
Developer Guide to XSLT Editor

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–6371
December 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

081223@21808

Contents

Using theXSLT Editor ...5
About the XSLT Service Engine ..5
XSLT Service Engine Features ...6

Request-Reply (requestReplyService) ..6
Invoke-Send (filterOneWay) ..6
Request-Invoke-Reply Chain (filterRequestReply) ...6

Runtime Properties ..7
Starting the Application Server ...7
Viewing Service Engine Properties ...7
Runtime Property Descriptions ..8

Configuring the XSLT Service Engine ...9
Use Case 1 ..9
Use Case 2 ... 10
Configuring the XSLT Service Engine ... 10
transformJBI attribute ... 10
messageType attribute ... 11
XSLT Service Engine Component Limitations — Running the JBI Runtime Separately 11

3

4

Using theXSLT Editor

The topics listed below provide an overview of the XSLT Service Engine, the XSLT Editor, and
its relationship with the JBI runtime environment. These topics also provide details on the
Netbeans tooling support for the service engine.
■ “About the XSLT Service Engine” on page 5
■ “XSLT Service Engine Features” on page 6
■ “Runtime Properties” on page 7
■ “Configuring the XSLT Service Engine” on page 9

About the XSLT Service Engine
The XSLT Service Engine is a Java-based transformation engine that is used to convert XML
documents from one data format to another. The XSLT Service Engine makes it easier for users
to configure and expose XSL style sheets as web services. Using the XSLT Service Engine
requires no special knowledge of XSL, but rather allows any XSL style sheet to be deployed as a
JBI service unit.

The XSLT Service Engine is not solely responsible for performing transformations. XSL style
sheets implement a web service operation (as normally defined in a WSDL). When deployed as
JBI service units, these service units correspond to a service endpoint. Each endpoint is
activated when the XSLT service unit is deployed. In a sense, the XSLT Service Engine is a
container of XSL style sheets, each of which represents a service endpoint in the JBI
environment.

The following steps highlight the life cycle of a typical message using the XSLT Service Engine:

1. The XSLT service unit is configured with service endpoint information.
2. The service unit is deplopyed, along with the XSL style sheet, to the JBI environment.
3. The XSLT Service Engine compiles the style sheet.
4. A message arrives and the XSLT Service Engine searches for the service endpoint

responsible for handling the message.

5

5. The message is transformed using the service endpoint's XSL style sheet.
6. A response is sent back via the Normalized Message Router (NMR).

XSLT Service Engine Features
The XSLT Service Engine supports the following use cases:
■ Request-Reply

(requestReplyService)

■ Invoke-Send

(filterOneWay)

■ Request-Invoke-Reply Chain

(filterRequestReply)

Request-Reply (requestReplyService)
Request-Reply is a standard request-reply scenario. An XML message request is transformed
and the result is sent back to the original consumer of the XSLT endpoint. The sequence of
events includes:

1. XML message in
2. XSL transformation of message
3. Transformed result out

Invoke-Send (filterOneWay)

Invoke-Send is a standard one-way invocation. An XML message request is transformed, and
the result is sent (not to the original consumer but rather) to another endpoint in the JBI
environment. The sequence of events includes:

1. XML message in
2. XSL transformation of message
3. Transformed result out to third party

Request-Invoke-Reply Chain (filterRequestReply)

The Request-Invoke-Reply chain is a representation of the adapter pattern; it applies two
separate XSL transformations. This scenario is useful when there are two existing web services
which must be integrated even though they have incompatible input and output.

XSLT Service Engine Features

Developer Guide to XSLT Editor • December 20086

The first existing service acts as a consumer to the XSLT endpoint, sending a request. This
message is transformed to match the input of the second service.

The second service is then invoked in an asynchronous manner. When the response from the
second service arrives via the NMR, it is transformed to match the expected reply to the first
(consuming) service. The sequence of events includes:

1. XML message in
2. XSL transformation of message using first XSL style sheet
3. Invoke service, sending transformed message as input
4. Receive response from invoked service endpoint
5. XSL transformation of response using second XSL style sheet
6. Reply to original sender with transformed third party response

Runtime Properties
Changes to the XSLT Service Engine runtime properties are made from within NetBeans. The
XSLT Service Engine is included with the NetBeans IDE 6.0 Beta 1 with SOA.

Starting the Application Server
Configuration of XSLT Service Engine runtime properties requires first starting the Sun Java
System Application Server in the NetBeans window.

To start the Sun Java System Application Server:

1. Select the Services tab.
2. Right-click the Sun Java System Application Server node and select Start.

Viewing Service Engine Properties
After you have started the application server, you can access the service engine properties.

To view XSLT Service Engine properties:

1. In the Services tab, expand the following nodes:

Sun Java System Application Server > JBI > Service Engines

2. Right-click

sun-xslt-engine

and select Properties.

Runtime Properties

Using theXSLT Editor 7

The

sun-xslt-engine

Properties window appears.

Runtime Property Descriptions

TABLE 1 General Properties

Property Name Description Default Value

Description Description of the JBI Component. XSLT Service Engine allows XSL
stylesheets to be deployed as web
services.

Name Name of the JBI Component.
Specifies a unique name in the JBI
environment. If you are installing
more than one XSLT Service
Engine in a JBI environment, make
sure that each is unique. This can
be changed in the descriptor
(jbi.xml) for the component. When
the service unit deploys the
component, it is matched with
target component name defined in
its descriptor — jbi.xml.

sun-xslt-engine

State State of the JBI Component. Start,
Stop, or Shutdown.

Started

Type Type of the JBI Component
(service-engine or
binding-component)

service-engine

TABLE 2 Identification Properties

Property Name Description Default Value

Build Number Date and time stamp for the
current build.

<build_number>

Spec Version XSLT specification fully supported
by this build.

$(specification version)

Runtime Properties

Developer Guide to XSLT Editor • December 20088

TABLE 3 Class Loggers

Class Name Description Default Logging Level

sun-xslt-engine INFO

DefaultMessageListener INFO

PatternExchangeRouter INFO

SimpleProcessorFactory INFO

SingleThreadManager INFO

xsltseComponentManager INFO

Configuring the XSLT Service Engine
No special knowledge of XSL is required to configure an XSLT service unit. The only
requirements are a WSDL, an XSL style sheet, and the XSLT map configuration file.

The creation of the WSDL — defining the service, port type, and creating the binding
information for the service definition — is a separate step from the XSLT map configuration file.
Properly configuring an XSLT service unit means understanding what pieces to migrate from
the WSDL into the XSLT map file.

XSLT Projects contain a configuration file called xsltmap.xml . Most of the information needed
to configure an XSLT Project as a JBI service unit is contained in a WSDL, which defines the
operation an XSLT transformation is implementing. A sample configuration follows:

Use Case 1
<xsltmap> <--Names partnerlink defined in deployed WSDL

<requestReplyService> <-- Matches partnerLink role name

<input partnerLink="{foo}p10" <-- Matches partnerLink portType name

roleName="server" <-- Operation this transformation implements

portType="portType" <-- Identifies reply message definition in deployed WSDL

operation="operation" <-- The transformation applied to request

messageType="{ns}msg-name" <-- See details below

file="map.xsl"
transformJBI="false" />

</requestReplyService>

Configuring the XSLT Service Engine

Using theXSLT Editor 9

Use Case 2
<filterOneWay> <--Names partnerlink defined in deployed WSDL

<input partnerLink="{foo}p11" <--Matches partnerLink role name

roleName="server" <--Matches partnerLink portType name

portType="portType" <--Operation this transformatino implements

operation="operation" <--Identifies transformed message definition in deployed WSDL

messageType="{ns}msg-name <--The transformation applied to request

file="map.xsl" /> <--See details below

transformJBI="false" /> <--Names partnerLink of operation to invoke

<output partnerLink="{bar}p12" <--Matches named partnerLink

roleName="client" <--Matches portType of operation to invoke

portType="outPortType" <--Operation to invoke/send transformed request

operation="outOp" />

</filterOneWay>

Configuring the XSLT Service Engine
<filterRequestReply> <--Names partnerlink defined in deployed WSDL

<input partnerLink="{foo}p11" <--Matches partnerLink role name

roleName="server" <--Matches partnerLink portType name

portType="portType" <--Operation this transformatino implements

operation="operation" <--Identifies transformed message definition in deployed WSDL

messageType="{ns}msg-name <--The transformation applied to request

file="map.xsl" /> <--See details below

transformJBI="false" /> <--Names partnerLink of operation to invoke

<output partnerLink="{bar}p12" <--Matches named partnerLink

roleName="client" <--Matches portType of operation to invoke

portType="outPortType" <--Operation to invoke/send transformed request

operation="outOp" /> <--Identifies reply message definition in deployed WSDL

messageType="{ns}msg-name" <--Transformation applied to response from invoked operation

file="map2.xsl" <--See details below

transformJBI="fales" />

</filterRequestReply>

</xsltmap>

transformJBI attribute
To support multiple-part WSDL 1.1 message definitions, the JBI specification defines an XML
document format for wrapping WSDL 1.1 message parts. Since the XSLT Service Engine does
not lend itself to transforming multiple message parts, the XSLT Service Engine instead
supports the transformation of the entire JBI message wrapper. To enable this transformation,
the transformJBI attribute flag must be set to true; the default value is false if the attribute is
not specified in the xsltmap.xml file.

Configuring the XSLT Service Engine

Developer Guide to XSLT Editor • December 200810

It is important to note that when this attribute is set to true, the XSL style sheet MUST generate
a properly formed JBI message wrapper document. Failure to do so will result in mishandled
message exchanges. As noted in the JavaTM Business Integration (JBI) 1.0 specification, the
wrapping of message parts allows both consumer and provider to interact using this
well-known mapping to a wrapped doc-literal form of the message that is used for normalized
message content.

A wrapped literal document must conform to the schema given in the listing below.

default namespace jbi = "http://java.sun.com/xml/ns/jbi/wsdl-11-wrapper"
start =

element message {

attribute version { xsd:decimal },

attribute type { xsd:QName },

attribute name { xsd:nmtoken }?,

part*

}

part =

element part {

part value

((element* { text }) | text)

}

See the Java Business Integration (JBI) 1.0 specification for additional information on the
normalized message context schema for wrapper document for WSDL 1.1–defined messages.

messageType attribute
To eliminate the need of parsing the WSDL to determine the output message definition (as it is
required in a JBI message wrapper), this attribute must be specified for all non-JBI
transformations. That is, if the transformJBI attribute is false, then the messageType attribute
MUST be specified. The value of this attribute usually takes the form: {msg-def-ns}msg-def .

XSLT Service Engine Component Limitations —
Running the JBI Runtime Separately
Due to a dependency on the design-time XSLT project (part of the NetBeans IDE), XSLT service
units used outside the NetBeans environment do not benefit from the functionality built into
the XSLT project. Specifically, the generation of the service unit's jbi.xml file and the creation of
a distributable/deployable service unit must be done manually.

Configuring the XSLT Service Engine

Using theXSLT Editor 11

12

	Developer Guide to XSLT Editor
	Using theXSLT Editor
	About the XSLT Service Engine
	XSLT Service Engine Features
	Request-Reply (requestReplyService)
	Invoke-Send (filterOneWay)
	Request-Invoke-Reply Chain (filterRequestReply)

	Runtime Properties
	Starting the Application Server
	Viewing Service Engine Properties
	Runtime Property Descriptions

	Configuring the XSLT Service Engine
	Use Case 1
	Use Case 2
	Configuring the XSLT Service Engine
	transformJBI attribute
	messageType attribute
	XSLT Service Engine Component Limitations — Running the JBI Runtime Separately

