XSLT Designer Quick Start Guide

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-4051
December 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

081223@21808

Contents

Understanding the XSLTD@SIGNEYcocovieirieiriiieeeieetesese et ese s ssssssesesees 5
OVETVIEW .ottt ettt ettt st b ettt ettt ettt ettt be bttt e b bebenenens 5
Prerequisites
System REQUITEINENTScuoueviuiiiiiriricicicccciece ettt bttt et aenen 6
Software Needed fOr the TULOTIALc.veueiieeiririririeieece ettt eeeas 6
Configuring the Tutorial ENVIFONMENtc.occuriviueiriiieirieinineicinecieiecseeieiseicsetesesseesesesessesesesseaes 6
Creating the XSLT MOAUIE PTOJECTc.cuviiueiiririieirieieiesisiseetseei ettt st 7
VW To create a new XSLT Module PrOJEct:ccceuecuriiecinincurineciniiicreceeeeeseeseeseseseeesesseseseesescsenns 7
Creating XIML SCREMASccueuiueiiiiieiricirieeiicetreeisee ettt ettt eses 8
V¥ To create the XML Schema for the incoming mMesSage:ccoeevererereerureneereneeisinseeeseeeeeseeeeens 8
WV To create the XML Schema for the 0utgoing Message:covovvieerirerrnienisseeseisseesssssessessenns 9
Creatinga WSDL File
VW T create @ WSDLI1E: ...ttt ettt ssees 10
Creating and Deploying the Composite APPliCAtioncoeueeeeeeeiereiririrerireeeeeeseeesesseeseseeenes 11
V To create a Composite APPLCAION:cucuiuciriieeirieirireieireeieirce ettt seaebeen 12
VW T0add aJBIMOAUIE:c.ooovieieieieeeeeecteeeceee ettt ettt s et se s s s nne 12
V¥V To deploy the HelloXSLTCAP Composite Application:c.cooeecueureeeunerceeirecrninceeirecesenenennes 13
Performing a Test Run of the XSL Transformation SErvicec.ccveeneeurenceeinesieeneeiseneeeneenns 14
W T0 Create @ tESE CASE: .vueuveucuceenceereicteacieeeie ettt bbbttt st se e been 14
W T0 TUDN THE TEST: ettt sttt een 15

Understanding the XSLT Designer

The list below comprises the subjects covered in this topic:

= “Overview” on page 5

= “Configuring the Tutorial Environment” on page 6

“Creating the XSLT Module Project” on page 7

“Creating XML Schemas” on page 8

“Creating a WSDL File” on page 10

“Creating and Deploying the Composite Application” on page 11
“Performing a Test Run of the XSL Transformation Service” on page 14

Overview

In this tutorial you become acquainted with the XSLT Designer included in NetBeans IDE 6.1.
The XSLT Designer is used to develop, deploy and test XSL Transformation Services.

An XSL Transformation Service acts as a web service. It receives messages from an external
client, transforms the messages in accordance with an XSL stylesheet, and either sends the
messages back to the originator or forwards them to another web service.

In this tutorial you create a simple XSL Transformation Service that receives a message,
transforms it, and sends it back to the calling web service.

Prerequisites

This tutorial assumes that you have some basic knowledge of, or programming experience with,
the NetBeans IDE.

Configuring the Tutorial Environment

System Requirements

This tutorial assumes that your system meets the requirements specified in the System
Requirements section of the Netbeans IDE 6.1 Release Notes.

Software Needed for the Tutorial

Before you begin, download and install the following software on your computer: NetBeans
IDE 6.1 (http://www.netbeans.org/downloads/index.html). Click the Download button
under the All column. This option includes all the features and servers required for this tutorial.

Configuring the Tutorial Environment

This tutorial requires that the GlassFish V2 Application Server, which includes the JBI runtime,
has been installed with NetBeans IDE 6.1. Perform the following steps to confirm that GlassFish
V2 Application Server is installed with NetBeans IDE 6.1 and that the JBI runtime contains the
XSLT Service Engine and Transform Shared Library required for this tutorial:

1.
2.
3.

Open the Services window.
Expand the Servers node.
Right-click the GlassFish V2 node and choose Start form the pop-up menu.

If the Start option is not available and there is a green “badge” next to the GlassFish V2
node, the server is already running.

Projects Files Services | 41 X
o & Detabases
o @B wieh Services
o @ Enterprise Beans
¢ FH zervers
¢ €&y ClassFish v2

O appiicatians
St Resources
B Jvms

o um

4. After the server is started, expand the GlassFish V2 > JBI node. Then expand the Shared

Libraries node to verify that sun-dwdl-ext-library is installed.

6 XSLT Designer Quick Start Guide + December 2008

http://www.netbeans.org/downloads/index.html
http://www.netbeans.org/downloads/index.html

Creating the XSLT Module Project

Creating the XSLT Module Project

An XSL Transformation Service is created within an XSLT Module project.

v To create a new XSLT Module Project:

1 FromtheIDE's main menu, choose File > New Project.

2 Under Categories select SOA.

3 Under Projects, select XSLT Modu'le.

4 Click Next.

5 IntheProject Name field, type HelloXSLTransformation.
6 Modify the project location, or accept the default.

1. Choose Project Project Name: [HelloxSLTransformation
2. Mame and Location
Froject Lacation: [fhome/nbuser/projects Browse

Froject Falder: sjects/HelloX5LTransformation

Set as Main Project

< Back next> | pinish || Cancel ||

7 Click Finish.

8 The Projects window now contains the HelloXSLTransformationa project node.

Projects - [a0][3]| Files Ruritime
¢ U7 [HelloXsLTrans formation

o- @ Transformation Files

Next you create two XML Schema (. xsd) files, a web service description (.wsd1l) file and an XSL
stylesheet (. xs1) file. To run an XSL Transformation Service, you need at least one XML
Schema, one WSDL file and one XSL stylesheet. For the purpose of this tutorial, you create two
XML Schemas.

Understanding the XSLT Designer 7

Creating XML Schemas

Creating XML Schemas

You will create two XML Schemas: HelloXSLTIncoming.xsd and HelloXSLTOutgoing. xsd.
You use the former as the basis for the incoming message and the latter as the basis for the

outgoing message.

v To create the XML Schema for the incoming message:

1 In the Projects window, right-click the HelloXSLTransformation > Transformation Files
node and choose New > XML Schema.

2 IntheFile Name field, type Hel1oXSLTIncoming.

3 ClickFinish. Anew node—HelloXSLTIncoming.xsd —appears under the Transformation
Files nodeinyourHelloXSLTransformation projectand the new Schema opensin the XML

Schema Editor.

File Edit Miew MNavigate Source Refactor Build Bun Cvs Tools Window Help

EEE@D | v

Prajects : [¥0][%]| Files Rurtime
¢ U5 HelloXsLTransformation
¢ & Transformation Files

L & B By

[[HelloxsLTincoming.xsd
oouree [oean | M

[+ [HelloxsLTIncoming.zsd

Schema > hitp://zmlnetbeans org/schem

o [B] =sitmap.zml

& hutpgixmlnetbeans.or B
I Artributes

[Attribute Groups

L Complex Types

I, Elements

E Groups

L3, Referenced Schemas

B Simple Types

4 Inthefirst column of the Schema view, right-click Elements and choose Add Element from the
pop-up menu. The Add Element dialog box opens.

5 Inthe Namefield, type name.

6 UnderType, select the Use Existing Type radio button.

7 ExpandtheBuilt-in Types node and select string.

8 Click OK.

8 XSLT Designer Quick Start Guide -

December 2008

Creating XML Schemas

Mame: [name

Type:
I Inline Complex Type
@ [Inline Simple Type
) N Type
J Use Existing Type

o [Built-in Types

o [Complex Types

o [Referenced Schemas
o [Simple Types

Current Selection

Presieu

<xsdielenent name="name">
<xsd:simpleType:
<usd:restriction base="usd:string"/>
</xsdisimpleType>
< /wsdielements

[e || Cancel H Help |

To view the source of the Schema you created, click the Source button on the XML Schema Editor

toolbar. You should see the following code:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://xml.netbeans.org/schema/HelloXSLTIncoming"
xmlns:tns="http://xml.netbeans.org/schema/HelloXSLTIncoming"
elementFormDefault="qualified">

<xsd:element name="name" type="xsd:string"></xsd:element>
</xsd:schema>

To create the XML Schema for the outgoing message:

In the Projects window, right-click the HelloXSLTransformation > Transformation Files
node and choose New > XML Schema.

In the File Name field, type He11oXSLTOutgoing.
Click Finish. A new node—He110XSLTOutgoing.xsd —appears under the Transformation
Files nodeinyourHelloXSLTransformation projectand the new Schema opensin the XML

Schema Editor.

In the first column of the Schema view, right-click Elements and choose Add Element from the
pop-up menu. The Element dialog box opens.

In the Name field, type greeting.

Under Type, select the Use Existing Type radio button.

Understanding the XSLT Designer 9

Creatinga WSDL File

10

Expand the Built-in Types node and select string.
Click OK.

To view the source of the Schema you created, click the Source button on the XML Schema Editor
toolbar. You should see the following code:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://xml.netbeans.org/schema/HelloXSLTOutgoing"
xmlns:tns="http://xml.netbeans.org/schema/HelloXSLTOutgoing"
elementFormDefault="qualified">
<xsd:element name="greeting" type="xsd:string"></xsd:element>
</xsd:schema>

Click the Save All button on the toolbar.

You should see two Schema files listed under the Transformation Files node in your
HelloXSLTransformation project.

Projects - [40][]| Files Rurititm &
=
¢ & Transfarmation Files
[HelloxsLTincaming.xsd
[HelloxsLToutacing xsd
o xshmap.xml

CreatingaWSDL File

10

Next you create a web service description file defining the web interface of our XSL
Transformation Service.

To create a WSDL file:

In the Projects window, right-click the HelloXSLTransformation > Transformation Files
node and choose New >WSDL Document.

In the File Name field, type He11oXSLTWSDL, then click Next.

Under Input, in the Element Or Type column, click the ellipsis (...) button. The Select Element Or
Type dialog box opens.

Select By File > HelloXSLTransformation > src/HelloXSLTIncoming.xsd > Elements >
name and click OK.

XSLT Designer Quick Start Guide + December 2008

Creating and Deploying the Composite Application

¢ = HelloxsLTransformation -
& sre/HelloXSLTOutgoing. xsd
¢ sre/HelloXsLTIncoming.xsd
o [Complex Types
¢ T4 Elements
@
o [simple Types
¢) Built-In Schema Types
O anvTyne

5 Under Output, in the Element Or Type column, click the ellipsis (...) button. The Select Element
OrType dialog box opens.

6 Select By File > HelloXSLTransformation > src/HelloXSLTOutgoing.xsd > Elements >
greetingand click OK.

¢ & HelloXSLTransformation -
o [&] sresHelloxsLTOwgoing xsd
o [Complex Types
9 3, Elements
o [Simple Types
o [if] srefHelloxXsLTincoming xsd
¢ Built-In Schema Types
O anyType -

7 Click Next.
8 Inthe Binding Type Field, select SOAP.

9 Under Binding Subtype, select Document Literal, then click Finish.

You should see the He11oXSLTWSDL . wsd1 file listed under the Transformation Files node in
your HelloXSLTransformation project.

Projects # [{][3]| Files Runtime
¢ Ug HelloxSLTrans formation
¢ & Transformation Files
[HelloxsLTIncoming xsd
[HelloxXsLTOutgeing.xsd

xsltmap.xm|

Creating and Deploying the Composite Application

An XSLT project is not directly deployable. You must first add an XSLT project as a JBI module
to a Composite Application project before you can deploy the Composite Application project.
Deploying the project makes the service assembly available to the application server, thus
allowing its service units to be run.

Understanding the XSLT Designer 1

Creating and Deploying the Composite Application

v To create a Composite Application:

1 Choose File > New Project from the main menu.

2 Under Categories, select SOA.

3 Under Projects, select Composite Application. Click Next.
4 Inthe Project Name field, type Hel11oXSLTCAP.

5 Specify a project location or accept the default.

6 Click Finish.

7 TheProjects window now contains the He11oXSLTCAP project node.

Projects - [40][]| Files Rurititm &
¢ 42 HelloXSLTCAP
o~ @ ProcessFiles
o [Bl Modules
o [Test
¢ 05 HelloxsLTranstarmation
¢ & Transfarmation Files
[HelloxsLTincaming.xsd
[HelloxsLToutacing xsd
BB HelloxsLTservice xsl
HelloxSLTWS DL sl
o xshmap.xml

v Toadd aJBl module:

1 Right-click the He110XSLTCAP node and choose Add JBI Module from the pop-up menu.

2 Select the HelloXSLTransformation project and click Add Project Jar Files.

cort B ElEEELE
g HelloxsLTCAR Eroject Name:
[HelloxsLTransfarmation) HelloXSLTransformation

Froject [AR Files

build/ SEDeploym ent jar

File Name: | fhome/nbuser/projects HelloXSLTranstorm ation]

Files of Type: ‘Prwecl Folder ‘vl

Add Project JAR Files H Cancel |

12 XSLT Designer Quick Start Guide « December 2008

Creating and Deploying the Composite Application

3 To verify that the JBI module has been added, expand Hel10XSLTCAP > JBI Modules.

Projects - [a0][3]| Files Ruritime
7 &2 HelloXSLTCAP
o~ @ Process Files
¢ @ 18 Modules
UG HelloXsLTransformation jar
o~ O Test
¢ OF HelloxsLTranstormation
¢ @ Transformation Files
HellaXsLTIncoming. xsd
HelloXsLTOutgaing.xsd
B HelloxXsLTService xsl
HelloXSLTWSDLwsdl
- wsitmap xm|

v Todeploy the HelloXSLTCAP Composite Application:

1 Inthe Projects window, right-click the He11oXSLTCAP node and choose Deploy Project from the
pop-up menu.

Note: If the Warning - Select Server dialog box appears, select Sun Java System Application
Server 9 and click OK.

2 Inthe Output window that opens in the lower part of the IDE, watch for the BUILD SUCCESSFUL
message.

3 To verify that the project has been deployed, expand Sun Java System Application Server 9
> JBI > Service Assemblies in the Runtime window. You should see the He11oXSLTCAP node.

Projects Files Runtime [an][x]
¢ BB servers
o @& Bundled Tomeat {5.5.17)
¢ Spsun Java System Application Server 9
& @ Applications
o B Resources
[E=ERICH
70 e
¢ @ Service Engines
& JavaEEServiceEnaine
& com sunbpelse-1.0-2
& com suniepse-1.0-2
& com sun.sglse-1.0-2
& com sun.xshse-1.0-2
o 3 Binding Components
o (@ Shared Libraries
¢ @ Service Assemblies
o Bl HelloXSLTCAR
o~ @ Processes
o B Databases
& HTTP Senier
o Sun Jawa System Access Managers
o &Y DTD and XML Schema Catalogs

Understanding the XSLT Designer 13

Performing a Test Run of the XSL Transformation Service

Performing a Test Run of the XSL Transformation Service

Testing an XSL Transformation Service means sending a message that the Service is expecting
and receiving, in this case, a reply message.

Before we can perform the testing, we must create a test case.

v To create a test case:

1 IntheProjects window, expand the Hel10XSLTCAP node and right-click the Test node.
2 Fromthe pop-up menu, select New Test Case.
3 IntheTest Case Name field, type JohnSmith. Click Next.

4 Under Select the WSDL Document, expand HelloXSLTransformation - XSLT Process Files
and select He11oXSLTWSDL .wsdl. Click Next.

5 Under Select the Operation to Test, expand He 1 1oXSLTWSDLBinding and select
HelloXSLTWSDLOperation. Click Finish.

6 The JohnSmith node appears under Hel1oXSLTCAP > Test and the input message
file—Input.xml —opensinthe editor.

Projects [40][%]| Files Runtime G Inputeml
HelloXSLTCAP
f % O3 Process Files <= TAPEH B L%
¢ @ JBI Modules <snapenw:Enelope xsi:schemaloca
o <soapeny:Bodyy>
55 HeloxsLTransfarmation jar <hel:nane>Tstring?</hel:name:
¢ G Test </s0apeny: Bodys
¢ GgaJohnSmith </=0apenv:Envelope>
%F Input
s Output

¢ 05 HelloxsLTranstarmation
¢ & Transfarmation Files
HelloXSLTIncaming.xsd
[HelloxsLTowacing xsd
BB HelloxsLTservice xsl
HelloxSLTWS DL wisdl
o [@ xshtmap.xml

7 Inthe Input.xml, modify the

<hel:name>?string?</hel:name>

line to

<hel:name>John Smith</hel:name>

14 XSLT Designer Quick Start Guide « December 2008

Performing a Test Run of the XSL Transformation Service

The Input.xml file should be:

<soapenv:Envelope xsi:schemalLocation=
"http://schemas.xmlsoap.org/soap/envelope/ http://schemas.xmlsoap.org/
soap/envelope/" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:hel="http://xml.netbeans.org/schema/HelloXSLTIncoming">

<soapenv:Body>
<hel:name>John Smith</hel:name>
</soapenv:Body>

</soapenv:Envelope>

8 Clickthe Save All button on the toolbar.

The Output node under the test case node refers to the expected reply message that is used for
comparison with the actual reply messages. Before we run the test for the first time, the
Output.xml file is empty. We will populate it with the content of the reply message (provided
that it is what we expect).

v Torunthetest:

1 Right-click the JohnSmith node and select Run. Notice that the test fails and the following
dialog box appears:

E_\ Overwrite Empty Dutput?

The expected output file for the test case is empty
Do yOu want ta saue the mOSt recent oLtpUt as the test case's expected
output file for comparisan during later test runs?

2 ClickYes. Notice that the failed test node appears below the Output node.

Understanding the XSLT Designer 15

Performing a Test Run of the XSL Transformation Service

Prajects 7 [{0][3]| Files Rurtime
¢ §% HelloXSLTCAP
¢ [Process Files
o [JBI Modules
@ 5 Test
¢ 5 Johnsmith
S Input
G Output
=1 Feb 13, 2007 12:59:29 PM - Failed
¢ U3 HelloxsLTransformation
¢ & Transformation Files
HelloXSLTIncoming.xsd
HelloXSLTOutgaing xsd
ER HelloxsLTservice.xsl
HelloxsLTWsDL wsdl
o xsltmap.xml

3 Double-click the failed test node to see the message that the XSL Transformation Service sent
back:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance" xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns="http://xml.netbeans.org/
schema/HelloXSLTOutgoing">

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<ns:greeting xmlns:ns="http://xml.netbeans.org/schema/
HelloXSLTOutgoing">Hello John Smith</ns:greeting>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Notice the line

<ns:greeting xmlns:ns="http://xml.netbeans.org/schema/HelloXSLTOutgoing">Hello John Smith</ns:greeting>

The XSL Transformation Service received the name, concatenated it with the string 'Hello' and
sent the reply message.

4 Runthetestagain.The test is marked as passed.

16 XSLT Designer Quick Start Guide « December 2008

Performing a Test Run of the XSL Transformation Service

1Unit Test Results

Statistics Qutput

The test passed
¢ @ oranetbeans modules.compapp.catd ConfiguredTest passed
@ Johnsmith passed (0,577 <)

You have successfully created, deployed and tested an XSL Transformation Service.

Now that you have successfully created the Request-Reply XSL Transformation Service,
continue with the Service Bridge type.

Understanding the XSLT Designer 17

18

	XSLT Designer Quick Start Guide
	Understanding the XSLT Designer
	Overview
	Prerequisites
	System Requirements
	Software Needed for the Tutorial

	Configuring the Tutorial Environment
	Creating the XSLT Module Project
	To create a new XSLT Module Project:

	Creating XML Schemas
	To create the XML Schema for the incoming message:
	To create the XML Schema for the outgoing message:

	Creating a WSDL File
	To create a WSDL file:

	Creating and Deploying the Composite Application
	To create a Composite Application:
	To add a JBI module:
	To deploy the HelloXSLTCAP Composite Application:

	Performing a Test Run of the XSL Transformation Service
	To create a test case:
	To run the test:

