
REST Binding Component User's
Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0540–10
January 2010

Copyright 2010 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

100129@23031

Contents

Using the REST Binding Component .. 5
About the REST Binding Component ...6

REST Binding Component Features ..7
Supported HTTP Methods ..7
REST BC Sample Projects ..8

Working With the REST BC WSDL Document ...8
Creating the REST BC WSDL Document ..8
Configuring REST BC WSDL Attributes .. 16

Configuring the REST Binding Component Runtime Properties ... 21
▼ To Configure REST BC Runtime Properties .. 21

REST Binding Component Runtime Property Descriptions ... 22
Creating Application Configurations for Connectivity Parameters (URLs) 26

▼ To Create Application Configurations .. 27
▼ To Add the Application Configuration to the Endpoint ... 27
▼ To Change Application Configuration Values ... 28

Using Application Variables .. 29
▼ To Create an Application Variable .. 29
▼ To Use an Application Variable for Password Protection .. 30

Using REST BC Normalized Message Properties in a Business Process 31
Using Predefined Normalized Message Properties .. 31
Normalized Message Properties for REST .. 34

Implementing Jersey Client Filters .. 38
▼ To Define the Jersey Filter ... 38
▼ To Add the Filter to the Composite Application .. 41

3

4

Using the REST Binding Component

This guide provides an overview of the REST Binding Component, and includes information
and instructions for implementing, configuring, and deploying the binding component in a JBI
project. The REST Binding Component provides connectivity for Representational State
Transfer (REST) over HTTP in a JBI environment.

The REST Binding Component is based on Jersey, which implements the JSR-311 project for
JAX-RS (Java API for RESTful Web Services).

What You Need to Know

These topics provide information you should know before you use the REST Binding
Component:

■ “About the REST Binding Component” on page 6
■ “REST Binding Component Features” on page 7
■ “Supported HTTP Methods” on page 7
■ “REST BC Sample Projects” on page 8

What You Need to Do

These topics provide instructions for using the REST Binding Component:

■ “Creating the REST BC WSDL Document” on page 8
■ “Configuring REST BC WSDL Attributes” on page 16
■ “Configuring the REST Binding Component Runtime Properties” on page 21
■ “Creating Application Configurations for Connectivity Parameters (URLs)” on page 26
■ “Using Application Variables” on page 29
■ “Using Predefined Normalized Message Properties” on page 31
■ “Implementing Jersey Client Filters” on page 38

Reference Information

These topics provide additional reference information about configuring and using the REST
Binding Component:

5

■ “New WSDL Wizard Properties for REST” on page 14
■ “Service Level REST WSDL Element” on page 17
■ “Binding Level REST WSDL Elements” on page 17
■ “REST Binding Component Runtime Property Descriptions” on page 22
■ “Normalized Message Properties for REST” on page 34

About the REST Binding Component
The REST Binding Component provides external connectivity for REST over HTTP, allowing
external systems to call RESTful web services hosted by the JBI platform and allowing JBI
components to call external web services. Binding components implement the protocol
transformations between abstract messages handled by the JBI Service Engines and concrete
messages of the protocol. Other JBI components, such as the BPEL Service Engine, can leverage
the REST Binding Component to provide and consume RESTful web services.

The REST Binding Component is based on Jersey 1.0.3.1, which implements the JSR-311
project for JAX-RS (Java API for RESTful Web Services). Jersey provides APIs for extending
functionality, a client API for REST, an API for JSON support, and an API for using JAXB with
JSON. It also supports annotations defined in JSR-311.

Using REST, data and functionality are resources that are accessed through Uniform Resource
Identifiers (URIs), which are usually web links. Each discrete resource is identified by a unique
URI. The REST Binding Component uses a simple subset of HTTP operations to transfer and
transform the data represented by the resources. The data can be of various formats, including
plain text, XML, HTML, JSON, and so on.

The REST BC allows you to specify custom HTTP headers and path parameters where needed.
Headers define certain traits of the data being processed, including metadata, application state
information, and so on. Metadata includes information about the resource, such as the accepted
format and content type. The REST BC performs transformation logic based on the HTTP
headers. Path parameters can be either query or matrix in style. Query parameters defined
attributes of the whole URI, while matrix parameters only modify segments of the URI.

The transformation of abstract messages to REST messages occurs in the REST Binding
Component. WSDL extensibility elements are used to configure this transformation. The
WSDL extensibility elements are part of the binding and service sections of WSDL
documents. Both the binding and service sections of a WSDL document must be properly
configured to determine how the message is transformed and the destination of that message.

About the REST Binding Component

REST Binding Component User's Guide • January 20106

REST Binding Component Features
The REST BC provides the following features and functionality to GlassFish ESB:
■ Gives GlassFish ESB applications the ability to provision and consume RESTful web

services.
■ Provides easy configuration through a wizard that guides you through the steps of creating a

REST WSDL document.
■ Allows you to dynamically set HTTP headers and parameters using normalized message

properties in a BPEL process.
■ Allows you to define application variables and configurations so you can port your REST

applications from one environment to another.
■ Supports substitution variables in URLs which can be populated from normalized message

properties in the BPEL process or from application variables.
■ Supports GET, PUT, POST, DELETE, and HEAD HTTP methods.
■ Supports XML, JSON, and plain text content types.
■ Supports Secure Sockets Layer (SSL).
■ Supports Jersey client filters, so you can modify a REST request or response for an outbound

REST client interaction.

Supported HTTP Methods
The REST BC supports a subset of HTTP methods to manipulate the requests and responses
processed by GlassFish ESB. Certain HTTP methods, such as GET and HEAD, do not make any
changes to the resource or to the message and are thus considered to be “safe”. Other method
are idempotent, which means that the results of multiple identical request are the same as for a
single request. All supported methods except POST fall under this category.

The following subset of HTTP methods are supported for the REST BC:
■ GET

The GET method retrieves specific information from the server as identified by the request
URI.

■ PUT
The PUT method requests that the message body sent with the request be stored under the
location provided in the HTTP message.

■ DELETE
The DELETE method deletes the specified resources.

■ POST
The POST method modifies data on the server from which a request was sent.

About the REST Binding Component

Using the REST Binding Component 7

■ HEAD
The HEAD method is similar to the GET method except the message body is not returned in
the response. The response only includes metainformation, such as a response code or
corresponding headers.

REST BC Sample Projects
There are several sample projects for the REST Binding Component to help you get started with
the REST BC and further understand the information and instructions provided in this
document. To download the samples and read information on how to run them, go to
http://wiki.open-esb.java.net/Wiki.jsp?page=RestBCSamples.

Working With the REST BC WSDL Document
The WSDL document defines a REST interface for the project. You create and configure the
WSDL document using the New WSDL Wizard, and you can further configure the interface
using the WSDL Editor in NetBeans.

The following topics provides instructions for working with the WSDL document for REST:

■ “Creating the REST BC WSDL Document” on page 8
■ “Configuring REST BC WSDL Attributes” on page 16

Creating the REST BC WSDL Document
The following topics provide instructions for creating an inbound and outbound REST WSDL
document, and also provide reference information for the fields on the New WSDL Wizard.

■ “To Create a WSDL Document for REST Inbound” on page 8
■ “To Create a WSDL Document for REST Outbound” on page 11
■ “New WSDL Wizard Properties for REST” on page 14

▼ To Create a WSDL Document for REST Inbound

In the NetBeans Projects window, right-click the project or a folder within the project where you
want to add the WSDL document.

Point to New and then select WSDL Document.
The New WSDL Document Wizard appears.

Enter a name for the WSDL document, and verify or update the folder location for the file.

1

2

3

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 20108

http://wiki.open-esb.java.net/Wiki.jsp?page=RestBCSamples

Select Concrete WSDL Document.

The Binding and Type fields appear.

For the Binding, select REST; for the Type, select REST – Inbound.

Click Next.

The Operation Detail window appears with the Get tab displayed.

4

5

6

Working With the REST BC WSDL Document

Using the REST Binding Component 9

To add a GET operation, do the following:

a. On the Get tab, click Add Operation.

New fields appear on the wizard.

b. Enter a name for the operation, and click the Browse buttons to select the request and
response message types.

c. Click Edit Operation.

The Edit Operation Properties window appears.

7

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 201010

d. Enter values for the fields described in Table 1.

To add PUT, POST, DELETE, and HEAD operations, repeat the above steps from the appropriate
tab on the wizard.

On the New WSDL Document Wizard, click Finish.

▼ To Create a WSDL Document for REST Outbound

In the NetBeans Projects window, right-click the project or a folder within the project where you
want to add the WSDL document.

Point to New and then select WSDL Document.

The New WSDL Document Wizard appears.

Enter a name for the WSDL document, and verify or update the folder location for the file.

Select Concrete WSDL Document.

The Binding and Type fields appear.

For the Binding, select REST; for the Type, select REST – Outbound.

8

9

1

2

3

4

5

Working With the REST BC WSDL Document

Using the REST Binding Component 11

Click Next.

The Operation Detail window appears with the Get tab displayed.

To add a GET operation, do the following:

a. On the Get tab, click Add Operation.

New fields appear on the wizard.

6

7

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 201012

b. Enter a name for the operation, and click the Browse buttons to select the request and
response message types.

c. Click Edit Operation.

The Edit Operation Properties window appears.

Working With the REST BC WSDL Document

Using the REST Binding Component 13

d. Enter values for the fields described in Table 2.

To add PUT, POST, DELETE, and HEAD operations, repeat the above steps from the appropriate
tab on the wizard.

On the New WSDL Document Wizard, click Finish.

New WSDL Wizard Properties for REST
The following tables list and describe the inbound and outbound operation properties for the
REST BC. These properties are accessed from the Operation Details page of the New WSDL
Wizard.

TABLE 1 Edit Operation Properties (Inbound)

Property Description

Path The path to the operation resource. This property is required.

8

9

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 201014

TABLE 1 Edit Operation Properties (Inbound) (Continued)
Property Description

HTTP Listener The name of the HTTP listener to bind to. The default value is Default HTTP
Listener. This property is optional.

Consume Types The acceptable MIME types for the request payload, specified in JSON format.
Enter the types in square brackets with each type contained in double-quotes.
Separate multiple values by a comma. For example:

["text/plain", "application/xml"]

This property is optional.

Produce Types The acceptable MIME types for the response payload, specified in JSON format as
above. This property is optional.

Forward as Attachment An indicator of whether to forward the payload as an attachment. Select the check
box to have the payload forwarded as an attachment. This property is optional.

User Defined A list of user-defined properties in java.util.Properties format (key and value
pairs). For example:

serverName=test

This property is optional.

TABLE 2 Edit Operation Properties (Outbound)

Property Description

URL The URL to the external resource. This property is required.

Accept Types The acceptable media types for the response, specified in JSON format. Enter the
types in square brackets with each type contained in double-quotes. Separate
multiple values by a comma. For example:

["application/json"]

This property is optional.

Accept Languages The preferred natural languages for the response, specified in JSON format.

This property is optional.

Content Types The content type of the outbound payload. If no value is specified, this defaults to
any type.

This property is optional.

Working With the REST BC WSDL Document

Using the REST Binding Component 15

TABLE 2 Edit Operation Properties (Outbound) (Continued)
Property Description

Headers Custom HTTP headers for the outbound payload. Enter the headers in curly
brackets as name value pairs with the name and value each in double-quotes and
separated by a space, a colon, and another space. Separate multiple name value
pairs by a comma. For example:

{ "host" : "MyServer.com", "Content-Subtype" :

"application/json/customers"}

Custom headers are optional.

Param Style A style for the URI parameters. Select one of the following options:
■ Query – Name and value pairs that specify attributes of the full URI (external

resource). Query parameters are delimited by an ampersand (&) and are
separated from the rest of the URI by a question mark (?).

■ Matrix – Name and value pairs that specify attributes of one segment in a
URI. Matrix parameters can occur after the segment in the URI that they
modify. Matrix parameters are delimited by a semicolon (;) and are also
separated from the segment they modify by a semicolon.

Params Custom HTTP parameters for the URI. Enter the parameters in curly brackets as
name value pairs with the name and value each in double-quotes and separated by
a space, a colon, and another space. Separate multiple name value pairs by a
comma. For example:

{ "status" : "Active", "billing" : "Current"}

Custom parameters are optional.

Basic Auth User Name The login ID of the user for authentication. If the property is populated, a basic
authentication header is added to the HTTP request.

Basic Auth Password The login password corresponding with the above user name.

User Defined A list of user-defined properties in java.util.Properties format (key and value
pairs). For example:

serverName=test

This property is optional.

Configuring REST BC WSDL Attributes
Once you create the REST BC WSDL document, you can add and update the WSDL attributes
that are specific to the REST configuration. The REST BC includes both service-level WSDL
elements and binding-level WSDL elements, but some of these elements are placeholders only.

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 201016

▼ To Configure REST BC WSDL Attributes

In the NetBeans IDE, double-click the WSDL document you want to configure.
The document appears in the WSDL Editor in WSDL view.

Click Source.
The view changes to display the source code.

Note – Operation properties cannot be configured in WSDL view.

Scroll to the binding element, and modify any of the operation attributes described in “REST
Operation Element”on page 18.

When you are finished, save and close the file.

Service Level REST WSDL Element
The service-level REST element is rest:address. This is a placeholder element only, and does
not need to be configured. When you create a WSDL file in the NetBeans IDE, the New WSDL
Wizard generates the empty rest:address element.

The following example illustrates the REST WSDL service element:

<service name="RestOutboundService">
<port name="RestOutboundWSDL_OutboundPort" binding="tns:RestOutboundBinding">

<rest:address/>

</port>

</service>

Binding Level REST WSDL Elements
Binding level WSDL elements allow you to define and configure the REST operation performed
against the external resource along with information about the resource. The REST Binding
Component binding level WSDL elements include the rest:binding and rest:operation

extensibility elements, but the rest:binding element is a placeholder.

REST Binding Element

The REST binding extensibility element specifies that the WSDL document is configured for
the REST protocol. This is a placeholder element only, and does not need to be configured.
When you create a WSDL file in the NetBeans IDE, the New WSDL Wizard generates a binding
element, which includes a name you specify and a type that is generated by the wizard, and also
includes the empty rest:bindingelement.

The following example illustrates the REST binding element:

1

2

3

4

Working With the REST BC WSDL Document

Using the REST Binding Component 17

<binding name="RestOutboundBinding" type="tns:RestOutboundPortType">
<rest:binding/>

...

REST Operation Element

The REST operation element includes attributes that define the supported operations, along
with payload types, URL information, and HTTP authorization. The REST Binding
Component supports the GET, PUT, POST, DELETE, and HEAD operations. These attributes
correspond to the properties you can configure from the Edit Operation Properties on the New
WSDL Wizard.

When you create a WSDL file in the NetBeans IDE, the New WSDL Wizard generates a
rest:operation element in the binding element, and includes any attribute configurations
you entered for the operation properties on the wizard.

TABLE 3 REST BC Inbound WSDL Attributes

Attribute Description

http-listener-name The name of the HTTP listener to bind to. The default value is Default HTTP
Listener. This property is optional.

path The path to the operation resource. This property is required.

method The HTTP operation to access the resource specified above. This attribute default
to GET. Enter any of the following operations:
■ GET
■ PUT
■ POST
■ DELETE
■ HEAD

For more information, see “Supported HTTP Methods” on page 7.

consume-types The acceptable MIME types for the request payload, specified in JSON format.
Enter the types in square brackets with each type contained in double-quotes.
Separate multiple values by a comma. For example:

["text/plain", "application/xml"]

This property is optional.

produce-types The acceptable MIME types for the response payload, specified in JSON format as
above. This property is optional.

forward-as-attachment An indicator of whether to forward the payload as an attachment. Select the check
box to have the payload forwarded. This property is optional.

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 201018

TABLE 3 REST BC Inbound WSDL Attributes (Continued)
Attribute Description

user_defined A list of user-defined properties in java.util.Properties format (key and value
pairs). For example:

serverName=test

This property is optional.

TABLE 4 REST BC Outbound WSDL Attributes

Attribute Description

url The URL to the external resource. This property is required.

method The HTTP operation to access the resource specified above. This attribute default
to GET. Enter any of the following operations:
■ GET
■ PUT
■ POST
■ DELETE
■ HEAD

For more information, see “Supported HTTP Methods” on page 7.

accept-types The acceptable media types for the response, specified in JSON format. Enter the
types in square brackets with each type contained in double-quotes. Separate
multiple values by a comma. For example:

["application/json", "text/plain"]

This property is optional.

accept-languages The preferred natural languages for the response, specified in JSON format.

This property is optional.

content-type The content type of the outbound payload. If no value is specified, this defaults to
any type.

This property is optional.

headers Custom HTTP headers for the outbound payload. Enter the headers in curly
brackets as name value pairs with the name and value each in double-quotes and
separated by a space, a colon, and another space. Separate multiple name value
pairs by a comma. For example:

{ "host" : "MyServer.com", "Content-Subtype" :

"application/json/customers"}

Custom headers are optional.

Working With the REST BC WSDL Document

Using the REST Binding Component 19

TABLE 4 REST BC Outbound WSDL Attributes (Continued)
Attribute Description

param-style A style for the URI parameters. Select one of the following options:
■ Query – Name and value pairs that specify attributes of the full URI (external

resource). Query parameters are delimited by an ampersand (&) and are
separated from the rest of the URI by a question mark (?).

■ Matrix – Name and value pairs that specify attributes of one segment in a
URI. Matrix parameters can occur after the segment in the URI that they
modify. Matrix parameters are delimited by a semicolon (;) and are also
separated from the segment they modify by a semicolon.

params Custom HTTP parameters for the URI. Enter the parameters in curly brackets as
name value pairs with the name and value each in double-quotes and separated by
a space, a colon, and another space. Separate multiple name value pairs by a
comma. For example:

{ "status" : "Active", "billing" : "Current"}

Custom parameters are optional.

basic-auth-username The login ID of the user for authentication. If the property is populated, a basic
authentication header is added to the HTTP request.

basic-auth-password The login password corresponding with the above user name.

user_defined A list of user-defined properties in java.util.Properties format (key and value
pairs). For example:

serverName=test

This property is optional.

The following example illustrates the REST operation element:

<binding name="RestOutboundBinding" type="tns:RestOutboundPortType">
<rest:binding/>

<operation>

<rest:operation>

<![CDATA[

url=http://{bucket}.s3.amazonaws.com/{resource}

method=GET

accept-types=["text/plain"]

accept-languages=[]

content-type=

headers={ }

param-style=Query

params={ "status" : "Active", "billing" : "Current" }

basic-auth-username=gsmythe

basic-auth-password=1qazMKO)

Working With the REST BC WSDL Document

REST Binding Component User's Guide • January 201020

]]>

</rest:operation>

...

</operation>

</binding>

Configuring the REST Binding Component Runtime
Properties

The REST Binding Component's runtime properties apply to all instances of the binding
component in a domain, including all provider and consumer endpoints. The properties can be
configured from the NetBeans IDE, GlassFish Admin Console, or from a command prompt
during a command line installation. This section describes how to configure the properties in
NetBeans.

▼ To Configure REST BC Runtime Properties
From the Services window of the NetBeans IDE, expand the Servers node.

If the application server is not already started, right-click the server and then select Start.

Under the application server, expand JBI and expand Binding Components.

If the REST BC is not started, right-click sun-rest-binding and select Properties.

The Properties Editor appears.

1

2

3

4

Configuring the REST Binding Component Runtime Properties

Using the REST Binding Component 21

Modify any of the properties listed in “REST Binding Component Runtime Property
Descriptions”on page 22.

Note – General, identification, and statistic properties are automatically updated by the REST
BC. You do not need to modify these properties.

To apply the changes, stop and restart the REST BC.

REST Binding Component Runtime Property
Descriptions
The REST Binding Component properties specify clustering and security settings, and
reference descriptive information for the Binding Component. The following tables list and
describe each REST Binding Component runtime property.

5

6

Configuring the REST Binding Component Runtime Properties

REST Binding Component User's Guide • January 201022

TABLE 5 REST BC General Runtime Properties

Property Description

Description A general description of the JBI component.

Name A unique name for the REST BC in the JBI environment. If you install more than
one REST Binding Component in a JBI environment, make sure that each has a
unique name. When the service unit deploys the component, it is matched with
target component name defined in its descriptor file, jbi.xml, which can be
modified as needed.

State The current state of the JBI component. This value can be either Started, Stopped,
or Shutdown.

Type The type of JBI component (service-engine or binding-component).

TABLE 6 REST BC Identification Runtime Properties

Property Description

Version The version number of the installed binding component.

Build Number The build number of the installed binding component.

TABLE 7 REST BC Configuration Runtime Properties

Property Description

NMR Core Thread Pool
Size

The number of core threads used concurrently for processing NMR messages.

The default value is 16.

NMR Max Thread Pool
Size

The maximum number of threads used concurrently for processing NMR
messages.

The default value is 64.

Default HTTP Listener
Port

The default HTTP port number for the REST Binding Component. This property
is required for clustering and allows the REST Binding Components in the cluster
instances to be differentiated by a unique default port number.

A default port number is calculated and preassigned when the binding
component is initially installed in the application server instance. A file
containing the persisted configuration is stored for each component. This is used
to assign a unique default port number for each REST Binding Component
instance on a computer.

The default value is 9696.

Default HTTP Listener
Threads

The maximum number of threads to process RESTful services concurrently using
HTTP.

The default value is 32.

Configuring the REST Binding Component Runtime Properties

Using the REST Binding Component 23

TABLE 7 REST BC Configuration Runtime Properties (Continued)
Property Description

Default HTTPS Listener
Port

The default HTTP secure port number for the REST Binding Component. This
property is required for clustering and allows the REST Binding Components in
the cluster instances to be differentiated by unique default port numbers.

A default port number is calculated and preassigned when the binding
component is initially installed in the application server instance. A file
containing the persisted configuration is stored for each component. This is used
to assign a unique default port number for each REST Binding Component
instance on a computer.

The default value is 9697.

Default HTTPS Listener
Threads

The maximum number of threads to process RESTful services concurrently using
HTTPS.

The default value is 32.

Truststore Password The default truststore password, which is used for CA certificate management
when establishing SSL connections.

Keystore Password The default keystore password, which is used to access the keystore used for
key/certificate management when establishing SSL connections.

Application Configuration A list of values for a Composite Application's endpoint connectivity parameters,
which are normally defined in the WSDL service extensibility elements. The
values are applied to a user-named endpoint Config Extension Property. The
values defined in an application configuration override the values defined in the
WSDL document.

For more information, see “Creating Application Configurations for
Connectivity Parameters (URLs)” on page 26.

Application Variables A list of name and value pairs for a given type. The application variable name can
be used as a token for a WSDL extensibility element attribute in a corresponding
binding.

For more information, see “Using Application Variables” on page 29.

TABLE 8 REST BC Runtime Statistics

Property Description

Activated Endpoints The number of activated endpoints.

Active Exchanges The number of active exchanges.

Avg. Component Time The average message exchange component time in milliseconds.

Avg. D.C. Time The average message exchange delivery channel time in milliseconds.

Avg. Msg. Service Time The average message exchange message service time in milliseconds.

Configuring the REST Binding Component Runtime Properties

REST Binding Component User's Guide • January 201024

TABLE 8 REST BC Runtime Statistics (Continued)
Property Description

Avg. Response Time The average message exchange response time in milliseconds.

Completed Exchanges The total number of completed exchanges.

Error Exchanges The total number of error exchanges.

Received Dones The total number of received dones.

Received Errors The total number of received errors.

Received Faults The total number of received faults.

Received Replies The total number of received replies.

Received Requests The total number of received requests.

Sent Dones The total number of sent dones.

Sent Errors The total number of sent errors.

Sent Faults The total number of sent faults.

Sent Replies The total number of sent replies.

Sent Requests The total number of sent requests.

Up Time The up time of this component in milliseconds.

The Loggers properties specify the level of logging for each event. You can set the logging level
for each logger to any of the following levels:

■ FINEST: provides highly detailed tracing
■ FINER: provides more detailed tracing
■ FINE: provides basic tracing
■ CONFIG: provides static configuration messages
■ INFO: provides informative messages
■ WARNING: messages indicate a warning
■ SEVERE: messages indicate a severe failure
■ OFF: no logging messages

By default, these are all set to the INFO level.

TABLE 9 REST BC Logger Runtime Properties

Property WLM Component

sun-rest-binding com.sun.jbi.restbc

RestBC ClientWrapper com.sun.jbi.restbc.jbiadapter.JerseyClientWrapper

Configuring the REST Binding Component Runtime Properties

Using the REST Binding Component 25

TABLE 9 REST BC Logger Runtime Properties (Continued)
Property WLM Component

RestBC Message Processor com.sun.jbi.restbc.jbiadapter.MessageProcessor

RestBC Receiver com.sun.jbi.restbc.jbiadapter.Receiver

RestBC Bootstrap com.sun.jbi.restbc.jbiadapter.RestBootstrap

RestBC Component com.sun.jbi.restbc.jbiadapter.RestComponent

RestBC ServiceUnitManager com.sun.jbi.restbc.jbiadapter.RestSUManager

RestBC ServiceUnit com.sun.jbi.restbc.jbiadapter.ServiceUnit

RestBC InboundDelegator com.sun.jbi.restbc.jbiadapter.inbound.InboundDelegator

RestBC RootResource com.sun.jbi.restbc.jbiadapter.inbound.JerseyRootResource

RuntimeConfig com.sun.jbi.restbc.jbiadapter.mbeans.RuntimeConfig

Creating Application Configurations for Connectivity
Parameters (URLs)

Application Configurations allow you to configure the external connectivity parameters (URLs)
for a JBI application and, without changing or rebuilding the application, deploy the same
application into a different system. For example, if you have an application that is running in a
test environment, you can deploy it to a production environment using new connectivity
parameters without rebuilding the application.

The connectivity parameters for the REST BC are normally defined in the WSDL service
extensibility elements. When you create and apply application configurations for these
parameters, the values defined for the application configuration override the values defined in
the WSDL elements. You apply the configurations to the Composite Application by entering
the application configuration name in the Config Extension Name property for the appropriate
endpoint.

Perform the following procedures to implement application configurations for the REST BC:

■ “To Create Application Configurations” on page 27
■ “To Add the Application Configuration to the Endpoint” on page 27

Once you create an application configuration, you can modify it as described in “To Change
Application Configuration Values” on page 28.

Creating Application Configurations for Connectivity Parameters (URLs)

REST Binding Component User's Guide • January 201026

▼ To Create Application Configurations
You can create several application configurations, which are all referenced by the names you
define. Make sure the REST Binding Component is started before you begin this procedure.

On the NetBeans IDE Services window, expand Servers > GlassFish v2.1 > JBI > Binding
Components.

Right-click sun-rest-binding, and then select Properties.

The Properties window appears.

Click the ellipsis next to Application Configuration.

The Application Configuration Editor appears.

Click Add.

A new row appears in the configuration list.

In the new row, enter a name and URL.

▼ To Add the Application Configuration to the Endpoint
Open the Composite Application Service Assembly in the CASA Editor.

Right-click the endpoint to which you want to add the application configuration, and then click
Properties.

The Properties window appears.

1

2

3

4

5

1

2

Creating Application Configurations for Connectivity Parameters (URLs)

Using the REST Binding Component 27

In the Name property under Config Extension, enter the name of the application configuration.

Click Close, and then click Save All on the NetBeans toolbar.

Once the application configuration values are defined and added to the endpoint, deploy the
application.

▼ To Change Application Configuration Values
The REST Binding Component must be started in order to perform this procedure.

On the NetBeans IDE Services window, expand Servers > GlassFish v2.1 > JBI > Binding
Components.

Right-click sun-rest-binding, and then select Properties.

The Properties window appears.

Click the ellipsis next to Application Configuration.

The Application Configuration Editor appears.

Change the value of the URL column for any of the application configurations.

To apply the new values, stop and restart any service assemblies that use the application
configurations you updated.

3

4

5

1

2

3

4

5

Creating Application Configurations for Connectivity Parameters (URLs)

REST Binding Component User's Guide • January 201028

Using Application Variables
Application variables allow you to define a list of variable names and values along with their
type. The application variable name can then be used as a token for a WSDL extensibility
element attribute for the REST BC. For example, you could define a string variable named
ServerName with a value of MyHost.com. To reference this in the WSDL document, you would
enter ${ServerName}. When you deploy an application that uses application variables, any
variable that is referenced in the application's WSDL document is loaded automatically.

Note – If you start an application and a value is not defined for an application variable, an
exception is thrown.

You can define the following four variable types:
■ String – A string value, such as a path or directory.
■ Number – A numeric value.
■ Boolean – A Boolean true or false. When you define a Boolean variable, a check box appears

in the value field. Select the check box if the variable value should be true; otherwise, deselect
the check box.

■ Password – A login password. The password is masked and appears as asterisks.

Variables allow greater flexibility in WSDL documents. For example, you can use the same
WSDL document for multiple runtime environments by using application variables to specify
system-specific information. The variable values can be changed from the binding component
runtime properties for each specific environment.

To change a property when the application is running, change your Application Variable
property value, then right-click your application in the Services window under Servers →
GlassFish → JBI → Service Assemblies, and click Stop in the popup menu. When you restart
your project, your new settings will take effect.

▼ To Create an Application Variable
On the NetBeans IDE Services window, expand Servers > GlassFish v2.1 > JBI > Binding
Components.

Right-click sun-rest-binding, and then select Properties.
The Properties window appears.

Click the ellipsis next to Application Variables.
The Application Variables Editor appears.

1

2

3

Using Application Variables

Using the REST Binding Component 29

Click Add.
A list of possible variable types appears.

Select String, Number, Boolean, or Password, and then click OK.
A new row appears in the application list.

In the new row, enter a variable name and then do one of the following:

■ For a Boolean variable, select the check box if the variable value should be true; otherwise
leave it deselected.

■ For all other variables types, enter the variable value.

Note – If you created a password variable, the value you enter appears as asterisks.

The variable can now be reference from WSDL documents using a dollar sign and curly
brackets to indicate the variable; for example, ${MyVariable}.

▼ To Use an Application Variable for Password
Protection
To protect passwords that would otherwise appear as clear text in your WSDL document, you
can enter a Password application variable as a token. In the following example, a password
application variable is created that uses the name SECRET and the password PROTECT.

4

5

6

Using Application Variables

REST Binding Component User's Guide • January 201030

On the NetBeans IDE Services window, expand Servers > GlassFish v2.1 > JBI > Binding
Components.

Right-click sun-rest-binding, and then select Properties.
The Properties window appears.

Click the ellipsis next to Application Variables.
The Application Variables Editor appears.

Click Add, select Password, and then click OK.
A new row appears in the variable list.

Enter SECRET as the name, and enter PROTECT as the value.
Because this is a password type, the characters appear as asterisks.

Use the application variable name ${SECRET} as the WSDL password attribute, using the dollar
sign and curly braces as shown.

Using REST BC Normalized Message Properties in a Business
Process

You can define normalized message properties in a BPEL process in order to dynamically assign
values to the runtime properties for the REST BC. The normalized message properties for each
JBI component are accessed from the BPEL Designer Mapper view. When you expand a
variable's Properties folder it exposes the variable's predefined NM properties, as well as the
standard BPEL-specific WSDL properties used in correlation sets, assigns, and expressions . If
the specific NM property you need is not currently listed, additional NM properties can be
added.

Normalized message properties provide the following capabilities:

■ Getting and setting transport context properties, such as REST headers.
■ Getting and setting request parameters.
■ Dynamically configuring REST properties.

Using Predefined Normalized Message Properties
Predefined normalized message properties are automatically available from the BPEL
Designer's Mapper view. You can use additional properties by adding them directly to the
source code. You can either define these properties using the BPEL Designer Mapper, or by
entering the code directly into the source view.

1

2

3

4

5

6

Using REST BC Normalized Message Properties in a Business Process

Using the REST Binding Component 31

You can perform additional tasks when working with normalized message properties, such as
creating additional properties, deleting properties, creating property shortcuts, and so on. For
more information, see “Using Normalized Message Properties” in BPEL Designer and Service
Engine User’s Guide.

▼ To Use Predefined Normalized Message Properties in Mapper View
You can access most of the normalized message properties from the BPEL Mapper. Certain
properties, such as path and query parameters, need to be defined in the Source view.

Open the BPEL process you want to edit in the BPEL Designer.

In Design view, select the activity to add the normalized message property to.

In the BPEL Designer toolbar, click Mapper.

In the Output pane, expand the variable you want to edit, expand Properties, and then expand
REST BC.

Expand Request Metadata or Response Metadata, depending on the message type.
A list of available normalized message properties appears.

Select the normalized message property you want to use, and use the mapper operands to build
an expression or assign a value.
For a complete list of normalized message properties for the REST BC, see “Normalized
Message Properties for REST” on page 34.

1

2

3

4

5

6

Using REST BC Normalized Message Properties in a Business Process

REST Binding Component User's Guide • January 201032

http://docs.sun.com/doc/821-0539/cnfg_bpel-se-nm-properties_r?a=view
http://docs.sun.com/doc/821-0539/cnfg_bpel-se-nm-properties_r?a=view

▼ To Use Predefined Normalized Message Properties in Source View
You can define any of the normalized message properties using the Source view. You can only
access path or query parameters from the Source view.

Open the BPEL process you want to edit in the BPEL Designer.

In the BPEL Designer toolbar, click Source.
The BPEL source code for the process is now visible.

Declare the sxnmpnamespace near the beginning of the process element; for example:
xmlns:sxnmp="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/NMProperty"

Access the property using the property names listed and described in “Normalized Message
Properties for REST”on page 34.
For path and query parameters, separate normalized message properties are created for each.
For example,
<assign name="AssignActivity">

<copy>

<from variable="GetCustomerNameIn"
sxnmp:nmProperty="org.glassfish.openesb.rest.path-params.custName"/>

<to>$CustomerQuery_OperationIn.part/ns0:param1</to>

</copy>

</assign>

Using REST BC Normalized Message Properties for Query Parameters

There are two methods to use normalized message properties to encode information as query
parameters in an outbound REST call. Both methods are illustrated below in examples that
show how to define query parameters for a simple address.

The following example illustrates defining all the parts and assigning their values as a single
string.

<copy>

<from>’{"street":"800 Royal Oaks Blvd.", "city":"Monrovia", "state":"CA", "zip":"91016"}’</from>
<to variable="YahoomapIn" sxnmp:nmProperty="org.glassfish.openesb.rest.params"/>

</copy>

The following example illustrates defining each part as a query parameter and assigning the
values individually.

<copy>

<from>’800 Royal Oaks Blvd.’</from>

<to variable="YahoomapIn"

1

2

3

4

Example 1

Using REST BC Normalized Message Properties in a Business Process

Using the REST Binding Component 33

sxnmp:nmProperty="org.glassfish.openesb.rest.params.street"/>
</copy>

<copy>

<from>’Monrovia’</from>

<to variable="YahoomapIn"
sxnmp:nmProperty="org.glassfish.openesb.rest.params.city"/>

</copy>

<copy>

<from>’CA’</from>

<to variable="YahoomapIn"
sxnmp:nmProperty="org.glassfish.openesb.rest.params.state"/>

</copy>

<copy>

<from>’91016’</from>

<to variable="YahoomapIn"
sxnmp:nmProperty="org.glassfish.openesb.rest.params.zip"/>

</copy>

Normalized Message Properties for REST
Normalized message properties are either specific to the binding component being used or
generally available to all participating JBI components. The following topics describe both types
of normalized message properties.

■ “General Normalized Message Properties” on page 34
■ “REST Binding Component Normalized Message Properties” on page 35

General Normalized Message Properties
The following table lists and described the general properties that are available to all JBI
components. All property values are of the type java.lang.String.

TABLE 10 General Normalized Message Properties

Property Name in Source Property Name in Mapper Description and Use

org.glassfish.openesb.
messaging.groupid

Group ID Uniquely identifies a message with the group to which a
message belongs.

This property is optional.

Using REST BC Normalized Message Properties in a Business Process

REST Binding Component User's Guide • January 201034

TABLE 10 General Normalized Message Properties (Continued)
Property Name in Source Property Name in Mapper Description and Use

org.glassfish.openesb.messaging.messageidMessage ID Uniquely identifies a message. For batch processing this
might be a record number (for example, a particular
record in a file) or a GUID.

This property is mandatory.

org.glassfish.openesb.
messaging.lastrecord

Last Record The value is a string representation of boolean ("true" or
"false"). This property can be used to signal the last
record in a group or the last record in a file.

This property is mandatory.

org.glassfish.openesb.
exchange.endpointname

Endpoint Name The value a string representation of the endpoint name
set on the exchange. This represents the endpoint name
of the "owner" of the message, and could be made
available by JBI runtime.

REST Binding Component Normalized Message Properties
The following properties are specific to the REST Binding Component. Available properties are
different for request messages than for response messages. All property values are of the type
java.lang.String.

TABLE 11 REST Binding Component NM Properties (Request)

Property Name in Source Property Name in Mapper Description

org.glassfish.openesb.rest.urlHTTP Request URL The HTTP URL of the external resource to be invoked.

org.glassfish.openesb.rest.methodHTTP Request Method The HTTP method to use when invoking the resource
defined above. Available methods are GET, POST, PUT,
HEAD, and DELETE.

org.glassfish.openesb.
rest.content-type

HTTP Request
Content-Type

The content type header for the requesting entity, if any.

Using REST BC Normalized Message Properties in a Business Process

Using the REST Binding Component 35

TABLE 11 REST Binding Component NM Properties (Request) (Continued)
Property Name in Source Property Name in Mapper Description

org.glassfish.openesb.rest.accept-typesHTTP Request
Accept-Types

The acceptable media types for the request, specified in
JSON format. Enter the types in square brackets with
each type contained in double-quotes. Separate multiple
values by a comma. For example:

["application/json", "text/plain"]

org.glassfish.openesb.rest.accept-languagesHTTP Request Accept
Languages

The preferred natural languages, specified in JSON
format.

org.glassfish.openesb.
rest.headers

HTTP Request Headers Custom HTTP headers for the request. Enter the headers
in curly brackets as name value pairs with the name and
value each in double-quotes and separated by a space, a
colon, and another space. Separate multiple name value
pairs by a comma. For example:

{ "host" : "MyServer.com", "Content-Subtype" :

"application/json/customers"}

org.glassfish.openesb.
rest.headers.*

Not applicable Arbitrary custom HTTP headers for the request. For
example, to add the content type as a custom header
parameter, you would enter a property similar to
org.glassfish.openesb.rest.headers.content-type.

These properties can only be defined using the BPEL
Designer's Source view.

org.glassfish.openesb.
rest.params

HTTP Request
Parameters

Custom parameters for the request. Enter the
parameters in curly brackets as name value pairs with the
name and value each in double-quotes and separated by
a space, a colon, and another space. Separate multiple
name value pairs by a comma. For example:

{ "status" : "Active", "billing" : "Current"}

org.glassfish.openesb.
rest.params*

Not applicable Arbitrary custom properties for the request. For
example, if you are querying for telephone fields, you
might have a set of properties like the following:
■ org.glassfish.openesb.rest.params.areaCode
■ org.glassfish.openesb.rest.params.number
■ org.glassfish.openesb.rest.params.extension

These properties can only be defined using the BPEL
Designer's Source view.

Using REST BC Normalized Message Properties in a Business Process

REST Binding Component User's Guide • January 201036

TABLE 11 REST Binding Component NM Properties (Request) (Continued)
Property Name in Source Property Name in Mapper Description

org.glassfish.openesb.
rest.param-style

HTTP Request
Parameter Style

A style for the URI parameters. The following values are
supported:
■ Query – Name and value pairs that specify attributes

of the full URI (external resource). Query
parameters are delimited by an ampersand (&) and
are separated from the rest of the URI by a question
mark (?).

■ Matrix – Name and value pairs that specify
attributes of one segment in a URI. Matrix
parameters can occur after the segment in the URI
that they modify. Matrix parameters are delimited
by a semicolon (;) and are also separated from the
segment they modify by a semicolon.

org.glassfish.openesb.
rest.path-params

HTTP Request Path
Parameters

Custom HTTP parameters for the URI. Enter the
parameters in curly brackets as name value pairs with the
name and value each in double-quotes and separated by
a space, a colon, and another space. Separate multiple
name value pairs by a comma. For example:

{ "status" : "Active", "billing" : "Current"}

org.glassfish.openesb.
rest.path-params.*

Not applicable Arbitrary custom HTTP parameters for the URI. For
example, the following properties define custom user
login properties:
■ org.glassfish.openesb.rest.path-params.userName
■ org.glassfish.openesb.rest.path-params.password

These properties can only be defined using the BPEL
Designer's Source view.

org.glassfish.openesb.
rest.basic-auth-username

Not applicable The login ID of the user for authentication. If the
property is populated, a basic authentication header is
added to the HTTP request.

org.glassfish.openesb.
rest.basic-auth-password

Not applicable The login password corresponding with the above user
name. This property can only be access from the BPEL
Designer's Source view.

TABLE 12 REST Binding Component NM Properties (Response)

Property Name in Source Property Name in Mapper Description

org.glassfish.openesb.
rest.response.status

HTTP Response Status The status code for the response.

Using REST BC Normalized Message Properties in a Business Process

Using the REST Binding Component 37

TABLE 12 REST Binding Component NM Properties (Response) (Continued)
Property Name in Source Property Name in Mapper Description

org.glassfish.openesb.rest.response.urlHTTP Response
Location

The location header for the response.

org.glassfish.openesb.rest.response.content-typeHTTP Response
Content-Type

The content type header for the response.

org.glassfish.openesb.rest.response.headersHTTP Response
Headers

Other headers for the response. Enter the headers in
curly brackets as name value pairs with the name and
value each in double-quotes and separated by a space, a
colon, and another space. Separate multiple name value
pairs by a comma. For example:

{ "host" : "MyServer.com", "Content-Subtype" :

"application/json/customers"}

org.glassfish.openesb.rest.response.headers.*Not Applicable Arbitrary custom HTTP headers for the response. For
example, to add the content type as a custom header
parameter, you would enter a property similar to
org.glassfish.openesb.rest.headers.content-type.

These properties can only be defined using the BPEL
Designer's Source view.

Implementing Jersey Client Filters
You can use Jersey client filters to modify a REST request or response for an outbound REST
client interaction. For example, you can define a filter for generating the appropriate
authentication header based on user-supplied information. To implement filters, you need to
define the logic

▼ To Define the Jersey Filter
You define the client filter in a Java Application project in NetBeans using the Jersey client API
to define the logic. For more information about the Jersey API, see the Jersey 1.0.3.1 Javadocs
(https://jersey.dev.java.net/nonav/apidocs/1.0.3.1/jersey/index.html). The
following are the primary classes of interest:

■ com.sun.jersey.api.client.ClientHandlerException

■ com.sun.jersey.api.client.ClientRequest

■ com.sun.jersey.api.client.ClientResponse

■ com.sun.jersey.api.client.filter.ClientFilter

Right-click in the Projects window of the NetBeans IDE, and then select New Project.
The New Project Wizard appears.

1

Implementing Jersey Client Filters

REST Binding Component User's Guide • January 201038

https://jersey.dev.java.net/nonav/apidocs/1.0.3.1/jersey/index.html
https://jersey.dev.java.net/nonav/apidocs/1.0.3.1/jersey/index.html

Select Java in the Categories list, and then select Java Application in the Projects list.

Click Next.

The Name and Location window appears.

Enter a name for the project and a name for the main Java class, and then click Finish.

The project is created and a Java file containing the code framework appears in the Java Editor.

If you did not specify the class name in the wizard, you can do the following to rename the Java
class:

a. In the Projects window under the Java project, right-click Main.java.

b. Point to Refactor and then select Rename.

c. Enter the new name, and then click Refactor.

Do the following to add the required Jersey JAR files to the project:

a. In the Project window, right-click the Java application, and then select Properties.

The Properties window appears.

b. Under Categories, select Libraries.

2

3

4

5

6

Implementing Jersey Client Filters

Using the REST Binding Component 39

c. Click the Compile tab, and then click Add Jar/Folder.

d. Browse to and select the following Jersey JAR files:

■ jersey-bundle-1.0.3.1.jar

■ jsr311-api-1.0.jar

Tip – You can find these files in glassfish-home/lib.

e. Click OK.

Define the processing logic for the filter in the Java package that was created for you by the
wizard.
Use standard Java methods along with the methods defined in the Jersey API to define the filter,
exception, and logging logic. See the example following this procedure for a simple
implementation.

Simple Authentication Filter

The following example illustrates the code for a simple authentication filter that has a user name
and password as parameters.

7

Example 2

Implementing Jersey Client Filters

REST Binding Component User's Guide • January 201040

package javafilter;

import com.sun.jersey.api.client.ClientHandlerException;

import com.sun.jersey.api.client.ClientRequest;

import com.sun.jersey.api.client.ClientResponse;

import com.sun.jersey.api.client.filter.ClientFilter;

import java.util.logging.Level;

import java.util.logging.Logger;

public class Filter extends ClientFilter {

private static final Logger logger = Logger.getLogger(Filter.class.getName());

private String username;

private String password;

public Filter() {

}

public void setUsername(String username) {

this.username = username;

}

public void setPassword(String password) {

this.password = password;

}

@Override

public ClientResponse handle(ClientRequest request) throws ClientHandlerException {

logger.log(Level.INFO, "inside handle() method, username=" + username +

", password=" + password);

ClientResponse response = getNext().handle(request);

return response;

}

}

▼ To Add the Filter to the Composite Application
Before you can perform this step, you need to complete the following steps:
■ Create the BPEL Module that implements the REST Binding Component.
■ Create and build the composite application for the BPEL Module.
■ Create he Java Application that defines the filter (as described in “To Define the Jersey Filter”

on page 38), and build the Java Application project.

Open the composite application for the project in which you want to implement filters.

Before You Begin

1

Implementing Jersey Client Filters

Using the REST Binding Component 41

On the CASA Editor, right-click the REST outbound endpoint to which you want to add the filter,
and then click Properties.

The Properties Editor appears.

Click the ellipsis next to the Filters property under JAX-RS (Jersey) Extension.

The Filters Editor appears.

On the Filters Editor, click Add.

From the dialog box that appears, navigate to and select the Java Application project you
created to define the filter logic. Click Open.

The Select Java Libraries dialog box appears.

2

3

4

5

Implementing Jersey Client Filters

REST Binding Component User's Guide • January 201042

Click OK on the dialog box. Do not select the Jersey libraries.

The information from the Java Application project is populated into the Filter Editor.
6

Implementing Jersey Client Filters

Using the REST Binding Component 43

Implementing Jersey Client Filters

REST Binding Component User's Guide • January 201044

If you defined parameters for the filter, enter the parameter values in the Parameters section at
the bottom of the editor.

Click OK.
The filter name appears in the Filters property.

Click Close on the Properties Editor.

7

8

9

Implementing Jersey Client Filters

Using the REST Binding Component 45

46

	REST Binding Component User's Guide
	Using the REST Binding Component
	About the REST Binding Component
	REST Binding Component Features
	Supported HTTP Methods
	REST BC Sample Projects

	Working With the REST BC WSDL Document
	Creating the REST BC WSDL Document
	To Create a WSDL Document for REST Inbound
	To Create a WSDL Document for REST Outbound
	New WSDL Wizard Properties for REST

	Configuring REST BC WSDL Attributes
	To Configure REST BC WSDL Attributes
	Service Level REST WSDL Element
	Binding Level REST WSDL Elements
	REST Binding Element
	REST Operation Element

	Configuring the REST Binding Component Runtime Properties
	To Configure REST BC Runtime Properties
	REST Binding Component Runtime Property Descriptions

	Creating Application Configurations for Connectivity Parameters (URLs)
	To Create Application Configurations
	To Add the Application Configuration to the Endpoint
	To Change Application Configuration Values

	Using Application Variables
	To Create an Application Variable
	To Use an Application Variable for Password Protection

	Using REST BC Normalized Message Properties in a Business Process
	Using Predefined Normalized Message Properties
	To Use Predefined Normalized Message Properties in Mapper View
	To Use Predefined Normalized Message Properties in Source View

	Normalized Message Properties for REST
	General Normalized Message Properties
	REST Binding Component Normalized Message Properties

	Implementing Jersey Client Filters
	To Define the Jersey Filter
	To Add the Filter to the Composite Application

