
Administrator’s Guide
Sun™ ONE Message Queue

Version 3.0.1

817-0354-10
October, 2002



Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without 
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and 
one or more additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this product may be 
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. 

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. 

Sun, Sun Microsystems, the Sun logo, Java, Solaris, iPlanet, JDK, Java Naming and Directory Interface, and the Java Coffee Cup logo 
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. 

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. 
and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. 

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. 

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions. 

____________________________________________________________________________________________________________________

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés. 

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et 
sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à 
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis 
et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la 
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque 
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena. 

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et 
licencié par des fournisseurs de Sun. 

Sun, Sun Microsystems, le logo Sun, Java, Solaris, iPlanet, JDK, Java Naming and Directory Interface, et le logo Java Coffee Cup sont 
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. 

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC 
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture 
développée par Sun Microsystems, Inc. 

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd. 



3

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Audience for This Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Organization of This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Directory Variable Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Other Documentation Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
The MQ Documentation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
JavaDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Example Client Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
The Java Message Service (JMS) Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Chapter 1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
What Is Sun ONE Message Queue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Product Editions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Platform Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Enterprise Edition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Enterprise Messaging Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Requirements of Enterprise Messaging Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
Centralized vs. Peer to Peer Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Messaging System Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Message Service Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Message Delivery Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31



4 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The JMS Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
JMS Message Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
JMS Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Administered Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

JMS/J2EE Programming: Message-driven Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Message-driven Beans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Application Server Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

JMS Messaging Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
JMS Provider Independence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Programming Domains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Client Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Reliable Messaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

Acknowledgements/Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Persistent Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Performance Trade-offs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Message Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Message Order and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Chapter 2  The MQ Messaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
MQ Message Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Connection Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
Message Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Persistence Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Security Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Logger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

Physical Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Queue Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Topic Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66
Auto-Created (vs. Admin-Created) Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
Temporary Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

Multi-Broker Clusters (Enterprise Edition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
Multi-Broker Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Using Clusters in Development Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Cluster Configuration Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

MQ Client Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
Message Production  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
Message Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74

MQ Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Connection Factory Administered Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Destination Administered Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Overriding Attribute Values at Client Startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78



5

Chapter 3  MQ Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
MQ Administration Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Development Environments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Production Environments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

Setup Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82
Maintenance Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

MQ Administration Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
The Administration Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
Summary of Command Line Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Command Line Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
Common Command Line Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Chapter 4  Administration Console Tutorial  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Getting Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Starting the Administration Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
Working With Brokers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Starting a Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Adding a Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Changing the Administrator Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Connecting to the Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
Viewing Connection Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98
Adding Physical Destinations to a Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Working With Physical Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Getting Information About Topic Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Working with Object Stores  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Adding an Object Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Checking Object Store Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Connecting to an Object Store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Adding a Connection Factory Administered Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Adding a Destination Administered Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
Administered Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

Updating Console Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
Running the Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

Chapter 5  Starting and Configuring a Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Configuration Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Merging Property Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114
Property Naming Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
Editing the Instance Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

Starting a Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120



6 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Working With Clusters (Enterprise Edition)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Cluster Configuration Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Connecting Brokers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

Method 1: No Cluster Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Method 2: Using a Cluster Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

Adding Brokers to Clusters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Restarting a Broker in a Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Removing a Broker from a Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Backing up the Master Broker’s Configuration Change Record  . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Restoring the Master Broker’s Configuration Change Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
Default Logging Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
Log Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Changing the Logger Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

Changing the Output Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
Changing Rollover Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134
Logging Broker Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

Chapter 6  Broker and Application Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Command Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

Syntax of Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
imqcmd Subcommands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
Summary of imqcmd Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140
Prerequisites to Using imqcmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Controlling the Broker’s State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Querying and Updating Broker Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145

Querying a Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146
Updating a Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

Managing Connection Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Listing Connection Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150
Querying and Updating Service Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150
Pausing and Resuming a Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

Managing Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152
Creating Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153
Getting Information About Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154
Updating Destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154
Purging Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Destroying Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

Managing Durable Subscriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Managing Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157



7

Chapter 7  Managing Administered Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
About Object Stores  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Object Manager Utility (imqobjmgr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

Syntax of Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
imqobjmgr Subcommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Summary of imqobjmgr Command Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Required Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Administered Object Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

Connection Factory Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Destination Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

Object Store Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
Initial Context and Location Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
Security Information (LDAP Only)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170

Using Input Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171
Adding and Deleting Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174

Adding a Connection Factory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
Adding a Topic or Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175
Deleting Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

Getting Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
Listing Administered Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
Information About a Single Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178

Updating Administered Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180

Chapter 8  Security Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Authenticating Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

Using a Flat-File User Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
User Manager Utility (imqusermgr)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186
Format of User Names and Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186
Populating and Managing the User Repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
Changing the Default Administrator Password  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

Using an LDAP Server for a User Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189
Authorizing Users: the Access Control Properties File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

Access Rules Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
Permission Computation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Connection Access Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195
Destination Access Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196
Destination Auto-Create Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197



8 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Encryption: Working With an SSL Service (Enterprise Edition)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198
Setting Up an SSL Service Over TCP/IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198

Step 1. Generating a Self-Signed Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
Step 2. Enabling the SSL-based Service in the Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Step 3. Starting the Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
Step 4. Configuring and Running SSL-based Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

Setting Up an SSL Service Over HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
Using a Passfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204

Appendix A  Setting Up Plugged-in Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205
Plugging In a JDBC-accessible Data Store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206
JDBC-related Broker Configuration Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207
Database Manager Utility (imqdbmgr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210

Syntax of Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210
imqdbmgr Subcommands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211
Summary of imqdbmgr Command Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Appendix B  HTTP/HTTPS Support (Enterprise Edition) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
HTTP/HTTPS Support Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
Implementing HTTP Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

Step 1. Deploying the HTTP Tunnel Servlet on a Web Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Deploying as a Jar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Deploying as a Web Archive File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

Step 2. Configuring the httpjms Connection Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216
Step 3. Configuring an HTTP Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

Setting Connection Factory Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Using a Single Servlet to Access Multiple Brokers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Using an HTTP Proxy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

Example: Deploying the HTTP Tunnel Servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
Deploying as a Jar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
Deploying as a WAR File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

Implementing HTTPS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet . . . . . . . . . . . . . . . . . .  223
Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224

Deploying as a Jar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
Deploying as a Web Archive File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

Step 3. Configuring the httpsjms Connection Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225



9

Step 4. Configuring an HTTPS Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Configuring JSSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Importing a Root Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Setting Connection Factory Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
Using a Single Servlet to Access Multiple Brokers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
Using an HTTP Proxy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

Example: Deploying the HTTPS Tunnel Servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
Deploying as a Jar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
Deploying as a WAR File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232

Appendix C  Using a Broker as a Windows Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Running a Broker as a Windows Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Service Administrator Utility (imqsvcadmin)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

Syntax of Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
imqsvcadmin Subcommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
Summary of imqsvcadmin Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237
Removing the Broker Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
Reconfiguring the Broker Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
Using an Alternate Java Runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
Querying the Broker Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239

Appendix D  Location of MQ Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Appendix E  Stability of MQ Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



10 Sun ONE Message Queue • Administrator’s Guide • October, 2002



11

List of Figures

Figure 1-1  Centralized vs. Peer to Peer Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Figure 1-2  Message Service Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Figure 1-3  JMS Programming Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Figure 1-4  Messaging with MDBs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Figure 2-1  MQ System Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Figure 2-2  Broker Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

Figure 2-3  Connection Services Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Figure 2-4  Persistence Manager Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

Figure 2-5  Security Manager Support   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Figure 2-6  Logging Scheme  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

Figure 2-7  Multi-Broker (Cluster) Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

Figure 2-8  Messaging Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74

Figure 2-9  Message Delivery to MQ Client Runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Figure 3-1  Local and Remote Administration Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Figure 5-1  Broker Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

Figure B-1  HTTP/HTTPS Support Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214



12 Sun ONE Message Queue • Administrator’s Guide • October, 2002



13

List of Tables

Table 1 Book Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Table 2 Document Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Table 3 MQ Directory Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Table 4 MQ Documentation Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Table 1-1 JMS Programming Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

Table 2-1 Main Broker Components and Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

Table 2-2 Connection Services Supported by a Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Table 2-3 Connection Service Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Table 2-4 Message Router Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Table 2-5 Persistence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Table 2-6 Security Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Table 2-7 Logging Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

Table 2-8 Logger Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Table 2-9 Auto-create Configuration Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Table 2-10 Cluster Configuration Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Table  2-11 Destination Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78

Table 3-1 Common MQ Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Table 5-1 Broker Instance Configuration Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

Table 5-2 imqbrokerd Options   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Table 5-3 Cluster Configuration Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

Table 5-4 imqbrokerd Logger Options and Corresponding Properties  . . . . . . . . . . . . . . . . . .  133

Table 5-5 Metrics Gathered for Connection Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Table 5-6 Metrics Gathered for Each Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Table 6-1 imqcmd Subcommands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

Table 6-2 imqcmd Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

Table 6-3 imqcmd Subcommands Used to Control the Broker . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

Table 6-4 imqcmd Subcommands Used to Get Information and to Update Broker . . . . . . . . . .  145



14 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Table 6-5 Broker Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

Table 6-6 imqcmd Subcommands Used to Manage Connection Services  . . . . . . . . . . . . . . . . . .  148

Table 6-7 Connection Services Supported by a Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

Table 6-8 Connection Service Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Table 6-9 imqcmd Subcommands Used to Manage Destinations . . . . . . . . . . . . . . . . . . . . . . . . .  152

Table 6-10 Destination Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Table 6-11 imqcmd Subcommands Used to Manage Durable Subscriptions  . . . . . . . . . . . . . . . .  156

Table 6-12 imqcmd Subcommands Used to Manage Transactions . . . . . . . . . . . . . . . . . . . . . . . . .  157

Table 7-1 imqobjmgr Subcommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

Table 7-2 imqobjmgr Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164

Table 7-3 Connection Factory Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

Table 7-4 Destination Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

Table 7-5 Security Attributes for the Object Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170

Table 8-1 Initial Entries in User Repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183

Table 8-2 imqusermgr Subcommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

Table 8-3 imqusermgr Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

Table 8-4 Invalid Characters for User Names and Passwords  . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

Table 8-5 LDAP-related Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

Table 8-6 Syntactic Elements of Access Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193

Table 8-7 Elements of Destination Access Control Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196

Table 8-8 Keystore Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

Table 8-9 Passwords in a Passfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204

Table A-1 JDBC-related Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

Table A-2 imqdbmgr Subcommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Table A-3 imqdbmgr Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Table B-1 httpjms Connection Service Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

Table B-2 Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File . . . . . . . . . . . . . . . . .  220

Table B-3 httpsjms Connection Service Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

Table B-4 Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File . . . . . . . . . . . . . . . .  230

Table C-1 imqsvcadmin Subcommands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

Table C-2 imqsvcadmin Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237

Table D-1 Location of MQ 3.0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241

Table E-1 Stability of MQ 3.0.1 Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243

Table E-2 Interface Stability Classification Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245



15

List of Procedures

To start the Administration Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

To display Administration Console help information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

To start a broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94

To add a broker to the Administration Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

To change the administrator password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

To connect to the broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

To view available connection services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

To add a queue destination to a broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

To view the properties of a physical destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

To purge messages from a destination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

To delete a destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

To add a file-system object store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

To display the properties of an object store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

To connect to an object store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

To add a connection factory to an object store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

To add a destination to an object store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

To view or update the properties of a destination object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

To run the SimpleJNDIClient application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

To connect brokers into a cluster  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

To add a broker to a cluster if you are using a cluster configuration file . . . . . . . . . . . . . . . . . . . . . . .  129

To restore the Master Broker in case of failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

To change the Logger configuration for a broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

To edit the configuration file to use an LDAP server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

To set up a ssljms connection service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198

To regenerate a key pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

To plug in a JDBC-accessible data store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206

To implement HTTP support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215



16 Sun ONE Message Queue • Administrator’s Guide • October, 2002

To enable the httpjms connection service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

To add a tunnel servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

To configure a virtual path (servlet URL) for a tunnel servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

To load the tunnel servlet at web server startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

To disable the server access log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

To deploy the http tunnel servlet as a WAR file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

To implement HTTPS support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

To enable the httpsjms connection service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

To configure JSSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

To add a tunnel servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230

To configure a virtual path (servlet URL) for a tunnel servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

To load the tunnel servlet at web server startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

To disable the server access log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232

To modify the HTTPS tunnel servlet WAR file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232

To deploy the https tunnel servlet as a WAR file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

To see logged service error events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239



17

Preface

This book, the Sun™ ONE Message Queue (MQ) 3.0.1 Administrator’s Guide, 
provides the background and information needed to perform administration tasks 
for an MQ messaging system.

This preface contains the following sections:

• Audience for This Guide

• Organization of This Guide

• Conventions

• Other Documentation Resources

Audience for This Guide
This guide is meant for administrators as well as application developers who need 
to perform MQ administration tasks. 

An MQ administrator is responsible for setting up and managing an MQ 
messaging system, in particular the MQ message server at the heart of this system. 
The book does not assume any knowledge or understanding of messaging systems.

The guide is also meant to be used by application developers to better understand 
how to optimize their applications to make best use of the features and flexibility of 
the MQ messaging system.



Organization of This Guide

18 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Organization of This Guide
This guide is designed to be read from beginning to end. The following table 
briefly describes the contents of each chapter:

 

Table 1 Book Contents

Chapter Description

Chapter 1, “Overview” Presents a high-level conceptual overview of MQ messaging 
systems and terminology.

Chapter 2, “The MQ 
Messaging System”

Describes the MQ messaging system, with special emphasis 
on the MQ broker and the MQ client runtime that together 
provide messaging services.

Chapter 3, “MQ 
Administration”

Describes MQ administration tasks and tools, and introduces 
the command line utilities used for administration, and their 
common features.

Chapter 4, 
“Administration Console 
Tutorial”

Provides a hands-on tutorial to acquaint you with the 
Administration Console, a graphical interface to the MQ 
message server.

Chapter 5, “Starting and 
Configuring a Broker”

Explains how to start up and configure an MQ broker and a 
broker cluster.

Chapter 6, “Broker and 
Application 
Management”

Explains how to perform (application-independent) tasks 
related to managing MQ brokers, as well as tasks used to 
manage messaging applications.

Chapter 7, “Managing 
Administered Objects”

Explains how to perform tasks related to creating and 
managing MQ administered objects.

Chapter 8, “Security 
Management”

Explains how to perform security tasks related to 
applications, such as managing authentication, authorization, 
and encryption.

Appendix A, “Setting Up 
Plugged-in Persistence”

Explains how to set up MQ to use JDBC-compliant database 
to perform persistence functions.

Appendix B, 
“HTTP/HTTPS Support 
(Enterprise Edition)”

Explains how to set up HTTP connection services between a 
messaging client and the MQ message server.

Appendix C, “Using a 
Broker as a Windows 
Service”

Explains how to use the MQ Service Administration utility 
(imqsvcadmin) to install, query, and remove the broker 
(running as an Windows service).

Appendix D, “Location 
of MQ Data”

Describes the location of various categories of MQ data.



Conventions

Preface 19

Conventions
This section provides information about the conventions used in this document.

Text Conventions

Appendix E, “Stability of 
MQ Interfaces”

Describes the stability of various MQ interfaces.

“Glossary” Defines terms used in MQ documentation.

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an 
appropriate clause or value where you see italic text. 
Italicized text is also used to designate a document title, for 
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you 
enter on the command line, directory, file, or path names, 
error message text, class names, method names (including all 
elements in the signature), package names, reserved words, 
and URL’s.

[] Square brackets to indicate optional values in a command line 
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, 
HTML and so forth), environment variables (IMQ_HOME), 
or acronyms (MQ, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A 
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S 
means press the Esc key, release it, then press the S key.

Table 1 Book Contents (Continued)

Chapter Description



Conventions

20 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Directory Variable Conventions
MQ makes use of three directory variables; how they are set varies from platform 
to platform. Table 3 describes these variables and summarizes how they are used 
on the Solaris, Windows, and Linux platforms.

Table 3 MQ Directory Variables

Variable Description

IMQ_HOME This is generally used in MQ documentation to refer to the 
root MQ installation directory:

• On Solaris, there is no root MQ installation directory. 
Therefore, IMQ_HOME is not used in MQ documentation to 
refer to file locations on Solaris.

• On Solaris, for Sun ONE Application Server, Evaluation 
Edition, the root MQ installation directory is:
root Application Server installation directory/imq.

• On Windows, the root MQ installation directory is set by 
the MQ installer (by default, as C:\Program 
Files\Sun Microsystems\Message Queue 3.0.1).

• On Windows, for Sun ONE Application Server, the root 
MQ installation directory is:
root Application Server installation directory/imq.

• On Linux, the root MQ installation directory is, by default:
/opt/imq.

IMQ_VARHOME This is the /var directory in which MQ temporary or 
dynamically-created configuration and data files are stored. It 
can be set as an environment variable to point to any 
directory.

• On Solaris, IMQ_VARHOME defaults to the /var/imq 
directory.

• On Solaris, for Sun ONE Application Server, Evaluation 
Edition, IMQ_VARHOME defaults to IMQ_HOME/var.

• On Windows IMQ_VARHOME defaults to IMQ_HOME/var.

• On Windows, for Sun ONE Application Server, 
IMQ_VARHOME defaults to IMQ_HOME/var.

• On Linux, IMQ_VARHOME defaults to IMQ_HOME/var.



Conventions

Preface 21

In this guide, IMQ_HOME, IMQ_VARHOME, and IMQ_JAVAHOME are shown without 
platform-specific environment variable notation or syntax (for example, $IMQ_HOME 
on UNIX). All path names use UNIX file separator notation (/). 

IMQ_JAVAHOME This is an environment variable that points to the location of 
the Java runtime (JRE 1.4) required by MQ executables:

• On Solaris, IMQ_JAVAHOME defaults to the 
/usr/j2se/jre directory, but a user can optionally set 
the value to wherever JRE 1.4 resides.

• On Windows, IMQ_JAVAHOME defaults to 
IMQ_HOME/jre, but a user can optionally set the value to 
wherever JRE 1.4 resides.

• On Linux, IMQ_JAVAHOME defaults to the 
/usr/java/j2sdk1.0/jre directory, but a user can 
optionally set the value to wherever JRE 1.4 resides.

Table 3 MQ Directory Variables (Continued)

Variable Description



Other Documentation Resources

22 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Other Documentation Resources
In addition to this guide, MQ provides additional documentation resources.

The MQ Documentation Set
The documents that comprise the MQ documentation set are listed in Table 4 in the 
order in which you would normally use them.

Online Help
MQ 3.0.1 includes command line utilities for performing MQ message service 
administration tasks. To access the online help for these utilities, see “Common 
Command Line Options” on page 87.

MQ 3.0.1 also includes a graphical user interface (GUI) administration tool, the 
Administration Console (imqadmin). Context sensitive online help is included in 
the Administration Console.

Table 4 MQ Documentation Set

Document Audience Description

MQ Installation Guide Developers and 
administrators

Explains how to install MQ software 
on Solaris, Linux, and Windows 
platforms.

Release Notes Developers and 
administrators

Includes descriptions of new features, 
limitations, and known bugs, as well 
as technical notes.

MQ Developer’s Guide Developers Provides a quick-start tutorial and 
programming information relevant to 
the MQ implementation of JMS.

MQ Administrator’s Guide Administrators, also 
recommended for 
developers

Provides background and 
information needed to perform 
administration tasks using MQ 
administration tools.



Other Documentation Resources

Preface 23

JavaDoc
JMS and MQ API documentation in JavaDoc format, is provided at the following 
location:

IMQ_HOME/javadoc/index.html 

(/usr/share/javadoc/imq/index.html on Solaris)

This documentation can be viewed in any HTML browser such as Netscape or 
Internet Explorer. It includes standard JMS API documentation as well as 
MQ-specific API’s for MQ administered objects (see Chapter 3 of the MQ 
Developer’s Guide), which are of value to developers of messaging applications.

Example Client Applications
A number of example applications that provide sample client application code are 
included in the following location:

IMQ_HOME/demo (/usr/demo/imq on Solaris)

See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

http://java.sun.com/products/jms/docs.html

The specification includes sample client code.



Other Documentation Resources

24 Sun ONE Message Queue • Administrator’s Guide • October, 2002



25

Chapter 1

Overview

This chapter provides an introduction to Sun™ ONE Message Queue (MQ) and is 
of interest to both administrators and programmers.

What Is Sun ONE Message Queue?
The MQ product is a standards-based solution to the problem of inter-application 
communication and reliable message delivery. MQ is an enterprise messaging 
system that implements the Java Message Service (JMS) open standard: it is a JMS 
provider.

The JMS specification describes a set of programming interfaces (see “JMS 
Programming Model” on page 32)—which provide a common way for Java 
applications to create, send, receive, and read messages in a distributed 
environment. 

With Sun ONE Message Queue software, processes running on different platforms 
and operating systems can connect to a common MQ message service (see 
“Message Service Architecture” on page 30) to send and receive information. 
Application developers are free to focus on the business logic of their applications, 
rather than on the low-level details of how their applications communicate across a 
network. 

MQ has features which exceed the minimum requirements of the JMS specification. 
Among these features are the following:

Centralized administration Provides both command-line and GUI tools for 
administering an MQ message service and managing application-specific aspects 
of messaging, such as destinations and security.



Product Editions

26 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Scalable message service Allows you to service increasing numbers of JMS 
clients (components or applications) by balancing the load among a number of MQ 
message service components (brokers) working in tandem (multi-broker cluster).

Tunable performance Lets you increase performance of the MQ message service 
when less reliability of delivery is acceptable.

Multiple transports Supports the ability of JMS clients to communicate with each 
other over a number of different transports, including TCP and HTTP, and using 
secure (SSL) connections.

JNDI support Supports both file-based and LDAP implementations of the Java 
Naming and Directory Interface (JNDI) as object stores and user repositories.

SOAP messaging support Supports creation and delivery of SOAP 
messages—messages that conform to the Simple Object Access Protocol (SOAP) 
specification— via JMS messaging. SOAP allows for the exchange of structured 
XML data between peers in a distributed environment. See the MQ Developer’s 
Guide for more information.

See the MQ 3.0.1 Release Notes for documentation of JMS compliance-related issues.

Product Editions
The Sun ONE Message Queue product is available in two editions: Platform and 
Enterprise—each corresponding to a different licensed capacity, as described 
below. (To upgrade MQ from one edition to another, see the instructions in the MQ 
Installation Guide.)

Platform Edition
This edition can be downloaded free from the Sun website and is also bundled with 
the latest Sun ONE Application Server platform. The Platform Edition places no 
limit on the number of JMS client connections supported by each MQ message 
service. It comes with two licenses, as described below: 

• a basic license This license provides basic JMS support (it’s a full JMS 
provider), but does not include such enterprise features as load balancing 
(multi-broker message service), HTTP/HTTPS connections, secure connection 
services, scalable connection capability, and multiple queue delivery policies. 
The license has an unlimited duration, and can therefore be used in less 
demanding production environments. 



Enterprise Messaging Systems

Chapter 1 Overview 27

• a 90-day trial enterprise license This license includes all enterprise features 
(such as support for multi-broker message services, HTTP/HTTPS 
connections, secure connection services, scalable connection capability, and 
multiple queue delivery policies) not included in the basic license. However, 
the license has a limited 90-day duration enforced by the software, making it 
suitable for evaluating the enterprise features available in the Enterprise 
Edition of the product (see “Enterprise Edition” on page 27).

Enterprise Edition
This edition is for deploying and running messaging applications in a production 
environment. It includes support for multi-broker message services, HTTP/HTTPS 
connections, secure connection services, scalable connection capability, and 
multiple queue delivery policies. You can also use the Enterprise Edition for 
developing, debugging, and load testing messaging applications and components. 
The Enterprise Edition has an unlimited duration license that places no limit on the 
number of brokers in a multi-broker message service, but specifies the number of 
CPU’s that are supported.

Enterprise Messaging Systems
Enterprise messaging systems enable independent distributed components or 
applications to interact through messages. These components, whether on the same 
system, the same network, or loosely connected through the Internet, use 
messaging to pass data and to coordinate their respective functions.

NOTE The 90-day trial license can be enabled by starting the MQ 
message service—an MQ broker instance—with the -license 
command line option (see Table 5-2 on page 121) and passing 
“try” as the license to use:

imqbrokerd -license try

You must use this option each time you start the broker instance, 
otherwise it defaults back to the basic Platform Edition license.



Enterprise Messaging Systems

28 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Requirements of Enterprise Messaging Systems
Enterprise application systems typically consist of large numbers of distributed 
components exchanging many thousands of messages in round-the-clock, 
mission-critical operations. To support such systems, an enterprise messaging 
system must generally meet the following requirements:

Reliable delivery Messages from one component to another must not be lost due 
to network or system failure. This means the system must be able to guarantee that 
a message is successfully delivered.

Asynchronous delivery For large numbers of components to be able to exchange 
messages simultaneously, and support high density throughputs, the sending of a 
message cannot depend upon the readiness of the consumer to immediately 
receive it. If a consumer is busy or offline, the system must allow for a message to 
be sent and subsequently received when the consumer is ready. This is known as 
asynchronous message delivery, popularly known as store-and-forward 
messaging.

Security The messaging system must support basic security features: 
authentication of users, authorized access to messages and resources, and 
over-the-wire encryption.

Scalability The messaging system must be able to accommodate increasing 
loads—increasing numbers of users and increasing numbers of messages—without 
a substantial loss of performance or message throughput. As businesses and 
applications expand, this becomes a very important requirement.

Manageability The messaging system must provide tools for monitoring and 
managing the delivery of messages and for optimizing system resources. These 
tools help measure and maintain reliability, security, and performance.



Enterprise Messaging Systems

Chapter 1 Overview 29

Centralized vs. Peer to Peer Messaging
The requirements of an enterprise messaging system are difficult to meet with a 
traditional peer to peer messaging system, illustrated in Figure 1-1.

Figure 1-1 Centralized vs. Peer to Peer Messaging

In such a system every messaging component maintains a connection to every 
other component. These connections can allow for fast, secure, and reliable 
delivery, however the code for supporting reliability and security must reside in 
each component. As components are added to the system, the number of 
connections rises exponentially. This makes asynchronous message delivery and 
scalability difficult to achieve. Centralized management is also problematic. 

The preferred approach for enterprise messaging is a centralized messaging 
system, also illustrated in Figure 1-1. In this approach each messaging component 
maintains a connection to one central message service. The message service 
provides for routing and delivery of messages between components, and is 
responsible for reliable delivery and security. Components interact with the 
message service through a well-defined programming interface. As components 
are added to the system, the number of connections rises only linearly, making it 
easier to scale the system by scaling the message service. In addition, the central 
message service provides for centralized management of the system.

Component 2Component 1

Component 3 Component 4

Component 1

Component 2

Message Service

Component 3

Component 4

Peer to Peer Messaging Centralized Messaging



Enterprise Messaging Systems

30 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Messaging System Concepts
A few basic concepts underlie enterprise messaging systems. These include the 
following: message, message service architecture, and message delivery models.

Message
A message consists of data in some format (message body) and meta-data that 
describes the characteristics or properties of the message (message header), such as 
its destination, lifetime, or other characteristics determined by the messaging 
system. 

Message Service Architecture
The basic architecture of a messaging system is illustrated in Figure 1-2 on page 30. 
It consists of message producers and message consumers that exchange messages 
by way of a common message service. Any number of message producers and 
consumers can reside in the same messaging component (or application). A 
message producer sends a message to a message service. The message service, in 
turn, using message routing and delivery components, delivers the message to one 
or more message consumers that have registered an interest in the message. The 
message routing and delivery components are responsible for guaranteeing 
delivery of the message to all appropriate consumers.

Figure 1-2 Message Service Architecture

Message Service

Message
Routing and

Delivery

Message
Producers

Message
Consumers



The JMS Specification

Chapter 1 Overview 31

Message Delivery Models
There are many relationships between producers and consumers: one to one, one 
to many, and many to many relationships. For example, you might have messages 
delivered from:

• one producer to one consumer 

• one producer to many consumers 

• many producers to one consumer

• many producers to many consumers.

These relationships are often reduced to two message delivery models: 
point-to-point and publish/subscribe messaging. The focus of the point-to-point 
delivery model is on messages that originate from a specific producer and are 
received by a specific consumer. The focus of publish/subscribe delivery model is 
on messages that originate from any of a number of producers and are received by 
any number of consumers. These message delivery models can overlap.

Historically, messaging systems supported various combinations of these two 
message delivery models. The Java Message Service (JMS) API was intended to 
create a common programming approach for Java messaging. It supports both the 
point-to-point and publish/subscribe message delivery models (see 
“Programming Domains” on page 37).

The JMS Specification
JMS specifies a message structure, a programming model, and a set of rules and 
semantics that govern messaging operations. Because MQ provides an 
implementation of JMS, JMS concepts are fundamental to understanding how an 
MQ messaging system works. This introduction explains concepts and 
terminology needed to understand the remaining chapters of this book.

JMS Message Structure
According to the JMS specification, a message is composed of three parts: a header, 
properties, and a body.

Header The header specifies the JMS characteristics of the message: its 
destination, whether it is persistent or not, its time to live, and its priority. These 
characteristics govern how the messaging system delivers the message.



The JMS Specification

32 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Properties Properties (which can be thought of as an extension of the header) are 
optional—they provide values that applications can use to filter messages 
according to various selection criteria. Properties are optional.

Message body. The message body contains the actual data to be exchanged. JMS 
supports six body types.

JMS Programming Model
In the JMS programming model, JMS clients (components or applications) 
exchange messages by way of a JMS message service. Message producers send 
messages to the message service, from which message consumers receive them. 
These messaging operations are performed using a set of objects (furnished by a 
JMS provider) that implement the JMS application programming interface (API). 

This section introduces the objects that implement the JMS API and that are used to 
set up a JMS client for delivery of messages (for more information, see the MQ 
Developer’s Guide). Figure 1-3 on page 32 shows the JMS objects used to program 
the delivery of messages.

Figure 1-3 JMS Programming Objects

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

JMS
Message Service

Message
Routing and

Delivery

Physical Destinations

Message

JMS Client

ConnectionFactory

Destinations



The JMS Specification

Chapter 1 Overview 33

In the JMS programming model, a JMS client uses a ConnectionFactory object to 
create a connection over which messages are sent to and received from the JMS 
message service. A Connection is a JMS client’s active connection to the message 
service. Both allocation of communication resources and authentication of the 
client take place when a connection is created. It is a relatively heavy-weight object, 
and most clients do all their messaging with a single connection. 

The connection is used to create sessions. A Session is a single-threaded context 
for producing and consuming messages. It is used to create the message producers 
and consumers that send and receive messages, and it defines a serial order for the 
messages it delivers. A session supports reliable delivery through a number of 
acknowledgement options or through transactions (which can be managed by a 
distributed transaction manager). 

A JMS client uses a MessageProducer to send messages to a specified physical 
destination, represented in the API as a destination object. The message producer 
can specify a default delivery mode (persistent vs. non-persistent messages), 
priority, and time-to-live values that govern all messages sent by the producer to 
the physical destination. 

Similarly, a JMS client uses a MessageConsumer to receive messages from a 
specified physical destination, represented in the API as a destination object. A 
message consumer can use a message selector that allows the message service to 
deliver only those messages to the message consumer that match the selection 
criteria. 

A message consumer can support either synchronous or asynchronous 
consumption of messages (see the MQ Developer’s Guide). Asynchronous 
consumption is achieved by registering a MessageListener with the consumer. 
The client consumes a message when a session thread invokes the onMessage() 
method of the MessageListener object.

Administered Objects
Two of the objects described in the “JMS Programming Model” on page 32 depend 
on how a JMS provider implements a JMS message service. The connection factory 
object depends on the underlying protocols and mechanisms used by the provider 
to deliver messages, and the destination object depends on the specific naming 
conventions and capabilities of the physical destinations used by the provider. 



JMS/J2EE Programming: Message-driven Beans

34 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Normally these provider-specific characteristics would make JMS client code 
dependent on a specific JMS implementation. To make JMS client code 
provider-independent, however, the JMS specification requires that 
provider-specific implementation and configuration information be encapsulated 
in what are called administered objects. These objects can then be accessed in a 
standardized, non-provider-specific way.

Administered objects are created and configured by an administrator, stored in a 
name service, and accessed by JMS clients through standard Java Naming and 
Directory Service (JNDI) lookup code. Using administered objects in this way 
makes JMS client code provider-independent.

JMS provides for two general types of administered objects: connection factories 
and destinations. Both encapsulate provider-specific information, but they have 
very different uses within a JMS client. A connection factory is used to create 
connections to a message server, while destination objects are used to identify 
physical destinations used by the JMS message service.

For more information on administered objects, see “MQ Administered Objects” on 
page 75.

JMS/J2EE Programming: Message-driven Beans
In addition to the general JMS client programming model introduced in “JMS 
Programming Model” on page 32, there is a more specialized adaptation of JMS 
used in the context of Java 2 Enterprise Edition (J2EE) applications. This specialized 
JMS client is called a message-driven bean and is one of a family of Enterprise 
JavaBeans (EJB) components specified in the EJB 2.0 Specification 
(http://java.sun.com/products/ejb/docs.html). 

The need for message-driven beans arises out of the fact that other EJB components 
(session beans and entity beans) can only be called synchronously. These EJB 
components have no mechanism for receiving messages asynchronously, since 
they are only accessed through standard EJB interfaces.

However, asynchronous messaging is a requirement of many enterprise 
applications. Most such applications require that server-side components be able to 
communicate and respond to each other without tying up server resources. Hence, 
the need for an EJB component that can receive messages and consume them 
without being tightly coupled to the producer of the message. This capability is 
needed for any application in which server-side components must respond to 
application events. In enterprise applications, this capability must also scale under 
increasing load.



JMS/J2EE Programming: Message-driven Beans

Chapter 1 Overview 35

Message-driven Beans
A message-driven bean (MDB) is a specialized EJB component supported by a 
specialized EJB container (a software environment that provides distributed 
services for the components it supports). 

Message-driven Bean The MDB is a JMS message consumer that implements the 
JMS MessageListener interface. The onMessage method (written by the MDB 
developer) is invoked when a message is received by the MDB container. The 
onMessage() method consumes the message, just as the onMessage() method of a 
standard MessageListener object would. You do not remotely invoke methods on 
MDB’s—like you do on other EJB components—therefore there are no home or 
remote interfaces associated with them. The MDB can consume messages from a 
single destination. The messages can be produced by standalone JMS applications, 
JMS components, EJB components, or Web components, as shown in Figure 1-4 on 
page 35.

Figure 1-4 Messaging with MDBs

EJB Container

EJB
Instance

MDB Container

MDB
MDBMDB

Instance onMessage
method

JMS Message Service

Message
Routing and

Delivery

Destinations

JMS
Component

or
Application

JMS
Message
Producers

JMS
Message
Consumer



JMS Messaging Issues

36 Sun ONE Message Queue • Administrator’s Guide • October, 2002

MDB Container The MDB is supported by a specialized EJB container, 
responsible for creating instances of the MDB and setting them up for 
asynchronous consumption of messages. This involves setting up a connection 
with the message service (including authentication), creating a pool of sessions 
associated with a given destination, and managing the distribution of messages as 
they are received among the pool of sessions and associated MDB instances. Since 
the container controls the life-cycle of MDB instances, it manages the pool of MDB 
instances so as to accommodate incoming message loads.

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup 
names for the administered objects used by the container in setting up message 
consumption: a connection factory and a destination. The deployment descriptor 
might also include other information that can be used by deployment tools to 
configure the container. Each such container supports instances of only a single 
MDB.

Application Server Support
In J2EE architecture (see the J2EE Platform Specification located at 
http://java.sun.com/j2ee/download.html#platformspec), EJB containers are 
hosted by application servers. An application server provides resources needed by 
the various containers: transaction managers, persistence managers, name services, 
and, in the case of messaging and MDB’s, a JMS provider.

In the Sun ONE Application Server, messaging resources are provided by Sun 
ONE Message Queue. This means that an MQ messaging system (see Chapter 2, 
“The MQ Messaging System”) is integrated into the Sun ONE Application Server, 
providing the support needed to send JMS messages to MDB’s and other JMS 
messaging components that run in the application server environment.

JMS Messaging Issues
This section describes a number of JMS programming issues that impact the 
administration of an MQ message service. The discussion focuses on concepts and 
terminology that are needed by an MQ administrator.



JMS Messaging Issues

Chapter 1 Overview 37

JMS Provider Independence
JMS specifies the use of administered objects (see “Administered Objects” on 
page 33) to support the development of client applications that are portable to 
other JMS providers. Administered objects allow JMS clients to use logical names 
to look up and reference provider-specific objects. In this way client code does not 
need to know specific naming or addressing syntax or configurable properties used 
by a provider. This makes the code provider-independent.

Administered objects are MQ system objects created and configured by an MQ 
administrator. These objects are placed in a JNDI directory service, and a JMS client 
accesses them using a JNDI lookup.

MQ administered objects can also be instantiated by the client, rather than looked 
up in a JNDI directory service. This has the drawback of requiring the application 
developer to use provider-specific API’s. It also undermines the ability of an MQ 
administrator to successfully control and manage an MQ message server.

For more information on administered objects, see “MQ Administered Objects” on 
page 75.

Programming Domains
JMS supports two distinct message delivery models: point-to-point and 
publish/subscribe. 

point-to-point (Queue Destinations) A message is delivered from a producer to 
one consumer. In this delivery model, the destination is a queue. Messages are first 
delivered to the queue destination, then delivered from the queue, one at a time, 
depending on the queue’s delivery policy (see “Queue Destinations” on page 65), 
to one of the consumers registered for the queue. Any number of producers can 
send messages to a queue destination, but each message is guaranteed to be 
delivered to—and successfully consumed by—only one consumer. If there are no 
consumers registered for a queue destination, the queue holds messages it receives, 
and delivers them when a consumer registers for the queue.

Publish/Subscribe (Topic destinations) A message is delivered from a producer 
to any number of consumers. In this delivery model, the destination is a topic. 
Messages are first delivered to the topic destination, then delivered to all active 
consumers that have subscribed to the topic. Any number of producers can send 
messages to a topic destination, and each message can be delivered to any number 
of subscribed consumers. Topic destinations also support the notion of durable 
subscriptions. A durable subscription represents a consumer that is registered with 



JMS Messaging Issues

38 Sun ONE Message Queue • Administrator’s Guide • October, 2002

the topic destination but can be inactive at the time that messages are delivered. 
When the consumer subsequently becomes active, it receives the messages. If there 
are no consumers registered for a topic destination, the topic does not hold 
messages it receives, unless it has durable subscriptions for inactive consumers.

These two message delivery models are handled using different API objects—with 
slightly different semantics—representing different programming domains, as 
shown in Table 1-1. 

You can program both point-to-point and publish/subscribe messaging using the 
unified domain objects shown in the first column of Table 1-1. This is the preferred 
approach. However, to conform to the earlier JMS 1.02b specification, you can use 
the point-to-point domain objects to program point-to-point messaging, and the 
publish/subscribe domain objects to program publish/subscribe messaging.

Client Identifiers 
JMS providers must support the notion of a client identifier, which associates a JMS 
client’s connection to a message service with state information maintained by the 
message service on behalf of the client. By definition, a client identifier is unique, 
and applies to only one user at a time. Client identifiers are used in combination 
with a durable subscription name (see “Publish/Subscribe (Topic destinations)” on 
page 37) to make sure that each durable subscription corresponds to only one user.

Table 1-1 JMS Programming Objects

Base Type
(Unified Domain)

Point-to-Point Domain Publish/Subscribe Domain

Destination (Queue or Topic)1

1 Depending on programming approach, you might specify a particular destination type.

Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber



JMS Messaging Issues

Chapter 1 Overview 39

The JMS specification allows client identifiers to be set by the client through an API 
method call, but recommends setting it administratively using a connection factory 
administered object (see “Administered Objects” on page 33). If hard wired into a 
connection factory, however, each user would then need an individual connection 
factory to have a unique identity.

MQ provides a way for the client identifier to be both ConnectionFactory and user 
specific using a special variable substitution syntax that you can configure in a 
ConnectionFactory object. When used this way, a single ConnectionFactory 
object can be used by multiple users who create durable subscriptions, without fear 
of naming conflicts or lack of security. A user's durable subscriptions are therefore 
protected from accidental erasure or unavailability due to another user having set 
the wrong client identifier.

For details on how to use this MQ feature, see the discussion of connection factory 
attributes in the MQ Developer’s Guide.

In any case, in order to create a durable subscription, a client identifier must be 
either programmatically set by the client, using the JMS API, or administratively 
configured in the ConnectionFactory objects used by the client.

Reliable Messaging
JMS defines two delivery modes:

Persistent messages These messages are guaranteed to be delivered and 
successfully consumed once and only once. Reliability is at a premium for such 
messages.

Non-persistent messages These messages are guaranteed to be delivered at most 
once. Reliability is not a major concern for such messages.

There are two aspects of assuring reliability in the case of persistent messages. One 
is to assure that their delivery to and from a message service is successful. The 
other is to assure that the message service does not lose persistent messages before 
delivering them to consumers. 

Acknowledgements/Transactions
Reliable messaging depends on guaranteeing the successful delivery of persistent 
messages to and from a destination. This can be achieved using either of two 
general mechanisms supported by an MQ session: acknowledgements or 
transactions. In the case of transactions, these can either be local or distributed, 
under the control of a distributed transaction manager.



JMS Messaging Issues

40 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Acknowledgements
A session can be configured to use acknowledgements to assure reliable delivery. 

In the case of a producer, this means that the message service acknowledges 
delivery of a persistent message to its destination before the producer’s send() 
method returns. In the case of a consumer, this means that the client acknowledges 
delivery and consumption of a persistent message from a destination before the 
message service deletes the message from that destination.

Local Transactions
A session can also be configured as transacted, in which case the production and/or 
consumption of one or more messages can be grouped into an atomic unit—a 
transaction. The JMS API provides methods for initiating, committing, or rolling 
back a transaction.

As messages are produced or consumed within a transaction, the broker tracks the 
various sends and receives, completing these operations only when the client 
issues a call to commit the transaction. If a particular send or receive operation 
within the transaction fails, an exception is raised. The client code can handle the 
exception by ignoring it, retrying the operation, or rolling back the entire 
transaction. When a transaction is committed, all the successful operations are 
completed. When a transaction is rolled back, all successful operations are 
cancelled.

The scope of a local transaction is always a single session. That is, one or more 
producer or consumer operations performed in the context of a single session can 
be grouped into a single local transaction. 

Since transactions span only a single session, you cannot have an end-to-end 
transaction encompassing both the production and consumption of a message. (In 
other words, the delivery of a message to a destination and the subsequent delivery 
of the message to a client cannot be placed in a single transaction.)

Distributed Transactions
MQ also supports distributed transactions. That is, the production and consumption 
of messages can be part of a larger, distributed transaction that includes operations 
involving other resource managers, such as database systems. In distributed 
transactions, a distributed transaction manager tracks and manages operations 
performed by multiple resource managers (such as a message service and a 
database manager) using a two-phase commit protocol defined in the Java 
Transaction API (JTA), XA Resource API specification. In the Java world, interaction 
between resource managers and a distributed transaction manager are described in 
the JTA specification.



JMS Messaging Issues

Chapter 1 Overview 41

Support for distributed transactions means that messaging clients can participate 
in distributed transactions through the XAResource interface defined by JTA. This 
interface defines a number of methods for implementing two-phase commit. While 
the API calls are made on the client side, the MQ broker tracks the various send 
and receive operations within the distributed transaction, tracks the transactional 
state, and completes the messaging operations only in coordination with a 
distributed transaction manager—provided by a Java Transaction Service (JTS). 

As with local transactions, the client can handle exceptions by ignoring them, 
retrying operations, or rolling back an entire distributed transaction.

MQ implements support for distributed transactions through an XA connection 
factory, which lets you create XA connections, which in turn lets you create XA 
sessions (see “JMS Programming Model” on page 32). In addition, support for 
distributed transactions requires either a third party JTS or a J2EE-compliant 
Application Server (that provides JTS).

Persistent Storage
The other important aspect of reliability is assuring that once persistent messages 
are delivered to their destinations, a message service does not lose them before 
they are delivered to consumers. This means that upon delivery of a persistent 
message to its destination, the message service must place it in a persistent data 
store (see “Persistence Manager” on page 54). If the message service goes down for 
any reason, it can recover the message and deliver it to the appropriate consumers. 
While this adds overhead to message delivery, it also adds reliability.

A message service must also store durable subscriptions. This is because to 
guarantee delivery in the case of topic destinations, it is not sufficient to recover 
only persistent messages. The message service must also recover information about 
durable subscriptions for a topic, otherwise it would not be able to deliver 
messages to subscribers who are inactive when a message arrives, and 
subsequently become active.

Messaging applications that are concerned about guaranteed message delivery 
must specify messages as persistent and use either queue destinations or durable 
subscriptions to topic destinations.

Performance Trade-offs
The more reliable the delivery of messages, the more overhead and bandwidth are 
required to achieve it. The trade-off between reliability and performance is a 
significant design consideration. You can maximize performance by choosing to 
produce and consume non-persistent messages. On the other hand, you can 



JMS Messaging Issues

42 Sun ONE Message Queue • Administrator’s Guide • October, 2002

maximize reliability by producing and consuming persistent messages and using 
transacted sessions. Between these extremes are a number of options, depending 
on the needs of an application, including the use of MQ-specific connection and 
acknowledgement properties (see the MQ Developer’s Guide).

Message Selection
JMS provides a mechanism by which a message service can perform message 
filtering and routing based on criteria placed in message selectors. A producing 
client can place application-specific properties in the message, and a consuming 
client can indicate its interest in messages using selection criteria based on such 
properties. This simplifies the work of the client and eliminates the overhead of 
delivering messages to clients that don’t need them. However, it adds some 
additional overhead to the message service processing the selection criteria. 
Message selector syntax and semantics are outlined in the JMS specification.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to 
be delivered to a consumer in the order they were sent. However, if they are 
assigned different priorities, a messaging system will attempt to deliver higher 
priority messages first.

Beyond this, the ordering of messages consumed by a client application can have 
only a rough relationship to the order in which they were produced. This is 
because the delivery of messages to destinations and the delivery from those 
destinations can depend on a number of issues that affect timing, such as the order 
in which the messages are sent, the sessions (connections) from which they are 
sent, whether the messages are persistent, the lifetime of the messages, the priority 
of the messages, the message delivery policy of queue destinations (see “Queue 
Destinations” on page 65), and message service availability. 

In the case of an MQ message server using multiple interconnected brokers (see 
“Multi-Broker Clusters (Enterprise Edition)” on page 68) the ordering of messages 
consumed by a client is further complicated by the fact that the order of delivery 
from destinations on different brokers is indeterminate. Hence, a message 
delivered by one broker might precede a message delivered by another broker 
even though the latter might have received the message first.

In any case, for a given consumer, precedence is given for higher priority messages 
over lower priority messages.



43

Chapter 2

The MQ Messaging System

This chapter describes the Sun™ ONE Message Queue (MQ) messaging system, 
with specific attention to the main parts of the system, as illustrated in Figure 2-1, 
and explains how they work together to provide for reliable message delivery.

Figure 2-1 MQ System Architecture

Object Store

MQ Message Server

JMS Client

MQ
Client Runtime

MQ
Administration

Broker
Brokers

Destinations

Administered
Objects

MQ Messaging System



MQ Message Server

44 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The main parts of an MQ messaging system, shown in Figure 2-1, are the 
following:

• MQ Message Server

• MQ Client Runtime

• MQ Administered Objects

• MQ Administration

The first three of these are examined in the following sections. The last is 
introduced in Chapter 3, “MQ Administration.”

MQ Message Server
This section describes the different parts of the MQ message server shown in 
Figure 2-1 on page 43. These include the following:

Broker An MQ broker provides delivery services for an MQ messaging system. 
Message delivery relies upon a number of supporting components that handle 
connection services, message routing and delivery, persistence, security, and 
logging (see “Broker” on page 44 for more information). A message server can 
employ one or more broker instances (see “Multi-Broker Clusters (Enterprise 
Edition)” on page 68).

Physical Destination Delivery of a message is a two-phase process—delivery 
from a producing client to a physical destination maintained by a broker, followed 
by delivery from the destination to one or more consuming clients. Physical 
destinations represent locations in a broker’s physical memory and/or persistent 
storage (see “Physical Destinations” on page 65 for more information).

Broker
Message delivery in an MQ messaging system—from producing clients to 
destinations, and then from destinations to one or more consuming clients—is 
performed by a broker (or a cluster of broker instances working in tandem). To 
perform message delivery, a broker must set up communication channels with 
clients, perform authentication and authorization, route messages appropriately, 
guarantee reliable delivery, and provide data for monitoring system performance.



MQ Message Server

Chapter 2 The MQ Messaging System 45

To perform this complex set of functions, a broker uses a number of different 
components, each with a specific role in the delivery process. You can configure 
these internal components to optimize the performance of the broker, depending 
on load conditions, application complexity, and so on. The main broker 
components are illustrated in Figure 2-2 and described briefly in Table 2-1. 

Figure 2-2 Broker Components

Table 2-1 Main Broker Components and Functions

Component Description/Function

Connection Services Manages the physical connections between a broker 
and clients, providing transport for incoming and 
outgoing messages.

Message Router Manages the routing and delivery of messages: These 
include JMS messages as well as control messages used 
by the MQ messaging system to support JMS message 
delivery.

incoming
messages

outgoing
messages

Connection
Services

 url

 url

Message
Router

Security
Manager

Logger

Persistence
Manager

Main Broker
Components

User
Repository

Data
Store



MQ Message Server

46 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The following sections explore more fully the functions performed by the different 
broker components and the properties that can be configured to affect their 
behavior. 

Connection Services
An MQ broker supports communication with both JMS clients and MQ 
administration clients (see “MQ Administration Tools” on page 84). Each service is 
specified by its service type and protocol type.

service type specifies whether the service provides JMS message delivery 
(NORMAL) or MQ administration (ADMIN) services

protocol type specifies the underlying transport protocol layer that supports the 
service. 

The connection services currently available from an MQ broker are shown in 
Table 2-2: 

Persistence Manager Manages the writing of data to persistent storage so 
that system failure does not result in failure to deliver 
JMS messages.

Security Manager Provides authentication services for users requesting 
connections to a broker and authorization services 
(access control) for authenticated users.

Logger Writes monitoring and diagnostic information to log 
files or the console so that an administrator can 
monitor and manage a broker.

Table 2-2 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL (JMS message delivery) tcp

ssljms
(Enterprise Edition)

NORMAL (JMS message delivery) tls (SSL-based security)

Table 2-1 Main Broker Components and Functions (Continued)

Component Description/Function



MQ Message Server

Chapter 2 The MQ Messaging System 47

You can configure a broker to run any or all of these connection services. Each 
service has a Thread Pool Manager and registers itself with a common Port Mapper 
service, as shown in Figure 2-3.

Figure 2-3 Connection Services Support

Each connection service is available at a particular port, specified by the broker’s 
host name and a port number. The port can be statically or dynamically allocated. 
MQ provides a Port Mapper that maps dynamically allocated ports to the different 
connection services. The Port Mapper itself resides at a standard port number, 
7676. When a client sets up a connection with the broker, it first contacts the Port 
Mapper requesting the port number of the connection service it desires. 

httpjms
(Enterprise Edition)

NORMAL (JMS message delivery) http

httpsjms
(Enterprise Edition)

NORMAL (JMS message delivery) https (SSL-based security)

admin ADMIN tcp

ssladmin
(Enterprise Edition)

ADMIN tls (SSL-based security)

Table 2-2 Connection Services Supported by a Broker (Continued)

Service Name Service Type Protocol Type

Thread
Pool

Manager

Connection
Services

Port
Mapper

Thread
Pool

Manager

incoming
messages

outgoing
messages

 url

 url



MQ Message Server

48 Sun ONE Message Queue • Administrator’s Guide • October, 2002

You can also assign a static port number for the jms, ssljms, admin and ssladmin 
connection services when configuring these connection services, but this is not 
recommended. The httpjms and httpsjms services are configured using properties 
described in Table B-1 on page 217 and Table B-3 on page 226, respectively, in 
Appendix B, “HTTP/HTTPS Support (Enterprise Edition).”

Each connection service is multi-threaded, supporting multiple connections. The 
threads needed for these connections are maintained in a thread pool managed by 
a Thread Pool Manager component. You can configure the Thread Pool Manager to 
set a minimum number and maximum number of threads maintained in the thread 
pool. As threads are needed by connections, they are added to the thread pool. 
When the minimum number is exceeded, the system will shut down threads as 
they become free until the minimum number threshold is reached, thereby saving 
on memory resources. You want this number to be large enough so that new 
threads do not have to be continually created. Under heavy connection loads, the 
number of threads might increase until the thread pool’s maximum number is 
reached, after which connections have to wait until a thread becomes available. 

The threads in a thread pool can either be dedicated to a single connection 
(dedicated model) or assigned to multiple connections, as needed (shared model). 

Dedicated model In the dedicated model, each connection to the broker requires 
two threads: one dedicated to handling incoming messages and one to handling 
outgoing messages. This limits the number of connections to half the maximum 
number of threads in the thread pool, however it provides for high performance.

Shared model (Enterprise Edition) In the shared thread model, connections are 
assigned to a thread only when sending or receiving messages. This model, in 
which connections share a thread, increases the number of connections that a 
connection service (and therefore, a broker) can support, however there is some 
performance overhead involved. The Thread Pool Manager uses a set of distributor 
threads that monitor connection activity and assign connections to threads as 
needed. You can improve performance by limiting the number of connections 
monitored by each such distributor thread.

Each connection service supports specific authentication and authorization (access 
control) features (see “Security Manager” on page 57).

The configurable properties related to connection services are shown in Table 2-3. 
(For instructions on configuring these properties, see Chapter 5, “Starting and 
Configuring a Broker.”)



MQ Message Server

Chapter 2 The MQ Messaging System 49

Table 2-3 Connection Service Properties

Property Name Description

imq.service.activelist List of connection services, by name, separated by 
commas, to be made active at broker startup. 
Supported services are: jms, ssljms, httpjms, 
httpsjms, admin, ssladmin. Default: jms, admin

imq.service_name.
min_threads

Specifies the number of threads, which once reached, 
are maintained in the thread pool for use by the named 
connection service. Default: Depends on connection 
service (see Table 5-1 on page 116).

imq.service_name.
max_threads

Specifies the number of threads beyond which no new 
threads are added to the thread pool for use by the 
named connection service. The number must be greater 
than zero and greater in value than the value of 
min_threads. Default: Depends on connection service 
(see Table 5-1 on page 116).

imq.service_name.
threadpool_model

Specifies whether threads are dedicated to connections 
(dedicated) or shared by connections as needed 
(shared) for the named connection service. Shared 
model (threadpool management) increases the number 
of connections supported by a broker, but is 
implemented only for the jms and admin connection 
services. Default: Depends on connection service (see 
Table 5-1 on page 116).

imq.shared.
connectionMonitor_limit

For shared threadpool model only, specifies the 
maximum number of connections that can be 
monitored by a distributor thread. (The system 
allocates enough distributor threads to monitor all 
connections.) The smaller this value, the faster the 
system can assign active connections to threads. A 
value of 0 means no limit. Default: Depends on 
operating system (see Table 5-1 on page 116).

imq.portmapper.port The broker’s primary port—the port at which the Port 
Mapper resides. If you are running more than one 
broker instance on a host, each must be assigned a 
unique Port Mapper port. Default: 7676 



MQ Message Server

50 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Message Router
Once connections have been established between clients and a broker using the 
supported connection services, the routing and delivery of messages can proceed.

Basic Delivery Mechanisms
Broadly speaking, the messages handled by a broker fall into two categories: the 
JMS messages sent by producer clients, destined for consumer clients—payload 
messages, and a number of control messages that are sent to and from clients in 
order to support the delivery of the JMS messages.

If the incoming message is a JMS message, the broker routes it to consumer clients, 
based on the type of its destination (queue or topic):

• If the destination is a topic, the JMS message is immediately routed to all active 
subscribers to the topic. In the case of inactive durable subscribers, the Message 
Router holds the message until the subscriber becomes active, and then 
delivers the message to that subscriber. 

• If the destination is a queue, the JMS message is placed in the corresponding 
queue, and delivered to the appropriate consumer when the message reaches 
the front of the queue. The order in which messages reach the front of the 
queue depends on the order of their arrival and on their priority.

imq.service_name.
protocol_type1.port

For jms, ssljms, admin, and ssladmin services only, 
specifies the port number for the named connection 
service. Default: 0 (port is dynamically allocated by the 
Port Mapper)

To configure the httpjms and httpsjms connection 
services, see Appendix B, “HTTP/HTTPS Support 
(Enterprise Edition).” 

imq.service_name.
protocol_type1.hostname

For jms, ssljms, admin, and ssladmin services only, 
specifies the host (hostname or IP address) to which the 
named connection service binds if there is more than 
one host available (for example, if there is more than 
one network interface card in a computer). 
Default: null (any host)

1 protocol_type is specified in Table 2-2.

Table 2-3 Connection Service Properties (Continued)

Property Name Description



MQ Message Server

Chapter 2 The MQ Messaging System 51

Once the Message Router has delivered a message to all its intended consumers it 
clears the message from memory, and if the message is persistent (see “Reliable 
Messaging” on page 39), removes it from the broker’s persistent data store.

Reliable Delivery: Acknowledgements, and Transactions
The delivery mechanism just described becomes more complicated when adding 
requirements for reliable delivery (see “Reliable Messaging” on page 39). There are 
two aspects involved in reliable delivery: assuring that delivery of messages to and 
from a broker is successful, and assuring that the broker does not lose messages or 
delivery information before messages are actually delivered.

To ensure that messages are successfully delivered to and from a broker, MQ uses 
a number of control messages called acknowledgements. 

For example, when a producer sends a JMS message (a payload message as 
opposed to a control message) to a destination, the broker sends back a control 
message—a broker acknowledgement—that it received the JMS message. (In 
practice, MQ only does this if the producer specifies the JMS message as 
persistent.) The producing client uses the broker acknowledgement to guarantee 
delivery to the destination (see “Message Production” on page 74). 

Similarly, when a broker delivers a JMS message to a consumer, the consuming 
client sends back an acknowledgement that it has received and processed the 
message. A client specifies how automatically or how frequently to send these 
acknowledgments when creating session objects, but the principle is that the 
Message Router will not delete a JMS message from memory if it has not received 
an acknowledgement from each message consumer to which it has delivered the 
message—for example, from each of the multiple subscribers to a topic. 

In the case of durable subscribers to a topic, the Message Router retains each JMS 
message in that destination, delivering it as each durable subscriber becomes an 
active consumer. The Message Router records client acknowledgements as they are 
received, and deletes the JMS message only after all the acknowledgements have 
been received (unless the JMS message expires before then).

Furthermore, the Message Router confirms receipt of the client acknowledgement 
by sending a broker acknowledgement back to the client. The consuming client 
uses the broker acknowledgement to make sure that the broker will not deliver a 
JMS message more than once (see “Message Consumption” on page 74). This could 
happen if, for some reason, the broker fails to receive the client acknowledgement). 



MQ Message Server

52 Sun ONE Message Queue • Administrator’s Guide • October, 2002

If the broker does not receive a client acknowledgement and re-delivers a JMS 
message a second time, the message is marked with a Redeliver flag. The broker 
generally re-delivers a JMS message if a client connection closes before the broker 
receives a client acknowledgement, and a new connection is subsequently opened. 
For example, if a message consumer of a queue goes off line before acknowledging 
a message, and another consumer subsequently registers with the queue, the 
broker will re-deliver the unacknowledged message to the new consumer. 

The client and broker acknowledgement processes described above apply, as well, 
to JMS message deliveries grouped into transactions. In such cases, client and 
broker acknowledgements operate on the level of a transaction as well as on the 
level of individual JMS message sends or receives. When a transaction commits, a 
broker acknowledgement is sent automatically. 

The broker tracks transactions, allowing them to be committed or rolled back 
should they fail. This transaction management also supports local transactions that 
are part of larger, distributed transactions (see “Distributed Transactions” on 
page 40). The broker tracks the state of these transactions until they are committed. 
When a broker starts up it inspects all uncommitted transactions and, by default, 
rolls back all transactions except those in a PREPARED state.

Reliable Delivery: Persistence
The other aspect of reliable delivery is assuring that the broker does not lose 
messages or delivery information before messages are actually delivered. In 
general, messages remain in memory until they have been delivered or they expire. 
However, if the broker should fail, these messages would be lost.

A producer client can specify that a message be persistent, and in this case, the 
Message Router will pass the message to a Persistence Manager that stores the 
message in a database or file system (see “Persistence Manager” on page 54) so that 
the message can be recovered if the broker fails. 

Managing System Resources
The performance of a broker depends on the system resources available and how 
efficiently resources such as memory are utilized. For example, the Message Router 
has a memory management scheme that watches memory on the system. When 
memory resources become scarce, mechanisms for reclaiming memory and for 
slowing the flow of incoming messages are activated. 

The memory management mechanism depends on the state of memory resources: 
green (plenty of memory is available), yellow (broker memory is running low), 
orange (broker is low on memory), red (broker is out of memory). As the state of 
memory resources progresses from green through yellow and orange to red, the 
broker takes increasingly serious action to reclaim memory and to throttle back 
message producers, eventually stopping the flow of messages into the broker. 



MQ Message Server

Chapter 2 The MQ Messaging System 53

You can configure the broker’s memory management functions using properties 
that set limits on the total number and total size of messages in memory, and that 
adjust the utilization thresholds at which memory resources change to a new state.

These properties are detailed in Table 2-4. (For instructions on setting these 
properties, see Chapter 5, “Starting and Configuring a Broker.”) 

Table 2-4 Message Router Properties

Property Name Description

imq.message.expiration.
interval

Specifies how often reclamation of expired messages 
occurs, in seconds. Default: 60 

imq.system.max_count Specifies maximum number of messages in both 
memory and disk (due to swapping). Additional 
messages will be rejected. A value of 0 means no limit. 
Default: 0 

imq.system.max_size Specifies maximum total size (in bytes, Kbytes, or 
Mbytes) of messages in both memory and disk (due to 
swapping). Additional messages will be rejected. A 
value of 0 means no limit. Default: 0 

imq.message.max_size Specifies maximum allowed size (in bytes, Kbytes, or 
Mbytes) of a message body. Any message larger than 
this will be rejected. A value of 0 means no limit. 
Default: 70m (Mbytes)

imq.resource_state.
threshold

Specifies the percent memory utilization at which 
each memory resource state is triggered. The resource 
state can have the values green, yellow, orange, 
and red. Defaults: 0, 60, 75, and 90, respectively

imq.redelivered.
optimization

Specifies (true/false) whether Message Router 
optimizes performance by setting Redeliver flag 
whenever messages are re-delivered (true) or only 
when it is logically necessary to do so (false). 
Default: true 

imq.transaction.
autorollback

Specifies (true/false) whether distributed 
transactions left in a PREPARED state are 
automatically rolled back when a broker is started up. 
If false, you must manually commit or roll back 
transactions using imqcmd (see “Managing 
Transactions” on page 157). Default: false 



MQ Message Server

54 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Persistence Manager
For a broker to recover, in case of failure, it needs to recreate the state of its message 
delivery operations. This requires it to save all persistent messages, as well as 
essential routing and delivery information, to a data store. A Persistence Manager 
component manages the writing and retrieval of this information. 

To recover a failed broker requires more than simply restoring undelivered 
messages. The broker must also be able to do the following:

• re-create destinations

• restore the list of durable subscriptions for each topic

• restore the acknowledge list for each message

• reproduce the state of all committed transactions

The Persistence Manager manages the storage and retrieval of all this state 
information.

When a broker restarts, it recreates destinations and durable subscriptions, 
recovers persistent messages, restores the state of all transactions, and recreates its 
routing table for undelivered messages. It can then resume message delivery.

MQ supports both built-in and plugged-in persistence modules (see Figure 2-4). 
Built-in persistence is based on a flat file data store. Plugged-in persistence uses a 
Java Database Connectivity (JDBC) interface and requires a JDBC-compliant data 
store. The built-in persistence is generally faster than plugged-in persistence; 
however, some users prefer the redundancy and administrative features of using a 
JDBC-compliant database system.

Figure 2-4 Persistence Manager Support 

Persistence
Manager

JDBC-compliant
Data Store

plugged-in
persistence

built-in
persistence Flat File

Data Store Two
Persistence
Options



MQ Message Server

Chapter 2 The MQ Messaging System 55

Built-in persistence
The default MQ persistent storage solution is a flat file store. This approach uses 
individual files to store persistent data, such as messages, destinations, durable 
subscriptions, and transactions. 

The flat file data store is located at:

IMQ_VARHOME/instances/brokerName/filestore/
(/var/imq/instances/brokerName/filestore/ on Solaris)

where brokerName is a name identifying the broker instance.

The file-based data store is structured so that persistent messages are each stored in 
their own respective file, one message per file. Destinations, durable subscriptions, 
and transactions, however, are all stored in a separate file for each, all destinations 
in one file, all durable subscriptions in another, and so on.

To create and delete files, as messages are added to and deleted from the data store, 
involves expensive file system operations. The MQ implementation therefore 
reuses these message files: when a file is no longer needed, instead of being 
deleted, it is added to a pool of free files available for re-use. You can configure the 
size of this file pool. You can also specify the percentage of free files in the file pool 
that are cleaned up (truncated to zero), as opposed to being simply tagged for reuse 
(not truncated). The higher the percentage of cleaned files, the less disk space—but 
the more overhead—is required to maintain the file pool. You can also specify 
whether or not tagged files will be cleaned up at shutdown. If the files are cleaned 
up, they will take up less disk space, but the broker will take longer to shut down.

The speed of storing messages in the flat file store is affected by the number of file 
descriptors available for use by the data store; a large number of descriptors will 
allow the system to process large numbers of persistent messages faster. For 
information on increasing the number of file descriptors, see the “Technical Notes” 
section of the MQ Release Notes.

Also, in the case of the destination file store, it is more efficient to add destinations 
to a fixed-size file than to increase the size of the file as destinations are added. 
Therefore, you can improve performance by setting the original size of the 
destination file in accordance with the number of destinations you expect it to 
ultimately store (each destination consumes about 500 bytes). 

Because the data store can contain messages with proprietary information, it is 
recommended that the brokerName/filestore/ directory be secured against 
unauthorized access. For instructions, see the “Technical Notes” section of the MQ 
Release Notes.



MQ Message Server

56 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Plugged-in persistence
You can set up a broker to access any data store accessible through a JDBC driver. 
This involves setting a number of JDBC-related broker configuration properties 
and using the Database manager utility (imqdbmgr) to create a data store with the 
proper schema. The procedures and related configuration properties are detailed 
in Appendix A, “Setting Up Plugged-in Persistence.”

Persistence-related configuration properties are detailed in Table 2-5 on page 56. 
(For instructions on setting these properties, see Chapter 5, “Starting and 
Configuring a Broker.”) 

Table 2-5 Persistence Properties

Property Name Description

imq.persist.store Specifies whether the broker is using built-in, 
file-based (file) persistence or plugged-in 
JDBC-compliant (jdbc) persistence. Default: file 

imq.persist.file.
destination.file.size

For built-in, file-based persistence, specifies the 
initial size of the file used to store destinations. 
Default: 1m (Mbytes)

imq.persist.file.message.
filepool.limit

For built-in, file-based persistence, specifies the 
maximum number of free files available for reuse in 
the file pool. The larger the number the faster the 
broker can process persistent data. Free files in 
excess of this value will be deleted. The broker will 
create and delete additional files, in excess of this 
limit, as needed. Default: 10000 

imq.persist.file.message.
filepool.cleanratio

For built-in, file-based persistence, specifies the 
percentage of free files in the file pool that are 
maintained in a clean state (truncated to zero). The 
higher this value, the more overhead required to 
clean files during operation, but the less disk space 
required for the file pool. Default: 0 

imq.persist.file.message.
cleanup

For built-in, file-based persistence, specifies whether 
or not the broker cleans up free files in the file store 
on shutdown. A value of false speeds up broker 
shutdown, but requires more disk space for the file 
store. Default: false



MQ Message Server

Chapter 2 The MQ Messaging System 57

Security Manager
MQ provides authentication and authorization (access control) features, and also 
supports encryption capabilities. 

The authentication and authorization features depend upon a user repository (see 
Figure 2-5 on page 58): a file, directory, or database that contains information about 
the users of the messaging system—their names, passwords, and group 
memberships. The names and passwords are used to authenticate a user when a 
connection to a broker is requested. The user names and group memberships are 
used, in conjunction with an access control file, to authorize operations such as 
producing or consuming messages for destinations.

MQ administrators populate an MQ-provided user repository (see “Using a 
Flat-File User Repository” on page 182), or plug a pre-existing LDAP user 
repository into the Security Manager component. The flat-file user repository is 
easy to use, but is also vulnerable to security attack, and should therefore be used 
only for evaluation and development purposes, while the LDAP user repository is 
secure and therefore best suited for production purposes.

Authentication
MQ security supports password-based authentication. When a client requests a 
connection to a broker, the client must submit a user name and password. The 
Security Manager compares the name and password submitted by the client to 
those stored in the user repository. On transmitting the password from client to 

imq.persist.file.message.
fdpool.limit

For built-in, file-based persistence, specifies the 
maximum number of data files to keep open (that is, 
the size of the file descriptor pool). A larger number 
increases the performance of persistence operations, 
but at the expense of other broker operations that 
require file descriptors, such as creating client 
connections. Default: 25 (Solaris and Linux), 
1024 (Windows)

imq.persist.file.sync.
enabled

Specifies whether persistence operations 
synchronize in-memory state with the physical 
storage device. If true, data loss due to system 
crash is eliminated, but at the expense of 
performance of persistence operations. 
Default: false 

Table 2-5 Persistence Properties (Continued)

Property Name Description



MQ Message Server

58 Sun ONE Message Queue • Administrator’s Guide • October, 2002

broker, the passwords are encoded using either base 64 encoding or message digest 
(MD5). For more secure transmission, see “Encryption (Enterprise Edition)” on 
page 59. You can separately configure the type of encoding used by each 
connection service or set the encoding on a broker-wide basis.

Authorization
Once the user of a client application has been authenticated, the user can be 
authorized to perform various MQ-related activities. The Security Manager 
supports both user-based and group-based access control: depending on a user’s 
name or the groups to which the user is assigned in the user repository, that user 
has permission to perform certain MQ operations. You specify these access controls 
in an access control properties file (see Figure 2-5).

When a user attempts to perform an operation, the Security Manager checks the 
user’s name and group membership (from the user repository) against those 
specified for access to that operation (in the access control properties file). The 
access control properties file specifies permissions for the following operations:

• establishing a connection with a broker

• accessing destinations: creating a consumer, a producer, or a queue browser 
for any given destination or all destinations

• auto-creating destinations

Figure 2-5 Security Manager Support 

LDAP Server
User Repository

Security
Manager

Flat File
User Repository

Access Control
Properties File

authentication

authorization

Two
User Repository
Options



MQ Message Server

Chapter 2 The MQ Messaging System 59

For MQ 3.0.1, the default access control properties file explicitly references only 
one group: admin (see “Groups” on page 185). A user in the admin group has admin 
service connection permission. The admin service lets the user perform 
administrative functions such as creating destinations, and monitoring and 
controlling a broker. A user in any other group you define cannot, by default, get 
an admin service connection. 

As an MQ administrator you can define groups and associate users with those 
groups in a user repository (though groups are not fully supported in the flat-file 
user repository). Then, by editing the access control properties file, you can specify 
access to destinations by users and groups for the purpose of producing and 
consuming messages, or browsing messages in queue destinations. You can make 
individual destinations or all destinations accessible only to specific users or 
groups. 

In addition, if the broker is configured to allow auto-creation of destinations (see 
“Auto-Created (vs. Admin-Created) Destinations” on page 67), you can control for 
whom the broker can auto-create destinations by editing the access control 
properties file.

Encryption (Enterprise Edition)
To encrypt messages sent between clients and broker, you need to use a connection 
service based on the Secure Socket Layer (SSL) standard. SSL provides security at a 
connection level by establishing an encrypted connection between an SSL-enabled 
broker and an SSL-enabled client.

To use an MQ SSL-based connection service, you generate a private key/public 
key pair using the Key Tool utility (imqkeytool). This utility embeds the public 
key in a self-signed certificate and places it in an MQ keystore. The MQ keystore is, 
itself, password protected; to unlock it, you have to provide a keystore password at 
startup time. See “Encryption: Working With an SSL Service (Enterprise Edition)” 
on page 198.

Once the keystore is unlocked, a broker can pass the certificate to any client 
requesting a connection. The client then uses the certificate to set up an encrypted 
connection to the broker. 



MQ Message Server

60 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The configurable properties for authentication, authorization, encryption, and 
other secure communications are shown in Table 2-6. (For instructions on 
configuring these properties, see Chapter 5, “Starting and Configuring a Broker.”) 

Table 2-6 Security Properties

Property Name Description

imq.authentication.type Specifies whether the password should be passed in 
base 64 coding (basic) or as a MD5 digest (digest). 
Sets encoding for all connection services supported by 
a broker. Default: digest 

imq.service_name.
authentication.type

Specifies whether the password should be passed in 
base 64 coding (basic) or as a MD5 digest (digest). 
Sets encoding for named connection service, 
overriding any broker-wide setting. 
Default: inherited from the value to which 
imq.authentication.type is set.

imq.authentication.
basic.user_repository

Specifies (for base 64 coding) the type of user 
repository used for authentication, either file-based 
(file) or LDAP (ldap). For additional LDAP 
properties, see Table 8-5 on page 189. Default: file 

imq.authentication.
client.response.timeout

Specifies the time (in seconds) the system will wait for 
a client to respond to an authentication request from 
the broker. Default: 180 (seconds)

imq.accesscontrol.
enabled

Sets access control (true/false) for all connection 
services supported by a broker. Indicates whether 
system will check if an authenticated user has 
permission to use a connection service or to perform 
specific MQ operations with respect to specific 
destinations, as specified in the access control 
properties file. Default: true

imq.service_name.
accesscontrol.enabled

Sets access control (true/false) for named 
connection service, overriding broker-wide setting. 
Indicates whether system will check if an 
authenticated user has permission to use the named 
connection service or to perform specific MQ 
operations with respect to specific destinations, as 
specified in the access control properties file. 
Default: inherits the setting of the property 
imq.accesscontrol.enabled



MQ Message Server

Chapter 2 The MQ Messaging System 61

Logger
The broker includes a number of components for monitoring and diagnosing its 
operation. Among these are components that generate data (broker code, a metrics 
generator, and debugger) and a Logger component that writes out information 
through a number of output channels (log file, console, and Solaris syslog). The 
scheme is illustrated in Figure 2-6.

imq.accesscontrol.file.
filename

Specifies the name of an access control properties file 
for all connection services supported by a broker. The 
file name specifies a relative file path to the directory 
IMQ_HOME/etc (/etc/imq on Solaris). 
Default: accesscontrol.properties 

imq.service_name.
accesscontrol.file.
filename

Specifies the name of an access control properties file 
for named connection service. The file name specifies a 
relative file path to the directory IMQ_HOME/etc 
(/etc/imq on Solaris). 
Default: inherits the setting specified by 
imq.accesscontrol.file.filename.

imq.passfile.enabled Specifies (true/false) if user passwords (for SSL, 
LDAP, JDBC) for secure communications are specified 
in a passfile. Default: false 

imq.passfile.dirpath Specifies the path to the directory containing the 
passfile. 
Default: IMQ_HOME/etc (/etc/imq on Solaris)

imq.passfile.name Specifies the name of the passfile. Default: passfile

imq.keystore.property_name For SSL-based services: specifies security properties 
relating to the SSL keystore. See Table 8-8 on page 200.

Table 2-6 Security Properties (Continued)

Property Name Description



MQ Message Server

62 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Figure 2-6 Logging Scheme 

You can turn the generation of metrics data on and off, and specify how frequently 
metrics reports are generated.

You can also specify the Logger level—ranging from the most serious and 
important information (errors), to less crucial information (metrics data). The 
categories of information, in decreasing order of criticality, are shown in Table 2-7:

To set the Logger level, you specify one of these categories. The logger will write 
out data of the specified category and all higher categories. For example, if you 
specify logging at the WARNING level, the Logger will write out warning information 
and error information.

The Logger can write data to a number of output channels: to standard output (the 
console), to a log file, and, on Solaris platforms, to the syslog daemon process. 

Table 2-7 Logging Categories

Category Description

ERROR Messages indicating problems that could cause system failure

WARNING Alerts that should be heeded but will not cause system failure

INFO Reporting of metrics and other informational messages

Metrics
Generator

Debugger

Logger

ERROR
WARNING
INFO

log file

console

Output
ChannelsBroker

Code

syslog (Solaris)



MQ Message Server

Chapter 2 The MQ Messaging System 63

For each output channel you can specify which of the categories set for the Logger 
will be written to that channel. For example, if the Logger level is set to ERROR, you 
can specify that you want only errors and warnings written to the console, and 
only info (metrics data) written to the log file. For information on configuring and 
using the Solaris syslog, see the syslog(1M), syslog.conf(4) and syslog(3C) man 
pages.

In the case of a log file, you can specify the point at which the log file is closed and 
output is rolled over to a new file. Once the log file reaches a specified size or age, it 
is saved and a new log file created. The log file is saved at the following location:

IMQ_VARHOME/instances/brokerName/log/
(/var/imq/instances/brokerName/log /on Solaris)

An archive of the 9 most recent log files is retained as new rollover log files are 
created. The log files are text files that are named sequentially as follows:

log.txt
log_1.txt
log_2.txt
...
log_9.txt

The log.txt is the most recent file, and the highest numbered file is the oldest.

The configurable properties for setting the generation and logging of information 
by the broker are shown in Table 2-8. (For instructions on configuring these 
properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-8 Logger Properties

Property Name Description

imq.metrics.enabled Specifies (true/false) whether metrics 
information is being gathered. Default: true 

imq.metrics.interval Specifies the time interval, in seconds, at which 
metrics information is reported. A value of 0 
means never. Default: 0 

imq.log.level Specifies the Logger level: the categories of output 
that can be written to an output channel. Includes 
the specified category and all higher level 
categories as well. Values, from high to low, are: 
ERROR, WARNING, INFO. Default: INFO 

imq.log.file.output Specifies which categories of logging information 
are written to the log file. Allowed values are: any 
set of logging categories separated by vertical bars 
(|), or ALL, or NONE. Default: ALL 



MQ Message Server

64 Sun ONE Message Queue • Administrator’s Guide • October, 2002

imq.log.file.dirpath Specifies the path to the directory containing the 
log file. Default: 
IMQ_VARHOME/instances/brokerName/log/
(/var/imq/instances/brokerName/log/ 
on Solaris)

imq.log.file.filename Specifies the name of the log file. 
Default: log.txt 

imq.log.file.rolloverbytes Specifies the size, in bytes, of log file at which 
output rolls over to a new log file. A value of 0 
means no rollover based on file size. Default: 0 

imq.log.file.rolloversecs Specifies the age, in seconds, of log file at which 
output rolls over to a new log file. A value of 0 
means no rollover based on age of file. 
Default: 604800 (one week)

imq.log.console.output Specifies which categories of logging information 
are written to the console. Allowed values are any 
set of logging categories separated by vertical bars 
(|), or ALL, or NONE. 
Default: ERROR| WARNING 

imq.log.console.stream Specifies whether console output is written to 
stdout (OUT) or stderr (ERR). Default: ERR 

imq.log.syslog.facility (Solaris only) Specifies what syslog facility the MQ 
broker should log as. Values mirror those listed in 
the syslog(3C) man page. Appropriate values for 
use with MQ are: LOG_USER, LOG_DAEMON, and 
LOG_LOCAL0 through LOG_LOCAL7. 
Default: LOG_DAEMON

imq.log.syslog.logpid (Solaris only) Specifies (true/false) whether to 
log the broker process ID with the message or not. 
Default: true

imq.log.syslog.console (Solaris only) Specifies (true/false) whether to 
write messages to the system console if they cannot 
be sent to syslog. Default: false

imq.log.syslog.identity (Solaris only) Specifies the identity string that 
should be prepended to every message logged to 
syslog. Default: imqbrokerd_ followed by the 
broker instance name.

Table 2-8 Logger Properties (Continued)

Property Name Description



MQ Message Server

Chapter 2 The MQ Messaging System 65

Physical Destinations
MQ messaging is premised on a two-phase delivery of messages: first, delivery of a 
message from a producer client to a destination on the broker, and second, delivery 
of the message from the destination on the broker to one or more consumer clients. 
There are two types of destinations (see “Programming Domains” on page 37): 
queues (point-to-point delivery model) and topics (publish/subscribe delivery 
model). These destinations represent locations in a broker’s physical memory 
where incoming messages are marshaled before being routed to consumer clients.

You create physical destinations using MQ administration tools (see “Managing 
Destinations” on page 152). Destinations can also be automatically created as 
described in “Auto-Created (vs. Admin-Created) Destinations” on page 67.

This section describes the properties and behaviors of the two types of physical 
destinations: queues and topics.

Queue Destinations
Queue destinations are used in point-to-point messaging, where a message is 
meant for ultimate delivery to only one of a number of consumers that has 
registered an interest in the destination. As messages arrive from producer clients, 
they are queued and delivered to a consumer client. 

The routing of queued messages depends on the queue’s delivery policy. MQ 
implements three queue delivery policies:

• Single This queue can only route messages to one message consumer. If a 
second message consumer attempts to register with the queue, it is rejected. If 
the registered message consumer disconnects, routing of messages no longer 
takes place and messages are saved until a new consumer is registered.

imq.log.syslog.output (Solaris only) Specifies which categories of logging 
information are written to syslogd(1M). Allowed 
values are any logging categories separated by 
vertical bars (|), or ALL, or NONE. Default: ERROR

Table 2-8 Logger Properties (Continued)

Property Name Description



MQ Message Server

66 Sun ONE Message Queue • Administrator’s Guide • October, 2002

• Failover (Enterprise Edition) This queue can route messages to more than 
one message consumer, but it will only do so if its primary message consumer 
(the first to register with the broker) disconnects. In that case, messages will go 
to the next message consumer to register, and continue to be routed to that 
consumer until such time as that consumer fails, and so on. If no message 
consumer is registered, messages are saved until a consumer registers.

• Round-Robin (Enterprise Edition) This queue can route messages to more 
than one message consumer. Assuming that a number of consumers are 
registered for a queue, the first message into the queue will be routed to the 
first message consumer to have registered, the second message to the second 
consumer to have registered, and so on. Additional messages are routed to the 
same set of consumers in the same order. If a number of messages are queued 
up before consumers register for a queue, the messages are routed in batches to 
avoid flooding any one consumer. If any message consumer disconnects, the 
messages routed to that consumer are redistributed among the remaining 
active consumers. Because of such redistributions, there is no guarantee that 
the order of delivery of messages to consumers is the same as the order in 
which they are received in the queue.

Since messages can remain in a queue for an extended period of time, memory 
resources can become an issue. You don’t want to allocate too much memory to a 
queue (memory is under-utilized), nor do you want to allocate too little (messages 
will be rejected). To allow for flexibility, based on the load demands of each queue, 
you can set physical properties when creating a queue: maximum number of 
messages in queue, maximum memory allocated for messages in queue, and 
maximum size of any message in queue (see Table 6-10 on page 153).

Topic Destinations
Topic destinations are used in publish/subscribe messaging, where a message is 
meant for ultimate delivery to all of the consumers that have registered an interest 
in the destination. As messages arrive from producers, they are routed to all 
consumers subscribed to the topic. If consumers have registered a durable 
subscription to the topic, they do not have to be active at the time the message is 
delivered to the topic—the broker will store the message until the consumer is once 
again active, and then deliver the message.

Messages do not normally remain in a topic destination for an extended period of 
time, so memory resources are not normally a big issue. However, you can 
configure the maximum size allowed for any message received by the destination 
(see Table 6-10 on page 153).



MQ Message Server

Chapter 2 The MQ Messaging System 67

Auto-Created (vs. Admin-Created) Destinations
Because a JMS message server is a central hub in a messaging system, its 
performance and reliability are important to the success of enterprise applications. 
Since destinations can consume significant resources (depending on the number 
and size of messages they handle, and on the number and durability of the 
message consumers that register), they need to be managed closely to guarantee 
message server performance and reliability. It is therefore standard practice for an 
MQ administrator to create destinations on behalf of an application, monitor the 
destinations, and reconfigure their resource requirements when necessary.

Nevertheless, there may be situations in which it is desirable for destinations to be 
created dynamically. For example, during a development and test cycle, you might 
want the broker to automatically create destinations as they are needed, without 
requiring the intervention of an administrator.

MQ supports this auto-create capability. When auto-creation is enabled, a broker 
automatically creates a destination whenever a MessageConsumer or 
MessageProducer attempts to access a non-existent destination. (The user of the 
client application must have auto-create privileges—see “Destination Auto-Create 
Access Control” on page 197).

However, when destinations are created automatically instead of explicitly, clashes 
between different client applications (using the same destination name), or 
degraded system performance (due to the resources required to support a 
destination) can result. For this reason, an MQ auto-created destination is 
automatically destroyed by the broker when it is no longer being used: that is, 
when it no longer has message consumer clients and no longer contains any 
messages. If a broker is restarted, it will only re-create auto-created destinations if 
they contain persistent messages.

You can configure an MQ message server to enable or disable the auto-create 
capability using the properties shown in Table 2-9. (For instructions on configuring 
these properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-9 Auto-create Configuration Properties

Property Name Description

imq.autocreate.topic Specifies (true/false) whether a broker is allowed 
to auto-create a topic destination. Default: true 

imq.autocreate.queue Specifies (true/false) whether a broker is allowed 
to auto-create a queue destination. Default: true 

imq.queue.deliverypolicy Specifies the default delivery policy of auto-created 
queues. Values are: single, round-robin, or 
failover. Default: single



MQ Message Server

68 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Temporary Destinations
Temporary destinations are explicitly created and destroyed (using the JMS API) 
by client applications that need a destination at which to receive replies to 
messages sent to other clients. These destinations are maintained by the broker 
only for the duration of the connection for which they are created. A temporary 
destination cannot be destroyed by an administrator, and it cannot be destroyed by 
a client application as long as it is in use: that is, if it has active message consumers. 
Temporary destinations, unlike admin-created or auto-created destinations (that 
have persistent messages), are not stored persistently and are never re-created 
when a broker is restarted. They also are not visible to MQ administration tools.

Multi-Broker Clusters (Enterprise Edition)
The MQ Enterprise Edition supports the implementation of a message server using 
multiple interconnected broker instances—a broker cluster. Cluster support 
provides for scalability of your message server. 

As the number of clients connected to a broker increases, and as the number of 
messages being delivered increases, a broker will eventually exceed resource 
limitations such as file descriptor and memory limits. One way to accommodate 
increasing loads is to add more brokers (that is, more broker instances) to an MQ 
message server, distributing client connections and message delivery across 
multiple brokers.

You might also use multiple brokers to optimize network bandwidth. For example, 
you might want to use slower, long distance network links between a set of remote 
brokers, while using higher speed links for connecting clients to their respective 
brokers.

While there are other reasons for using broker clusters (for example, to 
accommodate workgroups having different user repositories, or to deal with 
firewall restrictions), failover is not one of them. One broker in a cluster cannot be 
used as an automatic backup for another that fails. Automatic failover protection 
for a broker is not supported in MQ Version 3.0.1. (However, an application could 
be designed to use multiple brokers to implement a customized failover scheme.)

Information on configuring and managing a broker cluster is provided in 
“Working With Clusters (Enterprise Edition)” on page 126. 

The following sections explain the architecture and internal functioning of MQ 
broker clusters.



MQ Message Server

Chapter 2 The MQ Messaging System 69

Multi-Broker Architecture
A multi-broker message server allows client connections to be distributed among a 
number of broker instances, as shown in Figure 2-7. From a client point of view, 
each client connects to an individual broker (its home broker) and sends and 
receives messages as if the home broker were the only broker in the cluster. 
However, from a message server point of view, the home broker is working in 
tandem with other brokers in the cluster to provide delivery services to the 
message producers and consumers to which it is directly connected.

In general, the brokers within a cluster can be connected in any arbitrary topology. 
However, MQ Version 3.0.1 only supports fully-connected clusters, that is, a 
topology in which each broker is directly connected to every other broker in the 
cluster, as shown in Figure 2-7 on page 69.

Figure 2-7 Multi-Broker (Cluster) Architecture

In a multi-broker configuration, instances of each destination reside on all of the 
brokers in a cluster. In addition, each broker knows about message consumers that 
are registered with all other brokers. Each broker can therefore route messages 
from its own directly-connected message producers to remote message consumers, 
and deliver messages from remote producers to its own directly-connected 
consumers.

MQ Message Server

Broker2

Broker1

    Broker3

Client
Client

Clients

Client
Client

Clients

Client
Client

Clients
Configuration
Change Record

Destinations

Master Broker



MQ Message Server

70 Sun ONE Message Queue • Administrator’s Guide • October, 2002

In a cluster configuration, the broker to which each message producer is directly 
connected performs the routing for messages sent to it by that producer. Hence, a 
persistent message is both stored and routed by the message’s home broker.

Whenever an administrator creates or destroys a destination on a broker, this 
information is automatically propagated to all other brokers in a cluster. Similarly, 
whenever a message consumer is registered with its home broker, or whenever a 
consumer is disconnected from its home broker—either explicitly or because of a 
client or network failure, or because its home broker goes down—the relevant 
information about the consumer is propagated throughout the cluster. In a similar 
fashion, information about durable subscriptions is also propagated to all brokers in 
a cluster.

The propagation of information about destinations and message consumers to a 
particular broker would normally require that the broker be on line when a change 
is made in a shared resource. What happens if a broker is off line when such a 
change is made—for example, if a broker crashes and is subsequently restarted, or 
if a new broker is dynamically added to a cluster?

To accommodate a broker that has gone off line (or a new broker that is added), 
MQ maintains a record of changes made to all persistent entities in a cluster: that is, 
a record of all destinations and all durable subscriptions that have been created or 
destroyed. When a broker is dynamically added to a cluster, it first reads 
destination and durable subscriber information from this configuration change 
record. When it comes on line, it exchanges information about current active 
consumers with other brokers. With this information, the new broker is fully 
integrated into the cluster.

The configuration change record is managed by one of the brokers in the cluster, a 
broker designated as the Master Broker. Because the Master Broker is key to 
dynamically adding brokers to a cluster, you should always start this broker first. If 
the Master Broker is not on line, other brokers in the cluster will not be able to 
complete their initialization.

NOTE Heavy network traffic and/or large messages can clog internal 
cluster connections. The increased latency can sometimes cause 
locking protocol timeout errors. As a result, clients might get an 
exception when trying to create durable subscribers or queue 
message consumers. Normally these problems can be avoided by 
using a higher speed connection.



MQ Message Server

Chapter 2 The MQ Messaging System 71

If a Master Broker goes off line, the configuration change record cannot be accessed 
by other brokers, and MQ will not allow destinations and durable subscriptions to 
be propagated throughout the cluster. Under these conditions, you will get an 
exception if you try to create or destroy destinations or durable subscriptions (or 
attempt a number of related operations like re-activating a durable subscription). 

In a mission-critical application environment it is a good idea to make a periodic 
backup of the configuration change record to guard against accidental corruption 
of the record and safeguard against Master Broker failure. You can do this using 
the -backup option of the imqbrokerd command (see Table 5-2 on page 121), 
which provides a way to create a backup file containing the configuration change 
record. You can subsequently restore the configuration change record using the 
-restore option.

If necessary you can change the broker serving as the Master Broker by backing up 
the configuration change record, modifying the appropriate cluster configuration 
property (see Table 2-10 on page 72) to designate a new Master Broker, and 
restarting the new Master Broker using the -restore option.

Using Clusters in Development Environments
In development environments, where a cluster is used for testing, and where 
scalability and broker recovery are not important considerations, there is little need 
for a Master Broker. In environments configured without a Master Broker, MQ 
relaxes the requirement that a Master Broker be running in order to start other 
brokers, and allows changes in destinations and durable subscriptions to be made 
and to be propagated to all running brokers in a cluster. If a broker goes off line 
and is subsequently restored, however, it will not sync up with changes made 
while it was off line.

Under test situations, destinations are generally auto-created (see “Auto-Created 
(vs. Admin-Created) Destinations” on page 67) and durable subscriptions to these 
destinations are created and destroyed by the applications being tested. These 
changes in destinations and durable subscriptions will be propagated throughout 
the cluster. However, if you reconfigure the environment to use a Master Broker, 
MQ will re-impose the requirement that the Master Broker be running for changes 
to be made in destinations and durable subscriptions, and for these changes to be 
propagated throughout the cluster. 

Cluster Configuration Properties
Each broker in a cluster must be passed information at startup time about other 
brokers in a cluster (host names and port numbers). This information is used to 
establish connections between the brokers in a cluster. Each broker must also know 
the host name and port number of the Master Broker (if one is used). 



MQ Message Server

72 Sun ONE Message Queue • Administrator’s Guide • October, 2002

All brokers in a cluster should use the same cluster configuration properties. You 
can achieve this by placing them in one central cluster configuration file that is 
referenced by each broker at startup time. 

(You can also duplicate these configuration properties and provide them to each 
broker individually. However, this is not recommended because it can lead to 
inconsistencies in the cluster configuration. Keeping just one copy of the cluster 
configuration properties makes sure that all brokers see the same information.)

MQ cluster configuration properties are shown in Table 2-10. (For instructions on 
setting these properties, see “Working With Clusters (Enterprise Edition)” on 
page 126.) 

Table 2-10 Cluster Configuration Properties

Property Name Description

imq.cluster.brokerlist Specifies all the brokers in a cluster. Consists of a 
comma-separated list of host:port entries, where host is 
the host name of each broker and port is its Port 
Mapper port number.

imq.cluster.masterbroker Specifies which broker in a cluster (if any) is the 
Master Broker that keeps track of state changes. 
Property consists of host:port where host is the host 
name of the Master Broker and port is its Port Mapper 
port number.

imq.cluster.url Specifies the location of a cluster configuration file. 
Used in cases where brokers reference one central 
configuration file rather than being individually 
supplied with cluster properties values. Consists of a 
URL string: If kept on a web server it can be accessed 
using a normal http:URL. If kept on a shared drive it 
can be accessed using a file:URL

imq.cluster.port For each broker within a cluster, can be used to specify 
the port number for the cluster connection service. 
The cluster connection service is used for internal 
communication between brokers in a cluster. 
Default: 0 (port is dynamically allocated)



MQ Client Runtime

Chapter 2 The MQ Messaging System 73

The cluster configuration file can be used for storing all broker configuration 
properties that are common to a set of brokers. Though it was originally intended 
for configuring clusters, it can also be used to store other broker properties 
common to all brokers in a cluster.

MQ Client Runtime
The MQ client runtime provides client applications with an interface to the MQ 
message server—it supplies client applications with all the JMS programming 
objects introduced in “JMS Programming Model” on page 32. It supports all 
operations needed for clients to send messages to destinations and to receive 
messages from such destinations.

This section provides a high level description of how the MQ client runtime works. 
Factors that affect its performance are discussed in the MQ Developer’s Guide 
because they impact client application design and performance.

Figure 2-8 on page 74 illustrates how message production and consumption 
involve an interaction between client applications and the MQ client runtime, 
while message delivery involves an interaction between the MQ client runtime and 
the MQ message server. 

imq.cluster.hostname For each broker within a cluster, can be used to specify 
the host (hostname or IP address) to which the cluster 
connection service binds if there is more than one host 
available (for example, if there is more than one 
network interface card in a computer). The cluster 
connection service is used for internal communication 
between brokers in a cluster.
Default: null (all available hosts)

Table 2-10 Cluster Configuration Properties (Continued)

Property Name Description



MQ Client Runtime

74 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Figure 2-8 Messaging Operations

Message Production
In message production, a message is created by the client, and sent over a 
connection to a destination on a broker. If the message delivery mode of the 
MessageProducer object has been set to persistent (guaranteed delivery, once and 
only once), the client thread blocks until the broker acknowledges that the message 
was delivered to its destination and stored in the broker’s persistent data store. If 
the message is not persistent, no broker acknowledgement message (referred to as 
“Ack” in property names) is returned by the broker, and the client thread does not 
block. 

Message Consumption
Message consumption is more complex than production. Messages arriving at a 
destination on a broker are delivered over a connection to the MQ client runtime 
under the following conditions: 

• the client has set up a consumer for the given destination

• the selection criteria for the consumer, if any, match that of messages arriving 
at the given destination

• the connection has been told to start delivery of messages.

MQ Message Server

Broker
Brokers

Destinations

Message
consumption

Message
production

Message
delivery

JMS Client

MQ
Client Runtime



MQ Administered Objects

Chapter 2 The MQ Messaging System 75

Messages delivered over the connection are distributed to the appropriate MQ 
sessions where they are queued up to be consumed by the appropriate 
MessageConsumer objects, as shown in Figure 2-9. Messages are fetched off each 
session queue one at a time (a session is single threaded) and consumed either 
synchronously (by a client thread invoking the receive method) or 
asynchronously (by the session thread invoking the onMessage method of a 
MessageListener object).

Figure 2-9 Message Delivery to MQ Client Runtime 

When a broker delivers messages to the client runtime, it marks the messages 
accordingly, but does not really know if they have been received or consumed. 
Therefore, the broker waits for the client to acknowledge receipt of a message 
before deleting the message from the broker’s destination. 

MQ Administered Objects
Administered Objects allow client application code to be provider-independent. 
They do this by encapsulating provider-specific implementation and configuration 
information in objects that are used by client applications in a 
provider-independent way. Administered objects are created and configured by an 
administrator, stored in a name service, and accessed by client applications 
through standard JNDI lookup code.

Broker

Connection

Destinations

Client
Runtime

Session 3

Session 2

Session 1

Message
Consumers



MQ Administered Objects

76 Sun ONE Message Queue • Administrator’s Guide • October, 2002

MQ provides two types of administered objects: ConnectionFactory and 
Destination. While both encapsulate provider-specific information, they have 
very different uses within a client application. ConnectionFactory objects are 
used to create connections to the message server and Destination objects are used 
to identify physical destinations.

Administered objects make it very easy to control and manage an MQ message 
server:

• You can control the behavior of connections by requiring client applications to 
access pre-configured ConnectionFactory objects (see “Administered Object 
Attributes” on page 167). 

• You can control the proliferation of physical destinations by requiring client 
applications to access pre-configured Destination objects that correspond to 
existing physical destinations. (You also have to disable the brokers’s 
auto-create capability—see “Auto-Created (vs. Admin-Created) Destinations” 
on page 67).

• You can control MQ message server resources by overriding message header 
values set by client applications (see “Administered Object Attributes” on 
page 167).

This arrangement therefore gives you, as an MQ administrator, control over 
message server configuration details, and at the same time allows client 
applications to be provider-independent: they do not have to know about 
provider-specific syntax and object naming conventions (see “JMS Provider 
Independence” on page 37) or provider-specific configuration properties. 

You create administered objects using MQ administration tools, as described in 
Chapter 7, “Managing Administered Objects”. When creating an administered 
object, you can specify that it be read only—that is, client applications are 
prevented from changing MQ-specific configuration values you have set when 
creating the object. In other words, client code cannot set attribute values on 
read-only administered objects, nor can you override these values using client 
application startup options, as described in “Overriding Attribute Values at Client 
Startup” on page 78.

While it is possible for client applications to instantiate both ConnectionFactory 
and Destination administered objects on their own, this practice undermines the 
basic purpose of an administered object—to allow you, as an MQ administrator, to 
control broker resources required by an application and to tune its performance. In 
addition, directly instantiating administered objects makes client applications 
provider-specific, rather than provider-independent.



MQ Administered Objects

Chapter 2 The MQ Messaging System 77

Connection Factory Administered Objects
A ConnectionFactory object is used to establish physical connections between a 
client application and an MQ message server. It is also used to specify behaviors of 
the connection and of the client runtime that is using the connection to access a 
broker.

If you wish to support distributed transactions (see “Local Transactions” on 
page 40), you need to use a special XAConnectionFactory object that supports 
distributed transactions.

To create a ConnectionFactory administered object, see “Adding a Connection 
Factory” on page 174.

By configuring a ConnectionFactory administered object, you specify the 
attribute values (the properties) common to all the connections that it produces. 
ConnectionFactory and XAConnectionFactory objects share the same set of 
attributes. These attributes are grouped into a number of categories, depending on 
the behaviors they affect:

• Connection specification

• Auto-reconnect behavior

• Client identification

• Message header overrides

• Reliability and flow control

• Queue browser behavior

• Application server support

• JMS-defined properties support

Each of these categories and its corresponding attributes is discussed in some detail 
in the MQ Developer’s Guide. While you, as an MQ administrator, might be called 
upon to adjust the values of these attributes, it is normally an application developer 
who decides which attributes need adjustment to tune the performance of client 
applications. Table 7-3 on page 167 presents an alphabetical summary of the 
attributes.



MQ Administered Objects

78 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Destination Administered Objects
A Destination administered object represents a physical destination (a queue or a 
topic) in a broker to which the publicly-named Destination object corresponds. 
Its two attributes are described in Table 2-11. By creating a Destination object, 
you allow a client application’s MessageConsumer and/or MessageProducer 
objects to access the corresponding physical destination.

To create a Destination administered object, see “Adding a Topic or Queue” on 
page 175.

Overriding Attribute Values at Client Startup
As with any Java application, you can start messaging applications using the 
command-line to specify system properties. This mechanism can also be used to 
override attribute values of administered objects used in client application code. 
For example, you can override the configuration of an administered object accessed 
through a JNDI lookup in client application code.

To override administered object settings at client application startup, you use the 
following command line syntax:

java [[-Dattribute=value ]...] clientAppName 

where attribute corresponds to any of the ConnectionFactory administered object 
attributes documented in “Connection Factory Administered Objects” on page 167.

Table  2-11 Destination Attributes

Attribute/property name Description

imqDestinationName Specifies the provider-specific name of the physical 
destination. You specify this name when you create 
a physical destination. Destination names must 
contain only alphanumeric characters (no spaces) 
and can begin with an alphabetic character or the 
characters “_” and “$”.
Default: Untitled_Destination_Object 

imqDestinationDescription Specifies information useful in managing the object. 
Default: A Description for the 
Destination Object



MQ Administered Objects

Chapter 2 The MQ Messaging System 79

For example, if you want a client application to connect to a different broker than 
that specified in a ConnectionFactory administered object accessed in the client 
code, you can start up the client application using command line overrides to set 
the imqBrokerHostName and imqBrokerHostPort of another broker.

If an administered object has been set as read-only, however, the values of its 
attributes cannot be changed using command-line overrides. Any such overrides 
will simply be ignored.



MQ Administered Objects

80 Sun ONE Message Queue • Administrator’s Guide • October, 2002



81

Chapter 3

MQ Administration

Sun™ ONE Message Queue (MQ) administration consists of a number of tasks and 
a number of tools for performing those tasks. 

This chapter first provides an overview of administrative tasks and then describes 
the administration tools, focusing on common features of the command line 
administration utilities.

MQ Administration Tasks
The specific tasks you need to perform depend on whether you are in a 
development or a production environment. 

Development Environments
In a development environment, the work focuses on programming MQ client 
applications. The MQ message server is needed principally for testing. In a 
development environment, the emphasis is on flexibility, and administration is 
minimal—consisting mostly of starting up a broker for developers to use in testing. 
Default implementations of the data store, user repository, access control 
properties file, and object store are usually adequate for developmental testing. If 
you are performing multi-broker testing, you probably would not use a Master 
Broker. In addition, the applications being tested can generally use auto-created 
destinations and you may not want to use centrally-managed administered objects.



MQ Administration Tasks

82 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Production Environments
In a production environment, in which applications must be reliably deployed and 
run, administration is much more important. The administration tasks you have to 
perform depend on the complexity of your messaging system and the complexity 
of the applications it must support. In general, however, these tasks can be 
grouped into setup operations and maintenance operations.

Setup Operations
Typically you have to perform at least some, if not all, of the following setup 
operations:

• security (see Chapter 8, “Security Management”): 

❍ make entries into the file-based user repository or configure the broker to 
use an existing LDAP user repository

(At a minimum, you want to password protect administration capability.)

❍ modify access settings in the access control properties file

❍ set up SSL-based connection services

• administered objects (see Chapter 7, “Managing Administered Objects”): 

❍ configure or set up an LDAP object store

❍ create ConnectionFactory and destination administered objects

• broker clusters (see “Working With Clusters (Enterprise Edition)” on 
page 126): 

❍ create a central configuration file 

❍ use a Master Broker

• persistence: configure the broker to use plugged-in persistence, rather than 
built-in persistence (see Appendix A, “Setting Up Plugged-in Persistence”)



MQ Administration Tasks

Chapter 3 MQ Administration 83

Maintenance Operations
In addition, in a production environment, MQ message server resources need to be 
tightly monitored and controlled. Application performance, reliability, and 
security are at a premium, and you have to perform a number of ongoing tasks, 
described below, using MQ administration tools:

• application management: 

❍ disable the broker’s auto-create capability (see Table 2-9 on page 67)

❍ create physical destinations on behalf of applications (see “Creating 
Destinations” on page 153)

❍ set user access to destinations (see “Authorizing Users: the Access Control 
Properties File” on page 192)

❍ monitor and manage destinations (see “Managing Destinations” on 
page 152)

❍ monitor and manage durable subscriptions (see “Managing Durable 
Subscriptions” on page 155)

❍ monitor and manage transactions (see “Managing Transactions” on 
page 157)

• broker administration and tuning: 

❍ use broker metrics to tune and reconfigure the broker

❍ manage broker memory resources

❍ add brokers to clusters to balance loads

❍ recover failed brokers

• managing administered objects

❍ create additional ConnectionFactory and destination administered objects 
as needed

❍ adjust ConnectionFactory attribute values to improve performance and 
throughput (see “Connection Factory Administered Objects” on page 77)



MQ Administration Tools

84 Sun ONE Message Queue • Administrator’s Guide • October, 2002

MQ Administration Tools
MQ administration tools fall into two categories: command line utilities and a 
graphical user interface (GUI) Administration Console (imqadmin). The Console 
combines the capabilities of two command line utilities: the Command utility 
(imqcmd) and the Object Manager utility (imqobjmgr). You can use the Console 
(and these two command line utilities) to manage a broker remotely and to manage 
MQ administered objects. The other command line utilities (imqbrokerd, 
imqusermgr, imqdbmgr, and imqkeytool) must be run on the same host as their 
associated broker, as shown in Figure 3-1.

Information on the Administration Console is available in the online help. The 
command line utilities, which are generally used to perform specialized tasks, are 
described in “Summary of Command Line Utilities.”

The Administration Console
You can use the administration console to do the following:

• Connect to a broker and manage it.

• Create physical destinations on the broker

• Connect to an object store

• Add administered objects to the object store.

There are some tasks that you cannot use the Administration Console to perform; 
chief among these are starting up a broker, creating broker clusters, configuring 
more specialized properties of a broker, and managing a user database.

Chapter 4, “Administration Console Tutorial” provides a brief, hands-on tutorial to 
familiarize you with the Console and to illustrate how you use it to accomplish 
basic tasks. 

Summary of Command Line Utilities
This section introduces the command line utilities you use to perform MQ 
administration tasks. You use the MQ utilities to start up and manage a broker and 
to perform other, more specialized administrative tasks.



MQ Administration Tools

Chapter 3 MQ Administration 85

Figure 3-1 Local and Remote Administration Utilities

All MQ utilities are accessible from a command line interface (CLI). Utility 
commands share common formats, syntax conventions, and options, as described 
in a subsequent section of this chapter. You can find more detailed information on 
the use of the command line utilities in subsequent chapters.

Broker (imqbrokerd) You use the Broker utility to start the broker. You use 
options to the imqbrokerd command to specify whether brokers should be 
connected in a cluster and to specify additional configuration information. This 
utility is described in Chapter 5, “Starting and Configuring a Broker.”

Command (imqcmd) After starting a broker, you use the Command utility to 
create, update, and delete physical destinations; control the broker and its 
connection services; and manage the broker’s resources.You use the imqcmd 
command to run this utility. This utility is described in Chapter 6, “Broker and 
Application Management.”

Object Manager (imqobjmgr) You use the Object Manager utility to add, list, 
update, and delete administered objects in an object store accessible via JNDI. 
Administered objects allow JMS clients to be provider-independent by insulating 
them from JMS provider-specific naming and configuration formats. You use the 
imqobjmgr command to run this utility. This utility is described in Chapter 7, 
“Managing Administered Objects.”

Broker Host

imqbrokerd

Broker

imqusermgr

imqkeytool

imqdbmgr

imqsvcadmin
(NT only)

Remote Admin Host

Administration
Console

imqcmd

imqobjmgr



MQ Administration Tools

86 Sun ONE Message Queue • Administrator’s Guide • October, 2002

User Manager (imqusermgr) You use the User Manager utility to populate a 
file-based user repository used to authenticate and authorize users. You use the 
imqusermgr command to run this utility. This utility is described in Chapter 8, 
“Security Management.”

Key Tool (imqkeytool) You use the Key Tool utility to generate self-signed 
certificates used for SSL authentication. You use the imqkeytool command to run 
this utility, which is described in Chapter 8, “Security Management” and in 
Appendix B, “HTTP/HTTPS Support (Enterprise Edition).” 

Database Manager (imqdbmgr) You use the Database Manager utility to create 
and manage a JDBC-compliant database used for persistent storage. You use the 
imqdbmgr command to run this utility. For more information, see Appendix A, 
“Setting Up Plugged-in Persistence.”

Service Administrator (imqsvcadmin) You use the Service Administrator utility 
to install, query, and remove the broker as a Windows service. For more 
information, see Appendix C, “Using a Broker as a Windows Service.”

Command Line Syntax
MQ command-line interface utilities are simple shell commands. That is, from the 
standpoint of the Windows, Linux, or Solaris command shell where they are 
entered, the name of the utility itself is a command and its subcommands or 
options are simply arguments passed to that command. For this reason, there are 
no commands to start or quit the utility, per se, and no need for such commands.

All the command line utilities share the following command syntax:

Utility_Name [subcommand] [argument] [[-option_name [-option_argument]]…]

Utility_Name specifies the name of an MQ utility, for example, imqcmd, imqobjmgr, 
imqusermgr, and so on. 

There are four important things to remember:

• Specify options after subcommands (and arguments, if the utility accepts both 
types of operands).

• If an argument contains a space, enclose the whole argument in quotation 
marks. It is generally safest to enclose an attribute-value pair in quotes.

• If you specify the -v (version) or the -h/-H (help) options on a command line, 
nothing else on that command line is executed. See Table 3-1 on page 87 for a 
description of common options.

• Separate the subcommand, arguments, options, and option arguments with 
spaces.



MQ Administration Tools

Chapter 3 MQ Administration 87

The following is an example of a command line that has no subcommand clause. 
The command starts the default broker.

imqbrokerd

The following command is a bit more complicated: it destroys a destination of type 
queue that is named myQueue for an administrator (user) named admin with a 
corresponding password admin, without confirmation and without output being 
displayed on the console.

imqcmd destroy dst -t q -n myQueue -u admin -p admin -f -s

Common Command Line Options
Table 3-1 describes the options that are common to all MQ administration utilities. 
Aside from the requirement that you specify these options after you specify the 
subcommand on the command line, the options described below (or any other 
options passed to a utility) do not have to be entered in any special order. 

Table 3-1 Common MQ Command Line Options

Option Description

-h Displays usage help for the specified utility.

-H Displays expanded usage help, including attribute list and 
examples (supported only for imqcmd and imqobjmgr).

-s Turns on silent mode: no output is displayed. Specify as -silent 
for imqbrokerd.

-v Displays version information.

-f Performs the given action without prompting for user confirmation.

-pre (Used only with imqobjmgr) Turns on preview mode, allowing the 
user to see the effect of the rest of the command line without 
actually performing the command. This can be useful in checking 
for the value of default attributes.

-javahome path Specifies the location of an alternate Java 2 runtime to use.



MQ Administration Tools

88 Sun ONE Message Queue • Administrator’s Guide • October, 2002



89

Chapter 4

Administration Console Tutorial

This tutorial focuses on the use of the Administration Console, a graphical interface 
for administering a Sun™ ONE Message Queue (MQ) message server. By 
following this tutorial, you will learn how to do the following:

• Start a broker and use the Console to connect to it and manage it

• Create physical destinations on the broker

• Create an object store and use the Console to connect to it

• Add administered objects to the object store

The tutorial is designed to set up the destinations and administered objects needed 
to run a simple JMS-compliant application, SimpleJNDIClient. In the last part of 
the tutorial you run this application.

This tutorial is provided mainly to guide you through performing basic 
administration tasks using the Administration Console. It is not a substitute for 
reading through the MQ Developer’s Guide or other chapters of this Administrator’s 
Guide. 

Some MQ administration tasks cannot be accomplished using graphical tools; you 
will need to use command line utilities to perform such tasks as the following:

• Configuring certain broker properties

Some broker properties cannot be configured using the Administration 
Console. These can be configured as described in Chapter 5, “Starting and 
Configuring a Broker” on page 113 or in “Updating a Broker” on page 147.



Getting Ready

90 Sun ONE Message Queue • Administrator’s Guide • October, 2002

• Creating broker clusters

See“Working With Clusters (Enterprise Edition)” on page 126 for more 
information.

• Managing a user database

See “Authenticating Users” on page 182 for more information.

Getting Ready
Before you can start this tutorial you must install the MQ product. For more 
information, see the MQ Installation Guide. Note that this tutorial is 
Windows-centric, with added notes for unix users.

In this tutorial, choosing Item1 > Item2 > Item3 means that you should pull down 
the menu called Item1, choose Item2 from that menu and then choose Item3 from 
the selections offered by Item2.

Starting the Administration Console
The Administration Console is a graphical tool that you use to do the following:

• Create references to and connect to brokers

• Administer brokers

• Create physical destinations on the brokers, which are used by the broker for 
message delivery

• Connect to object stores in which you place MQ administered objects

Administered objects allow you to manage the messaging needs of 
JMS-compliant applications. For more information, see “MQ Administered 
Objects” on page 75.



Starting the Administration Console

Chapter 4 Administration Console Tutorial 91

➤ To start the Administration Console

1. Choose Start > Programs > Sun ONE Message Queue 3.0> Administration.

You may need to wait a few seconds before the Console window is displayed.

Non-Windows users: enter the following command at the command prompt:

$IMQ_HOME/bin/imqadmin (/usr/bin/imqadmin on Solaris)

2. Take a few seconds to examine the Console window.

The Console features a menu at the top, a tool bar just underneath the menu, a 
navigation pane to the left, a larger pane to the right (now displaying graphics 
identifying the Sun ONE Message Queue product), and a status pane at the 
bottom.

No tutorial can provide complete information, so let’s first find out how to get help 
information for the Administration Console. 



Starting the Administration Console

92 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Getting Help
Locate the Help menu at the extreme right of the menu bar. 

➤ To display Administration Console help information

1. Pull down the Help menu and choose Overview. A help window is displayed.

Notice how the help information is organized. The left pane shows a table of 
contents; the right pane shows the contents of any item you select on the left.

Look at the right pane of the Help window. It shows a skeletal view of the 
Administration Console, identifying the use of each of the Console’s panes.

2. Look at the Help window’s contents pane. It organizes topics in three areas: 
overview, object store management, and broker management. Each of these 
areas contains files and folders. Each folder provides help for dialogs 
containing multiple tabs; each file provides help for a simple dialog or tab.

Your first Console administration task, “Adding a Broker” on page 95, will be 
to create a reference to a broker you manage through the Console. Before you 
start, however, check the online help for information. 



Working With Brokers

Chapter 4 Administration Console Tutorial 93

3. Click the Add Broker item in the Help window’s contents pane.

Note that the contents pane has changed. It now contains text that explains 
what it means to add a broker and that describes the use of each field in the 
Add Broker dialog. Field names are shown in bold text. 

4. Read through the help text.

5. Close the Help window.

Working With Brokers
A broker provides delivery services for an MQ messaging system. Message 
delivery is a two-phase process: the message is first delivered to a physical 
destination on a broker and then it is delivered to one or more consuming clients. 

Working with brokers involves the following tasks:

• Start and configure the broker 

You can start the broker from the Start > Programs menu on Windows or by 
using the imqbrokerd command. If you use the imqbrokerd command, you 
can specify broker configuration information using command line options. If 
you use the Programs menu, you can specify configuration information using 
the Console and in other ways described in Chapter 5, “Starting and 
Configuring a Broker.”

• Manage the broker and its services either by using the Administration Console 
or by using the Command command-line utility (imqcmd).

• Create the physical destinations needed by client applications

• Monitor resource use to improve throughput and reliability

The broker supports communication with both application clients and 
administration clients. It does this by means of different connection services, and 
you can configure the broker to run any or all of these services. For more 
information about connection services, see “Connection Services” on page 46.

NOTE You cannot start a broker instance using the Administration 
Console .



Working With Brokers

94 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Starting a Broker
You cannot start a broker using the Administration Console. Start the broker as 
described below (also, see Chapter 5, “Starting and Configuring a Broker”).

➤ To start a broker

1. Choose Start > Programs >Sun ONE Message Queue 3.0 > Broker.

Non-Windows: enter the following command to start a broker.

%$IMQ_HOME/bin/imqbrokerd (/usr/bin/imqbrokerd on Solaris)

A broker process window is displayed. The name of the broker is specified as is 
the fact that it is ready.

2. Bring the Administration Console window back into focus. You are now ready 
to add the broker to the Console and to connect to it.

You do not have to start the broker before you add a reference to it in the 
Administration Console, but you must start the broker before you can connect to it. 



Working With Brokers

Chapter 4 Administration Console Tutorial 95

Adding a Broker
Adding a broker creates a reference to that broker in the Administration Console. 
After adding the broker, you can connect to it.

➤ To add a broker to the Administration Console

1. Right-click on Brokers in the navigation pane and choose Add Broker.

2. Enter MyBroker in the Broker Label field.

This provides a label that identifies the broker in the Administration Console.

Note the default host name (localhost) and primary port (7676) specified in 
the dialog. These are the values you will need to specify later, when you 
configure the connection factory that the client will use to set up connections to 
this broker.

Leave the Password field blank. Your password will be more secure if you 
specify it at connection time.

3. Click OK to add the broker.



Working With Brokers

96 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Look at the navigation pane. The broker you just added should be listed there 
under Brokers. The red X over the broker icon tells you that the broker is not 
currently connected to the Console.

4. Right-click on MyBroker and choose Properties from the popup menu.

The broker properties dialog is displayed. You can use this dialog to update 
any of the properties you specified when you added the broker. 

Changing the Administrator Password
When you connect to the broker, you are prompted for a password if you have not 
specified one when you added the broker. For improved security, it’s a good idea 
to change the default administrator password (admin) before you connect. 

➤ To change the administrator password

1. Open a command-prompt window or, if one is already opened, bring it 
forward. 

2. Enter a command like the following, substituting your own password for 
abracadabra. The password you specify then replaces the default password of 
admin.

imqusermgr update -u admin -p abracadabra

(On Solaris and Linux, you must be root to perform this operation.)

The change takes effect immediately. You must then specify the new password 
whenever you use one of the MQ command line utilities or the Administration 
Console.



Working With Brokers

Chapter 4 Administration Console Tutorial 97

Although clients use a different connection service than administrators, they are 
also assigned a default user name and password so that you can test MQ without 
having to do extensive administrative set up. By default, a client can connect to the 
broker as user guest with the password guest. You should, however, establish 
secure user names and passwords for clients as soon as you can. See 
“Authenticating Users” on page 182 for more information.

Connecting to the Broker

➤ To connect to the broker

1. Right-click MyBroker and choose Connect to Broker.

A dialog is displayed that allows you to specify your name and password.

2. Enter admin in the Password field or whatever value you specified for the 
password in “Changing the Administrator Password” on page 96.

Specifying the user name admin and supplying the correct password connects 
you to the broker, with administrative privileges.

3. Click OK to connect to the broker.

After you connect to the broker, you can choose from the Actions menu to get 
information about the broker, to pause and resume the broker, to shutdown and 
restart the broker, and to disconnect from the broker.



Working With Brokers

98 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Viewing Connection Services
A broker is distinguished by the connection services it provides and the physical 
destinations it supports.

➤ To view available connection services

1. Select Services in the navigation pane.

Available services are listed in the results pane. For each service, its name, port 
number, and state is provided.

2. Select the jms service by clicking on it in the results pane.

3. Pull down the Actions menu and note the highlighted items.

You have the option of pausing the jms service or of viewing and updating its 
properties.

4. Choose Properties from the Actions menu.

Note that by using the Service Properties dialog, you can assign the service a 
static port number and you can change the minimum and maximum number 
of threads allocated for this service.



Working With Brokers

Chapter 4 Administration Console Tutorial 99

5. Click OK or Cancel to close the Properties dialog.

6. Select the admin service in the results pane.

7. Pull down the Actions menu.

Notice that you cannot pause this service (the pause item is disabled). The 
admin service is the administrator’s link to the broker. If you paused it, you 
would no longer be able to access the broker.

8. Choose Actions > Properties to view the properties of the admin service. 

9. Click OK or Cancel when you’re done.

Adding Physical Destinations to a Broker
You must explicitly create physical destinations on the broker so that 
JMS-compliant applications can run properly. You do not need to do this if the 
broker has destination auto-creation enabled, which allows it to create physical 
destinations dynamically. 

Destination auto-creation is acceptable in a development environment. However, 
in a production setting, it is advisable to turn it off and have the broker use 
physical destinations that you have explicitly created. This allows you, the 
administrator, to be fully aware of the destinations that are in use on the broker. 



Working With Brokers

100 Sun ONE Message Queue • Administrator’s Guide • October, 2002

You control whether the broker can add auto-created destinations by setting the 
imq.autocreate.topic or imq.autocreate.queue properties. For more 
information, see “Auto-Created (vs. Admin-Created) Destinations” on page 67.

In this section of the tutorial, you will add a physical destination to the broker. You 
should note the name you assign to the destination; you will need it later when you 
create an administered object that corresponds to this physical destination.

➤ To add a queue destination to a broker

1. Right-click the Destinations node of MyBroker and choose Add Broker 
Destination.

The following dialog is displayed:

2. Enter MyQueueDest in the Destination Name field.

3. Select the Queue radio button if it is not already selected.

4. Make sure the Queue Delivery Policy is selected as Single.

5. Click OK to add the physical destination.

The destination now appears in the results pane.



Working With Brokers

Chapter 4 Administration Console Tutorial 101

Working With Physical Destinations
Once you have added a physical destination on the broker, you can do any of the 
following tasks, as described in the procedures below:

• View and update the properties of a physical destination

• Purge messages at a destination 

• Delete a destination

➤ To view the properties of a physical destination

1. Select the Destinations node of MyBroker.

2. Select MyQueueDest in the results pane.

3. Choose Actions > Properties.

The following dialog is displayed:

Note that the only properties you can change for a queue have to do with the 
size and number of messages that are delivered to that queue.



Working With Brokers

102 Sun ONE Message Queue • Administrator’s Guide • October, 2002

4. Click Cancel to close the dialog.

➤ To purge messages from a destination

1. Select the physical destination in the Results pane.

2. Choose Actions > Purge Messages.

A confirmation dialog is displayed.

Purging messages removes the messages and leaves an empty destination.

➤ To delete a destination

1. Select the physical destination in the results pane.

2. Choose Edit > Delete.

Deleting a destination purges the messages at that destination and removes the 
destination.

Getting Information About Topic Destinations
The dialog about topic destinations includes an additional tab that lists information 
about durable subscriptions.

You can use this dialog to:

• purge durable subscriptions, removing all messages associated with a durable 
subscription

• delete durable subscriptions, purging all messages associated with a durable 
subscription and also removing the durable subscription



Working with Object Stores

Chapter 4 Administration Console Tutorial 103

Working with Object Stores
An object store, be it an LDAP directory server or a file system store (directory in 
the file system), is used to store MQ administered objects that encapsulate 
MQ-specific implementation and configuration information about objects that are 
used by client applications. 

Although administered objects can be instantiated and configured within client 
code, it is preferable that you, the administrator, create and configure these objects 
and store them in an object store that is accessed by client applications through 
standard JNDI lookup code. This allows client code to be provider-independent.

For more information about administered objects, see “MQ Administered Objects” 
on page 75.

You cannot use the Administration Console to create an object store. You must do 
this ahead of time as described in the following section. 

Adding an Object Store
Adding an object store creates a reference to an existing object store in the 
Administration Console. This reference is retained even if you quit and restart the 
Console.

➤ To add a file-system object store

1. If you do not already have a folder named Temp on your C drive, create it now.

The sample application used in this tutorial assumes that the object store is a 
folder named Temp on the C drive. In general, a file-system object store can be 
any directory on any drive. 

Non-Windows: you can use the /tmp directory, which should already exist.



Working with Object Stores

104 Sun ONE Message Queue • Administrator’s Guide • October, 2002

2. Right-click on Object Stores and choose Add Object Store.

The following dialog is displayed: 

3. Enter MyObjectStore in the field named ObjectStoreLabel.

This simply provides a label for the display of the object store in the 
Administration Console. 

In the following steps, you will need to enter JNDI name/value pairs. These 
pairs are used by JMS-compliant applications for looking up administered 
objects.

4. From the Name pull-down menu, choose java.naming.factory.initial.

This property allows you to specify what JNDI service provider you wish to 
use. For example, a file system service provider or an LDAP service provider.

5. In the Value field, enter the following

com.sun.jndi.fscontext.RefFSContextFactory

This means that you will be using a file system store. (For an LDAP store, you 
would specify com.sun.jndi.ldap.LdapCtxFactory.)

In a production environment, you will probably want to use an LDAP 
directory server as an object store. For information about setting up the server 
and doing JNDI lookups, see “Object Store Attributes” on page 169.



Working with Object Stores

Chapter 4 Administration Console Tutorial 105

6. Click the Add button.

Notice that the property and its value are now listed in the property summary 
pane.

7. From the Name pull down menu, choose java.naming.provider.url.

This property allows you to specify the exact location of the object store. For a 
file system type object store, this will be the name of an existing directory.

8. In the Value field, enter the following

file:///C:/Temp

(file:///tmp on Solaris and Linux)

9. Click the Add button.

Notice that both properties and their values are now listed in the property 
summary pane. If you were using an LDAP server, you might also have to 
specify authentication information; this is not necessary for a file-system store. 

10. Click OK to add the object store.

11. If the node MyObjectStore is not selected in the navigation pane, select it now.

The Administration Console now looks like this:

The object store is listed in the navigation pane and its contents, Destinations 
and Connection Factories, are listed in the results pane. We have not yet added 
any administered objects to the object store, and this is shown in the Count 
column of the results pane.

A red X is drawn through the object store’s icon in the navigation pane. This 
means that it is disconnected. Before you can use the object store, you will need 
to connect to it.



Working with Object Stores

106 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Checking Object Store Properties
While the Administration Console is disconnected from an object store, you can 
examine and change some of the properties of the object store. 

➤ To display the properties of an object store

1. Right click on MyObjectStore in the navigational pane.

2. Choose Properties from the popup menu.

A dialog is displayed that shows all the properties you specified when you 
added the object store. You can change any of these properties and click OK to 
update the old information. 

3. Click OK or Cancel to dismiss the dialog.

Connecting to an Object Store
Before you can add objects to an object store, you must connect to it. 

➤ To connect to an object store

1. Right click on MyObjectStore in the navigational pane.

2. Choose Connect to Object Store from the popup menu.

Notice that the object store’s icon is no longer crossed out. You can now add 
objects, connection factories and destinations, to the object store.

Adding a Connection Factory 
Administered Object
You can use the administration console to create and configure a connection 
factory. A connection factory is used by client code to connect to the broker. By 
configuring a connection factory, you can control the behavior of the connections it 
is used to create. 

For information on configuring connection factories, see the online help and the 
MQ Developer’s Guide.



Working with Object Stores

Chapter 4 Administration Console Tutorial 107

➤ To add a connection factory to an object store

1. If not already connected, connect to MyObjectStore (see “Connecting to an 
Object Store” on page 106)

2. Right click on the Connection Factories node and choose Add Connection 
Factory Object.

The Add Connection Factory Object dialog is displayed.

NOTE The Administration Console lists and displays only MQ 
administered objects. If an object store should contain a non-MQ 
object with the same lookup name as an administered object that 
you wish to add, you will receive an error when you attempt the 
add operation.



Working with Object Stores

108 Sun ONE Message Queue • Administrator’s Guide • October, 2002

3. Enter the name “MyQueueConnectionFactory” in the LookupName field.

This is the name that the client code uses when it looks up the connection 
factory as shown in the following line from SimpleAdmin.java:

qcf=(javax.jms.QueueConnectionFactory)
ctx.lookup(“MyQueueConnectionFactory”)

4. Select the QueueConnectionFactory from the pull-down menu to specify the 
type of the connection factory.

5. Enter the host name and port for the broker to which the client is planning to 
connect, in the Broker Host Name and Broker Host Port fields. 

In this tutorial, the client connects to the default broker--that is, a broker on 
localhost at port 7676, so you do not have to change these fields.

6. Click through the tabs for this dialog to see the kind of information that you 
can configure for the connection factory. Use the Help button in the lower right 
hand corner of the Add Connection Factory Object dialog to get information 
about individual tabs. Do not change any of the default values for now.

7. Click OK to create the queue connection factory.

8. Look at the results pane: the lookup name and type of the newly created 
connection factory are listed.

Adding a Destination Administered Object
Destination administered objects are associated with physical destinations on the 
broker; they point to those destinations, as it were, allowing clients to look up and 
find physical destinations, independently of the provider-specific ways in which 
those destinations are named and configured. 

When a JMS client sends a message, it looks up (or instantiates) a destination 
administered object and references it in the send() method of the JMS API. The 
broker is then responsible for delivering the message to the physical destination 
that is associated with that administered object:

• If you have created a physical destination that is associated with that 
administered object, the broker delivers the message to that physical 
destination.

• If you have not created a physical destination and the autocreation of physical 
destinations is enabled, the broker itself creates the physical destination and 
delivers the message to that destination.



Working with Object Stores

Chapter 4 Administration Console Tutorial 109

• If you have not created a physical destination and the autocreation of physical 
destinations is disabled, the broker cannot create a physical destination and 
cannot deliver the message.

In the next part of the tutorial, you will be adding an administered object that 
corresponds to the physical destination you added earlier.

➤ To add a destination to an object store

1. Right-click on the Destinations node in the navigation pane.

2. Choose Add Destination Object.

The Administration Console displays an Add Destination Object dialog that 
you use to specify information about the object.

3. Enter “MyQueue” in the Lookup Name field.

The lookup name is used to find the object using JNDI lookup calls. In the 
sample application, the call is the following:

queue=(javax.jms.Queue)ctx.lookup(“MyQueue”);

4. Select the Queue radio button for the Destination Type.

5. Enter MyQueueDest in the Destination Name field.

This is the name you specified when you added a physical destination on the 
broker.

6. Click OK.



Working with Object Stores

110 Sun ONE Message Queue • Administrator’s Guide • October, 2002

7. Select Destinations in the navigation pane and notice how information about 
the queue destination administered object you have just added is displayed in 
the results pane. 

Administered Object Properties
To view or update the properties of an administered object, you need to select 
Destinations or Connection Factories in the navigation pane, select a specific object 
in the results pane, and choose Actions > Properties.

➤ To view or update the properties of a destination object

1. Select Destinations in the navigation pane.

2. Select MyQueue in the results pane.

3. Choose Actions > Properties to view the Destination Object Properties dialog.

Note that the only value you can change is the destination name and the 
description. To change the lookup name, you would have to delete the object 
and then add a new queue administered object with the desired lookup name.



Updating Console Information

Chapter 4 Administration Console Tutorial 111

Updating Console Information
Whether you work with object stores or brokers, you can update the visual display 
of any element or groups of elements by choosing View > Refresh.

Running the Sample Application
The sample application SimpleJNDIClient is provided for use with this tutorial. It 
uses the administered objects and destination that you created in the foregoing 
tutorial: a queue destination named MyQueueDest, a queue connection factory 
administered object named MyQueueConnectionFactory and a queue 
administered object named MyQueue.

The code creates a simple queue sender and receiver, and sends and receives a 
“Hello World” message.

➤ To run the SimpleJNDIClient application

1. Make sure the JAVA_HOME environment variable points to the directory where 
the JDK is installed.

2. Make the directory that includes the SimpleJNDIClient application your 
current directory; for example:

cd IMQ_HOME/demo/jms (/usr/demo/imq/jms on Solaris)

You should find the SimpleJNDIClient.class file present. (If you make 
changes to the application, you will need to re-compile it using the instructions 
for compiling a client application in the Quick Start Tutorial of the MQ 
Developer’s Guide.)

3. Set the CLASSPATH variable to include the current directory containing 
SimpleJNDIClient.java as well as the following jar files: jms.jar, imq.jar, 
and fscontext.jar. 

4. Before you run the application, open the source file, SimpleJNDIClient.java, 
and read through the source. 

It is short, but it is amply documented and it should be fairly clear how it uses 
the administered objects and destinations you have created using the tutorial.



Running the Sample Application

112 Sun ONE Message Queue • Administrator’s Guide • October, 2002

5. Run the SimpleJNDIClient application.

C:> java SimpleJNDIClient (Windows)

% java SimpleJNDIClient file:///tmp (on Solaris and Linux)

If the application runs successfully, you should see the following output:

==================================================
$JAVA SimpleJDNIClient file:///tmp
Usage: java SimpleJDNIClinet [Context.PROVIDER_URL]

On Unix:
java SimpleJDNIClient file:///tmp

On Windows:
java SimpleJDNIClient file:///C:Temp

Using Windows default file:///C/Temp for Context.PROVIDER_URL

Publishing a message to Queue: MyQueueDest
Received the following message: Hello World.
==================================================



113

Chapter 5

Starting and Configuring a Broker

After installing Sun™ ONE Message Queue (MQ), you use the imqbrokerd 
command to start a broker. The configuration of the broker instance is governed by 
a set of configuration files and by options passed with the imqbrokerd command, 
which override corresponding properties in the configuration files. 

This chapter explains the syntax of the imqbrokerd command and how you use 
command line options and configuration files to configure the broker instance. In 
addition, it also describes how you do the following:

• edit a broker instance configuration file

• work with broker clusters

• control logging for the broker

For a description of how to start and use the broker as a Windows service, see 
“Using a Broker as a Windows Service” on page 235.



Configuration Files

114 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Configuration Files
Installed configuration files, which are used to configure the broker, are located in 
the following directory. 

IMQ_HOME/lib/props/broker

(/usr/share/lib/imq/props/broker on Solaris)

This directory stores the following files:

• A default configuration file that is loaded on startup. This file is called 
default.properties and is not editable. You might need to read this file to 
determine default settings and to find the exact names of properties you want 
to change.

• An installation configuration file that contains any properties specified when 
MQ is installed. This file is called install.properties; it cannot be edited 
after installation.

In addition, the first time you run a broker, an instance configuration file is created 
that you can use to specify configuration properties for that instance of the broker. 
This file is maintained by the broker instance in response to administrative 
commands and can also be edited directly if you’re careful. The instance 
configuration file is stored in the following location:

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

Where brokerName is the name of the broker instance (imqbroker by default). You 
can edit an instance configuration file to make configuration changes (see “Editing 
the Instance Configuration File” on page 116).

If you connect broker instances in a cluster (see “Multi-Broker Clusters (Enterprise 
Edition)” on page 68) you may also need to use a cluster configuration file to specify 
cluster configuration information. For more information, see “Cluster 
Configuration Properties” on page 126.

Merging Property Values
At startup, the system merges property values in the different configuration files. It 
uses values set in the installation and instance configuration files to override values 
specified in the default configuration file. You can override the resulting values by 
using imqbrokerd command options. This scheme is illustrated in Figure 5-1 on 
page 115.



Configuration Files

Chapter 5 Starting and Configuring a Broker 115

Figure 5-1 Broker Configuration Files

Property Naming Syntax
Any MQ property definition in a configuration file uses the following naming 
syntax:

propertyName=value[[,value1]...]

For example, the following entry defines the queue type for an auto-create queue:

imq.queue.default=single

The following entry defines the message expiration timeout value:

imq.message.expiration.timeout=90

Table 5-1 on page 116 lists the broker configuration properties (and their default 
values) in alphabetical order.

install.properties

config.properties

imqbrokerd
       -name MyBroker
       -metrics 5

MyBroker

default.properties

overrides

overrides

overrides

install configuration file

instance configuration file

default configuration file



Configuration Files

116 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Editing the Instance Configuration File
The first time a broker instance is run, a config.properties file is automatically 
created. You can edit this instance configuration file to customize the behavior and 
resource use of the corresponding broker instance. 

The broker instance reads the config.properties file only at startup. To make 
permanent changes to the config.properties file, you can either 

• use administration tools. For information about properties you can set using 
imqcmd, see Table 6-5 on page 147.

• edit the config.properties file while the broker instance is shut down; then 
restart the instance. (On Solaris and Linux platforms, only the user that first 
started the broker instance has permission to edit the config.properties file.)

Table 5-1 lists the broker instance configuration properties (and their default 
values) in alphabetical order. For more information about the meaning and use of 
each property, please consult the specified cross-referenced section.

Table 5-1 Broker Instance Configuration Properties

Property Name Type Default Value Reference

imq.accesscontrol.enabled boolean true Table 2-6 on page 60

imq.accesscontrol.file.
filename

string accesscontrol.
properties

Table 2-6 on page 60

imq.authentication.basic.
user_repository

string file Table 2-6 on page 60

imq.authentication.
client.response.timeout

integer 
(seconds)

180 Table 2-6 on page 60

imq.authentication.type string digest Table 2-6 on page 60

imq.autocreate.queue boolean true Table 2-9 on page 67

imq.autocreate.topic boolean true Table 2-9 on page 67

imq.cluster.url string null Table 2-10 on page 72

imq.keystore.property_name Table 8-8 on page 200

imq.log.console.output string ERROR|WARNING Table 2-8 on page 63

imq.log.console.stream string ERR Table 2-8 on page 63

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)



Configuration Files

Chapter 5 Starting and Configuring a Broker 117

imq.log.file.dirpath string IMQ_VARHOME/
instances/
brokerName/log
(/var/imq/…on Solaris)

Table 2-8 on page 63

imq.log.file.name string log.txt Table 2-8 on page 63

imq.log.file.output string ALL Table 2-8 on page 63

imq.log.file.rolloverbytes integer 
(bytes)

0 Table 2-8 on page 63

imq.log.file.rolloversecs integer 
(seconds)

604800 Table 2-8 on page 63

imq.log.level string INFO Table 2-8 on page 63

imq.log.syslog.facility string LOG_DAEMON Table 2-8 on page 63

imq.log.syslog.logpid boolean true Table 2-8 on page 63

imq.log.syslog.logconsole boolean false Table 2-8 on page 63

imq.log.syslog.identity string imqbrokerd_${imq.
brokerName}

Table 2-8 on page 63

imq.log.syslog.output string ERROR Table 2-8 on page 63

imq.message.expiration.
interval

integer 
(seconds)

60 Table 2-4 on page 53

imq.message.max_size byte string 1

0 (no limit)
70m Table 2-4 on page 53

imq.metrics.enabled boolean true Table 2-8 on page 63

imq.metrics.interval integer 
(seconds)

0 Table 2-8 on page 63

imq.passfile.enabled boolean false Table 2-6 on page 60

imq.passfile.dirpath string IMQ_HOME/etc
(/etc/imq on Solaris)

Table 2-6 on page 60

imq.passfile.name string passfile Table 2-6 on page 60

imq.persist.file.
destination.file.size

byte string 1 1m Table 2-5 on page 56

imq.persist.file.message.
cleanup

boolean false Table 2-5 on page 56

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)



Configuration Files

118 Sun ONE Message Queue • Administrator’s Guide • October, 2002

imq.persist.file.message.
fdpool.limit

integer 25 (Solaris & Linux)
1024 (Windows)

Table 2-5 on page 56

imq.persist.file.message.
filepool.cleanratio

integer 0 Table 2-5 on page 56

imq.persist.file.message.
filepool.limit

integer 10000 Table 2-5 on page 56

imq.persist.file.sync.
enabled

boolean false Table 2-5 on page 56

imq.persist.jdbc.property_name Table A-1 on page 207

imq.persist.store string file Table 2-5 on page 56

imq.portmapper.port integer 7676 Table 2-3 on page 49

imq.queue.deliverypolicy string single Table 2-9 on page 67

imq.redelivered.
optimization

boolean true Table 2-4 on page 53

imq.resource_state.
threshold

integer 
(percent)

0 (green)
60 (yellow)
75(orange)
90 (red)

Table 2-4 on page 53

imq.service.activelist list jms,admin Table 2-3 on page 49

imq.service_name.
accesscontrol.enabled

boolean inherits value from 
system-wide property

Table 2-6 on page 60

imq.service_name.
accesscontrol.file.filename

string inherits value from 
system-wide property

Table 2-6 on page 60

imq.service_name.
authentication.type

string inherits value from 
system-wide property

Table 2-6 on page 60

imq.service_name.max_threads integer 1000 (jms)
500 (ssljms)
500 (httpjms)
500 (httpsjms)
50 (admin)

Table 2-3 on page 49

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)



Configuration Files

Chapter 5 Starting and Configuring a Broker 119

imq.service_name.min_threads integer 10 (jms)
10 (ssljms)
10 (httpjms)
10 (httpsjms)
4 (admin)

Table 2-3 on page 49

imq.service_name.protocol type.
hostname

string null Table 2-3 on page 49

imq.service_name.protocol type.
port

integer 0 Table 2-3 on page 49

imq.service_name.
threadpool_model

string dedicated (jms)
dedicated (ssljms)
dedicated (httpjms)
dedicated (httpsjms)
dedicated (admin)

Table 2-3 on page 49

imq.shared.
connectionMonitor_limit

integer 512 (Solaris & Linux)
64 (Windows)

Table 2-3 on page 49

imq.system.max_count integer,
0 (no limit)

0 Table 2-4 on page 53

imq.system.max_size byte string1,
0 (no limit)

0 Table 2-4 on page 53

imq.transaction.autorollback boolean false Table 2-4 on page 53

imq.user_repository.ldap.
property_name

Table 8-5 on page 189

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)



Starting a Broker

120 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Starting a Broker
To start a broker instance use the imqbrokerd command. 

To override one or more property values, specify a valid imqbrokerd 
command-line option. Command-line options override values in the broker 
configuration files, but only for the current broker session: command line options 
are not written to the instance configuration file.

The syntax of the imqbrokerd command is as follows (options and arguments are 
separated by a space):

For example, to start a broker that uses the default broker name and configuration, 
use the following command:

imqbrokerd

NOTE You cannot start a broker instance using the Administration Console 
(imqadmin) or the Command Utility (imqcmd). The broker instance 
must already be running to use these MQ administration tools.

imqbrokerd [[ -Dproperty=value]...]
[ -backup fileName] 
[ -cluster “[broker] [[,broker]...]”
[ -dbuser userName] [ -dbpassword password]
[ -force]
[ -h]
[ -javahome path | -jrehome path]
[ -ldappassword password] 
[ -license name] 
[ -loglevel level] 
[ -metrics number] 
[ -name brokerName ] [ -port number] 
[ -shared]
[ -password keypassword] [ -passfile fileName]
[ -remove instance]
[ -reset data]
[ -restore fileName]
[ -shared]
[ -silent] [ -tty]
[ -version] [ -vmargs arg [[arg]...]



Starting a Broker

Chapter 5 Starting and Configuring a Broker 121

This starts a default instance of a broker (named imqbroker) on the local machine 
with the Port Mapper at port 7676.

Table 5-2 describes the options to the imqbrokerd command and describes the 
configuration properties, if any, affected by each option.

NOTE On Solaris, you can configure the broker to automatically restart 
after an abnormally exit, by setting the RESTART property in the 
/etc/imq/imqborkerd.conf configuration file to YES. 

NOTE On Solaris and Linux platforms, permissions on the directories 
containing configuration information and persistent data depend on 
the umask of the user that starts the broker instance the first time. 
Hence, for the broker instance to function properly, it must be 
started subsequently only by the original user. 

Table 5-2 imqbrokerd Options

Option Properties Affected Description

-backup fileName None affected. Applies only to broker clusters. Backs up a 
Master Broker’s configuration change record 
to the specified file. See “Backing up the 
Master Broker’s Configuration Change 
Record” on page 130.

-cluster“[broker]
[[,broker]...]”

broker is either

• host[:port]

• [host]:port 

Sets 
imq.cluster.brokerlist 
to the list of brokers to which 
to connect.

Applies only to broker clusters. Connects to all 
the brokers on the specified hosts and ports. 
This list is merged with the list in the 
imq.cluster.brokerlist property. If you 
don’t specify a value for host, localhost is 
used. If you don’t specify a value for port, the 
value 7676 is used. See “Working With 
Clusters (Enterprise Edition)” on page 126 for 
more information on how to use this option to 
connect multiple brokers. 

-dbpassword password Sets imq.persist.jdbc.
password to specified 
password

Specifies the password for a plugged-in 
JDBC-compliant data store. See Appendix A, 
“Setting Up Plugged-in Persistence.”

-dbuser userName Sets 
imq.persist.jdbc.user
to specified user name

Specifies the user name for a plugged-in 
JDBC-compliant database. See Appendix A, 
“Setting Up Plugged-in Persistence.”



Starting a Broker

122 Sun ONE Message Queue • Administrator’s Guide • October, 2002

-Dproperty=value Sets system properties. 
Overrides corresponding 
property value in instance 
configuration file.

Sets the specified property to the specified 
value. See Table 5-1 on page 116 for broker 
configuration properties.

Caution: Be careful to check the spelling and 
formatting of properties set with the D option. 
If you pass incorrect values, the system will 
not warn you, and MQ will not be able to set 
them.

-force None affected. Performs action without user confirmation. 
This option applies only to the -remove 
instance option, which normally requires 
confirmation.

-h None affected. Displays help. Nothing else on the command 
line is executed.

-javahome path None affected. Specifies the path to an alternate 
Java 2- compatible JDK. The default is to use 
the bundled runtime.

-jrehome path None affected. Specifies the path to a Java 2 JRE.

-ldappassword
password

Sets 
imq.user_repository.
ldap.password to specified 
password

Specifies the password for accessing a LDAP 
user repository. See “Using an LDAP Server 
for a User Repository” on page 189.

-license [name] None affected. Specifies the license to load, if different from 
the default for your MQ product edition. If 
you don’t specify a license name, this lists all 
licenses installed on the system. Depending on 
the installed MQ edition, the values for name 
are pe (Platform Edition—basic features), try 
(Platform Edition—90-day trial enterprise 
features), and unl (Enterprise Edition). See 
“Product Editions” on page 26.

-loglevel level Sets 
imq.broker.log.level to 
the specified level.

Specifies the logging level as being one of 
NONE, ERROR, WARNING, or INFO. The default 
value is INFO. For more information, see 
“Logger” on page 61.

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description



Starting a Broker

Chapter 5 Starting and Configuring a Broker 123

-metrics int Sets imq.metrics.report.
interval to the specified 
number of seconds.

Specifies that metrics be reported at an 
interval specified in seconds.

-name brokerName Sets imq.instancename to 
the specified name.

Specifies the instance name of this broker and 
uses the corresponding instance configuration 
file. If you do not specify a broker name, the 
name of the file is set to imqbroker.
Note: If you run more than one instance of a 
broker on the same host, each must have a 
unique name.

-passfile fileName Sets imq.passfile.
enabled to true. Sets jmq.
passfile.dirpath to the 
path that contains the file.
Sets imq.passfile.name to 
the name of the file.

Specifies the name of the file from which to 
read the passwords for the SSL keystore, 
LDAP user repository, or JDBC-compliant 
database. For more information, see “Using a 
Passfile” on page 204.

-password 
keypassword 

Sets imq.keystore.
password to the specified 
password.

Specifies the password for the SSL certificate 
keystore. For more information, see “Security 
Manager” on page 57.

-port number Sets imq.portmapper.port 
to the specified number.

Specifies the broker’s Port Mapper port 
number. By default, this is set to 7676. To run 
two instances of a broker on the same server, 
each broker’s Port Mapper must have a 
different port number. JMS clients connect to 
the broker instance using this port number.

-remove instance None affected. Causes the broker instance to be removed: 
deletes the instance configuration file, log 
files, persistent store, and other files and 
directories associated with the instance. 
Requires user confirmation unless -force 
option is also specified.

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description



Starting a Broker

124 Sun ONE Message Queue • Administrator’s Guide • October, 2002

-reset store| 
messages|
durables|
props

None affected. Resets the data store (or a subset of the data 
store) or the configuration properties of a 
broker instance, depending on the argument 
given.

Resetting the data store clears out all 
persistent data, including persistent messages, 
durable subscriptions, and transaction 
information. This allows you to start the 
broker instance with a clean slate. You can 
also clear only all persistent messages or only 
all durable subscriptions. (If you do not want 
the persistent store to be reset on subsequent 
starts, then re-start the broker instance 
without using the -reset option.) For more 
information, see “Persistence Manager” on 
page 54.

Resetting the broker’s properties, replaces the 
existing instance configuration file 
(config.properties) with an empty file: 
all properties assume default values.

-restore fileName None affected. Applies only to broker clusters. Replaces the 
Master Broker’s configuration change record 
with the specified backup file. This file must 
have been previously created using the 
-backup option. See “Restoring the Master 
Broker’s Configuration Change Record” on 
page 131.

-shared Sets imq.jms.
threadpool_model to 
shared.

Specifies that the jms connection service be 
implemented using the shared threadpool 
model, in which threads are shared among 
connections to increase the number of 
connections supported by a broker instance. 
For more information, see “Connection 
Services” on page 46.

-silent Sets imq.log.console.
output to NONE.

Turns off logging to the console.

-tty Sets imq.log.console.
output to ALL

Specifies that all messages be displayed to the 
console. By default only WARNING and ERROR 
level messages are displayed.

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description



Starting a Broker

Chapter 5 Starting and Configuring a Broker 125

-version None affected. Displays the version number of the installed 
product.

-vmargs arg 
[[arg]...]

None affected Specifies arguments to pass to the Java VM. 
Separate arguments with spaces. If you want 
to pass more than one argument or if an 
argument contains a space, use enclosing 
quotation marks. For example:
imqbrokerd -tty -vmargs "-Xmx128m  
-Xincgc" 

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description



Working With Clusters (Enterprise Edition)

126 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Working With Clusters (Enterprise Edition)
This section describes the properties you use to configure multi-broker clusters, 
describes a couple of methods of connecting brokers, and explains how you 
manage clusters. For an introduction to clusters, see “Multi-Broker Clusters 
(Enterprise Edition)” on page 68.

When working with clusters, make sure that you synchronize clocks among the 
hosts of all brokers in a cluster.

Cluster Configuration Properties
When you connect brokers into a cluster, all the connected brokers must specify the 
same values for cluster configuration properties. These properties describe the 
participation of the brokers in a cluster. Table 5-3 summarizes the cluster-related 
configuration properties.

Table 5-3 Cluster Configuration Properties 

Property Description

imq.cluster.brokerlist Specifies all brokers in a cluster in a comma-separated 
list; each item specifies the host and port of a broker. 
For example: host1:3000, host2:8000, ctrhost

imq.cluster.masterbroker Specifies the host and port of the Master Broker. 
Set this value for production environments.
For example, ctrhost:7676

imq.cluster.url Specifies the location of the cluster configuration file. 
For example: 
http://webserver/imq/cluster.properties
file:/net/mfsserver/imq/cluster.properies

imq.cluster.port For each broker within a cluster, can be used to specify 
the port number for the cluster connection service. The 
cluster connection service is used for internal 
communication between brokers in a cluster. 
Default: 0 (port is dynamically allocated)



Working With Clusters (Enterprise Edition)

Chapter 5 Starting and Configuring a Broker 127

You can use one of two methods to set cluster properties:

• You set the cluster-related configuration properties in each broker’s instance 
configuration file (or in the command line that starts each broker). For 
example, to connect broker A (on host1, port 7676), broker B (on host2, port 
5000) and broker C (on ctrlhost, port 7676), the instance configuration file for 
brokers A, B, and C would need to set the following property.

imq.cluster.brokerlist=host1, host2:5000, ctrlhost

If you decide to change a cluster configuration, this method requires you to 
update cluster-related properties in all the brokers

• You set cluster configuration properties in one central cluster configuration 
file. These properties might include the list of brokers to be connected 
(imq.cluster.brokerlist) and optionally, the address of the Master Broker 
(imq.cluster.masterbroker).

If you use this method, you must also set the imq.cluster.url property (for 
every broker in the cluster) to point to the location of the cluster configuration 
file. From the point of view of easy maintenance, this is the recommended 
method of cluster configuration.

The following code sample shows the contents of a cluster configuration file. Both 
host1 and ctrlhost are running on the default port. These properties specify that 
host1 and ctrlhost are connected in a cluster and that ctrlhost is the Master 
Broker. 

imq.cluster.hostname For each broker within a cluster, can be used to specify 
the host (hostname or IP address) to which the cluster 
connection service binds if there is more than one host 
available (for example, if there is more than one network 
interface card in a computer). The cluster connection 
service is used for internal communication between 
brokers in a cluster.
Default: null (all available hosts)

imq.cluster.brokerlist=host1,host2:5000,ctrlhost
imq.cluster.masterbroker=ctrlhost

Table 5-3 Cluster Configuration Properties  (Continued)

Property Description



Working With Clusters (Enterprise Edition)

128 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The instance configuration file for each broker connected in this cluster, must then 
contain the url of the cluster configuration file; for example:

Connecting Brokers
This section describes two methods of connecting brokers into a clusters. No matter 
which method you use, each broker that you start attempts to connect to the other 
brokers every five seconds; that attempt will succeed once the other brokers in the 
cluster are started up.

If you connect brokers into a cluster, it is not necessary to start the Master Broker 
first. If a broker in the cluster starts before the Master Broker, it will remain in a 
suspended state, rejecting client connections. When the Master Broker starts, the 
suspended broker will automatically become fully functional.

Method 1: No Cluster Configuration File

➤ To connect brokers into a cluster

1. Use the -cluster option to the imqbrokerd command that starts a broker, and 
specify the complete list of brokers (to connect to) as an argument to the 
-cluster option. 

2. Do this for each broker you want to connect to the cluster when you start that 
broker.

For example, the following command starts a new broker and connects it to the 
broker running on the default port on host1, the broker running on port 7677 
on host2 and the broker running on port 7678 on localhost.

imqbrokerd -cluster host1,host2:7677,:7678

Method 2: Using a Cluster Configuration File
It is also possible to create a cluster configuration file that specifies the list of 
brokers to be connected (and optionally, the address of the Master Broker). This 
method of defining clusters is better suited for production systems. Remember, 
that each broker in the cluster must set the value of the imq.cluster.url property 
to point to the cluster configuration file.

imq.cluster.url=file:/home/cluster.properties



Working With Clusters (Enterprise Edition)

Chapter 5 Starting and Configuring a Broker 129

Adding Brokers to Clusters
Once you have set up a broker cluster, you might need to add a new broker or 
restart a broker that is already part of the cluster. 

To add a new broker to an existing cluster, you can do one of the following:

If you are not using a cluster configuration file, when you start the new broker, 
specify the imq.cluster.brokerlist and (if necessary) the 
imq.cluster.masterbroker properties on the command line using the -D option.

➤ To add a broker to a cluster if you are using a cluster configuration file

1. Add the new broker to the imq.cluster.brokerlist property in the cluster 
configuration file.

2. Issue the following command to any broker in the cluster.

imqcmd reload cls

This forces all the brokers to reload the imq.cluster.brokerlist property 
and to make sure that all persistent information for brokers in the cluster is up 
to date.

Restarting a Broker in a Cluster
To restart a broker that is already a member of a cluster, you can do one of the 
following:

• If the cluster is defined using a cluster configuration file, use the -D option to 
specify the imq.cluster.url property on the command line used to start the 
broker.

• If the cluster is not defined using a cluster configuration file, when you start 
the new broker, specify the imq.cluster.brokerlist (and if necessary the 
imq.cluster.masterbroker) properties on the command line using the -D 
option. If the cluster does not include a Master Broker, you can simply use the 
-cluster option to specify the list of brokers in the cluster when you start the 
new broker.



Working With Clusters (Enterprise Edition)

130 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Removing a Broker from a Cluster
Take note of the following when removing a broker from a cluster:

• If the brokers A, B, and C were all started using the following command line, 
then just restarting A will not remove it from the cluster. 

imqbrokerd -cluster A,B,C

Instead, you need to restart all the other brokers with the following command 
line:

imqbrokerd -cluster B,C

Then, you need to start broker A without specifying the -cluster option.

• If the list of brokers was specified using a cluster configuration file, then you 
will need to do the following:

❍ Remove mention of the broker from the configuration file.

❍ Change or remove the imq.cluster.url property for the broker that is 
being removed so that it no longer uses the common properties.

❍ Use the imqcmd reload cls command to force all the brokers to reload 
their cluster configuration and thereby reconfigure the cluster.

Backing up the Master Broker’s Configuration 
Change Record
Each cluster can have one Master Broker that keeps track of any changes in the 
persistent state of the cluster: this includes durable subscriptions and physical 
destinations created by the administrator. All brokers consult the Master Broker 
during startup in order to synchronize information about these persistent objects. 
Consequently, the failure of the Master Broker can cripple the entire cluster. For 
this reason, it is important to backup the Master Broker’s change record 
periodically by using the -backup option of the imqbrokerd command. For 
example,

imqbrokerd -backup mybackuplog

It is important you do this in a timely manner. Restoring a very old backup can 
result in loss of information: any persistent objects created since the backup was 
last done will be lost. 



Logging

Chapter 5 Starting and Configuring a Broker 131

Restoring the Master Broker’s Configuration 
Change Record

➤ To restore the Master Broker in case of failure

1. Shut down all the brokers in the cluster.

2. Restore the Master Broker’s configuration change record using the following 
command:

imqbrokerd  -restore mybackuplog

3. If you assign a new name or port number to the Master Broker, you must 
update the cluster configuration file to specify that the Master Broker is part of 
the cluster and to specify its new name (using the property 
imq.cluster.masterbroker). 

4. Restart all the brokers.

The restoration of the broker will inevitably result in some stale data being 
reloaded into the broker’s configuration change record; however, doing frequent 
periodic backups, as described in the previous section, should minimize this 
problem.

Because the Master Broker keeps track of the entire history of changes to persistent 
objects, its database can grow significantly over a period of time. The backup and 
restore operations have the positive effect of compressing and optimizing this 
database.

Logging
This section describes the default logging configuration for the broker and explains 
how you can change that configuration in order to redirect log information to 
alternate output channels, to change rollover criteria, and to report broker metrics. 
For an introduction to logging, see “Logger” on page 61. 

Default Logging Configuration
When you start the broker, it is automatically configured to save log output to a set 
of rolling log files located at 

IMQ_VARHOME/instances/brokerName/log/
(/var/imq/instances/brokerName/log/ on Solaris)



Logging

132 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The log files are simple text files. They are named as follows, from earliest to latest:

log.txt
log_1.txt
log_2.txt
...
log_9.txt

By default, log files are rolled over once a week; the system maintains nine backup 
files. 

• To change the directory in which the log files are kept, set the property 
imq.log.file.dirpath to the desired path.

• To change the root name of the log files from log to something else, set the 
imq.log.file.filename property.

The broker supports three log categories: ERROR, WARNING, INFO (see Table 2-7 on 
page 62). Setting a logging level gathers messages for all levels up to and including 
that level. The default log level is INFO. This means that ERROR, WARNING, and INFO 
messages are logged.

Log Message Format
Logged messages consist of a timestamp, message code, and the message itself. The 
volume of information varies with the log level you have set. The following is an 
example of an INFO message. 

Changing the Logger Configuration
All Logger properties are described in Table 2-8 on page 63. 

➤ To change the Logger configuration for a broker

1. Set the log level.

2. Set the output channel (file, console, or both) for one or more logging 
categories.

3. If you log output to a file, configure the rollover criteria for the file.

[13/Sep/2000:16:13:36 PDT] B1004 Starting the broker service 
using tcp [ 25374,100] with min threads 50 and max threads of 500



Logging

Chapter 5 Starting and Configuring a Broker 133

You complete these steps by setting Logger properties. You can do this in one of 
two ways:

• Change or add Logger properties in the config.properties file for a broker 
before you start the broker.

• Specify Logger command line options in the imqbrokerd command that starts 
the broker. You can also use the broker option -D to change Logger properties 
(or any broker property). 

Options passed on the command line override properties specified in the broker 
instance configuration files. Table 5-4 lists the imqbrokerd options that affect 
logging.

The following sections describe how you can change the default configuration in 
order to do the following:

• change the output channel (the destination of log messages)

• change rollover criteria

• log broker metrics information

Changing the Output Channel
By default, error and warning messages are displayed on the terminal as well as 
being logged to a log file. (On Solaris error messages are also written to the 
system’s syslog daemon.)

Table 5-4 imqbrokerd Logger Options and Corresponding Properties

imqbrokerd Options Description

-metrics number Specifies the interval (in seconds) at which metrics 
information is gathered.

-loglevel level Sets the log level to one of ERROR, WARNING, INFO.

-silent Turns off logging to the console

-tty Sends all messages to the console. By default only WARNING 
and ERROR level messages are displayed.



Logging

134 Sun ONE Message Queue • Administrator’s Guide • October, 2002

You can change the output channel for log messages in the following ways:

• To have all log categories (for a given level) output displayed on the screen, use 
the -tty option to the imqbrokerd command. 

• To prevent log output from being displayed on the screen, use the -silent 
option to the imqbrokerd command. 

• Use the imq.log.file.output property to specify which categories of logging 
information should be written to the log file. For example, 

imq.log.file.output=ERROR

• Use the imq.log.console.output property to specify which categories of 
logging information should be written to the console. For example,

imq.log.console.output=INFO

• On Solaris, use the imq.log.syslog.output property to specify which 
categories of logging information should be written to Solaris syslog. For 
example,

imq.log.syslog.output=NONE

Changing Rollover Criteria 
There are two criteria for rolling over log files: time and size. The default is to use a 
time criteria and roll over files every seven days.

• To change the time interval, you need to change the property 
imq.log.file.rolloversecs. For example, the following property definition 
changes the time interval to ten days:

imq.log.file.rolloversecs=864000

NOTE Before changing the destination of log messages, you must make 
sure that logging is set at the level that corresponds to the log 
category you are mapping to the output channel. For example, if 
you set the log level to ERROR and then set the 
imq.log.console.output property to WARNING, no messages will 
be logged because you have not enabled the logging of those level 
messages. 



Logging

Chapter 5 Starting and Configuring a Broker 135

• To change the rollover criteria to depend on file size, you need to set the 
imq.log.file.rolloverbytes property. For example, the following 
definition directs the broker to rollover files after they reach a limit of 500,000 
bytes

imq.log.file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first 
limit reached will trigger the rollover. As noted before, the broker maintains up to 
nine rollover files.

Logging Broker Performance Metrics
The broker’s default configuration, includes the following settings:

• imq.metrics.enabled=true 

• imq.metrics.interval=0 

• imq.log.level=INFO 

As a result of these settings, the broker gathers performance metrics for the broker 
as well as for active connection services, but it does not generate metrics reports.

You can have the broker generate metrics reports in one of two ways:

• Use the -metrics option to the imqbrokerd command and specify the interval 
(in seconds) at which the broker generates reports.

• Set the imq.metrics.interval property to the interval (in seconds) at which 
you want the broker to generate reports.

Because metrics reports are included in the INFO category, metric reports, by 
default, are written to the log file output channel.

The following shows sample metrics information:

[31/Jan/2001:15:00:50 PST]
Connections: 0 JVM Heap: 6291456 bytes (5186320 free)

In: 0 mesgs (0bytes) 0 pkts (0 bytes)
Out: 0 mesgs (0bytes) 0 pkts (0 bytes)

Rate In: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)
Rate Out: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)



Logging

136 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Table 5-5 describes the meaning of the metrics generated for each connection 
service.

Table 5-6 describes the metrics gathered and reported for each broker.

Table 5-5 Metrics Gathered for Connection Services

Metrics Description

Pkts in (total) Total number of packets read by the broker since the last 
reset. This includes MQ protocol packets, not just JMS 
messages.

Pkts out (total) Total number of packets written by the broker since the last 
reset.

JMS Messages in (total) Total number of JMS messages read by the broker since last 
reset.

JMS Messages out (total)  Total number of JMS messages written by the Broker since 
last reset.

Message Bytes in (total) Total number of message bytes read by the Broker since last 
reset.

Message Bytes out (total) Total number of message bytes written.

Current # connections Current number of open connections.

Table 5-6 Metrics Gathered for Each Broker

Metrics Description

VM heap size (bytes) Maximum size of the Java VM heap.

VM heap free space (bytes) Amount of free space left in the Java VM heap.

NOTE This information is also available via the imqcmd metrics 
command.



137

Chapter 6

Broker and Application Management

This chapter explains how to perform tasks related to managing the broker and the 
services it provides. Some of these tasks are independent of any particular client 
application. These include:

• controlling the broker’s state: you can pause, resume, shutdown, and restart 
the broker.

• querying and updating broker properties

• querying and updating connection services

• allocating and managing resources

• managing connection services

Other broker tasks are performed on behalf of specific applications; these include 
managing physical destinations, durable subscriptions, and transactions:

• MQ messages are routed to their receivers or subscribers by way of broker 
destinations. You are responsible for creating these destinations on the broker. 

• MQ allocates and maintains resources for durable subscribers even when 
clients that have durable subscriptions become inactive. You use the MQ 
Command tool to get information about durable subscriptions and to destroy 
durable subscriptions or purge their messages in order to save MQ resources.

• MQ transactions and distributed transactions are tracked by a broker. You 
might need to manually commit or roll back transactions if a failure takes 
place. 

This chapter explains how you use the Command utility (imqcmd) to perform all 
these tasks. You can accomplish many of these same tasks by using the 
Administration Console, the graphical interface to the MQ message server. For 
more information, see Chapter 4, “Administration Console Tutorial.”



Command Utility

138 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Command Utility
The Command utility allows you to manage the broker and the services it 
provides. This section describes the basic imqcmd command syntax, provides a 
listing of subcommands, and summarizes imqcmd options. Subsequent sections 
explain how you use these commands to accomplish specific tasks.

Syntax of Command
The general syntax of the imqcmd command is as follows:

imqcmd subcommand argument [options]
imqcmd -h|H
imqcmd -v

Note that if you specify the -v, -h, or -H options, no subcommands specified on the 
command line are executed. For example, if you enter the following command, 
version information is displayed but the restart subcommand is not executed.

imqcmd restart bkr -v

imqcmd Subcommands
The Command utility (imqcmd) includes the subcommands listed in Table 6-1:

Table 6-1 imqcmd Subcommands

Subcommand and Argument Description

create dst  Creates a destination.

commit txn  Commits a transaction.

destroy dst  Destroys a destination.

destroy dur  Destroys a durable subscription.

list dst  Lists destinations on the broker.

list dur  Lists durable subscriptions on the topic.

list svc  Lists services on the broker.

list txn  Lists transactions on the broker.

metrics bkr  Displays broker metrics.

metrics svc  Displays service metrics.



Command Utility

Chapter 6 Broker and Application Management 139

pause bkr    Pauses all services on the broker.

pause svc    Pauses one service.

purge dst    Purges all messages on a destination without destroying 
the destination.

purge dur    urges all messages on a durable subscription without 
destroying the durable subscription.

query bkr   Queries and display information on a broker.

query dst   Queries and display information on a destination.

query svc   Queries and display information on a service.

query txn   Queries and display information on a transaction.

reload cls  Reloads broker cluster configuration.

restart bkr Restarts the current running broker instance. Cannot be 
used to start a new broker instance.

resume bkr  Resumes all services on the broker.

resume svc  Resumes one service.

rollback txn Rolls back a transaction.

shutdown bkr Shuts down the broker instance. Can be subsequently 
started using the imqbrokerd command, but not the 
restart bkr subcommand of imqcmd.

update bkr  Updates attributes of a broker.

update dst  Updates attributes of a destination.

update svc  Updates attributes of a service.

Table 6-1 imqcmd Subcommands (Continued)

Subcommand and Argument Description



Command Utility

140 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Summary of imqcmd Options
Table 6-2 lists the options to the imqcmd command. For a discussion of their use, see 
the following task-based sections.

Table 6-2 imqcmd Options

Option Description

-b hostName:port Specifies the name of the broker’s host and its port number. 
The default value is localhost:7676.

To specify port only: -b :7878
To specify name only: -b somehost 

-c clientID Specifies the ID of the durable subscriber to a topic. For more 
information, see “Managing Durable Subscriptions” on 
page 155.

-d topicName Specifies the name of the topic. Used with the list dur and 
destroy dur subcommands. See “Managing Durable 
Subscriptions” on page 155.

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is 
executed.

-H Displays usage help, attribute list, and examples. Nothing 
else on the command line is executed.

-int interval Specifies the interval, in seconds, at which imqcmd displays 
broker metrics. (Used with the metrics subcommand.)

-javahome Specifies an alternate Java 2 compatible runtime to use 
(default is to use the runtime bundled with the product).

-m metricType Specifies the type of metric information to display. Type can 
be one of the following

ttl Total of messages in and out of the broker (default).

rts Provides the same information as ttl, but specifies the
number of messages per second. 

cxn Connections, virtual memory heap, threads

Use this option with the metrics bkr or metrics svc 
subcommand. The following command displays cxn-type 
metrics for the default broker every five seconds.

imqcmd metrics bkr -m cxn -int 5 



Command Utility

Chapter 6 Broker and Application Management 141

You must specify the options for host name and port number (-b), user name (-u) 
password (-p), and secure connection (-secure) each time you issue a imqcmd 
subcommand. If you don’t specify the host name and port number, it uses the 
default values. If you don’t specify user name and password information, you will 
be prompted for them. If you don’t specify -secure, then the connection will not 
be secure.

-n argumentName Specifies the name of the subcommand argument. Depending 
on the subcommand, this might be the name of a service, a 
physical destination, a durable subscription, or a 
transaction ID.

-o attribute=value Specifies the value of an attribute. Depending on the 
subcommand argument, this might be the attribute of a 
broker (see “Querying and Updating Broker Properties” on 
page 145), service (see “Managing Connection Services” on 
page 148), or destination (see “Managing Destinations” on 
page 152).

-secure Specifies a secure administration connection to the broker 
using the ssladmin connection service (see “Step 4. 
Configuring and Running SSL-based Clients,”“Command 
Utility (imqcmd)” on page 202).

-p password Specifies your (the administrator’s) password. If you omit this 
value, you will be prompted for it.

-s Silent mode. No output will be displayed.

-t destinationType Specifies the type of a destination: t (topic) or q (queue).

-tmp Displays temporary destinations.

-u name Specifies your (the administrator’s) name. If you omit this 
value, you will be prompted for it.

-v Displays version information. Nothing else on the command 
line is executed.

Table 6-2 imqcmd Options (Continued)

Option Description



Command Utility

142 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Prerequisites to Using imqcmd 
In order to use imqcmd commands to manage the broker, you must do the 
following:

• Start the broker using the imqbrokerd command. 

See “Starting a Broker” on page 120. You can use the Command utility only to 
administer brokers that are already running; you cannot use it to start a broker.

• Specify the target broker using the -b option unless the broker is running on 
the local host, on port 7676.

• Specify the proper administrator user name and password. If you do not do 
this, you will be prompted for it. Either way, be aware that every operation you 
perform using imqcmd will be authenticated against a user repository. 

When you install MQ, a default flat-file user repository is installed. The file is 
named IMQ_HOME/etc/passwd (/etc/imq/passwd on Solaris). The repository 
is shipped with two entries: one for an admin user and one for a guest user. 
These entries allow you to connect to the broker without doing any additional 
work. For example, if you are just testing MQ, you can run the utility using 
your default user name and password (admin/admin). 

If you are setting up a production system, you will need to do some additional 
work to authenticate and authorize users. You also have the option of using an 
existing LDAP directory server for your user repository. For more information, 
see “Authenticating Users” on page 182.

Examples
The following command lists the properties of the broker running on localhost at 
port 7676:

imqcmd query bkr -u admin -p admin

The following command lists the properties of the broker running on myserver at 
port 1564; the user’s name is alladin, the user’s password is abracadabra.

imqcmd query bkr -b myserver:1564 -u alladin -p abracadabra

Assuming that the user name alladin was assigned to the admin group, you will 
be connected as an admin client to the specified broker.



Controlling the Broker’s State

Chapter 6 Broker and Application Management 143

Controlling the Broker’s State
After you start the broker, you can use the following imqcmd subcommands to 
control the state of the broker.

• Pausing the broker

Pausing the broker suspends the broker service threads which causes the 
broker to stop listening on the ports. You can then perform any administration 
tasks needed to regulate the flow of messages to the broker. For example, if a 
particular destination is bombarded with messages, you can pause the broker 
and take any of the following actions that might help you fix the problem: trace 
the source of the messages, limit the size of the destination, or destroy the 
destination. 

The following command pauses the broker running on myhost at port 1588.

imqcmd pause bkr -b myhost:1588

• Resuming the broker

Resuming the broker reactivates the broker’s service threads and the broker 
resumes listening on the ports. The following command resumes the broker 
running on localhost at port 7676.

imqcmd resume bkr

• Shutting down the broker

Shutting down the broker terminates the broker process. This is a graceful 
termination: the broker stops accepting new connections and messages, it 
completes delivery of existing messages, and it terminates the broker process. 
The following command shuts down the broker running on ctrlsrv at port 
1572

imqcmd shutdown bkr -b ctrlsrv:1572

• Restarting the broker

Shuts down and restarts the broker. The following command restarts the 
broker running on localhost at port 7676:

imqcmd restart bkr



Controlling the Broker’s State

144 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Table 6-3 summarizes the imqcmd subcommands used to control the broker. 
Remember that you must specify the broker host name and port number unless 
you are targeting the broker running on localhost at port 7676.

Table 6-3 imqcmd Subcommands Used to Control the Broker

Subcommand Description

pause bkr [-b hostName:port] Pauses the default broker or a broker at the 
specified host and port.

resume bkr [-b hostName:port] Resumes the default broker or a broker at the 
specified host and port.

shutdown bkr [-b hostName:port] Shuts down the default broker or a broker at the 
specified host and port.

restart bkr [-b hostName:port] Shuts down and restart the default broker or a 
broker at the specified host and port.

Note that this command restarts the broker using 
the options specified when the broker was first 
started. If you want different options to be in 
effect, you must shutdown the broker and then 
start it again, specifying the options you want.



Querying and Updating Broker Properties

Chapter 6 Broker and Application Management 145

Querying and Updating Broker Properties
The Command utility includes subcommands that you can use to get information 
about the broker and to update broker properties. Table 6-4 lists these 
subcommands. 

Table 6-4 imqcmd Subcommands Used to Get Information and to Update Broker

Subcommand Syntax Description

query bkr -b hostName:port Lists the current settings of properties of the 
default broker or a broker at the specified host and 
port. Also shows the list of running brokers (in a 
multi-broker cluster) that are connected to the 
specified broker.

reload cls Applies only to broker clusters. Forces all the 
brokers in a cluster to reload the 
imq.cluster.brokerlist property and 
update cluster information. See “Adding Brokers 
to Clusters” on page 129 for more information.

update bkr [-b hostName:port]
-o attribute=value 
[-o attribute=value1]...

Changes the specified attributes for the default 
broker or a broker at the specified host and port.

metrics bkr [-b hostName:port]
[-m metricType] 
[-int interval]

Displays broker metrics for the default broker or a 
broker at the specified host and port.

Use the -m option to specify the type of metric to 
display:

ttl Total of messages in and out of the
broker (default).

rts Provides the same information as ttl, 
but specifies the number of messages 
per second. 

cxn Connections, virtual memory heap,
threads

Use the -int option to specify the interval (in 
seconds) at which to display the metrics. The 
default is 5 seconds



Querying and Updating Broker Properties

146 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Remember that you must specify the broker host name and port number when 
using any of the subcommands listed in Table 6-4 unless you are targeting the 
broker running on localhost at port 7676

Querying a Broker
To query and display information about a single broker, use the query 
subcommand. For example, 

imqcmd query bkr

This produces output like the following:

%imqcmd query bkr

Querying the broker specified by:

-------------------------
Host Primary Port
-------------------------
localhost 7676

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Delivery Policy Round Robin
Cluster Broker List (active) myhost/192.18.116.221:7676
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL
Current Number of Messages in System 0 
Current Size of Messages in System 0 
Instance Name imqbroker
Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) 0 (unlimited)
Max Message Size 70m
Max Number of Messages in System 0 (unlimited)
Max Size of Messages in System 0 (unlimited)
Primary Port 7676
Version 3.0

Successfully queried the broker.



Querying and Updating Broker Properties

Chapter 6 Broker and Application Management 147

Updating a Broker
You can use the update subcommand to update any of the broker properties listed 
in Table 6-5. Note that updates to the broker are automatically written to the 
broker’s instance configuration file. 

Table 6-5 Broker Properties

Properties Description

imq.autocreate.queue Specifies whether a broker is allowed to 
auto-create a queue destination. True by default.

imq.autocreate.topic Specifies whether a broker is allowed to 
auto-create a topic destination. True by default.

imq.queue.deliverypolicy Specifies the default delivery policy of 
auto-created queues. Values are: s (single),
r (round-robin), or f (failover). Default is s.

imq.cluster.url Specifies the location of the cluster configuration 
file. For more information, see“Cluster 
Configuration Properties” on page 126.

imq.log.level Specifies the log level as one of the following: 
NONE, ERROR, WARNING, INFO. Default is INFO.

imq.log.file.rolloversecs The age (in seconds) before the log file is rolled 
over. A value of 0 means no rollover based on the 
age of the file. Default is 604800 (7 days).

imq.log.file.rolloverbytes Specifies the maximum size of the log file before it 
is rolled over. A value of 0 means no rollover based 
on file size. Default is 0.

imq.message.max_size Specifies the maximum size of a message in bytes. 
Default is 70m.

imq.system.max_count Specifies the maximum number of messages in 
memory and disk. A value of 0 means no limit. 
Default is 0.

imq.system.max_size Specifies the maximum total size of messages in 
memory and disk. A value of 0 means no limit. 
Default is 0.

imq.portmapper.port Specifies the number of the port mapper port. 
Default is 7676.



Managing Connection Services

148 Sun ONE Message Queue • Administrator’s Guide • October, 2002

For example, the following command changes the default delivery policy for 
queues from single to round-robin. 

imqcmd update bkr -o “imq.queue.deliverypolicy=r”

Managing Connection Services
The Command utility includes a number of subcommands that allows you to do 
the following

• list available connection services 

• display information about a particular service 

• update the attributes of a service

• pause and resume services 

For an overview of MQ connection services, see “Connection Services” on page 46.

Table 6-6 lists the imqcmd subcommands that control connection services. If no host 
name or port is specified, they are assumed to be localhost, 7676.

Table 6-6 imqcmd Subcommands Used to Manage Connection Services

Subcommand Syntax Description

list svc [-b hostName:port] Lists all connection services on the default broker 
or on a broker at the specified host and port. 

metrics svc -n serviceName 
[-b hostName:port]
[-m metricType] [-int interval] 

Lists metrics for the specified service on the 
default broker or on a broker at the specified host 
and port.

Use the -m option to specify the type of metric to 
display:

ttl Total of messages in and out of the broker
(default).

rts Provides the same information as ttl, but
specifies the number of messages per
second. 

cxn Connections, virtual memory heap, threads

Use the -int option to specify the interval (in 
seconds) at which to display the metrics. The 
default is 5 seconds.



Managing Connection Services

Chapter 6 Broker and Application Management 149

A broker supports communication with both application clients and 
administration clients. The connection services currently available from an MQ 
broker are shown in Table 6-7 on page 149. The values in the Service Name column 
are the values you use to specify a service name for the -n option. (As shown in the 
table, each service is specified by the service type it uses—NORMAL (JMS) or 
ADMIN—and an underlying transport layer.)

query svc -n serviceName 
[-b hostName:port] 

Displays information about the specified service 
running on the default broker or on a broker at 
the specified host and port.

pause svc -n serviceName
[-b hostName:port] 

Pauses the specified service running on the 
default broker or on a broker at the specified host 
and port. You cannot pause the admin service.

resume svc -n serviceName
[-b hostName:port] 

Resumes the specified service running on the 
default broker or on a broker at the specified host 
and port.

update svc -n serviceName 
[-b hostName:port]
-o attribute=value 
[-o attribute=value1]...

Updates the specified attribute of the specified 
service running on the default broker or on a 
broker at the specified host and port. For a 
description of service attributes, see Table 6-8 on 
page 151.

Table 6-7 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL (JMS message delivery) tcp

ssljms
(Enterprise Edition)

NORMAL (JMS message delivery) tls (SSL-based security)

httpjms
(Enterprise Edition)

NORMAL (JMS message delivery) http

httpsjms
(Enterprise Edition)

NORMAL (JMS message delivery) https (SSL-based security)

admin ADMIN tcp

ssladmin
(Enterprise Edition)

ADMIN tls (SSL-based security)

Table 6-6 imqcmd Subcommands Used to Manage Connection Services (Continued)

Subcommand Syntax Description



Managing Connection Services

150 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Listing Connection Services
To list available connection services on a broker, use a command like the following:

imqcmd list svc [-b hostName:portNumber] 

For example, the following command lists the services available for the broker 
running on the host MyServer on port 6565.

imqcmd list svc -b MyServer:6565 

The following command lists all services on the broker running on localhost at 
port 7676:

imqcmd list svc

The command will output information like the following:

Querying and Updating Service Properties
To query and display information about a single service, use the query 
subcommand. For example, 

imqcmd query svc -n jms

Listing all the services on the broker specified by: 

Host Primary Port
localhost 7676

Service Name Port Number Service State 
admin 33984 (dynamic) RUNNING
httpjms UNKNOWN
httpsjms - UNKNOWN
jms 33983 (dynamic) RUNNING
ssladmin dynamic UNKNOWN
ssljms dynamic UNKNOWN

Successfully listed services. 



Managing Connection Services

Chapter 6 Broker and Application Management 151

This produces output like the following:

You can use the update subcommand to change the value of one or more of the 
service attributes listed in Table 6-8.

The following command changes the minimum number of threads assigned to the 
jms service to 20.

imqcmd update svc -n jms -o “minThreads=20”

Querying the service where: 

Service Name
jms

On the broker specified by: 

Host Primary Port 
localhost 7676
                              

Current Number of Allocated Threads 120 
Current Number of Connections 20 
Max Number of Threads 1000 
Min Number of Threads 50 
Port Number 42019 (dynamic)
Service Name jms
Service State RUNNING 

Successfully queried the service. 

Table 6-8 Connection Service Attributes

Attribute Description

port The port assigned to the service to be updated (does not apply 
to httpjms or httpsjms).

minThreads The minimum number of threads assigned to the service.

maxThreads The maximum number of threads assigned to the service.



Managing Destinations

152 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Pausing and Resuming a Service
To pause any service other than the admin service (which cannot be paused), use a 
command like the following:

imqcmd pause svc -n serviceName 

To resume a service, use a command like the following:

imqcmd resume svc -n serviceName 

Managing Destinations
All MQ messages are routed to their consumer clients by way of destinations, 
queues and topics, created on a particular broker. You are responsible for 
managing these destinations on the broker. This involves using the Command 
utility to create and destroy destinations, to list destinations, to display information 
about destinations, and to purge messages. For an introduction to destinations, see 
“Physical Destinations” on page 65.

Table 6-9 provides a summary of the imqcmd destination subcommands. 
Remember to specify the host name and port of the broker if this is not the default 
(localhost:7676) broker.

Table 6-9 imqcmd Subcommands Used to Manage Destinations

Subcommand Description

list dst [-tmp] Lists all destinations, with option of listing 
temporary destinations as well (see “Temporary 
Destinations” on page 68). 

create dst -t type 
-n destName
[-o attribute=value] 
[-o attribute=value1]...

Creates a destination of the specified type, with the 
specified name, and the specified attributes. 
Destination names must contain only alphanumeric 
characters (no spaces) and can begin with an 
alphabetic character or the character “_” 

destroy dst -t type 
-n destName 

Destroys the destination of the specified type and 
name.

purge dst -t type 
-n destName 

Purges messages at the destination with the 
specified type and name.

query dst -t type 
-n destName 

Lists information about the destination of the 
specified type and name.



Managing Destinations

Chapter 6 Broker and Application Management 153

Creating Destinations
When creating a destination, you must specify its type (topic or queue) and, if 
needed, specify values for the destination’s attributes. Default values for these 
attributes are set in the broker’s configuration file (see “Configuration Files” on 
page 114.)

Destroying a destination purges all messages at that destination and removes it 
from the broker; the operation is not reversible.

Table 6-10 describes the attributes that can be set for each type of destination when 
you create the destination.

update dst -t type 
-n destName 
-o attribute=value 
[-o attribute=value1]...

Updates the value of the specified attributes at the 
specified destination.

The attribute name may be any of the attributes 
described in Table 6-10.

Table 6-10 Destination Attributes

Destination 
Type

Attribute Default Value Description

Queue queueDeliveryPolicy Single Describes the algorithm used 
to route messages.

Values are 

f = Failover

r = Round robin

s = Single

Queue maxTotalMsgBytes 0 (unlimited) Maximum total size in bytes of 
messages allowed in the 
queue.

Queue maxNumMsgs 0 (unlimited) Maximum number of 
messages allowed in the queue

Queue maxBytesPerMsg 0 (unlimited) Maximum size of any single 
message allowed in the queue.

Topic maxBytesPerMsg 0 (unlimited) Maximum size of any single 
message posted to the topic.

Table 6-9 imqcmd Subcommands (Continued)Used to Manage Destinations (Continued)

Subcommand Description



Managing Destinations

154 Sun ONE Message Queue • Administrator’s Guide • October, 2002

• To create a queue destination, enter a command like the following:

imqcmd create dst -n myQueue -t q -o “queueDeliveryPolicy=f”

Note that a destination name must be a valid Java identifier.

• To create a topic destination, enter a command like the following:

imqcmd create dst -n myTopic -t t -o “maxBytesPerMsg=5000”

Getting Information About Destinations 
To get information about the current value of a destination’s attributes, use a 
command like the following:

imqcmd query dst -t q -n XQueue

You can then use the update imqcmd subcommand to change the values of one or 
more attributes.

To list all destinations on a particular broker, say the broker running on myHost at 
port 4545, use a command like the following:

imqcmd list dst -b myHost:4545 

The list command can optionally include temporary destinations (using the -tmp 
option). These are destinations created by client applications that need a 
destination at which to receive replies to messages sent to other clients (see 
“Temporary Destinations” on page 68). You cannot destroy these destinations; 
they can only be destroyed by API calls made by the client application when there 
are no more active message consumers.

Updating Destinations
You can change the attributes of a destination by using the update dst 
subcommand and the -o option to specify the attribute to update. You can use the 
-o option more than once if you want to update more than one attribute. For 
example, the following command changes the maxBytesPerMsg attribute to 1000 
and the MaxNumMsgs to 2000:

imqcmd update dst -t q -n myQueue -o “maxBytesPerMsg=1000” 
             -o maxNumMsgs=2000

See Table 6-10 on page 153 for a list of the attributes that you can update.

You cannot use the update dst subcommand to update the type of a destination or 
to update the queue delivery policy for a queue.



Managing Durable Subscriptions

Chapter 6 Broker and Application Management 155

Purging Destinations
You can purge all messages currently queued at a destination. Purging a 
destination means that all messages queued at the physical destination are deleted. 
You might want to purge messages when the messages accumulated at a 
destination are taking up too much of the system’s resources. This might happen 
when a queue does not have any registered consumer clients and is receiving many 
messages. It might also happen if inactive durable subscribers to a topic do not 
become active. In both cases, messages are held unnecessarily. 

To purge messages at a destination, enter commands like the following:

imqcmd purge dst -n myQueue -t q 

imqcmd purge dst -n myTopic -t t

In the case where you have shut down the broker and do not want old messages to 
be delivered when you restart it, use the reset subcommand of the imqbrokerd 
command to purge stale messages; for example:

imqbrokerd -reset messages

This saves you the trouble of purging destinations after restarting the broker.

Destroying Destinations
To destroy a destination, enter a command like the following:

imqcmd destroy dst -t q -n myQueue

Managing Durable Subscriptions
You might need to use imqcmd subcommands to manage a broker’s durable 
subscriptions. A durable subscription is a subscription to a topic that is registered by 
a client as durable; it has a unique identity and it requires the broker to retain 
messages for that subscription even when its consumer becomes inactive. 
Normally, the broker may only delete a message held for a durable subscriber 
when the message expires.



Managing Durable Subscriptions

156 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Table 6-12 provides a summary of the imqcmd durable subscription subcommands. 
Remember to specify the host name and port of the broker if this is not the default 
(localhost:7676) broker.

For example, the following command lists all durable subscriptions to the topic 
SPQuotes 

imqcmd list dur -d SPQuotes

For each durable subscription to a topic, the list subcommand returns the name 
of the durable subscription, the client ID of the user, the number of messages 
queued to this topic, and the state of the durable subscription (active/inactive). For 
example:

Table 6-11 imqcmd Subcommands Used to Manage Durable Subscriptions

Subcommand Description

list dur -d destination Lists all durable subscriptions for the specified 
destination.

destroy dur -n subscrName 
-c client_id

Destroys the specified durable subscription for the 
specified Client Identifier (see “Client Identifiers” 
on page 38).

purge dur -n subscrName 
-c client_id

Purges all messages for the specified Client 
Identifier (see “Client Identifiers” on page 38).

Listing all the durable subscriptions on the topic myTopic
on the broker specified by:
-------------------------
Host Primary Port
-------------------------
localhost 7676

Name Client ID Number of Durable Sub
Messages State

----------------------------------------------------------------
myDurable myClientID 1 INACTIVE

Successfully listed durable subscriptions.



Managing Transactions

Chapter 6 Broker and Application Management 157

You can use the information returned from the list command to identify a 
durable subscription you might want to destroy or for which you want to purge 
messages. Use the name of the subscription and the client ID to identify the 
subscription. For example:

imqcmd destroy dur -n myDurable -c myClientID

Managing Transactions
All transactions initiated by client applications are tracked by the broker. These can 
be simple MQ transactions or distributed transactions managed by an XA resource 
manager (see “Local Transactions” on page 40). All transaction have an MQ 
transaction ID—a 64 bit number that uniquely identifies a transaction on the 
broker. Distributed transactions also have a distributed transaction ID (XID) 
assigned by the distributed transaction manager—up to 128 bytes long. MQ 
maintains the association of an MQ transaction ID with an XID.

For distributed transactions, in cases of failure, it is possible that transactions could 
be left in a PREPARED state without ever being committed. Hence, as an 
administrator you might need to monitor and then roll back or commit transactions 
left in a prepared state. 

Table 6-12 provides a summary of the imqcmd transactions subcommands. 
Remember to specify the host name and port of the broker if this is not the default 
(localhost:7676) broker.

For example, the following command lists all transactions in a broker.

imqcmd list txn 

Table 6-12 imqcmd Subcommands Used to Manage Transactions

Subcommand Description

list txn Lists all transactions, being tracked by the broker.

query txn -n transaction_id Lists information about the specified transaction.

commit txn -n transaction_id Commits the specified transaction. 

rollback txn -n transaction_id Rolls back the specified transaction. 



Managing Transactions

158 Sun ONE Message Queue • Administrator’s Guide • October, 2002

For each transaction, the list subcommand returns the transaction ID, state, user 
name, number of messages or acknowledgements, and creation time. For example:

The command shows all transactions in the broker, both local and distributed. You 
can only commit or roll back transactions in the PREPARED state. You should only 
do so if you know that the transaction has been left in this state by a failure and is 
not in the process of being committed by the distributed transaction manager.

For example, if the broker’s auto-rollback property is set to false (see Table 2-4 on 
page 53), then you have to manually commit or roll back transactions found in a 
PREPARED state at broker startup.

The list subcommand also shows the number of messages that were produced in 
the transaction and the number of messages that were acknowledged in the 
transaction (#Msgs/#Acks). These messages will not be delivered and the 
acknowledgements will not be processed until the transaction is committed.

The query subcommand lets you see the same information plus a number of 
additional values: the Client ID, connection identification, and distributed 
transaction ID (XID). For example,

imqcmd query txn -n 64248349708800

produces the following output:

Listing all the transactions on the broker specified by:
-------------------------
Host Primary Port
-------------------------
localhost 7676

---------------------------------------------------------------
Transaction ID State User name # Msgs/ Creation time

# Acks
---------------------------------------------------------------

64248349708800 PREPARED  guest 4/0 1/30/02 10:08:31 AM 
64248371287808 PREPARED  guest 0/4 1/30/02 10:09:55 AM

Successfully listed transactions.



Managing Transactions

Chapter 6 Broker and Application Management 159

The commit and rollback subcommands can be used to commit or roll back a 
distributed transaction. As mentioned previously, only a transaction in the 
PREPARED state can be committed or rolled back. For example:

imqcmd commit txn -n 64248349708800

It is also possible to configure the broker to automatically roll back transactions in 
the PREPARED state at broker startup. See the imq.transaction.autorollback 
property in Table 2-4 on page 53 for more information.

Querying the transaction where:
-------------------------
Transaction ID 
-------------------------
64248349708800

On the broker specified by:

-------------------------
Host Primary Port
-------------------------
localhost 7676

Client ID 
Connection guest@192.18.116.219:62209->jms:62195 
Creation time 1/30/02 10:08:31 AM 
Number of acknowledgements 0 
Number of messages 4 
State PREPARED 
Transaction ID 64248349708800 
User name guest 
XID 
6469706F6C7369646577696E6465723130313234313431313030373230

Successfully queried the transaction.



Managing Transactions

160 Sun ONE Message Queue • Administrator’s Guide • October, 2002



161

Chapter 7

Managing Administered Objects

The use of administered objects enables the development of client applications that 
are portable to other JMS providers. Administered objects are objects that 
encapsulate provider-specific configuration and naming information. These objects 
are normally created by a Sun™ ONE Message Queue (MQ) administrator and 
used by client applications to obtain connections to the broker, which are then used 
to send messages to and receive messages from physical destinations. 

For an overview of administered objects, see“MQ Administered Objects” on 
page 75.

MQ provides two administration tools for creating and managing administered 
objects: the command line Object Manager utility (imqobjmgr) and the GUI 
Administration Console. These tools enable you to do the following:

• Add or delete administered objects to an object store.

• List existing administered objects.

• Query and display information about an administered object.

• Modify an existing administered object in the object store.

This chapter explains how you use the Object Manager utility (imqobjmgr) to 
perform these tasks. For information about the Administration Console, see 
Chapter 4, “Administration Console Tutorial.”



About Object Stores

162 Sun ONE Message Queue • Administrator’s Guide • October, 2002

About Object Stores
Administered objects are placed in a readily available object store where they can 
be accessed by client applications through a JNDI lookup. There are two types of 
object stores you can use: a standard LDAP directory server or a file-system object 
store.

LDAP Server An LDAP server is the recommended object store for production 
messaging systems. LDAP implementations are available from a number of 
vendors and are designed for use in distributed systems. LDAP servers also 
provide security features that are useful in production environments. MQ 
administration tools are designed for use with LDAP servers.

File-system Store MQ also supports a file-system object store implementation. 
While the file-system object store is not fully tested and is therefore not 
recommended for production systems, it has the advantage of being very easy to 
use in development environments. Rather than setting up an LDAP server, all you 
have to do is create a directory on your local file system. Any user with access to 
that directory can use MQ administration tools to create and manage administered 
objects.

Administered Objects
For an overview of administered objects, see “MQ Administered Objects” on 
page 75.

MQ administered objects are of two basic kinds: connection factories and 
destinations. Connection factory administered objects are used by client applications 
to create a connection to a broker. Destination administered objects are used by 
client applications to identify the destination to which a producer is sending 
messages or from which a consumer is retrieving messages. (A special SOAP 
endpoint administered object is used for SOAP messaging—see the MQ Developer’s 
Guide for more information.)

Depending on the message delivery model (point-to-point or publish/subscribe), 
connection factories and destinations of a specific type can be used. In 
point-to-point programming, for example, a queueConnectionFactory and a queue 
destination can be used. Similarly, in publish and subscribe programming, a 
topicConnectionFactory and a topic destination can be used. Non-specific 
connection factory and destination administered object types are also available, as 
are connection factory types that support distributed transactions (see Table 1-1 on 
page 38 for all the supported types).



Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 163

Object Manager Utility (imqobjmgr)
The Object Manager utility allows you to create and manage MQ administered 
objects. This section describes the basic imqobjmgr command syntax, provides a 
listing of subcommands, and summarizes imqobjmgr command options. 
Subsequent sections explain how you use the imqobjmgr subcommands to 
accomplish specific tasks.

Syntax of Command
The general syntax of the imqcmd command is as follows:

imqobjmgr subcommand [options]
imqobjmgr -h|H
imqobjmgr -v

Note that if you specify the -v, -h, or -H options, no subcommands specified on the 
command line are executed. For example, if you enter the following command, 
version information is displayed but the list subcommand is not executed.

imqobjmgr list -v

imqobjmgr Subcommands
The Object Manager utility (imqobjmgr) includes the subcommands listed in 
Table 7-1:

Table 7-1 imqobjmgr Subcommands

Subcommand Description

add Adds an administered object to the object store.

delete Deletes an administered object from the object store.

list Lists administered objects in the object store.

query Displays information about the specified administered object.

update Modifies an existing administered object in the object store.



Object Manager Utility (imqobjmgr)

164 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Summary of imqobjmgr Command Options
Table 7-2 lists the options to the imqobjmgr command. For a discussion of their use, 
see the task-based sections that follow.

Table 7-2 imqobjmgr Options

Option Description

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is 
executed.

-H Displays usage help, attribute list, and examples. Nothing 
else on the command line is executed.

-i fileName Specifies the name of an input file containing all or part of the 
subcommand clause, specifying (object type, lookup name, 
object attributes, object store attributes, or other options). 
Typically used for repetitive information, such as object store 
attributes.

-j attribute=value Specifies attributes necessary to identify and access a JNDI 
object store.

-javahome Specifies an alternate Java 2 compatible runtime to use 
(default is to use the runtime bundled with the product).

-l lookupName Specifies the JNDI lookup name of an administered object. 
This name must be unique in the object store’s context.

-o attribute=value Specifies attributes of an administered object.

-pre Preview mode. Indicates what will be done without 
performing the command.

-r read-only_state Specifies whether an administered object is a read-only object. 
A value of true indicates the administered object is a 
read-only object. JMS clients cannot modify the attributes of 
read-only administered objects. The read-onlystate is set to 
false by default.

-s Silent mode. No output will be displayed.



Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 165

The following section describes information that you need to provide when 
working with any imqobjmgr subcommand.

Required Information
When performing most tasks related to administered objects, the administrator 
must specify the following information as options to imqobjmgr subcommands: 

• The type of the administered object: 

The allowed types are shown in Table 7-2.

• The JNDI lookup name of the administered object:

This is the logical name that will be used in the client code to refer to the 
administered object (using JNDI) in the object store.

• Attributes of the administered object:

-t type Specifies the type of an MQ administered object:

q = queue

t = topic

cf = ConnectionFactory

qf = queueConnectionFactory

tf = topicConnectionFactory

xcf = XA ConnectionFactory (distributed transactions)

xqf = XA queueConnectionFactory (distributed transactions)

xtf = XA topicConnectionFactory (distributed transactions)

e = SOAP endpoint1

-v Displays version information. Nothing else on the command 
line is executed.

1 This administered object type is used to support SOAP messages (see the MQ Developer’s Guide).

Table 7-2 imqobjmgr Options (Continued)

Option Description



Object Manager Utility (imqobjmgr)

166 Sun ONE Message Queue • Administrator’s Guide • October, 2002

❍ For queues and topics: The name of the physical destination on the broker. 
This is the name that was specified with the -n option to the imqcmd 
create subcommand. If you do not specify the name, the default name of 
Untitled_Destination_Object will be used.

❍ For connection factories: The host name and port number of the broker to 
which the client will connect. If you do not specify this information, the 
local host and default port number (7676) are used. The section 
“Administered Object Attributes” on page 167 explains how you specify 
object attributes. 

For additional attributes, see “Administered Object Attributes” on page 167.

• Attributes of the JNDI object store: 

This information depends on whether you are using a file-system store or 
LDAP server, but must include the following attributes:

❍ The type of JNDI implementation (initial context attribute). For example, 
file-system or LDAP. 

❍ The location of the administered object in the object store (provider URL 
attribute), that is, its “folder” as it were.

❍ The user name, password, and authorization type, if any, required to 
access the object store.

For more information about object store attributes see “Object Store Attributes” 
on page 169.



Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 167

Administered Object Attributes
The attributes of an administered object are specified using attribute-value pairs. 
The following sections describe these attributes.

Connection Factory Administered Objects
Connection factory (and XA connection factory) administered objects have the 
attributes listed in Table 7-3. The two attributes you are primarily concerned with 
are imqBrokerHostPort and imqBrokerHostName, which you use to specify the 
broker to which the client application will establish a connection. The section, 
“Adding a Connection Factory” on page 174, explains how you specify these 
attributes when you add a connection factory administered object to your object 
store.

For more descriptions of connection factory attributes and information on how 
they are used, see the MQ Developer’s Guide and the JavaDoc API documentation 
for the MQ class com.sun.messaging.ConnectionConfiguration.

Table 7-3 Connection Factory Attributes

Attribute/property name Type Default Value

imqAckOnAcknowledge String not specified

imqAckOnProduce String not specified

imqAckTimeout String 0 milliseconds

imqBrokerHostName String localhost

imqBrokerHostPort String 7676

imqBrokerServicePort String 0

imqConfiguredClientID String not specified

imqConnectionType String TCP

imqConnectionURL String http://localhost/imq/
tunnel

imqDefaultPassword String guest

imqDefaultUsername String guest

imqDisableSetClientID String false

imqFlowControlCount String 100

imqFlowControlIsLimited String false

imqFlowControlLimit String 1000



Object Manager Utility (imqobjmgr)

168 Sun ONE Message Queue • Administrator’s Guide • October, 2002

imqLoadMaxToServerSession String false

imqQueueBrowserMax
MessagesPerRetrieve

String 1000

imqQueueBrowserRetrieve
Timeout

String 60,000 milliseconds

imqReconnect Boolean false

imqReconnectDelay String 30,000 milliseconds

imqReconnectRetries String 0

imqSetJMSXAppID String false

imqSetJMSXConsumerTXID String false

imqSetJMSXProducerTXID String false

imqSetJMSXRcvTimestamp String false

imqSetJMSXUserID String false

imqSSLIsHostTrusted String true

imqJMSDeliveryMode Integer 2 (persistent) 

imqJMSExpiration Integer 0 (does not expire)

imqJMSPriority Integer 4 (normal priority)

imqOverrideJMSDeliveryMode Boolean false 

imqOverrideJMSExpiration Boolean false 

imqOverrideJMSPriority Boolean false 

imqOverrideJMSHeadersTo
TemporaryDestinations

Boolean  false 

Table 7-3 Connection Factory Attributes (Continued)

Attribute/property name Type Default Value



Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 169

Destination Administered Objects
The destination administered object that identifies a physical topic or queue 
destination has the attributes listed in Table 7-4. The section, “Adding a Topic or 
Queue” on page 175, explains how you specify these attributes when you add a 
destination administered object to your object store.

The attribute you are primarily concerned with is imqDestinationName. This is the 
name you assign to the physical destination that corresponds to the topic or queue 
administered object. You can also provide a description of the destination that will 
help you distinguish it from others that you might create to support many 
applications.

For more information, see the JavaDoc API documentation for the MQ class 
com.sun.messaging.DestinationConfiguration.

Object Store Attributes
The attributes of the object store are specified using the -j option and consist of 
attribute-value pairs. In general, you must specify the following attributes:

Initial Context and Location Information
The format for these entries differs depending on whether you are using a 
file-system store or LDAP server.

File-system store As an example of using a file-system store, create a folder 
called MyObjstore on the C drive, and specify the following values for the initial 
context and location attributes, respectively:

-j "java.naming.factory.initial=
com.sun.jndi.fscontext.RefFSContextFactory"

-j "java.naming.provider.url=file:///C:/MyObjStore"

Table 7-4 Destination Attributes

Attribute/property name Type Default

imqDestinationDescription String A Description for the 
destination Object

imqDestinationName String1

1 Destination names can contain only alphanumeric characters (no spaces) and must begin with an alphabetic
character or the characters “_” and/or “$”.

Untitled_Destination_Object



Object Manager Utility (imqobjmgr)

170 Sun ONE Message Queue • Administrator’s Guide • October, 2002

LDAP server As an example of using an LDAP server, specify the following 
values for the initial context and location attributes, respectively:

-j "java.naming.factory.initial=
com.sun.jndi.ldap.LdapCtxFactory"

-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"

Security Information (LDAP Only)
The format for these entries differs depending on the LDAP provider. You should 
also consult the documentation provided with your LDAP implementation to 
determine whether security information is required on all operations or only on 
operations that change the stored data. 

Security attributes look like this:

Table 7-5 describes these entries:

-j "java.naming.security.principal=
uid=fooUser, ou=People, o=imq"

-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

Table 7-5 Security Attributes for the Object Store

Attribute Description

…principal The identity of the principal for authenticating the caller to the 
service.The format of this entry depends on the authentication 
scheme. If this property is unspecified, the behavior is 
determined by the service provider.

…credentials The credentials of the principal for authenticating the caller to the 
service. The value of the property depends on the authentication 
scheme. For example, it could be a hashed password, clear-text 
password, key, certificate, and so on. If this property is 
unspecified, the behavior is determined by the service provider.

…authentication Security level to use. Its value is one of the following key words: 
none, simple, strong. If this property is unspecified, the 
behavior is determined by the service provider.

If you specify simple, imqobjmgr will prompt for any missing 
principal or credential values. This will allow you a more secure 
way of providing identifying information.



Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 171

Using Input Files
The imqobjmgr command allows you to specify the name of an input file that uses 
java property file syntax to represent all or part of the imqobjmgr subcommand 
clause. 

Using an input file with the Object Manager utility (imqobjmgr) is especially useful 
to specify object store attributes, which are likely to be the same across multiple 
invocations of imqobjmgr and which normally require a lot of typing. Using an 
input file can also allow you to avoid a situation in which you might otherwise 
exceed the maximum number of characters allowed for the command line.

The general syntax for a imqobjmgr input file is as follows (the version property 
applies only to the input file—it is not a command line option—and its value must 
be set to 2.0):

version=2.0
cmdtype=[ add | delete | list | query | update ] 
obj.type=[ q | t | qf | tf | cf | xqf | xtf | xcf | e ] 
obj.lookupName=lookup name 
obj.attrs.objAttrName1=value1 
obj.attrs.objAttrName2=value2 
obj.attrs.objAttrNameN=valueN 
... 
objstore.attrs.objStoreAttrName1=value1 
objstore.attrs.objStoreAttrName2=value2 
objstore.attrs.objStoreAttrNameN=valueN 
...



Object Manager Utility (imqobjmgr)

172 Sun ONE Message Queue • Administrator’s Guide • October, 2002

As an example of how you can use an input file, consider the following imqobjmgr 
command:

This command can be encapsulated in a file, say MyCmdFile, that has the following 
contents:

imqobjmgr add
-t qf
-l "cn=myQCF"
-o "imqBrokerHostName=foo"
-o "imqBrokerHostPort=777"
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

version=2.0
cmdtype=add
obj.type=qf
obj.lookupName=cn=myQCF
obj.attrs.imqBrokerHostName=foo
obj.attrs.imqBrokerHostPort=777
objstore.attrs.java.naming.factory.initial=\

com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=\

ldap://mydomain.com:389/o=imq
objstore.attrs.java.naming.security.principal=\

uid=fooUser, ou=People, o=imq
objstore.attrs.java.naming.security.credentials=fooPasswd
objstore.attrs.java.naming.security.authentication=simple



Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 173

You can then use the -i option to pass this file to the Object Manager utility 
(imqobjmgr):

imqobjmgr -i MyCmdFile

You can also use the input file to specify some options, while using the command 
line to specify others. This allows you to use the input file to specify parts of the 
subcommand clause that is the same across many invocations of the utility. For 
example, the following command specifies all the options needed to add a 
connection factory administered object, except for those that specify where the 
administered object is to be stored.

In this case, the file MyCmdFile would contain the following definitions:

Additional examples of input files can be found at the following location:

IMQ_HOME/demo/imqobjmgr

imqobjmgr add
-t qf

  -l "cn=myQCF"
  -o "imqBrokerHostName=foo"

-o "imqBrokerHostPort=777"
-i MyCmdFile

version=2.0
objstore.attrs.java.naming.factory.initial=\

com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=\

ldap://mydomain.com:389/o=imq
objstore.attrs.java.naming.security.principal=\

uid=fooUser, ou=People, o=imq
objstore.attrs.java.naming.security.credentials=fooPasswd
objstore.attrs.java.naming.security.authentication=simple



Adding and Deleting Administered Objects

174 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Adding and Deleting Administered Objects
This section explains how you add administered objects for connection factories 
and topic or queue destinations to the object store.

Adding a Connection Factory
To enable client applications to obtain a connection to the broker, you add an 
administered object that represents the type of connections the client applications 
want: a topic connection factory or a queue connection factory

To add a queue connection factory, use a command like the following:

NOTE The Object Manager utility (imqobjmgr) lists and displays only MQ 
administered objects. If an object store should contain a non-MQ 
object with the same lookup name as an administered object that 
you wish to add, you will receive an error when you attempt the 
add operation.

imqobjmgr add
-t qf
-l "cn=myQCF"
-o "imqBrokerHostName=myHost"
-o "imqBrokerHostPort=7272"
-j "java.naming.factoryinitial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"



Adding and Deleting Administered Objects

Chapter 7 Managing Administered Objects 175

The preceding command creates an administered object whose lookup name is 
cn=myQCF and which connects to a broker running on myHost and listens on port 
7272. The administered object is stored in an LDAP server.

You can accomplish the same thing by specifying an input file as an argument to 
the imqobjmgr command. For more information, see “Using Input Files” on 
page 171.

Adding a Topic or Queue
To enable client applications to access physical destinations on the broker, you add 
administered objects that identify these destinations, to the object store.

It is best to first create the physical destinations before adding the corresponding 
administered objects to the object store. Use the Command utility (imqcmd) to 
create the physical destinations on the broker that are identified by destination 
administered objects in the object store. For information about creating physical 
destinations, see “Managing Destinations” on page 152.

The following command adds an administered object that identifies a topic 
destination whose lookup name is myTopic and whose physical destination name 
is TestTopic. The administered object is stored in an LDAP server.

NOTE If you are using an LDAP server to store the administered object, it 
is important that you assign a lookup name that has the prefix “cn=” 
as in the example above. You specify the lookup name with the -l 
option. You do not have to use this prefix if you are using a 
file-system object store.

imqobjmgr add
-t t
-l "cn=myTopic"
-o "imqDestinationName=TestTopic"
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"



Adding and Deleting Administered Objects

176 Sun ONE Message Queue • Administrator’s Guide • October, 2002

This is the same command, only the administered object is stored in a Solaris file 
system:

In the LDAP server case, as an example, you could use an input file, MyCmdFile, to 
specify the subcommand clause. The file would contain the following text:

Use the -i option to pass the file to the imqobjmgr command:

imqobjmgr -i MyCmdFile

imqobjmgr add
-t t 
-l "cn=myTopic"
-o "imqDestinationName=TestTopic"
-j "java.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory"
-j "java.naming.provider.url=

file:///home/foo/imq_admin_objects"

version=2.0
cmdtype=add
obj.type=t
obj.lookupName=cn=myTopic
obj.attrs.imqDestinationName=TestTopic
objstore.attrs.java.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory
objstore.attrs.java.naming.provider.url=

file:///home/foo/imq_admin_objects
objstore.attrs.java.naming.security.principal=

uid=fooUser, ou=People, o=imq
objstore.attrs.java.naming.security.credentials=fooPasswd
objstore.attrs.java.naming.security.authentication=simple

NOTE If you are using an LDAP server to store the administered object, it 
is important that you assign a lookup name that has the prefix “cn=” 
as in the example above. You specify the lookup name with the -l 
option. You do not have to use this prefix if you are using a 
file-system object store.



Getting Information

Chapter 7 Managing Administered Objects 177

Adding a queue object is exactly the same, except that you specify q for the -t 
option.

Deleting Administered Objects
Use the delete subcommand to delete an administered object. You must specify 
the lookup name of the object, its type, and its location.

The following command deletes an administered object for a topic whose lookup 
name is cn=myTopic and which is stored on an LDAP server.

Getting Information
Use the list and query subcommands to list administered objects in the object 
store and to display information about an individual object.

Listing Administered Objects
Use the list subcommand to get a list of all administered objects or to get a list of 
all administered objects of a specific type. The following sample code assumes that 
the administered objects are stored in an LDAP server.

imqobjmgr delete
 -t t 
 -l "cn=myTopic"
 -j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
 -j "java.naming.security.credentials=fooPasswd"
 -j "java.naming.security.authentication=simple"



Getting Information

178 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The following command lists all objects.

The following command lists all objects of type queue.

Information About a Single Object
Use the query subcommand to get information about an administered object. You 
must specify the object’s lookup name and the attributes of the object store 
containing the administered object (such as initial context and location). 

imqobjmgr list 
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

imqobjmgr list 
-t q
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"



Getting Information

Chapter 7 Managing Administered Objects 179

In the following example, the query subcommand is used to display information 
about an object whose lookup name is myTopic.

imqobjmgr query
-l "cn=myTopic"
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"



Updating Administered Objects

180 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Updating Administered Objects
You use the update command to modify the attributes of administered objects. 
You must specify the lookup name and location of the object. You use the -o option 
to modify attribute values.

This command changes the attributes of an administered object that represents a 
topic connection factory:

imqobjmgr update 
 -t tf 
 -l "cn=MyTCF" 
 -o imqReconnectRetries=3
 -j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
 -j "java.naming.security.credentials=fooPasswd"
 -j "java.naming.security.authentication=simple"



181

Chapter 8

Security Management

This chapter explains how to perform tasks related to security, these include 
authentication, authorization, and encryption.

Authenticating Users You are responsible for maintaining a list of users, their 
groups, and passwords in a user repository. The first part of this chapter explains 
how you create, populate, and manage that repository. For an introduction to 
Sun™ ONE Message Queue (MQ) security, see “Security Manager” on page 57.

Authorizing Users You are responsible for editing a properties file that maps the 
user’s access to broker operations to the user’s name or group. The second part of 
this chapter explains how you can customize this properties file.

Encryption: Setting Up SSL Services Using a connection service based on the 
Secure Socket Layer (SSL) standard allows you to encrypt messages sent between 
clients and broker. For an introduction to how MQ handles encryption, see 
“Encryption (Enterprise Edition)” on page 59. The last part of this chapter explains 
how to set up an SSL-based connection service and provides additional 
information about using SSL.

For situations in which a password is needed for a broker to secure access to a SSL 
keystore, a LDAP user repository, or a JDBC-compliant persistent store, there are 
three means of providing such passwords:

• by having the system prompt you when the broker is started

• by passing in passwords as command line options when starting the broker 
(see “Starting a Broker” on page 120 and Table 5-2 on page 121)

• by storing passwords in a passfile that the system accesses when starting the 
broker (See “Using a Passfile” on page 204)



Authenticating Users

182 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Authenticating Users
When a user attempts to connect to the broker, the broker authenticates the user by 
inspecting the name and password provided, and grants the connection if they 
match those in a user repository that the broker is configured to consult. This 
repository can be of two types:

• a flat-file repository that is shipped with MQ

This type of user repository is very easy to use; however it is vulnerable to 
security attacks, and should therefore be used only for evaluation and 
development purposes. You can populate and manage the repository using the 
User Manager utility (imqusermgr). To enable authentication, you populate the 
user repository with each user’s name, password, and the name of the user’s 
group. 

For more information on setting up and managing the user repository, see 
“Using a Flat-File User Repository” on page 182.

• an LDAP server

This could be an existing or new LDAP directory server that uses the LDAP v2 
or v3 protocol for your user repository. It is not as easy to use as the flat-file 
repository, however it is secure, and therefore better for production 
environments.

If you are using an LDAP user repository, you will need to use the tools 
provided by the LDAP vendor to populate and manage the user repository. 
For more information, see “Using an LDAP Server for a User Repository” on 
page 189.

Using a Flat-File User Repository
MQ provides a flat-file user repository and a command line tool, MQ User 
Manager (imqusermgr) that you can use to populate and manage the flat-file user 
repository. The following sections describe the flat-file user repository, its initial 
entries, and how you populate and manage that repository. 

The default flat-file repository is located at: 

IMQ_HOME/etc/passwd (/etc/imq/passwd on Solaris)



Authenticating Users

Chapter 8 Security Management 183

The repository is shipped with two entries (rows) already defined, as illustrated in 
the table below.

These initial entries allow the MQ broker to be used immediately after installation 
without any intervention by the administrator. In other words, no initial 
user/password setup is required for the MQ broker to be used.

The initial guest user entry allows JMS clients to connect to the broker using the 
default guest user name and password (for testing purposes, for example).

The initial admin user entry allows you to use imqcmd commands to administer the 
broker using the default admin user name and password. It is recommended that 
you update this initial entry to change the password. 

You can use the User Manager utility to edit or populate the flat-file user repository 
without having to first configure or start up the broker. The only requirement for 
using the User Manager utility is that it be run on the host where the broker is 
installed, and that if you want to write to the repository, you have to have the 
appropriate permissions: 

• On Solaris, the User Manager utility can be run by the root user, or by other 
non-root users granted access through Solaris role based access control. To 
grant such access, the root user must make an entry to /etc/user_attr of the 
following form:

username::::type=normal;profiles=Message Queue Management

This adds the specified user to the MQ rights profile. To use this facility, you 
first must run a profile shell (pfsh, pfksh, pfcsh), for example,

% /usr/bin/pfsh

and then execute the desired User Manager (imqusermgr) commands. 

For more information on Solaris role based access control, see: 
http://docs.sun.com/

?q=Rights+Profile&p=/doc/806-4078/6jd6cjrvl&a=view).

Table 8-1 Initial Entries in User Repository

User Name Password Group State

admin admin admin active

guest guest anonymous active



Authenticating Users

184 Sun ONE Message Queue • Administrator’s Guide • October, 2002

• On Windows, after installation, the user repository file can be written to by any 
user because the operating system does not control access to files using user 
name-based permission attributes.

The following sections explain how you populate and manage the flat-file user 
repository.

User Manager Utility (imqusermgr)
The User Manager utility allows you to manage a file-based user repository. This 
section describes the basic imqusermgr command syntax, provides a listing of 
subcommands, and summarizes imqusermgr command options. Subsequent 
sections explain how you use the imqobjmgr subcommands to accomplish specific 
tasks.

Syntax of Command
The general syntax of the imqusermgr command is as follows:

imqusermgr subcommand [options]
imqusermgr -h
imqusermgr -v

Note that if you specify the -v or -h options, no subcommands specified on the 
command line are executed. For example, if you enter the following command, 
version information is displayed but the list subcommand is not executed.

imqusermgr list -v

imqusermgr Subcommands
Table 8-2 lists the imqusermgr subcommands.

Table 8-2 imqusermgr Subcommands

Subcommand Description

add -u name -p passwd [-g group] [-s] Adds a user and associated password to the 
repository, and optionally specifies the user’s 
group.

delete -u name [-s] [-f] Deletes the specified user from the repository.

list [-u name] Displays information about the specified user or 
all users.

update -u name -p passwd [-a state] [-s] [-f]
update -u name -a state [-p passwd] [-s] [-f]

Updates the specified user’s password and/or 
state.



Authenticating Users

Chapter 8 Security Management 185

Summary of imqusermgr Command Options
Table 8-3 lists the options to the imqusermgr command.

Groups
When adding a user entry to the repository, the administrator has the option of 
specifying one of three predefined groups for the user: admin, user, or anonymous. 
If no group is specified, the default group user is assigned.

• The admin group is for broker administrators. Users who are assigned this 
group can, by default, configure, administer, and manage the broker. The 
administrator can assign more than one user to the admin group. 

• The user group is for normal (non-administrative) JMS client applications. Most 
MQ client applications will access the broker authenticated in the user group. 
As such, client applications, can produce messages to and consume messages 
from all topics and queues, or can browse messages in any queue by default.

• The anonymous group is for JMS client applications who do not wish to use a 
user name that is known to the broker (possibly because the application does 
not know of a real user name to use). This is analogous to the anonymous 
account present in most FTP servers. The administrator can assign only one 

Table 8-3 imqusermgr Options 

Option Description

-a active_state Specifies (true/false) whether the user’s state 
should be active. A value of true means that the 
state is active. This is the default.

-f Performs action without user confirmation

-h Displays usage help. Nothing else on the 
command line is executed.

-p passwd Specifies the user’s password.

-g group Specifies the user group. Valid values are admin, 
user, anonymous.

-s Sets silent mode.

-u name Specifies the user name.

-v Displays version information. Nothing else on 
the command line is executed.



Authenticating Users

186 Sun ONE Message Queue • Administrator’s Guide • October, 2002

user to the anonymous group at any one time. It is expected that you will 
restrict the access privileges of this group as compared to the user group 
through access control or that you will remove the user from this group at 
deployment time.

In order to change a user’s group, the administrator must delete the user entry and 
then add another entry for the user, specifying the new group.

You can specify access rules that define what operations the members of that group 
may perform. For more information, see “Authorizing Users: the Access Control 
Properties File” on page 192.

States
When the administrator adds a user to the repository, the user’s state is active by 
default. To make the user inactive, the administrator must use the update 
command. For example, the following command makes the user JoeD inactive:

imqusermgr update -u JoeD -a false

Entries for users that have been rendered inactive are retained in the repository; 
however, inactive users cannot open new connections. If a user is inactive and the 
administrator adds another user who has the same name, the operation will fail. 
The administrator must delete the inactive user entry or change the new user’s 
name or use a different name for the new user. This prevents the administrator 
from adding duplicate names or passwords.

Format of User Names and Passwords
User names and passwords must follow these guidelines:

• The user name and passwords may not contain the characters listed in 
Table 8-4.

Table 8-4 Invalid Characters for User Names and Passwords

Character Description

* Asterisk

, Comma

: Colon



Authenticating Users

Chapter 8 Security Management 187

• The user name and passwords may not contain a new line or carriage return as 
characters.

• If the name or password contains a space, the entire name or password must be 
enclosed in quotation marks.

• The name or password must be at least one character long.

• There is no limit on the length of passwords or user names—except for that 
imposed by the command shell on the maximum number of characters that can 
be entered on a command line.

Populating and Managing the User Repository
Use the add subcommand to add a user to the repository. For example, the 
following command adds the user, Katharine with the password sesame.

imqusermgr add -u Katharine -p sesame -g user

Use the delete subcommand to delete a user from the repository. For example, the 
following command deletes the user, Bob:

imqusermgr delete -u Bob

Use the update subcommand to change a user’s password or state. For example, 
the following command changes Katharine’s password to alladin:

imqusermgr update -u Katharine -p alladin

To list information about one or more users, use the list command. The following 
command shows information about the user named isa:

imqusermgr list -u isa

----------------------------------
User Name Group  Active State
----------------------------------
isa admin true



Authenticating Users

188 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The following command lists information about all users:

imqusermgr list

Changing the Default Administrator Password
For the sake of security, you must change the default password of admin to one that 
is only known to you. You need to use the imqusermgr tool to do this.

The following command changes the default password to grandpoobah. 

imqusermgr update -u admin -p grandpoobah

You can quickly confirm that this change is in effect, by running any of the 
command line tools when the broker is running. For example, the following 
command should work,

imqcmd list svc -u admin -p grandpoobah

While using the old password should fail. 

After changing the password, you should supply the new password when using 
any of the administration tools, including the administration console.

--------------------------------------
User Name Group Active State
--------------------------------------
testuser3 user  true
testuser2 user  true
testuser1 user  true
isa admin true
admin admin true
guest anonymous true
testuser5 user  false
testuser4 user  false



Authenticating Users

Chapter 8 Security Management 189

Using an LDAP Server for a User Repository
If you want to use an LDAP server for your user repository, you must set certain 
broker properties in the instance configuration file. These properties enable the 
broker to query the LDAP server for information about users and groups when a 
user attempts to connect to the broker or perform certain operations. The instance 
configuration file is located at

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

➤ To edit the configuration file to use an LDAP server

1. Specify that you are using an LDAP user repository by setting the following 
property:

imq.authentication.basic.user_repository=ldap

2. Set the imq.authentication.type property to determine whether a password 
should be passed from client to broker in base64 encoding (basic) or in MD5 
digest (digest). When using an LDAP directory server for a user repository, 
you must set the authentication type to basic. For example, 

imq.authentication.type=basic

3. You must also set the broker properties that control LDAP access. These 
properties, stored in a broker’s instance configuration file, are described in 
Table 8-5. MQ uses JNDI API’s to communicate with the LDAP directory 
server. Consult JNDI documentation for more information on syntax and on 
terms referenced in these properties. MQ 3.0.1 uses a Sun JNDI LDAP provider 
and uses simple authentication.

Table 8-5 LDAP-related Properties

Property Description

imq.user_repository.
ldap.server

The host:port for the LDAP server. Host specifies the 
fully qualified DNS name of the host running the 
directory server. Port specifies the port number that 
the directory server is using for communications.

imq.user_repository.
ldap.principal

The distinguished name that the broker will use to 
bind to the directory server for a search. If the 
directory server allows anonymous searches, this 
property does not need to be assigned a value.



Authenticating Users

190 Sun ONE Message Queue • Administrator’s Guide • October, 2002

imq.user_repository.
ldap.password

The password associated with the distinguished name 
used by the broker. Can only be specified in a passfile 
(see “Using a Passfile” on page 204). For more 
security, let the broker prompt you for a password, or 
specify the password using the following command 
line option: imqbrokerd -ldappassword.

 If the directory server allows anonymous searches, no 
password is needed.

imq.user_repository.
ldap.base

The directory base for user entries.

imq.user_repository.
ldap.uidattr

The provider-specific attribute identifier whose value 
uniquely identifies a user. For example: uid, cn, etc.

imq.user_repository.
ldap.usrfilter

A JNDI search filter (a search query expressed as a 
logical expression). By specifying a search filter for 
users, the broker can narrow the scope of a search and 
thus make it more efficient. For more information, see 
the JNDI tutorial at the following location: 
http://java.sun.com/products/jndi/tutorial.

 This property does not have to be set.

imq.user_repository.
ldap.grpsearch

A boolean specifying whether you want to enable 
group searches. Consult the documentation provided 
by your LDAP provider to determine whether you 
can associate users into groups.

Note that nested groups are not supported in MQ 
3.0.1.

Default: false 

imq.user_repository.
ldap.grpbase

The directory base for group entries.

imq.user_repository.
ldap.gidattr

The provider-specific attribute identifier whose value 
is a group name.

imq.user_repository.
ldap.memattr

The attribute identifier in a group entry whose values 
are the distinguished names of the group’s members.

Table 8-5 LDAP-related Properties (Continued)

Property Description



Authenticating Users

Chapter 8 Security Management 191

See the broker’s default.properties file for a sample (default) LDAP user- 
repository-related properties setup.

4. If necessary, you need to edit the users/groups and rules in the access control 
properties file. For more information about the use of access control property 
files, see “Authorizing Users: the Access Control Properties File” on page 192.

5. If you want the broker to communicate with the LDAP directory server over 
SSL during connection authentication and group searches, you need to activate 
SSL in the LDAP server and then set the following properties in the broker 
configuration file:

❍ Specify a secure port for the LDAP user repository property. For example:

imq.user_repository.ldap.server=myhost:7878

❍ Set the broker property imq.user_repository.ldap.ssl.enabled 
to true.

imq.user_repository.
ldap.grpfiltler

A JNDI search filter (a search query expressed as a 
logical expression). By specifying a search filter for 
groups, the broker can narrow the scope of a search 
and thus make it more efficient. For more information, 
see the JNDI tutorial at the following location.

http://java.sun.com/products/
jndi/tutorial

This property does not have to be set.

imq.user_repository.
ldap.timeout

An integer specifying (in seconds) the time limit for a 
search. By default this is set to 180 seconds.

imq.user_repository.
ldap.ssl.enabled

A boolean specifying whether the broker should use 
the SSL protocol when talking to an LDAP server. 
This is set to false by default.

Table 8-5 LDAP-related Properties (Continued)

Property Description



Authorizing Users: the Access Control Properties File

192 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Authorizing Users: 
the Access Control Properties File

After connecting to the broker, the user may want to produce a message, consume 
a message at a destination, or browse messages at a queue destination. When the 
user attempts to do this, the broker checks an access control properties file (ACL file) 
to see whether the user is authorized to perform the operation. The ACL file 
contains rules that specify which operations a particular user (or group of users) is 
authorized to perform. By default, all authenticated users are allowed to produce 
and consume messages at any destination. You can edit the access control 
properties file to restrict these operations to certain users and groups.

The ACL file is used whether user information is placed in a flat-file repository or 
in an LDAP repository. A default ACL properties file is installed along with the 
broker. Its name is accesscontrol.properties and it is placed by the installer in 
the following directory: 

IMQ_HOME/etc (/etc/imq on Solaris)

The ACL file is formatted like a Java properties file. It starts by defining the version 
of the file and then specifies access control rules in three sections:

• connection access control

• destination access control

• destination auto-create access control 

The version property defines the version of the ACL properties file; you may not 
change this entry.

version=JMQFileAccessControlModel/100

The three sections of the ACL file that specify access control are described below, 
following a description of the basic syntax of access rules and an explanation of 
how permissions are calculated.



Authorizing Users: the Access Control Properties File

Chapter 8 Security Management 193

Access Rules Syntax 
In the ACL properties file, access control defines what access specific users or 
groups have to protected resources like destinations and connection services. 
Access control is expressed by a rule or set of rules, with each rule presented as a 
Java property:

The basic syntax of these rules is as follows:

resourceType.resourceVariant.operation.access.principalType = principals 

Table 8-6 describes the elements of syntax rules.

Table 8-6 Syntactic Elements of Access Rules

Element Description

resourceType One of the following: connection, queue or topic.

resourceVariant An instance of the type specified by resourceType. For example, 
myQueue. The wild card character (*)may be used to mean all 
connection service types or all destinations. 

operation Value depends on the kind of access rule being formulated.

access One of the following: allow or deny.

principalType One of the following: user or group. For more information, see 
“Groups” on page 185.

principals Who may have the access specified on the left-hand side of the rule. 
This may be an individual user or a list of users (comma delimited) if 
the principalType is user; it may be a single group or a list of 
groups (comma delimited list) if the principalType is group. The 
wild card character (*)may be used to represent all users or all groups. 



Authorizing Users: the Access Control Properties File

194 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Here are some examples of access rules:

• The following rule means that all users may send a message to the queue 
named q1.

queue.q1.produce.allow.user=*

• The following rule means that any user may send messages to any queue.

queue.*.produce.allow.user=*

Permission Computation
The following principles are applied when computing the permissions implied by 
a series of rules:

• Specific access rules override general access rules. After applying the following 
two rules, all can send to all queues, but Bob cannot send to tq1.

queue.*.produce.allow.user=*

queue.tq1.produce.deny.user=Bob

• Access given to an explicit principal overrides access given to a * principal. The 
following rules deny Bob the right to produce messages to tq1, but allow 
everyone else to do it.

queue.tq1.produce.allow.user=*

queue.tq1.produce.deny.user=Bob

• The * principal rule for users overrides the corresponding * principal for groups. 
For example, the following two rules allow all authenticated users to send 
messages to tq1.

queue.tq1.produce.allow.user=*

queue.tq1.produce.deny.group=*

NOTE To specify non-ASCII user, group, or destination names, you must 
use Unicode escape (\uXXXX) notation. If you have edited and saved 
the ACL file with these names in a non-ASCII encoding, you can 
convert the file to ASCII with the Java native2ascii tool. For more 
detailed information, see 
http://java.sun.com/j2se/1.3/docs/guide/intl/faq.html



Authorizing Users: the Access Control Properties File

Chapter 8 Security Management 195

•  Access granted a user overrides access granted to the user’s group. In the 
following example, if Bob is a member of User, he will be denied permission to 
produce messages to tq1, but all other members of User will be able to do so.

queue.tq1.produce.allow.group=User

queue.tq1.produce.deny.user=Bob

• Any access permission not explicitly granted through an access rule is 
implicitly denied. For example, if the ACL file contained no access rules, all 
users would be denied all operations. 

• Deny and allow permissions for the same user or group cancel themselves out. 
For example, the following two rules result in Bob not being able to browse t1:

queue.q1.browse.allow.user=Bob

queue.q1.browse.deny.user=Bob

The following two rules result in the group User not being able to consume 
messages at q5.

queue.q5.consume.allow.group=User

queue.q5.consume.deny.group=User

• When multiple same left-hand rules exist, only the last entry takes effect.

Connection Access Control
The connection access control section in the ACL properties file contains access 
control rules for the broker’s connection services. The syntax of connection access 
control rules is as follows:

connection.resourceVariant.access.principalType = principals 

Two values are defined for resourceVariant: NORMAL and ADMIN. By default all users 
can have access to the NORMAL type, but only those users whose group is admin may 
have access to ADMIN type connection services.

You can edit the connection access control rules to restrict a user’s connection 
access privileges. For example, the following rules deny Bob access to NORMAL but 
allow everyone else:

connection.NORMAL.deny.user=Bob

connection.NORMAL.allow.user=*



Authorizing Users: the Access Control Properties File

196 Sun ONE Message Queue • Administrator’s Guide • October, 2002

You can use the asterisk (*) character to specify all authenticated users or groups.

You may not create your own service type; you must restrict yourself to the 
predefined types specified by the constants NORMAL and ADMIN.

Destination Access Control
The destination access control section of the access control properties file contains 
destination-based access control rules. These rules determine who (users/groups) 
may do what (operations) where (destinations). The types of access that are 
regulated by these rules include sending messages to a queue, publishing messages 
to a topic, receiving messages from a queue, subscribing to a topic, and browsing a 
messages in a queue. 

By default, any user or group can have all types of access to any destination. You 
can add more specific destination access rules or edit the default rules. The rest of 
this section explains the syntax of destination access rules, which you must 
understand to write your own rules. 

The syntax of destination rules is as follows:

resourceType.resourceVariant.operation.access.principalType = principals

Table 8-7 describes these elements:

Table 8-7 Elements of Destination Access Control Rules

Component Description

resourceType Must be one of queue or topic.

resourceVariant A destination name or all destinations (*), meaning all queues 
or all topics.

operation Must be one of produce, consume, or browse.

access Must be one of allow or deny.

principalType Must be one of user or group.



Authorizing Users: the Access Control Properties File

Chapter 8 Security Management 197

Access can be given to one or more users and/or one or more groups.

The following examples illustrate different kinds of destination access control 
rules:

• Allow all users to send messages to any queue destinations.

queue.*.produce.allow.user=*

• Deny any member of the group user to subscribe to the topic Admissions.

topic.Admissions.consume.deny.group=user

Destination Auto-Create Access Control
The final section of the ACL properties file, includes access rules that specify for 
which users and groups the broker will auto-create a destination.

When a user creates a producer or consumer at a destination that does not already 
exist, the broker will create the destination if the broker’s auto-create property has 
been enabled and if the physical destination does not already exist.

By default, any user or group has the privilege of having a destination auto-created 
by the broker. This privilege is specified by the following rules:

queue.create.allow.user=*

topic.create.allow.user=*

You can edit the ACL file to restrict this type of access.

The general syntax for destination auto-create access rules is as follows:

resourceType.create.access.principalType = principals 

Where resourceType is either queue or topic. 

For example, the following rules allow the broker to auto-create topic destinations 
for everyone except Snoopy.

topic.create.allow.user=*

topic.create.deny.user=Snoopy

Note that the effect of destination auto-create rules must be congruent with that of 
destination access rules. For example, if you 1) change the destination access rule to 
forbid any user from sending a message to a destination but 2) enable the 
auto-creation of the destination, the broker will create the destination if it does not 
exist but it will not deliver a message to it.



Encryption: Working With an SSL Service (Enterprise Edition)

198 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Encryption: Working With an SSL Service 
(Enterprise Edition)

The MQ Enterprise Edition supports connection services based on the Secure 
Socket Layer (SSL) standard: over TCP/IP (ssljms and ssladmin) and over HTTP 
(httpsjms). These SSL-based connection services allow for the encryption of 
messages sent between clients and broker. The current MQ release supports SSL 
encryption based on self-signed server certificates.

To use an SSL-based connection service, you need to generate a private key/public 
key pair using the Key Tool utility (imqkeytool). This utility embeds the public key 
in a self-signed certificate that is passed to any client requesting a connection to the 
broker, and the client uses the certificate to set up an encrypted connection. 

While MQ’s SSL-based connection services are similar in concept, there are some 
differences in how you set them up. Secure connections over TCP/IP and over 
HTTP are therefore discussed separately in the following sections.

Setting Up an SSL Service Over TCP/IP
There are two SSL-based connection services that provide a direct, secure 
connection over TCP/IP.

ssljms This connection service is used to deliver JMS messages over a secure, 
encrypted connection between a client and broker.

ssladmin This connection service is used to create a secure, encrypted connection 
between the Command utility (imqcmd)—the command line administration 
tool—and a broker. A secure connection is not supported for the Administration 
Console (imqadmin).

➤ To set up a ssljms connection service

1. Generate a self-signed certificate.

2. Enable the ssljms connection service in the broker.

3. Start the broker.

4. Configure and run the client.

The procedures for setting up ssljms and ssladmin connection services are 
identical, except for Step 4, configuring and running the client.

Each of the steps is discussed in some detail in the sections that follow.



Encryption: Working With an SSL Service (Enterprise Edition)

Chapter 8 Security Management 199

Step 1. Generating a Self-Signed Certificate
SSL Support in MQ 3.0.1 is oriented toward securing on-the-wire data with the 
assumption that the client is communicating with a known and trusted server. 
Therefore in MQ 3.0.1, SSL is implemented using only self-signed certificates.

Run the imqkeytool command to generate a self-signed certificate for the broker. 
The same certificate can be used for both the ssljms and ssladmin connection 
services. Enter the following at the command prompt:

imqkeytool -broker

The utility will prompt you for the information it needs. (On Unix systems you 
may need to run imqkeytool as the superuser (root) in order to have permission to 
create the keystore.)

First, imqkeytool prompts you for a keystore password, then it prompts you for 
some organizational information, and then it prompts you for confirmation. After 
it receives the confirmation, it pauses while it generates a key pair. It then asks you 
for a password to lock the particular key pair (key password); you should enter 
Return in response to this prompt: this makes the key password the same as the 
keystore password.

Running imqkeytool runs the JDK keytool utility to generate a self-signed 
certificate and to place it in MQ’s keystore, located at

IMQ_HOME/etc/keystore  (/etc/imq/keystore on Solaris)

The keystore is in the same format as that supported by the JDK1.2 keytool 
utility.

The configurable properties for the MQ keystore are shown in Table 8-8. (For 
instructions on configuring these properties, see Chapter 5, “Starting and 
Configuring a Broker.”) 

NOTE Remember the password you provide—you will need to provide 
this password later to the broker (when you start it) so it can open 
the keystore. You can also store the keystore password in a passfile 
(see “Using a Passfile” on page 204).



Encryption: Working With an SSL Service (Enterprise Edition)

200 Sun ONE Message Queue • Administrator’s Guide • October, 2002

You may need to regenerate a key pair in order to solve certain problems; for 
example:

• You forgot the keystore password.

• The SSL service fails to initialize when you start a broker and you get the 
exception: 
java.security.UnrecoverableKeyException: Cannot recover key.

This exception may result from the fact that you had provided a key password 
that was different from the keystore password when you generated the 
self-signed certificate in “Step 1. Generating a Self-Signed Certificate” on 
page 199.

➤ To regenerate a key pair

1. Remove the broker’s keystore, at the following location:

IMQ_HOME/etc/keystore  (/etc/imq/keystore on Solaris)

2. Rerun imqkeytool to generate a key pair as described in “Step 1. Generating a 
Self-Signed Certificate” on page 199.

Step 2. Enabling the SSL-based Service in the Broker
To enable the SSL service in the broker, you need to add ssljms (ssladmin) to the 
imq.service.activelist property. 

Table 8-8 Keystore Properties

Property Name Description

imq.keystore.file.
dirpath

For SSL-based services: specifies the path to the 
directory containing the keystore file. 
Default: IMQ_HOME/etc (/etc/imq/ on Solaris) 

imq.keystore.file.name For SSL-based services: specifies the name of the 
keystore file. 
Default: keystore

imq.keystore.password For SSL-based services: specifies the keystore 
password. Can only be stored in a passfile (see “Using 
a Passfile” on page 204). For more security, let the 
broker prompt you for the password, or specify the 
password using the following command line option: 
imqbrokerd -password. 



Encryption: Working With an SSL Service (Enterprise Edition)

Chapter 8 Security Management 201

1. Open the broker’s instance configuration file. You can find it at the following 
location:

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

where brokerName is the name of the broker instance.

2. Add the ssljms or ssladmin values or both (depending on the service you 
want) to the imq.service.activelist property:

imq.service.activelist=jms,admin,httpjms,ssljms, ssladmin

Step 3. Starting the Broker
Start the broker, providing the keystore password. You can provide the password 
in any one of the following ways:

• Allow the broker to prompt you for the password when it starts up

imqbrokerd
Please enter Keystore password: mypassword 

• Use the -password option to the imqbrokerd command:

imqbrokerd -password mypassword 

• Put the password in a passfile file (see “Using a Passfile” on page 204) which is 
accessed at broker startup. You have to first set the following broker 
configuration property (see “Editing the Instance Configuration File” on 
page 116):

imq.passfile.enabled=true

Once this property is set, you can access the passfile in either of two ways:

❍ pass the location of the passfile to the imqbrokerd command:

imqbrokerd -passfile /tmp/mypassfile 

❍ start the broker without the -passfile option, but specify the location of the 
passfile using the following two broker configuration properties:

imq.passfile.dirpath=/tmp 

imq.passfile.name=mypassfile 

For a listing of passfile-related broker properties, see Table 2-6 on page 60.



Encryption: Working With an SSL Service (Enterprise Edition)

202 Sun ONE Message Queue • Administrator’s Guide • October, 2002

When you start a broker or client with SSL, you might notice that it consumes a lot 
of cpu cycles for a few seconds. This is because MQ uses JSSE (Java Secure Socket 
Extension) to implement SSL. JSSE uses java.security.SecureRandom() to 
generate random numbers. This method takes a significant amount of time to 
create the initial random number seed, and that is why you are seeing increased 
cpu usage. After the seed is created, the cpu level will drop to normal.

Step 4. Configuring and Running SSL-based Clients
Finally, you need to configure clients to use the secure connection services. There 
are two types of clients, depending on the connection service you are using: JMS 
clients that use ssljms, and the MQ administration Command utility (imqcmd) that 
uses ssladmin. These are treated separately in the following sections.

JMS Client
You have to make sure the client has the necessary Secure Socket Extension (JSSE) 
jar files in its classpath, and you need to tell it to use the ssljms connection service.

1. If your client is not using J2SDK1.4 (which has JSSE and JNDI support built in), 
make sure the client has the following jar files in its class path:

jsse.jar, jnet.jar, jcert.jar, jndi.jar

2. Make sure the client has the following MQ jar files in its class path:

imq.jar, jms.jar 

3. Start the client and connect to the broker’s ssljms service. One way to do this is 
by entering a command like the following:

java -DimqConnectionType=TLS clientAppName 

Setting imqConnectionType tells the connection to use SSL. 

For more information on using ssljms connection services in client 
applications, see the chapter on using administered objects in the MQ 
Developer’s Guide.

Command Utility (imqcmd)
You can establish a secure administration connection by including the -secure 
option when using imqcmd (see Table 6-2 on page 140) for example:

imqcmd list svc -b hostName:port -u adminName -p adminPassword -secure

where adminName and adminPassword are valid entries in the MQ user repository (if 
using a flat file repository, see “Changing the Default Administrator Password” on 
page 188).



Encryption: Working With an SSL Service (Enterprise Edition)

Chapter 8 Security Management 203

Listing the connection services, as in this example, is a way to show that the 
ssladmin service is running, and that you can successfully make a secure admin 
connection, as shown in the following output:

Setting Up an SSL Service Over HTTP
In this SSL-based connection service (httpsjms), the client and broker establish a 
secure connection by way of a HTTPS tunnel servlet. The architecture and 
implementation of HTTPS support is described in Appendix B, “HTTP/HTTPS 
Support (Enterprise Edition)” on page 213.

Listing all the services on the broker specified by: 

Host Primary Port
localhost 7676

Service Name Port Number Service State 
admin 33984 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN
jms 33983 (dynamic) RUNNING
ssladmin 35988 (dynamic) RUNNING
ssljms dynamic UNKNOWN

Successfully listed services. 



Using a Passfile

204 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Using a Passfile
In cases where you want the broker to start up without prompting you for needed 
passwords, or without requiring you to supply these passwords as options to the 
imqbrokerd command, you can place the needed passwords in a passfile.

A passfile is a simple text file containing passwords. The file is not encrypted, and 
therefore less secure than supplying passwords manually. Nevertheless you can 
set permissions on the file that limit who has access to view it. The permissions on 
the passfile need to give the user who starts the broker permission to read it.

A passfile can contain the passwords shown in Table 8-9:

A sample passfile can be found at the following location:

IMQ_HOME/etc/passfile.sample (/etc/imq/passfile.sample on Solaris)

Table 8-9 Passwords in a Passfile

Password Description

imq.keystore.password Specifies the keystore password for SSL-based 
services.

imq.user_repository.ldap.
password

Specifies the password associated with the 
distinguished name assigned to a broker for binding 
to a configured LDAP user repository.

imq.persist.jdbc.password Specifies the password used to open a database 
connection, if required. 



205

Appendix A

Setting Up Plugged-in Persistence

This appendix explains how to set up a broker to use plugged-in persistence to 
access a JDBC-accessible data store.

Introduction
Sun™ ONE Message Queue (MQ) brokers include a Persistence Manager 
component that manages the writing and retrieval of persistent information (see 
“Persistence Manager” on page 54). The Persistence Manager is configured by 
default to access a built-in, file-based data store, but you can reconfigure it to plug 
in any data store accessible through a JDBC-compliant driver. 

To configure a broker to use plugged-in persistence, you need to set a number of 
JDBC-related properties in the broker instance configuration file. You also need to 
create the appropriate database schema for performing MQ persistence operations. 
MQ provides a utility, Database Manager (imqdbmgr), which uses your JDBC 
driver and broker configuration properties to create and manage the plugged-in 
database.

The procedure described in this appendix is illustrated using, as an example, the 
Cloudscape DBMS bundled with the Java 2 SDK Enterprise Edition (J2EE SDK is 
available for download from java.sun.com). The example uses Cloudscape's 
embedded version (instead of the client/server version). In the procedures, 
instructions are illustrated using path names and property names from the 
Cloudscape example. They are identified by the word “Example:”

Other examples can be found at the following location:

IMQ_HOME/demo/jdbc (/usr/demo/imq/jdbc on Solaris)



Plugging In a JDBC-accessible Data Store

206 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Plugging In a JDBC-accessible Data Store
It takes just a few steps to plug in a JDBC-accessible data store.

➤ To plug in a JDBC-accessible data store

1. Set JDBC-related properties in the broker’s configuration file.

See the properties documented in Table A-1 on page 207.

2. Place a copy or a symbolic link to your JDBC driver jar file in the following 
path:

IMQ_VARHOME/lib/ext (/usr/share/lib/imq/ext/ on Solaris)

Copy Example (Solaris):

% cp j2sdk_install_directory/lib/cloudscape/cloudscape.jar 
IMQ_VARHOME/lib/ext

Symbolic Link Example (Solaris):

% ln -s j2sdk_install_directory/lib/cloudscape/cloudscape.jar 
IMQ_VARHOME/lib/ext

3. Create the database schema needed for MQ persistence.

Use the imqdbmgr create all command (for an embedded database) or the 
imqdbmgr create tbl command (for an external database). See “Database 
Manager Utility (imqdbmgr)” on page 210. 

Example:

% cd IMQ_HOME/bin (/usr/bin on Solaris)

% imqdbmgr create all

NOTE If an embedded database is used, it is recommended that it be 
created under the following directory:

IMQ_VARHOME/instances/brokerName/dbstore/dabatabseName. 
(/var/imq/instances/brokerName/dbstore/ on Solaris)

If an embedded database is not protected by a user name and 
password, it is probably protected by file system permissions. To 
ensure that the database is readable and writable by the broker, the 
user who runs the broker should be the same user who created the 
embedded database using the imqdbmgr command (see “Database 
Manager Utility (imqdbmgr)” on page 210).



JDBC-related Broker Configuration Properties

Appendix A Setting Up Plugged-in Persistence 207

JDBC-related Broker Configuration Properties
The broker’s instance configuration file is located in

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

If the file does not yet exist, you have to start up the broker using the 
-name brokerName option, for MQ to create the file.

Table A-1 presents the configuration properties that you need to set when plugging 
in a JDBC- accessible data store. You set these properties in the instance 
configuration file (config.properties) of each broker instance using plugged-in 
persistence. The table includes values you would specify for the Cloudscape DBMS 
example. 

Table A-1 JDBC-related Properties

Property Name Description

imq.persist.store Specifies a file-based or JDBC-based data store.

Example:

jdbc

imq.persist.jdbc.brokerid
(optional)

Specifies a broker instance identifier that is 
appended to database table names to make 
them unique in the case where more than one 
broker instance is using the same database as a 
persistent data store. (Usually not needed in 
the case of an embedded database, which 
stores data for only one broker instance.) The 
identifier must be an alphanumeric string 
whose length does not exceed the maximum 
table name length, minus 12, allowed by the 
database. 

Example: not needed for Cloudscape

imq.persist.jdbc.driver Specifies the java class name of the JDBC 
driver to connect to the database. 

Example:

COM.cloudscape.core.JDBCDriver



JDBC-related Broker Configuration Properties

208 Sun ONE Message Queue • Administrator’s Guide • October, 2002

imq.persist.jdbc.opendburl Specifies the database URL for opening a 
connection to an existing database.

Example:

jdbc:cloudscape:IMQ_VARHOME/
instances/brokerName/dbstore/imqdb
(jdbc:cloudscape:var/imq… on Solaris)

imq.persist.jdbc.createdburl
(optional)

Specifies the database URL for opening a 
connection to create a database. (Only 
specified if the database is to be created using 
imqdbmgr.)

Example:

jdbc:cloudscape:IMQ_VARHOME/
instances/brokerName/dbstore/
imqdb;create=true
(jdbc:cloudscape:var/imq… on Solaris)

imq.persist.jdbc.closedburl
(optional)

Specifies the database URL for shutting down 
the current database connection when the 
broker is shutdown.

Example (required for Cloudscape):

jdbc:cloudscape:;shutdown=true

imq.persist.jdbc.user
(optional)

Specifies the user name used to open a 
database connection, if required. For security 
reasons, the value can be specified instead 
using command line options: 
imqbrokerd -dbuser 
and imqdbmgr -u 

imq.persist.jdbc.needpassword
(optional)

Specifies whether the database requires a 
password for broker access. Value of true 
means password is required. The password 
can be specified using the following command 
line options: 
imqbrokerd -dbpassword 
imqdbmgr -p 

If the password is not provided using either 
command line options or a passfile (see “Using 
a Passfile” on page 204), the broker will 
prompt for the password. 

Table A-1 JDBC-related Properties (Continued)

Property Name Description



JDBC-related Broker Configuration Properties

Appendix A Setting Up Plugged-in Persistence 209

As with all broker configuration properties, values can be set using the -D 
command line option. If a database requires certain database specific properties to 
be set, these also can be set using the -D command line option when starting the 
broker (imqbrokerd) or the Database Manager utility (imqdbmgr).

Example:

For the Cloudscape embedded database example, instead of specifying the 
absolute path of a database in database connection URL’s (as those shown in 
Table A-1 examples), the -D command line option can be used to define the 
Cloudscape system directory:

-Dcloudscape.system.home=IMQ_VARHOME/instances/brokerName/dbstore

imq.persist.jdbc.password
(optional)

Specifies password used to open a database 
connection, if required. Can only be specified 
in a passfile (see “Using a Passfile” on 
page 204). For more security, let the broker 
prompt you for the password, or specify the 
password using the following command line 
options: 
imqbrokerd -dbpassword 
imqdbmgr -p 

Table A-1 JDBC-related Properties (Continued)

Property Name Description



Database Manager Utility (imqdbmgr)

210 Sun ONE Message Queue • Administrator’s Guide • October, 2002

In that case the URL’s to create and open a database can be specified simply as: 

imq.persist.jdbc.createdburl=jdbc:cloudscape:imqdb;create=true

and

imq.persist.jdbc.opendburl=jdbc:cloudscape:imqdb

respectively.

Database Manager Utility (imqdbmgr)
MQ provides a Database Manager utility (imqdbmgr) for setting up the schema 
needed for persistence. The utility can also be used to delete MQ database tables 
should the tables become corrupted or should you wish to use a different database 
as a data store.

This section describes the basic imqdbmgr command syntax, provides a listing of 
subcommands, and summarizes imqdbmgr command options.

Syntax of Command
The general syntax of the imqdbmgr command is as follows:

imqdbmgr subcommand argument [options]
imqdbmgr -h|-help
imqdbmgr -v|-version

Note that if you specify the -v or -h options, no subcommands specified on the 
command line are executed. For example, if you enter the following command, 
version information is displayed but the create subcommand is not executed.

imqdbmgr create all -v

NOTE If a broker instance crashes abnormally, unreferenced persistent 
information might remain in the data store. Starting up and then 
shutting down the broker will normally clean up the data store.



Database Manager Utility (imqdbmgr)

Appendix A Setting Up Plugged-in Persistence 211

imqdbmgr Subcommands
The Database Manager utility (imqdbmgr) includes the subcommands listed in 
Table A-2:

Summary of imqdbmgr Command Options
Table A-3 lists the options to the imqdbmgr command.

Table A-2 imqdbmgr Subcommands

Subcommand 
and Argument

Description

create all Creates a new database and MQ persistent storage schema. This 
command is used on an embedded database system, and when used, 
the property imq.persist.jdbc.createdburl needs to be 
specified.

create tbl Creates the MQ persistent storage schema in an existing database 
system. This command is used on an external database system.

delete tbl Deletes the existing MQ database tables in the current persistent 
storage database.

recreate tbl Deletes the existing MQ database tables in the current persistent 
storage database and then re-creates the MQ persistent storage 
schema.

Table A-3 imqdbmgr Options

Option Description

-Dproperty=value Sets the specified property to the specified value.

-b brokerName Specifies the broker instance name and use the 
corresponding instance configuration file.

-h Displays usage help. Nothing else on the command line is 
executed.

-p password Specifies the database password.

-u name Specifies the database user name.

-v Displays version information. Nothing else on the command 
line is executed.



Database Manager Utility (imqdbmgr)

212 Sun ONE Message Queue • Administrator’s Guide • October, 2002



213

Appendix B

HTTP/HTTPS Support
(Enterprise Edition)

The Sun™ ONE Message Queue (MQ) Enterprise Edition (see “Product Editions” 
on page 26) includes support for both HTTP and HTTPS connections. (HTTPS is a 
secure connection over HTTP, using the Secure Socket Layer standard.) This 
support allows client applications to communicate with the broker using the HTTP 
protocol instead of direct TCP connections. This appendix describes the 
architecture used to implement this support and explains the setup work needed to 
allow clients to use HTTP-based connections for MQ messaging.

HTTP/HTTPS Support Architecture
MQ messaging can be run on top of HTTP/HTTPS connections. Because 
HTTP/HTTPS connections are normally allowed through firewalls, this allows 
client applications to be separated from a broker by a firewall.

Figure B-1 on page 214 shows the main components involved in providing 
HTTP/HTTPS support.

• On the client side, an HTTP transport driver encapsulates the MQ message into 
an HTTP request and makes sure that these requests are sent to the Web server 
in the correct sequence.

• The JMS client can use an HTTP proxy server to communicate with the broker 
if necessary. The proxy’s address is specified using command line options 
when starting the client. See “Using an HTTP Proxy” on page 219 for more 
information.



HTTP/HTTPS Support Architecture

214 Sun ONE Message Queue • Administrator’s Guide • October, 2002

• An HTTP or HTTPS tunnel servlet (both bundled with MQ) is loaded in the 
web server and used to pull JMS messages out of client HTTP requests before 
forwarding them to the broker. The HTTP/HTTPS tunnel servlet also sends 
broker messages back to the client in response to HTTP requests made by the 
client. A single HTTP/HTTPS tunnel servlet can be used to access multiple 
brokers.

Figure B-1 HTTP/HTTPS Support Architecture

• On the broker side, the httpjms or httpsjms connection service unwraps and 
demultiplexes incoming messages from the corresponding tunnel servlet.

• If the Web server fails and is restarted, all connections are restored and there is 
no effect on clients. If the broker fails and is restarted, an exception is thrown 
and clients must re-establish their connections. In the unlikely case that both 
the Web server and the broker fail, and the broker is not restarted, the Web 
server will restore client connections and continue waiting for a broker 
connection— without notifying clients. To avoid this situation, always restart 
the broker. 

As you can see from Figure B-1, the architecture for HTTP and HTTPS support are 
very similar. The main difference is that, in the case of HTTPS (httpsjms connection 
service), the tunnel servlet has a secure connection to both the client application 
and broker. 

JMS Client
Broker

httpjms/httpsjms
Conncection

Services

Web Server

MQ Client
Runtime

HTTP/S
Transport

Drivers

HTTP Proxy

Firewall

HTTP

TLS

HTTPS

TCP/IP

HTTP
Tunnel
Servlet

HTTPS
Tunnel
Servlet



Implementing HTTP Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 215

The secure connection to the broker is provided through an SSL-enabled tunnel 
servlet—MQ’s HTTPS tunnel servlet—which passes a self-signed certificate to any 
broker requesting a connection. The certificate is used by the broker to set up an 
encrypted connection to the HTTPS tunnel servlet. Once this connection is 
established, a secure connection between a client application and the tunnel servlet 
can be negotiated by the client application and the web server. 

Implementing HTTP Support
The following sections describe the steps you need to take to implement HTTP 
support.

➤ To implement HTTP support

1. Deploy the HTTP tunnel servlet on a web server.

2. Configure the broker’s httpjms connection service and start the broker.

3. Configure an HTTP connection.

Step 1. Deploying the HTTP Tunnel Servlet on a 
Web Server
There are two general ways you can deploy the HTTP tunnel servlet on a web 
server: 

• deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

• deploying it as a web archive (WAR) file—for web servers that support Servlet 
2.2 or later

Deploying as a Jar File
Deploying the MQ tunnel servlet consists of making the appropriate jar files 
accessible to the host web server and configuring that web server to load the servlet 
on startup. 



Implementing HTTP Support

216 Sun ONE Message Queue • Administrator’s Guide • October, 2002

The tunnel servlet jar file (imqservlet.jar) contains all the classes needed by the 
HTTP tunnel servlet and is located in the following directory:

IMQ_HOME/lib (/usr/share/lib/imq on Solaris)

Any web server with servlet 2.x support can be used to load this servlet. The servlet 
class name is:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpTunnelServlet

The web server must be able to see the imqservlet.jar file. If you are planning to 
run the web server and the broker on different hosts, you should place a copy of 
the imqservlet.jar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup (see 
“Example: Deploying the HTTP Tunnel Servlet” on page 219).

It is also recommended that you disable your web server’s access logging feature in 
order to improve performance.

Deploying as a Web Archive File
Deploying the HTTP tunnel servlet as a WAR file consists of using the deployment 
mechanism provided by the web server. The HTTP tunnel servlet WAR file 
(imqhttp.war) is located in the following directory:

IMQ_HOME/lib (/usr/share/lib/imq on Solaris)

The WAR file includes a deployment descriptor that contains the basic 
configuration information needed by the web server to load and run the servlet.

Step 2. Configuring the httpjms Connection 
Service
HTTP support is not enabled by default for an MQ 3.0.1 broker, so you need to 
reconfigure the broker to enable the httpjms connection service. Once reconfigured, 
the broker can be started as outlined in “Starting a Broker” on page 120.



Implementing HTTP Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 217

➤ To enable the httpjms connection service

1. Open the broker’s instance configuration file at the following location:

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

where brokerName is the name of the broker instance.

2. Add the httpjms value to the imq.service.activelist property:

imq.service.activelist=jms,admin,httpjms

At startup, the broker looks for a web server and HTTP tunnel servlet running on 
its host machine. To access a remote tunnel servlet, however, you can reconfigure 
the servletHost and servletPort connection service properties. 

You can also reconfigure the pullPeriod property to improve performance. The 
httpjms connection service configuration properties are detailed in Table B-1 on 
page 217.

Table B-1 httpjms Connection Service Properties

Property Name Description

imq.httpjms.http.
servletHost

Change this value, if necessary, to specify the name of the host 
(hostname or IP address) on which the HTTP tunnel servlet is 
running. (This can be a remote host or a specific hostname on 
a local host.) Default: localhost 

imq.httpjms.http.
servletPort

Change this value to specify the port number that the broker 
uses to access the HTTP tunnel servlet. (If the default port is 
changed on the Web server, then you must change this 
property accordingly.) Default: 7675 

imq.httpjms.http.
pullPeriod

 Specifies the interval, in seconds, between HTTP requests 
made by each client to pull messages from the broker. If the 
value is zero or negative, the client keeps one HTTP request 
pending at all times, ready to pull messages as fast as 
possible. With a large number of clients, this can be a heavy 
drain on web server resources and the server may become 
unresponsive. In such cases, you should set the pullPeriod 
property to a positive number of seconds. This sets the time 
the client’s HTTP transport driver waits before making 
subsequent pull requests. Setting the value to a positive 
number conserves web server resources at the expense of the 
response times observed by clients. Default: -1 



Implementing HTTP Support

218 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Step 3. Configuring an HTTP Connection
A client application must use an appropriately configured connection factory 
administered object to make an HTTP connection to a broker. This section 
discusses HTTP connection configuration issues.

Setting Connection Factory Attributes
To implement HTTP support, you set the following connection factory attributes 
(see “Connection Factory Administered Objects” on page 167):

• Set the imqConnectionType attribute to HTTP

• Set the imqConnectionURL to the HTTP tunnel servlet URL

http://hostName:port/imq/tunnel

You can set connection factory attributes in one of the following ways:

• Using the -o option to the imqobjmgr command that creates the connection 
factory administered object (see “Adding a Connection Factory” on page 174), 
or set the attribute when creating the connection factory administered object 
using the Administration Console (imqadmin).

• Using the -D option to the command that launches the client application (see 
the MQ Developer’s Guide).

• Using a JMS API call to set the attributes of a connection factory after you 
create it programmatically in client application code (see the MQ Developer’s 
Guide).

Using a Single Servlet to Access Multiple Brokers
You do not need to configure multiple web servers and servlet instances if you are 
running multiple brokers. You can share a single web server and HTTP tunnel 
servlet instance among concurrently running brokers. In order to do this, you must 
configure the imqConnectionURL connection factory attribute as shown below:

http://hostName:port/imq/tunnel?ServerName=hostName:brokerName 

Where hostName is the broker host name and brokerName is the name of the specific 
broker instance you want your client to access.



Implementing HTTP Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 219

To check that you have entered the correct strings for hostName and brokerName, 
generate a status report for the HTTP tunnel servlet by accessing the servlet URL 
from a browser. The report lists all brokers being accessed by the servlet:

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTP tunnel servlet:

• Set http.proxyHost system property to the proxy server host name.

• Set http.proxyPort system property to the proxy server port number.

You can set these properties using the -D option to the command that launches the 
client application.

Example: Deploying the HTTP Tunnel Servlet
This section describes how you deploy the HTTP tunnel servlet both as a jar file 
and as a WAR file on the Sun ONE WEB Server. The approach you use depends on 
the version of Sun ONE Web Server: If it does not support Servlet 2.2 or later, it will 
not be able to handle WAR file deployment.

Deploying as a Jar File
The instructions below refer to deployment on Sun ONE Web Server, FastTrack 
Edition 4.1 using the browser-based administration GUI. This procedure consists of 
the following general steps:

1. add a servlet

2. configure the servlet virtual path

3. load the servlet

4. disable the servlet access log

HTTP tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting TCP connections from brokers on port : 7675
Total available brokers = 2
Broker List : 

jpgserv:broker2
cochin:broker1



Implementing HTTP Support

220 Sun ONE Message Queue • Administrator’s Guide • October, 2002

These steps are described in the following subsections. You can verify successful 
HTTP tunnel servlet deployment by accessing the servlet URL using a web 
browser. It should display status information.

Adding a Servlet

➤ To add a tunnel servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Attributes.

3. Specify a name for the tunnel servlet in the Servlet Name field.

4. Set the Servlet Code (class name) field to the following value:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpTunnelServlet

5. Enter the complete path to the imqservlet.jar in the Servlet Classpath field. 
For example:

IMQ_HOME/lib/imqservlet.jar 

(/usr/share/lib/imq/imqservlet.jar on Solaris)

6. In the Servlet args field, enter any optional arguments, as shown in Table B-2:

If using both arguments, separate them with a comma:

servletPort=portnumber, servletHost=...

The serverHost and serverPort argument apply only to communication 
between the Web Server and broker, and are set only if the default values are 
problematic. However, in that case, you also have to set the broker 
configuration properties accordingly (see Table B-1 on page 217), for example:

imq.httpjms.http.servletPort

Table B-2 Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File

Argument Default Value Reference

servletHost all hosts See Table B-1 on page 217

servletPort 7675 See Table B-1 on page 217



Implementing HTTP Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 221

Configuring a Servlet Virtual Path (Servlet URL)

➤ To configure a virtual path (servlet URL) for a tunnel servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Virtual Path Translation.

3. Set the Virtual Path field.

For example, if you want the URL to be http://hostName:port/imq/tunnel, 
enter the following string in the Virtual Path field.

/imq/tunnel

4. Set the Servlet Name field to the same value as in Step 3 in “Adding a Servlet” 
on page 220.

Loading a Servlet

➤ To load the tunnel servlet at web server startup

1. Select the Servlets tab.

2. Choose Configure Global Attributes.

3. In the Startup Servlets field, enter the same servlet name value as in Step 3 in 
“Adding a Servlet” on page 220.

Disabling a Server Access Log
You do not have to disable the server access log, but you will obtain better 
performance if you do. 

➤ To disable the server access log

1. Select the Status tab.

2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File
The instructions below refer to deployment on Sun ONE Web Server 6.0 Service 
Pack 2. You can verify successful HTTP tunnel servlet deployment by accessing the 
servlet URL using a web browser. It should display status information.



Implementing HTTPS Support

222 Sun ONE Message Queue • Administrator’s Guide • October, 2002

➤ To deploy the http tunnel servlet as a WAR file

1. In the browser-based administration GUI, select the Virtual Server Class tab 
and select Manage Classes. 

2. Select the appropriate virtual server class name (e.g. defaultclass) and click the 
Manage button. 

3. Select Manage Virtual Servers. 

4. Select an appropriate virtual server name and click the Manage button. 

5. Select the Web Applications tab. 

6. Click on Deploy Web Application. 

7. Select the appropriate values for the WAR File On and WAR File Path fields so 
as to point to the imqhttp.war file. It can be found in the following directory:

IMQ_HOME/lib (/usr/share/lib/imq on Solaris)

8. Enter “/imq” (without the quotes) in the Application URI field. 

9. Enter the installation directory path (typically somewhere under the Sun ONE 
Web Server installation root) where the servlet should be deployed. 

10. Click OK. 

11. Restart the web server instance.

The servlet is now available at the following address:

http://hostName:port/imq/tunnel

Clients can now use this URL to connect to the message service using an HTTP 
connection.

Implementing HTTPS Support
The following sections describe the steps you need to take to implement HTTPS 
support. They are similar to those in “Implementing HTTP Support” on page 215 
with the addition of steps needed to generate and access SSL certificates.



Implementing HTTPS Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 223

➤ To implement HTTPS support

1. Generate a self-signed certificate for the HTTPS tunnel servlet.

2. Deploy the HTTPS tunnel servlet on a web server.

3. Configure the broker’s httpsjms connection service and start the broker.

4. Configure an HTTPS connection.

Each of these steps is discussed in more detail in the sections that follow.

Step 1. Generating a Self-signed Certificate for 
the HTTPS Tunnel Servlet
SSL Support in MQ 3.0.1 is oriented toward securing on-the-wire data with the 
assumption that the client is communicating with a known and trusted server. 
Therefore in MQ 3.0.1, SSL is implemented using only self-signed server 
certificates. In the httpsjms connection service architecture, the HTTPS tunnel 
servlet plays the role of server to both broker and application client.

Run the imqkeytool utility to generate a self-signed certificate for the tunnel 
servlet. Enter the following at the command prompt:

imqkeytool -servlet keystore_location 

The utility will prompt you for the information it needs. (On Unix systems you 
may need to run imqkeytool as the superuser (root) in order to have permission to 
create the keystore.)

First, imqkeytool prompts you for a keystore password, then it prompts you for 
some organizational information, and then it prompts you for confirmation. After 
it receives the confirmation, it pauses while it generates a key pair. It then asks you 
for a password to lock the particular key pair (key password); you should enter 
Return in response to this prompt: this makes the key password the same as the 
keystore password.

NOTE Remember the password you provide—you will need to provide 
this password later to the tunnel servlet so it can open the keystore.



Implementing HTTPS Support

224 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Running imqkeytool runs the JDK keytool utility to generate a self-signed 
certificate and to place it in MQ’s keystore file located as specified in the 
keystore_location argument. (The keystore is in the same keystore format as that 
supported by the JDK1.2 keytool.)

Step 2. Deploying the HTTPS Tunnel 
Servlet on a Web Server
There are two general ways you can deploy the HTTPS tunnel servlet on a web 
server: 

• deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

• deploying it as a web archive (WAR) file—for web servers that support Servlet 
2.2 or later

In either case, you should make sure that encryption is activated for the web server, 
enabling end to end secure communication between the client and broker.

Deploying as a Jar File
Deploying the MQ tunnel servlet consists of making the appropriate jar files 
accessible to the host web server and configuring that web server to load the servlet 
on startup. 

The tunnel servlet jar file (imqservlet.jar) contains all the classes needed by the 
HTTPS tunnel servlet and is located in the following directory:

IMQ_HOME/lib (/usr/share/lib/imq on Solaris)

Any web server with servlet 2.x support can be used to load this servlet. The servlet 
class name is:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpsTunnelServlet.

NOTE The HTTPS tunnel servlet must be able to see the keystore. Make 
sure you move/copy the generated keystore located in 
keystore_location to a location accessible by the HTTPS tunnel servlet 
(see “Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server” 
on page 224).



Implementing HTTPS Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 225

The web server must be able to see the imqservlet.jar file. If you are planning to 
run the web server and the broker on different hosts, you should place a copy of 
the imqservlet.jar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup (see 
“Example: Deploying the HTTPS Tunnel Servlet” on page 229).

Make sure that the JSSE jar files are in the classpath for running servlets in the web 
server. Check the web server’s documentation for how to do this.

An important aspect of configuring the web server is specifying the location and 
password of the self-signed certificate to be used by the HTTPS tunnel servlet to 
establish a secure connection with a broker. You have to place the keystore created 
in “Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on 
page 223 in a location accessible by the HTTPS tunnel servlet.

It is also recommended that you disable your web server’s access logging feature in 
order to improve performance.

Deploying as a Web Archive File
Deploying the HTTPS tunnel servlet as a WAR file consists of using the 
deployment mechanism provided by the web server. The HTTPS tunnel servlet 
WAR file (imqhttps.war) is located in the following directory:

IMQ_HOME/lib (/usr/share/lib/imq on Solaris)

The WAR file includes a deployment descriptor that contains the basic 
configuration information needed by the web server to load and run the servlet.

However, the deployment descriptor of the imqhttps.war file cannot know where 
you have placed the keystore file needed by the tunnel servlet (see “Step 1. 
Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on page 223). 
This requires you to edit the tunnel servlet’s deployment descriptor (an XML file) 
to specify the keystore location before deploying the imqhttps.war file.

Step 3. Configuring the httpsjms 
Connection Service
HTTPS support is not enabled by default for an MQ 3.0.1 broker, so you need to 
reconfigure the broker to enable the httpsjms connection service. Once 
reconfigured, the broker can be started as outlined in “Starting a Broker” on 
page 120.



Implementing HTTPS Support

226 Sun ONE Message Queue • Administrator’s Guide • October, 2002

➤ To enable the httpsjms connection service

1. Open the broker’s instance configuration file at the following location:

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

where brokerName is the name of the broker instance.

2. Add the httpsjms value to the imq.service.activelist property:

imq.service.activelist=jms,admin,httpsjms

At startup, the broker looks for a web server and HTTPS tunnel servlet running on 
its host machine. To access a remote tunnel servlet, however, you can reconfigure 
the servletHost and servletPort connection service properties. 

You can also reconfigure the pullPeriod property to improve performance. The 
httpsjms connection service configuration properties are detailed in Table B-3.

Table B-3 httpsjms Connection Service Properties

Property Name Description

imq.httpsjms.https.
servletHost

Change this value, if necessary, to specify the name of the 
host (hostname or IP address) on which the HTTPS tunnel 
servlet is running. (This can be a remote host or a specific 
hostname on a local host.) Default: localhost

imq.httpsjms.https.
servletPort

Change this value to specify the port number that the broker 
uses to access the HTTPS tunnel servlet. (If the default port is 
changed on the Web server, then you must change this 
property accordingly.) Default: 7674 

imq.httpsjms.https.
pullPeriod

Specifies the interval, in seconds, between HTTP requests 
made by each client to pull messages from the broker. If the 
value is zero or negative, the client keeps one HTTP request 
pending at all times, ready to pull messages as fast as 
possible. With a large number of clients, this can be a heavy 
drain on web server resources and the server may become 
unresponsive. In such cases, you should set the pullPeriod 
property to a positive number of seconds. This sets the time 
the client’s HTTP transport driver waits before making 
subsequent pull requests. Setting the value to a positive 
number conserves web server resources at the expense of the 
response times observed by clients. Default: -1 



Implementing HTTPS Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 227

Step 4. Configuring an HTTPS Connection
A client application must use an appropriately configured connection factory 
administered object to make an HTTPS connection to a broker. 

However, the client must also have access to SSL libraries provided by the Java 
Secure Socket Extension (JSSE) and must also have a root certificate. The SSL 
libraries are bundled with JDK 1.4. If you have an earlier JDK version, see 
“Configuring JSSE,” otherwise proceed to “Importing a Root Certificate.”

Once these issues are resolved, you can proceed to configuring the HTTPS 
connection.

Configuring JSSE

➤ To configure JSSE

1. Copy the JSSE jar files to the JRE_HOME/lib/ext directory.

jsse.jar, jnet.jar, jcert.jar

2. Statically add the JSSE security provider by adding

security.provider.n=com.sun.net.ssl.internal.ssl.Provider

to the JRE_HOME/lib/security/java.security file (where n is the next 
available priority number for security provider package).

3. If not using JDK1.4, you need to set the following JSSE property using the -D 
option to the command that launches the client application:

java.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol

Importing a Root Certificate
If the root certificate of the CA who signed your web server's certificate is not in the 
trust database by default or if you are using a proprietary web server certificate, 
you have to add that certificate to the trust database. If this is the case, follow the 
instruction below, otherwise go to “Setting Connection Factory Attributes”.

Assuming that the certificate is saved in cert_file and that trust_store_file is your 
keystore, run the following command:

JRE_HOME/bin/keytool -import -trustcacerts 
-alias alias_for_certificate -file cert_file 
-keystore trust_store_file 

Answer YES to the question: Trust this certificate?



Implementing HTTPS Support

228 Sun ONE Message Queue • Administrator’s Guide • October, 2002

You also need to specify the following JSSE properties using the -D option to the 
command that launches the client application:

javax.net.ssl.trustStore=trust_store_file 

javax.net.ssl.trustStorePassword=trust_store_passwd 

Setting Connection Factory Attributes
To implement HTTPS support, you set the following connection factory attributes 
(see “Connection Factory Administered Objects” on page 167):

• Set the imqConnectionType attribute to HTTP

The secure connection to the broker is achieved through deploying and 
connecting through the HTTPS tunnel servlet rather than the HTTP tunnel 
servlet. Both use the same connection type, however.

• Set the imqConnectionURL to the HTTPS tunnel servlet URL

https://hostName:port/imq/tunnel

You can set connection factory attributes in one of the following ways:

• Using the -o option to the imqobjmgr command that creates the connection 
factory administered object (see “Adding a Connection Factory” on page 174), 
or set the attribute when creating the connection factory administered object 
using the Administration Console (imqadmin).

• Using the -D option to the command that launches the client application (see 
the MQ Developer’s Guide).

• Using a JMS API call to set the attributes of a connection factory after you 
create it programmatically in client application code (see the MQ Developer’s 
Guide).

Using a Single Servlet to Access Multiple Brokers
You do not need to configure multiple web servers and servlet instances if you are 
running multiple brokers. You can share a single web server and HTTPS tunnel 
servlet instance among concurrently running brokers. In order to do this, you must 
configure the imqConnectionURL connection factory attribute as shown below:

https://hostName:port/imq/tunnel?ServerName=hostName:brokerName 

Where hostName is the broker host name and brokerName is the name of the specific 
broker instance you want your client to access.



Implementing HTTPS Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 229

To check that you have entered the correct strings for hostName and brokerName, 
generate a status report for the HTTPS tunnel servlet by accessing the servlet URL 
from a browser. The report lists all brokers being accessed by the servlet:

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTPS tunnel servlet:

• Set http.proxyHost system property to the proxy server host name.

• Set http.proxyPort system property to the proxy server port number.

You can set these properties using the -D option to the command that launches the 
client application.

Example: Deploying the HTTPS Tunnel Servlet
This section describes how you deploy the HTTPS tunnel servlet both as a jar file 
and as a WAR file on the Sun ONE Web Server. The approach you use depends on 
the version of Sun ONE Web Server: If it does not support Servlet 2.2 or later, it will 
not be able to handle WAR file deployment.

Deploying as a Jar File
The instructions below refer to deployment on Sun ONE Web Server, FastTrack 
Edition 4.1 using the browser-based administration GUI. This procedure consists of 
the following general steps:

1. add a servlet

2. configure the servlet virtual path

3. load the servlet

4. disable the servlet access log

HTTPS tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting TCP connections from brokers on port : 7674
Total available brokers = 2
Broker List : 

jpgserv:broker2
cochin:broker1



Implementing HTTPS Support

230 Sun ONE Message Queue • Administrator’s Guide • October, 2002

These steps are described in the following subsections. You can verify successful 
HTTP tunnel servlet deployment by accessing the servlet URL using a web 
browser. It should display status information.

Adding a Servlet

➤ To add a tunnel servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Attributes.

3. Specify a name for the tunnel servlet in the Servlet Name field.

4. Set the Servlet Code (class name) field to the following value:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpsTunnelServlet

5. Enter the complete path to the imqservlet.jar in the Servlet Classpath field. 
For example:

IMQ_HOME/lib/imqservlet.jar 

(/usr/share/lib/imq/imqservlet.jar on Solaris)

6. In the Servlet args field, enter required and optional arguments, as shown in 
Table B-4. 

Table B-4 Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File

Argument Default Value Required? See Also

keystoreLocation none Yes  Table 8-8 on page 200

keystorePassword none Yes  Table 8-8 on page 200

serverHost all hosts No  Table B-3 on page 226

serverPort 7674 No  Table B-3 on page 226



Implementing HTTPS Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 231

Separate the arguments with a comma, for example:

keystoreLocation=keystore_location,keystorePassword=keystore_password, 
servletPort=portnumber

The serverHost and serverPort argument apply only to communication 
between the Web Server and broker, and are set only if the default values are 
problematic. However, in that case, you also have to set the broker 
configuration properties accordingly (see Table B-3 on page 226), for example:

imq.httpsjms.https.servletPort

Configuring a Servlet Virtual Path (Servlet URL)

➤ To configure a virtual path (servlet URL) for a tunnel servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Virtual Path Translation.

3. Set the Virtual Path field.

For example, if you want the URL to be http://hostName:port/imq/tunnel, 
enter the following string in the Virtual Path field.

/imq/tunnel

4. Set the Servlet Name field to the same value as in Step 3 in “Adding a Servlet” 
on page 230.

Loading a Servlet

➤ To load the tunnel servlet at web server startup

1. Select the Servlets tab.

2. Choose Configure Global Attributes.

3. In the Startup Servlets field, enter the same servlet name value as in Step 3 in 
“Adding a Servlet” on page 230.



Implementing HTTPS Support

232 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Disabling a Server Access Log
You do not have to disable the server access log, but you will obtain better 
performance if you do. 

➤ To disable the server access log

1. Select the Status tab.

2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File
The instructions below refer to deployment on Sun ONE Web Server 6.0 Service 
Pack 2. You can verify successful HTTPS tunnel servlet deployment by accessing 
the servlet URL using a web browser. It should display status information.

Before deploying the HTTPS tunnel servlet, make sure that JSSE jar files are 
included in the web server’s classpath. The simplest way to do this is to copy the 
jsse.jar, jnet.jar, and jcert.jar to IWS60_TOPDIR/bin/https/jre/lib/ext.

Also, before deploying the HTTPS tunnel servlet, you have to modify its 
deployment descriptor to point to the location where you have placed the keystore 
file and to specify the keystore password.

➤ To modify the HTTPS tunnel servlet WAR file

1. Copy the WAR file to a temporary directory.

$ cp IMQ_HOME/lib/imqhttps.war /tmp 

($ cp /usr/share/lib/imq/imqhttps.war /tmp on Solaris)

2. Make the temporary directory your current directory.

$ cd /tmp 

3. Extract the contents of the WAR file.

$ jar xvf imqhttps.war 

4. List the WAR file’s deployment descriptor.

$ ls -l WEB-INF/web.xml



Implementing HTTPS Support

Appendix B HTTP/HTTPS Support (Enterprise Edition) 233

5. Edit the web.xml file to provide correct values for the keystoreLocation and 
keystorePassword arguments (as well as serverPort and serverHost 
arguments, if necessary).

6. Re-assemble the contents of the WAR file.

$ jar uvf imqhttps.war WEB-INF/web.xml

You are now ready to use the modified imqhttps.war file to deploy the HTTPS 
tunnel servlet. (If you are concerned about exposure of the keystore password, you 
can use file system permissions to restrict access to the imqhttps.war file.)

➤ To deploy the https tunnel servlet as a WAR file

1. In the browser-based administration GUI, select the Virtual Server Class tab. 
Click Manage Classes. 

2. Select the appropriate virtual server class name (e.g. defaultclass) and click the 
Manage button. 

3. Select Manage Virtual Servers. 

4. Select an appropriate virtual server name and click the Manage button. 

5. Select the Web Applications tab. 

6. Click on Deploy Web Application. 

7. Select the appropriate values for the WAR File On and WAR File Path fields so 
as to point to the modified imqhttps.war file (see “To modify the HTTPS 
tunnel servlet WAR file” on page 232.) 

8. Enter “/imq” (without the quotes) in the Application URI field. 

9. Enter the installation directory path (typically somewhere under the Sun ONE 
Web Server installation root) where the servlet should be deployed. 

10. Click OK. 

11. Restart the web server instance.

The servlet is now available at the following address:

https://hostName:port/imq/tunnel

Clients can now use this URL to connect to the message service using a secure 
HTTPS connection.



Implementing HTTPS Support

234 Sun ONE Message Queue • Administrator’s Guide • October, 2002



235

Appendix C

Using a Broker as a
Windows Service

This appendix explains how you use the Service Administrator (imqsvcadmin) 
utility to install, query, and remove a broker running as a Windows Service.

Running a Broker as a Windows Service
You have the option of installing a broker as a Windows service when you install 
Sun™ ONE Message Queue (MQ) 3.0.1. You can also use imqsvcadmin to install a 
broker as an Windows service after you have installed MQ 3.0.1. 

Installing a broker as a Windows service means that it will start at system startup 
time and run in the background until you shut down. Consequently, you do not 
use the imqbrokerd command to start the broker—unless, you want to start an 
additional instance. To pass any start-up options to the broker, you can use the 
-args argument to the imqsvcadmin command (see Table C-2 on page 237) and 
specify exactly the same options you would have used for the imqbrokerd 
command (see “Starting a Broker” on page 120). Use the imqcmd command to 
control broker operations as usual.

When running as a Windows service, the Task Manager lists the broker as two 
executable processes. The first is imqbrokersvc.exe, which is the native Windows 
service wrapper. The second is the Java runtime that is actually running the broker.

Only one broker at a time can be installed and run as a Windows service.



Service Administrator Utility (imqsvcadmin)

236 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Service Administrator Utility (imqsvcadmin)
The Service Administrator utility (imqsvcadmin) allows you to install, query, and 
remove the broker (running as a Windows service). This section describes the basic 
syntax of imqsvcadmin commands, provides a listing of subcommands, 
summarizes imqsvcadmin command options, and explains how to use these 
commands to accomplish specific tasks.

Syntax of Command
The general syntax of imqsvcadmin commands is as follows:

imqsvcadmin subcommand [options]

imqsvcadmin -h

Note that if you specify the -v, -h, or -H options, no other subcommands specified 
on the command line are executed. For example, if you enter the following 
command, help information is displayed but the query subcommand is not 
executed.

imqsvcadmin query -h

imqsvcadmin Subcommands
The MQ Service Administrator utility (imqsvcadmin) includes the subcommands 
listed in Table C-1:

Table C-1 imqsvcadmin Subcommands

Subcommand Description

install Installs the service and specifies startup options.

query Displays the startup options to the imqsvcadmin command. 
This includes whether the service is started manually or 
automatically, its location, the location of the java runtime, 
and the value of the arguments passed to the broker on 
startup.

remove Removes the service.



Service Administrator Utility (imqsvcadmin)

Appendix C Using a Broker as a Windows Service 237

Summary of imqsvcadmin Options
Table C-2 lists the options to the imqsvcadmin command. For a discussion of their 
use, see the task-based sections that follow.

The information that you specify using the -javahome, -vmargs, and -args 
options is stored in the Window’s registry under the keys JavaHome, JVMArgs, and 
ServiceArgs in the path

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\iMQ_Broker\Parameters

Table C-2 imqsvcadmin Options

Option Description

-h Displays usage help. Nothing else on the command line is 
executed.

-javahome path Specifies the path to an alternate Java 2 compatible JDK. The 
default is to use the bundled runtime.

Example: imqsvcadmin -install -javahome d:\jdk1.4 

-jrehome path Specifies the path to a Java 2 compatible JRE.

Example: imqsvcadmin -install -jrehome d:\jre\1.4 

-vmargs arg 
[[arg]...]

Specifies additional arguments to pass to the Java VM that is 
running the broker service. (You can also specify these arguments 
in the Windows Services Control Panel Startup Parameters field.)

Example: -vmargs “-Xms16m -Xmx128m” 

-args arg 
[[arg]...]

Specifies additional command line arguments to pass to the broker 
service. For a description of the imqbrokerd options, see “Starting 
a Broker” on page 120.

(You can also specify these arguments in the Windows Services 
Control Panel Startup Parameters field.) For example,

imqsvcadmin -install 
-args “-passfile d:\imqpassfile”



Service Administrator Utility (imqsvcadmin)

238 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Removing the Broker Service
Before you remove the broker service, you should use the imqcmd shutdown bkr 
command to shut down the broker. Then use the imqsvcadmin remove command 
to remove the service, and restart your computer.

Reconfiguring the Broker Service
To reconfigure the service, remove the service first, and then reinstall it, specifying 
different startup options with the -args argument.

Using an Alternate Java Runtime
You can use either the -javahome or -jrehome options to specify the location of an 
alternate java runtime. You can also specify these options in the Windows Services 
Control Panel Startup Parameters field. Note that the Startup Parameters field 
treats the back slash (\) as an escape character, so you will have to type it twice 
when using it as a path delimiter; for example, -javahome d:\\jdk1.3.

Querying the Broker Service
To determine the startup options for the broker service, use the -q option to the 
imqsvcadmin command.

imqsvcadmin -query

Service iMQ_Broker is installed.
Display Name: iMQ_Broker
Start Type: Manual
Binary location: c:\Program Files\Sun Microsystems\

Message Queue 3.0\bin\imqbrokersvc
JavaHome: c:\j2sdk1.4.0
Broker Args: -passfile d:\imqpassfile



Service Administrator Utility (imqsvcadmin)

Appendix C Using a Broker as a Windows Service 239

Troubleshooting
If you get an error when you try and start the service, you can see error events that 
were logged by doing the following.

➤ To see logged service error events

1. Start the Event Viewer

2. Look under Log > Application.

3. Select View > Refresh to see any error events.



Service Administrator Utility (imqsvcadmin)

240 Sun ONE Message Queue • Administrator’s Guide • October, 2002



241

Appendix D

Location of MQ Data

Sun™ ONE Message Queue (MQ) uses many categories of data, each of which is 
stored in a different location, as shown in Table D-1.

Table D-1 Location of MQ 3.0 Data

Data Category Location of Data

Broker instance 
configuration properties

IMQ_VARHOME/instances/brokerName/props/
config.properties

(/var/imq/instances/brokerName/props/
config.properties on Solaris)

Persistent store (messages,
destinations, durable 
subscriptions, transactions)

IMQ_VARHOME/instances/brokerName/filestore/

(/var/imq/instances/brokerName/filestore/ 
on Solaris)

or a JDBC-accessible data store

Broker instance log files IMQ_VARHOME/instances/brokerName/log/

(/var/imq/instances/brokerName/log/ on Solaris)

Administered objects 
(object store)

local directory of your choice

or an LDAP server

Security: user repository IMQ_HOME/etc/passwd

(/etc/imq/passwd on Solaris)

or LDAP server

Security: access control file IMQ_HOME/etc/accesscontrol.properties

(/etc/imq/accesscontrol.properties on Solaris)

Security: passfile IMQ_HOME/etc/passfileName

(/etc/imq/passfileName on Solaris)



242 Sun ONE Message Queue • Administrator’s Guide • October, 2002

Security: broker’s keystore IMQ_HOME/etc/keystore 

(/etc/imq/keystore on Solaris)

Table D-1 Location of MQ 3.0 Data (Continued)

Data Category Location of Data



243

Appendix E

Stability of MQ Interfaces

Sun™ ONE Message Queue (MQ) uses many interfaces, that might be of use to 
administrators for automating administration tasks. Table E-1 classifies these 
interfaces according to how stable they are, that is, how unlikely they are to change 
in subsequent versions of the product. The classification scheme is described in 
Table E-2 on page 245.

 

Table E-1 Stability of MQ 3.0.1 Interfaces

Interface Classification

imqbrokerd command line interface Evolving 

imqadmin command line interface Unstable 

imqcmd command line interface Evolving 

imqdbmgr command line interface Unstable 

imqkeytool command line interface Evolving 

imqobjmgr command line interface Evolving 

imqusermgr command line interface Unstable

imqobjmgr command file Evolving

imqbrokerd command Stable 

imqadmin command Unstable 

imqcmd command Stable 

imqdbmgr command Unstable 

imqkeytool command Stable 

imqobjmgr command Stable 

imqusermgr command Unstable



244 Sun ONE Message Queue • Administrator’s Guide • October, 2002

JMS API (javax.jms) Standard 

JAXM API (javax.xml) Standard 

Administered Object API (com.sun.messaging) Evolving

imq.jar location and name Stable 

jms.jar location and name Evolving 

imqbroker.jar location and name Private 

imqutil.jar location and name Private 

imqadmin.jar location and name Private 

imqservlet.jar location and name Evolving 

imqhttp.war location and name Evolving 

imqhttps.war location and name Evolving 

imqxm.jar location and name Evolving 

jaxm-api.jar location and name Evolving 

saaj-api.jar location and name Evolving 

saaj-impl.jar location and name Evolving 

activation.jar location and name Evolving 

mail.jar location and name Evolving 

dom4j.jar location and name Private 

fscontext.jar location and name Unstable 

Output from imqbrokerd, imqadmin, imqcmd, imqdbmgr, 
imqkeytool, imqobjmgr, imqusermgr 

Unstable

Broker log file location and content format Unstable 

passfile Unstable 

accesscontrol.properties Unstable

Table E-1 Stability of MQ 3.0.1 Interfaces (Continued)

Interface Classification



Appendix E Stability of MQ Interfaces 245

Table E-2 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed 
in any release.

Evolving For use by customers. Subject to incompatible change at a 
major (e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. The changes 
will be made carefully and slowly. Reasonable efforts will be 
made to ensure that all changes are compatible but that is not 
guaranteed.

Stable For use by customers. Subject to incompatible change at a 
major (e.g 3.0, 4.0) release only.

Standard For use by customers. These interfaces are defined by a 
formal standard, and controlled by a standards organization. 
Incompatible changes to these interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a 
major (e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. Customers 
are advised that these interfaces may be removed or changed 
substantially and in an incompatible way in a future release. 
It is recommended to customer to not create explicit 
dependencies on unstable interfaces.



246 Sun ONE Message Queue • Administrator’s Guide • October, 2002



247

Glossary

This glossary provides information about terms and concepts you might encounter 
while using Sun™ ONE Message Queue (MQ).

administered objects A pre-configured MQ object—a connection factory or a 
destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent; 
that is, it isolates them from the proprietary aspects of a provider. These objects are 
placed in a JNDI name space by an administrator and are accessed by JMS clients 
using JNDI lookups.

asynchronous communication A mode of communication in which the sender of 
a message need not wait for the sending method to return before it continues with 
other work.

authorization The process by which a message service determines whether a user 
can access message service resources, such as connection services or destinations.

broker The MQ entity that manages message routing, delivery, persistence, 
security, and logging, and which provides an interface that allows an administrator 
to monitor and tune performance and resource use.

JMS client An application (or software component) that interacts with other JMS 
clients using a message service to exchange messages.

client identifier An identifier that associates a connection and its objects with a 
state maintained by the MQ message server on behalf of the JMS client.

client runtime See MQ client runtime.



248 Sun ONE Message Queue • Administrator’s Guide • October, 2002

cluster Two or more interconnected brokers that work in tandem to provide 
messaging services. 

configuration file One or more text files containing MQ settings that are used to 
configure a broker. The properties are instance-specific or cluster-related.

connection 1) An active connection to an MQ message server. This can be a 
queue connection or a topic connection. 2) A factory for sessions that use the 
connection underlying MQ message server for producing and consuming 
messages. 

connection factory The administered object the client uses to create a connection 
to MQ message server. This can be a QueueConnectionFactory object or a 
TopicConnectionFactory object.

consume The receipt of a message taken from a destination by a message 
consumer.

consumer An object (MessageConsumer) created by a session that is used for 
receiving messages from a destination. In the point-to-point delivery model, the 
consumer is a receiver or browser (QueueReceiver or QueueBrowser); in the 
publish/subscribe delivery model, the consumer is a subscriber (TopicSubscriber).

data store A database where information (durable subscriptions, data about 
destinations, persistent messages, auditing data) needed by the broker is 
permanently stored.

delivery mode An indicator of the reliability of messaging: whether messages are 
guaranteed to be delivered and successfully consumed once and only once 
(persistent delivery mode) or guaranteed to be delivered at most once 
(non-persistent delivery mode).

delivery model The model by which messages are delivered: either 
point-to-point or publish/subscribe. In JMS there are separate programming 
domains for each, using specific client runtime objects and specific destination 
types (queue or topic), as well as a unified programming domain. 

delivery policy A specification of how a queue is to route messages when more 
than one message consumer is registered. The policies are: single, failover, and 
round-robin.



Glossary 249

destination The physical destination in an MQ message server to which 
produced messages are delivered for routing and subsequent delivery to 
consumers. This physical destination is identified and encapsulated by an 
administered object that a JMS client uses to specify the destination for which it is 
producing messages and/or from which it is consuming messages.

domain A set of objects used by JMS clients to program JMS messaging 
operations. There are two programming domains: one for the point-to-point 
delivery model and one for the publish/subscribe delivery model.

MQ client runtime Software that provides JMS clients with an interface to the 
MQ message server. The client runtime supports all operations needed for clients 
to send messages to destinations and to receive messages from such destinations.

MQ message server Software that provides delivery services for an MQ 
messaging system, including connections to JMS clients, message routing and 
delivery, persistence, security, and logging. The message server maintains physical 
destinations to which JMS clients send messages, and from which the messages are 
delivered to consuming clients.

JMS (Java Message Service) A standard set of interfaces and semantics that 
define how a JMS client accesses the facilities of a message service. These interfaces 
provide a standard way for Java programs to create, send, receive, and read 
messages.

JMS provider A product that implements the JMS interfaces for a messaging 
system and adds the administrative and control functions needed for a complete 
product.

message selector A way for a consumer to select messages based on property 
values (selectors) in JMS message headers. A message service performs message 
filtering and routing based on criteria placed in message selectors.

message service See MQ message server.

messages Asynchronous requests, reports, or events that are consumed by JMS 
clients. A message has a header (to which additional fields can be added) and a 
body. The message header specifies standard fields and optional properties. The 
message body contains the data that is being transmitted.

messaging A system of asynchronous requests, reports, or events used by 
enterprise applications that allows loosely coupled applications to transfer 
information reliably and securely.



250 Sun ONE Message Queue • Administrator’s Guide • October, 2002

point-to-point delivery model Producers address messages to specific queues; 
consumers extract messages from queues established to hold their messages. A 
message is delivered to only one message consumer.

produce Passing a message to the client runtime for delivery to a destination.

producer An object (MessageProducer) created by a session that is used for 
sending messages to a destination. In the point-to-point delivery model, a producer 
is a sender (QueueSender); in the publish/subscribe delivery model, a producer is 
a publisher (TopicPublisher).

publish/subscribe delivery model Publishers and subscribers are generally 
anonymous and may dynamically publish or subscribe to a topic. The system 
distributes messages arriving from a topic’s multiple publishers to its multiple 
subscribers.

queue An object created by an administrator to implement the point-to-point 
delivery model. A queue is always available to hold messages even when the client 
that consumes its messages is inactive. A queue is used as an intermediary holding 
place between producers and consumers.

session A single threaded context for sending and receiving messages. This can 
be a queue session or a topic session.

topic An object created by an administrator to implement the publish/subscribe 
delivery model. A topic may be viewed as node in a content hierarchy that is 
responsible for gathering and distributing messages addressed to it. By using a 
topic as an intermediary, message publishers are kept separate from message 
subscribers. 

transaction An atomic unit of work which must either be completed or entirely 
rolled back.

user group The group to which the user of a JMS client belongs for purposes of 
authorizing access to MQ message server resources, such as connections and 
destinations.



251

Index

A
access control file

access rules 194
format of 193
location 192, 241
use for 192
version 192

access control properties file, See access control file
access rules 194
acknowledgements

about 39, 51
broker 51, 167
client 51
delivery, of 51
transactions, and 52
wait period for 167

admin connection service 47, 149
administered objects

about 33, 75
attributes of 167
connection factory, See connection factory 

administered objects
deleting 177
destination, See destination administered objects
listing 178
look up name for 164
object stores, See object stores
provider-independence 76
querying 179
queue, See queues
required information 165
topic, See topics

types 34, 76, 162
updating 180
XA connection factory, See connection factory 

administered objects
administration tasks

development environments 81
production environments 82

administration tools
about 84
Administration Console 84
command line utilities 84

application servers 36
authentication

about 57
managing 182

authorization
about 58
managing 192
user groups 59
See also access control file

auto-create destinations
about 67
properties 67

B
broker clusters

adding brokers to 129
architecture of 69
cluster configuration file 72, 126
configuration change record 70, 71



Section C

252 Sun ONE Message Queue • Administrator’s Guide • October, 2002

broker clusters (continued)
configuration properties 71, 72, 126
connecting brokers 128
in development-only environments 71
Master Broker 70, 71
option to specify 121
propagation of information in 70
reasons for using 68
restarting a broker in 129
setting properties 127

broker instances, See brokers
brokers

about 44
access control, See authorization
acknowledgements (Ack) 51
auto-create destination properties 67
clusters, See broker clusters
configuration files, See configuration files
connecting to 142
connecting together 128
connection services, See connection services
controlling 144
HTTP support for 215
httpjms connection service properties 217
HTTPS, support for 223
httpsjms connection service properties 226
instance configuration properties 116
instance name 123
interconnected, See broker clusters
JDBC support, See JDBC support
listing services 150
logging, See logger
Master Broker 70
message capacity 53
message routing, See message router
metrics, See metrics
multi-broker clusters, See broker clusters
pausing 144
persistence manager, See persistence manager
properties 147
querying 145, 146
recovery from failure 54
restarting 54, 144
resuming 144
security manager, See security manager
shutting down 144
starting 120

starting an SSL-based service 201
system resources for 52
tasks of 45
updating 145
Windows service, running as 235

built-in persistence 55

C
certificate 199, 223
client

applications, See client applications
identifiers (ClientID) 38
programming model 32
runtime 73

client applications
provider-independence 37
system properties, and 78

cluster configuration file 72
clusters, See broker clusters
command line syntax 86
command line utilities

about 84
basic syntax 86
imqcmd 85, 138
imqdbmgr 86, 211
imqkeytool 86, 199, 223
imqobjmgr 85, 163
imqsvcadmin 86, 236
imqusermgr 86, 184
options common to 87

command options 87
components

EJB 34
MDB 35

config.properties file 114
configuration change record 70
configuration files

config.properties 114
default 114
editing 116
installation 114
instance 114, 127, 147, 241



Section D

Index 253

configuration files (continued)
location 114, 241
overriding values set in 114

connection factory administered objects
about 77
adding 174
attributes 77, 167
ClientID, and 38
introduced 33
JNDI lookup 34
overrides 78

connection services
about 45
access control for 60
activated at startup 49
admin 47, 149
commands affecting 148
connection type 46
HTTP, See HTTP connections
httpjms 47, 149
HTTPS, See HTTPS connections
httpsjms 47, 149
jms 46, 149
pausing 149, 152
port mapper, See port mapper
properties 49
querying 149, 150
resuming 149, 152
service type 46
ssladmin 47, 149, 198
SSL-based 200
ssljms 46, 149, 198
static ports for 49
thread allocation 151
thread pool manager 48
updating 149, 150

connections
introduced 33
reconnect attempts 168
reconnecting 168
reconnection delay 168

consumers 33
containers

EJB 36
MDB 36

control messages 51

D
data store

about 54
flat-file 55
JDBC-accessible 56
location 241
resetting 124

data, MQ, location of 241
delivery modes

non-persistent 39
persistent 39

delivery, reliable 39
destination administered objects 78

attributes 169
introduced 33

destinations
access control 196
attributes of 153
auto-created 67, 197
creating 153
destroying 152, 153
information about 152, 154
introduced 44
listing 152
managing 152
physical 65
purging messages at 152, 155
queue, See queues
temporary 68, 154
topic, See topics
updating attributes 153, 154

Diagram showing message producers sending 
messages to the message service, which relays 
them to message consumers. 30

directory variables
IMQ_HOME 20
IMQ_JAVAHOME 21
IMQ_VARHOME 20

distributed transactions
about 40
XA resource manager 40, 157
See also XA connection factories

domains 37
durable subscribers, See durable subscriptions



Section E

254 Sun ONE Message Queue • Administrator’s Guide • October, 2002

durable subscriptions
about 37
ClientID, and 38
destroying 156
listing 156
purging messages for 156

E
editions, product

about 26
enterprise 27
platform 26

encryption
about 59
Key Tool, and 59
SSL-based services, and 198

enterprise edition 27
environment variables, See directory variables

F
firewalls 213

H
HTTP 47, 149
HTTP connections

multiple brokers, for 218
request interval 217
support for 213
tunnel servlet, See HTTP tunnel servlet

HTTP proxy 213
HTTP support architecture 213
HTTP transport driver 213
HTTP tunnel servlet 214, 219
httpjms connection service 47, 149
HTTPS connections

multiple brokers, for 228

request interval 226
support for 213
tunnel servlet, See HTTPS tunnel servlet

HTTPS support architecture 213
HTTPS tunnel servlet 203, 214
httpsjms connection service 47, 149

I
imq.accesscontrol.enabled property 60, 116
imq.accesscontrol.file.filename property 61, 116
imq.authentication.basic.user_repository 

property 60, 116
imq.authentication.client.response.timeout 

property 60, 116
imq.authentication.type property 60, 116
imq.autocreate.queue property 67, 116, 147
imq.autocreate.topic property 67, 116, 147
imq.cluster.brokerlist property 72, 126
imq.cluster.hostname property 73, 127
imq.cluster.masterbroker property 72, 126
imq.cluster.port property 72, 126
imq.cluster.url property 72, 116, 126, 147
imq.httpjms.http.pullPeriod property 217
imq.httpjms.http.servletHost property 217
imq.httpjms.http.servletPort property 217
imq.httpsjms.https.pullPeriod property 226
imq.httpsjms.https.servletHost property 226
imq.httpsjms.https.servletPort property 226
imq.keystore.file.dirpath property 200
imq.keystore.file.name property 200
imq.keystore.password property 200, 204
imq.log.console.output property 64, 116
imq.log.console.output.stream property 64, 116
imq.log.console.syslog.facility property 64, 117
imq.log.console.syslog.identity property 64, 117
imq.log.console.syslog.logconsole property 64, 117
imq.log.console.syslog.logpid property 64, 117
imq.log.console.syslog.output property 65, 117
imq.log.file.dirpath property 64, 117



Section I

Index 255

imq.log.file.filename property 64, 117
imq.log.file.output property 63, 117
imq.log.file.rolloverbytes property 64, 117, 147
imq.log.file.rolloversecs property 64, 117, 147
imq.log.level property 63, 117, 147
imq.message.expiration.interval property 53, 117
imq.message.max_size property 53, 117, 147
imq.metrics.enabled property 63, 117
imq.metrics.interval property 63, 117
imq.passfile.dirpath property 61, 117
imq.passfile.enabled property 61, 117
imq.passfile.name property 61, 117
imq.persist.file.destination.file.size property 56, 117
imq.persist.file.message.cleanup property 56, 117
imq.persist.file.message.fdpool.limit property 57, 

118
imq.persist.file.message.filepool.cleanratio 

property 56, 118
imq.persist.file.message.filepool.limit property 56, 

118
imq.persist.file.sync.enabled property 57, 118
imq.persist.jdbc.brokerid property 207
imq.persist.jdbc.closedburl property 208
imq.persist.jdbc.createdburl property 208
imq.persist.jdbc.driver property 207
imq.persist.jdbc.needpassword property 208
imq.persist.jdbc.opendburl property 208
imq.persist.jdbc.password property 204, 209
imq.persist.jdbc.user property 208
imq.persist.store property 56, 118, 207
imq.portmapper.port property 49, 118, 147
imq.queue.deliverypolicy property 67, 118, 147
imq.redelivered.optimization property 53, 118
imq.resource_state.threshold property 53, 118
imq.service.activelist property 49, 118
imq.service_name.accesscontrol.enabled property 60, 

118
imq.service_name.accesscontrol.file.filename 

property 61, 118
imq.service_name.authentication.type property 60, 

118
imq.service_name.max_threads property 49, 118

imq.service_name.min_threads property 49, 119
imq.service_name.protocol_type.hostname 

property 50, 119
imq.service_name.protocol_type.port property 50, 119
imq.service_name.threadpool_model property 49, 

119
imq.shared.connectionMonitor_limit property 49, 

119
imq.system.max_count property 53, 119, 147
imq.system.max_size property 53, 119, 147
imq.transaction.autorollback property 53, 119, 159
imq.user_repository.ldap.base property 190
imq.user_repository.ldap.gidattr property 190
imq.user_repository.ldap.grpbase property 190
imq.user_repository.ldap.grpfiltler property 191
imq.user_repository.ldap.grpsearch property 190
imq.user_repository.ldap.memattr property 190
imq.user_repository.ldap.password property 190, 

204
imq.user_repository.ldap.principal property 189
imq.user_repository.ldap.server property 189
imq.user_repository.ldap.ssl.enabled property 191
imq.user_repository.ldap.timeout property 191
imq.user_repository.ldap.uidattr property 190
imq.user_repository.ldap.usrfilter property 190
IMQ_HOME directory variable 20
IMQ_JAVAHOME directory variable 21
IMQ_VARHOME directory variable 20
imqAckOnAcknowledge attribute 167
imqAckOnProduce attribute 167
imqAckTimeout attribute 167
imqbrokerd command

about 85
command syntax 120
options 121
using 120

imqBrokerHostName attribute 167
imqBrokerHostPort attribute 167
imqBrokerServicePort attribute 167
imqcmd command

about 85
command syntax 138
connecting to a broker 142



Section J

256 Sun ONE Message Queue • Administrator’s Guide • October, 2002

imqcmd command (continued)
destination management 152
options 140
secure connection to broker 141, 202
subcommands 138
transaction management 157
use for 138, 163, 184

imqConfiguredClientID attribute 167
imqConnectionType attribute 167
imqConnectionURL attribute 167
imqdbmgr command

about 86
command syntax 210
options 211
subcommands 211

imqDefaultPassword attribute 167
imqDefaultUsername attribute 167
imqDestinationDescription attribute 78, 169
imqDestinationName attribute 78, 169
imqDisableSetClientID attribute 167
imqFlowControlCount attribute 167
imqFlowControlIsLimited attribute 167
imqFlowControlLimit attribute 167
imqJMSDeliveryMode attribute 168
imqJMSExpiration attribute 168
imqJMSPriority attribute 168
imqkeytool command

about 86
command syntax 199, 223
using 199, 223

imqLoadMaxToServerSession attribute 168
imqobjmgr command

about 85
command syntax 163
options 164
subcommands 163

imqOverrideJMSDeliveryMode attribute 168
imqOverrideJMSExpiration attribute 168
imqOverrideJMSHeadersToTemporaryDestinations 

attribute 168
imqOverrideJMSPriority attribute 168
imqQueueBrowserMaxMessagesPerRetrieve 

attribute 168
imqQueueBrowserRetrieveTimeout attribute 168

imqReconnect attribute 168
imqReconnectDelay attribute 168
imqReconnectRetries attribute 168
imqSetJMSXAppID attribute 168
imqSetJMSXConsumerTXID attribute 168
imqSetJMSXProducerTXID attribute 168
imqSetJMSXRcvTimestamp attribute 168
imqSetJMSXUserID attribute 168
imqSSLIsHostTrusted attribute 168
imqsvcadmin command

about 86
command syntax 236
options 237
subcommands 236
use for 236

imqusermgr command
about 86
command syntax 184
options 184
passwords 186
subcommands 184
user names 186

input files 171
instance configuration files, See configuration files

J
J2EE applications

EJB specification 34
JMS, and 34
message-driven beans, See message driven-beans

JDBC support
about 56
driver 205, 207
setting up 205

JDK
option to specify path to 140, 164, 237
specify path to 122

JMS
message structure 31
programming model 32
specification 31

jms connection service 46, 149



Section K

Index 257

JMS specification 23, 25
JNDI

administered objects, and 34, 37
initial context 169
location (provider URL) 169
lookup 75, 78, 103, 165
message-driven beans, and 36
MQ support of 26
object store 85, 162
object store attributes 166, 169

JRE, specify path to 122

K
key pairs

generating 199
regenerating 200

Key Tool 59
keystore

file 199, 200, 224
properties 200

L
LDAP server

object store attributes 170
user-repository access 189

licenses
for MQ editions 26
loading 122

listeners 33, 35
log files

default location 63, 241
rollover criteria 64

logger
about 61
archive files 63
as broker component 46
categories 62
changing configuration 133
default configuration 131

levels 62, 63, 122
message format 132
metrics information 63, 135
output channels 62, 133
properties 63
redirecting log messages 134
rollover criteria 134
writing to console 64, 124

logging, See logger

M
Master Broker 70, 71
MDB See message-driven beans
memory management 52
Message 30
message consumers, See consumers
message delivery models 31, 37
message listeners, See listeners
message producers, See producers
message router

about 50
as broker component 45
properties 53

message server
about 44
multi-broker, See broker clusters 68

message service 30
message-driven beans

about 35
application server support 36
deployment descriptor 36
MDB container 36

messages
acknowledgements 51, 167
broker limits on 53
consumption of 74
control 51
delivery models 31, 37
delivery modes, See delivery modes
filtering 42
introduced 31
limits on 153



Section O

258 Sun ONE Message Queue • Administrator’s Guide • October, 2002

messages (continued)
listeners for 33, 75
ordering 42
persistence of 52, 54
persistent 39
point-to-point delivery 37
prioritizing 42
production of 74
publish/subscribe delivery 38
purging at a destination 152
reclamation of expired 53
redelivery 52
reliable delivery of 39
routing and delivery 50
SOAP 26
structure 31

messaging system
architecture 30
message service 30
MQ architecture 44

metrics
about 62
reporting interval 123
summary of 136

O
object stores

about 162
file-system store 162
file-system store attributes 169
LDAP server 162
LDAP server attributes 170
locations 241

P
passfile

broker configuration properties 61
command line option 123
location 204, 241
using 204

password file, See passfile
passwords

default 167
encoding of 60
JDBC 204
LDAP 204
naming conventions 186
passfile, See passfile
SSL keystore 123, 200, 204

performance, reliability, and 41
permissions

access control properties file 58, 192
admin service 59
computing 194
data store 55
embedded database 206
keystore 223
MQ operations 58
passfile 204
user repository 183

persistence
built-in 55
data store See data store
delivery modes, See delivery modes
JDBC, See JDBC persistence
persistence manager, See persistence manager
plugged-in, See plugged-in persistence

persistence manager
about 54
as broker component 46
data store See data store
JDBC data store 207
plugged-in persistence, and 205
properties 56

persistent messages 39
platform edition 26
plugged-in persistence

about 56
setting up 205

point-to-point delivery 37
port mapper

about 48
port assignment for 49, 123

portability, See provider-independence
ports, dynamic allocation of 48



Section Q

Index 259

producers 33
programming domains 37
properties

auto-create 67
broker instance configuration 116
broker, updating 147
cluster configuration 72
connection service 49
httpjms connection service 217
httpsjms connection service 226
JDBC-related 207
keystore 200
LDAP-related 189
logger 63
message router 53
persistence 56
security 60

protocol types
HTTP 47, 149
TCP 46, 149
TLS 46, 149

protocols, See  transport protocols
protocols, See transport protocols
provider-independence

about 37
administered objects 76

publish/subscribe delivery 38

Q
queue delivery policy

about 65
attribute 153
failover 66
round-robin 66
single 65

queue destinations, See queues
queues 65

adding administered objects for 176
attributes of 153
auto-created 67, 116
delivery policy, See queue delivery policy

R
redeliver flag 52
reliable delivery 39
routing, See message router

S
Secure Socket Layer standard, See SSL
security

authentication, See authentication
authorization, See authorization
encryption, See encryption
manager, See security manager
object store, for 170

security manager
about 57
as broker component 46
properties 60

self-signed certificate 199, 223
service types

ADMIN 46
NORMAL 46

sessions
acknowledgement options for 39
introduced 33
transacted 39

Simple Object Access Protocol See SOAP
SOAP 26
SSL

about 59
connection services, and 46, 149
encryption, and 198
over HTTP 203
over TCP/IP 198
services, setting up 181

ssladmin connection service 47, 149
configuring 201
setting up 198

SSL-based connection services
setting up 198

SSL-based services
starting up 201



Section T

260 Sun ONE Message Queue • Administrator’s Guide • October, 2002

ssljms connection service 46, 149
configuring 201
setting up 198

subscriptions
destroying durable 157
id of durable 140
managing durable 155

syslog 63, 134
system properties, setting 78

T
TCP 46, 149
temporary destinations 68, 154
thread pool manager

about 48
dedicated threads 48
shared threads 48

TLS 46, 149
tools, administration, See administration tools
topic destinations, See topics
topics

about 38
adding administered objects for 175
as physical destinations 66
attributes of 153
auto-created 67, 116

transactions
about 39
acknowledgements, and 52
committing 157
distributed, See distributed transactions
information about 157
managing 157
rolling back 157

transport protocols
HTTP 47, 149
TCP 46, 149
TLS 46, 149

U
user groups

about 58
default 59
deleting assignment 186
predefined 185

user names
default 167, 183
format 186

user repository
about 57
flat-file 182
LDAP server 189
location 182, 241
managing 187
platform dependence 183
populating 187
types 60
user groups 186
user states 186

W
Windows service, broker running as 235

X
XA connection factories

about 41
See also connection factory administered objects

XA resource manager, See distributed transactions


	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Audience for This Guide
	Organization of This Guide
	Conventions
	Text Conventions
	Directory Variable Conventions

	Other Documentation Resources
	The MQ Documentation Set
	Online Help
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification


	1    Overview
	What Is Sun ONE Message Queue?
	Product Editions
	Platform Edition
	Enterprise Edition

	Enterprise Messaging Systems
	Requirements of Enterprise Messaging Systems
	Centralized vs. Peer to Peer Messaging
	Messaging System Concepts
	Message
	Message Service Architecture
	Message Delivery Models


	The JMS Specification
	JMS Message Structure
	JMS Programming Model
	Administered Objects

	JMS/J2EE Programming: Message-driven Beans
	Message-driven Beans
	Application Server Support

	JMS Messaging Issues
	JMS Provider Independence
	Programming Domains
	Client Identifiers
	Reliable Messaging
	Acknowledgements/Transactions
	Persistent Storage

	Performance Trade-offs
	Message Selection
	Message Order and Priority


	2    The MQ Messaging System
	MQ Message Server
	Broker
	Connection Services
	Message Router
	Persistence Manager
	Security Manager
	Logger

	Physical Destinations
	Queue Destinations
	Topic Destinations
	Auto-Created (vs. Admin-Created) Destinations
	Temporary Destinations

	Multi-Broker Clusters (Enterprise Edition)
	Multi-Broker Architecture
	Using Clusters in Development Environments
	Cluster Configuration Properties


	MQ Client Runtime
	Message Production
	Message Consumption

	MQ Administered Objects
	Connection Factory Administered Objects
	Destination Administered Objects
	Overriding Attribute Values at Client Startup


	3    MQ Administration
	MQ Administration Tasks
	Development Environments
	Production Environments
	Setup Operations
	Maintenance Operations


	MQ Administration Tools
	The Administration Console
	Summary of Command Line Utilities
	Command Line Syntax
	Common Command Line Options



	4    Administration Console Tutorial
	Getting Ready
	Starting the Administration Console
	To start the Administration Console
	Getting Help
	To display Administration Console help information


	Working With Brokers
	Starting a Broker
	To start a broker

	Adding a Broker
	To add a broker to the Administration Console

	Changing the Administrator Password
	To change the administrator password

	Connecting to the Broker
	To connect to the broker

	Viewing Connection Services
	To view available connection services

	Adding Physical Destinations to a Broker
	To add a queue destination to a broker

	Working With Physical Destinations
	To view the properties of a physical destination
	To purge messages from a destination
	To delete a destination

	Getting Information About Topic Destinations

	Working with Object Stores
	Adding an Object Store
	To add a file-system object store

	Checking Object Store Properties
	To display the properties of an object store

	Connecting to an Object Store
	To connect to an object store

	Adding a Connection Factory Administered Object
	To add a connection factory to an object store

	Adding a Destination Administered Object
	To add a destination to an object store

	Administered Object Properties
	To view or update the properties of a destination object


	Updating Console Information
	Running the Sample Application
	To run the SimpleJNDIClient application


	5    Starting and Configuring a Broker
	Configuration Files
	Merging Property Values
	Property Naming Syntax
	Editing the Instance Configuration File

	Starting a Broker
	Working With Clusters (Enterprise Edition)
	Cluster Configuration Properties
	Connecting Brokers
	Method 1: No Cluster Configuration File
	To connect brokers into a cluster
	Method 2: Using a Cluster Configuration File

	Adding Brokers to Clusters
	To add a broker to a cluster if you are using a cluster configuration file

	Restarting a Broker in a Cluster
	Removing a Broker from a Cluster
	Backing up the Master Broker’s Configuration Change Record
	Restoring the Master Broker’s Configuration Change Record
	To restore the Master Broker in case of failure


	Logging
	Default Logging Configuration
	Log Message Format
	Changing the Logger Configuration
	To change the Logger configuration for a broker
	Changing the Output Channel
	Changing Rollover Criteria
	Logging Broker Performance Metrics



	6    Broker and Application Management
	Command Utility
	Syntax of Command
	imqcmd Subcommands
	Summary of imqcmd Options
	Prerequisites to Using imqcmd
	Examples

	Controlling the Broker’s State
	Querying and Updating Broker Properties
	Querying a Broker
	Updating a Broker

	Managing Connection Services
	Listing Connection Services
	Querying and Updating Service Properties
	Pausing and Resuming a Service

	Managing Destinations
	Creating Destinations
	Getting Information About Destinations
	Updating Destinations
	Purging Destinations
	Destroying Destinations

	Managing Durable Subscriptions
	Managing Transactions

	7    Managing Administered Objects
	About Object Stores
	Administered Objects
	Object Manager Utility (imqobjmgr)
	Syntax of Command
	imqobjmgr Subcommands
	Summary of imqobjmgr Command Options
	Required Information
	Administered Object Attributes
	Connection Factory Administered Objects
	Destination Administered Objects

	Object Store Attributes
	Initial Context and Location Information
	Security Information (LDAP Only)

	Using Input Files

	Adding and Deleting Administered Objects
	Adding a Connection Factory
	Adding a Topic or Queue
	Deleting Administered Objects

	Getting Information
	Listing Administered Objects
	Information About a Single Object

	Updating Administered Objects

	8    Security Management
	Authenticating Users
	Using a Flat-File User Repository
	User Manager Utility (imqusermgr)
	Groups
	States
	Format of User Names and Passwords
	Populating and Managing the User Repository
	Changing the Default Administrator Password

	Using an LDAP Server for a User Repository
	To edit the configuration file to use an LDAP server


	Authorizing Users: the Access Control Properties File
	Access Rules Syntax
	Permission Computation
	Connection Access Control
	Destination Access Control
	Destination Auto-Create Access Control

	Encryption: Working With an SSL Service (Enterprise Edition)
	Setting Up an SSL Service Over TCP/IP
	To set up a ssljms connection service
	Step 1. Generating a Self-Signed Certificate
	To regenerate a key pair
	Step 2. Enabling the SSL-based Service in the Broker
	Step 3. Starting the Broker
	Step 4. Configuring and Running SSL-based Clients

	Setting Up an SSL Service Over HTTP

	Using a Passfile

	A    Setting Up Plugged-in Persistence
	Introduction
	Plugging In a JDBC-accessible Data Store
	To plug in a JDBC-accessible data store

	JDBC-related Broker Configuration Properties
	Database Manager Utility (imqdbmgr)
	Syntax of Command
	imqdbmgr Subcommands
	Summary of imqdbmgr Command Options


	B    HTTP/HTTPS Support (Enterprise Edition)
	HTTP/HTTPS Support Architecture
	Implementing HTTP Support
	To implement HTTP support
	Step 1. Deploying the HTTP Tunnel Servlet on a Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 2. Configuring the httpjms Connection Service
	To enable the httpjms connection service

	Step 3. Configuring an HTTP Connection
	Setting Connection Factory Attributes
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example: Deploying the HTTP Tunnel Servlet
	Deploying as a Jar File
	To add a tunnel servlet
	To configure a virtual path (servlet URL) for a tunnel servlet
	To load the tunnel servlet at web server startup
	To disable the server access log
	Deploying as a WAR File
	To deploy the http tunnel servlet as a WAR file


	Implementing HTTPS Support
	To implement HTTPS support
	Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet
	Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 3. Configuring the httpsjms Connection Service
	To enable the httpsjms connection service

	Step 4. Configuring an HTTPS Connection
	Configuring JSSE
	To configure JSSE
	Importing a Root Certificate
	Setting Connection Factory Attributes
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example: Deploying the HTTPS Tunnel Servlet
	Deploying as a Jar File
	To add a tunnel servlet
	To configure a virtual path (servlet URL) for a tunnel servlet
	To load the tunnel servlet at web server startup
	To disable the server access log
	Deploying as a WAR File
	To modify the HTTPS tunnel servlet WAR file
	To deploy the https tunnel servlet as a WAR file



	C    Using a Broker as a Windows Service
	Running a Broker as a Windows Service
	Service Administrator Utility (imqsvcadmin)
	Syntax of Command
	imqsvcadmin Subcommands
	Summary of imqsvcadmin Options
	Removing the Broker Service
	Reconfiguring the Broker Service
	Using an Alternate Java Runtime
	Querying the Broker Service
	Troubleshooting
	To see logged service error events



	D    Location of MQ Data
	E    Stability of MQ Interfaces
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X


