
Programmer’s Guide
iPlanet™ Directory Server

Access Management Edition

Version 5.1

May 2002

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, iPlanet are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions. The product
described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the
product or this document may be reproduced in any form by any means without prior written authorization of the Sun
Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

--

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ÉTAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 7
What You Are Expected to Know . 7
iPlanet Directory Server Access Management Edition Documentation Set . 8
Organization of This Guide . 8
Documentation Conventions Used in This Guide . 9

Typographic Conventions . 9
Terminology . 10

Related Information . 11

Chapter 1 Introduction . 13
DSAME Overview . 13
How DSAME Works . 14

Web Access . 15
Java Application Access . 15

Extending DSAME . 15
Service Definition With XML . 16
HTML Templates . 16
The Java APIs . 16

DSAME File System . 18
Runtime Directory . 18

Chapter 2 DSAME And XML . 21
Overview . 21

XML Service Files . 22
Document Type Definition Files . 22

Service Definition and Integration . 23
Service Attributes . 23
Default Values . 26
Attribute Inheritance . 26
Defining A Service . 27

4 Directory Server Access Management Edition Programmer’s Guide • May 2002

DSAME DTD Files . 33
The sms.dtd Structure . 34
The amAdmin.dtd Structure . 43

DSAME XML Files . 58
Internal XML Service Files . 58
Batch Processing XML Files . 61
XML Schema Files . 64
Customizing User Pages . 64

Abstract Objects and amEntrySpecific.xml . 65
Abstract Objects . 65
amEntrySpecific.xml Schema . 66

The amAdmin Command Line Executable . 68
The amadmin Syntax . 68

SampleMailService Files . 71

Chapter 3 User Authentication With DSAME . 73
The Authentication Process . 73

Administration Console Entry . 74
URL Policy Agent Entry . 74
Client Detection . 75

Installed Authentication Services . 76
Custom Authentication Services . 76

Creating an Authentication Service . 77
Authentication Service XML Files . 78

Authentication Service Properties Files . 79
Configuring Screen Properties . 79
Configuring Localization Properties . 81

Authentication URL Parameters . 82
Authentication APIs . 84

Authentication API Overview . 84
AuthenticationModuleFactory Interface . 85
AuthenticationModule Class . 85

Sample Authentication Service . 86
Authentication Sample: Readme.html . 86

Chapter 4 Identity Management And The SDK . 91
Overview . 91
Management Of Identity-Related Objects . 92

Structure of ums.xml . 93
Modifying ums.xml . 94

DSAME SDK . 95
Identity Management APIs . 95

5

Sample Code . 98
The SDK And Cache . 100

Cache Properties . 100

Chapter 5 Single Sign-On With DSAME . 103
The Single Sign-On Process . 103

Contacting A Web Agent . 104
Creating A Session . 104
Providing User Credentials . 105
Cookies and Tokens . 105

Cross-Domain Support For SSO . 105
Enabling Cross-Domain Single Sign-On . 106
Configuring For Cross-Domain SSO . 107

SSO APIs . 110
Non-Web-Based Applications . 110
API Overview . 111
Sample API Code . 115

Sample SSO Java Files . 119
SSO Servlet Sample . 119
Remote SSO Sample . 120
Command Line SSO Sample . 120

Multi-JVM Support . 120

Chapter 6 Logging . 121
Overview . 121

Logging Architecture . 122
Logging Service . 122

Log Message Formats . 122
File Format . 123
Database Format . 123

Logging API . 124
LogManager Class . 124
LogRecord Class . 125
Logging Exceptions . 125
Sample Logging Code . 126

Recorded Events . 127
SSO-related Logs . 127
Console-related Logs . 127
Authentication-related Logs . 127

Chapter 7 Utility APIs . 129
Overview . 129

6 Directory Server Access Management Edition Programmer’s Guide • May 2002

API Summary . 129
StatsListener . 130
AdminUtils . 130
AMClientDetector . 130
Debug . 130
Locale . 130
Stats . 131
SystemProperties . 131
ThreadPool . 131

Chapter 8 iPlanet Directory Server And DSAME . 133
Overview . 133
Roles . 133

Managed Roles . 134
How DSAME Uses Roles . 136

Access Control Instructions (ACIs) . 138
Defining ACIs . 138
Format of Predefined ACIs . 139

Class Of Service . 142
CoS Definition Entry . 143
CoS Template Entry . 143
Conflicts and CoS . 143
Existing Applications . 144

Index . 145

7

About This Guide

This Programmer’s Guide offers information on how to customize the iPlanet™
Directory Server Access Management Edition (DSAME) to fit the needs of each
organization. This preface contains the following sections:

• What You Are Expected to Know

• iPlanet Directory Server Access Management Edition Documentation Set

• Organization of This Guide

• Documentation Conventions Used in This Guide

• Related Information

What You Are Expected to Know
This book is considered the “third” manual in the documentation series provided
with iPlanet Directory Server Access Management Edition. It is intended for use by
IT administrators and custom software developers who manage access to their web
resources through iPlanet servers and software. The functionality allows the
management of user data and enforcement of access policies. It is recommended
that IS administrators understand directory server technologies, including

NOTE Sun™ One Identity Server was previously known as iPlanet
Directory Server Access Management Edition (DSAME). The
product was renamed shortly before the launch of the product.

The late renaming of this product has resulted in a situation where
the new product name is not fully integrated into the shipping
product. In particular, you will see the product referenced as
DSAME within the product GUI and within the product
documentation. For this release, please consider Sun One Identity
Server and iPlanet Directory Server Access Management Edition as
interchangeable names for the same product.

iPlanet Directory Server Access Management Edition Documentation Set

8 Directory Server Access Management Edition Administration Guide • May 2002

Lightweight Directory Access Protocol (LDAP), and have some experience with
Java and eXtensible Markup Language (XML). Particularly, they should be familiar
with Sun™ One Directory Server (DS) and the documentation provided with that
product.

iPlanet Directory Server Access Management
Edition Documentation Set

The Directory Server Access Management Edition documentation set contains the
following titles:

• Installation and Configuration Guide describes iPlanet DSAME and provides
details on how to plan and install the iPlanet DSAME on Solaris systems.

• Administration Guide documents how to manage user and service data and
customize the DSAME console.

• Programmer’s Guide (this guide) documents how to customize an iPlanet
Directory Server Access Management Edition system for your organization.

• The Release Notes file gathers an assortment of information, including a
description of what is new in this release, last minute installation notes, known
problems and limitations, and how to report problems.

Organization of This Guide
The Programmer’s Guide (this guide) has nine chapters. The table below lists and
briefly describes the content of these chapters.

NOTE Be sure to check the Directory Server Access Management Edition
documentation web site for updates to the release notes and for
revisions to the guides. Updated documents will be marked with
the revision date.

http://docs.iplanet.com /docs/manuals/dsame.html

Documentation Conventions Used in This Guide

About This Guide 9

Documentation Conventions Used in This Guide
In the iPlanet Directory Server Access Management Edition documentation, there
are certain typographic and terminology conventions used to simplify discussion
and to help you better understand the material. These conventions are described
below.

Typographic Conventions
This book uses the following typographic conventions:

• Italic type is used within text for book titles, new terminology, emphasis, and
words used in the literal sense.

Table 1 Programmer’s Guide Chapters

Chapter Description

About This Guide An outline of the documentation set and a
description of the iPlanet Directory Server Access
Management Edition Programmer’s Guide.

Chapter 1, “Introduction“ A brief explanation of the application’s concepts.

Chapter 2, “DSAME And XML” A description of how XML is used to customize
the application.

Chapter 3, “User Authentication
With DSAME”

A description of the Authentication module and
how to create a custom authentication service.

Chapter 4, “Identity Management
And The SDK”

A description of the management of
identity-related objects and the DSAME SDK.

Chapter 5, “Single Sign-On With
DSAME”

A description of the single sign-on and
cross-domain single sign-on function and its APIs.

Chapter 6, “Logging” A description of the Logging function and its
APIs.

Chapter 7, “Utility APIs” A description of the application’s utility functions
and its APIs.

Chapter 8, “iPlanet Directory Server
And DSAME”

A description of the iPlanet Directory Server
concepts that are used in DSAME.

Index Alphabetical index of the iPlanet Directory Server
Access Management Edition Programmer’s Guide.

Documentation Conventions Used in This Guide

10 Directory Server Access Management Edition Administration Guide • May 2002

• Monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), filenames, pathnames,
directory names, HTML tags, and any text that must be typed on the screen.

• Italic serif font is used within code and code fragments to indicate variable
placeholders. For example, the following command uses filename as a variable
placeholder for an argument to the gunzip command:

gunzip -d filename.tar.gz

Terminology
Below is a list of the general terms that are used in the iPlanet Directory Server
Access Management Edition documentation set:

• DSAME refers to iPlanet Directory Server Access Management Edition and any
installed instances of the iPlanet Directory Server Access Management Edition
software.

• Policy and Management Services refers to the collective set of iPlanet Directory
Server Access Management Edition components and software you have
installed and running on a dedicated Web Server.

• Web Server that runs DSAME refers to the dedicated Web Server where the
DSAME is installed.

• Directory Server refers to an installed instance of iPlanet Directory Server or
Netscape™ Directory Server.

• DSAME_root is a variable placeholder for the home directory where you have
installed iPlanet Directory Server Access Management Edition.

• Directory_Server_root is a variable placeholder for the home directory where
you have installed iPlanet Directory Server.

• Web_Server_root is a variable placeholder for the home directory where you
have installed iPlanet Web Server.

Related Information

About This Guide 11

Related Information
In addition to the documentation provided with iPlanet Directory Server Access
Management Edition, you should be familiar with several other sets of
documentation. Of particular interest are the iPlanet Directory Server, iPlanet Web
Server, iPlanet Proxy Server, and iPlanet Certificate Management System
documentation sets. This sections lists additional sources of information that can be
used with iPlanet Directory Server Access Management Edition.

iPlanet Directory Server Documentation
You can find the iPlanet Directory Server documentation at the following site:

http://docs.iplanet.com/docs/manuals/directory.html

iPlanet Web Server Documentation
You can find the iPlanet Web Server documentation at the following site:

http://docs.iplanet.com/docs/manuals/enterprise.html

iPlanet Certificate Management System Documentation
You can find the iPlanet Certificate Management System documentation at the
following site:

http://docs.iplanet.com/docs/manuals/cms.html

iPlanet Proxy Server Documentation
You can find the iPlanet Proxy Server documentation at the following site:

http://docs.iplanet.com/docs/manuals/proxy.html

Directory Server Developer Information
In addition to the Directory Server documentation, you can find information on
Directory Server Access Management Edition, LDAP, the iPlanet Directory Server,
and associated technologies at the following iPlanet developer sites:

http://developer.iplanet.com/tech/directory/

http://www.iplanet.com/downloads/developer/

Other iPlanet Product Documentation
Documentation for all iPlanet and Netscape servers and technologies can be found
at the following web site:

http://docs.iplanet.com/docs/manuals/

Related Information

12 Directory Server Access Management Edition Administration Guide • May 2002

iPlanet Technical Support
You can contact iPlanet Technical Support through the following location:

http://www.iplanet.com/support/

13

Chapter 1

Introduction

The iPlanet Directory Server Access Management Edition (DSAME) Programmer’s
Guide describes how service developers and programmers can customize the
DSAME application to fit the specific needs of their organization. It offers
information on the public Java APIs, XML-based service configuration files and
HTML-based graphical interfaces. This introductory chapter contains the following
sections:

• DSAME Overview

• Web Access

• Extending DSAME

• DSAME File System

DSAME Overview
iPlanet DSAME is designed to help organizations manage secure access to their
web-based resources. The product integrates an identity system with the
management and enforcement of authentication and access privileges. It contains a
number of features towards this end. They include:

• Authentication—provides Java APIs for writing custom authentication server
plug-ins, an HTML-defined client interface for gathering the user’s credentials
and a framework that connects the client interface with the plug-in module.

• Single Sign-on (SSO)—provides Java APIs to create and manage SSO tokens
and a service to manage SSO sessions.

How DSAME Works

14 Directory Server Access Management Edition Programmer’s Guide • May 2002

• Service Management—provides a solution for customizing and registering
services and managing their attributes (configuration parameters). It includes
an eXtensible Markup Language (XML) Document Type Definition (DTD) that
defines the rules for creating a service and its attributes as well as Java APIs to
manage the same.

• Identity Management—provides a solution for managing the structure of
DSAME’s directory data store. This includes Java APIs for adding, modifying
and removing identity-related objects and their attributes as well as templates
that define the configuration parameters of same.

• Policy Management—provides a solution for defining and retrieving
organization-based privileges that secure the web resources of an enterprise.

• DSAME console—provides a graphical, JATO-based interface for identity,
service, and policy management.

• Command-line interface—provides an amadmin executable to perform service
schema and metadata integration as well as identity, policy and service
management.

These listed features are executed by DSAME services that are installed out of the
box. They would internal services as distinguished from customized or external
services that are added on after installation. The basic functionality of internal
services can be extended. Customized external components can be defined using
the APIs, the sample code packaged with DSAME and the information in this
guide.

How DSAME Works
DSAME can be used to manage access to resources in two ways. An administrator
can access DSAME via a web browser or, an application can access DSAME
directly, requesting user profile information.

Extending DSAME

Chapter 1 Introduction 15

Web Access
When a user requests access to an application or a protected page via a web
browser, they must first be authenticated. The request is redirected to the
Authentication service. This module determines the type of authentication to
initiate based on the method chosen by the user’s organization. For instance, LDAP
is a simple user name and password-based authentication. The authentication
module would send a HTML form to the web browser. For more complex types of
authentication, it might send multiple forms for authentication information.

Having obtained the user's credentials, the Authentication module would call the
respective provider to perform the authentication. Once verified, the module
generates a Single Sign-On (SSO) token (using the SSO API) which holds the user's
identity. The SSO API then generates a SSO token ID, a random string associated
with the SSO token. This ID is then sent back to the browser in the form of a cookie.
Once authenticated, the authentication component re-directs the user back to the
requested application or page.

Java Application Access
Java applications can access DSAME for user attributes. (For example, a mail
service might store its users’ mailbox size information in iPlanet Directory Server
and retrieve the information using DSAME.) To achieve this, the system that runs
the Java application must have the DSAME SDK installed. As well, there must be at
least one instance of iPlanet Web Server running the DSAME internal services
(specifically for the user authentication and SSO components).

Extending DSAME
DSAME can be extended in several ways. If additional authentication capabilities
are needed, the Authentication APIs can be used to create them. To add Java-based
applications, the SSO and Log APIs can be used to integrate them into the
framework. The architectural goal of DSAME is to provide this extensible interface.
This interface can be defined in one of three ways:

NOTE Web access through DSAME includes an additional security
measure which uses web agents to evaluate a user’s access
privileges. For more information, see the iPlanet Policy Agent Pack
1.0 documentation.

Extending DSAME

16 Directory Server Access Management Edition Programmer’s Guide • May 2002

1. DSAME services are defined using XML.

2. DSAME screen templates are written using HTML.

3. DSAME services are implemented using Java.

Service Definition With XML
A DSAME service is a grouping of attributes defined under a common name. The
attributes (or configuration parameters) can be a random set grouped together for
easy management or a related set grouped together for a specific purpose. DSAME
ships with a number of internal services of the latter type. These include, but are
not limited to, logging, administration, and session services. More information on
the internal services can be found in the iPlanet Directory Server Access Management
Edition Administration Guide.

All DSAME services are written using the XML. The XML configuration file of a
service must adhere to the form put forth in the sms.dtd, which is located in the
Install_Directory/SUNWam/dtd/ directory. Using the XML, organizations can
modify the XML configuration files of internal DSAME services or configure the
XML configuration files of external ones.

HTML Templates
DSAME uses HTML template files to control the look of the screens that a DSAME
user sees. These templates can be modified to make changes to the design; for
instance, an organization’s logo can be added in place of the iPlanet logo. The
entire template can also be replaced with an organization’s custom HTML page.

The Java APIs
There are five public API packages provided with DSAME version 5.1. These APIs
provide interfaces to implement the behavior of extended or customized DSAME
services. The packages are introduced below.

NOTE DSAME services manage attribute values stored in iPlanet Directory
Server. They do not implement the behavior of the attributes or
dynamically generate code to interpret them. It is up to an external
application to interpret or utilize these values.

Extending DSAME

Chapter 1 Introduction 17

Authentication API
DSAME allows the use of multiple and disparate authentication modules
including, but not limited to, RADIUS, LDAP, Certificates, Unix, Membership
(self-registration), SafeWord and Anonymous. Using the Authentication API, a
service developer can write a custom authentication module. The API package
name is com.iplanet.authentication.spi.

DSAME SDK
DSAME provides the framework to create and manage users, roles, groups, people
containers, organizations, organization units, and sub-organizations. It also
includes the functionality to create and modify service templates. This API is the
core of the identity, service and policy management modules and provides Java
classes that can be used to customize them. The API package name is
com.iplanet.am.sdk.

Utilities API
This API provides a number of Java classes that can be used to manage system
resources. This includes, among others, thread management and debug data
formatting. The API package name is com.iplanet.am.util.

Logging API
The DSAME logging service records, among other things, access approvals, access
denials and user activity. The Logging API can be used to enable other Java
applications to call the DSAME logging service. The API package name is
com.iplanet.log.

Single Sign-On API
DSAME provides Java interfaces for validating and managing the single sign-on
(SSO) tokens and for maintaining the user’s authentication credentials. All
applications wishing to participate in the SSO solution can use this API. The API
package name is com.iplanet.sso.

NOTE The Overview page for the complete set of public DSAME Javadocs can be
accessed at Install_Directory/SUNWam/docs/index.html.

DSAME File System

18 Directory Server Access Management Edition Programmer’s Guide • May 2002

DSAME File System
DSAME installs its packages and files in a directory named SUNWam. The file system
layout for a Solaris installation is as follows:

Install_Directory/SUNWam/

• bin/ ---> contains executables such as amserver & amadmin.

• docs/ ---> contains DSAME documentation.

• java/ ---> contains the Java Development Kit.

• locale/ ---> contains the internationalization resource files.

• servers/ ---> contains the iPlanet Web Server.

• config/ ---> contains configuration files such as the iPlanet Directory
Server name and port as well as XML files which define DSAME
services.

• dtd/ ---> contains the XML DTDs used by DSAME applications and
services.

• lib/ ---> contains DSAME jar files as well as platform specific C
libraries.

• migration/ ---> contains tools for iPlanet Directory Server data
migration from earlier versions to version 5.1.

• samples/ ---> contains sample java programs on how to use the
DSAME Java APIs.

• web-apps/ ---> contains two WAR-based deployments and their
associated files: Services (authentication, policy management, identity
management, SSO, SMS management, etc.) and Applications (DSAME
console).

Runtime Directory
On Solaris, DSAME uses Install_Directory/SUNWam as its runtime directory for
logs and debug files. On Windows 2000, DSAME uses DSAME_root as its runtime
directory. Both directories can be configured.

DSAME performs three types of administration:

• Identity management deals with managing the structure of a customer's
directory. This includes creating, deleting, and modifying roles, organizations.

DSAME File System

Chapter 1 Introduction 19

• Policy management deals with the creation of policies and how they are
applied within the application.

• Service management deals with service registration, unregistration, and
activation.

DSAME File System

20 Directory Server Access Management Edition Programmer’s Guide • May 2002

21

Chapter 2

DSAME And XML

iPlanet Directory Server Access Management Edition (DSAME) uses Extensible
Markup Language (XML) files for the integration and management of services.
This chapter provides information on the XML service files installed with DSAME
and the Document Type Definition (DTD) files used for creating new XML service
files for the management of custom services. It contains the following sections:

• Overview

• Service Definition and Integration

• DSAME DTD Files

• DSAME XML Files

• Abstract Objects and amEntrySpecific.xml

• The amAdmin Command Line Executable

• SampleMailService Files

Overview
A service is a group of attributes, defined in an XML file, that are managed together
by the DSAME console. The attributes can be the configuration parameters of a
software module or they might just be related information with no relation to a
software configuration. As an example of the first scenario, after creating a payroll
module, a developer defines an XML service file that might include attributes to
define an employee name, an hourly pay rate and a tax percentage. This file is
imported into the iPlanet Directory Server (DS) so the attributes and their values
can be stored. When the service is registered to an organization in DSAME, the
attributes can be managed using the DSAME console.

Overview

22 Directory Server Access Management Edition Programmer’s Guide • May 2002

XML Service Files
XML service files enable DSAME to manage attributes that are stored in DS.
DSAME does not implement any behavior or dynamically generate any code to
interpret the attributes; it can only set or get attribute values. Out-of-the-box,
DSAME loads a number of services to manage the attributes of its own internal
modules. This includes, but is not limited to, the Logging, Authentication and User
services. In addition to managing these attributes, DSAME provides code
implementations to use them. For example, the URL Policy Access attributes are
displayed and managed in the DSAME console, but the web agent itself is the code
implementation using them to check user access to URLs. All DSAME-internal
XML service files are located in Install_Directory/SUNWam/config/xml. For
more specific information on the internal XML service files, see “Internal XML
Service Files,” on page 58.

Document Type Definition Files
The format of an XML file is based on a structure defined in a DTD file. In general,
a DTD file defines the elements and qualifying attributes needed to write a
well-formed and valid XML document. DSAME exposes two DTD files which are
used to define the structure for different types of XML files: sms.dtd and
amadmin.dtd. The sms.dtd defines the structure for XML service files and the
amAdmin.dtd defines the structure for XML files that are used to perform batch
LDAP operations on the directory information tree (DIT) using the command line
executable amAdmin. The DTDs are located in Install_Directory/SUNWam/dtd.

NOTE Throughout this chapter, the term attribute is used as a modifier for
two different concepts. A DSAME or service attribute refers to the
configuration parameters of a defined service. An XML attribute
refers to the parameters that qualify an XML element in the XML
service files.

NOTE Any application with LDAP attributes can have data managed using
the DSAME console by configuring a custom XML service file and
loading it into the DS. For more information, see “Defining A
Service,” on page 27.

Service Definition and Integration

Chapter 2 DSAME And XML 23

Service Definition and Integration
Service Management in DSAME provides a mechanism for administrators to
define, integrate and manage groups of attributes as a DSAME service. Readying a
service for management involves creating an XML service file, configuring an LDIF
file with any new object classes and importing both, the XML service file and the
new LDIF schema, into the DS. Administrators can then register multiple services
to organizations or sub-organizations using the DSAME console. Once registered,
the attributes can be managed and customized per organization.

The following sections contain general information on DSAME service attributes as
well as steps on how to define a service from configuration to registration.

Service Attributes
Services have different types of attributes. The sms.dtd structure enforces a service
developer to define attributes as one of five types. The following sections provide
descriptions of the five attribute types.

Global Attributes
Global attributes are defined for the DSAME installation and are common to all
data trees, service instances and integrated applications within the configuration.
Global attributes can not be applied to users, roles or organizations as their
purpose is to configure the DSAME itself. Server names, port numbers, service
plug-ins, cache size, and maximum number of threads are examples of global
attributes that are configured with one value. For example, when DSAME
performs logging functions, the log files are written into a directory. The location of
this directory is defined as a globally in the Logging service and all DSAME logs,

NOTE Knowledge of XML is necessary to understand the DTD elements
and how they are integrated into DSAME. When creating an XML
file, it might be helpful to print out the relevant DTD and a sample
XML file made from the DTD.

NOTE The only reason to create an XML service file is to group attributes
to be managed using DSAME. If, for example, a software module
has no attributes that need to be configured, no file is needed.

Service Definition and Integration

24 Directory Server Access Management Edition Programmer’s Guide • May 2002

independent of their purpose, are written to it. DSAME administrators can modify
these default values through the Service Management page in the DSAME console.
Global attributes are stored as an XML blob within an attribute of an LDAP object.
Therefore, they do not need to be defined with a DS LDAP schema.

Organization Attributes
Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication service are a good example. When an
Authentication service is registered, the attributes are configured depending on the
organization to which it is registered. The LDAP Server and the DN To Start User
Search would be defined at the organization level as this information would be
different depending on the address of an organization’s LDAP server and the
structure of their DIT, respectively. Organization attributes are stored as an XML
blob within an attribute of an LDAP object. Therefore, they do not need to be
defined with a DS LDAP schema.

Dynamic Attributes
Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations; roles have access to any service assigned to its parent
organization. The dynamic attributes are then inherited by users that possess the
role or belong to the organization. Because the attributes are assigned to roles or
organizations instead of set in a user entry, they are virtual attributes inherited by
users using Class of Service (CoS). When these attributes change, the administrator
only has to change them once, in the role or organization, instead of a multitude of
times in each user entry.

NOTE If a service has only global attributes, it can not be registered to an
organization nor can a service template be created.

NOTE Organization attributes are not inherited by sub-organizations. Only
dynamic and policy attributes can be inherited. For additional
information, see “Attribute Inheritance,” on page 26.

NOTE Dynamic attributes are modeled using class of service (CoS) and roles,
both features of the iPlanet Directory Server. For information on
these features, see Chapter 8, “iPlanet Directory Server And
DSAME” or refer to the iPlanet Directory Server documentation.

Service Definition and Integration

Chapter 2 DSAME And XML 25

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in
the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the DS as LDAP objects, making it feasible to use traditional LDAP
tools to manage them. A DS LDAP schema needs to be defined for these attributes.

Policy Attributes
Policy attributes are a special type of dynamic attribute. The main difference is that
policy attributes provide a way to control resource access by defining a user’s
permissions. These defined permission attributes are then used to create named
policy. For example, allowURLList is a named policy that defines a list of URLs a
user is allowed to access; *.red.iplanet.com, *.eng.sun.com are the permitted URLs
defined as policy attributes. Named policies are assigned to roles or organizations;
once assigned, the policy attribute is available in the user entry as an LDAP
attribute, making it feasible to use traditional LDAP tools to manage them. (Named
policies are not stored within the DS as LDAP objects.) A DS LDAP schema needs
to be defined for these attributes.

Currently, DSAME has only two services that use policy attributes: URL Policy
Agent and URL Domain Access. (Additionally, there is a sample mail service that
uses policy attributes. For information on this sample, see “SampleMailService
Files,” on page 71.)

User Attributes
User attributes belong specifically to a single user. User attributes are not inherited
from the role, organization, or sub-organization levels. They are typically different
for each user, and any changes to them would affect only the particular user.
Examples of user attributes could be an office telephone number, a password or an
employee ID. The values of these attributes would be set in the user entry and not
in a role or organization. User attributes can be a part of any service although
DSAME has grouped a number of them into their own service defined by the
amUser.xml service file. User attributes are stored within the DS as LDAP objects,
making it feasible to use traditional LDAP tools to manage them. A DS LDAP
schema needs to be defined for these attributes.

CAUTION Do not use the policy.dtd to define policy schema for a service. It is
used internally for Policy Management.

Service Definition and Integration

26 Directory Server Access Management Edition Programmer’s Guide • May 2002

Default Values
When a developer is writing an XML service file, default values can be defined for
each attribute. After an XML service file is loaded into the DS, the default values
can be displayed in the Service Management console. An organization can then
register the service and create a service template where the default values can be
modified. For example, all templates for the LDAP Authentication service use the
port attribute. A default value of 389 could be defined in the XML service file and
displayed on the LDAP Authentication Service Management page. Once registered
to an organization, this value can be modified for the organization using the
DSAME console. Default values are also used by integrated applications when a
service template has not been created for an organization’s registered service. For
more information, see the “ChoiceValues Sub-Element” and the “DefaultValues
Sub-Element,” on page 40.

Attribute Inheritance
After creating and loading an XML service file, an administrator can assign the
service’s organization, dynamic and policy attributes by registering the service to
an organization and creating a service template. The service, once registered, can
be assigned to sub-organizations or a role. (Any number of services can be assigned
to these objects.) When a user possesses a role or belongs to an organization which
possesses a service, the user inherits the dynamic and policy attributes or the
organization, dynamic and policy attributes, respectively. Inheritance only occurs,
though, if the service possessed is also explicitly assigned to the user. A user can
inherit attributes from multiple roles or parent organizations.

NOTE When defining user attributes in an XML service file other than
amUser.xml, the service must be explicitly assigned to the user in
order to display the attributes on the User’s Profile page. In
addition, the User Profile Display Option (defined in the
Administration service) must be set to Combined. For more
information, see the iPlanet Directory Server Access Management
Edition Administration Guide.

NOTE Attributes defined as User have no inheritance; they are set and
modified in each User entry. For example, if 70 attributes are
defined as User and an organization has two million users, each
attribute is stored two million times.

Service Definition and Integration

Chapter 2 DSAME And XML 27

ContainerDefaultTemplateRole
Dynamic and policy attributes are used in an XML service file if an administrator
wants to define a service in which all DSAME user objects, with the specified
service assigned to them, would inherit those attributes. After uploading the XML
service file and assigning the service to an organization or role, all users in the
sub-trees, with the specified service assigned to them, will inherit the dynamic and
policy attributes. To accomplish this, DSAME uses classic CoS (as described in
Chapter 8, “iPlanet Directory Server And DSAME) and role templates.
ContainerDefaultTemplateRole is a default filtered role configured for each
organization. The filter is objectClass=iplanet-am-managed-person. Since
every user object in DSAME carries this attribute, every person in the organization
possesses this role. DSAME then creates a separate CoS template for each
registered service which points to the service’s default attributes. Any user who
has the role will then get all the dynamic and policy attributes.

Defining A Service
The following procedures must be completed in order to use the DSAME console
to integrate and manage a new service. They include creating or modifying XML
files and registering these files using the amadmin command line executable.

1. Create an XML service file for the component.

This XML file must conform to the sms.dtd. A simple way to create a new
XML service file would be to copy and modify an existing one. The file syntax
can be found in “The sms.dtd Structure,” on page 34.

2. Extend the LDAP schema in the DS using ldapmodify, if necessary.

Loading an LDIF file into the DS will add any new or modified object classes
and attributes to the DIT. This step is only necessary when defining dynamic,
policy and user attributes. Instructions on extending the LDAP schema can be
found in “Extending The Directory Server Schema,” on page 28. See the
Directory Server documentation for additional information.

3. Import the XML service file into DS using amadmin using the --schema or -S
option.

Information on importing an XML service file can be found in “Importing the
XML Service File,” on page 31.

Service Definition and Integration

28 Directory Server Access Management Edition Programmer’s Guide • May 2002

4. Configure a localization properties file and copy it into the
Install_Directory/SUNWam/locale directory.

The localization properties file must be created with accurate i18nKey fields
that map to names defined in the XML service file. If no localization properties
file exists, DSAME will display the actual attribute names. More information
on the localization properties file can be found in “Configuring Localization
Properties,” on page 32.

5. Update the amEntrySpecific.xml or amUser.xml files, if necessary.

The amEntrySpecific.xml file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the DSAME abstract
objects. Information on updating amEntrySpecific.xml can be found in
“Abstract Objects and amEntrySpecific.xml,” on page 65. The amUser.xml file
can be modified to add User attributes to the User service; alternately, User
attributes can be defined in the actual XML service file. In the latter case,
amUser.xml would not need to be modified. Information on modifying
amUser.xml can be found in “Modifying An Internal XML Service File,” on
page 60.

6. Register the service.

After importing the service into DS, it can be registered and the attributes
managed through the DSAME console. Information on how this can be done is
in the iPlanet Directory Server Access Management Edition Administration Guide.
Information on how to register using the command line can be found in
“Registering the Service,” on page 33.

Extending The Directory Server Schema
When configuring an XML service file for DSAME, it might also be necessary to
extend the DS schema. Any dynamic, policy or user attributes defined in a DSAME
service that are not already in the DS schema need to be added as LDAP object
classes in order to store the data. This is done using the ldapmodify command line
executable and an LDIF file as input.

NOTE The order in which the LDAP schema is extended or the XML
service file is loaded into DS is not important. Just remember that
when a new service is loaded into DS, a complementary LDIF file
should be created to load any new LDAP object classes.

Service Definition and Integration

Chapter 2 DSAME And XML 29

1. Change to the DSAME bin directory.

cd Install_Directory/SUNWam/bin

2. Create an LDIF file to define any new or modified LDAP object classes.

3. Run ldapmodify using the LDIF file as input.

ldapmodify -D userid_of_DSmanager -w password -f

path_to_LDIF_file

By default, userid_of_DSmanager is cn=Directory Manager. If the schema
was created correctly, the result of this command would be Modifying entry
cn=schema.

4. Run ldapsearch to ensure that the schema has been created.

ldapsearch -b “cn=schema” -s base -D userid_of_DSmanager -w

password “(objectclass=*)” | grep -i “servicename”

If the schema was created correctly, the result of this command would be an
LDIF listing of the object classes as displayed in Code Example 2-1 below.

NOTE After extending the schema using ldapmodify, it is not necessary to
restart the DS. But, as ldapmodify is server-specific, the schema will
not replicate and therefore needs to be extended on all configured
servers. Additional information can be found in the iPlanet
Directory Server documentation.

Service Definition and Integration

30 Directory Server Access Management Edition Programmer’s Guide • May 2002

Adding Object Classes To Existing Users
If a new service is created and the service’s users already exist, the object classes
need to be added to the user entries. In order to do this, DSAME provides
migration scripts for performing batch updates to user entries in the DIT. No LDIF
file need be created when using them. These scripts are described in the iPlanet
Directory Server Access Management Edition Installation and Configuration Guide.
Additionally, registered services can be added to each user by selecting the service
from the specific user’s Properties page.

To modify user entries using ldapmodify, an LDIF file would need to be created.
Code Example 2-2 on page 31 shows how a user entry would be formatted in the
LDIF file. This entry is having the object class iplanet-am-sample-mail-service
and its attributes added.

Code Example 2-1 Sample Mail Service LDAP Object Class

objectClasses=(1.2.3.888.23 NAME
'iplanet-am-sample-mail-service' DESC 'iPlanet SampleMail
Service' SUP topAUXILIARY MAY (
iplanet-am-sample-mail-service-status $
iplanet-am-sample-mail-root-folder
$iplanet-am-sample-mail-sentmessages-folder $
iplanet-am-sample-mail-indent-prefix
$iplanet-am-sample-mail-initial-headers $
iplanet-am-sample-mail-inactivity-interval $
iplanet-am-sample-mail-auto-load
$iplanet-am-sample-mail-headers-perpage $
iplanet-am-sample-mail-quota $
iplanet-am-sample-mail-max-attach-len
$iplanet-am-sample-mail-can-save-address-book-on-server)
X-ORIGIN ('iPlanet Directory Pro' 'user defined'))
attributeTypes=(11.24.1.996.1 NAME
'iplanet-am-sample-mail-service-status' DESC 'iPlanet
SampleMailService Attribute'SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
X-ORIGIN ('iPlanet Directory Pro' 'user defined'))

Service Definition and Integration

Chapter 2 DSAME And XML 31

After creating the LDIF file, run ldapmodify as shown:

Install_Directory/SUNWam/bin/ldapmodify -D userid_of_DSmanager -w
password -f path_to_LDIF_file.

For more information on ldapmodify and user entries, see the iPlanet Directory
Server documentation.

Verifying The Directory Server Modification
To verify that the DIT has been populated correctly, an administrator can use
ldapsearch or the following:

1. Change to the DS install directory:

cd /DS_Install_Directory/slapd-DShostname

2. Export the DS contents into an LDIF file using:

db2ldif -s orgnamingattribute=top_level_org_name

This command results in the name of the LDIF file stored under
DS_Install_Directory/slapd-DShostname/ldif. This file can be viewed to
ensure that the objects described in the LDIF file have been created.

Importing the XML Service File
After creating an XML service file following the instructions in “DSAME DTD
Files,” on page 33, the new service file needs to be imported into the DS.

1. Change to the DSAME install directory:

cd Install_Directory/SUNWam/bin

Code Example 2-2 Sample LDIF File To Modify User Object

...
dn:cn=shiva,ou=People,o=iplanet.com,o=isp
 changetype:modify
 add:objectclass
 objectclass:iplanet-am-sample-mail-service
...

NOTE It is not recommended to use ldapmodify to create any entries for
DSAME other than user entries.

Service Definition and Integration

32 Directory Server Access Management Edition Programmer’s Guide • May 2002

2. Run:

./amadmin --runasdn DNofDSadministrator --password
passwordDSadministrator --verbose --schema xmlservicefilepath

Configuring Localization Properties
A localization properties file specifies the locale-specific screen text and messages
that an administrator or user will see when directed to a service’s attribute
configuration page. The files are located in the
Install_Directory/SUNWam/locale/ directory.

The localization properties files consist of a series of key/value pairs. The value of
each pair will be displayed on the service’s Properties page in the DSAME console.
The keys (a1, a2, etc.) map to the i18nKey attribute fields defined for a service.
Code Example 2-3 is the localization properties file for DSAME’s sample mail
service. The keys also determine the order in which the fields are displayed, taken
in alphabetical and then numerical order (a1, a2 is followed by b1, b2 and so forth).
Note that the keys are strings, so a10 comes before a2.

NOTE If changing an existing service, the original XML service file needs to
be deleted before importing the modified XML service file.

Code Example 2-3 Sample Mail Service Localization Properties File

...
iplanet-am-sample-mail-service-description=Sample Mail Service
Profile
a1=Mail Status
a2=Root Folder
a3=Sent Messages Folder
a4=Reply Prefix
a5=Initial Headers to Load
a6=Check New Mail Interval (minutes)
a7=Automatic Message Load at Disconnect
a8=Headers Per Page
p1=Mail Quota
p2=Auto-download Maximum Attachment Length
p3=Save Address Book on Server

NOTE If modifying a localization properties file, DSAME needs to be
restarted. If importing a new service, DSAME does not need to be
restarted to recognize the localization properties file.

DSAME DTD Files

Chapter 2 DSAME And XML 33

Identifying The Localization Properties File
DSAME also needs to be able to locate the localization properties file. An
administrator needs to ensure that it is located in the default
Install_Directory/SUNWam/locale directory. If the file is kept in another
directory, the jvm.classpath= entry in the jvm12.conf file needs to be modified
to include the new directory pathname.

Registering the Service
The preferred way to register a service is to use the DSAME console. Information
on how this is done can be found in the iPlanet Directory Server Access Management
Edition Administration Guide. Alternately, services can be registered using the
amadmin command line executable.

1. Change to the DSAME install directory:

cd Install_Directory/SUNWam/bin

2. Run:

amadmin --runasdn DNofDSAMEadministrator --password

passwordDSAMEadministrator --schema path_to_xmlservicefile

DSAME DTD Files
DSAME contains two DTD files which are used to define the structure for XML
files used within the configuration. The sms.dtd defines the structure for XML
service files and the amAdmin.dtd defines the structure for XML files that are used
to perform batch LDAP operations on the directory information tree (DIT) using
the command line executable amAdmin. The DTDs are located in
Install_Directory/SUNWam/dtd.

NOTE If the jvm12.conf file is modified, the DSAME server needs to be
restarted.

CAUTION Neither of these DTD files should be modified in any way. They
contain rules and definitions that control how certain operations are
performed on the DIT and any alterations might hinder them.

DSAME DTD Files

34 Directory Server Access Management Edition Programmer’s Guide • May 2002

Code Examples. DSAME comes with the files needed to integrate a mail service
into the configuration. These sample files are used throughout this section to
illustrate the DTD concepts. For more information on these files, see
“SampleMailService Files,” on page 71.

The sms.dtd Structure
The sms.dtd defines the data structure for all XML service files. It is located in the
Install_Directory/SUNWam/dtd directory. The sms.dtd enforces the developer
to define each attributes as one of five schema types which are then stored and
managed differently. For instance, some of the attributes are applicable to an entire
DSAME installation (such as a port number or server name), while others are
applicable only to individual users (such as a password). The attribute types are:

• Global

• Organization

• Dynamic

• User

• Policy

An explanation of the elements defined by the sms.dtd follows. Each element
includes a number of XML attributes which are also explained. DSAME currently
supports only about 20% of the elements contained in sms.dtd; this section
discusses only those elements.

ServicesConfiguration Element
ServicesConfiguration is the root element of the XML service file. It’s immediate
sub-element is Service. Code Example 2-4 on page 35 is the ServicesConfiguration
element as defined in the sampleMailService.xml.

NOTE Customized attribute names in XML service files should be written
in lower case as DSAME converts all attribute names to lower case
when reading from the DS.

DSAME DTD Files

Chapter 2 DSAME And XML 35

Service Element
The Service element defines the schema for a given service. Multiple services can be
defined in a single XML file with this element, but it is recommended that only one
be defined per XML service file. Currently, DSAME supports the sub-element
Schema which, in turn, defines DSAME attributes as either Global, Organization,
Dynamic, User or Policy. The required XML service attributes for the Service element
are the name of the service, such as iPlanetAMLoggingService, and the version
number of the XML service file itself. Code Example 2-4 on page 35 illustrates the
Service element and its attributes as defined in the sampleMailService.xml.

Schema Element
The Schema element is the parent of the elements that define the service’s specific
DSAME attributes (global, organization, dynamic, user or policy) and their default
values. The sub-elements can be Global, Organization, Dynamic, User or Policy. The
required XML attributes of the Schema element include serviceHierarchy which
defines where the service will be displayed in the DSAME console, i18nFileName
which defines the name of the localization properties file, and i18nKey which
defines the attribute in the localization properties file from which this particular
defined value will be taken.

serviceHierarchy Attribute
When adding a service, this attribute must be defined in order to display the
service in the DSAME console. When a new service is registered, it is dynamically
displayed based on this value. The value is a "/" separated string. Code
Example 2-5 on page 36 illustrates the serviceHierarchy attribute as defined in
the sampleMailService.xml. The name sampleMailService is used to find the
localization properties file which defines what will be displayed below the Other
Configuration header in the DSAME console.

Code Example 2-4 Element ServicesConfiguration and Element Service

...
<ServicesConfiguration>
<Service name=”sampleMailService” version=”1.0”>
<Schema...>
...

NOTE The Schema element is required in XML service files.

DSAME DTD Files

36 Directory Server Access Management Edition Programmer’s Guide • May 2002

i18nFileName And i18nKey Attributes
These two XML attributes both refer to the localization properties files. The
i18nFileName attribute takes a value equal to the name of the localization
properties file for the defined service (minus the .properties file extension). The
i18nKey is a text string that maps to a property value defined in the localization
properties file (specified, as discussed, in the i18nFileName attribute.) For
example, Code Example 2-5 on page 36 defines the name of the properties file as
sampleMailservice and the text-based value of the i18nKey maps to its final
value as defined in sampleMailservice.properties. The final value is the name
of the service as it will be displayed in the DSAME console; in this case, Sample Mail
Service Profile is the name defined in sampleMailservice.properties. More
information on the localization properties file can be found in “Configuring
Localization Properties,” on page 81 of Chapter 3, “User Authentication With
DSAME.”

Schema Sub-Elements
The next five elements are sub-elements of Schema; they are the declarations of the
service’s DSAME attributes. When defining a service, each attribute must be
defined as one of these types: Global, Organization, Dynamic, Policy and User.
Any configuration (all or none) of these elements can be used depending on the
service. Each DSAME attribute defined within these elements is itself defined by
the sub-element AttributeSchema or, in the case of Policy, the ActionSchema.

Global Element
The Global element defines DSAME attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Global Attributes,” on page 23.

Code Example 2-5 i18nFileName, i18nKey and serviceHierarchy Attributes

...
<Schema
 serviceHierarchy="/other.configuration/sampleMailService"
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">
...

DSAME DTD Files

Chapter 2 DSAME And XML 37

serviceObjectClasses Attribute. The serviceObjectClasses attribute is a global
attribute in each XML service file that contains dynamic or policy attributes. This
optional attribute is used by the SDK to set the object class for the service in the
user entries. When an organization registers a service with the
serviceObjectClasses attribute defined, the service’s dynamic or policy
attributes, if any exist, are automatically assigned to any user object which has been
assigned the service. If the serviceObjectClasses attribute is not specified and
the service has defined dynamic or policy attributes, an object class violation is
called when an administrator tries to create a user under that organization.

Multiple values can be defined for the serviceObjectClasses attribute. For example, if
a service is created with two attributes each from three different object classes, the
serviceObjectClasses attribute would need to list all three object classes as
DefaultValues. Code Example 2-6 has two defined object classes.

Organization Element
The Organization element defines DSAME attributes that are modifiable per
organization or sub-organization. For example, a web hosting environment using
DSAME would have different configuration data defined for each organization it
hosts. A service developer would define different values for each organization
attribute per organization. These attributes are only accessible using the DSAME
SDK. For additional information, see “Organization Attributes,” on page 24.

Code Example 2-6 serviceObjectClass Defined As Global Element

...
<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 <Value>iplanet-am-other-sample-service</Value>
 </DefaultValues>
 </AttributeSchema>
 </Global>
 ...

DSAME DTD Files

38 Directory Server Access Management Edition Programmer’s Guide • May 2002

Dynamic Element
The Dynamic element defines DSAME attributes that can be inherited by all user
objects. Examples of Dynamic elements would be user-specific session attributes, a
building number, or a company mailing address. Dynamic attributes always use
the DS features, CoS (Class Of Service) and Roles. For additional information, see
“Dynamic Attributes,” on page 24.

User Element
The User element defines DSAME attributes that exist physically in the user entry.
User attributes are not inherited by roles or organizations. Examples include
password and employee identification number. They are applied to a specific user
only. For additional information, see “User Attributes,” on page 25.

Policy Element
The Policy element defines DSAME attributes intended to provide privileges. This
is the only attribute element that uses the ActionSchema element to define its
parameters as opposed to the AttributeSchema element. Generally, privileges are
get, post, and put; examples include canChangeSalaryInformation and
canForwardEmailAddress. See Code Example 2-8 on page 41 for an example of a
Policy schema definition from the sampleMailService.xml file. For additional
information, see “Policy Attributes,” on page 25.

SubSchema Element
The SubSchema element can specify multiple subschemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. Another example
would be a service developer defining choice values for different logging levels.
For logging type, choice values can be defined to specify output that goes to a file,
JDBC, or some other LDAP output mechanism. The attribute multiple_choice
represents a list of choice values. The choice values could represent multiple
values, so that if the attribute values do not contain multiple choice values, then the
SMS parsing would fail.

NOTE The Service SubSchema element is used only in the
amEntrySpecific.xml file. It should not be used in any external
XML service files.

DSAME DTD Files

Chapter 2 DSAME And XML 39

AttributeSchema Element
The AttributeSchema element is a sub-element of the five schema elements
discussed in “Schema Sub-Elements,” on page 36. It defines the structure of each
attribute. The sub-elements that qualify the AttributeSchema can include
IsOptional?, IsServiceIdentifier?, IsStatusAttribute?, ChoiceValues?,
BooleanValues?, DefaultValues?, or Condition. The XML attributes that define
each portion of the attribute value are name, type, syntax, cosQualifier,
rangeStart, rangeEnd, validator, any, and %i18nIndex. Code Example 2-7 on
page 39 illustrates the AttributeSchema element, its attributes and their
corresponding values. Note that this example attribute is a Dynamic attribute.

name Attribute
This required XML attribute defines the LDAP name for the attribute. Any string
format can be used but attribute names must be in lower-case. Code Example 2-7
on page 39 defines it with a value of iplanet-am-sample-mail-service-status.

type Attribute
This attribute specifies the kind of value the attribute will take. The default value
for type is list but it can be defined as one of the following:

• single specifies that the user can define one value.

• list specifies that the user can define a list of values.

Code Example 2-7 AttributeSchema Element With XML Attributes

...
<Dynamic>
 <AttributeSchema name="iplanet-am-sample-mail-service-status"
 type="single_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 <ChoiceValue>Deleted</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>
 </AttributeSchema>
</Dynamic>
...

DSAME DTD Files

40 Directory Server Access Management Edition Programmer’s Guide • May 2002

• single_choice specifies that the user can chose a single value from a list of
options.

• multiple_choice specifies that the user can chose multiple values from a list
of options.

ChoiceValues Sub-Element. If the type attribute is specified as either
single_choice or multiple_choice, the ChoiceValues sub-element must also be
defined in the AttributeSchema. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValue element. Code
Example 2-7 on page 39 defines the attribute type as single_choice so the
ChoiceValues attribute defines the list of options as Active, Inactive and
Deleted.

syntax Attribute
The syntax attribute defines the format of the value. The default value for syntax is
string but, it can be defined as one of the following:

• boolean specifies that the value is either true or false.

• string specifies that the value can be any string.

• password specifies that user must enter a password, which will be encrypted.

• dn specifies that the value is a LDAP Distinguish Name.

• email specifies that the value is an email address.

• url specifies that the value is a URL address.

• numeric specifies that the value is a number.

• percent specifies that the value is a .

• number specifies that the value is a number.

• decimal_number specifies that the value is a number with a decimal point.

• number_range specifies that the value is a range of numbers.

• decimal_range specifies that the value is a range of numbers that might
include a decimal figure.

DefaultValues Sub-Element. Defining any of these syntax values also necessitates
defining a value for the DefaultValue sub-element. A default value will then be
displayed in the DSAME console but can be changed for each organization when
creating a new template for the service. In the Code Example 2-8 on page 41, for

DSAME DTD Files

Chapter 2 DSAME And XML 41

example, the Save Address Book On Server field will display a default value of false.
The user has the option to change the value to true, if desired. (The default value
for password would be an encrypted password, generally the same as the one used
for DSAME.)

The ActionSchema as displayed in Code Example 2-8 on page 41 is discussed in
“ActionSchema Element,” on page 43.

cosQualifier Attribute
This attribute defines how DSAME will resolve conflicting cosQualifier
attributes assigned to the same user object. This value will appear as a qualifier to
the cosAttribute in the LDAP entry of the CoS definition. It can be defined as:

• default indicates that if there are two conflicting cosQualifier attributes
assigned to the same user object, the one with the lowest priority number (0)
takes precedence. (The priority level is set in the cosPriority attribute when a
new CoS template entry is created for an organization or role. For more
information, see “Conflicts and CoS,” on page 143 of Chapter 8, “iPlanet
Directory Server And DSAME.”)

• override indicates that the CoS template value overrides any value already
present in the user entry; that is, CoS takes precedence over the user entry
value.

• merge-schemes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS templates.

Code Example 2-8 ActionSchema Element With Boolean Syntax

...
<ActionSchema
name="iplanet-am-sample-mail-can-save-address-book-on-server"
 type="single"
 syntax="boolean"
 i18nKey="p3">
 <DefaultValues>
 <Value>false</Value>
 </DefaultValues>
 </ActionSchema>
...

DSAME DTD Files

42 Directory Server Access Management Edition Programmer’s Guide • May 2002

If this attribute is not defined, the default behavior is for the user entry value to
override the CoS value in the organization or role. The default value is default.
(The operational value is reserved for future use.)

any Attribute
The any attribute specifies whether the attribute for which it is defined will display
in the DSAME console. It has six possible values that can be multiply defined using
the “|” (pipe) construct:

• display specifies that the attribute will display on the user profile page. The
attribute is read/write for administrators and regular users.

• adminDisplay specifies that the attribute will display on the user profile page.
It will not appear on an end user page; the attribute is read/write for
administrators only.

• userReadOnly specifies that the attribute is read/write for administrators but
is read only for regular users. It is displayed on the user profile pages as a
non-editable label for regular users.

• required specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk.

• optional specifies that a value for the attribute is not required in order for the
object to be created.

• filter specifies that the attribute will display on the Search page.

The required or optional keywords and the filter and display keyword can
be specified with a pipe symbol separating the options (any=required|display or
any=optional|display|filter). If the any attribute is set to display, the
qualified attribute will display in DSAME console when the properties for the
Create page are displayed. If the any attribute is set to required, an asterisk will
display in that attribute’s field, thus the administrator or user is required to enter a
value for the object to be created in DSAME console. If the any attribute is set to

NOTE The URL Policy Agent service uses merge-schemes to obtain
aggregated values for the Allow and Deny attributes. For example,
if the Employee Role allows access to */employee.html and the HR
Role allows access to */hr.html, a user possessing both of these
roles is allowed access to both.

DSAME DTD Files

Chapter 2 DSAME And XML 43

optional, it will display on the Create page, but users are not required to enter a
value in order for the object to be created. If the any attribute is set to filter, the
qualified attribute will display as a criteria attribute when Search is clicked from
the User page.

%i18nIndex Attribute (i18nKey)
The i18nKey attribute, as defined in “i18nFileName And i18nKey Attributes,” on
page 36, is referenced as an entity in the sms.dtd.

ActionSchema Element
The ActionSchema element is a sub-element of the Policy attribute element
discussed in “Policy Element,” on page 38. It defines the structure of Policy
attributes only. The sub-elements that qualify the ActionSchema can include
IsOptional?, ActionValue?, BooleanValues?, and DefaultValues? The XML
attributes that define each portion of the attribute value are name, type, syntax,
cosQualifier, rangeStart, rangeEnd, validator, any, and %i18nIndex. Code
Example 2-8 on page 41 illustrates the ActionSchema element, its attributes and their
corresponding values.

ResourceName Element
The ResourceName element specifies if the service has resources associated with it,
for example, URLs in the case of URL Policy Agent service.

The amAdmin.dtd Structure
The amAdmin.dtd defines the data structure for all XML files which will be used to
perform batch LDAP operations on the DIT using amAdmin. It is located in the
Install_Directory/SUNWam/dtd directory. The command line operations include
reads and gets on the attributes as well as creations and deletions of user objects
(roles, organizations, users, people containers, and groups). The following sections

NOTE If the i18nKey value is blank (that is, “ “), the DSAME console will
not display the attribute.

NOTE The difference between AttributeSchema and ActionSchema is that the
ActionSchema element has Policy-specific attributes, such as
ActionValue, and the AttributeSchema has attributes not applicable
to Policy, such as IsStatusAttribute?

DSAME DTD Files

44 Directory Server Access Management Edition Programmer’s Guide • May 2002

discuss the elements and attributes of the amAdmin.dtd as well as the sample XML
templates installed with DSAME that use this structure. These samples can be
found in Install_Directory/SUNWam/samples/admin/cli/bulk-ops and will
be used to illustrate these sections.

Requests Element
The Requests element is the root element of the batch processing XML file. It must
contain at least one child element which defines the DSAME identity objects
(Organization, Container, People Container, Role and Group) onto which the
actual requests are performed. To enable batch processing, the root element can
take more than one set of requests. The Requests element must contain at least one
of the following sub-elements:

• OrganizationRequests

• ContainerRequests

• PeopleContainerRequests

• RoleRequests

• GroupRequests

• SchemaRequests

• ServiceConfigurationRequests

Based on the defined request, the corresponding DSAME API will be called to
perform the operation.

OrganizationRequests Element
The OrganizationRequests element consists of all requests that can be performed on
Organization objects. The required XML attribute for this element is the LDAP
Distinguished Name (DN) of the organization on which all of the sub-element
requests will be performed. This element can have one or more sub-elements
which perform their operations on the defined instance of the Organization object.
(Different OrganizationRequests elements can be defined in one document to modify
more than one Organization DN.) Code Example 2-9 on page 49 defines a myriad
of objects to be created from the top level organization, o=isp. The sub-elements of
OrganizationRequests are:

• CreateSubOrganization

• CreatePeopleContainer

• CreateRole

DSAME DTD Files

Chapter 2 DSAME And XML 45

• CreateGroup

• CreatePolicy

• AssignPolicy

• UnAssignPolicy

• CreateServiceTemplate

• ModifySubOrganization

• ModifyServiceTemplate

• DeleteServiceTemplate

• ModifyPeopleContainer

• ModifyRole

• ModifyGroup

• ModifyPolicy

• GetSubOrganizations

• GetPeopleContainers

• GetRoles

• GetGroups

• GetUsers

• RegisterServices

• UnregisterServices

• GetRegisteredServiceNames

• GetNumberOfServices

• DeleteRoles

• DeleteGroups

• DeletePolicy

• DeletePeopleContainers

• DeleteSubOrganizations

DSAME DTD Files

46 Directory Server Access Management Edition Programmer’s Guide • May 2002

ContainerRequests Element
The ContainerRequests element consists of all requests that can be performed on
Container objects. The required XML attribute for this element is the DN of the
container on which the sub-element requests will be performed. This element can
have one or more sub-elements which perform their operations on the same
instance of the container. (Different ContainerRequests elements can be defined in
one document to modify more than one Container DN.) Code Example 2-9 on page
49 illustrates how this element can be modeled. The sub-elements of
ContainerRequests are:

• CreateSubContainer

• CreatePeopleContainer

• CreateRole

• CreateGroup

• CreatePolicy

• AssignPolicy

• UnAssignPolicy

• CreateServiceTemplate

• ModifyServiceTemplate

• ModifySubContainer

• ModifyPeopleContainer

• ModifyRole

• GetSubContainers

• GetPeopleContainers

• GetRoles

• GetGroups

• GetUsers

• RegisterServices

• UnregisterServices

• GetRegisteredServiceNames

• GetNumberOfServices

DSAME DTD Files

Chapter 2 DSAME And XML 47

• DeleteRoles

• DeleteGroups

• DeletePolicy

• DeletePeopleContainers

• DeleteSubContainers

PeopleContainerRequests Element
The PeopleContainerRequests element consists of all requests that can be performed
on People Container objects. The required XML attribute for this element is the DN
of the container on which the sub-element requests will be performed. This
element can have one or more sub-elements which perform their operations on the
same instance of the people container. (Different PeopleContainerRequests elements
can be defined in one document to modify more than one People Container DN.)
Code Example 2-9 on page 49 illustrates how this element can be modeled. The
sub-elements of PeopleContainerRequests are:

• CreateSubPeopleContainer

• ModifyPeopleContainer

• CreateUser

• ModifyUser

• GetNumberOfUsers

• GetUsers

• GetSubPeopleContainers

• DeleteUsers

• DeleteSubPeopleContainers

RoleRequests Element
The RoleRequests element consists of all requests that can be performed on roles.
The required XML attribute for this element is the DN of the role on which the
sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the role.
(Different RoleRequests elements can be defined in one document to modify more
than one Role DN.) Code Example 2-9 on page 49 illustrates how this element can
be modeled. The sub-elements of RoleRequests are:

• CreateServiceTemplate

DSAME DTD Files

48 Directory Server Access Management Edition Programmer’s Guide • May 2002

• ModifyServiceTemplate

• AssignPolicy

• UnAssignPolicy

• GetNumberOfUsers

• GetUsers

• AddUsers

GroupRequests Element
The GroupRequests element consists of all requests that can be performed on group
objects. The required XML attribute for this element is the DN of the group on which
the sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the group.
(Different GroupRequests elements can be defined in one document to modify more
than one Group DN.) Code Example 2-9 on page 49 illustrates how this element
can be modeled. The sub-elements of GroupRequests are:

• CreateSubGroup

• GetSubGroups

• GetNumberOfUsers

• GetUsers

• AddUsers

• DeleteSubGroups

AttributeValuePair Element
The AttributeValuePair element can be a sub-element of many of the following
batch processing requests. It can have two sub-elements, neither of which can
themselves have sub-elements. The Attribute sub-element must be empty while the
Value sub-element takes a default value to display in the DSAME console. The
Attribute sub-element takes a required XML attribute called name. The value of
name is the attribute name which is equal to one string without spaces; no
sub-elements are allowed. Code Example 2-14 on page 53 illustrates how an
attribute/value pair would be added to a sub-organization.

DSAME DTD Files

Chapter 2 DSAME And XML 49

CreateObject Elements
The CreateSubOrganization, CreateUser, CreateGroup, CreateSubContainer,
CreatePeopleContainer, CreateSubGroup, CreateSubPeopleContainer and CreateRole
elements create a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is created in the
DN that is defined in the second-level <Object>Requests element under which the
Create<Object> element is defined. AttributeValuePair may be defined as a
sub-element (or not). The required XML attribute for each element is createDN; it
takes the DN of the object to be created. Code Example 2-9 on page 49 illustrates an
example of some of these elements.

CreatePolicy Element
The CreatePolicy element creates one or more policy attributes. The Policy
sub-element defines the named policy. The required XML attribute is createDN
which takes the DN of the organization where the policy will be created. This and
the following nested elements are all illustrated in Code Example 2-10 on page 50.

Policy Element. The Policy sub-element defines the permissions or rules of the
policy. It can take one or more of the Rule sub-elements. The required XML
attribute is name which specifies the name of the policy. The serviceName attribute,
which identifies the service to which the named policy applies, is an optional XML
attribute.

Rule Element. The Rule sub-element defines a specific permission of the policy.
Rule can take three sub-elements. The required XML attribute is name which
defines a name for the rule. The three sub-elements are:

• ServiceName Element

Code Example 2-9 Portion of Batch Processing File createRequests.xml

...
<Requests>
<OrganizationRequests DN="o=isp">

 <CreateSubOrganization createDN="sun.com"/>
 <CreatePeopleContainer createDN="People1,o=sun.com"/>
 <CreateRole createDN="ManagerRole,o=sun.com"/>
 <CreateRole createDN="EmployeeRole,o=sun.com"/>
 <CreateGroup createDN="ContractorsGroup,o=sun.com"/>
 <CreateGroup createDN="EmployeesGroup,o=sun.com"/>

</Requests>

DSAME DTD Files

50 Directory Server Access Management Edition Programmer’s Guide • May 2002

The ServiceName sub-element defines the service for which a rule has been
created. There are no sub-elements; the ServiceName element itself must be
empty. The required XML attribute is name which takes a string value.

• ResourceName Element

The ResourceName sub-element defines the domain for which this permission is
being defined. There are no sub-elements; the ResourceName element itself must
be empty. The required XML attribute is name which takes a string value.

• AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“DeleteObject Elements,” on page 51.

Code Example 2-10 Portion of Batch Processing File createPolicyOrg.xml

...
<Requests>

<OrganizationRequests DN="o=isp">

<CreatePolicy createDN="o=iplanet.com,o=isp">
 <Policy name="urlpolicy" serviceName="iPlanetAMWebAgentService">
 <Rule name="Manager Rule">
 <ServiceName name="iPlanetAMWebAgentService"/>
 <ResourceName name="*.red.iplanet.com"/>
 <AttributeValuePair>
 <Attribute name="permission"/>
 <Value>iplanet-am-web-agent-access-allow-list</Value>
 </AttributeValuePair>
 </Rule>
 <Rule name="engManager Rule">
 <ServiceName name="iPlanetAMWebAgentService"/>
 <ResourceName name="*.eng.iplanet.com"/>
 <AttributeValuePair>
 <Attribute name="permission"/>
 <Value>iplanet-am-web-agent-access-allow-list</Value>
 </AttributeValuePair>
 </Rule>
 </Policy>
 </CreatePolicy>
</OrganizationRequests>
</Requests>

DSAME DTD Files

Chapter 2 DSAME And XML 51

CreateServiceTemplate Element
The CreateServiceTemplate element creates a service template for the organization
defined in the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
serviceName which takes a string value. Code Example 2-11 on page 51 illustrates
a service template being created for sun.com.

DeleteObject Elements
The DeleteSubOrganizations, DeleteUsers, DeleteGroups, DeleteSubContainers,
DeletePeopleContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteRoles
elements delete a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is deleted from
the DN that is defined in the second-level <Object>Requests element under which
the Delete<Object> element is defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the
listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all subtrees can be avoided; it’s
default value is false. The DN sub-element takes a character value equal to the DN of
the object to be deleted. Code Example 2-12 on page 51 illustrates an example of
some of these elements.

Code Example 2-11 Portion of Batch Processing File createServiceTemplates.xml

...
<Requests>
<OrganizationRequests DN="o=sun.com,o=isp">

 <CreateServiceTemplate serviceName="sampleMailService"/>

</OrganizationRequests>
</Requests>
...

Code Example 2-12 Portion of Batch Processing File deleteOrgRequests.xml

...
<Requests>
<OrganizationRequests DN="o=isp">

 <DeleteRoles>
 <DN>cn=ManagerRole,o=sun.com,o=isp</DN>
 <DN>cn=EmployeeRole,o=sun.com,o=isp</DN>
 </DeleteRoles>

DSAME DTD Files

52 Directory Server Access Management Edition Programmer’s Guide • May 2002

DeletePolicy Element
The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: deleteDN. It takes a value equal to
the DN of the policy to be deleted.

DeleteServiceTemplate Element
The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are serviceName which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 2-13 on page 52 illustrates how this element is
formatted.

 <DeleteGroups deleteRecursively="true">
 <DN>cn=EmployeesGroup,o=sun.com,o=isp</DN>
 <DN>cn=ContractorsGroup,o=sun.com,o=isp</DN>
 </DeleteGroups>

 <DeletePeopleContainers deleteRecursively="true">
 <DN>ou=People1,o=sun.com,o=isp</DN>
 </DeletePeopleContainers>

 <DeleteSubOrganizations deleteRecursively="true">
 <DN>o=sun.com,o=isp</DN>
 </DeleteSubOrganizations>

</OrganizationRequests>
</Requests>
...

Code Example 2-13 Portion of Batch Processing File deleteServiceTemplates.xml

...
<Requests>
<OrganizationRequests DN="o=iplanet.com,o=isp">
 <DeleteServiceTemplate
serviceName="iPlanetAMAuthLDAPService"
 schemaType="organization">

 </DeleteServiceTemplate>
</OrganizationRequests>
</Requests>

Code Example 2-12 Portion of Batch Processing File deleteOrgRequests.xml

...
<Requests>

DSAME DTD Files

Chapter 2 DSAME And XML 53

ModifyObject Elements
The ModifyPeopleContainer, ModifySubContainer, ModifySubOrganization and
ModifyRole, ModifyGroup elements change the specified object. AttributeValuePair
can be defined as a sub-element of the first four listed elements. (The ModifyGroup
element can have no sub-elements; it must be empty.) The required XML attribute
is modifyDN which takes the DN of the object to be modified. Code Example 2-14 on
page 53 illustrates how these elements can be modeled.

ModifyServiceTemplate Element
The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair must be defined as a sub-element of ModifyServiceTemplate to
change the values. The required XML attribute is serviceName which takes a string
value and schemaType. Code Example 2-15 on page 54 illustrates this element.

Code Example 2-14 Portion of Batch Processing File modifyRequests1.xml

...
<Requests>
<OrganizationRequests DN="o=isp">

 <ModifySubOrganization modifyDN="o=sun.com,o=isp">
 <AttributeValuePair>
 <Attribute name="Description"/>
 <Value>DSAME Modify</Value>
 </AttributeValuePair>
 </ModifySubOrganization>

 <ModifyPeopleContainer modifyDN="People1,o=sun.com">
 <AttributeValuePair>
 <Attribute name="Description"/>
 <Value>DSAME Modify</Value>
 </AttributeValuePair>
 </ModifyPeopleContainer>

 <ModifyRole modifyDN="ManagerRole,o=sun.com">
 <AttributeValuePair>
 <Attribute name="iplanet-am-role-description"/>
 <Value>DSAME Modify</Value>
 </AttributeValuePair>
 </ModifyRole>

</OrganizationRequests>
</Requests>

DSAME DTD Files

54 Directory Server Access Management Edition Programmer’s Guide • May 2002

GetObject Elements
The GetSubOrganizations, GetUsers, GetGroups, GetSubContainers,
GetPeopleContainers and GetRoles elements get the specified object. A DN may be
defined as a sub-element (or not). If none is specified, ALL of the specified objects
at all levels within the organization defined in the second-level Requests element
will be returned. The required XML attribute for all but GetGroups and GetRoles is
DNsOnly and takes a true or false value. The required XML attribute of GetGroups
and GetRoles is level which takes a value of either ONE_LEVEL or SUB_TREE.
ONE_LEVEL will retrieve just the groups at that node level; SUB-TREE gets groups at
the node level and all those underneath it. Code Example 2-16 on page 55
illustrates how these elements can be modeled.

DNs Only Attribute
For all objects using the DNsOnly attribute, the Get elements work as stated below:

• If the element has the required XML attribute DNsOnly set to true and no
sub-element DN is specified, only the DNs of the objects asked for will be
returned.

• If the element has the required XML attribute DNsOnly set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

• If sub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnly is set to true or false.

Code Example 2-15 Portion of Batch Processing File modifyServiceTemplates.xml

...
<Requests>
<OrganizationRequests DN="o=sun.com,o=isp">

 <ModifyServiceTemplate serviceName="sampleMailService">
 <AttributeValuePair>
 <Attribute
name="iplanet-am-sample-mail-sentmessages-folder"/>
 <Value>Hello Mail Sent</Value>
 </AttributeValuePair>
 </ModifyServiceTemplate>
</OrganizationRequests>
</Requests>

DSAME DTD Files

Chapter 2 DSAME And XML 55

GetService Elements
The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 2-17 on page 55
illustrates how the GetRegisteredServiceNames element is modeled.

Code Example 2-16 Portion of Batch Processing File getRequests.xml

...
<Requests>

<OrganizationRequests DN="o=isp">

<GetSubOrganizations DNsOnly="false">
 <DN>o=iplanet.com,o=isp</DN>
 <DN>o=sun.com,o=isp</DN>
</GetSubOrganizations>

<GetPeopleContainers DNsOnly="false">
 <DN>ou=People,o=iplanet.com,o=isp</DN>
 <DN>ou=People,o=sun.com,o=isp</DN>
</GetPeopleContainers>

<GetRoles level="SUB_TREE"/>

<GetGroups level="SUB_TREE"/>

<GetUsers DNsOnly="false">
 <DN>cn=puser,ou=People,o=iplanet.com,o=isp</DN>
</GetUsers>

</OrganizationRequests>
...

Code Example 2-17 Batch Processing File getRegisteredServiceNames.xml

...
<Requests>

<OrganizationRequests DN="o=sun.com,o=isp">
 <GetRegisteredServiceNames/>
</OrganizationRequests>

</Requests>

DSAME DTD Files

56 Directory Server Access Management Edition Programmer’s Guide • May 2002

ActionServices Elements
The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

Service Action Caveats
• The XML service file for the service must be loaded using the command line

interface amadmin before a service can be acted upon.

• If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

• If no Service_Name element is specified, the request will be ignored.

Code Example 2-18 on page 56 illustrates how these elements can be modeled.

AssignPolicy and UnAssignPolicy Elements
The AssignPolicy and UnAssignPolicy elements take the sub-element PolicyName.
The PolicyName element has no sub-elements; it must be empty. It has a required
XML attribute name which takes a character value equal to the name of the policy.
The required XML attribute of AssignPolicy and UnAssignPolicy is policyDN which
takes a value equal to the DN of the policy to be acted upon.

Code Example 2-18 Portion of Batch Processing File registerRequests.xml

...
<Requests>
<OrganizationRequests DN="o=sun.com,o=isp">

 <RegisterServices>
 <Service_Name>sampleMailService</Service_Name>
 </RegisterServices>

</OrganizationRequests>
</Requests>

DSAME DTD Files

Chapter 2 DSAME And XML 57

SchemaRequests Element
The SchemaRequests element consists of all requests that can be performed on the
default values of the DSAME schema. It has two required XML attributes:
serviceName and SchemaType. serviceName takes a value equal to the name of the
service where the schema lives and SchemaType defines the attribute group (Global,
Organization, Dynamic, User or Policy). This element can have zero or more
sub-elements. The sub-elements of SchemaRequests are:

• RemoveDefaultValues Element

• ModifyDefaultValues Element

• AddDefaultValues Element

• GetServiceDefaultValues

RemoveDefaultValues Element
The RemoveDefaultValues element removes the default values from the schema
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
which specifies the name of the attribute to be removed. The Attribute sub-element
itself must be empty; it takes no sub-element. There is no required XML attribute.

AddDefaultValues and ModifyDefaultValues Elements
The AddDefaultValues and ModifyDefaultValues elements add or change the default
values from the specified schema, respectively. They take a sub-element of
AttributeValuePair which specifies the name of the attribute and the new default
value; one or more attribute/value pairs can be defined. Code Example 2-20 on
page 58 illustrates how this element can be modeled.

Code Example 2-19 Portion of Batch Processing File removeschemaRequests.xml

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"

 SchemaType="dynamic">
<RemoveDefaultValues>
 <Attribute name="preferredlanguage"/>
</RemoveDefaultValues>
</SchemaRequests>
</Requests>

DSAME XML Files

58 Directory Server Access Management Edition Programmer’s Guide • May 2002

GetServiceDefaultValues Element
The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

ServiceConfigurationRequests Element
The ServiceConfigurationRequests element is reserved for future use.

DSAME XML Files
DSAME uses XML files to manage attributes that are stored in DS. It does not
implement any behavior or dynamically generate any code to interpret the
attributes; it can only set or get attribute values. In addition to XML files that define
service attributes, DSAME also includes XML templates that can be used for batch
processing. This section contains information on these types of XML files.

Internal XML Service Files
DSAME installs internal services that manage the attributes of its internal software
components. The DSAME console manages the attributes for these services; in
addition, DSAME provides code implementations to use them. These internal XML
service files are based on the sms.dtd. All internal XML service files are located in
Install_Directory/SUNWam/config/xml. They include:

Code Example 2-20 Portion of Batch Processing File addschemaRequests.xml

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"

 SchemaType="dynamic">
<AddDefaultValues>

 <AttributeValuePair>
 <Attribute name="iplanet-am-user-auth-modules"/>
 <Value>Cert</Value>
 </AttributeValuePair>

</AddDefaultValues>
</SchemaRequests>
</Requests>

DSAME XML Files

Chapter 2 DSAME And XML 59

• amAdminConsole.xml—Defines attributes for the Administration service.

• amAuth.xml—Defines attributes for the Core Authentication service.

• amAuthAnonymous.xml—Defines attributes for the Anonymous Authentication
service.

• amAuthCert.xml—Defines attributes for the Certificate-based Authentication
service.

• amAuthLDAP.xml—Defines attributes for the LDAP Authentication service.

• amAuthRadius.xml—Defines attributes for the Radius Authentication service.

• amAuthSafeWord.xml—Defines attributes for the SafeWord Authentication
service.

• amAuthSecurID.xml—Defines attributes for the SecurID Authentication
service.

• amAuthUnix.xml—Defines attributes for the Unix Authentication service.

• amClientDetection.xml—Defines attributes for the Client Detection service.

• amDomainURLAccess.xml—Defines attributes for the URL Access Policy
service.

• amEntrySpecific.xml—Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

• amLogging.xml—Defines attributes for the Logging service.

• amMembership.xml—Defines attributes for the Membership Authentication
service.

• amNaming.xml—Defines attributes for the Naming service.

• amPlatform.xml—Defines attributes for the Platform service.

• amPolicy.xml—Defines attributes for the Policy service.

• amSession.xml—Defines attributes for the Session service.

• amUser.xml—Defines attributes for the User service.

• amWebAgent.xml—Defines attributes for the web agents.

DSAME XML Files

60 Directory Server Access Management Edition Programmer’s Guide • May 2002

Modifying An Internal XML Service File
Administrators can display and manage any attribute in the DSAME console using
XML service files. The new attribute(s) would need to be added to an existing XML
service file. Alternately, they can be grouped into a new service by creating a new
XML service file although the simplest way to add an attribute is just to extend an
existing XML service file. For example, an administrator wants to manage the
nsaccountlock attribute; this attribute will give users the option of locking the
account it defines. To manage it through DSAME, nsaccountlock must be
described in a service. One option would be to add it to the amUser.xml service,
iPlanetAMUserService. This is the service that, by default, includes many
common attributes from the inetOrgPerson and inetUser object classes.
Following is an example of how to add the nsaccountlock attribute to the
amUser.xml service file.

1. Add the following code to the SubSchema name=User element in
Install_Directory/SUNWam/config/xml/amUser.xml.

2. Update the Install_Directory/SUNWam/locale/en_US/amUser.properties
file with the new i18nKey tag u13 including the text to be used for display.

NOTE When modifying an internal XML service file, be sure to also modify
the DS by extending the LDAP schema, if necessary. For more
information, see “Defining A Service,” on page 27.

Code Example 2-21 nsaccountlock Example Attribute

...
<AttributeSchema name="nsaccountlock"
type="single_choice"
syntax="string"
any="filter"
isChangeableByUser="yes"
i18nKey="u13">
<ChoiceValues>
 <Value>true</Value>
 <Value>false</Value>
</ChoiceValues>
<DefaultValues>
 <Value>false</Value>
</DefaultValues>
</AttributeSchema>
...

DSAME XML Files

Chapter 2 DSAME And XML 61

3. Remove the service
ou=iPlanetAMUserService,ou=services,dc=sun,dc=com with amadmin.

For information on the amadmin syntax, see “The amAdmin Command Line
Executable,” on page 68.

4. Reload the user service, amUser.xml, with amadmin.

For more information on the amadmin syntax, see “The amAdmin Command
Line Executable,” on page 68.

Batch Processing XML Files
The --data or -t option of amadmin is used to perform batch processing using the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

• Create, delete and read roles, users, organizations, groups, people containers
and services.

• Get roles, people containers, and users.

• Get the number of users for groups, people containers, and roles.

• Import, register and unregister services.

• Get registered service names or the total number of registered services for an
existing organization.

• Execute requests in multiple XML files.

The preferred way to perform most of these functions singularly is to use the
DSAME console. The batch processing templates have been provided for ease of
use with bulk updates although they can also be used for single configuration
updates. This section provides an overview of the batch processing templates
which can be modified to perform batch updates on user objects (groups, users,
roles, people containers, etc.) in the DS.

Code Example 2-22 User Account Locked Example i18nKey

...
u13=User Account Locked
...

DSAME XML Files

62 Directory Server Access Management Edition Programmer’s Guide • May 2002

Batch Processing XML Templates
All of the batch processing XML files perform operations on the DIT; they create,
delete, or get attribute information on user objects. The batch processing XML
templates provided with DSAME include:

• ContCreateServiceTemplate.xml—Creates a service template for a specific
container object.

• ContModifyRequests1.xml—Adds new attributes for a sub-container object.

• ContModifyRequests2.xml—Adds new attributes for a people container
object.

• ContModifyRequests3.xml—Adds new attributes for a sub-container object.

• ContModifyRequests4.xml—Adds new attributes to a role object.

• ContassignPolicyRequests.xml—Assigns policy to a specific container
object.

• ContunassignPolicyRequests.xml—Removes an assigned policy from a
specific container object.

• PCModifyRequests1.xml—Adds new attributes to a people container object.

• PCModifyUserRequests.xml—Adds new attributes to users in a people
container object.

• RoleCreateServiceTemplates.xml—Creates a service template for a role
object.

• RoleassignPolicyRequests.xml—Assigns policy to a role object.

• RolemodifyServiceTemplates.xml—Adds new attributes to a service
template for a specific role object.

• RoleunassignPolicyRequests.xml—Removes policy from a specific role
object.

• addChoiceValuesRequest.xml—Adds a selection of values the user can chose
from to an existing service attribute.

NOTE Only XML files can be used as input for the amadmin tool. If an
administrator wants to populate the DIT in DS with user objects, or
perform batch reads (gets) or deletes on the DIT, then the necessary
XML input files, based on the amadmin.dtd or sms.dtd, must be
written.

DSAME XML Files

Chapter 2 DSAME And XML 63

• addschemaRequests.xml—Adds a default value to an existing service
attribute.

• addserviceConfigurationRequests.xml—This is reserved for future use.

• createPolicyOrg.xml—Creates policy for an organization object.

• createRequests.xml—Creates a multitude of objects in the DS.

• createServiceTemplates.xml—Creates a service template for an
organization object.

• deleteGroupRequests.xml—Deletes all objects under a specific group
container.

• deleteOrgRequests.xml—Deletes a multitude of objects under a specific
organization.

• deletePCRequests.xml—Deletes a multitude of objects under a specific
people container.

• deleteServiceTemplates.xml—Deletes a service template under a specific
organization.

• deleteserviceConfigurationRequests.xml—This is reserved for future
use.

• getNumOfServices.xml—Passes a listing of an organization’s total number of
registered services.

• getRegisteredServices.xml—Passes a listing of an organization’s registered
services.

• getRequests.xml—Passes information about a multitude of objects in a
specific organization.

• modifyRequests1.xml—Adds new attributes to a number of objects in a
specific organization.

• modifyRequests2.xml—Adds new attributes to a people container object in a
specific organization.

• modifyRequests3.xml—Adds new attributes to a role object in a specific
organization.

• modifyServiceTemplates.xml—Modifies existing attributes in a service
registered to a specific organization.

• modifyschemaRequests.xml—Adds new attributes to a number of objects in a
specific organization.

DSAME XML Files

64 Directory Server Access Management Edition Programmer’s Guide • May 2002

• registerRequests.xml—Registers a service to an existing organization. (This
service must have been previously imported.)

• removeChoiceValueRequests.xml—Removes the values a user can choose
from in an existing attribute in a specific service.

• removeschemaRequests.xml—Removes the default value of an existing
attribute in a specific service.

• unassignPolicyRequests.xml—Removes an assigned policy from a specific
organization.

• unregisterRequests.xml—Unregisters a service from an existing
organization. (This service must have been previously imported and
registered.)

These XML templates follow the structure defined by the amAdmin.dtd. They are
located in Install_Directory/SUNWam/samples/admin/cli/bulk-ops.

Modifying A Batch Processing XML Template
Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadmin executable to upload the
changes to the DS.

XML Schema Files
The ums.xml file is the schema that defines the parameters of identity-related
objects. More information on this file and how it relates to the DSAME SDK can be
found in Chapter 4, “Identity Management And The SDK.”

Customizing User Pages
The User entry page and what it displays will vary, depending on what the service
developer defines. By default, every attribute in the amUser.xml file that has an
i18nKey attribute specified and the any attribute set to display (any=display)
will display in the DSAME console. Alternately, if an attribute is specified to be of
type User in another XML service file, the DSAME console will display it if the

NOTE Be aware that creations of roles, groups, and organizations is a
time-intensive operation.

Abstract Objects and amEntrySpecific.xml

Chapter 2 DSAME And XML 65

service is assigned to the user. The DSAME console gets attributes to display from
both, XML service files that have a defined schema attribute type of User and the
User XML service file, amUser.xml. Thus, User display pages in the DSAME
console can be modified to add new attributes in either of two ways:

• The User attribute schema definition in the specific XML service file can be
modified.

• A new User schema attribute definition can be added to the User service (the
amUser.xml service file).

For information on modifying XML service files, see “Modifying An Internal XML
Service File,” on page 60.

Abstract Objects and amEntrySpecific.xml
The purpose of this XML service file is to define the attributes that will display on
the Create, Properties and Search pages specific to each of the DSAME abstract
objects. Each DSAME abstract object can have its own schema definition in the
amEntrySpecific.xml file which is based on the sms.dtd as described in
“DSAME DTD Files,” on page 33.

Abstract Objects
DSAME represents the objects it manages abstractly; in other words, an
organization in DSAME does not necessarily map to an LDAP organization in the
DS. The abstract objects are:

• organization

• organizational unit

• people container

• static group

• filtered group

• assignable dynamic group

NOTE Any service can describe an attribute that is for a user only. The
amUser.xml file is just the default placeholder for user attributes
that are not tied to a particular service.

Abstract Objects and amEntrySpecific.xml

66 Directory Server Access Management Edition Programmer’s Guide • May 2002

• group container

Marker Object Classes
Abstract objects are identified in the DS by marker object classes that are defined in
a DSAME schema and used in LDAP object entries. For example, the DS may use
organizational units for their first level structure; by adding the DSAME
organization marker object class, iplanet-am-managed-org, to the LDAP entries
of these organizational units, DSAME will manage them as organizations. It is the
use of marker object classes that allows DSAME to manage most directory
structures, regardless of the object classes and naming attributes deployed. The
marker object classes are:

• iplanet-am-managed-filtered-group

• iplanet-am-managed-assignable-group

• iplanet-am-managed-static-group

• iplanet-am-managed-org

• iplanet-am-managed-org-unit

• iplanet-am-managed-people-container

• iplanet-am-managed-group-container

amEntrySpecific.xml Schema
Each abstract object can have a schema defined in the amEntrySpecific.xml file.
The schema defines what attributes will be displayed on the function pages used to
manage abstract type objects:

• Create—The Create page is displayed when the administrator clicks New.

• Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an abstract type object is clicked.

• Search—The Search link is in the top left frame of the DSAME console.

NOTE The marker object classes are defined in the DSAME-specific LDAP
schema named 95am-schema.ldif and located in
Install_Directory/SUNWam/config/ums. It is loaded into the DS
when DSAME is installed.

Abstract Objects and amEntrySpecific.xml

Chapter 2 DSAME And XML 67

If a service developer wants to customize these DSAME function pages for any of
the abstract objects, they would need to modify the amEntrySpecific.xml. For
example, to display an attribute on the group page, the new attribute needs to be
added to the amEntrySpecific.xml file. Any abstract object with customized
attributes in the DS would need to have those attributes reflected in the
amEntrySpecific.xml file also. (Most often, a service developer would only be
customizing the organization pages.) Code Example 2-23 is the organization
attribute subschema that defines the display of an organization’s Organization
Status and its choice values.

If the type attribute is not specified in amEntrySpecific.xml, the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the DSAME console.

All the attributes listed in the schema definitions in the amEntrySpecific.xml file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the amEntrySpecific.xml file, the DSAME
console will not display the attribute. For additional information on the DSAME
abstract objects and marker object classes, see the iPlanet Directory Server Access
Management Edition Installation and Configuration Guide.

Code Example 2-23 Organization Subschema of amEntrySpecific.xml

...
<SubSchema name="Organization">
 <AttributeSchema name="inetdomainstatus"
 type="single_choice"
 syntax="string"
 any="optional|filter"
 i18nKey="o2">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 </ChoiceValues>
 </AttributeSchema>
 </SubSchema>
...

NOTE Note that the User service is not configured in the
amEntrySpecific.xml file but in its own amUser.xml file.

The amAdmin Command Line Executable

68 Directory Server Access Management Edition Programmer’s Guide • May 2002

The amAdmin Command Line Executable
The primary purposes of the command line executable amadmin is to load XML
service files into the DS and to perform batch administrative tasks on the DIT.
amadmin can be found in Install_Directory/SUNWam/bin and is used to:

• Load XML service files—Administrators load services into DSAME that use
the XML service file format defined in the sms.dtd. All services must be
loaded using amadmin; they cannot be imported through the DSAME console.

• Perform batch updates to the DIT—Administrators can perform batch updates
to the DS DIT using the batch processing XML file format defined in the
amadmin.dtd. For example, if an administrator wants to create 10
organizations, 100 people containers, 1000 users, and 100 groups, it can be
done in one attempt by putting the requests in one or more batch processing
XML files and loading them using amadmin. More information on this can be
found in “DSAME DTD Files,” on page 33.

The amadmin Syntax
There are a number of structural rules that must be followed in order to use
amadmin. The generic syntaxes for using the tool are:

• amadmin -u | --runasdn dnname -w | --password password [-l |

--locale localename] [[-v | --verbose] | [-d |--debug]] -t |

--data xmlfile1 [xmlfile2 ...]

• amadmin -u | --runasdn dnname -w | --password password [-l |

--locale localename] [[-v | --verbose] | [-d | --debug]] -s |

--schema xmlfile1 [xmlfile2 ...]

NOTE XML service files are stored in the DS as static blobs of XML data that
is referenced by DSAME. This information is not used by the DS
which only understands LDAP.

NOTE amadmin only supports a subset of features that the DSAME console
supports and is not intended as a replacement. It is recommended
that the console be used for small administrative tasks while
amadmin is used for larger administrative tasks.

The amAdmin Command Line Executable

Chapter 2 DSAME And XML 69

• amadmin -u | --runasdn dnname -w | --password password [-l |
--locale localename] [[-v | --verbose] | [-d | --debug]] -r |
--deleteService serviceName1 [serviceName2 ...]

• amadmin -h | --help

• amadmin -n | --version

amadmin Options
Following are definitions of the amadmin command line options:

--runasdn
--runasdn is used to authenticate the user to the LDAP server. The argument is a
value equal to that of the Distinguished Name (DN) of the user authorized to run
amadmin; as in --runasdn uid=amAdmin,ou=People,o=iplanet.com,o=isp. The
DN can also be formatted by inserting spaces between the domain components and
double quoting the entire DN such as: --runasdn "uid=amAdmin, ou=People,
o=iplanet.com, o=isp".

--password
--password is a mandatory option and takes a value equal to that of the password
of the DN specified with the --runasdn option.

--locale
--locale is an option that takes a value equal to that of the name of the locale. This
option can be used for the customization of the message language. If not provided,
the default locale, en_US, is used.

--debug
--debug is an option that will write messages to the amAdmin file created under the
Install_Directory/SUNWam/web-apps/services/debug directory. These
messages are technically-detailed but not i18n-compliant.

--verbose
--verbose is an option that prints to the screen the overall progress of the amadmin
command. It does not print to a file the detailed information. Messages output to
the command line are i18n- compliant.

NOTE Two hyphens must be entered exactly as shown in the generic
syntax.

The amAdmin Command Line Executable

70 Directory Server Access Management Edition Programmer’s Guide • May 2002

--data
--data is an option that takes as its value the name of the batch processing XML
file being imported. One or more XML files can be specified. This XML file can
create, delete and read various directory objects as well as register and unregister
services. For more information on what types of XML files can be passed to this
option, see “DSAME DTD Files,” on page 33.

--schema
--schema is an option that loads the attributes of a DSAME service into the DS. It
takes as an argument an XML service file in which the service attributes are
defined. This XML service file is based on the sms.dtd. One or more XML files can
be specified.

--deleteService
--deleteService is an option for deleting a service and its schema only.

--serviceName
--serviceName is an option that takes a value equal to the service name which is
defined under the Service name=... tag of an XML service file. This portion is
displayed in Code Example 2-24 on page 70.

--help
--help is an argument that displays the syntax for the amadmin command.

--version
--version is an argument that displays the utility name, product name, product
version and legal notice.

NOTE Either the --data or --schema option must be specified, depending
on whether configuring batch updates to the DIT, or loading service
schema and configuration data.

Code Example 2-24 Portion of sampleMailService.xml

<ServicesConfiguration>
 <Service name="sampleMailService" version="1.0">
 <Schema
 serviceHierarchy="/other.configuration/sampleMailService"
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">
...

SampleMailService Files

Chapter 2 DSAME And XML 71

SampleMailService Files
DSAME comes with the files needed to integrate a mail service into the
configuration. These sample files are provided as guidelines for creating custom
services and applications and illustrate how the service might be configured. The
files included are:

• sampleMailServiceSchema.ldif—This LDAP Data Interchange Format
(LDIF) file contains the LDAP schema (LDAP object classes and attribute
names) for the sample mail service. The LDIF file for the service needs to be
loaded into the DS using the ldapmodify command line tool. For more
information, see the iPlanet Directory Server documentation.

• sampleMailService.xml—This XML service file contains the service schema
and configuration parameters for the sample mail service based on the
structure defined in the sms.dtd. It defines the mail service attributes, among
them i18Nkey which maps to fields in the service’s corresponding localization
properties files.

• sampleMailService.properties—This localization properties file defines the
object class name for the mail service profile as well as the values for the
localization keys defined in sampleMailService.xml. The localization keys
point to actual fields that display on DSAME console. For example,
i18nKey="a1" defines a localization key in sampleMailService.xml file.
a1=Mail Status, defined in sampleMailService.properties, tells the
DSAME console to display Mail Status on the Sample Mail Service profile page
in the DSAME console. For more information, see “Configuring Localization
Properties,” on page 32.

The files can be found in
Install_Directory/SUNWam/samples/admin/cli/sampleMailService. These
files are used throughout this chapter to illustrate service definition concepts.

NOTE DSAME provides sample mail service files for instructional
purposes only. Integrating DSAME with the iPlanet Messenger
service is not supported.

SampleMailService Files

72 Directory Server Access Management Edition Programmer’s Guide • May 2002

73

Chapter 3

User Authentication With DSAME

If an organization’s resources are protected by the iPlanet Directory Server Access
Management Edition (DSAME), a user must submit credentials to the
Authentication service in order to gain access to those resources. While DSAME
provides several authentication modules, custom authentication modules may also
be incorporated. This chapter explains the authentication process, its pluggable
architecture and the authentication APIs. It contains the following sections:

• The Authentication Process

• Installed Authentication Services

• Custom Authentication Services

• Authentication Service Properties Files

• Authentication URL Parameters

• Authentication APIs

• Sample Authentication Service

The Authentication Process
Every organization has information and resources that need to be protected from
unwanted eyes. DSAME provides secure access to these web-based applications
and the data that it stores. Gaining access to either of these resources requires that
the accessor be validated (given permission). DSAME can use one or more of several
types of authentication methods to perform this validation.

An organization’s method of authentication (their chosen authentication service) is
defined at the root level of an organization by their administrator. When a user or
application tries to access a protected resource, they are first directed to a login
screen and guided through a series of one or more templates for credential

The Authentication Process

74 Directory Server Access Management Edition Programmer’s Guide • May 2002

gathering. Once authenticated, the user is issued an encrypted token identity and
DSAME redirects them to the desired information, based on their policy set. There
are two entry points which recognize that a user has not yet been validated: the
DSAME console and a URL Policy Web Agent. These entry points redirect any
non-validated users to the organization’s authentication service.

Administration Console Entry
When a user (whether an organization’s administrator or an end user) attempts to
access DSAME’s URL-based administration console, it checks the client browser for
an encrypted token identity. If none is present, the user is directed to the login page
of the organization’s authentication service where they submit credentials for
validation. Once authenticated, the user will be redirected back to the correct
screen of the console, based on the roles they are assigned in their DSAME profile.

URL Policy Agent Entry
A web agent is a plug-in that resides on a web server and protects an
organization’s web-based resources by enforcing a user’s DSAME-administered
policy. A user’s URL access policy consists of three lists of URLs: those that are not
subject to policy enforcement, those that the user is denied access to and those that
the user is allowed to access. When a user accesses a web-based resource by
providing a URL, the web agent first checks the user’s not enforced list. If a match
is found there, access is allowed. If no match is found, the web agent checks the
browser for an encrypted token identity. If one exists, the web agent retrieves the
user’s URL policy using the token information and allowed or denied access to the
resource based on their policy. If there is no token identity, the user is redirected to
their organization’s authentication service.

NOTE If the authentication process fails, the user is redirected to an error
page and refused entry.

NOTE URL Policy Web Agents are bundled for installation separately from
the iPlanet DSAME. Additional information can be found in the
iPlanet Policy Agent Pack documentation.

The Authentication Process

Chapter 3 User Authentication With DSAME 75

Client Detection
DSAME has the capability to process requests from client browsers based on a
number of protocols. The client detection module determines the protocol used by
the requesting client browser and retrieves the pages formatted correctly for the
client type. Since any client requesting DSAME services must first be successfully
authenticated, client detection is accomplished within the authentication service.

When a client’s HTTP request is passed to the DSAME, it is directed to the
Authentication module. Within this framework, the first step in user validation is
to identify the browser type using the HTTP request. The authentication service
then uses this information to retrieve the browser type’s DSAME characteristics.
Based on this client data, authentication pages are sent back to the client browser
(for example, HTML or WML pages). Once the user is validated, the client type is
added to the session token where it can be retrieved by other DSAME services.

Client Data
In order to recognize requesting client types, DSAME stores their identifying
characteristics. This information is defined in the
iplanet-am-client-detection-client-types property of the
amClientDetection.xml file. The client data is separated by a pipe ("|"):
clientType=<value>|userAgent=<value>|contentType=<value>|cookieSupp
ort=<value>|fileIdentifier=<value>|filePath=<value>.

The fields are defined as:

• ClientType—an arbitrary string which uniquely identifies the client. The
default is genericHTML.

• UserAgent—a search filter used to compare/match the user-agent defined in
the HTTP header. The default is Mozilla/4.0.

• contentType—defines the HTTP requested content type. The default is
text/html.

• cookieSupport—defines whether cookies are supported or not. The default is
true.

• fileIdentifier—defines the extension of the client type files (templates and
JSP). The default is html.

• filePath—defines the location of the client type files (templates and JSP files).
The default is html.

NOTE Currently, DSAME only defines client data for HTML client types.

Installed Authentication Services

76 Directory Server Access Management Edition Programmer’s Guide • May 2002

Installed Authentication Services
DSAME installs a number of authentication services (including the base service).
This allows an administrator to choose from a variety of authentication methods
with which to validate their defined organization’s users. The services are:

• Core — The core service is the configuration base for all authentication method
modules. It must be registered to an organization before any user can login
using one of the installed authentication method modules. (In addition, the
specific authentication service needs to be registered.) It allows the DSAME
administrator to define default values for core authentication parameters. They
can then be picked up if no overriding value is set in the specific authentication
service chosen. The core values are defined in the amAuth.xml file.

• Anonymous — This service allows for log in without specifying a user name
and password. Anonymous connections have limited access to the server and
are customized by the DSAME administrator.

• Certificate — This service allows login through a personal digital certificate
(PDC). iPlanet Certificate Management System (CMS) can be installed as a
Certificate Authority. For more information on CMS, see the documentation
set located at http://docs.iplanet.com/docs/manuals/cms.html

• LDAP — This service allows for authentication using LDAP bind, an operation
which associates a user ID password with a particular LDAP entry.

• Membership (Self-Registration) — This service allows a new user to
self-register for authentication with a login and password.

• RADIUS — This service allows for authentication using an external Remote
Authentication Dial-In User Service (RADIUS) server.

• SafeWord™ — This service allows for authentication using Secure
Computing’s servers and tokens.

• Unix — This service allows for authentication using a user’s UNIX
identification and password.

Custom Authentication Services
The DSAME authentication module provides a framework that allows an
organization to plug-in custom authentication services by calling the
authentication APIs. The following sections provide information on how to create a
custom authentication service as well as the interfaces and classes that must be
implemented to run it.

Custom Authentication Services

Chapter 3 User Authentication With DSAME 77

Creating an Authentication Service
1. Create an XML file for the new authentication service.

The service XML file is written so that the authentication service’s attributes
(configurable parameters) can be managed using the DSAME console. The
name of this file follows the format amAuthservicename.xml; for example,
amAuthLDAP.xml or amAuthSafeWord.xml. More information on writing XML
files using the sms.dtd can be found in Chapter 2, “DSAME And XML.”

2. Create a screen configuration properties file.

A screen configuration properties file specifies the screen text that a user will
see when directed to the authentication service’s login page. This might
include, but is not limited to, User Name and Password. The name of this file
follows the format servicename.properties; for example, LDAP.properties
or SafeWord.properties. The files are located, by default, in
Install_Directory/SUNWam/web-apps/services/WEB-INF/config/auth/d

efault. The directory will be different based on locale. Information on how to
create the file can be found in “Configuring Screen Properties,” on page 79.

3. Create a localization properties file.

The localization properties file defines language-specific screen text for the
service’s attribute names. The name of the file follows the format
amAuthservicename.properties; for example, amAuthLDAP.properties. The
files are located in Install_Directory/SUNWam/locale/. This directory
contains a sub-directory for each locale. More information on this file and how
to configure it can be found in “Configuring Localization Properties,” on
page 81.

4. Write a Java file which implements the API
com.iplanet.authentication.spi.AuthenticationModuleFactory.

This API contains the method that obtains an instance of the authentication
module.

5. Write a Java file which extends the API
com.iplanet.authentication.spi.AuthenticationModule.

This API instantiates a class of the authentication module. Certain abstract
methods must be overridden.

6. Compile the application using the Java Development Kit (JDK).

Information on how to compile a Java application can be found in the JDK
documentation.

Custom Authentication Services

78 Directory Server Access Management Edition Programmer’s Guide • May 2002

7. Modify the amAuth.xml file.

Altering this file to include the new authentication service allows the pluggable
architecture to recognize it.

8. Integrate the service within the DSAME authentication module by using the
amadmin command line tool.

Information on using amadmin can be found in the iPlanet Directory Server
Access Management Edition Administration Guide.

Authentication Service XML Files
There are two XML files that need to be created and/or modified when creating a
custom authentication service. The first file, amAuthservicename.xml, specifies the
attributes that the service developer wants users and administrators to be able to
configure using the DSAME console. The second file, amAuth.xml, defines the core
authentication service.

amAuthservicename.xml
This file must be created for the new authentication service. Each authentication
service has its own service XML file, for example, amAuthLDAP.xml or
amAuthSafeWord.xml. The file specifies the attributes that a service developer
wants users and administrators to be able to configure via the DSAME console.
When creating it, an existing authentication service XML file can be copied and
altered as needed. For information on writing a new service XML file, see Chapter
2, “DSAME And XML.”

amAuth.xml
The amAuth.xml file defines the Core authentication service, the “parent”
authentication service. After creating a new authentication service, this file must be
modified in order for the authentication module to recognize the new service. This
file must live in the Install_Directory/SUNWam/config/xml directory for all
authentication modules to work. For information on modifying the amAuth.xml
file, see Chapter 2, “DSAME And XML.”

Authentication Service Properties Files

Chapter 3 User Authentication With DSAME 79

Authentication Service Properties Files
Typically, each authentication service in DSAME has two properties files: the
screen properties file and the localization properties file. The screen properties file
defines the screen text for the authentication service login page and the localization
properties file defines locale-specific (or translated) screen text and messages for
the whole service.

Configuring Screen Properties
The screen properties file specifies the screen text that a user will see when directed
to that authentication service’s login page. Each service’s screen properties file is
named using the name of the service followed by the extension .properties; for
example, Anonymous.properties or LDAP.properties. By default, the file is in
Install_Directory/SUNWam/web-apps/services/WEB-INF/config/auth/defa
ult. If the file is organization-specific, it is stored in the organization’s own
authentication directory Install_Directory/SUNWam/web-apps/services/
WEB-INF/config/auth_orgname. If the files are organization and locale-specific, it
is stored in the organization’s locale directory inside its specific authentication
directory at Install_Directory/SUNWam/web-apps/services/WEB-INF/
config/auth/orgname/locale. (Information on configuring files per organization
can be found in “Configuring An Organization’s Screens,” on page 137 of Chapter
8, “GUI Customization.”) To illustrate the “The Screen Properties File Directives,”
on page 80, the LDAP.properties file has been copied below.

Code Example 3-1 LDAP.properties File

SCREEN
TIMEOUT 120
TEXT LDAP Authentication
TOKEN Enter UserId
PASSWORD Enter Password

SCREEN
TIMEOUT 240
TEXT Password Expiring Please Change
PASSWORD <REPLACE>
 Enter Current Password
PASSWORD Enter New Password
PASSWORD Confirm New Password

SCREEN
TIMEOUT 120
TEXT Your password has expired. Please contact service desk to
reset your password.

Authentication Service Properties Files

80 Directory Server Access Management Edition Programmer’s Guide • May 2002

The Screen Properties File Directives
The directives included in the configured screen properties file will depend on the
requirements of the authentication method and the extent of the customization of
the screen prompts. Table 3-1 discusses the directives.

Table 3-1 The Screen Properties File Directives

Directive Description

SCREEN Each SCREEN entry corresponds to one login page. The
authentication module can set which screen is next, or it can
allow the DSAME’s auth servlet to progress through the
screens sequentially.

TIMEOUT n The TIMEOUT directive is used to ensure that users respond
in a timely manner. If the time between when the page is sent
and the user submits his response is greater than n seconds, a
time-out page is sent.

TEXT The TEXT directive specifies a title for the login page. Only
one TEXT directive per SCREEN entry should be specified. If
more than one is provided, the last one is displayed.

TOKEN yyy The TOKEN directive is used to obtain the user’s
identification input. Within an HTML login page, it equates to
the following tag:

<P>yyy
<INPUT TYPE=”TEXT”
NAME=TOKEN0>

where yyy is the text the user will see on the login page and
INPUT specifies the input field for the user name or ID. When
multiple input fields are used (such as user ID and password
fields), successive numbers are appended to the name value
TOKEN as in TOKEN0, TOKEN1, TOKEN2, etc. (The use of
TOKEN here has no relation to a single sign-on token.)

PASSWORD zzz The PASSWORD directive is used to obtain the user’s
password input. Within an HTML login page, it equates to
the following tag:

<P>zzz
<INPUT
TYPE=”PASSWORD” NAME=TOKEN1>

where zzz is the text the user will see on the login page and
INPUT specifies the input field for the password. When
multiple input fields are used (such as user ID and password
fields), successive numbers are appended to the name value
TOKEN as in TOKEN0, TOKEN1, TOKEN2, etc.

Authentication Service Properties Files

Chapter 3 User Authentication With DSAME 81

Note that the screen properties file may direct a certain number of screens to be
displayed although not all of them will be. Code Example 3-1 on page 79,
LDAP.properties has defined three screens although the last two will only be
displayed under certain circumstances.

Configuring Localization Properties
A localization properties file specifies the locale-specific screen text and localized
messages that an administrator or user will see when directed to an authentication
service’s attribute configuration page. As an example, a portion of
amAuthLDAP.properties is copied below. (The file is in the
Install_Directory/SUNWam/locale/ directory.) The data following the equal (=)
sign in each key/value pair (displayed in English here) would be translated to a
specific language as necessary and copied into the corresponding locale directory.
The alphanumeric keys (a1, a2, etc.) map to fields defined, in this example, in the
amAuthLDAP.xml service configuration file with the i18nKey attribute.

IMAGE path The optional IMAGE directive allows for the display of a
custom background image on the page where path equals the
direct path to the displayed image.

HTML path This optional HTML directive allows for the use of a custom
HTML page for the authentication screens. The path attribute
equals the path to the HTML file which will be displayed,
overriding the HTML file dynamically generated by the
authentication service’s .properties file. For more
information on customizing a HTML login page, see
“Authentication URL Parameters,” on page 82.

<REPLACE> The REPLACE tag allows for the substitution of dynamic text
for the static text descriptions, allowing for the dynamic
generation of challenges or passwords. It is used in
conjunction with the setReplaceText() method.

NOTE The screen properties file can also be empty. In such cases there is no
login page; the credentials are specified in the URL or its part of the
servlet request (as in the case of Certificate authentication).

Table 3-1 The Screen Properties File Directives (Continued)

Directive Description

Authentication URL Parameters

82 Directory Server Access Management Edition Programmer’s Guide • May 2002

Note that the alphanumeric keys determine the order in which the fields are
displayed on a service page in the DSAME console. The keys are taken in
alphabetical and then numerical order (a1, a2 is followed by b1, b2 and so forth).
For example, if a new attribute is added and needs to be displayed at the top of the
service page, the alphanumeric key should have a value of a1. The second attribute
should then have a value of either a2 or b1, and so forth. Please note that a10
comes before a2.

Authentication URL Parameters
A custom HTML file can be written as an organization’s login screen. This HTML
file can then be dynamically generated from a value defined in the authentication
service’s properties file. For example, an organization wants its users to
authenticate by entering a login ID and password in the HTML page,
MyLogin.html. After entering the data and clicking the Submit button, the user
will be taken directly to the page http://DSAMEServer:58080/MyURL.html.
MyLogin.html will contain code that includes the ACTION tag as displayed in
Code Example 3-3 on page 82.

Code Example 3-2 Portion of amAuthLDAP.properties

...
PInvalid=Current Password Entered Is Invalid
PasswdSame=Password should not be same
PasswdMinChars=Password should be atleast 8 characters
a1=Primary LDAP Server and Port
a2=Secondary LDAP Server and Port
a3=DN to Start User Search
a4=DN for Root User bind
a5=Password for Root User Bind
a6=User Naming Attribute
a7=User Entry Search Attribute
...

Code Example 3-3 URL Parameter Code for Authentication

<Html>
<Head>
<Title>
My Login Form
</Title>
</Head>
<Body>
<Form Name="login_form" Action="/amserver/login?module=LDAP "
Method="POST">
<Input Type="TEXT" Name=TOKEN0>

Authentication URL Parameters

Chapter 3 User Authentication With DSAME 83

In the source code, the HTML tag ACTION has the value
/amserver/login?module=LDAP. This string can be modified by passing different
name/value pairs. These pairs are:

• goto=URL—After successful login, DSAME redirects the user to this URL. It
overrides the default URL. Example:
http://dsame1.red.iplanet.com:8080/amserver/

login?goto=http://webserver.red.iplanet.com/webpage.html

• gotoOnFail=URL—After unsuccessful login, DSAME redirects the user to this
URL. Example: http://dsame1.red.iplanet.com:8080/amserver/
login?goto=http://webserver.red.iplanet.com/ForgotPassowrd.html

• arg=newsession—This argument is typically used in the anonymous to
authenticated user login scenario. It allows a login to destroy an existing
session and perform a new login in one request. The user first hits the site with
an anonymous session and then hits the Register or Login link. Example:
http://dsameserver.sun.com/amserver/login?arg=newsession

• module=AuthModule—Instead of using the configured authentication modules
for an organization, the authentication module is specified via this URL
parameter. Example:
http://dsame1.red.iplanet.com:8080/amserver/login?module=LDAP

• org=OrgString—The Authentication service figures out which organization
OR sub-organization, the user is going to authenticate to based on the value of
this parameter. If no org parameter is given, the service will use the
host:port/URI portion of the URL.

• page=n—This allows applications to go directly to a specific page of a login
module. For example, if a module has 4 pages and an application wants to send
a user directly to page 4 it would pass page=4 in the login request. This is
typically used in conjunction with custom authentication modules. For
example,

<Input Type="PASSWORD" Name=TOKEN1>
<Input Type="SUBMIT" Name=Submit Value=Submit>
</Form>
</Body>
</Html>

Code Example 3-3 URL Parameter Code for Authentication (Continued)

Authentication APIs

84 Directory Server Access Management Edition Programmer’s Guide • May 2002

http://dsameserver.sun.com/amserver/login?module=LDAP&TOKEN0=use

r&TOKEN1=password&page=1

http://dsame1.red.iplanet.com:8080/amserver/login?goto=

http://wevserver.red.iplanet.com/webpage.html&page=1

• iPSPCookie—To enable persistent cookies in DSAME, this parameter must be
specified as true in the login URL: iPSPCookie=true. Persistent cookies must
also be enabled in the Core Authentication service. This typically is used by
portals with the Remember my username and password feature as it allows the
user to restart their browser while retaining their session.

Authentication APIs
The authentication APIs are organized in a package called
com.iplanet.authentication.spi. It contains the classes, interfaces and
methods needed to write a customized authentication service.

Authentication API Overview
Each time a user attempts to access a protected resource, a new instance of the
authentication Java class is created. (The reference to the class is released once the
authentication session has either succeeded or failed.) When an authentication
session is invoked, one login page is sent to the browser for each screen directive
defined in the screen properties file although not all screens will need to be
displayed. The first directive would send a login page asking the user to enter a
user identification and a password. When the user submits the information, the
validate() method is called. The module gets the information tokens, validates
and returns them. If applicable, a second screen is sent and the validate()
method is called again. (In the LDAP.properties Code Example 3-1 on page 79, a
second screen would be sent only to a user whose current password is expiring.)
When multiple screens are sent to the user, the tokens from a previous screen can
be retrieved by using the getTokenForState methods. (Each screen is referred to
as a state.) The authentication module keeps all tokens from previous states until
authentication is complete.

NOTE The Overview page for the complete set of public Javadocs can be
accessed at Install_Directory/SUNWam/docs/index.html.

Authentication APIs

Chapter 3 User Authentication With DSAME 85

Naming Conventions
The following naming convention is recommended when creating the custom
authentication service. If the new authentication service class is named
servicename.java, the authentication module factory class should be named
servicenameAuthenticationModuleFactory.java. In addition, the use of upper
and lower case letters should be consistent. If the new authentication service class
is named NewAuth.java, the authentication module factory class should be named
NewAuthAuthenticationModuleFactory.java.

AuthenticationModuleFactory Interface
The AuthenticationModuleFactory interface must be implemented for each
custom authentication module. This top-level class contains the
newAuthenticationModule() method which creates a new instance of the
AuthenticationModule class. This new instance defines the authentication
module being customized.

AuthenticationModule Class
The AuthenticationModule class extends the Authenticator class which defines
basic methods used in the authentication service. The AuthenticationModule class
contains more detailed methods. The instance of the AuthenticationModule class
must override the validate(), init(), and getUserTokenId() methods.

• The init() method should be used if the class has any specific initialization
requirements such as loading a JNI library. init() is called once for each
instance of the class. Once a login session is completed, the reference to the
class is released.

• The validate() method is called for each authentication page specified in the
screen properties file and validates the entered credentials and thus, the user.
At the point of authentication failure, it throws an AuthenticationException.
The reason for failure can be an argument to the exception and will be logged
in the DSAME authentication log.

• The getUserTokenId() method is called once at the end of a successful
authentication session. A login session is deemed successful when all pages in
the screen properties file have been sent and the module has not thrown an
exception. The method retrieves the authenticated token string that the
authenticated user will be known by in the DSAME environment.

Sample Authentication Service

86 Directory Server Access Management Edition Programmer’s Guide • May 2002

LoginWorkerFactory
The LoginWorkerFactory interface must be implemented for each custom
non-HTML authentication module. This top-level class contains the
newLoginWorker() method which creates a new instance of the LoginWorker
class. The new instance generates the UI for the authentication module being
customized.

Sample Authentication Service
A sample authentication program has been provided in the directory,
Install_Directory/SUNWam/samples/authentication/providers. It includes
the following files:

• AuthenticationSample.jar

• AuthenticationSample.java

• AuthenticationSample.properties

• AuthenticationSampleAuthenticationModuleFactory.java

• Readme.html

The Readme.html file explains how to compile, deploy and run the Authentication
Sample program. It is copied below.

Authentication Sample: Readme.html
The Readme.html file explains how to compile, deploy and run the Authentication
Sample program.

NOTE If the instance of DSAME participates in the User Lockout feature,
the validate() method throws an InvalidPasswordException
after n attempts at login. In order to support this feature, the
getUserTokenId() method should be set to return the user ID
before the exception is thrown.

NOTE Any static data or reference to any static data in the authentication
module must be thread-safe.

Sample Authentication Service

Chapter 3 User Authentication With DSAME 87

Steps to compile the Authentication Sample program
1. Set the following environment variables.

These variables will be used to run the gmake command. You can also set these
variables in the Makefile. This Makefile is in the same directory
(Install_Directory/SUNWam/samples/authentication/providers) as the
Authentication Sample program files.

❍ JAVA_HOME - Set this variable to your installation of JDK. The JDK should
be newer than JDK 1.2.2.

❍ CLASSPATH - Modify the /opt to the base of your installation.
Install_Directory/SUNWam/web-apps/services/WEB-INF/lib
directory.

❍ BASE_CLASS_DIR - Set this variable to the directory where all the Sample
compiled classes are located.

❍ JAR_DIR - Set this variable to the directory where the JAR files of the
Sample compiled classes will be created.

2. Go to the
Install_Directory/SUNWam/samples/authentication/providers
directory and run gmake.

Steps to deploy the Authentication Sample program
1. Copy AuthenticationSample.jar from JAR_DIR to

Install_Directory/SUNWam/web-apps/services/WEB-INF/lib".

2. Copy AuthenticationSample.properties from
Install_Directory/SUNWam/samples/authentication/providers to
Install_Directory/SUNWam/web-apps/services/WEB-INF/config/auth/d

efault.

3. Modify
Install_Directory/SUNWam/web-apps/services/WEB-INF/config/xml/am

Auth.xml to include the Authentication Sample in the Authentication menu
choices and in the Authenticator's list (in Admin Console) as follows:

NOTE The properties file name should be the same as the Authentication
Sample module name.

Sample Authentication Service

88 Directory Server Access Management Edition Programmer’s Guide • May 2002

4. Make a backup copy amAuth.xml.

5. Delete iPlanetAMAuthService entry and then import (the modified)
amAuth.xml using amadmin.

a. cd <install-root>/SUNWam/bin

b. ./amadmin --runAsDN

uid=amAdmin,ou=People,<default_org>,<root_suffix> --password

<password> --deleteService iPlanetAMAuthService

Code Example 3-4 amAuth.xml After Modification

<AttributeSchema name="iplanet-am-auth-menu"
 type="multiple_choice"
 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <Value>LDAP</Value>
 <Value>Radius</Value>
 <Value>Membership</Value>
 <Value>Anonymous</Value>
 <Value>Cert</Value>
 <Value>AuthenticationSample</Value>
 </ChoiceValues>
 <DefaultValues>
 <Value>LDAP</Value>
 </DefaultValues>
 </AttributeSchema>

 <AttributeSchema name="iplanet-am-auth-authenticators"
 type="list"
 syntax="string"
 i18nKey="a17">
 <DefaultValues>
 <Value>com.iplanet.authentication.modules.radius.Radius</Value>
 <Value>com.iplanet.authentication.modules.ldap.LDAP</Value>
<Value>com.iplanet.authentication.modules.membership.Membership<
/Value>
<Value>com.iplanet.authentication.modules.anonymous.Anonymous</V
alue>
 <Value>com.iplanet.authentication.modules.cert.Cert</Value>
<Value>com.iplanet.authentication.modules.application.Applicatio
n</Value>
<Value>com.iplanet.am.samples.authentication.providers.Authentic
ationSample</Value>
 </DefaultValues>
 </AttributeSchema>

Sample Authentication Service

Chapter 3 User Authentication With DSAME 89

c. ./amadmin --runAsDN

uid=amAdmin,ou=People,<default_org>,<root_suffix> --password

<password> --schema amAuth.xml

6. Add the AuthenticationSample.jar file path to the Web server JVM
classpath:

a. cd

Install_Directory/SUNWam/servers/https-<host>.<domain>/config

b. Modify jvm12.conf to add
Install_Directory/SUNWam/web-apps/services/WEB-INF/lib/Authen

ticationSample.jar path to the JVM classpath.

Steps to run the Authentication Sample program
1. Restart DSAME server

Install_Directory/SUNWam/web-apps/services/WEB-INF/bin/amserver

start.

2. Log in to the DSAME console by entering the URL
http://<host>.<domain>:<port>/<Deploy-URI>/console.

3. Select the User Management view.

4. Select your organization and select services from the Show menu.

5. Click on the DSAME Core Authentication properties icon.

6. Add the Authentication Sample class in Pluggable Auth Module Classes.

7. Select AuthenticationSample from Authentication Menu.

8. Click Submit to save changes and log out.

9. Enter the URL http://<host>.<domain>:<port>/<Deploy-URI>/login and
select AuthenticationSample from Authentication Menu OR enter the URL
http://<host>.<domain>:<port>/<Deploy-URI>/login?module=Authenti

cationSample.

Sample Authentication Service

90 Directory Server Access Management Edition Programmer’s Guide • May 2002

91

Chapter 4

Identity Management And The SDK

The Identity Management module of DSAME contains XML templates and
application programming interfaces (APIs) that can provide functionality to,
among other operations, create, delete and managing identity entries in the
directory. This chapter offers information on these public API. It contains the
following sections:

• Overview

• Management Of Identity-Related Objects

• DSAME SDK

• The SDK And Cache

Overview
The Identity Management module of DSAME provides interfaces for creating and
managing identity-related objects in the iPlanet Directory Server (DS). The
management functions that can be performed include the creation and deletion of
the specific objects as well as the ability to get, add, modify, or remove attributes of
these objects. The interfaces provided for this feature are a Java SDK to embed the
management functions with applications or services, and a set of configuration
parameters (defined in the ums.xml). The following sections describe the
configuration Templates and the DSAME SDK.

Management Of Identity-Related Objects

92 Directory Server Access Management Edition Programmer’s Guide • May 2002

Management Of Identity-Related Objects
The ums.xml provides a set of configuration parameters, known as Templates, that
contain LDAP configuration information for identity-related objects. (It can be
found in the Install_Directory/SUNWam/config/ums directory.) The
identity-related objects are:

• Users

• Groups

• Organizations

• Roles

• Organization Units

• Group Containers

• People Containers

The templates are used by the DSAME SDK for the creation of these objects in the
DS, as well as the dynamic generation of the object’s roles and the construction of
object searches. (These templates can be modified by administrators to alter the
behavior of the Java interfaces.) Using these templates and the LDIF schema,
parameters are configured for all identity-related objects.

When DSAME is installed, the ums.xml file is stored in the DS as the DAI service.
(DAI is a service in DSAME whose configuration is not made available through the
DSAME console.) The DSAME SDK gets the configuration information from this
node when it is being asked to create an identity-related object, generate a role or
perform a search. Any attribute specified in the ums.xml can be set for a created
object.

NOTE ums.xml has template definitions for the various directory entries
created by the SDK. If it is modified and reloaded with those
modifications, there would be inconsistencies between the new
entries created and the older ones. Hence, modifications to this file
are not recommended unless DSAME is being installed fresh.

Management Of Identity-Related Objects

Chapter 4 Identity Management And The SDK 93

Structure of ums.xml
The ums.xml defines three templates: Structure, Creation and Search. Structure
templates define the DS DIT attributes for the object. Creation templates define an
LDAP template for the object being created. Search templates define guidelines for
performing searches using LDAP. These concepts are discussed in depth below.

Structure Templates
Structure templates define the form a DSAME object will take in the DS DIT. This
conforms to where the object is located within the DIT; the objects are strictly
LDAP entries. There are six attributes that need to be defined for each subschema.

• class—This attribute represents the name of the Java class that will implement
the object. This attribute is fixed and should never be modified.

• name—This attribute defines the entry type of the object. For example, an
organization object has o=org as its name.

• childNode—This attribute specifies the child nodes that will be created in
tandem with the object.

• template—This attribute specifies the Creation template used to create this
object.

• filter—This attribute specifies a filter that will be used to identify the object.

• priority—This attribute is defined as 0.

Creation Templates
Every entry that DSAME creates has a corresponding creation template which
defines the LDAP schema for the object being created. It specifies what object
classes and attributes are mandatory or optional and what default values, if any,
should be set. This conforms to the actual LDAP entry in the DS. There are six
attributes that need to be defined for each subschema.

• name—This attribute defines the name of the object the template will create. It
is also the name of the template itself.

• javaclass—This attribute defines the name of the Java class used to
instantiate the object.

• required—This attribute defines the required LDAP attributes for the object.

• optional—This attribute defines the optional LDAP attributes for the object.

• validated—This attribute is reserved for future use.

Management Of Identity-Related Objects

94 Directory Server Access Management Edition Programmer’s Guide • May 2002

• namingattribute—This attribute specifies the LDAP entry type.

Search Templates
Search templates are used to define how DSAME searches are performed in the DS.
This template defines a default search filter and the returning attributes in a search.
For example, a search filter is constructed which defines and specifies which
attributes and values are to be retrieved from the DS.

• name—This attribute defines the name of the search template.

• searchfilter—This attribute defines the LDAP search filter.

• attrs—This attribute specifies the LDAP attributes that need to be returned.

Modifying ums.xml
In addition to modifying an XML service file, any new LDAP attributes or object
classes must be added to the ums.xml file in order for them to be recognized by
DSAME. In most cases, the attributes that service developers might want to add
may already exist in the inetorgperson and the inetuser object classes. If, for
example, a custom mail service is being added with, specifically, an employee_id
attribute, the ums.xml file does not need to be modified because this attribute
already exists in the inetorgperson object class. Generally, as in the example, the
ums.xml file does not need to be modified. The only circumstances where this file
would need to be modified are:

• if DSAME is being installed against a legacy DIT.

• if new object classes are being added to users or organizations.

• if service developers want to change the default organizations or roles.

• if service developers need to change an entry’s naming attribute.

Additional information on when and how to modify the ums.xml file is covered in
the section on installing against a legacy DIT in the iPlanet Directory Server Access
Management Edition Installation and Configuration Guide.

CAUTION It is highly recommended that the ums.xml configuration file is
duplicated before any modifications are made.

DSAME SDK

Chapter 4 Identity Management And The SDK 95

Adding Custom Object Classes
If a service developer wanted to add new or customized object classes to DS for
DSAME’s use, they would need to modify the templates in the ums.xml file to
include them. Then, to manage them from the DSAME console, these new object
classes and attributes have to be modelled in the XML service file format and
imported into DSAME using the procedures described in this chapter.

DSAME SDK
The DSAME SDK contains APIs for identity management. These interfaces can be
used by developers to integrate management functions into external applications
or services to be managed by the DSAME. The following sections describe the Java
classes.

Identity Management APIs
The Identity Management APIs provide the means to create or delete
identity-related objects as well as get, modify, add or delete the object’s attributes.
The com.iplanet.am.sdk package contains all the interfaces and classes necessary
to perform these operations in the DS.

AMConstants
AMConstants is the base interface for all identity-related objects. It is used to define
the scope of a search of the DS. It can search for a specific object, a particular level
of the DIT or an attribute.

AMObject
AMObject provides basic methods to manage identity-related objects. Since this is a
generic class, it does not have any Templates associated with it.

NOTE The public Javadocs can be accessed through
Install_Directory/SUNWam/docs/index.html.

DSAME SDK

96 Directory Server Access Management Edition Programmer’s Guide • May 2002

AMOrganization
The AMOrganization interface provides the methods used to manage
organizations. Associated with this interface are the following ums.xml Templates
that define its behavior at runtime. The name of the structural template used by
this class is Organization; the name of the creation template used is
BasicOrganization, and the name of the search template is BasicOrganizationSearch.

AMOrganizationalUnit
The AMOrganizationalUnit interface provides the methods used to manage
organizational units. Associated with this object are the following ums.xml
Templates that define its behavior at runtime. The name of the structural template
used by this class is OrganizationalUnit; the name of the creation template used is
BasicOrganizationalUnit, and the name of the search template is
BasicOrganizationalUnitSearch.

AMPeopleContainer
The AMPeopleContainer interface provides the methods used to manage people
containers. Associated with this object are the following ums.xml Templates that
define its behavior at runtime. The name of the structural template used by this
class is PeopleContainer; the name of the creation template used is
BasicPeopleContainer, and the search template is BasicPeopleContainerSearch.

AMGroupContainer
The AMGroupContainer interface provides the methods used to manage group
containers. Associated with this object are the following ums.xml Templates that
define its behavior at runtime. The name of the structural template used by this
class is GroupContainer; the name of the creation template used is
BasicGroupContainer, and the search template is BasicGroupContainerSearch.

AMGroup
The AMGroup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMStaticGroup
The AMStaticGroup interface provides the methods used to manage static groups.
This class extends the base AMGroup interface. The name of the creation template
used with this class is BasicGroup; and the search template used is BasicGroupSearch.
It does not have a pre-defined structural template.

DSAME SDK

Chapter 4 Identity Management And The SDK 97

AMDynamicGroup
The AMDynamicGroup interface provides the methods used to manage dynamic
groups. This class extends the base AMGroup interface. Associated with this object
are the following ums.xml Templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMAssignableDynamicGroup
The AMAssignableDynamicGroup interface provides the methods used to manage
assignable dynamic groups. This class extends the base AMGroup interface.
Associated with this object are the following ums.xml Templates that define its
behavior at runtime. The creation template used is named
BasicAssignableDynamicGroup; and the search template used is named
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

AMRole
The AMRole interface provides the methods used to manage roles. Associated with
this object are the following ums.xml Templates that define its behavior at runtime.
The creation template used is named BasicManagedRole; and the search template
used is named BasicManagedRoleSearch. It does not have a pre-defined structural
template.

AMUser
The AMUser interface provides the methods used to manage users. Associated with
this object are the following ums.xml Templates that define its behavior at runtime.
The creation template used is named BasicUser; and the search template used is
named BasicUserSearch. It does not have a pre-defined structural template.

AMTemplate
The AMTemplate interface represents a service template associated with a
AMObject. DSAME distinguishes between virtual and entry attributes. Per iPlanet
Directory Server (DS) terminology, a virtual attribute is an attribute not physically
stored in an LDAP entry but still returned with it as a result of a LDAP search.
Virtual attributes are analogous to inherited attributes. Entry attributes are
non-inherited attributes.

DSAME SDK

98 Directory Server Access Management Edition Programmer’s Guide • May 2002

For AMOrganization, AMOrganizationalUnit and AMRole, virtual attributes can
be grouped in a Template on a per-service basis; there may be one service Template
for each service for any given AMObject. Such templates determine the service
attributes inherited by the users within the scope of this object. There are three
types of templates: POLICY_TEMPLATE, DYNAMIC_TEMPLATE and
ORGANIZATION_TEMPLATE. POLICY_TEMPLATE and DYNAMIC_TEMPLATE are
implemented using CoS Templates; ORGANIZATION_TEMPLATE does not have
virtual attributes.

Template Priority
When any object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), conflicts between
such templates are resolved by the use of template priorities. In this priority
scheme, zero is the highest possible priority with the lower priorities extending
towards finity. Templates with higher priorities will be favored over and to the
exclusion of templates with lower priorities. Templates which do not have an
explicitly assigned priority are considered to have the lowest priority possible, or
no priority. In the case where two or more templates are being considered for
inheritance of an attribute value, and they have the same (or no) priority, the result
is undefined, but does not exclude the possibility that a value will be returned,
however arbitrarily chosen.

AMStoreConnection
The AMStoreConnection class represents a connection to the DSAME data store. It
controls and manages access to the DSAME data store by providing methods to
create, remove and get different types of identity-related objects. A SSO Token is
required in order to instantiate a AMStoreConnection object.

Sample Code
Following are code samples using the DSAME SDK.

NOTE More information on virtual attributes can be found in “Virtual
Attribute,” on page 135 of Chapter 8, “iPlanet Directory Server And
DSAME.”

DSAME SDK

Chapter 4 Identity Management And The SDK 99

Create Organization
The following code sample creates a new organization with one user by opening a
connection to the DS data store with AMStoreConnection. A new top organization
(newtoporg.com) is then created with its own attributes. User John Smith is then
created as a member of the new organization.

Code Example 4-1 Create a new organization and one user

...
 // instantiate a store connector from SSO Token
 AMStoreConnection amsc = new AMStoreConnection(ssoToken);
 // create a new top level organization without non-default
attributes
 AMOrganization org =
amsc.createTopOrganization("newtoporg.com", new HashMap());
 // set attribute for the newly created organization
 org.setStringAttribute("description", "organization
description");
 // save new attribute to the organization object
 org.store();

 // create new user "john" with "cn", "sn" attribute
 // Map to hold all users to be created, key is the string
value for user naming attribute,
 // value is a Map which contains all the initial values for
the user
 Map usersMap = new HashMap();
 // Map to hold attributes for the user
 Map attrsMap = new HashMap();
 // set cn = John Smith
 Set values = new HashSet();
 values.add("John Smith");
 attrsMap.put("cn", values);
 // set sn = Smith
 values = new HashSet();
 values.add("Smith");
 attrsMap.put("sn", values);
 // set put user john in the usersMap with "cn" & "sn"
specified above
 usersMap.put("john", attrsMap);
 // create user john in the organization
 Set users = org.createUsers(usersMap);
...

The SDK And Cache

100 Directory Server Access Management Edition Programmer’s Guide • May 2002

Retrieve Templates
The following code sample retrieves a service’s dynamic templates by opening a
connection to the DS data store with AMStoreConnection. It retrieves a service’s
dynamic template by defining the DN of the top organization (toporg.com) as well
as the specific string attribute of the specific service to be retrieved.

The SDK And Cache
Caching in the DSAME SDK is for storing all AMObject attributes (i.e., attributes of
identity-related objects) that are retrieved from iDS. The cache does not hold
AMObject directly. All attributes retrieved from the DS using the interface methods
AMObject.getAttribute(String name),
AMObject.getAttributes(setAttributeNames) or AMObject.getAttributes()
will be cached.

Cache Properties
The following cache properties can be configured by accessing the
AMConfig.properties file. They are:

• com.iplanet.services.stats.state—Depending on whether this property
is set to file or console, the cache statistics will be printed to either a
amSDKStats file or the DSAME console.

Code Example 4-2 Retrieve a service’s dynamic template

...
 // instantiate a store connector from SSO Token
 AMStoreConnection amsc = new AMStoreConnection(ssoToken);
 // retrieve top level organization by DN
 AMOrganization org =
amsc.getOrganization("o=toporg.com,o=isp");
 // retrieve Dynamic type AMTemplate for
iPlanetAMSessionService
 AMTemplate template =
org.getTemplate("iPlanetAMSessionService",
AMTemplate.DYNAMIC_TEMPLATE);
 // retrieve attributes
 String maxSessionTime =
template.getStringAttribute("iplanet-am-session-max-session-time
");
 ...

The SDK And Cache

Chapter 4 Identity Management And The SDK 101

• com.iplanet.services.stats.directory—The value of this property is the
directory in which the amSDKStats file is created.

• com.iplanet.am.statsInterval—The interval at which cache statistics are
printed can be specified as the value of this property. It indicates the number of
seconds after which the stats will be printed. For example, a value of 3600
would cause the cache statistics to be printed after 3600 seconds. This will be
used only if com.iplanet.services.stats.state is set to file or console.

Code Example 4-3 on page 101 is an example of how the statistics will be
formatted.

Code Example 4-3 Format of Recorded Statistics

01/15/2002 09:12:35:751 AM PST: Thread[Thread-47,5,main]
SDK Cache Statistics

Interval: <number of get requests during the specified interval>
Hits during interval: <number of hits during this interval>
Hit ratio for this interval: <hit ratio for the interval>
Total number of requests: <overall (total) number of get requests
since server re-start>
Total number of Hits: <overall (total) number of hits since
server re-start>
Overall Hit ratio: <overall hit ratio since server re-start>

The SDK And Cache

102 Directory Server Access Management Edition Programmer’s Guide • May 2002

103

Chapter 5

Single Sign-On With DSAME

The iPlanet Directory Server Access Management Edition (DSAME) provides a
single sign-on (SSO) solution that enables a user to authenticate once in order to
access multiple applications and resources. In other words, successive attempts by
a user to access protected resources will not require them to provide authentication
credentials for each attempt. This chapter explains the solution, how it works and
the SSO APIs. It contains the following sections:

• The Single Sign-On Process

• Cross-Domain Support For SSO

• SSO APIs

• Sample SSO Java Files

• Multi-JVM Support

The Single Sign-On Process
DSAME uses access control mechanisms to protect an organization’s proprietary
data and web resources. A user wanting to access these protected resources must
first pass validating credentials through the Authentication service. A successful
authentication gives the user authorization to access protected resources, based on
their assigned policies or other such mechanism. If a user wants access to several
resources protected by DSAME, the SSO (or Session) service provides proof of
authentication to those resources so there is no need to re-authenticate. These
different domains generally have common users who need to generate access to
their services in a single user session.

The Single Sign-On Process

104 Directory Server Access Management Edition Programmer’s Guide • May 2002

Contacting A Web Agent
When a user, using a web browser, attempts to access a protected resource, the
URL Policy Agent intercepts the request. Web agents police the web or application
server on which the protected resource lives. Web agents enforce three types of
policy: those URLs that can be accessed by the user, those URLs for which the user
is denied access and those that are not subject to policy enforcement.

When the web agent intercepts the user’s request, it checks to see if the requested
URL is not subject to policy enforcement. If there is a match, the agent allows
immediate access. If there is no match, the agent understands that the URL is
subject to policy enforcement and inspects the request further to see if a user
session identifier, or token, exists. If none exists, the request is passed to the DSAME
server where it contacts both, the Session service to create a user token and the
Authentication service to verify the user.

Creating A Session
Before a user’s credentials can be authenticated, a token is generated using the
Session service. Each token contains a randomly-generated DSAME session
identifier and ultimately represents an authenticated user. Once created, the
Authentication service inserts the token into a cookie and assigns it to the client
browser. At the same time the token is assigned, a HTML login page is returned to
the user based upon their organization’s method of authentication (LDAP,
RADIUS, Unix, etc.).

NOTE URL Policy Agents are bundled for installation separately from the
iPlanet DSAME. Additional information can be found in the iPlanet
Policy Agent Pack documentation.

NOTE The session token, at this point, is in an invalid state and will remain
in one until the user has completed authentication.

Cross-Domain Support For SSO

Chapter 5 Single Sign-On With DSAME 105

Providing User Credentials
The user, having received the correct login page as well as a session token, fills in
the appropriate user ID and password based on the login page returned. After the
user enters their credentials, the data is sent to the authentication provider (LDAP
server, RADIUS server, etc.) for verification. Once the provider has successfully
verified the credentials, the user is authenticated. The user’s specific session
information is retrieved from the token and the session state is set to valid. The user
can now be redirected to the URL they were attempting to access.

Cookies and Tokens
A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server it is generated by. It does not imply that the user is authenticated. Cookies
are domain-specific; for example, a cookie generated by thisdomain.com cannot
be used in another domain such as thatdomain.com. In a DSAME implementation,
the cookie is generated by DSAME’s Session service and set by the Authentication
service.

A token is generated by DSAME’s Session service and inserted into a cookie. The
token is generated using a secure random number generator and contains
DSAME-specific session information. When a protected resource is accessed, the
user is validated by the Authentication service and a SSOtoken is created.

Cross-Domain Support For SSO
DSAME supports cross-domain SSO. A user authenticated to DSAME in one
domain can access resources protected by that same DSAME server in another
domain. For example, the DSAME instance for DomainA is the authentication
provider. A user authenticates to DSAME in DomainA and, after authentication, the
token is set for DomainA. ServerB is protected by a web agent talking to a DSAME
server in DomainB. The DSAME server in DomainB recognizes the DomainA server as
the authentication provider.

If UserA accesses a resource on ServerB after authenticating to DSAME in
DomainA, the web agent at DomainB checks to see if the request has a SSO token and
finds that there is no DomainB token in the request. In a cross-domain SSO scenario,
the agent will redirect the user to the URL of the cross-domain component running
with the DSAME server in DomainB. This component redirects the request to the
cross-domain component on DomainA since the DSAME at DomainA is the

Cross-Domain Support For SSO

106 Directory Server Access Management Edition Programmer’s Guide • May 2002

authentication provider. This request receives the SSO token set by DSAME in
DomainA in the cookie header. The component at DomainA will send a response
back to the component in DomainB with a SSO token. The DomainB component
validates the SSO token from DomainA and creates the SSO token for the user in
DomainB. This process sets a cookie for the user in DomainB. who is given access to
the requested resource only if their policy grants authorization to access it.

If a user accesses a resource directly at DomainB without authenticating at DomainA,
the user is redirected to authentication at DomainA. If the authentication is
successful, the SSO token is sent to DomainB from DomainA. The ServerB validates
the SSO token with DomainA, creates it for DomainB and redirects the user to the
original requested resource.

Enabling Cross-Domain Single Sign-On
To enable cross-domain SSO, the administrator needs to configure two different
SSO components. They are the Cross Domain Controller and the SSO
Component. The Cross Domain Controller component comes bundled, and is
installed, with DSAME. The SSO Component is a domain agent that needs to be
installed separately onto all participating DNS domains.

Cross Domain Controller
The Cross Domain Controller (CDC) is associated with the DSAME server that is
protecting a specific domain. It redirects a request to either the Authentication
service or to the SSO Component. When a HTTP request comes into the CDC and
no SSO token information is found, the request is redirected to the Authentication
Service. If a SSO token is found for another domain, the request is redirected to the
SSO Component with the appropriate session information appended to the query
string.

NOTE The system administrator can choose to not enable the cross-domain
feature; in this case the SSO component would function within the
context of a single domain.

NOTE The CDC is installed when the command line tool aminstall is run
to install the DSAME application. For more information, see the
iPlanet Directory Server Access Management Edition Installation and
Configuration Guide.

Cross-Domain Support For SSO

Chapter 5 Single Sign-On With DSAME 107

SSO Component
The SSO Component is deployed in each DSAME-protected domain. When a user
attempts to access a resource, the URL is intercepted by the web agent as discussed
in “Contacting A Web Agent,” on page 104. If no SSO token is found, the request is
redirected to the SSO Component in the domain where the resource exists. The SSO
Component searches the query string again for the SSO token. As no token is found,
the request is redirected to the Cross Domain Controller associated with the
DSAME server that protects this resource. From this point, the authentication
process will be followed.

Configuring For Cross-Domain SSO
The SSO components need to be enabled in order to allow the cross-domain SSO
function to work. Assuming a single DSAME instance:

1. Run aminstall to install DSAME.

This will install the DSAME application as well as the CDC component and
other internal services. The default CDC service URL, after installation, is
http(s)://DSAME-HOST:PORT/amserver/cdcservlet.

2. Run aminstall again and choose to install the Cross-Domain Support option.

All participating DNS domains need to have an instance of the SSO component
installed in their domain. After running this installation option, a cdsso
directory is created in Install_Directory/SUNWam/web-apps. The default
SSO Component service URL, after installation, is
http(s)://DOMAIN-CDSSO-HOST:PORT/uri/cdssoservlet.

3. Edit the com.iplanet.services.cdsso.cookiedomain property in the
cdsso.properties file found in the
Install_Directory/SUNWam/web-apps/cdsso/WEB-INF/classes directory.

NOTE If a SSO token is found by the web agent when the request is made,
the SSO Component would not receive the request as the web agent
would take the course of validating the token as described in
Chapter 3, “User Authentication With DSAME.”

NOTE Install the SSO Component on any web server with host services
that need to be protected in all participating DNS domains.

Cross-Domain Support For SSO

108 Directory Server Access Management Edition Programmer’s Guide • May 2002

Set the com.iplanet.services.cdsso.cookiedomain property to the domain
name which hosts the SSO component. For example,
com.iplanet.services.cdsso.cookiedomain =.sales.com, if the SSO
component is hosted in a sun.com domain. Code Example 5-1 is copied from
the file itself.

4. Edit three properties in each web agent’s AMagent.properties file.

❍ Change the value of
com.iplanet.am.policy.agents.url.authLoginUrl so it points to the
component’s domain’s SSO service URL. For example,
com.iplanet.am.policy.agents.url.authLoginUrl=http(s)://DOMAI

N-CDSSO-HOST:PORT/uri/cdssoservlet. Code Example 5-2 illustrates
where this property can be found.

Code Example 5-1 Portion of cdsso.properties file

...
/*
* The following keys will be used for Cross Domain SSO support.
* The user if needs cross doamin sso support should change
*"com.iplanet.services.cdsso.CDCURL" property to point to the
* cdcservlet running with the DSAME instance
* "com.iplanet.services.cdsso.cookiedomain" property should
* specify a comma separated list of domains for which the cdsso
* servlet will set a SSOToken.
* Ex:com.iplanet.services.cdsso.cookiedomain=.sales.com,
.eng.com,.marketing.com
*/

com.iplanet.services.cdsso.CDCURL=http://rays.india.sun.com:8080
/amserver/cdcservlet
com.iplanet.services.cdsso.cookiedomain=.sales.com
/*
...

Code Example 5-2 Second portion of CDSSO AMConfig.properties file

...
/*To enable cross domain sso support
"com.iplanet.am.policy.agents.url.authLoginUrl" needs to be
*changed to point to the cdsso servlet
instead of the login servlet/
/*com.iplanet.am.policy.agents.url.authLoginUrl=PROTO://HOST:POR
T/DEPLOY_URI/cdssoservlet*/

com.iplanet.am.policy.agents.url.authLoginUrl=SERVER_PROTO://SER
VER_HOST:SERVER_PORTSERVER_DEPLOY_URI/login
...

Cross-Domain Support For SSO

Chapter 5 Single Sign-On With DSAME 109

❍ Add the SSO service URL to both the component’s local and remote not
enforced list. Code Example 5-3 displays the portion of the file where these
properties are defined.

This instance of DSAME and all its participating DNS domains are now
cross-domain SSO enabled.

Code Example 5-3 Third portion of CDSSO AMConfig.properties file

...
/*If cross domain sso support is enabled notenforcedlist should
*be edited to add cdsso servlet URL in it
*com.iplanet.am.policy.agents.url.notenforcedlist.local=
*PROTO://HOST:PORT/DEPLOY_URI/cdssoservlet */
com.iplanet.am.policy.agents.url.notenforcedlist.local=SERVER_PR
OTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/console*,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/login*,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/images/*
,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/logout,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/namingse
rvice,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/sessions
ervice,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/loggings
ervice,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/profiles
ervice,
*AGENT_DEPLOY_URI/html/URLAccessDenied.html,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/admin/*,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/docs*,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/index.ht
ml,
SERVER_PROTO://SERVER_HOST:SERVER_PORTCONSOLE_DEPLOY_URI/*,
SERVER_PROTO://SERVER_HOST:SERVER_PORTSERVER_DEPLOY_URI/GetHttpS
ession
...
/*If cross domain sso support is enabled notenfocelist should be
edited to add cdsso servlet URL in it
com.iplanet.am.policy.agents.url.notenforcedlist.remote=PROTO://
HOST:PORT/DEPLOY_URI/cdssoservlet*
*/
com.iplanet.am.policy.agents.url.notenforcedlist.remote=*AGENT_D
EPLOY_URI/html/URLAccessDenied.html

SSO APIs

110 Directory Server Access Management Edition Programmer’s Guide • May 2002

SSO APIs
The SSO solution provides Java API to allow external applications to participate in
the SSO functionality. All DSAME’s services (except for Authentication) need a
valid SSO token to process a HTTP request. External applications wishing to use
the SSO functionality must use the SSO token to validate the user’s identity. With
the SSO API, an external application can get the token and, in turn, the identity of a
user and related authentication information. Once a user is authenticated, this
information is used to determine whether or not to provide access to the requested
resource based on the validated user’s policy. The SSO API can also be used to
create or destroy a SSO token, to check the token’s validity or to listen for token
events. (An event might be a token timing out because the user has reached the
token’s maximum time limit.)

Non-Web-Based Applications
DSAME provides the SSO component primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

1. The application has to obtain the DSAME cookie value and pass it into the SSO
client methods to get to the SSO token. The method used for this process is
application-specific.

2. Command line applications, such as amadmin, can be used. In this case, SSO
tokens can be created to access the DS directly. There is no session created
making the DSAME access is valid only within that process or VM.

NOTE The cross-domain SSO solution assumes a single DSAME instance;
therefore all user and policy information needs to be centralized in
that instance. Multiple DSAME instances are allowed if they are all
in the same domain.

SSO APIs

Chapter 5 Single Sign-On With DSAME 111

API Overview
The primary purpose of the SSO API is to allow any service or application to make
use of the SSO functionality. They are provided for the implementation of a SSO
solution in external applications. Using these APIs, the identity of the user and
related authentication information can be called. The application then uses this
information to determine whether to provide user access to a protected resource.
The SSO client applications get the information from the SSO token. For example,
assume a user authenticates to http://www.DomainA.com/Store successfully and
later tries to access http://www.DomainB.com/UpdateInfo. Rather than having
the application authenticate the user again, it can use the API to determine if the
user is already authenticated. If the methods indicate that the user is valid and has
already been authenticated, access to this page can be given without the user
authenticating again. Otherwise, the user is prompted to authenticate again.

Each time a user attempts to access a protected application, the application needs
to verify their validity. Generally, the SSO component generates a SSO token for a
user once the user is authenticated. After generation, the token is carried with the
user as the user moves around the web. When the user attempts to access an
application or service that is SSO-enabled, this token is used for user validation.
Specifically, an instance of the SSOTokenManager class is created to allow access to
the createSSOToken, destroyToken and isValidToken methods. An instance of
the SSOToken class is then called; it contains the session information. Between the
two, an application can determine if the user is authenticated. Another way to use
the API is to invoke the SSOTokenListener interface which notifies the application
when a token has become invalid in order for the application to terminate its access.

SSOTokenManager Class
The SSOTokenManager class must be implemented to create one instance per token.
It contains the three methods needed to create, get, validate and destroy SSO
tokens. The createSSOToken() method is called to create a session token. It
contains methods for doing this using the command line or through the internet.
The destroyToken() method is called to delete a token when its session has
ended. The isValidToken() and validateToken() methods are called in tandem
to verify the authenticity of a token.

NOTE For more information on the SSO APIs, the public Javadocs can be
accessed through Install_Directory/SUNWam/docs/index.html.

SSO APIs

112 Directory Server Access Management Edition Programmer’s Guide • May 2002

Sample SSOTokenManager Code
The SSOTokenManager class can be used in the following way to determine if a user
is authenticated:

NOTE SSOTokenManager is a final class and a singleton. SSOToken and
SSOTokenID are Java interfaces. Additionally, SSOTokenListener
and SSOTokenEvent are provided to support notification when SSO
tokens are invalidated.

Code Example 5-4 Sample SSOTokenManager Code

try {
 /* create the sso token from http request */
 SSOTokenManager manager = SSOTokenManager.getInstance();

 /* The request here is the HttpServletRequest. */
 SSOToken token = manager.createSSOToken(request);

 /* use isValid to method to check if the token is valid or not
 * this method returns true for valid token, false otherwise*/
 if (token.isValid()) {

 /* user is valid, this information may be enough for some
* applications to grant access to the requested resource.
* A valid user represents a user who is already authenticated,
* by some means.If access can be given based on this
* further check on user information is not necessary.
 */

 /* let us get some user information */
 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();

 } else {
 /* token is not valid, redirect the user login page */
 }
...

SSO APIs

Chapter 5 Single Sign-On With DSAME 113

SSO Implementations
The SSOTokenManager maintains a configuration database of valid
implementations for SSOProvider, SSOToken and SSOTokenID. A request to
SSOTokenManager gets delegated to the SSOProvider. Hence, the SSOProvider
performs the bulk of the function of SSOTokenManager. The SSOToken is the SSO
token that contains the crucial information about the token, and SSOTokenID is a
string representation of SSO token. Although SSOTokenManager could support
multiple and disparate providers, the only valid SSO provider is SSOProvider.

Additional Classes
The following classes can be used to implement customized SSO functionality in an
application that does not use the default SSOProvider provided.

SSOToken
The SSOToken class represents a “single sign-on” token and contains information
like the user validation, the authentication method, the host name of the client
browser that sent the request, and session information (maximum session time,
maximum session idle time, session idle time, etc.). Code Example 5-4 on page 112
also makes use of the SSOToken interface.

SSOTokenEvent
The SSOTokenEvent class represents a token event. An event is, for instance, when
a token becomes invalid due to idle time-out or hitting a time limit maximum. A
token is granted when a change in the state of the token, like those mentioned,
occurs. An application must come to know of events in order to terminate access to
the application for a user whose token has become invalid. The SSOTokenListener
class would need to be implemented by applications to receive SSO token events.

Sample SSOTokenEvent Code. The SSOTokenEvent class can be used in the
following way to get SSO Token events:

Code Example 5-5 Sample SSOTokenEvent Code

SSOTokenListener myListener = new AppTokenListener();
token.addSSOTokenListener(myListener);

where AppTokenListener is a class defined as follows:

public class AppTokenListener implements SSOTokenListener {
 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();

SSO APIs

114 Directory Server Access Management Edition Programmer’s Guide • May 2002

SSOTokenID
The SSOTokenID class is used to identify the SSOToken object. Additionally, the
SSOTokenID string contains a random number, the SSO server host, and server
port. The random string in the SSOTokenID is unique on a given server. In the case
of services written using a servlet container, the SSOTokenID can be communicated
from one servlet to another either:

• as a cookie in a HTTP header; or

• as an implementation of the SSOTokenListener interface by the applications to
receive the SSO token events.

SSOTokenListener
The SSOTokenListener interface provides a mechanism for applications that need
notification when an SSO token expires. (It could expire if it reached its maximum
session time, or idle time, or an administrator might have terminated the session.)
Applications wishing to be notified must invoke the addSSOTokenListener
method using the SSOToken interface; this method implements the
SSOTokenListener interface. A callback object will be invoked when the SSO
token expires. Using the SSOTokenEvent (provided through the callback),
applications can determine the time, and the cause of the SSO token expiration.

 SSOTokenID id = token.getTokenID();
 System.out.println("Token id: " + id.toString() + "
is not valid anymore");
 /* redirect user to login */

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

NOTE Once an application registers for SSO Token events using
addSSOTokenListener, any SSO token event will invoke the
ssoTokenChanged method. The application can take suitable action
in this method.

Code Example 5-5 Sample SSOTokenEvent Code (Continued)

SSOTokenListener myListener = new AppTokenListener();

SSO APIs

Chapter 5 Single Sign-On With DSAME 115

Sample API Code
Following are examples of code that illustrate various operations that can be
performed by the SSO API.

User Authentication Sample Code
This code can be used to determine if a user is authenticated. (Additionally, the API
can be used to perform a query on a token for information such as host name, IP
address, or idle time).

Code Example 5-6 Code Sample To Determine If User Is Authenticated

try {
 ServletOutputStream out = response.getOutputStream();

 /* create the sso token from http request */
 SSOTokenManager manager =
SSOTokenManager.getInstance();
 SSOToken token = manager.createSSOToken(request);

 /* use isValid method to check if the token is valid
 * this method returns true for valid token, false non
 */
 if (manager.isValidToken(token)) {
 /* let us get all the values from the token */

 String host = token.getHostName();
 java.security.Principal principal =
token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();
 out.println("SSOToken host name: " + host);
 out.println("SSOToken Principal name: " +
principal.getName());
 out.println("Authentication type used: " +
authType);
 out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());
 }
 /* try to validate the token again, with another method
 * if token is invalid, this method throws exception
 */
 manager.validateToken(token);

 /* get the SSOTokenID associated with the token */
 SSOTokenID tokenId = token.getTokenID();

SSO APIs

116 Directory Server Access Management Edition Programmer’s Guide • May 2002

In some cases, it might be more efficient and convenient to use
SSOTokenManager.validateToken(token) than
SSOTokenManager.isValidToken(token).
SSOTokenManager.validToken(token) throws an exception when the token is
invalid, thus terminating the method execution right away.

Get Token Sample Code
This sample code can be used to get the SSO token if the SSOtokenID string is
passed to the application.

 String id = tokenId.toString();

 /* print the string representation of the token */

 out.println("The token id is " + id);

 /* set properties in the token. We can get the values
 * of set properties later
 */
 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 out.println("Property: Company is - " + name);
 out.println("Property: Country is - " + country);

 out.println("SSO Token Validation test Succeeded");
 /* add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the
 * listener will get called.
 */
 SSOTokenListener myListener = new
SampleTokenListener();

 token.addSSOTokenListener(myListener);
 out.flush();
 } catch (Exception e) {
 System.out.println("Exception Message: " +
e.getMessage());
 e.printStackTrace();
 }
 }
}

Code Example 5-6 Code Sample To Determine If User Is Authenticated (Continued)

try {

SSO APIs

Chapter 5 Single Sign-On With DSAME 117

Listen For Event Code Sample
Applications can listen for SSO token events. It is possible that while a user is using
an application, an SSO token may become invalid because, for example:

• the user's access times out because of the maximum time limit; or,

Code Example 5-7 Code Sample To Get Token from Token ID

try {
 /* create the sso token from SSO Token Id string */
 SSOTokenManager manager=SSOTokenManager.getInstance();
 SSOToken token = manager.CreateSSOToken(tokenString);
 * let us get the SSOTokenID associated with the token
*/
 SSOTokenID id = token.getTokenID();

 String tokenId = id.toString();

 /* print the string representation of the token */

 System.out.println("The token ID is " + tokenId);

 /* set properties in the token. We can get the values
 * of set properties later */

 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 System.out.println("Property: Company is - " + name);
 System.out.println("Property: Country is - " +
country);

 System.out.println("SSO Token Validation test
Succeeded");
 /* add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the
 * listener will get called.
 */
 SSOTokenListener myListener = new
SampleTokenListener();

 token.addSSOTokenListener(myListener);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 SSOTokenManager manager=SSOTokenManager.getInstance();
 SSOToken token = manager.CreateSSOToken(tokenString);
 }
 }

SSO APIs

118 Directory Server Access Management Edition Programmer’s Guide • May 2002

• the user fails to log out of an application and the idle time-out expires.

The application must be informed of these events to follow-up on the invalid token
by terminating the user’s access. The following two sample codes can be used to
get token events.

where SampleTokenListener is a class defined as:

Code Example 5-8 Code Sample To Register For SSOToken Events

SSOTokenListener myListener = new SampleTokenListener();
token.addSSOTokenListener(myListener);

Code Example 5-9 Code Sample Defining SampleTokenListener Class

public class SampleTokenListener implements SSOTokenListener {

 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();

 SSOTokenID id = token.getTokenID();

 System.out.println("Token id is: " + id.toString());

 if (SSOTokenManager.getInstance().isValidToken(token))
{
 System.out.println("Token is Valid");
 } else {
 System.out.println("Token is Invalid");
 }

 switch(type) {
 case SSOTokenEvent.SSO_TOKEN_IDLE_TIMEOUT:
 System.out.println("Token Idel Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_MAX_TIMEOUT:
 System.out.println("Token Max Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_DESTROY:
 System.out.println("Token Destroyed event");
 break;
 default:
 System.out.println("Unknown Token event");
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());

Sample SSO Java Files

Chapter 5 Single Sign-On With DSAME 119

After the application registers for SSO token events using addSSOTokenListener,
any SSO token events will invoke the ssoTokenChanged() method. The
application can take a suitable action in this method.

Sample SSO Java Files
DSAME installs three groupings of sample Java files with instructional text. With
these files, a developer can create an SSO token in several ways:

1. An SSO token can be created for an application that runs on the DSAME
server.

2. An SSO token can be created for an application that runs on a server other than
the DSAME server.

3. An SSO token can be created by a session ID string can be passed through the
command line.

The files needed to perform these actions can be found in the
Install_Directory/SUNWam/samples/sso directory.

SSO Servlet Sample
This sample can be used to create a token for an application that resides on the
same server as the DSAME application. The files used for this sample are:

• Readme.html

• SampleTokenListener.java

• SSOTokenSampleServlet.java

The instructions in Readme.html can be followed to run this code.

 }
 }
}

Code Example 5-9 Code Sample Defining SampleTokenListener Class (Continued)

public class SampleTokenListener implements SSOTokenListener {

Multi-JVM Support

120 Directory Server Access Management Edition Programmer’s Guide • May 2002

Remote SSO Sample
This sample can be used to create a token for an application that resides on a
different server from the one on which the DSAME application lives. The files used
for this sample are:

• remote.html

• SSOTokenFromRemoteServlet.java

• SSOTokenSampleServlet.java

The instructions in remote.html can be followed to run this code.

Command Line SSO Sample
This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

• ssocli.txt

• CommandLineSSO.java

• SSOTokenSample.java

The instructions in ssocli.txt can be followed to run this code.

Multi-JVM Support
DSAME can run on iPlanet Application Server (AS) which supports a multi-JVM
environment. In this scenario, based on load balancing, a SSO service could run in
any JVM. If one JVM receives the createSSOToken() request, subsequent
validation requests must be directed to the same JVM otherwise, the SSO service
will send an invalid token response. For this purpose, DSAME uses the sticky
session feature of the AS; it is turned on automatically when the DSAME is
installed. For more information, see the documentation that comes with iPlanet
Application Server.

NOTE The SSO APIs cannot be used in a multi-JVM environment.

121

Chapter 6

Logging

The iPlanet Directory Server Access Management Edition (DSAME) provides a
logging module as a means of recording information such as user activity, traffic
patterns, and authorization violations. In addition, DSAME includes a Logging
API so that applications can take advantage of the logging function. This chapter
explains the component and the API. It contains the following sections:

• Overview

• Log Message Formats

• Logging API

• Sample Logging Code

Overview
The Logging component enables all DSAME services to record information that
might be useful to an administrator. This allows tracking of who is accessing what
resources in one centralized location. It accepts requests to provide logging
operations which include writing messages to logs, reading logs, listing log files
and deleting log files. Examples of information logged might include user access
denials and approvals, traffic patterns, authorization violations and code
exceptions. The component allows logs to be written to either a relational database
or flat files. It contains the following modules:

• A Logging service which contains the configuration parameters for the logging
function and accepts and processes logging requests.

• Java API which can be integrated into Java applications in order to allow them
to access the Logging service.

Log Message Formats

122 Directory Server Access Management Edition Programmer’s Guide • May 2002

Logging Architecture
An application accesses the Logging service by calling the Logging API. Upon
receiving a request, the Logging service loads the configuration data stored in the
LDAP DS using the DSAME SDK. (This information might include the log format,
the log’s maximum size and the log’s location.) Any exception message will be
logged, based on these configuration values. On an error, a LoginException is
thrown by the Logging service.

Logging Service
The Logging service holds the attributes and values for the DSAME logging
function. The values are applied across the configuration and are inherited by
every configured organization. The Logging Attributes are:

• Max Log Size

• Number of History Files

• Log Location

• Logging Type

• Database User Name

• Database User Password

• Database Driver Name

More information on these attributes and the Logging service can be found in the
iPlanet Directory Server Access Management Edition Administration Guide.

Log Message Formats
DSAME supports both flat-file based logging and JDBC logging. Log records can
be stored in either a flat file or in a table of a relational database. The following
sections explain the formats of both record types.

NOTE The API can reside on the same server as the service or on a remote
one. If the Logging interfaces are remote, the Communication
Component (PLL) is used to send the request to the Logging service.

Log Message Formats

Chapter 6 Logging 123

File Format
The Logging service uses DATE/TIME&&Domain&&LoginID&&Type&&DATA to log
messages. This format is explained below. Code Example 6-1 below illustrates how
a log record formatted for a file would look.

• TIME is the date (yyyy/mm/dd) and time (hh:mm:ss) at which the log message
was recorded.

• DOMAIN is the DSAME organization to which the user belongs.

• LOGINID is the ID of the user attempting to access the application.

• TYPE is the application writing the log.

• DATA is the description of the user activity, errors or other useful information
which the application wants to log.

Database Format
For applications using a relational database to log messages, the message is stored
in a database table.

Code Example 6-1 File Formatted Log Record Sample

&&TIME=2002/04/25 13:24:47
PDT&&DOMAIN=o=iplanet.com&&LOGINID=uid=amAdmin,ou=People,o=iplan
et.com&&

TYPE=amConsole&&DATA=Registered service iPlanetAMAuthService

NOTE There is a limitation in the log name length for Oracle JDBC logging:
the length of the log name cannot exceed 30 characters. Oracle does
not support names longer than 30 characters.

Logging API

124 Directory Server Access Management Edition Programmer’s Guide • May 2002

The database schema is as follows:

Logging API
The Logging API provides log management tools for DSAME services as well as
providing a set of Java classes for applications to create, retrieve, submit, or delete
log information. The API can be used, for instance, to develop log auditing
capabilities. The main classes are LogManager and LogRecord. They are contained
in the package com.iplanet.log.

LogManager Class
This LogManager class provides the methods for applications to use in creating,
retrieving, submitting, and deleting log information. It also provides a method to
access a list of log names that have been created by all the applications. This class
provides methods and must be instantiated in order to use the LogRecord class.

• The Create() method creates a log in the designated logging location.

• The Write() method records a single piece of log information or a LogRecord.
It allows an application to submit a logging message to a predetermined log.

Code Example 6-2 Database Message Format

Column Name Data Type Description

TIME VARCHAR(200) Date (yyyy/mm/dd hh:mm:ss)

DOMAIN VARCHAR(100) User’s DSAME Organization

LOGINID VARCHAR(50) Login User’s ID.

TYPE VARACHAR(20) Application type.

DATA VARCHAR(300) Message to be logged.

NOTE The Overview page for the complete set of public Javadocs can be
accessed at Install_Directory/SUNWam/docs/index.html.

Logging API

Chapter 6 Logging 125

LogRecord Class
The class LogRecord class provides the means to represent the information that
needs to be logged. Each instantiation represents a single piece of log information
or LogRecord. This information comes from the application. This class provides
two methods and must be instantiated in order to use the LogRecord class.

• The getRecType() method retrieves the log type or key of a single log record.

• The getRecMsg() method retrieves the log data or value of a single log record.

Logging Exceptions
There are a number of exceptions that can be thrown using the Logging APIs. The
generic LogException is probably the most common. It signals an error condition
while logging a message. Other exceptions include:

• ConnectionException—This exception is thrown when the connection to the
database fails.

• DriverLoadException—This exception is thrown when the JDBC driver load
fails.

• InvalidLogNameException—This exception is thrown when the log name is
invalid.

• LogAlreadyExistException—This exception is thrown when the log already
exists.

• LogCreateException—This exception is thrown when log creation fails.

• LogDeleteException—This exception is thrown when the log deletion fails.

• LogException—A LogException is thrown when applications are denied log
access because they don’t have the privileges or a valid session.

• LogFatalException—This exception is thrown when a fatal error occurs.

• LogHandlerException—A LogException is thrown when a log handler error
is encountered.

• LogInactiveException—A LogException is thrown when the log is in
inactive status. (Inactive/active status is not currently supported.)

• LogInvalidSessionException—This exception is thrown when an
application accesses a log which does not exist.

Logging API

126 Directory Server Access Management Edition Programmer’s Guide • May 2002

• LogNotFoundException—This exception is thrown when an application
accesses a log which does not exist.

• LogPrivDeniedException—A LogException is thrown when the access
privilege is denied.

• LogProfileException—A LogException is thrown when access privilege is
denied.

• LogReadExceedsMaxException—A LogException is thrown when the log size
exceeds the maximum size defined in the Logging service.

• LogReadException—A LogException is thrown when an error is encountered
in retrieving the log information.

• LogTypeException—This exception is thrown when a log type error occurs.

• LogWriteException—This exception is thrown when the log record
submission fails.

• NullLocationException—This exception is thrown when the location is null.

Sample Logging Code
Code Example 6-3 below provides sample code that shows how to use the DSAME
logging classes discussed above.

Code Example 6-3 Logging API Sample

LogManager lm = new LogManager(SampleSSOSession);

try {
 lm.create("SampleLog");
 }
} catch (Exception e) {
 System.out.println("Error: " + e.getMessage();
}

try {
 LogRecord lr = new LogRecord("SampleType", "SampleData");
 log.write(lr, "SampleLog");
} catch(Exception e) {
 System.out.println("Error: " + e.getMessage());
}

Recorded Events

Chapter 6 Logging 127

Recorded Events
By default, DSAME currently logs events in three logs:

SSO-related Logs
The Logging component logs the following events for the SSO component:

• Login

• Logout

• Session Idle TimeOut

• Session Max TimeOut

• Failed To Login

• Session Reactivation

• Session Destroy

The log is called amSSO.

Console-related Logs
The Logging component records the creation, deletion and modification of
identity-related objects, policies and service including, among others,
Organization, Organizational Unit, User, Role, Policy and Group. It also records
modification of all user attributes including password and the addition or removal
of users to or from roles and groups, respectively. The log is called am Console.

Authentication-related Logs
The Logging component logs the events for the Authentication component. The log
is called am Authentication.

NOTE The Web Agents are responsible for logging exceptions related to
resource access or denial; in other words, policy. For more
information, see the Web Agent documentation.

Recorded Events

128 Directory Server Access Management Edition Programmer’s Guide • May 2002

129

Chapter 7

Utility APIs

The iPlanet Directory Server Access Management Edition (DSAME) provides
utility application programming interfaces (APIs) that can be used by applications.
This chapter explains these APIs. It contains the following sections:

• Overview

• API Summary

Overview
The utilities package is called com.iplanet.am.util. It contains utility programs
that can be used by applications accessing DSAME. The APIs include:

• StatsListener

• AdminUtils

• AMClientDetector

• Debug

• Locale

• Stats

• SystemProperties

• ThreadPool

API Summary
Following is a summary of the utility APIs and their functions.

API Summary

130 Directory Server Access Management Edition Programmer’s Guide • May 2002

StatsListener
The StatsListener interface must be implemented by each module in order to
print the statistics. This interface invokes the printStats() method.

AdminUtils
This class contains the methods used to retrieve TopLevelAdmin information. The
information comes from the server configuration file (serverconfig.xml).

AMClientDetector
This is a utility that gets the client type. It executes the Client Detection Class
(provided in Client Detection service) to get the client type. The default client type
will be returned if there is no Client Detection Implementation provided.

Debug
Debug allows an interface to file debug and exception information in a uniform
format. It supports different levels of filing debug information (in the ascending
order): OFF, ERROR, WARNING, MESSAGE and ON. A given debug level is enabled if it is
set to at least that level. For example, if the debug state is ERROR, only errors will be
filed. If the debug state is WARNING, only errors and warnings will be filed. If the
debug state is MESSAGE, everything will be filed. MESSAGE and ON are the same level
except MESSAGE writes to a file, whereas ON writes to System.out.

Locale
This class Locale.java is a utility that provides the functionality for applications
and services to internationalize their messages.

NOTE Debugging is an intensive operation and may hurt performance
when abused. Java evaluates the arguments to message() and
warning() even when debugging is turned off. It is recommended
that the debug state be checked before invoking any message() or
warning() methods to avoid unnecessary argument evaluation and
to maximize application performance.

API Summary

Chapter 7 Utility APIs 131

Stats
This class writes statistics information in a uniform format. It supports different
states of filing information:

• OFF statistics is turned off.

• FILE statistics information is written to a file.

• CONSOLE statistics information is written to the console.

The Stats service uses the property file, AMConfig.properties, to set the default
stats level and the output directory where the stats files will be placed. The
properties file is located (using ResourceBundle semantics) from one of the
directories in the CLASSPATH.

SystemProperties
This class provides functionality that allows single-point-of-access to all related
system properties. First, the class tries to find AMConfig.class, and then a file,
AMConfig.properties, in the CLASSPATH accessible to this code. The class takes
precedence over the flat file. If multiple servers are running, each may have their
own configuration file. The naming convention for such scenarios is
AMConfig_serverName.

ThreadPool
ThreadPool is a generic thread pool that manages and recycles threads instead of
creating them when a task needs to be run on a different thread. Thread pooling
saves the virtual machine the work of creating brand new threads for every
short-lived task. In addition, it minimizes the overhead associated with getting a
thread started and cleaning it up after it dies. By creating a pool of threads, a single
thread from the pool can be reused any number of times for different tasks. This
reduces response time because a thread is already constructed and started and is
simply waiting for its next task.

Another characteristic of this thread pool is that it is fixed in size at the time of
construction. All the threads are started, and then each goes into a wait state until a
task is assigned to it. If all the threads in the pool are currently assigned a task, the
pool is empty and new requests (tasks) will have to wait before being scheduled to
run. This is a way to put an upper bound on the amount of resources any pool can
use up. In the future, this class may be enhanced to provide support growing the
size of the pool at runtime to facilitate dynamic tuning.

API Summary

132 Directory Server Access Management Edition Programmer’s Guide • May 2002

133

Chapter 8

iPlanet Directory Server And DSAME

iPlanet Directory Server Access Management Edition (DSAME) uses iPlanet
Directory Server (DS) to store its data. Certain features of the LDAP-based DS are
also used by DSAME to help manage the data. This chapter contains information
on these DS features and how they are used. It contains the following sections:

• Overview

• Roles

• Access Control Instructions (ACIs)

• Class Of Service

Overview
DSAME has been built to work with DS. They are complementary in architecture
and design data. DSAME needs an underlying directory server to function. Use of
the directory, though, is not exclusive to DSAME and, therefore, needs to be
treated as a completely separate deployment. For more information on the
directory server, see the iPlanet Directory Server documentation.

Roles
Roles are a DS entry grouping mechanism similar to the concept of a group. A group
has members; a role has members. A role’s members are LDAP entries that are said
to possess the role. The role itself is defined in an LDAP entry as a role object and is
identified by the DN of the object. DS has a number of different types of roles but
DSAME can only manage one of them: the managed role.

Roles

134 Directory Server Access Management Edition Programmer’s Guide • May 2002

Users can possess one or more roles. For example, a contractor role which has
attributes from the Session service and the URL Policy Agent service might be
created. Then, when new contractors start, the administrator would assign them
this role instead of setting separate attributes in the contractor entry. If the
contractor were then to become a full-time employee, the administrator could just
re-assign them a different role.

Managed Roles
With a managed role, role membership is defined in each role’s member entry and
not in the role’s definition entry. An attribute which designates membership is
placed upon each entry which belongs to the role. This is in contrast to a traditional
static group which centrally lists the members in the group object entry itself.

An administrator assigns the role to a member entry by adding the nsRoleDN
attribute to it. The value of nsRoleDN is the DN of the role definition entry. The
following apply to managed roles:

• Multiple managed roles can be created for each organization or
sub-organization.

• A managed role can be enabled with any number of services.

• Any user that possesses a role with a service will inherit the service attributes
from that role.

NOTE The other DS role types can still be used in a directory deployment;
they just can not be managed by DSAME.

NOTE By inverting the membership mechanism, the role will scale better
than a static group. In addition, the referential integrity of the role is
simplified, and the roles of an entry can be easily determined.

NOTE All DSAME roles can only be configured directly under
organization or sub-organization entries.

Roles

Chapter 8 iPlanet Directory Server And DSAME 135

Role Definition Entry
A role definition entry is a LDAP entry where the role’s characteristics are defined.
Below is a sample of a manager role definition entry.

The nsManagedRoleDefinition object class inherits from the LDAPsubentry,
nsRoleDefinition and nsSimpleRoleDefinition object classes.

Role Member Entry
A role member entry is an LDAP entry in which the role is applied. The nsRoleDN
attribute indicates that the entry is a member of a managed role identified by the
DN of its role definition entry; in Code Example 8-2 below, the DN identifies Code
Example 8-1 on page 135 as the role definition entry
cn=managerrole,dc=siroe,dc=com.

Virtual Attribute
When a role member entry that contains the nsRoleDN attribute is returned by DS,
nsRoleDN will be aliased to the nsRole attribute on that same entry. nsRole will
carry a value of any managed, filtered or nested roles assigned to the user (such as
ContainerDefaultTemplateRole). The LDIF Code Example 8-2 on page 136
includes this virtual attribute when returned by DS only.

Code Example 8-1 LDAP Role Definition Entry

dn: cn=managerrole,dc=siroe,dc=com
 objectclass: top
 objectclass: LDAPsubentry
 objectclass: nsRoleDefinition
 objectclass: nsSimpleRoleDefinition
 objectclass: nsManagedRoleDefinition
 cn: managerrole
 description: manager role within company

Roles

136 Directory Server Access Management Edition Programmer’s Guide • May 2002

How DSAME Uses Roles
DSAME uses roles to apply access control instructions. When installed, the
DSAME application configures access control instructions (ACIs) to define
administrator permissions. These ACIs are then designated in roles (such as
Organization Admin Role and Organization Help Desk Admin Role) which,
when assigned to a user, define the user’s access permissions.

Role Creation
When a role is created, it contains the auxiliary LDAP object class
iplanet-am-managed-role. This object class, in turn, contains the following
allowed attributes:

• iplanet-am-role-managed-container-dn contains the DN of the
identity-related object that the role was created to manage.

• iplanet-am-role-type contains a value used by the DSAME console for
display purposes. After authentication, the console gets the user’s roles and
checks this attribute for the correct page to display based on which of the
following three values it has:

❍ 1 for top-level administrator only.

❍ 2 for all other administrators.

❍ 3 for user.

If the user has no administrator roles, the User profile page will display. If the
user has an administrator role, the console will start the user at the top-most
administrator page based on which value is present.

Code Example 8-2 LDAP Role Member Entry

dn: uid=managerperson,ou=people,dc=siroe,dc=com
 objectclass: top
 objectclass: person
 objectclass: inetorgperson
 uid: managerperson
 gn: manager
 sn: person
 nsRoleDN: cn=managerrole,ou=people,dc=siroe,dc=com
 nsRole: cn=managerrole,ou=people,dc=siroe,dc=com
 nsRole:
cn=containerdefaulttemplaterole,ou=people,dc=siroe,dc=com
 description: manager person within company

Roles

Chapter 8 iPlanet Directory Server And DSAME 137

Role Location
All roles in an organization are viewed from the organization’s top-level. For
example, if an administrator wants to add a user to the administrator role for a
people container, the administrator would go to the organization above the people
container, look for the role based on the people container’s name, and add the user
to the role.

Displaying The Correct Login Start Page
The attribute iplanet-am-user-admin-start-dn can also be defined for a role or
a user; it would override the iplanet-am-role-type attribute by defining an
alternate display page URL. Upon a user’s successful authentication:

1. DSAME checks the iplanet-am-user-admin-start-dn for the user.

This attribute is contained in the User service. If it is set, the user is started at
this point. If not, DSAME goes to step 2.

2. DSAME checks the user for the value of iplanet-am-role-type.

If the attribute defines an administrator-type role, the value of
iplanet-am-role-managed-container-dn is retrieved and the highest point
in the tree is displayed as a starting point. For more information on the
iplanet-am-role-type attribute, see “Role Creation,” on page 136.

NOTE When DSAME attempts to process two templates that are set to the
same priority level, DS arbitrarily picks one of the templates to
return. For more information, see the iPlanet Directory Server
documentation.

NOTE Alternately, an administrator might go to the user profile and add
the role to the user.

NOTE The value of iplanet-am-user-admin-start-dn can override the
administrator’s start page. For example, if a group administrator has
read access to the top-level organization, the default starting page of
the top-level organization, taken from iplanet-am-role-type, can
be overridden by defining iplanet-am-user-admin-start-dn to
display the group’s start page.

Access Control Instructions (ACIs)

138 Directory Server Access Management Edition Programmer’s Guide • May 2002

Access Control Instructions (ACIs)

Access control in DSAME is implemented using DS roles. Users inherit access
permissions based on their role membership and parent organization. DSAME
installs pre-configured administrator roles that define access permissions for
administrators that are dynamically created when a group, organization, container
or people container is configured. (They are Organization Admin, Organization
Help Desk Admin, Group Admin, Container Admin, Container Help Desk
Admin and People Container Admin.) These roles apply a set of default access
control instructions (ACIs) that define read and write access to the entries in the
corresponding object. For example, when an organization is created, the DSAME
SDK creates an Organization Admin role and an Organization Help Desk
Admin role. The permissions are read and write access to all organization entries
and read access to all organization entries, respectively.

Defining ACIs
ACIs are defined in the DSAME console Administration XML service file,
amAdminConsole.xml. This file contains two global attributes that define ACIs for
use in DSAME: iplanet-am-admin-console-role-default-acis and
iplanet-am-admin-console-dynamic-aci-list.

NOTE If the attribute has no value, a search from DSAME root is
performed for all container-type objects; the highest object in the
tree that corresponds to the iplanet-am-role-type value is where
the user starts. Although rare, this step is memory-intensive in very
large DITs with many container entries.

NOTE This section refers to ACIs as they are applied to administrative
roles only. There are other ACIs which are created and used in
DSAME but do not apply to this topic or to roles.

NOTE The DSAME SDK gets the ACIs from the attribute
iplanet-am-admin-console-dynamic-aci-list (defined in the
amAdminConsole.xml service file) and sets them in the roles after
they have been created.

Access Control Instructions (ACIs)

Chapter 8 iPlanet Directory Server And DSAME 139

iplanet-am-admin-console-role-default-acis
This global attribute defines which Access Permissions are displayed in the Create
Role screen of the DSAME console. By default, Organization Admin,
Organization Help Desk Admin and No Permissions are displayed. If other
default permissions are desired, they must be added to this attribute.

iplanet-am-admin-console-dynamic-aci-list
This global attribute is where all of the defined administrator-type ACIs are stored.
For information on how ACIs are structured, see “Format of Predefined ACIs,” on
page 139.

Format of Predefined ACIs
ACIs set using DSAME for use in administrator-type roles follow a different format
than those set using the DS. The format of the predefined DSAME ACI is
permissionName | ACI Description | DN:ACI ## DN:ACI ## DN:ACI where:

• permissionName—The name of the permission which generally includes the
object being controlled and the type of access. For example, Organization
Admin is an administrator that controls access to an organization object.

• ACI Description—A text description of the access these ACIs allow.

• DN:ACI—There can be any number of DN:ACI couplets separated by the ##
symbols. The SDK will get and set each couplet in the DN entry. This format
also supports tags which can be dynamically substituted when the role is
created. Without these tags, the DN and ACI would be hard-coded to specific
organizations in the DIT which would make them unusable as defaults. For
example, if there is a default set of ACIs for every Organization Admin, the
organization name should not be hard-coded in this role. The supported tags
are ROLENAME, ORGANIZATION, GROUPNAME, and PCNAME. These tags are
substituted with the DN of the entry when the corresponding entry type is
created. See the “Default ACIs,” on page 140 for examples of ACI formats.
Additionally, more complete ACI information can be found in the iPlanet
Directory Server documentation.

NOTE Because ACIs are stored in the role, changing the default
permissions in iplanet-am-admin-console-dynamic-aci-list
after a role has been created will not affect it. Only roles created after
the modification has been made will be affected.

Access Control Instructions (ACIs)

140 Directory Server Access Management Edition Programmer’s Guide • May 2002

Default ACIs
Following are the default ACIs installed by DSAME. They are copied from a
DSAME configuration whose top-level organization is o=isp.

• Top Level Admin|Access to all entries|o=isp:aci:

(target="ldap:///o=isp")(targetattr="*")(version 3.0; acl "Proxy

user rights"; allow (all) roledn = "ldap:///ROLENAME";)

• Organization Admin|Read and Write access to all organization

entries|o=isp:aci:(target="ldap:///($dn),o=isp")(targetfilter=(!

(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level

Help Desk Admin Role,o=isp))))(targetattr = "*")(version 3.0; acl

"Organization Admin Role access allow"; allow (all) roledn =

"ldap:///cn=Organization Admin Role,[$dn],o=isp";)##o=isp:aci:

(target="ldap:///cn=Organization Admin

Role,($dn),o=isp")(targetattr="*")(version 3.0; acl

"Organization Admin Role access deny"; deny

(write,add,delete,compare,proxy) roledn =

"ldap:///cn=Organization Admin Role,($dn),o=isp";)

• Organization Help Desk Admin|Read access to all organization

entries|ORGANIZATION:aci:(target="ldap:///ORGANIZATION")(targetf

ilter=(!(|(nsroledn=cn=Top Level Admin

Role,o=isp)(nsroledn=cn=Top Level Help Desk Admin

Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION))))(targetattr = "*") (version 3.0; acl

"Organization Help Desk Admin Role access allow"; allow

(read,search) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:

(target="ldap:///ORGANIZATION")(targetfilter=(!(|(nsroledn=cn=To

p Level Admin Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION))))(targetattr = "userPassword") (version 3.0;

acl "Organization Help Desk Admin Role access allow"; allow

(write)roledn = "ldap:///ROLENAME";)

• Container Admin|Read and Write access to all organizational unit

entries|o=isp:aci:(target="ldap:///($dn),o=isp")(targetfilter=(!

(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level

Help Desk Admin Role,o=isp))))(targetattr = "*")(version 3.0; acl

"Container Admin Role access allow"; allow (all) roledn =

NOTE If there are duplicate ACIs within the default permissions, the SDK
will print a debug message.

Access Control Instructions (ACIs)

Chapter 8 iPlanet Directory Server And DSAME 141

"ldap:///cn=Container Admin Role,[$dn],o=isp";)o=isp:aci:

(target="ldap:///cn=Container Admin

Role,($dn),o=isp")(targetattr="*")(version 3.0; acl "Container

Admin Role access deny"; deny (write,add,delete,compare,proxy)

roledn = "ldap:///cn=Container Admin Role,($dn),o=isp";)

• Container Help Desk Admin|Read access to all organizational unit

entries|ORGANIZATION:aci:(target="ldap:///ORGANIZATION")(targetf

ilter=(!(|(nsroledn=cn=Top Level Admin

Role,o=isp)(nsroledn=cn=Top Level Help Desk Admin

Role,o=isp)(nsroledn=cn=Container Admin

Role,ORGANIZATION))))(targetattr = "*") (version 3.0; acl

"Container Help Desk Admin Role access allow"; allow

(read,search) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:

(target="ldap:///ORGANIZATION")(targetfilter=(!(|(nsroledn=cn=To

p Level Admin Role,o=isp)(nsroledn=cn=Container Admin

Role,ORGANIZATION))))(targetattr = "userPassword") (version 3.0;

acl "Container Help Desk Admin Role access allow"; allow (write)

roledn = "ldap:///ROLENAME";)

• Group Admin|Read and Write access to all group

members|ORGANIZATION:aci:(target="ldap:///GROUPNAME")(targetattr

= "*") (version 3.0; acl "Group and people container admin role";

allow (all) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:

(target="ldap:///ORGANIZATION")(targetfilter=(!(|(!FILTER)(|(nsr

oledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level Help

Desk Admin Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION)(nsroledn=cn=Container Admin

Role,ORGANIZATION)))))(targetattr !=

"iplanet-am-web-agent-access-allow-list ||

iplanet-am-web-agent-access-not-enforced-list ||

iplanet-am-domain-url-access-allow ||

iplanet-am-web-agent-access-deny-list")(version 3.0;acl "Group

admin's right to the members"; allow (read,write,search) roledn =

"ldap:///ROLENAME";)

• People Container Admin|Read and Write access to all

users|ORGANIZATION:aci:(target="ldap:///PCNAME")(targetfilter=(!

(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level

Help Desk Admin Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION)(nsroledn=cn=Container Admin

Role,ORGANIZATION))))(targetattr !=

"iplanet-am-web-agent-access-allow-list ||

iplanet-am-web-agent-access-not-enforced-list ||

Class Of Service

142 Directory Server Access Management Edition Programmer’s Guide • May 2002

iplanet-am-domain-url-access-allow ||

iplanet-am-web-agent-access-deny-list") (version 3.0; acl

"People container admin role"; allow (all) roledn =

"ldap:///ROLENAME";)

Class Of Service
Both dynamic and policy attributes use class of service (CoS), a feature of the DS that
allows attributes to be created and managed in a single central location, and
dynamically added to user entries. Attribute values are not stored with the entry
itself; they are generated by CoS as the entry is sent to the client browser. Dynamic
and policy attributes using CoS consist of the following two entries:

• CoS Definition Entry—This entry identifies the type of CoS being used
(ClassicCoS). It contains all the information, save the attribute values, needed
to generate an entry defined with CoS. The scope of the CoS is the entire
sub-tree below the parent of the CoS definition entry.

• Template Entry—This entry contains a list of the shared attribute values.
Changes to the attribute values are automatically applied to all entries within
the scope of the CoS.

The CoS definition entry and template entry interact to provide attribute
information to their target entries, which is any entry within the scope of the CoS.
Only those services which have dynamic or policy attributes use the DS CoS
feature; no other services do.

NOTE DSAME generates a Top Level Admin and Top Level Help Desk
Admin during installation. These roles can not be dynamically
generated for any other identity-type objects but the top-level
organization.

NOTE For additional information on the CoS feature, see the iPlanet
Directory Server documentation.

Class Of Service

Chapter 8 iPlanet Directory Server And DSAME 143

CoS Definition Entry
CoS definition entries are stored as LDAP subentries under the organization level
but can be located anywhere in the DIT. They contain the attributes specific to the
type of CoS. These attributes name the virtual CoS attribute, the template DN and,
if necessary, the specifier attribute in target entries. By default, the CoS mechanism
will not override the value of an existing attribute with the same name as the CoS
attribute. The CoS definition entry takes the cosSuperDefinition object class and
also inherits from the following object class that specifies the type of CoS:

cosClassicDefinition
The cosClassicDefinition object class determines the attribute and value that
will appear with an entry by taking the base DN of the template entry from the
cosTemplateDN attribute in the definition entry and combining it with the target
entry specifier as defined with the cosSpecifier attribute, also in the definition
entry. The value of the cosSpecifier attribute is another LDAP attribute which is
found in the target entry; the value of the attribute found in the target entry is
appended to the value of cosTemplateDN and the combination is the DN of the
template entry. Template DNs for classic CoS must therefore have the following
structure cn=specifierValue,baseDN.

CoS Template Entry
CoS template entries are an instance of the cosTemplate object class. The CoS
template entry contains the value or values of the virtual attributes that will be
generated by the CoS mechanism and displayed as an attribute of the target entry.
The template entries are stored under the definition entries.

Conflicts and CoS
There is the possibility that more than one CoS could be assigned to a role or
organization, thus creating possible conflicts. When this happens, DSAME will
display either the attribute value based on a pre-determined template priority level
or the aggregate of all attribute values defined in the cosPriority attribute. For
example, an administrator could create and load multiple services, register them to
an organization, create separate roles within the organization and assign multiple

NOTE When possible, definition and template entries should be located at
the same level for easier management.

Class Of Service

144 Directory Server Access Management Edition Programmer’s Guide • May 2002

roles to a particular user. When DSAME retrieves this user entry, it sees the CoS
object classes, and adds the virtual attributes. If there are any priority conflicts, it
will look at the cosPriority attribute for a priority level and return the
information with the lowest priority number (which is the highest priority level).
For more information on CoS priorities, see “cosQualifier Attribute,” on page 41 of
Chapter 2, “DSAME And XML” or the iPlanet Directory Server documentation.

Existing Applications
If a customer is using an existing application and wants to manage its attributes
using the DSAME console, a LDAP schema is probably defined and has been
loaded into the DS. If DS does not already have the existing application’s attributes
and object classes loaded, then it needs to be updated using the DS console or the
ldapmodify command line interface. The schema update needs to be completed
before loading the application’s created XML service file. Other options for adding
or modifying DS schema can be found in the iPlanet Directory Server
documentation or in the iPlanet Directory Server Access Management Edition
Installation and Configuration Guide.

NOTE Conflict resolution is decided by the DS before the entry is returned
to DSAME. DSAME allows only the definition of the priority level
and CoS type.

145

Index

A
Abstract Objects 65

Marker Object Classes 66
Access Control Instructions (ACIs) 138

Defining 138
Format 139

ACIs 138
Defining 138
Format 139

Administration Console Entry 74
amAdmin Command Line Executable 68

amAdmin Syntax 68
amAdmin Syntax 68
amAdmin.dtd Structure 43
amAuth.xml 78
amEntrySpecific.xml 65, 66
Anonymous Authentication Service 76
APIs

Authentication 84
Identity Management

Sample Code 98
Logging 124

Recorded Events 127
Sample Code 126

SDK 95
SSO 110

Overview 111
Utility 129

Overview 129
Summary 129

Attribute Inheritance 26
ContainerDefaultTemplateRole 27

Authentication APIs 84
Overview 84

Authentication Process 73
Administration Console Entry 74
URL Policy Agent Entry 74

Authentication Service Properties Files 79
Localization Properties 81
Screen Properties 79

Authentication Service XML Files 78
Authentication Services

Anonymous 76
Authentication URL Parameters 82
Certificate 76
Core 76
Create 77
Custom 76
Installed 76
LDAP 76
Membership 76
Properties Files 79
RADIUS 76
SafeWord 76
Unix 76
XML Files 78

Authentication URL Parameters 82

B
Batch Processing XML Files 61

Batch Processing XML Templates 62
Batch Processing XML Templates 62

146 Directory Server Access Management Edition Programmer’s Guide • May 2002

C
Caching

SDK 100
Certificate Authentication Service 76
Certificate Management Service

Documentation 11
Class Of Service 24, 142

cosQualifier 41
Definition Entry 143
Template Entry 143

ContainerDefaultTemplateRole 27
Cookies 105
Core Authentication Service 76
CoS 142

Definition Entry 143
Template Entry 143

cosQualifier 41
Creation Templates 93
Cross Domain Controller 106
Cross-Domain Single Sign-On 105

Configuring Cross-Domain 107
Cross Domain Controller 106
Enabling Cross-Domain 106
SSO Component 107

Customizing User Pages 64

D
Default Attribute Values 26
Directory Server

ACIs 138
Defining 138
Format 139

Class Of Service 142
Definition Entry 143
Template Entry 143

Documentation 11
Extending Schema 28
Roles 133

Display Login Page 137
Managed Roles 134
Role Creation 136

Role Definition Entry 135
Role Member Entry 135

Directory Server And DSAME 133
Directory Server and DSAME

Overview 133
Directory_Server_root 10
Document Type Definition Files 22
Documentation

Certificate Management Service 11
Developer Information 11
Directory Server 11
iPlanet Products 11
Overview 8
Related Links 11
Technical Support 12
Typographic Conventions 9
Web Proxy Server 11
Web Server 11

DSAME Services 21
DSAME_root 10
DTD Files 33

amAdmin.dtd Structure 43
serviceObjectClasses Attribute 37

Dynamic Attributes 24

G
Global Attributes 23

I
Identity Management

Identity-Related Objects 92
SDK 95

APIs 95
Caching 100
Sample Code 98

ums.xml 93
Creation Templates 93
Modify 94
Search Templates 94

Index 147

Structure Templates 93
Identity Management and the SDK 91

Overview 91
Identity-Related Objects 92
Importing XML Service File 31

L
LDAP Authentication Service 76
Localization Properties 32

Configuring 81
Log Message Formats 122
Logging 121

APIs 124
Sample Code 126

Log Message Formats 122
Overview 121

Logging Service 122
Recorded Events 127

Logging Service 122

M
Managed Roles 134

Display Login Page 137
Role Creation 136
Role Definition Entry 135
Role Member Entry 135

Marker Object Classes 66
Membership Authentication Service 76
Modify XML Service Files 60
Multi-JVM Environment 120

O
Organization Attributes 24

P
Pluggable Authentication API

Writing a Module
Sample Code 86

Policy Attributes 25

R
RADIUS Authentication Service 76
Role Creation 136
Role Definition Entry 135
Role Member Entry 135
Roles 133

Display Login Page 137
Managed Roles 134
Role Creation 136
Role Definition Entry 135
Role Member Entry 135

S
SafeWord Authentication Service 76
Sample Authentication Service 86
Sample Mail Service Files 71
Screen Properties 79
SDK 95

APIs 95
Caching 100
Sample Code 98

Search Templates 94
Service Attributes 21, 23

Attribute Inheritance 26
ContainerDefaultTemplateRole 27

Default Values 26
Dynamic Attributes 24
Global Attributes 23
Organization Attributes 24
Policy Attributes 25
Service Definition Procedures 27

Extending Directory Server Schema 28

148 Directory Server Access Management Edition Programmer’s Guide • May 2002

User Attributes 25
Service Definition 23

Service Attributes 23
Attribute Inheritance 26
Default Values 26
Dynamic Attributes 24
Global Attributes 23
Organization Attributes 24
Policy Attributes 25
User Attributes 25

Service Definition Procedures 27
Extending Directory Server Schema 28
Importing XML Service File 31
Localization Properties 32
Service Registration 33

Service Registration 33
serviceObjectClasses Attribute 37
Single Sign-On 103

Command Line SSO Sample 120
Cross-Domain Support 105

Configuring Cross-Domain 107
Cross Domain Controller 106
Enabling Cross-Domain 106
SSO Component 107

Multi-JVM Environment 120
Process 103

Contact Web Agent 104
Cookies and Tokens 105
Creating Session 104
Providing User Credentials 105

Sample SSO Java Files 119
Remote SSO Sample 120
SSO Servlet 119

SSO APIs 110
Non-Web Based Applications 110
Overview 111

sms.dtd.Structure
serviceObjectClasses Attribute 37

SSO APIs 110
Non-Web Based Applications 110
Overview 111

SSO Component 107
SSO Java Files 119

Command Line SSO Sample 120
Remote SSO Sample 120
SSO Servlet 119

Structure Templates 93

T
Technical Support 12
Tokens 105

U
ums.xml 93

Creation Templates 93
Modify 94
Search Templates 94
Structure Templates 93

Unix Authentication Service 76
URL Policy Agent Entry 74
User Attributes 25
User Authentication 73, 74

Authentication APIs 84
Overview 84

Authentication Service Properties Files
Localization Properties 81
Screen Properties 79

Authentication Services
Anonymous 76
Certificate 76
Core 76
Create 77
Custom 76
Installed 76
LDAP 76
Membership 76
Properties Files 79
RADIUS 76
SafeWord 76
Unix 76
XML Files 78

AuthenticationURL Parameters 82
Sample Authentication Service 86

Utility APIs 129
Overview 129
Summary 129

Index 149

V
Virtual Attributes 24

W
Web Proxy Server

Documentation 11
Web Server

Documentation 11
Web_Server_root 10

X
XML 21

Abstract Objects 65
Marker Object Classes 66

amAdmin Command Line Executable 68
amAdmin Syntax 68

amEntrySpecific.xml 65, 66
Attribute Concepts 22
Class Of Service 24, 41
Document Type Definition Files 22
DTD Files 33

amAdmin.dtd Structure 43
Overview 21

DSAME Services 21
Service Attributes 21

Sample Mail Service Files 71
Service Attributes

Attribute Inheritance 26
ContainerDefaultTemplateRole 27
Default Values 26
Dynamic Attributes 24
Global Attributes 23
Organization Attributes 24
Policy Attributes 25
Service Definition Procedures 27
User Attributes 25

Service Definition
Service Attributes 23

Service Definition and Integration 23

Service Definition Procedures
Extending Directory Server Schema 28
Importing XML Service File 31
Localization Properties 32
Service Registration 33

sms.dtd.Structure
serviceObjectClasses Attribute 37

Virtual Attributes 24
XML Service Files 22, 58

Batch Processing XML Files 61
Batch Processing XML Templates 62
Customizing User Pages 64
Modify XML Service Files 60

XML Service Files 22, 58
Batch Processing XML Files 61

Batch Processing XML Templates 62
Customizing User Pages 64
Modify XML Service Files 60

150 Directory Server Access Management Edition Programmer’s Guide • May 2002

	Programmer’s Guide
	About This Guide
	What You Are Expected to Know
	iPlanet Directory Server Access Management Edition Documentation Set
	Organization of This Guide
	Documentation Conventions Used in This Guide
	Typographic Conventions
	Terminology

	Related Information

	Introduction
	DSAME Overview
	How DSAME Works
	Web Access
	Java Application Access

	Extending DSAME
	Service Definition With XML
	HTML Templates
	The Java APIs

	DSAME File System
	Runtime Directory

	DSAME And XML
	Overview
	XML Service Files
	Document Type Definition Files

	Service Definition and Integration
	Service Attributes
	Default Values
	Attribute Inheritance
	Defining A Service

	DSAME DTD Files
	The sms.dtd Structure
	The amAdmin.dtd Structure

	DSAME XML Files
	Internal XML Service Files
	Batch Processing XML Files
	XML Schema Files
	Customizing User Pages

	Abstract Objects and amEntrySpecific.xml
	Abstract Objects
	amEntrySpecific.xml Schema

	The amAdmin Command Line Executable
	The amadmin Syntax

	SampleMailService Files

	User Authentication With DSAME
	The Authentication Process
	Administration Console Entry
	URL Policy Agent Entry
	Client Detection

	Installed Authentication Services
	Custom Authentication Services
	Creating an Authentication Service
	Authentication Service XML Files

	Authentication Service Properties Files
	Configuring Screen Properties
	Configuring Localization Properties

	Authentication URL Parameters
	Authentication APIs
	Authentication API Overview
	AuthenticationModuleFactory Interface
	AuthenticationModule Class

	Sample Authentication Service
	Authentication Sample: Readme.html

	Identity Management And The SDK
	Overview
	Management Of Identity-Related Objects
	Structure of ums.xml
	Modifying ums.xml

	DSAME SDK
	Identity Management APIs
	Sample Code

	The SDK And Cache
	Cache Properties

	Single Sign-On With DSAME
	The Single Sign-On Process
	Contacting A Web Agent
	Creating A Session
	Providing User Credentials
	Cookies and Tokens

	Cross-Domain Support For SSO
	Enabling Cross-Domain Single Sign-On
	Configuring For Cross-Domain SSO

	SSO APIs
	Non-Web-Based Applications
	API Overview
	Sample API Code

	Sample SSO Java Files
	SSO Servlet Sample
	Remote SSO Sample
	Command Line SSO Sample

	Multi-JVM Support

	Logging
	Overview
	Logging Architecture
	Logging Service

	Log Message Formats
	File Format
	Database Format

	Logging API
	LogManager Class
	LogRecord Class
	Logging Exceptions
	Sample Logging Code

	Recorded Events
	SSO-related Logs
	Console-related Logs
	Authentication-related Logs

	Utility APIs
	Overview
	API Summary
	StatsListener
	AdminUtils
	AMClientDetector
	Debug
	Locale
	Stats
	SystemProperties
	ThreadPool

	iPlanet Directory Server And DSAME
	Overview
	Roles
	Managed Roles
	How DSAME Uses Roles

	Access Control Instructions (ACIs)
	Defining ACIs
	Format of Predefined ACIs

	Class Of Service
	CoS Definition Entry
	CoS Template Entry
	Conflicts and CoS
	Existing Applications

	Index

