Programmer’s Guide

IPlanet™ Directory Server
Access Management Edition

Version5.1

May 2002

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, iPlanet are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions. The product
described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the
product or this document may be reproduced in any form by any means without prior written authorization of the Sun
Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent I'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par
quelque moyen que ce soit sans l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ETAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A
UN BUT PARTICULIER OU DE NON CONTREFAGCON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.

Contents

ADOULt This GUIAE ... e e 7
What You Are Expected t0 KNOW oo 7
iPlanet Directory Server Access Management Edition DocumentationSet 8
Organization of ThiS GUIE oo e e e e 8
Documentation Conventions Used in ThisGuide o i 9
Typographic CONVENLIONSttt e e e e e e 9
TerMINOIOQY . .ot 10
Related INformation 11
Chapter 1 INtrodUCHiON e e e 13
DSAME OVEIVIEW . . .t e e 13
HOW DSAME WOTKS ... e e e 14
WD A CCESS . . .ttt 15
Java APPHICALION ACCESSottt e e e 15
EXteNding DSAME . . 15
Service Definition With XML oo o e 16
HTML Templates e e e e e e 16
The Java APl . o 16
DSAME File SyStem . .. 18
RUNEIME DIFECIONY . . . oottt e e e e e e e e 18
Chapter 2 DSAME ANd XML .. .o e e e 21
(O£ Y =1 21
XML Service Files ... o 22
Document Type Definition Files 22
Service Definition and INtegration 23
SerVICe ALt DULES . . . 23
Default Values 26
ALtribute INNErItANCE o 26
DefiniNg A SErVICE o 27

4

DSAME DT FileS .. 33

The smS.dtd STrUCIUNEo e e e e e e 34
The amAdmMIN.dtd StruCtUre e 43
DSAME XML FIlES . ..ot 58
Internal XML Service Files o 58
Batch Processing XML Files e 61
XML Schema Files o 64
CUStOMIZING USEE PageS . . . o oot e 64
Abstract Objects and amEntrySpecificxml 65
ADSEIract ObJECESot 65
amEntrySpecific.xml Schema 66
The amAdmin Command Line Executable i 68
The amadmin SYNTaX e 68
SampleMailService Files 71
Chapter 3 User Authentication With DSAME e 73
The Authentication PrOCESSt e e e 73
Administration Console ENtry 74
URL Policy AQENT ENLIY . ..o e e e e e e e e e 74
ClIeNt DEteCtioN e e e e e e e 75
Installed Authentication SEIrVICES i e e e 76
Custom AULhentication SEIVICESt 76
Creating an Authentication SErVICE ot e 77
Authentication Service XML Files 78
Authentication Service Properties Files 79
Configuring SCreen Propertiesttt e e e e e 79
Configuring Localization Properties oot e 81
Authentication URL Parameters e 82
AUThENTICAtION AP IS . . 84
Authentication API OVEIVIEWt e e 84
AuthenticationModuleFactory Interface i 85
AuthenticationModule Class o 85
Sample Authentication SErviCe 86
Authentication Sample: Readme.html 86
Chapter 4 Identity Management And The SDK 91
(O 1Y =T T P 91
Management Of Identity-Related Objects i e 92
Structure Of UMS. XMo 93
Modifying UmS. XMl 94
DSAME SDK . oottt 95
Identity Management APIS 95

Directory Server Access Management Edition Programmer’s Guide « May 2002

SaMPle COde . . . o 98

The SDK ANd Cache 100
CaChe PrOperties e 100
Chapter 5 Single Sign-On With DSAME e 103
The Single SigN-ON ProCESS oottt e e e e e e e e e 103
Contacting A Web Agent 104
Creating A SESSIONottt et e e e 104
Providing User Credentials i e e 105
Cookies and TOKENS 105
Cross-Domain SUPPOrt FOF SSOot e 105
Enabling Cross-Domain Single Sign-On 106
Configuring For Cross-Domain SSOt 107
SO0 APIS . 110
Non-Web-Based Applications 110
APTOVEIVIBW . . ettt e e e e 111
Sample APLCOdEo 115
Sample SSO Java Fileso 119
SSO Servilet Sample 119
Remote SSO Sample 120
Command Line SSO Sampleo 120
MUIEI-JV M SUDPOIT .« . e e e e e e e e e e e e 120
Chapter 6 Logging 121
OV VI W . oot e 121
Logging ArChiteCture o 122
LOggiNg SEIVICE . .o e 122
Log MeESSage FOIMaAtSttt e 122
File FOrmat ... 123
Database Format 123
LOgging APl . . 124
LogManager Classot e 124
LOgReCOrd Class 125
LOogging EXCEPLIONSottt e 125
Sample Logging Codet 126
Recorded EVENTS o 127
SSO-related LOGS . ..ottt 127
Console-related LOgS oot 127
Authentication-related LOgSttt 127
Chapter 7 ULty APIS ..o 129
OV VI B . oot e 129

6

AP SUMMIAIY . e 129

R3] U] 1Y =T o 1= 130
AdMINULILS .« 130
AMCHENIDELECIOrot e e e e e e e e 130
DU 130
LOCale . . o 130
SHaES . . 131
SYStEMPIOPEITIES . . . oot e 131
ThreadPool 131
Chapter 8 iPlanet Directory Server And DSAME i 133
OV BTV W . ottt e e e 133
ROIES 133
Managed ROIES 134
HOwW DSAME USES ROIES . . .o e e e e e e 136
Access Control INStructions (ACIS)ot 138
DefiNINg ACIS . .o 138
Format of Predefined ACIS 139
ClaSS Of SBIVICE . . ottt e e 142
CoS Definition ENLrYo e e 143
CoS Template ENtry ... 143
Conflicts anNd COS 143
EXisting AppliCatioNs 144
IO . 145

Directory Server Access Management Edition Programmer’s Guide « May 2002

About This Guide

This Programmer’s Guide offers information on how to customize the iPlanet™
Directory Server Access Management Edition (DSAME) to fit the needs of each
organization. This preface contains the following sections:

What You Are Expected to Know

iPlanet Directory Server Access Management Edition Documentation Set
Organization of This Guide

Documentation Conventions Used in This Guide

Related Information

NOTE Sun™ One ldentity Server was previously known as iPlanet

Directory Server Access Management Edition (DSAME). The
product was renamed shortly before the launch of the product.

The late renaming of this product has resulted in a situation where
the new product name is not fully integrated into the shipping
product. In particular, you will see the product referenced as
DSAME within the product GUI and within the product
documentation. For this release, please consider Sun One Identity
Server and iPlanet Directory Server Access Management Edition as
interchangeable names for the same product.

What You Are Expected to Know

This book is considered the “third” manual in the documentation series provided
with iPlanet Directory Server Access Management Edition. It is intended for use by
IT administrators and custom software developers who manage access to their web
resources through iPlanet servers and software. The functionality allows the
management of user data and enforcement of access policies. It is recommended
that IS administrators understand directory server technologies, including

iPlanet Directory Server Access Management Edition Documentation Set

Lightweight Directory Access Protocol (LDAP), and have some experience with
Java and eXtensible Markup Language (XML). Particularly, they should be familiar
with Sun™ One Directory Server (DS) and the documentation provided with that
product.

IPlanet Directory Server Access Management
Edition Documentation Set

The Directory Server Access Management Edition documentation set contains the
following titles:

= Installation and Configuration Guide describes iPlanet DSAME and provides
details on how to plan and install the iPlanet DSAME on Solaris systems.

= Administration Guide documents how to manage user and service data and
customize the DSAME console.

= Programmer’s Guide (this guide) documents how to customize an iPlanet
Directory Server Access Management Edition system for your organization.

= The Release Notes file gathers an assortment of information, including a
description of what is new in this release, last minute installation notes, known
problems and limitations, and how to report problems.

NOTE Be sure to check the Directory Server Access Management Edition
documentation web site for updates to the release notes and for
revisions to the guides. Updated documents will be marked with
the revision date.

http://docs.iplanet.com/docs/ nanual s/ dsane. ht ni

Organization of This Guide

The Programmer’s Guide (this guide) has nine chapters. The table below lists and
briefly describes the content of these chapters.

8 Directory Server Access Management Edition Administration Guide ¢ May 2002

Table 1

Documentation Conventions Used in This Guide

Programmer’s Guide Chapters

Chapter

Description

About This Guide

Chapter 1, “Introduction*

Chapter 2, “DSAME And XML”

Chapter 3, “User Authentication
With DSAME”

Chapter 4, “Identity Management
And The SDK”

Chapter 5, “Single Sign-On With
DSAME”

Chapter 6, “Logging”
Chapter 7, “Utility APIs”
Chapter 8, “iPlanet Directory Server

And DSAME”

Index

An outline of the documentation set and a
description of the iPlanet Directory Server Access
Management Edition Programmer’s Guide.

A brief explanation of the application’s concepts.

A description of how XML is used to customize
the application.

A description of the Authentication module and
how to create a custom authentication service.

A description of the management of
identity-related objects and the DSAME SDK.

A description of the single sign-on and
cross-domain single sign-on function and its APIs.

A description of the Logging function and its
APIs.

A description of the application’s utility functions
and its APIs.

A description of the iPlanet Directory Server
concepts that are used in DSAME.

Alphabetical index of the iPlanet Directory Server
Access Management Edition Programmer’s Guide.

Documentation Conventions Used in This Guide

In the iPlanet Directory Server Access Management Edition documentation, there
are certain typographic and terminology conventions used to simplify discussion
and to help you better understand the material. These conventions are described

below.

Typographic Conventions

This book uses the following typographic conventions:

= [talic type is used within text for book titles, new terminology, emphasis, and

words used in the literal sense.

About This Guide 9

Documentation Conventions Used in This Guide

Monospace font is used for sample code and code listings, APl and language
elements (such as function names and class names), filenames, pathnames,
directory names, HTML tags, and any text that must be typed on the screen.

Italic serif font is used within code and code fragments to indicate variable
placeholders. For example, the following command uses filename as a variable
placeholder for an argument to the gunzip command:

gunzip -d filename. tar. gz

Terminology

Below is a list of the general terms that are used in the iPlanet Directory Server
Access Management Edition documentation set:

DSAME refers to iPlanet Directory Server Access Management Edition and any
installed instances of the iPlanet Directory Server Access Management Edition
software.

Policy and Management Services refers to the collective set of iPlanet Directory
Server Access Management Edition components and software you have
installed and running on a dedicated Web Server.

Web Server that runs DSAME refers to the dedicated Web Server where the
DSAME is installed.

Directory Server refers to an installed instance of iPlanet Directory Server or
Netscape™ Directory Server.

DSAME_root is a variable placeholder for the home directory where you have
installed iPlanet Directory Server Access Management Edition.

Directory_Server_root is a variable placeholder for the home directory where
you have installed iPlanet Directory Server.

Web_Server_root is a variable placeholder for the home directory where you
have installed iPlanet Web Server.

10 Directory Server Access Management Edition Administration Guide « May 2002

Related Information

Related Information

In addition to the documentation provided with iPlanet Directory Server Access
Management Edition, you should be familiar with several other sets of
documentation. Of particular interest are the iPlanet Directory Server, iPlanet Web
Server, iPlanet Proxy Server, and iPlanet Certificate Management System
documentation sets. This sections lists additional sources of information that can be
used with iPlanet Directory Server Access Management Edition.

iPlanet Directory Server Documentation

You can find the iPlanet Directory Server documentation at the following site:
http://docs.ipl anet. com docs/ manual s/ directory. htm

iPlanet Web Server Documentation

You can find the iPlanet Web Server documentation at the following site:
http://docs.ipl anet. conl docs/ nanual s/ enterprise. htm

iPlanet Certificate Management System Documentation

You can find the iPlanet Certificate Management System documentation at the
following site:

http://docs.ipl anet. com docs/ manual s/ cns. ht m

iPlanet Proxy Server Documentation

You can find the iPlanet Proxy Server documentation at the following site:
http://docs.ipl anet. conml docs/ manual s/ proxy. htm

Directory Server Developer Information

In addition to the Directory Server documentation, you can find information on
Directory Server Access Management Edition, LDAP, the iPlanet Directory Server,
and associated technologies at the following iPlanet developer sites:

http://devel oper.ipl anet.conftech/directory/

http://wwv i pl anet. com downl oads/ devel oper/

Other iPlanet Product Documentation

Documentation for all iPlanet and Netscape servers and technologies can be found
at the following web site:

http://docs.ipl anet. com docs/ manual s/

About This Guide 11

Related Information

iPlanet Technical Support
You can contact iPlanet Technical Support through the following location:

http://ww. iplanet. con support/

12 Directory Server Access Management Edition Administration Guide * May 2002

Chapter 1

Introduction

The iPlanet Directory Server Access Management Edition (DSAME) Programmer’s
Guide describes how service developers and programmers can customize the
DSAME application to fit the specific needs of their organization. It offers
information on the public Java APIs, XML-based service configuration files and
HTML-based graphical interfaces. This introductory chapter contains the following
sections:

= DSAME Overview
= Web Access

= Extending DSAME
= DSAME File System

DSAME Overview

iPlanet DSAME is designed to help organizations manage secure access to their
web-based resources. The product integrates an identity system with the
management and enforcement of authentication and access privileges. It contains a
number of features towards this end. They include:

= Authentication—provides Java APIs for writing custom authentication server
plug-ins, an HTML-defined client interface for gathering the user’s credentials
and a framework that connects the client interface with the plug-in module.

= Single Sign-on (SSO)—provides Java APIs to create and manage SSO tokens
and a service to manage SSO sessions.

13

How DSAME Works

Service Management—provides a solution for customizing and registering
services and managing their attributes (configuration parameters). It includes
an eXtensible Markup Language (XML) Document Type Definition (DTD) that
defines the rules for creating a service and its attributes as well as Java APIs to
manage the same.

Identity Management—provides a solution for managing the structure of
DSAME’s directory data store. This includes Java APIs for adding, modifying
and removing identity-related objects and their attributes as well as templates
that define the configuration parameters of same.

Policy Management—provides a solution for defining and retrieving
organization-based privileges that secure the web resources of an enterprise.

DSAME console—provides a graphical, JATO-based interface for identity,
service, and policy management.

Command-line interface—provides an anmadni n executable to perform service
schema and metadata integration as well as identity, policy and service
management.

These listed features are executed by DSAME services that are installed out of the
box. They would internal services as distinguished from customized or external
services that are added on after installation. The basic functionality of internal
services can be extended. Customized external components can be defined using
the APIs, the sample code packaged with DSAME and the information in this
guide.

How DSAME Works

DSAME can be used to manage access to resources in two ways. An administrator
can access DSAME via a web browser or, an application can access DSAME
directly, requesting user profile information.

14 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Extending DSAME

Web Access

When a user requests access to an application or a protected page via a web
browser, they must first be authenticated. The request is redirected to the
Authentication service. This module determines the type of authentication to
initiate based on the method chosen by the user’s organization. For instance, LDAP
is a simple user name and password-based authentication. The authentication
module would send a HTML form to the web browser. For more complex types of
authentication, it might send multiple forms for authentication information.

Having obtained the user's credentials, the Authentication module would call the
respective provider to perform the authentication. Once verified, the module
generates a Single Sign-On (SSO) token (using the SSO API) which holds the user's
identity. The SSO API then generates a SSO token ID, a random string associated
with the SSO token. This ID is then sent back to the browser in the form of a cookie.
Once authenticated, the authentication component re-directs the user back to the
requested application or page.

NOTE Web access through DSAME includes an additional security
measure which uses web agents to evaluate a user’s access
privileges. For more information, see the iPlanet Policy Agent Pack
1.0 documentation.

Java Application Access

Java applications can access DSAME for user attributes. (For example, a mail
service might store its users’ mailbox size information in iPlanet Directory Server
and retrieve the information using DSAME.) To achieve this, the system that runs
the Java application must have the DSAME SDK installed. As well, there must be at
least one instance of iPlanet Web Server running the DSAME internal services
(specifically for the user authentication and SSO components).

Extending DSAME

DSAME can be extended in several ways. If additional authentication capabilities
are needed, the Authentication APIs can be used to create them. To add Java-based
applications, the SSO and Log APIs can be used to integrate them into the
framework. The architectural goal of DSAME is to provide this extensible interface.
This interface can be defined in one of three ways:

Chapter 1 Introduction 15

Extending DSAME

1. DSAME services are defined using XML.
2. DSAME screen templates are written using HTML.

3. DSAME services are implemented using Java.

Service Definition With XML

A DSAME service is a grouping of attributes defined under a common name. The
attributes (or configuration parameters) can be a random set grouped together for
easy management or a related set grouped together for a specific purpose. DSAME
ships with a number of internal services of the latter type. These include, but are
not limited to, logging, administration, and session services. More information on
the internal services can be found in the iPlanet Directory Server Access Management
Edition Administration Guide.

All DSAME services are written using the XML. The XML configuration file of a
service must adhere to the form put forth in the sns. dt d, which is located in the
I nstal | _Directory/ SUN\an dt d/ directory. Using the XML, organizations can
modify the XML configuration files of internal DSAME services or configure the
XML configuration files of external ones.

NOTE DSAME services manage attribute values stored in iPlanet Directory
Server. They do not implement the behavior of the attributes or
dynamically generate code to interpret them. It is up to an external
application to interpret or utilize these values.

HTML Templates

DSAME uses HTML template files to control the look of the screens that a DSAME
user sees. These templates can be modified to make changes to the design; for
instance, an organization’s logo can be added in place of the iPlanet logo. The
entire template can also be replaced with an organization’s custom HTML page.

The Java APIs

There are five public API packages provided with DSAME version 5.1. These APls
provide interfaces to implement the behavior of extended or customized DSAME
services. The packages are introduced below.

16 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Extending DSAME

Authentication API

DSAME allows the use of multiple and disparate authentication modules
including, but not limited to, RADIUS, LDAP, Certificates, Unix, Membership
(self-registration), SafeWord and Anonymous. Using the Authentication API, a
service developer can write a custom authentication module. The API package
name is com i pl anet . aut henti cati on. spi .

DSAME SDK

DSAME provides the framework to create and manage users, roles, groups, people
containers, organizations, organization units, and sub-organizations. It also
includes the functionality to create and modify service templates. This APl is the
core of the identity, service and policy management modules and provides Java
classes that can be used to customize them. The API package name is

com i pl anet. am sdk.

Utilities API

This API provides a number of Java classes that can be used to manage system
resources. This includes, among others, thread management and debug data
formatting. The API package name iscom i pl anet.am util.

Logging API

The DSAME logging service records, among other things, access approvals, access
denials and user activity. The Logging API can be used to enable other Java
applications to call the DSAME logging service. The API package name is

com i pl anet. | og.

Single Sign-On API

DSAME provides Java interfaces for validating and managing the single sign-on
(SSO) tokens and for maintaining the user’s authentication credentials. All
applications wishing to participate in the SSO solution can use this API. The API
package name is com i pl anet . sso.

NOTE The Overview page for the complete set of public DSAME Javadocs can be
accessed atl nstal | _Di rect ory/ SUNVanT docs/ i ndex. ht i .

Chapter 1 Introduction 17

DSAME File System

DSAME File System

DSAME installs its packages and files in a directory named SUNVam The file system
layout for a Solaris installation is as follows:

18

Instal | _Directory/SUN\any

bi n/ ---> contains executables such as anser ver & amadni n.
docs/ ---> contains DSAME documentation.

j ava/Z ---> contains the Java Development Kit.

| ocal e/ ---> contains the internationalization resource files.
server s/ ---> contains the iPlanet Web Server.

confi g/ ---> contains configuration files such as the iPlanet Directory
Server name and port as well as XML files which define DSAME
services.

dt d/ ---> contains the XML DTDs used by DSAME applications and
services.

I i b/ ---> contains DSAME jar files as well as platform specific C
libraries.

mi grati on/ ---> contains tools for iPlanet Directory Server data
migration from earlier versions to version 5.1.

sanpl es/ ---> contains sample java programs on how to use the
DSAME Java APls.

web- apps/ ---> contains two WAR-based deployments and their
associated files: Services (authentication, policy management, identity
management, SSO, SMS management, etc.) and Applications (DSAME
console).

Runtime Directory

On Solaris, DSAME uses I nst al | _Di r ect or y/ SUN\Vamas its runtime directory for
logs and debug files. On Windows 2000, DSAME uses DSAME _root as its runtime
directory. Both directories can be configured.

DSAME performs three types of administration:

< Identity management deals with managing the structure of a customer's
directory. This includes creating, deleting, and modifying roles, organizations.

Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME File System

Policy management deals with the creation of policies and how they are
applied within the application.

Service management deals with service registration, unregistration, and
activation.

Chapter 1 Introduction 19

DSAME File System

20 Directory Server Access Management Edition Programmer’s Guide « May 2002

Chapter 2

DSAME And XML

iPlanet Directory Server Access Management Edition (DSAME) uses Extensible
Markup Language (XML) files for the integration and management of services.
This chapter provides information on the XML service files installed with DSAME
and the Document Type Definition (DTD) files used for creating new XML service
files for the management of custom services. It contains the following sections:

= Overview

= Service Definition and Integration

e DSAME DTD Files

e DSAME XML Files

= Abstract Objects and amEntrySpecific.xml
= The amAdmin Command Line Executable

= SampleMailService Files

Overview

A service is a group of attributes, defined in an XML file, that are managed together
by the DSAME console. The attributes can be the configuration parameters of a
software module or they might just be related information with no relation to a
software configuration. As an example of the first scenario, after creating a payroll
module, a developer defines an XML service file that might include attributes to
define an employee name, an hourly pay rate and a tax percentage. This file is
imported into the iPlanet Directory Server (DS) so the attributes and their values
can be stored. When the service is registered to an organization in DSAME, the
attributes can be managed using the DSAME console.

21

Overview

NOTE Throughout this chapter, the term attribute is used as a modifier for
two different concepts. A DSAME or service attribute refers to the
configuration parameters of a defined service. An XML attribute
refers to the parameters that qualify an XML element in the XML
service files.

XML Service Files

XML service files enable DSAME to manage attributes that are stored in DS.
DSAME does not implement any behavior or dynamically generate any code to
interpret the attributes; it can only set or get attribute values. Out-of-the-box,
DSAME loads a number of services to manage the attributes of its own internal
modules. This includes, but is not limited to, the Logging, Authentication and User
services. In addition to managing these attributes, DSAME provides code
implementations to use them. For example, the URL Policy Access attributes are
displayed and managed in the DSAME console, but the web agent itself is the code
implementation using them to check user access to URLs. All DSAME-internal
XML service files are located in I nst al | _Direct ory/ SUN\Vant confi g/ xm . For
more specific information on the internal XML service files, see “Internal XML
Service Files,” on page 58.

NOTE Any application with LDAP attributes can have data managed using
the DSAME console by configuring a custom XML service file and
loading it into the DS. For more information, see “Defining A
Service,” on page 27.

Document Type Definition Files

The format of an XML file is based on a structure defined in a DTD file. In general,
a DTD file defines the elements and qualifying attributes needed to write a
well-formed and valid XML document. DSAME exposes two DTD files which are
used to define the structure for different types of XML files: sns. dt d and

amadm n. dt d. The sns. dt d defines the structure for XML service files and the
amAdni n. dt d defines the structure for XML files that are used to perform batch
LDAP operations on the directory information tree (DIT) using the command line
executable amAdni n. The DTDs are located in I nst al | _Di r ect or y/ SUNVanT dt d.

22 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Service

Service Definition and Integration

NOTE Knowledge of XML is necessary to understand the DTD elements
and how they are integrated into DSAME. When creating an XML
file, it might be helpful to print out the relevant DTD and a sample
XML file made from the DTD.

Definition and Integration

Service Management in DSAME provides a mechanism for administrators to
define, integrate and manage groups of attributes as a DSAME service. Readying a
service for management involves creating an XML service file, configuring an LDIF
file with any new object classes and importing both, the XML service file and the
new LDIF schema, into the DS. Administrators can then register multiple services
to organizations or sub-organizations using the DSAME console. Once registered,
the attributes can be managed and customized per organization.

NOTE The only reason to create an XML service file is to group attributes
to be managed using DSAME. If, for example, a software module
has no attributes that need to be configured, no file is needed.

The following sections contain general information on DSAME service attributes as
well as steps on how to define a service from configuration to registration.

Service Attributes

Services have different types of attributes. The sns. dt d structure enforces a service
developer to define attributes as one of five types. The following sections provide
descriptions of the five attribute types.

Global Attributes

Global attributes are defined for the DSAME installation and are common to all
data trees, service instances and integrated applications within the configuration.
Global attributes can not be applied to users, roles or organizations as their
purpose is to configure the DSAME itself. Server names, port numbers, service
plug-ins, cache size, and maximum number of threads are examples of global
attributes that are configured with one value. For example, when DSAME
performs logging functions, the log files are written into a directory. The location of
this directory is defined as a globally in the Logging service and all DSAME logs,

Chapter 2 DSAME And XML 23

Service Definition and Integration

24

independent of their purpose, are written to it. DSAME administrators can modify
these default values through the Service Management page in the DSAME console.
Global attributes are stored as an XML blob within an attribute of an LDAP object.
Therefore, they do not need to be defined with a DS LDAP schema.

NOTE If a service has only global attributes, it can not be registered to an
organization nor can a service template be created.

Organization Attributes

Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication service are a good example. When an
Authentication service is registered, the attributes are configured depending on the
organization to which it is registered. The LDAP Server andthe DN To Start User
Sear ch would be defined at the organization level as this information would be
different depending on the address of an organization’s LDAP server and the
structure of their DIT, respectively. Organization attributes are stored as an XML
blob within an attribute of an LDAP object. Therefore, they do not need to be
defined with a DS LDAP schema.

NOTE Organization attributes are not inherited by sub-organizations. Only
dynamic and policy attributes can be inherited. For additional
information, see “Attribute Inheritance,” on page 26.

Dynamic Attributes

Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations; roles have access to any service assigned to its parent
organization. The dynamic attributes are then inherited by users that possess the
role or belong to the organization. Because the attributes are assigned to roles or
organizations instead of set in a user entry, they are virtual attributes inherited by
users using Class of Service (CoS). When these attributes change, the administrator
only has to change them once, in the role or organization, instead of a multitude of
times in each user entry.

NOTE Dynamic attributes are modeled using class of service (CoS) and roles,
both features of the iPlanet Directory Server. For information on
these features, see Chapter 8, “iPlanet Directory Server And
DSAME” or refer to the iPlanet Directory Server documentation.

Directory Server Access Management Edition Programmer’s Guide « May 2002

Service Definition and Integration

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in
the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the DS as LDAP objects, making it feasible to use traditional LDAP
tools to manage them. A DS LDAP schema needs to be defined for these attributes.

Policy Attributes

Policy attributes are a special type of dynamic attribute. The main difference is that
policy attributes provide a way to control resource access by defining a user’s
permissions. These defined permission attributes are then used to create named
policy. For example, allowURLList is a named policy that defines a list of URLs a
user is allowed to access; *.red.iplanet.com, *.eng.sun.com are the permitted URLS
defined as policy attributes. Named policies are assigned to roles or organizations;
once assigned, the policy attribute is available in the user entry as an LDAP
attribute, making it feasible to use traditional LDAP tools to manage them. (Named
policies are not stored within the DS as LDAP objects.) A DS LDAP schema needs
to be defined for these attributes.

Currently, DSAME has only two services that use policy attributes: URL Policy
Agent and URL Domain Access. (Additionally, there is a sample mail service that
uses policy attributes. For information on this sample, see “SampleMailService
Files,” on page 71.)

CAUTION Do not use the pol i cy. dt d to define policy schema for a service. It is
used internally for Policy Management.

User Attributes

User attributes belong specifically to a single user. User attributes are not inherited
from the role, organization, or sub-organization levels. They are typically different
for each user, and any changes to them would affect only the particular user.
Examples of user attributes could be an office telephone number, a password or an
employee ID. The values of these attributes would be set in the user entry and not
in a role or organization. User attributes can be a part of any service although
DSAME has grouped a number of them into their own service defined by the
amUser. xml service file. User attributes are stored within the DS as LDAP objects,
making it feasible to use traditional LDAP tools to manage them. A DS LDAP
schema needs to be defined for these attributes.

Chapter 2 DSAME And XML 25

Service Definition and Integration

26

NOTE When defining user attributes in an XML service file other than
amser . xnl , the service must be explicitly assigned to the user in
order to display the attributes on the User’s Profile page. In
addition, the User Profile Display Option (defined in the
Administration service) must be set to Conbi ned. For more
information, see the iPlanet Directory Server Access Management
Edition Administration Guide.

Default Values

When a developer is writing an XML service file, default values can be defined for
each attribute. After an XML service file is loaded into the DS, the default values
can be displayed in the Service Management console. An organization can then
register the service and create a service template where the default values can be
modified. For example, all templates for the LDAP Authentication service use the
port attribute. A default value of 389 could be defined in the XML service file and
displayed on the LDAP Authentication Service Management page. Once registered
to an organization, this value can be modified for the organization using the
DSAME console. Default values are also used by integrated applications when a
service template has not been created for an organization’s registered service. For
more information, see the “ChoiceValues Sub-Element” and the “DefaultValues
Sub-Element,” on page 40.

Attribute Inheritance

After creating and loading an XML service file, an administrator can assign the
service’s organization, dynamic and policy attributes by registering the service to
an organization and creating a service template. The service, once registered, can
be assigned to sub-organizations or a role. (Any number of services can be assigned
to these objects.) When a user possesses a role or belongs to an organization which
possesses a service, the user inherits the dynamic and policy attributes or the
organization, dynamic and policy attributes, respectively. Inheritance only occurs,
though, if the service possessed is also explicitly assigned to the user. A user can
inherit attributes from multiple roles or parent organizations.

NOTE Attributes defined as User have no inheritance; they are set and
modified in each User entry. For example, if 70 attributes are
defined as User and an organization has two million users, each
attribute is stored two million times.

Directory Server Access Management Edition Programmer’s Guide « May 2002

Service Definition and Integration

ContainerDefaultTemplateRole

Dynamic and policy attributes are used in an XML service file if an administrator
wants to define a service in which all DSAME user objects, with the specified
service assigned to them, would inherit those attributes. After uploading the XML
service file and assigning the service to an organization or role, all users in the
sub-trees, with the specified service assigned to them, will inherit the dynamic and
policy attributes. To accomplish this, DSAME uses classic CoS (as described in
Chapter 8, “iPlanet Directory Server And DSAME) and role templates.

Cont ai ner Def aul t Tenpl at eRol e is a default filtered role configured for each
organization. The filter is obj ect O ass=i pl anet - am managed- per son. Since
every user object in DSAME carries this attribute, every person in the organization
possesses this role. DSAME then creates a separate CoS template for each
registered service which points to the service’s default attributes. Any user who
has the role will then get all the dynamic and policy attributes.

Defining A Service

The following procedures must be completed in order to use the DSAME console
to integrate and manage a new service. They include creating or modifying XML
files and registering these files using the anadni n command line executable.

1. Create an XML service file for the component.

This XML file must conform to the sns. dt d. A simple way to create a new
XML service file would be to copy and modify an existing one. The file syntax
can be found in “The sms.dtd Structure,” on page 34.

2. Extend the LDAP schema in the DS using | dapnodi fy, if necessary.

Loading an LDIF file into the DS will add any new or modified object classes
and attributes to the DIT. This step is only necessary when defining dynamic,
policy and user attributes. Instructions on extending the LDAP schema can be
found in “Extending The Directory Server Schema,” on page 28. See the
Directory Server documentation for additional information.

3. Import the XML service file into DS using amadni n using the - - schema or - S
option.

Information on importing an XML service file can be found in “Importing the
XML Service File,” on page 31.

Chapter 2 DSAME And XML 27

Service Definition and Integration

4. Configure a localization properties file and copy it into the
Instal |l _Directory/ SUN\an | ocal e directory.

The localization properties file must be created with accurate i 18nKey fields
that map to names defined in the XML service file. If no localization properties
file exists, DSAME will display the actual attribute names. More information
on the localization properties file can be found in “Configuring Localization
Properties,” on page 32.

5. Update the anEnt rySpeci fi c. xm oramJser. xnm files, if necessary.

The anEnt rySpeci fic. xm file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the DSAME abstract
objects. Information on updating anEnt r ySpeci fi c. xm can be found in
“Abstract Objects and amEntrySpecific.xml,” on page 65. The anser . xn file
can be modified to add User attributes to the User service; alternately, User
attributes can be defined in the actual XML service file. In the latter case,
amJser. xm would not need to be modified. Information on modifying
amJser. xm can be found in “Modifying An Internal XML Service File,” on
page 60.

6. Register the service.

After importing the service into DS, it can be registered and the attributes
managed through the DSAME console. Information on how this can be done is
in the iPlanet Directory Server Access Management Edition Administration Guide.
Information on how to register using the command line can be found in
“Registering the Service,” on page 33.

Extending The Directory Server Schema

When configuring an XML service file for DSAME, it might also be necessary to
extend the DS schema. Any dynamic, policy or user attributes defined in a DSAME
service that are not already in the DS schema need to be added as LDAP object
classes in order to store the data. This is done using the | dapnodi f y command line
executable and an LDIF file as input.

NOTE The order in which the LDAP schema is extended or the XML
service file is loaded into DS is not important. Just remember that
when a new service is loaded into DS, a complementary LDIF file
should be created to load any new LDAP object classes.

28 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Service Definition and Integration

1. Change to the DSAME bi n directory.

cd Install _Directory/ SUNWAN bi n
2. Create an LDIF file to define any new or modified LDAP object classes.
3. Run| dapnodi f y using the LDIF file as input.

| dapnodi fy -D userid_of _DSnanager -w password -f
path_to_ LD F file

By default, useri d_of _DSnmanager iscn=Di rectory Manager . If the schema
was created correctly, the result of this command would be Modi fyi ng entry
cn=schenma.

NOTE After extending the schema using | dapnodi f y, it is not necessary to
restart the DS. But, as | dapnodi fy is server-specific, the schema will
not replicate and therefore needs to be extended on all configured
servers. Additional information can be found in the iPlanet
Directory Server documentation.

4. Run | dapsear ch to ensure that the schema has been created.

| dapsearch -b “cn=schema” -s base -D userid_of_DSmanager -w
password “(objectclass=*)" | grep -i “servicenange”

If the schema was created correctly, the result of this command would be an
LDIF listing of the object classes as displayed in Code Example 2-1 below.

Chapter 2 DSAME And XML 29

Service Definition and Integration

Code Example 2-1 Sample Mail Service LDAP Object Class

obj ect Cl asses=(1.2.3.888.23 NAMVE

"iplanet-amsanpl e-nmail -service' DESC 'iPlanet Sanpl eMai l
Service' SUP topAUXI LI ARY MAY (

i pl anet - am sanpl e-mai | -servi ce-status $

i pl anet -am sanpl e-nai | -r oot - f ol der

$i pl anet - am sanpl e- mai | - sent nressages-fol der $

i pl anet - am sanpl e-mai | -i ndent - prefix
$i pl anet - am sanpl e-mai | -initi al -headers $
i pl anet -am sanpl e-nmai |l -i nactivity-interval $

i pl anet - am sanpl e- mai | - aut o- | oad

$i pl anet - am sanpl e- nai | - header s- per page $

i pl anet -am sanpl e-mai | -quota $

i pl anet - am sanpl e- mai | - max-attach-1en

$i pl anet - am sanpl e- mai | - can- save- addr ess- book- on-server)
X-ORIAN ('"iPlanet Directory Pro' 'user defined))
attributeTypes=(11.24.1.996.1 NAME

"iplanet-am sanpl e-mai |l -service-status' DESC 'i Pl anet

Sanpl eMui | Service Attribute' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
X-ORIAN ('"iPlanet Directory Pro' 'user defined))

Adding Object Classes To Existing Users

If a new service is created and the service’s users already exist, the object classes
need to be added to the user entries. In order to do this, DSAME provides
migration scripts for performing batch updates to user entries in the DIT. No LDIF
file need be created when using them. These scripts are described in the iPlanet
Directory Server Access Management Edition Installation and Configuration Guide.
Additionally, registered services can be added to each user by selecting the service
from the specific user’s Properties page.

To modify user entries using | dapnodi fy, an LDIF file would need to be created.
Code Example 2-2 on page 31 shows how a user entry would be formatted in the
LDIF file. This entry is having the object classi pl anet - am sanpl e- mai | - servi ce
and its attributes added.

30 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Service Definition and Integration

Code Example 2-2 Sample LDIF File To Modify User Object

dn: cn=shi va, ou=Peopl e, o=i pl anet. com o=i sp
changet ype: nodi fy
add: obj ect cl ass
obj ectcl ass: i pl anet -am sanpl e- nai | - service

After creating the LDIF file, run | dapnodi fy as shown:

Install_Directory/ SUNVanT bi n/ | dapnodi fy -D userid_of _DSmanager -w
password -f path_to LD F file.

For more information on | dapnodi f y and user entries, see the iPlanet Directory
Server documentation.

NOTE It is not recommended to use | dapnodi f y to create any entries for
DSAME other than user entries.

Verifying The Directory Server Modification

To verify that the DIT has been populated correctly, an administrator can use
| dapsear ch or the following:

1. Change to the DS install directory:
cd /DS_Install _Directory/ sl apd- DShost nane
2. Export the DS contents into an LDIF file using:
db2l di f -s orgnami ngattribute=top_| evel _org_nane

This command results in the name of the LDIF file stored under
DS Instal | _Directory/ sl apd- DShost name/ | di f. This file can be viewed to
ensure that the objects described in the LDIF file have been created.

Importing the XML Service File

After creating an XML service file following the instructions in “DSAME DTD
Files,” on page 33, the new service file needs to be imported into the DS.

1. Change to the DSAME install directory:
cd Install _Directory/ SUN\WAN bi n

Chapter 2 DSAME And XML 31

Service Definition and Integration

32

2. Run:

./amadmi n --runasdn DNof DSadmi ni strator --password
passwor dDSadmi ni strator --verbose --schema xm servicefil epath

NOTE If changing an existing service, the original XML service file needs to
be deleted before importing the modified XML service file.

Configuring Localization Properties

A localization properties file specifies the locale-specific screen text and messages
that an administrator or user will see when directed to a service’s attribute
configuration page. The files are located in the

Instal | _Directory/ SUN\an | ocal e/ directory.

Code Example 2-3 Sample Mail Service Localization Properties File

i pl anet -am sanpl e-mai | - servi ce-descri pti on=Sanpl e Mil Service
Profile

al=Mai | Status

a2=Root Fol der

a3=Sent Messages Fol der

a4=Reply Prefix

ab=Initial Headers to Load

a6=Check New Mail Interval (ninutes)

a7=Aut omati ¢ Message Load at Di sconnect
a8=Headers Per Page

pl=Mai | Quota

p2=Aut o- downl oad Maxi num Attachment Length
p3=Save Address Book on Server

The localization properties files consist of a series of key/value pairs. The value of
each pair will be displayed on the service’s Properties page in the DSAME console.
The keys (a1, a2, etc.) map to the i 18nKey attribute fields defined for a service.
Code Example 2-3 is the localization properties file for DSAME’s sample mail
service. The keys also determine the order in which the fields are displayed, taken
in alphabetical and then numerical order (al, a2 is followed by b1, b2 and so forth).
Note that the keys are strings, so a10 comes before a2.

NOTE If modifying a localization properties file, DSAME needs to be
restarted. If importing a new service, DSAME does not need to be
restarted to recognize the localization properties file.

Directory Server Access Management Edition Programmer’s Guide « May 2002

DSAME DTD Files

Identifying The Localization Properties File

DSAME also needs to be able to locate the localization properties file. An
administrator needs to ensure that it is located in the default

I nstal | _Directory/ SUN\an | ocal e directory. If the file is kept in another
directory, the j vm cl asspat h=entry in the j vl 2. conf file needs to be modified
to include the new directory pathname.

NOTE If thej vmL2. conf file is modified, the DSAME server needs to be
restarted.

Registering the Service

The preferred way to register a service is to use the DSAME console. Information
on how this is done can be found in the iPlanet Directory Server Access Management
Edition Administration Guide. Alternately, services can be registered using the
amadnm n command line executable.

1. Change to the DSAME install directory:
cd Install _Directory/ SUN\VAN bi n
2. Run:

amadm n --runasdn DNof DSAMEadni ni strator --password
passwor dDSAMEadni ni strator --schema path_to_xm servicefile

DSAME DTD Files

DSAME contains two DTD files which are used to define the structure for XML
files used within the configuration. The sns. dt d defines the structure for XML
service files and the amAdni n. dt d defines the structure for XML files that are used
to perform batch LDAP operations on the directory information tree (DIT) using
the command line executable amAdni n. The DTDs are located in

I nstal | _Directory/ SUN\Van dt d.

CAUTION Neither of these DTD files should be modified in any way. They
contain rules and definitions that control how certain operations are
performed on the DIT and any alterations might hinder them.

Chapter 2 DSAME And XML 33

DSAME DTD Files

Code Examples. DSAME comes with the files needed to integrate a mail service
into the configuration. These sample files are used throughout this section to
illustrate the DTD concepts. For more information on these files, see
“SampleMailService Files,” on page 71.

The sms.dtd Structure

The sns. dt d defines the data structure for all XML service files. It is located in the
Instal | _Directory/ SU\Wan dt d directory. The sns. dt d enforces the developer
to define each attributes as one of five schema types which are then stored and
managed differently. For instance, some of the attributes are applicable to an entire
DSAME installation (such as a port number or server name), while others are
applicable only to individual users (such as a password). The attribute types are:

e Global

= Organization

< Dynamic
= User
= Policy

An explanation of the elements defined by the sns. dt d follows. Each element
includes a number of XML attributes which are also explained. DSAME currently
supports only about 20% of the elements contained in sns. dt d; this section
discusses only those elements.

NOTE Customized attribute names in XML service files should be written
in lower case as DSAME converts all attribute names to lower case
when reading from the DS.

ServicesConfiguration Element

ServicesConfiguration is the root element of the XML service file. It's immediate
sub-element is Service. Code Example 2-4 on page 35 is the ServicesConfiguration
element as defined in the sanpl eMai | Servi ce. xni .

34 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

Code Example 2-4 Element ServicesConfiguration and Element Service

<Servi cesConfiguration> _ _
<Servi ce nane="sanpl eMai | Servi ce” version="1.0">
<Schema. .. >

Service Element

The Service element defines the schema for a given service. Multiple services can be
defined in a single XML file with this element, but it is recommended that only one
be defined per XML service file. Currently, DSAME supports the sub-element
Schema which, in turn, defines DSAME attributes as either Global, Organization,
Dynamic, User or Policy. The required XML service attributes for the Service element
are the name of the service, such as iPlanetAMLoggingService, and the version
number of the XML service file itself. Code Example 2-4 on page 35 illustrates the
Service element and its attributes as defined in the sanpl eMai | Ser vi ce. xni .

Schema Element

The Schema element is the parent of the elements that define the service’s specific
DSAME attributes (global, organization, dynamic, user or policy) and their default
values. The sub-elements can be Global, Organization, Dynamic, User or Policy. The
required XML attributes of the Schema element include ser vi ceHi er ar chy which
defines where the service will be displayed in the DSAME console, i 18nFi | eNane
which defines the name of the localization properties file, and i 18nKey which
defines the attribute in the localization properties file from which this particular
defined value will be taken.

NOTE The Schema element is required in XML service files.

serviceHierarchy Attribute

When adding a service, this attribute must be defined in order to display the
service in the DSAME console. When a new service is registered, it is dynamically
displayed based on this value. The value is a "/" separated string. Code

Example 2-5 on page 36 illustrates the ser vi ceHi er ar chy attribute as defined in
the sanpl eMi | Servi ce. xm . The name sampleMailService is used to find the
localization properties file which defines what will be displayed below the Other
Configuration header in the DSAME console.

Chapter 2 DSAME And XML 35

DSAME DTD Files

Code Example 2-5 i 18nFi | eNane, i 18nKey and servi ceHi er ar chy Attributes

<Schenma
servi ceHi erarchy="/ ot her. confi gurati on/sanpl eMai | Service"
i 18nFi | eNane="sanpl eMai | Servi ce”
i 18nKey="i pl anet - am sanpl e- nai | - servi ce-description">

i18nFileName And i18nKey Attributes

These two XML attributes both refer to the localization properties files. The

i 18nFi | eNane attribute takes a value equal to the name of the localization
properties file for the defined service (minus the . properti es file extension). The
i 18nKey is a text string that maps to a property value defined in the localization
properties file (specified, as discussed, in the i 18nFi | eNane attribute.) For
example, Code Example 2-5 on page 36 defines the name of the properties file as
sanpl eMai | servi ce and the text-based value of the i 18nKey maps to its final
value as defined in sanpl eMai | servi ce. properti es. The final value is the name
of the service as it will be displayed in the DSAME console; in this case, Sample Mail
Service Profile is the name defined in sanpl eMai | servi ce. properti es. More
information on the localization properties file can be found in “Configuring
Localization Properties,” on page 81 of Chapter 3, “User Authentication With
DSAME.”

Schema Sub-Elements

The next five elements are sub-elements of Schema; they are the declarations of the
service’s DSAME attributes. When defining a service, each attribute must be
defined as one of these types: Global, Organization, Dynamic, Policy and User.
Any configuration (all or none) of these elements can be used depending on the
service. Each DSAME attribute defined within these elements is itself defined by
the sub-element AttributeSchema or, in the case of Policy, the ActionSchema.

Global Element

The Global element defines DSAME attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Global Attributes,” on page 23.

36 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

serviceObjectClasses Attribute. The servi ceQbj ect O asses attribute is a global
attribute in each XML service file that contains dynamic or policy attributes. This
optional attribute is used by the SDK to set the object class for the service in the
user entries. When an organization registers a service with the

servi ceQbj ect d asses attribute defined, the service’s dynamic or policy
attributes, if any exist, are automatically assigned to any user object which has been
assigned the service. If the servi cebj ect O asses attribute is not specified and
the service has defined dynamic or policy attributes, an object class violation is
called when an administrator tries to create a user under that organization.

Multiple values can be defined for the serviceObjectClasses attribute. For example, if
a service is created with two attributes each from three different object classes, the
servi ceObj ect d asses attribute would need to list all three object classes as

Def aul t Val ues. Code Example 2-6 has two defined object classes.

Code Example 2-6 servi cenj ect Cl ass Defined As Global Element

<d obal >
<AttributeSchema name="servi ceCbject O asses"
type="list"
syntax="string"
i 18nKey="">
<Def aul t Val ues>
<Val ue>i pl anet - am sanpl e- mai | - servi ce</ Val ue>
<Val ue>i pl anet - am ot her - sanpl e- servi ce</ Val ue>
</ Def aul t Val ues>
</ Attri but eSchema>
</ d obal >

Organization Element

The Organization element defines DSAME attributes that are modifiable per
organization or sub-organization. For example, a web hosting environment using
DSAME would have different configuration data defined for each organization it
hosts. A service developer would define different values for each organization
attribute per organization. These attributes are only accessible using the DSAME
SDK. For additional information, see “Organization Attributes,” on page 24.

Chapter 2 DSAME And XML 37

DSAME DTD Files

Dynamic Element

The Dynamic element defines DSAME attributes that can be inherited by all user
objects. Examples of Dynamic elements would be user-specific session attributes, a
building number, or a company mailing address. Dynamic attributes always use
the DS features, CoS (Class Of Service) and Roles. For additional information, see
“Dynamic Attributes,” on page 24.

User Element

The User element defines DSAME attributes that exist physically in the user entry.
User attributes are not inherited by roles or organizations. Examples include
password and employee identification number. They are applied to a specific user
only. For additional information, see “User Attributes,” on page 25.

Policy Element

The Policy element defines DSAME attributes intended to provide privileges. This
is the only attribute element that uses the Act i onSchema element to define its
parameters as opposed to the At t ri but eSchema element. Generally, privileges are
get, post, and put ; examples include canChangeSal ar yl nf or mati on and
canFor war dEnmi | Addr ess. See Code Example 2-8 on page 41 for an example of a
Policy schema definition from the sanpl eMui | Ser vi ce. xnl file. For additional
information, see “Policy Attributes,” on page 25.

SubSchema Element

The SubSchena element can specify multiple subschemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. Another example
would be a service developer defining choice values for different logging levels.
For logging t ype, choice values can be defined to specify output that goes to a file,
JDBC, or some other LDAP output mechanism. The attribute nul ti pl e_choi ce
represents a list of choice values. The choice values could represent multiple
values, so that if the attribute values do not contain multiple choice values, then the
SMS parsing would fail.

NOTE The Service SubSchema element is used only in the
antEnt rySpeci fi c. xnl file. It should not be used in any external
XML service files.

38 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

AttributeSchema Element

The AttributeSchema element is a sub-element of the five schema elements
discussed in “Schema Sub-Elements,” on page 36. It defines the structure of each
attribute. The sub-elements that qualify the AttributeSchema can include

| sOptional ?,1sServiceldentifier?, IsStatusAttribute?, ChoiceVal ues?,
Bool eanVal ues?, Def aul t Val ues?, or Condi ti on. The XML attributes that define
each portion of the attribute value are nane, t ype, synt ax, cosQual i fi er,
rangeStart, rangeEnd, val i dat or, any, and % 18nl ndex. Code Example 2-7 on
page 39 illustrates the AttributeSchema element, its attributes and their
corresponding values. Note that this example attribute is a Dynamic attribute.

Code Example 2-7 At tri but eSchena Element With XML Attributes

<Dynani c>
<AttributeSchema narme="i pl anet - am sanpl e- mai | - servi ce- st at us”
t ype="si ngl e_choi ce"
syntax="string"
i 18nKey="al" >
<Choi ceVal ues>
<Choi ceVal ue>Act i ve</ Choi ceVal ue>
<Choi ceVal ue>l nact i ve</ Choi ceVal ue>
<Choi ceVal ue>Del et ed</ Choi ceVal ue>
</ Choi ceVal ues>
<Def aul t Val ues>
<Val ue>Acti ve</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchema>
</ Dynami c>

name Attribute

This required XML attribute defines the LDAP name for the attribute. Any string
format can be used but attribute names must be in lower-case. Code Example 2-7
on page 39 defines it with a value of i pl anet - am sanpl e- mai | - ser vi ce- st at us.

type Attribute

This attribute specifies the kind of value the attribute will take. The default value
for type is|i st but it can be defined as one of the following:

< singl e specifies that the user can define one value.

= | ist specifies that the user can define a list of values.

Chapter 2 DSAME And XML 39

DSAME DTD Files

= single_choice specifies that the user can chose a single value from a list of
options.

e nultiple_choice specifies that the user can chose multiple values from a list
of options.

ChoiceValues Sub-Element. If the t ype attribute is specified as either

si ngl e_choi ce ornul ti pl e_choi ce, the ChoiceValues sub-element must also be
defined in the AttributeSchema. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValue element. Code
Example 2-7 on page 39 defines the attribute type as si ngl e_choi ce so the

Choi ceVal ues attribute defines the list of options as Acti ve, | nacti ve and

Del et ed.

syntax Attribute

The synt ax attribute defines the format of the value. The default value for syntax is
st ri ng but, it can be defined as one of the following:

= bool ean specifies that the value is either true or false.

= string specifies that the value can be any string.

= passwor d specifies that user must enter a password, which will be encrypted.
= dn specifies that the value is a LDAP Distinguish Name.

< emai |l specifies that the value is an email address.

= url specifies that the value is a URL address.

= nuneri c specifies that the value is a number.

= percent specifies that the valueis a.

= nunber specifies that the value is a number.

= deci mal _nunber specifies that the value is a number with a decimal point.
= nunber _range specifies that the value is a range of numbers.

< deci mal _r ange specifies that the value is a range of numbers that might
include a decimal figure.

DefaultVValues Sub-Element. Defining any of these syntax values also necessitates
defining a value for the DefaultValue sub-element. A default value will then be
displayed in the DSAME console but can be changed for each organization when
creating a new template for the service. In the Code Example 2-8 on page 41, for

40 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

example, the Save Address Book On Server field will display a default value of f al se.
The user has the option to change the value to t r ue, if desired. (The default value
for passwor d would be an encrypted password, generally the same as the one used
for DSAME.)

Code Example 2-8 Act i onSchera Element With Boolean Syntax

<Acti onSchema
nanme="i pl anet - am sanpl e- nai | - can- save- addr ess- book- on-server"
type="singl e"
synt ax="bool ean”
i 18nKey="p3" >
<Def aul t Val ues>
<Val ue>f al se</ Val ue>
</ Def aul t Val ues>
</ Act i onSchema>

The Acti onSchena as displayed in Code Example 2-8 on page 41 is discussed in
“ActionSchema Element,” on page 43.

cosQualifier Attribute

This attribute defines how DSAME will resolve conflicting cosQual i fi er
attributes assigned to the same user object. This value will appear as a qualifier to
the cosAt tri but e in the LDAP entry of the CoS definition. It can be defined as:

e defaul t indicates that if there are two conflicting cosQual i fi er attributes
assigned to the same user object, the one with the lowest priority number (0)
takes precedence. (The priority level is set in the cosPri ori ty attribute when a
new CoS template entry is created for an organization or role. For more
information, see “Conflicts and CoS,” on page 143 of Chapter 8, “iPlanet
Directory Server And DSAME.”)

= overri de indicates that the CoS template value overrides any value already
present in the user entry; that is, CoS takes precedence over the user entry
value.

= nerge- schenes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS templates.

Chapter 2 DSAME And XML 41

DSAME DTD Files

NOTE The URL Policy Agent service uses ner ge- schenes to obtain
aggregated values for the Allow and Deny attributes. For example,
if the Employee Role allows access to */ enpl oyee. ht nl and the HR
Role allows access to */ hr. ht M, a user possessing both of these
roles is allowed access to both.

If this attribute is not defined, the default behavior is for the user entry value to
override the CoS value in the organization or role. The default value is def aul t .
(The oper at i onal value is reserved for future use.)

any Attribute

The any attribute specifies whether the attribute for which it is defined will display
in the DSAME console. It has six possible values that can be multiply defined using
the “|” (pipe) construct:

= di spl ay specifies that the attribute will display on the user profile page. The
attribute is read/write for administrators and regular users.

= admi nDi spl ay specifies that the attribute will display on the user profile page.
It will not appear on an end user page; the attribute is read/write for
administrators only.

= user ReadOnl y specifies that the attribute is read/write for administrators but
is read only for regular users. It is displayed on the user profile pages as a
non-editable label for regular users.

= required specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk.

< optional specifies that a value for the attribute is not required in order for the
object to be created.

< filter specifies that the attribute will display on the Search page.

The required oropti onal keywordsandthefilter and di spl ay keyword can
be specified with a pipe symbol separating the options (any=r equi r ed| di spl ay or
any=optional | di spl ay| fil ter). Ifthe any attribute is set to di spl ay, the
qualified attribute will display in DSAME console when the properties for the
Create page are displayed. If the any attribute is set to r equi r ed, an asterisk will
display in that attribute’s field, thus the administrator or user is required to enter a
value for the object to be created in DSAME console. If the any attribute is set to

42 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

opti onal , it will display on the Create page, but users are not required to enter a
value in order for the object to be created. If the any attributeissettofilter, the
qualified attribute will display as a criteria attribute when Search is clicked from

the User page.

%il8nindex Attribute (i18nKey)

The i 18nKey attribute, as defined in “il8nFileName And i18nKey Attributes,” on
page 36, is referenced as an entity in the sns. dt d.

NOTE If the i 18nKey value is blank (that is, “ *“), the DSAME console will
not display the attribute.

ActionSchema Element

The ActionSchema element is a sub-element of the Policy attribute element
discussed in “Policy Element,” on page 38. It defines the structure of Policy
attributes only. The sub-elements that qualify the ActionSchema can include

| sOpti onal ?, Acti onVal ue?, Bool eanVal ues?, and Def aul t Val ues? The XML
attributes that define each portion of the attribute value are nane, t ype, synt ax,
cosQualifier,rangeStart,rangeEnd, val i dator, any, and % 18nl ndex. Code
Example 2-8 on page 41 illustrates the ActionSchema element, its attributes and their
corresponding values.

NOTE The difference between AttributeSchema and ActionSchema is that the
ActionSchema element has Policy-specific attributes, such as
Act i onVal ue, and the AttributeSchema has attributes not applicable
to Policy, such as | sSt at usAttri but e?

ResourceName Element

The ResourceName element specifies if the service has resources associated with it,
for example, URLs in the case of URL Policy Agent service.

The amAdmin.dtd Structure

The amAdni n. dt d defines the data structure for all XML files which will be used to
perform batch LDAP operations on the DIT using amAdni n. It is located in the

I nstal | _Directory/ SUN\Wan dt d directory. The command line operations include
reads and gets on the attributes as well as creations and deletions of user objects
(roles, organizations, users, people containers, and groups). The following sections

Chapter 2 DSAME And XML 43

DSAME DTD Files

discuss the elements and attributes of the amAdnmi n. dt d as well as the sample XML
templates installed with DSAME that use this structure. These samples can be
found inlnstal | _Directory/ SUN\Vani sanpl es/ adni n/ ¢l i / bul k- ops and will
be used to illustrate these sections.

Requests Element

The Requests element is the root element of the batch processing XML file. It must
contain at least one child element which defines the DSAME identity objects
(Organization, Container, People Container, Role and Group) onto which the
actual requests are performed. To enable batch processing, the root element can
take more than one set of requests. The Requests element must contain at least one
of the following sub-elements:

e (O gani zati onRequest s

e Contai ner Requests

e Peopl eCont ai ner Request s

= Rol eRequests

e (G oupRequests

e SchemaRequests

e ServiceConfigurati onRequests

Based on the defined request, the corresponding DSAME API will be called to
perform the operation.

OrganizationRequests Element

The OrganizationRequests element consists of all requests that can be performed on
Organization objects. The required XML attribute for this element is the LDAP
Distinguished Name (DN) of the organization on which all of the sub-element
requests will be performed. This element can have one or more sub-elements
which perform their operations on the defined instance of the Organization object.
(Different OrganizationRequests elements can be defined in one document to modify
more than one Organization DN.) Code Example 2-9 on page 49 defines a myriad
of objects to be created from the top level organization, o=i sp. The sub-elements of
OrganizationRequests are:

® CreateSubOrganization
* CreatePeopl eCont ai ner

e C(CreateRole

44 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

Creat eG oup

Creat ePol i cy

Assi gnPol i cy

UnAssi gnPol i cy
CreateServi ceTenpl ate
Modi f ySubOr gani zat i on
Modi fyServi ceTenpl at e
Del et eServi ceTenpl at e
Modi f yPeopl eCont ai ner
Modi f yRol e

Modi fyGroup

Modi fyPol i cy

Get SubOr gani zat i ons
Get Peopl eCont ai ners
Get Rol es

CGet G oups

Get User s

Regi st er Servi ces

Unr egi st er Servi ces
Get Regi st er edSer vi ceNanes
Get Nunber O Ser vi ces
Del et eRol es

Del et eG oups

Del et ePol i cy

Del et ePeopl eCont ai ners

Del et eSubOr gani zat i ons

Chapter 2 DSAME And XML 45

DSAME DTD Files

46

ContainerRequests Element

The ContainerRequests element consists of all requests that can be performed on
Container objects. The required XML attribute for this element is the DN of the
container on which the sub-element requests will be performed. This element can
have one or more sub-elements which perform their operations on the same
instance of the container. (Different ContainerRequests elements can be defined in
one document to modify more than one Container DN.) Code Example 2-9 on page
49 illustrates how this element can be modeled. The sub-elements of
ContainerRequests are:

« CreateSubCont ai ner

* CreatePeopl eCont ai ner
e CreateRole

e CreateGoup

e CreatePolicy

= AssignPolicy

= UnAssi gnPol i cy

e CreateServiceTenpl ate
e MdifyServiceTenpl ate
= Modi f ySubCont ai ner

= Modi fyPeopl eCont ai ner
e MdifyRole

* Get SubCont ai ners

* et Peopl eCont ai ners

e (GetRoles
* Cet G oups
e (GetUsers

= RegisterServices
e UnregisterServices
® CGet Regi st eredServi ceNanes

e Get Nunber Of Servi ces

Directory Server Access Management Edition Programmer’s Guide « May 2002

DSAME DTD Files

e Del eteRol es

e Del eteGoups

e DeletePolicy

* Del et ePeopl eCont ai ners

* Del eteSubCont ai ners

PeopleContainerRequests Element

The PeopleContainerRequests element consists of all requests that can be performed
on People Container objects. The required XML attribute for this element is the DN
of the container on which the sub-element requests will be performed. This
element can have one or more sub-elements which perform their operations on the
same instance of the people container. (Different PeopleContainerRequests elements
can be defined in one document to modify more than one People Container DN.)
Code Example 2-9 on page 49 illustrates how this element can be modeled. The
sub-elements of PeopleContainerRequests are:

* Creat eSubPeopl eCont ai ner
= Modi f yPeopl eCont ai ner

= CreateUser

e MdifyUser

® Cet Nunber O User s

® CGetUsers

® Get SubPeopl eCont ai ners
e Del eteUsers

e Del et eSubPeopl eCont ai ners

RoleRequests Element

The RoleRequests element consists of all requests that can be performed on roles.
The required XML attribute for this element is the DN of the role on which the
sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the role.
(Different RoleRequests elements can be defined in one document to modify more
than one Role DN.) Code Example 2-9 on page 49 illustrates how this element can
be modeled. The sub-elements of RoleRequests are:

e CreateServiceTenpl ate

Chapter 2 DSAME And XML 47

DSAME DTD Files

e MdifyServiceTenpl ate
e AssignPolicy

= UnAssi gnPol i cy

e Get Nunber Of User s

e GetUsers

e AddUsers

GroupRequests Element

The GroupRequests element consists of all requests that can be performed on group
objects. The required XML attribute for this element is the DN of the group on which
the sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the group.
(Different GroupRequests elements can be defined in one document to modify more
than one Group DN.) Code Example 2-9 on page 49 illustrates how this element
can be modeled. The sub-elements of GroupRequests are:

e CreateSubG oup

® Get SubGroups

® Cet Nunber Of User s
e GetUsers

* AddUsers

e Del et eSubGr oups

AttributeValuePair Element

The AttributeValuePair element can be a sub-element of many of the following
batch processing requests. It can have two sub-elements, neither of which can
themselves have sub-elements. The Attribute sub-element must be empty while the
Value sub-element takes a default value to display in the DSAME console. The
Attribute sub-element takes a required XML attribute called nane. The value of
nane is the attribute name which is equal to one string without spaces; no
sub-elements are allowed. Code Example 2-14 on page 53 illustrates how an
attribute/value pair would be added to a sub-organization.

48 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

CreateObject Elements

The CreateSubOrganization, CreateUser, CreateGroup, CreateSubContainer,
CreatePeopleContainer, CreateSubGroup, CreateSubPeopleContainer and CreateRole
elements create a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is created in the
DN that is defined in the second-level <Object>Requests element under which the
Create<Object> element is defined. AttributeValuePair may be defined as a
sub-element (or not). The required XML attribute for each element is cr eat eDN; it
takes the DN of the object to be created. Code Example 2-9 on page 49 illustrates an
example of some of these elements.

Code Example 2-9 Portion of Batch Processing File cr eat eRequest s. xni

'<i:2équest s>
<Organi zat i onRequest s DN="o=i sp" >

<Cr eat eSubOr gani zati on creat eDN="sun. con{/ >

<Cr eat ePeopl eCont ai ner creat eDN="Peopl el, o=sun. con'/ >
<Cr eat eRol e creat eDN="Manager Rol e, o=sun. coni'/ >

<Cr eat eRol e creat eDN="Enpl oyeeRol e, o=sun. coni'/ >
<Creat eG oup creat eDN="Contract or sG oup, o=sun. cont'/ >
<Cr eat eGroup creat eDN="Enpl oyeesG oup, o=sun. coni'/ >

</ Request s>

CreatePolicy Element

The CreatePolicy element creates one or more policy attributes. The Policy
sub-element defines the named policy. The required XML attribute is cr eat eDN
which takes the DN of the organization where the policy will be created. This and
the following nested elements are all illustrated in Code Example 2-10 on page 50.

Policy Element. The Policy sub-element defines the permissions or rules of the
policy. It can take one or more of the Rule sub-elements. The required XML
attribute is name which specifies the name of the policy. The ser vi ceNane attribute,
which identifies the service to which the named policy applies, is an optional XML
attribute.

Rule Element. The Rule sub-element defines a specific permission of the policy.
Rule can take three sub-elements. The required XML attribute is name which
defines a name for the rule. The three sub-elements are:

e ServiceName Element

Chapter 2 DSAME And XML 49

DSAME DTD Files

The ServiceName sub-element defines the service for which a rule has been
created. There are no sub-elements; the ServiceName element itself must be
empty. The required XML attribute is name which takes a string value.

e ResourceName Element

The ResourceName sub-element defines the domain for which this permission is
being defined. There are no sub-elements; the ResourceName element itself must
be empty. The required XML attribute is name which takes a string value.

e AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“DeleteObject Elements,” on page 51.

Code Example 2-10 Portion of Batch Processing File cr eat ePol i cyOr g. xm

%i?équest s>
<Organi zat i onRequest s DN="o=i sp" >

<Creat ePol i cy createDN="o0=i pl anet.com o=i sp">
<Pol i cy name="url policy" servi ceName="i Pl anet AMA¢bAgent Ser vi ce" >
<Rul e name="Manager Rul e">
<Servi ceNanme nane="i Pl anet AWMAébAgent Servi ce"/ >
<Resour ceNane nane="*.red.ipl anet.cont'/>
<Attri buteVal uePair>
<Attribute nanme="perm ssion"/>
<Val ue>i pl anet - am web- agent - access-al | ow | i st </ Val ue>
</ Attri buteVal uePair>
</ Rul e>
<Rul e name="engManager Rul e">
<Servi ceNanme nane="i Pl anet AMAébAgent Servi ce"/ >
<Resour ceNane nane="*.eng.ipl anet. cont'/>
<Attri buteVal uePair>
<Attribute nanme="perm ssion"/>
<Val ue>i pl anet - am web- agent - access-al | ow | i st </ Val ue>
</ AttributeVal uePair>
</ Rul e>
</ Pol i cy>
</ CreatePol i cy>
</ Organi zat i onRequest s>
</ Request s>

50 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

CreateServiceTemplate Element

The CreateServiceTemplate element creates a service template for the organization
defined in the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
ser vi ceName which takes a string value. Code Example 2-11 on page 51 illustrates
a service template being created for sun. com

Code Example 2-11 Portion of Batch Processing File cr eat eSer vi ceTenpl at es. xni

'<i:2équest s>
<Organi zat i onRequest s DN="o=sun. com o=i sp">

<Creat eServi ceTenpl at e servi ceNane="sanpl eMai | Servi ce"/ >

</ Organi zat i onRequest s>
</ Request s>

DeleteObject Elements

The DeleteSubOrganizations, DeleteUsers, DeleteGroups, DeleteSubContainers,
DeletePeopleContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteRoles
elements delete a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is deleted from
the DN that is defined in the second-level <Object>Requests element under which
the Delete<Object> element is defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the
listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all subtrees can be avoided; it’s
default value is false. The DN sub-element takes a character value equal to the DN of
the object to be deleted. Code Example 2-12 on page 51 illustrates an example of
some of these elements.

Code Example 2-12 Portion of Batch Processing File deleteOrgRequests. xni

'<i?équest s>
<Organi zat i onRequest s DN="o=i sp" >

<Del et eRol es>
<DN>cn=Manager Rol e, o=sun. com o=i sp</ DN>
<DN>cn=Enpl oyeeRol e, o=sun. com o=i sp</ DN>
</ Del et eRol es>

Chapter 2 DSAME And XML 51

DSAME DTD Files

Code Example 2-12 Portion of Batch Processing File deleteOrgRequests. xmi

<Request s>
<Del et eGroups del et eRecursi vel y="true">
<DN>cn=Enpl oyeesG oup, o=sun. com o=i sp</ DN>
<DN>cn=Cont r act or sGr oup, o=sun. com o=i sp</ DN>
</ Del et eG oups>

<Del et ePeopl eCont ai ners del et eRecursi vel y="true">
<DN>ou=Peopl el, o=sun. com o=i sp</ DN>
</ Del et ePeopl eCont ai ner s>

<Del et eSubOr gani zat i ons del et eRecursi vel y="true">
<DN>o=sun. com o=i sp</ DN\N>
</ Del et eSubCr gani zat i ons>

</ Organi zat i onRequest s>

</ Request s>

DeletePolicy Element

The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: del et eDN. It takes a value equal to
the DN of the policy to be deleted.

DeleteServiceTemplate Element

The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are ser vi ceNane which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 2-13 on page 52 illustrates how this element is
formatted.

Code Example 2-13 Portion of Batch Processing File del et eSer vi ceTenpl at es. xmi

'<Réquest s>
<Organi zat i onRequest s DN="o0=i pl anet. com o=i sp">
<Del et eServi ceTenpl at e
servi ceNane="i Pl anet AMAut hLDAPSer vi ce"
schemaType="or gani zati on" >

</ Del et eServi ceTenpl at e>
</ Organi zat i onRequest s>
</ Request s>

52 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

ModifyObject Elements

The ModifyPeopleContainer, ModifySubContainer, ModifySubOrganization and
ModifyRole, ModifyGroup elements change the specified object. AttributeValuePair
can be defined as a sub-element of the first four listed elements. (The ModifyGroup
element can have no sub-elements; it must be empty.) The required XML attribute
is modi f yDNwhich takes the DN of the object to be modified. Code Example 2-14 on
page 53 illustrates how these elements can be modeled.

Code Example 2-14 Portion of Batch Processing File nodi f yRequest s1. xm

'<i:2équest s>
<Organi zat i onRequest s DN="o=i sp" >

<Mbodi f ySubOr gani zati on nodi f yDN="o0=sun. com o=i sp" >
<Attri buteVal uePair>
<Attribute nane="Description"/>
<Val ue>DSAME Modi f y</ Val ue>
</ AttributeVal uePair>
</ Modi f ySubCOr gani zat i on>

<Modi f yPeopl eCont ai ner nodi f yDN=" Peopl el, o=sun. coni' >
<Attri buteVal uePai r >
<Attribute nane="Description"/>
<Val ue>DSAME Modi fy</ Val ue>
</ Attri buteVal uePair >
</ Modi f yPeopl eCont ai ner >

<Mbodi f yRol e nodi f yDN=" Manager Rol e, o=sun. coni >
<Attri buteVal uePair>
<Attribute nane="ipl anet-amrol e-description"/>
<Val ue>DSAME Modi f y</ Val ue>
</ AttributeVal uePair>
</ Modi f yRol e>

</ Organi zat i onRequest s>
</ Request s>

ModifyServiceTemplate Element

The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair must be defined as a sub-element of ModifyServiceTemplate to
change the values. The required XML attribute is ser vi ceNane which takes a string
value and schemaType. Code Example 2-15 on page 54 illustrates this element.

Chapter 2 DSAME And XML 53

DSAME DTD Files

54

Code Example 2-15 Portion of Batch Processing File nodi f ySer vi ceTenpl at es. xni

'<i?équest s>
<Organi zat i onRequest s DN="o=sun. com o=i sp">

<Mbdi f ySer vi ceTenpl at e servi ceNane="sanpl eMai | Servi ce">
<Attributeval uePair>
<Attribute
nane="i pl anet - am sanpl e- mai | - sent nessages-fol der"/>
<Val ue>Hel |l o Mai | Sent </ Val ue>
</ AttributeVal uePair>
</ Modi fyServi ceTenpl at e>
</ Organi zat i onRequest s>

</ Request s>

GetObject Elements

The GetSubOrganizations, GetUsers, GetGroups, GetSubContainers,
GetPeopleContainers and GetRoles elements get the specified object. A DN may be
defined as a sub-element (or not). If none is specified, ALL of the specified objects
at all levels within the organization defined in the second-level Requests element
will be returned. The required XML attribute for all but GetGroups and GetRoles is
DNsOnl y and takes at r ue or f al se value. The required XML attribute of GetGroups
and GetRoles is | evel which takes a value of either ONE_LEVEL or SUB_TREE.
ONE_LEVEL will retrieve just the groups at that node level; SUB- TREE gets groups at
the node level and all those underneath it. Code Example 2-16 on page 55
illustrates how these elements can be modeled.

DNs Only Attribute
For all objects using the DNsOnl y attribute, the Get elements work as stated below:

< If the element has the required XML attribute DNsOnl y set to true and no
sub-element DN is specified, only the DNs of the objects asked for will be
returned.

< If the element has the required XML attribute DNsOnl y set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

< If sub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnl vy is set to true or false.

Directory Server Access Management Edition Programmer’s Guide « May 2002

DSAME DTD Files

Code Example 2-16 Portion of Batch Processing File get Request s. xmi

'<i?équest s>
<Organi zat i onRequest s DN="o=i sp" >

<Get SubOr gani zati ons DNsOnl y="f al se">
<DN>o=i pl anet. com o=i sp</ DN\N>
<DN>o=sun. com o=i sp</ DN\>

</ Get SubOr gani zat i ons>

<Cet Peopl eCont ai ners DNsOnl y="f al se">
<DN>ou=Peopl e, o=i pl anet . com o=i sp</ DN>
<DN>ou=Peopl e, o=sun. com o=i sp</ DN>

</ Get Peopl eCont ai ner s>

<Cet Rol es | evel ="SUB_TREE"/ >
<Get G- oups | evel ="SUB_TREE"/ >
<CGet Users DNsOnl y="fal se">

<DN>cn=puser, ou=Peopl e, o=i pl anet . com o=i sp</ DN>
</ Get User s>

</ Organi zat i onRequest s>

GetService Elements

The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 2-17 on page 55
illustrates how the GetRegisteredServiceNames element is modeled.

Code Example 2-17 Batch Processing File get Regi st er edSer vi ceNamnes. xmi

'<i?'equest s>

<Organi zat i onRequests DN="o=sun. com o=i sp">
<Cet Regi st eredSer vi ceNanes/ >
</ Organi zat i onRequest s>

</ Request s>

Chapter 2 DSAME And XML 55

DSAME DTD Files

ActionServices Elements

The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

Service Action Caveats

= The XML service file for the service must be loaded using the command line
interface amadni n before a service can be acted upon.

= If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

= Ifno Service_Name element is specified, the request will be ignored.

Code Example 2-18 on page 56 illustrates how these elements can be modeled.

Code Example 2-18 Portion of Batch Processing File r egi st er Request s. xmi

'<i:2équest s>
<Organi zat i onRequest s DN="o=sun. com o=i sp">

<Regi st er Servi ces>
<Servi ce_Nanme>sanpl eMai | Servi ce</ Servi ce_Nane>
</ Regi st er Servi ces>

</ Organi zat i onRequest s>
</ Request s>

AssignPolicy and UnAssignPolicy Elements

The AssignPolicy and UnAssignPolicy elements take the sub-element PolicyName.
The PolicyName element has no sub-elements; it must be empty. It has a required
XML attribute name which takes a character value equal to the name of the policy.
The required XML attribute of AssignPolicy and UnAssignPolicy is pol i cyDNwhich
takes a value equal to the DN of the policy to be acted upon.

56 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME DTD Files

SchemaRequests Element

The SchemaRequests element consists of all requests that can be performed on the
default values of the DSAME schema. It has two required XML attributes:
serviceName and SchemaType. serviceName takes a value equal to the name of the
service where the schema lives and SchemaType defines the attribute group (Global,
Organization, Dynamic, User or Policy). This element can have zero or more
sub-elements. The sub-elements of SchemaRequests are:

= RenoveDef aul t Val ues El ement
= Modi fyDefaul t Val ues El enent
= AddDef aul t Val ues El enent
® Cet Servi ceDef aul t Val ues

RemoveDefaultValues Element

The RemoveDefaultValues element removes the default values from the schema
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
which specifies the name of the attribute to be removed. The Attribute sub-element
itself must be empty; it takes no sub-element. There is no required XML attribute.

Code Example 2-19 Portion of Batch Processing File r enoveschemaRequest s. xni

<Request s>
<SchemaRequest s servi ceName="i Pl anet AMJser Ser vi ce"
SchemaType="dynam c¢" >
<RenpveDef aul t Val ues>
<Attribute nane="preferredl anguage"/ >
</ RermoveDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

AddDefaultValues and ModifyDefaultValues Elements

The AddDefaultValues and ModifyDefaultValues elements add or change the default
values from the specified schema, respectively. They take a sub-element of
AttributeValuePair which specifies the name of the attribute and the new default
value; one or more attribute/value pairs can be defined. Code Example 2-20 on
page 58 illustrates how this element can be modeled.

Chapter 2 DSAME And XML 57

DSAME XML Files

Code Example 2-20 Portion of Batch Processing File addschemaRequests. xmi

<Request s>

<SchemaRequest s servi ceNanme="i Pl anet AMJser Ser vi ce"
SchemaType="dynam c¢" >

<AddDef aul t Val ues>

<AttributeVal uePair>
<Attribute nane="ipl anet - am user - aut h- rodul es"/ >

<Val ue>Cert </ Val ue>
</ AttributeVal uePair>

</ AddDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

GetServiceDefaultValues Element

The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

ServiceConfigurationRequests Element
The ServiceConfigurationRequests element is reserved for future use.

DSAME XML Files

DSAME uses XML files to manage attributes that are stored in DS. It does not
implement any behavior or dynamically generate any code to interpret the
attributes; it can only set or get attribute values. In addition to XML files that define
service attributes, DSAME also includes XML templates that can be used for batch
processing. This section contains information on these types of XML files.

Internal XML Service Files

DSAME installs internal services that manage the attributes of its internal software
components. The DSAME console manages the attributes for these services; in
addition, DSAME provides code implementations to use them. These internal XML
service files are based on the sns. dt d. All internal XML service files are located in
Instal | _Directory/ SU\Wani confi g/ xm . They include:

58 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME XML Files

amAdm nConsol e. xm —Defines attributes for the Administration service.
amAut h. xm —Defines attributes for the Core Authentication service.

amAut hAnonynous. xm —Defines attributes for the Anonymous Authentication
service.

amAut hCer t . xml —Defines attributes for the Certificate-based Authentication
service.

amAut hLDAP. xml —Defines attributes for the LDAP Authentication service.
amAut hRadi us. xm —Defines attributes for the Radius Authentication service.

amAut hSaf ewor d. xm —Defines attributes for the SafeWord Authentication
service.

amAut hSecur | D. xm —Defines attributes for the SecurlD Authentication
service.

amAut hUni x. xml —Defines attributes for the Unix Authentication service.
anCl i ent Det ect i on. xm —Defines attributes for the Client Detection service.

amDomai nURLAccess. xml —Defines attributes for the URL Access Policy
service.

anmEnt rySpeci fi c. xm —Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

amLoggi ng. xnl —Defines attributes for the Logging service.

amMvenber shi p. xm —Defines attributes for the Membership Authentication
service.

amNani ng. xm —Defines attributes for the Naming service.
anPl at f or m xm —Defines attributes for the Platform service.
anPol i cy. xnl —Defines attributes for the Policy service.
anSessi on. xm —Defines attributes for the Session service.
amUser . xml —Defines attributes for the User service.

amiebAgent . xm —Defines attributes for the web agents.

Chapter 2 DSAME And XML 59

DSAME XML Files

Modifying An Internal XML Service File

Administrators can display and manage any attribute in the DSAME console using
XML service files. The new attribute(s) would need to be added to an existing XML
service file. Alternately, they can be grouped into a new service by creating a new
XML service file although the simplest way to add an attribute is just to extend an
existing XML service file. For example, an administrator wants to manage the
nsaccount | ock attribute; this attribute will give users the option of locking the
account it defines. To manage it through DSAME, nsaccount | ock must be
described in a service. One option would be to add it to the anlUser . xnl service,

i Pl anet AMUser Ser vi ce. This is the service that, by default, includes many
common attributes from the i net Or gPer son and i net User object classes.
Following is an example of how to add the nsaccount | ock attribute to the

amJser . xnl service file.

NOTE When modifying an internal XML service file, be sure to also modify
the DS by extending the LDAP schema, if necessary. For more
information, see “Defining A Service,” on page 27.

1. Add the following code to the SubSchema nane=User element in
Install_Directory/ SUNVani confi g/ xm / anlUser . xm .

Code Example 2-21 nsaccount | ock Example Attribute

<Attribut eSchema name="nsaccount| ock"
type="si ngl e_choi ce"
syntax="string"
any="filter"
i sChangeabl eByUser ="yes"
i 18nKey="ul3">
<Choi ceVal ues>

<Val ue>t r ue</ val ue>

<Val ue>f al se</ Val ue>
</ Choi ceVal ues>
<Def aul t Val ues>

<Val ue>f al se</ Val ue>

</ Def aul t Val ues>
</ AttributeSchema>

2. Updatethel nstal | _Directory/ SUN\Vant | ocal e/ en_US/ amJser . properties
file with the new i18nKey tag ul13 including the text to be used for display.

60 Directory Server Access Management Edition Programmer’s Guide « May 2002

DSAME XML Files

Code Example 2-22 User Account Locked Example i18nKey

hié:User Account Locked

3. Remove the service
ou=i Pl anet AMJser Ser vi ce, ou=ser vi ces, dc=sun, dc=comwith amadni n.

For information on the amadmi n syntax, see “The amAdmin Command Line
Executable,” on page 68.

4. Reload the user service, amJser . xm , with amadmi n.

For more information on the amadni n syntax, see “The amAdmin Command
Line Executable,” on page 68.

Batch Processing XML Files

The - - dat a or -t option of amadni n is used to perform batch processing using the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

= Create, delete and read roles, users, organizations, groups, people containers
and services.

= Getroles, people containers, and users.
= Get the number of users for groups, people containers, and roles.
< Import, register and unregister services.

= Get registered service names or the total number of registered services for an
existing organization.

= Execute requests in multiple XML files.

The preferred way to perform most of these functions singularly is to use the
DSAME console. The batch processing templates have been provided for ease of
use with bulk updates although they can also be used for single configuration
updates. This section provides an overview of the batch processing templates
which can be modified to perform batch updates on user objects (groups, users,
roles, people containers, etc.) in the DS.

Chapter 2 DSAME And XML 61

DSAME XML Files

62

NOTE Only XML files can be used as input for the amadni n tool. If an

administrator wants to populate the DIT in DS with user objects, or
perform batch reads (gets) or deletes on the DIT, then the necessary
XML input files, based on the amadni n. dt d or sns. dt d, must be
written.

Batch Processing XML Templates

All of the batch processing XML files perform operations on the DIT; they create,
delete, or get attribute information on user objects. The batch processing XML
templates provided with DSAME include:

Cont Cr eat eSer vi ceTenpl at e. xml —Creates a service template for a specific
container object.

Cont Modi f yRequest s1. xm —Adds new attributes for a sub-container object.

Cont Modi f yRequest s2. xm —Adds new attributes for a people container
object.

Cont Modi f yRequest s3. xm —Adds new attributes for a sub-container object.
Cont Modi f yRequest s4. xm —Adds new attributes to a role object.

Cont assi gnPol i cyRequest s. xnl —Assigns policy to a specific container
object.

Cont unassi gnPol i cyRequest s. xml —Removes an assigned policy from a
specific container object.

PCMbdi f yRequest s1. xml —Adds new attributes to a people container object.

PCModi f yUser Request s. xml —Adds new attributes to users in a people
container object.

Rol eCr eat eSer vi ceTenpl at es. xml —Creates a service template for a role
object.

Rol eassi gnPol i cyRequest s. xml —Assigns policy to a role object.

Rol ermodi f ySer vi ceTenpl at es. xm —Adds new attributes to a service
template for a specific role object.

Rol eunassi gnPol i cyRequest s. xml —Removes policy from a specific role
object.

addChoi ceVal uesRequest . xml —Adds a selection of values the user can chose
from to an existing service attribute.

Directory Server Access Management Edition Programmer’s Guide « May 2002

DSAME XML Files

addschemaRequest s. xml —Adds a default value to an existing service
attribute.

addser vi ceConfi gur ati onRequest s. xm —This is reserved for future use.
creat ePol i cyOr g. xm —Creates policy for an organization object.
cr eat eRequest s. xnml —Creates a multitude of objects in the DS.

creat eServi ceTenpl at es. xm —Creates a service template for an
organization object.

del et eGr oupRequest s. xm —Deletes all objects under a specific group
container.

del et eOr gRequest s. xml —Deletes a multitude of objects under a specific
organization.

del et ePCRequest s. xm —Deletes a multitude of objects under a specific
people container.

del et eSer vi ceTenpl at es. xm —Deletes a service template under a specific
organization.

del et eservi ceConfi gur at i onRequest s. xml —This is reserved for future
use.

get NuntX Ser vi ces. xnl —Passes a listing of an organization’s total number of
registered services.

get Regi st er edSer vi ces. xnl —Passes a listing of an organization’s registered
services.

get Request s. xm —Passes information about a multitude of objects in a
specific organization.

nmodi f yRequest s1. xm —Adds new attributes to a number of objects in a
specific organization.

nmodi f yRequest s2. xm —Adds new attributes to a people container object in a
specific organization.

modi f yRequest s3. xm —Adds new attributes to a role object in a specific
organization.

modi f ySer vi ceTenpl at es. xm —Modifies existing attributes in a service
registered to a specific organization.

modi f yschemaRequest s. xml —Adds new attributes to a number of objects in a
specific organization.

Chapter 2 DSAME And XML 63

DSAME XML Files

= regi sterRequests. xnl —Registers a service to an existing organization. (This
service must have been previously imported.)

< renoveChoi ceVal ueRequest s. xm —Removes the values a user can choose
from in an existing attribute in a specific service.

= renpveschemaRequest s. xml —Removes the default value of an existing
attribute in a specific service.

= unassi gnPol i cyRequest s. xnl —Removes an assigned policy from a specific
organization.

= unregi st er Request s. xm —Unregisters a service from an existing
organization. (This service must have been previously imported and
registered.)

These XML templates follow the structure defined by the amAdni n. dt d. They are
located in I nstal | _Direct ory/ SUN\Vani sanpl es/ adni n/ cl i / bul k- ops.

Modifying A Batch Processing XML Template

Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadni n executable to upload the
changes to the DS.

NOTE Be aware that creations of roles, groups, and organizations is a
time-intensive operation.

XML Schema Files

The uns. xm file is the schema that defines the parameters of identity-related
objects. More information on this file and how it relates to the DSAME SDK can be
found in Chapter 4, “Identity Management And The SDK.”

Customizing User Pages

The User entry page and what it displays will vary, depending on what the service
developer defines. By default, every attribute in the anlUser . xn1 file that has an

i 18nkKey attribute specified and the any attribute set to display (any=di spl ay)
will display in the DSAME console. Alternately, if an attribute is specified to be of
type User in another XML service file, the DSAME console will display it if the

64 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Abstract Objects and amEntrySpecific.xml

service is assigned to the user. The DSAME console gets attributes to display from
both, XML service files that have a defined schema attribute type of User and the
User XML service file, amser . xnl . Thus, User display pages in the DSAME
console can be modified to add new attributes in either of two ways:

= The User attribute schema definition in the specific XML service file can be
modified.

= A new User schema attribute definition can be added to the User service (the
amser . xnl service file).

For information on modifying XML service files, see “Modifying An Internal XML
Service File,” on page 60.

NOTE Any service can describe an attribute that is for a user only. The
amJser. xmi file is just the default placeholder for user attributes
that are not tied to a particular service.

Abstract Objects and amEntrySpecific.xml

The purpose of this XML service file is to define the attributes that will display on
the Create, Properties and Search pages specific to each of the DSAME abstract
objects. Each DSAME abstract object can have its own schema definition in the
anEnt rySpeci fi c. xnl file which is based on the sns. dt d as described in
“DSAME DTD Files,” on page 33.

Abstract Objects

DSAME represents the objects it manages abstractly; in other words, an
organization in DSAME does not necessarily map to an LDAP organization in the
DS. The abstract objects are:

= organization

= organizational unit
= people container

- static group

= filtered group

e assignable dynamic group

Chapter 2 DSAME And XML 65

Abstract Objects and amEntrySpecific.xml

66

= group container

Marker Object Classes

Abstract objects are identified in the DS by marker object classes that are defined in
a DSAME schema and used in LDAP object entries. For example, the DS may use
organizational units for their first level structure; by adding the DSAME
organization marker object class, i pl anet - am managed- or g, to the LDAP entries
of these organizational units, DSAME will manage them as organizations. It is the
use of marker object classes that allows DSAME to manage most directory
structures, regardless of the object classes and naming attributes deployed. The
marker object classes are:

e iplanet-am nanaged-filtered-group

* ipl anet - am nanaged- assi gnabl e- gr oup
e iplanet-am nmanaged-static-group

= iplanet-am nanaged-org

e iplanet-am nanaged- org-unit

= ipl anet-am nanaged- peopl e- cont ai ner

e iplanet-am nanaged- gr oup- cont ai ner

NOTE The marker object classes are defined in the DSAME-specific LDAP
schema named 95am schema. | di f and located in
Instal |l _Directory/ SUN\Vam confi g/ uns. It is loaded into the DS
when DSAME is installed.

amEntrySpecific.xml Schema

Each abstract object can have a schema defined in the anEnt rySpeci fi c. xnl file.
The schema defines what attributes will be displayed on the function pages used to
manage abstract type objects:

< Create—The Create page is displayed when the administrator clicks New.

< Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an abstract type object is clicked.

e Search—The Search link is in the top left frame of the DSAME console.

Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Abstract Objects and amEntrySpecific.xml

If a service developer wants to customize these DSAME function pages for any of
the abstract objects, they would need to modify the anEnt r ySpeci fi c. xm . For
example, to display an attribute on the group page, the new attribute needs to be
added to the anEnt rySpeci fi c. xm file. Any abstract object with customized
attributes in the DS would need to have those attributes reflected in the

amEnt rySpeci fi c. xm file also. (Most often, a service developer would only be
customizing the organization pages.) Code Example 2-23 is the organization
attribute subschema that defines the display of an organization’s Organization
Status and its choice values.

Code Example 2-23 Organization Subschema of antnt r ySpeci fi c. xmi

<SubSchema nanme="0Organi zati on">
<Attribut eSchema nane="i net domai nst at us"
type="si ngl e_choi ce"
syntax="string"
any="optional |filter"
i 18nKey="02">
<Choi ceVal ues>
<Choi ceVal ue>Act i ve</ Choi ceVal ue>
<Choi ceVal ue>l nacti ve</ Choi ceVal ue>
</ Choi ceVal ues>
</ Attribut eSchena>
</ SubSchena>

If the t ype attribute is not specified in anEnt r ySpeci fi c. xm , the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the DSAME console.

All the attributes listed in the schema definitions in the anEnt r ySpeci fi c. xnl file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the anEnt r ySpeci fi c. xnl file, the DSAME
console will not display the attribute. For additional information on the DSAME
abstract objects and marker object classes, see the iPlanet Directory Server Access
Management Edition Installation and Configuration Guide.

NOTE Note that the User service is not configured in the
antEnt rySpeci fi c. xnl file but in its own amser . xnl file.

Chapter 2 DSAME And XML 67

The amAdmin Command Line Executable

The amAdmin Command Line Executable

68

The primary purposes of the command line executable amadni n is to load XML
service files into the DS and to perform batch administrative tasks on the DIT.
amadmni n can be found inI nstal | _Di rect ory/ SUN\WanT bi n and is used to:

e |Load XML service files—Administrators load services into DSAME that use
the XML service file format defined in the sns. dt d. All services must be
loaded using amadni n; they cannot be imported through the DSAME console.

NOTE XML service files are stored in the DS as static blobs of XML data that
is referenced by DSAME. This information is not used by the DS
which only understands LDAP.

= Perform batch updates to the DIT—Administrators can perform batch updates
to the DS DIT using the batch processing XML file format defined in the
amadmi n. dt d. For example, if an administrator wants to create 10
organizations, 100 people containers, 1000 users, and 100 groups, it can be
done in one attempt by putting the requests in one or more batch processing
XML files and loading them using anadni n. More information on this can be
found in “DSAME DTD Files,” on page 33.

NOTE amadni n only supports a subset of features that the DSAME console
supports and is not intended as a replacement. It is recommended
that the console be used for small administrative tasks while
amadni n is used for larger administrative tasks.

The amadmin Syntax

There are a number of structural rules that must be followed in order to use
amadmni n. The generic syntaxes for using the tool are:

e amadmin -u | --runasdn dnnanme -w | --password password [-] |
--locale |l ocal enane] [[-v | --verbose] | [-d |--debug]] -t |
--data xmfilel [xmfile2 ...]

e amadmn -u | --runasdn dnname -w | --password password [-] |
--locale |l ocal enane] [[-v | --verbose] | [-d | --debug]] -s |
--schema xmfilel [xmfile2 ...]

Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

The amAdmin Command Line Executable

e amadmn -u | --runasdn dnname -w | --password password [-] |
--locale |l ocal enane] [[-v | --verbose] | [-d | --debug]] -r |
--del eteServi ce serviceNanel [serviceNane2 ...]

e amadmin -h | --help

e amadnin -n | --version

NOTE Two hyphens must be entered exactly as shown in the generic

syntax.

amadmin Options
Following are definitions of the amadni n command line options:

--runasdn

--runasdn is used to authenticate the user to the LDAP server. The argument is a
value equal to that of the Distinguished Name (DN) of the user authorized to run
amadmi n; as in - - runasdn ui d=amAdni n, ou=Peopl e, o=i pl anet. com o=i sp. The
DN can also be formatted by inserting spaces between the domain components and
double quoting the entire DN such as: - - runasdn " ui d=amAdni n, ou=Peopl e,
o=i pl anet.com o=isp".

--password

- - passwor d is a mandatory option and takes a value equal to that of the password
of the DN specified with the - - r unasdn option.

--locale

- -1 ocal e is an option that takes a value equal to that of the name of the locale. This
option can be used for the customization of the message language. If not provided,
the default locale, en_US, is used.

--debug

- - debug is an option that will write messages to the amAdni n file created under the
Instal | _Directory/ SUN\VAan web- apps/ servi ces/ debug directory. These
messages are technically-detailed but not i18n-compliant.

--verbose

- -ver bose is an option that prints to the screen the overall progress of the amadni n
command. It does not print to a file the detailed information. Messages output to
the command line are i18n- compliant.

Chapter 2 DSAME And XML 69

The amAdmin Command Line Executable

70

--data

- - dat a is an option that takes as its value the name of the batch processing XML
file being imported. One or more XML files can be specified. This XML file can
create, delete and read various directory objects as well as register and unregister
services. For more information on what types of XML files can be passed to this
option, see “DSAME DTD Files,” on page 33.

--schema

- - schena is an option that loads the attributes of a DSAME service into the DS. It
takes as an argument an XML service file in which the service attributes are
defined. This XML service file is based on the sns. dt d. One or more XML files can
be specified.

NOTE Either the - - dat a or - - schena option must be specified, depending
on whether configuring batch updates to the DIT, or loading service
schema and configuration data.

--deleteService
--del et eServi ce is an option for deleting a service and its schema only.

--serviceName

- -servi ceNane is an option that takes a value equal to the service name which is
defined under the Servi ce name=. .. tag of an XML service file. This portion is
displayed in Code Example 2-24 on page 70.

Code Example 2-24 Portion of sanpl eMai | Servi ce. xni

<Servi cesConfi gurati on>
<Servi ce nane="sanpl eMai | Servi ce" version="1.0">
<Schenma
servi ceHi erarchy="/ ot her. confi gurati on/sanpl eMai | Service"
i 18nFi | eNane="sanpl eMai | Servi ce”
i 18nKey="i pl anet - am sanpl e- nmai | - servi ce-description">

--help
- - hel p is an argument that displays the syntax for the amadni n command.

--version

--versi on is an argument that displays the utility name, product name, product
version and legal notice.

Directory Server Access Management Edition Programmer’s Guide « May 2002

SampleMailService Files

SampleMailService Files

DSAME comes with the files needed to integrate a mail service into the
configuration. These sample files are provided as guidelines for creating custom
services and applications and illustrate how the service might be configured. The
files included are:

sanpl eMai | Ser vi ceSchema. | di f —This LDAP Data Interchange Format
(LDIF) file contains the LDAP schema (LDAP object classes and attribute
names) for the sample mail service. The LDIF file for the service needs to be
loaded into the DS using the | dapnodi f y command line tool. For more
information, see the iPlanet Directory Server documentation.

sanpl eMai | Servi ce. xmi —This XML service file contains the service schema
and configuration parameters for the sample mail service based on the
structure defined in the sns. dt d. It defines the mail service attributes, among
them i 18Nkey which maps to fields in the service’s corresponding localization
properties files.

sanpl eMai | Servi ce. properti es—This localization properties file defines the
object class name for the mail service profile as well as the values for the
localization keys defined in sanpl eMai | Ser vi ce. xnl . The localization keys
point to actual fields that display on DSAME console. For example,

i 18nKey="al" defines a localization key in sanpl eMai | Servi ce. xn file.
al=Mai | Status, defined in sanpl eMai | Servi ce. properti es, tells the
DSAME console to display Mail Status on the Sample Mail Service profile page
in the DSAME console. For more information, see “Configuring Localization
Properties,” on page 32.

The files can be found in
Instal |l _Directory/ SUNVan sanpl es/ adni n/ cl i / sanpl eMai | Servi ce. These
files are used throughout this chapter to illustrate service definition concepts.

NOTE DSAME provides sample mail service files for instructional

purposes only. Integrating DSAME with the iPlanet Messenger
service is not supported.

Chapter 2 DSAME And XML 71

SampleMailService Files

72 Directory Server Access Management Edition Programmer’s Guide « May 2002

Chapter 3

User Authentication With DSAME

If an organization’s resources are protected by the iPlanet Directory Server Access
Management Edition (DSAME), a user must submit credentials to the
Authentication service in order to gain access to those resources. While DSAME
provides several authentication modules, custom authentication modules may also
be incorporated. This chapter explains the authentication process, its pluggable
architecture and the authentication APIs. It contains the following sections:

= The Authentication Process

= [Installed Authentication Services

= Custom Authentication Services

= Authentication Service Properties Files
= Authentication URL Parameters

= Authentication APIs

= Sample Authentication Service

The Authentication Process

Every organization has information and resources that need to be protected from
unwanted eyes. DSAME provides secure access to these web-based applications
and the data that it stores. Gaining access to either of these resources requires that
the accessor be validated (given permission). DSAME can use one or more of several
types of authentication methods to perform this validation.

An organization’s method of authentication (their chosen authentication service) is
defined at the root level of an organization by their administrator. When a user or
application tries to access a protected resource, they are first directed to a login
screen and guided through a series of one or more templates for credential

73

The Authentication Process

gathering. Once authenticated, the user is issued an encrypted token identity and
DSAME redirects them to the desired information, based on their policy set. There
are two entry points which recognize that a user has not yet been validated: the
DSAME console and a URL Policy Web Agent. These entry points redirect any
non-validated users to the organization’s authentication service.

NOTE If the authentication process fails, the user is redirected to an error
page and refused entry.

Administration Console Entry

When a user (whether an organization’s administrator or an end user) attempts to
access DSAME’s URL-based administration console, it checks the client browser for
an encrypted token identity. If none is present, the user is directed to the login page
of the organization’s authentication service where they submit credentials for
validation. Once authenticated, the user will be redirected back to the correct
screen of the console, based on the roles they are assigned in their DSAME profile.

URL Policy Agent Entry

A web agent is a plug-in that resides on a web server and protects an
organization’s web-based resources by enforcing a user’'s DSAME-administered
policy. A user’s URL access policy consists of three lists of URLSs: those that are not
subject to policy enforcement, those that the user is denied access to and those that
the user is allowed to access. When a user accesses a web-based resource by
providing a URL, the web agent first checks the user’s not enforced list. If a match
is found there, access is allowed. If no match is found, the web agent checks the
browser for an encrypted token identity. If one exists, the web agent retrieves the
user’s URL policy using the token information and allowed or denied access to the
resource based on their policy. If there is no token identity, the user is redirected to
their organization’s authentication service.

NOTE URL Policy Web Agents are bundled for installation separately from
the iPlanet DSAME. Additional information can be found in the
iPlanet Policy Agent Pack documentation.

74 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

The Authentication Process

Client Detection

DSAME has the capability to process requests from client browsers based on a
number of protocols. The client detection module determines the protocol used by
the requesting client browser and retrieves the pages formatted correctly for the
client type. Since any client requesting DSAME services must first be successfully
authenticated, client detection is accomplished within the authentication service.

When a client’s HTTP request is passed to the DSAME, it is directed to the
Authentication module. Within this framework, the first step in user validation is
to identify the browser type using the HTTP request. The authentication service
then uses this information to retrieve the browser type’s DSAME characteristics.
Based on this client data, authentication pages are sent back to the client browser
(for example, HTML or WML pages). Once the user is validated, the client type is
added to the session token where it can be retrieved by other DSAME services.

Client Data

In order to recognize requesting client types, DSAME stores their identifying
characteristics. This information is defined in the

i pl anet-amcl i ent-detection-client-types property of the

and i ent Det ecti on. xm file. The client data is separated by a pipe ("]"):

cl i ent Type=<val ue>| user Agent =<val ue>| cont ent Type=<val ue>| cooki eSupp
ort=<val ue>|fileldentifier=<val ue>|fil ePath=<val ue>.

The fields are defined as:

= Cient Type—an arbitrary string which uniquely identifies the client. The
default is generi cHTM..

= User Agent —a search filter used to compare/match the user-agent defined in
the HTTP header. The default is Mbzi | | a/ 4. 0.

= cont ent Type—defines the HTTP requested content type. The default is
text/htm .

= cooki eSuppor t —defines whether cookies are supported or not. The default is
true.

< fileldentifier—defines the extension of the client type files (templates and
JSP). The defaultis ht ni .

= fil ePat h—defines the location of the client type files (templates and JSP files).
The defaultisht m .

NOTE Currently, DSAME only defines client data for HTML client types.

Chapter 3 User Authentication With DSAME 75

Installed Authentication Services

Installed Authentication Services

DSAME installs a number of authentication services (including the base service).
This allows an administrator to choose from a variety of authentication methods
with which to validate their defined organization’s users. The services are:

Core — The core service is the configuration base for all authentication method
modules. It must be registered to an organization before any user can login
using one of the installed authentication method modules. (In addition, the
specific authentication service needs to be registered.) It allows the DSAME
administrator to define default values for core authentication parameters. They
can then be picked up if no overriding value is set in the specific authentication
service chosen. The core values are defined in the amAut h. xni file.

Anonymous — This service allows for log in without specifying a user name
and password. Anonymous connections have limited access to the server and
are customized by the DSAME administrator.

Certificate — This service allows login through a personal digital certificate
(PDC). iPlanet Certificate Management System (CMS) can be installed as a
Certificate Authority. For more information on CMS, see the documentation
set located at htt p: // docs. i pl anet . com docs/ manual s/ cns. ht i

LDAP — This service allows for authentication using LDAP bind, an operation
which associates a user ID password with a particular LDAP entry.

Membership (Self-Registration) — This service allows a new user to
self-register for authentication with a login and password.

RADIUS — This service allows for authentication using an external Remote
Authentication Dial-In User Service (RADIUS) server.

SafeWord ™" — This service allows for authentication using Secure
Computing’s servers and tokens.

Unix — This service allows for authentication using a user’s UNIX
identification and password.

Custom Authentication Services

The DSAME authentication module provides a framework that allows an
organization to plug-in custom authentication services by calling the
authentication APIs. The following sections provide information on how to create a
custom authentication service as well as the interfaces and classes that must be
implemented to run it.

76

Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Custom Authentication Services

Creating an Authentication Service

1.

Create an XML file for the new authentication service.

The service XML file is written so that the authentication service’s attributes
(configurable parameters) can be managed using the DSAME console. The
name of this file follows the format amAut hser vi cenane. xni ; for example,
amAut hLDAP. xml or amAut hSaf ewor d. xml . More information on writing XML
files using the sns. dt d can be found in Chapter 2, “DSAME And XML.”

Create a screen configuration properties file.

A screen configuration properties file specifies the screen text that a user will
see when directed to the authentication service’s login page. This might
include, but is not limited to, User Name and Password. The name of this file
follows the format ser vi cenane. properti es; for example, LDAP. properti es
or Saf eWor d. properti es. The files are located, by default, in

I nstall_Directory/ SU\Vani web- apps/ servi ces/ WEB- | NF/ confi g/ aut h/ d
ef aul t . The directory will be different based on locale. Information on how to
create the file can be found in “Configuring Screen Properties,” on page 79.

Create a localization properties file.

The localization properties file defines language-specific screen text for the
service’s attribute names. The name of the file follows the format

amAut hser vi cenane. properti es; for example, amAut hLDAP. properti es. The
files are located in I nst al | _Di r ect or y/ SUNWant | ocal e/ . This directory
contains a sub-directory for each locale. More information on this file and how
to configure it can be found in “Configuring Localization Properties,” on

page 81.

Write a Java file which implements the API
com i pl anet. aut henti cati on. spi . Aut henti cati onMbdul eFact ory.

This API contains the method that obtains an instance of the authentication
module.

Write a Java file which extends the API
com i pl anet. aut henti cati on. spi . Aut henti cati onMbdul e.

This API instantiates a class of the authentication module. Certain abstract
methods must be overridden.

Compile the application using the Java Development Kit (JDK).

Information on how to compile a Java application can be found in the JDK
documentation.

Chapter 3 User Authentication With DSAME 77

Custom Authentication Services

7. Modify the amAut h. xni file.

Altering this file to include the new authentication service allows the pluggable
architecture to recognize it.

8. Integrate the service within the DSAME authentication module by using the
amadm n command line tool.

Information on using amadni n can be found in the iPlanet Directory Server
Access Management Edition Administration Guide.

Authentication Service XML Files

There are two XML files that need to be created and/or modified when creating a
custom authentication service. The first file, amAut hser vi cenanme. xmi , specifies the
attributes that the service developer wants users and administrators to be able to
configure using the DSAME console. The second file, amAut h. xm , defines the core
authentication service.

amAuthservicename.xml

This file must be created for the new authentication service. Each authentication
service has its own service XML file, for example, amAut hLDAP. xnl or

amAut hSaf eWor d. xml . The file specifies the attributes that a service developer
wants users and administrators to be able to configure via the DSAME console.
When creating it, an existing authentication service XML file can be copied and
altered as needed. For information on writing a new service XML file, see Chapter
2, “DSAME And XML.”

amAuth.xml

The amaut h. xm file defines the Core authentication service, the “parent”
authentication service. After creating a new authentication service, this file must be
modified in order for the authentication module to recognize the new service. This
file must live in the I nst al | _Di rect or y/ SUN\Wani confi g/ xm directory for all
authentication modules to work. For information on modifying the amAut h. xm
file, see Chapter 2, “DSAME And XML.”

78 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Authentication Service Properties Files

Authentication Service Properties Files

Typically, each authentication service in DSAME has two properties files: the
screen properties file and the localization properties file. The screen properties file
defines the screen text for the authentication service login page and the localization
properties file defines locale-specific (or translated) screen text and messages for
the whole service.

Configuring Screen Properties

The screen properties file specifies the screen text that a user will see when directed
to that authentication service’s login page. Each service’s screen properties file is
named using the name of the service followed by the extension . properti es; for
example, Anonynous. properti es or LDAP. properti es. By default, the file isin

I nstall_Directory/ SUN\VANT web- apps/ ser vi ces/ WEB- | NF/ confi g/ aut h/ def a
ul t . If the file is organization-specific, it is stored in the organization’s own
authentication directory I nst al | _Di r ect or y/ SUNVam web- apps/ ser vi ces/

VEB- | NF/ conf i g/ aut h_or gname. If the files are organization and locale-specific, it
is stored in the organization’s locale directory inside its specific authentication
directory at I nst al | _Di r ect or y/ SUNVanT web- apps/ ser vi ces/ VEB- | NF/

confi g/ aut h/ or gnane/ | ocal e. (Information on configuring files per organization
can be found in “Configuring An Organization’s Screens,” on page 137 of Chapter
8, “GUI Customization.”) To illustrate the “The Screen Properties File Directives,”
on page 80, the LDAP. properti es file has been copied below.

Code Example 3-1 LDAP.properties File

SCREEN

TI MEQUT 120

TEXT LDAP Aut hentication
TOKEN Enter Userld
PASSWORD Ent er Password

SCREEN

TI MEQUT 240

TEXT Password Expiring Pl ease Change
PASSWORD <REPLACE>
 Enter Current Password
PASSWORD Ent er New Password

PASSWORD Confirm New Password

SCREEN
TI MEQUT 120
TEXT Your password has expired. Please contact service desk to

reset your password.

Chapter 3 User Authentication With DSAME 79

Authentication Service Properties Files

The Screen Properties File Directives

The directives included in the configured screen properties file will depend on the
requirements of the authentication method and the extent of the customization of
the screen prompts. Table 3-1 discusses the directives.

Table 3-1 The Screen Properties File Directives

Directive Description

SCREEN Each SCREEN entry corresponds to one login page. The
authentication module can set which screen is next, or it can
allow the DSAME’s aut h ser vl et to progress through the
screens sequentially.

TIMEOUT n The TIMEOUT directive is used to ensure that users respond
in a timely manner. If the time between when the page is sent
and the user submits his response is greater than n seconds, a
time-out page is sent.

TEXT The TEXT directive specifies a title for the login page. Only
one TEXT directive per SCREEN entry should be specified. If
more than one is provided, the last one is displayed.

TOKEN yyy The TOKEN directive is used to obtain the user’s
identification input. Within an HTML login page, it equates to
the following tag:

<P>yyy</ STRONG>
<I NPUT TYPE=" TEXT"
NAME=TCOKENO>

where yyy is the text the user will see on the login page and
INPUT specifies the input field for the user name or ID. When
multiple input fields are used (such as user ID and password
fields), successive numbers are appended to the name value
TOKEN as in TOKENO, TOKEN1, TOKENZ2, etc. (The use of
TOKEN here has no relation to a single sign-on token.)

PASSWORD zzz The PASSWORD directive is used to obtain the user’s
password input. Within an HTML login page, it equates to
the following tag:

<P>zzz</ STRONG>
<| NPUT
TYPE=" PASSWORD" NAME=TOKEN1>

where zzz is the text the user will see on the login page and
INPUT specifies the input field for the password. When
multiple input fields are used (such as user ID and password
fields), successive numbers are appended to the name value
TOKEN as in TOKENO, TOKEN1, TOKENZ2, etc.

80 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Authentication Service Properties Files

Table 3-1 The Screen Properties File Directives (Continued)

Directive Description

IMAGE path The optional IMAGE directive allows for the display of a
custom background image on the page where path equals the
direct path to the displayed image.

HTML path This optional HTML directive allows for the use of a custom
HTML page for the authentication screens. The path attribute
equals the path to the HTML file which will be displayed,
overriding the HTML file dynamically generated by the
authentication service’s . pr operti es file. For more
information on customizing a HTML login page, see
“Authentication URL Parameters,” on page 82.

<REPLACE> The REPLACE tag allows for the substitution of dynamic text
for the static text descriptions, allowing for the dynamic
generation of challenges or passwords. It is used in
conjunction with the set Repl aceText () method.

Note that the screen properties file may direct a certain number of screens to be
displayed although not all of them will be. Code Example 3-1 on page 79,

LDAP. properti es has defined three screens although the last two will only be
displayed under certain circumstances.

NOTE The screen properties file can also be empty. In such cases there is no
login page; the credentials are specified in the URL or its part of the
servlet request (as in the case of Certificate authentication).

Configuring Localization Properties

A localization properties file specifies the locale-specific screen text and localized
messages that an administrator or user will see when directed to an authentication
service’s attribute configuration page. As an example, a portion of

amAut hLDAP. proper ti es is copied below. (The file is in the

Instal | _Directory/ SUN\ani | ocal e/ directory.) The data following the equal (=)
sign in each key/value pair (displayed in English here) would be translated to a
specific language as necessary and copied into the corresponding locale directory.
The alphanumeric keys (a1, a2, etc.) map to fields defined, in this example, in the
amAut hLDAP. xm service configuration file with the i 18nKey attribute.

Chapter 3 User Authentication With DSAME 81

Authentication URL Parameters

Note that the alphanumeric keys determine the order in which the fields are
displayed on a service page in the DSAME console. The keys are taken in
alphabetical and then numerical order (a1, a2 is followed by b1, b2 and so forth).
For example, if a new attribute is added and needs to be displayed at the top of the
service page, the alphanumeric key should have a value of al. The second attribute
should then have a value of either a2 or b1, and so forth. Please note that a10
comes before a2.

Code Example 3-2 Portion of amAut hLDAP. pr operti es

Pl nval i d=Current Password Entered Is Invalid
PasswdSane=Passwor d shoul d not be sane

PasswdM nChar s=Password shoul d be atl east 8 characters
al=Primary LDAP Server and Port

a2=Secondary LDAP Server and Port

a3=DN to Start User Search

a4=DN for Root User bind

ab=Password for Root User Bind

ab=User Naming Attribute

a7=User Entry Search Attribute

Authentication URL Parameters

A custom HTML file can be written as an organization’s login screen. This HTML
file can then be dynamically generated from a value defined in the authentication
service’s properti es file. For example, an organization wants its users to
authenticate by entering a login ID and password in the HTML page,

MyLogi n. ht nl . After entering the data and clicking the Submit button, the user
will be taken directly to the page ht t p: / / DSAMESer ver : 58080/ MyURL. ht m .
MyLogi n. ht Ml will contain code that includes the ACTION tag as displayed in
Code Example 3-3 on page 82.

Code Example 3-3 URL Parameter Code for Authentication

<Ht M >

<Head>

<Title>

My Login Form

</Title>

</ Head>

<Body>

<Form Nane="login_fornm Action="/anserver/| ogi n?nodul e=LDAP "
Met hod=" POST" >

<l nput Type="TEXT" Name=TOKENO>

82 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Authentication URL Parameters

Code Example 3-3 URL Parameter Code for Authentication (Continued)

<l nput Type="PASSWORD' Name=TOKEN1>

<l nput Type="SUBM T" Nane=Subnit Val ue=Subm t >
</ For n»

</ Body>

</H mM>

In the source code, the HTML tag ACTI ON has the value
/ anser ver/ | ogi n?nodul e=LDAP. This string can be modified by passing different
name/value pairs. These pairs are:

got o=URL—ATfter successful login, DSAME redirects the user to this URL. It
overrides the default URL. Example:

http://dsanmel.red.ipl anet.com 8080/ anser ver/

| ogi n?got o=http://webserver.red.iplanet.com webpage. ht m

got oOnFai | =URL—After unsuccessful login, DSAME redirects the user to this
URL. Example: htt p: // dsamel. r ed. i pl anet. com 8080/ anser ver/
| ogi n?got o=http://webserver.red.iplanet. conf Forgot Passow d. ht m

ar g=newsessi on—This argument is typically used in the anonymous to
authenticated user login scenario. It allows a login to destroy an existing
session and perform a new login in one request. The user first hits the site with
an anonymous session and then hits the Register or Login link. Example:
http://dsaneserver. sun. con anserver/ | ogi n?ar g=newsessi on

modul e=Aut hModul e—Instead of using the configured authentication modules
for an organization, the authentication module is specified via this URL
parameter. Example:

http://dsanel.red.ipl anet.com 8080/ anserver/ | ogi n?nmodul e=LDAP

or g=Or gSt ri ng—The Authentication service figures out which organization
OR sub-organization, the user is going to authenticate to based on the value of
this parameter. If no or g parameter is given, the service will use the

host : port/ URI portion of the URL.

page=n—This allows applications to go directly to a specific page of a login
module. For example, if amodule has 4 pages and an application wants to send
a user directly to page 4 it would pass page=4 in the login request. This is
typically used in conjunction with custom authentication modules. For
example,

Chapter 3 User Authentication With DSAME 83

Authentication APIs

http://dsaneserver. sun. com anserver/ | ogi n?nodul e=LDAP&TOKENO=use
r &TOKENL=passwor d&page=1

http://dsanel.red.ipl anet.com 8080/ anserver/| ogi n?got o=
http://wevserver.red.ipl anet.com webpage. ht m &age=1

= i PSPCooki e—To enable persistent cookies in DSAME, this parameter must be
specified as true in the login URL: i PSPCooki e=t r ue. Persistent cookies must
also be enabled in the Core Authentication service. This typically is used by
portals with the Remember my username and password feature as it allows the
user to restart their browser while retaining their session.

Authentication APIs

The authentication APIs are organized in a package called
com i pl anet . aut henti cati on. spi . It contains the classes, interfaces and
methods needed to write a customized authentication service.

NOTE The Overview page for the complete set of public Javadocs can be
accessed at I nstal | _Di rect ory/ SUN\VAmM docs/ i ndex. htmi .

Authentication APl Overview

Each time a user attempts to access a protected resource, a new instance of the
authentication Java class is created. (The reference to the class is released once the
authentication session has either succeeded or failed.) When an authentication
session is invoked, one login page is sent to the browser for each screen directive
defined in the screen properties file although not all screens will need to be
displayed. The first directive would send a login page asking the user to enter a
user identification and a password. When the user submits the information, the
val i dat e() method is called. The module gets the information tokens, validates
and returns them. If applicable, a second screen is sent and the val i dat e()
method is called again. (In the LDAP. pr operti es Code Example 3-1 on page 79, a
second screen would be sent only to a user whose current password is expiring.)
When multiple screens are sent to the user, the tokens from a previous screen can
be retrieved by using the get TokenFor St at e methods. (Each screen is referred to
as a state.) The authentication module keeps all tokens from previous states until
authentication is complete.

84 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Authentication APIs

Naming Conventions

The following naming convention is recommended when creating the custom
authentication service. If the new authentication service class is named

servi cenane. j ava, the authentication module factory class should be named
servi cenameAut hent i cati onModul eFact ory. j ava. In addition, the use of upper
and lower case letters should be consistent. If the new authentication service class
is named NewAut h. j ava, the authentication module factory class should be named
NewAut hAut henti cati onMbdul eFactory. j ava.

AuthenticationModuleFactory Interface

The Aut hent i cat i onMbdul eFact ory interface must be implemented for each
custom authentication module. This top-level class contains the

newAut hent i cat i onModul e() method which creates a new instance of the
Aut hent i cat i onMbdul e class. This new instance defines the authentication
module being customized.

AuthenticationModule Class

The AuthenticationModule class extends the Authenticator class which defines
basic methods used in the authentication service. The AuthenticationModule class
contains more detailed methods. The instance of the AuthenticationModule class
must override the val i date(),init(), and get User Tokenl d() methods.

= Theinit() method should be used if the class has any specific initialization
requirements such as loading a JNI library. i ni t () is called once for each
instance of the class. Once a login session is completed, the reference to the
class is released.

< Thevalidate() method is called for each authentication page specified in the
screen properties file and validates the entered credentials and thus, the user.
At the point of authentication failure, it throws an Aut hent i cati onExcepti on.
The reason for failure can be an argument to the exception and will be logged
in the DSAME authentication log.

< The get User Tokenl d() method is called once at the end of a successful
authentication session. A login session is deemed successful when all pages in
the screen properties file have been sent and the module has not thrown an
exception. The method retrieves the authenticated token string that the
authenticated user will be known by in the DSAME environment.

Chapter 3 User Authentication With DSAME 85

Sample Authentication Service

NOTE If the instance of DSAME participates in the User Lockout feature,
the val i dat e() method throws an | nval i dPasswor dExcepti on
after n attempts at login. In order to support this feature, the
get User Tokenl d() method should be set to return the user ID
before the exception is thrown.

LoginWorkerFactory

The Logi nWor ker Fact or y interface must be implemented for each custom
non-HTML authentication module. This top-level class contains the

newLogi nWr ker () method which creates a new instance of the Logi nvor ker
class. The new instance generates the Ul for the authentication module being
customized.

NOTE Any static data or reference to any static data in the authentication
module must be thread-safe.

Sample Authentication Service

86

A sample authentication program has been provided in the directory,
Instal |l _Directory/ SUN\VAn sanpl es/ aut henti cati on/ provi ders. It includes
the following files:

= AuthenticationSanple.jar

= AuthenticationSanple.java

Aut henti cati onSanpl e. properties
e AuthenticationSanpl eAut henti cati onModul eFactory. java
e Readne. htm

The Readne. ht ml file explains how to compile, deploy and run the Authentication
Sample program. It is copied below.

Authentication Sample: Readme.html

The Readme. ht M file explains how to compile, deploy and run the Authentication
Sample program.

Directory Server Access Management Edition Programmer’s Guide « May 2002

Sample Authentication Service

Steps to compile the Authentication Sample program

1.

Set the following environment variables.

These variables will be used to run the gmake command. You can also set these
variables in the Makef i | e. This Makefi | e is in the same directory

(Instal | _Directory/ SU\Vani sanpl es/ aut henti cati on/ provi ders) as the
Authentication Sample program files.

o JAVA HOME - Set this variable to your installation of JDK. The JDK should
be newer than JDK 1.2.2.

o CLASSPATH - Modify the Zopt to the base of your installation.
I nstall_Directory/ SU\Vam web- apps/ servi ces/ WEB-I NF/ 1 i b
directory.

o BASE_CLASS DI R- Set this variable to the directory where all the Sample
compiled classes are located.

o JAR DI R- Set this variable to the directory where the JAR files of the
Sample compiled classes will be created.

Go to the
I nstall _Directory/ SUN\Vani sanpl es/ aut henti cati on/ provi ders
directory and run gmake.

Steps to deploy the Authentication Sample program

1. Copy Aut henti cationSanpl e. j ar from JAR DI Rto
I nstal | _Directory/SUNWam/web-apps/services/WEB-INF/Ilib".

2. Copy Aut henti cati onSanpl e. properties from
Install_Directory/ SU\Van! sanpl es/ aut henti cati on/ provi ders to
Install_Directory/ SUN\VAnT web- apps/ servi ces/ VEB- | NF/ confi g/ aut h/ d
efaul t.

NOTE The properties file name should be the same as the Authentication

Sample module name.
3. Modify

I nstal |l _Directory/ SU\Van! web- apps/ servi ces/ VEB- | NF/ confi g/ xm / am
Aut h. xnl to include the Authentication Sample in the Authentication menu
choices and in the Authenticator's list (in Admin Console) as follows:

Chapter 3 User Authentication With DSAME 87

Sample Authentication Service

Code Example 3-4 amAut h. xm After Modification

<AttributeSchema nane="i pl anet - am aut h- menu"
type="mul tipl e_choice"
syntax="string"
i 18nKey="al" >
<Choi ceVal ues>
<Val ue>LDAP</ Val ue>
<Val ue>Radi us</ Val ue>
<Val ue>Menber shi p</ Val ue>
<Val ue>Anonynous</ Val ue>
<Val ue>Cert </ Val ue>
<Val ue>Aut hent i cat i onSanpl e</ Val ue>
</ Choi ceVal ues>
<Def aul t Val ues>
<Val ue>LDAP</ Val ue>
</ Def aul t Val ues>
</ AttributeSchena>

<AttributeSchema name="i pl anet - am aut h- aut henti cat or s"
type="list"
synt ax="string"
i 18nKey="al7">
<Def aul t Val ues>
<Val ue>com i pl anet . aut henti cati on. nodul es. r adi us. Radi us</ Val ue>
<Val ue>com i pl anet . aut henti cati on. nodul es. | dap. LDAP</ Val ue>
<Val ue>com i pl anet . aut henti cati on. nodul es. nenber shi p. Menber shi p<
/ Val ue>
<Val ue>com i pl anet . aut henti cati on. nodul es. anonynous. Anonynous</V
al ue>
<Val ue>com i pl anet . aut henti cati on. nodul es. cert. Cert </ Val ue>
<Val ue>com i pl anet . aut henti cati on. modul es. appl i cati on. Applicatio
n</ Val ue>
<Val ue>com i pl anet . am sanpl es. aut henti cati on. provi ders. Aut henti c
at i onSanpl e</ Val ue>
</ Def aul t Val ues>
</ Attri but eSchema>

4. Make a backup copy amAut h. xni .

5. Deletei Pl anet AMAut hSer vi ce entry and then import (the modified)
amAut h. xml using amadmi n.

a. cd <install-root>/ SUNVAn bi n

b. ./amadm n --runAsDN
ui d=amAdmni n, ou=Peopl e, <def aul t _or g>, <root _suffi x> --password
<passwor d> --del eteService i Pl anet AVAut hServi ce

88 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

6.

Sample Authentication Service

c. ./amadm n --runAsDN
ui d=amAdni n, ou=Peopl e, <defaul t _org>, <root _suffi x> --password
<passwor d> --schena anAut h. xm

Add the Aut hent i cati onSanpl e. j ar file path to the Web server VM
classpath:

a. cd
Install_Directory/ SU\Van servers/ htt ps-<host>. <domai n>/ confi g

b. Modifyjvni2. conf to add
I nstall_Directory/ SU\Vani web- apps/ servi ces/ WEB- | NF/ | i b/ Aut hen
ti cationSanpl e.jar path to the JVM classpath.

Steps to run the Authentication Sample program

1.

Restart DSAME server
I nstall_Directory/ SUN\Vani web- apps/ servi ces/ VEB- | NF/ bi n/ anser ver
start.

Log in to the DSAME console by entering the URL
http://<host >. <domai n>: <port >/ <Depl oy- URI >/ consol e.

Select the User Management view.

Select your organization and select services from the Show menu.

Click on the DSAME Core Authentication properties icon.

Add the Aut henti cati on Sanpl e class in Pluggable Auth Module Classes.
Select Aut hent i cat i onSanpl e from Authentication Menu.

Click Subni t to save changes and log out.

Enter the URL htt p: // <host >. <donmai n>: <port >/ <Depl oy- URI >/ | ogi n and
select Aut hent i cat i onSanpl e from Authentication Menu OR enter the URL
http://<host >. <domai n>: <port >/ <Depl oy- URI >/ | ogi n?nodul e=Aut hent i
cati onSanpl e.

Chapter 3 User Authentication With DSAME 89

Sample Authentication Service

90 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Chapter 4

ldentity Management And The SDK

The Identity Management module of DSAME contains XML templates and
application programming interfaces (APIs) that can provide functionality to,
among other operations, create, delete and managing identity entries in the
directory. This chapter offers information on these public API. It contains the
following sections:

e Overview

< Management Of Identity-Related Objects
« DSAME SDK

e The SDK And Cache

Overview

The Identity Management module of DSAME provides interfaces for creating and
managing identity-related objects in the iPlanet Directory Server (DS). The
management functions that can be performed include the creation and deletion of
the specific objects as well as the ability to get, add, modify, or remove attributes of
these objects. The interfaces provided for this feature are a Java SDK to embed the
management functions with applications or services, and a set of configuration
parameters (defined in the uns. xm). The following sections describe the
configuration Templates and the DSAME SDK.

91

Management Of Identity-Related Objects

Management Of Identity-Related Objects

The uns. xnl provides a set of configuration parameters, known as Templates, that
contain LDAP configuration information for identity-related objects. (It can be
found inthe I nstal | _Directory/ SU\Wam confi g/ uns directory.) The
identity-related objects are:

e Users

e Groups

« Organizations

< Roles

= Organization Units
= Group Containers
= People Containers

The templates are used by the DSAME SDK for the creation of these objects in the
DS, as well as the dynamic generation of the object’s roles and the construction of
object searches. (These templates can be modified by administrators to alter the
behavior of the Java interfaces.) Using these templates and the LDIF schema,
parameters are configured for all identity-related objects.

When DSAME is installed, the uns. xm file is stored in the DS as the DA service.
(DAl is a service in DSAME whose configuration is not made available through the
DSAME console.) The DSAME SDK gets the configuration information from this
node when it is being asked to create an identity-related object, generate a role or
perform a search. Any attribute specified in the uns. xml can be set for a created
object.

NOTE uns. xml has template definitions for the various directory entries
created by the SDK. If it is modified and reloaded with those
modifications, there would be inconsistencies between the new
entries created and the older ones. Hence, modifications to this file
are not recommended unless DSAME is being installed fresh.

92 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Management Of Identity-Related Objects

Structure of ums.xml

The uns. xm defines three templates: Structure, Creation and Search. Structure
templates define the DS DIT attributes for the object. Creation templates define an
LDAP template for the object being created. Search templates define guidelines for
performing searches using LDAP. These concepts are discussed in depth below.

Structure Templates

Structure templates define the form a DSAME object will take in the DS DIT. This
conforms to where the object is located within the DIT; the objects are strictly
LDAP entries. There are six attributes that need to be defined for each subschema.

= cl ass—This attribute represents the name of the Java class that will implement
the object. This attribute is fixed and should never be modified.

< name—This attribute defines the entry type of the object. For example, an
organization object has o=org as its name.

= chi | dNode—This attribute specifies the child nodes that will be created in
tandem with the object.

= tenpl at e—This attribute specifies the Creation template used to create this
object.

= filter—This attribute specifies a filter that will be used to identify the object.

e priority—This attribute is defined as 0.

Creation Templates

Every entry that DSAME creates has a corresponding creation template which
defines the LDAP schema for the object being created. It specifies what object
classes and attributes are mandatory or optional and what default values, if any,
should be set. This conforms to the actual LDAP entry in the DS. There are six
attributes that need to be defined for each subschema.

< nane—This attribute defines the name of the object the template will create. It
is also the name of the template itself.

« javacl ass—This attribute defines the name of the Java class used to
instantiate the object.

< required—This attribute defines the required LDAP attributes for the object.
= optional —This attribute defines the optional LDAP attributes for the object.

e val i dat ed—This attribute is reserved for future use.

Chapter 4 Identity Management And The SDK 93

Management Of Identity-Related Objects

94

= nami ngattribut e—This attribute specifies the LDAP entry type.

Search Templates

Search templates are used to define how DSAME searches are performed in the DS.
This template defines a default search filter and the returning attributes in a search.
For example, a search filter is constructed which defines and specifies which
attributes and values are to be retrieved from the DS.

= name—This attribute defines the name of the search template.
= searchfilter—This attribute defines the LDAP search filter.

= attrs—This attribute specifies the LDAP attributes that need to be returned.

Modifying ums.xml

In addition to modifying an XML service file, any new LDAP attributes or object
classes must be added to the uns. xn file in order for them to be recognized by
DSAME. In most cases, the attributes that service developers might want to add
may already exist in the i net or gper son and the i net user object classes. If, for
example, a custom mail service is being added with, specifically, an enpl oyee_i d
attribute, the uns. xnl file does not need to be modified because this attribute
already exists in the i net or gper son object class. Generally, as in the example, the
uns. xnl file does not need to be modified. The only circumstances where this file
would need to be modified are:

= if DSAME is being installed against a legacy DIT.

= if new object classes are being added to users or organizations.

= if service developers want to change the default organizations or roles.
= if service developers need to change an entry’s naming attribute.

Additional information on when and how to modify the uns. xmi file is covered in
the section on installing against a legacy DIT in the iPlanet Directory Server Access
Management Edition Installation and Configuration Guide.

CAUTION Itis highly recommended that the uns. xm configuration file is
duplicated before any modifications are made.

Directory Server Access Management Edition Programmer’s Guide « May 2002

DSAME SDK

Adding Custom Object Classes

If a service developer wanted to add new or customized object classes to DS for
DSAME’s use, they would need to modify the templates in the uns. xm file to
include them. Then, to manage them from the DSAME console, these new object
classes and attributes have to be modelled in the XML service file format and
imported into DSAME using the procedures described in this chapter.

DSAME SDK

The DSAME SDK contains APIs for identity management. These interfaces can be
used by developers to integrate management functions into external applications
or services to be managed by the DSAME. The following sections describe the Java
classes.

NOTE The public Javadocs can be accessed through
Install _Directory/ SUN\VAnT docs/ i ndex. htm .

ldentity Management APIs

The Identity Management APIs provide the means to create or delete
identity-related objects as well as get, modify, add or delete the object’s attributes.
The com i pl anet . am sdk package contains all the interfaces and classes necessary
to perform these operations in the DS.

AMConstants

AMConst ant s is the base interface for all identity-related objects. It is used to define
the scope of a search of the DS. It can search for a specific object, a particular level
of the DIT or an attribute.

AMODbject

AMDbj ect provides basic methods to manage identity-related objects. Since this is a
generic class, it does not have any Templates associated with it.

Chapter 4 Identity Management And The SDK 95

DSAME SDK

AMOrganization

The AMOr gani zat i on interface provides the methods used to manage
organizations. Associated with this interface are the following uns. xm Templates
that define its behavior at runtime. The name of the structural template used by
this class is Organization; the name of the creation template used is
BasicOrganization, and the name of the search template is BasicOrganizationSearch.

AMOrganizationalUnit

The AMO gani zat i onal Uni t interface provides the methods used to manage
organizational units. Associated with this object are the following uns. xm
Templates that define its behavior at runtime. The name of the structural template
used by this class is OrganizationalUnit; the name of the creation template used is
BasicOrganizationalUnit, and the name of the search template is
BasicOrganizationalUnitSearch.

AMPeopleContainer

The AMPeopl eCont ai ner interface provides the methods used to manage people
containers. Associated with this object are the following uns. xm Templates that
define its behavior at runtime. The name of the structural template used by this
class is PeopleContainer; the name of the creation template used is
BasicPeopleContainer, and the search template is BasicPeopleContainerSearch.

AMGroupContainer

The AME oupCont ai ner interface provides the methods used to manage group
containers. Associated with this object are the following uns. xm Templates that
define its behavior at runtime. The name of the structural template used by this
class is GroupContainer; the name of the creation template used is
BasicGroupContainer, and the search template is BasicGroupContainerSearch.

AMGroup

The AM& oup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMStaticGroup

The AVSt at i cG oup interface provides the methods used to manage static groups.
This class extends the base AMG oup interface. The name of the creation template
used with this class is BasicGroup; and the search template used is BasicGroupSearch.
It does not have a pre-defined structural template.

96 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME SDK

AMDynamicGroup

The AMDynani cG oup interface provides the methods used to manage dynamic
groups. This class extends the base AM& oup interface. Associated with this object
are the following uns. xm Templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMAssignableDynamicGroup

The AMAssi gnabl eDynani cGr oup interface provides the methods used to manage
assignable dynamic groups. This class extends the base AMX oup interface.
Associated with this object are the following uns. xm Templates that define its
behavior at runtime. The creation template used is named
BasicAssignableDynamicGroup; and the search template used is named
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

AMRole

The AMRol e interface provides the methods used to manage roles. Associated with
this object are the following uns. xm Templates that define its behavior at runtime.
The creation template used is named BasicManagedRole; and the search template
used is named BasicManagedRoleSearch. It does not have a pre-defined structural
template.

AMUser

The AMUser interface provides the methods used to manage users. Associated with
this object are the following uns. xm Templates that define its behavior at runtime.
The creation template used is named BasicUser; and the search template used is
named BasicUserSearch. It does not have a pre-defined structural template.

AMTemplate

The AMTenpl at e interface represents a service template associated with a

AMDbj ect . DSAME distinguishes between virtual and entry attributes. Per iPlanet
Directory Server (DS) terminology, a virtual attribute is an attribute not physically
stored in an LDAP entry but still returned with it as a result of a LDAP search.
Virtual attributes are analogous to inherited attributes. Entry attributes are
non-inherited attributes.

Chapter 4 Identity Management And The SDK 97

DSAME SDK

NOTE More information on virtual attributes can be found in “Virtual
Attribute,” on page 135 of Chapter 8, “iPlanet Directory Server And
DSAME.”

For AMOr gani zat i on, AMOr gani zat i onal Uni t and AMRol e, virtual attributes can
be grouped in a Template on a per-service basis; there may be one service Template
for each service for any given AMbj ect . Such templates determine the service
attributes inherited by the users within the scope of this object. There are three
types of templates: POLI CY_TEMPLATE, DYNAM C_TEMPLATE and

ORGANI ZATI ON_TEMPLATE. POLI CY_TEMPLATE and DYNAM C _TEMPLATE are
implemented using CoS Templates; ORGANI ZATI ON_TEMPLATE does not have
virtual attributes.

Template Priority

When any object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), conflicts between
such templates are resolved by the use of template priorities. In this priority
scheme, zero is the highest possible priority with the lower priorities extending
towards finity. Templates with higher priorities will be favored over and to the
exclusion of templates with lower priorities. Templates which do not have an
explicitly assigned priority are considered to have the lowest priority possible, or
no priority. In the case where two or more templates are being considered for
inheritance of an attribute value, and they have the same (or no) priority, the result
is undefined, but does not exclude the possibility that a value will be returned,
however arbitrarily chosen.

AMStoreConnection

The AVt or eConnect i on class represents a connection to the DSAME data store. It
controls and manages access to the DSAME data store by providing methods to
create, remove and get different types of identity-related objects. A SSO Token is
required in order to instantiate a AVSt or eConnect i on object.

Sample Code

Following are code samples using the DSAME SDK.

98 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

DSAME SDK

Create Organization

The following code sample creates a new organization with one user by opening a
connection to the DS data store with AMSt or eConnect i on. A new top organization

(newt opor g. con) is then created with its own attributes. User John Smith is then

created as a member of the new organization.

Code Example 4-1 Create a new organization and one user

/1 instantiate a store connector from SSO Token
AMBt or eConnecti on anmsc = new AMSt or eConnecti on(ssoToken);
/1l create a new top |l evel organization wthout non-default

attributes
AMO gani zation org =
ansc. cr eat eTopOrgani zati on(" newt opor g. cont', new HashMap());
/1 set attribute for the newWy created organi zation
org.setStringAttribute("description”, "organization
description");
/! save new attribute to the organi zati on object
org.store();

/1 create new user "john" with "cn", "sn" attribute
/1 Map to hold all users to be created, key is the string

val ue for user nam ng attribute,
/1 value is a Map which contains all the initial values for

t he user

Map usershMap = new HashMap();

/1 Map to hold attributes for the user

Map attrsMap = new HashMap();

/1 set cn = John Snmith

Set val ues = new HashSet ();

val ues. add("John Smith");

attrshMap. put ("cn", val ues);

/] set sn = Smith

val ues = new HashSet ();

val ues. add("Snith");

attrshMap. put ("sn", val ues);

/1 set put user john in the usersMap with "cn" & "sn"
speci fi ed above

user sMap. put ("j ohn", attrsMap);

/! create user john in the organization

Set users = org.createUsers(usershap);

Chapter 4 Identity Management And The SDK

99

The SDK And Cache

Retrieve Templates

The following code sample retrieves a service’s dynamic templates by opening a
connection to the DS data store with AMSt or eConnect i on. It retrieves a service’s
dynamic template by defining the DN of the top organization (t opor g. com) as well
as the specific string attribute of the specific service to be retrieved.

Code Example 4-2 Retrieve a service’s dynamic template

/1 instantiate a store connector from SSO Token
AMBt or eConnecti on amsc = new AMSt or eConnecti on(ssoToken);
/1 retrieve top |l evel organization by DN
AMOr gani zation org =
ansc. get Organi zati on(" o=t opor g. com o=i sp");
/'l retrieve Dynanic type AMIenpl ate for
i Pl anet AMSessi onSer vi ce
AMrenpl ate tenplate =
org. get Tenpl at e("i Pl anet AMSessi onSer vi ce",
AMTenpl at e. DYNAM C_TEMPLATE) ;
/'l retrieve attributes
String maxSessionTinme =
tenpl ate.getStringAttribute("ipl anet-am sessi on-nax-session-tinme

)

The SDK And Cache

Caching in the DSAME SDK is for storing all AMObj ect attributes (i.e., attributes of
identity-related objects) that are retrieved from iDS. The cache does not hold

AMDbj ect directly. All attributes retrieved from the DS using the interface methods
AMDbj ect . get Attri bute(String name),

AMDbj ect . get Attri but es(set Attri but eNanes) or AMObj ect. get Attri butes()
will be cached.

Cache Properties

The following cache properties can be configured by accessing the
AMConf i g. properti es file. They are:

e comiplanet. services. stats. st at e—Depending on whether this property
issettofil eorconsol e, the cache statistics will be printed to either a
anmBDKSt at s file or the DSAME console.

100 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

The SDK And Cache

e comiplanet.services. stats. directory—The value of this property is the
directory in which the anSDKSt at s file is created.

e comipl anet. am st at sl nt er val —The interval at which cache statistics are
printed can be specified as the value of this property. It indicates the number of
seconds after which the stats will be printed. For example, a value of 3600
would cause the cache statistics to be printed after 3600 seconds. This will be
used only if com i pl anet . servi ces. stats.stateissettofil e or consol e.

Code Example 4-3 on page 101 is an example of how the statistics will be
formatted.

Code Example 4-3 Format of Recorded Statistics

01/ 15/ 2002 09:12:35: 751 AM PST: Thread[Thread-47, 5, mai n]
SDK Cache Statistics

Interval : <nunmber of get requests during the specified interval>
Hts during interval: <nunber of hits during this interval >
Hit ratio for this interval: <hit ratio for the interval>

Total number of requests: <overall (total) nunber of get requests
since server re-start>

Total nunber of Hits: <overall (total) nunber of hits since
server re-start>

Overall Hit ratio: <overall hit ratio since server re-start>

Chapter 4 Identity Management And The SDK 101

The SDK And Cache

102 Directory Server Access Management Edition Programmer’s Guide * May 2002

Chapter 5

Single Sign-On With DSAME

The iPlanet Directory Server Access Management Edition (DSAME) provides a
single sign-on (SSO) solution that enables a user to authenticate once in order to
access multiple applications and resources. In other words, successive attempts by
a user to access protected resources will not require them to provide authentication
credentials for each attempt. This chapter explains the solution, how it works and
the SSO APIs. It contains the following sections:

= The Single Sign-On Process

« Cross-Domain Support For SSO
= SSO APIs

= Sample SSO Java Files

e Multi-JVM Support

The Single Sign-On Process

DSAME uses access control mechanisms to protect an organization’s proprietary
data and web resources. A user wanting to access these protected resources must
first pass validating credentials through the Authentication service. A successful
authentication gives the user authorization to access protected resources, based on
their assigned policies or other such mechanism. If a user wants access to several
resources protected by DSAME, the SSO (or Session) service provides proof of
authentication to those resources so there is no need to re-authenticate. These
different domains generally have common users who need to generate access to
their services in a single user session.

103

The Single Sign-On Process

Contacting A Web Agent

When a user, using a web browser, attempts to access a protected resource, the
URL Policy Agent intercepts the request. Web agents police the web or application
server on which the protected resource lives. Web agents enforce three types of
policy: those URLSs that can be accessed by the user, those URLSs for which the user
is denied access and those that are not subject to policy enforcement.

NOTE URL Policy Agents are bundled for installation separately from the
iPlanet DSAME. Additional information can be found in the iPlanet
Policy Agent Pack documentation.

When the web agent intercepts the user’s request, it checks to see if the requested
URL is not subject to policy enforcement. If there is a match, the agent allows
immediate access. If there is no match, the agent understands that the URL is
subject to policy enforcement and inspects the request further to see if a user
session identifier, or token, exists. If none exists, the request is passed to the DSAME
server where it contacts both, the Session service to create a user token and the
Authentication service to verify the user.

Creating A Session

Before a user’s credentials can be authenticated, a token is generated using the
Session service. Each token contains a randomly-generated DSAME session
identifier and ultimately represents an authenticated user. Once created, the
Authentication service inserts the token into a cookie and assigns it to the client
browser. At the same time the token is assigned, a HTML login page is returned to
the user based upon their organization’s method of authentication (LDAP,
RADIUS, Unix, etc.).

NOTE The session token, at this point, is in an invalid state and will remain
in one until the user has completed authentication.

104 Directory Server Access Management Edition Programmer’s Guide * May 2002

Cross-Domain Support For SSO

Providing User Credentials

The user, having received the correct login page as well as a session token, fills in
the appropriate user ID and password based on the login page returned. After the
user enters their credentials, the data is sent to the authentication provider (LDAP
server, RADIUS server, etc.) for verification. Once the provider has successfully
verified the credentials, the user is authenticated. The user’s specific session
information is retrieved from the token and the session state is set to valid. The user
can now be redirected to the URL they were attempting to access.

Cookies and Tokens

A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server it is generated by. It does not imply that the user is authenticated. Cookies
are domain-specific; for example, a cookie generated by t hi sdonai n. comcannot
be used in another domain such as t hat donai n. com In a DSAME implementation,
the cookie is generated by DSAME'’s Session service and set by the Authentication
service.

A token is generated by DSAME'’s Session service and inserted into a cookie. The
token is generated using a secure random number generator and contains
DSAME-specific session information. When a protected resource is accessed, the
user is validated by the Authentication service and a SSO oken is created.

Cross-Domain Support For SSO

DSAME supports cross-domain SSO. A user authenticated to DSAME in one
domain can access resources protected by that same DSAME server in another
domain. For example, the DSAME instance for Donai nA is the authentication
provider. A user authenticates to DSAME in Donmai nA and, after authentication, the
token is set for Donai nA. Ser ver B is protected by a web agent talking to a DSAME
server in Domai nB. The DSAME server in Donai nB recognizes the Donai nAserver as
the authentication provider.

If User Aaccesses a resource on Ser ver B after authenticating to DSAME in

Domai nA, the web agent at Donmai nB checks to see if the request has a SSO token and
finds that there is no Domai nB token in the request. In a cross-domain SSO scenario,
the agent will redirect the user to the URL of the cross-domain component running
with the DSAME server in Domai nB. This component redirects the request to the
cross-domain component on Donai nA since the DSAME at Donai nA is the

Chapter 5 Single Sign-On With DSAME 105

Cross-Domain Support For SSO

authentication provider. This request receives the SSO token set by DSAME in
Donwi nA in the cookie header. The component at Domai nA will send a response
back to the component in Domai nB with a SSO token. The Donai nB component
validates the SSO token from Donwmi nA and creates the SSO token for the user in
Domai nB. This process sets a cookie for the user in Donmai nB. who is given access to
the requested resource only if their policy grants authorization to access it.

If a user accesses a resource directly at Domai nB without authenticating at Domai nA,
the user is redirected to authentication at Domai nA. If the authentication is
successful, the SSO token is sent to Dormai nB from Domai nA. The Ser ver B validates
the SSO token with Domai nA, creates it for Domai nB and redirects the user to the
original requested resource.

Enabling Cross-Domain Single Sign-On

To enable cross-domain SSO, the administrator needs to configure two different
SSO components. They are the Cross Domai n Control | er and the SSO
Conponent . The Cross Donai n Control | er component comes bundled, and is
installed, with DSAME. The SSO Conponent is a domain agent that needs to be
installed separately onto all participating DNS domains.

NOTE The system administrator can choose to not enable the cross-domain
feature; in this case the SSO component would function within the
context of a single domain.

Cross Domain Controller

The Cross Domai n Control | er (CDC) is associated with the DSAME server that is
protecting a specific domain. It redirects a request to either the Authentication
service or to the SSO Conponent . When a HTTP request comes into the CDC and
no SSO token information is found, the request is redirected to the Authentication
Service. If a SSO token is found for another domain, the request is redirected to the
SSO Conponent with the appropriate session information appended to the query
string.

NOTE The CDC is installed when the command line tool ari nstal | is run
to install the DSAME application. For more information, see the
iPlanet Directory Server Access Management Edition Installation and
Configuration Guide.

106 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Cross-Domain Support For SSO

SSO Component

The SSO Conponent is deployed in each DSAME-protected domain. When a user
attempts to access a resource, the URL is intercepted by the web agent as discussed
in “Contacting A Web Agent,” on page 104. If no SSO token is found, the request is
redirected to the SSO Conponent in the domain where the resource exists. The SSO
Conponent searches the query string again for the SSO token. As no token is found,
the request is redirected to the Cross Donmi n Control | er associated with the
DSAME server that protects this resource. From this point, the authentication
process will be followed.

NOTE If a SSO token is found by the web agent when the request is made,
the SSO Conponent would not receive the request as the web agent
would take the course of validating the token as described in
Chapter 3, “User Authentication With DSAME.”

Configuring For Cross-Domain SSO

The SSO components need to be enabled in order to allow the cross-domain SSO
function to work. Assuming a single DSAME instance:

1. Runaninstall toinstall DSAME.

This will install the DSAME application as well as the CDC component and
other internal services. The default CDC service URL, after installation, is
http(s):// DSAME- HOST: PORT/ anser ver/ cdcser vl et .

2. Runani nstal | again and choose to install the Cross-Domain Support option.

All participating DNS domains need to have an instance of the SSO component
installed in their domain. After running this installation option, a cdsso
directory is created in I nstal | _Di r ect or y/ SUNVanT web- apps. The default
SSO Component service URL, after installation, is

http(s):// DOVAI N- CDSSO HOST: PORT/ uri / cdssoservl et .

NOTE Install the SSO Component on any web server with host services
that need to be protected in all participating DNS domains.

3. Editthe com i pl anet. servi ces. cdsso. cooki edonai n property in the
cdsso. properti es file found in the
Install _Directory/ SUN\VAan web- apps/ cdsso/ VEB- | NF/ cl asses directory.

Chapter 5 Single Sign-On With DSAME 107

Cross-Domain Support For SSO

Setthe com i pl anet . servi ces. cdsso. cooki edonai n property to the domain
name which hosts the SSO component. For example,

com i pl anet . servi ces. cdsso. cooki edomai n =. sal es. com if the SSO
component is hosted in a sun.com domain. Code Example 5-1 is copied from
the file itself.

Code Example 5-1 Portion of cdsso. properti es file

/*

* The following keys will be used for Cross Domain SSO support.
* The user if needs cross doam n sso support should change
*"com i pl anet . servi ces. cdsso. CDCURL" property to point to the
* cdcservl et running with the DSAME i nstance

"com i pl anet. servi ces. cdsso. cooki edonmai n" property shoul d
specify a comma separated list of domains for which the cdsso
servlet will set a SSOToken.

Ex: com i pl anet. servi ces. cdsso. cooki edomai n=. sal es. com

.eng. com . marketing. com

*/

E I I I

com i pl anet. servi ces. cdsso. CDCURL=htt p://rays.indi a. sun. com 8080

[amser ver/ cdcser vl et _ _
com i pl anet. servi ces. cdsso. cooki edonai n=. sal es. com
/*

4. Edit three properties in each web agent’s AMagent . properti es file.

o Change the value of
com i pl anet.am pol i cy. agents. url.aut hLogi nUrl so it points to the
component’s domain’s SSO service URL. For example,
com i pl anet.am policy.agents. url.authLogi nUrl =http(s)://DOVAI
N- CDSSO- HOST: PORT/ uri / cdssoser vl et . Code Example 5-2 illustrates
where this property can be found.

Code Example 5-2 Second portion of CDSSO AMConf i g. properti es file

/*To enabl e cross domain sso support

"com i pl anet.am policy.agents.url.authLogi nUrl" needs to be
*changed to point to the cdsso servlet

instead of the login servlet/
/*comipl anet.am policy. agents. url . aut hLogi nUr| =PROTQO. / / HOST: PCR
T/ DEPLOY_URI / cdssoser vl et */

comipl anet.am policy. agents. url.aut hLogi nUr | =SERVER_PROTQ:. / / SER
VER_HOST: SERVER_PORTSERVER _DEPLOY_URI /| 0ogi n

108 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Cross-Domain Support For SSO

o Add the SSO service URL to both the component’s local and remote not
enforced list. Code Example 5-3 displays the portion of the file where these

properties are defined.

Code Example 5-3 Third portion of CDSSO AMConf i g. properti es file

rvice,
ervice,
ervi ce,

ervice,

m

essi on

*/

SERVER_PROTO. / /| SERVER_HCST:
SERVER_PROTO. / / SERVER_HOST:

SERVER _PROTQ // SERVER_HOST:
SERVER _PROTQ // SERVER_HOST:

SERVER_PROTO / / SERVER _HOST:

SEi?\/ER_PROTQ / | SERVER_HOST:
SERVER PROTQ // SERVER_HOST:

[*1f cross domain sso support is enabl ed notenforcedlist should
*be edited to add cdsso servlet URL in it

*com i pl anet . am pol i cy. agents. url.notenforcedlist.|ocal =

*PROTQO / / HOST: PORT/ DEPLOY_URI / cdssoservl et */

com i planet.am policy.agents. url.notenforcedlist.|ocal =SERVER_PR
OTG / /| SERVER_HOST: SERVER _PORTSERVER _DEPLOY_URI / consol e*,

SERVER _PROTC: / / SERVER HOST:
SERVER _PROTQ. / / SERVER _HOST:

SERVER PORTSERVER DEPLOY_URI /| ogi n*,
SERVER_PORTSERVER_DEPLOY_URI / i mages/ *

SERVER PORTSERVER_DEPLOY_URI /| ogout ,
SERVER_PORTSERVER _DEPLOY_URI / nam ngse

SERVER _PORTSERVER_DEPLOY_URI / sessi ons
SERVER _PORTSERVER_DEPLOY_URI /| oggi ngs

SERVER PORTSERVER DEPLOY_URI / profi | es

* AGENT_DEPLOY _URI/ ht ml / URLAccessDeni ed. ht mi |
SERVER _PROTO:. / / SERVER _HOST:
SERVER PROTO // SERVER_HOST:
SERVER _PROTO:. / / SERVER _HOST:

SERVER_PORTSERVER DEPLOY_URI / admi n/ *,
SERVER_PORTSERVER_DEPLOY_URI / docs*,
SERVER_PORTSERVER_DEPLOY_URI / i ndex. ht

SERVER _PORTCONSOLE_DEPLOY_URI / *,
SERVER PORTSERVER_DEPLOY_URI/ Get Ht t pS

/*1f cross domain sso support is enabl ed notenfocelist should be

edited to add cdsso servl et
comipl anet.am policy. agents. url.notenforcedlist.renote=PROTG //

HOST: PORT/ DEPLOY_URI / cdssoservl et *

URL init

com i planet.am policy.agents. url.notenforcedlist.renmote=*AGENT_D
EPLOY_URI/ ht m / URLAccessDeni ed. ht m

This instance of DSAME and all its participating DNS domains are now

cross-domain SSO enabled.

Chapter 5 Single Sign-On With DSAME 109

SSO APIs

NOTE The cross-domain SSO solution assumes a single DSAME instance;
therefore all user and policy information needs to be centralized in
that instance. Multiple DSAME instances are allowed if they are all
in the same domain.

SSO APIs

The SSO solution provides Java API to allow external applications to participate in
the SSO functionality. All DSAME’s services (except for Authentication) need a
valid SSO token to process a HTTP request. External applications wishing to use
the SSO functionality must use the SSO token to validate the user’s identity. With
the SSO API, an external application can get the token and, in turn, the identity of a
user and related authentication information. Once a user is authenticated, this
information is used to determine whether or not to provide access to the requested
resource based on the validated user’s policy. The SSO API can also be used to
create or destroy a SSO token, to check the token’s validity or to listen for token
events. (An event might be a token timing out because the user has reached the
token’s maximum time limit.)

Non-Web-Based Applications

DSAME provides the SSO component primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

1. The application has to obtain the DSAME cookie value and pass it into the SSO
client methods to get to the SSO token. The method used for this process is
application-specific.

2. Command line applications, such as amadni n, can be used. In this case, SSO
tokens can be created to access the DS directly. There is no session created
making the DSAME access is valid only within that process or VM.

110 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

SSO APIs

API| Overview

The primary purpose of the SSO API is to allow any service or application to make
use of the SSO functionality. They are provided for the implementation of a SSO
solution in external applications. Using these APIs, the identity of the user and
related authentication information can be called. The application then uses this
information to determine whether to provide user access to a protected resource.
The SSO client applications get the information from the SSO token. For example,
assume a user authenticates to ht t p: / / www. Donai nA. comt St or e successfully and
later tries to access ht t p: / / www. Donmi nB. conf Updat el nf 0. Rather than having
the application authenticate the user again, it can use the API to determine if the
user is already authenticated. If the methods indicate that the user is valid and has
already been authenticated, access to this page can be given without the user
authenticating again. Otherwise, the user is prompted to authenticate again.

Each time a user attempts to access a protected application, the application needs
to verify their validity. Generally, the SSO component generates a SSO token for a
user once the user is authenticated. After generation, the token is carried with the
user as the user moves around the web. When the user attempts to access an
application or service that is SSO-enabled, this token is used for user validation.
Specifically, an instance of the SSOTokenManager class is created to allow access to
the cr eat eSSOToken, dest r oyToken and i sVal i dToken methods. An instance of
the SSOToken class is then called; it contains the session information. Between the
two, an application can determine if the user is authenticated. Another way to use
the API is to invoke the SSOTokenLi st ener interface which notifies the application
when a token has become invalid in order for the application to terminate its access.

NOTE For more information on the SSO APIs, the public Javadocs can be
accessed through I nstal | _Di rect ory/ SUN\VAn docs/ i ndex. htmi .

SSOTokenManager Class

The SSOTokenManager class must be implemented to create one instance per token.
It contains the three methods needed to create, get, validate and destroy SSO
tokens. The cr eat eSSOToken() method is called to create a session token. It
contains methods for doing this using the command line or through the internet.
The dest r oyToken() method is called to delete a token when its session has
ended. Thei sVal i dToken() and val i dat eToken() methods are called in tandem
to verify the authenticity of a token.

Chapter 5 Single Sign-On With DSAME 111

SSO APIs

NOTE SSOrokenManager is a final class and a singleton. SSOToken and
SSOTokenl Dare Java interfaces. Additionally, SSOTokenLi st ener
and SSOTokenEvent are provided to support notification when SSO
tokens are invalidated.

Sample SSOTokenManager Code

The SSOTokenManager class can be used in the following way to determine if a user
is authenticated:

Code Example 5-4 Sample SSOTokenManager Code

try {
/* create the sso token fromhttp request */

SSOTokenManager nmanager = SSOTokenManager. getlnstance();

/* The request here is the HtpServl et Request. */
SSOToken token = manager. cr eat eSSOToken(request);

/* use isValid to nethod to check if the token is valid or not
* this method returns true for valid token, false otherw se*/
if (token.isValid()) {

/* user is valid, this information may be enough for sone
* applications to grant access to the requested resource.
* A valid user represents a user who is already authenticated,
* py sone neans.|f access can be given based on this
* further check on user information is not necessary.
*
/

/* let us get sone user information */

String host = token. get Host Nane();
java.security. Principal principal = token.getPrincipal();
String authType = token. get Aut hType();

int level = token. getAuthLevel ();

} else {
/* token is not valid, redirect the user |ogin page */

112 Directory Server Access Management Edition Programmer’s Guide * May 2002

SSO APIs

SSO Implementations

The SSOTokenManager maintains a configuration database of valid
implementations for SSOPr ovi der, SSOToken and SSOTokenl D. A request to
SSOTokenManager gets delegated to the SSCPr ovi der . Hence, the SSOPr ovi der
performs the bulk of the function of SSOTokenManager . The SSOToken is the SSO
token that contains the crucial information about the token, and SSOTokenl Dis a
string representation of SSO token. Although SSOTokenManager could support
multiple and disparate providers, the only valid SSO provider is SSOPr ovi der .

Additional Classes

The following classes can be used to implement customized SSO functionality in an
application that does not use the default SSOPr ovi der provided.

SSOToken

The SSOToken class represents a “single sign-on” token and contains information
like the user validation, the authentication method, the host name of the client
browser that sent the request, and session information (maximum session time,
maximum session idle time, session idle time, etc.). Code Example 5-4 on page 112
also makes use of the SSOToken interface.

SSOTokenEvent

The SSOTokenEvent class represents a token event. An event is, for instance, when
a token becomes invalid due to idle time-out or hitting a time limit maximum. A
token is granted when a change in the state of the token, like those mentioned,
occurs. An application must come to know of events in order to terminate access to
the application for a user whose token has become invalid. The SSOTokenLi st ener
class would need to be implemented by applications to receive SSO token events.

Sample SSOTokenEvent Code. The SSOTokenEvent class can be used in the
following way to get SSO Token events:

Code Example 5-5 Sample SSOTokenEvent Code

SSOTokenlLi st ener nyLi stener = new AppTokenLi stener();
t oken. addSSOTokenLi st ener (nyLi st ener);

where AppTokenListener is a class defined as follows:

public class AppTokenLi stener inplenents SSOTokenLi stener {
public void ssoTokenChanged(SSOTokenEvent event) {
try {
SSOToken token = event. get Token();
int type = event. get Type();
long tine = event.getTine();

Chapter 5 Single Sign-On With DSAME 113

SSO APIs

Code Example 5-5 Sample SSOTokenEvent Code (Continued)

SSOTokenlLi st ener nyLi stener = new AppTokenLi stener();
SSOrokenl D id = token. get Tokenl () ;
Systemout.println("Token id: " + id.toString() + "

is not valid anynore");
/* redirect user to login */
} caié'h”('Excepti on e) {
System out . printl n(e.get Message());

SSOTokenlID

The SSOTokenl Dclass is used to identify the SSOToken object. Additionally, the
SSOTokenl D string contains a random number, the SSO server host, and server
port. The random string in the SSOTokenl Dis unique on a given server. In the case
of services written using a servlet container, the SSOToken| D can be communicated
from one servlet to another either:

e asacookieinaHTTP header; or

= asanimplementation of the SSOTokenLi st ener interface by the applications to
receive the SSO token events.

SSOTokenListener

The SSOTokenLi st ener interface provides a mechanism for applications that need
notification when an SSO token expires. (It could expire if it reached its maximum
session time, or idle time, or an administrator might have terminated the session.)
Applications wishing to be notified must invoke the addSSOTokenLi st ener
method using the SSOToken interface; this method implements the

SSOTokenlLi st ener interface. A callback object will be invoked when the SSO
token expires. Using the SSOTokenEvent (provided through the callback),
applications can determine the time, and the cause of the SSO token expiration.

NOTE Once an application registers for SSO Token events using
addSSOTokenLi st ener, any SSO token event will invoke the
ssoTokenChanged method. The application can take suitable action
in this method.

114 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

SSO APIs

Sample API Code

Following are examples of code that illustrate various operations that can be
performed by the SSO API.

User Authentication Sample Code

This code can be used to determine if a user is authenticated. (Additionally, the API
can be used to perform a query on a token for information such as host name, IP
address, or idle time).

Code Example 5-6 Code Sample To Determine If User Is Authenticated

try {
Servl et Qut put St ream out = response. get Qut put Strean();

/* create the sso token fromhttp request */

SSOTokenManager manager =
SSOTokenManager . get | nst ance() ;

SSOToken token = nanager. creat eSSOToken(request);

/* use isValid nmethod to check if the token is valid
* this nmethod returns true for valid token, false non
*/
i f (manager.isValidToken(token)) {

/* let us get all the values fromthe token */

String host = token.getHost Nane();
java.security.Principal principal =

t oken. get Pri nci pal ();
String authType = token. get Aut hType();
int |evel = token.getAuthLevel ();
I net Addr ess i pAddress = token. get| PAddress();
| ong maxTi ne = token. get MaxSessi onTi ne();
long idleTime = token.getldleTinme();
| ong maxl dl eTi ne = token. get Max! dl eTi me();

out.println("SSOToken host nane: " + host);

out. println("SSOroken Principal name: " +
princi pal . get Nane());

out.println("Authentication type used: " +
aut hType) ;

out.println("lPAddress of the host: " +

i pAddr ess. get Host Address());

/* try to validate the token again, w th another nethod
* if token is invalid, this nmethod throws exception
*/
manager . val i dat eToken(t oken);

/* get the SSOTokenl D associated with the token */
SSOTokenl D t okenl d = token. get Tokenl D() ;

Chapter 5 Single Sign-On With DSAME 115

SSO APIs

Code Example 5-6 Code Sample To Determine If User Is Authenticated (Continued)

try {

String id = tokenld.toString();
/* print the string representation of the token */
out.println("The token id is " + id);

/* set properties in the token. W can get the val ues
* of set properties |ater
*
/

t oken. set Property(" Conmpany”, "Sun M crosystens");

t oken. set Property("Country", "USA");

String nane = token. getProperty("Conpany");

String country = token. getProperty("Country");

out.println("Property: Conpany is - " + nane);
out.println("Property: Country is - " + country);

out.println("SSO Token Validation test Succeeded");
/* add a listener to the SSOToken. Whenever a token
* event arrives, ssoTokenChanged nethod of the

* |listener will get called.

*/

SSOTokenLi st ener mnyLi stener = new

Sanpl eTokenLi st ener () ;

t oken. addSSOTokenLi st ener (nmyLi st ener);
out.flush();

} catch (Exception e) {

System out. println("Excepti on Message: " +

e. get Message());

}

e.printStackTrace();

In some cases, it might be more efficient and convenient to use
SSOTokenManager . val i dat eToken(t oken) than

SSOTokenManager . i sVal i dToken(t oken) .

SSOTokenManager . val i dToken(t oken) throws an exception when the token is
invalid, thus terminating the method execution right away.

Get Token Sample Code

This sample code can be used to get the SSO token if the SSO okenl Dstring is

passed to the application.

116 Directory Server Access Management Edition Programmer’s Guide * May 2002

SSO APIs

Code Example 5-7 Code Sample To Get Token from Token ID

try {
/* create the sso token from SSO Token Id string */

SSOTokenManager manager =SSOTokenManager . get | nst ance() ;
SSOToken t oken = manager. Cr eat eSSOToken(t okenStri ng);
* | et us get the SSOTokenl D associated with the token
*/
SSOTokenl D i d = token. get Tokenl D() ;

String tokenld = id.toString();
[* print the string representation of the token */
Systemout.println("The token IDis " + tokenld);

/* set properties in the token. We can get the val ues
* of set properties later */

t oken. set Property(" Conpany”, "Sun M crosystens");

t oken. set Property("Country", "USA");

String nane = token. getProperty(" Conpany");

String country = token. getProperty("Country");

System out. println("Property: Conpany is - " + name);
Systemout.println("Property: Country is - " +

country);

Systemout. println("SSO Token Validation test
Succeeded");
/* add a listener to the SSOToken. Whenever a token
* event arrives, ssoTokenChanged nethod of the
:/I istener will get called.
SSOTokenLi st ener mnyLi stener = new
Sanpl eTokenLi st ener () ;

t oken. addSSOTokenLi st ener (nmyLi st ener);
} catch (Exception e) {
Systemout. println(e.get Message());
e.printStackTrace();
SSOTokenManager manager =SSOTokenManager . get | nst ance() ;
SSOToken token = manager. Creat eSSOToken(t okenStri ng);

Listen For Event Code Sample

Applications can listen for SSO token events. It is possible that while a user is using
an application, an SSO token may become invalid because, for example:

= the user's access times out because of the maximum time limit; or,

Chapter 5 Single Sign-On With DSAME 117

SSO APIs

= the user fails to log out of an application and the idle time-out expires.

The application must be informed of these events to follow-up on the invalid token
by terminating the user’s access. The following two sample codes can be used to
get token events.

Code Example 5-8 Code Sample To Register For SSOToken Events

SSOTokenLi stener nyLi stener = new Sanpl eTokenLi stener();
t oken. addSSOTokenLi st ener (nyLi st ener);

where Sanpl eTokenLi st ener is a class defined as:

Code Example 5-9 Code Sample Defining Sanpl eTokenLi st ener Class

publ'i c class Sanpl eTokenLi stener 1 nplenents SSOlokenLi st ener {

public void ssoTokenChanged(SSOTokenEvent event) {
try {
SSOToken token = event. get Token();
int type = event.get Type();
long tine = event.getTime();

SSOTokenl D id = token. get Tokenl D();
Systemout.println("Token id is: " + id.toString());
i f (SSOTokenManager. getlnstance().isValidToken(token))

Systemout. println("Token is Valid");
} else {
Systemout. println("Token is Invalid");

switch(type)

case SSOTokenEvent. SSO TOKEN | DLE TI MEQOUT:
Systemout. println("Token |del Tinmeout event");
br eak;

case SSOTokenEvent. SSO TOKEN_MAX_TI MEOUT:
System out. println("Token Max Ti neout event");
br eak;

case SSOTokenEvent. SSO TOKEN DESTROY:
Systemout. println("Token Destroyed event");
br eak;

defaul t:
System out . printl n("Unknown Token event");

}
} catch (Exception e) {
Systemout. println(e.get Message());

118 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Sample

Sample SSO Java Files

Code Example 5-9 Code Sample Defining Sanpl eTokenLi st ener Class (Continued)

publ't ¢ class Sanpl eTokenLi st ener 1 npl enents SSOTokenLi stener {

}

After the application registers for SSO token events using addSSOTokenlLi st ener,
any SSO token events will invoke the ssoTokenChanged() method. The
application can take a suitable action in this method.

SSO Java Files

DSAME installs three groupings of sample Java files with instructional text. With
these files, a developer can create an SSO token in several ways:

1. AnSSO token can be created for an application that runs on the DSAME
server.

2. An SSO token can be created for an application that runs on a server other than
the DSAME server.

3. An SSO token can be created by a session ID string can be passed through the
command line.

The files needed to perform these actions can be found in the
I nstal | _Directory/ SU\Wan sanpl es/ sso directory.

SSO Servlet Sample

This sample can be used to create a token for an application that resides on the
same server as the DSAME application. The files used for this sample are:

® Readne. htm
= Sanpl eTokenLi stener. java
e SSOTokenSanpl eServl et . java

The instructions in Readne. ht mi can be followed to run this code.

Chapter 5 Single Sign-On With DSAME 119

Multi-JVM Support

Remote SSO Sample

This sample can be used to create a token for an application that resides on a
different server from the one on which the DSAME application lives. The files used
for this sample are:

* renote. htm
e SSOTokenFronRenot eServl et. j ava
e SSOTokenSanpl eServl et . java

The instructions in r emot e. ht M can be followed to run this code.

Command Line SSO Sample

This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

e ssocli.txt
= ComandLi neSSO. j ava
e SSOTokenSanpl e. j ava

The instructions in ssocl i . t xt can be followed to run this code.

Multi-JVM Support

DSAME can run on iPlanet Application Server (AS) which supports a multi-JVM
environment. In this scenario, based on load balancing, a SSO service could run in
any JVM. If one JVM receives the cr eat eSSOToken() request, subsequent
validation requests must be directed to the same JVM otherwise, the SSO service
will send an invalid token response. For this purpose, DSAME uses the sticky
session feature of the AS; it is turned on automatically when the DSAME is
installed. For more information, see the documentation that comes with iPlanet
Application Server.

NOTE The SSO APIs cannot be used in a multi-JVM environment.

120 Directory Server Access Management Edition Programmer’s Guide * May 2002

Chapter 6

Logging

The iPlanet Directory Server Access Management Edition (DSAME) provides a
logging module as a means of recording information such as user activity, traffic
patterns, and authorization violations. In addition, DSAME includes a Logging
API so that applications can take advantage of the logging function. This chapter
explains the component and the API. It contains the following sections:

e Overview

= Log Message Formats
= Logging API

= Sample Logging Code

Overview

The Logging component enables all DSAME services to record information that
might be useful to an administrator. This allows tracking of who is accessing what
resources in one centralized location. It accepts requests to provide logging
operations which include writing messages to logs, reading logs, listing log files
and deleting log files. Examples of information logged might include user access
denials and approvals, traffic patterns, authorization violations and code
exceptions. The component allows logs to be written to either a relational database
or flat files. It contains the following modules:

= A Logging service which contains the configuration parameters for the logging
function and accepts and processes logging requests.

= Java APl which can be integrated into Java applications in order to allow them
to access the Logging service.

121

Log Message Formats

Logging Architecture

An application accesses the Logging service by calling the Logging API. Upon
receiving a request, the Logging service loads the configuration data stored in the
LDAP DS using the DSAME SDK. (This information might include the log format,
the log’s maximum size and the log’s location.) Any exception message will be
logged, based on these configuration values. On an error, a Logi nExcepti on is
thrown by the Logging service.

NOTE The API can reside on the same server as the service or on a remote
one. If the Logging interfaces are remote, the Communication
Component (PLL) is used to send the request to the Logging service.

Logging Service

The Logging service holds the attributes and values for the DSAME logging
function. The values are applied across the configuration and are inherited by
every configured organization. The Logging Attributes are:

< Max Log Size

< Number of History Files
= Log Location

= Logging Type

= Database User Name

= Database User Password
= Database Driver Name

More information on these attributes and the Logging service can be found in the
iPlanet Directory Server Access Management Edition Administration Guide.

Log Message Formats

DSAME supports both flat-file based logging and JDBC logging. Log records can
be stored in either a flat file or in a table of a relational database. The following
sections explain the formats of both record types.

122 Directory Server Access Management Edition Programmer’s Guide * May 2002

Log Message Formats

File Format

The Logging service uses DATE/ TI ME&&Domai n&&Logi nl D&&Type&&DATA to log
messages. This format is explained below. Code Example 6-1 below illustrates how
a log record formatted for a file would look.

TI ME is the date (yyyy/mm/dd) and time (hh:mm:ss) at which the log message
was recorded.

DOMAI N is the DSAME organization to which the user belongs.
LOA NI Dis the ID of the user attempting to access the application.
TYPE is the application writing the log.

DATA is the description of the user activity, errors or other useful information
which the application wants to log.

Code Example 6-1 File Formatted Log Record Sample

&&TI ME=2002/ 04/ 25 13: 24: 47
PDT&&DOVAI N=0=i pl anet . com&&LOG NI D=ui d=amAdmi n, ou=Peopl e, o=i pl an
t.com&&

TYPE=anConsol e&&DATA=Regi st ered servi ce i Pl anet AVAut hServi ce

Database Format

For applications using a relational database to log messages, the message is stored
in a database table.

NOTE There is a limitation in the log name length for Oracle JDBC logging:

the length of the log name cannot exceed 30 characters. Oracle does
not support names longer than 30 characters.

Chapter 6 Logging 123

Logging API

The database schema is as follows:

Code Example 6-2 Database Message Format

Column Name Data Type Description

TI VE VARCHAR(200) Date (yyyy/midd hh: nm ss)
DOVAI N VARCHAR(100) User’s DSAME Organi zation
LOG NI D VARCHAR(50) Login User’'s ID.

TYPE VARACHAR(20) Application type.

DATA VARCHAR(300) Message to be | ogged.

Logging API

The Logging API provides log management tools for DSAME services as well as
providing a set of Java classes for applications to create, retrieve, submit, or delete
log information. The API can be used, for instance, to develop log auditing
capabilities. The main classes are LogManager and LogRecor d. They are contained
in the package com i pl anet . | og.

NOTE The Overview page for the complete set of public Javadocs can be

accessed at I nstal | _Di rect ory/ SUN\VAm docs/ i ndex. htmi .

LogManager Class

This LogManager class provides the methods for applications to use in creating,
retrieving, submitting, and deleting log information. It also provides a method to
access a list of log names that have been created by all the applications. This class
provides methods and must be instantiated in order to use the LogRecor d class.

< The Creat e() method creates a log in the designated logging location.

e TheWite() method records a single piece of log information or a LogRecor d.
It allows an application to submit a logging message to a predetermined log.

124 Directory Server Access Management Edition Programmer’s Guide * May 2002

Logging API

LogRecord Class

The class LogRecor d class provides the means to represent the information that
needs to be logged. Each instantiation represents a single piece of log information
or LogRecor d. This information comes from the application. This class provides
two methods and must be instantiated in order to use the LogRecor d class.

= The get RecType() method retrieves the log type or key of a single log record.

= The get RecMsg() method retrieves the log data or value of a single log record.

Logging Exceptions

There are a number of exceptions that can be thrown using the Logging APIs. The
generic LogExcept i on is probably the most common. It signals an error condition
while logging a message. Other exceptions include:

= Connecti onExcept i on—This exception is thrown when the connection to the
database fails.

= DriverLoadExcepti on—This exception is thrown when the JDBC driver load
fails.

« InvalidLogNameExcepti on—This exception is thrown when the log name is
invalid.

= LogAl readyExi st Excepti on—This exception is thrown when the log already
exists.

= LogCreat eExcept i on—This exception is thrown when log creation fails.
= LogDel et eExcept i on—This exception is thrown when the log deletion fails.

e LogExcepti on—A LogExcepti on is thrown when applications are denied log
access because they don’t have the privileges or a valid session.

= LogFat al Except i on—This exception is thrown when a fatal error occurs.

« LogHandl er Excepti on—A LogExcept i on is thrown when a log handler error
is encountered.

< Logl nacti veExcepti on—A LogExcept i on is thrown when the log is in
inactive status. (Inactive/active status is not currently supported.)

= Logl nval i dSessi onExcept i on—This exception is thrown when an
application accesses a log which does not exist.

Chapter 6 Logging 125

Logging API

= LogNot FoundExcept i on—This exception is thrown when an application
accesses a log which does not exist.

e LogPrivDeni edExcepti on—A LogExcept i on is thrown when the access
privilege is denied.

= LogProfil eExcepti on—A LogExcept i on is thrown when access privilege is
denied.

e LogReadExceedsMaxExcepti on—A LogExcepti on isthrown when the log size
exceeds the maximum size defined in the Logging service.

= LogReadExcepti on—A LogExcepti on is thrown when an error is encountered
in retrieving the log information.

= LogTypeExcepti on—This exception is thrown when a log type error occurs.

e LogWi t eExcepti on—This exception is thrown when the log record
submission fails.

< Nul | Locati onExcepti on—This exception is thrown when the location is null.

Sample Logging Code

Code Example 6-3 below provides sample code that shows how to use the DSAME
logging classes discussed above.

Code Example 6-3 Logging API Sample

LogManager | m = new LogManager (Sanpl eSSCSessi on) ;

try {
I m create("Sanpl eLog");

} catch (Exception e)
Systemout.printin("Error: " + e.getMessage();

try {
LogRecord |Ir = new LogRecord("Sanpl eType", "Sanpl eData");
log.wite(lr, "SanplelLog");

} catch(Exception e) {
Systemout.println("Error: " + e.getMessage());

126 Directory Server Access Management Edition Programmer’s Guide * May 2002

Recorded Events

Recorded Events

By default, DSAME currently logs events in three logs:

SSO-related Logs

The Logging component logs the following events for the SSO component:
e Login

* Logout

e Session ldle TinmeCut

= Session Max Ti meCut

 Failed To Login

= Session Reactivation

e Session Destroy

The log is called anSSO.

Console-related Logs

The Logging component records the creation, deletion and modification of
identity-related objects, policies and service including, among others,
Organization, Organizational Unit, User, Role, Policy and Group. It also records
modification of all user attributes including password and the addition or removal
of users to or from roles and groups, respectively. The log is called am Consol e.

NOTE The Web Agents are responsible for logging exceptions related to
resource access or denial; in other words, policy. For more
information, see the Web Agent documentation.

Authentication-related Logs

The Logging component logs the events for the Authentication component. The log
is called am Aut henti cati on.

Chapter 6 Logging 127

Recorded Events

128 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Chapter 7

Utility APIs

The iPlanet Directory Server Access Management Edition (DSAME) provides
utility application programming interfaces (APIs) that can be used by applications.
This chapter explains these APIs. It contains the following sections:

e QOverview

= APl Summary

Overview

The utilities package is called com i pl anet . am uti | . It contains utility programs
that can be used by applications accessing DSAME. The APIs include:

e StatsListener
e AdmnUils

e AMI i ent Det ector

e Debug
e Locale
e Stats

e SystenProperties

e ThreadPool

APl Summary

Following is a summary of the utility APIs and their functions.

129

API Summary

StatsListener

The St at sLi st ener interface must be implemented by each module in order to
print the statistics. This interface invokes the pri nt St at s() method.

AdminUtils

This class contains the methods used to retrieve TopLevelAdmin information. The
information comes from the server configuration file (ser ver confi g. xm).

AMClientDetector

This is a utility that gets the client type. It executes the Client Detection Class
(provided in Client Detection service) to get the client type. The default client type
will be returned if there is no Client Detection Implementation provided.

Debug

Debug allows an interface to file debug and exception information in a uniform
format. It supports different levels of filing debug information (in the ascending
order): OFF, ERROR, WARNI NG, MESSAGE and ON. A given debug level is enabled if it is
set to at least that level. For example, if the debug state is ERROR, only errors will be
filed. If the debug state is WARNI NG, only errors and warnings will be filed. If the
debug state is MESSAGE, everything will be filed. MESSAGE and ONare the same level
except MESSAGE writes to a file, whereas ON writes to Syst em out .

NOTE Debugging is an intensive operation and may hurt performance
when abused. Java evaluates the arguments to message() and
war ni ng() even when debugging is turned off. It is recommended
that the debug state be checked before invoking any message() or
war ni ng() methods to avoid unnecessary argument evaluation and
to maximize application performance.

Locale

This class Local e. j ava is a utility that provides the functionality for applications
and services to internationalize their messages.

130 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

APl Summary

Stats

This class writes statistics information in a uniform format. It supports different
states of filing information:

e OFF statistics is turned off.
e FILE statistics information is written to a file.
e CONSOLE statistics information is written to the console.

The Stats service uses the property file, AMConf i g. properti es, to set the default
stats level and the output directory where the stats files will be placed. The
properties file is located (using ResourceBundle semantics) from one of the
directories in the CLASSPATH.

SystemProperties

This class provides functionality that allows single-point-of-access to all related
system properties. First, the class tries to find AMConf i g. cl ass, and then a file,
AMConf i g. properti es, in the CLASSPATH accessible to this code. The class takes
precedence over the flat file. If multiple servers are running, each may have their
own configuration file. The naming convention for such scenarios is

AMConfi g_ser ver Nane.

ThreadPool

ThreadPool is a generic thread pool that manages and recycles threads instead of
creating them when a task needs to be run on a different thread. Thread pooling
saves the virtual machine the work of creating brand new threads for every
short-lived task. In addition, it minimizes the overhead associated with getting a
thread started and cleaning it up after it dies. By creating a pool of threads, a single
thread from the pool can be reused any number of times for different tasks. This
reduces response time because a thread is already constructed and started and is
simply waiting for its next task.

Another characteristic of this thread pool is that it is fixed in size at the time of
construction. All the threads are started, and then each goes into a wait state until a
task is assigned to it. If all the threads in the pool are currently assigned a task, the
pool is empty and new requests (tasks) will have to wait before being scheduled to
run. This is a way to put an upper bound on the amount of resources any pool can
use up. In the future, this class may be enhanced to provide support growing the
size of the pool at runtime to facilitate dynamic tuning.

Chapter 7 Utility APIs 131

API Summary

132 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Chapter 8

IPlanet Directory Server And DSAME

iPlanet Directory Server Access Management Edition (DSAME) uses iPlanet
Directory Server (DS) to store its data. Certain features of the LDAP-based DS are
also used by DSAME to help manage the data. This chapter contains information
on these DS features and how they are used. It contains the following sections:

e Overview
= Roles
= Access Control Instructions (ACIs)

e Class Of Service

Overview

Roles

DSAME has been built to work with DS. They are complementary in architecture
and design data. DSAME needs an underlying directory server to function. Use of
the directory, though, is not exclusive to DSAME and, therefore, needs to be
treated as a completely separate deployment. For more information on the
directory server, see the iPlanet Directory Server documentation.

Roles are a DS entry grouping mechanism similar to the concept of a group. A group
has members; a role has members. A role’s members are LDAP entries that are said
to possess the role. The role itself is defined in an LDAP entry as a role object and is
identified by the DN of the object. DS has a number of different types of roles but
DSAME can only manage one of them: the managed role.

133

Roles

134

NOTE The other DS role types can still be used in a directory deployment;
they just can not be managed by DSAME.

Users can possess one or more roles. For example, a contractor role which has
attributes from the Session service and the URL Policy Agent service might be
created. Then, when new contractors start, the administrator would assign them
this role instead of setting separate attributes in the contractor entry. If the
contractor were then to become a full-time employee, the administrator could just
re-assign them a different role.

Managed Roles

With a managed role, role membership is defined in each role’s member entry and
not in the role’s definition entry. An attribute which designates membership is
placed upon each entry which belongs to the role. This is in contrast to a traditional
static group which centrally lists the members in the group object entry itself.

NOTE By inverting the membership mechanism, the role will scale better
than a static group. In addition, the referential integrity of the role is
simplified, and the roles of an entry can be easily determined.

An administrator assigns the role to a member entry by adding the nsRol eDN
attribute to it. The value of nsRol eDNis the DN of the role definition entry. The
following apply to managed roles:

= Multiple managed roles can be created for each organization or
sub-organization.

< A managed role can be enabled with any number of services.

= Any user that possesses a role with a service will inherit the service attributes
from that role.

NOTE All DSAME roles can only be configured directly under
organization or sub-organization entries.

Directory Server Access Management Edition Programmer’s Guide * May 2002

Roles

Role Definition Entry

A role definition entry is a LDAP entry where the role’s characteristics are defined.
Below is a sample of a manager role definition entry.

Code Example 8-1 LDAP Role Definition Entry

dn: cn=nmnagerrol e, dc=siroe, dc=com
obj ectcl ass: top
obj ectcl ass: LDAPsubentry
obj ectcl ass: nsRol eDefinition
obj ectcl ass: nsSi npl eRol eDefinition
obj ectcl ass: nsManagedRol eDefinition
cn: managerrol e
description: nanager role w thin conpany

The nsManagedRol eDef i ni ti on object class inherits from the LDAPsubent ry,
nsRol eDef i ni ti on and nsSi npl eRol eDef i ni ti on object classes.

Role Member Entry

A role member entry is an LDAP entry in which the role is applied. The nsRol eDN
attribute indicates that the entry is a member of a managed role identified by the
DN of its role definition entry; in Code Example 8-2 below, the DN identifies Code
Example 8-1 on page 135 as the role definition entry

cn=managerrol e, dc=si roe, dc=com

Virtual Attribute

When a role member entry that contains the nsRol eDN attribute is returned by DS,
nsRol eDNwill be aliased to the nsRol e attribute on that same entry. nsRol e will
carry a value of any managed, filtered or nested roles assigned to the user (such as
Cont ai ner Def aul t Tenpl at eRol e). The LDIF Code Example 8-2 on page 136
includes this virtual attribute when returned by DS only.

Chapter 8 iPlanet Directory Server And DSAME 135

Roles

136

Code Example 8-2 LDAP Role Member Entry

dn: ui d=manager per son, ou=peopl e, dc=si r oe, dc=com
obj ectcl ass: top
obj ect cl ass: person
obj ectcl ass: | netorgperson
ui d: manager per son
gn: nanager
sn: person
nsRol eDN: cn=managerr ol e, ou=peopl e, dc=si r oe, dc=com
nsRol e: cn=nanagerr ol e, ou=peopl e, dc=si r oe, dc=com
nsRol e:
cn=cont ai nerdef aul tt enpl at er ol e, ou=peopl e, dc=si r oe, dc=com
descri ption: nanager person w thin conpany

How DSAME Uses Roles

DSAME uses roles to apply access control instructions. When installed, the
DSAME application configures access control instructions (ACIs) to define
administrator permissions. These ACls are then designated in roles (such as
Organi zati on Adnmin Rol e and Organi zati on Hel p Desk Adnmin Rol e) which,
when assigned to a user, define the user’s access permissions.

Role Creation

When a role is created, it contains the auxiliary LDAP object class
i pl anet - am managed- r ol e. This object class, in turn, contains the following
allowed attributes:

e iplanet-amrol e- managed- cont ai ner - dn contains the DN of the
identity-related object that the role was created to manage.

< iplanet-amrol e-type contains a value used by the DSAME console for
display purposes. After authentication, the console gets the user’s roles and
checks this attribute for the correct page to display based on which of the
following three values it has:

o 1 for top-level administrator only.
o 2 for all other administrators.
o 3for user.

If the user has no administrator roles, the User profile page will display. If the
user has an administrator role, the console will start the user at the top-most
administrator page based on which value is present.

Directory Server Access Management Edition Programmer’s Guide * May 2002

Roles

NOTE When DSAME attempts to process two templates that are set to the
same priority level, DS arbitrarily picks one of the templates to
return. For more information, see the iPlanet Directory Server
documentation.

Role Location

All roles in an organization are viewed from the organization’s top-level. For
example, if an administrator wants to add a user to the administrator role for a
people container, the administrator would go to the organization above the people
container, look for the role based on the people container’s name, and add the user
to the role.

NOTE Alternately, an administrator might go to the user profile and add
the role to the user.

Displaying The Correct Login Start Page

The attribute i pl anet - am user - adni n- st art - dn can also be defined for a role or
a user; it would override the i pl anet - am r ol e- t ype attribute by defining an
alternate display page URL. Upon a user’s successful authentication:

1. DSAME checks thei pl anet - am user - adni n- st art - dn for the user.

This attribute is contained in the User service. If it is set, the user is started at
this point. If not, DSAME goes to step 2.

NOTE The value of i pl anet - am user - adni n- st art - dn can override the
administrator’s start page. For example, if a group administrator has
read access to the top-level organization, the default starting page of
the top-level organization, taken fromi pl anet - am r ol e-t ype, can
be overridden by defining i pl anet - am user - admi n-start -dn to
display the group’s start page.

2. DSAME checks the user for the value of i pl anet -am rol e-t ype.

If the attribute defines an administrator-type role, the value of

i pl anet - am r ol e- managed- cont ai ner - dn is retrieved and the highest point
in the tree is displayed as a starting point. For more information on the

i pl anet-amrol e-type attribute, see “Role Creation,” on page 136.

Chapter 8 iPlanet Directory Server And DSAME 137

Access Control Instructions (ACIs)

NOTE If the attribute has no value, a search from DSAME root is
performed for all container-type objects; the highest object in the
tree that corresponds to the i pl anet - am r ol e-t ype value is where
the user starts. Although rare, this step is memory-intensive in very
large DITs with many container entries.

Access Control Instructions (ACIs)

NOTE This section refers to ACls as they are applied to administrative
roles only. There are other ACIs which are created and used in
DSAME but do not apply to this topic or to roles.

Access control in DSAME is implemented using DS roles. Users inherit access
permissions based on their role membership and parent organization. DSAME
installs pre-configured administrator roles that define access permissions for
administrators that are dynamically created when a group, organization, container
or people container is configured. (They are Or gani zat i on Adni n, Or gani zati on
Hel p Desk Admi n, G oup Adni n, Cont ai ner Adni n, Cont ai ner Hel p Desk

Admi n and Peopl e Cont ai ner Admi n.) These roles apply a set of default access
control instructions (ACIs) that define read and write access to the entries in the
corresponding object. For example, when an organization is created, the DSAME
SDK creates an Or gani zat i on Adnmi n role and an Or gani zati on Hel p Desk
Adni n role. The permissions are read and write access to all organization entries
and read access to all organization entries, respectively.

NOTE The DSAME SDK gets the AClIs from the attribute
i pl anet - am admni n- consol e-dynami c-aci -1 i st (defined in the
amAdni nConsol e. xnl service file) and sets them in the roles after
they have been created.

Defining AClIs

ACIs are defined in the DSAME console Administration XML service file,

amAdni nConsol e. xm . This file contains two global attributes that define ACls for
use in DSAME: i pl anet - am adni n- consol e-rol e-defaul t-aci s and

i pl anet - am admi n- consol e-dynam c-aci -1i st.

138 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

Access Control Instructions (ACls)

iplanet-am-admin-console-role-default-acis

This global attribute defines which Access Permissions are displayed in the Create
Role screen of the DSAME console. By default, Or gani zati on Adni n,

Organi zation Hel p Desk Adminand No Pernissions are displayed. If other
default permissions are desired, they must be added to this attribute.

iplanet-am-admin-console-dynamic-aci-list
This global attribute is where all of the defined administrator-type ACIs are stored.

For information on how ACIs are structured, see “Format of Predefined ACIs,” on
page 139.

NOTE Because ACIs are stored in the role, changing the default
permissions ini pl anet - am adni n- consol e-dynamni c-aci -1 i st
after a role has been created will not affect it. Only roles created after
the modification has been made will be affected.

Format of Predefined ACls

ACls set using DSAME for use in administrator-type roles follow a different format
than those set using the DS. The format of the predefined DSAME ACI is
permi ssionName | ACl Description | DN:ACl ## DN ACl ## DN ACl where:

= pern ssi onName—The name of the permission which generally includes the
object being controlled and the type of access. For example, Or gani zat i on
Adnmi n is an administrator that controls access to an organization object.

e ACl Descripti on—A text description of the access these ACls allow.

< DN: ACl —There can be any number of DN: ACI couplets separated by the ##
symbols. The SDK will get and set each couplet in the DN entry. This format
also supports tags which can be dynamically substituted when the role is
created. Without these tags, the DN and ACI would be hard-coded to specific
organizations in the DIT which would make them unusable as defaults. For
example, if there is a default set of AClIs for every Or gani zati on Adnmi n, the
organization name should not be hard-coded in this role. The supported tags
are ROLENAME, ORGANI ZATI ON, GROUPNAME, and PCNANME. These tags are
substituted with the DN of the entry when the corresponding entry type is
created. See the “Default ACIs,” on page 140 for examples of ACI formats.
Additionally, more complete ACI information can be found in the iPlanet
Directory Server documentation.

Chapter 8 iPlanet Directory Server And DSAME 139

Access Control Instructions (ACIs)

140

NOTE If there are duplicate ACls within the default permissions, the SDK

will print a debug message.

Default ACls

Following are the default ACls installed by DSAME. They are copied from a
DSAME configuration whose top-level organization is o=i sp.

Top Level Admin|Access to all entries|o=isp:aci:
(target="ldap:///o=isp")(targetattr="*")(version 3.0; acl "Proxy
user rights"; allow (all) roledn = "l|dap:///ROLENAME";)

Organi zation Admi n| Read and Wite access to all organization
entries|o=isp:aci:(target="Idap:///($dn), o=isp")(targetfilter=(!
(| (nsrol edn=cn=Top Level Admi n Rol e, o=i sp) (nsrol edn=cn=Top Level
Hel p Desk Adm n Rol e,o0=isp))))(targetattr = "*")(version 3.0; acl
"Organi zation Admin Role access allow'; allow (all) roledn =

"I dap:///cn=0rgani zati on Adnmin Rol e, [$dn], o=i sp";) ##0=i sp: aci :
(target="1dap:///cn=0rgani zati on Adm n

Rol e, ($dn), o=i sp")(targetattr="*")(version 3.0; acl

"Organi zation Admin Rol e access deny"; deny

(write, add, del et e, conpar e, proxy) rol edn =

"l dap:///cn=Crgani zati on Adm n Rol e, ($dn), o=i sp";)

Organi zation Hel p Desk Admi n| Read access to all organization
entries| ORGANI ZATI ON: aci : (target="1dap:/// ORGANI ZATI ON') (target f
ilter=(!(](nsrol edn=cn=Top Level Admin

Rol e, o=i sp) (nsrol edn=cn=Top Level Help Desk Admin

Rol e, o=i sp) (nsrol edn=cn=0r gani zati on Admi n

Rol e, ORGANI ZATION)))) (targetattr = "*") (version 3.0; acl

"Organi zation Hel p Desk Admin Role access allow'; allow

(read, search) roledn = "l dap:///ROLENAME";) ##ORGANI ZATI ON: aci :
(target="1dap:/// ORGANI ZATI ON") (targetfilter=(!(] (nsrol edn=cn=To
p Level Admi n Rol e, o=i sp)(nsrol edn=cn=0rgani zati on Adm n

Rol e, ORGANI ZATION)))) (targetattr = "userPassword") (version 3.0;
acl "Organi zation Hel p Desk Admin Rol e access allow'; allow
(wite)roledn = "l dap:///ROLENAME";)

Cont ai ner Adnmi n| Read and Wite access to all organi zational unit
entries|o=isp:aci:(target="ldap:///($dn), o=isp")(targetfilter=(!
(] (nsrol edn=cn=Top Level Adnmi n Rol e, o=i sp)(nsrol edn=cn=Top Level
Hel p Desk Adm n Rol e,0=isp))))(targetattr = "*")(version 3.0; acl
"Container Adnmin Role access allow'; allow (all) roledn =

Directory Server Access Management Edition Programmer’s Guide * May 2002

Access Control Instructions (ACls)

"l dap:///cn=Cont ai ner Adm n Rol e, [$dn], o=i sp";)o=i sp: aci :
(target="Idap:///cn=Cont ai ner Adnin

Rol e, ($dn), o=isp")(targetattr="*")(version 3.0; acl "Container
Adm n Rol e access deny"; deny (wite, add, del et e, conpar e, pr oxy)
rol edn = "l dap:///cn=Cont ai ner Adm n Rol e, ($dn), o=i sp";)

Cont ai ner Hel p Desk Adm n| Read access to all organizational unit
entries| ORGANI ZATI ON: aci : (target="1dap:/// ORGANI ZATI ON') (tar get f
ilter=(!(](nsrol edn=cn=Top Level Admn

Rol e, o=i sp) (nsrol edn=cn=Top Level Help Desk Admi n

Rol e, o=i sp) (nsrol edn=cn=Cont ai ner Admi n

Rol e, ORGANI ZATION)))) (targetattr = "*") (version 3.0; acl

"Cont ai ner Hel p Desk Admin Role access allow'; allow

(read, search) roledn = "l dap:///ROLENAME";) ##ORGANI ZATI ON: aci :
(target="1dap:/// ORGANI ZATI ON") (targetfilter=(!(] (nsrol edn=cn=To
p Level Admin Rol e, o=isp)(nsrol edn=cn=Cont ai ner Admi n

Rol e, ORGANI ZATION)))) (targetattr = "userPassword") (version 3.0;
acl "Container Help Desk Admin Role access allow'; allow (wite)
rol edn = "l dap:/// ROLENAME";)

G oup Adnmin|Read and Wite access to all group

nmenber s| ORGANI ZATI ON: aci : (target ="1dap:/// GROUPNAME") (targetattr
="*") (version 3.0; acl "G oup and peopl e contai ner admin role";
allow (all) roledn = "l dap:///ROLENAVE";) ##ORGANI ZATI ON: aci :
(target="1dap:/// ORGANI ZATI ON") (targetfilter=(! (]| (! FILTER) (| (nsr
ol edn=cn=Top Level Adm n Rol e, o=i sp) (nsrol edn=cn=Top Level Help
Desk Adm n Rol e, o=i sp) (nsrol edn=cn=0Cr gani zati on Admin

Rol e, ORGANI ZATI ON) (nsr ol edn=cn=Cont ai ner Admi n

Rol e, ORGANI ZATION))))) (targetattr !=

"i pl anet - am web- agent - access-al |l owlist ||

i pl anet - am web- agent - access-not -enforced-1ist ||

i pl anet - am domai n-url -access-al |l ow | |

i pl anet - am web- agent - access-deny-list")(version 3.0;acl "G oup
admn's right to the nenbers”; allow (read,wite,search) roledn =
"1 dap: /// ROLENAME" ;)

Peopl e Cont ai ner Admi n| Read and Wite access to all

user s| ORGANI ZATI ON: aci : (target="1dap:/// PCNAME") (targetfilter=(!
(] (nsrol edn=cn=Top Level Adnmi n Rol e, o=i sp)(nsrol edn=cn=Top Level
Hel p Desk Admi n Rol e, o=i sp) (nsrol edn=cn=0r gani zati on Adm n

Rol e, ORGANI ZATI ON) (nsr ol edn=cn=Cont ai ner Admni n

Rol e, ORGANI ZATION)))) (targetattr !=

"i pl anet - am web- agent - access-al |l owlist ||

i pl anet - am web- agent - access-not-enforced-1ist ||

Chapter 8 iPlanet Directory Server And DSAME 141

Class Of Service

i pl anet - am dommi n-url -access-al |l ow | |

i pl anet - am web- agent - access-deny-list") (version 3.0; acl
"Peopl e container admin role"; allow (all) roledn =

"1 dap:/// ROLENAME" ;)

NOTE DSAME generates a Top Level Adminand Top Level Hel p Desk
Admi n during installation. These roles can not be dynamically
generated for any other identity-type objects but the top-level
organization.

Class Of Service

Both dynamic and policy attributes use class of service (CoS), a feature of the DS that
allows attributes to be created and managed in a single central location, and
dynamically added to user entries. Attribute values are not stored with the entry
itself; they are generated by CoS as the entry is sent to the client browser. Dynamic
and policy attributes using CoS consist of the following two entries:

= CoS Definition Entry—This entry identifies the type of CoS being used
(ClassicCosS). It contains all the information, save the attribute values, needed
to generate an entry defined with CoS. The scope of the CoS is the entire
sub-tree below the parent of the CoS definition entry.

= Template Entry—This entry contains a list of the shared attribute values.
Changes to the attribute values are automatically applied to all entries within
the scope of the CoS.

The CoS definition entry and template entry interact to provide attribute
information to their target entries, which is any entry within the scope of the CoS.
Only those services which have dynamic or policy attributes use the DS CoS
feature; no other services do.

NOTE For additional information on the CoS feature, see the iPlanet
Directory Server documentation.

142 Directory Server Access Management Edition Programmer’s Guide * May 2002

Class Of Service

CoS Definition Entry

CoS definition entries are stored as LDAP subentries under the organization level

but can be located anywhere in the DIT. They contain the attributes specific to the

type of CoS. These attributes name the virtual CoS attribute, the template DN and,
if necessary, the specifier attribute in target entries. By default, the CoS mechanism
will not override the value of an existing attribute with the same name as the CoS

attribute. The CoS definition entry takes the cosSuper Def i ni t i on object class and
also inherits from the following object class that specifies the type of CoS:

cosClassicDefinition

The cosd assi cDefi ni ti on object class determines the attribute and value that
will appear with an entry by taking the base DN of the template entry from the
cosTenpl at eDN attribute in the definition entry and combining it with the target
entry specifier as defined with the cosSpeci fi er attribute, also in the definition
entry. The value of the cosSpeci fi er attribute is another LDAP attribute which is
found in the target entry; the value of the attribute found in the target entry is
appended to the value of cosTenpl at eDN and the combination is the DN of the
template entry. Template DNs for classic CoS must therefore have the following
structure cn=speci fi er Val ue, baseDN.

CoS Template Entry

CoS template entries are an instance of the cosTenpl at e object class. The CoS
template entry contains the value or values of the virtual attributes that will be
generated by the CoS mechanism and displayed as an attribute of the target entry.
The template entries are stored under the definition entries.

NOTE When possible, definition and template entries should be located at
the same level for easier management.

Conflicts and CoS

There is the possibility that more than one CoS could be assigned to a role or
organization, thus creating possible conflicts. When this happens, DSAME will
display either the attribute value based on a pre-determined template priority level
or the aggregate of all attribute values defined in the cosPri ori ty attribute. For
example, an administrator could create and load multiple services, register them to
an organization, create separate roles within the organization and assign multiple

Chapter 8 iPlanet Directory Server And DSAME 143

Class Of Service

roles to a particular user. When DSAME retrieves this user entry, it sees the CoS
object classes, and adds the virtual attributes. If there are any priority conflicts, it
will look at the cosPri ori ty attribute for a priority level and return the
information with the lowest priority number (which is the highest priority level).
For more information on CoS priorities, see “cosQualifier Attribute,” on page 41 of
Chapter 2, “DSAME And XML or the iPlanet Directory Server documentation.

NOTE Conflict resolution is decided by the DS before the entry is returned
to DSAME. DSAME allows only the definition of the priority level
and CoS type.

Existing Applications

If a customer is using an existing application and wants to manage its attributes
using the DSAME console, a LDAP schema is probably defined and has been
loaded into the DS. If DS does not already have the existing application’s attributes
and object classes loaded, then it needs to be updated using the DS console or the

| daprodi f y command line interface. The schema update needs to be completed
before loading the application’s created XML service file. Other options for adding
or modifying DS schema can be found in the iPlanet Directory Server
documentation or in the iPlanet Directory Server Access Management Edition
Installation and Configuration Guide.

144 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

A

Abstract Objects 65
Marker Object Classes 66
Access Control Instructions (ACIs) 138
Defining 138
Format 139
ACls 138
Defining 138
Format 139
Administration Console Entry 74
amAdmin Command Line Executable 68
amAdmin Syntax 68
amAdmin Syntax 68
amAdmin.dtd Structure 43
amAuth.xml 78
amEntrySpecific.xml 65, 66
Anonymous Authentication Service 76
APIls
Authentication 84
Identity Management
Sample Code 98
Logging 124
Recorded Events 127
Sample Code 126
SDK 95
SSO 110
Overview 111
Utility 129
Overview 129
Summary 129
Attribute Inheritance 26
ContainerDefaultTemplateRole 27

Index

Authentication APIs 84

Overview 84
Authentication Process 73

Administration Console Entry 74

URL Policy Agent Entry 74
Authentication Service Properties Files 79

Localization Properties 81

Screen Properties 79
Authentication Service XML Files 78
Authentication Services

Anonymous 76

Authentication URL Parameters 82

Certificate 76

Core 76

Create 77

Custom 76

Installed 76

LDAP 76

Membership 76

Properties Files 79

RADIUS 76

SafeWord 76

Unix 76

XML Files 78

Authentication URL Parameters 82

B

Batch Processing XML Files 61
Batch Processing XML Templates 62

Batch Processing XML Templates 62

145

C

Caching
SDK 100
Certificate Authentication Service 76
Certificate Management Service
Documentation 11
Class Of Service 24, 142
cosQualifier 41
Definition Entry 143
Template Entry 143
ContainerDefaultTemplateRole 27
Cookies 105
Core Authentication Service 76
CoS 142
Definition Entry 143
Template Entry 143
cosQualifier 41
Creation Templates 93
Cross Domain Controller 106
Cross-Domain Single Sign-On 105
Configuring Cross-Domain 107
Cross Domain Controller 106
Enabling Cross-Domain 106
SSO Component 107
Customizing User Pages 64

D

Default Attribute Values 26
Directory Server
ACIs 138
Defining 138
Format 139
Class Of Service 142
Definition Entry 143
Template Entry 143
Documentation 11
Extending Schema 28
Roles 133
Display Login Page 137
Managed Roles 134
Role Creation 136

Role Definition Entry 135
Role Member Entry 135
Directory Server And DSAME 133
Directory Server and DSAME
Overview 133
Directory_Server_root 10
Document Type Definition Files 22
Documentation
Certificate Management Service 11
Developer Information 11
Directory Server 11
iPlanet Products 11
Overview 8
Related Links 11
Technical Support 12
Typographic Conventions 9
Web Proxy Server 11
Web Server 11
DSAME Services 21
DSAME_root 10
DTD Files 33
amAdmin.dtd Structure 43
serviceObjectClasses Attribute 37
Dynamic Attributes 24

G

Global Attributes 23

Identity Management
Identity-Related Objects 92
SDK 95

APIs 95

Caching 100

Sample Code 98
ums.xml 93

Creation Templates 93

Modify 94

Search Templates 94

146 Directory Server Access Management Edition Programmer’s Guide * May 2002

Structure Templates 93

ldentity Management and the SDK 91
Overview 91

ldentity-Related Objects 92
Importing XML Service File 31

L

LDAP Authentication Service 76
Localization Properties 32
Configuring 81
Log Message Formats 122
Logging 121
APIs 124
Sample Code 126
Log Message Formats 122
Overview 121
Logging Service 122
Recorded Events 127

Logging Service 122

M

Managed Roles 134
Display Login Page 137
Role Creation 136
Role Definition Entry 135
Role Member Entry 135

Marker Object Classes 66

Membership Authentication Service 76
Modify XML Service Files 60
Multi-JVM Environment 120

O

Organization Attributes 24

P

Pluggable Authentication API
Writing a Module
Sample Code 86

Policy Attributes 25

R

RADIUS Authentication Service 76
Role Creation 136
Role Definition Entry 135
Role Member Entry 135
Roles 133
Display Login Page 137
Managed Roles 134
Role Creation 136
Role Definition Entry 135
Role Member Entry 135

S

SafeWord Authentication Service 76
Sample Authentication Service 86
Sample Mail Service Files 71
Screen Properties 79
SDK 95
APIs 95
Caching 100
Sample Code 98
Search Templates 94
Service Attributes 21, 23
Attribute Inheritance 26
ContainerDefaultTemplateRole 27
Default Values 26
Dynamic Attributes 24
Global Attributes 23
Organization Attributes 24
Policy Attributes 25
Service Definition Procedures 27
Extending Directory Server Schema 28

Index

147

User Attributes 25
Service Definition 23
Service Attributes 23
Attribute Inheritance 26
Default Values 26
Dynamic Attributes 24
Global Attributes 23
Organization Attributes 24
Policy Attributes 25
User Attributes 25
Service Definition Procedures 27
Extending Directory Server Schema 28
Importing XML Service File 31
Localization Properties 32
Service Registration 33
Service Registration 33
serviceObjectClasses Attribute 37
Single Sign-On 103
Command Line SSO Sample 120
Cross-Domain Support 105
Configuring Cross-Domain 107
Cross Domain Controller 106
Enabling Cross-Domain 106
SSO Component 107
Multi-JVM Environment 120
Process 103
Contact Web Agent 104
Cookies and Tokens 105
Creating Session 104
Providing User Credentials 105
Sample SSO Java Files 119
Remote SSO Sample 120
SSO Servlet 119
SSO APIs 110
Non-Web Based Applications 110
Overview 111
sms.dtd.Structure
serviceObjectClasses Attribute 37
SSO APIs 110
Non-Web Based Applications 110
Overview 111
SSO Component 107
SSO Java Files 119
Command Line SSO Sample 120
Remote SSO Sample 120
SSO Servlet 119

Structure Templates 93

T

Technical Support 12
Tokens 105

U

ums.xml 93
Creation Templates 93
Modify 94
Search Templates 94
Structure Templates 93
Unix Authentication Service 76
URL Policy Agent Entry 74
User Attributes 25
User Authentication 73, 74
Authentication APIs 84
Overview 84
Authentication Service Properties Files
Localization Properties 81
Screen Properties 79
Authentication Services
Anonymous 76
Certificate 76
Core 76
Create 77
Custom 76
Installed 76
LDAP 76
Membership 76
Properties Files 79
RADIUS 76
SafeWord 76
Unix 76
XML Files 78
AuthenticationURL Parameters 82
Sample Authentication Service 86
Utility APIs 129
Overview 129
Summary 129

148 Directory Server Access Management Edition Programmer’s Guide * May 2002

V Service Definition Procedures
Extending Directory Server Schema 28
Virtual Attributes 24 Importing XML Service File 31
Localization Properties 32
Service Registration 33
sms.dtd.Structure

W serviceObjectClasses Attribute 37
Virtual Attributes 24
Web Proxy Server XML Service Files 22, 58
Documentation 11 Batch Processing XML Files 61
Web Server Batch Processing XML Templates 62
Documentation 11 Customizing User Pages 64
Web Server root 10 Modify XML Service Files 60

XML Service Files 22, 58
Batch Processing XML Files 61
Batch Processing XML Templates 62
Customizing User Pages 64
X Modify XML Service Files 60

XML 21
Abstract Objects 65
Marker Object Classes 66
amAdmin Command Line Executable 68
amAdmin Syntax 68
amEntrySpecific.xml 65, 66
Attribute Concepts 22
Class Of Service 24, 41
Document Type Definition Files 22
DTD Files 33
amAdmin.dtd Structure 43
Overview 21
DSAME Services 21
Service Attributes 21
Sample Mail Service Files 71
Service Attributes
Attribute Inheritance 26
ContainerDefaultTemplateRole 27
Default Values 26
Dynamic Attributes 24
Global Attributes 23
Organization Attributes 24
Policy Attributes 25
Service Definition Procedures 27
User Attributes 25
Service Definition
Service Attributes 23
Service Definition and Integration 23

Index 149

150 Directory Server Access Management Edition Programmer’s Guide ¢ May 2002

	Programmer’s Guide
	About This Guide
	What You Are Expected to Know
	iPlanet Directory Server Access Management Edition Documentation Set
	Organization of This Guide
	Documentation Conventions Used in This Guide
	Typographic Conventions
	Terminology

	Related Information

	Introduction
	DSAME Overview
	How DSAME Works
	Web Access
	Java Application Access

	Extending DSAME
	Service Definition With XML
	HTML Templates
	The Java APIs

	DSAME File System
	Runtime Directory

	DSAME And XML
	Overview
	XML Service Files
	Document Type Definition Files

	Service Definition and Integration
	Service Attributes
	Default Values
	Attribute Inheritance
	Defining A Service

	DSAME DTD Files
	The sms.dtd Structure
	The amAdmin.dtd Structure

	DSAME XML Files
	Internal XML Service Files
	Batch Processing XML Files
	XML Schema Files
	Customizing User Pages

	Abstract Objects and amEntrySpecific.xml
	Abstract Objects
	amEntrySpecific.xml Schema

	The amAdmin Command Line Executable
	The amadmin Syntax

	SampleMailService Files

	User Authentication With DSAME
	The Authentication Process
	Administration Console Entry
	URL Policy Agent Entry
	Client Detection

	Installed Authentication Services
	Custom Authentication Services
	Creating an Authentication Service
	Authentication Service XML Files

	Authentication Service Properties Files
	Configuring Screen Properties
	Configuring Localization Properties

	Authentication URL Parameters
	Authentication APIs
	Authentication API Overview
	AuthenticationModuleFactory Interface
	AuthenticationModule Class

	Sample Authentication Service
	Authentication Sample: Readme.html

	Identity Management And The SDK
	Overview
	Management Of Identity-Related Objects
	Structure of ums.xml
	Modifying ums.xml

	DSAME SDK
	Identity Management APIs
	Sample Code

	The SDK And Cache
	Cache Properties

	Single Sign-On With DSAME
	The Single Sign-On Process
	Contacting A Web Agent
	Creating A Session
	Providing User Credentials
	Cookies and Tokens

	Cross-Domain Support For SSO
	Enabling Cross-Domain Single Sign-On
	Configuring For Cross-Domain SSO

	SSO APIs
	Non-Web-Based Applications
	API Overview
	Sample API Code

	Sample SSO Java Files
	SSO Servlet Sample
	Remote SSO Sample
	Command Line SSO Sample

	Multi-JVM Support

	Logging
	Overview
	Logging Architecture
	Logging Service

	Log Message Formats
	File Format
	Database Format

	Logging API
	LogManager Class
	LogRecord Class
	Logging Exceptions
	Sample Logging Code

	Recorded Events
	SSO-related Logs
	Console-related Logs
	Authentication-related Logs

	Utility APIs
	Overview
	API Summary
	StatsListener
	AdminUtils
	AMClientDetector
	Debug
	Locale
	Stats
	SystemProperties
	ThreadPool

	iPlanet Directory Server And DSAME
	Overview
	Roles
	Managed Roles
	How DSAME Uses Roles

	Access Control Instructions (ACIs)
	Defining ACIs
	Format of Predefined ACIs

	Class Of Service
	CoS Definition Entry
	CoS Template Entry
	Conflicts and CoS
	Existing Applications

	Index

