Administrator’'s Guide
Sun™ ONE Message Queue

Version 3.0.1

817-0354-10
October, 2002

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and
one or more additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this product may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, iPlanet, JDK, Java Naming and Directory Interface, and the Java Coffee Cup logo
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.
and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans ce produit. En particulier, et
sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés a
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis
et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, iPlanet, JDK, Java Naming and Directory Interface, et le logo Java Coffee Cup sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Contents

LISt Of FIQUIesS . ..o 11
List Of Tables . ..o 13
List Of ProCeduUres o e 15
Preface . 17
Audience for This GUIdeititiiiiiit ittt ittt it neeneeneenaenaeaseeenenneanns 17
Organization of ThisGuideo i it 18
COMVENEIONS .« ittt ittt te e eeeeneeneeneeneseeeneeeeneeneeneenesneoneosenesnasnanns 19
Text CONVENTIONSottt ettt e e e e e e e e e e e e e e et et 19
Directory Variable Conventions i 20
Other Documentation ReSOUICeSottt ittt iineetnneeeaaeennaennnnn 22
The MQ Documentation Setttt e e e ettt 22
Online Help 22
JavaDOC . 23
Example Client Applications 23
The Java Message Service (JMS) Specification 23
Chapter 1 OVEIVIEWo e e e e e e e 25
What Is Sun ONE Message QUeUe?o.tttttiiittttttiiiiieeteiineeeeannnneeeennnnns 25
Product EdItionsottt ittt ittt tneeneeneeneoneoeeneenneoeeneenasnnnns 26
Platform Editiono e 26
Enterprise Edition 27
Enterprise Messaging Systemsooiiiiiiiiiiiiiiii it it i 27
Requirements of Enterprise Messaging Systems i, 28
Centralized vs. Peer to Peer Messaging ..., 29
Messaging System COnceptsttt 30
MESSAZE . . .o 30
Message Service Architecture 30
Message Delivery Models 31

4

The JMS Specificationcoiuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnennnnennnnnns 31

JMS Message Structure 31
JMS Programming Model 32
Administered Objects 33
JMS/J2EE Programming: Message-driven Beans ...ttt 34
Message-driven Beans 35
Application Server SUPPOTt 36
JMS Messaging ISSUES ..o vvviuiii ittt ittt ittt eniieeeeeonnneeenns 36
JMS Provider Independence 37
Programming Domains 37
Client Identifiers 38
Reliable MeSsagingooiiuuiiii i 39
Acknowledgements/Transactions i 39
Persistent Storage 41
Performance Trade-offs 41
Message Selection 42
Message Order and Priority 42
Chapter 2 The MQ Messaging SYStemMt e 43
MQ MeESSAZE SEIVET « .ttt vvt ettt ttitie ettt tinteeeeennneeeeeennuneeeeennnsseeeannnnnnens 44
BroKer .. 44
ConNeCctioN SETVICES u vt 46
Message ROULET 50
Persistence Manager 54
Security Manager 57
Lo T 61
Physical Destinations i 65
Queue Destinationst e 65
Topic Destinations 66
Auto-Created (vs. Admin-Created) Destinationsoiiiiiiiiininnnean.. 67
Temporary Destinations i 68
Multi-Broker Clusters (Enterprise Edition) 68
Multi-Broker Architecture 69
Using Clusters in Development Environments 71
Cluster Configuration Properties i i 71

MOQ Client RUNEIME . ot vttt ittt it ettt ene e eneeneaneaneoeenesnesneenesnesnesnnnns 73
Message Production 74
Message CONSUMPHIONttt 74
MQ Administered ODbJects . ..ovvvviuiii ittt i ittt ittt e 75
Connection Factory Administered Objects i, 77
Destination Administered Objects 78
Overriding Attribute Values at Client Startup oo, 78

Sun ONE Message Queue « Administrator’s Guide ¢ October, 2002

Chapter 3 MQ AdmInNiStration e e e e e 81

MO Administration TaskKsuiuitnnin it inininineteeeeeeeeneneneneneneneneseneeasnnns 81
Development Environments 81
Production Environments 82

Setup Operationsuiiii 82
Maintenance Operationst 83

MO Administration Toolsttt iin ittt ittt iteteeeenenenenenenanenssaneenennns 84
The Administration Console 84
Summary of Command Line Utilities i 84

Command Line SyntaxX i 86
Common Command Line Options i i, 87

Chapter 4 Administration Console Tutorial, 89

Getting Ready ... ovuunn i i i i ittt 90

Starting the Administration Console il i i i 90
Getting Helpo 92

Working With BroKersttt 93
Starting a Broker 94
Adding a Broker 95
Changing the Administrator Password i 96
Connecting to the Broker 97
Viewing Connection Services i 98
Adding Physical Destinationstoa Broker 99
Working With Physical Destinations i i 101
Getting Information About Topic Destinations 102

Working with Object Storesottt it 103
Adding an Object Store 103
Checking Object Store Properties 106
Connecting to an Object Store 106
Adding a Connection Factory Administered Object 106
Adding a Destination Administered Object 108
Administered Object Properties 110

Updating Console Information i i 111

Running the Sample Application i i 111

Chapter 5 Starting and Configuring aBroker i 113

Configuration Files ittt it 114
Merging Property Values 114
Property Naming Syntax 115
Editing the Instance Configuration File 116

Starting a Brokeroiiiiiiiitiiiiiii i i i e i e e 120

6

Working With Clusters (Enterprise Edition)coiiiiiiiiiiiiiiiiiiiiiiiiiiiina.. 126

Cluster Configuration Properties i i 126
Connecting Brokers 128
Method 1: No Cluster Configuration File 128
Method 2: Using a Cluster Configuration File, 128
Adding Brokers to ClUSters i 129
Restarting a Brokerina Cluster i i 129
Removing a Broker froma Cluster i 130
Backing up the Master Broker’s Configuration Change Record 130
Restoring the Master Broker’s Configuration Change Record 131
774 2 - 131
Default Logging Configuration i 131
Log Message Format 132
Changing the Logger Configuration i, 132
Changing the Output Channel i 133
Changing Rollover Criteria i 134
Logging Broker Performance Metrics i i 135
Chapter 6 Broker and Application Managementt 137
Command UtIlityoouunniiiii i i i i ittt it iiiiee e 138
Syntax of Command 138
imgemd Subcommands 138
Summary of imgemd Options 140
Prerequisites to Using imqemd 142
Exampleso 142
Controlling the Broker's Stateottt 143
Querying and Updating Broker Propertiesc.coiiiiiiiiiiiiiiiiiiiiiiiieennnne, 145
Querying a Broker 146
Updating a Broker 147
Managing Connection Servicesoouiitiiiiiiii ittt ittt 148
Listing Connection SeIVICESst 150
Querying and Updating Service Properties i 150
Pausing and Resuming a Service i 152
Managing Destinationsuuuiuiiiiiiiiiiiiitiiiiiiietiiiiiiieeeenriiiiteeernanns 152
Creating Destinations 153
Getting Information About Destinations il 154
Updating Destinations i 154
Purging Destinations 155
Destroying Destinations 155
Managing Durable SubScriptionseuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeens 155
Managing Transactionsuuuuiiiiittttiiiieeereiinneeeeennineeeeenntsseeeennnnns 157

Sun ONE Message Queue « Administrator’s Guide ¢ October, 2002

Chapter 7 Managing Administered Objects 161

ADbout ObjJect STOTes ...ttt i i i i e i i 162
Administered ODbjJectsottt i i i e i e 162
Object Manager Utility (imqobjmgr) ...ttt ittt 163
Syntax of Command 163
imgobjmgr Subcommands 163
Summary of imgobjmgr Command Options oo i 164
Required Information 165
Administered Object Attributes 167
Connection Factory Administered Objects i 167
Destination Administered Objects 169
Object Store Attributes 169
Initial Context and Location Information 169
Security Information (LDAP Only) 170
Using Input Files 171
Adding and Deleting Administered Objectsooviiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnns 174
Adding a Connection Factory 174
Adding a Topicor QUeue 175
Deleting Administered Objects i 177
Getting INfOrmationuuuuuuuunuuiiiiiii ittt iieteeeeeeeeeeeeeens 177
Listing Administered Objects i 177
Information About a Single Object 178
Updating Administered Objectsooviiiiiiiiiiiiiii ittt 180
Chapter 8 Security Management i 181
Authenticating Users ..ottt ittt 182
Using a Flat-File User Repository i, 182
User Manager Utility (imqusermgr) i 184
GIOUPS .« .ttt 185
SHAtS . . . 186
Format of User Names and Passwords 186
Populating and Managing the User Repository 187
Changing the Default Administrator Password 188
Using an LDAP Server for a User Repository 189
Authorizing Users: the Access Control Properties File, 192
Access Rules Syntax 193
Permission Computation 194
Connection Access CONEIOL 195
Destination Access CONtrolt 196
Destination Auto-Create Access Control 197

8

Encryption: Working With an SSL Service (Enterprise Edition)oooiiiiiit, 198

Setting Up an SSL Service Over TCP/IP i, 198
Step 1. Generating a Self-Signed Certificate 199

Step 2. Enabling the SSL-based Service in the Broker 200

Step 3. Starting the Broker 201

Step 4. Configuring and Running SSL-based Clients 202
Setting Up an SSL Service Over HTTP i 203
UsingaPassfileooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiitiiiiiiaaaas 204
Appendix A Setting Up Plugged-in Persistence 205
Introduction ... i e i i e 205
Plugging In a JDBC-accessible Data Storeccuiiiiiiiiiiiiiiiiiiiiiiinenn, 206
JDBC-related Broker Configuration Properties i, 207
Database Manager Utility (imqdbmgr)o 210
Syntax of Command 210
imgdbmgr Subcommands 211
Summary of imgdbmgr Command Options i 211
Appendix B HTTP/HTTPS Support (Enterprise Edition) 213
HTTP/HTTPS Support Architecturecoiiiuiiuiiiiiiiiiiiiiiiiiiiiiiiiineneeens 213
Implementing HTTP SUpportottt ittt ittt 215
Step 1. Deploying the HTTP Tunnel Servletona Web Server 215
DeployingasaJarFile 215
Deploying asa Web Archive File 216

Step 2. Configuring the httpjms Connection Service, 216
Step 3. Configuring an HTTP Connection i, 218
Setting Connection Factory Attributes 218
Using a Single Servlet to Access Multiple Brokers 218
Using an HTTP ProXyoi e 219
Example: Deploying the HTTP Tunnel Servlet, 219
DeployingasaJarFile 219
Deployingasa WARFile 221
Implementing HTTPS Supportttt i ittt ittt 222
Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet 223
Step 2. Deploying the HTTPS Tunnel Servletona Web Server 224
DeployingasaJarFile 224
Deploying asa Web Archive File 225

Step 3. Configuring the httpsjms Connection Service 225

Sun ONE Message Queue « Administrator’s Guide ¢ October, 2002

Step 4. Configuring an HTTPS Connection o i, 227

Configuring JSSE 227
Importing a Root Certificate 227
Setting Connection Factory Attributes 228
Using a Single Servlet to Access Multiple Brokers 228
Using an HTTP ProXyu e 229
Example: Deploying the HTTPS Tunnel Servlet 229
DeployingasaJarFile 229
Deployingasa WARFile 232
Appendix C Using a Broker as a Windows Servicet 235
Running a Broker as a Windows Serviceoiiiiiiiiiiiiiiiiiiiiiiiiiinne... 235
Service Administrator Utility (imqsveadmin)o il 236
Syntax of Command 236
imgsvcadmin Subcommands 236
Summary of imgsvcadmin Options i 237
Removing the Broker Service 238
Reconfiguring the Broker Service 238
Using an Alternate Java Runtime 238
Querying the Broker Service i 238
Troubleshooting 239
Appendix D Location of MQ Datat 241
Appendix E Stability of MQ Interfaces i 243
GO S aIY . vttt 247
X L 251

10 Sun ONE Message Queue * Administrator's Guide ¢ October, 2002

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 3-1
Figure 5-1
Figure B-1

List of Figures

Centralized vs. Peer to Peer Messaging, 29
Message Service Architecture i 30
JMS Programming Objects 32
Messaging with MDBs 35
MQ System Architecture 43
Broker COMpPONENtsoiiiuuiiiiiii i 45
Connection Services SUPPOTt 47
Persistence Manager SUPPOrtoiiiiiiiiiiiii 54
Security Manager SUpport 58
Logging Scheme i 62
Multi-Broker (Cluster) Architecture i 69
Messaging Operations ... 74
Message Delivery to MQ Client Runtime 75
Local and Remote Administration Utilities 85
Broker Configuration Files 115
HTTP/HTTPS Support Architecture 214

11

12 Sun ONE Message Queue * Administrator's Guide ¢ October, 2002

Table 1
Table 2
Table 3
Table 4
Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 3-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 6-1
Table 6-2
Table 6-3
Table 6-4

List of Tables

BOOK CONENS ...ttt e e e e e e 18
Document CONVENIONSttt ettt e e 19
MQ Directory Variables 20
MQ Documentation Setiiiii i e 22
JMS Programming Objectso i 38
Main Broker Components and Functions 45
Connection Services Supported by a Broker 46
Connection Service Properties i 49
Message Router Properties 53
Persistence Properties 56
Security Properties 60
Logging Categories 62
Logger Properties 63
Auto-create Configuration Properties, 67
Cluster Configuration Properties i i, 72
Destination Attributes i 78
Common MQ Command Line Options, 87
Broker Instance Configuration Properties 116
i mgbrokerd Options 121
Cluster Configuration Properties, 126
i ngbr oker d Logger Options and Corresponding Properties 133
Metrics Gathered for Connection Servicesooiiiiiiiieinnnnnn.. 136
Metrics Gathered for Each Broker i 136
i mgend Subcommands ... e 138
imgemd Optionso 140
i mycmd Subcommands Used to Control the Broker 144
i ngcmd Subcommands Used to Get Information and to Update Broker 145

13

14

Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table A-1
Table A-2
Table A-3
Table B-1
Table B-2
Table B-3
Table B-4
Table C-1
Table C-2
Table D-1
Table E-1
Table E-2

Broker Properties 147
i mgcmd Subcommands Used to Manage Connection Services 148
Connection Services Supported by a Broker 149
Connection Service Attributes 151
i mgcmd Subcommands Used to Manage Destinations 152
Destination Attributes 153
i ngcmd Subcommands Used to Manage Durable Subscriptions 156
i mgcmd Subcommands Used to Manage Transactions 157
i mgobj mor Subcommands 163
i mgobj MOr Options 164
Connection Factory Attributes L 167
Destination Attributes 169
Security Attributes for the ObjectStore 170
Initial Entries in User Repository i it 183
i mMgusSer NOr Subcommandsouuun ettt e 184
imguserngr OptoNns i 185
Invalid Characters for User Names and Passwords 186
LDAP-related Properties i 189
Syntactic Elements of AccessRulesl 193
Elements of Destination Access Control Rules 196
Keystore Properties 200
PasswordsinaPassfile 204
JDBC-related Properties i 207
i mgdbmgr Subcommands 211
i mgdbngr Options 211
httpjms Connection Service Properties 217
Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File 220
httpsjms Connection Service Properties 226
Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File 230
i mgsvcadm n Subcommands 236
imgsveadm N OpHONS ... 237
Location of MQ 3.0 Datat 241
Stability of MQ 3.0.1 Interfaces i 243
Interface Stability Classification Scheme, 245

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

List of Procedures

To start the Administration Console e 91
To display Administration Console help information 92
Tostart a Droker 94
To add a broker to the Administration Console i 95
To change the administrator password 96
To connect to the broker 97
To view available cONNECtion SEIrVICEs ittt e 98
To add a queue destination toabroker 100
To view the properties of a physical destination 101
To purge messages from a destination i 102
Todelete a destination e 102
To add a file-system object store 103
To display the properties of an objectstore L 106
To connect to an object store 106
To add a connection factory to an object store i 107
To add a destination to an object store 109
To view or update the properties of a destination object 110
To run the Si npl eJNDI Cl i ent application............ i 111
To connect brokers into a cluster 128
To add a broker to a cluster if you are using a cluster configurationfile 129
To restore the Master Broker in case of failure 131
To change the Logger configuration forabroker 132
To edit the configuration file to use an LDAP serveriiiiiiiin... 189
To set up a ssljms connection service i 198
Toregenerate a key pair i 200
To plug in a JDBC-accessible datastore i 206
To implement HTTP support e 215

15

16

To enable the httpjms connection service i 217

Toadd atunnel serviet 220
To configure a virtual path (servlet URL) for a tunnel servlet 221
To load the tunnel servlet at web server startup 221
To disable the server access1og i 221
To deploy the http tunnel servletasa WARfile, 222
To implement HTTPS support e 223
To enable the httpsjms connection service i 226
Toconfigure JSSE 227
Toaddatunnelserviet. o i 230
To configure a virtual path (servlet URL) for a tunnel servlet 231
To load the tunnel servlet at web server startup 231
To disable the serveraccess 1og i 232
To modify the HTTPS tunnel servlet WARfile 232
To deploy the https tunnel servletasa WARfile................., 233
To see logged service error eVeNtsttt 239

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Preface

This book, the Sun™ ONE Message Queue (MQ) 3.0.1 Administrator’s Guide,
provides the background and information needed to perform administration tasks
for an MQ messaging system.

This preface contains the following sections:
e Audience for This Guide

* Organization of This Guide

¢ Conventions

e Other Documentation Resources

Audience for This Guide

This guide is meant for administrators as well as application developers who need
to perform MQ administration tasks.

An MQ administrator is responsible for setting up and managing an MQ
messaging system, in particular the MQ message server at the heart of this system.
The book does not assume any knowledge or understanding of messaging systems.

The guide is also meant to be used by application developers to better understand
how to optimize their applications to make best use of the features and flexibility of
the MQ messaging system.

17

Organization of This Guide

Organization of This Guide

This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

18

Table 1 Book Contents

Chapter

Description

Chapter 1, “Overview”

Chapter 2, “The MQ
Messaging System”

Chapter 3, “MQ
Administration”

Chapter 4,
“ Administration Console
Tutorial”

Chapter 5, “Starting and
Configuring a Broker”

Chapter 6, “Broker and
Application
Management”

Chapter 7, “Managing
Administered Objects”

Chapter 8, “Security
Management”

Appendix A, “Setting Up
Plugged-in Persistence”

Appendix B,
“HTTP /HTTPS Support
(Enterprise Edition)”

Appendix C, “Using a
Broker as a Windows
Service”

Appendix D, “Location
of MQ Data”

Presents a high-level conceptual overview of MQ messaging
systems and terminology.

Describes the MQ messaging system, with special emphasis
on the MQ broker and the MQ client runtime that together
provide messaging services.

Describes MQ administration tasks and tools, and introduces
the command line utilities used for administration, and their
common features.

Provides a hands-on tutorial to acquaint you with the
Administration Console, a graphical interface to the MQ
message server.

Explains how to start up and configure an MQ broker and a
broker cluster.

Explains how to perform (application-independent) tasks
related to managing MQ brokers, as well as tasks used to
manage messaging applications.

Explains how to perform tasks related to creating and
managing MQ administered objects.

Explains how to perform security tasks related to
applications, such as managing authentication, authorization,
and encryption.

Explains how to set up MQ to use JDBC-compliant database
to perform persistence functions.

Explains how to set up HTTP connection services between a
messaging client and the MQ message server.

Explains how to use the MQ Service Administration utility
(i mgsvcadmi n) to install, query, and remove the broker
(running as an Windows service).

Describes the location of various categories of MQ data.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Conventions

Table 1 Book Contents (Continued)

Chapter Description

Appendix E, “Stability of Describes the stability of various MQ interfaces.
MQ Interfaces”

“Glossary” Defines terms used in MQ documentation.

Conventions

This section provides information about the conventions used in this document.

Text Conventions

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an
appropriate clause or value where you see italic text.
Italicized text is also used to designate a document title, for
emphasis, or for a word or phrase being introduced.

nonospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URL's.

[1 Square brackets to indicate optional values in a command line
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT,
HTML and so forth), environment variables (IMQ_HOME),
or acronyms (MQ, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Preface 19

Conventions

20

Directory Variable Conventions

MQ makes use of three directory variables; how they are set varies from platform
to platform. Table 3 describes these variables and summarizes how they are used
on the Solaris, Windows, and Linux platforms.

Table 3~ MQ Directory Variables

Variable Description

| MQ_HOME This is generally used in MQ documentation to refer to the
root MQ installation directory:

On Solaris, there is no root MQ installation directory.
Therefore, | MQ_HOVE is not used in MQ documentation to
refer to file locations on Solaris.

On Solaris, for Sun ONE Application Server, Evaluation
Edition, the root MQ installation directory is:
root Application Server installation directory/i .

On Windows, t he root MQ installation directory is set by
the MQ installer (by default, as C: \ Pr ogr am
Fil es\ Sun M crosyst ens\ Message Queue 3.0. 1).

On Windows, for Sun ONE Application Server, the root
MQ installation directory is:
root Application Server installation directory/i .

On Linux, the root MQ installation directory is, by default:
[opt /i my.

I MQ_VARHOVE This is the / var directory in which MQ temporary or
dynamically-created configuration and data files are stored. It
can be set as an environment variable to point to any
directory.

On Solaris, | MQ_VARHOVE defaults to the / var/ i nq
directory.

On Solaris, for Sun ONE Application Server, Evaluation
Edition, | MQ_VARHOME defaults to | MQ_HOVE/ var .

On Windows | MQ_VARHOVE defaults to | MQ_HOVE/ var .

On Windows, for Sun ONE Application Server,
| MQ_VARHOVE defaults to | MQ_HOVE/ var .

On Linux, | MQ_VARHOME defaults to | MQ_HOVE/ var .

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Conventions

Table 3~ MQ Directory Variables (Continued)

Variable Description

I MQ_JAVAHOVE This is an environment variable that points to the location of
the Java runtime (JRE 1.4) required by MQ executables:

e On Solaris, | MQ_JAVAHOVE defaults to the
lusr/j 2sel jre directory, but a user can optionally set
the value to wherever JRE 1.4 resides.

e On Windows, | MQ_JAVAHOVE defaults to
| MQ_HOME/ j r e, but a user can optionally set the value to
wherever JRE 1.4 resides.

¢ On Linux, | MQ_JAVAHQOVE defaults to the
lusr/javalj2sdkl. 0/ | re directory, but a user can
optionally set the value to wherever JRE 1.4 resides.

In this guide, | MQ_HOME, | MQ_VARHOME, and | MQ_JAVAHOVME are shown without
platform-specific environment variable notation or syntax (for example, $I MQ_HOVE
on UNIX). All path names use UNIX file separator notation (/).

Preface 21

Other Documentation Resources

Other Documentation Resources

In addition to this guide, MQ provides additional documentation resources.

The MQ Documentation Set

The documents that comprise the MQ documentation set are listed in Table 4 in the
order in which you would normally use them.

Table 4 MQ Documentation Set

Document Audience Description
MQ Installation Guide Developers and Explains how to install MQ software
administrators on Solaris, Linux, and Windows
platforms.
Release Notes Developers and Includes descriptions of new features,
administrators limitations, and known bugs, as well

as technical notes.

MQ Developer’s Guide Developers Provides a quick-start tutorial and
programming information relevant to
the MQ implementation of JMS.

MQ Administrator’s Guide ~ Administrators,also Provides background and
recommended for information needed to perform
developers administration tasks using MQ

administration tools.

Online Help

MQ 3.0.1 includes command line utilities for performing MQ message service
administration tasks. To access the online help for these utilities, see “Common
Command Line Options” on page 87.

MQ 3.0.1 also includes a graphical user interface (GUI) administration tool, the
Administration Console (i mgadni n). Context sensitive online help is included in
the Administration Console.

22 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

Other Documentation Resources

JavaDoc

JMS and MQ API documentation in JavaDoc format, is provided at the following
location:

| MQ_HOWE/ j avadoc/ i ndex. ht m
(/ usr/ sharel/javadoc/ing/ i ndex. ht M on Solaris)

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as
MQ-specific API's for MQ administered objects (see Chapter 3 of the MQ
Developer’s Guide), which are of value to developers of messaging applications.

Example Client Applications

A number of example applications that provide sample client application code are
included in the following location:

| MQ_HOVE/ denmo (/ usr/ deno/ i mg on Solaris)
See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification

The JMS specification can be found at the following location:
http://java. sun. coni product s/ j ns/ docs. ht m

The specification includes sample client code.

Preface 23

Other Documentation Resources

24 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Chapter 1

Overview

This chapter provides an introduction to Sun™ ONE Message Queue (MQ) and is
of interest to both administrators and programmers.

What Is Sun ONE Message Queue?

The MQ product is a standards-based solution to the problem of inter-application
communication and reliable message delivery. MQ is an enterprise messaging
system that implements the Java Message Service (JMS) open standard: it is a JMS
provider.

The JMS specification describes a set of programming interfaces (see “JMS
Programming Model” on page 32)—which provide a common way for Java
applications to create, send, receive, and read messages in a distributed
environment.

With Sun ONE Message Queue software, processes running on different platforms
and operating systems can connect to a common MQ message service (see
“Message Service Architecture” on page 30) to send and receive information.
Application developers are free to focus on the business logic of their applications,
rather than on the low-level details of how their applications communicate across a
network.

MQ has features which exceed the minimum requirements of the JMS specification.
Among these features are the following:

Centralized administration Provides both command-line and GUI tools for
administering an MQ message service and managing application-specific aspects
of messaging, such as destinations and security.

25

Product Editions

Scalable message service Allows you to service increasing numbers of JMS
clients (components or applications) by balancing the load among a number of MQ
message service components (brokers) working in tandem (multi-broker cluster).

Tunable performance Lets you increase performance of the MQ message service
when less reliability of delivery is acceptable.

Multiple transports Supports the ability of JMS clients to communicate with each
other over a number of different transports, including TCP and HTTP, and using
secure (SSL) connections.

JNDI support Supports both file-based and LDAP implementations of the Java
Naming and Directory Interface (JNDI) as object stores and user repositories.

SOAP messaging support Supports creation and delivery of SOAP
messages—messages that conform to the Simple Object Access Protocol (SOAP)
specification— via JMS messaging. SOAP allows for the exchange of structured
XML data between peers in a distributed environment. See the MQ Developer’s
Guide for more information.

See the MQ 3.0.1 Release Notes for documentation of JMS compliance-related issues.

Product Editions

The Sun ONE Message Queue product is available in two editions: Platform and
Enterprise—each corresponding to a different licensed capacity, as described
below. (To upgrade MQ from one edition to another, see the instructions in the MQ
Installation Guide.)

Platform Edition

This edition can be downloaded free from the Sun website and is also bundled with
the latest Sun ONE Application Server platform. The Platform Edition places no
limit on the number of JMS client connections supported by each MQ message
service. It comes with two licenses, as described below:

® abasiclicense This license provides basic JMS support (it’s a full J]MS
provider), but does not include such enterprise features as load balancing
(multi-broker message service), HITP/HTTPS connections, secure connection
services, scalable connection capability, and multiple queue delivery policies.
The license has an unlimited duration, and can therefore be used in less
demanding production environments.

26 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Enterprise Messaging Systems

* a90-day trial enterprise license This license includes all enterprise features
(such as support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, and
multiple queue delivery policies) not included in the basic license. However,
the license has a limited 90-day duration enforced by the software, making it
suitable for evaluating the enterprise features available in the Enterprise
Edition of the product (see “Enterprise Edition” on page 27).

NOTE The 90-day trial license can be enabled by starting the MQ
message service—an MQ broker instance—with the - | i cense
command line option (see Table 5-2 on page 121) and passing
“t ry” as the license to use:

i mgbrokerd -license try

You must use this option each time you start the broker instance,
otherwise it defaults back to the basic Platform Edition license.

Enterprise Edition

This edition is for deploying and running messaging applications in a production
environment. It includes support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, and
multiple queue delivery policies. You can also use the Enterprise Edition for
developing, debugging, and load testing messaging applications and components.
The Enterprise Edition has an unlimited duration license that places no limit on the
number of brokers in a multi-broker message service, but specifies the number of
CPU'’s that are supported.

Enterprise Messaging Systems

Enterprise messaging systems enable independent distributed components or
applications to interact through messages. These components, whether on the same
system, the same network, or loosely connected through the Internet, use
messaging to pass data and to coordinate their respective functions.

Chapter 1 Overview 27

Enterprise Messaging Systems

28

Requirements of Enterprise Messaging Systems

Enterprise application systems typically consist of large numbers of distributed
components exchanging many thousands of messages in round-the-clock,
mission-critical operations. To support such systems, an enterprise messaging
system must generally meet the following requirements:

Reliable delivery Messages from one component to another must not be lost due
to network or system failure. This means the system must be able to guarantee that
a message is successfully delivered.

Asynchronous delivery For large numbers of components to be able to exchange
messages simultaneously, and support high density throughputs, the sending of a
message cannot depend upon the readiness of the consumer to immediately
receive it. If a consumer is busy or offline, the system must allow for a message to
be sent and subsequently received when the consumer is ready. This is known as
asynchronous message delivery, popularly known as store-and-forward
messaging.

Security The messaging system must support basic security features:
authentication of users, authorized access to messages and resources, and
over-the-wire encryption.

Scalability The messaging system must be able to accommodate increasing
loads—increasing numbers of users and increasing numbers of messages—without
a substantial loss of performance or message throughput. As businesses and
applications expand, this becomes a very important requirement.

Manageability The messaging system must provide tools for monitoring and
managing the delivery of messages and for optimizing system resources. These
tools help measure and maintain reliability, security, and performance.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Enterprise Messaging Systems

Centralized vs. Peer to Peer Messaging

The requirements of an enterprise messaging system are difficult to meet with a
traditional peer to peer messaging system, illustrated in Figure 1-1.

Figure 1-1 Centralized vs. Peer to Peer Messaging

Peer to Peer Messaging Centralized Messaging

Component 1

Component 1 Component 2
Message Service
Component 2
Component 3
Component 3 Component 4

Component 4

In such a system every messaging component maintains a connection to every
other component. These connections can allow for fast, secure, and reliable
delivery, however the code for supporting reliability and security must reside in
each component. As components are added to the system, the number of
connections rises exponentially. This makes asynchronous message delivery and
scalability difficult to achieve. Centralized management is also problematic.

The preferred approach for enterprise messaging is a centralized messaging
system, also illustrated in Figure 1-1. In this approach each messaging component
maintains a connection to one central message service. The message service
provides for routing and delivery of messages between components, and is
responsible for reliable delivery and security. Components interact with the
message service through a well-defined programming interface. As components
are added to the system, the number of connections rises only linearly, making it
easier to scale the system by scaling the message service. In addition, the central
message service provides for centralized management of the system.

Chapter 1 Overview 29

Enterprise Messaging Systems

30

Messaging System Concepts

A few basic concepts underlie enterprise messaging systems. These include the
following: message, message service architecture, and message delivery models.

Message

A message consists of data in some format (message body) and meta-data that
describes the characteristics or properties of the message (message header), such as
its destination, lifetime, or other characteristics determined by the messaging
system.

Message Service Architecture

The basic architecture of a messaging system is illustrated in Figure 1-2 on page 30.
It consists of message producers and message consumers that exchange messages
by way of a common message service. Any number of message producers and
consumers can reside in the same messaging component (or application). A
message producer sends a message to a message service. The message service, in
turn, using message routing and delivery components, delivers the message to one
or more message consumers that have registered an interest in the message. The
message routing and delivery components are responsible for guaranteeing
delivery of the message to all appropriate consumers.

Figure 1-2 Message Service Architecture

Message
Producers .
@ Message Service
.
Message
Message Routing and
Consumers Delivery

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

The JMS Specification

Message Delivery Models

There are many relationships between producers and consumers: one to one, one
to many, and many to many relationships. For example, you might have messages
delivered from:

¢ one producer to one consumer

* one producer to many consumers

* many producers to one consumer

* many producers to many consumers.

These relationships are often reduced to two message delivery models:
point-to-point and publish/subscribe messaging. The focus of the point-to-point
delivery model is on messages that originate from a specific producer and are
received by a specific consumer. The focus of publish/subscribe delivery model is
on messages that originate from any of a number of producers and are received by
any number of consumers. These message delivery models can overlap.

Historically, messaging systems supported various combinations of these two
message delivery models. The Java Message Service (JMS) API was intended to
create a common programming approach for Java messaging. It supports both the
point-to-point and publish/subscribe message delivery models (see
“Programming Domains” on page 37).

The JMS Specification

JMS specifies a message structure, a programming model, and a set of rules and
semantics that govern messaging operations. Because MQ provides an
implementation of JMS, JMS concepts are fundamental to understanding how an
MQ messaging system works. This introduction explains concepts and
terminology needed to understand the remaining chapters of this book.

JMS Message Structure

According to the JMS specification, a message is composed of three parts: a header,
properties, and a body.

Header The header specifies the JMS characteristics of the message: its
destination, whether it is persistent or not, its time to live, and its priority. These
characteristics govern how the messaging system delivers the message.

Chapter 1 Overview 31

The JMS Specification

Properties Properties (which can be thought of as an extension of the header) are
optional—they provide values that applications can use to filter messages
according to various selection criteria. Properties are optional.

Message body. The message body contains the actual data to be exchanged. JMS
supports six body types.

JMS Programming Model

In the JMS programming model, JMS clients (components or applications)
exchange messages by way of a JMS message service. Message producers send
messages to the message service, from which message consumers receive them.
These messaging operations are performed using a set of objects (furnished by a
JMS provider) that implement the JMS application programming interface (API).

This section introduces the objects that implement the JMS API and that are used to
set up a JMS client for delivery of messages (for more information, see the MQ
Developer’s Guide). Figure 1-3 on page 32 shows the JMS objects used to program
the delivery of messages.

Figure 1-3 JMS Programming Objects

JMS Client

ConnectionFactory " J MSS .
essage service
Connection Message

i Message

Sessions) _
—@ | L@_ Routing and
@essagemoducers Delivery

Destinations

Physical Destinations

MessageConsumers

MessageListener

32 Sun ONE Message Queue < Administrator's Guide * October, 2002

The JMS Specification

In the JMS programming model, a JMS client uses a Connect i onFact ory object to
create a connection over which messages are sent to and received from the JMS
message service. A Connect i on is a JMS client’s active connection to the message
service. Both allocation of communication resources and authentication of the
client take place when a connection is created. It is a relatively heavy-weight object,
and most clients do all their messaging with a single connection.

The connection is used to create sessions. A Sessi on is a single-threaded context
for producing and consuming messages. It is used to create the message producers
and consumers that send and receive messages, and it defines a serial order for the
messages it delivers. A session supports reliable delivery through a number of
acknowledgement options or through transactions (which can be managed by a
distributed transaction manager).

A JMS client uses a MessagePr oducer to send messages to a specified physical
destination, represented in the API as a destination object. The message producer
can specify a default delivery mode (persistent vs. non-persistent messages),
priority, and time-to-live values that govern all messages sent by the producer to
the physical destination.

Similarly, a JMS client uses a MessageConsurer to receive messages from a
specified physical destination, represented in the API as a destination object. A
message consumer can use a message selector that allows the message service to
deliver only those messages to the message consumer that match the selection
criteria.

A message consumer can support either synchronous or asynchronous
consumption of messages (see the MQ Developer’s Guide). Asynchronous
consumption is achieved by registering a MessagelLi st ener with the consumer.
The client consumes a message when a session thread invokes the onMessage()
method of the MessagelLi st ener object.

Administered Objects

Two of the objects described in the “JMS Programming Model” on page 32 depend
on how a JMS provider implements a JMS message service. The connection factory
object depends on the underlying protocols and mechanisms used by the provider
to deliver messages, and the destination object depends on the specific naming
conventions and capabilities of the physical destinations used by the provider.

Chapter 1 Overview 33

JMS/J2EE Programming: Message-driven Beans

Normally these provider-specific characteristics would make JMS client code
dependent on a specific JMS implementation. To make JMS client code
provider-independent, however, the JMS specification requires that
provider-specific implementation and configuration information be encapsulated
in what are called administered objects. These objects can then be accessed in a
standardized, non-provider-specific way.

Administered objects are created and configured by an administrator, stored in a
name service, and accessed by JMS clients through standard Java Naming and
Directory Service (JNDI) lookup code. Using administered objects in this way
makes JMS client code provider-independent.

JMS provides for two general types of administered objects: connection factories
and destinations. Both encapsulate provider-specific information, but they have
very different uses within a JMS client. A connection factory is used to create
connections to a message server, while destination objects are used to identify
physical destinations used by the JMS message service.

For more information on administered objects, see “MQ Administered Objects” on
page 75.

JMS/J2EE Programming: Message-driven Beans

34

In addition to the general JMS client programming model introduced in “JMS
Programming Model” on page 32, there is a more specialized adaptation of J]MS
used in the context of Java 2 Enterprise Edition (J2EE) applications. This specialized
JMS client is called a message-driven bean and is one of a family of Enterprise
JavaBeans (EJB) components specified in the EJB 2.0 Specification

(http://java. sun. con product s/ ej b/ docs. ht nl).

The need for message-driven beans arises out of the fact that other EJB components
(session beans and entity beans) can only be called synchronously. These EJB
components have no mechanism for receiving messages asynchronously, since
they are only accessed through standard E]JB interfaces.

However, asynchronous messaging is a requirement of many enterprise
applications. Most such applications require that server-side components be able to
communicate and respond to each other without tying up server resources. Hence,
the need for an EJB component that can receive messages and consume them
without being tightly coupled to the producer of the message. This capability is
needed for any application in which server-side components must respond to
application events. In enterprise applications, this capability must also scale under
increasing load.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

JMS/J2EE Programming: Message-driven Beans

Message-driven Beans

A message-driven bean (MDB) is a specialized EJB component supported by a
specialized EJB container (a software environment that provides distributed
services for the components it supports).

Message-driven Bean The MDB is a JMS message consumer that implements the
JMS Messageli st ener interface. The onMessage method (written by the MDB
developer) is invoked when a message is received by the MDB container. The
onMessage() method consumes the message, just as the onMessage() method of a
standard MessagelLi st ener object would. You do not remotely invoke methods on
MDB’s—Ilike you do on other EJB components—therefore there are no home or
remote interfaces associated with them. The MDB can consume messages from a
single destination. The messages can be produced by standalone JMS applications,
JMS components, EJB components, or Web components, as shown in Figure 1-4 on
page 35.

Figure 1-4 Messaging with MDBs

JMS
IMS Component
or JMS Message Service
Message Application
Producers .- pp
EJB Container Message
] Routing and
Delivery
EJB — : \
Instance \
] I
o o] / Destinations
_______ MDB Container
JMS
Message
Consumer

MDB _|
Instance

onMessage
method

Chapter 1 Overview 35

JMS Messaging Issues

MDB Container The MDB is supported by a specialized EJB container,
responsible for creating instances of the MDB and setting them up for
asynchronous consumption of messages. This involves setting up a connection
with the message service (including authentication), creating a pool of sessions
associated with a given destination, and managing the distribution of messages as
they are received among the pool of sessions and associated MDB instances. Since
the container controls the life-cycle of MDB instances, it manages the pool of MDB
instances so as to accommodate incoming message loads.

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup
names for the administered objects used by the container in setting up message
consumption: a connection factory and a destination. The deployment descriptor
might also include other information that can be used by deployment tools to
configure the container. Each such container supports instances of only a single
MDB.

Application Server Support

In J2EE architecture (see the J2EE Platform Specification located at

http://java. sun. conl j 2ee/ downl oad. ht m #pl at f or mspec), EJB containers are
hosted by application servers. An application server provides resources needed by
the various containers: transaction managers, persistence managers, name services,
and, in the case of messaging and MDB’s, a JMS provider.

In the Sun ONE Application Server, messaging resources are provided by Sun
ONE Message Queue. This means that an MQ messaging system (see Chapter 2,
“The MQ Messaging System”) is integrated into the Sun ONE Application Server,
providing the support needed to send JMS messages to MDB’s and other JMS
messaging components that run in the application server environment.

JMS Messaging Issues

This section describes a number of JMS programming issues that impact the
administration of an MQ message service. The discussion focuses on concepts and
terminology that are needed by an MQ administrator.

36 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

JMS Messaging Issues

JMS Provider Independence

JMS specifies the use of administered objects (see “Administered Objects” on
page 33) to support the development of client applications that are portable to
other JMS providers. Administered objects allow JMS clients to use logical names
to look up and reference provider-specific objects. In this way client code does not
need to know specific naming or addressing syntax or configurable properties used
by a provider. This makes the code provider-independent.

Administered objects are MQ system objects created and configured by an MQ
administrator. These objects are placed in a JNDI directory service, and a JMS client
accesses them using a JNDI lookup.

MQ administered objects can also be instantiated by the client, rather than looked
up in a JNDI directory service. This has the drawback of requiring the application
developer to use provider-specific API's. It also undermines the ability of an MQ
administrator to successfully control and manage an MQ message server.

For more information on administered objects, see “MQ Administered Objects” on
page 75.

Programming Domains

JMS supports two distinct message delivery models: point-to-point and
publish/subscribe.

point-to-point (Queue Destinations) A message is delivered from a producer to
one consumer. In this delivery model, the destination is a queue. Messages are first
delivered to the queue destination, then delivered from the queue, one at a time,
depending on the queue’s delivery policy (see “Queue Destinations” on page 65),
to one of the consumers registered for the queue. Any number of producers can
send messages to a queue destination, but each message is guaranteed to be
delivered to—and successfully consumed by—only one consumer. If there are no
consumers registered for a queue destination, the queue holds messages it receives,
and delivers them when a consumer registers for the queue.

Publish/Subscribe (Topic destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers. Topic destinations also support the notion of durable
subscriptions. A durable subscription represents a consumer that is registered with

Chapter 1 Overview 37

JMS Messaging Issues

the topic destination but can be inactive at the time that messages are delivered.
When the consumer subsequently becomes active, it receives the messages. If there
are no consumers registered for a topic destination, the topic does not hold
messages it receives, unless it has durable subscriptions for inactive consumers.

These two message delivery models are handled using different API objects—with
slightly different semantics—representing different programming domains, as
shown in Table 1-1.

Table 1-1 JMS Programming Objects

Base Type Point-to-Point Domain Publish/Subscribe Domain
(Unified Domain)

Destination (Queue or Topic)! Queue Topic
ConnectionFactory QueueConnectionFactory ~ TopicConnectionFactory
Connection QueueConnection TopicConnection
Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver TopicSubscriber

1 Depending on programming approach, you might specify a particular destination type.

You can program both point-to-point and publish/subscribe messaging using the
unified domain objects shown in the first column of Table 1-1. This is the preferred
approach. However, to conform to the earlier J]MS 1.02b specification, you can use
the point-to-point domain objects to program point-to-point messaging, and the
publish/subscribe domain objects to program publish/subscribe messaging.

Client Identifiers

JMS providers must support the notion of a client identifier, which associates a JMS
client’s connection to a message service with state information maintained by the
message service on behalf of the client. By definition, a client identifier is unique,
and applies to only one user at a time. Client identifiers are used in combination
with a durable subscription name (see “Publish/Subscribe (Topic destinations)” on
page 37) to make sure that each durable subscription corresponds to only one user.

38 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

JMS Messaging Issues

The JMS specification allows client identifiers to be set by the client through an API
method call, but recommends setting it administratively using a connection factory
administered object (see “Administered Objects” on page 33). If hard wired into a
connection factory, however, each user would then need an individual connection
factory to have a unique identity.

MQ provides a way for the client identifier to be both ConnectionFactory and user
specific using a special variable substitution syntax that you can configure in a
Connect i onFact or y object. When used this way, a single Connect i onFact ory
object can be used by multiple users who create durable subscriptions, without fear
of naming conflicts or lack of security. A user's durable subscriptions are therefore
protected from accidental erasure or unavailability due to another user having set
the wrong client identifier.

For details on how to use this MQ feature, see the discussion of connection factory
attributes in the MQ Developer’s Guide.

In any case, in order to create a durable subscription, a client identifier must be
either programmatically set by the client, using the JMS API, or administratively
configured in the Connect i onFact ory objects used by the client.

Reliable Messaging
JMS defines two delivery modes:

Persistent messages These messages are guaranteed to be delivered and
successfully consumed once and only once. Reliability is at a premium for such
messages.

Non-persistent messages These messages are guaranteed to be delivered at most
once. Reliability is not a major concern for such messages.

There are two aspects of assuring reliability in the case of persistent messages. One
is to assure that their delivery to and from a message service is successful. The
other is to assure that the message service does not lose persistent messages before
delivering them to consumers.

Acknowledgements/Transactions

Reliable messaging depends on guaranteeing the successful delivery of persistent
messages to and from a destination. This can be achieved using either of two
general mechanisms supported by an MQ session: acknowledgements or
transactions. In the case of transactions, these can either be local or distributed,
under the control of a distributed transaction manager.

Chapter 1 Overview 39

JMS Messaging Issues

Acknowledgements
A session can be configured to use acknowledgements to assure reliable delivery.

In the case of a producer, this means that the message service acknowledges
delivery of a persistent message to its destination before the producer’s send()
method returns. In the case of a consumer, this means that the client acknowledges
delivery and consumption of a persistent message from a destination before the
message service deletes the message from that destination.

Local Transactions

A session can also be configured as transacted, in which case the production and/or
consumption of one or more messages can be grouped into an atomic unit—a
transaction. The JMS API provides methods for initiating, committing, or rolling
back a transaction.

As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when the client
issues a call to commit the transaction. If a particular send or receive operation
within the transaction fails, an exception is raised. The client code can handle the
exception by ignoring it, retrying the operation, or rolling back the entire
transaction. When a transaction is committed, all the successful operations are
completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a local transaction is always a single session. That is, one or more
producer or consumer operations performed in the context of a single session can
be grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in a single transaction.)

Distributed Transactions

MQ also supports distributed transactions. That is, the production and consumption
of messages can be part of a larger, distributed transaction that includes operations
involving other resource managers, such as database systems. In distributed
transactions, a distributed transaction manager tracks and manages operations
performed by multiple resource managers (such as a message service and a
database manager) using a two-phase commit protocol defined in the Java
Transaction API (JTA), XA Resource API specification. In the Java world, interaction
between resource managers and a distributed transaction manager are described in
the JTA specification.

40 Sun ONE Message Queue « Administrator's Guide « October, 2002

JMS Messaging Issues

Support for distributed transactions means that messaging clients can participate
in distributed transactions through the XAResource interface defined by JTA. This
interface defines a number of methods for implementing two-phase commit. While
the API calls are made on the client side, the MQ broker tracks the various send
and receive operations within the distributed transaction, tracks the transactional
state, and completes the messaging operations only in coordination with a
distributed transaction manager—provided by a Java Transaction Service (JTS).

As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

MQ implements support for distributed transactions through an XA connection
factory, which lets you create XA connections, which in turn lets you create XA
sessions (see “JMS Programming Model” on page 32). In addition, support for
distributed transactions requires either a third party JTS or a J2EE-compliant
Application Server (that provides JTS).

Persistent Storage

The other important aspect of reliability is assuring that once persistent messages
are delivered to their destinations, a message service does not lose them before
they are delivered to consumers. This means that upon delivery of a persistent
message to its destination, the message service must place it in a persistent data
store (see “Persistence Manager” on page 54). If the message service goes down for
any reason, it can recover the message and deliver it to the appropriate consumers.
While this adds overhead to message delivery, it also adds reliability.

A message service must also store durable subscriptions. This is because to
guarantee delivery in the case of topic destinations, it is not sufficient to recover
only persistent messages. The message service must also recover information about
durable subscriptions for a topic, otherwise it would not be able to deliver
messages to subscribers who are inactive when a message arrives, and
subsequently become active.

Messaging applications that are concerned about guaranteed message delivery
must specify messages as persistent and use either queue destinations or durable
subscriptions to topic destinations.

Performance Trade-offs

The more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a
significant design consideration. You can maximize performance by choosing to
produce and consume non-persistent messages. On the other hand, you can

Chapter 1 Overview 41

JMS Messaging Issues

maximize reliability by producing and consuming persistent messages and using
transacted sessions. Between these extremes are a number of options, depending
on the needs of an application, including the use of MQ-specific connection and
acknowledgement properties (see the MQ Developer’s Guide).

Message Selection

JMS provides a mechanism by which a message service can perform message
filtering and routing based on criteria placed in message selectors. A producing
client can place application-specific properties in the message, and a consuming
client can indicate its interest in messages using selection criteria based on such
properties. This simplifies the work of the client and eliminates the overhead of
delivering messages to clients that don’t need them. However, it adds some
additional overhead to the message service processing the selection criteria.
Message selector syntax and semantics are outlined in the JMS specification.

Message Order and Priority

In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, a messaging system will attempt to deliver higher
priority messages first.

Beyond this, the ordering of messages consumed by a client application can have
only a rough relationship to the order in which they were produced. This is
because the delivery of messages to destinations and the delivery from those
destinations can depend on a number of issues that affect timing, such as the order
in which the messages are sent, the sessions (connections) from which they are
sent, whether the messages are persistent, the lifetime of the messages, the priority
of the messages, the message delivery policy of queue destinations (see “Queue
Destinations” on page 65), and message service availability.

In the case of an MQ message server using multiple interconnected brokers (see
“Multi-Broker Clusters (Enterprise Edition)” on page 68) the ordering of messages
consumed by a client is further complicated by the fact that the order of delivery
from destinations on different brokers is indeterminate. Hence, a message
delivered by one broker might precede a message delivered by another broker
even though the latter might have received the message first.

In any case, for a given consumer, precedence is given for higher priority messages
over lower priority messages.

42 Sun ONE Message Queue « Administrator's Guide « October, 2002

Chapter

2

The MQ Messaging System

This chapter describes the Sun™ ONE Message Queue (MQ) messaging system,
with specific attention to the main parts of the system, as illustrated in Figure 2-1,

and explains how they work together to provide for reliable message delivery.

Figure 2-1

MQ System Architecture

JMS Client

MQ Messaging System

MQ

Client Runtime

3y

MQ Message Server
|

K\»

Brokers

Object Store

Administered
Objects

Destinations

MQ

Administration

43

MQ Message Server

The main parts of an MQ messaging system, shown in Figure 2-1, are the
following:

¢ MQ Message Server
¢ MQ Client Runtime
* MQ Administered Objects
e MQ Administration

The first three of these are examined in the following sections. The last is
introduced in Chapter 3, “MQ Administration.”

MQ Message Server

This section describes the different parts of the MQ message server shown in
Figure 2-1 on page 43. These include the following:

Broker An MQ broker provides delivery services for an MQ messaging system.
Message delivery relies upon a number of supporting components that handle
connection services, message routing and delivery, persistence, security, and
logging (see “Broker” on page 44 for more information). A message server can
employ one or more broker instances (see “Multi-Broker Clusters (Enterprise
Edition)” on page 68).

Physical Destination Delivery of a message is a two-phase process—delivery
from a producing client to a physical destination maintained by a broker, followed
by delivery from the destination to one or more consuming clients. Physical
destinations represent locations in a broker’s physical memory and/or persistent
storage (see “Physical Destinations” on page 65 for more information).

Broker

Message delivery in an MQ messaging system—from producing clients to
destinations, and then from destinations to one or more consuming clients—is
performed by a broker (or a cluster of broker instances working in tandem). To
perform message delivery, a broker must set up communication channels with
clients, perform authentication and authorization, route messages appropriately,
guarantee reliable delivery, and provide data for monitoring system performance.

44 Sun ONE Message Queue « Administrator's Guide ¢ October, 2002

MQ Message Server

To perform this complex set of functions, a broker uses a number of different
components, each with a specific role in the delivery process. You can configure
these internal components to optimize the performance of the broker, depending
on load conditions, application complexity, and so on. The main broker
components are illustrated in Figure 2-2 and described briefly in Table 2-1.

Figure 2-2 Broker Components

|

|

: Loaaer Main Broker
i 99 Components
I . BN A

|

incominq

Services IJ

Connectio?l_‘ EE Message
E;:l Router

outgoing
messages

Persistence
Manager

|

|

| Security
| Manager
|
|
|

S

Data
Store

User
Repository

Table 2-1 Main Broker Components and Functions

Component Description/Function

Connection Services Manages the physical connections between a broker
and clients, providing transport for incoming and
outgoing messages.

Message Router Manages the routing and delivery of messages: These
include JMS messages as well as control messages used
by the MQ messaging system to support JMS message
delivery.

Chapter 2 The MQ Messaging System 45

MQ Message Server

Table 2-1 Main Broker Components and Functions (Continued)

Component Description/Function

Persistence Manager Manages the writing of data to persistent storage so
that system failure does not result in failure to deliver
JMS messages.

Security Manager Provides authentication services for users requesting

connections to a broker and authorization services
(access control) for authenticated users.

Logger Writes monitoring and diagnostic information to log
files or the console so that an administrator can
monitor and manage a broker.

The following sections explore more fully the functions performed by the different
broker components and the properties that can be configured to affect their
behavior.

Connection Services

An MQ broker supports communication with both JMS clients and MQ
administration clients (see “MQ Administration Tools” on page 84). Each service is
specified by its service type and protocol type.

service type specifies whether the service provides JMS message delivery
(NORMAL) or MQ administration (ADM N) services

protocol type specifies the underlying transport protocol layer that supports the
service.

The connection services currently available from an MQ broker are shown in
Table 2-2:

Table 2-2 Connection Services Supported by a Broker

Service Name Service Type Protocol Type
jms NORMAL (JMS message delivery) tcp
ssljms NORMAL (JMS message delivery) tls (SSL-based security)

(Enterprise Edition)

46 Sun ONE Message Queue « Administrator's Guide ¢ October, 2002

MQ Message Server

Table 2-2 Connection Services Supported by a Broker (Continued)

Service Name Service Type Protocol Type

httpjms NORMAL (JMS message delivery) http

(Enterprise Edition)

httpsjms NORMAL (JMS message delivery) https (SSL-based security)
(Enterprise Edition)

admin ADMIN tcp

ssladmin ADMIN tls (SSL-based security)

(Enterprise Edition)

You can configure a broker to run any or all of these connection services. Each
service has a Thread Pool Manager and registers itself with a common Port Mapper
service, as shown in Figure 2-3.

Figure 2-3 Connection Services Support

Port
Mapper
incoming | 7 /
messagei =
= Connection
Services
—_— Thread
outgoing Pool
messages Manager

Each connection service is available at a particular port, specified by the broker’s
host name and a port number. The port can be statically or dynamically allocated.
MQ provides a Port Mapper that maps dynamically allocated ports to the different
connection services. The Port Mapper itself resides at a standard port number,
7676. When a client sets up a connection with the broker, it first contacts the Port
Mapper requesting the port number of the connection service it desires.

Chapter 2 The MQ Messaging System 47

MQ Message Server

You can also assign a static port number for the jms, ssljms, admin and ssladmin
connection services when configuring these connection services, but this is not
recommended. The httpjms and httpsjms services are configured using properties
described in Table B-1 on page 217 and Table B-3 on page 226, respectively, in
Appendix B, “HTTP/HTTPS Support (Enterprise Edition).”

Each connection service is multi-threaded, supporting multiple connections. The
threads needed for these connections are maintained in a thread pool managed by
a Thread Pool Manager component. You can configure the Thread Pool Manager to
set a minimum number and maximum number of threads maintained in the thread
pool. As threads are needed by connections, they are added to the thread pool.
When the minimum number is exceeded, the system will shut down threads as
they become free until the minimum number threshold is reached, thereby saving
on memory resources. You want this number to be large enough so that new
threads do not have to be continually created. Under heavy connection loads, the
number of threads might increase until the thread pool’s maximum number is
reached, after which connections have to wait until a thread becomes available.

The threads in a thread pool can either be dedicated to a single connection
(dedicated model) or assigned to multiple connections, as needed (shared model).

Dedicated model In the dedicated model, each connection to the broker requires
two threads: one dedicated to handling incoming messages and one to handling
outgoing messages. This limits the number of connections to half the maximum
number of threads in the thread pool, however it provides for high performance.

Shared model (Enterprise Edition) In the shared thread model, connections are
assigned to a thread only when sending or receiving messages. This model, in
which connections share a thread, increases the number of connections that a
connection service (and therefore, a broker) can support, however there is some
performance overhead involved. The Thread Pool Manager uses a set of distributor
threads that monitor connection activity and assign connections to threads as
needed. You can improve performance by limiting the number of connections
monitored by each such distributor thread.

Each connection service supports specific authentication and authorization (access
control) features (see “Security Manager” on page 57).

The configurable properties related to connection services are shown in Table 2-3.
(For instructions on configuring these properties, see Chapter 5, “Starting and
Configuring a Broker.”)

48 Sun ONE Message Queue « Administrator's Guide ¢ October, 2002

MQ Message Server

Table 2-3 Connection Service Properties

Property Name

Description

i ng. service. activelist

i Q. service_name.
m n_t hr eads

i . service_name.
max_t hr eads

i . service_name.
t hr eadpool _nodel

i ng. shar ed.
connecti onMonitor _limt

i ng. port mapper. port

List of connection services, by name, separated by
commas, to be made active at broker startup.
Supported services are: j s, ssl j s, ht t pj s,

ht t psj s, admni n, ssl adni n. Default: j s, admi n

Specifies the number of threads, which once reached,
are maintained in the thread pool for use by the named
connection service. Default: Depends on connection
service (see Table 5-1 on page 116).

Specifies the number of threads beyond which no new
threads are added to the thread pool for use by the
named connection service. The number must be greater
than zero and greater in value than the value of

mi n_t hr eads. Default: Depends on connection service
(see Table 5-1 on page 116).

Specifies whether threads are dedicated to connections
(dedi cat ed) or shared by connections as needed
(shar ed) for the named connection service. Shared
model (threadpool management) increases the number
of connections supported by a broker, but is
implemented only for the j ms and admi n connection
services. Default: Depends on connection service (see
Table 5-1 on page 116).

For shared threadpool model only, specifies the
maximum number of connections that can be
monitored by a distributor thread. (The system
allocates enough distributor threads to monitor all
connections.) The smaller this value, the faster the
system can assign active connections to threads. A
value of 0 means no limit. Default: Depends on
operating system (see Table 5-1 on page 116).

The broker’s primary port—the port at which the Port
Mapper resides. If you are running more than one
broker instance on a host, each must be assigned a
unique Port Mapper port. Default: 7676

Chapter 2 The MQ Messaging System 49

MQ Message Server

Table 2-3 Connection Service Properties (Continued)

Property Name Description

i Q. service_name. For jms, ssljms, admin, and ssladmin services only,

protocol_type*. por t specifies the port number for the named connection
service. Default: O (port is dynamically allocated by the
Port Mapper)

To configure the httpjms and httpsjms connection
services, see Appendix B, “HTTP/HTTPS Support
(Enterprise Edition).”

i Q. service_name. For jms, ssljms, admin, and ssladmin services only,
protocol_type*. host nane specifies the host (hostname or IP address) to which the
named connection service binds if there is more than
one host available (for example, if there is more than
one network interface card in a computer).
Default: nul | (any host)

1 protocol_type is specified in Table 2-2.

Message Router

Once connections have been established between clients and a broker using the
supported connection services, the routing and delivery of messages can proceed.

Basic Delivery Mechanisms

Broadly speaking, the messages handled by a broker fall into two categories: the
JMS messages sent by producer clients, destined for consumer clients—payload
messages, and a number of control messages that are sent to and from clients in
order to support the delivery of the JMS messages.

If the incoming message is a JMS message, the broker routes it to consumer clients,
based on the type of its destination (queue or topic):

* If the destination is a topic, the J]MS message is immediately routed to all active
subscribers to the topic. In the case of inactive durable subscribers, the Message
Router holds the message until the subscriber becomes active, and then
delivers the message to that subscriber.

¢ If the destination is a queue, the J]MS message is placed in the corresponding
queue, and delivered to the appropriate consumer when the message reaches
the front of the queue. The order in which messages reach the front of the
queue depends on the order of their arrival and on their priority.

50 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

Once the Message Router has delivered a message to all its intended consumers it
clears the message from memory, and if the message is persistent (see “Reliable
Messaging” on page 39), removes it from the broker’s persistent data store.

Reliable Delivery: Acknowledgements, and Transactions

The delivery mechanism just described becomes more complicated when adding
requirements for reliable delivery (see “Reliable Messaging” on page 39). There are
two aspects involved in reliable delivery: assuring that delivery of messages to and
from a broker is successful, and assuring that the broker does not lose messages or
delivery information before messages are actually delivered.

To ensure that messages are successfully delivered to and from a broker, MQ uses
a number of control messages called acknowledgements.

For example, when a producer sends a JMS message (a payload message as
opposed to a control message) to a destination, the broker sends back a control
message—a broker acknowledgement—that it received the JMS message. (In
practice, MQ only does this if the producer specifies the JMS message as
persistent.) The producing client uses the broker acknowledgement to guarantee
delivery to the destination (see “Message Production” on page 74).

Similarly, when a broker delivers a JMS message to a consumer, the consuming
client sends back an acknowledgement that it has received and processed the
message. A client specifies how automatically or how frequently to send these
acknowledgments when creating session objects, but the principle is that the
Message Router will not delete a JMS message from memory if it has not received
an acknowledgement from each message consumer to which it has delivered the
message—for example, from each of the multiple subscribers to a topic.

In the case of durable subscribers to a topic, the Message Router retains each JMS
message in that destination, delivering it as each durable subscriber becomes an
active consumer. The Message Router records client acknowledgements as they are
received, and deletes the JMS message only after all the acknowledgements have
been received (unless the JMS message expires before then).

Furthermore, the Message Router confirms receipt of the client acknowledgement
by sending a broker acknowledgement back to the client. The consuming client
uses the broker acknowledgement to make sure that the broker will not deliver a
JMS message more than once (see “Message Consumption” on page 74). This could
happen if, for some reason, the broker fails to receive the client acknowledgement).

Chapter 2 The MQ Messaging System 51

MQ Message Server

If the broker does not receive a client acknowledgement and re-delivers a JMS
message a second time, the message is marked with a Redeliver flag. The broker
generally re-delivers a JMS message if a client connection closes before the broker
receives a client acknowledgement, and a new connection is subsequently opened.
For example, if a message consumer of a queue goes off line before acknowledging
a message, and another consumer subsequently registers with the queue, the
broker will re-deliver the unacknowledged message to the new consumer.

The client and broker acknowledgement processes described above apply, as well,
to JMS message deliveries grouped into transactions. In such cases, client and
broker acknowledgements operate on the level of a transaction as well as on the
level of individual JMS message sends or receives. When a transaction commits, a
broker acknowledgement is sent automatically.

The broker tracks transactions, allowing them to be committed or rolled back
should they fail. This transaction management also supports local transactions that
are part of larger, distributed transactions (see “Distributed Transactions” on
page 40). The broker tracks the state of these transactions until they are committed.
When a broker starts up it inspects all uncommitted transactions and, by default,
rolls back all transactions except those in a PREPARED state.

Reliable Delivery: Persistence

The other aspect of reliable delivery is assuring that the broker does not lose
messages or delivery information before messages are actually delivered. In
general, messages remain in memory until they have been delivered or they expire.
However, if the broker should fail, these messages would be lost.

A producer client can specify that a message be persistent, and in this case, the
Message Router will pass the message to a Persistence Manager that stores the
message in a database or file system (see “Persistence Manager” on page 54) so that
the message can be recovered if the broker fails.

Managing System Resources

The performance of a broker depends on the system resources available and how
efficiently resources such as memory are utilized. For example, the Message Router
has a memory management scheme that watches memory on the system. When
memory resources become scarce, mechanisms for reclaiming memory and for
slowing the flow of incoming messages are activated.

The memory management mechanism depends on the state of memory resources:
gr een (plenty of memory is available), yel | ow (broker memory is running low),
or ange (broker is low on memory), r ed (broker is out of memory). As the state of
memory resources progresses from gr een through yel | owand or ange to r ed, the
broker takes increasingly serious action to reclaim memory and to throttle back
message producers, eventually stopping the flow of messages into the broker.

52 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

You can configure the broker’s memory management functions using properties
that set limits on the total number and total size of messages in memory, and that
adjust the utilization thresholds at which memory resources change to a new state.

These properties are detailed in Table 2-4. (For instructions on setting these
properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-4 Message Router Properties

Property Name

Description

i ng. message. expi ration.
i nterval

i ng. syst em nmax_count

i ng. system nax_si ze

i mg. message. max_si ze

i Q. resource_state.

t hreshol d

i ng. redelivered.

optim zation

i mg.transacti on.
aut or ol | back

Specifies how often reclamation of expired messages
occurs, in seconds. Default: 60

Specifies maximum number of messages in both
memory and disk (due to swapping). Additional
messages will be rejected. A value of 0 means no limit.
Default: 0

Specifies maximum total size (in bytes, Kbytes, or
Mbytes) of messages in both memory and disk (due to
swapping). Additional messages will be rejected. A
value of 0 means no limit. Default: 0

Specifies maximum allowed size (in bytes, Kbytes, or
Mbytes) of a message body. Any message larger than
this will be rejected. A value of 0 means no limit.
Default: 70m(Mbytes)

Specifies the percent memory utilization at which
each memory resource state is triggered. The resource
state can have the values gr een, yel | ow, or ange,
and r ed. Defaults: 0, 60, 75, and 90, respectively

Specifies (t r ue/ f al se) whether Message Router
optimizes performance by setting Redeliver flag
whenever messages are re-delivered (t r ue) or only
when it is logically necessary to do so (f al se).
Default: t r ue

Specifies (t r ue/ f al se) whether distributed
transactions left in a PREPARED state are
automatically rolled back when a broker is started up.
If f al se, you must manually commit or roll back
transactions using i mycnd (see “Managing
Transactions” on page 157). Default: f al se

Chapter 2 The MQ Messaging System 53

MQ Message Server

Persistence Manager

For a broker to recover, in case of failure, it needs to recreate the state of its message
delivery operations. This requires it to save all persistent messages, as well as
essential routing and delivery information, to a data store. A Persistence Manager
component manages the writing and retrieval of this information.

To recover a failed broker requires more than simply restoring undelivered
messages. The broker must also be able to do the following:

* re-create destinations

e restore the list of durable subscriptions for each topic
¢ restore the acknowledge list for each message

¢ reproduce the state of all committed transactions

The Persistence Manager manages the storage and retrieval of all this state
information.

When a broker restarts, it recreates destinations and durable subscriptions,
recovers persistent messages, restores the state of all transactions, and recreates its
routing table for undelivered messages. It can then resume message delivery.

MQ supports both built-in and plugged-in persistence modules (see Figure 2-4).
Built-in persistence is based on a flat file data store. Plugged-in persistence uses a
Java Database Connectivity (JDBC) interface and requires a JDBC-compliant data
store. The built-in persistence is generally faster than plugged-in persistence;
however, some users prefer the redundancy and administrative features of using a
JDBC-compliant database system.

Figure 2-4 Persistence Manager Support

. — ~~~
built-in)
perSIStence Flat File
Data Store Two

Persistence

Persistence
Manager

~_] Options
plugged-in JDBC-compliant
persistence Data Store

54 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

MQ Message Server

Built-in persistence

The default MQ persistent storage solution is a flat file store. This approach uses
individual files to store persistent data, such as messages, destinations, durable
subscriptions, and transactions.

The flat file data store is located at:

| MQ VARHOWE/ i nst ances/ brokerNamel fi | est or e/
(/var /i mg/instances/ brokerNamel fi | est or e/ on Solaris)

where brokerName is a name identifying the broker instance.

The file-based data store is structured so that persistent messages are each stored in
their own respective file, one message per file. Destinations, durable subscriptions,
and transactions, however, are all stored in a separate file for each, all destinations
in one file, all durable subscriptions in another, and so on.

To create and delete files, as messages are added to and deleted from the data store,
involves expensive file system operations. The MQ implementation therefore
reuses these message files: when a file is no longer needed, instead of being
deleted, it is added to a pool of free files available for re-use. You can configure the
size of this file pool. You can also specify the percentage of free files in the file pool
that are cleaned up (truncated to zero), as opposed to being simply tagged for reuse
(not truncated). The higher the percentage of cleaned files, the less disk space—but
the more overhead—is required to maintain the file pool. You can also specify
whether or not tagged files will be cleaned up at shutdown. If the files are cleaned
up, they will take up less disk space, but the broker will take longer to shut down.

The speed of storing messages in the flat file store is affected by the number of file
descriptors available for use by the data store; a large number of descriptors will
allow the system to process large numbers of persistent messages faster. For
information on increasing the number of file descriptors, see the “Technical Notes”
section of the MQ Release Notes.

Also, in the case of the destination file store, it is more efficient to add destinations
to a fixed-size file than to increase the size of the file as destinations are added.
Therefore, you can improve performance by setting the original size of the
destination file in accordance with the number of destinations you expect it to
ultimately store (each destination consumes about 500 bytes).

Because the data store can contain messages with proprietary information, it is
recommended that the brokerName/ fi | est or e/ directory be secured against
unauthorized access. For instructions, see the “Technical Notes” section of the MQ
Release Notes.

Chapter 2 The MQ Messaging System 55

MQ Message Server

Plugged-in persistence

You can set up a broker to access any data store accessible through a JDBC driver.
This involves setting a number of JDBC-related broker configuration properties
and using the Database manager utility (i ngdbngr) to create a data store with the
proper schema. The procedures and related configuration properties are detailed
in Appendix A, “Setting Up Plugged-in Persistence.”

Persistence-related configuration properties are detailed in Table 2-5 on page 56.
(For instructions on setting these properties, see Chapter 5, “Starting and
Configuring a Broker.”)

Table 2-5 Persistence Properties

Property Name Description

i my. persist.store Specifies whether the broker is using built-in,
file-based (f i | e) persistence or plugged-in
JDBC-compliant (j dbc) persistence. Default: fi | e

i ng. persist.file. For built-in, file-based persistence, specifies the
destination.file.size initial size of the file used to store destinations.
Default: 1m(Mbytes)

i mg. persist.file. message. For built-in, file-based persistence, specifies the

filepool.limt maximum number of free files available for reuse in
the file pool. The larger the number the faster the
broker can process persistent data. Free files in
excess of this value will be deleted. The broker will
create and delete additional files, in excess of this
limit, as needed. Default: 10000

i mg. persist.file. message. For built-in, file-based persistence, specifies the

filepool.cleanratio percentage of free files in the file pool that are
maintained in a clean state (truncated to zero). The
higher this value, the more overhead required to
clean files during operation, but the less disk space
required for the file pool. Default: 0

i mg. persist.file. message. For built-in, file-based persistence, specifies whether

cl eanup or not the broker cleans up free files in the file store
on shutdown. A value of false speeds up broker
shutdown, but requires more disk space for the file
store. Default: f al se

56 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

Table 2-5 Persistence Properties (Continued)

Property Name Description

i ng. persist.file. nmessage. For built-in, file-based persistence, specifies the

fdpool . limt maximum number of data files to keep open (that is,
the size of the file descriptor pool). A larger number
increases the performance of persistence operations,
but at the expense of other broker operations that
require file descriptors, such as creating client
connections. Default: 25 (Solaris and Linux),
1024 (Windows)

i ng. persist.file.sync. Specifies whether persistence operations

enabl ed synchronize in-memory state with the physical
storage device. If t r ue, data loss due to system
crash is eliminated, but at the expense of
performance of persistence operations.
Default: f al se

Security Manager

MQ provides authentication and authorization (access control) features, and also
supports encryption capabilities.

The authentication and authorization features depend upon a user repository (see
Figure 2-5 on page 58): a file, directory, or database that contains information about
the users of the messaging system—their names, passwords, and group
memberships. The names and passwords are used to authenticate a user when a
connection to a broker is requested. The user names and group memberships are
used, in conjunction with an access control file, to authorize operations such as
producing or consuming messages for destinations.

MQ administrators populate an MQ-provided user repository (see “Using a
Flat-File User Repository” on page 182), or plug a pre-existing LDAP user
repository into the Security Manager component. The flat-file user repository is
easy to use, but is also vulnerable to security attack, and should therefore be used
only for evaluation and development purposes, while the LDAP user repository is
secure and therefore best suited for production purposes.

Authentication

MQ security supports password-based authentication. When a client requests a
connection to a broker, the client must submit a user name and password. The
Security Manager compares the name and password submitted by the client to
those stored in the user repository. On transmitting the password from client to

Chapter 2 The MQ Messaging System 57

MQ Message Server

broker, the passwords are encoded using either base 64 encoding or message digest
(MD5). For more secure transmission, see “Encryption (Enterprise Edition)” on
page 59. You can separately configure the type of encoding used by each
connection service or set the encoding on a broker-wide basis.

Authorization

Once the user of a client application has been authenticated, the user can be
authorized to perform various MQ-related activities. The Security Manager
supports both user-based and group-based access control: depending on a user’s
name or the groups to which the user is assigned in the user repository, that user
has permission to perform certain MQ operations. You specify these access controls
in an access control properties file (see Figure 2-5).

When a user attempts to perform an operation, the Security Manager checks the
user’s name and group membership (from the user repository) against those
specified for access to that operation (in the access control properties file). The
access control properties file specifies permissions for the following operations:

* establishing a connection with a broker

* accessing destinations: creating a consumer, a producer, or a queue browser
for any given destination or all destinations

* auto-creating destinations

Figure 2-5 Security Manager Support

Two
User Repository
Options

Flat File

User Reposi

LDAP Server
User Repositor

authentication

Security |
Manager authorization

Access Control
Properties File

58 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

For MQ 3.0.1, the default access control properties file explicitly references only
one group: admin (see “Groups” on page 185). A user in the admin group has admin
service connection permission. The admin service lets the user perform
administrative functions such as creating destinations, and monitoring and
controlling a broker. A user in any other group you define cannot, by default, get
an admin service connection.

As an MQ administrator you can define groups and associate users with those
groups in a user repository (though groups are not fully supported in the flat-file
user repository). Then, by editing the access control properties file, you can specify
access to destinations by users and groups for the purpose of producing and
consuming messages, or browsing messages in queue destinations. You can make
individual destinations or all destinations accessible only to specific users or
groups.

In addition, if the broker is configured to allow auto-creation of destinations (see
“Auto-Created (vs. Admin-Created) Destinations” on page 67), you can control for
whom the broker can auto-create destinations by editing the access control
properties file.

Encryption (Enterprise Edition)

To encrypt messages sent between clients and broker, you need to use a connection
service based on the Secure Socket Layer (SSL) standard. SSL provides security at a
connection level by establishing an encrypted connection between an SSL-enabled
broker and an SSL-enabled client.

To use an MQ SSL-based connection service, you generate a private key/public
key pair using the Key Tool utility (i mgkeyt ool). This utility embeds the public
key in a self-signed certificate and places it in an MQ keystore. The MQ keystore is,
itself, password protected; to unlock it, you have to provide a keystore password at
startup time. See “Encryption: Working With an SSL Service (Enterprise Edition)”
on page 198.

Once the keystore is unlocked, a broker can pass the certificate to any client
requesting a connection. The client then uses the certificate to set up an encrypted
connection to the broker.

Chapter 2 The MQ Messaging System 59

MQ Message Server

The configurable properties for authentication, authorization, encryption, and
other secure communications are shown in Table 2-6. (For instructions on
configuring these properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-6 Security Properties

Property Name

Description

i ng. aut henti cati on. type

i . service_name.
aut henti cati on. type

i mg. aut henti cati on.
basi c. user _repository

i mg. aut henti cati on.
client.response.timeout

i ng. accesscontrol .
enabl ed

i Q. service_name.
accesscontrol . enabl ed

Specifies whether the password should be passed in
base 64 coding (basi c) or as a MD5 digest (di gest).
Sets encoding for all connection services supported by
a broker. Default: di gest

Specifies whether the password should be passed in
base 64 coding (basi c) or as a MD5 digest (di gest).
Sets encoding for named connection service,
overriding any broker-wide setting.

Default: inherited from the value to which

i mg. aut henti cation. type is set.

Specifies (for base 64 coding) the type of user
repository used for authentication, either file-based
(fil e)or LDAP (I dap). For additional LDAP
properties, see Table 8-5 on page 189. Default: fi | e

Specifies the time (in seconds) the system will wait for
a client to respond to an authentication request from
the broker. Default: 180 (seconds)

Sets access control (t r ue/f al se) for all connection
services supported by a broker. Indicates whether
system will check if an authenticated user has
permission to use a connection service or to perform
specific MQ operations with respect to specific
destinations, as specified in the access control
properties file. Default: t r ue

Sets access control (t r ue /f al se) for named
connection service, overriding broker-wide setting.
Indicates whether system will check if an
authenticated user has permission to use the named
connection service or to perform specific MQ
operations with respect to specific destinations, as
specified in the access control properties file.
Default: inherits the setting of the property

i mg. accesscontrol . enabl ed

60 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

Table 2-6 Security Properties (Continued)

Property Name

Description

i ng. accesscontrol . file.
fil ename

i . service_name.
accesscontrol . file.
filenane

i mg. passfil e. enabl ed

i ng. passfile.dirpath

i mg. passfil e. nane

i ng. keyst or e. property_name

Specifies the name of an access control properties file

for all connection services supported by a broker. The
file name specifies a relative file path to the directory

| MQ_HOME/ et ¢ (/ et ¢/ i ng on Solaris).

Default: accesscontrol . properties

Specifies the name of an access control properties file
for named connection service. The file name specifies a
relative file path to the directory | MQ_HOVE/ et ¢

(/ et c/ i ng on Solaris).

Default: inherits the setting specified by

i mg. accesscontrol . file.fil enane.

Specifies (true/false) if user passwords (for SSL,
LDAP, JDBC) for secure communications are specified
in a passfile. Default: f al se

Specifies the path to the directory containing the
passfile.
Default: | MQ_ HOVE/ et ¢ (/ et ¢/ i ng on Solaris)

Specifies the name of the passfile. Default: passfil e

For SSL-based services: specifies security properties

relating to the SSL keystore. See Table 8-8 on page 200.

Logger

The broker includes a number of components for monitoring and diagnosing its
operation. Among these are components that generate data (broker code, a metrics
generator, and debugger) and a Logger component that writes out information
through a number of output channels (log file, console, and Solaris syslog). The
scheme is illustrated in Figure 2-6.

Chapter 2 The MQ Messaging System

61

MQ Message Server

Figure 2-6 Logging Scheme

Output
Channels

Logger

C—1 Broker

)

log file
ERROR
WARNING

INFO
» syslog (Solaris)

J

console

o Debugger

You can turn the generation of metrics data on and off, and specify how frequently
metrics reports are generated.

You can also specify the Logger level—ranging from the most serious and
important information (errors), to less crucial information (metrics data). The
categories of information, in decreasing order of criticality, are shown in Table 2-7:

Table 2-7 Logging Categories

Category Description

ERROR Messages indicating problems that could cause system failure
WARNI NG Alerts that should be heeded but will not cause system failure
I NFO Reporting of metrics and other informational messages

To set the Logger level, you specify one of these categories. The logger will write
out data of the specified category and all higher categories. For example, if you
specify logging at the WARNI NGlevel, the Logger will write out warning information
and error information.

The Logger can write data to a number of output channels: to standard output (the
console), to a log file, and, on Solaris platforms, to the syslog daemon process.

62 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

MQ Message Server

For each output channel you can specify which of the categories set for the Logger
will be written to that channel. For example, if the Logger level is set to ERROR, you
can specify that you want only errors and warnings written to the console, and
only info (metrics data) written to the log file. For information on configuring and
using the Solaris syslog, see the syslog(1M), syslog.conf(4) and syslog(3C) man

pages.
In the case of a log file, you can specify the point at which the log file is closed and

output is rolled over to a new file. Once the log file reaches a specified size or age, it
is saved and a new log file created. The log file is saved at the following location:

I MQ_VARHOVE/ i nst ances/ brokerNamel | og/
(/var/ingl/instances/ brokerNamel | og /on Solaris)

An archive of the 9 most recent log files is retained as new rollover log files are
created. The log files are text files that are named sequentially as follows:

| 0g. t xt
| og_1.txt
| og_2. txt

| 0g_o. txt
The log.txt is the most recent file, and the highest numbered file is the oldest.

The configurable properties for setting the generation and logging of information
by the broker are shown in Table 2-8. (For instructions on configuring these
properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-8 Logger Properties

Property Name Description

i ng. metrics. enabl ed Specifies (t r ue/ f al se) whether metrics
information is being gathered. Default: t r ue

img. metrics.interval Specifies the time interval, in seconds, at which
metrics information is reported. A value of 0
means never. Default: O

i ng. | og. | evel Specifies the Logger level: the categories of output
that can be written to an output channel. Includes
the specified category and all higher level
categories as well. Values, from high to low, are:
ERROR, WARNI NG, | NFQ. Default: | NFO

img. | og.file.output Specifies which categories of logging information
are written to the log file. Allowed values are: any
set of logging categories separated by vertical bars
(1), or ALL, or NONE. Default: ALL

Chapter 2 The MQ Messaging System 63

MQ Message Server

64

Logger Properties (Continued)

Description

file.dirpath

file.filenane

file.rolloverbytes

file.roll oversecs

consol e. out put

consol e. stream

syslog.facility

sysl og. | ogpi d

sysl og. consol e

Table 2-8
Property Name
i ng. | og.
i mg. | og.
i ng. | og.
i mg. | og.
i ng. | og.
i ng. | og.
i mg. | og.
i mg. | og.
i ng. | og.
i mg. | og.

syslog.identity

Specifies the path to the directory containing the
log file. Default:

I MQ_VARHOWE/ i nst ances/ brokerNamel | og/
(/var/img/instances/ brokerNamel | og/

on Solaris)

Specifies the name of the log file.
Default: | 0g. t xt

Specifies the size, in bytes, of log file at which
output rolls over to a new log file. A value of 0
means no rollover based on file size. Default: 0

Specifies the age, in seconds, of log file at which
output rolls over to a new log file. A value of 0
means no rollover based on age of file.

Default: 604800 (one week)

Specifies which categories of logging information
are written to the console. Allowed values are any
set of logging categories separated by vertical bars
(1), or ALL, or NONE.

Default: ERROR| WARNI NG

Specifies whether console output is written to
stdout (QUT) or stderr (ERR) . Default: ERR

(Solaris only) Specifies what syslog facility the MQ
broker should log as. Values mirror those listed in
the syslog(3C) man page. Appropriate values for
use with MQ are: LOG_USER, LOG_DAEMON, and
LOG_LOCALO through LOG_LOCAL7.

Default: LOG_DAEMON

(Solaris only) Specifies (t r ue/ f al se) whether to
log the broker process ID with the message or not.
Default: t rue

(Solaris only) Specifies (t r ue/ f al se) whether to
write messages to the system console if they cannot
be sent to syslog. Default: f al se

(Solaris only) Specifies the identity string that
should be prepended to every message logged to
syslog. Default: i mgbr oker d_ followed by the
broker instance name.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

MQ Message Server

Table 2-8 Logger Properties (Continued)

Property Name Description

i ng. | 0g. sysl og. out put (Solaris only) Specifies which categories of logging
information are written to syslogd(1M). Allowed
values are any logging categories separated by
vertical bars (1), or ALL, or NONE. Default: ERROR

Physical Destinations

MQ messaging is premised on a two-phase delivery of messages: first, delivery of a
message from a producer client to a destination on the broker, and second, delivery
of the message from the destination on the broker to one or more consumer clients.
There are two types of destinations (see “Programming Domains” on page 37):
queues (point-to-point delivery model) and topics (publish/subscribe delivery
model). These destinations represent locations in a broker’s physical memory
where incoming messages are marshaled before being routed to consumer clients.

You create physical destinations using MQ administration tools (see “Managing
Destinations” on page 152). Destinations can also be automatically created as
described in “Auto-Created (vs. Admin-Created) Destinations” on page 67.

This section describes the properties and behaviors of the two types of physical
destinations: queues and topics.

Queue Destinations

Queue destinations are used in point-to-point messaging, where a message is
meant for ultimate delivery to only one of a number of consumers that has
registered an interest in the destination. As messages arrive from producer clients,
they are queued and delivered to a consumer client.

The routing of queued messages depends on the queue’s delivery policy. MQ
implements three queue delivery policies:

e Single This queue can only route messages to one message consumer. If a
second message consumer attempts to register with the queue, it is rejected. If
the registered message consumer disconnects, routing of messages no longer
takes place and messages are saved until a new consumer is registered.

Chapter 2 The MQ Messaging System 65

MQ Message Server

¢ Failover (Enterprise Edition) This queue can route messages to more than
one message consumer, but it will only do so if its primary message consumer
(the first to register with the broker) disconnects. In that case, messages will go
to the next message consumer to register, and continue to be routed to that
consumer until such time as that consumer fails, and so on. If no message
consumer is registered, messages are saved until a consumer registers.

* Round-Robin (Enterprise Edition) This queue can route messages to more
than one message consumer. Assuming that a number of consumers are
registered for a queue, the first message into the queue will be routed to the
first message consumer to have registered, the second message to the second
consumer to have registered, and so on. Additional messages are routed to the
same set of consumers in the same order. If a number of messages are queued
up before consumers register for a queue, the messages are routed in batches to
avoid flooding any one consumer. If any message consumer disconnects, the
messages routed to that consumer are redistributed among the remaining
active consumers. Because of such redistributions, there is no guarantee that
the order of delivery of messages to consumers is the same as the order in
which they are received in the queue.

Since messages can remain in a queue for an extended period of time, memory
resources can become an issue. You don’t want to allocate too much memory to a
queue (memory is under-utilized), nor do you want to allocate too little (messages
will be rejected). To allow for flexibility, based on the load demands of each queue,
you can set physical properties when creating a queue: maximum number of
messages in queue, maximum memory allocated for messages in queue, and
maximum size of any message in queue (see Table 6-10 on page 153).

Topic Destinations

Topic destinations are used in publish/subscribe messaging, where a message is
meant for ultimate delivery to all of the consumers that have registered an interest
in the destination. As messages arrive from producers, they are routed to all
consumers subscribed to the topic. If consumers have registered a durable
subscription to the topic, they do not have to be active at the time the message is
delivered to the topic—the broker will store the message until the consumer is once
again active, and then deliver the message.

Messages do not normally remain in a topic destination for an extended period of
time, so memory resources are not normally a big issue. However, you can
configure the maximum size allowed for any message received by the destination
(see Table 6-10 on page 153).

66 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

MQ Message Server

Auto-Created (vs. Admin-Created) Destinations

Because a J]MS message server is a central hub in a messaging system, its
performance and reliability are important to the success of enterprise applications.
Since destinations can consume significant resources (depending on the number
and size of messages they handle, and on the number and durability of the
message consumers that register), they need to be managed closely to guarantee
message server performance and reliability. It is therefore standard practice for an
MQ administrator to create destinations on behalf of an application, monitor the
destinations, and reconfigure their resource requirements when necessary.

Nevertheless, there may be situations in which it is desirable for destinations to be
created dynamically. For example, during a development and test cycle, you might
want the broker to automatically create destinations as they are needed, without
requiring the intervention of an administrator.

MQ supports this auto-create capability. When auto-creation is enabled, a broker
automatically creates a destination whenever a MessageConsumer or
MessageProducer attempts to access a non-existent destination. (The user of the
client application must have auto-create privileges—see “Destination Auto-Create
Access Control” on page 197).

However, when destinations are created automatically instead of explicitly, clashes
between different client applications (using the same destination name), or
degraded system performance (due to the resources required to support a
destination) can result. For this reason, an MQ auto-created destination is
automatically destroyed by the broker when it is no longer being used: that is,
when it no longer has message consumer clients and no longer contains any
messages. If a broker is restarted, it will only re-create auto-created destinations if
they contain persistent messages.

You can configure an MQ message server to enable or disable the auto-create
capability using the properties shown in Table 2-9. (For instructions on configuring
these properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-9 Auto-create Configuration Properties

Property Name Description

i my. aut ocreate.topic Specifies (t r ue/ f al se) whether a broker is allowed
to auto-create a topic destination. Default: t r ue

i ng. aut ocr eat e. queue Specifies (t r ue/ f al se) whether a broker is allowed
to auto-create a queue destination. Default: t r ue

i ng. queue. del i verypolicy Specifies the default delivery policy of auto-created
queues. Values are: si ngl e, r ound- r obi n, or
fail over.Default: single

Chapter 2 The MQ Messaging System 67

MQ Message Server

Temporary Destinations

Temporary destinations are explicitly created and destroyed (using the JMS API)
by client applications that need a destination at which to receive replies to
messages sent to other clients. These destinations are maintained by the broker
only for the duration of the connection for which they are created. A temporary
destination cannot be destroyed by an administrator, and it cannot be destroyed by
a client application as long as it is in use: that is, if it has active message consumers.
Temporary destinations, unlike admin-created or auto-created destinations (that
have persistent messages), are not stored persistently and are never re-created
when a broker is restarted. They also are not visible to MQ administration tools.

Multi-Broker Clusters (Enterprise Edition)

The MQ Enterprise Edition supports the implementation of a message server using
multiple interconnected broker instances—a broker cluster. Cluster support
provides for scalability of your message server.

As the number of clients connected to a broker increases, and as the number of
messages being delivered increases, a broker will eventually exceed resource
limitations such as file descriptor and memory limits. One way to accommodate
increasing loads is to add more brokers (that is, more broker instances) to an MQ
message server, distributing client connections and message delivery across
multiple brokers.

You might also use multiple brokers to optimize network bandwidth. For example,
you might want to use slower, long distance network links between a set of remote
brokers, while using higher speed links for connecting clients to their respective
brokers.

While there are other reasons for using broker clusters (for example, to
accommodate workgroups having different user repositories, or to deal with
firewall restrictions), failover is not one of them. One broker in a cluster cannot be
used as an automatic backup for another that fails. Automatic failover protection
for a broker is not supported in MQ Version 3.0.1. (However, an application could
be designed to use multiple brokers to implement a customized failover scheme.)

Information on configuring and managing a broker cluster is provided in
“Working With Clusters (Enterprise Edition)” on page 126.

The following sections explain the architecture and internal functioning of MQ
broker clusters.

68 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

Multi-Broker Architecture

A multi-broker message server allows client connections to be distributed among a
number of broker instances, as shown in Figure 2-7. From a client point of view,
each client connects to an individual broker (its home broker) and sends and
receives messages as if the home broker were the only broker in the cluster.
However, from a message server point of view, the home broker is working in
tandem with other brokers in the cluster to provide delivery services to the
message producers and consumers to which it is directly connected.

In general, the brokers within a cluster can be connected in any arbitrary topology.
However, MQ Version 3.0.1 only supports fully-connected clusters, that is, a
topology in which each broker is directly connected to every other broker in the
cluster, as shown in Figure 2-7 on page 69.

Figure 2-7 Multi-Broker (Cluster) Architecture

MQ Message Server

Clients
T Broker2
Brokerl ‘ [
Clients |
|

Destinations

Broker3

I 7
-

Master Broker Configuration
Change Record

Clients

In a multi-broker configuration, instances of each destination reside on all of the
brokers in a cluster. In addition, each broker knows about message consumers that
are registered with all other brokers. Each broker can therefore route messages
from its own directly-connected message producers to remote message consumers,
and deliver messages from remote producers to its own directly-connected
consumers.

Chapter 2 The MQ Messaging System 69

MQ Message Server

In a cluster configuration, the broker to which each message producer is directly
connected performs the routing for messages sent to it by that producer. Hence, a
persistent message is both stored and routed by the message’s home broker.

Whenever an administrator creates or destroys a destination on a broker, this
information is automatically propagated to all other brokers in a cluster. Similarly,
whenever a message consumer is registered with its home broker, or whenever a
consumer is disconnected from its home broker—either explicitly or because of a
client or network failure, or because its home broker goes down—the relevant
information about the consumer is propagated throughout the cluster. In a similar
fashion, information about durable subscriptions is also propagated to all brokers in
a cluster.

NOTE Heavy network traffic and/or large messages can clog internal
cluster connections. The increased latency can sometimes cause
locking protocol timeout errors. As a result, clients might get an
exception when trying to create durable subscribers or queue
message consumers. Normally these problems can be avoided by
using a higher speed connection.

The propagation of information about destinations and message consumers to a
particular broker would normally require that the broker be on line when a change
is made in a shared resource. What happens if a broker is off line when such a
change is made—for example, if a broker crashes and is subsequently restarted, or
if a new broker is dynamically added to a cluster?

To accommodate a broker that has gone off line (or a new broker that is added),
MQ maintains a record of changes made to all persistent entities in a cluster: that is,
a record of all destinations and all durable subscriptions that have been created or
destroyed. When a broker is dynamically added to a cluster, it first reads
destination and durable subscriber information from this configuration change
record. When it comes on line, it exchanges information about current active
consumers with other brokers. With this information, the new broker is fully
integrated into the cluster.

The configuration change record is managed by one of the brokers in the cluster, a
broker designated as the Master Broker. Because the Master Broker is key to
dynamically adding brokers to a cluster, you should always start this broker first. If
the Master Broker is not on line, other brokers in the cluster will not be able to
complete their initialization.

70 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

MQ Message Server

If a Master Broker goes off line, the configuration change record cannot be accessed
by other brokers, and MQ will not allow destinations and durable subscriptions to
be propagated throughout the cluster. Under these conditions, you will get an
exception if you try to create or destroy destinations or durable subscriptions (or
attempt a number of related operations like re-activating a durable subscription).

In a mission-critical application environment it is a good idea to make a periodic
backup of the configuration change record to guard against accidental corruption
of the record and safeguard against Master Broker failure. You can do this using
the - backup option of the i ngbr oker d command (see Table 5-2 on page 121),
which provides a way to create a backup file containing the configuration change
record. You can subsequently restore the configuration change record using the
-restor e option.

If necessary you can change the broker serving as the Master Broker by backing up
the configuration change record, modifying the appropriate cluster configuration
property (see Table 2-10 on page 72) to designate a new Master Broker, and
restarting the new Master Broker using the - r est or e option.

Using Clusters in Development Environments

In development environments, where a cluster is used for testing, and where
scalability and broker recovery are not important considerations, there is little need
for a Master Broker. In environments configured without a Master Broker, MQ
relaxes the requirement that a Master Broker be running in order to start other
brokers, and allows changes in destinations and durable subscriptions to be made
and to be propagated to all running brokers in a cluster. If a broker goes off line
and is subsequently restored, however, it will not sync up with changes made
while it was off line.

Under test situations, destinations are generally auto-created (see “Auto-Created
(vs. Admin-Created) Destinations” on page 67) and durable subscriptions to these
destinations are created and destroyed by the applications being tested. These
changes in destinations and durable subscriptions will be propagated throughout
the cluster. However, if you reconfigure the environment to use a Master Broker,
MQ will re-impose the requirement that the Master Broker be running for changes
to be made in destinations and durable subscriptions, and for these changes to be
propagated throughout the cluster.

Cluster Configuration Properties

Each broker in a cluster must be passed information at startup time about other
brokers in a cluster (host names and port numbers). This information is used to
establish connections between the brokers in a cluster. Each broker must also know
the host name and port number of the Master Broker (if one is used).

Chapter 2 The MQ Messaging System 71

MQ Message Server

All brokers in a cluster should use the same cluster configuration properties. You
can achieve this by placing them in one central cluster configuration file that is
referenced by each broker at startup time.

(You can also duplicate these configuration properties and provide them to each
broker individually. However, this is not recommended because it can lead to
inconsistencies in the cluster configuration. Keeping just one copy of the cluster
configuration properties makes sure that all brokers see the same information.)

MQ cluster configuration properties are shown in Table 2-10. (For instructions on
setting these properties, see “Working With Clusters (Enterprise Edition)” on
page 126.)

Table 2-10 Cluster Configuration Properties

Property Name Description

i my. cl uster. brokerlist Specifies all the brokers in a cluster. Consists of a
comma-separated list of host:port entries, where host is
the host name of each broker and port is its Port
Mapper port number.

i ng. cl uster. mast er broker Specifies which broker in a cluster (if any) is the
Master Broker that keeps track of state changes.
Property consists of host:port where host is the host
name of the Master Broker and port is its Port Mapper
port number.

i mg. cluster. url Specifies the location of a cluster configuration file.
Used in cases where brokers reference one central
configuration file rather than being individually
supplied with cluster properties values. Consists of a
URL string: If kept on a web server it can be accessed
using a normal ht t p: URL. If kept on a shared drive it
can be accessed using afi | e: URL

i mg. cluster. port For each broker within a cluster, can be used to specify
the port number for the cluster connection service.
The cluster connection service is used for internal
communication between brokers in a cluster.
Default: O (port is dynamically allocated)

72 Sun ONE Message Queue < Administrator's Guide « October, 2002

MQ Client Runtime

Table 2-10 Cluster Configuration Properties (Continued)

Property Name Description

i ng. cl ust er. host name For each broker within a cluster, can be used to specify
the host (hostname or IP address) to which the cluster
connection service binds if there is more than one host
available (for example, if there is more than one
network interface card in a computer). The cluster
connection service is used for internal communication
between brokers in a cluster.

Default: nul | (all available hosts)

The cluster configuration file can be used for storing all broker configuration
properties that are common to a set of brokers. Though it was originally intended
for configuring clusters, it can also be used to store other broker properties
common to all brokers in a cluster.

MQ Client Runtime

The MQ client runtime provides client applications with an interface to the MQ
message server—it supplies client applications with all the JMS programming
objects introduced in “JMS Programming Model” on page 32. It supports all
operations needed for clients to send messages to destinations and to receive
messages from such destinations.

This section provides a high level description of how the MQ client runtime works.
Factors that affect its performance are discussed in the MQ Developer’s Guide
because they impact client application design and performance.

Figure 2-8 on page 74 illustrates how message production and consumption
involve an interaction between client applications and the MQ client runtime,
while message delivery involves an interaction between the MQ client runtime and
the MQ message server.

Chapter 2 The MQ Messaging System 73

MQ Client Runtime

Figure 2-8 Messaging Operations

JMS Client MQ Message Server
Message I
productiQn
M R Me§5age Brokers
esgage delivery
consumpdtion

MQ

Client Runtime§

Destinations

Message Production

In message production, a message is created by the client, and sent over a
connection to a destination on a broker. If the message delivery mode of the
MessageProducer object has been set to persistent (guaranteed delivery, once and
only once), the client thread blocks until the broker acknowledges that the message
was delivered to its destination and stored in the broker’s persistent data store. If
the message is not persistent, no broker acknowledgement message (referred to as
“Ack” in property names) is returned by the broker, and the client thread does not
block.

Message Consumption

Message consumption is more complex than production. Messages arriving at a
destination on a broker are delivered over a connection to the MQ client runtime
under the following conditions:

¢ the client has set up a consumer for the given destination

¢ the selection criteria for the consumer, if any, match that of messages arriving
at the given destination

* the connection has been told to start delivery of messages.

74 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

MQ Administered Objects

Messages delivered over the connection are distributed to the appropriate MQ
sessions where they are queued up to be consumed by the appropriate
MessageConsumer objects, as shown in Figure 2-9. Messages are fetched off each
session queue one at a time (a session is single threaded) and consumed either
synchronously (by a client thread invoking the r ecei ve method) or
asynchronously (by the session thread invoking the onMessage method of a
MessageListener object).

Figure 2-9 Message Delivery to MQ Client Runtime

Broker

[J Destinations

Ll
I/V Connection

Session 1
ovv
Vessage m»») D

Consumers 7

-
@Q”W
m

N s S T
&SN ~__2%

Client
AL Runtime

When a broker delivers messages to the client runtime, it marks the messages
accordingly, but does not really know if they have been received or consumed.
Therefore, the broker waits for the client to acknowledge receipt of a message
before deleting the message from the broker’s destination.

MQ Administered Objects

Administered Objects allow client application code to be provider-independent.
They do this by encapsulating provider-specific implementation and configuration
information in objects that are used by client applications in a
provider-independent way. Administered objects are created and configured by an
administrator, stored in a name service, and accessed by client applications
through standard JNDI lookup code.

Chapter 2 The MQ Messaging System 75

MQ Administered Objects

76

MQ provides two types of administered objects: Connect i onFact ory and

Dest i nat i on. While both encapsulate provider-specific information, they have
very different uses within a client application. Connect i onFact ory objects are
used to create connections to the message server and Dest i nat i on objects are used
to identify physical destinations.

Administered objects make it very easy to control and manage an MQ message
server:

* You can control the behavior of connections by requiring client applications to
access pre-configured Connect i onFact or y objects (see “Administered Object
Attributes” on page 167).

* You can control the proliferation of physical destinations by requiring client
applications to access pre-configured Dest i nat i on objects that correspond to
existing physical destinations. (You also have to disable the brokers’s
auto-create capability—see “Auto-Created (vs. Admin-Created) Destinations”
on page 67).

* You can control MQ message server resources by overriding message header
values set by client applications (see “Administered Object Attributes” on
page 167).

This arrangement therefore gives you, as an MQ administrator, control over
message server configuration details, and at the same time allows client
applications to be provider-independent: they do not have to know about
provider-specific syntax and object naming conventions (see “JMS Provider
Independence” on page 37) or provider-specific configuration properties.

You create administered objects using MQ administration tools, as described in
Chapter 7, “Managing Administered Objects”. When creating an administered
object, you can specify that it be read only—that is, client applications are
prevented from changing MQ-specific configuration values you have set when
creating the object. In other words, client code cannot set attribute values on
read-only administered objects, nor can you override these values using client
application startup options, as described in “Overriding Attribute Values at Client
Startup” on page 78.

While it is possible for client applications to instantiate both Connect i onFact ory
and Dest i nati on administered objects on their own, this practice undermines the
basic purpose of an administered object—to allow you, as an MQ administrator, to
control broker resources required by an application and to tune its performance. In
addition, directly instantiating administered objects makes client applications
provider-specific, rather than provider-independent.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

MQ Administered Objects

Connection Factory Administered Objects

A Connect i onFact or y object is used to establish physical connections between a
client application and an MQ message server. It is also used to specify behaviors of
the connection and of the client runtime that is using the connection to access a
broker.

If you wish to support distributed transactions (see “Local Transactions” on
page 40), you need to use a special XAConnect i onFact or y object that supports
distributed transactions.

To create a Connect i onFact or y administered object, see “Adding a Connection
Factory” on page 174.

By configuring a Connect i onFact or y administered object, you specify the
attribute values (the properties) common to all the connections that it produces.
Connect i onFact ory and XAConnect i onFact or y objects share the same set of
attributes. These attributes are grouped into a number of categories, depending on
the behaviors they affect:

¢ Connection specification

* Auto-reconnect behavior

* C(Client identification

* Message header overrides

¢ Reliability and flow control

¢ Queue browser behavior

¢ Application server support

* JMS-defined properties support

Each of these categories and its corresponding attributes is discussed in some detail
in the MQ Developer’s Guide. While you, as an MQ administrator, might be called
upon to adjust the values of these attributes, it is normally an application developer
who decides which attributes need adjustment to tune the performance of client
applications. Table 7-3 on page 167 presents an alphabetical summary of the
attributes.

Chapter 2 The MQ Messaging System 77

MQ Administered Objects

78

Destination Administered Objects

A Dest i nati on administered object represents a physical destination (a queue or a
topic) in a broker to which the publicly-named Dest i nat i on object corresponds.
Its two attributes are described in Table 2-11. By creating a Dest i nat i on object,
you allow a client application’s MessageConsumer and/or MessageProducer
objects to access the corresponding physical destination.

To create a Dest i nat i on administered object, see “Adding a Topic or Queue” on
page 175.

Table 2-11 Destination Attributes

Attribute/property name Description

i mgDest i nat i onNane Specifies the provider-specific name of the physical
destination. You specify this name when you create
a physical destination. Destination names must
contain only alphanumeric characters (no spaces)
and can begin with an alphabetic character or the
characters “_" and “$”.
Default: Unti t| ed_Desti nati on_Obj ect

i mgDest i nationDescription Specifies information useful in managing the object.
Default: A Description for the
Destination Object

Overriding Attribute Values at Client Startup

As with any Java application, you can start messaging applications using the
command-line to specify system properties. This mechanism can also be used to
override attribute values of administered objects used in client application code.
For example, you can override the configuration of an administered object accessed
through a JNDI lookup in client application code.

To override administered object settings at client application startup, you use the
following command line syntax:

java [[- Dattribute=value]...] clientAppName

where attribute corresponds to any of the Connect i onFact or y administered object
attributes documented in “Connection Factory Administered Objects” on page 167.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

MQ Administered Objects

For example, if you want a client application to connect to a different broker than
that specified in a ConnectionFactory administered object accessed in the client
code, you can start up the client application using command line overrides to set
the i myBr oker Host Narme and i ngBr oker Host Por t of another broker.

If an administered object has been set as read-only, however, the values of its
attributes cannot be changed using command-line overrides. Any such overrides
will simply be ignored.

Chapter 2 The MQ Messaging System 79

MQ Administered Objects

80 Sun ONE Message Queue ¢ Administrator's Guide * October, 2002

Chapter 3

MQ Administration

Sun™ ONE Message Queue (MQ) administration consists of a number of tasks and
a number of tools for performing those tasks.

This chapter first provides an overview of administrative tasks and then describes
the administration tools, focusing on common features of the command line
administration utilities.

MQ Administration Tasks

The specific tasks you need to perform depend on whether you are in a
development or a production environment.

Development Environments

In a development environment, the work focuses on programming MQ client
applications. The MQ message server is needed principally for testing. In a
development environment, the emphasis is on flexibility, and administration is
minimal—consisting mostly of starting up a broker for developers to use in testing.
Default implementations of the data store, user repository, access control
properties file, and object store are usually adequate for developmental testing. If
you are performing multi-broker testing, you probably would not use a Master
Broker. In addition, the applications being tested can generally use auto-created
destinations and you may not want to use centrally-managed administered objects.

81

MQ Administration Tasks

82

Production Environments

In a production environment, in which applications must be reliably deployed and
run, administration is much more important. The administration tasks you have to
perform depend on the complexity of your messaging system and the complexity
of the applications it must support. In general, however, these tasks can be
grouped into setup operations and maintenance operations.

Setup Operations

Typically you have to perform at least some, if not all, of the following setup
operations:

* security (see Chapter 8, “Security Management”):

o make entries into the file-based user repository or configure the broker to
use an existing LDAP user repository

(At a minimum, you want to password protect administration capability.)
o modify access settings in the access control properties file
o setup SSL-based connection services
¢ administered objects (see Chapter 7, “Managing Administered Objects”):
o configure or set up an LDAP object store
o create ConnectionFactory and destination administered objects

* broker clusters (see “Working With Clusters (Enterprise Edition)” on
page 126):

o create a central configuration file
o use a Master Broker

¢ persistence: configure the broker to use plugged-in persistence, rather than
built-in persistence (see Appendix A, “Setting Up Plugged-in Persistence”)

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

MQ Administration Tasks

Maintenance Operations

In addition, in a production environment, MQ message server resources need to be
tightly monitored and controlled. Application performance, reliability, and
security are at a premium, and you have to perform a number of ongoing tasks,
described below, using MQ administration tools:

¢ application management:

0

0

disable the broker’s auto-create capability (see Table 2-9 on page 67)

create physical destinations on behalf of applications (see “Creating
Destinations” on page 153)

set user access to destinations (see “Authorizing Users: the Access Control
Properties File” on page 192)

monitor and manage destinations (see “Managing Destinations” on
page 152)

monitor and manage durable subscriptions (see “Managing Durable
Subscriptions” on page 155)

monitor and manage transactions (see “Managing Transactions” on
page 157)

* broker administration and tuning:

0

u]

u]

u]

use broker metrics to tune and reconfigure the broker
manage broker memory resources
add brokers to clusters to balance loads

recover failed brokers

* managing administered objects

0

create additional ConnectionFactory and destination administered objects
as needed

adjust ConnectionFactory attribute values to improve performance and
throughput (see “Connection Factory Administered Objects” on page 77)

Chapter 3 MQ Administration 83

MQ Administration Tools

MQ Administration Tools

84

MQ administration tools fall into two categories: command line utilities and a
graphical user interface (GUI) Administration Console (i ngadni n). The Console
combines the capabilities of two command line utilities: the Command utility

(i ngcnd) and the Object Manager utility (i nyobj mgr). You can use the Console
(and these two command line utilities) to manage a broker remotely and to manage
MQ administered objects. The other command line utilities (i ngbr oker d,

i mguser ngr, i ngdbngr, and i ngkeyt ool) must be run on the same host as their
associated broker, as shown in Figure 3-1.

Information on the Administration Console is available in the online help. The
command line utilities, which are generally used to perform specialized tasks, are
described in “Summary of Command Line Utilities.”

The Administration Console

You can use the administration console to do the following;:
e Connect to a broker and manage it.

* Create physical destinations on the broker

¢ Connect to an object store

¢ Add administered objects to the object store.

There are some tasks that you cannot use the Administration Console to perform;
chief among these are starting up a broker, creating broker clusters, configuring
more specialized properties of a broker, and managing a user database.

Chapter 4, “Administration Console Tutorial” provides a brief, hands-on tutorial to
familiarize you with the Console and to illustrate how you use it to accomplish
basic tasks.

Summary of Command Line Utilities

This section introduces the command line utilities you use to perform MQ
administration tasks. You use the MQ utilities to start up and manage a broker and
to perform other, more specialized administrative tasks.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

MQ Administration Tools

Figure 3-1 Local and Remote Administration Utilities

Remote Admin Host Broker Host

Administration——_~_____——% Broker

Console
imgcmd imgbrokerd imgkeytool
imqgobjmgr imgusermgr imgdbmgr

imgsvcadmin
(NT only)

All MQ utilities are accessible from a command line interface (CLI). Utility
commands share common formats, syntax conventions, and options, as described
in a subsequent section of this chapter. You can find more detailed information on
the use of the command line utilities in subsequent chapters.

Broker (i ngbr okerd) You use the Broker utility to start the broker. You use
options to the i nybr oker d command to specify whether brokers should be
connected in a cluster and to specify additional configuration information. This
utility is described in Chapter 5, “Starting and Configuring a Broker.”

Command (i rgcnd) ~ After starting a broker, you use the Command utility to
create, update, and delete physical destinations; control the broker and its
connection services; and manage the broker’s resources.You use the i ngcnd
command to run this utility. This utility is described in Chapter 6, “Broker and
Application Management.”

Object Manager (i ngobj ngr) You use the Object Manager utility to add, list,
update, and delete administered objects in an object store accessible via JNDIL
Administered objects allow JMS clients to be provider-independent by insulating
them from JMS provider-specific naming and configuration formats. You use the
i myobj mgr command to run this utility. This utility is described in Chapter 7,
“Managing Administered Objects.”

Chapter 3 MQ Administration 85

MQ Administration Tools

86

User Manager (i mjuser ngr) You use the User Manager utility to populate a
file-based user repository used to authenticate and authorize users. You use the
i muser ngr command to run this utility. This utility is described in Chapter 8,
“Security Management.”

Key Tool (i mgkeyt ool) You use the Key Tool utility to generate self-signed
certificates used for SSL authentication. You use the i ngkeyt ool command to run
this utility, which is described in Chapter 8, “Security Management” and in
Appendix B, “HTTP/HTTPS Support (Enterprise Edition).”

Database Manager (i ngdbrmgr) You use the Database Manager utility to create
and manage a JDBC-compliant database used for persistent storage. You use the
i mgdbngr command to run this utility. For more information, see Appendix A,
“Setting Up Plugged-in Persistence.”

Service Administrator (i rgsvcadnmi n) You use the Service Administrator utility
to install, query, and remove the broker as a Windows service. For more
information, see Appendix C, “Using a Broker as a Windows Service.”

Command Line Syntax

MQ command-line interface utilities are simple shell commands. That is, from the
standpoint of the Windows, Linux, or Solaris command shell where they are
entered, the name of the utility itself is a command and its subcommands or
options are simply arguments passed to that command. For this reason, there are
no commands to start or quit the utility, per se, and no need for such commands.

All the command line utilities share the following command syntax:
Utility_Name [subcommand] [argument] [[- option_name [- option_arqument]] ..]

Utility_Name specifies the name of an MQ utility, for example, i ngcnd, i ngobj nyr,
i mguser ngr, and so on.

There are four important things to remember:

* Specify options after subcommands (and arguments, if the utility accepts both
types of operands).

¢ If an argument contains a space, enclose the whole argument in quotation
marks. It is generally safest to enclose an attribute-value pair in quotes.

* If you specify the -v (version) or the -h/-H (help) options on a command line,
nothing else on that command line is executed. See Table 3-1 on page 87 for a
description of common options.

¢ Separate the subcommand, arguments, options, and option arguments with
spaces.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

MQ Administration Tools

The following is an example of a command line that has no subcommand clause.
The command starts the default broker.

i ngbr okerd

The following command is a bit more complicated: it destroys a destination of type

queue that is named myQueue for an administrator (user) named adni n with a
corresponding password adni n, without confirmation and without output being
displayed on the console.

i mgcnd destroy dst -t g -n nmyQueue -u admin -p adnmin -f -s

Common Command Line Options

Table 3-1 describes the options that are common to all MQ administration utilities.

Aside from the requirement that you specify these options after you specify the
subcommand on the command line, the options described below (or any other
options passed to a utility) do not have to be entered in any special order.

Table 3-1 Common MQ Command Line Options

Option Description

-h Displays usage help for the specified utility.

-H Displays expanded usage help, including attribute list and
examples (supported only for i mgcnd and i ngobj nor).

-S Turns on silent mode: no output is displayed. Specify as - si | ent
for i mgbr oker d.

-V Displays version information.

-f Performs the given action without prompting for user confirmation.

-pre (Used only with i mgobj ngr) Turns on preview mode, allowing the

user to see the effect of the rest of the command line without
actually performing the command. This can be useful in checking
for the value of default attributes.

-j avahone path Specifies the location of an alternate Java 2 runtime to use.

Chapter 3 MQ Administration

87

MQ Administration Tools

88 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Chapter 4

Administration Console Tutorial

This tutorial focuses on the use of the Administration Console, a graphical interface
for administering a Sun™ ONE Message Queue (MQ) message server. By
following this tutorial, you will learn how to do the following;:

e Start a broker and use the Console to connect to it and manage it
* Create physical destinations on the broker

* Create an object store and use the Console to connect to it

¢ Add administered objects to the object store

The tutorial is designed to set up the destinations and administered objects needed
to run a simple JMS-compliant application, Si npl eJNDI Cl i ent . In the last part of
the tutorial you run this application.

This tutorial is provided mainly to guide you through performing basic
administration tasks using the Administration Console. It is not a substitute for
reading through the MQ Developer’s Guide or other chapters of this Administrator’s
Guide.

Some MQ administration tasks cannot be accomplished using graphical tools; you
will need to use command line utilities to perform such tasks as the following:

¢ Configuring certain broker properties

Some broker properties cannot be configured using the Administration
Console. These can be configured as described in Chapter 5, “Starting and
Configuring a Broker” on page 113 or in “Updating a Broker” on page 147.

89

Getting Ready

Creating broker clusters

See”Working With Clusters (Enterprise Edition)” on page 126 for more
information.

Managing a user database

See “Authenticating Users” on page 182 for more information.

Getting Ready

Before you can start this tutorial you must install the MQ product. For more
information, see the MQ Installation Guide. Note that this tutorial is
Windows-centric, with added notes for unix users.

In this tutorial, choosing Item1 > Item2 > Item3 means that you should pull down
the menu called Item1, choose Item2 from that menu and then choose Item3 from
the selections offered by Item?2.

Starting the Administration Console

The Administration Console is a graphical tool that you use to do the following:

90

Create references to and connect to brokers
Administer brokers

Create physical destinations on the brokers, which are used by the broker for
message delivery

Connect to object stores in which you place MQ administered objects

Administered objects allow you to manage the messaging needs of
JMS-compliant applications. For more information, see “MQ Administered
Objects” on page 75.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Starting the Administration Console

[To start the Administration Console

1.

2.

Choose Start > Programs > Sun ONE Message Queue 3.0> Administration.

You may need to wait a few seconds before the Console window is displayed.

Non-Windows users: enter the following command at the command prompt:

$I MQ_HOVE/ bi n/ i mgadmi n (/usr/bin/ingadm n on Sol ari s)

Take a few seconds to examine the Console window.

EﬂSun OME Meszage Queue Administration Console

Console Edit Actions View

2o b

da

da

b

@8 Object Stores
(¥ Brokers

Sun™ONE
Message Queue

Copyright © 2002 Sun Microsystems, Inc. Al rights reserved. Use is subject tao license terms.
Third-party software, including font technalogy, is copyrightad and licensad from Sun
suppliers. Sun, Sun Microsystems, the Sun loge, Java, Solaris and iPlanet are trademarks
or registered trademarks of Sun Microsystems, Inc. in the LS. and other countries. All
SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC Internatianal, Inc. in the U.S. and other countries. Federal Acguisitions:

Commercial Software - Government Users Subject to Standard License Terms and Conditions.

Copyright © 2002 Sun Micrasystems, Inc. Tous droits résarvés, Distribug par des licences
qui en restreignent |'utilisation. Le logiciel détenu par des tiers, et gui comprend la
technologie relative aux polices de caractéres, est protégéd par un copyright et licencié par
des fournisseurs de Sun. Sun, Sun Microsystems, le loga Sun, |ava, Solaris et iPlanet

sont des marques de fabrique ou des margues dépasées de Sun Microsystems, Inc. aux
Etats-Unis et dans d'awutres pays. Toutes les marques SPARC sont utilisdes sous licence et
sont des marques de fabrique ou des margues déposées de SPARC International, Inc. aux
Etats-Linis et dans d'autres pays.

Sun'ONE

Open Net Emiranment

Sun ONE Message Gueue Administration Console

The Console features a menu at the top, a tool bar just underneath the menu, a
navigation pane to the left, a larger pane to the right (now displaying graphics

identifying the Sun ONE Message Queue product), and a status pane at the

bottom.

No tutorial can provide complete information, so let’s first find out how to get help
information for the Administration Console.

Chapter 4 Administration Console Tutorial

91

Starting the Administration Console

92

Getting Help

Locate the Help menu at the extreme right of the menu bar.

[To display Administration Console help information

1.

Pull down the Help menu and choose Overview. A help window is displayed.

£ MQ Administration Console Help [0}
JEIEE
‘O]

Wi Administration Consale 1 Overview
D Qv rview

mi Object Store Management
[y add Ohject Stare

D (Object Store Properties
D ConnectiDisconnect Ohject §
[y Add Destination Ohject

D Destination Object Propertie
3 Add Connection Factory Ohje
[Connection Factory Chject Pr
M Eroker Management

[Add Broker

[Broker Propetties

D Connect/Disconnect Broker
3 QuerdUpdate Broker

D Add Broker Destination

[Destination Properties

[service Properties

%u use the contrals in the administration console to communicate with
one or maore M@ brokers and ohject stores..

The administration console is divided into five panes, as shown below,

1
ooo oo 2

* 1 - menu bar

2-tool bar

3 - navigational pane
* 4 - results pane

* 5- status pane

I =]

1]

Notice how the help information is organized. The left pane shows a table of
contents; the right pane shows the contents of any item you select on the left.

Look at the right pane of the Help window. It shows a skeletal view of the
Administration Console, identifying the use of each of the Console’s panes.

Look at the Help window’s contents pane. It organizes topics in three areas:
overview, object store management, and broker management. Each of these
areas contains files and folders. Each folder provides help for dialogs
containing multiple tabs; each file provides help for a simple dialog or tab.

Your first Console administration task, “Adding a Broker” on page 95, will be
to create a reference to a broker you manage through the Console. Before you
start, however, check the online help for information.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Working With Brokers

Click the Add Broker item in the Help window’s contents pane.

Note that the contents pane has changed. It now contains text that explains
what it means to add a broker and that describes the use of each field in the
Add Broker dialog. Field names are shown in bold text.

Read through the help text.
Close the Help window.

Working With Brokers

A broker provides delivery services for an MQ messaging system. Message
delivery is a two-phase process: the message is first delivered to a physical
destination on a broker and then it is delivered to one or more consuming clients.

Working with brokers involves the following tasks:

Start and configure the broker

You can start the broker from the Start > Programs menu on Windows or by
using the i mgbr oker d command. If you use the i ngbr oker d command, you
can specify broker configuration information using command line options. If
you use the Programs menu, you can specify configuration information using
the Console and in other ways described in Chapter 5, “Starting and
Configuring a Broker.”

NOTE You cannot start a broker instance using the Administration
Console .

Manage the broker and its services either by using the Administration Console
or by using the Command command-line utility (i ngcnd).

Create the physical destinations needed by client applications

Monitor resource use to improve throughput and reliability

The broker supports communication with both application clients and
administration clients. It does this by means of different connection services, and
you can configure the broker to run any or all of these services. For more
information about connection services, see “Connection Services” on page 46.

Chapter 4 Administration Console Tutorial 93

Working With Brokers

94

Starting a Broker

You cannot start a broker using the Administration Console. Start the broker as
described below (also, see Chapter 5, “Starting and Configuring a Broker”).

[J To start a broker
1. Choose Start > Programs >Sun ONE Message Queue 3.0 > Broker.

Non-Windows: enter the following command to start a broker.
%51 MQ_HOME/ bi n/ i ngbr okerd (/ usr/ bi n/i ngbr oker d on Solaris)

A broker process window is displayed. The name of the broker is specified as is
the fact that it is ready.

¥iMessage Broker
[B6/Jun/2882:1 81 PDT1

gun OME Mezzage Queue
Uersgion: 3.8 (Build 283-ad Sun Microsystemz,. Inc.
Compile: Mon B5-/28-2082 All Rights Reserwved

Uze iz subject to license termz. Third party software. including
font technology, is copyrighted and licensed from Sun suppliers.
Bun. Sun Microsystems,. the Sun logo, Java. Solaris and iFPlanet are
trademarks or registered trademarks of Sun Microsystemsz. Inc. in
the U.8. and other countries. A1l SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Federal
Acquisitions: Commercial Software — Government Users Subject to
Standard License Terms and Conditions

Thiz product includes code licensed from RSA Data Security

Java Runtime: 1.4_.8 Sun Microsystems Inc. C:»Program Files“Sun Microsystems:Mess
age Queue 3.8\jre

[B6/Jun-2882:11:21:81 PDT] [B1B66B]1: Loading persistent data...
[B6/Jun-2882:11:21:85 PDT]1 [B18321: Broker "imghrokerBgrowler:7676" ready.

2. Bring the Administration Console window back into focus. You are now ready
to add the broker to the Console and to connect to it.

You do not have to start the broker before you add a reference to it in the
Administration Console, but you must start the broker before you can connect to it.

Sun ONE Message Queue ¢ Administrator’'s Guide « October, 2002

Working With Brokers

Adding a Broker

Adding a broker creates a reference to that broker in the Administration Console.
After adding the broker, you can connect to it.

[0 To add a broker to the Administration Console

1.

2.

Right-click on Brokers in the navigation pane and choose Add Broker.
Enter MyBr oker in the Broker Label field.

This provides a label that identifies the broker in the Administration Console.

] Add Broker

Broker Label: |Br0kerLabeI |

Host [locanost |
Primary Port: ’?6?67
Username: W
Password: ’7

Warning: Authentication information you supphy with
this dialog is not secure. You will be prompted for
this information later if you do not enter it now.

| ok || ResetToDefauts || cancel || Help |

Note the default host name (I ocal host) and primary port (7676) specified in
the dialog. These are the values you will need to specify later, when you
configure the connection factory that the client will use to set up connections to
this broker.

Leave the Password field blank. Your password will be more secure if you
specify it at connection time.

Click OK to add the broker.

Chapter 4 Administration Console Tutorial 95

Working With Brokers

Look at the navigation pane. The broker you just added should be listed there
under Brokers. The red X over the broker icon tells you that the broker is not
currently connected to the Console.

EﬂSun OME Meszage Queue Adminiztration Console

Console Edit Actions View Help
il 2 ER b i
D i | D, §>Z-;3 ﬁzﬂ::j %_, i b |2 = @9
1 Object Stores A BrokerLabel | BrokerHost | PrimarePort | Connection Statu
@ @3 Erokers -MyEroker localhost TETE Dizconnected e
o ¢ MyEroker 4
fh Services

L Destinations | 7

|Sun CNE Message Gueue Administration Console |i|

Right-click on MyBroker and choose Properties from the popup menu.

The broker properties dialog is displayed. You can use this dialog to update
any of the properties you specified when you added the broker.

Changing the Administrator Password

When you connect to the broker, you are prompted for a password if you have not
specified one when you added the broker. For improved security, it's a good idea
to change the default administrator password (adni n) before you connect.

To change the administrator password

1.

Open a command-prompt window or, if one is already opened, bring it
forward.

Enter a command like the following, substituting your own password for
abr acadabr a. The password you specify then replaces the default password of
admi n.

i mguser ngr update -u admi n -p abracadabra

(On Solaris and Linux, you must be root to perform this operation.)

The change takes effect immediately. You must then specify the new password
whenever you use one of the MQ command line utilities or the Administration
Console.

96 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Working With Brokers

Although clients use a different connection service than administrators, they are
also assigned a default user name and password so that you can test MQ without
having to do extensive administrative set up. By default, a client can connect to the
broker as user guest with the password guest . You should, however, establish
secure user names and passwords for clients as soon as you can. See
“Authenticating Users” on page 182 for more information.

Connecting to the Broker

To connect to the broker
1. Right-click MyBr oker and choose Connect to Broker.

A dialog is displayed that allows you to specify your name and password.

@Connecl to Broker =]

Username: |admin |

Password: | |

| 0K || Cancel || Help |

2. Enter adni n in the Password field or whatever value you specified for the
password in “Changing the Administrator Password” on page 96.

Specifying the user name adni n and supplying the correct password connects
you to the broker, with administrative privileges.

3. Click OK to connect to the broker.

After you connect to the broker, you can choose from the Actions menu to get
information about the broker, to pause and resume the broker, to shutdown and
restart the broker, and to disconnect from the broker.

Chapter 4 Administration Console Tutorial 97

Working With Brokers

Viewing Connection Services

A broker is distinguished by the connection services it provides and the physical
destinations it supports.

[0 To view available connection services
1. Select Services in the navigation pane.

Available services are listed in the results pane. For each service, its name, port
number, and state is provided.

EﬂSun OME Meszage Queue Adminiztration Console

Console Edit Actions View Help
Bl D wis W08 2
1 Object Stares : Service Mama | Fort Mumber | Service State
@ @3 Brokers fims 1029 {dynamic) RUMNMING
@ ﬁ MyBroker §§ admin 1030 {dynamic) RUMMIMNG
@ Services §§ ssljms dynarmic LIM R MO
@5‘ Destinations hitpjms - LIME MOV
A|httpsims - IMKMOYMN |
§§ ssladmin dyharmic LIM MO |
Sun OME Message Gueue Administration Console - |
Successfully connected to the broker WMyBroker'. |

2. Select the jms service by clicking on it in the results pane.
3. Pull down the Actions menu and note the highlighted items.

You have the option of pausing the jms service or of viewing and updating its
properties.

4. Choose Properties from the Actions menu.

Note that by using the Service Properties dialog, you can assign the service a

static port number and you can change the minimum and maximum number
of threads allocated for this service.

98 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Working With Brokers

a‘i Service Properties

Service Hame: jms
Port Number: @ Dynamic: 1029
i) Static:
Service State: RUNNING

Current Number of Allocated Threads: 0
Current Number of Connections: 0

Min Humber of Threads: |10
Max Number of Threads: 1000

| 0K || Cancel || Help |

5. Click OK or Cancel to close the Properties dialog.
6. Select the admin service in the results pane.
7. Pull down the Actions menu.

Notice that you cannot pause this service (the pause item is disabled). The
admin service is the administrator’s link to the broker. If you paused it, you
would no longer be able to access the broker.

8. Choose Actions > Properties to view the properties of the admin service.

9. Click OK or Cancel when you're done.

Adding Physical Destinations to a Broker

You must explicitly create physical destinations on the broker so that
JMS-compliant applications can run properly. You do not need to do this if the
broker has destination auto-creation enabled, which allows it to create physical
destinations dynamically.

Destination auto-creation is acceptable in a development environment. However,
in a production setting, it is advisable to turn it off and have the broker use
physical destinations that you have explicitly created. This allows you, the
administrator, to be fully aware of the destinations that are in use on the broker.

Chapter 4 Administration Console Tutorial

99

Working With Brokers

You control whether the broker can add auto-created destinations by setting the
i ng. aut ocr eat e. t opi ¢ or i ny. aut ocr eat e. queue properties. For more
information, see “Auto-Created (vs. Admin-Created) Destinations” on page 67.

In this section of the tutorial, you will add a physical destination to the broker. You
should note the name you assign to the destination; you will need it later when you
create an administered object that corresponds to this physical destination.

To add a queue destination to a broker

1.

o > w DN

Right-click the Destinations node of MyBroker and choose Add Broker
Destination.

The following dialog is displayed:

Eﬂﬁdd Broker Destination

Destination Name: |My@ueueDes‘d

Destination Type: @ Queue

(1 Topic
Queue Delivery Policy:
® Single
L+ Fround Robin
L Fail Over
Max Total Size of Messages:
@ Unlimited
o

Max Humber of Messages:
@ Unlimited

o)
Max Size per Message:
(@ Unlimited
@)
| oKk || ResetTobefauts || cancel || el |

Enter MyQueueDest in the Destination Name field.

Select the Queue radio button if it is not already selected.
Make sure the Queue Delivery Policy is selected as Single.
Click OK to add the physical destination.

The destination now appears in the results pane.

100 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Working With Brokers

Working With Physical Destinations

Once you have added a physical destination on the broker, you can do any of the
following tasks, as described in the procedures below:

e View and update the properties of a physical destination
e Purge messages at a destination
* Delete a destination
[J To view the properties of a physical destination
1. Select the Destinations node of MyBroker.
2. Select MyQueueDest in the results pane.
3. Choose Actions > Properties.

The following dialog is displayed:

a’i Broker Destination Properties

Basic_|[DITAHESUHSEHHONS |

Destination Name: MyQueueDest
Destination Type: Queue
Queue Delivery Policy: Single

Current Number of Consumers: 0
Current Humber of Messages: 0
Current Total Size of Messages: 0 Inytes

Max Total Size of Messages: @ Unlimited
o

Max Number of Messages: @ Unlimited
o

Max Size per Message: @ Unlimited
]

| OK || Cancel || Help |

Note that the only properties you can change for a queue have to do with the
size and number of messages that are delivered to that queue.

Chapter 4 Administration Console Tutorial 101

Working With Brokers

O

4. Click Cancel to close the dialog.
To purge messages from a destination
1. Select the physical destination in the Results pane.
2. Choose Actions > Purge Messages.
A confirmation dialog is displayed.
Purging messages removes the messages and leaves an empty destination.
To delete a destination
1. Select the physical destination in the results pane.
2. Choose Edit > Delete.

Deleting a destination purges the messages at that destination and removes the
destination.

Getting Information About Topic Destinations

The dialog about topic destinations includes an additional tab that lists information
about durable subscriptions.

m Broker Destination Properties

Basic rDurahIe Subscriptions |
Durable Sub. Name | Client ID [Mumber ofm yes Durahle Sub. State |

| 0K || Cancel || Help |

L8

You can use this dialog to:

* purge durable subscriptions, removing all messages associated with a durable
subscription

¢ delete durable subscriptions, purging all messages associated with a durable
subscription and also removing the durable subscription

102 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Working with Object Stores

Working with Object Stores

An object store, be it an LDAP directory server or a file system store (directory in
the file system), is used to store MQ administered objects that encapsulate
MQ-specific implementation and configuration information about objects that are
used by client applications.

Although administered objects can be instantiated and configured within client
code, it is preferable that you, the administrator, create and configure these objects
and store them in an object store that is accessed by client applications through
standard JNDI lookup code. This allows client code to be provider-independent.

For more information about administered objects, see “MQ Administered Objects”
on page 75.

You cannot use the Administration Console to create an object store. You must do
this ahead of time as described in the following section.

Adding an Object Store

Adding an object store creates a reference to an existing object store in the
Administration Console. This reference is retained even if you quit and restart the
Console.

[J To add a file-system object store
1. If you do not already have a folder named Tenp on your C drive, create it now.

The sample application used in this tutorial assumes that the object store is a
folder named Tenp on the C drive. In general, a file-system object store can be
any directory on any drive.

Non-Windows: you can use the / t np directory, which should already exist.

Chapter 4 Administration Console Tutorial 103

Working with Object Stores

2. Right-click on Object Stores and choose Add Object Store.
The following dialog is displayed:

B Add Object Store E
Object Store Label: | |

JHDI Haming Service Properties:

Hame: |ja\ra.naming.factury.initial - |
Value: | |
Mame | Value I o
Warning: Authentication information you supply with this dialog is not secure. You will be
prompted for this information later if you do not enter it now.
| 0K | | Clear | | Cancel | | Help |

3. Enter Mybj ect St or e in the field named ObjectStoreLabel.

This simply provides a label for the display of the object store in the
Administration Console.

In the following steps, you will need to enter JNDI name/value pairs. These
pairs are used by JMS-compliant applications for looking up administered

objects.

4. From the Name pull-down menu, choose j ava. nami ng. factory.initial.

This property allows you to specify what JNDI service provider you wish to
use. For example, a file system service provider or an LDAP service provider.

5. In the Value field, enter the following

com sun. j ndi . f scont ext. Ref FSCont ext Fact ory

This means that you will be using a file system store. (For an LDAP store, you

would specify com sun. j ndi . | dap. LdapCt xFactory.)

In a production environment, you will probably want to use an LDAP

directory server as an object store. For information about setting up the server

and doing JNDI lookups, see “Object Store Attributes” on page 169.

104 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

10.
11.

Working with Object Stores

Click the Add button.

Notice that the property and its value are now listed in the property summary
pane.

From the Name pull down menu, choose j ava. nani ng. provi der. url .

This property allows you to specify the exact location of the object store. For a
file system type object store, this will be the name of an existing directory.

In the Value field, enter the following
file:/l/C | Tenp

(file:///tnp on Solaris and Linux)
Click the Add button.

Notice that both properties and their values are now listed in the property
summary pane. If you were using an LDAP server, you might also have to
specify authentication information; this is not necessary for a file-system store.

Click OK to add the object store.
If the node MyObjectStore is not selected in the navigation pane, select it now.

The Administration Console now looks like this:

@Sun OME Message Queue Administration Console M=
Console Edit Actions View Help
2 BE s, g
B oD %ede 0| @ 8 <
@ Qﬂ Ohject Stores : Contents | Count -
Q@ @ MyObjectStore -|Destinations 1]
[E Destinations Connection Factories 0
f@ Connection Factaries §§
@ @3 Brokers i
@ ﬁ)’ WyBroker
& Services

[Destinations

|Successfu|ly added the object store My ObjectStore”.

The object store is listed in the navigation pane and its contents, Destinations
and Connection Factories, are listed in the results pane. We have not yet added
any administered objects to the object store, and this is shown in the Count
column of the results pane.

A red X is drawn through the object store’s icon in the navigation pane. This
means that it is disconnected. Before you can use the object store, you will need
to connect to it.

Chapter 4 Administration Console Tutorial 105

Working with Object Stores

106

Checking Object Store Properties

While the Administration Console is disconnected from an object store, you can
examine and change some of the properties of the object store.

To display the properties of an object store
1. Right click on MyObjectStore in the navigational pane.
2. Choose Properties from the popup menu.

A dialog is displayed that shows all the properties you specified when you
added the object store. You can change any of these properties and click OK to
update the old information.

3. Click OK or Cancel to dismiss the dialog.

Connecting to an Object Store

Before you can add objects to an object store, you must connect to it.
To connect to an object store

1. Right click on MyObjectStore in the navigational pane.

2. Choose Connect to Object Store from the popup menu.

Notice that the object store’s icon is no longer crossed out. You can now add
objects, connection factories and destinations, to the object store.

Adding a Connection Factory
Administered Object

You can use the administration console to create and configure a connection
factory. A connection factory is used by client code to connect to the broker. By
configuring a connection factory, you can control the behavior of the connections it
is used to create.

For information on configuring connection factories, see the online help and the
MQ Developer’s Guide.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Working with Object Stores

NOTE The Administration Console lists and displays only MQ

administered objects. If an object store should contain a non-MQ
object with the same lookup name as an administered object that
you wish to add, you will receive an error when you attempt the
add operation.

[J To add a connection factory to an object store

1.

If not already connected, connect to MyObjectStore (see “Connecting to an
Object Store” on page 106)

Right click on the Connection Factories node and choose Add Connection
Factory Object.

The Add Connection Factory Object dialog is displayed.

Eﬂﬁdd Connection Factory Object

Lookup Hame: |My@ueueConnecti0nFactow |

Factory Type: | ConnectionFactory e |

Read-Onhy: [_|

JMS Message Header Overrides |
JMS Message Reliability and Flow Controls r QueueBrowsers and ServerSessions
Connection Handling [Client Identification | JMSX Properties

Connection Type: [TCP ~

Broker Host Hame: |Iocalhost |

Broker Host Port: |7676

Broker Service Port: [0
Acknowledgement Timeout {milliseconds): |0

Enable Reconnection to the Message Service: ||

Message Service Reconnection Delay (milliseconds): (30000
Humber of Reconnection Attempts: |0

| oK || Reset To Defaults || cancel || Help |

Chapter 4 Administration Console Tutorial 107

Working with Object Stores

108

3. Enter the name “MyQueueConnecti onFact ory” in the LookupName field.

This is the name that the client code uses when it looks up the connection
factory as shown in the following line from Si npl eAdni n. j ava:

gcf =(j avax. j ms. QueueConnecti onFact ory)
ct x. | ookup(“MyQueueConnecti onFactory”)

4. Select the QueueConnectionFactory from the pull-down menu to specify the
type of the connection factory.

5. Enter the host name and port for the broker to which the client is planning to
connect, in the Broker Host Name and Broker Host Port fields.

In this tutorial, the client connects to the default broker--that is, a broker on
| ocal host at port 7676, so you do not have to change these fields.

6. Click through the tabs for this dialog to see the kind of information that you
can configure for the connection factory. Use the Help button in the lower right
hand corner of the Add Connection Factory Object dialog to get information
about individual tabs. Do not change any of the default values for now.

7. Click OK to create the queue connection factory.

8. Look at the results pane: the lookup name and type of the newly created
connection factory are listed.

Adding a Destination Administered Object

Destination administered objects are associated with physical destinations on the
broker; they point to those destinations, as it were, allowing clients to look up and
find physical destinations, independently of the provider-specific ways in which
those destinations are named and configured.

When a JMS client sends a message, it looks up (or instantiates) a destination
administered object and references it in the send() method of the JMS API. The
broker is then responsible for delivering the message to the physical destination
that is associated with that administered object:

¢ If you have created a physical destination that is associated with that
administered object, the broker delivers the message to that physical
destination.

¢ If you have not created a physical destination and the autocreation of physical
destinations is enabled, the broker itself creates the physical destination and
delivers the message to that destination.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Working with Object Stores

¢ If you have not created a physical destination and the autocreation of physical
destinations is disabled, the broker cannot create a physical destination and
cannot deliver the message.

In the next part of the tutorial, you will be adding an administered object that
corresponds to the physical destination you added earlier.

[J To add a destination to an object store
1. Right-click on the Destinations node in the navigation pane.

2. Choose Add Destination Object.

The Administration Console displays an Add Destination Object dialog that
you use to specify information about the object.

] Add Destination Dbject

Lookup Hame: | |
Destination Type: & Queue
Zx Topic

Read-Onhy: [_|

Destination HName: |Untitled_Destinati0n_O hject |

Destination Description: |A Description for the Destination Ohject |

| oK || ResetToDefauits || cancel || Hep |

3. Enter “MyQueue” in the Lookup Name field.

The lookup name is used to find the object using JNDI lookup calls. In the
sample application, the call is the following:

queue=(j avax. j nms. Queue) ct x. | ookup(“ MyQueue”);

4. Select the Queue radio button for the Destination Type.
5. Enter M\yQueueDest in the Destination Name field.

This is the name you specified when you added a physical destination on the
broker.

6. Click OK.

Chapter 4 Administration Console Tutorial 109

Working with Object Stores

7. Select Destinations in the navigation pane and notice how information about
the queue destination administered object you have just added is displayed in
the results pane.

EﬂSun OME Meszage Queue Administration Console

Console Edit Actions View Help
[2| BR h 3
Ei i | D, §>:-;3 ﬁz{::j % N | ™ @ [@
Q@ @ bject Stores |4 Lookup Name | Destination Type | Destination Mame -
] MtyChjectStore AMyQueue Queue MyQueueDest

(@ Destinations :
f@ Connection Factories Eg
@ (@ Brokers :
@ &7 MyEroker
fh Services

Administered Object Properties

To view or update the properties of an administered object, you need to select
Destinations or Connection Factories in the navigation pane, select a specific object
in the results pane, and choose Actions > Properties.

[To view or update the properties of a destination object
1. Select Destinations in the navigation pane.
2. Select MyQueue in the results pane.
3. Choose Actions > Properties to view the Destination Object Properties dialog.

Note that the only value you can change is the destination name and the
description. To change the lookup name, you would have to delete the object
and then add a new queue administered object with the desired lookup name.

@Destinalion Object Properties

Lookup Hame: MyQueue
Destination Type: Queue

Read-Onhy [

Destination Name: |My@ueueDest |

Destination Description: |My first queue destination |

| 0K || Cancel || Help |

[x |

110 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Updating Console Information

Updating Console Information

Whether you work with object stores or brokers, you can update the visual display
of any element or groups of elements by choosing View > Refresh.

Running the Sample Application

The sample application Si npl eJNDI O i ent is provided for use with this tutorial. It
uses the administered objects and destination that you created in the foregoing
tutorial: a queue destination named MyQueueDest, a queue connection factory
administered object named MyQueueConnect i onFact ory and a queue
administered object named MyQueue.

The code creates a simple queue sender and receiver, and sends and receives a
“Hello World” message.

[J To run the Si npl eJNDI O i ent application

1.

Make sure the JAVA _HOME environment variable points to the directory where
the JDK is installed.

Make the directory that includes the Si npl eIJNDI O i ent application your
current directory; for example:

cd | MQ HOVE/ deno/ j ms (/ usr/deno/ i ng/ j ns on Solaris)

You should find the Si npl eJNDI O i ent . cl ass file present. (If you make
changes to the application, you will need to re-compile it using the instructions
for compiling a client application in the Quick Start Tutorial of the MQ
Developer’s Guide.)

Set the CLASSPATH variable to include the current directory containing
Si npl eJNDI O i ent . j ava as well as the following jar files: j ns. j ar, i ng. j ar,
and f scont ext.jar.

Before you run the application, open the source file, Si npl eJNDI Cl i ent . j ava,
and read through the source.

It is short, but it is amply documented and it should be fairly clear how it uses
the administered objects and destinations you have created using the tutorial.

Chapter 4 Administration Console Tutorial 111

Running the Sample Application

112

Run the Si npl eJNDI Cl i ent application.
C.> java Sinpl eJNDI dient (Windows)
% java SinpleJNDIClient file:///tnmp (on Solaris and Linux)

If the application runs successfully, you should see the following output:

$JAVA SinpleJDNIClient file:///tnp
Usage: java Sinpl eJDNIdinet [Context.PROVI DER_URL]

On Uni x:

java SinpleJDNIClient file:///tmp
On W ndows:

java SinpleJDNIClient file:///C Tenp

Usi ng Wndows default file:///Cd Tenp for Context.PROVI DER_URL

Publ i shing a message to Queue: MyQueueDest
Recei ved the followi ng nessage: Hello Wrld.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Chapter 5

Starting and Configuring a Broker

After installing Sun™ ONE Message Queue (MQ), you use the i ngbr oker d
command to start a broker. The configuration of the broker instance is governed by
a set of configuration files and by options passed with the i mybr oker d command,
which override corresponding properties in the configuration files.

This chapter explains the syntax of the i ngybr oker d command and how you use
command line options and configuration files to configure the broker instance. In
addition, it also describes how you do the following;:

¢ edit a broker instance configuration file
¢ work with broker clusters
¢ control logging for the broker

For a description of how to start and use the broker as a Windows service, see
“Using a Broker as a Windows Service” on page 235.

113

Configuration Files

Configuration Files

Installed configuration files, which are used to configure the broker, are located in
the following directory.

| MQ_HOVE/ | i b/ props/ br oker
(/usr/share/lib/ing/ props/broker on Solaris)

This directory stores the following files:

¢ A default configuration file that is loaded on startup. This file is called
def aul t. properti es and is not editable. You might need to read this file to
determine default settings and to find the exact names of properties you want
to change.

* Aninstallation configuration file that contains any properties specified when
MQ is installed. This file is called i nst al | . properti es; it cannot be edited
after installation.

In addition, the first time you run a broker, an instance configuration file is created
that you can use to specify configuration properties for that instance of the broker.
This file is maintained by the broker instance in response to administrative
commands and can also be edited directly if you're careful. The instance
configuration file is stored in the following location:

| MQ_VARHOVE/ i nst ances/ brokerNamel pr ops/ confi g. properties
(/var /i mg/instances/ brokerNamel props/ confi g. properties on Solaris)

Where brokerName is the name of the broker instance (i ngbr oker by default). You
can edit an instance configuration file to make configuration changes (see “Editing
the Instance Configuration File” on page 116).

If you connect broker instances in a cluster (see “Multi-Broker Clusters (Enterprise
Edition)” on page 68) you may also need to use a cluster configuration file to specify
cluster configuration information. For more information, see “Cluster
Configuration Properties” on page 126.

Merging Property Values

At startup, the system merges property values in the different configuration files. It
uses values set in the installation and instance configuration files to override values
specified in the default configuration file. You can override the resulting values by
using i nybr oker d command options. This scheme is illustrated in Figure 5-1 on
page 115.

114 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Configuration Files

Figure 5-1 Broker Configuration Files

i ngbr okerd
- nane MyBr oker

“Metrics.S yerrides

—N overrides
‘ overrides

installiproperties

MyBroker

config|properties

instance configuration file

install configuration file defaultproperties

default configuration file

Property Naming Syntax
Any MQ property definition in a configuration file uses the following naming
syntax:
pr opert yNane=value[[, valuel] . . .]
For example, the following entry defines the queue type for an auto-create queue:
i mg. queue. def aul t =si ngl e
The following entry defines the message expiration timeout value:
i mg. message. expi ration. ti neout =90

Table 5-1 on page 116 lists the broker configuration properties (and their default
values) in alphabetical order.

Chapter 5 Starting and Configuring a Broker 115

Configuration Files

Editing the Instance Configuration File

The first time a broker instance is run, a conf i g. pr operti es file is automatically
created. You can edit this instance configuration file to customize the behavior and
resource use of the corresponding broker instance.

The broker instance reads the confi g. properti es file only at startup. To make
permanent changes to the confi g. properti es file, you can either

¢ use administration tools. For information about properties you can set using
i mycmd, see Table 6-5 on page 147.

e editthe confi g. properti es file while the broker instance is shut down; then
restart the instance. (On Solaris and Linux platforms, only the user that first
started the broker instance has permission to edit the confi g. proper ti es file.)

Table 5-1 lists the broker instance configuration properties (and their default
values) in alphabetical order. For more information about the meaning and use of
each property, please consult the specified cross-referenced section.

Table 5-1 Broker Instance Configuration Properties

Property Name Type Default Value Reference

i ng. accesscontrol . enabl ed boolean true Table 2-6 on page 60
i ng. accesscontrol . file. string accesscontrol . Table 2-6 on page 60
fil ename properties

i ng. aut henti cati on. basi c. string file Table 2-6 on page 60
user _repository

i ng. aut henti cati on. integer 180 Table 2-6 on page 60
client.response.tineout (seconds)

i mg. aut henti cati on. type string di gest Table 2-6 on page 60
i ng. aut ocr eat e. queue boolean true Table 2-9 on page 67
i ng. aut ocreate.topic boolean true Table 2-9 on page 67
img. cluster.url string nul | Table 2-10 on page 72
i ng. keyst or e. property_name Table 8-8 on page 200
i my. | 0g. consol e. out put string ERROR| WARNI NG Table 2-8 on page 63
i ng. | og. consol e. stream string ERR Table 2-8 on page 63

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

116 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Configuration Files

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference
imy.log.file.dirpath string I MQ_VARHOVE/ Table 2-8 on page 63
i nst ances/

brokerNamel | og
(/var/img/ ..on Solaris)

imy.log.file.nane string | 0g. t xt Table 2-8 on page 63

imy.log.file.output string ALL Table 2-8 on page 63

inmg.log.file.rolloverbytes integer 0 Table 2-8 on page 63
(bytes)

inmg.log.file.rolloversecs integer 604800 Table 2-8 on page 63
(seconds)

i mg. 1 og. |l evel string I NFO Table 2-8 on page 63

img.log.syslog.facility string LOG_DAEMON Table 2-8 on page 63

i my. | 0og. sysl og. | ogpi d boolean true Table 2-8 on page 63

i my. | og. sysl og. | ogconsol e boolean fal se Table 2-8 on page 63

i ng. | og. syslog.identity string i mgbr okerd_${i nmg. Table 2-8 on page 63

brokerName}

i mg. | 0g. sysl og. out put string ERROR Table 2-8 on page 63

i my. message. expiration. integer 60 Table 2-4 on page 53

i nterval (seconds)

i ng. message. max_si ze byte string ! 70m Table 2-4 on page 53
0 (no limit)

i mg. netrics. enabl ed boolean true Table 2-8 on page 63

img. metrics.interval integer 0 Table 2-8 on page 63
(seconds)

i mg. passfil e. enabl ed boolean fal se Table 2-6 on page 60

i my. passfile.dirpath string I MQ_HOVE/ et c Table 2-6 on page 60

(/etcl/img on Solaris)

i mg. passfil e. nane string passfile Table 2-6 on page 60

img. persist.file. byte string ! 1m Table 2-5 on page 56

destination.file.size

i my. persist.file. message. boolean fal se Table 2-5 on page 56

cl eanup

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Chapter 5 Starting and Configuring a Broker 117

Configuration Files

Table 5-1

Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference
i my. persist.file. message. integer 25 (Solaris & Linux) Table 2-5 on page 56
fdpool . limt 1024 (Windows)
i mg. persist.file. message. integer 0 Table 2-5 on page 56
fil epool.cleanratio
i mg. persist.file.message. integer 10000 Table 2-5 on page 56
filepool.limt
i my. persist.file.sync. boolean fal se Table 2-5 on page 56
enabl ed
i mg. persi st . j dbc. property_name Table A-1 on page 207
i mg. persist.store string file Table 2-5 on page 56
i my. port mapper. port integer 7676 Table 2-3 on page 49
i mg. queue. del i verypolicy string singl e Table 2-9 on page 67
i mg. redel i vered. boolean true Table 2-4 on page 53
optim zation
i M. resource_state. integer 0 (green) Table 2-4 on page 53
threshol d (percent) 60 (yell ow)

75(or ange)

90 (red)
i mg. service. activelist list j s, admi n Table 2-3 on page 49
i . service_name. boolean inherits value from Table 2-6 on page 60
accesscontrol . enabl ed system-wide property
i . service_name. string inherits value from Table 2-6 on page 60
accesscontrol .file.fil ename system-wide property
i . service_name. string inherits value from Table 2-6 on page 60
aut henti cati on. type system-wide property
i . service_name. nmax_t hr eads integer 1000 (jms) Table 2-3 on page 49

500 (ssljms)
500 (httpjms)
500 (httpsjms)
50 (admin)

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

118 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Configuration Files

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

i . service_name. i n_t hr eads integer 10 (jms) Table 2-3 on page 49
10 (ssljms)
10 (httpjms)
10 (httpsjms)

4 (admin)
i nq. service_name. protocol type. string nul | Table 2-3 on page 49
host nane
i . service_name. protocol type. integer 0 Table 2-3 on page 49
port
i . service_name. string dedi cat ed (jms) Table 2-3 on page 49
t hr eadpool _nodel dedi cat ed (ssljms)
dedi cat ed (httpjms)
dedi cat ed (httpsjms)
dedi cat ed (admin)
i ng. shar ed. integer 512 (Solaris & Linux) Table 2-3 on page 49
connectionhMnitor_linit 64 (Windows)
i my. syst em max_count integer, 0 Table 2-4 on page 53
0 (no limit)
i mg. syst em max_si ze byte string!, 0 Table 2-4 on page 53
0 (no limit)
i ng. transaction. autorol | back boolean fal se Table 2-4 on page 53
i my. user _repository. | dap. Table 8-5 on page 189

property_name

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Chapter 5 Starting and Configuring a Broker 119

Starting a Broker

Starting a Broker

To start a broker instance use the i ngbr oker d command.

NOTE You cannot start a broker instance using the Administration Console
(imgadmin) or the Command Utility (imgcmd). The broker instance
must already be running to use these MQ administration tools.

To override one or more property values, specify a valid i ngbr okerd
command-line option. Command-line options override values in the broker
configuration files, but only for the current broker session: command line options
are not written to the instance configuration file.

The syntax of the i ngbr oker d command is as follows (options and arguments are
separated by a space):

i mgbrokerd [[- Dproperty=value] . . .]

- backup fileName]

-cluster “[broker] [[, broker]...]”

-dbuser userName] [-dbpassword password]
-force]

-h]

-j avahome path | -jrehone path]

-1 dappasswor d password]

-1 i cense name]

-1 ogl evel level]

-metrics number]

-nane brokerName | [-port number]

- shar ed]

-password keypassword] [-passfile fileName]
-renove instance]

-reset data]

-restore fileName]

- shar ed]

-silent] [-tty]

-version] [-vmargs arg [[arg]...]

For example, to start a broker that uses the default broker name and configuration,
use the following command:

i mgbr okerd

120 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Starting a Broker

This starts a default instance of a broker (named i ngbr oker) on the local machine
with the Port Mapper at port 7676.

NOTE

On Solaris, you can configure the broker to automatically restart
after an abnormally exit, by setting the RESTART property in the
/' etc/img/ingborkerd. conf configuration file to YES.

NOTE

On Solaris and Linux platforms, permissions on the directories
containing configuration information and persistent data depend on
the umask of the user that starts the broker instance the first time.
Hence, for the broker instance to function properly, it must be
started subsequently only by the original user.

Table 5-2 describes the options to the i ngbr oker d command and describes the
configuration properties, if any, affected by each option.

Table 5-2

i mgbr oker d Options

Option

Properties Affected

Description

- backup fileName

- cl ust er “[broker]
[[, broker]...]"

broker is either
* host[:port]
o [host]:port

- dbpasswor d password

-dbuser wuserName

None affected.

Sets

img. cluster. brokerlist
to the list of brokers to which
to connect.

Setsi . persi st.jdbc.
passwor d to specified
password

Sets
i mg. persist.jdbc. user
to specified user name

Applies only to broker clusters. Backs up a
Master Broker’s configuration change record
to the specified file. See “Backing up the
Master Broker’s Configuration Change
Record” on page 130.

Applies only to broker clusters. Connects to all
the brokers on the specified hosts and ports.
This list is merged with the list in the

i ng. cl uster. brokerli st property. If you
don’t specify a value for host, | ocal host is
used. If you don’t specify a value for port, the
value 7676 is used. See “Working With
Clusters (Enterprise Edition)” on page 126 for
more information on how to use this option to
connect multiple brokers.

Specifies the password for a plugged-in
JDBC-compliant data store. See Appendix A,
“Setting Up Plugged-in Persistence.”

Specifies the user name for a plugged-in
JDBC-compliant database. See Appendix A,
“Setting Up Plugged-in Persistence.”

Chapter 5

Starting and Configuring a Broker 121

Starting a Broker

Table 5-2

i ngbr oker d Options (Continued)

Option

Properties Affected

Description

- Dproperty=value

-force

-h

- j avahone path

-j rehone path

Sets system properties.
Overrides corresponding
property value in instance
configuration file.

None affected.

None affected.

None affected.

None affected.

- | dappasswor d Sets

password

-l i cense [name]

-1 ogl evel

i mg. user_repository.
| dap. passwor d to specified
password

None affected.

level Sets
i mg. broker.1o0g.1evel to
the specified level.

Sets the specified property to the specified
value. See Table 5-1 on page 116 for broker
configuration properties.

Caution: Be careful to check the spelling and
formatting of properties set with the D option.
If you pass incorrect values, the system will
not warn you, and MQ will not be able to set
them.

Performs action without user confirmation.
This option applies only to the - r enbve

i nst ance option, which normally requires
confirmation.

Displays help. Nothing else on the command
line is executed.

Specifies the path to an alternate
Java 2- compatible JDK. The default is to use
the bundled runtime.

Specifies the path to a Java 2 JRE.

Specifies the password for accessing a LDAP
user repository. See “Using an LDAP Server
for a User Repository” on page 189.

Specifies the license to load, if different from
the default for your MQ product edition. If
you don’t specify a license name, this lists all
licenses installed on the system. Depending on
the installed MQ edition, the values for name
are pe (Platform Edition—basic features), t ry
(Platform Edition—90-day trial enterprise
features), and unl (Enterprise Edition). See
“Product Editions” on page 26.

Specifies the logging level as being one of
NONE, ERROR, WARNI NG, or | NFQ, The default
value is | NFO. For more information, see
“Logger” on page 61.

122 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Table 5-2

i ngbr oker d Options (Continued)

Starting a Broker

Option

Properties Affected

Description

-netrics int

-nane brokerName

-passfile fileName

- passwor d
keypassword

- port number

-renove instance

Setsing. metrics.report.
i nterval to the specified
number of seconds.

Setsi ng. i nst ancenarre to
the specified name.

Setsi ng. passfil e.

enabl ed to t r ue. Sets jng.
passfil e. di rpat h to the
path that contains the file.
Setsi ng. passfil e. nane to
the name of the file.

Setsi ng. keyst or e.
passwor d to the specified
password.

Setsi ng. por t mapper. port
to the specified number.

None affected.

Specifies that metrics be reported at an
interval specified in seconds.

Specifies the instance name of this broker and
uses the corresponding instance configuration
file. If you do not specify a broker name, the
name of the file is set to i ngbr oker.

Note: If you run more than one instance of a
broker on the same host, each must have a
unique name.

Specifies the name of the file from which to
read the passwords for the SSL keystore,
LDAP user repository, or JDBC-compliant
database. For more information, see “Using a
Passfile” on page 204.

Specifies the password for the SSL certificate
keystore. For more information, see “Security
Manager” on page 57.

Specifies the broker’s Port Mapper port
number. By default, this is set to 7676. To run
two instances of a broker on the same server,
each broker’s Port Mapper must have a
different port number. JMS clients connect to
the broker instance using this port number.

Causes the broker instance to be removed:
deletes the instance configuration file, log
files, persistent store, and other files and
directories associated with the instance.
Requires user confirmation unless - f or ce
option is also specified.

Chapter 5 Starting and Configuring a Broker 123

Starting a Broker

Table 5-2 i mgbr oker d Options (Continued)

Option Properties Affected

Description

-reset store| None affected.
nmessages|

dur abl es|

props

-restore fileName None affected.

-shared Setsing. j ns.
t hr eadpool _nodel to
shar ed.

-silent Setsi ng. | og. consol e.
out put to NONE.

-tty Setsi ng. | 0g. consol e.
out put to ALL

Resets the data store (or a subset of the data
store) or the configuration properties of a
broker instance, depending on the argument
given.

Resetting the data store clears out all
persistent data, including persistent messages,
durable subscriptions, and transaction
information. This allows you to start the
broker instance with a clean slate. You can
also clear only all persistent messages or only
all durable subscriptions. (If you do not want
the persistent store to be reset on subsequent
starts, then re-start the broker instance
without using the -r eset option.) For more
information, see “Persistence Manager” on
page 54.

Resetting the broker’s properties, replaces the
existing instance configuration file

(confi g. properties)with an empty file:
all properties assume default values.

Applies only to broker clusters. Replaces the
Master Broker’s configuration change record
with the specified backup file. This file must
have been previously created using the

- backup option. See “Restoring the Master
Broker’s Configuration Change Record” on
page 131.

Specifies that the jms connection service be
implemented using the shared threadpool
model, in which threads are shared among
connections to increase the number of
connections supported by a broker instance.
For more information, see “Connection
Services” on page 46.

Turns off logging to the console.

Specifies that all messages be displayed to the
console. By default only WARNI NGand ERROR
level messages are displayed.

124 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Starting a Broker

Table 5-2 i ngbr oker d Options (Continued)

Option Properties Affected Description

-version None affected. Displays the version number of the installed
product.

-vnargs arg None affected Specifies arguments to pass to the Java VM.

[[arg]...] Separate arguments with spaces. If you want

to pass more than one argument or if an
argument contains a space, use enclosing
quotation marks. For example:

i rmgbrokerd -tty -vnmargs "- Xmx128m
- Xi ncgc"

Chapter 5 Starting and Configuring a Broker 125

Working With Clusters (Enterprise Edition)

Working With Clusters (Enterprise Edition)

126

This section describes the properties you use to configure multi-broker clusters,
describes a couple of methods of connecting brokers, and explains how you
manage clusters. For an introduction to clusters, see “Multi-Broker Clusters
(Enterprise Edition)” on page 68.

When working with clusters, make sure that you synchronize clocks among the
hosts of all brokers in a cluster.

Cluster Configuration Properties

When you connect brokers into a cluster, all the connected brokers must specify the
same values for cluster configuration properties. These properties describe the
participation of the brokers in a cluster. Table 5-3 summarizes the cluster-related
configuration properties.

Table 5-3 Cluster Configuration Properties

Property Description

i ng. cl uster. brokerlist Specifies all brokers in a cluster in a comma-separated
list; each item specifies the host and port of a broker.
For example: host 1: 3000, host 2: 8000, ctrhost

i mg. cl uster. mast er broker Specifies the host and port of the Master Broker.
Set this value for production environments.
For example, ct r host : 7676

i mg. cluster. url Specifies the location of the cluster configuration file.
For example:
http://webserver/ing/cluster.properties
file:/net/nfsserver/img/cluster.properies

i mg. cluster. port For each broker within a cluster, can be used to specify
the port number for the cluster connection service. The
cluster connection service is used for internal
communication between brokers in a cluster.

Default: O (port is dynamically allocated)

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Working With Clusters (Enterprise Edition)

Table 5-3 Cluster Configuration Properties (Continued)

Property Description

i ng. cl ust er. host name For each broker within a cluster, can be used to specify
the host (hostname or IP address) to which the cluster
connection service binds if there is more than one host
available (for example, if there is more than one network
interface card in a computer). The cluster connection
service is used for internal communication between
brokers in a cluster.

Default: nul | (all available hosts)

You can use one of two methods to set cluster properties:

* You set the cluster-related configuration properties in each broker’s instance
configuration file (or in the command line that starts each broker). For
example, to connect broker A (on host 1, port 7676), broker B (on host 2, port
5000) and broker C (on ct r | host, port 7676), the instance configuration file for
brokers A, B, and C would need to set the following property.

i mg. cluster. brokerlist=host1, host2:5000, ctrl host

If you decide to change a cluster configuration, this method requires you to
update cluster-related properties in all the brokers

* You set cluster configuration properties in one central cluster configuration
file. These properties might include the list of brokers to be connected
(img. cluster. brokerlist)and optionally, the address of the Master Broker
(i ng. cl ust er. mast er br oker).

If you use this method, you must also set the i n. cl uster. url property (for
every broker in the cluster) to point to the location of the cluster configuration
file. From the point of view of easy maintenance, this is the recommended
method of cluster configuration.

The following code sample shows the contents of a cluster configuration file. Both
host 1 and ct rl host are running on the default port. These properties specify that
host 1 and ctrl host are connected in a cluster and that ct r| host is the Master
Broker.

i mg. cluster. brokerlist=host1, host2: 5000, ctrl host
i mg. cl uster. mast er br oker=ctr| host

Chapter 5 Starting and Configuring a Broker 127

Working With Clusters (Enterprise Edition)

128

The instance configuration file for each broker connected in this cluster, must then
contain the url of the cluster configuration file; for example:

img.cluster.url=file:/hone/cluster.properties

Connecting Brokers

This section describes two methods of connecting brokers into a clusters. No matter
which method you use, each broker that you start attempts to connect to the other
brokers every five seconds; that attempt will succeed once the other brokers in the
cluster are started up.

If you connect brokers into a cluster, it is not necessary to start the Master Broker
first. If a broker in the cluster starts before the Master Broker, it will remain in a
suspended state, rejecting client connections. When the Master Broker starts, the
suspended broker will automatically become fully functional.

Method 1: No Cluster Configuration File

To connect brokers into a cluster

1. Use the-cl ust er option to the i ngbr oker d command that starts a broker, and
specify the complete list of brokers (to connect to) as an argument to the
- cl ust er option.

2. Do this for each broker you want to connect to the cluster when you start that
broker.

For example, the following command starts a new broker and connects it to the
broker running on the default port on hostl, the broker running on port 7677
on host2 and the broker running on port 7678 on localhost.

i rgbrokerd -cluster host1, host2:7677,:7678

Method 2: Using a Cluster Configuration File

It is also possible to create a cluster configuration file that specifies the list of
brokers to be connected (and optionally, the address of the Master Broker). This
method of defining clusters is better suited for production systems. Remember,
that each broker in the cluster must set the value of thei ng. cl ust er. ur| property
to point to the cluster configuration file.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Working With Clusters (Enterprise Edition)

Adding Brokers to Clusters

Once you have set up a broker cluster, you might need to add a new broker or
restart a broker that is already part of the cluster.

To add a new broker to an existing cluster, you can do one of the following;:

If you are not using a cluster configuration file, when you start the new broker,
specify the i nj. cl uster. broker|i st and (if necessary) the
i my. cl ust er. mast er br oker properties on the command line using the - D option.

To add a broker to a cluster if you are using a cluster configuration file

1. Add the new broker to the i . cl ust er. br oker | i st property in the cluster
configuration file.

2. Issue the following command to any broker in the cluster.
imcmd rel oad cls

This forces all the brokers to reload the i n. cl ust er. br oker | i st property
and to make sure that all persistent information for brokers in the cluster is up
to date.

Restarting a Broker in a Cluster

To restart a broker that is already a member of a cluster, you can do one of the
following:

¢ If the cluster is defined using a cluster configuration file, use the -D option to
specify the i ng. cl uster. url property on the command line used to start the
broker.

e If the cluster is not defined using a cluster configuration file, when you start
the new broker, specify the i my. cl ust er. broker| i st (and if necessary the
i ng. cl ust er. mast er br oker) properties on the command line using the -D
option. If the cluster does not include a Master Broker, you can simply use the
- cl ust er option to specify the list of brokers in the cluster when you start the
new broker.

Chapter 5 Starting and Configuring a Broker 129

Working With Clusters (Enterprise Edition)

130

Removing a Broker from a Cluster

Take note of the following when removing a broker from a cluster:

e If the brokers A, B, and C were all started using the following command line,
then just restarting A will not remove it from the cluster.

i mgbrokerd -cluster A B,C

Instead, you need to restart all the other brokers with the following command
line:

i mgbrokerd -cluster B,C

Then, you need to start broker A without specifying the - cl ust er option.

¢ If the list of brokers was specified using a cluster configuration file, then you
will need to do the following:

o Remove mention of the broker from the configuration file.

o Change or remove the i n. cl ust er. url property for the broker that is
being removed so that it no longer uses the common properties.

o Usetheinmcnd rel oad cl s command to force all the brokers to reload
their cluster configuration and thereby reconfigure the cluster.

Backing up the Master Broker’s Configuration
Change Record

Each cluster can have one Master Broker that keeps track of any changes in the
persistent state of the cluster: this includes durable subscriptions and physical
destinations created by the administrator. All brokers consult the Master Broker
during startup in order to synchronize information about these persistent objects.
Consequently, the failure of the Master Broker can cripple the entire cluster. For
this reason, it is important to backup the Master Broker’s change record
periodically by using the - backup option of the i ngbr oker d command. For
example,

i ngbrokerd -backup mybackupl og

It is important you do this in a timely manner. Restoring a very old backup can
result in loss of information: any persistent objects created since the backup was
last done will be lost.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Logging

Restoring the Master Broker’s Configuration
Change Record

[0 To restore the Master Broker in case of failure
1. Shut down all the brokers in the cluster.

2. Restore the Master Broker’s configuration change record using the following
command:

i mgbrokerd -restore nybackupl og

3. If you assign a new name or port number to the Master Broker, you must
update the cluster configuration file to specify that the Master Broker is part of
the cluster and to specify its new name (using the property
i ng. ¢l ust er. nmast er br oker).

4. Restart all the brokers.

The restoration of the broker will inevitably result in some stale data being
reloaded into the broker’s configuration change record; however, doing frequent
periodic backups, as described in the previous section, should minimize this
problem.

Because the Master Broker keeps track of the entire history of changes to persistent
objects, its database can grow significantly over a period of time. The backup and
restore operations have the positive effect of compressing and optimizing this
database.

Logging

This section describes the default logging configuration for the broker and explains
how you can change that configuration in order to redirect log information to
alternate output channels, to change rollover criteria, and to report broker metrics.
For an introduction to logging, see “Logger” on page 61.

Default Logging Configuration

When you start the broker, it is automatically configured to save log output to a set
of rolling log files located at

| MQ_VARHOVE/ i nst ances/ brokerNamel | og/
(/var /i mg/instances/ brokerNamel | og/ on Solaris)

Chapter 5 Starting and Configuring a Broker 131

Logging

The log files are simple text files. They are named as follows, from earliest to latest:

| 0g. txt
log_1.txt
| og_2.txt

| og_9. txt
By default, log files are rolled over once a week; the system maintains nine backup

files.

¢ To change the directory in which the log files are kept, set the property
ing.log.file.dirpath to the desired path.

* To change the root name of the log files from | og to something else, set the
inmg.log.file.filename property.

The broker supports three log categories: ERROR, WARNI NG, | NFO (see Table 2-7 on
page 62). Setting a logging level gathers messages for all levels up to and including
that level. The default log level is | NFQ. This means that ERROR, WARNI NG, and | NFO
messages are logged.

Log Message Format

Logged messages consist of a timestamp, message code, and the message itself. The
volume of information varies with the log level you have set. The following is an
example of an | NFOmessage.

[13/ Sep/ 2000: 16: 13: 36 PDT] B1004 Starting the broker service
using tcp [25374,100] with min threads 50 and max threads of 500

Changing the Logger Configuration

All Logger properties are described in Table 2-8 on page 63.

[J To change the Logger configuration for a broker

1. Set the log level.

2. Set the output channel (file, console, or both) for one or more logging
categories.

3. If youlog output to a file, configure the rollover criteria for the file.

132 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Logging

You complete these steps by setting Logger properties. You can do this in one of
two ways:

e Change or add Logger properties in the conf i g. propert i es file for a broker
before you start the broker.

* Specify Logger command line options in the i ngbr oker d command that starts
the broker. You can also use the broker option - D to change Logger properties
(or any broker property).

Options passed on the command line override properties specified in the broker
instance configuration files. Table 5-4 lists the i ngbr oker d options that affect

logging.

Table 5-4 i ngbr oker d Logger Options and Corresponding Properties

imgbrokerd Options Description

-metrics number Specifies the interval (in seconds) at which metrics
information is gathered.

-1 ogl evel level Sets the log level to one of ERROR, WARNI NG, | NFO.

-silent Turns off logging to the console

-tty Sends all messages to the console. By default only WARNI NG

and ERROR level messages are displayed.

The following sections describe how you can change the default configuration in
order to do the following:

e change the output channel (the destination of log messages)
e change rollover criteria

* log broker metrics information

Changing the Output Channel

By default, error and warning messages are displayed on the terminal as well as
being logged to a log file. (On Solaris error messages are also written to the
system’s syslog daemon.)

Chapter 5 Starting and Configuring a Broker 133

Logging

134

You can change the output channel for log messages in the following ways:

To have all log categories (for a given level) output displayed on the screen, use
the-tty option to thei mgbr oker d command.

To prevent log output from being displayed on the screen, use the - si | ent
option to the i ngbr oker d command.

Use theing. | og. file.output property to specify which categories of logging
information should be written to the log file. For example,

i mg.log.file.output=ERROR

Use the i ng. | og. consol e. out put property to specify which categories of
logging information should be written to the console. For example,

i mg. | 0g. consol e. out put =I NFO

On Solaris, use the i mg. | og. sysl og. out put property to specify which
categories of logging information should be written to Solaris syslog. For
example,

i mg. | 0g. sysl og. out put =NONE

NOTE Before changing the destination of log messages, you must make

sure that logging is set at the level that corresponds to the log
category you are mapping to the output channel. For example, if
you set the log level to ERROR and then set the

i ng. | og. consol e. out put property to WARNI NG, no messages will
be logged because you have not enabled the logging of those level
messages.

Changing Rollover Criteria

There are two criteria for rolling over log files: time and size. The default is to use a
time criteria and roll over files every seven days.

To change the time interval, you need to change the property
img.log.file.rolloversecs. For example, the following property definition
changes the time interval to ten days:

img.log.file.roll oversecs=864000

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Logging

* To change the rollover criteria to depend on file size, you need to set the
img.log.file.rolloverbytes property. For example, the following
definition directs the broker to rollover files after they reach a limit of 500,000
bytes

inmg.log.file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first
limit reached will trigger the rollover. As noted before, the broker maintains up to
nine rollover files.

Logging Broker Performance Metrics

The broker’s default configuration, includes the following settings:
® ing.nmetrics.enabl ed=true

® ing.nmetrics.interval =0

* ing.log.level =I NFO

As a result of these settings, the broker gathers performance metrics for the broker
as well as for active connection services, but it does not generate metrics reports.

You can have the broker generate metrics reports in one of two ways:

e Usethe-netrics option to the i nybr oker d command and specify the interval
(in seconds) at which the broker generates reports.

® Settheing. netrics.interval property to the interval (in seconds) at which
you want the broker to generate reports.

Because metrics reports are included in the I NFO category, metric reports, by
default, are written to the log file output channel.

The following shows sample metrics information:

[31/ Jan/ 2001: 15: 00: 50 PST]
Connections: 0 JVM Heap: 6291456 bytes (5186320 free)
In: O mesgs (Obytes) O pkts (0 bytes)
Qut: 0 nmesgs (Obytes) 0 pkts (0 bytes)
Rate In: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)
Rate Qut: O nsgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

Chapter 5 Starting and Configuring a Broker 135

Logging

Table 5-5 describes the meaning of the metrics generated for each connection
service.

Table 5-5 Metrics Gathered for Connection Services

Metrics Description

Pkts in (total) Total number of packets read by the broker since the last
reset. This includes MQ protocol packets, not just JMS
messages.

Pkts out (total) Total number of packets written by the broker since the last
reset.

JMS Messages in (total) Total number of JMS messages read by the broker since last
reset.

JMS Messages out (total) ~ Total number of JMS messages written by the Broker since
last reset.

Message Bytes in (total) Total number of message bytes read by the Broker since last
reset.

Message Bytes out (total) Total number of message bytes written.

Current # connections Current number of open connections.

Table 5-6 describes the metrics gathered and reported for each broker.

Table 5-6 Metrics Gathered for Each Broker

Metrics Description

VM heap size (bytes) Maximum size of the Java VM heap.

VM heap free space (bytes) Amount of free space left in the Java VM heap.

NOTE This information is also available via the i ngcd netrics
command.

136 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Chapter 6

Broker and Application Management

This chapter explains how to perform tasks related to managing the broker and the
services it provides. Some of these tasks are independent of any particular client
application. These include:

controlling the broker’s state: you can pause, resume, shutdown, and restart
the broker.

querying and updating broker properties
querying and updating connection services
allocating and managing resources

managing connection services

Other broker tasks are performed on behalf of specific applications; these include
managing physical destinations, durable subscriptions, and transactions:

MQ messages are routed to their receivers or subscribers by way of broker
destinations. You are responsible for creating these destinations on the broker.

MQ allocates and maintains resources for durable subscribers even when
clients that have durable subscriptions become inactive. You use the MQ
Command tool to get information about durable subscriptions and to destroy
durable subscriptions or purge their messages in order to save MQ resources.

MQ transactions and distributed transactions are tracked by a broker. You
might need to manually commit or roll back transactions if a failure takes
place.

This chapter explains how you use the Command utility (i rgcnd) to perform all
these tasks. You can accomplish many of these same tasks by using the
Administration Console, the graphical interface to the MQ message server. For
more information, see Chapter 4, “Administration Console Tutorial.”

137

Command Utility

Command Utility

138

The Command utility allows you to manage the broker and the services it
provides. This section describes the basici ngcnd command syntax, provides a
listing of subcommands, and summarizes i ngcnd options. Subsequent sections
explain how you use these commands to accomplish specific tasks.

Syntax of Command

The general syntax of the i ngcnd command is as follows:

i mgcrmd subcommand argqument [options)
imgcnd -h| H
imcmd -v

Note that if you specify the -v, -h, or -H options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the r est art subcommand is not executed.

imcnmd restart bkr -v

imgcmd Subcommands

The Command utility (i ngcnd) includes the subcommands listed in Table 6-1:

Table 6-1 i ngcnd Subcommands

Subcommand and Argument Description

create dst Creates a destination.

comit txn Commits a transaction.

destroy dst Destroys a destination.

destroy dur Destroys a durable subscription.

list dst Lists destinations on the broker.

list dur Lists durable subscriptions on the topic.
list svc Lists services on the broker.

list txn Lists transactions on the broker.
metrics bkr Displays broker metrics.

metrics svc Displays service metrics.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Command Utility

Table 6-1 i ngcnd Subcommands (Continued)

Subcommand and Argument

Description

pause bkr
pause svc

purge dst

purge dur

query bkr
query dst
query svc
query txn
reload cls

restart bkr

resune bkr
resune svc
rol | back txn

shut down bkr

updat e bkr
updat e dst

update svc

Pauses all services on the broker.
Pauses one service.

Purges all messages on a destination without destroying
the destination.

urges all messages on a durable subscription without
destroying the durable subscription.

Queries and display information on a broker.
Queries and display information on a destination.
Queries and display information on a service.
Queries and display information on a transaction.
Reloads broker cluster configuration.

Restarts the current running broker instance. Cannot be
used to start a new broker instance.

Resumes all services on the broker.
Resumes one service.
Rolls back a transaction.

Shuts down the broker instance. Can be subsequently
started using the i ngbr oker d command, but not the
restart bkr subcommand of i ngcnd.

Updates attributes of a broker.
Updates attributes of a destination.

Updates attributes of a service.

Chapter 6 Broker and Application Management 139

Command Utility

Summary of imgcmd Options

Table 6-2 lists the options to the i nycnd command. For a discussion of their use, see
the following task-based sections.

Table 6-2 i ngcnd Options

Option Description

-b hostName:port Specifies the name of the broker’s host and its port number.
The default value is | ocal host : 7676.

To specify port only:-b : 7878
To specify name only: -b somehost

- C clientID Specifies the ID of the durable subscriber to a topic. For more
information, see “Managing Durable Subscriptions” on
page 155.

-d topicName Specifies the name of the topic. Used with the | i st dur and

destroy dur subcommands. See “Managing Durable
Subscriptions” on page 155.

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is
executed.

-H Displays usage help, attribute list, and examples. Nothing

else on the command line is executed.

-int interval Specifies the interval, in seconds, at which i ngcnd displays
broker metrics. (Used with the net ri ¢s subcommand.)

-j avahone Specifies an alternate Java 2 compatible runtime to use
(default is to use the runtime bundled with the product).

- m metricType Specifies the type of metric information to display. Type can
be one of the following

ttl Total of messages in and out of the broker (default).

rts Provides the same information as ttl, but specifies the
number of messages per second.

cxn Connections, virtual memory heap, threads

Use this option with theret ri cs bkr ornetrics svc
subcommand. The following command displays cxn-type
metrics for the default broker every five seconds.

imcmd netrics bkr -mcxn -int 5

140 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Command Utility

Table 6-2 i ngcnd Options (Continued)

Option Description

-n argumentName Specifies the name of the subcommand argument. Depending
on the subcommand, this might be the name of a service, a
physical destination, a durable subscription, or a
transaction ID.

- 0 attribute=value Specifies the value of an attribute. Depending on the
subcommand argument, this might be the attribute of a
broker (see “Querying and Updating Broker Properties” on
page 145), service (see “Managing Connection Services” on
page 148), or destination (see “Managing Destinations” on
page 152).

-secure Specifies a secure administration connection to the broker
using the ss| admi n connection service (see “Step 4.
Configuring and Running SSL-based Clients,”“Command
Utility (imqemd)” on page 202).

-p password Specifies your (the administrator’s) password. If you omit this
value, you will be prompted for it.

-s Silent mode. No output will be displayed.

-t destinationType Specifies the type of a destination: t (topic) or g (queue).
-tnp Displays temporary destinations.

-u name Specifies your (the administrator’s) name. If you omit this

value, you will be prompted for it.

-V Displays version information. Nothing else on the command
line is executed.

You must specify the options for host name and port number (- b), user name (- u)
password (- p), and secure connection (- secur e) each time you issue a i ngcnd
subcommand. If you don’t specify the host name and port number, it uses the
default values. If you don’t specify user name and password information, you will
be prompted for them. If you don’t specify - secur e, then the connection will not
be secure.

Chapter 6 Broker and Application Management 141

Command Utility

Prerequisites to Using imgcmd

In order to use i nycnd commands to manage the broker, you must do the
following:

Start the broker using the i ngbr oker d command.

See “Starting a Broker” on page 120. You can use the Command utility only to
administer brokers that are already running; you cannot use it to start a broker.

Specify the target broker using the - b option unless the broker is running on
the local host, on port 7676.

Specify the proper administrator user name and password. If you do not do
this, you will be prompted for it. Either way, be aware that every operation you
perform using i mgcrd will be authenticated against a user repository.

When you install MQ), a default flat-file user repository is installed. The file is
named | MQ_HOMVE/ et ¢/ passwd (/ et ¢/ i ng/ passwd on Solaris). The repository
is shipped with two entries: one for an admin user and one for a guest user.
These entries allow you to connect to the broker without doing any additional
work. For example, if you are just testing MQ, you can run the utility using
your default user name and password (adni n/adni n).

If you are setting up a production system, you will need to do some additional
work to authenticate and authorize users. You also have the option of using an
existing LDAP directory server for your user repository. For more information,
see “Authenticating Users” on page 182.

Examples

The following command lists the properties of the broker running on | ocal host at
port 7676:

i mgcnd query bkr -u admin -p admin

The following command lists the properties of the broker running on nyser ver at
port 1564; the user’s name is al | adi n, the user’s password is abr acadabr a.

i mgcnd query bkr -b nmyserver: 1564 -u alladin -p abracadabra

Assuming that the user name al | adi n was assigned to the adni n group, you will
be connected as an admin client to the specified broker.

142 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Controlling the Broker's State

Controlling the Broker’s State

After you start the broker, you can use the following i mycnd subcommands to
control the state of the broker.

Pausing the broker

Pausing the broker suspends the broker service threads which causes the
broker to stop listening on the ports. You can then perform any administration
tasks needed to regulate the flow of messages to the broker. For example, if a
particular destination is bombarded with messages, you can pause the broker
and take any of the following actions that might help you fix the problem: trace
the source of the messages, limit the size of the destination, or destroy the
destination.

The following command pauses the broker running on nmyhost at port 1588.
i mgcnd pause bkr -b myhost: 1588
Resuming the broker

Resuming the broker reactivates the broker’s service threads and the broker
resumes listening on the ports. The following command resumes the broker
running on | ocal host at port 7676.

i mgcnd resunme bkr
Shutting down the broker

Shutting down the broker terminates the broker process. This is a graceful
termination: the broker stops accepting new connections and messages, it
completes delivery of existing messages, and it terminates the broker process.
The following command shuts down the broker running on ct r| srv at port
1572

i mgcmd shutdown bkr -b ctrlsrv: 1572
Restarting the broker

Shuts down and restarts the broker. The following command restarts the
broker running on | ocal host at port 7676:

i mgcmd restart bkr

Chapter 6 Broker and Application Management 143

Controlling the Broker's State

144

Table 6-3 summarizes the i mgend subcommands used to control the broker.
Remember that you must specify the broker host name and port number unless
you are targeting the broker running on | ocal host at port 7676.

Table 6-3 i ngcnd Subcommands Used to Control the Broker

Subcommand

Description

pause bkr [-Db hostName:port]
resune bkr [-b hostName:port]
shut down bkr [-b hostName:port]

restart bkr [-b hostName:port]

Pauses the default broker or a broker at the
specified host and port.

Resumes the default broker or a broker at the
specified host and port.

Shuts down the default broker or a broker at the
specified host and port.

Shuts down and restart the default broker or a
broker at the specified host and port.

Note that this command restarts the broker using
the options specified when the broker was first
started. If you want different options to be in
effect, you must shutdown the broker and then
start it again, specifying the options you want.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Querying and Updating Broker Properties

Querying and Updating Broker Properties

The Command utility includes subcommands that you can use to get information
about the broker and to update broker properties. Table 6-4 lists these

subcommands.

Table 6-4

i ngcmd Subcommands Used to Get Information and to Update Broker

Subcommand Syntax

Description

query bkr -b hostName:port

reload cls

updat e bkr [-b hostName:port]
- 0 attribute=value
[- 0 attribute=valuel] . . .

metrics bkr [-Db hostName:port]
[- m metricType]
[-int interval]

Lists the current settings of properties of the
default broker or a broker at the specified host and
port. Also shows the list of running brokers (in a
multi-broker cluster) that are connected to the
specified broker.

Applies only to broker clusters. Forces all the
brokers in a cluster to reload the

i ng. cl uster. brokerlist property and
update cluster information. See “Adding Brokers
to Clusters” on page 129 for more information.

Changes the specified attributes for the default
broker or a broker at the specified host and port.

Displays broker metrics for the default broker or a
broker at the specified host and port.

Use the -m option to specify the type of metric to
display:

ttl Total of messages in and out of the

broker (default).

rts Provides the same information as ttl,
but specifies the number of messages
per second.

cxn Connections, virtual memory heap,

threads

Use the -int option to specify the interval (in
seconds) at which to display the metrics. The
default is 5 seconds

Chapter 6 Broker and Application Management 145

Querying and Updating Broker Properties

Remember that you must specify the broker host name and port number when
using any of the subcommands listed in Table 6-4 unless you are targeting the

broker running on | ocal host at port 7676

Querying a Broker

To query and display information about a single broker, use the query

subcommand. For example,
i mgcmd query bkr
This produces output like the following:

% nycnd query bkr
Querying the broker specified by:

| ocal host 7676

Aut o Create Queues

Auto Create Topics

Auto Created Queue Delivery Policy
Cluster Broker List (active)

Cl uster Broker List (configured)

Cl uster Master Broker

Cl uster URL

Current Number of Messages in System
Current Size of Messages in System
I nstance Nane

Log Level

Log Rol I over Interval (seconds)

Log Rol | over Size (bytes)

Max Message Size

Max Nunber of Messages in System
Max Size of Messages in System
Primary Port

Ver si on

Successful ly queried the broker.

true

true

Round Robi n

nyhost/ 192. 18. 116. 221: 7676

0

0

i mgbr oker

I NFO

604800

0 (unlimted)
70m

0 (unlimted)
0 (unlimted)
7676

3.0

146 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Updating a Broker

Querying and Updating Broker Properties

You can use the updat e subcommand to update any of the broker properties listed
in Table 6-5. Note that updates to the broker are automatically written to the
broker’s instance configuration file.

Table 6-5 Broker Properties

Properties

Description

i ng. aut ocr eat e. queue

i ng. aut ocreate.topic

i mg. queue. del i verypolicy

i mg.cluster.url

i mg. | og.level

inmg.log.file.rolloversecs

img.log.file.rolloverbytes

i ng. message. max_si ze

i ng. syst em nmax_count

i mg. system max_si ze

i ng. port mapper. port

Specifies whether a broker is allowed to
auto-create a queue destination. Tr ue by default.

Specifies whether a broker is allowed to
auto-create a topic destination. Tr ue by default.

Specifies the default delivery policy of
auto-created queues. Values are: s (single),
r (round-robin), or f (failover). Defaultiss.

Specifies the location of the cluster configuration
file. For more information, see”Cluster
Configuration Properties” on page 126.

Specifies the log level as one of the following:
NONE, ERROR, WARNI NG, | NFQ. Default is | NFO.

The age (in seconds) before the log file is rolled
over. A value of 0 means no rollover based on the
age of the file. Default is 604800 (7 days).

Specifies the maximum size of the log file before it
is rolled over. A value of 0 means no rollover based
on file size. Default is 0.

Specifies the maximum size of a message in bytes.
Default is 70m

Specifies the maximum number of messages in
memory and disk. A value of 0 means no limit.
Default is 0.

Specifies the maximum total size of messages in
memory and disk. A value of 0 means no limit.
Default is 0.

Specifies the number of the port mapper port.
Default is 7676.

Chapter 6 Broker and Application Management 147

Managing Connection Services

For example, the following command changes the default delivery policy for
queues from single to round-robin.

i mgcnd updat e bkr -0 “ing. queue. del i verypolicy=r"

Managing Connection Services

148

The Command utility includes a number of subcommands that allows you to do
the following

¢ list available connection services

¢ display information about a particular service

* update the attributes of a service

* pause and resume services

For an overview of MQ connection services, see “Connection Services” on page 46.

Table 6-6 lists the i ngcnd subcommands that control connection services. If no host
name or port is specified, they are assumed to be | ocal host, 7676.

Table 6-6 i ngcd Subcommands Used to Manage Connection Services
Subcommand Syntax Description
list svc [-b hostName:port] Lists all connection services on the default broker
or on a broker at the specified host and port.
metrics svc -n serviceName Lists metrics for the specified service on the
[- b hostName:port] default broker or on a broker at the specified host

[- mmetricType] [-int interval] and port.
Use the -m option to specify the type of metric to
display:
ttl Total of messages in and out of the broker
(default).

rts Provides the same information as ttl, but
specifies the number of messages per
second.

cxn Connections, virtual memory heap, threads

Use the -int option to specify the interval (in
seconds) at which to display the metrics. The
default is 5 seconds.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Managing Connection Services

Table 6-6 i ngcnd Subcommands Used to Manage Connection Services (Continued)

Subcommand Syntax

Description

query svc -n serviceName
[- b hostName:port]

pause svc -n serviceName
[- b hostName:port]

resune svc -n serviceName
[- b hostName:port]

update svc -n serviceName
[- b hostName:port]
- 0 attribute=value
[- 0 attribute=valuel] . . .

Displays information about the specified service
running on the default broker or on a broker at
the specified host and port.

Pauses the specified service running on the
default broker or on a broker at the specified host
and port. You cannot pause the admin service.

Resumes the specified service running on the
default broker or on a broker at the specified host
and port.

Updates the specified attribute of the specified
service running on the default broker or on a
broker at the specified host and port. For a
description of service attributes, see Table 6-8 on
page 151.

A broker supports communication with both application clients and
administration clients. The connection services currently available from an MQ
broker are shown in Table 6-7 on page 149. The values in the Service Name column
are the values you use to specify a service name for the -n option. (As shown in the
table, each service is specified by the service type it uses—NORVAL (JMS) or

ADM N—and an underlying transport layer.)

Table 6-7 Connection Services Supported by a Broker

Service Name

Service Type

Protocol Type

jms NORMAL (JMS message delivery) tcp

ssljms NORMAL (JMS message delivery) tls (SSL-based security)
(Enterprise Edition)

httpjms NORMAL (JMS message delivery) http

(Enterprise Edition)

httpsjms NORMAL (JMS message delivery) https (SSL-based security)
(Enterprise Edition)

admin ADMIN tep

ssladmin ADMIN tls (SSL-based security)

(Enterprise Edition)

Chapter 6 Broker and Application Management 149

Managing Connection Services

Listing Connection Services

To list available connection services on a broker, use a command like the following:
imgcmd i st svc [-b host Nane: port Number]

For example, the following command lists the services available for the broker
running on the host MyServer on port 6565.

imgcmd list svc -b MyServer: 6565

The following command lists all services on the broker running on | ocal host at
port 7676:

imcmd |ist svc

The command will output information like the following:

Listing all the services on the broker specified by:
Host Primary Port

| ocal host 7676

Servi ce Nane Port Nunber Service State
adm n 33984 (dynami c) RUNNI NG

ht t pj ns UNKNOWN

ht t psj ns - UNKNOWN

j s 33983 (dynami c) RUNNI NG

ssl admin dynami c UNKNOWN
ssljms dynami c UNKNOVWN
Successfully listed services.

Querying and Updating Service Properties

To query and display information about a single service, use the query
subcommand. For example,

i mgcmd query svc -n jns

150 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Managing Connection Services

This produces output like the following:

Querying the service where:

Servi ce Nane

jms

On the broker specified by:

Host Primary Port

| ocal host 7676

Current Nunmber of Allocated Threads 120

Current Nunber of Connections 20

Max Nunmber of Threads 1000

M n Nunber of Threads 50

Port Nunmber 42019 (dynamic)
Servi ce Nane j s

Service State RUNNI NG

Successful ly queried the service.

You can use the updat e subcommand to change the value of one or more of the
service attributes listed in Table 6-8.

Table 6-8 Connection Service Attributes

Attribute Description

port The port assigned to the service to be updated (does not apply
to httpjms or httpsjms).

m nThr eads The minimum number of threads assigned to the service.

maxThr eads The maximum number of threads assigned to the service.

The following command changes the minimum number of threads assigned to the
jms service to 20.

i mgcmd update svec -n jns -0 “m nThreads=20"

Chapter 6 Broker and Application Management 151

Managing Destinations

Pausing and Resuming a Service

To pause any service other than the admin service (which cannot be paused), use a

command like the following:

i mgcmd pause svc -n serviceName

To resume a service, use a command like the following;:

i mgcmd resune svc -n serviceName

Managing Destinations

All MQ messages are routed to their consumer clients by way of destinations,
queues and topics, created on a particular broker. You are responsible for
managing these destinations on the broker. This involves using the Command

utility to create and destroy destinations, to list destinations, to display information
about destinations, and to purge messages. For an introduction to destinations, see

“Physical Destinations” on page 65.

Table 6-9 provides a summary of the i ngcnd destination subcommands.
Remember to specify the host name and port of the broker if this is not the default

(I ocal host :7676) broker.

Table 6-9 i ngcd Subcommands Used to Manage Destinations
Subcommand Description
list dst [-tnp] Lists all destinations, with option of listing

create dst -t fype
-n destName
[- 0 attribute=value]
[- o attribute=valuel] . . .

destroy dst
- n destName

-t type
purge dst -t type
-n destName

query dst -t type
-n destName

temporary destinations as well (see “Temporary
Destinations” on page 68).

Creates a destination of the specified type, with the
specified name, and the specified attributes.
Destination names must contain only alphanumeric
characters (no spaces) and can begin with an
alphabetic character or the character “_"

Destroys the destination of the specified type and
name.

Purges messages at the destination with the
specified type and name.

Lists information about the destination of the
specified type and name.

152 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Managing Destinations

Table 6-9 i ngcd Subcommands (Continued)Used to Manage Destinations (Continued)

Subcommand Description
update dst -t fype Updates the value of the specified attributes at the
-n destName specified destination.

- 0 attribute=value

[-0 attribute=valuel] . . The attribute name may be any of the attributes

described in Table 6-10.

Creating Destinations

When creating a destination, you must specify its type (topic or queue) and, if
needed, specify values for the destination’s attributes. Default values for these
attributes are set in the broker’s configuration file (see “Configuration Files” on
page 114.)

Destroying a destination purges all messages at that destination and removes it
from the broker; the operation is not reversible.

Table 6-10 describes the attributes that can be set for each type of destination when
you create the destination.

Table 6-10 Destination Attributes

Destination Attribute Default Value Description

Type

Queue queueDel i veryPolicy Single Describes the algorithm used
to route messages.
Values are
f = Failover

r = Round robin

s = Single

Queue maxTot al MsgByt es 0 (unlimited) Maximum total size in bytes of
messages allowed in the
queue.

Queue maxNunmivsgs 0 (unlimited) Maximum number of

messages allowed in the queue

Queue maxByt esPer Msg 0 (unlimited) Maximum size of any single
message allowed in the queue.

Topic maxByt esPer Msg 0 (unlimited) Maximum size of any single
message posted to the topic.

Chapter 6 Broker and Application Management 153

Managing Destinations

* To create a queue destination, enter a command like the following:
imgcnd create dst -n nyQueue -t g -0 “queueDeliveryPolicy=f"
Note that a destination name must be a valid Java identifier.

e To create a topic destination, enter a command like the following:

imcmd create dst -n nyTopic -t t -o “maxByt esPer Msg=5000"

Getting Information About Destinations

To get information about the current value of a destination’s attributes, use a
command like the following:

imgcnd query dst -t g -n XQueue

You can then use the updat e i ngcnd subcommand to change the values of one or
more attributes.

To list all destinations on a particular broker, say the broker running on nyHost at
port 4545, use a command like the following:

imgcnd ist dst -b myHost: 4545

The | i st command can optionally include temporary destinations (using the - t np
option). These are destinations created by client applications that need a
destination at which to receive replies to messages sent to other clients (see
“Temporary Destinations” on page 68). You cannot destroy these destinations;
they can only be destroyed by API calls made by the client application when there
are no more active message consumers.

Updating Destinations

You can change the attributes of a destination by using the updat e dst
subcommand and the -o option to specify the attribute to update. You can use the
- 0 option more than once if you want to update more than one attribute. For
example, the following command changes the maxByt esPer Msg attribute to 1000
and the MaxNumiVsgs to 2000:

i mgcmd update dst -t q -n nmyQueue -o “maxByt esPer Msg=1000"
-0 maxNumvsgs=2000

See Table 6-10 on page 153 for a list of the attributes that you can update.

You cannot use the updat e dst subcommand to update the fype of a destination or
to update the queue delivery policy for a queue.

154 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Managing Durable Subscriptions

Purging Destinations

You can purge all messages currently queued at a destination. Purging a
destination means that all messages queued at the physical destination are deleted.
You might want to purge messages when the messages accumulated at a
destination are taking up too much of the system’s resources. This might happen
when a queue does not have any registered consumer clients and is receiving many
messages. It might also happen if inactive durable subscribers to a topic do not
become active. In both cases, messages are held unnecessarily.

To purge messages at a destination, enter commands like the following;:
i mgcmd purge dst -n myQueue -t g
i mgcmd purge dst -n nmyTopic -t t

In the case where you have shut down the broker and do not want old messages to
be delivered when you restart it, use the r eset subcommand of the i mybr oker d
command to purge stale messages; for example:

i mgbr okerd -reset nessages

This saves you the trouble of purging destinations after restarting the broker.

Destroying Destinations

To destroy a destination, enter a command like the following:

i mgcnd destroy dst -t g -n myQueue

Managing Durable Subscriptions

You might need to use i nycnd subcommands to manage a broker’s durable
subscriptions. A durable subscription is a subscription to a topic that is registered by
a client as durable; it has a unique identity and it requires the broker to retain
messages for that subscription even when its consumer becomes inactive.
Normally, the broker may only delete a message held for a durable subscriber
when the message expires.

Chapter 6 Broker and Application Management 155

Managing Durable Subscriptions

156

Table 6-12 provides a summary of the i ngcnd durable subscription subcommands.
Remember to specify the host name and port of the broker if this is not the default
(I ocal host :7676) broker.

Table 6-11 i ngcd Subcommands Used to Manage Durable Subscriptions

Subcommand Description

l'ist dur -d destination Lists all durable subscriptions for the specified
destination.

destroy dur -n subscrName Destroys the specified durable subscription for the

-c client_id specified Client Identifier (see “Client Identifiers”
on page 38).

purge dur -n subscrName Purges all messages for the specified Client

- C client_id Identifier (see “Client Identifiers” on page 38).

For example, the following command lists all durable subscriptions to the topic
SPQuot es

imgcnd list dur -d SPQuotes

For each durable subscription to a topic, the | i st subcommand returns the name
of the durable subscription, the client ID of the user, the number of messages
queued to this topic, and the state of the durable subscription (active/inactive). For
example:

Listing all the durable subscriptions on the topic nyTopic
on the broker specified by:

Nanme Cient ID Nunber of Dur abl e Sub
Messages State
myDur abl e nmyClientl D 1 I NACTI VE

Successfully listed durabl e subscriptions.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Managing Transactions

You can use the information returned from the | i st command to identify a
durable subscription you might want to destroy or for which you want to purge
messages. Use the name of the subscription and the client ID to identify the
subscription. For example:

i mgcnd destroy dur -n nyDurable -c mydientID

Managing Transactions

All transactions initiated by client applications are tracked by the broker. These can
be simple MQ transactions or distributed transactions managed by an XA resource
manager (see “Local Transactions” on page 40). All transaction have an MQ
transaction ID—a 64 bit number that uniquely identifies a transaction on the
broker. Distributed transactions also have a distributed transaction ID (XID)
assigned by the distributed transaction manager—up to 128 bytes long. MQ
maintains the association of an MQ transaction ID with an XID.

For distributed transactions, in cases of failure, it is possible that transactions could
be left in a PREPARED state without ever being committed. Hence, as an
administrator you might need to monitor and then roll back or commit transactions
left in a prepared state.

Table 6-12 provides a summary of the i ngcnd transactions subcommands.
Remember to specify the host name and port of the broker if this is not the default
(I ocal host :7676) broker.

Table 6-12 i ngcmd Subcommands Used to Manage Transactions

Subcommand Description

list txn Lists all transactions, being tracked by the broker.
query txn -n transaction_id Lists information about the specified transaction.
commt txn -n transaction_id Commits the specified transaction.

rol | back txn -n transaction_id Rolls back the specified transaction.

For example, the following command lists all transactions in a broker.

imgcmd [ist txn

Chapter 6 Broker and Application Management 157

Managing Transactions

158

For each transaction, the | i st subcommand returns the transaction ID, state, user
name, number of messages or acknowledgements, and creation time. For example:

Listing all the transactions on the broker specified by:

| ocal host 7676

Transaction ID State User nane # Msgs/ Creation time

Acks
64248349708800 PREPARED guest 4/ 0 1/ 30/ 02 10: 08: 31 AM
64248371287808 PREPARED guest 0/ 4 1/ 30/ 02 10: 09: 55 AM

Successfully listed transactions.

The command shows all transactions in the broker, both local and distributed. You
can only commit or roll back transactions in the PREPARED state. You should only
do so if you know that the transaction has been left in this state by a failure and is
not in the process of being committed by the distributed transaction manager.

For example, if the broker’s auto-rollback property is set to false (see Table 2-4 on
page 53), then you have to manually commit or roll back transactions found in a
PREPARED state at broker startup.

The | i st subcommand also shows the number of messages that were produced in
the transaction and the number of messages that were acknowledged in the
transaction (#Msgs/ #Acks). These messages will not be delivered and the
acknowledgements will not be processed until the transaction is committed.

The quer y subcommand lets you see the same information plus a number of
additional values: the Client ID, connection identification, and distributed
transaction ID (XID). For example,

i mgcmd query txn -n 64248349708800

produces the following output:

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Managing Transactions

Querying the transaction where:

64248349708800

On the broker specified by:

Cient ID

Connecti on guest @92. 18. 116. 219: 62209- >j ns: 62195
Creation tinme 1/30/02 10:08: 31 AM

Number of acknow edgenents 0

Number of nessages 4

State PREPARED

Transaction |ID 64248349708800

User nane guest

Xl D

6469706F6C7369646577696E6465723130313234313431313030373230

Successfully queried the transaction.

The conmi t and r ol | back subcommands can be used to commit or roll back a
distributed transaction. As mentioned previously, only a transaction in the
PREPARED state can be committed or rolled back. For example:

imgcnd comit txn -n 64248349708800

It is also possible to configure the broker to automatically roll back transactions in
the PREPARED state at broker startup. See the i ng. transacti on. aut or ol | back
property in Table 2-4 on page 53 for more information.

Chapter 6 Broker and Application Management 159

Managing Transactions

160 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Chapter

7

Managing Administered Objects

The use of administered objects enables the development of client applications that

are portable to other JMS providers. Administered objects are objects that

encapsulate provider-specific configuration and naming information. These objects

are normally created by a Sun™ ONE Message Queue (MQ) administrator and

used by client applications to obtain connections to the broker, which are then used

to send messages to and receive messages from physical destinations.

For an overview of administered objects, see”MQ Administered Objects” on
page 75.

MQ provides two administration tools for creating and managing administered

objects: the command line Object Manager utility (i ngobj mgr) and the GUI
Administration Console. These tools enable you to do the following:

* Add or delete administered objects to an object store.

¢ List existing administered objects.

* Query and display information about an administered object.
* Modify an existing administered object in the object store.

This chapter explains how you use the Object Manager utility (i ngobj ngr) to
perform these tasks. For information about the Administration Console, see
Chapter 4, “Administration Console Tutorial.”

161

About Object Stores

About Object Stores

Administered objects are placed in a readily available object store where they can
be accessed by client applications through a JNDI lookup. There are two types of
object stores you can use: a standard LDAP directory server or a file-system object
store.

LDAP Server An LDAP server is the recommended object store for production
messaging systems. LDAP implementations are available from a number of
vendors and are designed for use in distributed systems. LDAP servers also
provide security features that are useful in production environments. MQ
administration tools are designed for use with LDAP servers.

File-system Store MQ also supports a file-system object store implementation.
While the file-system object store is not fully tested and is therefore not
recommended for production systems, it has the advantage of being very easy to
use in development environments. Rather than setting up an LDAP server, all you
have to do is create a directory on your local file system. Any user with access to
that directory can use MQ administration tools to create and manage administered
objects.

Administered Objects

For an overview of administered objects, see “MQ Administered Objects” on
page 75.

MQ administered objects are of two basic kinds: connection factories and
destinations. Connection factory administered objects are used by client applications
to create a connection to a broker. Destination administered objects are used by
client applications to identify the destination to which a producer is sending
messages or from which a consumer is retrieving messages. (A special SOAP
endpoint administered object is used for SOAP messaging—see the MQ Developer’s
Guide for more information.)

Depending on the message delivery model (point-to-point or publish/subscribe),
connection factories and destinations of a specific type can be used. In
point-to-point programming, for example, a queueConnectionFactory and a queue
destination can be used. Similarly, in publish and subscribe programming, a
topicConnectionFactory and a topic destination can be used. Non-specific
connection factory and destination administered object types are also available, as
are connection factory types that support distributed transactions (see Table 1-1 on
page 38 for all the supported types).

162 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Object Manager Utility (imgobjmagr)

Object Manager Utility (imgobjmgr)

The Object Manager utility allows you to create and manage MQ administered
objects. This section describes the basic i mjobj mgr command syntax, provides a
listing of subcommands, and summarizes i ngobj ngr command options.
Subsequent sections explain how you use the i ngobj ngr subcommands to
accomplish specific tasks.

Syntax of Command

The general syntax of the i ngcnd command is as follows:

i mgobj ngr subcommand [options]
i mgobj ngr -h| H
i mgobj mgr -v

Note that if you specify the -v, -h, or -H options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the | i st subcommand is not executed.

i mgobj mgr list -v

imgobjmgr Subcommands

The Object Manager utility (i ngobj ngr) includes the subcommands listed in
Table 7-1:

Table 7-1 i ngobj ngr Subcommands

Subcommand Description

add Adds an administered object to the object store.

del ete Deletes an administered object from the object store.

l'ist Lists administered objects in the object store.

query Displays information about the specified administered object.
updat e Modifies an existing administered object in the object store.

Chapter 7 Managing Administered Objects 163

Object Manager Utility (imgobjmgr)

164

Summary of imgobjmgr Command Options

Table 7-2 lists the options to the i nyobj nyr command. For a discussion of their use,
see the task-based sections that follow.

Table 7-2 i ngobj nmgr Options

Option Description

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is
executed.

-H Displays usage help, attribute list, and examples. Nothing
else on the command line is executed.

-1 fileName Specifies the name of an input file containing all or part of the

- attribute=value

-j avahone

-1 lookupName

- 0 attribute=value

-pre

-1 read-only_state

subcommand clause, specifying (object type, lookup name,
object attributes, object store attributes, or other options).
Typically used for repetitive information, such as object store
attributes.

Specifies attributes necessary to identify and access a JNDI
object store.

Specifies an alternate Java 2 compatible runtime to use
(default is to use the runtime bundled with the product).

Specifies the JNDI lookup name of an administered object.
This name must be unique in the object store’s context.

Specifies attributes of an administered object.

Preview mode. Indicates what will be done without
performing the command.

Specifies whether an administered object is a read-only object.
A value of t r ue indicates the administered object is a
read-only object. JMS clients cannot modify the attributes of
read-only administered objects. The read-onlystate is set to

f al se by default.

Silent mode. No output will be displayed.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Table 7-2

Object Manager Utility (imgobjmagr)

i mgobj ngr Options (Continued)

Option

Description

-t type

Specifies the type of an MQ administered object:

q = queue

t = topic

cf = ConnectionFactory

gf = queueConnectionFactory

tf = topicConnectionFactory

xcf = XA ConnectionFactory (distributed transactions)

xqf = XA queueConnectionFactory (distributed transactions)
xtf = XA topicConnectionFactory (distributed transactions)
e = SOAP endpoint!

Displays version information. Nothing else on the command
line is executed.

1 This administered object type is used to support SOAP messages (see the MQ Developer’s Guide).

The following section describes information that you need to provide when
working with any i ngobj ngr subcommand.

Required Information

When performing most tasks related to administered objects, the administrator
must specify the following information as options to i mgobj ngr subcommands:

e The type of the administered object:

The allowed types are shown in Table 7-2.

e The JNDI lookup name of the administered object:

This is the logical name that will be used in the client code to refer to the
administered object (using JNDI) in the object store.

¢ Attributes of the administered object:

Chapter 7 Managing Administered Objects

165

Object Manager Utility (imgobjmgr)

o For queues and topics: The name of the physical destination on the broker.
This is the name that was specified with the - n option to the i mycnd
cr eat e subcommand. If you do not specify the name, the default name of
Untitled_Destination_Cbject will be used.

o For connection factories: The host name and port number of the broker to
which the client will connect. If you do not specify this information, the
local host and default port number (7676) are used. The section
“Administered Object Attributes” on page 167 explains how you specify
object attributes.

For additional attributes, see “Administered Object Attributes” on page 167.
* Attributes of the JNDI object store:

This information depends on whether you are using a file-system store or
LDAP server, but must include the following attributes:

o The type of JNDI implementation (initial context attribute). For example,
file-system or LDAP.

o The location of the administered object in the object store (provider URL
attribute), that is, its “folder” as it were.

o The user name, password, and authorization type, if any, required to
access the object store.

For more information about object store attributes see “Object Store Attributes”
on page 169.

166 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Object Manager Utility (imgobjmagr)

Administered Object Attributes

The attributes of an administered object are specified using attribute-value pairs.
The following sections describe these attributes.

Connection Factory Administered Objects

Connection factory (and XA connection factory) administered objects have the
attributes listed in Table 7-3. The two attributes you are primarily concerned with
are i nyBr oker Host Port and i ngBr oker Host Name, which you use to specify the
broker to which the client application will establish a connection. The section,
“Adding a Connection Factory” on page 174, explains how you specify these
attributes when you add a connection factory administered object to your object
store.

For more descriptions of connection factory attributes and information on how
they are used, see the MQ Developer’s Guide and the JavaDoc API documentation
for the MQ class com sun. messagi ng. Connect i onConf i gurati on.

Table 7-3 Connection Factory Attributes

Attribute/property name Type Default Value

i mpAckOnAcknow edge String not specified

i mgAckOnPr oduce String not specified

i mgAckTi meout String 0 milliseconds

i ngBr oker Host Nane String | ocal host

i moBr oker Host Por t String 7676

i mgBr oker Servi cePort String 0

i mgConfi gureddientlD String not specified

i mpConnecti onType String TCP

i mgConnect i onURL String http://Iocal host/ing/
tunnel

i ngDef aul t Passwor d String guest

i nrgDef aul t User nane String guest

i mgDi sabl eSetClientlD String fal se

i mgFl owCont r ol Count String 100

i mgFl owControl I sLinm ted String fal se

i ngFl owCont rol Li mit String 1000

Chapter 7 Managing Administered Objects 167

Object Manager Utility (imgobjmgr)

Table 7-3 Connection Factory Attributes (Continued)

Attribute/property name Type Default Value

i ngLoadMaxToSer ver Sessi on String fal se

i ngQueueBr owser Max String 1000

MessagesPer Retri eve

i mpQueueBr owser Retri eve String 60, 000 m | |liseconds
Ti meout

i mgReconnect Boolean fal se

i rgReconnect Del ay String 30,000 mlliseconds
i ngReconnect Retri es String 0

i ngSet JMSXApp!l D String fal se

i mgSet JMSXConsuner TXI D String fal se

i mgSet JMSXPr oducer TXI D String fal se

i mySet JIMSXRevTi nest anp String fal se

i ngSet JMSXUser | D String fal se

i nMySSLI sHost Tr ust ed String true

i nrgJNVSDel i ver yMode Integer 2 (persistent)

i mgJMSEXpi rati on Integer 0 (does not expire)

i mgJMSPriority Integer 4 (normal priority)

i mgOverri deJMSDel i veryMode Boolean fal se
i rgOverri deJMSExpi ration Boolean fal se
i mgOverri deJMSPriority Boolean fal se

i mgOverri deJMSHeader sTo Boolean fal se
Tenpor aryDest i nati ons

168 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Object Manager Utility (imgobjmagr)

Destination Administered Objects

The destination administered object that identifies a physical topic or queue
destination has the attributes listed in Table 7-4. The section, “Adding a Topic or
Queue” on page 175, explains how you specify these attributes when you add a
destination administered object to your object store.

The attribute you are primarily concerned with isi rgDest i nat i onNane. This is the
name you assign to the physical destination that corresponds to the topic or queue
administered object. You can also provide a description of the destination that will
help you distinguish it from others that you might create to support many
applications.

For more information, see the JavaDoc API documentation for the MQ class
com sun. nessagi ng. Desti nati onConfi gurati on.

Table 7-4 Destination Attributes

Attribute/property name Type Default

i ngDest i nati onDescri ption String A Description for the
destination Cbject

i rgDest i nati onNane Strimg1 Untitl ed_Destination_Cbject

1 Destination names can contain only alphanumeric characters (no spaces) and must begin with an alphabetic
character or the characters “_” and /or “$”.

Object Store Attributes

The attributes of the object store are specified using the -j option and consist of
attribute-value pairs. In general, you must specify the following attributes:

Initial Context and Location Information
The format for these entries differs depending on whether you are using a
file-system store or LDAP server.

File-system store As an example of using a file-system store, create a folder
called MyObjstore on the C drive, and specify the following values for the initial
context and location attributes, respectively:

-j "java.nam ng.factory.initial=
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory"

-j "java.nam ng.provider.url=file:///C /MQCbj Store"

Chapter 7 Managing Administered Objects 169

Object Manager Utility (imgobjmgr)

LDAP server As an example of using an LDAP server, specify the following
values for the initial context and location attributes, respectively:

-j "java.nam ng.factory.initial=
com sun. j ndi . | dap. LdapCt xFact ory"

-j "java. nam ng. provider. url =l dap:// nmydomai n. com 389/ o=i nq"

Security Information (LDAP Only)

The format for these entries differs depending on the LDAP provider. You should
also consult the documentation provided with your LDAP implementation to
determine whether security information is required on all operations or only on
operations that change the stored data.

Security attributes look like this:

-j "java.nam ng.security. principal =

ui d=f ooUser, ou=People, o=inm"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng.security.authentication=si npl e"

Table 7-5 describes these entries:

Table 7-5 Security Attributes for the Object Store

Attribute Description

..princi pal The identity of the principal for authenticating the caller to the
service.The format of this entry depends on the authentication
scheme. If this property is unspecified, the behavior is
determined by the service provider.

.credentials The credentials of the principal for authenticating the caller to the
service. The value of the property depends on the authentication
scheme. For example, it could be a hashed password, clear-text
password, key, certificate, and so on. If this property is
unspecified, the behavior is determined by the service provider.

.aut hentication Security level to use. Its value is one of the following key words:
none, si npl e, st r ong. If this property is unspecified, the
behavior is determined by the service provider.

If you specify si npl e, i ngobj ngr will prompt for any missing
principal or credential values. This will allow you a more secure
way of providing identifying information.

170 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Using Input Files

Object Manager Utility (imgobjmagr)

The i myobj myr command allows you to specify the name of an input file that uses

java property file syntax to represent all or part of the i mjobj mgr subcommand

clause.

Using an input file with the Object Manager utility (i nyobj mgr) is especially useful

to specify object store attributes, which are likely to be the same across multiple
invocations of i ngobj ngr and which normally require a lot of typing. Using an
input file can also allow you to avoid a situation in which you might otherwise

exceed the maximum number of characters allowed for the command line.

The general syntax for a i ngobj ngr input file is as follows (the version property

applies only to the input file—it is not a command line option—and its value must

be set to 2. 0):

version=2.0

cndtype=[add | delete | list | query |
obj.type=[q | t | qf | tf | cf | xqf |
obj . | ookupNane=| ookup nane

obj . attrs.obj AttrNamel=val uel

obj . attrs. obj AttrNanme2=val ue2

obj . attrs. obj AttrNaneN=val ueN

obj store. attrs. obj StoreAttrNanmel=val uel
obj store. attrs. obj StoreAttrName2=val ue2
obj store. attrs. obj St oreAttrNameN=val ueN

updat e]
xtf | xcf | e]

Chapter 7

Managing Administered Objects

171

Object Manager Utility (imgobjmgr)

As an example of how you can use an input file, consider the following i ngobj myr
command:

i mgobj ngr add
-t gf
-1 " cn=myQCF"
-0 "i ngBroker Host Nane=f 00"
-0 "ingBroker Host Port =777"
-j "java.nami ng.factory.initial=
com sun. j ndi . | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url=
| dap: // mydomai n. com 389/ o=i my"
-j "java.nam ng.security.principal =
ui d=f ooUser, ou=Peopl e, o=inmg"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng.security.authenticati on=si npl e"

This command can be encapsulated in a file, say MyCnulFi | e, that has the following
contents:

version=2.0
cmdt ype=add
obj . t ype=qf
obj . | ookupName=cn=my QCF
obj . attrs.ingBroker Host Nane=f oo
obj . attrs.ingBrokerHost Port =777
objstore.attrs.java. nanmng.factory.initial=\
com sun. j ndi . | dap. LdapCt xFact ory
obj store.attrs.java. nanm ng. provi der. url =\
| dap: // mydomai n. com 389/ o=i ny
obj store.attrs.java. nam ng. security. principal =\
ui d=f ooUser, ou=Peopl e, o=ing
obj store.attrs.java. nam ng. security.credential s=f ooPasswd
obj store.attrs.java. nam ng. security. aut henticati on=sinple

172 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Object Manager Utility (imgobjmagr)

You can then use the -i option to pass this file to the Object Manager utility
(i myobj mor):

i mgobj mgr -i MyCndFil e

You can also use the input file to specify some options, while using the command
line to specify others. This allows you to use the input file to specify parts of the
subcommand clause that is the same across many invocations of the utility. For
example, the following command specifies all the options needed to add a
connection factory administered object, except for those that specify where the
administered object is to be stored.

i mgobj ngr add
-t of
-1 "cn=nyCF"
-0 "ingBroker Host Nane=f 00"
-0 "ingBrokerHost Port =777"
-i MWCmdFile

In this case, the file \yCndFi | e would contain the following definitions:

version=2.0
objstore.attrs.java. nam ng.factory.initial=\
com sun. j ndi . | dap. LdapCt xFact ory
obj store.attrs.java. nam ng. provi der. url =\
| dap: // mydonmi n. com 389/ o=i nqy
obj store.attrs.java. nam ng. security. principal =\
ui d=f ooUser, ou=Peopl e, o=inyg
obj store.attrs.java. nam ng. security.credential s=f ooPasswd
obj store.attrs.java. nam ng. security. aut henticati on=sinple

Additional examples of input files can be found at the following location:

| MQ_HOVE/ deno/ i ngobj ngr

Chapter 7 Managing Administered Objects 173

Adding and Deleting Administered Objects

Adding and Deleting Administered Objects

This section explains how you add administered objects for connection factories
and topic or queue destinations to the object store.

174

NOTE

The Object Manager utility (i ngobj mgr) lists and displays only MQ
administered objects. If an object store should contain a non-MQ
object with the same lookup name as an administered object that
you wish to add, you will receive an error when you attempt the
add operation.

Adding a Connection Factory

To enable client applications to obtain a connection to the broker, you add an
administered object that represents the type of connections the client applications
want: a topic connection factory or a queue connection factory

To add a queue connection factory, use a command like the following:

-1
-0
-0
-

R
-
g
-

i mgobj ngr add
-t of
" cn=ny QCF"
"i ngBr oker Host Nane=nyHost "
"i ngBr oker Host Port =7272"
"java.nam ng. factoryinitial =

com sun. j ndi . | dap. LdapCt xFact ory"

"j ava. nam ng. provi der. url =l dap: // mydonai n. com 389/ o=i ny"
"java. nam ng. security. principal =

ui d=f ooUser, ou=Peopl e, o=ing"

"j ava. nam ng. security. credenti al s=f ooPasswd"
"java. nam ng. security. aut henti cati on=si npl e"

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Adding and Deleting Administered Objects

The preceding command creates an administered object whose lookup name is
cn=nyQCF and which connects to a broker running on nyHost and listens on port
7272. The administered object is stored in an LDAP server.

NOTE If you are using an LDAP server to store the administered object, it
is important that you assign a lookup name that has the prefix “cn="
as in the example above. You specify the lookup name with the - |
option. You do not have to use this prefix if you are using a
file-system object store.

You can accomplish the same thing by specifying an input file as an argument to
the i mgobj mgr command. For more information, see “Using Input Files” on
page 171.

Adding a Topic or Queue

To enable client applications to access physical destinations on the broker, you add
administered objects that identify these destinations, to the object store.

It is best to first create the physical destinations before adding the corresponding
administered objects to the object store. Use the Command utility (i ngcnd) to
create the physical destinations on the broker that are identified by destination
administered objects in the object store. For information about creating physical
destinations, see “Managing Destinations” on page 152.

The following command adds an administered object that identifies a topic
destination whose lookup name is my Topi ¢ and whose physical destination name
is Test Topi c. The administered object is stored in an LDAP server.

i mgobj ngr add
-t ot
-1 "cn=nyTopi c"
-0 "ingDestinati onNane=Test Topi c"
-j "java.nam ng.factory.initial=
com sun. j ndi . | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url =
| dap: // nydomai n. com 389/ o=i ngy"
-j "java.nam ng.security.principal =
ui d=f ooUser, ou=Peopl e, o=ing"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng.security. aut henticati on=si npl e"

Chapter 7 Managing Administered Objects 175

Adding and Deleting Administered Objects

176

This is the same command, only the administered object is stored in a Solaris file
system:

i mgobj ngr add

-t ot

-1 "cn=nmyTopi c"

-0 "ingDesti nati onNane=Test Topi c"

-j "java.nam ng.factory.initial=
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory"

-j "java. nam ng. provider.url =
file:///home/foo/inm_adn n_objects"”

In the LDAP server case, as an example, you could use an input file, M\yCdFi | e, to
specify the subcommand clause. The file would contain the following text:

version=2.0
cndt ype=add
obj . type=t
obj . | ookupName=cn=nyTopi c
obj . attrs.inmgDestinati onName=Test Topi ¢
objstore.attrs.java. nanmng.factory.initial=
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory
objstore.attrs.java. nam ng. provi der. url =
file:///home/foo/ing_adm n_objects
obj store.attrs.java. nam ng. security. principal =
ui d=f ooUser, ou=Peopl e, o=ing
obj store.attrs.java. nam ng. security.credential s=f ooPasswd
obj store.attrs.java. nam ng. security. aut henticati on=sinple

Use the -i option to pass the file to the i ngobj mgr command:
i mgobj mgr -i MyCndFil e

NOTE If you are using an LDAP server to store the administered object, it
is important that you assign a lookup name that has the prefix “cn="
as in the example above. You specify the lookup name with the - |
option. You do not have to use this prefix if you are using a
file-system object store.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Getting

Getting Information

Adding a queue object is exactly the same, except that you specify q for the - t
option.

Deleting Administered Objects

Use the del et e subcommand to delete an administered object. You must specify
the lookup name of the object, its type, and its location.

The following command deletes an administered object for a topic whose lookup
name is cn=nyTopi ¢ and which is stored on an LDAP server.

i ngobj ngr del ete
-t ot
-1 "cn=nyTopic"
-j "java.nami ng.factory.initial=
com sun. j ndi . | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url=
| dap: // nydomai n. com 389/ o=i ngy"
-j "java.nam ng.security. principal =
ui d=f ooUser, ou=Peopl e, o=ing"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng. security. authenti cati on=si npl e"

Information

Use the | i st and query subcommands to list administered objects in the object
store and to display information about an individual object.

Listing Administered Objects

Use the | i st subcommand to get a list of all administered objects or to get a list of
all administered objects of a specific type. The following sample code assumes that
the administered objects are stored in an LDAP server.

Chapter 7 Managing Administered Objects 177

Getting Information

The following command lists all objects.

i mgobj ngr | st
-j "java.nami ng.factory.initial=
com sun. jndi. | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url=
| dap: // nydomai n. com 389/ o=i ng"
-j "java.nam ng.security. principal =
ui d=f ooUser, ou=Peopl e, o=inm"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng.security.authentication=si nple"

The following command lists all objects of type queue.

i ngobj nogr i st
-t q
-j "java.nami ng.factory.initial=
com sun. j ndi . | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url =
| dap: // nydomai n. com 389/ o=i ny"
-j "java.nam ng.security. principal =
ui d=f ooUser, ou=Peopl e, o=i ng"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng. security. aut henti cati on=si npl e"

Information About a Single Object

Use the quer y subcommand to get information about an administered object. You
must specify the object’s lookup name and the attributes of the object store
containing the administered object (such as initial context and location).

178 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Getting Information

In the following example, the quer y subcommand is used to display information
about an object whose lookup name is myTopi c.

i mgobj ngr query
-1 "cn=myTopi c"
-j "java.nam ng.factory.initial=
com sun. j ndi . | dap. LdapC xFact ory"
-j "java.nam ng. provider.url =
| dap: // nydomai n. com 389/ o=i ny"
-j "java.nam ng.security.principal =
ui d=f ooUser, ou=Peopl e, o=inm"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng. security. authenticati on=si npl e"

Chapter 7 Managing Administered Objects 179

Updating Administered Objects

Updating Administered Objects

You use the updat e command to modify the attributes of administered objects.
You must specify the lookup name and location of the object. You use the -o option
to modify attribute values.

This command changes the attributes of an administered object that represents a
topic connection factory:

i ngobj ngr updat e
-t tf
-1 "cn=MyTCF"
-0 i nmgReconnect Retri es=3
-j "java.nam ng.factory.initial=
com sun. j ndi. | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url=
| dap: // nydomai n. com 389/ o=i ny"
-j "java.nam ng.security. principal =
ui d=f ooUser, ou=Peopl e, o=inm"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java.nam ng.security.authenticati on=si npl e"

180 Sun ONE Message Queue ¢ Administrator's Guide « October, 2002

Chapter 8

Security Management

This chapter explains how to perform tasks related to security, these include
authentication, authorization, and encryption.

Authenticating Users You are responsible for maintaining a list of users, their
groups, and passwords in a user repository. The first part of this chapter explains
how you create, populate, and manage that repository. For an introduction to
Sun™ ONE Message Queue (MQ) security, see “Security Manager” on page 57.

Authorizing Users You are responsible for editing a properties file that maps the
user’s access to broker operations to the user’s name or group. The second part of
this chapter explains how you can customize this properties file.

Encryption: Setting Up SSL Services Using a connection service based on the
Secure Socket Layer (SSL) standard allows you to encrypt messages sent between
clients and broker. For an introduction to how MQ handles encryption, see
“Encryption (Enterprise Edition)” on page 59. The last part of this chapter explains
how to set up an SSL-based connection service and provides additional
information about using SSL.

For situations in which a password is needed for a broker to secure access to a SSL
keystore, a LDAP user repository, or a JDBC-compliant persistent store, there are
three means of providing such passwords:

* Dby having the system prompt you when the broker is started

* by passing in passwords as command line options when starting the broker
(see “Starting a Broker” on page 120 and Table 5-2 on page 121)

* Dby storing passwords in a passfile that the system accesses when starting the
broker (See “Using a Passfile” on page 204)

181

Authenticating Users

Authenticating Users

When a user attempts to connect to the broker, the broker authenticates the user by
inspecting the name and password provided, and grants the connection if they
match those in a user repository that the broker is configured to consult. This
repository can be of two types:

a flat-file repository that is shipped with MQ

This type of user repository is very easy to use; however it is vulnerable to
security attacks, and should therefore be used only for evaluation and
development purposes. You can populate and manage the repository using the
User Manager utility (i nguser ngr). To enable authentication, you populate the
user repository with each user’s name, password, and the name of the user’s

group.

For more information on setting up and managing the user repository, see
“Using a Flat-File User Repository” on page 182.

an LDAP server

This could be an existing or new LDAP directory server that uses the LDAP v2
or v3 protocol for your user repository. It is not as easy to use as the flat-file
repository, however it is secure, and therefore better for production
environments.

If you are using an LDAP user repository, you will need to use the tools
provided by the LDAP vendor to populate and manage the user repository.
For more information, see “Using an LDAP Server for a User Repository” on
page 189.

Using a Flat-File User Repository

MQ provides a flat-file user repository and a command line tool, MQ User
Manager (i mjuser ngr) that you can use to populate and manage the flat-file user
repository. The following sections describe the flat-file user repository, its initial
entries, and how you populate and manage that repository.

The default flat-file repository is located at:

I MQ_HOVE/ et ¢/ passwd (/ et c/i ng/ passwd on Solaris)

182 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Authenticating Users

The repository is shipped with two entries (rows) already defined, as illustrated in
the table below.

Table 8-1 Initial Entries in User Repository

User Name Password Group State
admin admin admi n active
guest guest anonynous active

These initial entries allow the MQ broker to be used immediately after installation
without any intervention by the administrator. In other words, no initial
user /password setup is required for the MQ broker to be used.

The initial guest user entry allows JMS clients to connect to the broker using the
default guest user name and password (for testing purposes, for example).

The initial adni n user entry allows you to use i ngcnd commands to administer the
broker using the default adni n user name and password. It is recommended that
you update this initial entry to change the password.

You can use the User Manager utility to edit or populate the flat-file user repository
without having to first configure or start up the broker. The only requirement for
using the User Manager utility is that it be run on the host where the broker is
installed, and that if you want to write to the repository, you have to have the
appropriate permissions:

* On Solaris, the User Manager utility can be run by the root user, or by other
non-root users granted access through Solaris role based access control. To
grant such access, the root user must make an entry to/ et c/ user _attr of the
following form:

username: : : :type=nor mal ; profil es=Message Queue Managenent

This adds the specified user to the MQ rights profile. To use this facility, you
first must run a profile shell (pf sh, pf ksh, pf csh), for example,

% /[usr/ bi n/ pfsh
and then execute the desired User Manager (i nguser ngr) commands.

For more information on Solaris role based access control, see:
http://docs. sun. conl
?0=Ri ght s+Prof i | e&p=/ doc/ 806- 4078/ 6j d6¢cj r vl &a=vi ew).

Chapter 8 Security Management 183

Authenticating Users

¢ On Windows, after installation, the user repository file can be written to by any
user because the operating system does not control access to files using user
name-based permission attributes.

The following sections explain how you populate and manage the flat-file user
repository.

User Manager Utility (imqusermgr)

The User Manager utility allows you to manage a file-based user repository. This
section describes the basic i rquser ngr command syntax, provides a listing of
subcommands, and summarizes i mquser mgr command options. Subsequent
sections explain how you use the i rgobj ngr subcommands to accomplish specific
tasks.

Syntax of Command
The general syntax of the i nguser mgr command is as follows:

i myuser ngr subcommand [options]
i mguserngr -h
i mguser ngr -v

Note that if you specify the -v or -h options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the | i st subcommand is not executed.

i muserngr list -v

imgusermgr Subcommands
Table 8-2 lists the i rquser mgr subcommands.

Table 8-2 i mguser ngr Subcommands

Subcommand Description

add -u name -p passwd [-g group] |[-s] Adds a user and associated password to the
repository, and optionally specifies the user’s
group.

delete -u name[-s] [-f] Deletes the specified user from the repository.

list [-u name]

Displays information about the specified user or
all users.

update -u name -p passwd [-a state] [-s] [-f] Updates the specified user’s password and/or
update -u name -a state [-p passwd] [-s] [-f] state.

184 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Authenticating Users

Summary of imqusermgr Command Options
Table 8-3 lists the options to the i myjuser ngr command.

Table 8-3 i nquser ngr Options

Option Description

- a active_state Specifies (t r ue/f al se) whether the user’s state
should be active. A value of t r ue means that the
state is active. This is the default.

-f Performs action without user confirmation

-h Displays usage help. Nothing else on the
command line is executed.

-p passwd Specifies the user’s password.

-g group Specifies the user group. Valid values are admi n,
user,anonynous.

-S Sets silent mode.

-u name Specifies the user name.

-V Displays version information. Nothing else on

the command line is executed.

Groups

When adding a user entry to the repository, the administrator has the option of
specifying one of three predefined groups for the user: adni n, user, or anonynous.
If no group is specified, the default group user is assigned.

* The admin group is for broker administrators. Users who are assigned this
group can, by default, configure, administer, and manage the broker. The
administrator can assign more than one user to the admin group.

* The user group is for normal (non-administrative) JMS client applications. Most
MQ client applications will access the broker authenticated in the user group.
As such, client applications, can produce messages to and consume messages
from all topics and queues, or can browse messages in any queue by default.

¢ The anonymous group is for JMS client applications who do not wish to use a
user name that is known to the broker (possibly because the application does
not know of a real user name to use). This is analogous to the anonymous
account present in most FTP servers. The administrator can assign only one

Chapter 8 Security Management 185

Authenticating Users

user to the anonymous group at any one time. It is expected that you will
restrict the access privileges of this group as compared to the user group
through access control or that you will remove the user from this group at
deployment time.

In order to change a user’s group, the administrator must delete the user entry and
then add another entry for the user, specifying the new group.

You can specify access rules that define what operations the members of that group
may perform. For more information, see “Authorizing Users: the Access Control
Properties File” on page 192.

States

When the administrator adds a user to the repository, the user’s state is active by
default. To make the user inactive, the administrator must use the update
command. For example, the following command makes the user JoeD inactive:

i rguser ngr update -u JoeD -a false

Entries for users that have been rendered inactive are retained in the repository;
however, inactive users cannot open new connections. If a user is inactive and the
administrator adds another user who has the same name, the operation will fail.
The administrator must delete the inactive user entry or change the new user’s
name or use a different name for the new user. This prevents the administrator
from adding duplicate names or passwords.

Format of User Names and Passwords

User names and passwords must follow these guidelines:

¢ The user name and passwords may not contain the characters listed in
Table 8-4.

Table 8-4 Invalid Characters for User Names and Passwords

Character Description

* Asterisk

, Comma
Colon

186 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Authenticating Users

¢ The user name and passwords may not contain a new line or carriage return as
characters.

e If the name or password contains a space, the entire name or password must be
enclosed in quotation marks.

* The name or password must be at least one character long.

* There is no limit on the length of passwords or user names—except for that
imposed by the command shell on the maximum number of characters that can
be entered on a command line.

Populating and Managing the User Repository

Use the add subcommand to add a user to the repository. For example, the
following command adds the user, Kat har i ne with the password sesane.

i mguserngr add -u Katharine -p sesame -g user

Use the del et e subcommand to delete a user from the repository. For example, the
following command deletes the user, Bob:

i rguser ngr del ete -u Bob

Use the updat e subcommand to change a user’s password or state. For example,
the following command changes Katharine’s password to al | adi n:

i rguser ngr update -u Katharine -p alladin

To list information about one or more users, use the | i st command. The following
command shows information about the user named i sa:

i mguserngr list -u isa

Chapter 8 Security Management 187

Authenticating Users

The following command lists information about all users:

i mguserngr i st

User Nane Group Active State
t estuser3 user true
testuser?2 user true
testuserl user true

i sa adm n true

adm n adm n true

guest anonynous true
testuser5 user fal se

t estuser4 user fal se

Changing the Default Administrator Password

For the sake of security, you must change the default password of adni n to one that
is only known to you. You need to use the i nquser ngr tool to do this.

The following command changes the default password to gr andpoobah.
i mguser ngr update -u adm n -p grandpoobah

You can quickly confirm that this change is in effect, by running any of the
command line tools when the broker is running. For example, the following
command should work,

imgcmd list svc -u adnmin -p grandpoobah
While using the old password should fail.

After changing the password, you should supply the new password when using
any of the administration tools, including the administration console.

188 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Authenticating Users

Using an LDAP Server for a User Repository

If you want to use an LDAP server for your user repository, you must set certain
broker properties in the instance configuration file. These properties enable the
broker to query the LDAP server for information about users and groups when a
user attempts to connect to the broker or perform certain operations. The instance
configuration file is located at

| MQ_VARHOVE/ i nst ances/ brokerNamel pr ops/ confi g. properties
(/var /i mg/instances/ brokerNamel props/ confi g. properti es on Solaris)

[To edit the configuration file to use an LDAP server

1.

Specify that you are using an LDAP user repository by setting the following
property:
i ng. aut henti cati on. basi c. user _r eposi t ory=l dap

Set thei ng. aut henti cati on. t ype property to determine whether a password
should be passed from client to broker in base64 encoding (basi c¢) or in MD5
digest (di gest). When using an LDAP directory server for a user repository,
you must set the authentication type to basi c. For example,

i ng. aut henti cati on. type=basi c

You must also set the broker properties that control LDAP access. These
properties, stored in a broker’s instance configuration file, are described in
Table 8-5. MQ uses JNDI API's to communicate with the LDAP directory
server. Consult JNDI documentation for more information on syntax and on
terms referenced in these properties. MQ 3.0.1 uses a Sun JNDI LDAP provider
and uses simple authentication.

Table 8-5 LDAP-related Properties

Property Description

i ng. user _repository. The host:port for the LDAP server. Host specifies the

| dap. server fully qualified DNS name of the host running the
directory server. Port specifies the port number that
the directory server is using for communications.

i ng. user _repository. The distinguished name that the broker will use to

| dap. pri nci pal bind to the directory server for a search. If the
directory server allows anonymous searches, this
property does not need to be assigned a value.

Chapter 8 Security Management 189

Authenticating Users

Table 8-5

LDAP-related Properties (Continued)

Property

Description

i ng. user _repository.
| dap. password

i ng. user _repository.
| dap. base

i mg. user _repository.
| dap. ui dattr

i ng. user _repository.
| dap. usrfilter

i ng. user _repository.
| dap. gr psearch

i ng. user _repository.
| dap. gr pbase

i mg. user _repository.
| dap. gidattr

i ng. user _repository.
| dap. memattr

The password associated with the distinguished name
used by the broker. Can only be specified in a passfile
(see “Using a Passfile” on page 204). For more
security, let the broker prompt you for a password, or
specify the password using the following command
line option: i mybr okerd - | dappasswor d

If the directory server allows anonymous searches, no
password is needed.

The directory base for user entries.

The provider-specific attribute identifier whose value
uniquely identifies a user. For example: ui d, cn, etc.

A JNDI search filter (a search query expressed as a
logical expression). By specifying a search filter for
users, the broker can narrow the scope of a search and
thus make it more efficient. For more information, see
the JNDI tutorial at the following location:

http:/ /java.sun.com/products/jndi/ tutorial.

This property does not have to be set.

A boolean specifying whether you want to enable
group searches. Consult the documentation provided
by your LDAP provider to determine whether you
can associate users into groups.

Note that nested groups are not supported in MQ
3.0.1.

Default: f al se

The directory base for group entries.

The provider-specific attribute identifier whose value
is a group name.

The attribute identifier in a group entry whose values
are the distinguished names of the group’s members.

190 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Authenticating Users

Table 8-5 LDAP-related Properties (Continued)

Property Description
i ng. user _repository. A JNDI search filter (a search query expressed as a
| dap. grpfiltler logical expression). By specifying a search filter for

groups, the broker can narrow the scope of a search
and thus make it more efficient. For more information,
see the JNDI tutorial at the following location.

http://java. sun. coni product s/
jndi/tutorial

This property does not have to be set.

i ng. user _repository. An integer specifying (in seconds) the time limit for a
| dap. ti meout search. By default this is set to 180 seconds.

i my. user_repository. A boolean specifying whether the broker should use
| dap. ssl . enabl ed the SSL protocol when talking to an LDAP server.

This is set to f al se by default.

See the broker’s default.properties file for a sample (default) LDAP user-
repository-related properties setup.

If necessary, you need to edit the users/groups and rules in the access control
properties file. For more information about the use of access control property
files, see “Authorizing Users: the Access Control Properties File” on page 192.

If you want the broker to communicate with the LDAP directory server over
SSL during connection authentication and group searches, you need to activate
SSL in the LDAP server and then set the following properties in the broker
configuration file:

o Specify a secure port for the LDAP user repository property. For example:
i ng. user _repository. | dap. server=nyhost: 7878

o Set the broker property ing. user_repository.|dap.ssl.enabl ed
totrue.

Chapter 8 Security Management 191

Authorizing Users: the Access Control Properties File

Authorizing Users:
the Access Control Properties File

192

After connecting to the broker, the user may want to produce a message, consume
a message at a destination, or browse messages at a queue destination. When the
user attempts to do this, the broker checks an access control properties file (ACL file)
to see whether the user is authorized to perform the operation. The ACL file
contains rules that specify which operations a particular user (or group of users) is
authorized to perform. By default, all authenticated users are allowed to produce
and consume messages at any destination. You can edit the access control
properties file to restrict these operations to certain users and groups.

The ACL file is used whether user information is placed in a flat-file repository or
in an LDAP repository. A default ACL properties file is installed along with the
broker. Its name is accesscontrol . properti es and it is placed by the installer in
the following directory:

I MQ_HOVE/ et ¢ (/ et c/ i ng on Solaris)

The ACL file is formatted like a Java properties file. It starts by defining the version
of the file and then specifies access control rules in three sections:

e connection access control
e destination access control
e destination auto-create access control

The ver si on property defines the version of the ACL properties file; you may not
change this entry.

ver si on=JMXi | eAccessCont r ol Model / 100

The three sections of the ACL file that specify access control are described below,
following a description of the basic syntax of access rules and an explanation of
how permissions are calculated.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Authorizing Users: the Access Control Properties File

Access Rules Syntax

In the ACL properties file, access control defines what access specific users or
groups have to protected resources like destinations and connection services.
Access control is expressed by a rule or set of rules, with each rule presented as a
Java property:

The basic syntax of these rules is as follows:
resourceType.resourceVariant.operation.access.principalType = principals

Table 8-6 describes the elements of syntax rules.

Table 8-6 Syntactic Elements of Access Rules

Element Description

resourceType One of the following: connect i on, queue ort opi c.

resourceVariant An instance of the type specified by resourceType. For example,
myQueue. The wild card character (*)may be used to mean all
connection service types or all destinations.

operation Value depends on the kind of access rule being formulated.
access One of the following: al | owor deny.
principal Type One of the following: user or gr oup. For more information, see

“Groups” on page 185.

principals Who may have the access specified on the left-hand side of the rule.
This may be an individual user or a list of users (comma delimited) if
the pri nci pal Type is user ; it may be a single group or a list of
groups (comma delimited list) if the pri nci pal Type is gr oup. The
wild card character (*)may be used to represent all users or all groups.

Chapter 8 Security Management 193

Authorizing Users: the Access Control Properties File

194

Here are some examples of access rules:

e The following rule means that all users may send a message to the queue
named q1.

queue. ql. produce. al | ow. user =*
¢ The following rule means that any user may send messages to any queue.

gueue. *. produce. al | ow. user =*

NOTE To specify non-ASCII user, group, or destination names, you must
use Unicode escape (\ uXXXX) notation. If you have edited and saved
the ACL file with these names in a non-ASCII encoding, you can
convert the file to ASCII with the Java nat i ve2ascii tool. For more
detailed information, see
http://java. sun.conij 2se/ 1. 3/ docs/ guide/intl/faq. htm

Permission Computation

The following principles are applied when computing the permissions implied by
a series of rules:

* Specific access rules override general access rules. After applying the following
two rules, all can send to all queues, but Bob cannot send to tql.

gueue. *. produce. al | ow. user =*
gueue. t g1. produce. deny. user =Bob

* Access given to an explicit principal overrides access given to a * principal. The
following rules deny Bob the right to produce messages to tql, but allow
everyone else to do it.

gueue. t gl. produce. al | ow. user =*
gueue. t ql. pr oduce. deny. user =Bob

e The * principal rule for users overrides the corresponding * principal for groups.
For example, the following two rules allow all authenticated users to send
messages to tql.

gueue. t ql. produce. al | ow. user =*

gueue. t 1. pr oduce. deny. gr oup=*

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Authorizing Users: the Access Control Properties File

* Access granted a user overrides access granted to the user’s group. In the
following example, if Bob is a member of User, he will be denied permission to
produce messages to tql, but all other members of User will be able to do so.

queue. t ql. produce. al | ow. gr oup=User
gueue. t 1. produce. deny. user =Bob

* Any access permission not explicitly granted through an access rule is
implicitly denied. For example, if the ACL file contained no access rules, all
users would be denied all operations.

* Deny and allow permissions for the same user or group cancel themselves out.
For example, the following two rules result in Bob not being able to browse t1:

queue. ql. browse. al | ow. user =Bob
queue. ql. br owse. deny. user =Bob

The following two rules result in the group User not being able to consume
messages at 5.

gueue. g5. consune. al | ow. gr oup=User
queue. g5. consune. deny. gr oup=User

¢ When multiple same left-hand rules exist, only the last entry takes effect.

Connection Access Control

The connection access control section in the ACL properties file contains access
control rules for the broker’s connection services. The syntax of connection access
control rules is as follows:

connect i on. resourceVariant.access.principalType = principals

Two values are defined for resourceVariant: NORMAL and ADM N. By default all users
can have access to the NORMAL type, but only those users whose group is adni n may
have access to ADM N type connection services.

You can edit the connection access control rules to restrict a user’s connection
access privileges. For example, the following rules deny Bob access to NORMAL but
allow everyone else:

connect i on. NORMAL. deny. user =Bob

connecti on. NORVAL. al | ow. user =*

Chapter 8 Security Management 195

Authorizing Users: the Access Control Properties File

196

You can use the asterisk (*) character to specify all authenticated users or groups.

You may not create your own service type; you must restrict yourself to the
predefined types specified by the constants NORVAL and ADM N.

Destination Access Control

The destination access control section of the access control properties file contains
destination-based access control rules. These rules determine who (users/groups)
may do what (operations) where (destinations). The types of access that are
regulated by these rules include sending messages to a queue, publishing messages
to a topic, receiving messages from a queue, subscribing to a topic, and browsing a
messages in a queue.

By default, any user or group can have all types of access to any destination. You
can add more specific destination access rules or edit the default rules. The rest of
this section explains the syntax of destination access rules, which you must
understand to write your own rules.

The syntax of destination rules is as follows:
resourceType.resourceVariant.operation.access.principalType = principals

Table 8-7 describes these elements:

Table 8-7 Elements of Destination Access Control Rules

Component Description
resourceType Must be one of queue or t opi C.
resourceVariant A destination name or all destinations (*), meaning all queues

or all topics.

operation Must be one of pr oduce, consune, or br owse.
access Must be one of al | owor deny.
principalType Must be one of user or gr oup.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Authorizing Users: the Access Control Properties File

Access can be given to one or more users and/or one or more groups.

The following examples illustrate different kinds of destination access control
rules:

e Allow all users to send messages to any queue destinations.
gueue. *. produce. al | ow. user =*
* Deny any member of the group user to subscribe to the topic Admissions.

t opi c. Admi ssi ons. consumne. deny. gr oup=user

Destination Auto-Create Access Control

The final section of the ACL properties file, includes access rules that specify for
which users and groups the broker will auto-create a destination.

When a user creates a producer or consumer at a destination that does not already
exist, the broker will create the destination if the broker’s auto-create property has
been enabled and if the physical destination does not already exist.

By default, any user or group has the privilege of having a destination auto-created
by the broker. This privilege is specified by the following rules:

gueue. create. al | ow. user =*
topic.create. al |l ow. user=*

You can edit the ACL file to restrict this type of access.

The general syntax for destination auto-create access rules is as follows:
resourceType.cr eat e.access.principalType = principals

Where resourceType is either queue or t opi c.

For example, the following rules allow the broker to auto-create topic destinations
for everyone except Snoopy.

topic.create. al |l ow. user=*
topi c. creat e. deny. user =Snoopy

Note that the effect of destination auto-create rules must be congruent with that of
destination access rules. For example, if you 1) change the destination access rule to
forbid any user from sending a message to a destination but 2) enable the
auto-creation of the destination, the broker will create the destination if it does not
exist but it will not deliver a message to it.

Chapter 8 Security Management 197

Encryption: Working With an SSL Service (Enterprise Edition)

Encryption: Working With an SSL Service
(Enterprise Edition)

The MQ Enterprise Edition supports connection services based on the Secure
Socket Layer (SSL) standard: over TCP/IP (ssljms and ssladmin) and over HTTP
(httpsjms). These SSL-based connection services allow for the encryption of
messages sent between clients and broker. The current MQ release supports SSL
encryption based on self-signed server certificates.

To use an SSL-based connection service, you need to generate a private key/public
key pair using the Key Tool utility (imgkeytool). This utility embeds the public key
in a self-signed certificate that is passed to any client requesting a connection to the
broker, and the client uses the certificate to set up an encrypted connection.

While MQ’s SSL-based connection services are similar in concept, there are some
differences in how you set them up. Secure connections over TCP/IP and over
HTTP are therefore discussed separately in the following sections.

Setting Up an SSL Service Over TCP/IP

There are two SSL-based connection services that provide a direct, secure
connection over TCP/IP.

ssljms This connection service is used to deliver JMS messages over a secure,
encrypted connection between a client and broker.

ssladmin This connection service is used to create a secure, encrypted connection
between the Command utility (i ngcnd)—the command line administration
tool—and a broker. A secure connection is not supported for the Administration
Console (i ngadni n).

[J To set up a ssljms connection service
1. Generate a self-signed certificate.
2. Enable the ssljms connection service in the broker.
3. Start the broker.
4. Configure and run the client.

The procedures for setting up ssljms and ssladmin connection services are
identical, except for Step 4, configuring and running the client.

Each of the steps is discussed in some detail in the sections that follow.

198 Sun ONE Message Queue ¢ Administrator's Guide ¢ October, 2002

Encryption: Working With an SSL Service (Enterprise Edition)

Step 1. Generating a Self-Signed Certificate

SSL Support in MQ 3.0.1 is oriented toward securing on-the-wire data with the
assumption that the client is communicating with a known and trusted server.
Therefore in MQ 3.0.1, SSL is implemented using only self-signed certificates.

Run the i ngkeyt ool command to generate a self-signed certificate for the broker.
The same certificate can be used for both the ssljms and ssladmin connection
services. Enter the following at the command prompt:

i rgkeyt ool - broker

The utility will prompt you for the information it needs. (On Unix systems you
may need to run i mngkeyt ool as the superuser (root) in order to have permission to
create the keystore.)

First, i ngkeyt ool prompts you for a keystore password, then it prompts you for
some organizational information, and then it prompts you for confirmation. After
it receives the confirmation, it pauses while it generates a key pair. It then asks you
for a password to lock the particular key pair (key password); you should enter
Return in response to this prompt: this makes the key password the same as the
keystore password.

NOTE Remember the password you provide—you will need to provide
this password later to the broker (when you start it) so it can open
the keystore. You can also store the keystore password in a passfile
(see “Using a Passfile” on page 204).

Running i ngkeyt ool runs the JDK keyt ool utility to generate a self-signed
certificate and to place it in MQ'’s keystore, located at

| MQ_HOVE/ et c/ keystore (/etc/ing/keystore on Solaris)

The keystore is in the same format as that supported by the JDK1.2 keyt ool
utility.

The configurable properties for the MQ keystore are shown in Table 8-8. (For
instructions on configuring these properties, see Chapter 5, “Starting and
Configuring a Broker.”)

Chapter 8 Security Management 199

Encryption: Working With an SSL Service (Enterprise Edition)

200

Table 8-8 Keystore Properties

Property Name Description
i ng. keystore. file. For SSL-based services: specifies the path to the
dirpath directory containing the keystore file.
Default: | MQ_HOVE/ et ¢ (/ et ¢/ i ng/ on Solaris)
i my. keystore.file.nane For SSL-based services: specifies the name of the
keystore file.

Default: keyst or e

i ng. keyst ore. password For SSL-based services: specifies the keystore

password. Can only be stored in a passfile (see “Using
a Passfile” on page 204). For more security, let the
broker prompt you for the password, or specify the
password using the following command line option:

i mgbr oker d - passwor d.

You may need to regenerate a key pair in order to solve certain problems; for
example:

You forgot the keystore password.

The SSL service fails to initialize when you start a broker and you get the
exception:
java. security. Unrecover abl eKeyException: Cannot recover key.

This exception may result from the fact that you had provided a key password
that was different from the keystore password when you generated the
self-signed certificate in “Step 1. Generating a Self-Signed Certificate” on

page 199.

To regenerate a key pair

1.

Remove the broker’s keystore, at the following location:
| MQ_HOMVE/ et ¢/ keystore (/etc/inmg/keystore on Solaris)

Rerun i ngkeyt ool to generate a key pair as described in “Step 1. Generating a
Self-Signed Certificate” on page 199.

Step 2. Enabling the SSL-based Service in the Broker

To enable the SSL service in the broker, you need to add ssl j ms (ssl admi n) to the
i my. service. activelist property.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Encryption: Working With an SSL Service (Enterprise Edition)

1. Open the broker’s instance configuration file. You can find it at the following
location:

I MQ_VARHOVE/ i nst ances/ brokerNamel pr ops/ confi g. properties
(/var/img/instances/ brokerNamel props/ confi g. properti es on Solaris)

where brokerName is the name of the broker instance.

2. Add the ssl j ns or ssl adni n values or both (depending on the service you
want) to the i ng. servi ce. acti vel i st property:

i mg. service. activelist=jnms,adm n, httpjns, ssljns,ssladm n

Step 3. Starting the Broker

Start the broker, providing the keystore password. You can provide the password
in any one of the following ways:

e Allow the broker to prompt you for the password when it starts up

i ngbr okerd
Pl ease enter Keystore password: mypassword

¢ Use the - passwor d option to the i rgbr oker d command:
i ngbr okerd - password mypassword

¢ Put the password in a passfile file (see “Using a Passfile” on page 204) which is
accessed at broker startup. You have to first set the following broker
configuration property (see “Editing the Instance Configuration File” on
page 116):

i ng. passfil e. enabl ed=true
Once this property is set, you can access the passfile in either of two ways:
o pass the location of the passfile to the i ngbr oker d command:

i mgbr okerd -passfile /tmp/mypassfile

o start the broker without the -passfile option, but specify the location of the
passfile using the following two broker configuration properties:

i ng. passfil e. dirpath=/tmp
i ng. passfil e. nane=mypassfile

For a listing of passfile-related broker properties, see Table 2-6 on page 60.

Chapter 8 Security Management 201

Encryption: Working With an SSL Service (Enterprise Edition)

202

When you start a broker or client with SSL, you might notice that it consumes a lot
of cpu cycles for a few seconds. This is because MQ uses JSSE (Java Secure Socket
Extension) to implement SSL. JSSE uses j ava. securi ty. Secur eRandon{() to
generate random numbers. This method takes a significant amount of time to
create the initial random number seed, and that is why you are seeing increased
cpu usage. After the seed is created, the cpu level will drop to normal.

Step 4. Configuring and Running SSL-based Clients

Finally, you need to configure clients to use the secure connection services. There
are two types of clients, depending on the connection service you are using: JMS
clients that use ssljms, and the MQ administration Command utility (i ngcnd) that
uses ssladmin. These are treated separately in the following sections.

JMS Client

You have to make sure the client has the necessary Secure Socket Extension (JSSE)
jar files in its classpath, and you need to tell it to use the ssl j ms connection service.

1. Ifyour client is not using J2SDK1.4 (which has JSSE and JNDI support built in),
make sure the client has the following jar files in its class path:

jsse.jar, jnet.jar, jcert.jar, jndi.jar
2. Make sure the client has the following MQ jar files in its class path:
ing.jar, jns.jar

3. Start the client and connect to the broker’s ssljms service. One way to do this is
by entering a command like the following:

java - Di ngConnecti onType=TLS clientAppName
Setting i mgConnect i onType tells the connection to use SSL.

For more information on using ssljms connection services in client
applications, see the chapter on using administered objects in the MQ
Developer’s Guide.

Command Utility (imgcmd)
You can establish a secure administration connection by including the -secur e
option when using i ngcnd (see Table 6-2 on page 140) for example:

inmgend |ist svc -b hostName:port -u adminName -p adminPassword - Ssecure

where adminName and adminPassword are valid entries in the MQ user repository (if
using a flat file repository, see “Changing the Default Administrator Password” on
page 188).

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Encryption: Working With an SSL Service (Enterprise Edition)

Listing the connection services, as in this example, is a way to show that the
ssl adni n service is running, and that you can successfully make a secure admin
connection, as shown in the following output:

Listing all the services on the broker specified by:
Host Primary Port

| ocal host 7676

Servi ce Name Port Number Service State
adm n 33984 (dynani c) RUNNI NG

ht t pj ns - UNKNOWN

htt psj ns - UNKNOWN

j s 33983 (dynanmi c) RUNNI NG

ssl admin 35988 (dynani c) RUNNI NG
ssljms dynami c UNKNOWN
Successfully listed services.

Setting Up an SSL Service Over HTTP

In this SSL-based connection service (httpsjms), the client and broker establish a
secure connection by way of a HTTPS tunnel servlet. The architecture and
implementation of HTTPS support is described in Appendix B, “HTTP/HTTPS
Support (Enterprise Edition)” on page 213.

Chapter 8 Security Management 203

Using a Passfile

Using a Passfile

In cases where you want the broker to start up without prompting you for needed
passwords, or without requiring you to supply these passwords as options to the
i mybr oker d command, you can place the needed passwords in a passfile.

A passfile is a simple text file containing passwords. The file is not encrypted, and
therefore less secure than supplying passwords manually. Nevertheless you can
set permissions on the file that limit who has access to view it. The permissions on
the passfile need to give the user who starts the broker permission to read it.

A passfile can contain the passwords shown in Table 8-9:

Table 8-9 Passwords in a Passfile

Password Description
i my. keyst or e. passwor d Specifies the keystore password for SSL-based
services.

i ng. user _repository.ldap. Specifies the password associated with the
password distinguished name assigned to a broker for binding
to a configured LDAP user repository.

i ng. persist.jdbc. password Specifies the password used to open a database
connection, if required.

A sample passfile can be found at the following location:

| MQ_HOVE/ et ¢/ passfile.sample (/ etc/i ng/ passfil e. sanpl e on Solaris)

204 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Appendix A

Setting Up Plugged-in Persistence

This appendix explains how to set up a broker to use plugged-in persistence to
access a JDBC-accessible data store.

Introduction

Sun™ ONE Message Queue (MQ) brokers include a Persistence Manager
component that manages the writing and retrieval of persistent information (see
“Persistence Manager” on page 54). The Persistence Manager is configured by
default to access a built-in, file-based data store, but you can reconfigure it to plug
in any data store accessible through a JDBC-compliant driver.

To configure a broker to use plugged-in persistence, you need to set a number of
JDBC-related properties in the broker instance configuration file. You also need to
create the appropriate database schema for performing MQ persistence operations.
MQ provides a utility, Database Manager (i mgdbngr), which uses your JDBC
driver and broker configuration properties to create and manage the plugged-in
database.

The procedure described in this appendix is illustrated using, as an example, the
Cloudscape DBMS bundled with the Java 2 SDK Enterprise Edition (J2EE SDK is
available for download from java.sun.com). The example uses Cloudscape's
embedded version (instead of the client/server version). In the procedures,
instructions are illustrated using path names and property names from the
Cloudscape example. They are identified by the word “Example:”

Other examples can be found at the following location:

| MQ_HOVE/ deno/ j dbc (/ usr/ deno/ i ng/ j dbc on Solaris)

205

Plugging In a JDBC-accessible Data Store

Plugging In a JDBC-accessible Data Store

It takes just a few steps to plug in a JDBC-accessible data store.

206

[To plugin a JDBC-accessible data store

1.

Set JDBC-related properties in the broker’s configuration file.
See the properties documented in Table A-1 on page 207.

Place a copy or a symbolic link to your JDBC driver jar file in the following
path:

| MQ_VARHOME/ | i b/ ext (/usr/share/lib/ing/ext/ on Solaris)
Copy Example (Solaris):

% cp j2sdk_install_directoryl | i b/ cl oudscape/ cl oudscape. j ar
| MQ_VARHOVE/ | i b/ ext

Symbolic Link Example (Solaris):

% | n -s j2sdk_install_directoryl | i b/ cl oudscape/ cl oudscape. j ar
| MQ_VARHOVE/ | i b/ ext

Create the database schema needed for MQ persistence.

Use the i ngdbngr create all command (for an embedded database) or the
i mgdbmgr create tbl command (for an external database). See “Database
Manager Utility (imqdbmgr)” on page 210.

Example:
% cd | MQ_HOVE/ bi n (/ usr/ bi n on Solaris)

% i ngdbngr create all

NOTE If an embedded database is used, it is recommended that it be

created under the following directory:

I MQ_VARHOVE/ i nst ances/ brokerNamel dbst or e/ dabatabseName.
(/var/imq/instances/brokerNamel dbst or e/ on Solaris)

If an embedded database is not protected by a user name and
password, it is probably protected by file system permissions. To
ensure that the database is readable and writable by the broker, the
user who runs the broker should be the same user who created the
embedded database using the imqdbmgr command (see “Database
Manager Utility (imqdbmgr)” on page 210).

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

JDBC-related Broker Configuration Properties

JDBC-related Broker Configuration Properties

The broker’s instance configuration file is located in

| MQ_VARHOVE/ i nst ances/ brokerNamel pr ops/ confi g. properties
(/var/img/instances/ brokerNamel props/ confi g. properti es on Solaris)

If the file does not yet exist, you have to start up the broker using the
-name br oker Name option, for MQ to create the file.

Table A-1 presents the configuration properties that you need to set when plugging
in a JDBC- accessible data store. You set these properties in the instance
configuration file (confi g. proper ti es) of each broker instance using plugged-in
persistence. The table includes values you would specify for the Cloudscape DBMS

example.

Table A-1 JDBC-related Properties

Property Name

Description

i ng. persist.store

i mg. persist.jdbc. brokerid
(optional)

i mg. persist.jdbc.driver

Specifies a file-based or JDBC-based data store.
Example:
j dbc

Specifies a broker instance identifier that is
appended to database table names to make
them unique in the case where more than one
broker instance is using the same database as a
persistent data store. (Usually not needed in
the case of an embedded database, which
stores data for only one broker instance.) The
identifier must be an alphanumeric string
whose length does not exceed the maximum
table name length, minus 12, allowed by the
database.

Example: not needed for Cloudscape

Specifies the java class name of the JDBC
driver to connect to the database.

Example:

COM cl oudscape. core. JDBCDr i ver

Appendix A Setting Up Plugged-in Persistence 207

JDBC-related Broker Configuration Properties

208

Table A-1 JDBC-related Properties (Continued)

Property Name

Description

i ng. persist.jdbc. opendburl

i ng. persist.jdbc.createdburl
(optional)

i mg. persist.jdbc. cl osedburl
(optional)

i ng. persist.jdbc. user
(optional)

i ng. persist.jdbc. needpassword
(optional)

Specifies the database URL for opening a
connection to an existing database.

Example:

j dbc: cl oudscape: | MQ_VARHOVE/
i nst ances/ brokerNamel/ dbst or e/ i ngdb
(j dbc: cl oudscape: var/ i ng... on Solaris)

Specifies the database URL for opening a
connection to create a database. (Only
specified if the database is to be created using
i mgdbrgr .)

Example:

j dbc: cl oudscape: | MQ_VARHOVE/

i nst ances/ brokerNamel dbst or e/

i mgdb; creat e=true

(j dbc: cl oudscape: var /i nqg... on Solaris)

Specifies the database URL for shutting down
the current database connection when the
broker is shutdown.

Example (required for Cloudscape):
j dbc: cl oudscape: ; shut down=t r ue

Specifies the user name used to open a
database connection, if required. For security
reasons, the value can be specified instead
using command line options:

i mgbr okerd - dbuser

and i ngdbngr -u

Specifies whether the database requires a
password for broker access. Value of t r ue
means password is required. The password
can be specified using the following command
line options:

i mgbr okerd - dbpassword

i mgdbgr -p

If the password is not provided using either
command line options or a passfile (see “Using
a Passfile” on page 204), the broker will
prompt for the password.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

JDBC-related Broker Configuration Properties

Table A-1 JDBC-related Properties (Continued)

Property Name Description
i ng. persist.jdbc. password Specifies password used to open a database
(optional) connection, if required. Can only be specified

in a passfile (see “Using a Passfile” on

page 204). For more security, let the broker
prompt you for the password, or specify the
password using the following command line
options:

i mgbr okerd - dbpassword

i mgdbgr -p

As with all broker configuration properties, values can be set using the - D
command line option. If a database requires certain database specific properties to
be set, these also can be set using the - Dcommand line option when starting the
broker (i mybr oker d) or the Database Manager utility (i ngdbnygr).

Example:

For the Cloudscape embedded database example, instead of specifying the
absolute path of a database in database connection URL'’s (as those shown in
Table A-1 examples), the -D command line option can be used to define the
Cloudscape system directory:

- Dcl oudscape. syst em home=l MQ VARHOWE/ i nst ances/ brokerName/ dbst or e

Appendix A Setting Up Plugged-in Persistence 209

Database Manager Utility (imgdbmgr)

In that case the URL’s to create and open a database can be specified simply as:
i ng. persist.jdbc. createdburl =j dbc: cl oudscape: i mgdb; cr eat e=true
and
i ng. persist.jdbc. opendburl =j dbc: cl oudscape: i ngdb

respectively.

Database Manager Utility (imgdbmgr)

MQ provides a Database Manager utility (i rgdbngr) for setting up the schema
needed for persistence. The utility can also be used to delete MQ database tables
should the tables become corrupted or should you wish to use a different database
as a data store.

NOTE If a broker instance crashes abnormally, unreferenced persistent
information might remain in the data store. Starting up and then
shutting down the broker will normally clean up the data store.

This section describes the basic i mgdbngr command syntax, provides a listing of
subcommands, and summarizes i rgdbngr command options.

Syntax of Command

The general syntax of the i ngdbmgr command is as follows:

i mgdbngr subcommand argument [options)
i mgdbngr - h| -hel p
i mgdbngr -v|-version

Note that if you specify the -v or -h options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the cr eat e subcommand is not executed.

i mgdbngr create all -v

210 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Database Manager Utility (imgdbmgr)

imgdbmgr Subcommands

The Database Manager utility (i ngdbngr) includes the subcommands listed in
Table A-2:

Table A-2 i ngdbngr Subcommands

Subcommand Description
and Argument

create all Creates a new database and MQ persistent storage schema. This
command is used on an embedded database system, and when used,
the property i nq. persi st. j dbc. creat edburl needs to be
specified.

create thbl Creates the MQ persistent storage schema in an existing database

system. This command is used on an external database system.

del ete thl Deletes the existing MQ database tables in the current persistent
storage database.

recreate thbl Deletes the existing MQ database tables in the current persistent
storage database and then re-creates the MQ persistent storage
schema.

Summary of imgdbmgr Command Options

Table A-3 lists the options to the i nydbngr command.

Table A-3 i ngdbrgr Options

Option Description
- Dproperty=value Sets the specified property to the specified value.
-b brokerName Specifies the broker instance name and use the

corresponding instance configuration file.

-h Displays usage help. Nothing else on the command line is
executed.

- p password Specifies the database password.

-u name Specifies the database user name.

-V Displays version information. Nothing else on the command

line is executed.

Appendix A Setting Up Plugged-in Persistence 211

Database Manager Utility (imgdbmgr)

212 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Appendix B

HTTP/HTTPS Support
(Enterprise Edition)

The Sun™ ONE Message Queue (MQ) Enterprise Edition (see “Product Editions”
on page 26) includes support for both HTTP and HTTPS connections. (HTTPS is a
secure connection over HTTP, using the Secure Socket Layer standard.) This
support allows client applications to communicate with the broker using the HTTP
protocol instead of direct TCP connections. This appendix describes the
architecture used to implement this support and explains the setup work needed to
allow clients to use HTTP-based connections for MQ messaging.

HTTP/HTTPS Support Architecture

MQ messaging can be run on top of HTTP/HTTPS connections. Because
HTTP/HTTPS connections are normally allowed through firewalls, this allows
client applications to be separated from a broker by a firewall.

Figure B-1 on page 214 shows the main components involved in providing
HTTP/HTTPS support.

* Onthe client side, an HTTP transport driver encapsulates the MQ message into
an HTTP request and makes sure that these requests are sent to the Web server
in the correct sequence.

* The JMS client can use an HTTP proxy server to communicate with the broker
if necessary. The proxy’s address is specified using command line options
when starting the client. See “Using an HTTP Proxy” on page 219 for more
information.

213

HTTP/HTTPS Support Architecture

e An HTTP or HTTPS tunnel servlet (both bundled with MQ) is loaded in the
web server and used to pull J]MS messages out of client HTTP requests before
forwarding them to the broker. The HTTP /HTTPS tunnel servlet also sends
broker messages back to the client in response to HTTP requests made by the
client. A single HTTP/HTTPS tunnel servlet can be used to access multiple
brokers.

Figure B-1 ~ HTTP/HTTPS Support Architecture

Broker
JMS Client httpjms/httpsjms
Conncection
MQ Client Services
Runtime
HTTP/S Firewall s\ TCPR
Transport
Drivers (iHTT:
HTTPS THTTPI
HTTPS - Tunnel Sunr:et
g ——> Servlet |[>€MV'€
HTTP Proxy Web Server

* On the broker side, the httpjms or httpsjms connection service unwraps and
demultiplexes incoming messages from the corresponding tunnel servlet.

e If the Web server fails and is restarted, all connections are restored and there is
no effect on clients. If the broker fails and is restarted, an exception is thrown
and clients must re-establish their connections. In the unlikely case that both
the Web server and the broker fail, and the broker is not restarted, the Web
server will restore client connections and continue waiting for a broker
connection— without notifying clients. To avoid this situation, always restart
the broker.

As you can see from Figure B-1, the architecture for HTTP and HTTPS support are
very similar. The main difference is that, in the case of HTTPS (httpsjms connection
service), the tunnel servlet has a secure connection to both the client application
and broker.

214 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Implementing HTTP Support

The secure connection to the broker is provided through an SSL-enabled tunnel
servlet—MQ’s HTTPS tunnel servlet—which passes a self-signed certificate to any
broker requesting a connection. The certificate is used by the broker to set up an
encrypted connection to the HTTPS tunnel servlet. Once this connection is
established, a secure connection between a client application and the tunnel servlet
can be negotiated by the client application and the web server.

Implementing HTTP Support

The following sections describe the steps you need to take to implement HTTP
support.

[J Toimplement HTTP support
1. Deploy the HTTP tunnel servlet on a web server.
2. Conlfigure the broker’s httpjms connection service and start the broker.

3. Configure an HTTP connection.

Step 1. Deploying the HTTP Tunnel Servilet on a
Web Server

There are two general ways you can deploy the HTTP tunnel servlet on a web
server:

e deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

* deploying it as a web archive (WAR) file—for web servers that support Servlet
2.2 or later

Deploying as a Jar File

Deploying the MQ tunnel servlet consists of making the appropriate jar files
accessible to the host web server and configuring that web server to load the servlet
on startup.

Appendix B HTTP/HTTPS Support (Enterprise Edition) 215

Implementing HTTP Support

216

The tunnel servlet jar file (i myser vl et . j ar) contains all the classes needed by the
HTTP tunnel servlet and is located in the following directory:

I MQ HOVE/ i b (/usr/share/lib/imy on Solaris)

Any web server with servlet 2.x support can be used to load this servlet. The servlet
class name is:

com sun. messagi ng. j mg.transport.
htt pt unnel . servl et. H t pTunnel Ser vl et

The web server must be able to see the i mgser vl et . j ar file. If you are planning to
run the web server and the broker on different hosts, you should place a copy of
the i ngservl et . j ar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup (see
“Example: Deploying the HTTP Tunnel Servlet” on page 219).

It is also recommended that you disable your web server’s access logging feature in
order to improve performance.

Deploying as a Web Archive File

Deploying the HTTP tunnel servlet as a WAR file consists of using the deployment
mechanism provided by the web server. The HTTP tunnel servlet WAR file
(i nght t p. war) is located in the following directory:

I MQ HOVE/ i b (/usr/share/lib/imy on Solaris)

The WAR file includes a deployment descriptor that contains the basic
configuration information needed by the web server to load and run the servlet.

Step 2. Configuring the httpjms Connection
Service

HTTP support is not enabled by default for an MQ 3.0.1 broker, so you need to
reconfigure the broker to enable the httpjms connection service. Once reconfigured,
the broker can be started as outlined in “Starting a Broker” on page 120.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Implementing HTTP Support

[J To enable the httpjms connection service

1. Open the broker’s instance configuration file at the following location:

| MQ_VARHOVE/ i nst ances/ brokerNamel pr ops/ confi g. properties
(/var /i mg/instances/ brokerNamel props/ confi g. properti es on Solaris)

where brokerName is the name of the broker instance.

2. Add the ht t pj ns value to the i my. servi ce. activel i st property:

i ng. service.activelist=jnms,adnin, httpjns

At startup, the broker looks for a web server and HTTP tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servletHost and servletPort connection service properties.

You can also reconfigure the pullPeriod property to improve performance. The
httpjms connection service configuration properties are detailed in Table B-1 on

page 217.

Table B-1 httpjms Connection Service Properties

Property Name

Description

i ng. httpjms. http.

ser vl et Host

i mg. httpjms. http.

servl et Port

i ng. httpjms. http.

pul | Peri od

Change this value, if necessary, to specify the name of the host
(hostname or IP address) on which the HTTP tunnel servlet is
running. (This can be a remote host or a specific hostname on
alocal host.) Default: | ocal host

Change this value to specify the port number that the broker
uses to access the HTTP tunnel servlet. (If the default port is
changed on the Web server, then you must change this
property accordingly.) Default: 7675

Specifies the interval, in seconds, between HTTP requests
made by each client to pull messages from the broker. If the
value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as
possible. With a large number of clients, this can be a heavy
drain on web server resources and the server may become
unresponsive. In such cases, you should set the pul | Peri od
property to a positive number of seconds. This sets the time
the client’s HTTP transport driver waits before making
subsequent pull requests. Setting the value to a positive
number conserves web server resources at the expense of the
response times observed by clients. Default: - 1

Appendix B HTTP/HTTPS Support (Enterprise Edition) 217

Implementing HTTP Support

218

Step 3. Configuring an HTTP Connection

A client application must use an appropriately configured connection factory
administered object to make an HTTP connection to a broker. This section
discusses HTTP connection configuration issues.

Setting Connection Factory Attributes

To implement HTTP support, you set the following connection factory attributes
(see “Connection Factory Administered Objects” on page 167):

e Set thei ngConnecti onType attribute to HTTP
e Set the i ngConnecti onURL to the HTTP tunnel servlet URL
htt p: // hostName: port/ i my/ t unnel
You can set connection factory attributes in one of the following ways:

* Using the - o option to the i nobj nyr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 174),
or set the attribute when creating the connection factory administered object
using the Administration Console (i ngadni n).

¢ Using the - Doption to the command that launches the client application (see
the MQ Developer’s Guide).

* Using a JMS API call to set the attributes of a connection factory after you
create it programmatically in client application code (see the MQ Developer’s
Guide).

Using a Single Servlet to Access Multiple Brokers

You do not need to configure multiple web servers and servlet instances if you are
running multiple brokers. You can share a single web server and HTTP tunnel
servlet instance among concurrently running brokers. In order to do this, you must
configure the i nqConnect i onURL connection factory attribute as shown below:

ht t p: / / hostName:port/img/tunnel?Ser ver Name=hostName: brokerName

Where hostName is the broker host name and brokerName is the name of the specific
broker instance you want your client to access.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Implementing HTTP Support

To check that you have entered the correct strings for hostName and brokerName,
generate a status report for the HTTP tunnel servlet by accessing the servlet URL
from a browser. The report lists all brokers being accessed by the servlet:

HTTP tunnel servlet ready.
Servlet Start Time : Thu May 30 01: 08: 18 PDT 2002
Accepting TCP connections from brokers on port : 7675
Total avail able brokers = 2
Br oker Li st

j pgserv: broker 2

cochi n: broker 1

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTP tunnel servlet:

* Sethttp.proxyHost system property to the proxy server host name.
* Sethttp.proxyPort system property to the proxy server port number.

You can set these properties using the - D option to the command that launches the
client application.

Example: Deploying the HTTP Tunnel Serviet

This section describes how you deploy the HTTP tunnel servlet both as a jar file
and as a WAR file on the Sun ONE WEB Server. The approach you use depends on
the version of Sun ONE Web Server: If it does not support Servlet 2.2 or later, it will
not be able to handle WAR file deployment.

Deploying as a Jar File

The instructions below refer to deployment on Sun ONE Web Server, FastTrack
Edition 4.1 using the browser-based administration GUI. This procedure consists of
the following general steps:

1. add aservlet
2. configure the servlet virtual path
3. load the servlet

4. disable the servlet access log

Appendix B HTTP/HTTPS Support (Enterprise Edition) 219

Implementing HTTP Support

These steps are described in the following subsections. You can verify successful
HTTP tunnel servlet deployment by accessing the servlet URL using a web
browser. It should display status information.

Adding a Servlet
[0 To add a tunnel servlet
1. Select the Servlets tab.
2. Choose Configure Servlet Attributes.
3. Specify a name for the tunnel servlet in the Servlet Name field.

4. Set the Servlet Code (class name) field to the following value:

com sun. nessagi ng. j ng.transport.
htt ptunnel . servl et. H t pTunnel Ser vl et

5. Enter the complete path to the i ngservl et . j ar in the Servlet Classpath field.
For example:

| MQ HOVE/ i b/imgservlet.jar
(/usr/share/lib/ing/ingservlet.jar on Solaris)

6. Inthe Servlet args field, enter any optional arguments, as shown in Table B-2:

Table B-2 Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File

Argument Default Value Reference
servletHost all hosts See Table B-1 on page 217
servletPort 7675 See Table B-1 on page 217

If using both arguments, separate them with a comma:
ser vl et Por t =portnumber, ser vl et Host =...

The server Host and server Port argument apply only to communication
between the Web Server and broker, and are set only if the default values are
problematic. However, in that case, you also have to set the broker
configuration properties accordingly (see Table B-1 on page 217), for example:

i ng. httpjms. http. servletPort

220 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Implementing HTTP Support

Configuring a Servlet Virtual Path (Servlet URL)

To configure a virtual path (servlet URL) for a tunnel servlet
1. Select the Servlets tab.

2. Choose Configure Servlet Virtual Path Translation.
3. Set the Virtual Path field.

For example, if you want the URL to be ht t p: / / hostName: port/ i my/ t unnel ,
enter the following string in the Virtual Path field.

/i mg/ tunnel

4. Set the Servlet Name field to the same value as in Step 3 in “Adding a Servlet”
on page 220.

Loading a Servlet

To load the tunnel servlet at web server startup
1. Select the Servlets tab.

2. Choose Configure Global Attributes.

3. Inthe Startup Servlets field, enter the same servlet name value as in Step 3 in
“Adding a Servlet” on page 220.

Disabling a Server Access Log

You do not have to disable the server access log, but you will obtain better
performance if you do.

To disable the server access log
1. Select the Status tab.
2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File

The instructions below refer to deployment on Sun ONE Web Server 6.0 Service
Pack 2. You can verify successful HTTP tunnel servlet deployment by accessing the
servlet URL using a web browser. It should display status information.

Appendix B HTTP/HTTPS Support (Enterprise Edition) 221

Implementing HTTPS Support

[J To deploy the http tunnel servlet as a WAR file

1. In the browser-based administration GUI, select the Virtual Server Class tab
and select Manage Classes.

2. Select the appropriate virtual server class name (e.g. defaultclass) and click the
Manage button.

3. Select Manage Virtual Servers.

4. Select an appropriate virtual server name and click the Manage button.

5. Select the Web Applications tab.

6. Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the i mght t p. war file. It can be found in the following directory:
| MQ HOVE/ i b (/usr/share/lib/inmgon Solaris)

8. Enter “/i my” (without the quotes) in the Application URI field.

9. Enter the installation directory path (typically somewhere under the Sun ONE
Web Server installation root) where the servlet should be deployed.

10. Click K.

11. Restart the web server instance.

The servlet is now available at the following address:

htt p: / / hostName: port/ i mg/ t unnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

Implementing HTTPS Support

The following sections describe the steps you need to take to implement HTTPS
support. They are similar to those in “Implementing HTTP Support” on page 215
with the addition of steps needed to generate and access SSL certificates.

222 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Implementing HTTPS Support

[J To implement HTTPS support

1. Generate a self-signed certificate for the HTTPS tunnel servlet.

2. Deploy the HTTPS tunnel servlet on a web server.

3. Configure the broker’s httpsjms connection service and start the broker.
4. Configure an HTTPS connection.

Each of these steps is discussed in more detail in the sections that follow.

Step 1. Generating a Self-signed Cetrtificate for
the HTTPS Tunnel Servlet

SSL Support in MQ 3.0.1 is oriented toward securing on-the-wire data with the
assumption that the client is communicating with a known and trusted server.
Therefore in MQ 3.0.1, SSL is implemented using only self-signed server
certificates. In the httpsjms connection service architecture, the HTTPS tunnel
servlet plays the role of server to both broker and application client.

Run the i mgkeyt ool utility to generate a self-signed certificate for the tunnel
servlet. Enter the following at the command prompt:

i ngkeyt ool -servl et keystore_location

The utility will prompt you for the information it needs. (On Unix systems you
may need to run i mgkeyt ool as the superuser (root) in order to have permission to
create the keystore.)

First, i ngkeyt ool prompts you for a keystore password, then it prompts you for
some organizational information, and then it prompts you for confirmation. After
it receives the confirmation, it pauses while it generates a key pair. It then asks you
for a password to lock the particular key pair (key password); you should enter
Return in response to this prompt: this makes the key password the same as the
keystore password.

NOTE Remember the password you provide—you will need to provide
this password later to the tunnel servlet so it can open the keystore.

Appendix B HTTP/HTTPS Support (Enterprise Edition) 223

Implementing HTTPS Support

224

Running i mgkeyt ool runs the JDK keyt ool utility to generate a self-signed
certificate and to place it in MQ’s keystore file located as specified in the
keystore_location argument. (The keystore is in the same keystore format as that
supported by the JDK1.2 keyt ool .)

NOTE The HTTPS tunnel servlet must be able to see the keystore. Make
sure you move/copy the generated keystore located in
keystore_location to a location accessible by the HTTPS tunnel servlet
(see “Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server”
on page 224).

Step 2. Deploying the HTTPS Tunnel
Servlet on a Web Server

There are two general ways you can deploy the HTTPS tunnel servlet on a web
server:

* deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

* deploying it as a web archive (WAR) file—for web servers that support Servlet
2.2 or later

In either case, you should make sure that encryption is activated for the web server,
enabling end to end secure communication between the client and broker.

Deploying as a Jar File

Deploying the MQ tunnel servlet consists of making the appropriate jar files
accessible to the host web server and configuring that web server to load the servlet
on startup.

The tunnel servlet jar file (i myser vl et . j ar) contains all the classes needed by the
HTTPS tunnel servlet and is located in the following directory:

| MQ HOVE/ i b (/usr/share/lib/inmg on Solaris)

Any web server with servlet 2.x support can be used to load this servlet. The servlet
class name is:

com sun. nessagi ng. j ng.transport.
htt ptunnel . servl et. H t psTunnel Servl et .

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Implementing HTTPS Support

The web server must be able to see the i mgser vl et . j ar file. If you are planning to
run the web server and the broker on different hosts, you should place a copy of
the i myservl et . j ar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup (see
“Example: Deploying the HTTPS Tunnel Servlet” on page 229).

Make sure that the JSSE jar files are in the classpath for running servlets in the web
server. Check the web server’s documentation for how to do this.

An important aspect of configuring the web server is specifying the location and
password of the self-signed certificate to be used by the HTTPS tunnel servlet to
establish a secure connection with a broker. You have to place the keystore created
in “Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on
page 223 in a location accessible by the HTTPS tunnel servlet.

It is also recommended that you disable your web server’s access logging feature in
order to improve performance.

Deploying as a Web Archive File

Deploying the HTTPS tunnel servlet as a WAR file consists of using the
deployment mechanism provided by the web server. The HTTPS tunnel servlet
WAR file (i nght t ps. war) is located in the following directory:

I MQ HOVE/ i b (/usr/share/liblimy on Solaris)

The WAR file includes a deployment descriptor that contains the basic
configuration information needed by the web server to load and run the servlet.

However, the deployment descriptor of the i mght t ps. war file cannot know where
you have placed the keystore file needed by the tunnel servlet (see “Step 1.
Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on page 223).
This requires you to edit the tunnel servlet’s deployment descriptor (an XML file)
to specify the keystore location before deploying the i nght t ps. war file.

Step 3. Configuring the httpsjms
Connection Service

HTTPS support is not enabled by default for an MQ 3.0.1 broker, so you need to
reconfigure the broker to enable the httpsjms connection service. Once
reconfigured, the broker can be started as outlined in “Starting a Broker” on
page 120.

Appendix B HTTP/HTTPS Support (Enterprise Edition) 225

Implementing HTTPS Support

226

[J To enable the httpsjms connection service

1. Open the broker’s instance configuration file at the following location:

| MQ_VARHOVE/ i nst ances/ brokerNamel pr ops/ confi g. properties
(/var /i mg/instances/ brokerNamel props/ confi g. properti es on Solaris)

where brokerName is the name of the broker instance.
2. Add the htt psj ns value to the i ng. servi ce. acti vel i st property:
i ng. service. activelist=jns,adm n, httpsjnms

At startup, the broker looks for a web server and HTTPS tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servletHost and servletPort connection service properties.

You can also reconfigure the pullPeriod property to improve performance. The
httpsjms connection service configuration properties are detailed in Table B-3.

Table B-3 httpsjms Connection Service Properties

Property Name Description

i mg. httpsjms. https. Change this value, if necessary, to specify the name of the

servl et Host host (hostname or IP address) on which the HTTPS tunnel
servlet is running. (This can be a remote host or a specific
hostname on a local host.) Default: | ocal host

i mg. httpsjnms. https. Change this value to specify the port number that the broker

servl et Port uses to access the HTTPS tunnel servlet. (If the default port is
changed on the Web server, then you must change this
property accordingly.) Default: 7674

i mg. httpsjms. https. Specifies the interval, in seconds, between HTTP requests

pul | Peri od made by each client to pull messages from the broker. If the
value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as
possible. With a large number of clients, this can be a heavy
drain on web server resources and the server may become
unresponsive. In such cases, you should set the pul | Per i od
property to a positive number of seconds. This sets the time
the client’s HTTP transport driver waits before making
subsequent pull requests. Setting the value to a positive
number conserves web server resources at the expense of the
response times observed by clients. Default: - 1

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Implementing HTTPS Support

Step 4. Configuring an HTTPS Connection

A client application must use an appropriately configured connection factory
administered object to make an HTTPS connection to a broker.

However, the client must also have access to SSL libraries provided by the Java
Secure Socket Extension (JSSE) and must also have a root certificate. The SSL
libraries are bundled with JDK 1.4. If you have an earlier JDK version, see
“Configuring JSSE,” otherwise proceed to “Importing a Root Certificate.”

Once these issues are resolved, you can proceed to configuring the HTTPS
connection.

Configuring JSSE

To configure JSSE
1. Copy the JSSE jar files to the JRE_HOWE/ | i b/ ext directory.

jsse.jar, jnet.jar, jcert.jar
2. Statically add the JSSE security provider by adding
security. provi der.n=com sun. net.ssl.internal.ssl.Provider

to the JRE_HOME/ | i b/ security/java. security file (where n is the next
available priority number for security provider package).

3. Ifnot using JDK1.4, you need to set the following JSSE property using the - D
option to the command that launches the client application:

j ava. prot ocol . handl er. pkgs=com sun. net. ssl . i nt ernal . ww. pr ot ocol

Importing a Root Certificate

If the root certificate of the CA who signed your web server's certificate is not in the
trust database by default or if you are using a proprietary web server certificate,
you have to add that certificate to the trust database. If this is the case, follow the
instruction below, otherwise go to “Setting Connection Factory Attributes”.

Assuming that the certificate is saved in cert_file and that trust_store_file is your
keystore, run the following command:

JRE_HOME/ bi n/ keytool -inport -trustcacerts
-al i as alias_for_certificate -fil e cert_file
-keystore trust_store_file

Answer YES to the question: Trust this certificate?

Appendix B HTTP/HTTPS Support (Enterprise Edition) 227

Implementing HTTPS Support

228

You also need to specify the following JSSE properties using the - D option to the
command that launches the client application:

javax. net.ssl . trust Store=trust_store_file

javax. net.ssl.trust St or ePasswor d=trust_store_passwd

Setting Connection Factory Attributes
To implement HTTPS support, you set the following connection factory attributes
(see “Connection Factory Administered Objects” on page 167):

e Setthei ngConnecti onType attribute to HTTP

The secure connection to the broker is achieved through deploying and
connecting through the HTTPS tunnel servlet rather than the HTTP tunnel
servlet. Both use the same connection type, however.

e Set thei ngConnect i onURL to the HTTPS tunnel servlet URL
ht t ps: / / hostName: port/ i mg/ t unnel
You can set connection factory attributes in one of the following ways:

* Using the - o option to the i nobj nyr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 174),
or set the attribute when creating the connection factory administered object
using the Administration Console (i ngadni n).

e Using the - Doption to the command that launches the client application (see
the MQ Developer’s Guide).

* Using a JMS API call to set the attributes of a connection factory after you
create it programmatically in client application code (see the MQ Developer’s
Guide).

Using a Single Servlet to Access Multiple Brokers

You do not need to configure multiple web servers and servlet instances if you are
running multiple brokers. You can share a single web server and HTTPS tunnel
servlet instance among concurrently running brokers. In order to do this, you must
configure the i ngConnect i onURL connection factory attribute as shown below:

ht t ps: / | hostName:port/img/tunnel?Ser ver Name=hostName: brokerName

Where hostName is the broker host name and brokerName is the name of the specific
broker instance you want your client to access.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Implementing HTTPS Support

To check that you have entered the correct strings for hostName and brokerName,
generate a status report for the HTTPS tunnel servlet by accessing the servlet URL
from a browser. The report lists all brokers being accessed by the servlet:

HTTPS tunnel servlet ready.
Servlet Start Time : Thu May 30 01: 08: 18 PDT 2002
Accepting TCP connections from brokers on port : 7674
Total avail able brokers = 2
Br oker Li st

j pgserv: broker 2

cochi n: broker 1

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTPS tunnel servlet:

* Sethttp.proxyHost system property to the proxy server host name.
* Sethttp.proxyPort system property to the proxy server port number.

You can set these properties using the - D option to the command that launches the
client application.

Example: Deploying the HTTPS Tunnel Servlet

This section describes how you deploy the HTTPS tunnel servlet both as a jar file
and as a WAR file on the Sun ONE Web Server. The approach you use depends on
the version of Sun ONE Web Server: If it does not support Servlet 2.2 or later, it will
not be able to handle WAR file deployment.

Deploying as a Jar File

The instructions below refer to deployment on Sun ONE Web Server, FastTrack
Edition 4.1 using the browser-based administration GUI. This procedure consists of
the following general steps:

1. add aservlet
2. configure the servlet virtual path
3. load the servlet

4. disable the servlet access log

Appendix B HTTP/HTTPS Support (Enterprise Edition) 229

Implementing HTTPS Support

These steps are described in the following subsections. You can verify successful
HTTP tunnel servlet deployment by accessing the servlet URL using a web
browser. It should display status information.

Adding a Servlet

[0 To add a tunnel servlet

1.

2.

3.

Select the Servlets tab.

Choose Configure Servlet Attributes.

Specify a name for the tunnel servlet in the Servlet Name field.
Set the Servlet Code (class name) field to the following value:

com sun. nessagi ng. j ng. transport.
ht t pt unnel . servl et. H t psTunnel Ser vl et

Enter the complete path to thei rgservl et . j ar in the Servlet Classpath field.
For example:

| MQ HOVE/ i b/imgservlet.jar
(/usr/share/lib/ing/ingservlet.jar on Solaris)

In the Servlet args field, enter required and optional arguments, as shown in
Table B-4.

Table B-4 Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File

Argument Default Value Required? See Also

keyst orelLocati on none Yes Table 8-8 on page 200
keyst orePassword none Yes Table 8-8 on page 200
server Host all hosts No Table B-3 on page 226
server Port 7674 No Table B-3 on page 226

230 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Implementing HTTPS Support

Separate the arguments with a comma, for example:

keyst or eLocat i on=keystore_location, keyst or ePasswor d=keystore_password,
ser vl et Por t =portnumber

The server Host and server Port argument apply only to communication
between the Web Server and broker, and are set only if the default values are
problematic. However, in that case, you also have to set the broker
configuration properties accordingly (see Table B-3 on page 226), for example:

i ng. httpsjns. https. servl et Port

Configuring a Servlet Virtual Path (Servlet URL)

To configure a virtual path (servlet URL) for a tunnel servlet

1.

2.

3.

Select the Servlets tab.
Choose Configure Servlet Virtual Path Translation.
Set the Virtual Path field.

For example, if you want the URL to be ht t p: / / hostName: port/ i mg/ t unnel ,
enter the following string in the Virtual Path field.

/i mg/ tunnel

Set the Servlet Name field to the same value as in Step 3 in “Adding a Servlet”
on page 230.

Loading a Servlet

To load the tunnel servlet at web server startup

1.

2.

3.

Select the Servlets tab.
Choose Configure Global Attributes.

In the Startup Servlets field, enter the same servlet name value as in Step 3 in
“Adding a Servlet” on page 230.

Appendix B HTTP/HTTPS Support (Enterprise Edition) 231

Implementing HTTPS Support

232

Disabling a Server Access Log

You do not have to disable the server access log, but you will obtain better
performance if you do.

To disable the server access log
1. Select the Status tab.

2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File

The instructions below refer to deployment on Sun ONE Web Server 6.0 Service
Pack 2. You can verify successful HTTPS tunnel servlet deployment by accessing
the servlet URL using a web browser. It should display status information.

Before deploying the HTTPS tunnel servlet, make sure that JSSE jar files are
included in the web server’s classpath. The simplest way to do this is to copy the
jsse.jar,jnet.jar,andjcert.jartolWs60_TOPDI R/ bin/https/jre/lib/ext.

Also, before deploying the HTTPS tunnel servlet, you have to modify its
deployment descriptor to point to the location where you have placed the keystore
file and to specify the keystore password.

[J To modify the HTTPS tunnel servlet WAR file

1. Copy the WAR file to a temporary directory.

$ cp I MQ HOVE/ lib/inmhttps.war /tnp
($ cp /usr/share/lib/ing/inghttps.war /tnp on Solaris)

2. Make the temporary directory your current directory.
$cd/tnp

3. Extract the contents of the WAR file.
$ jar xvf inghttps.war

4. List the WAR file’s deployment descriptor.
$ I's -1 VEB-INF/ web. xni

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Implementing HTTPS Support

Edit the web. xmi file to provide correct values for the keyst or eLocat i on and
keyst or ePasswor d arguments (as well as server Port and ser ver Host
arguments, if necessary).

Re-assemble the contents of the WAR file.
$ jar uvf imghttps.war WEB- 1 NF/ web. xni

You are now ready to use the modified i nght t ps. war file to deploy the HTTPS
tunnel servlet. (If you are concerned about exposure of the keystore password, you
can use file system permissions to restrict access to the i nght t ps. war file.)

To deploy the https tunnel servlet as a WAR file

1. In the browser-based administration GUI, select the Virtual Server Class tab.
Click Manage Classes.

2. Select the appropriate virtual server class name (e.g. defaultclass) and click the
Manage button.

3. Select Manage Virtual Servers.

4. Select an appropriate virtual server name and click the Manage button.

5. Select the Web Applications tab.

6. Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the modified i myht t ps. war file (see “To modify the HTTPS
tunnel servlet WAR file” on page 232.)

8. Enter “/i my” (without the quotes) in the Application URI field.

9. Enter the installation directory path (typically somewhere under the Sun ONE
Web Server installation root) where the servlet should be deployed.

10. Click OK.

11. Restart the web server instance.

The servlet is now available at the following address:

ht t ps: / / hostName: port/ i mg/ t unnel

Clients can now use this URL to connect to the message service using a secure
HTTPS connection.

Appendix B HTTP/HTTPS Support (Enterprise Edition) 233

Implementing HTTPS Support

234 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Appendix C

Using a Broker as a
Windows Service

This appendix explains how you use the Service Administrator (i mysvcadni n)
utility to install, query, and remove a broker running as a Windows Service.

Running a Broker as a Windows Service

You have the option of installing a broker as a Windows service when you install
Sun™ ONE Message Queue (MQ) 3.0.1. You can also use i ngsvcadni n to install a
broker as an Windows service after you have installed MQ 3.0.1.

Installing a broker as a Windows service means that it will start at system startup
time and run in the background until you shut down. Consequently, you do not
use the i mybr oker d command to start the broker—unless, you want to start an
additional instance. To pass any start-up options to the broker, you can use the

- ar gs argument to the i ngsvcadni n command (see Table C-2 on page 237) and
specify exactly the same options you would have used for the i mgbr oker d
command (see “Starting a Broker” on page 120). Use the i rgcnd command to
control broker operations as usual.

When running as a Windows service, the Task Manager lists the broker as two
executable processes. The first is i ngbr oker svc. exe, which is the native Windows
service wrapper. The second is the Java runtime that is actually running the broker.

Only one broker at a time can be installed and run as a Windows service.

235

Service Administrator Utility (imgsvcadmin)

Service Administrator Utility (imgsvcadmin)

The Service Administrator utility (i nysvcadni n) allows you to install, query, and
remove the broker (running as a Windows service). This section describes the basic
syntax of i ngsvcadm n commands, provides a listing of subcommands,
summarizes i ngsvcadni n command options, and explains how to use these
commands to accomplish specific tasks.

Syntax of Command

The general syntax of i ngsvcadni n commands is as follows:
i mgsvcadni n subcommand [options]
i mgsvecadmin -h

Note that if you specify the -v, -h, or -H options, no other subcommands specified
on the command line are executed. For example, if you enter the following
command, help information is displayed but the quer y subcommand is not
executed.

i mgsvcadm n query -h

imgsvcadmin Subcommands

The MQ Service Administrator utility (i ngsvcadni n) includes the subcommands
listed in Table C-1:

Table C-1 i ngsvcadm n Subcommands

Subcommand Description
install Installs the service and specifies startup options.
query Displays the startup options to the i mgsvcadm n command.

This includes whether the service is started manually or
automatically, its location, the location of the java runtime,
and the value of the arguments passed to the broker on
startup.

renove Removes the service.

236 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Service Administrator Utility (imgsvcadmin)

Summary of imgsvcadmin Options

Table C-2 lists the options to the i mysvcadm n command. For a discussion of their
use, see the task-based sections that follow.

Table C-2 i ngsvcadmi n Options

Option

Description

-h

- j avahone path

-j rehone path

-vmargs arg
[[arg]...]

-args arg
[[arg]...]

Displays usage help. Nothing else on the command line is
executed.

Specifies the path to an alternate Java 2 compatible JDK. The
default is to use the bundled runtime.

Example: i ngsvcadmin -install -javahome d:\jdkl.4
Specifies the path to a Java 2 compatible JRE.
Example: i ngsvcadnmin -install -jrehome d:\jre\1l.4

Specifies additional arguments to pass to the Java VM that is
running the broker service. (You can also specify these arguments
in the Windows Services Control Panel Startup Parameters field.)

Example: - vimargs “- Xnms16m - Xmx128n¥

Specifies additional command line arguments to pass to the broker
service. For a description of the i ngbr oker d options, see “Starting
a Broker” on page 120.

(You can also specify these arguments in the Windows Services
Control Panel Startup Parameters field.) For example,

i mgsvcadm n -install
-args “-passfile d:\inmgpassfile”

The information that you specify using the - j avahone, - viar gs, and - ar gs
options is stored in the Window’s registry under the keys JavaHone, JVMAr gs, and
Ser vi ceAr gs in the path

HKEY_ LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set
\ Servi ces\i MQ Broker\ Paraneters

Appendix C Using a Broker as a Windows Service 237

Service Administrator Utility (imgsvcadmin)

238

Removing the Broker Service

Before you remove the broker service, you should use the i ngcnd shut down bkr
command to shut down the broker. Then use the i ngsvcadnmi n r enove command
to remove the service, and restart your computer.

Reconfiguring the Broker Service

To reconfigure the service, remove the service first, and then reinstall it, specifying
different startup options with the - ar gs argument.

Using an Alternate Java Runtime

You can use either the - j avahone or - j r ehone options to specify the location of an
alternate java runtime. You can also specify these options in the Windows Services
Control Panel Startup Parameters field. Note that the Startup Parameters field
treats the back slash (\) as an escape character, so you will have to type it twice
when using it as a path delimiter; for example, - j avahone d:\\j dk1. 3.

Querying the Broker Service

To determine the startup options for the broker service, use the - q option to the
i mgsvcadni n command.

i mgsvcadmi n - query

Service i MQ Broker is installed.

Di spl ay Nane: i MQ Broker

Start Type: Manual

Bi nary location: c:\Program Fil es\Sun M crosyst ens\
Message Queue 3.0\ bi n\i ngbr oker svc

JavaHome: c:\j2sdk1l.4.0

Broker Args: -passfile d:\ingpassfile

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

Service Administrator Utility (imgsvcadmin)

Troubleshooting

If you get an error when you try and start the service, you can see error events that
were logged by doing the following.

[J To see logged service error events
1. Start the Event Viewer
2. Look under Log > Application.

3. Select View > Refresh to see any error events.

Appendix C Using a Broker as a Windows Service 239

Service Administrator Utility (imgsvcadmin)

240 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Appendix D

Location of MQ Data

Sun™ ONE Message Queue (MQ) uses many categories of data, each of which is
stored in a different location, as shown in Table D-1.

Table D-1

Location of MQ 3.0 Data

Data Category

Location of Data

Broker instance
configuration properties

Persistent store (messages,
destinations, durable
subscriptions, transactions)

Broker instance log files
Administered objects
(object store)

Security: user repository

Security: access control file

Security: passfile

I MQ_VARHOWE/ i nst ances/ brokerNamel pr ops/
config. properties

(/var/i g/ i nst ances/ brokerNamel pr ops/
confi g. properties on Solaris)

I MQ VARHOWE/ i nst ances/ brokerNamel fi | est or e/

(/var/img/instances/ brokerNamel fil est ore/
on Solaris)

or a JDBC-accessible data store

I MQ_VARHOWE/ i nst ances/ brokerNamel | og/
(/var/inmg/instances/ brokerNamel | 0g/ on Solaris)
local directory of your choice

or an LDAP server

I MQ_HOWVE/ et ¢/ passwd

(/ et c/i ng/ passwd on Solaris)

or LDAP server

I MQ_HOVWE/ et c/ accesscontrol . properties
(/etcl/ing/accesscontrol.properties on Solaris)
I MQ_HOWE/ et c/ passfileName

(/ et c/ i my/ passfileName on Solaris)

241

Table D-1 Location of MQ 3.0 Data (Continued)

Data Category Location of Data

Security: broker’s keystore | MQ_HOME/ et c/ keystore
(/ etc/ingl/ keyst or e on Solaris)

242 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Appendix E

Stability of MQ Interfaces

Sun™ ONE Message Queue (MQ) uses many interfaces, that might be of use to
administrators for automating administration tasks. Table E-1 classifies these
interfaces according to how stable they are, that is, how unlikely they are to change
in subsequent versions of the product. The classification scheme is described in

Table E-2 on page 245.

Table E-1 Stability of MQ 3.0.1 Interfaces

Interface Classification
i mgbr oker d command line interface Evolving
i mgadmni n command line interface Unstable
i mycmd command line interface Evolving
i mgdbgr command line interface Unstable
i ngkeyt ool command line interface Evolving
i ngobj ngr command line interface Evolving
i mguser ngr command line interface Unstable
i ngobj ngr command file Evolving
i mgbr oker d command Stable

i mgadmi n command Unstable
i ngcnd command Stable

i mgdbmgr command Unstable
i nmgkeyt ool command Stable

i ngobj ngr command Stable

i mguser ngr command Unstable

243

Table E-1 Stability of MQ 3.0.1 Interfaces (Continued)

Interface Classification
JMS API (j avax. j ns) Standard
JAXM API (j avax. xm) Standard
Administered Object API (com sun. messagi ng) Evolving
i my. j ar location and name Stable

j ms. j ar location and name Evolving
i mgbr oker . j ar location and name Private
inguti | . j ar location and name Private

i rgadmni n. j ar location and name Private

i ngservl et. j ar location and name Evolving
i mghtt p. war location and name Evolving
i mght t ps. war location and name Evolving
i mgxm j ar location and name Evolving
j axmapi . j ar location and name Evolving
saaj - api . j ar location and name Evolving
saaj -i npl . j ar location and name Evolving
activation.jar location and name Evolving
mai | . j ar location and name Evolving
domdj . j ar location and name Private
fscontext.jar location and name Unstable
Output from i ngbr oker d, i mgadni n, i ngcnd, i nodbngr, Unstable
i rgkeyt ool , i ngobj ngr, i nquser ngr

Broker log file location and content format Unstable
passfile Unstable
accesscontrol . properties Unstable

244 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Table E-2 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed
in any release.

Evolving For use by customers. Subject to incompatible change at a
major (e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. The changes
will be made carefully and slowly. Reasonable efforts will be
made to ensure that all changes are compatible but that is not
guaranteed.

Stable For use by customers. Subject to incompatible change at a
major (e.g 3.0, 4.0) release only.

Standard For use by customers. These interfaces are defined by a
formal standard, and controlled by a standards organization.
Incompatible changes to these interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a
major (e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. Customers
are advised that these interfaces may be removed or changed
substantially and in an incompatible way in a future release.
It is recommended to customer to not create explicit
dependencies on unstable interfaces.

Appendix E Stability of MQ Interfaces 245

246 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

Glossary

This glossary provides information about terms and concepts you might encounter
while using Sun™ ONE Message Queue (MQ).

administered objects A pre-configured MQ object—a connection factory or a
destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with

other work.

authorization The process by which a message service determines whether a user
can access message service resources, such as connection services or destinations.

broker The MQ entity that manages message routing, delivery, persistence,
security, and logging, and which provides an interface that allows an administrator

to monitor and tune performance and resource use.

JMS client An application (or software component) that interacts with other JMS
clients using a message service to exchange messages.

client identifier An identifier that associates a connection and its objects with a
state maintained by the MQ message server on behalf of the JMS client.

client runtime See MQ client runtime.

247

248

cluster Two or more interconnected brokers that work in tandem to provide
messaging services.

configuration file One or more text files containing MQ settings that are used to
configure a broker. The properties are instance-specific or cluster-related.

connection 1) An active connection to an MQ message server. This can be a
queue connection or a topic connection. 2) A factory for sessions that use the
connection underlying MQ message server for producing and consuming
messages.

connection factory The administered object the client uses to create a connection
to MQ message server. This can be a QueueConnectionFactory object or a
TopicConnectionFactory object.

consume The receipt of a message taken from a destination by a message
consumer.

consumer An object (MessageConsumer) created by a session that is used for
receiving messages from a destination. In the point-to-point delivery model, the
consumer is a receiver or browser (QueueReceiver or QueueBrowser); in the
publish/subscribe delivery model, the consumer is a subscriber (TopicSubscriber).

data store A database where information (durable subscriptions, data about
destinations, persistent messages, auditing data) needed by the broker is
permanently stored.

delivery mode An indicator of the reliability of messaging: whether messages are
guaranteed to be delivered and successfully consumed once and only once
(persistent delivery mode) or guaranteed to be delivered at most once
(non-persistent delivery mode).

delivery model The model by which messages are delivered: either
point-to-point or publish/subscribe. In JMS there are separate programming
domains for each, using specific client runtime objects and specific destination
types (queue or topic), as well as a unified programming domain.

delivery policy A specification of how a queue is to route messages when more
than one message consumer is registered. The policies are: single, failover, and
round-robin.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

destination The physical destination in an MQ message server to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

domain A set of objects used by JMS clients to program JMS messaging
operations. There are two programming domains: one for the point-to-point
delivery model and one for the publish/subscribe delivery model.

MQ client runtime Software that provides JMS clients with an interface to the
MQ message server. The client runtime supports all operations needed for clients
to send messages to destinations and to receive messages from such destinations.

MQ message server Software that provides delivery services for an MQ
messaging system, including connections to JMS clients, message routing and
delivery, persistence, security, and logging. The message server maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JMS (Java Message Service) A standard set of interfaces and semantics that
define how a JMS client accesses the facilities of a message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

message selector A way for a consumer to select messages based on property
values (selectors) in JMS message headers. A message service performs message
filtering and routing based on criteria placed in message selectors.

message service See MQ message server.

messages Asynchronous requests, reports, or events that are consumed by JMS
clients. A message has a header (to which additional fields can be added) and a
body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

messaging A system of asynchronous requests, reports, or events used by

enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

Glossary 249

250

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

produce Passing a message to the client runtime for delivery to a destination.

producer An object (MessageProducer) created by a session that is used for
sending messages to a destination. In the point-to-point delivery model, a producer
is a sender (QueueSender); in the publish/subscribe delivery model, a producer is
a publisher (TopicPublisher).

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

session A single threaded context for sending and receiving messages. This can
be a queue session or a topic session.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction An atomic unit of work which must either be completed or entirely
rolled back.

user group The group to which the user of a JMS client belongs for purposes of
authorizing access to MQ message server resources, such as connections and
destinations.

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

A

access control file
access rules 194
format of 193
location 192, 241
use for 192
version 192
access control properties file, See access control file
access rules 194
acknowledgements
about 39, 51
broker 51, 167
client 51
delivery, of 51
transactions, and 52
wait period for 167
admin connection service 47, 149
administered objects
about 33,75
attributes of 167
connection factory, See connection factory
administered objects
deleting 177
destination, See destination administered objects
listing 178
look up name for 164
object stores, See object stores
provider-independence 76
querying 179
queue, See queues
required information 165
topic, See topics

Index

types 34,76, 162

updating 180

XA connection factory, See connection factory

administered objects

administration tasks

development environments 81

production environments 82
administration tools

about 84

Administration Console 84

command line utilities 84
application servers 36
authentication

about 57

managing 182
authorization

about 58

managing 192

user groups 59

See also access control file
auto-create destinations

about 67

properties 67

B

broker clusters
adding brokers to 129
architecture of 69
cluster configuration file 72,126
configuration change record 70, 71

251

Sec

tion C

broker clusters (continued)

configuration properties 71,72, 126
connecting brokers 128

in development-only environments 71
Master Broker 70, 71

option to specify 121

propagation of information in 70
reasons for using 68

restarting a broker in 129

setting properties 127

broker instances, See brokers
brokers

252

about 44

access control, See authorization
acknowledgements (Ack) 51

auto-create destination properties 67
clusters, See broker clusters

configuration files, See configuration files
connecting to 142

connecting together 128

connection services, See connection services
controlling 144

HTTP support for 215

httpjms connection service properties 217
HTTPS, support for 223

httpsjms connection service properties 226
instance configuration properties 116
instance name 123

interconnected, See broker clusters

JDBC support, See JDBC support

listing services 150

logging, See logger

Master Broker 70

message capacity 53

message routing, See message router
metrics, See metrics

multi-broker clusters, See broker clusters
pausing 144

persistence manager, See persistence manager

properties 147

querying 145, 146

recovery from failure 54

restarting 54, 144

resuming 144

security manager, See security manager
shutting down 144

starting 120

starting an SSL-based service 201

system resources for 52
tasks of 45
updating 145

Windows service, running as 235

built-in persistence 55

C

certificate 199, 223
client

applications, See client applications

identifiers (ClientID) 38

programming model 32

runtime 73
client applications

provider-independence 37

system properties, and 78
cluster configuration file 72
clusters, See broker clusters
command line syntax 86
command line utilities

about 84

basic syntax 86

imgemd 85, 138

imqdbmgr 86, 211

imgkeytool 86, 199, 223

imqobjmgr 85, 163

imgsvcadmin 86, 236

imqusermgr 86, 184

options common to 87
command options 87
components

EJB 34

MDB 35
config.properties file 114
configuration change record 70
configuration files

config.properties 114

default 114

editing 116

installation 114

instance 114, 127, 147, 241

Sun ONE Message Queue ¢ Administrator’s Guide * October, 2002

configuration files (continued)
location 114,241
overriding values set in 114
connection factory administered objects
about 77
adding 174
attributes 77, 167
ClientID, and 38
introduced 33
JNDI lookup 34
overrides 78
connection services
about 45
access control for 60
activated at startup 49
admin 47, 149
commands affecting 148
connection type 46
HTTP, See HTTP connections
httpjms 47, 149
HTTPS, See HTTPS connections
httpsjms 47, 149
jms 46, 149
pausing 149, 152
port mapper, See port mapper
properties 49
querying 149, 150
resuming 149, 152
service type 46
ssladmin 47, 149, 198
SSL-based 200
ssljms 46, 149, 198
static ports for 49
thread allocation 151
thread pool manager 48
updating 149, 150
connections
introduced 33
reconnect attempts 168
reconnecting 168
reconnection delay 168
consumers 33
containers
EJB 36
MDB 36
control messages 51

D

data store
about 54
flat-file 55
JDBC-accessible 56
location 241
resetting 124
data, MQ, location of 241
delivery modes
non-persistent 39
persistent 39
delivery, reliable 39
destination administered objects 78
attributes 169
introduced 33
destinations
access control 196
attributes of 153
auto-created 67, 197
creating 153
destroying 152, 153
information about 152, 154
introduced 44
listing 152
managing 152
physical 65
purging messages at 152, 155
queue, See queues
temporary 68, 154
topic, See topics
updating attributes 153, 154

Diagram showing message producers sending
messages to the message service, which relays

them to message consumers. 30
directory variables

IMQ_HOME 20

IMQ_JAVAHOME 21

IMQ_VARHOME 20
distributed transactions

about 40

XA resource manager 40, 157

See also XA connection factories
domains 37

durable subscribers, See durable subscriptions

Section D

253

Section E

durable subscriptions
about 37
ClientID, and 38
destroying 156
listing 156
purging messages for 156

E

editions, product
about 26
enterprise 27
platform 26
encryption
about 59
Key Tool, and 59
SSL-based services, and 198

enterprise edition 27
environment variables, See directory variables

F

firewalls 213

H

HTTP 47, 149

HTTP connections
multiple brokers, for 218
request interval 217
support for 213
tunnel servlet, See HTTP tunnel servlet

HTTP proxy 213
HTTP support architecture 213
HTTP transport driver 213
HTTP tunnel servlet 214, 219
httpjms connection service 47, 149
HTTPS connections

multiple brokers, for 228

request interval 226
support for 213
tunnel servlet, See HTTPS tunnel servlet

HTTPS support architecture 213
HTTPS tunnel servlet 203, 214
httpsjms connection service 47, 149

img.accesscontrol.enabled property 60, 116
imgq.accesscontrol file.filename property 61, 116
imgq.authentication.basic.user_repository
property 60, 116
imq.authentication.client.response.timeout
property 60, 116
imq.authentication.type property 60, 116
img.autocreate.queue property 67,116, 147
img.autocreate.topic property 67, 116, 147
imgq.cluster.brokerlist property 72,126
imgq.cluster.hostname property 73,127
imgq.cluster.masterbroker property 72, 126
imgq.cluster.port property 72,126
imgq.cluster.url property 72,116,126, 147
imq.httpjms.http.pullPeriod property 217
imq.httpjms.http.servletHost property 217
imq.httpjms.http.servletPort property 217
imq.httpsjms.https.pullPeriod property 226
imq.httpsjms.https.servletHost property 226
imq.httpsjms.https.servletPort property 226
imq.keystore.file.dirpath property 200
imq.keystore.file.name property 200
imq.keystore.password property 200, 204
imq.log.console.output property 64, 116
imq.log.console.output.stream property 64, 116
imq.log.console.syslog.facility property 64, 117
imq.log.console.syslog.identity property 64, 117

imq.log.console.syslog.logconsole property 64,117

imq.log.console.syslog.logpid property 64,117
imq.log.console.syslog.output property 65, 117
imq.logfile.dirpath property 64, 117

254 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

imq.log file.filename property 64, 117

imq.log file.output property 63,117

imq.log file.rolloverbytes property 64,117, 147
imq.log file.rolloversecs property 64,117, 147
imq.log.level property 63,117, 147
img.message.expiration.interval property 53, 117
imqg.message.max_size property 53,117, 147
img.metrics.enabled property 63, 117
imq.metrics.interval property 63,117
imgq.passfile.dirpath property 61, 117
imgq.passfile.enabled property 61, 117
imgq.passfile.name property 61, 117
imgq.persist.file.destination.file.size property 56, 117
imgq.persist.file.message.cleanup property 56, 117

imgq.persist.file.message.fdpool.limit property 57,
118

imgq.persist.file.message.filepool.cleanratio
property 56,118
imgq.persist.file.message.filepool.limit property 56,
118
imgq.persist.file.sync.enabled property 57, 118
imgq.persist.jdbc.brokerid property 207
imgq.persist.jdbc.closedburl property 208
imgq.persist.jdbc.createdburl property 208
imgq.persist.jdbc.driver property 207
imgq.persist.jdbc.needpassword property 208
imgq.persist.jdbc.opendburl property 208
imgq.persist.jdbc.password property 204, 209
imgq.persist.jdbc.user property 208
imq.persist.store property 56, 118, 207
imq.portmapper.port property 49, 118, 147
imq.queue.deliverypolicy property 67, 118, 147
imq.redelivered.optimization property 53, 118
imq.resource_state.threshold property 53,118
imgq.service.activelist property 49, 118

imq.service_name.accesscontrol.enabled property 60,
118

imq.service_name.accesscontrol.file.filename
property 61,118

imq.service_name.authentication.type property 60,
118

imq.service_name.max_threads property 49, 118

Section |

imq.service_name.min_threads property 49, 119
imq.service_name.protocol_type hostname

property 50,119
imq.service_name.protocol_type.port property 50, 119

imgq.service_name.threadpool_model property 49,
119

imq.shared.connectionMonitor_limit property 49,
119

imq.system.max_count property 53,119, 147
imq.system.max_size property 53,119, 147
img.transaction.autorollback property 53, 119, 159
imq.user_repository.ldap.base property 190
imq.user_repository.ldap.gidattr property 190
imq.user_repository.ldap.grpbase property 190
imq.user_repository.ldap.grpfiltler property 191
imq.user_repository.ldap.grpsearch property 190
imq.user_repository.ldap.memattr property 190
imq.user_repository.ldap.password property 190,

204
imq.user_repository.ldap.principal property 189
imq.user_repository.ldap.server property 189
imq.user_repository.ldap.ssl.enabled property 191
imq.user_repository.ldap.timeout property 191
imq.user_repository.ldap.uidattr property 190
imq.user_repository.ldap.usrfilter property 190
IMQ_HOME directory variable 20
IMQ_JAVAHOME directory variable 21
IMQ_VARHOME directory variable 20
imqAckOnAcknowledge attribute 167
imqAckOnProduce attribute 167
imgAckTimeout attribute 167
imgbrokerd command

about 85

command syntax 120

options 121

using 120
imgBrokerHostName attribute 167
imqBrokerHostPort attribute 167
imqBrokerServicePort attribute 167
imqcmd command

about 85

command syntax 138

connecting to a broker 142

Index 255

Section J

imgemd command (continued)
destination management 152
options 140
secure connection to broker 141, 202
subcommands 138
transaction management 157
use for 138,163, 184

imqConfiguredClientID attribute 167
imqConnectionType attribute 167
imqConnectionURL attribute 167

imgdbmgr command

about 86

command syntax 210

options 211

subcommands 211
imgDefaultPassword attribute 167
imgDefaultUsername attribute 167
imqDestinationDescription attribute 78, 169
imgDestinationName attribute 78, 169
imgDisableSetClientID attribute 167
imgFlowControlCount attribute 167
imgFlowControllsLimited attribute 167
imgFlowControlLimit attribute 167
imgJMSDeliveryMode attribute 168
imgJMSExpiration attribute 168
imqJMSPriority attribute 168
imgkeytool command

about 86

command syntax 199, 223

using 199, 223
imgLoadMaxToServerSession attribute 168
imgobjmgr command

about 85

command syntax 163

options 164

subcommands 163

imqOverride]MSDeliveryMode attribute 168
imqOverride]MSExpiration attribute 168

imqOverride]MSHeadersToTemporaryDestinations

attribute 168
imqOverride]MSPriority attribute 168

imgQueueBrowserMaxMessagesPerRetrieve
attribute 168

imqQueueBrowserRetrieveTimeout attribute 168

imgReconnect attribute 168
imgReconnectDelay attribute 168
imgReconnectRetries attribute 168
imqSetfMSXAppID attribute 168
imqSet]MSXConsumerTXID attribute 168
imqSet]MSXProducerTXID attribute 168
imqSet]MSXRcvTimestamp attribute 168
imqSet]MSXUserID attribute 168
imqSSLIsHostTrusted attribute 168

imgsvcadmin command
about 86
command syntax 236
options 237
subcommands 236
use for 236

imqusermgr command
about 86
command syntax 184
options 184
passwords 186
subcommands 184
user names 186

input files 171

instance configuration files, See configuration files

J

J2EE applications
EJB specification 34
JMS, and 34

message-driven beans, See message driven-beans

JDBC support
about 56
driver 205, 207
setting up 205

JDK
option to specify path to 140, 164, 237
specify path to 122

JMS
message structure 31
programming model 32
specification 31

jms connection service 46, 149

256 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

JMS specification 23, 25

JNDI
administered objects, and 34, 37
initial context 169
location (provider URL) 169
lookup 75,78, 103, 165
message-driven beans, and 36
MQ support of 26
object store 85, 162
object store attributes 166, 169

JRE, specify path to 122

K

key pairs
generating 199
regenerating 200
Key Tool 59
keystore
file 199, 200, 224
properties 200

L

LDAP server
object store attributes 170
user-repository access 189
licenses
for MQ editions 26
loading 122
listeners 33, 35
log files
default location 63, 241
rollover criteria 64
logger
about 61
archive files 63
as broker component 46
categories 62
changing configuration 133
default configuration 131

Section K

levels 62, 63,122

message format 132

metrics information 63, 135
output channels 62, 133
properties 63

redirecting log messages 134
rollover criteria 134

writing to console 64, 124

logging, See logger

M

Master Broker 70, 71
MDB See message-driven beans
memory management 52
Message 30
message consumers, See consumers
message delivery models 31, 37
message listeners, See listeners
message producers, See producers
message router
about 50
as broker component 45
properties 53
message server
about 44
multi-broker, See broker clusters 68
message service 30
message-driven beans
about 35
application server support 36
deployment descriptor 36
MDB container 36
messages
acknowledgements 51, 167
broker limits on 53
consumption of 74
control 51
delivery models 31, 37
delivery modes, See delivery modes
filtering 42
introduced 31
limits on 153

Index

257

Section O

messages (continued)
listeners for 33,75
ordering 42
persistence of 52, 54
persistent 39
point-to-point delivery 37
prioritizing 42
production of 74
publish/subscribe delivery 38
purging at a destination 152
reclamation of expired 53
redelivery 52
reliable delivery of 39
routing and delivery 50
SOAP 26
structure 31

messaging system
architecture 30
message service 30
MQ architecture 44

metrics
about 62
reporting interval 123
summary of 136

O

object stores
about 162
file-system store 162
file-system store attributes 169
LDAP server 162
LDAP server attributes 170
locations 241

P

passfile
broker configuration properties 61
command line option 123
location 204, 241
using 204

password file, See passfile
passwords
default 167
encoding of 60
JDBC 204
LDAP 204
naming conventions 186
passfile, See passfile
SSL keystore 123,200, 204
performance, reliability, and 41
permissions
access control properties file 58, 192
admin service 59
computing 194
data store 55
embedded database 206
keystore 223
MQ operations 58
passfile 204
user repository 183
persistence
built-in 55
data store See data store
delivery modes, See delivery modes
JDBC, See JDBC persistence
persistence manager, See persistence manager
plugged-in, See plugged-in persistence
persistence manager
about 54
as broker component 46
data store See data store
JDBC data store 207
plugged-in persistence, and 205
properties 56
persistent messages 39
platform edition 26
plugged-in persistence
about 56
setting up 205
point-to-point delivery 37
port mapper
about 48
port assignment for 49, 123
portability, See provider-independence
ports, dynamic allocation of 48

258 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

producers 33
programming domains 37
properties
auto-create 67
broker instance configuration 116
broker, updating 147
cluster configuration 72
connection service 49
httpjms connection service 217
httpsjms connection service 226
JDBC-related 207
keystore 200
LDAP-related 189
logger 63
message router 53
persistence 56
security 60
protocol types
HTTP 47,149
TCP 46, 149
TLS 46, 149
protocols, See transport protocols
protocols, See transport protocols
provider-independence
about 37
administered objects 76
publish/subscribe delivery 38

Q

queue delivery policy
about 65
attribute 153
failover 66
round-robin 66
single 65
queue destinations, See queues
queues 65
adding administered objects for 176
attributes of 153
auto-created 67,116
delivery policy, See queue delivery policy

Section Q

R

redeliver flag 52
reliable delivery 39
routing, See message router

S

Secure Socket Layer standard, See SSL
security
authentication, See authentication
authorization, See authorization
encryption, See encryption
manager, See security manager
object store, for 170
security manager
about 57
as broker component 46
properties 60
self-signed certificate 199, 223
service types
ADMIN 46
NORMAL 46
sessions
acknowledgement options for 39
introduced 33
transacted 39
Simple Object Access Protocol See SOAP
SOAP 26
SSL
about 59
connection services, and 46, 149
encryption, and 198
over HTTP 203
over TCP/IP 198
services, setting up 181
ssladmin connection service 47, 149
configuring 201
setting up 198
SSL-based connection services
setting up 198
SSL-based services
starting up 201

Index

259

Section T

ssljms connection service 46, 149
configuring 201
setting up 198
subscriptions
destroying durable 157
id of durable 140
managing durable 155

syslog 63, 134
system properties, setting 78

T

TCP 46, 149
temporary destinations 68, 154
thread pool manager
about 48
dedicated threads 48
shared threads 48
TLS 46, 149
tools, administration, See administration tools
topic destinations, See topics
topics
about 38
adding administered objects for 175
as physical destinations 66
attributes of 153
auto-created 67,116
transactions
about 39
acknowledgements, and 52
committing 157
distributed, See distributed transactions
information about 157
managing 157
rolling back 157
transport protocols
HTTP 47,149
TCP 46, 149
TLS 46, 149

U

user groups
about 58
default 59
deleting assignment 186
predefined 185

user names
default 167,183
format 186

user repository
about 57
flat-file 182
LDAP server 189
location 182,241
managing 187
platform dependence 183
populating 187
types 60
user groups 186
user states 186

wW

Windows service, broker running as 235

X

XA connection factories
about 41
See also connection factory administered objects

XA resource manager, See distributed transactions

260 Sun ONE Message Queue * Administrator’s Guide ¢ October, 2002

	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Audience for This Guide
	Organization of This Guide
	Conventions
	Text Conventions
	Directory Variable Conventions

	Other Documentation Resources
	The MQ Documentation Set
	Online Help
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification

	1 Overview
	What Is Sun ONE Message Queue?
	Product Editions
	Platform Edition
	Enterprise Edition

	Enterprise Messaging Systems
	Requirements of Enterprise Messaging Systems
	Centralized vs. Peer to Peer Messaging
	Messaging System Concepts
	Message
	Message Service Architecture
	Message Delivery Models

	The JMS Specification
	JMS Message Structure
	JMS Programming Model
	Administered Objects

	JMS/J2EE Programming: Message-driven Beans
	Message-driven Beans
	Application Server Support

	JMS Messaging Issues
	JMS Provider Independence
	Programming Domains
	Client Identifiers
	Reliable Messaging
	Acknowledgements/Transactions
	Persistent Storage

	Performance Trade-offs
	Message Selection
	Message Order and Priority

	2 The MQ Messaging System
	MQ Message Server
	Broker
	Connection Services
	Message Router
	Persistence Manager
	Security Manager
	Logger

	Physical Destinations
	Queue Destinations
	Topic Destinations
	Auto-Created (vs. Admin-Created) Destinations
	Temporary Destinations

	Multi-Broker Clusters (Enterprise Edition)
	Multi-Broker Architecture
	Using Clusters in Development Environments
	Cluster Configuration Properties

	MQ Client Runtime
	Message Production
	Message Consumption

	MQ Administered Objects
	Connection Factory Administered Objects
	Destination Administered Objects
	Overriding Attribute Values at Client Startup

	3 MQ Administration
	MQ Administration Tasks
	Development Environments
	Production Environments
	Setup Operations
	Maintenance Operations

	MQ Administration Tools
	The Administration Console
	Summary of Command Line Utilities
	Command Line Syntax
	Common Command Line Options

	4 Administration Console Tutorial
	Getting Ready
	Starting the Administration Console
	To start the Administration Console
	Getting Help
	To display Administration Console help information

	Working With Brokers
	Starting a Broker
	To start a broker

	Adding a Broker
	To add a broker to the Administration Console

	Changing the Administrator Password
	To change the administrator password

	Connecting to the Broker
	To connect to the broker

	Viewing Connection Services
	To view available connection services

	Adding Physical Destinations to a Broker
	To add a queue destination to a broker

	Working With Physical Destinations
	To view the properties of a physical destination
	To purge messages from a destination
	To delete a destination

	Getting Information About Topic Destinations

	Working with Object Stores
	Adding an Object Store
	To add a file-system object store

	Checking Object Store Properties
	To display the properties of an object store

	Connecting to an Object Store
	To connect to an object store

	Adding a Connection Factory Administered Object
	To add a connection factory to an object store

	Adding a Destination Administered Object
	To add a destination to an object store

	Administered Object Properties
	To view or update the properties of a destination object

	Updating Console Information
	Running the Sample Application
	To run the SimpleJNDIClient application

	5 Starting and Configuring a Broker
	Configuration Files
	Merging Property Values
	Property Naming Syntax
	Editing the Instance Configuration File

	Starting a Broker
	Working With Clusters (Enterprise Edition)
	Cluster Configuration Properties
	Connecting Brokers
	Method 1: No Cluster Configuration File
	To connect brokers into a cluster
	Method 2: Using a Cluster Configuration File

	Adding Brokers to Clusters
	To add a broker to a cluster if you are using a cluster configuration file

	Restarting a Broker in a Cluster
	Removing a Broker from a Cluster
	Backing up the Master Broker’s Configuration Change Record
	Restoring the Master Broker’s Configuration Change Record
	To restore the Master Broker in case of failure

	Logging
	Default Logging Configuration
	Log Message Format
	Changing the Logger Configuration
	To change the Logger configuration for a broker
	Changing the Output Channel
	Changing Rollover Criteria
	Logging Broker Performance Metrics

	6 Broker and Application Management
	Command Utility
	Syntax of Command
	imqcmd Subcommands
	Summary of imqcmd Options
	Prerequisites to Using imqcmd
	Examples

	Controlling the Broker’s State
	Querying and Updating Broker Properties
	Querying a Broker
	Updating a Broker

	Managing Connection Services
	Listing Connection Services
	Querying and Updating Service Properties
	Pausing and Resuming a Service

	Managing Destinations
	Creating Destinations
	Getting Information About Destinations
	Updating Destinations
	Purging Destinations
	Destroying Destinations

	Managing Durable Subscriptions
	Managing Transactions

	7 Managing Administered Objects
	About Object Stores
	Administered Objects
	Object Manager Utility (imqobjmgr)
	Syntax of Command
	imqobjmgr Subcommands
	Summary of imqobjmgr Command Options
	Required Information
	Administered Object Attributes
	Connection Factory Administered Objects
	Destination Administered Objects

	Object Store Attributes
	Initial Context and Location Information
	Security Information (LDAP Only)

	Using Input Files

	Adding and Deleting Administered Objects
	Adding a Connection Factory
	Adding a Topic or Queue
	Deleting Administered Objects

	Getting Information
	Listing Administered Objects
	Information About a Single Object

	Updating Administered Objects

	8 Security Management
	Authenticating Users
	Using a Flat-File User Repository
	User Manager Utility (imqusermgr)
	Groups
	States
	Format of User Names and Passwords
	Populating and Managing the User Repository
	Changing the Default Administrator Password

	Using an LDAP Server for a User Repository
	To edit the configuration file to use an LDAP server

	Authorizing Users: the Access Control Properties File
	Access Rules Syntax
	Permission Computation
	Connection Access Control
	Destination Access Control
	Destination Auto-Create Access Control

	Encryption: Working With an SSL Service (Enterprise Edition)
	Setting Up an SSL Service Over TCP/IP
	To set up a ssljms connection service
	Step 1. Generating a Self-Signed Certificate
	To regenerate a key pair
	Step 2. Enabling the SSL-based Service in the Broker
	Step 3. Starting the Broker
	Step 4. Configuring and Running SSL-based Clients

	Setting Up an SSL Service Over HTTP

	Using a Passfile

	A Setting Up Plugged-in Persistence
	Introduction
	Plugging In a JDBC-accessible Data Store
	To plug in a JDBC-accessible data store

	JDBC-related Broker Configuration Properties
	Database Manager Utility (imqdbmgr)
	Syntax of Command
	imqdbmgr Subcommands
	Summary of imqdbmgr Command Options

	B HTTP/HTTPS Support (Enterprise Edition)
	HTTP/HTTPS Support Architecture
	Implementing HTTP Support
	To implement HTTP support
	Step 1. Deploying the HTTP Tunnel Servlet on a Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 2. Configuring the httpjms Connection Service
	To enable the httpjms connection service

	Step 3. Configuring an HTTP Connection
	Setting Connection Factory Attributes
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example: Deploying the HTTP Tunnel Servlet
	Deploying as a Jar File
	To add a tunnel servlet
	To configure a virtual path (servlet URL) for a tunnel servlet
	To load the tunnel servlet at web server startup
	To disable the server access log
	Deploying as a WAR File
	To deploy the http tunnel servlet as a WAR file

	Implementing HTTPS Support
	To implement HTTPS support
	Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet
	Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 3. Configuring the httpsjms Connection Service
	To enable the httpsjms connection service

	Step 4. Configuring an HTTPS Connection
	Configuring JSSE
	To configure JSSE
	Importing a Root Certificate
	Setting Connection Factory Attributes
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example: Deploying the HTTPS Tunnel Servlet
	Deploying as a Jar File
	To add a tunnel servlet
	To configure a virtual path (servlet URL) for a tunnel servlet
	To load the tunnel servlet at web server startup
	To disable the server access log
	Deploying as a WAR File
	To modify the HTTPS tunnel servlet WAR file
	To deploy the https tunnel servlet as a WAR file

	C Using a Broker as a Windows Service
	Running a Broker as a Windows Service
	Service Administrator Utility (imqsvcadmin)
	Syntax of Command
	imqsvcadmin Subcommands
	Summary of imqsvcadmin Options
	Removing the Broker Service
	Reconfiguring the Broker Service
	Using an Alternate Java Runtime
	Querying the Broker Service
	Troubleshooting
	To see logged service error events

	D Location of MQ Data
	E Stability of MQ Interfaces
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X

