether to run the Web Server with or
without the Security Manager. For more information, see Sun Java System Web Server 7.0
Update 6 Developer’s Guide to Java Web Applications.

Configuring Class Reloading
The dynamic reload interval of the servlet container and the dynamic-reload-interval of the
class-loader element in sun-web.xml control the frequency at which the server checks for
changes in servlet classes. When dynamic reloading is enabled and the server detects that a
.class file has changed, the entire web application is reloaded.

Set the dynamic reload interval on the configuration's Java tab ⇒ Servlet Container sub tab, or
using the wadm set-servelt-container-props command. In a production environment
where changes are made in a scheduled manner, set this value to 0 to prevent the server from
constantly checking for updates. The default value is 0 (that is, class reloading is disabled). For
more information about elements in sun-web.xml, see Sun Java System Web Server 7.0 Update 6
Developer’s Guide to Java Web Applications.

Avoiding Directories in the Classpath
For certain applications and especially if the Java Security Manager is enabled you can improve
performance by ensuring that there are no unneeded directories in the classpath. To do so,
change the Server Class Path, Class Path Prefix, and Class Path Suffix fields on the
configuration's Java tab ⇒ General sub tab for the configuration or use the command wadm

set-jvm-prop. Also, package the web application's .class files in a .jar archive in

Tuning Java Web Application Performance

Chapter 2 • Tuning Sun Java System Web Server 81

http://docs.sun.com/doc/820-7983/abxbp?a=view
http://docs.sun.com/doc/820-7983/abxbp?a=view
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983

WEB-INF/lib instead of packaging the .class files as is in WEB-INF/classes, and ensure that
the .war archive does not contain a WEB-INF/classes directory.

Configuring the Web Application’s Session Settings
If you have relatively short sessions, try decreasing the session timeout by configuring the value
of the timeOutSeconds property under the session-properties element in sun-web.xml from
the default value of 10 minutes.

If you have relatively long sessions, you can try decreasing the frequency at which the session
reaper runs by increasing the value of the reapIntervalSeconds property from the default
value of once every minute.

For more information about these settings, and about session managers, see Sun Java System
Web Server 7.0 Update 6 Developer’s Guide to Java Web Applications.

In multi-process mode when the persistence-type in sun-web.xml is configured to mmap, the
session manager uses cross-process locks to ensure session data integrity. These can be
configured to improve performance as described below.

Note – For Java technology-enabled servers, multi-process mode is deprecated and included for
backward-compatibility only.

Tuning maxLocks (UNIX/Linux)
The implication of the number specified in the maxLocks property can be gauged by dividing
the value of maxSessions with maxLocks. For example, if maxSessions = 1000 and you set
maxLocks = 10, then approximately 100 sessions (1000/10) contend for the same lock.
Increasing maxLocks reduces the number of sessions that contend for the same lock and might
improve performance and reduce latency. However, increasing the number of locks also
increases the number of open file descriptors, and reduces the number of available descriptors
that would otherwise be assigned to incoming connection requests.

For more information about these settings, see Chapter 6, “Session Managers,” in Sun Java
System Web Server 7.0 Update 6 Developer’s Guide to Java Web Applications.

Tuning MMapSessionManager (UNIX/Linux)
The following example describes the effect on process size when configuring the
persistence-type="mmap" using the manager-properties properties. For more information,
see “MMap Session Manager (UNIX Only)” in Sun Java System Web Server 7.0 Update 6
Developer’s Guide to Java Web Applications.

maxSessions = 1000

maxValuesPerSession = 10

maxValueSize = 4096

Tuning Java Web Application Performance

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200982

http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983/abxcz?a=view
http://docs.sun.com/doc/820-7983/abxcz?a=view
http://docs.sun.com/doc/820-7983/abxdx?a=view
http://docs.sun.com/doc/820-7983/abxdx?a=view

This example creates a memory mapped file of size 1000 X 10 X 4096 bytes, or ~40 MB. As this is
a memory mapped file, the process size will increase by 40 MB upon startup. The larger the
values you set for these parameters, the greater the increase in process size.

Tuning CGI Stub Processes (UNIX/Linux)
In Web Server, the CGI engine creates CGI stub processes as needed. On systems that serve a
large load and rely heavily on CGI-generated content, it is possible for the CGI stub processes to
consume all system resources. If this happens on your server, the CGI stub processes can be
tuned to restrict how many new CGI stub processes can be spawned, their timeout value, and
the minimum number of CGI stub process that run at any given moment.

Note – If you have an init-cgi function in the magnus.conf file running in multi-process mode,
you must add LateInit = yes to the init-cgi line.

Tune the following settings to control CGI stubs. These settings are on the configuration's
Performance Tab ⇒ CGI sub tab.
■ Minimum Stubs Size: Controls the number of processes that are started by default. The first

CGI stub process is not started until a CGI program has been accessed. The default value is
0. If you have an init-cgi directive in the magnus.conf file, the minimum number of CGI
stub processes are spawned at startup.

■ Maximum Stub Size: Controls the maximum number of CGI stub processes the server can
spawn. This is the maximum concurrent CGI stub processes in execution, not the
maximum number of pending requests. The default value is 16 and should be adequate for
most systems. Setting this value too high might actually reduce throughput.

■ CGI Stub Timeout: Causes the server to kill any CGI stub processes that have been idle for
the number of seconds set by this directive. Once the number of processes is at the
minimum stubs size, it does not kill any more processes. The default is 30.

■ CGI Timeout: Limits the maximum time in seconds that CGI processes can run. The default
is –1, which means there is no timeout.

Using find-pathinfo-forward
The find-pathinfo-forward parameter used in obj.conf can help improve performance. It is
used with the PathCheck function find-pathinfo and the NameTrans functions pfx2dir and
assign-name. The find-pathinfo-forward parameter instructs the server to search forward
for PATH_INFO in the path after ntrans-base, instead of backward from the end of the path in
the server function find-pathinfo. The find-pathinfo-forward parameter is not supported
within the Admin GUI. So, users need to manually edit the corresponding obj.conf file and
upload the changes to the admin config repository.

Using find-pathinfo-forward

Chapter 2 • Tuning Sun Java System Web Server 83

Note – The server ignores the find-pathinfo-forward parameter if the ntrans-base parameter
is not set in rq->vars when the server function find-pathinfo is called. By default,
ntrans-base is set.

Example

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"
dir="/export/home/cgi-bin" name="cgi"
NameTrans fn="assign-name" from="/perf"
find-pathinfo-forward="" name="perf"

This feature can improve performance for certain URLs by doing fewer stats in the server
function find-pathinfo. On the Windows platform, you can also use this feature to prevent
the server from changing "\\" to "/" when using the PathCheck server function find-pathinfo.

For more information about obj.conf, see the Sun Java System Web Server 7.0 Update 6
Administrator’s Configuration File Reference.

Using nostat
You can specify the parameter nostat in the obj.conf NameTrans function assign-name to
prevent the server from obtaining statistics on a specified URL whenever possible. Use the
following syntax:

nostat=virtual-path

Example

<Object name=default>

NameTrans fn="assign-name" from="/nsfc" nostat="/nsfc" name="nsfc"
</Object>

<Object name=nsfc>

Service fn=service-nsfc-dump

</Object>

In the previous example, the server does not obtain statistics for path /ntrans-base/nsfc and
/ntrans-base/nsfc/* if ntrans-base is set. If ntrans-base is not set, the server does not obtain
statistics for URLs /nsfc and /nsfc/*. By default, ntrans-base is set. The example assumes the
default PathCheck server functions are used.

When you use nostat= virtual-path in the assign-name NameTrans, the server assumes that the
statistics on the specified virtual-path will fail. Therefore, use nostat only when the path of the
virtual-path does not exist on the system, for example, in NSAPI plug-in URLs. Using nostat
on those URLs improves performance by avoiding unnecessary statistics on those URLs.

Using nostat

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200984

http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7986

For more information about obj.conf, see the Sun Java System Web Server 7.0 Update 6
Administrator’s Configuration File Reference.

Using Busy Functions
The default busy function returns a "503 Service Unavailable" response and logs a message
depending upon the log level setting. You might want to modify this behavior for your
application. You can specify your own busy functions for any NSAPI function in the obj.conf
file by including a service function in the configuration file in this format:

busy="my-busy-function"

For example, you could use this sample service function:

Service fn="send-cgi" busy="service-toobusy"

This function allows different responses if the server become too busy in the course of
processing a request that includes a number of types (such as Service, AddLog, and PathCheck).
Note that the busy function applies to all functions that require a native thread to execute when
the default thread type is non-native.

To use your own busy function instead of the default busy function for the entire server, you can
write an NSAPI init function that includes a func_insert call as shown below:

extern "C" NSAPI_PUBLIC int my_custom_busy_function

(pblock *pb, Session *sn, Request *rq);

my_init(pblock *pb, Session *, Request *){func_insert

("service-toobusy", my_custom_busy_function);}

Busy functions are never executed on a pool thread, so you must be careful to avoid using
function calls that could cause the thread to block.

Using Large Pages Support
In Sun Java System Web Server (especially in 64–bit systems), as the process address space
becomes bigger and bigger, the number of Translation Lookup Buffer (TLB) misses increases
significantly thereby slowing down the server.

A significant performance gain of 4–8% is observed in Sun Java System Web Server, by enabling
256M page support on CMT systems. It is observed that while running specweb ecommerce
php on Web Server, about 7% of the CPU time is spent to handle TLB misses (trapstat output).
Whereas, while running the same on Web Server CMT systems with 256M page support, the
CPU time spent to handle TLB misses is reduced to 2%.

Using Large Pages Support

Chapter 2 • Tuning Sun Java System Web Server 85

http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7986

The Solaris 9 and 10 systems, have Multiple Page Size Support (MPSS) feature which
significantly improves performance of a wide range of applications, by reducing the wastage of
CPU cycles in serving TLB misses.

To enable mpss support in 64–bit Web Server on CMT, add the following in bin/startserv:

LD_PRELOAD_64=/usr/lib/sparcv9/mpss.so.1; export LD_PRELOAD_64

MPSSHEAP=256M; export MPSSHEAP

To enable mpss support in 32–bit Web Server on CMT, add the following in bin/startserv:

LD_PRELOAD=/usr/lib/mpss.so.1; export LD_PRELOAD

MPSSHEAP=256M; export MPSSHEAP

For systems which have only 4M pages, add the following in bin/startserv:

LD_PRELOAD_64=/usr/lib/64/mpss.so.1; export LD_PRELOAD_64

MPSSHEAP=4M; export MPSSHEAP

The pmap -sx command provides information on the Web Server page sizes. From the
command output, note that a few page sizes are mapped with 256M pages while others are
mapped with 64K pages.

pmap -sx 1938

1938: webservd -d /opt/SUNWwbsvr/https-nsapiphp/config -r /opt/SUNWwbsvr -t

Address Kbytes RSS Anon Locked Pgsz Mode Mapped File

...

0000000100B00000 6080 6080 - - - rwx-- [heap]

00000001010F0000 244800 244800 244224 - 64K rwx-- [heap]

0000000110000000 3932160 3932160 3932160 - 256M rwx-- [heap]

0000000200000000 262144 262144 262144 - 256M rwx-- [heap]

FFFFFFFF68000000 4096 4096 4096 - 64K rwx-- [anon]

...

Note – pagesize -a command is used to determine the maximum page sizes supported on your
system.

Tuning Your Web Application
This section provides information on tuning applications for maximum performance. A
complete guide to writing high performance Java and Java 2 EE Web applications is beyond the
scope of this document.

Tuning Your Web Application

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200986

Java Programming Guidelines
This section covers issues related to Java coding and performance. The guidelines outlined are
not specific to Sun Java System Web Server, but are general rules that are useful in many
situations. For a complete discussion of Java coding best practices, see the Java Blueprints.

Avoid Serialization and Deserialization
Serialization and deserialization of objects is a CPU-intensive procedure and is likely to slow
down your application. Use the transient keyword to reduce the amount of data serialized.
Additionally, customized readObject() and writeObject() methods may be beneficial in
some cases.

Use StringBuffer to Concatenate Strings
To improve performance, instead of using string concatenation, use StringBuffer.append().
String objects are immutable; they never change after creation. For example, consider the
following code:

tring str = "testing";
str = str + "abc";

The compiler translates this code as:

String str = "testing";
StringBuffer tmp = new StringBuffer(str);

tmp.append("abc");
str = tmp.toString();

Therefore, copying is inherently expensive and overusing it can reduce performance
significantly.

Assign null to Variables That Are No Longer Needed
Explicitly assigning a null value to variables that are no longer needed helps the garbage
collector to identify the parts of memory that can be safely reclaimed. Although Java provides
memory management, it does not prevent memory leaks or using excessive amounts of
memory.

An application can induce memory leaks by not releasing object references. Doing so prevents
the Java garbage collector from reclaiming those objects, and results in increasing amounts of
memory being used. Explicitly nullifying references to variables after their use allows the
garbage collector to reclaim memory.

Tuning Your Web Application

Chapter 2 • Tuning Sun Java System Web Server 87

One way to detect memory leaks is to employ profiling tools and take memory snapshots after
each transaction. A leak-free application in steady state will show a steady active heap memory
after garbage collections.

Declare Methods as final Only If Necessary
Modern optimizing dynamic compilers can perform inlining and other inter-procedural
optimizations, even if Java methods are not declared final. Use the keyword final as it was
originally intended: for program architecture reasons and maintainability.

Only if you are absolutely certain that a method must not be overridden, use the final
keyword.

Declare Constants as static final
The dynamic compiler can perform some constant folding optimizations easily, when you
declare constants as static final variables.

Avoid Finalizers
Adding finalizers to code makes the garbage collector more expensive and unpredictable. The
virtual machine does not guarantee the time at which finalizers are run. Finalizers may not
always be executed, before the program exits. Releasing critical resources in finalize()

methods may lead to unpredictable application behavior.

Declare Method Arguments final
Declare method arguments final if they are not modified in the method. In general, declare all
variables final if they are not modified after being initialized or set to some value.

Synchronize Only When Necessary
Do not synchronize code blocks or methods unless synchronization is required. Keep
synchronized blocks or methods as short as possible to avoid scalability bottlenecks. Use the
Java Collections Framework for unsynchronized data structures instead of more expensive
alternatives such as java.util.HashTable.

Tuning Your Web Application

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200988

Use DataHandlers for SOAP Attachments
Using a javax.activation.DataHandler for a SOAP attachment improves performance.

JAX-RPC specifies:

■ A mapping of certain MIME types to Java types.
■ Any MIME type is mappable to a javax.activation.DataHandler .

As a result, send a SOAP attachment as a .gif or XML file to an RPC style web service by utilizing
the Java type mappings. When passing in any of the mandated Java type mappings which are
appropriate for the attachment's MIME type as an argument for the web service, the JAX-RPC
runtime handles these as SOAP attachments. For example, to send out an image or a gif
attachment, use java.awt.Image, or create a DataHandler wrapper over your image. The
advantages of using the wrapper are:

■ Reduced coding: You can reuse generic attachment code to handle the attachments because
the DataHandler determines the content type of the contained data automatically. This
feature is especially useful when using a document style service. Since the content is known
at runtime, there is no need to make calls to attachment.setContent (stringContent,
"image/gif"), for example.

■ Improved Performance: Informal tests have shown that using DataHandler wrappers
doubles throughput for image or GIF MIME types, and multiplies throughput by
approximately 1.5 for text and XML or java.awt.Image for image/* types.

Java Server Page and Servlet Tuning
This section describes how to improve performance of web applications, both through coding
practices and through deployment and configuration settings.

Suggested Coding Practices
This section provides some tips on coding practices that improve servlet and JSP application
performance.

General Guidelines:
Follow these general guidelines to increase performance of the presentation tier:

■ Minimize Java synchronization in servlets.
■ Do not use the single thread model for servlets.
■ Use the servlet's init() method to perform expensive one-time initialization.
■ Avoid using System.out.println() calls.

Java Server Page and Servlet Tuning

Chapter 2 • Tuning Sun Java System Web Server 89

Avoid Shared Modified Class Variables
In the servlet multithread model which is the default, a single instance of a servlet is created for
each application server instance. All requests for a servlet on that application instance share the
same servlet instance. This can lead to thread contention if there are synchronization blocks in
the servlet code. So, avoid using shared modified class variables, since they create the need for
synchronization.

HTTP Session Handling
Follow these guidelines when using HTTP sessions:

■ Create sessions sparingly. Session creation is not free. If a session is not required, do not
create one.

■ Use javax.servlet.http.HttpSession.invalidate() to release sessions when they are
no longer needed.

■ Keep session size small, to reduce response times. If possible, keep session size below seven
KB.

■ Use the directive <%page session="false"%> in JSP files to prevent the Server from
automatically creating sessions when they are not necessary.

■ Avoid large object graphs in an HttpSession. They force serialization and add
computational overhead. Generally, do not store large objects as HttpSession variables.

■ Do not cache transaction data in HttpSession. Access to data in an HttpSession is not
transactional. Do not use it as a cache of transactional data, which is better kept in the
database.

Tuning Web Container Within Web Server 7.0
To deploy Java web applications within Web Server 7.0, you need to perform the following
tuning within your server:

■ “Tuning the Garbage Collector” on page 92
■ “Tuning the Java Heap” on page 93
■ Tuning web application configuration settings, see “Web Server Tuning” on page 119 and

the values in default-web.xml like reload interval.

This section describes how to improve performance of web applications, through deployment
and configuration settings.

Tuning Web Container Within Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200990

Deployment Settings
Deployment settings can have significant impact on performance. Follow these guidelines when
configuring deployment settings for best performance:

■ Use Pre-compiled JavaServer Pages
■ Disable Dynamic Application Reloading

Use Pre-compiled JavaServer Pages
Compiling JSP files is resource intensive and time consuming. Precompiling JSP files before
deploying applications on the server will improve application performance. When you compile
in advance, only the resulting servlet class files will be deployed.

You can specify on the server to pre-compile JSP files when you deploy an application through
the Admin Console, through CLI or GUI. You can also specify on the server to pre-compile JSP
files for an already deployed application with the Admin Console.

Disable Dynamic Application Reloading
If dynamic reloading is enabled, the server periodically checks for changes in deployed
applications and automatically reloads the application with the changes. Dynamic reloading is
intended for development environments and is also incompatible with session persistence. To
improve performance, disable dynamic class reloading.

Disable dynamic class reloading for an application

Remove .reload from the web application directory.

Disable Dynamic JSP Reloading
On a production system, improve web container performance by disabling dynamic JSP
reloading. To do so, edit the default-web.xml file in the config directory for each instance.
Change the servlet definition for a JSP file to look like this:

<servlet>

<servlet-name>jsp</servlet-name>

<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>

<init-param>

<param-name>httpMethods</param-name>

<param-value>GET, HEAD, POST</param-value>

</init-param>

<init-param>

<param-name>fork</param-name>

<param-value>false</param-value>

</init-param>

Tuning Web Container Within Web Server 7.0

Chapter 2 • Tuning Sun Java System Web Server 91

<init-param>

<param-name>mappedfile</param-name>

<param-value>false</param-value>

</init-param>

<init-param>

<param-name>developments</param-name>

<param-value>false</param-value>

</init-param>

<init-param>

<param-name>genStrAsCharArray</param-name>

<param-value>true</param-value>

</init-param>

<init-param>

<param-name>trimSpaces</param-name>

<param-value>true</param-value>

</init-param>

<load-on-startup>3</load-on-startup>

</servlet>

Note – The suggested manual changes requires you to run either pull-config through the CLI
or the Admin Console.

Logger Settings
The Server produces writes log messages and exception stack trace output to the log file in the
logs directory of the instance, Naturally, the volume of log activity can impact server
performance; particularly in benchmarking situations.

Managing Memory and Garbage Collection
The efficiency of any application depends on how well memory and garbage collection are
managed. The following sections provide information on optimizing memory and allocation
functions:

■ Goals
■ Tracing Garbage Collection
■ Other Garbage Collector Settings
■ Tuning the Java Heap
■ Re-basing DLLs on Windows

Tuning the Garbage Collector

Monitoring the Garbage Collection (GC) activity at the development server and accordingly
tuning JVM and GC settings before deploying the server into production is necessary. The GC
settings vary depending on the application you are running.

Tuning Web Container Within Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200992

Garbage collection reclaims the heap space previously allocated to objects no longer needed.
The process of locating and removing the dead objects can stall any application and consume as
much as 25 percent throughput.

Other Garbage Collector Settings

Almost all Java Runtime Environments come with a generational object memory system and
sophisticated GC algorithms. A generational memory system divides the heap into a few
carefully sized partitions called generations. The efficiency of a generational memory system is
based on the observation that most of the objects are short lived. As these objects accumulate, a
low memory condition occurs forcing GC to take place.

Tuning the Java Heap

The heap space is divided into old and the new generations. The new generation includes the
new object space (eden), and two survivor spaces. The JVM allocates new objects in the eden
space, and moves longer lived objects from the new generation to the old generation. Keep the
heap size low, so that customers can increase the heap size depending on their needs. To
increase the heap size, refer to the link, http://www.devx.com/tips/Tip/5578

The young generation uses a fast copying garbage collector which employs two semi-spaces
(survivor spaces) in the eden, copying surviving objects from one survivor space to the second.
Objects that survive multiple young space collections are tenured, meaning they are copied to
the tenured generation. The tenured generation is larger and fills up less quickly. Garbage is
collected less frequently; and each collection takes longer than a young space only collection.
Collecting the tenured space is also referred to as doing a full generation collection.

The frequent young space collections are quick, lasting only a few milliseconds, while the full
generation collection takes a longer, tens of milliseconds to a few seconds, depending upon the
heap size. Other GC algorithms, such as the Concurrent Mark Sweep (CMS) algorithm, are
incremental. They divide the full GC into several incremental pieces. This provides a high
probability of small pauses. This process comes with an overhead and is not required for
enterprise web applications.

When the new generation fills up, it triggers a minor collection in which the surviving objects
are moved to the old generation. When the old generation fills up, it triggers a major collection
which involves the entire object heap.

Both HotSpot and Solaris JDK use thread local object allocation pools for lock-free, fast, and
scalable object allocation. So custom object pooling is not often required. Consider pooling only
if object construction cost is high and significantly affects execution profiles.

The -Xms and -Xmx parameters define the minimum and maximum heap size. As collections
occur when generations fill up, throughput is inversely proportional to the available memory.
By default, JVM grows or shrinks the heap at each collection. This helps maintain the
proportion of free space to living object at each collection within a specific range. The range is

Tuning Web Container Within Web Server 7.0

Chapter 2 • Tuning Sun Java System Web Server 93

http://www.devx.com/tips/Tip/5578

set as a percentage by the parameters -XX:MinHeapFreeRatio=<minimum> and
-XX:MaxHeapFreeRatio=<maximum>; and the total size is bound by -Xms and -Xmx.

JVM heap setting for Web Server should be based on the available memory on the system and
frequency and duration of garbage collection. You can use -verbose:gc jvm option or the J2SE
5.0 monitoring tools to determine the frequency of garbage collection. For more information
on J2SE 5.0 monitoring tools, see “J2SE 5.0 Monitoring Tools” on page 95. The maximum heap
size should be determined based on the process data model (32-bit or 64-bit) and availability of
virtual and physical memory on the system. Excessive use of physical memory for Java heap
may cause paging of virtual memory to disk during garbage collection, resulting in poor
performance. For more information on Java tuning, see http://java.sun.com/performance/
reference/whitepapers/tuning.html.

Choosing the Garbage Collection Algorithm
This section describes how to use different garbage collector within Web Server.

CMS Collector

Use the CMS collector as the GC algorithm. This collector can cause a drop in throughput for
heavily utilized systems, because it is running constantly, but it prevents the long pauses that
can occur when the garbage collector runs infrequently.

Procedure to use the CMS collector:

1. Shut down the server.
2. Configure the CMS collector in the server instance.

add the following JVM options either using the Admin Console or by using the CLI:

-XX:+UseConcMarkSweepGC

-XX:SoftRefLRUPolicyMSPerMB=1

Use the jvmstat utility to monitor HotSpot garbage collection.

For detailed information on tuning the garbage collector, see Tuning Garbage Collection with
the 5.0 Java Virtual Machine. See (http://java.sun.com/
docs/hotspot/gc5.0/gc_tuning_5.html#1.1.Sizing%20the%20Generations%7Coutline).

Tracing Garbage Collection
The two primary measures of garbage collection performance are throughput and pauses.
Throughput is the percentage of the total time spent on other activities apart from GC. Pauses
are times when an application appears unresponsive due to GC.

Two other considerations are footprint and promptness. Footprint is the working size of the
JVM process, measured in pages and cache lines. Promptness is the time between when an
object becomes dead, and when the memory becomes available.

Tuning Web Container Within Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200994

http://java.sun.com/performance/reference/whitepapers/tuning.html
http://java.sun.com/performance/reference/whitepapers/tuning.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html#1.1.Sizing%20the%20Generations%7Coutline
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html#1.1.Sizing%20the%20Generations%7Coutline

This is an important consideration for distributed systems. A particular generation size makes a
trade-off between these four metrics. For example, a large young generation likely maximizes
throughput, but at the cost of footprint and promptness.

J2SE 5.0 Monitoring Tools
J2SE 5.0 supports tools that can be used to provide information on performance and resource
consumption for running applications. Two commonly used tools, jconsole and jstat, are
discussed in this section.

For a complete list of available tools and their usage, see J2SE 5.0 Trouble-Shooting and
Diagnostic Guide.

jconsole
The JMX based graphical tool jconsole is used to display thread usage, memory consumption,
and class loading details. For more information about this tool, see http://java.sun.com/
j2se/1.5.0/docs/guide/management/jconsole.html.

To use the tool, you need to:

1. Set the JVM option -Dcom.sun.management.jmxremote in server.xml.

Use the Admin Console or CLI to set this JVM option. For more information, see “Configuring
Your JVM” in Sun Java System Web Server 7.0 Update 6 Administrator’s Guide.

2. Start jconsole.

The binary is available in $JAVA_HOME/bin directory. Specify the pid in the command line when
invoking the tool. The pid of the Web Server process is obtained either from the log file or by
locating the child webservd process.

You may also invoke jconsole without the pid argument and then select the appropriate VM
from the window displaying available VMs.

jstat
Thejstat utility can be used to tune the Java heap size and diagnose performance issues related
to heap and garbage collection. This utility can be used without any server configuration
changes as the VM instrumentation is enabled by default. For more information, see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstat.html.

Binary Logging Header
Binary logging is a functionality introduced in Sun Java System Web Server 7.0 Update 5. This
feature allows server information to be stored in a single log file that contains binary,
unformatted log data of all the web sites hosted on a server. It thus minimizes the usage of

Tuning Web Container Within Web Server 7.0

Chapter 2 • Tuning Sun Java System Web Server 95

http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://docs.sun.com/doc/820-7985/gbrqf?a=view
http://docs.sun.com/doc/820-7985/gbrqf?a=view
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstat.html

system resources used for logging, may improve performance and scalability, and at the same
time records detailed log information. The feature is enabled by making changes in the
server.xml file. The server.xml should have a new element mode with binary value specified
in access-log. If the mode element is missing or its value is not specified, the default value is
text. The text option writes access log in ASCII format, as was in previous Web Server releases.
However, if the mode element is specified with binary value, the access log is written in binary
format.

To enable binary logging, add the following in the server.xml:

<access-log>

<file>../logs/access/<file>

<mode>binary</mode>

</access-log>

In Sun Java System Web Server 7.0 Update 5, the binary log file is bundled in the product bin
directory called binlog and includes a log writer 1.0, log reader 1.0 and a version identifier. The
version identifier identifies the versions of log writer and log reader and will be upgraded
accordingly in future releases.

The log writer 1.0 writes the log format into a raw binary log file which is not human readable.
The binary log reader 1.0 takes the binary access log file as input, extracts it and prints the log in
human readable ASCII format on the console.

Binary log accepts the following arguments:

Argument Description

-h Displays the help.

-v Displays the version number of the binary log reader.

-i It is the input binary log file name. The default value is
stdin.

Binary log is executed in the following two ways:

$binlog < access.log

$binlog -i access.log

Tuning Web Container Within Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200996

Common Performance Problems

This chapter discusses common web site performance problems, and includes the following
topics:

■ “check-acl Server Application Functions” on page 97
■ “Low-Memory Situations” on page 98
■ “Too Few Threads” on page 98
■ “Cache Not Utilized” on page 99
■ “Keep-Alive Connections Flushed” on page 99
■ “Log File Modes” on page 100

Note – For platform-specific issues, see Chapter 4, “Platform-Specific Issues and Tips”

check-acl Server Application Functions
For optimal server performance, use ACLs only when required.

The server is configured with an ACL file containing the default ACL allowing write access to
the server only to all, and an es-internal ACL for restricting write access for anybody. The
latter protects the manuals, icons, and search UI files in the server.

The default obj.conf file has NameTrans lines mapping the directories that need to be read-only
to the es-internal object, which in turn has a check-acl SAF for the es-internal ACL.

The default object also contains a check-acl SAF for the default ACL.

You can improve performance by removing the check-acl SAF from the default object for
URIs that are not protected by ACLs.

3C H A P T E R 3

97

Low-Memory Situations
If Web Server must run in low-memory situations, reduce the thread limit to a bare minimum
by lowering the value of the Maximum Threads setting on the configuration's Performance Tab
⇒ HTTP sub tab. You can also set it with wadm set-thread-pool-prop command's
max-threads property.

The server automatically selects many server defaults based on the system resources, for
optimal performance. However, if the server's chosen defaults are not suited to your
configuration, you can override them. For more information about how to tune the server to
obtain a smaller memory footprint, see “Large Memory Footprint” on page 100.

Web applications running under stress might sometimes result in the server running out of Java
VM runtime heap space, as seen in the java.lang.OutOfMemoryError messages in the server
log file. There can be several reasons for this, including excessive allocation of objects, and such
behavior can affect performance. To address this problem, profile the application. Refer to the
following HotSpot VM performance FAQ for tips on profiling allocations (objects and their
sizes) of your application:

http://java.sun.com/docs/hotspot/index.html

If your application runs out of maximum sessions as evidenced by a “too many active sessions”
message in the server log file, and results in the container throwing exceptions, application
performance will be impacted. To address the situation, consider the session manager
properties, and the session idle time. Note that JSPs have sessions enabled by default.

Too Few Threads
The server does not allow the number of active threads to exceed the thread limit value. If the
number of simultaneous requests reaches that limit, the server stops servicing new connections
until the old connections are freed up. This can lead to increased response time.

In Web Server, the server’s default maximum threads setting is greater of 128 or the number of
processors in the system. If you want your server to process more requests concurrently, you
need to increase the maximum number of threads.

The symptom of a server with too few threads is a long response time. Making a request from a
browser establishes a connection fairly quickly to the server, but if there are too few threads on
the server it can take a long time before the response comes back to the client.

The best way to tell if your server is being throttled by too few threads is to see if the number of
active sessions is close to, or equal to, the maximum number of threads. To do this, see “Session
Creation and Thread Information” on page 58.

Low-Memory Situations

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 200998

http://java.sun.com/docs/hotspot/index.html

Cache Not Utilized
If the file cache is not utilized, your server is not performing optimally. Since most sites have lots
of GIF or JPEG files that are intended to always be cacheable, you need to use your cache
effectively.

Some sites, however, do almost everything through CGIs, SHTML, or other dynamic sources.
Dynamic content is generally not cacheable, and inherently yields a low cache hit rate. Don’t be
alarmed if your site has a low cache hit rate. The most important thing is that your response
time is low. You can have a very low cache hit rate and still have very good response time. As
long as your response time is good, it is less important that the cache hit rate is low.

Check your hit ratio using statistics from perfdump, the Admin Console Monitoring tab, or
wadm stats commands. The hit ratio is the percentage of times the cache was used with all hits to
your server. A good cache hit rate is anything above 50%. Some sites can even achieve 98% or
higher. For more information, see “File Cache Statistics Information” on page 60.

In addition, if you are doing a lot of CGI or NSAPI calls, you can have a low cache hit rate. If you
have custom NSAPI functions, you can also have a low cache hit rate.

Keep-Alive Connections Flushed
A web site that can service 75 requests per second without keep-alive connections might be able
to do 200-300 requests per second when keep-alive is enabled. Therefore, as a client requests
various items from a single page, it is important that keep-alive connections are used effectively.
If the KeepAliveCount shown in perfdump (Total Number of Connections Added, as displayed
in the Admin Console) exceeds the keep-alive maximum connections, subsequent keep-alive
connections are closed, or “flushed,” instead of being honored and kept alive.

Check the KeepAliveFlushes and KeepAliveHits values using statistics from perfdump or the
Number of Connections Flushed and Number of Connections Processed under Keep Alive
Statistics on the Monitoring Statistics page. For more information, see “Keep-Alive
Information” on page 54.

On a site where keep-alive connections are running well, the ratio of KeepAliveFlushes to
KeepAliveHits is very low. If the ratio is high (greater than 1:1), your site is probably not
utilizing keep-alive connections as well as it can.

To reduce keep-alive flushes, increase the keep-alive maximum connections. You can do this in
the configuration's Performance Tab ⇒ HTTP sub tab or using the wadm set-keep-ailve
props command. The default is based on the number of available file descriptors in the system.
By raising the keep-alive maximum connections value, you keep more waiting keep-alive
connections open.

Keep-Alive Connections Flushed

Chapter 3 • Common Performance Problems 99

Caution – On UNIX/Linux systems, if the keep-alive maximum connections value is too high,
the server can run out of open file descriptors. Typically 1024 is the limit for open files on
UNIX/Linux, so increasing this value above 500 is not recommended.

Large Memory Footprint
Web Server automatically configures the connection queue size based on the number of
available file descriptors in the system. The connection queue size on a system is determined by
the sum total of thread-pool/max-threads element, thread-pool/queue-size element and
keep-alive/max-connections element in the server.xml file.

For more information about the server.xml file, see the Administrator's Configuration File
Reference.

In certain cases, the server's chosen defaults leads to larger memory footprint than what is
required to run your applications. If the server selected defaults does not suit your needs, the
memory usage of the server can be changed by specifying the values in server.xml. The
thread-pool/max-threads is greater of 128 or the number of processors in the system unless
explicitly specified in server.xml. The thread-pool/queue-size can be obtained from
perfdump by examining the Connection Queue Information. For more information, see
“Connection Queue Information” on page 50. The keep-alive/max-connections can be
obtained from “Keep-Alive Information” on page 54 and “Keep-Alive Count” on page 55.
Logging at level fine will print these values in the error log file.

Log File Modes
Keeping the log files on a high-level of verbosity can have a significant impact on performance.
On the configuration's General Tab ⇒ Log Settings page choose the appropriate log level and
use levels such as Fine, Finer, and Finest with care. To set the log level using the CLI, use the
command wadm set-log-prop and set the log-level.

Large Memory Footprint

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009100

Platform-Specific Issues and Tips

This chapter provides platform-specific tuning tips, and includes the following topics:

■ “Solaris Platform-Specific Issues” on page 101
■ “Solaris File System Tuning” on page 105
■ “Solaris Platform-Specific Performance Monitoring” on page 106
■ “Tuning Solaris for Performance Benchmarking” on page 108
■ “Tuning UltraSPARC T1–Based Systems for Performance Benchmarking” on page 109

Solaris Platform-Specific Issues
This section discusses miscellaneous Solaris-specific issues and tuning tips, and includes the
following topics:

■ “Files Open in a Single Process (File Descriptor Limits)” on page 101
■ “Failure to Connect to HTTP Server” on page 102
■ “Connection Refused Errors” on page 103
■ “Tuning TCP Buffering” on page 103
■ “Using the Solaris Network Cache and Accelerator (SNCA)” on page 103

Files Open in a Single Process (File Descriptor Limits)
Different platforms each have limits on the number of files that can be open in a single process
at one time. For busy sites, increase that number. On Solaris systems, control this limit by
setting rlim_fd_max in the /etc/system file. For Solaris 8, the default is 1024, which you can
increase to 65536. For Solaris 9 and 10, the default is 65536, which doesn't need to be increased.

After making this or any change in the /etc/system file, reboot Solaris to put the new settings
into effect. In addition, if you upgrade to a new version of Solaris, remove any line added to
/etc/system and add it again only after verifying that it is still valid.

4C H A P T E R 4

101

An alternative way to make this change is using the ulimit –n "value" command. Using this
command does not require a system restart. However, this command only changes the login
shell, while editing the etc/system file affects all shells.

Failure to Connect to HTTP Server
If users are experiencing connection timeouts from a browser to Web Server when the server is
heavily loaded, you can increase the size of the HTTP listener backlog queue. To increase this
setting, edit the HTTP listener's listen queue value.

In addition to this setting, you must also increase the limits within the Solaris TCP/IP
networking code. There are two parameters that are changed by executing the following
commands:

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 8192

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 8192

These two settings increase the maximum number of two Solaris listen queues that can fill up
with waiting connections. tcp_conn_req_max_q increases the number of completed
connections waiting to return from an accept() call. tcp_conn_req_max_q0 increases the
maximum number of connections with the handshake incomplete. The default values are 128
and 1024, respectively. To automatically have these ndd commands executed after each system
reboot, place them in a file called /etc/init.d/network-tuning and create a link to that file
named /etc/rc2.d/S99network-tuning.

You can monitor the effect of these changes by using the netstat -s command and looking at
the tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop values. Review them before
adjusting these values. If the parameters are not set to zero, adjust the value to 2048 initially, and
continue to monitor the netstat output.

The Web Server HTTP listener's listen queue setting and the related Solaris
tcp_conn_req_max_q and tcp_conn_req_max_q0 settings are meant to match the throughput
of the Web Server. These queues act as a "buffer" to manage the irregular rate of connections
coming from web users. These queues allow Solaris to accept the connections and hold them
until they are processed by the Web Server.

Do not accept more connections than the Web Server is able to process. Instead, limit the size of
these queues and reject further connections than to accept excess connections and fail to service
them. The value of 2048 for these three parameters typically reduces connection request
failures, and improvement has been seen with values as high as 4096.

This adjustment is not expected to have any adverse impact in any web hosting environment, so
you can consider this suggestion even if your system is not showing the symptoms mentioned.

Solaris Platform-Specific Issues

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009102

Connection Refused Errors
If users are experiencing connection refused errors on a heavily loaded server, you can tune the
use of network resources on the server.

When a TCP/IP connection is closed, the port is not reused for the duration of
tcp_time_wait_interval (default value of 240000 milliseconds). This is to ensure that there
are no leftover segments. The shorter the tcp_time_wait_interval, the faster precious
network resources are again available. This parameter is changed by executing the following
command. Do not reduce the parameter below 60000

usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

To automatically have this ndd command executed after each system reboot, place it in a file
called /etc/init.d/network-tuning and create a link to that file named
/etc/rc2.d/S99network-tuning.

If your system is not exhibiting the symptoms mentioned, and if you are not well-versed in
tuning the TCP protocol, do not change the above parameter.

Tuning TCP Buffering
If you are seeing unpredictable intermittent slowdowns in network response from a
consistently loaded server, investigate setting the sq_max_size parameter by adding the
following line to the /etc/system file:

set sq_max_size=512

This setting adjusts the size of the sync queue, which transfers packets from the hardware driver
to the TCP/IP protocol driver. Using the value of 512 allows the queue to accommodate high
volumes of network traffic without overflowing.

Using the Solaris Network Cache and Accelerator
(SNCA)
The Solaris Network Cache and Accelerator (SNCA) is a caching server that provides improved
web performance to the Solaris operating system.

It is assumed that SNCA has been configured for the system on which the Web Server is
running. For more information about SNCA and its configuration and tuning, refer to the
following man pages on your system:

■ ncab2clf(1)

■ ncakmod(1)

Solaris Platform-Specific Issues

Chapter 4 • Platform-Specific Issues and Tips 103

■ nca(1)

■ snca(1)

■ nca.if(4)

■ ncakmod.conf(4)

■ ncalogd.conf(4)

▼ To Enable SNCA to Work With Web Server
This procedure assumes that SNCA has been configured, as discussed above.

From the Common Tasks page, choose a configuration and click Edit Configuration.

Click the HTTP Listeners tab and select the HTTP listener to edit.

On the Edit HTTP Listener page, set the Protocol Family to nca.
The HTTP listener must be listening on port 80 for this to work.

Save your changes.

Click the Performance tab.

Click the Cache sub tab.

On the Cache Settings page, make sure the file cache is enabled and enable Use Sendfile.

Save your changes.

Redeploy the configuration for your changes to take effect.

Maximum Threads and Queue Size
When configuring Web Server to be used with SNCA, disabling the thread pool provides better
performance. These settings are on the configuration's Performance tab ⇒ HTTP sub tab,
under Thread Pool Settings. To disable the thread pool, deselect the Thread Pool Enabled
checkbox. You can also disable the thread pool using the wadm set-thread-pool-prop
command's enabled property.

The thread pool can also be disabled with non-SNCA configurations, especially for cases in
which short latency responses with no keep-alives must be delivered.

1

2

3

4

5

6

7

8

9

Solaris Platform-Specific Issues

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009104

Solaris File System Tuning
This section discusses changes that can be made for file system tuning, and includes topics that
address the following issues:
■ “High File System Page-In Rate” on page 105
■ “Reduce File System Housekeeping” on page 105
■ “Long Service Times on Busy Disks or Volumes” on page 105

Read the descriptions of the following parameters carefully. If the description matches your
situation, consider making the adjustment.

High File System Page-In Rate
If you are seeing high file system page-in rates on Solaris 8 or 9, increase the value of
segmap_percent. This parameter is set by adding the following line to the /etc/system file:

set segmap_percent=25

segmap_percent adjusts the percentage of memory that the kernel maps into its address space
for the file system cache. The default value is 12; that is, the kernel reserves enough space to map
at most 12% of memory for the file system cache. On a heavily loaded machine with 4 GB of
physical memory, improvements have been seen with values as high as 60. You can experiment
with this value, starting with values around 25. On systems with large amounts of physical
memory, you can raise this value in small increments, as it can significantly increase kernel
memory requirements.

Reduce File System Housekeeping
UNIX file system (UFS) volumes maintain the time that each file was accessed. Note that the
following change does not turn off the access time updates when the file is modified, but only
when the file is accessed. If the file access time updates are not important in your environment,
you can turn them off by adding the noatime parameter to the data volume's mount point in
/etc/vfstab. For example:

/dev/dsk/c0t5d0s6 /dev/rdsk/c0t5d0s6 /data0 ufs 1 yes noatime

Long Service Times on Busy Disks or Volumes
Web Server's responsiveness depends greatly on the performance of the disk subsystem. Use the
iostat utility to monitor how busy the disks are and how rapidly they complete I/O requests
(the %b and svc_t columns, respectively). Service times are unimportant for disks that are less

Solaris File System Tuning

Chapter 4 • Platform-Specific Issues and Tips 105

than about 30% busy, but for busier disks, service times should not exceed about 20
milliseconds. If your busy disks have slower service times, improving disk performance can
help Web Server performance substantially.

Your first step is to balance the load: if some disks are busy while others are lightly loaded, move
some files off of the busy disks and onto the idle disks. If there is an imbalance, correcting it
usually gives a far greater payoff than trying to tune the overloaded disks.

Solaris Platform-Specific Performance Monitoring
This section describes some of the Solaris-specific tools and utilities you can use to monitor
your system's behavior, and includes the following topics:

■ “Short-Term System Monitoring” on page 106
■ “Long-Term System Monitoring” on page 107
■ ““Intelligent” Monitoring” on page 107

The tools described in this section monitor performance from the standpoint of how the system
responds to the load that Web Server generates. For information about using Web Server's own
capabilities to track the demands that users place on the Web Server itself, see “Monitoring
Server Performance” on page 22.

Short-Term System Monitoring
Solaris offers several tools for taking “snapshots” of system behavior. Although you can capture
their output in files for later analysis, the tools listed below are primarily intended for
monitoring system behavior in real time:

■ The iostat -x 60 command reports disk performance statistics at 60-second intervals.
Watch the %b column to see how much of the time each disk is busy. For any disk busy more
than 20% of the time, pay attention to the service time as reported in the svct column.
Other columns report the I/O operation rates, the amount of data transferred, and so on.

■ The vmstat 60 command summarizes virtual memory activity and some CPU statistics at
60-second intervals.
Monitor the sr column to keep track of the page scan rate and take action if it's too high.
Note that "too high" is very different for Solaris 8 and 9 than for earlier releases. Watch the
us, sy, and id columns to see how heavily the CPUs are being used; remember that you need
to keep plenty of CPU power in reserve to handle sudden bursts of activity. Also keep track
of the r column to see how many threads are contending for CPU time; if this remains
higher than about four times the number of CPUs, reduce the server's concurrency.

■ The mpstat 60 command gives a detailed look at CPU statistics, while the netstat -i 60
command summarizes network activity.

Solaris Platform-Specific Performance Monitoring

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009106

Long-Term System Monitoring
It is important not only to "spot-check" system performance with the tools mentioned above,
but to collect longer-term performance histories so you can detect trends. If nothing else, a
baseline record of a system performing well will help you figure out what has changed if the
system starts behaving poorly. Enable the system activity reporting package by doing the
following:

■ Edit the file /etc/init.d/perf and remove the # comment characters from the lines near
the end of the file. For Solaris 10, run the following command:
svcadm enable system/sar

■ Run the command crontab -e sys and remove the # comment characters from the lines
with the sa1 and sa2 commands. You can adjust how often the commands run and at what
times of day depending on your site's activity profile. See the crontab man page for an
explanation of the format of this file.
This command causes the system to store performance data in files in the /var/adm/sa
directory, where by default they are retained for one month. You can then use the sar
command to examine the statistics for time periods of interest.

“Intelligent”Monitoring
The SE toolkit is a freely downloadable software package developed by Sun performance
experts. In addition to collecting and monitoring raw performance statistics, the toolkit can
apply heuristics to characterize the overall health of the system and highlight areas that need
adjustment. You can download the toolkit and its documentation from the following location:

http://www.sunfreeware.com/setoolkit.html

Solaris 10 Platform-Specific Tuning Information
DTrace is a comprehensive dynamic tracing framework for the Solaris Operating Environment.
You can use the DTrace Toolkit to monitor the system. It is available from the following URL:

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

Solaris 10 Platform-Specific Tuning Information

Chapter 4 • Platform-Specific Issues and Tips 107

http://www.sunfreeware.com/setoolkit.html
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

Tuning Solaris for Performance Benchmarking
The following table shows the operating system tuning for Solaris used when benchmarking for
performance and scalability. These values are an example of how you can tune your system to
achieve the desired result.

TABLE 4–1 Tuning Solaris for Performance Benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 65536 65536 Process open file descriptors limit;
accounts for the expected load (for
the associated sockets, files, and pipes
if any).

sq_max_size /etc/system 2 0 Controls streams driver queue size;
setting to 0 makes it infinite so the
performance runs are not hit by lack
of buffer space. Set on clients too.
Note that setting sq_max_size to 0 is
not be optimal for production
systems with high network traffic.

tcp_time_wait_interval ndd /dev/tcp 240000 60000 Set on clients too.

tcp_conn_req_max_q ndd /dev/tcp 128 1024

tcp_conn_req_max_q0 ndd /dev/tcp 1024 4096

tcp_ip_abort_interval ndd /dev/tcp 480000 60000

tcp_keepalive_interval ndd /dev/tcp 7200000 900000 For high traffic web sites, lower this
value.

tcp_rexmit_interval_initial ndd /dev/tcp 3000 3000 If retransmission is greater than
30-40%, increase this value.

tcp_rexmit_interval_max ndd /dev/tcp 240000 10000

tcp_rexmit_interval_min ndd /dev/tcp 200 3000

tcp_smallest_anon_port ndd /dev/tcp 32768 1024 Set on clients too.

tcp_slow_start_initial ndd /dev/tcp 1 2 Slightly faster transmission of small
amounts of data.

tcp_xmit_hiwat ndd /dev/tcp 8129 32768 To increase the transmit buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 32768 To increase the receive buffer.

Tuning Solaris for Performance Benchmarking

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009108

Tuning UltraSPARC® T1–Based Systems for Performance
Benchmarking

Use a combination of tunable parameters and other parameters to tune your system for
performance benchmarking. These values are an example of how you can tune your system to
achieve the desired result.

Tuning Operating System and TCP Settings
The following table shows the operating system tuning for Solaris 10 used when benchmarking
for performance and scalability on UtraSPARC T1–based systems (64 bit systems).

TABLE 4–2 Tuning 64–bit Systems for Performance Benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 65536 260000 Process open file descriptors limit;
accounts for the expected load (for
the associated sockets, files, pipes if
any).

hires_tick /etc/system 1

sq_max_size /etc/system 2 0 Controls streams driver queue size;
setting to 0 makes it infinite so the
performance runs are not hit by lack
of buffer space. Set on clients too.
Note that setting sq_max_size to 0 is
not optimal for production systems
with high network traffic.

ip:ip_squeue_bind 0

ip:ip_squeue_fanout 1

ipge:ipge_taskq_disable /etc/system 0

ipge:ipge_tx_ring_size /etc/system 2048

ipge:ipge_srv_fifo_depth /etc/system 2048

ipge:ipge_bcopy_thresh /etc/system 384

ipge:ipge_dvma_thresh /etc/system 384

ipge:ipge_tx_syncq /etc/system 1

tcp_conn_req_max_q ndd /dev/tcp 128 3000

Tuning UltraSPARC® T1–Based Systems for Performance Benchmarking

Chapter 4 • Platform-Specific Issues and Tips 109

TABLE 4–2 Tuning 64–bit Systems for Performance Benchmarking (Continued)
Parameter Scope Default Value Tuned Value Comments

tcp_conn_req_max_q0 ndd /dev/tcp 1024 3000

tcp_max_buf ndd /dev/tcp 4194304

tcp_cwnd_max ndd/dev/tcp 2097152

tcp_xmit_hiwat ndd /dev/tcp 8129 400000 To increase the transmit buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 400000 To increase the receive buffer.

Note that the IPGE driver version is 1.25.25.

Disk Configuration
If HTTP access is logged, follow these guidelines for the disk:
■ Write access logs on faster disks or attached storage.
■ If running multiple instances, move the logs for each instance onto separate disks as much

as possible.
■ Enable the disk read/write cache. Note that if you enable write cache on the disk, some

writes can be lost if the disk fails.
■ Consider mounting the disks with the following options, which can yield better disk

performance: nologging, directio, noatime.

Network Configuration
If more than one network interface card is used, make sure the network interrupts are not all
going to the same core. Run the following script to disable interrupts:

allpsr=‘/usr/sbin/psrinfo | grep -v off-line | awk ’{ print $1 }’‘
set $allpsr

numpsr=$#

while [$numpsr -gt 0];

do

shift

numpsr=‘expr $numpsr - 1‘
tmp=1

while [$tmp -ne 4];

do

/usr/sbin/psradm -i $1

shift

numpsr=‘expr $numpsr - 1‘

Tuning UltraSPARC® T1–Based Systems for Performance Benchmarking

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009110

tmp=‘expr $tmp + 1‘
done

done

Put all network interfaces into a single group. For example:

$ifconfig ipge0 group webserver

$ifconfig ipge1 group webserver

Web Server Start Options
In some cases, performance can be improved by using large page sizes. To start the 32–bit Web
Server with 4 MB pages:

LD_PRELOAD_32=/usr/lib/mpss.so.1 ; export LD_PRELOAD_32; export MPSSHEAP=4M;

./bin/startserv; unset LD_PRELOAD_32; unset MPSSHEAP

For 64–bit servers:

LD_PRELOAD_64=/usr/lib/64/mpss.so.1; export LD_PRELOAD_64; export MPSSHEAP=4M;

./bin/startserv; unset LD_PRELOAD_64; unset MPSSHEAP

Tuning UltraSPARC® T1–Based Systems for Performance Benchmarking

Chapter 4 • Platform-Specific Issues and Tips 111

112

Sizing and Scaling Your Server

This chapter examines the subsystems of your server, and provides recommendations for
optimal performance. The chapter includes the following topics:

■ “64-Bit Server” on page 113
■ “Processors” on page 113
■ “Memory” on page 114
■ “Drive Space” on page 114
■ “Networking” on page 114

64-Bit Server
The 64–bit server, available on Solaris SPARC and AMD64 platforms only, is more scalable
than the 32–bit version. You can use the 64–bit server if your system has more than 4 GB of
RAM. Some of the advantages which the 64–bit server has over the 32–bit server are:

■ More file cache for static content
■ Many simultaneous servlet sessions because of the 64–bit JVM

Processors
On Solaris and Windows, Web Server transparently takes advantage of multiple CPUs. In
general, the effectiveness of multiple CPUs varies with the operating system and the workload.
Dynamic content performance improves as more processors are added to the system. Because
static content involves mostly IO, and more primary memory means more caching of the
content (assuming the server is tuned to take advantage of the memory), more time is spent in
IO rather than CPU activity.

5C H A P T E R 5

113

Memory
As a baseline, Web Server requires 64 MB RAM. Multiple CPUs require at least 64 MB for each
CPU. For example, if you have four CPUs, install at least 256 MB RAM for optimal
performance. For high numbers of peak concurrent users, also allow extra RAM for the
additional threads. After the first 50 concurrent users, add an extra 512 KB for each peak
concurrent user.

Drive Space
You need to have enough drive space for your OS, document tree, and log files. In most cases, 2
GB total is sufficient.

Put the OS, swap/paging file, Web Server logs, and document tree each on separate hard drives.
If your log files fill up the log drive, your OS does not suffer. Also, you’ll be able to tell whether,
for example, the OS paging file is causing drive activity.

Your OS vendor can recommend how much swap or paging space to allocate. Based on testing,
Web Server performs best with swap space equal to RAM, plus enough to map the document
tree.

Networking
For an Internet site, decide how many peak concurrent users you need the server to handle, and
multiply that number of users by the average request size on your site. Your average request can
include multiple documents. If you are not sure, try using your home page and all of its
associated subframes and graphics.

Next decide how long the average user will be willing to wait for a document, at peak utilization.
Divide by that number of seconds. The result is the WAN bandwidth your server needs.

For example, to support a peak of 50 users with an average document size of 24 KB, and to
transfer each document in an average of 5 seconds, 240 KBs (1920 Kbit/s) are needed.
Therefore, this site needs two T1 lines (each 1544 Kbit/s). This amount of bandwidth also allows
some overhead for growth.

Your server’s network interface card is intended to support more than the WAN to which it is
connected. For example, if you have up to three T1 lines, one 10BaseT interface will be
adequate. If you have up to a T3 line (45 Mbit/s), you can use 100BaseT. But if you have more
than 50 Mbit/s of WAN bandwidth, consider configuring multiple 100BaseT interfaces, or look
at Gigabit Ethernet technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can use the same
calculations above to verify this.

Memory

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009114

Scalability Studies

This chapter describes the results of scalability studies. You can refer to these studies for a
sample of how the server performs, and how you can configure your system to best take
advantage of Web Server’s strengths.

This chapter includes the following topics:

■ “Study Goals” on page 115
■ “Study Conclusion” on page 116
■ “Hardware” on page 116
■ “Software” on page 117
■ “Configuration and Tuning” on page 117
■ “Performance Tests and Results” on page 120

Study Goals
The goal of the tests in the study was to shows how well Sun Java System Web Server 7 scales.
The tests also helped to determine the configuration and tuning requirements for different
types of content.

The studies were conducted with the following content:

■ 100% static
■ 100% C CGI
■ 100% Perl CGI
■ 100% NSAPI
■ 100% Java servlets
■ 100% PHP/FastCGI
■ E-commerce web application with large inventory

6C H A P T E R 6

115

Study Conclusion
When tuned, Sun Java System Web Server 7.0 scaled almost linearly in performance for
dynamic and static content.

Hardware
With the exception of the e-commerce study, these studies were conducted using the following
hardware. For hardware information for the e-commerce study, see “Hardware for
E-Commerce Test” on page 135.

Web Server system configuration for static content:

■ Sun Microsystems Sun Fire T2000 (120 MHz, 8 cores) (only six cores were used for this test)
■ 16256 Megabytes of memory
■ Solaris 10 operating system
■ Three Sun StoreEdge 3510

Web Server system configuration:

■ Sun Microsystems Sun Fire T2000 (1000 MHz , 6 cores)
■ 16376 Megabytes of memory
■ Solaris 10 operating system

Driver system configuration:

■ Three Sun Microsystems Sun FireTM X4100
■ Four Sun Microsystems Sun Fire V490 (2 X 1050 MHzUS-IV)
■ Three Sun Fire T1000
■ Sun Fire 880 (990 MHz US-III+)
■ 8192 Megabytes of memory
■ Solaris 10 operating system

Network configuration:

The Web Server and the driver machines were connected with multiple gigabit Ethernet links

Study Conclusion

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009116

Software
The load driver for these tests was an internally-developed Java application framework called
the Faban driver.

Configuration and Tuning
The following tuning settings are common to all the tests in this study. Individual studies have
additional configuration and tuning information.

/etc/system tuning:

set rlim_fd_max=500000

set rlim_fd_cur=500000

set sq_max_size=0

set consistent_coloring=2

set autoup=60

set ip:ip_squeue_bind=0

set ip:ip_soft_rings_cnt=0

set ip:ip_squeue_fanout=1

set ip:ip_squeue_enter=3

set ip:ip_squeue_worker_wait=0

set segmap_percent=6

set bufhwm=32768

set maxphys=1048576

set maxpgio=128

set ufs:smallfile=6000000

*For ipge driver

set ipge:ipge_tx_ring_size=2048

set ipge:ipge_tx_syncq=1

set ipge:ipge_srv_fifo_depth=16000

set ipge:ipge_reclaim_pending=32

set ipge:ipge_bcopy_thresh=512

set ipge:ipge_dvma_thresh=1

set pcie:pcie_aer_ce_mask=0x1

*For e1000g driver

set pcie:pcie_aer_ce_mask = 0x1

TCP/IP tuning:

ndd -set /dev/tcp tcp_conn_req_max_q 102400

ndd -set /dev/tcp tcp_conn_req_max_q0 102400

Configuration and Tuning

Chapter 6 • Scalability Studies 117

ndd -set /dev/tcp tcp_max_buf 4194304

ndd -set /dev/tcp tcp_cwnd_max 2097152

ndd -set /dev/tcp tcp_recv_hiwat 400000

ndd -set /dev/tcp tcp_xmit_hiwat 400000

Network Configuration
Since the tests use multiple network interfaces, it is important to make sure that all the network
interfaces are not going to the same core. Network interrupts were enabled on one strand and
disabled on the remaining three strand of a core using the following script:

allpsr=‘/usr/sbin/psrinfo | grep -v off-line | awk ’{ print $1 }’‘
set $allpsr

numpsr=$#

while [$numpsr -gt 0];

do

shift

numpsr=‘expr $numpsr - 1‘
tmp=1

while [$tmp -ne 4];

do

/usr/sbin/psradm -i $1

shift

numpsr=‘expr $numpsr - 1‘
tmp=‘expr $tmp + 1‘

done

done

The following example shows psrinfo output before running the script:

psrinfo | more

0 on-line since 12/06/2006 14:28:34

1 on-line since 12/06/2006 14:28:35

2 on-line since 12/06/2006 14:28:35

3 on-line since 12/06/2006 14:28:35

4 on-line since 12/06/2006 14:28:35

5 on-line since 12/06/2006 14:28:35

.................

The following example shows psrinfo output after running the script:

0 on-line since 12/06/2006 14:28:34

1 no-intr since 12/07/2006 09:17:04

2 no-intr since 12/07/2006 09:17:04

3 no-intr since 12/07/2006 09:17:04

4 on-line since 12/06/2006 14:28:35

Configuration and Tuning

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009118

5 no-intr since 12/07/2006 09:17:04

.................

Web Server Tuning
The following table shows the tuning settings used for the Web Server.

TABLE 6–1 Web Server Tuning Settings

Component Default Tuned

Access logging enabled=true enabled=false

Thread pool min-threads=16

max-threads=128

stack-size=131072

queue-size=1024

min-threads=128

max-threads=200

stack-size=262144

queue-size=15000

HTTP listener Non-secure listener on port 80

listen-queue-size=128

Non-secure listener on port 80

Secure listener on port 443

listen-queue-size=15000

Keep alive enabled=true

threads=1

max-connections=200
timeout=30 sec

enabled=true

threads=2

max-connections=15000
timeout=180 sec

default-web.xml JSP compilation turned on JSP compilation turned off

The following table shows the SSL session cache tuning settings used for the SSL tests.

TABLE 6–2 SSL Session Cache Tuning Settings

Component Default

SSL session cache enabled=true

max-entries=10000

max-ssl2-session-age=100

max-ssl3-tls-session-age=86400

Configuration and Tuning

Chapter 6 • Scalability Studies 119

Performance Tests and Results
This section contains the test-specific configuration, tuning, and results for the following tests:

■ “Static Content Test” on page 120
■ “Dynamic Content Test: Servlet” on page 122
■ “Dynamic Content Test: C CGI” on page 123
■ “Dynamic Content Test: Perl CGI” on page 125
■ “Dynamic Content Test: NSAPI” on page 126
■ “PHP Scalability Tests” on page 127
■ “SSL Performance Test: Static Content” on page 131
■ “SSL Performance Test: Perl CGI” on page 132
■ “SSL Performance Test: C CGI” on page 133
■ “SSL Performance Test: NSAPI” on page 134
■ “E-Commerce Web Application Test” on page 135

The following metrics were used to characterize performance:

■ Operations per second (ops/sec) = successful transactions per second
■ Response time for single transaction (round-trip time) in milliseconds

The performance and scalability diagrams show throughput (ops/sec) against the number of
cores enabled on the system.

Static Content Test
This test was performed with a static download of a randomly selected file from a pool of 10,000
directories, each containing 36 files ranging in size from 1KB to 1000 KB. The goal of the static
content test was to saturate the cores and find out the respective throughput and response time.

This test used the following configuration:

■ Static files were created on striped disk array (Sun StorEdge 3510).
■ Multiple network interfaces were configured.
■ Web Server was configured with 64 bit.
■ File-cache was enabled with the tuning settings described in the following table.

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009120

TABLE 6–3 File Cache Configuration

Default Tuned

enabled=true

max-age=30 sec

max-entries=1024

sendfile=false

max-heap-file-size=524288

max-heap-space=10485760

max-mmap-file-size=0

max-mmap-space=0

enabled=true

max-age=3600

max-entries=1048576

sendfile=true

max-heap-file-size=1200000

max-heap-space=8000000000

max-mmap-file-size=1048576

max-mmap-space= l

max-open-files=1048576

The following table shows the static content scalability results.

TABLE 6–4 Static Content Scalability

Number Of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 10365 184

4 19729 199

6 27649 201

The following is a graphical representation of static content scalability results.

Performance Tests and Results

Chapter 6 • Scalability Studies 121

Dynamic Content Test: Servlet
This test was conducted using the servlet. The test prints out the servlet's initialization
arguments, environments, request headers, connection and client information, URL
information, and remote user information. JVM tuning settings were applied to the server. The
goal was to saturate the cores on the server and find out the respective throughput and response
time.

The following table shows the JVM tuning settings used in the test.

TABLE 6–5 JVM Tuning Settings

Default Tuned

-Xmx128m

-Xms256m

-server -Xrs -Xmx2048m -Xms2048m -Xmn2024m

-XX:+AggressiveHeap -XX:LargePageSizeInBytes=256m

-XX:+UseParallelOldGC -XX:+UseParallelGC

-XX:ParallelGCThreads=<number of cores>

-XX:+DisableExplicitGC

Number of cores

Static Content Scalability

20000

21000

24000

23000

22000

25000

26000
27000
28000

19000

18000

17000

16000

15000

14000

13000

12000

11000

10000
2 4 6

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

Throughput

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009122

The following table shows the results for the dynamic content servlet test.

TABLE 6–6 Dynamic Content Test: Servlet Scalability

Number Of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 5287 19

4 10492 19

6 15579 19

The following is a graphical representation of servlet scalability results.

Dynamic Content Test: C CGI
This test was performed by accessing a C executable called printenv. This executable outputs
the environment variable information. CGI tuning settings were applied to the server. The goal
was to saturate the cores on the server and find out the respective throughput and response
time.

The following table describes the CGI tuning settings used in this test.

Number of cores

Servlet Scalability

5000
2 4 6

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 123

TABLE 6–7 CGI Tuning Settings

Default Tuned

idle-timeout=300

cgistub-idle-timeout=30

min-cgistubs=0

max-cgistubs=16

idle-timeout=300

cgistub-idle-timeout=1000

min-cgistubs=100

max-cgistubs=100

The following table shows the results of the dynamic content test for C CGI.

TABLE 6–8 Dynamic Content Test: C CGI Scalability

Number Of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 892 112

4 1681 119

6 2320 129

The following is a graphical representation of C CGI scalability results.

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009124

Dynamic Content Test: Perl CGI
This test was conducted with Perl script called printenv.pl that prints the CGI environment.
CGI tuning settings were applied to the server. The goal was to saturate the cores on the server
and find out the respective throughput and response time.

The following table shows the CGI tuning settings used in the dynamic content test for Perl
CGI.

TABLE 6–9 CGI Tuning Settings

Default Tuned

idle-timeout=300

cgistub-idle-timeout=30

min-cgistubs=0

max-cgistubs=16

idle-timeout=300

cgistub-idle-timeout=1000

min-cgistubs=100

max-cgistubs=100

The following table shows the results for the dynamic content test of Perl CGI.

Number of cores

C CGI Scalability

2300
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800

2400

2 4 6

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 125

TABLE 6–10 Dynamic Content Test: Perl CGI Scalability

Number Of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 322 310

4 611 327

6 873 343

The following is a graphical representation of Perl CGI scalability results.

Dynamic Content Test: NSAPI
The NSAPI module used in this test was printenv2.so. It prints the NSAPI environment
variables along with some text to make the entire response 2 KB. The goal was to saturate the
cores on the server and find out the respective throughput and response time.

The only tuning for this test was optimizing the path checks in obj.conf by removing the
unused path checks.

The following table shows the results of the dynamic content test for NSAPI.

Number of cores

Perl CGI Scalability
900

850

800

750

700

650

600

550

500

450

400

350

300
2 4 6

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009126

TABLE 6–11 Dynamic Content Test: NSAPI Scalability

Number Of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 6264 14

4 12520 15

6 18417 16

The following is a graphical representation of NSAPI scalability results.

PHP Scalability Tests
PHP is a widely-used scripting language uniquely suited to creating dynamic, Web-based
content. It is the most rapidly expanding scripting language in use on the Internet due to its
simplicity, accessibility, wide number of available modules, and large number of easily available
applications.

The scalability of Web Server combined with the versatility of the PHP engine provides a
high-performing and versatile web deployment platform for dynamic content. These tests used
PHP version 5.1.6.

Number of cores

NSAPI Scalability

17000

18000

19000

16000

15000

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000
2 4 6

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 127

The tests were performed in two modes:

■ An out-of-process fastcgi-php application invoked using the FastCGI plug-in.
■ In-process PHP NSAPI plug-in.

The test executed the phpinfo() query. The goal was to saturate the cores on the server and find
out the respective throughput and response time.

PHP Scalability with Fast CGI
The following table shows the Web Server tuning settings used for the FastCGI plug-in test

TABLE 6–12 Tuning Settings for FastCGI Plug-in Test

Configuration Tuning

magnus.conf Init fn="load-modules"
shlib="path_to_web_server_plugin_dir/fastcgi/libfastcgi.so"
funcs="responder_fastcgi" shlib_flags="(global|now)"

obj.conf NameTrans fn="assign-name" from="/fcgi/*" name="fcgi.config"

<Object name="fcgi.config">
Service type="magnus-internal/ws-php" fn="responder-fastcgi"
app-path="path_to_php"
bind-path="localhost:9000"
app-env="PHP_FCGI_CHILDREN=128"
app-env="PHP_FCGI_MAX_REQUESTS=20000"
app-env="LD_LIBRARY_PATH=path_to_php_lib"
listen-queue=8192

req-retry=2

reuse-connection=1

connection-timeout=120

resp-timeout=60

restart-interval=0

</Object>

mime.types type=magnus-internal/ws-php exts=php,php3,php4

The following table shows the results of the PHP with FastCGI test.

TABLE 6–13 PHP Scalability with Fast CGI

Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 876 114

4 1706 117

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009128

TABLE 6–13 PHP Scalability with Fast CGI (Continued)
Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

6 2475 121

The following is a graphical representation of PHP scalability with Fast CGI.

PHP Scalability with NSAPI
The following table shows the Web Server tuning settings for the PHP with NSAPI test.

TABLE 6–14 NSAPI Plug-in Configuration for PHP

magnus.conf Init fn="load-modules" shlib="libphp5.so"
funcs="php5_init,php5_close,php5_execute"

Init fn="php5_init" errorString="PHP Totally Blew Up!"

Number of cores

PHP Scalability With Fast CGI

2000

2100

2400

2300

2200

2500

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800
2 4 6

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 129

TABLE 6–14 NSAPI Plug-in Configuration for PHP (Continued)
obj.conf NameTrans fn="pfx2dir" from="/php-nsapi"

dir="path_to_php_script_dir" name="php-nsapi" <Object

name="php-nsapi"> ObjectType fn="force-type"
type="magnus-internal/x-httpd-php" Service fn=php5_execute

</Object>

mime.types type=magnus-internal/ws-php exts=php,php3,php4

The following table shows the results of the PHP with NSAPI test.

TABLE 6–15 PHP Scalability with NSAPI

Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 950 105

4 1846 108

6 2600 115

The following is a graphical representation of PHP scalability with NSAPI.

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009130

SSL Performance Test: Static Content
This test was performed with static download of a randomly selected file from a pool of 10,000
directories, each containing 36 files ranging in size from 1KB to 1000 KB. The goal of the SSL
static content tests was to saturate the cores and find out the respective throughput and
response time. Only four cores of T2000 were used for this test.

This test used the following configuration:

■ Static files were created on striped disk array (Sun StorEdge 3510).
■ Multiple network interfaces were configured.
■ The file cache was enabled and tuned using the settings in Table 6–3.
■ The SSL session cache was tuned using the settings in Table 6–2.
■ Web Server is configured with 64 bit

The following table shows the SSL static content test results.

TABLE 6–16 SSL Performance Test: Static Content Scalability

Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 2284 379

Number of cores

PHP Scalability With NSAPI

2400

2600

2200

2000

1800

1600

1400

1200

1000

800
2 4 6

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 131

TABLE 6–16 SSL Performance Test: Static Content Scalability (Continued)
Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

4 4538 387

6 6799 387

The following is a graphical representation of static content scalability with SSL.

SSL Performance Test: Perl CGI
This test was conducted with Perl script called printenv.pl that prints the CGI environment in
SSL mode. The test was performed in SSL mode with the SSL session cache enabled. The goal
was to saturate the cores on the server and find out the respective throughput and response
time.

The following table shows the SSL Perl CGI test results.

TABLE 6–17 SSL Performance Test: Perl CGI Scalability

Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 303 329

4 580 344

Number of cores

Static Content Scalability With SSL

7000

6500

6000

5500

5000

4500

4000

3500

3000

2500

2000
2 64

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009132

TABLE 6–17 SSL Performance Test: Perl CGI Scalability (Continued)
Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

6 830 361

The following is a graphical representation of Perl scalability with SSL.

SSL Performance Test: C CGI
This test was performed by accessing a C executable called printenv in SSL mode. This
executable outputs the environment variable information. The test was performed in SSL mode
with the SSL session cache enabled. The goal was to saturate the cores on the server and find out
the respective throughput and response time.

The following table shows the SSL CGI test results.

TABLE 6–18 SSL Performance Test: C CGI Scalability

Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 792 126

Number of cores

Perl CGI Scalability With SSL

700

750

800

850

650

600

550

500

450

400

350

300
2 64

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 133

TABLE 6–18 SSL Performance Test: C CGI Scalability (Continued)
Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

4 1499 133

6 2127 141

The following is a graphical representation of C CGI scalability with SSL.

SSL Performance Test: NSAPI
The NSAPI module used in this test was printenv2.so. It prints the NSAPI environment
variables along with some text to make the entire response 2 KB. The test was performed in SSL
mode with the SSL session cache enabled. The goal was to saturate the cores on the server and
find out the respective throughput and response time.

The following table shows the SSL NSAPI test results.

Number of cores

C CGI Scalability With SSL

2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800

2200

700
2 64

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009134

TABLE 6–19 SSL Performance Test: NSAPI Scalability

Number of Cores Average Throughput (ops/sec) Average Response Time (ms)

2 2729 29

4 5508 30

6 7982 32

The following is a graphical representation of NSAPI scalability with SSL.

E-Commerce Web Application Test
The e-commerce application is a more complicated application that utilizes a database to
simulate online shopping.

Hardware for E-Commerce Test
The e-commerce studies were conducted using the following hardware.

Web Server system configuration:

■ Sun Microsystems Sun Fire 880 (900MHz US-III+). Only four CPUs were used for this test.
■ 16384 Megabytes of memory.

Number of cores

NSAPI Scalability With SSL

8000

7500

7000

6500

6000

5500

5000

4500

4000

3500

3000

2500
2 64

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 135

■ Solaris 10 operating system.

Database system configuration:
■ Sun Microsystems Sun Fire 880 (900MHz US-III+)
■ 16384 Megabytes of memory
■ Solaris 10 operating system
■ Oracle 10.1.0.2.0

Driver system configuration:
■ Sun Microsystems Sun Fire 880 (900MHz US-III+)
■ Solaris 10 operating system

Network configuration:

The Web Server, database, and the driver machines were connected with a gigabit Ethernet link.

Configuration and Tuning for E-Commerce Test
The e-commerce test was run with the following tuning settings.

JDBC tuning:

<jdbc-resource>

<jndi-name>jdbc/jwebapp</jndi-name>

<datasource-class>oracle.jdbc.pool.OracleDataSource</datasource-class>

<max-connections>200</max-connections>

<idle-timeout>0</idle-timeout>

<wait-timeout>5</wait-timeout>

<connection-validation>auto-commit</connection-validation>

<property>

<name>username</name>

<value> db_user </value>

</property>

<property>

<name>password</name>

<value> db_password </value>

</property>

<property>

<name>url</name>

<value>jdbc:oracle:thin:@db_host_name:1521:oracle_sid</value>

</property>

<property>

<name>ImplicitCachingEnabled</name>

<value>true</value>

</property>

<property>

<name>MaxStatements</name>

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009136

<value>200</value>

</property>

</jdbc-resource

JVM tuning:

-server -Xmx1500m -Xms1500m -Xss128k -XX:+DisableExplicitGC

E-commerce Application Description
This test models an e-commerce web site that sells items from a large inventory. It uses the
standard web application model-view-controller design pattern for its implementation: the user
interface (that is, the view) is handled by 16 different JSP pages which interface with a single
master control servlet. The servlet maintains JDBC connections to the database, which serves as
the model and handles 27 different queries. The JSP pages make extensive use of JSP tag
libraries and comprise almost 2000 lines of logic.

Database Cardinality
The database contains 1000 orderable items (which have two related tables which also have a
cardinality of 1000), 72000 customers (with two related tables), and 1.9 million orders (with two
related tables). Standard JDBC connections handle database connection using prepared
statements and following standard JDBC design principles.

Workload
A randomly-selected user performs the online shopping. The following operations were used in
the Matrix mix workload. Operations were carried out with the following precedence: Home,
AdminConfirm, AdminRequest, BestSellers, BuyConfirm, BuyRequest, CustomerRegistration,
NewProducts, OrderDisplay, OrderInquiry, ProductDetail, SearchRequest, SearchResults, and
ShoppingCart.

The Faban driver was used to drive the load. Think time was chosen from a negative
exponential distribution. The minimum think time was 7.5 seconds, the maximum was 75
seconds. The maximum number of concurrent users that the system can support was based on
the following passing criteria.

TABLE 6–20 Performance Test Pass Criteria

Transaction 90th Percentile Response Time (Seconds)

HomeStart 3

AdminConfirm 20

AdminRequest 3

Performance Tests and Results

Chapter 6 • Scalability Studies 137

TABLE 6–20 Performance Test Pass Criteria (Continued)
Transaction 90th Percentile Response Time (Seconds)

BestSellers 5

BuyConfirm 5

BuyRequest 3

CustomerRegistration 3

Home 3

NewProducts 5

OrderDisplay 3

OrderInquiry 3

ProductDetail 3

SearchRequest 3

SearchResults 10

ShoppingCart 3

The following table shows the e-commerce web application test results.

TABLE 6–21 E-Commerce Web Application Scalability

Number of CPUs Users Throughput (ops/sec)

2 7000 790

4 11200 1350

The following is a graphical representation of e-commerce web application scalability.

Performance Tests and Results

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009138

The following is a graphical representation of e-commerce web application scalability.

Number of CPUs

E-commerce Web Application Scalability

11500

11000

10500

10000

9500

9000

8500

8000

7500

7000
2 4

U
se

rs

Users

Number of CPUs

E-commerce Web Application Scalability

1150

1200

1250

1300

1350

1100

1050

1000

950

900

850

800

750
2 4

T
hr

ou
gh

pu
t(

op
s/

se
c)

Throughput

Performance Tests and Results

Chapter 6 • Scalability Studies 139

140

Index

Numbers and Symbols
64–bit servers

performance advantages, 21
scaling, 113

A
acceptor threads, 53
access time updates, 105
acl-bucket, 36
ACL user cache, 79-80

max-groups-per-user, 79
max-users, 79
maximum age, 79

activating statistics, 24-25
AddLog, 85
Admin Console, more information about, 12
assign-name function, 83, 84
async DNS cache, 72
auto-commit validation method, 78

B
benchmarking

tuning Solaris for, 108, 109-110
bottleneck, ACL user cache, 79
buckets, performance, 35
busy functions, 85

C
cache not utilized, 99
caching, servlet/JSP, 81
cgi-bucket, 36
CGIStub processes, 83
check-acl SAF, 97
class-loader, 81
class reloading, configuring, 81
classpath, directories in, 81-82
configurations

and performance, 20
statistics, 23

connection handling, 40-42
connection queue information, 50-52
connection queue size, and SNCA, 104
connection refused errors, 103
connection settings, JDBC resource, 77-79
connection timeouts, 102
connections, 40-46

closed, 55
JDBC, 75
simultaneous, 59
simultaneous using maximum threads setting, 45

content_length header, 55
crontab -e sys command, 107

D
default-bucket, 35
determining requirements, 114
directories in the classpath, 81-82

141

disabling network interrupts, 110-111
disk configuration, 110
DNS cache, 70-72

async enabled, 72
current entries, 71
entries, 71
hit ratio, 71
maximum entries, 71

drive space, sizing issues, 114
dynamic control and monitoring, file cache, 65
dynamic reload interval, 81

E
enable-perfdump command, 32
enable-stats-xml command, 30
enabling statistics, 24-25
etc/system file, 101

in scalability studies, 117

F
Faban driver, 117
fail all connections, JDBC resource, 78
file-bucket, 36
file cache, 60-67

cache lookups, 64
dynamic control and monitoring, 65
entries, 63
flags for ?list option, 67
hit ratio, 64
low hit rate with custom NSAPI functions, 99
maximum age, 64
maximum heap size, 64
nocache parameter, 65
obj.conf object for monitoring, 65
problems, cache not utilized, 99
status example, 66

file system tuning, Solaris, 105-106
find-pathinfo-forward, 83-84
find-pathinfo function, 83
flushed keep-alive connections, 99-100
free connections, in JDBC resources, 76

func_insert, 85

G
get-config-stats command, 26
get-perfdump command, 33
get-stats-xml command, 31
get-virtual-server-stats command, 28
get-webapp-stats command, 28
guarantee isolation, JDBC resource, 79

H
hardware

for e-commerce study, 135-136
for studies, 116

high concurrency mode, 41
high file system page-in rate, 105
hires_tick, 109
hit ratio, 64, 99
HotSpot VM performance FAQ, 98
HTTP 1.0-style workload, 57
HTTP 1.1-style workload, 57-58
HTTP access logged, 110
HTTP listener, statistics, 52

I
idle threads, 68
idle timeout

JDBC resource, 77
init-cgi, multi-process mode, 83
iostat -x 60 command, 106
iostat utility, 105
ip:ip_squeue_bind, 109
ip:ip_squeue_fanout, 109
ipge:ipge_bcopy_thresh, 109
ipge:ipge_srv_fifo_depth, 109
ipge:ipge_taskq_disable, 109
ipge:ipge_tx_ring_size, 109
ipge:ipge_tx_syncq, 109

Index

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009142

J
Java ES monitoring console, 37
Java heap tuning, 73
Java HotSpot VM, 73
java.lang.OutOfMemoryError, 98
Java Security Manager, configuring, 81
Java VM heap space, 98
Java web applications, tuning performance, 80-83
JDBC connection pooling, improving application

performance, 74
JDBC resources, 74-79

connection settings, 77-79
connections, 75
free connections, 76
idle timeout, 77
leased connections, 76
maxConnections, 76
peakConnections, 77
queued connections, 76
statistics in Admin Console, 75-76
validation method, 78

jsp-config, 80
JVM, 72-73

Java heap tuning, 73

K
keep-alive, 54-58

connections flushed, 99-100
count, 55-56, 99
flushes, 56, 99
hits, 56, 99
maximum connections, 55, 99
maximum number of connections, 55
poll interval, 56
refusals, 56
threads, 57
timeout, 55
timeouts, 56

KernalThreads directive, 42

L
LateInit, 83
LDAP server, and ACL user cache, 79
leased connections, in JDBC resources, 76
listen socket, statistics, 52
load driver, for studies, 117
load-modules function, 44
log file modes, 100

verbose, 100
long service times, 105-106
low latency mode, 41
low-memory problems, 98

M
magnus.conf

connection-handling directives, 42
init-cgi, multi-process mode, 83

manager-properties properties, 82
max-groups-per-user, ACL user cache, 79
max-users, ACL user cache, 79
maximum age, file cache, 64
maximum connections, JDBC resource, 77
maximum heap size, 64
maximum threads, 45, 59, 98

and NativePoolQueueSize, 69
and SNCA, 104
too few threads, 98

maxLocks, tuning, 82
MaxProcs, 45, 46
maxSessions, 82
memory, sizing issues, 114
memory requirements, 114
meta-data validation method, 78
minimum connections, JDBC resource, 77
MMapSessionManager, tuning, 82-83
modes

log file, 100
multi-process, 45-46
single-process, 44-45

monitoring server performance
comparison of methods, 22
methods with least impact, 22
overview, 19-37

Index

143

monitoring server performance (Continued)
using Java EE monitoring console, 37
using perfdump, 31-37
using performance buckets, 35-37
using SE toolkit, 107
using stats-xml, 29-31

mpstat 60 command, 106
multi-process mode, 44-46

N
NameTrans, 44, 83, 84
native thread pool, 43-44, 67-68
NativePoolMaxThreads, 68, 70
NativePoolMinThreads, 70
NativePoolQueueSize, 68, 69
NativePoolStackSize, 69
NativeThread, 44
ndd command, 103
netstat -i 60, 106
netstat -s command, 102
network configuration, 110-111

for studies, 118-119
network interrupts, disabling, 110-111
networking, sizing issues, 114
nocache parameter, 65
nostat, 84-85
NSPR, 43
NSServletService, 35
ntrans-base, 83, 84

O
obj.conf

custom thread pool, 42
object for monitoring the file cache, 65
performance buckets, 36
UseOutputStreamSize parameter, 57

P
page sizes, 111

PATH_INFO, 83
PathCheck, 44, 85
peak concurrent users, 114
perfdump

about, 31-37
enabling, 31-32
sample output, 33-35
using to monitor server activity, 31-37

performance
buckets, 35
issues, 19-20
monitoring tools, 22
overview, 19-37
problems, 97
studies, 115-139
tuning, 39-96

performance buckets
configuration of, 36
defining in magnus.conf, 36
information in perfdump, 37
performance report, 36-37
using to monitor activity, 35

performance monitoring, Solaris-specific, 106-107
performance report, performance buckets, 36-37
persistence-type, 82
persistent connection information, 54-58
pfx2dir function, 83
PR_GetFileInfo, 67
precompiled JSPs, 80
problems

common, 97
connection timeouts, 102
keep–alive connections flushed, 99-100
log file modes, 100
low memory, 98
too few threads, 98

process modes, 44-46
processes, 40-46
processors, sizing issues, 113
profiling, 24

Index

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009144

Q
quality of service

features, 20
statistics and, 24

queued connections, in JDBC resources, 76

R
ratio, hit, 64
reapIntervalSeconds, 82
refresh, 67
reload-interval, 80
restart, 67
rlim_fd_max, 101, 108, 109

S
scalability studies, 115-139
SE toolkit, 107
segmap_percent, 105
send-cgi, 35
send-file, nocache parameter, 65
server instances, statistics, 23
Service, 44, 85
servlet/JSP caching, 81
session creation information, 58-60
session-properties, 82
session settings, web application, 82-83
set-http-prop command, 58
set-stats-prop command, 25
single-process mode, 44-45
SNCA, 103-104

connection queue size, 104
maximum threads, 104

Solaris
file system tuning, 101-104
Network Cache and Accelerator, 103-104
platform-specific issues, 101-104
tuning for performance benchmarking, 108,

109-110
Solaris-specific performance monitoring, 106-107

long-term system monitoring, 107
SE toolkit, 107

Solaris-specific performance monitoring (Continued)
short-term system monitoring, 106

sq_max_size, 103, 108, 109
SSL performance, 21
start options, 111
statistics

activating, 24-25
connection queue, 50
file cache information, 60
listen socket information, 52
monitoring, 23
performance buckets, 35

stats-xml
accessing URI, 30
enabling URI, 29
limiting output, 30-31
using to monitor current activity, 29-31

studies, 115-139
conclusion, 116
goals, 115
hardware used, 116
load driver, 117
network configuration, 118-119
Web Server tuning, 119-120

T
table validation method, 78
TCP buffering, tuning, 103
tcp_conn_req_max_q, 102, 108, 109
tcp_conn_req_max_q0, 102, 108, 110
tcp_cwnd_max, 110
TCP/IP, tuning, 117
tcp_ip_abort_interval, 108, 110
tcp_keepalive_interval, 108
tcp_recv_hiwat, 108, 110
tcp_rexmit_interval_initial, 108
tcp_rexmit_interval_max, 108
tcp_rexmit_interval_min, 108
tcp_slow_start_initial, 108
tcp_smallest_anon_port, 108
tcp_time_wait_interval, 103, 108
tcp_xmit_hiwat, 108, 110
tcpHalfOpenDrop, 102

Index

145

tcpListenDrop, 102
tcpListenDropQ0, 102
TerminateTimeout directive, 42
test results, 115-139
thread pools, 49, 67-70

custom, 42-43
disabled, 42
native thread pool, 43-44, 67-68

threads, 40-46
acceptor, 53
creation statistics, 58-60
keep-alive, 57
maximum, 59
maximum and SNCA, 104
multi-process mode, 45
too few, 98

tips, general, 39-40
transaction isolation level, JDBC resource, 79
tuning maxLocks, 82
tuning MMapSessionManager, 82-83
tuning TCP buffering, 103
tuning the Web Server, 39-96

Java web applications performance, 80-83
threads, processes, and connections, 40-46
using statistics, 48-79

tuning tips
general, 39-40
platform-specific, 101-111

tuning Web Server
6.1 to 7.0 parameter mapping, 46-48
keep-alive subsystem, 57

U
UFS, 105
under-throttled server, 98
UNIX file system, 105
using statistics to tune your server, 48-79

V
validation method, JDBC resource, 78
validation table name, JDBC resource, 78

virtual servers
default, 53
HTTP listeners, 52
performance overview, 20

vmstat 60 command, 106

W
wait timeout, JDBC resource, 78
web applications, 73-74

session timeout, 82
statistics for, 28
tuning performance, 80-83

Web Server
start options, 111
tuning for studies, 119-120

work queue
length, 68
limit, 68
peak, 68

Index

Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide • July 2009146

	Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide
	Preface
	Who Should Use This Book
	Web Server Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Performance and Monitoring Overview
	Performance Issues
	Configuration
	Virtual Servers
	Server Farms
	64–Bit Servers
	SSL Performance
	Monitoring Server Performance
	About Statistics
	Enabling Statistics
	To Enable Statistics from the Admin Console
	To Enable Statistics from the CLI

	Monitoring Current Activity Using the Admin Console
	To Monitor Statistics from the Admin Console

	Monitoring Current Activity Using the CLI
	To Monitor Statistics from the CLI

	Monitoring Current Activity Using stats.xml
	To Enable the stats-xml URI from the Admin Console
	To Enable the stats-xml URI from the CLI
	To Limit the stats-xml Statistics Displayed in the URI
	To View stats-xml Output from the CLI

	Monitoring Current Activity Using perfdump
	To Enable the perfdump URI from the Admin Console
	To Enable the perfdump URI from the CLI
	To View the perfdump Data from the CLI
	Sample perfdump Output
	Using Performance Buckets
	Configuration
	Performance Report

	Monitoring Current Activity Using the Java ES Monitoring Console

	Tuning Sun Java System Web Server
	General Tuning Tips
	Understanding Threads, Processes, and Connections
	Connection-Handling Overview
	Low Latency and High Concurrency Modes
	Disabled Thread Pools
	Connection–Handling magnus.conf Directives for NSAPI

	Custom Thread Pools
	The Native Thread Pool
	Process Modes
	Single-Process Mode
	Multi-Process Mode
	MaxProcs (UNIX/Linux)

	Mapping Web Server 6.1 Tuning Parameters to Web Server 7.0
	Using Monitoring Data to Tune Your Server
	Connection Queue Information
	Current /Peak /Limit Queue Length
	Tuning

	Total Connections Queued
	Average Queue Length
	Average Queuing Delay
	Ticks Spent
	Total Number of Connections Added

	HTTP Listener (Listen Socket) Information
	Address
	Tuning

	Acceptor Threads
	Tuning

	Default Virtual Server
	Tuning

	Keep-Alive Information
	Keep-Alive Count
	Tuning

	Keep-Alive Hits
	Keep-Alive Flushes
	Keep-Alive Refusals
	Keep-Alive Timeouts
	Keep-Alive Timeout
	Keep-Alive Poll Interval
	Keep-Alive Threads
	Tuning for HTTP 1.0-Style Workload
	Tuning for HTTP 1.1-Style Workload

	Session Creation and Thread Information
	Maximum Threads (Maximum Simultaneous Requests)
	Tuning

	File Cache Statistics Information
	Accelerator Entries
	Tuning

	Acceleratable Requests
	Tuning

	Acceleratable Responses
	Tuning

	Accelerator Hit Ratio
	Tuning

	File Cache Enabled
	Tuning

	File Cache Entries
	Tuning

	File Cache Hit Ratio (Cache Hits / Cache Lookups)
	Maximum Age
	Tuning

	Maximum Heap Cache Size
	Tuning

	Using the nocache Parameter
	Example
	Using sendfile-size to Pace Large Files
	Tuning

	File Cache Dynamic Control and Monitoring
	To Control and Monitor the File Cache

	Thread Pool Information
	Native Thread Pool
	Idle /Peak /Limit
	Tuning

	Work Queue Length /Peak /Limit
	Tuning

	NativePoolStackSize Directive
	Tuning

	NativePoolQueueSize Directive
	Tuning

	NativePoolMaxThreads Directive
	Tuning

	NativePoolMinThreads Directive
	Tuning

	DNS Cache Information
	Enabled
	Tuning

	Cache Entries (Current Cache Entries / Maximum Cache Entries)
	Tuning

	Hit Ratio of Cache Hits and Lookups
	Async DNS Enabled/Disabled

	Java Virtual Machine (JVM) Information
	Java Heap Tuning

	Web Application Information
	To Access Web Application Statistics From the Admin Console
	Web Application Statistics

	JDBC Resource Information
	JDBC Resource Statistics Available Through the Admin Console
	Connections
	Free Connections
	Leased Connections
	Queued Connections

	JDBC Resource Statistics Not Available in the Admin Console
	JDBC Resource Connection Settings

	Tuning the ACL User Cache
	Tuning Java Web Application Performance
	Using Precompiled JSPs
	Using Servlet/JSP Caching
	Configuring the Java Security Manager
	Configuring Class Reloading
	Avoiding Directories in the Classpath
	Configuring the Web Application’s Session Settings
	Tuning maxLocks (UNIX/Linux)
	Tuning MMapSessionManager (UNIX/Linux)

	Tuning CGI Stub Processes (UNIX/Linux)
	Using find-pathinfo-forward
	Using nostat
	Using Busy Functions
	Using Large Pages Support
	Tuning Your Web Application
	Java Programming Guidelines
	Avoid Serialization and Deserialization
	Use StringBuffer to Concatenate Strings
	Assign null to Variables That Are No Longer Needed
	Declare Methods as final Only If Necessary
	Declare Constants as static final
	Avoid Finalizers
	Declare Method Arguments final
	Synchronize Only When Necessary
	Use DataHandlers for SOAP Attachments

	Java Server Page and Servlet Tuning
	Suggested Coding Practices
	General Guidelines:
	Avoid Shared Modified Class Variables
	HTTP Session Handling

	Tuning Web Container Within Web Server 7.0
	Deployment Settings
	Use Pre-compiled JavaServer Pages
	Disable Dynamic Application Reloading
	Disable dynamic class reloading for an application

	Disable Dynamic JSP Reloading
	Logger Settings
	Managing Memory and Garbage Collection
	Tuning the Garbage Collector
	Other Garbage Collector Settings
	Tuning the Java Heap

	Choosing the Garbage Collection Algorithm
	CMS Collector

	Tracing Garbage Collection

	J2SE 5.0 Monitoring Tools
	jconsole
	jstat

	Binary Logging Header

	Common Performance Problems
	check-acl Server Application Functions
	Low-Memory Situations
	Too Few Threads
	Cache Not Utilized
	Keep-Alive Connections Flushed
	Large Memory Footprint
	Log File Modes

	Platform-Specific Issues and Tips
	Solaris Platform-Specific Issues
	Files Open in a Single Process (File Descriptor Limits)
	Failure to Connect to HTTP Server
	Connection Refused Errors
	Tuning TCP Buffering
	Using the Solaris Network Cache and Accelerator (SNCA)
	To Enable SNCA to Work With Web Server
	Maximum Threads and Queue Size

	Solaris File System Tuning
	High File System Page-In Rate
	Reduce File System Housekeeping
	Long Service Times on Busy Disks or Volumes

	Solaris Platform-Specific Performance Monitoring
	Short-Term System Monitoring
	Long-Term System Monitoring
	“Intelligent” Monitoring

	Solaris 10 Platform-Specific Tuning Information
	Tuning Solaris for Performance Benchmarking
	Tuning UltraSPARC® T1–Based Systems for Performance Benchmarking
	Tuning Operating System and TCP Settings
	Disk Configuration
	Network Configuration
	Web Server Start Options

	Sizing and Scaling Your Server
	64-Bit Server
	Processors
	Memory
	Drive Space
	Networking

	Scalability Studies
	Study Goals
	Study Conclusion
	Hardware
	Software
	Configuration and Tuning
	Network Configuration
	Web Server Tuning

	Performance Tests and Results
	Static Content Test
	Dynamic Content Test: Servlet
	Dynamic Content Test: C CGI
	Dynamic Content Test: Perl CGI
	Dynamic Content Test: NSAPI
	PHP Scalability Tests
	PHP Scalability with Fast CGI
	PHP Scalability with NSAPI

	SSL Performance Test: Static Content
	SSL Performance Test: Perl CGI
	SSL Performance Test: C CGI
	SSL Performance Test: NSAPI
	E-Commerce Web Application Test
	Hardware for E-Commerce Test
	Configuration and Tuning for E-Commerce Test
	E-commerce Application Description
	Database Cardinality
	Workload

	Index

