Master Index Standardization
Engine Reference

»
0 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 821-0860-10
December 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. AIl SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

091220@23031

Contents

Master Index Standardization Engine Referencecccooveeviiieeeensneeseeeeseeeseenenns 7
About the Master Index Standardization ENgIneccocooeveureeeeeeuneinecnenneeennenereeerenseeensensesenennes 7
RELALEA TOPICS w.vevrrevirierrincieieicirireict ettt ettt ettt ettt sttt st nenene 7
Master Index Standardization Engine OVEIVIEWc.ccocucueiuriuniuniineinceneieieeeeeesessessesensesessessenees 8

Standardization CONCEPLSc.ocrevevreurerreerreereererrererserneaeene

Data Parsing or Reformatting

Data Normalization ... s 9
Phonetic ENCOINGoovuimiiiiiicicicci e 9
How the Master Index Standardization Engine Worksccccvceeecneurieineneeenenernicneneeeneneieeennes 9
Master Index Standardization Engine Data Types and Variantscc.cccceeveevcureereenneenenen 10
Master Index Standardization Engine Standardization Componentsccccveereeucerenens 10

Finite State Machine Framework

Rules-Based FramewWOIKcccccuciiniiiinciniieieenieceseee e seesess e ssesasssesssens
Sun Master Index Standardization and Matching Processc.coocveecuneereceneinenencnnernesernenneneene 14
Master Index Standardization Engine Internationalizationc..ccececvcreeercrreenecenerneeeseenenennes 15

Finite State Machine Framework Configuration
FSM Framework Configuration OVEIVIEWc.ceeveureueurereeerermerenneeeieeseseesensessessessessessssssens
Process Definition Filecccveeveuneenecineinecincnenecneineene
Standardization State DefiINItionsccccvveeeuriureerciriiercniireeeireeeeeeeneeseeseee s ssesesensens
Input SyMbol DEfINItIONSvuuieiiiiieiieciiciiriec s
Output SyMDOl DEfINItIONSc.ueuveceiuieeiiiriieicieierecieireeeeeseiensetesessesseesesessesesessesesesaesssssesens
Data Cleansing DefiNItioNsccccveueeeriuriercrneiereneireeeeieeensessesessesessesessessssessesesessesssssesens
Data Normalization DefINitionscccveeeeeuneereeerceneinieeineeniseieisesesessesessessessesesessesessessesessens

Standardization Processing Rules Reference

LEXICOM FALES ..vvvvriieccieicte ettt sttt bbbt ettt b s e s s bbb s s ananes

NOTMAIZAION FILESvuveieieieeieieieiiicciciee ettt sttt b bbb s s ss bbb es s snsnsnes 30
FSM-Based Person Name ConfiIgurationcccccceeuineieieecmneiiicceseisssecsssssesssesssasessesens 31
Person Name Standardization OVEIVIEWccceceeueveereieirisseseieese e sssssssessesesessssssssssssssesessssnes 31

Contents

Person Name Standardization COMPONENLSc.oceevcureureecererneeeirerrerneeneiseeeeensessesessessesesenseseesenne 32

Person Name Standardization FIIEScccceeeieieieieeieeeiesiccsese e ses s sesesees
Person Name LeXiCOn FIlescoouoiiieiiiniiiieeeice ettt
Person Name Normalization Filesc.cc.......

Person Name Process Definition Files

Person Name Standardization and Sun Master INdeXccocuveueeeuereieiniinenineereneneneeienenes 34
Person Name Processing FIelds ..o sssesensns
Configuring a Normalization Structure for Person Namesccccoveveuneererererceerneeneunenne
Configuring a Standardization Structure for Person Names

Configuring Phonetic Encoding for Person Namesccccocveueverniureerneereenerneeeneneeneeenens

FSM-Based Telephone Number CONfigUrationc.c.ecveureeeeceneuneeenerneeeerenserneessersesensesseseesenne
Telephone Number Standardization OVEIVIEWc.ccccueeeueiricirinceeinieenineieiseeseesesessesesessesessssenes 41

Telephone Number Standardization COMPONENTSc..c.evcueereeerrceriueeerrernieeeerreeeneeseseeeesesseaennes

Telephone Number Standardization Files

Telephone Number Standardization and Sun Master Index

Telephone Number Processing Fields ... 43
Configuring a Standardization Structure for Telephone Numberscoceceevceeerercrnenenne 43

Rules-Based Address Data Configuration

Address Data Standardization Overview

Address Data Standardization COMPONENLSc..cuereeueuiremrererereneerienseeieesesesessessessessessesseses 45

Address Data Standardization FILEScccvecniricncineeicineieicneieeeenseseeessessseessessesensessesessenns 48
AdAress CIUES FILE ..ottt seen 49
Address Master CLUes Filecccuiiiiniiniinicccieiecisecse s saesssans 50
Address Patterns File
Address Pattern File COMPONEILScveueverecuriurreeriereienseesieersesesensesessesessessesessesstssssesssesessens 53

Address Standardization and Sun Master INAeXccocveuevvcureireeincineeeicneieereiseeeeneseeeesesseaee 57
Address Data Processing FIeldscccivieuiinircinineircceeeeeecee e 57
Configuring a Standardization Structure for Address Datacccccveeveeneveerneeneencrneeennens 58
Configuring Phonetic Encoding for Address Data

Rules-Based Business Name CONfIgurationoccoceceiniecmneinsimeesisesisisssessssssssssessnnans

Business Name Standardization OVEIVIEWcocccuriurecenernieeernerneeneieeneneieesessessesesesseseesenne

Business Name Standardization COMPONENESc.cccueureecererrierererrerneennerseseeensessesessessesessessessesenne 61

Business Name Standardization FIles ... ssesessesesssesans 62
Business Name Adjectives Key Type Filec..coeierinivicirceeecreeeeneeseee s 63
Business Alias KoY TYPe File ...c.ovciurieiiiriieiciniriceireiccieieecieieie e sessesesse s sessesensees 63
Business Association Key TYPe Flecoeeuriuriecinienieiinieeicineiseeeiseiecesesense s seesesesnees 64

Master Index Standardization Engine Reference - December 2009

Contents

Business General Terms Reference File ... 64
Business City or State Key Type File ... 65
Business Former Name Reference File
Merged Business Name Category Filecceinicniniciiinecneecineiseeeeesesessesessenens
Primary Business Name Reference File
Business Connector Tokens Reference File ..., 68
Business Country Key TYPe File ...t saessesenaees 68
Business Industry Sector Reference Fileccucuevreneuniinemernererenneeneineesesessensensenesessesseene 69
Business Industry Key TYPe FLeccueuureuiinmereiriecntireeeieienesneeenecsessneesessesessessesensens 70
Business Organization Key Type Filecocciininicninicineecnciscneiseseeesese s 71
Business Patterns File
Business Name Standardization and Sun Master Indexccccocueinininininincinciicicicccccs 74
Business Name Processing Fieldscovuiiicinininincccceiecieecescseese s 75
Configuring a Standardization Structure for Business Namesccoccoceeveuveeevcrneereerneerenens 76
Configuring Phonetic Encoding for Business Namesccccocveeeecureeencenernnerneeneeneenesennens 78
Custom FSM-Based Data Types and Variantsccccceveuvrinieinininincc s
About Custom FSM-Based Data Types and Variants
About the Standardization PaCKAEEScvcureueireureuricireiriieineireieieseieee et sesessetsessesesesseaenaes
Creating Custom FSM-Based Data TYPEsccocviurieuneunirineinirneeirerreecieisee e seseeeeens 79
Creating the Working DIT@CtOTYcecurureeriureiereuriieieeitinieeneinesensesseeessesessssessessesessesnesessens 80
Defining the SErviCe TYPE ..ottt esaeen 81
Defining the VATTANESc.cccuiuierierieeeeieeieneiseieneeesenseseeessesssas s esessess s s sssasssensessesensns
Packaging and Importing the Data Type
Service Type Definition File ..o
Creating Custom FSM-Based Variantsc..ccceureureeenerneeeenerneinieenesneenessesseensessesesessesessessessesenne 83
Creating the Working DITeCtOTYc.eucueureeuniureeereeriiniecintineieneinesessesnesessesssssesessessesessessesessens 83
Defining the Service INStANCecccviuiciiiiniiiiiiieci s 84
Defining the State Model and Processing RUIescccvvreereuneeercrnienncrnieneenenneeeneneesenens 85
Creating Normalization and Lexicon Files
Packaging and Importing the Variantccccoeecrcinicniniececeseeeeseseseeneeseeens
Service Instance Definition File ..o

Master Index Standardization Engine Reference

The topics listed here provide conceptual information about the Master Index Standardization
Engine and how it standardizes data in a master index application.

Master Index Standardization Engine Overview
Finite State Machine Framework Configuration
FSM-Based Person Name Configuration
FSM-Based Telephone Number Configuration
Rules-Based Address Data Configuration
Rules-Based Business Name Configuration

“Custom FSM-Based Data Types and Variants” on page 78

About the Master Index Standardization Engine

The Master Index Standardization Engine works together with the Master Index Match Engine
to provide data parsing, data standardization, phonetic encoding, and record matching
capabilities for external applications, such as master index applications. Before records can be
compared to evaluate the possibility of a match, the data contained in those records must be
normalized and in certain cases phonetically encoded or parsed. Once the data is conditioned,
the match engine determines a match weight for each field defined for matching. The
standardization engine is built on a flexible framework that allows you to customize the
standardization process and extend standardization rules.

Related Topics

Several topics provide information and instructions for implementing and using a master index
application. For a complete list of topics related to working with the service-enabled version of
Sun Master Index, see “Related Topics” in Sun Master Index User’s Guide.

http://docs.sun.com/doc/821-0866/relatedtopics?a=view

Master Index Standardization Engine Overview

Master Index Standardization Engine Overview

The Master Index Standardization Engine is designed to work with the master index
applications created by Sun Master Index. The standardization engine can also be called from
other applications, web services, web applications, and so on. It is highly configurable in the Sun
Master Index environment and can be used to standardize various types of data. The Master
Index Standardization Engine works in conjunction with the Master Index Match Engine to
improve the quality of your data.

The following topics provide information about standardization concepts, the standardization
process, and the Master Index Standardization Engine frameworks.

“Standardization Concepts” on page 8

“How the Master Index Standardization Engine Works” on page 9

“Sun Master Index Standardization and Matching Process” on page 14
“Master Index Standardization Engine Internationalization” on page 15

Standardization Concepts

Data standardization transforms input data into common representations of values to give you
a single, consistent view of the data stored in and across organizations. Standardizing the data
stored in disparate systems provides a common representation of the data so you can easily and
accurately compare data between systems.

Data standardization applies three transformations against the data: parsing into individual
components, normalization, and phonetic encoding. These actions help cleanse data to prepare
it for matching and searching. Some fields might require all three steps, some just normalization
and phonetic conversion, and other data might only need phonetic encoding. Typically data is
first parsed, then normalized, and then phonetically encoded, though some cleansing might be
needed prior to parsing.

Standardization can include any one or any combination of the following phases.

= “Data Parsing or Reformatting” on page 8
= “Data Normalization” on page 9
= “Phonetic Encoding” on page 9

Data Parsing or Reformatting

If incoming records contain data that is not formatted properly, it must be reformatted before it
can be normalized. This process identifies and separates each component of a free-form text
field that contains multiple pieces of information. Reformatting can also include removing
characters or strings from a field that are not relevant to the data. A good example is
standardizing free-form text address fields. If you are comparing or searching on street

8 Master Index Standardization Engine Reference - December 2009

How the Master Index Standardization Engine Works

addresses that are contained in one or more free-form text fields (that is, the street address is
contained in one field, apartment number in another, and so on), those fields need to be parsed
into their individual components, such as house number, street name, street type, and street
direction. Then certain components of the address, such as the street name and type, can be
normalized. Field components are also known as tokens, and the process of separating data into
its tokens is known as tokenization.

Data Normalization

Normalizing data converts it into a standard or common form. A common use for
normalization is to convert nicknames into their standard names, such as converting “Rich” to
“Richard” or “Meg” to “Margaret”. Another example is normalizing street address components.
For example, both “Dr” or “Drv” in a street address might be normalized to “Drive”.
Normalized values are obtained from lookup tables. Once a field value is normalized, that value
can be more accurately compared against values in other records to determine whether they are
amatch.

Phonetic Encoding

Once data has gone through any necessary reformatting and normalization, it can be
phonetically encoded. In a master index application, phonetic values are generally used in
blocking queries in order to obtain all possible matches to an incoming record. They are also
used to perform searches from the Master Index Data Manager (MIDM) that allow for
misspellings and typographic errors. Typically, first names use Soundex encoding and last
names and street names use NYSIIS encoding, but the Master Index Standardization Engine
supports several additional phonetic encoders as well.

How the Master Index Standardization Engine Works

The Master Index Standardization Engine uses two frameworks to define standardization logic.
One framework is based on a finite state machine (FSM) model and the other is based on rules
programmed in Java. In the current implementation, the person names and telephone numbers
are processed using the FSM framework, and addresses and business names are processed using
the rules-based framework. The Master Index Standardization Engine includes several sets of
files that define standardization logic for all supported data types. For person data and
addresses, one set of standardization files is provided for the following national variants:
Australia, France, Great Britain, and the United States. You can customize these files to adapt
the standardization and matching logic to your specific needs or you can create new data types
or variants for even more customized processing. With pluggable standardization sets, you can
define custom standardization processing for most types of data.

Master Index Standardization Engine Reference 9

How the Master Index Standardization Engine Works

10

The following topics provide information about the Master Index Standardization Engine, the
standardization frameworks, and data is standardized:

“Master Index Standardization Engine Data Types and Variants” on page 10
“Master Index Standardization Engine Standardization Components” on page 10
“Finite State Machine Framework” on page 11

“Rules-Based Framework” on page 12

Master Index Standardization Engine Data Types and
Variants

A data type is the primary kind of data you are processing, such as person names, addresses,
business names, automotive parts, and so on. A variant is a subset of a data type that is designed
to standardize a specific kind of data. For example, for addresses and names, the variants
typically define rules for the different countries in which the data originates. For automotive
parts, the variants might be different manufacturers. Each data type and variant uses its own
configuration files to define how fields in incoming records are parsed, standardized, and
classified for processing. Data types are sometimes referred to as standardization types.

In the default implementation with a master index application, the engine supports data
standardization on the following types of data:

= Person Information (described in FSM-Based Person Name Configuration)

= Telephone Numbers (described in FSM-Based Telephone Number Configuration)

= Street Addresses (described in Rules-Based Address Data Configuration)

= Business Names (described in Rules-Based Business Name Configuration)

In the default configuration, the standardization engine expects street address and business
names to be in free-form text fields that need to be parsed prior to normalization and phonetic
encoding. Person and phone information can also be contained in free-form text fields, but
theses types of information can also be processed if the data is already parsed into its individual
components. Each data type requires specific customization to mefa.xml in the master index
project. This can be done by modifying the file directly or by using the Master Index
Configuration Editor.

Master Index Standardization Engine Standardization
Components

The Master Index Standardization Engine breaks down fields into various components during
the parsing process. This is known an tokenization. For example, it breaks addresses into floor
number, street number, street name, street direction, and so on. Some of these components are
similar and might be stored in the same output field. In the default configuration for a master
index application, for example, when the standardization engine finds a house number, rural

Master Index Standardization Engine Reference - December 2009

How the Master Index Standardization Engine Works

route number, or PO box number, the value is stored in the HouseNumber database field. You
can customize this as needed, as long as any field you specify to store a component is also
included in the object structure defined for the master index application.

The standardization engine uses tokens to determine how to process fields that are defined for
normalization or parsing into their individual standardization components. For FSM-based
data types, the tokens are defined as output symbols in the process definition files and are
referenced in the standardization structures in the Master Index Configuration Editor and in
mefa.xml. The tokens determine how each field is normalized or how a free-form text field is
parsed and normalized. For rules-based data types, the tokens are defined internally in the Java
code. The tokens for business names specify which business type key file to use to normalize a
specific standardization component. The tokens for addresses determine which database fields
store each standardization component and how each component is standardized.

Finite State Machine Framework

A finite state machine (FSM) is composed of one or more states and the transitions between
those states. The Master Index Standardization Engine FSM framework is designed to be highly
configurable and can be easily extended with no Java coding. The following topics describe the
FSM framework and the configuration files that define FSM-based standardization.

About the Finite State Machine Framework

In an FSM framework, the standardization process is defined as one or more states. In a state,
only the input symbols defined for that state are recognized. When one of those symbols is
recognized, the following action or transition is based on configurable processing rules. For
example, when an input symbol is recognized, it might be preprocessed by removing
punctuation, matched against a list of tokens, and then postprocessed by normalizing the input
value. Once this has been completed for all input symbols, the standardization engine
determines which token is the most likely match.

FSM-based processing includes the following steps:

= Cleansing - The entire input string is modified to make sure it is broken down into its
individual components correctly.

= Tokenization - The input string is broken down into its individual components.

= Parsing - The individual field components are processed according to configurable rules.
Parsing can include any combination of the following three stages:

= Preprocessing — Each token is cleansed prior to matching to make the value more
uniform.

= Matching - The cleansed token is matched against patterns or value lists.

= Postprocessing — The matched token is normalized.

Master Index Standardization Engine Reference 1

How the Master Index Standardization Engine Works

12

Note - Several parsing sequences might be performed against one field component in
order to best match it with a token. Each sequence is carried out until a match is made.

= Ambiguity Resolution - Some input strings might match more than one processing rule, so
the FSM framework includes a probability-based mechanism for determining the correct
state transition.

Using the person data type, for example, first names such as “Bill” and “Will” are normalized to
“William”, which is then converted to its phonetic equivalent. Standardization logic is defined
in the standardization engine configuration files and in the Master Index Configuration Editor
or mefa.xml in a master index project.

FSM-Based Configuration

The FSM-based standardization configuration files are stored in the master index project and
appear in the Standardization Engine node of the project. These files are separated into groups
based on the primary data types being processed. Data type groups have further subsets of
configuration files based on the variants for each data type. FSM-based data types and variants,
such as PersonName and PhoneNumber, include the following configuration file types.

= Service Definition Files — Each data type and data type variant is defined by a service
definition file. Service type files define the fields to be standardized for a data type and service
instance files define the variant and Java factory class for the variant. Both files are in XML
format and should not be modified unless the data type is extended to include more output
symbols.

= Process Definition Files — These files define the different stages of processing data for the
data type or variant. It defines the FSM states, input and output symbols, patterns, and data
cleansing rules. These files use a domain-specific language (DSL) to define how the data
fields are processed.

= Lexicon Files - The standardization engine uses these files to recognize input data. A
lexicon provides a list of possible values for a specific field, and one lexicon file should be
defined for each field on which standardization is performed.

= Normalization Files — The standardization engine uses these files to convert nonstandard
values into a common form. For example, a nickname file provides a list of nicknames along
with the common version of each name. For example, “Beth” and “Liz” might both be
normalized to “Elizabeth”. Each row in the file contains a nickname and its corresponding
normalized version separated by a pipe character (|).

Rules-Based Framework

In the rules-based framework, the standardization process is define in the underlying Java code.
You can configure several aspects of the standardization process, such as the detectable patterns

Master Index Standardization Engine Reference - December 2009

How the Master Index Standardization Engine Works

for each data type, how values are normalized, and how the input string is cleansed and parsed.
You can define custom rules-based data types and variants by creating custom Java packages
that define processing.

About the Rules-Based Framework

In the rules-based framework, individual field components are recognized by the patterns
defined for each data type and by information provided in configurable files about how to
preprocess, match, and postprocess each field components. The rules-based framework
processes data in the following stages.

= Parsing - A free-form text field is separated into its individual components, such as street
address information or a business name. This process takes into account logic you can
customize, such as token patterns, special characters, and priority weights for patterns.

= Normalization - Once a field is parsed, individual components of the field are normalized
based on the configuration files. This can include changing the input street name to a
common form or changing the input business name to its official form.

= Phonetic Encoding - After a field is parsed and optionally normalized, the value of a field is
converted to its phonetic version. The value to be converted can be the original input value,
a parsed value, a normalized value, or a parsed and normalized value.

Using the street address data type, for example, street addresses are parsed into their
component parts, such as house numbers, street names, and so on. Certain fields are
normalized, such as street name, street type, and street directions. The street name is then
phonetically converted. Standardization logic is defined in the standardization engine
configuration files and in the Master Index Configuration Editor or mefa.xml in a master index
project.

Rules-Based Configuration

The rules-based standardization configuration files are stored in the master index project and
appear as nodes in the Standardization Engine node of the project. These files are separated into
groups based on the primary data types and variants being processed. Rules-based data types
and variants, such as the default Address and Business Name types, use the following
configuration file types.

= Service Definition Files — Each data type and data type variant is configured by a service
definition file. Service type files define the fields to be standardized for a data type, and
service instance definition files define the variant and Java factory class for the variant. Both
files are in XML format. These files should not be modified.

= Category Files - The standardization engine uses category files when processing business
names. These files list common values for certain types of data, such as industries and
organizations for business names. Category files also define standardized versions of each
term or classify the terms into different categories, and some files perform both functions.
When processing address files, category files named clues files are used.

Master Index Standardization Engine Reference 13

Sun Master Index Standardization and Matching Process

= Clues Files - The standardization engine uses clues files when processing address data types.
These files list general terms used in street address fields, define standardized versions of
each term, and classify the terms into various component types using predefined address
tokens. These files are used by the standardization engine to determine how to parse a street
address into its various components. Clues files provide clues in the form of tokens to help
the engine recognize the component type of certain values in the input fields.

= Patterns Files - The patterns files specify how incoming data should be interpreted for
standardization based on the format, or pattern, of the data. These files are used only for
processing data contained in free-form text fields that must be parsed prior to matching
(such as street address fields or business names). Patterns files list possible input data
patterns, which are encoded in the form of tokens. Each token signifies a specific component
of the free-form text field. For example, in a street address field, the house number is
identified by one token, the street name by another, and so on. Patterns files also define the
format of the output fields for each input pattern.

= Key Type Files - For business name processing, the standardization engine refers to a
number of key type files for processing data. These files generally define standard versions of
terms commonly found in business names and some classify these terms into various
components or industries. These files are used by the standardization engine to determine
how to parse a business name into its different components and to recognize the component
type of certain values in the input fields.

= Reference Files - Reference files define general terms that appear in input fields for each
data type. Some reference files define terms to ignore and some define terms that indicate
the business name is continuing. For example, in business name processing “and” is defined
as a joining term. This helps the standardization engine to recognize that the primary
business name in “Martin and Sons, Inc” is “Martin and Sons” instead of just “Martin”.
Reference files can also define characters to be ignored by the standardization engine.

Sun Master Index Standardization and Matching Process

14

In a default Sun Master Index implementation, the master index application uses the Master
Index Match Engine and the Master Index Standardization Engine to cleanse data in real time.
The standardization engine uses configurable pattern-matching logic to identify data and
reformat it into a standardized form. The match engine uses a matching algorithm with a
proven methodology to process and weight records in the master index database. By
incorporating both standardization and matching capabilities, you can condition data prior to
matching. You can also use these capabilities to review legacy data prior to loading it into the
database. This review helps you determine data anomalies, invalid or default values, and
missing fields.

In a master index application, both matching and standardization occur when two records are
analyzed for the probability of a match. Before matching, certain fields are normalized, parsed,
or converted into their phonetic values if necessary. The match fields are then analyzed and

Master Index Standardization Engine Reference - December 2009

Finite State Machine Framework Configuration

weighted according to the rules defined in a match configuration file. The weights for each field
are combined to determine the overall matching weight for the two records. After these steps
are complete, survivorship is determined by the master index application based on how the
overall matching weight compares to the duplicate and match thresholds of the master index
application.

In a master index application, the standardization and matching process includes the following
steps:

1. The master index application receives an incoming record.

2. The Master Index Standardization Engine standardizes the fields specified for parsing,
normalization, and phonetic encoding. These fields are defined in mefa.xml and the rules
for standardization are defined in the standardization engine configuration files.

3. The master index application queries the database for a candidate selection pool (records
that are possible matches) using the blocking query specified in master.xml. If the blocking
query uses standardized or phonetic fields, the criteria values are obtained from the
database.

4. For each possible match, the master index application creates a match string (based on the
match columns in mefa.xml) and sends the string to the Master Index Match Engine.

5. The Master Index Match Engine checks the incoming record against each possible match,
producing a matching weight for each. Matching is performed using the weighting rules
defined in the match configuration file.

Master Index Standardization Engine Internationalization

By default, the Master Index Standardization Engine is configured for addresses and names
originating from Australia, France, Great Britain, and the United States, and for telephone
numbers and business names of any origin. Each national variant for each data type uses a
specific subset of configuration files. In addition, you can define custom national variants for
the standardization engine to support addresses and names from other countries and to
support other data types. You can process with your data using the standardization files for a
single variant or you can use multiple variants depending on how the master index application
is configured.

Finite State Machine Framework Configuration

In the FSM framework, the state model definition, along with all the token processing logic, is
provided in configuration files in XML format. In addition, lexicon and normalization files
define logic used by the Master Index Standardization Engine to recognize and normalize
specific values for each data type or variant. The standardization configuration files for the
Master Index Standardization Engine must follow certain rules for formatting and
interdependencies. The following topics provide an overview of the types of configuration files
provided for standardization.

Master Index Standardization Engine Reference 15

FSM Framework Configuration Overview

= “FSM Framework Configuration Overview” on page 16
= “Process Definition File” on page 17

= “Lexicon Files” on page 29

= “Normalization Files” on page 30

FSM Framework Configuration Overview

16

The configuration of the finite state machine (FSM) includes defining the various states,
transitions between those states, and any actions to perform during each state. Each instance of
the FSM begins in the start state. In each state, the standardization engine looks for the next
token (or input symbol), optionally performs certain actions against the token, determines the
potential output symbols, and then uses probability-based logic to determine the output symbol
to generate for the state and how to transition to the next state. Within each state, only the input
symbols defined for that state are recognized. When an input symbol is recognized, the
processing defined for that symbol is carried out and the transition to the next state occurs.
Note that some input symbols might trigger a transition back to the current state. Once the
standardization engine does not recognize any input symbols, the FSM reaches a terminal state
from which no further transitions are made.

You can define specialized processing rules for each input symbol in the state model. These
rules include cleansing and data transformation logic, such as converting data to uppercase,
removing punctuation, comparing the input value against a list of values, and so on. Both the
state model and the processing rules are defined in the process definition file,
standardizer.xml. The lists that you can use to compare and normalize values for each input
symbol are contained in lexicon and normalization files.

The configuration files that configure the standardization engine are stored in the master index
project and appear as nodes in the Standardization Engine node of the project. The
standardization files are separated into subsets that are each unique to a specific data type,
which are further grouped into variants on those data types. You can define additional
standardization file subsets to create new variants or even create new data types, such as
automotive parts, inventory items, and so on.

The following topics provide information about the files you can configure or create to
customize how your data is standardized:

= “Process Definition File” on page 17
= “Lexicon Files” on page 29
= “Normalization Files” on page 30

Master Index Standardization Engine Reference - December 2009

Process Definition File

Process Definition File

The process definition file (standardizer.xml) is the primary configuration file for
standardization. It defines the state model, input and output symbol definitions, preprocessing
and postprocessing rules, and normalization rules for any type of standardization. Using a
domain-specific markup language, you can configure any type of standardization without
having to code a new Java package. Each process definition file defines the different stages of
processing data for one data type or variant. The process definition file is stored in the resource
folder under the data type or variant it defines.

The process definition file is divided into six primary sections, which are described in the
following topics:

“Standardization State Definitions” on page 17

“Input Symbol Definitions” on page 19

“Output Symbol Definitions” on page 21

“Data Cleansing Definitions” on page 22

“Data Normalization Definitions” on page 23
“Standardization Processing Rules Reference” on page 24

The processing flow is defined in the state definitions. The input symbol definitions specify the
token preprocessing, matching, and postprocessing logic. This is the logic carried out for each
input token in a given state. The output symbols define the output for each state. The data
cleansing definitions specify any transformations made to the input string prior to tokenization.
Normalization definitions are used for data that does not need to be tokenized, but only needs
to be normalized and optionally phonetically encoded. For example, if the input text provides
the first name in its own field, the middle name in its own field, and so on, then only the
normalization definitions are used to standardize the data. The standardization processing rules
can be used in all sections except the standardization state definitions.

Standardization State Definitions

An FSM framework is defined by its different states and transitions between states. Each FSM
begins with a start state when it receives an input string. The first recognized input symbol in
the input string determines the next state based on customizable rules defined in the state model
section of standardizer.xml. The next recognized input symbol determines the transition to
the next state. This continues until no symbols are recognized and the termination state is
reached.

Below is an excerpt from the state definitions for the PersonName data type. In this state, the
first name has been processed and the standardization engine is looking for one of the
following: a first name (indicating a middle name), a last name, an abbreviation (indicating a
middle initial), a conjunction, or a nickname. A probability is given for each of these symbols
indicating how likely it is to be the next token.

Master Index Standardization Engine Reference 17

Process Definition File

18

<stateModel name="start"s

<when inputSymbol="salutation" nextState="salutation"
outputSymbol="salutation" probability=".15"/>

<when inputSymbol="givenName" nextState="headingFirstName"
outputSymbol="firstName" probability=".6"/>

<when inputSymbol="abbreviation" nextState="headingFirstName"
outputSymbol="firstName" probability=".15"/>

<when inputSymbol="surname" nextState="trailinglLastName"
outputSymbol="lastName" probability=".1"/>

<state name="headingFirstName">

<when inputSymbol="givenName" nextState="headingMiddleName"
outputSymbol="middleName" probability=".4"/>
<when inputSymbol="surname" nextState="headinglLastName"

outputSymbol="lastName" probability=".3"/>

<when inputSymbol="abbreviation" nextState="headingMiddleName"

outputSymbol="middleName" probability=".1"/>
<when inputSymbol="conjunction" nextState="headingFirstName"

outputSymbol="conjunction" probability=".1"/>

<when inputSymbol="nickname" nextState="firstNickname"

outputSymbol="nickname" probability=".1"/>

</state>

The following table lists and describes the XML elements and attributes for the standardization

state definitions.

Element Attribute

Description

stateModel

The primary container element for the state model that includes
the definitions for each state in the FSM. This element contains
a series of when elements as described below to define the
transitions from the start element to any of the other states. It
also contains a series of state elements that define the remaining
FSM states.

name

The name of start state (by default, “start”).

state

A definition for one state in the FSM (not including the start
state). Each state element contains a series of when elements and
attributes as described above to define the processing flow.

name

The name of the state. The names defined here are referenced in
the nextState attributes described below to specify the next state.

when

A statement defining which state to transition to and which
symbol to output when a specific input symbol is recognized in
each state. These elements define the possible transitions from
one state to another.

Master Index Standardization Engine Reference - December 2009

Process Definition File

Element Attribute Description

inputSymbol The name of an input symbol that might occur next in the input
string. This must match one of the input symbols defined later
in the file. For more information about input symbols and their
processing logic, see “Input Symbol Definitions” on page 19.

nextState The name of the next state to transition to when the specified
input symbol is recognized. This must match the name of one of
the states defined in the state model section.

outputSymbol The name of the symbol that the current state produces for
when processing is complete for the state based on the input
symbol. Not all transitions have an output symbol. This must
match one of the output symbols defined later in the file. For
more information, see “Output Symbol Definitions” on page 21

probability The probability that the given input symbol is actually the next
symbol in the input string. Probabilities are indicated by a
decimal between and including 1 and 0. All probabilities for a
given state must add up to 1. If a state definition includes the eof
element described below, all probabilities including the eof
probability mustadd up to 1.

eof probability The probability that the FSM has reached the end of the input
string in the current state. Probabilities are indicated by a
decimal between and including 1 and 0. The sum of this
probability and all other probabilities for a given state must be 1.

Input Symbol Definitions

The input symbol definitions name and define processing logic for each input symbol
recognized by the states. For each state, each possible input symbol is tried according to the
rules defines here, and then the probability that it is the next token is assessed. Each input
symbol might be subject to preprocessing, token matching, and postprocessing. Preprocessing
can include removing punctuation or other regular expression substitutions. The value can
then be matched against values in the lexicon file or against regular expressions. If the value
matches, it can then be normalized based on the specified normalization file or on pattern
replacement. One input symbol can have multiple preprocessing, matching, and postprocessing
iterations to go through. If their are multiple iterations, each is carried out in turn until a match
is found. All of these steps are optional.

Below is an excerpt from the input symbol definitions for PersonName processing. This excerpt
processes the salutation portion of the input string by first removing periods, then comparing
the value against the entries in the salutation. txt file, and finally normalizing the matched
value based on the corresponding entry in the salutationNormalization. txt file. For
example, if the value to process is “Mr?, it is first changed to “Mr”, matched against a list of
salutations, and then converted to “Mister” based on the entry in the normalization file.

Master Index Standardization Engine Reference 19

Process Definition File

<inputSymbol name="salutation">
<matchers>
<matcher>
<preProcessing>
<replaceAll regex="\.
</preProcessing>
<lexicon resource="salutation.txt"/>
<postProcessing>
<dictionary resource="salutationNormalization.txt" separator="\|"/>
</postProcessing>
</matcher>

replacement=""/>

</matchers>
</inputSymbol>

The following table lists and describes the XML elements and attributes for the input symbol
definitions.

Element Attribute Description

inputSymbol A container element for the processing logic for one input
symbol.

name The name of the input symbol against which the following logic
applies.

matchers A list of processing definitions, each of which define one
preprocessing, matching, and postprocess sequence. Not all
definitions include all three steps.

matcher A processing definition for one sequence of preprocessing,
matching, and postprocessing. A processing definition might
contain only one or any combination of the three steps.

factor A factor to apply to the probability specified for the input
symbol in the state definition. For example, if the state definition
probability is .4 and this factor is .25, then the probability for
this matching sequence is .1. Only define this attribute when the
probability for this matching sequence is very low.

preProcessing A container element for the preprocessing rules to be carried
out against an input symbol. For more information about the
rules you can use, see “Standardization Processing Rules
Reference” on page 24.

20 Master Index Standardization Engine Reference - December 2009

Process Definition File

Element Attribute Description

lexicon resource The name of the lexicon file containing the list of values to
match the input symbol against.

Note - You can also match against patterns or regular
expressions. For more information, see matchAllPatterns and
patternin “Standardization Processing Rules Reference” on
page 24.

postProcessing A container element for the postprocessing rules to be carried
out against an input symbol that has been matched. For more
information about the rules you can use, see “Standardization
Processing Rules Reference” on page 24.

Output Symbol Definitions

The output symbol definitions name each output symbol that can be produced by the defined
states. This section can define additional processing for output symbols using the rules
described in “Standardization Processing Rules Reference” on page 24. Each output symbol

defined in the state model definitions must match a value defined here. Below is an excerpt from

the output symbol definitions for PersonName processing.

<outputSymbols>
<outputSymbol name="salutation"/>
<outputSymbol name="firstName"/>
<outputSymbol name="middleName"/>
<outputSymbol name="nickname"/>
<outputSymbol name="lastName"/>
<outputSymbol name="generation"/>
<outputSymbol name="title"/>
<outputSymbol name="conjunction"/>

</outputSymbols>

The following table lists and describes the XML elements and attributes for the output symbol
definitions.

Element Attribute Description
outputSymbols Alist of output symbols for each processing state.
outputSymbol A definition for one output symbol.

name The name of the output symbol

Master Index Standardization Engine Reference

21

Process Definition File

22

Element Attribute Description

occurrenceConcatenator An optional class to specify the character that separates
contiguous occurrences of the same output symbol. For
example, this is used in the PhoneNumber data type to
concatenate phone number components that are separated
by dashes. Components are concatenated using blanks.

class The name of the occurrence concatenator class. One
concatenator class is predefined.

property A parameter for the occurrence concatenator class. For the
default class, the parameter specifies a separator character.

name The name of the parameter. For the default class, the name
is “separator”.

value The parameter value.

tokenConcatenator An optional class to specify the character that separates
non-contiguous occurrences of the same output symbol.
For example, this is used in the PhoneNumber data type to
concatenate phone number components.

class The name of the token concatenator class. one
concatenator class is predefined.

property A parameter for the token concatenator class. For the
default class, the parameter specifies a separator character.

name The name of the parameter. For the default class, the name
is “separator”.

value The value of the parameter.

Data Cleansing Definitions

You can define cleansing rules to transform the input data prior to tokenization to make the
input record uniform and ensure the data is correctly separated into its individual components.
This standardization step is optional.

Common data transformations include the following:

= Converting a string to all uppercase.

= Trimmingleading and trailing white space.

= Converting multiple spaces in the middle of a string to one space.

= Transliterating accent characters or diacritical marks.

= Addinga space on either side of extra characters (to help the tokenizer recognize them).

= Removing extraneous content.

Master Index Standardization Engine Reference - December 2009

Process Definition File

= Fixing common typographical errors.

The cleansing rules are defined within a cleanser element in the process definition file. You can
use any of the rules defined in “Standardization Processing Rules Reference” on page 24 to
cleanse the data. Cleansing attributes use regular expressions to define values to find and
replace.

The following excerpt from the PhoneNumber data type does the following to the input string
prior to processing:

= Converts all characters to upper case.

= Replaces the specified input patterns with new patterns.

= Removes white space at the beginning and end of the string and concatenates multiple
consecutive spaces into one space.

<cleanser>
<uppercase/>
<replaceAll regex="([0-91{3})([0-91{3})([0-91{4})" replacement="($1)$2-$3"/>
<replaceAll regex="([-(),1)" replacement=" $1 "/>

<replaceAll regex="\+(\d+) -" replacement="+$1-"/>
<replaceAll regex="E?X[A-Z1*[.#1?\s*([0-9]+)" replacement="X $1"/>
<normalizeSpace/>

</cleanser>

Data Normalization Definitions

If the data you are standardizing does not need to be parsed, but does require normalization,
you can define data normalization rules to be used instead of the state model defined earlier in
the process definition file. These rules would be used in the case of person names where the field
components are already contained in separate fields and do no need to be parsed. In this case,
the standardization engine processes one field at a time according to the rules defined in the
normalizer section of standardizer.xml. In this section, you can define preprocessing rules to
be applied to the fields prior to normalization.

Below is an excerpt from the PersonName data type. These rules convert the input string to all
uppercase, and then processes the FirstName and MiddleName fields based on the givenName
input symbol and processes the LastName field based on the surname input symbol.

<normalizer>
<preProcessing>
<uppercase/>
</preProcessing>
<for field="FirstName" use="givenName"/>
<for field="MiddleName" use="givenName"/>
<for field="LastName" use="surname"/>
</normalizer>

Master Index Standardization Engine Reference 23

Process Definition File

The following table lists and describes the XML elements and attributes for the normalization
definitions.

Element Attribute Description

normalizer A container element for the normalization rules to use when
field components do not require parsing, but do require
normalization.

preProcessing A container element for any preprocessing rules to apply to the
input strings prior to normalization. For more information
about preprocessing rules, see “Standardization Processing
Rules Reference” on page 24.

for The input symbol to use for a given field. This is defined in the
following attributes.

field The name of a field to be normalized.

use The name of the input symbol to associate with the field. The
processing logic defined for the input symbol earlier in the file is
used to normalize the data contained in that field.

Standardization Processing Rules Reference

The Master Index Standardization Engine provides several matching and transformation rules
for input values and patterns. You can add or modify any of these rules in the existing process
definition files (standardizer.xml). Several of these rules use regular expressions to define
patterns and values. See the Javadoc for java.util. regex for more information about regular
expressions.

The available rules include the following:

“dictionary” on page 24
“fixedString” on page 25
“lexicon” on page 26
“normalizeSpace” on page 26
“pattern” on page 27
“replace” on page 28
“replaceAll” on page 28
“transliterate” on page 28
“uppercase” on page 29

dictionary

This rule checks the input value against a list of values in the specified normalization file, and, if
the value is found, converts the input value to its normalized value. This generally used for

24 Master Index Standardization Engine Reference - December 2009

Process Definition File

postprocessing but can also be used for preprocessing tokens. The normalization files are
located in the same directory as the process definition file (the instance folder for the data type
or variant).

The syntax for dictionaryis:

<dictionary resource="file_name" separator="delimiter"/>

The parameters for dictionary are:

= resource — The name of the normalization file to use to look up the input value and
determine the normalized value.

= separator — The character used in the normalization file to separate the input value entries
from the normalized versions. The default normalization files all use a pipe (|) as a separator.

EXAMPLE1 Sample dictionary Rule

The following sample checks the input value against the list in the first column of the
givenNameNormalization.txt file, which uses a pipe symbol (|) to separate the input value
from its normalized version. When a value is matched, the input value is converted to its
normalization version.

<dictionary resource="givenNameNormalization.txt" separator="\|"/>

fixedString

This rule checks the input value against a fixed value. This is generally used for the token
matching step for input symbol processing. You can define a list of fixed strings for an input
symbol by enclosing multiple fixedString elements within a fixedStrings element. The syntax for
fixedStringis:

<fixedString>string</fixedString>

The parameter for fixedString is:

= string - The fixed value to compare the input value against.

EXAMPLE2 Sample fixedString Rules

The following sample matches the input value against the fixed values “AND”, “OR” and
“AND/OR”. If one of the fixed values matches the input string, processing is continued for that
matcher definition. If no fixed values match the input string, processing is stopped for that
matcher definition and the next matcher definition is processed (if one exists).

<fixedStrings>

<fixedString>AND</fixedString>
<fixedString>0R</fixedString>

Master Index Standardization Engine Reference 25

Process Definition File

26

EXAMPLE2 Sample fixedString Rules (Continued)

<fixedString>AND/OR</fixedString>
</fixedStrings>

lexicon

This rule checks the input value against a list of values in the specified lexicon file. This generally
used for token matching. The lexicon files are located in the same directory as the process
definition file (the instance folder for the data type or variant).

The syntax for lexicon is:

<lexicon resource="file_name/>

The parameter for lexiconis:

= resource — The name of the lexicon file to use to look up the input value to ensure correct
tokenization.

EXAMPLE3 Sample lexicon Rule

The following sample checks the input value against the list in the givenName. txt file. When a
value is matched, the standardization engine continues to the postprocessing phase if one is
defined.

<lexicon resource="givenName.txt"/>

normalizeSpace

This rule removes leading and trailing white space from a string and changes multiple spaces in
the middle of a string to a single space. The syntax for normalizeSpace is:

<normalizeSpace/>

EXAMPLE4 Sample normalizeSpace Rule

The following sample removes the leading and trailing white space from a last name field prior
to checking the input value against the surnames . txt file.

<matcher>
<preProcessing>
<normalizeSpace/>
</preProcessing>
<lexicon resource="surnames.txt"/>
</matcher>

Master Index Standardization Engine Reference - December 2009

Process Definition File

pattern

This rule checks the input value against a specific regular expression to see if the patterns match.
You can define a sequence of patterns by including them all in order in a matchAllPatterns
element. You can also specify sub-patterns to exclude. The syntax for patternis:

<pattern regex="regex_pattern"/>

The parameter for pattern is:

= regex — A regular expression to validate the input value against. See the Javadocs for
java.util.regex for more information.

The pattern rule can be further customized by adding exceptFor rules that define patterns to
exclude in the matching process. The syntax for exceptFor is:

<pattern regex="regex_pattern"/>
<exceptFor regex="regex_pattern"/>
</pattern>

The parameter for exceptFor is:

= regex — A regular expression to exclude from the pattern match. See the Javadocs for
java.util.regex for more information.

EXAMPLE5 Sample pattern Rule

The following sample checks the input value against the sequence of patterns to see if the input
value might be an area code. These rules specify a pattern that matches three digits contained in
parentheses, such as (310).

<matchAllPatterns>
<pattern regex="regex="\("/>
<pattern regex="regex="\[0-9]{3}"/>
<pattern regex="regex="\)"/>
</matchAllPatterns>

The following sample checks the input value to see if its pattern is a series of three letters
excluding THE and AND.

<pattern regex="[A-Z]{3}">
<exceptFor regex="regex="THE"/>
<exceptFor regex="regex="AND"/>

</matchAllPatterns>

Master Index Standardization Engine Reference 27

Process Definition File

replace

This rule checks the input value for a specific pattern. If the pattern is found, it is replaced by a
new pattern. This rule only replaces the first instance it finds of the pattern. The syntax for
replaceis:

<replace regex="regex_pattern" replacement="regex_pattern"/>

The parameters for replace are:

= regex — A regular expression that, if found in the input string, is converted to the
replacement expression.

= replacement — The regular expression that replaces the expression specified by the regex
parameter.

EXAMPLE6 Sample replace Rule

The following sample tries to match the input value against “ST”. If a match is found, the

standardization engine replaces the value with “SAINT”.

<replace regex="ST\." replacement="SAINT"/>

replaceAll

This rule checks the input value for a specific pattern. If the pattern is found, all instances are
replaced by a new pattern. The syntax for replaceAll is:

<replaceAll regex="regex_pattern" replacement="regex_pattern"/>

The parameters for replaceAll are:

= regex — A regular expression that, if found in the input string, is converted to the
replacement expression.

= replacement — The regular expression that replaces the expression specified by the regex
parameter.
EXAMPLE7 Sample replaceAll Rule

The following sample finds all periods in the input value and converts them to blanks.

<replaceAll regex="\." replacement=""/>

transliterate

This rule converts the specified characters in the input string to a new set of characters, typically
converting from one alphabet to another by adding or removing diacritical marks. The syntax
for transliterateis:

28 Master Index Standardization Engine Reference - December 2009

Lexicon Files

<transliterate from="existing char" to="new_char"/>

The parameters for transliterate are:

= from - The characters that exist in the input string that need to be transliterated.

= {0 - The characters that will replace the above characters.

EXAMPLES Sample transliterate Rule
The following sample converts lower case vowels with acute accents to vowels with no accents.

<transliterate from="4éi64" to="aeiou"/>

uppercase

This rule converts all characters in the input string to upper case. The rule does not take any
parameters. The syntax for uppercase is:

<uppercase/>

EXAMPLE9 Sample uppercase Rule

The following sample converts the entire input string into uppercase prior to doing any pattern
or value replacements. Since this is defined in the cleanser section, this is performed prior to
tokenization.

<cleanser>
<uppercase/>
<replaceAll regex="\." replacement=". "/>
<replaceAll regex="AND / OR" replacement="AND/OR"/>

</cleanser>

Lexicon Files

Lexicon files list the possible values for a specific field that the standardization engine uses to
recognize input data. A lexicon file can be defined for each field on which standardization is
performed. These files are referenced from the process definition file when defining matching
or processing rules. The lexicon files are located in the resource folder for the data type or
variant from which they are referenced.

Lexicon files are simply text files with a single column that lists the possible field values. They
are typically given the same name as the token type, or standardization component, that they
define. For example, the lexicon files for first and last names are givenNames . txt and

surnames . txt. You can modify these files as needed to suit your data requirements and you can
create new lexicon files to reference from the process definition file.

Master Index Standardization Engine Reference 29

Normalization Files

Below is an excerpt of the given names lexicon file:

ALIA
ALICA
ALICAI
ALICE
ALICEMARIE
ALICEN
ALICIA
ALICIA
ALID
ALIDA
ALIHAN
ALINA
ALINE
ALIS
ALISA
ALISE
ALISHA
ALISHIA
ALISIA
ALISON

Normalization Files

30

Normalization files list nonstandard values for a field along with their corresponding
normalized value. The standardization engine uses these files to convert nonstandard values
into a standard form. These files are referenced from the process definition file when defining
normalization rules. The normalization files are located in the resource folder for the data type
or variant from which they are referenced.

The most common example of normalization is a nickname file that provides a list of
nicknames along with the standard version of each name. For example, “Beth” and “Liz” might
both be standardized to “Elizabeth”. Each row in the file contains a nickname and its
corresponding standardized version separated by a pipe character (|). You can modify these
files as needed to suit your data processing needs, or you can create new normalization files to
reference from the process definition file.

Below is an excerpt of the given names normalization file:

BEV|BEVERLY
BIANCA|BLANCHE
BILLIE|WILLIAM
BILLYE|WILLIAM
BILLY|WILLIAM
BILL|WILLIAM

Master Index Standardization Engine Reference - December 2009

Person Name Standardization Overview

BIRGIT|BRIDGET
BLANCA | BLANCHE
BLANCH | BLANCHE
BOBBIE |ROBERT
BOBBI |ROBERT
BOBBYE | ROBERT
BOBBY | ROBERT
BOB|ROBERT
BONNY | BONNIE
BRADLY | BRADLEY

FSM-Based Person Name Configuration

By default, person name data is standardized using the finite state machine (FSM) framework.
Processing person data might involve parsing free-form data fields, but normally involves
normalizing and phonetically encoding certain fields prior to matching. The following topics
describe the default configuration that defines person processing logic and provide information
about modifying mefa.xml in a master index application for processing person data.

= “Person Name Standardization Overview” on page 31

= “Person Name Standardization Components” on page 32

= “Person Name Standardization Files” on page 32

= “Person Name Standardization and Sun Master Index” on page 34

Person Name Standardization Overview

Processing data with the PersonName data type includes standardizing and matching a person’s
demographic information. The Master Index Standardization Engine can the create the parsed,
normalized, and phonetic values for person data. These values are needed for accurate
searching and matching on person data. Several configuration files designed specifically to
handle person data are included to provide processing logic for the standardization and
phonetic encoding process. The Master Index Standardization Engine can phonetically encode
any field you specify.

In addition, when processing person information, you might want to standardize addresses to
enable searching against address information. This requires working with the address
configuration files described in Rules-Based Address Data Configuration.

Master Index Standardization Engine Reference 31

Person Name Standardization Components

Person Name Standardization Components

Standardization engines use tokens to determine how each field is standardized into its
individual field components and to determine how to normalize a field value. Tokens also
identify the field components to external applications like a master index application. The
following table lists each token generated by the Master Index Standardization Engine for
person data along with the standardization component they represent. These correspond to the
output symbols in the process definition file and to the output fields listed in the service type
definition file. For names, you can only specify the predefined field IDs that are listed in this
table unless you customize an existing variant or create a new one.

TABLE1 Person Name Tokens

Token Description

firstName Represents a first name field.

generation Represents a field containing generational information, such as Junior,
11, or 3rd.

lastName Represents a last name field.

middleName Represents a middle name field.

nickname Represents a nickname field.

salutation Represents a field containing prefix information for a name, such as
Mr., Miss, or Mrs.

title Represents a field containing a title, such as Doctor, Reverend, or
Professor.

Person Name Standardization Files

32

Several configuration files are used to define standardization logic for processing person names.
You can customize any of the configuration files described in this section to fit your processing
and standardization requirements for person data. There are three types of standardization files
for person data: process definition, lexicon, and normalization. Four default variants on the
PersonName data type are provided that are specialized for standardizing data from France,
Australia, the United Kingdom, or the United State. In a master index project, these files appear
under PersonName in the Standardization Engine node. Files for each variant appear within
sub-folders of PersonName and each corresponds to a specific national variant.

You can customize these files to add entries of other nationalities or languages, including those
containing diacritical marks. You can also create new variants to process data of other
nationalities. For more information, see Custom Data Types and Variants.

Master Index Standardization Engine Reference - December 2009

Person Name Standardization Files

The following topics provide information about each type of person name standardization file:

= “Person Name Lexicon Files” on page 33
= “Person Name Normalization Files” on page 33
= “Person Name Process Definition Files” on page 34

Person Name Lexicon Files

Each PersonName variant contains a set of lexicon files. Each lexicon file contains a list of
possible values for a field. The standardization engine matches input values against the values
listed in these files to recognize input symbols and ensure correct tokenization. The Master
Index Standardization Engine uses these files when processing input symbols as defined in the
process definition file (standardizer.xml). They are primarily used during the token matching
portion of parsing. You can modify these files as needed by adding, deleting, or modifying
values in the list. You can also create additional lexicon files.

The PersonName data type includes the following lexicon files:

generation.txt
givenNames. txt
salutation.txt
surnames.txt
titles.txt

These files are located in the resource folder under each variant name.

Person Name Normalization Files

Each PersonName variant contains a set of normalization files that are used to normalize input
values. The Master Index Standardization Engine uses these files when processing input
symbols as defined in the process definition file (standardizer.xml). Each normalization file
contains a column of unnormalized values, such as nicknames or abbreviations, and a second
column that contains the corresponding normalized values. The values in each column are
separated by a pipe symbol (|). You can modify these files as needed by adding, deleting, or
modifying values in the list. You can also create additional normalization files to reference from
the process definition file.

The PersonName data type includes the following normalization files:

generationNormalization.txt
givenNameNormalization.txt
salutationNormalization.txt
surnameNormalization.txt
titleNormalization.txt

These files are located in the resource folder under each variant name.

Master Index Standardization Engine Reference 33

Person Name Standardization and Sun Master Index

Person Name Process Definition Files

Each variant has its own process definition file (standardizer.xml) that defines the state model
for standardizing free-form person names. Each of these files also includes a section that defines
just normalization without parsing for person names. The process definition file is located in
the resource folder under each variant name. For information about the structure of this file,
see “Process Definition File” on page 17.

Person name standardization has several states, each defining how to process tokens when they
are found in certain orders. The default file defines states for salutations, first names, middle
names, last names, titles, suffixes, and separators. It defines provisions for instances when the
fields do not appear in order or when the input string does not contain complete data. For
example, the current definition handles instances where the input string is “FirstName,
MiddleName, LastName” as well as instances where the input string is “LastName, FirstName,
MiddleName”.

The process definition files for person names define several parsing rules for each field
component. This file defines a set of cleansing rules to prepare the input string prior to any
processing. Then the data is passed to the start state of the FSM. Most fields are preprocessed
and then matched against regular expressions or against a list of values in a lexicon file
(described in “Person Name Lexicon Files” on page 33). Postprocessing includes replacing
regular expressions or normalizing the field value based on a normalization file (described in
“Person Name Normalization Files” on page 33). The process definition files also define a set of
normalization rules, which are followed when the incoming data already contains name
information in separate fields and does not need to be parsed.

Person Name Standardization and Sun Master Index

34

Master index applications rely on the Master Index Standardization Engine to process person
name data. To ensure correct processing of person information, you need to customize the
Matching Service for the master index application according to the rules defined for the
standardization engine. This includes modifying mefa.xml to define normalization or parsing
and phonetic encoding of the appropriate fields. You can modify mefa.xml with the Master
Index Configuration Editor in the master index project.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is described
in detail in “Match Field Configuration” in Sun Master Index Configuration Reference . To
configure the required fields for normalization, modify the normalization structure in
mefa.xml. To configure the required fields for parsing and normalization, modify the
standardization structure. To configure phonetic encoding, modify the phonetic encoding
structure. These tasks can all be performed using the Master Index Configuration Editor.

Generally, the person data type processes data that is parsed prior to processing, so you should
not need to configure fields to parse unless your person data is stored in free-form text fields

Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0861/cnfg_index-mefa_c?a=view

Person Name Standardization and Sun Master Index

with all name information in one field. When processing person data, you might also want to
search on address information. In that case, you need to configure the address fields to parse
and normalize.

The following topics provide information about the fields used in processing person data and
how to configure person data standardization for a master index application. The information
provided in these topics is based on the default configuration.

“Person Name Processing Fields” on page 35

“Configuring a Normalization Structure for Person Names” on page 36
“Configuring a Standardization Structure for Person Names” on page 38
“Configuring Phonetic Encoding for Person Names” on page 39

Person Name Processing Fields

When standardizing person data, not all fields in a record need to be processed by the Master
Index Standardization Engine. The standardization engine only needs to process fields that
must be parsed, normalized, or phonetically converted. For a master index application, these
fields are defined in mefa.xml and processing logic for each field is defined in the
standardization engine configuration files.

Person Name Standardized Fields

The Master Index Standardization Engine can process person data that is provided in separate
fields within a single record, meaning that no parsing is required of the name fields prior to
normalization. It can also process person data contained in one long free-form field and parse
the field into its individual components, such as first name, last name, title, and so on. Typically,
only first and last names are normalized and phonetically encoded when standardizing person
data, but the standardization engine can normalize and phonetically encode any field you
choose. By default, the standardization engine processes these fields: first name, middle name,
last name, nickname, salutation, generational suffix, and title.

Person Name Object Structure

The fields you specify for person name matching in the Master Index wizard are automatically
defined for standardization and phonetic encoding. If you specify the PersonFirstName or
PersonLastName match type in the wizard, the following fields are automatically added to the
object structure and database creation script:

= field_name_Std
= field_name_Phon

where field_name is the name of the field for which you specified person name matching.

For example, if you specify the PersonFirstName match type for the FirstName field, two fields,
FirstName_Std and FirstName_Phon, are automatically added to the structure. You can also
add these fields manually if you do not specify match types in the wizard. If you are parsing

Master Index Standardization Engine Reference 35

Person Name Standardization and Sun Master Index

free-form person data, be sure all output fields from the standardization process are included in
the master index object structure. If you store additional names in the database, such as alias
names, maiden names, parent names, and so on, you can modify the phonetic structure to
phonetically encode those names as well.

Configuring a Normalization Structure for Person
Names

The fields defined for normalization for the PersonName data type can include any name fields.
By default, normalization rules are defined in the process definition file for first, middle, and last
name fields, and you can easily define additional fields. You only need to define a normalization
structure for person data if you are processing individual fields that do not require parsing.
Follow the instructions under “Defining Master Index Normalization Rules” in Sun Master
Index Configuration Guide to define fields for normalization. For the standardization-type
element, enter PersonName. For a list of field IDs to use in the standardized-object-field-id
element, see “Person Name Standardization Components” on page 32.

A sample normalization structure for person data is shown below. This sample specifies that the
PersonName standardization type is used to normalize the first name, alias first name, last
name, and alias last name fields. For all name fields, both United States and United Kingdom
domains are defined for standardization.

<structures-to-normalize>
<group standardization-type="PersonName"
domain-selector="com.sun.mdm.index.matching.impl.MultiDomainSelector">
<locale-field-name>Person.PobCountry</locale-field-name>
<locale-maps>
<locale-codes>
<value>UNST</value>
<locale>US</locale>
</locale-codes>
<locale-codes>
<value>GB</value>
<locale>UK</locale>
</locale-codes>
</locale-maps>
<unnormalized-source-fields>
<source-mapping>
<unnormalized-source-field-name>Person.FirstName
</unnormalized-source-field-name>
<standardized-object-field-id>FirstName
</standardized-object-field-id>
</source-mapping>
<source-mapping>
<unnormalized-source-field-name>Person.LastName

36 Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-norm_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-norm_p?a=view

Person Name Standardization and Sun Master Index

</unnormalized-source-field-name>
<standardized-object-field-id>LastName
</standardized-object-field-id>
</source-mapping>
</unnormalized-source-fields>
<normalization-targets>
<target-mapping>
<standardized-object-field-id>FirstName
</standardized-object-field-id>
<standardized-target-field-name>Person.FirstName Std
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>LastName
</standardized-object-field-id>
<standardized-target-field-name>Person.LastName Std
</standardized-target-field-name>
</target-mapping>
</normalization-targets>
</group>
<group standardization-type="PersonName" domain-selector=
"com.sun.mdm.index.matching.impl.MultiDomainSelector">
<locale-field-name>Person.PobCountry</locale-field-name>
<locale-maps>
<locale-codes>
<value>UNST</value>
<locale>US</locale>
</locale-codes>
<locale-codes>
<value>GB</value>
<locale>UK</locale>
</locale-codes>
</locale-maps>
<unnormalized-source-fields>
<source-mapping>
<unnormalized-source-field-name>Person.Alias[*].FirstName
</unnormalized-source-field-name>
<standardized-object-field-id>FirstName
</standardized-object-field-id>
</source-mapping>
<source-mapping>
<unnormalized-source-field-name>Person.Alias[*].LastName
</unnormalized-source-field-name>
<standardized-object-field-id>LastName
</standardized-object-field-id>
</source-mapping>
</unnormalized-source-fields>
<normalization-targets>

Master Index Standardization Engine Reference

37

Person Name Standardization and Sun Master Index

<target-mapping>
<standardized-object-field-id>FirstName
</standardized-object-field-id>
<standardized-target-field-name>
Person.Alias[*].FirstName Std
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>LastName
</standardized-object-field-id>
<standardized-target-field-name>
Person.Alias[*].LastName Std
</standardized-target-field-name>

</target-mapping>

</normalization-targets>
</group>
</structures-to-normalize>

Configuring a Standardization Structure for Person
Names

For free-form name fields, the source fields that are defined for standardization should include
the predefined standardization components. For example, fields containing person name
information can include the first name, middle name, last name, suffix, title, and salutation. The
target fields you define can include any of these parsed components. Follow the instructions
under “Defining Master Index Standardization Rules” in Sun Master Index Configuration Guide
to define fields for standardization. For the standardization-type element, enter PersonName.
For alist of field IDs to use in the standardized-object-field-id element, see “Person Name
Standardization Components” on page 32.

A sample standardization structure for person name data is shown below. Only the United
States variant is defined in this structure.

free-form-texts-to-standardize>
<group standardization-type="PERSONNAME"
domain-selector="com.sun.mdm.index.matching.impl.SingleDomainSelectorUs">
<unstandardized-source-fields>
<unstandardized-source-field-name>Person.Name
</unstandardized-source-field-name>
</unstandardized-source-fields>
<standardization-targets>
<target-mapping>
<standardized-object-field-id>salutation
</standardized-object-field-id>
<standardized-target-field-name>Person.Prefix

38 Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view

Person Name Standardization and Sun Master Index

</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>firstName
</standardized-object-field-id>
<standardized-target-field-name>Person.FirstName
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>middleName
</standardized-object-field-id>
<standardized-target-field-name>Person.MiddleName
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>lastName
</standardized-object-field-id>
<standardized-target-field-name>Person.LastName
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>suffix
</standardized-object-field-id>
<standardized-target-field-name>Person.Suffix
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>title
</standardized-object-field-id>
<standardized-target-field-name>Person.Title
</standardized-target-field-name>

</target-mapping>

</standardization-targets>
</group>
</free-form-texts-to-standardize>

Configuring Phonetic Encoding for Person Names

When you specify a first, middle, or last name field for person name matching in the Master
Index wizard, that field is automatically defined for phonetic encoding. You can define
additional names, such as maiden names or alias names, for phonetic encoding as well. Follow
the instructions under “Defining Phonetic Encoding for the Master Index” in Sun Master Index
Configuration Guide to define fields for phonetic encoding.

A sample of fields defined for phonetic encoding is shown below. This sample converts name
and alias name fields, as well as the street name.

Master Index Standardization Engine Reference 39

http://docs.sun.com/doc/821-0865/cnfg_index-phon_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-phon_p?a=view

FSM-Based Telephone Number Configuration

<phoneticize-fields>

<phoneticize-field>
<unphoneticized-source-field-name>Person.FirstName Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.FirstName Phon
</phoneticized-target-field-name>
<encoding-type>Soundex</encoding-type>

</phoneticize-field>

<phoneticize-field>
<unphoneticized-source-field-name>Person.LastName Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.LastName Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>

<phoneticize-field>
<unphoneticized-source-field-name>Person.Alias[*].FirstName Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.Alias[*].FirstName Phon
</phoneticized-target-field-name>
<encoding-type>Soundex</encoding-type>

</phoneticize-field>

<phoneticize-field>
<unphoneticized-source-field-name>Person.Alias[*].LastName Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.Alias[*].LastName Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>

<phoneticize-field>
<unphoneticized-source-field-name>Person.Address[*].AddressLinel StName
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.Address[*].AddressLinel StPhon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field></phoneticize-fields>

FSM-Based Telephone Number Configuration

40

By default, telephone number data is standardized using the finite state machine (FSM)
framework. Processing telephone data involves parsing free-form data fields and normalizing
certain field components prior to matching. The following topics describe the default
configuration files that define telephone number processing logic and provide information
about modifying mefa.xml in a master index application for processing telephone data.

= “Telephone Number Standardization Overview” on page 41
= “Telephone Number Standardization Components” on page 41

Master Index Standardization Engine Reference - December 2009

Telephone Number Standardization Components

= “Telephone Number Standardization Files” on page 42
= “Telephone Number Standardization and Sun Master Index” on page 42

Telephone Number Standardization Overview

Processing data using the PhoneNumber data type includes standardizing and matching
telephone numbers. The Master Index Standardization Engine can create the parsed and
normalized values for free—form telephone data. These values are required for accurate
searching and matching. Several configuration files designed specifically to handle telephone
data are included to provide processing logic for the standardization process.

In addition, when processing telephone information, you might want to standardize addresses
to enable searching against address information. This requires working with the address
configuration files described in Rules-Based Address Data Configuration.

Telephone Number Standardization Components

Standardization engines use tokens to determine how each field is standardized into its
individual field components and to determine how to normalize a field value. Tokens also
identify the field components to external applications, like a master index application. The
following table lists each token generated by the Master Index Standardization Engine for
telephone data along with the standardization component they represent. You can only specify
the predefined field IDs that are listed in this table unless you customize the existing data type or
create a new data type or variant.

TABLE2 Telephone Number Tokens

Token Description
areaCode Represents a field containing an area code.
phoneNumber Represents a field containing the telephone number, excluding area

code, country code, and extension.

extension Represents a field containing a telephone number extension.

countryCode Represents a field containing the country code for a telephone number.

Master Index Standardization Engine Reference 41

Telephone Number Standardization Files

Telephone Number Standardization Files

Only one configuration file is used to define standardization logic for processing telephone
numbers. The process definition file (standardizer.xml) defines the state model and logic for
processing telephone numbers. There is only one variant for the PhoneNumber data type that is
designed to handle telephone numbers from all countries. The files that make up the variant are
stored in the master index project under PhoneNumber/Generic. The process definition file is
located in the resource subdirectory. You can customize this file to fit your processing and
standardization requirements for telephone numbers. For more information about the
structure of this file, see “Process Definition File” on page 17.

Telephone number standardization has several states, each defining how to process tokens
when they are found in certain orders. The default file defines states for country codes, area
codes, phone numbers, and extensions. It defines provisions for instances when the fields do not
appear in order or when the input string does not contain complete data. For example, the
current definition handles instances where the input string begins with a country code or an
area code, where it contains an extension, where it does not contain an extension, and when it
contains multiple telephone numbers.

The process definition file for telephone numbers define several parsing rules for each field
component. This file defines a set of cleansing rules to prepare the input string prior to any
processing. Then the data is passed to the start state of the FSM. Most fields are matched against
regular expressions and then postprocessed by replacing regular expressions. The output
symbols are further processed by concatenating the digit groups of the actual phone number,
separated by a hyphen.

Telephone Number Standardization and Sun Master Index

42

Master index applications rely on the Master Index Standardization Engine to process
telephone number data. To ensure correct processing of telephone information, you need to
customize the Matching Service for the master index application according to the rules defined
for the standardization engine. This includes modifying mefa.xml to define standardization of
the appropriate fields. You can modify mefa.xml using the Master Index Configuration Editor.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is described
in detail in “Match Field Configuration” in Sun Master Index Configuration Reference . To
configure the required fields for parsing, modify the standardization structure in mefa.xml.

The following topics provide information about the fields used in processing telephone data
and how to configure telephone number standardization for a master index application. The
information provided in these topics is based on the default configuration.

= “Telephone Number Processing Fields” on page 43
= “Configuring a Standardization Structure for Telephone Numbers” on page 43

Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0861/cnfg_index-mefa_c?a=view

Telephone Number Standardization and Sun Master Index

Telephone Number Processing Fields

When standardizing telephone data, not all fields in a record need to be processed by the Master
Index Standardization Engine. The standardization engine only needs to process fields that
must be parsed, normalized, or phonetically converted. For a master index application, these
fields are defined in mefa.xml and processing logic for each field is defined in the
Standardization Engine node configuration files.

Telephone Number Standardized Fields

The Master Index Standardization Engine can process telephone data that is contained in one
long free-form field and can parse that field into its individual components. By default, the
standardization engine separates telephone numbers into these field components: country
code, area code, phone number, and extension.

Telephone Number Object Structure

To standardize telephone numbers in a master index application, you need to manually define
the standardization structure and you need to add the fields that will store the standardized field
components to the object structure. In the default implementation, you can store any
combination of the following telephone number field components in the master index database.

Country Code
Area Code
Phone Number
Extension

The standardization engine has the capability to produce all of the above field components, but
you only need to store the ones you need in the master index database.

Configuring a Standardization Structure for
Telephone Numbers

For free-form name fields, the source fields you define for standardization should include the
standardization components predefined for the PhoneNumber data type. For example, any
fields containing telephone number information can include the country code, area code,
phone number, and extension. The target fields you define can include any of these parsed
fields. Follow the instructions under “Defining Master Index Standardization Rules” in Sun
Master Index Configuration Guide to define fields for standardization. For the
standardization-type element, enter PhoneNumber. For a list of field IDs to use in the
standardized-object-field-id element, see “Telephone Number Standardization Components”
on page 41.

A sample standardization structure for telephone number data is shown below. No variant is
defined in this structure because the standardization rules apply to global numbers.

Master Index Standardization Engine Reference 43

http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view

Rules—Based Address Data Configuration

<free-form-texts-to-standardize>
<group standardization-type="PHONENUMBER"
domain-selector="com.sun.mdm.index.matching.impl.MultiDomainSelector">
<unstandardized-source-fields>
<unstandardized-source-field-name>Person.Phone[*].PhoneNumber
</unstandardized-source-field-name>
</unstandardized-source-fields>
<standardization-targets>
<target-mapping>
<standardized-object-field-id>countryCode</standardized-object-field-id>
<standardized-target-field-name>Person.Phone[*].CountryCode
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>areaCode</standardized-object-field-id>
<standardized-target-field-name>Person.Phone[*].AreaCode
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>phoneNumber</standardized-object-field-id>
<standardized-target-field-name>Person.Phone[*].Number
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>extension</standardized-object-field-id>
<standardized-target-field-name>Person.Phone[*].Extension
</standardized-target-field-name>
</target-mapping>
</standardization-targets>
</group>
</free-form-texts-to-standardize>

Rules-Based Address Data Configuration

By default, address standardization is performed using the rules-based framework. Processing
street addresses involves parsing, normalizing, and phonetically encoding certain fields prior to
matching. The following topics describe the configuration files that define address processing
logic and provide instructions for modifying mefa.xml for processing address fields.

= “Address Data Standardization Overview” on page 45

= “Address Data Standardization Components” on page 45

= “Address Data Standardization Files” on page 48

= “Address Standardization and Sun Master Index” on page 57

44 Master Index Standardization Engine Reference - December 2009

Address Data Standardization Components

Address Data Standardization Overview

Processing data using the Address data type includes both standardizing and matching on
free-form address fields. The Master Index Standardization Engine can create the parsed,
normalized, and phonetic values for address data. These values are needed for accurate
searching and matching on address data. You can implement street address standardization
and matching on its own, or within an application designed to process person or business
information. Standardizing address information allows you to include address fields as search
criteria, even though matching might not be performed against these fields.

Several configuration files are designed specifically to handle address data and define processing
logic for the standardization and phonetic encoding process. These include address clues files, a
patterns file, and a constants file. The United States address standardization engine is based on
the work performed at the US Census Bureau. The clues files, in particular, are based on census
bureau statistics.

Address Data Standardization Components

Standardization engines use tokens to determine how each field is standardized into its
individual field components and to determine how to normalize a field value. Tokens also
identify the field components to external applications like a master index application. The
following table lists each token generated by the Master Index Standardization Engine for
address data along with the standardization component they represent. You can only specify
the predefined field tokens that are listed in this table for addresses unless you create a new data
type or variant.

TABLE3 Address Data Tokens

Token Description

BoxDescript Represents the PO box type from a standardized address field. By
default, this is stored in the field_name_StName field in a master index
database.

BoxIdentif Represents the parsed PO box number from a standardized address
field. By default, this is stored in the field_name_HouseNo field in a
master index database.

CenterDescript Represents the parsed structure description from a standardized
address field. This address component is not included in the default
master index standardization structure, but you can add it if needed.

Centerldentif Represents the parsed structure identifier from a standardized address
field. This address component is not included in the default master
index standardization structure, but you can add it if needed.

Master Index Standardization Engine Reference 45

Address Data Standardization Components

TABLE3 Address Data Tokens

(Continued)

Token

Description

Extralnfo

Represents any extra information that was not included in any of the
other parsed components. This address component is not included in
the default standardization structure, but you can add it if needed.

HouseClass

Represents the parsed house classification from a standardized address
field. This address component is not included in the default master
index standardization structure, but you can add it if needed.

HouseNumber

Represents the parsed house number from a standardized address
field. By default, this is stored in the field_name_HouseNo field in a
master index database.

HouseNumPrefix

Represents the parsed house number prefix from a standardized
address field (such as the “A” in “A 1587 4th Street”). This address
component is not included in the default master index standardization
structure, but you can add it if needed.

HouseNumSuffix

Represents the parsed house number suffix from a standardized
address field (such as the “B” in “5900 B Arnett Avenue”). This address
component is not included in the default master index standardization
structure, but you can add it if needed.

MatchPropertyName

Represents the parsed match property name from a standardized
address field and is used internally by the standardization engine for
blocking and phonetic encoding. This address component is not
included in the default master index standardization structure, but you
can add it if needed.

MatchStreetName

Represents the parsed and standardized street name from a
standardized address field and is used internally by the standardization
engine. If you want to store the standardized street name in the
database (recommended), map this field to the street name field in the
database. By default, this is stored in the field_name_StName field in a
master index database.

OrigPropertyName

Represents the parsed original property name (such as the name of a
complex or business park) from a standardized address field. This
address component is not included in the default master index
standardization structure, but you can add it if needed.

PropDesPrefDirection

Represents the parsed property direction from a standardized address
field. This field ID handles cases where the direction is a prefix to the
property description. By default, this is stored in the field_name_StDir
field in a master index database.

PropDesPrefType

Represents the parsed property type from a standardized address field.
This field ID handles cases where the street type is a prefix to the
property description. By default, this is stored in the
field_name_StType field in a master index database.

46 Master Index Standardization Engine Reference - December 2009

Address Data Standardization Components

TABLE3 Address Data Tokens

(Continued)

Token

Description

PropertySufDirection

Represents the parsed property direction from a standardized address
field. This field ID handles cases where the direction is a suffix to the
property description. By default, this is stored in the field_name_StDir
field in a master index database.

PropertySufType

Represents the parsed property type from a standardized address field.
This field ID handles cases where the street type is a suffix to the
property description. By default, this is stored in the
field_name_StType field in a master index database.

RuralRouteDescript

Represents the parsed rural route description from a standardized
address field. By default, this is stored in the field_name_StName field
in a master index database.

RuralRouteldentif

Represents the parsed rural route identifier from a standardized
address field. By default, this is stored in the field_name_HouseNo field
in a master index database.

SecondHouseNumber

Represents the parsed second house number prefix from a
standardized address field. This address component is not included in
the default master index standardization structure, but you can add it
if needed.

SecondHouseNumberPrefix

Represents the parsed second house number prefix from a
standardized address field (such as “25” in “25 319 10th Ave?”). This
address component is not included in the default master index
standardization structure, but you can add it if needed.

SecondStreetNameSufDirection

Represents the parsed second street direction from a standardized
address field. This address component is not included in the default
standardization structure, but you can add it if needed.

SecondStreetNameSufType

Represents the parsed second street type from a standardized address
field. This address component is not included in the default
standardization structure, but you can add it if needed.

OrigSecondStreetName

Represents the parsed second street name from a standardized address
field (for example, an address might include a cross-street or a
thoroughfare and dependent thoroughfare). This address component
is not included in the default master index standardization structure,
but you can add it if needed.

OrigStreetName

Represents the parsed street name from an address field. If you want to
store the original street name in the database, map this field to the
street name field in the database. This address component is not
included in the default standardization structure, but you can add it if
needed.

Master Index Standardization Engine Reference 47

Address Data Standardization Files

TABLE3 Address Data Tokens (Continued)

Token Description

StreetNamePrefDirection Represents the parsed street direction from a standardized address
field. This field ID handles cases where the direction is a prefix to the
street name. By default, this is stored in the field_name_StDir field in a
master index database.

StreetNamePrefType Represents the parsed street type from a standardized address field.
This field ID handles cases where the street type is a prefix to the street
name. By default, this is stored in the field_name_StType fieldin a
master index database.

StreetNameSufDirection Represents the parsed street direction from a standardized address
field. This field ID handles cases where the direction is a suffix to the
street name. By default, this is stored in the field_name_StDir field in a
master index database.

StreetNameSufType Represents the parsed street type from a standardized address field.
This field ID handles cases where the street type is a suffix to the street
name. By default, this is stored in the field_name_StType field in a
master index database.

StreetNameExtensionIndex Represents the parsed street name extension from a standardized
address field. This address component is not included in the default
standardization structure, but you can add it if needed.

WithinStructDescript Represents the parsed internal descriptor (such as “Floor”) from a
standardized address field. This address component is not included in
the default standardization structure, but you can add it if needed.

WithinStructIdentif Represents the parsed internal identifier (such as a floor number) from
a standardized address field. This address component is not included
in the default standardization structure, but you can add it if needed.

Address Data Standardization Files

48

Three configuration files define address processing logic for the Master Index Standardization
Engine. These files provide information about address patterns and tokens to help the
standardization engine determine how to recognize address components and break them out
into their respective tokens. You can customize any of the configuration files described in this
section to fit your processing and standardization requirements for address data.

The address configuration files are located in the resource folder under each variant name for
the Address data type. The following topics provide information about each configuration file.

= “Address Clues File” on page 49

= “Address Master Clues File” on page 50

= “Address Patterns File” on page 51

= “Address Pattern File Components” on page 53

Master Index Standardization Engine Reference - December 2009

Address Data Standardization Files

Address Clues File

The address clues file (clues . dat) lists common terms in street addresses, specifies a
normalized value for each common term, and categorizes the terms into street address
component types. A term can be categorized into multiple component types. A relevance value
specifies which of the component types the term is most likely to be. For example, the term
“Junction” is standardized as “Jct” and is classified as a street type, building unit, and generic
term (giving relevance in that order).

This file helps the Master Index Standardization Engine recognize common terms in street
addresses in order to parse and normalize the values correctly. The syntax of this file is:

common-term normalized-term ID-number/type-token

You can modify or add entries in this table as needed. The following table describes the columns
in the address clues file.

TABLE4 Address Clues File Columns

Column Description

common-term A term commonly found in street addresses.

normalized-term The normalized version of the common term.

ID-number/type-token An ID number and a token indicating the type of address component represented

by the common term. The ID number corresponds to an ID number in the
address master clues file, and the type token corresponds to the type specified for
that ID number in the address master clues file. One term might have several ID
number and token type pairs. Their order of appearance indicates their relevance
value.

Following is an excerpt from the US address clues file.

TRLR VLG Trpk 59BU

TRPK Trpk 59BU

TRPRK Trpk 59BU

VILLA Vlila 305TY 60BU

VLLA Vlla 305TY 60BU

VILLAS Vila 60BU

VILL Vlig 317TY 61BU 364AU
VILLAG Vig 317TY 61BU 364AU
VLG Vlig 317TY 61BU 364AU
VILLAGE Vig 317TY 61BU 364AU
VILLG Vig 317TY 61BU 364AU
VILLIAGE Vlig 317TY 61BU 364AU
VLGE Vig 317TY 61BU 364AU
VIVI Vivi 62BU

Master Index Standardization Engine Reference 49

Address Data Standardization Files

50

VIVIENDA Vivi 62BU
COLLEGE Coll 64BU 0AU
CLG Coll 64BU
COTTAGE Cott 65BU 65BP 0AU

Address Master Clues File

The address master clues file (masterClues.dat) lists common terms in street addresses as
defined by the United States Postal Service (USPS), the United Kingdom’s Royal Mail, the
Australian Postal Corporation, or France’s La Poste (depending on the variant in use). For each
common term, this file specifies a normalized value, defines postal information, and categorizes
the terms into street address component types. A term can be categorized into multiple
component types.

The syntax of this file is:

ID-number common-term normalized-term short-abbrev postal-abbrev CFCCS
type-token usage-flag postal-flag

You can modify or add entries in this table as needed. The following table describes the columns
in the address master clues file.

TABLE5 Address Master Clue File Columns

Column Description

ID-number A unique identification number for the address common term. This number
corresponds to an ID number for the same term in the address clues file.

common-term A common address term, such as Park, Village, North, Route, Centre, and so on.

normalized-term The normalized version of the common term.

short-abbrev A short abbreviation of the common term.

postal-abbrev The standard postal abbreviation of the common term.

CFCCS The census feature class code of the term (as defined in the Census Tiger®
database). The following values are used:

A -Road

B - Railroad

C - Miscellaneous

D - Landmark

E - Physical feature

F - Nonvisible feature

H - Hydrography

X - Unclassified

Master Index Standardization Engine Reference - December 2009

Address Data Standardization Files

TABLE5 Address Master Clue File Columns (Continued)

Column Description

type-token The type of address component represented by the common term. Types are
specified by an address token (for more information, see “Address Type Tokens”
on page 53).

usage-flag A flag indicating how the term is used (for more information, see “Pattern
Classes” on page 56)

postal-flag The standard postal code for the term.

Following is an excerpt from the US address master clues file.

11Alley Alley Al Aly A TY R U
12Alternate Route Alt Rte Alt Alt A TY R
15Arcade Arcade Arc Arc A TYR U
16Arroyo Arroyo Arryo ArryHA TY R
17Autopista Atpta Apta AptaA TY R
18Avenida Avenida Ava Ava A TY R
19Avenue Avenue Ave Ave A TY R U
26Boulevard Blvd Blvd BlvdA TY R U
32Bulevar Blvr Blv Blv A TY R
33Business Route Bus Rte BusRt BsRtA TY R
34Bypass Bypass Byp Byp A TY R U
36Calle Calle Calle ClleA TY R
37Calleja Calleja Cja Cja A TY R
38Callejon Callej Cjon CjonA TY R
39Camino Camino Cam Cam A TY R
47Carretera Carrt Carr CarrA TY R
48Causeway Cswy Cswy CswyAH TY R U
51Center Center Ctr Ctr DA TY R U

Address Patterns File

The address patterns file (patterns.dat) defines the expected input patterns of each individual
street address field being standardized so the Master Index Standardization Engine can
recognize and process these values. Tokens indicate the type of address component in the input
and output fields. This file contains two rows for each pattern. The first row defines the input
pattern for each address field and provides an example. The second row defines the output
pattern for each address field, the pattern type, the relative importance of the pattern compared
to other patterns, and usage flags. Below is an example.

AU A1 TY 01 Oak B Street
NA NA ST T* 75 IR

Master Index Standardization Engine Reference 51

Address Data Standardization Files

When an address is parsed, each line of the address is delineated by a pipe (|) and sent to the
parser separately. The output tokens for each line are then concatenated and the output pattern
is processed using the address patterns file to determine whether the output pattern is listed in
the file. If the pattern is found, output patterns are modified as indicated in the patterns file to
resolve any ambiguities that might arise when two lines of address information contain
common elements. The relative importance determines which pattern to use when the format
of the input field matches more than one pattern. This file should only be modified by personnel
with a thorough understanding of address patterns and tokens.

The syntax of this file is:

input-pattern example output-pattern pattern-class pattern-modifier priority
usage-flag exclude-flag

You can modify or add entries in this table as needed. The following table describes the columns
in the address patterns file.

TABLE6 Address Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern from an individual unparsed street
address field. Each token represents one component. For more information about
address tokens, see “Address Type Tokens” on page 53.

example An example of a street address that fits the specified pattern. This file element is
optional.
output-pattern Tokens that represent the output pattern for the specified input pattern. Each

token represents one component of the output of the Master Index
Standardization Engine. For more information about address tokens, see
“Address Type Tokens” on page 53.

pattern-class An indicator of the type of address component represented by the pattern.
Possible pattern types are listed in “Pattern Classes” on page 56“Pattern Classes”
on page 56.

pattern-modifier An indicator of whether the priority of the pattern is averaged against other
patterns that match the input. Pattern modifiers are listed in “Pattern Modifiers”
on page 56.

priority The priority weight to use for the pattern when the pattern is a sub-pattern of a
larger input pattern. For more information, see “Priority Indicators” on page 56.

usage-flag A flag indicating how the term is used (for more information, see “Pattern
Classes” on page 56). This file element is optional.

exclude-flag This file element is optional.

Following is an excerpt from the address patterns file.

52 Master Index Standardization Engine Reference - December 2009

Address Data Standardization Files

NU DR TY Al AU 01 123 South Avenida B Oak
HN PD PT NA NA H* 70

NU DR TY NU DR 01 123 South Avenida 1 West
HN PD PT NA SD H* 70

NU A1 TY AU TY 01 123 C circle hill drive
HN HS NA NA ST H* 70

NU A1 AM A1 TY 01 123 M & M road

HN NA NA NA ST H* 65

NU TY AU Al 01 123 Avenida Oak B

HN PT NA NA H* 60

NU TY NU Al 01 123 Avenida 1 B

HN PT NA NA H* 60

Address Pattern File Components

The address patterns files use pattern type tokens, pattern classes, pattern modifiers, and
priority indicators to process and parse address data. Before modifying any of the patterns files,
you must have a good understanding of these file components.

Address Type Tokens

The address pattern and clues files use tokens to denote different components in a street
address, such as street type, house number, street names, and so on. These files use one set of
tokens for input fields and another set for output fields. You can use only the predefined tokens
to represent address components; the Master Index Standardization Engine does not recognize
custom tokens.

The following table lists and describes each input token.

TABLE7 Input Address Pattern Type Tokens

Token Description

Al Alphabetic value, one character in length
AM Ampersand

AU Generic word

BP Building property

BU Building unit

Master Index Standardization Engine Reference 53

Address Data Standardization Files

TABLE7 Input Address Pattern Type Tokens (Continued)

Token Description

BX Post office box

DA Dash (as a starting character)
DR Street direction

EI Extra information

EX Extension

FC Numeric fraction

HR Highway route

MP Mile posts

NL Common words, such as “of”, “the”, and so on
NU Numeric value

oT Ordinal type

PT Prefix type

RR Rural route

SA State abbreviation

TY Street type

WD Descriptor within the structure
WI Identifier within the structure

The following table lists and describes each output token.

TABLE8 Output Address Pattern Tokens

Token Description

1P Building number prefix

2P Second building number prefix

BD Property or building directional suffix
BI Structure (building) identifier

BN Property or building name

BS Building number suffix

54 Master Index Standardization Engine Reference - December 2009

Address Data Standardization Files

TABLES Output Address Pattern Tokens (Continued)

Token Description

BT Property or building type suffix

BX Post office box descriptor

BY Structure (building) descriptor

DB Property or building directional prefix

EI Extra information

EX Extension index

H1 First house number (the actual number)

H2 Second house number (house number suffix)

HN House number

HS House number suffix

N2 Second street name

NA Street name

NB Building number

NL Conjunctions that connect words or phrases in one component type (usually the
street name)

P1 House number prefix

P2 Second house number prefix

PD Directional prefix to the street name

PT Street type prefix to the street name

RR Rural route descriptor

RN Rural route identifier

S2 Street type suffix to the second street name

SD Directional suffix to the street name

ST Street type suffix to the street name

TB Property or building type prefix

WI Identifier within the structure

WD Descriptor within the structure

XN Post office box identifier

Master Index Standardization Engine Reference

55

Address Data Standardization Files

Pattern Classes

Each pattern defined in the address patterns file must have an associated pattern class. The
pattern class indicates a portion of the input pattern or the type of address data that is
represented by the pattern. You can specify any of the following pattern classes.

® H - the address pattern represents a house
= B - theaddress pattern represents a building

m W - the address pattern represents a unit within a structure, such as an apartment or suite
number

= T - theaddress pattern represents a street type or direction
= R-theaddress pattern represents a rural route
m P -theaddress pattern represents a Post Office box

= N - the address pattern is mostly numeric

These classes are also specified as usage flags in the patterns file and the master clues file.

Pattern Modifiers

Each pattern type must be followed by a pattern modifier that indicates how to handle cases
where one or more defined patterns is found to be a sub-pattern of a larger input pattern. In this
case, the Master Index Standardization Engine must know how to prioritize each defined
pattern that is a part of the larger pattern. There are two pattern modifiers.

m *- Anasterisk indicates that the priority weight for the matching pattern is averaged down
equally with the other matching sub-patterns.

= +- A plussign indicates that the priority weight for the matching pattern is not averaged
down equally with the other matching sub-patterns.

Priority Indicators

The priority indicator is a numeric value following the pattern modifier that indicates the
priority weight of the pattern. These values work best when defined as a multiple of five between
and including 35 and 95. If a pattern is assigned a priority of 90 or 95 and the pattern matches,
or is a sub-pattern of, the input pattern, the standardization engine stops searching for
additional matching patterns and uses the high-priority matching pattern.

56 Master Index Standardization Engine Reference - December 2009

Address Standardization and Sun Master Index

Address Standardization and Sun Master Index

Master index applications rely on the Master Index Standardization Engine to process address
data. To ensure correct processing of address information, you need to customize the Matching
Service for the master index application according to the rules defines for the standardization
engine. This includes modifying mefa.xml to define parsing and phonetic encoding of the
appropriate fields. You can use the Master Index Configuration Editor to modify mefa.xml.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is described
in detail in “Match Field Configuration” in Sun Master Index Configuration Reference . To
configure the required fields for parsing and normalization, modify the standardization
structure in mefa.xml. To configure phonetic encoding, modify the phonetic encoding
structure. You can perform all of these tasks using the Master Index Configuration Editor.

Generally, the address data type processes data that requires parsing prior to processing. You
should not need to configure fields to normalize for addresses. The following topics provide
information about the fields used in processing address data and how to configure address data
standardization for a master index application. The information provided in these topics is
based on the default configuration.

= “Address Data Processing Fields” on page 57
= “Configuring a Standardization Structure for Address Data” on page 58
= “Configuring Phonetic Encoding for Address Data” on page 60

Address Data Processing Fields

When standardizing address data, not all fields in a record need to be processed by the Master
Index Standardization Engine. The standardization engine only needs to process address fields
that must be parsed, normalized, or phonetically converted. For a master index application,
these fields are defined in mefa.xml and processing logic for each field is defined in the
Standardization Engine node configuration files.

Address Standardized Fields

The Master Index Standardization Engine expects that street address data will be provided in a
free-form text field containing several components that must be parsed. By default, the
standardization engine is configured to parse these components and to normalize and
phonetically encode the street name. You can specify additional fields for phonetic encoding.

If you specify the Address match type for any field in the wizard, a standardization structure for
that field is defined in mefa.xml. The fields listed under “Address Object Structure” on page 58
are automatically defined as the target fields. Each of these fields has several entries in the
standardization structure. This is because different parsed components can be stored in the
same field. For example, the house number, post office box number, and rural route identifier
are all stored in the house number field. If you do not specify address fields for matching in the

Master Index Standardization Engine Reference 57

http://docs.sun.com/doc/821-0861/cnfg_index-mefa_c?a=view

Address Standardization and Sun Master Index

58

wizard but want to standardize the fields, you can create a standardization structure in
mefa.xml using the Master Index Configuration Editor.

Address Object Structure

The address fields specified for standardization are parsed into several additional fields. If you
specify the Address match type in the wizard, the following fields are automatically added to the
object structure and database creation script.

= field name_HouseNo
= field_name_StName

= field name_StDir

= field_name_StType

= field_name_StPhon

where field_name is the name of the field for which you specified address matching. For
example, if you specify the Address match type for the AddressLinel field, the following
fields are automatically added to the structure: AddressLinel_HouseNo,
AddressLinel_StName, AddressLinel_StDir, AddressLinel_StType, and
AddressLinel_StPhon.

You can add these fields manually if you do not specify a match type in the wizard.

Configuring a Standardization Structure for Address
Data

For free-form address fields, the source fields you define for parsing should include the
standardization components that are predefined for parsing and normalization. For example,
fields containing address information can include any of the field components listed in
“Address Data Standardization Components” on page 45. The target fields can include any of
these parsed fields. Follow the instructions under “Defining Master Index Standardization
Rules” in Sun Master Index Configuration Guide to define fields for standardization. For the
standardization-type element, enter Address. For alist of field IDs to use in the
standardized-object-field-id element, see “Address Data Standardization Components” on
page 45.

Note - In the default configuration, the rules defined for the address data type assume that all
input fields must be parsed as well as normalized. Thus, there is no need to configure fields only
for normalization.

A sample standardization structure for address data is shown below. This structure parses the
first two lines of street address into the standard street address fields. Only the United States
variant is defined in this structure.

Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view

Address Standardization and Sun Master Index

free-form-texts-to-standardize>
<group standardization-type="ADDRESS"
domain-selector="com.sun.mdm.index.matching.impl.SingleDomainSelectorus"s
<unstandardized-source-fields>
<unstandardized-source-field-name>Person.Address[*].Address1
</unstandardized-source-field-name>
<unstandardized-source-field-name>Person.Address[*].Address2
</unstandardized-source-field-name>
</unstandardized-source-fields>
<standardization-targets>
<target-mapping>
<standardized-object-field-id>HouseNumber
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].HouseNumber
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>RuralRouteIdentif
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].HouseNumber
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>BoxIdentif
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].HouseNumber
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>MatchStreetName
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetName
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>RuralRouteDescript
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetName
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>BoxDescript
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetName
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>PropDesPrefDirection

Master Index Standardization Engine Reference

59

Address Standardization and Sun Master Index

</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetDir
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>PropDesSufDirection
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetDir
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>StreetNameSufType
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetType
</standardized-target-field-name>

</target-mapping>

<target-mapping>
<standardized-object-field-id>StreetNamePrefType
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetType
</standardized-target-field-name>

</target-mapping>

</standardization-targets>
</group>
</free-form-texts-to-standardize>

Configuring Phonetic Encoding for Address Data

When you match or standardize on street address fields, the street name should be specified for
phonetic conversion (this is done by default in a master index application). Follow the
instructions under “Defining Phonetic Encoding for the Master Index” in Sun Master Index
Configuration Guide to define fields for phonetic encoding.

A sample of the phoneticize-fields element is shown below. This sample only converts the
address street name. You can define additional fields for phonetic encoding.

<phoneticize-fields>
<phoneticize-field>
<unphoneticized-source-field-name>Person.Address[*].StreetName
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.Address[*].StreetName Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>
</phoneticize-field>
</phoneticize-fields>

60 Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-phon_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-phon_p?a=view

Business Name Standardization Components

Rules-Based Business Name Configuration

By default, business name standardization is performed using the rules-based framework.
Processing business name fields involves parsing, normalizing, and phonetically encoding
certain fields prior to matching. The following topics describe the configuration files that define
business name processing logic and provide instructions for modifying mefa.xml for processing
business names.

= “Business Name Standardization Overview” on page 61

= “Business Name Standardization Components” on page 61

= “Business Name Standardization Files” on page 62

= “Business Name Standardization and Sun Master Index” on page 74

Business Name Standardization Overview

Processing data using the BusinessName data type includes both standardizing and matching
on free-form business name fields. The Master Index Standardization Engine can create the
parsed, normalized, and phonetic values for business names. These values are needed for
accurate searching and matching on business information. You can implement business name
standardization and matching on its own, or within an application designed to process person
information. Standardizing business name fields allows you to include these fields as search
criteria, even though matching might not be performed against these fields.

The Master Index Standardization Engine can create standardized and phonetic values for
business name field components. Several configuration files are designed specifically to handle
business names to define additional logic for the standardization and phonetic encoding
process. These include reference files, a patterns file, and key type files. The business name
standardization files are contained in one generic variant.

Business Name Standardization Components

Standardization engines use tokens to determine how each field is standardized into its
individual field components and to determine how to normalize a field value. Tokens also
identify the field components to external applications like a master index application. The
following table lists each token generated by the Master Index Standardization Engine for
business names along with the standardization component they represent. You can only specify
the predefined field tokens that are listed in this table for business names unless you create a
new data type or variant.

Master Index Standardization Engine Reference 61

Business Name Standardization Files

TABLE9 Business Name Tokens

Token Description

PrimaryName Represents the name parsed from a free-form text business name field.

OrgTypeKeyword Represents the organization type parsed from a free-form text business
name field.

AssocTypeKeyword Represents the association type parsed from a free-form text business
name field.

IndustrySectorList Represents the industry sector parsed a free-form text business name
field.

IndustryTypeKeyword Represents the industry type parsed from a free-form text business
name field (industry type is a subset of the sector).

AljasList Represents the alias parsed from a free-form text business name field.

Url Represents the URL parsed from a free-form text business name field.

Business Name Standardization Files

Several configuration files are used to define business name processing logic for the Master
Index Standardization Engine. These files provide information about business name patterns
and tokens to help the standardization engine determine how to recognize business name
components and break them out into their respective tokens. You can customize any of the
configuration files described in this section to fit your processing and standardization
requirements for business names.

The following topics described each file used for business name standardization:

= “Business Name Adjectives Key Type File” on page 63
= “Business Alias Key Type File” on page 63

= “Business Association Key Type File” on page 64

= “Business General Terms Reference File” on page 64
= “Business City or State Key Type File” on page 65
“Business Former Name Reference File” on page 66
“Merged Business Name Category File” on page 66
“Primary Business Name Reference File” on page 67
“Business Connector Tokens Reference File” on page 68
“Business Country Key Type File” on page 68
“Business Industry Sector Reference File” on page 69
“Business Industry Key Type File” on page 70

= “Business Organization Key Type File” on page 71

= “Business Patterns File” on page 72

62 Master Index Standardization Engine Reference - December 2009

Business Name Standardization Files

Business Name Adjectives Key Type File

The adjectives key type file (bizAdjectivesTypeKeys.dat) defines adjectives commonly found
in business names so the Master Index Standardization Engine can recognize and process these
values as a part of the business name. This file contains one column with a list of commonly
used adjectives, such as General, Financial, Central, and so on.

You can modify or add entries in this file as needed. Following is an excerpt from the adjectives
key type file.

DIGITAL
DIRECTED
DIVERSIFIED
EDUCATIONAL
ELECTROCHEMICAL
ENGINEERED
EVOLUTIONARY
EXTENDED
FACTUAL

FEDERAL

Business Alias Key Type File

The alias key type file (bizAliasTypeKeys.dat) lists business name acronyms and
abbreviations along with their standardized names so the standardization engine can recognize
and process these values correctly. You can add entries to the alias key type file using the
following syntax.

alias standardized-name

The following table describes the columns in the alias key type file.

TABLE10 Alias Key Type File

Column Description
alias An abbreviation or acronym commonly used in place of a specific business name.
standardized-name The normalized version of the alias name.

Following is an excerpt from the alias key type file.

BBH BARTLE BOGLE HEGARTY

BBH BROWN BROTHERS HARRIMAN

IBM INTERNATIONAL BUSINESS MACHINE
IDS INCOMES DATA SERVICES

Master Index Standardization Engine Reference 63

Business Name Standardization Files

64

IDS INSURANCE DATA SERVICES

IDS THE INTEGRATED DECISION SUPPORT GROUP
IDS THE INTERNET DATABASE SERVICE
CAL-TECH CALIFORNIA INSTITUTE OF TECHNOLOGY

Business Association Key Type File

The association key type file (bizAssociationTypeKeys.dat) lists business association types
along with their standardized names so the standardization engine can recognize and process
these values correctly. You can add entries to the association key type file using the following
syntax.

association-type standardized-type

The following table describes the columns in the association key type file.

TABLE11 Association Key Type Table

Column Description
association-type A common association type for businesses, such as Partners, Group, and so on.
standardized-type The standardized version of the association type. If this column contains a name

instead of a zero, that name must also be listed in a different entry as an
association type with a standardized form of “0”.

Following is an excerpt from the bizAssociationTypeKeys.dat file.

ASSOCIATES 0
BANCORP 0
BANCORPORATION BANCORP
COMPANIES 0

GP GROUP
GROUP 0
PARTNERS 0

Business General Terms Reference File

The general terms reference file (bizBusinessGeneralTerms.dat) lists terms commonly used
in business names. This file is used to identify terms that indicate a business, such as bank,
supply, factory, and so on, so the Master Index Standardization Engine can recognize and
process the business name.

This file contains one column that lists common terms in the business names you process. You
can add entries as needed. Below is an excerpt from the general terms reference file.

Master Index Standardization Engine Reference - December 2009

Business Name Standardization Files

BUILDING
CITY
CONSUMER
EAST

EYE
FACTORY
LATIN
NORTH
SOUTH

Business City or State Key Type File

The city or state key type file (bizCityorStateTypeKeys.dat) lists various cities and states that
might be used in business names. It also classifies each entry as a city (CT) or state (ST) and
indicates the country in which the city or state is located. This enables the standardization
engine to recognize and process these values correctly. You can add entries to the city or state

key type file using the following syntax.

city-or-state type country

The following table describes the columns in the file.

TABLE12 City or State Key Type File

Column

Description

city-or-state

The name of a city or state used in business names.

type An indicator of whether the value is a city or state. “CT” indicates city and “ST”
indicates state.
country The country code of the country in which the city or state is located.

Following is an excerpt from the city or state key type file.

ADELAIDE
ALABAMA
ALASKA
ALGIERS
AMSTERDAM
ARIZONA
ARKANSAS
ASUNCION
ATHENS

Master Index Standardization Engine Reference

cT
ST
ST
cT
CcT
ST
ST
cT
cT

AU
us
us
Dz
NL
us
us
PY
GR

65

Business Name Standardization Files

66

Business Former Name Reference File

The business former name reference file (bizCompanyFormerNames.dat) provides a list of
common company names along with names by which the companies were formerly known so
the standardization engine can recognize a business when processing a record containing a
previous business name. You can add entries to the business former name table using the
following syntax.

former-name current-name

The following table describes each column in the business former name reference file.

TABLE 13 Business Former Name Reference File

Column Description
former-name One of the company’s previous names.
current-name The company’s current name.

Below is an excerpt from the business former name reference file.

HELLENIC BOTTLING COCA-COLA HBC
INTERNATIONAL PRODUCTS THE TERLATO WINE

ORGANIC FOOD PRODUCTS SPECTRUM ORGANIC PRODUCTS
SUTTER HOME WINERY TRINCHERO FAMILY ESTATES

Merged Business Name Category File

The merged business name category file (bizCompanyMergerNames.dat) provides a list of
companies whose name changed because of a merger along with the name of the company after
the merge. It also classifies the business names into industry sectors and sub-sectors. This
enables the standardization engine to recognize the current company name and determine the
sector of the business. You can add entries to the business merger name file using the following
syntax.

former-name/merged-name sector-code

The following table describes each column in the merged business name category file.

TABLE14 Merged Business Name Category File

Column Description

former-name The name of the company whose name was not kept after the merger.

Master Index Standardization Engine Reference - December 2009

Business Name Standardization Files

TABLE 14 Merged Business Name Category File (Continued)

Column Description

merged-name The name of the company whose name was kept after the merger.

sector-code The industry sector code of the business. Sector codes are listed in the
bizIndustryCategoriesCode.dat file.

Below is an excerpt from the merged business name category file.

DUKE/FLUOR DANIEL 20005
FAULTLESS STARCH/BON AMI 09004
FIND/SVP 10013
FIRST WAVE/NEWPARK SHIPBUILDING 27005
GUNDLE/SLT 19020
HMG/COURTLAND 23004
J BROWN/LMC 10014
KORN/FERRY 10020
LINSCO/PRIVATE LEDGER 14005

Primary Business Name Reference File

The primary business name reference file (bizCompanyPrimaryNames.dat) provides a list of
companies by their primary name. It also classifies the business names into industry sectors and
sub-sectors. This enables the standardization engine to determine the correct value of the sector
field when parsing the business name. You can add entries to the primary business name file
using the following syntax.

primary-name sector-code

The following table describes the columns in the primary business name reference file.

TABLE 15 Primary Business Name Reference File

Column Description

primary-name The primary name of the company.

sector-code The industry sector code of the business. Sector codes are listed in the
bizIndustryCategoriesCode.dat file.

Below is an excerpt from the primary business name reference file.

BROTHER INTERNATIONAL 12006
BRYSTOL-MYERS SQUIBB 11005
BURLINGTON COAT FACTORY 24003

Master Index Standardization Engine Reference 67

Business Name Standardization Files

68

BURLINGTON NORTHERN SANTA FE 27005
BV SOLUTIONS 06012
CABLEVISION 26001
CABOT 04006
CADENCE 06010
CAMPBELL 22006
CAPITAL BLUE CROSS 17001

Business Connector Tokens Reference File

The connector tokens reference file (bizConnectorTokens.dat) defines common values
(typically conjunctions) that connect words in business names. For example, in the business
name “Nursery of Venice”, “of” is a connector token. This helps the standardization engine
recognize and process the full name of a business by indicating that the token connects two
parts of the full name.

This file contains one column that lists the connector tokens in the business names you process.
You can add entries as needed. Below is an excerpt from the connector tokens reference file.

AN
DE
DES
DOS
LA
LAS
LE
OF
THE

Business Country Key Type File

The country key type file (bizCountryTypeKeys.dat) lists countries and continents, along with
their abbreviations and assigned nationalities. For continents, the abbreviation is “CON” to
separate them from countries. This enables the standardization engine to recognize and process
these values as countries or continents. You can add entries to the country key type file using the
following syntax.

country abbreviation nationality

The following table describes the columns in the country key type file.

Master Index Standardization Engine Reference - December 2009

Business Name Standardization Files

TABLE16 Country Key Type File

Column Description

country The name of a country or continent.

abbreviation The common abbreviation for the specified country. The abbreviation for a
continent is always “CON”.

nationality The nationality assigned to a person or business originating in the specified

country.

Following is an excerpt from the country key type file.

AMERICA
AFRICA
EUROPE

ASIA
AFGHANISTAN
ALBANIA
ALGERIA

CON AMERICAN
CON AFRICAN
CON EUROPEAN
CON ASIAN

AF AFGHAN
AL ALBANIAN
DZ ALGERIAN

Business Industry Sector Reference File

The industry sector reference file (bizIndustryCategoryCode.dat) lists and groups various
industry sectors and sub-sectors, and includes an identification code for each type so the
standardization engine can identify and process the industry sectors for different businesses.
You can add entries to the industry sector reference file using the following syntax.

sector-code industry-sector

The following table describes each column in the industry sector reference file.

TABLE 17 Industry Sector Reference File

Column

Description

sector-code

The identification code of the specified sector. The first two numbers of each code
identify the general industry sector; the last three number identify a sub-sector.

industry-sector

A description of the industry category. This is written in the format “sector -
sub-sector”, where sector is a general category of industry types, and
sub-sector is a specific industry within that category.

Following is an excerpt from the industry sector reference file.

Master Index Standardization Engine Reference 69

Business Name Standardization Files

70

02006
02007
02008
03001
04001
04002
04003
04004
04005
04006
05001
05002
05003

Automotive & Transport Equipment - Recreational Vehicles
Automotive & Transport Equipment - Shipbuilding & Related Services
Automotive & Transport Equipment - Trucks, Buses & Other Vehicles

Banking -
Chemicals
Chemicals
Chemicals
Chemicals
Chemicals
Chemicals

Banking

- Agricultural Chemicals

- Basic & Intermediate Chemicals & Petrochemicals
- Diversified Chemicals

- Paints, Coatings & Other Finishing Products

- Plastics & Fibers

- Specialty Chemicals

Computer Hardware - Computer Peripherals
Computer Hardware - Data Storage Devices
Computer Hardware - Diversified Computer Products

Business Industry Key Type File

The industry key type file (bizIndustryTypeKeys.dat) is used to standardize the value of the
Industry field into common industries to which businesses belong so the standardization
engine can recognize and process the industry types for different businesses. You can add
entries to the industry key type file using the following syntax.

industry-type standardized-form sectors

The following table describes each column in the industry key type file.

TABLE 18 Industry Key Type File

Column

Description

industry-type

The original value of the industry type in the input record.

standardized-form

The normalized version of the industry type. If this column contains a name
instead of a zero, that name must also be listed in a different entry as an industry
type with a standardized form of “0”.

sectors

The industry categories of the specified industry type. These values correspond to
the sector codes listed in the industry sector file
(bizIndustryCategoryCode.dat). You can list as many categories as apply for
each type, but they must be entered with a space between each and no line breaks,
and they must correspond to an entry in the industry sector file.

Below is an excerpt from the industry key type file.

TECH
TECHNOLOGIES
TECHNOLOGY
TECHSYSTEMS

TECHNOLOGY 05001-05007
TECHNOLOGY 05001-05007
0 05001-05007

0

05001-05007

Master Index Standardization Engine Reference - December 2009

Business Name Standardization Files

TELE PHONE TELEPHONE 16005

TELE PHONES TELEPHONES 16005

TELEVISION TV 11013 21014

TELECOM 0 16005 26006 26009 26010
TELECOMM TELECOMMUNICATION 16005 26006 26008
TELECOMMUNICATION 0 16005 26006 26008

Business Organization Key Type File

The organization key type file (bizOrganizationTypeKeys.dat) is used to standardize the
value of the Organization field into common organizations to which businesses belong. This
helps the standardization engine recognize and process the organization types for different
businesses. You can add entries to the organization key type file using the following syntax.

original-type standardized-form

The following table describes each column in the organization key type file.

TABLE19 Organization Key Type File

Column Description
original-type The original value of the organization field in an input record.
standardized-form The normalized version of an organization type. A zero (0) in this field indicates

that the value in the first column is already in its standardized form. If this column
contains a name instead of a zero, that name must also be listed in a different
entry as an original type with a standardized form of “0”.

Below is an excerpt from the organization key type file.

INC INCORPORATED
INCORPORATED

KG

KK

LIMITED

LIMITED PARTNERSHIP
LLC

LLP

LP LIMITED PARTNERSHIP
LTD LIMITED

(SIS SIS IS ISR

Master Index Standardization Engine Reference 71

Business Name Standardization Files

72

Business Patterns File

The business patterns file (bizpatterns.dat) defines multiple formats expected from the
business name input fields along with the standardized output of each format. The patterns and
output appear in two-row pairs in this file, as shown below.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

The first line describes the input pattern and the second describes the output pattern using
tokens to denote each component. The supported tokens are described in “Business Name
Tokens” on page 73. A number at the beginning of the first line indicates the number of
components in the given business name format. You can moditfy this file using the following
syntax.

length input-pattern
output-pattern

The following table lists and describes the components in the above syntax.

TABLE20 Business Patterns File Components

Component Description
length The number of business name components in the input field.
input-pattern Tokens that represent a possible input pattern from the unparsed business name

fields. Each token represents one component. For more information about
address tokens, see “Business Name Tokens” on page 73.

output-pattern Tokens that represent the output pattern for the specified input pattern. Each
token represents one component. For more information about business name
tokens, see “Business Name Tokens” on page 73.

Below is an excerpt from the business patterns file.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

4 NFG AJT SEP-GLC ORT
PNT PNT DEL ORT

4 NF AJT SEP-GLC ORT
PNT PNT DEL ORT

4 CST IDT NF ORT
PNT PNT PNT ORT

Master Index Standardization Engine Reference - December 2009

Business Name Standardization Files

4 PNT AJT SEP-GLC ORT
PNT PNT DEL ORT

Business Name Tokens

The business patterns file uses tokens to denote different components in a business name, such
as the primary name, alias type key, URL, and so on. The file uses one set of tokens for input
fields and another set for output fields. The tokens indicate the type key files to use to determine
the appropriate values for each output field. You can use only the predefined tokens to
represent business name components; the standardization engine does not recognize custom
tokens.

Table 21 lists and describes each input token; Table 22 lists and describes each output token.

TABLE21 Business Name Input Pattern Tokens

Pattern Identifier Description

CTT A connector token

PNT A primary name of a business

PN-PN A hyphenated primary name of a business

BCT A common business term

URL The URL of the business’ web site

ALT A business alias type key (usually an acronym)

CNT A country name

NAT A nationality

CST A city or state type key

IDT An industry type key

IDT-AJT Both an industry and an adjective type key

AJT An adjective type key

AST An association type key

ORT An organization type key

SEP A separator key

NFG Generic term, not recognized as a specific business name component, with an
internal hyphen

NF Generic term, not recognized as a specific business name component

Master Index Standardization Engine Reference 73

Business Name Standardization and Sun Master Index

TABLE21 Business Name Input Pattern Tokens (Continued)

Pattern Identifier Description

NEC A single character, not recognized as a specific business name component

SEP-GLC A joining comma (a glue type separator)

SEP-GLD A joining hyphen (a glue type separator)

AND The text “and”

GLU A glue type key, such as a forward slash, connecting two parts of a business name
component

PN-NF A business primary name followed by a hyphen and a generic term that is not
recognized as a specific business name component

NE-PN A generic term that is not recognized as a specific business name component,
followed by a hyphen and a recognized business primary name

NF-NF Two generic terms, not recognized as specific business name components and
separated by a hyphen

Table 22 lists and describes each output token.

TABLE22 Business Name Output Pattern Tokens

Pattern Identifier Description

PNT The primary name of the business

URL The URL of the business

ALT The alias type key of the business (usually an acronym)

IDT The industry type key of the business

AST The association type key of the business

ORT The organization type key of the business

NF A generic term not recognized as a business name component

Business Name Standardization and Sun Master Index

Master index applications rely on the Master Index Standardization Engine to process business
data. To ensure correct processing of business information, you need to customize the
Matching Service for the master index application according to the rules defines for the
standardization engine. This includes modifying mefa.xml to define parsing and phonetic
encoding of the appropriate fields. You can modify mefa.xml using the Master Index
Configuration Editor.

74 Master Index Standardization Engine Reference - December 2009

Business Name Standardization and Sun Master Index

Standardization is defined in the StandardizationConfig section of mefa.xml, which is described
in detail in “Match Field Configuration” in Sun Master Index Configuration Reference . To
configure the required fields for parsing and normalization, modify the standardization
structure in mefa.xml. To configure phonetic encoding, modify the phonetic encoding
structure.

Generally, the BusinessName data type processes data that requires parsing prior to processing.
You should not need to configure fields to normalize for business names. The following topics
provide information about the fields used in processing business names and how to configure
standardization for a master index application. The information provided in these topics is
based on the default configuration.

= “Business Name Processing Fields” on page 75
= “Configuring a Standardization Structure for Business Names” on page 76
= “Configuring Phonetic Encoding for Business Names” on page 78

Business Name Processing Fields

When standardizing free-form business names, not all fields in a record need to be processed by
the Master Index Standardization Engine. The standardization engine only needs to process
fields that must be parsed, normalized, or phonetically converted. For a master index
application, these fields are defined in mefa.xml, and processing logic for each field is defined in
the Standardization Engine node configuration files.

Business Name Standardized Fields

The Master Index Standardization Engine expects that business name data will be provided in a
free-form text field containing several components that must be parsed. By default, the match
engine is configured to parse these components, and to normalize and phonetically encode the
business name. You can specify additional fields for phonetic encoding.

If you specify the BusinessName match type for any field in the wizard, a standardization
structure for that field is defined in mefa.xml. The fields listed under“Business Name Object
Structure” on page 75 are automatically defined as the target fields. If you do not specify
business name fields for matching in the wizard but want to standardize the fields, you can
create a standardization structure in mefa.xml

Business Name Object Structure

For the default configuration of the BusinessName data type, the name field specified for
standardization is parsed into several additional fields, one of which is also normalized. If you
specify the BusinessName match type in the wizard, the following fields are automatically added
to the object structure and database creation script.

= field name_Name

Master Index Standardization Engine Reference 75

http://docs.sun.com/doc/821-0861/cnfg_index-mefa_c?a=view

Business Name Standardization and Sun Master Index

76

= field_name_NamePhon
= field_name_OrgType

= field name_AssocType
= field_name_Industry

= field_name_Sector

= field_name_Alias

= field_name_Url

where field_name is the name of the field for which you specified business name matching.
For example, if you specify the BusinessName match type for the Company field, the fields
automatically added to the structure include Company_Name, Company_NamePhon,
Company_OrgType, and so on.

You can add these fields manually if you do not specify a match type in the wizard.

Configuring a Standardization Structure for Business
Names

For free-form business name fields, the source fields you define for parsing should include the
standardization components that are predefined for parsing and normalization. For example,
fields containing business information can include any of the field components listed in
“Business Name Standardization Components” on page 61. The target fields can include any of
these parsed fields. Follow the instructions under “Defining Master Index Standardization
Rules” in Sun Master Index Configuration Guide to define fields for standardization. For the
standardization-type element, enter BusinessName. For a list of field IDs to use in the
standardized-object-field-id element, see “Business Name Standardization Components” on
page61.

Note - In the default configuration, the rules defined for the address data type assume that all
input fields must be parsed as well as normalized. Thus, there is no need to configure fields only
for normalization.

A sample standardization structure for business names is shown below. This structure parses a
business name field into these standard business name fields: name, organization type,
association type, sector, industry, and URL. Note that there is no domain selector specified,
which would normally default to the United States domain; however, since business names are
not variant dependent, it is irrelevant here.

<free-form-texts-to-standardize>
<group standardization-type="BusinessName">
<unstandardized-source-fields>

Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-stand_p?a=view

Business Name Standardization and Sun Master Index

<unstandardized-source-field-name>Company.Name
</unstandardized-source-field-name>
</unstandardized-source-fields>
<standardization-targets>
<target-mapping>
<standardized-object-field-id>PrimaryName
</standardized-object-field-id>
<standardized-target-field-name>Company.Name Name
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>0rgTypekeyword
</standardized-object-field-id>
<standardized-target-field-name>Company.Name OrgType
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>AssocTypeKeyword
</standardized-object-field-id>
<standardized-target-field-name>Company.Name AssocType
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>IndustrySectorList
</standardized-object-field-id>
<standardized-target-field-name>Company.Name Sector
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>IndustryTypeKeyword
</standardized-object-field-id>
<standardized-target-field-name>Company.Name Industry
</standardized-target-field-name>
</target-mapping>
<target-mapping>
<standardized-object-field-id>Url
</standardized-object-field-id>
<standardized-target-field-name>Company.Name URL
</standardized-target-field-name>
</target-mapping>
</standardization-targets>
</group>
</free-form-texts-to-standardize>

Master Index Standardization Engine Reference

77

Custom FSM-Based Data Types and Variants

Configuring Phonetic Encoding for Business Names

When you match or standardize on business name fields, the business name field should be
specified for phonetic conversion (by default, the wizard defines this for you). Follow the
instructions under “Defining Phonetic Encoding for the Master Index” in Sun Master Index
Configuration Guide to define fields for phonetic encoding.

A sample of the phoneticize-fields element is shown below. This sample only converts the
business name. You can define additional fields for phonetic encoding.

<phoneticize-fields>
<phoneticize-field>
<unphoneticized-source-field-name>Company.Name Name
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Company.Name NamePhon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>
</phoneticize-field>
</phoneticize-fields>

Custom FSM-Based Data Types and Variants

The finite state machine framework of the Master Index Standardization Engine is very flexible,
allowing you to define new data types and variants so you can standardize any type of data. This
process requires no Java coding; all processing rules and logic are defined in XML files using
predefined rules. The new data types and variants can be imported into NetBeans for use in
master index projects. The following topics provide information and instructions for creating
custom data types and variants.

= “About Custom FSM-Based Data Types and Variants” on page 78
= “About the Standardization Packages” on page 79

= “Creating Custom FSM-Based Data Types” on page 79

= “Creating Custom FSM-Based Variants” on page 83

About Custom FSM-Based Data Types and Variants

78

Creating a custom FSM data type or variant for the Master Index Standardization Engine
requires defining the processing logic for the data type in an XML file. No Java coding is
required in order to incorporate the comparators into a master index application. The
processing logic is based in the files described in “Finite State Machine Framework
Configuration” on page 15.

Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-phon_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-phon_p?a=view

Creating Custom FSM-Based Data Types

You define the following information for each data type or variant you create.

= The state model that defines each state, its input and output symbols, and transitions
= Any preprocessing, matching, or postprocessing logic for input and output symbols
= Any cleansing rules to be applied to the data prior to parsing

= Optionally, lists of non-standard values and the standard values to which they should be
converted (such as a nickname table)

= Optionally, lists of possible values for a field component that helps the standardization
engine identify and parse the component

After you create the package, you can import the custom data type or variant into NetBeans
using the easy import function of Sun Master Index. You can then define standardization and
normalization structures for the master index using the new data type or variant.

About the Standardization Packages

After you create a custom data type or variant you need to package the files in a ZIP file so they
are available for import into NetBeans. Create a single package for each data type or variant.

For a custom data type, the ZIP file includes the following:

= A service type definition file

= One or more service instance definition files (depending on how many variants you include)
= One or more process definition file (standardizer.xml)

= Normalization files (optional)

= Lexicon files (optional)

For a custom variant, the ZIP file includes the following:

One service instance definition file

One process definition file (standardizer.xml)
Normalization files (optional)

Lexicon files (optional)

Creating Custom FSM-Based Data Types

You can define new data types and their corresponding variants using the flexible FSM
framework of the standardization engine. Data types are easily incorporated into a master index
project and can be made globally available to all projects. Perform the following steps to define a
custom data type for the standardization engine.

= “Creating the Working Directory” on page 80

Master Index Standardization Engine Reference 79

Creating Custom FSM-Based Data Types

80

= “Defining the Service Type” on page 81

= “Defining the Variants” on page 81

= “Packaging and Importing the Data Type” on page 82
= “Service Type Definition File” on page 83

Creating the Working Directory

The working directory for custom data types requires a specific structure. At a minimum, the
working directory will look similar to the following:

/WorkingDir

serviceType.xml

/1ib

/instance

/Generic
serviceInstance.xml
/resource
standardizer.xml

If the date type has several variants, the directory structure will not include the Generic folder,
but will contain several folders named by the variants name in its place. Each variant folder
must be of the same structure as the Generic folder shown above. The resource directory
might also contain several normalization and lexicon files.

To Create the Working Directory
Create aworking directory and add a 1ib and an instance directory at the top level.

Copy thefiles standardizer-api.jarand standardizer-impl.jar from
/NetBeans_Home/soa2/modules/ext/mdm/standardizer/1ib to the lib directory.

Do one of the following:

= |fthe data type only has one variant, create the following directory structure in the
instance directory:

/Generic/resource/

= |fthe data type has several variants, create the following directory structure in the instance
directory for each variant:

/ VariantName/resource/

Continue to “Defining the Service Type”on page 81.

Master Index Standardization Engine Reference - December 2009

Creating Custom FSM-Based Data Types

Defining the Service Type

The serviceType.xml file defines information about the data type, and is a required file for
each data type.

To Define the Service Type

Create afilenamed serviceType.xmlin your working directory.

Tip - You can copy the service type file from an existing data type and modify it for your use.

Enter text similar to the following, where description is the name of the data type and the value
elements list the tokens, or standardization components, of the data type.

<serviceType configurationResource="standardizer.xml">
<description>My Data Type Standardization</description>
<parameter name="fields">
<list>
<value>Data Fieldl</value>
<value>Data Field2</value>

</list>
</parameter>
</serviceType>

Note - For more information about the elements in this file, see “Service Type Definition File”
on page 83.

Save and close thefile.

Continue to “Defining the Variants” on page 81.

Defining the Variants

For each data type you create, you need to create one or more variants that define the logic for
processing a specific type of data.

To Define the Variants

Perform the following steps for each variant that will be used for the data type you are creating.

Define the service instance, as described in “Defining the Service Instance” on page 84.

Create the serviceInstance.xml file in / WorkingDir/instance/ VariantName.

Master Index Standardization Engine Reference 81

Creating Custom FSM-Based Data Types

2 Define the state model and processing logic, as described in “Defining the State Model and
Processing Rules” on page 85.

Create the standardizer.xml file in / WorkingDir/instance/ VariantName/ resource.

3 Ifneeded, create normalization and lexicon files, as described in “Creating Normalization and
Lexicon Files” on page 87.

Create the files in / WorkingDir/instance/ VariantName/ resource.

4 Continue to “Packaging and Importing the Data Type” on page 82.

Packaging and Importing the Data Type

Once you have created all the files for the data type, you need to package them into a ZIP file to
be imported into a master index application.
V¥ ToPackage and Import the Data Type
1 Inthe working directory, select the folders and files at the top level and add them to a ZIP file.

2 Name the ZIP file the same name as the data type.
The ZIP file structure should like similar to the following:

= WinZip - Inventory.zip
Fie Actions Options Help
o, e N ey e T
U P 8¢
Py Open Favarites Add Extract g CheckDut
Farme Cire Path
BlservceType.m 88
_%u"nm:mfa'cexml £33 irstance \Generic
= standardizer, xmi 4,390 instance){Genericirasoures’,
(#l) standardeer -ap. jar 5,484 b\
|| standardaer impl.jar 59,330 b\

FIGURE1 Custom Data Type Zip File

3 Importthefile into a master index application as described in “Importing Standardization Data
Types and Variants” in Sun Master Index Configuration Guide.

82 Master Index Standardization Engine Reference - December 2009

http://docs.sun.com/doc/821-0865/cnfg_index-stnd-plug_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-stnd-plug_p?a=view

Creating Custom FSM-Based Variants

Service Type Definition File

Each data type is configured by a service type definition file, serviceType.xml. Service type files
define the fields to be standardized for a data type. The following table lists and describes the
elements in the service type file.

Element

Attribute

Description

serviceType

A description and any parameters for the data type.

configurationResource

The name of the standardization process file that defines
the states and processing for the data type.

description

A brief description of the data type, such as “Address
Standardization”.

parameter

A parameter for the configuration resource. By default, the
name of the parameter is “fields”, and it is populated with a
list of standardized field component names.

name

The name of the parameter.

value

One or more values for the parameter.

Creating Custom FSM-Based Variants

The flexible framework of the Master Index Standardization Engine allows you to define new
FSM-based variants on existing FSM-based data types so you can standardize different
categories of the same type of data. For example, you might need to standardize names from
several different countries. Variants are easily incorporated into a master index project and can
be made globally available to all projects. Perform the following steps to create a custom variant.

“Creating the Working Directory” on page 83

“Defining the Service Instance” on page 84

“Defining the State Model and Processing Rules” on page 85
“Creating Normalization and Lexicon Files” on page 87
“Packaging and Importing the Variant” on page 88

“Service Instance Definition File” on page 89

Creating the Working Directory

The working directory for custom variants requires a specific structure. At a minimum, the
working directory will look similar to the following:

/WorkingDir

serviceInstance.xml

Master Index Standardization Engine Reference

83

Creating Custom FSM-Based Variants

/resource
standardizer.xml

The resource directory might also contain several normalization and lexicon files.
¥ To Create the Working Directory
1 Create aworking directory for the new variant.
2 Inthe new working directory, create a resource directory.

3 Continue to “Defining the Service Instance” on page 84.

Defining the Service Instance

The serviceInstance.xml file for each variant defines the name of the variant, the data type it
modifies, and additional Java class information.

V¥ To Define the Service Instance

1 Createafilenamed serviceInstance.xml at the top level of your working directory.

Tip - You can copy a service instance file from an existing variant in the data type to which you
will add the new variant, and then modify it for the new variant.

2 Define values for the elements and attributes described in “Service Instance Definition File” on
page 89.

This example defines a new Spanish variant to the PersonName data type.

<servicelnstance type="PersonName">
<description>Person Name Standardization: Spain</description>
<parameter name="dataType" value="PersonName" />
<parameter name="variantType" value="SP" />
<componentManagerFactory
class="com.sun.inti.components.component.BeanComponentManagerFactory">
<property name="stylesheetURL"
value="classpath:/com/sun/mdm/standardizer/impl/standardizer.xsl"/>
<property name="urlSource" >
<bean class="com.sun.inti.components.url.ResourceURLSource">
<property name="resourceName" value="standardizer.xml />
</bean>
</property>
</componentManagerFactory>
</servicelnstance>

84 Master Index Standardization Engine Reference - December 2009

Creating Custom FSM-Based Variants

Note - The value you enter for the variantType parameter must match the name you want the
variant to display in the Standardization folder of the master index project.

Save and close thefile.

Continue to “Defining the State Model and Processing Rules” on page 85.

Defining the State Model and Processing Rules

The state model defines how the data is read, tokenized, parsed, and modified during
standardization. The state model and processing rules are all defined in the standardizer.xml
file.

Before you begin this step, determine the different forms in which the data to be standardized
can be presented and how it should be standardized for each form. For example, name data
might be in the form “First Name, Last Name, Middle Initial” or in the form “First Name,
Middle Name, Last Name”. You need to account for each possibility. Determine each state in
the process, and the input and output symbols used by each state. It might be useful to create a
finite state machine model, as shown below. The model shows each state, the transitions to and
from each state, and the output symbol for each state.

Master Index Standardization Engine Reference 85

Creating Custom FSM-Based Variants

86

am Phora Bt

o
/ T'_
o A

inbarn st naPiEre
ionarpCa e

s
iy ,
ry M,
i M,
/’ awaCods farealads
sanjuelion 1 N,
Aecenpanchon rtarmaticrad Homber ,
s |r kY
\ \
/z N

-~

wabjarslEn
Mty o iy

- - TP 5
- snabade amicedth,
e Iy L I
S gt gt |
g SR et man D
/ d
r, ___.--"' e e
. Py T .,
. £ g G " [e—
= aedarain Sedarian
— o
] e FOF Bar
-\--‘—__ ——
digHtnp T _'_'_,_.--'-'"
benabanba gy g g
* :Lfé\'.ﬁ—

FIGURE2 Sample Finite State Machine Model

For more information about the FSM model, see “FSM Framework Configuration Overview”
on page 16.

To Define the State Model and Processing Rules

In/WorkingDirectory/resource, create a new XML file named standardizer.xml.

Tip - You can copy the file from an existing variant in the data type to which you are adding the
custom variant. Then you can modify the file for the new variant.

If the data you are processing does not need to be parsed, but only needs to be normalized,
define normalization rules in the normalizer section of the file.

For more information, see “Data Normalization Definitions” on page 23 and “Standardization
Processing Rules Reference” on page 24.

If the data you are processing needs to be parsed and normalized, define the state model in the
upper portion of the file.

For information about the state model and the elements that define it, see “Standardization
State Definitions” on page 17.

Master Index Standardization Engine Reference - December 2009

Creating Custom FSM-Based Variants

Note - The next several steps use the processing rules described in “Standardization Processing
Rules Reference” on page 24. Some of these rules might require that you create normalization
and lexicon files.

Inthe inputSymbols section of the file, define each input symbol along with any processing
rules.

For more information, see “Input Symbol Definitions” on page 19.

In the outputSymbols section of the file, define each output symbol along with any processing
rules.

For more information, see “Output Symbol Definitions” on page 21.

In the cleanser section of the file, define any cleansing rules that should be performed against
the data prior to tokenization.

For more information, see “Data Cleansing Definitions” on page 22.

If you created any rules that reference normalization or lexicon files, continue to “Creating
Normalization and Lexicon Files” on page 87.

Creating Normalization and Lexicon Files

Lexicon files list the possible values for a field so the standardization engine can quickly and
accurately recognize different field components. Normalization files list the nonstandard values
that might be found in a field along with the standard version so the standardization engine can
present a common form for the data. You need to create a file for each lexicon or normalization
file you referenced from standardizer.xml.

For more information about normalization and lexicon files, see “Lexicon Files” on page 29 and
“Normalization Files” on page 30.

To Create Normalization and Lexicon Files
For each normalization file you referenced in standardizer.xmt, do the following:
a. Createatextfilein /WorkingDirectory/resource.

b. Savethefile under the name you used to reference it from standardizer.xml.

Master Index Standardization Engine Reference 87

Creating Custom FSM-Based Variants

¢. Inthefile, enteralist of nonstandard values along with their standardized values,

separating the nonstandard value from the standard value with a pipe (|) as shown below.
COR|COURT

CRT | COURT

CR. | COURT

CT|COURT

CT. |COURT

DR|DRIVE

DR. | DRIVE

DRV |DRIVE

d. Whenyou are finished, save and close the file.
2 Foreach lexicon file you referenced in standardizer.xml, do the following:
a. Createatextfilein /WorkingDirectory/resource.

b. Save the file under the name you used to reference it from standardizer. xml.

¢. Inthefile, enteralist of all possible values for the field as shown below.

E
EAST
ET

N

NO
NORTH
NTH

SO
SOUTH

d. When you are finished, save and close the file.

3 Continue to “Packaging and Importing the Variant” on page 88.

Packaging and Importing the Variant

Once you have created all the files for the variant, you need to package them into a ZIP file to be
imported into a master index application.

88 Master Index Standardization Engine Reference - December 2009

Creating Custom FSM-Based Variants

3

To Package and Import the Variant
In the working directory, select the folder and file at the top level and add them to a ZIP file.

Name the ZIP file the same name as the variant. This is the value you entered for the variantType
parameter in “Defining the Service Instance” on page 84.

The ZIP file structure should be similar to the following. Note that this variant includes several
normalization and lexicon files. Your variant might not contain any.

2

CHRHRGFOEO

Tewi Open Favarites Extract Waw

Name 52 Path =
51‘ sarvicelnstance. xml B31

[£] generation, bt 30 respurcel
| generatiortiormalzation, bet 0 resource)
[Z] givenhamehiormalization, bt 34,898 resource)
-'_.| givenhlames. txt 115,519 rescurcel
=] alitation. bt 79 respurce)
[£] salutationNormalzation. ot 73 resource)
ﬂmr-:lrd-re-'.ml 15,881 resource)
(Z] surnamefiormalization, tit 25,721 resource)
d-:| surnames. txt 977,719 resource)
| tieMarmalization. tot 249 respurce)
[£] titles. et 177 resource

FIGURE3 Custom Variant Zip File

Import the file into a master index application as described in “Importing Standardization Data
Types and Variants” in Sun Master Index Configuration Guide.

Service Instance Definition File

Each data type variant is configured by a service definition file. Service type files define the fields
to be standardized for a data type, and service instance definition files define the variant and
Java factory class for the variant. Both files are in XML format.

Element Attribute Description

servicelnstance A container element for the description and any
parameters for the variant.

Master Index Standardization Engine Reference 89

http://docs.sun.com/doc/821-0865/cnfg_index-stnd-plug_p?a=view
http://docs.sun.com/doc/821-0865/cnfg_index-stnd-plug_p?a=view

Creating Custom FSM-Based Variants

Element

Attribute

Description

type

The name of the data type to which the variant
belongs.

description

A brief description of the variant, such as “Person
Names: Spain”.

parameter

One parameter for the variant. The default variants
contain two parameters, dataType and variantType.
The dataType parameter specifies the name of the
data type to which the variant belongs. The
variantType parameter specifies the name of the
variant. For a master index application, these are the
names of the nodes that appear under the
Standardization Engine node.

name

The name of the parameter.

value

The value of the parameter.

componentManagerFactory

The component manager factory class for the variant.

class

The name of the component manager factory class.
The default class is

com.sun.inti.components.component.BeanComponentManagerFacto

property

A property of the component manager factory class.
The default class has two properties. The
stylesheetURL property defines the location of the
stylesheet, standardizer.xml.

The urlSource property defines the process

definition file. Its value is a bean (by default,
com.sun.inti.components.url.ResourceURLSource),
which has a property called resourceName. The value
for this property is standardizer.xml.

name

The name of the property.

value

The value for the property.

90 Master Index Standardization Engine Reference - December 2009

	Master Index Standardization Engine Reference
	Master Index Standardization Engine Reference
	About the Master Index Standardization Engine
	Related Topics
	Master Index Standardization Engine Overview
	Standardization Concepts
	Data Parsing or Reformatting
	Data Normalization
	Phonetic Encoding

	How the Master Index Standardization Engine Works
	Master Index Standardization Engine Data Types and Variants
	Master Index Standardization Engine Standardization Components
	Finite State Machine Framework
	About the Finite State Machine Framework
	FSM-Based Configuration

	Rules-Based Framework
	About the Rules-Based Framework
	Rules-Based Configuration

	Sun Master Index Standardization and Matching Process
	Master Index Standardization Engine Internationalization
	Finite State Machine Framework Configuration
	FSM Framework Configuration Overview
	Process Definition File
	Standardization State Definitions
	Input Symbol Definitions
	Output Symbol Definitions
	Data Cleansing Definitions
	Data Normalization Definitions
	Standardization Processing Rules Reference
	dictionary
	fixedString
	lexicon
	normalizeSpace
	pattern
	replace
	replaceAll
	transliterate
	uppercase

	Lexicon Files
	Normalization Files
	FSM–Based Person Name Configuration
	Person Name Standardization Overview
	Person Name Standardization Components
	Person Name Standardization Files
	Person Name Lexicon Files
	Person Name Normalization Files
	Person Name Process Definition Files

	Person Name Standardization and Sun Master Index
	Person Name Processing Fields
	Person Name Standardized Fields
	Person Name Object Structure

	Configuring a Normalization Structure for Person Names
	Configuring a Standardization Structure for Person Names
	Configuring Phonetic Encoding for Person Names

	FSM–Based Telephone Number Configuration
	Telephone Number Standardization Overview
	Telephone Number Standardization Components
	Telephone Number Standardization Files
	Telephone Number Standardization and Sun Master Index
	Telephone Number Processing Fields
	Telephone Number Standardized Fields
	Telephone Number Object Structure

	Configuring a Standardization Structure for Telephone Numbers

	Rules–Based Address Data Configuration
	Address Data Standardization Overview
	Address Data Standardization Components
	Address Data Standardization Files
	Address Clues File
	Address Master Clues File
	Address Patterns File
	Address Pattern File Components
	Address Type Tokens
	Pattern Classes
	Pattern Modifiers
	Priority Indicators

	Address Standardization and Sun Master Index
	Address Data Processing Fields
	Address Standardized Fields
	Address Object Structure

	Configuring a Standardization Structure for Address Data
	Configuring Phonetic Encoding for Address Data

	Rules-Based Business Name Configuration
	Business Name Standardization Overview
	Business Name Standardization Components
	Business Name Standardization Files
	Business Name Adjectives Key Type File
	Business Alias Key Type File
	Business Association Key Type File
	Business General Terms Reference File
	Business City or State Key Type File
	Business Former Name Reference File
	Merged Business Name Category File
	Primary Business Name Reference File
	Business Connector Tokens Reference File
	Business Country Key Type File
	Business Industry Sector Reference File
	Business Industry Key Type File
	Business Organization Key Type File
	Business Patterns File
	Business Name Tokens

	Business Name Standardization and Sun Master Index
	Business Name Processing Fields
	Business Name Standardized Fields
	Business Name Object Structure

	Configuring a Standardization Structure for Business Names
	Configuring Phonetic Encoding for Business Names

	Custom FSM–Based Data Types and Variants
	About Custom FSM–Based Data Types and Variants
	About the Standardization Packages
	Creating Custom FSM-Based Data Types
	Creating the Working Directory
	To Create the Working Directory

	Defining the Service Type
	To Define the Service Type

	Defining the Variants
	To Define the Variants

	Packaging and Importing the Data Type
	To Package and Import the Data Type

	Service Type Definition File

	Creating Custom FSM-Based Variants
	Creating the Working Directory
	To Create the Working Directory

	Defining the Service Instance
	To Define the Service Instance

	Defining the State Model and Processing Rules
	To Define the State Model and Processing Rules

	Creating Normalization and Lexicon Files
	To Create Normalization and Lexicon Files

	Packaging and Importing the Variant
	To Package and Import the Variant

	Service Instance Definition File

