Sun Storage 6 Gb SAS PCIe RAID 内蔵 HBA

設置ガイド (HBA モデル SGX-SAS6-R-INT-Z および SG-SAS6-R-INT-Z 対応)

Copyright © 2010, 2011, 2012, 2013 Oracle and/or its affiliates. All rights reserved.

このソフトウェアおよび関連ドキュメントの使用と開示は、ライセンス契約の制約条件に従うものとし、知的財産に関する法律により保護されています。ライセンス契約で明示的に許諾されている場合もしくは法律によって認められている場合を除き、形式、手段に関係なく、いかなる部分も使用、複写、複製、翻訳、放送、修正、ライセンス供与、送信、配布、発表、実行、公開または表示することはできません。このソフトウェアのリバース・エンジニアリング、逆アセンブル、逆コンパイルは互換性のために法律によって規定されている場合を除き、禁止されています。

ここに記載された情報は予告なしに変更される場合があります。また、誤りが無いことの保証はいたしかねます。誤りを見つけた場合は、オラクル社までご連絡ください。

このソフトウェアまたは関連ドキュメントを、米国政府機関もしくは米国政府機関に代わってこのソフトウェアまたは関連ドキュメントをライセンスされた者に提供する場合は、次の通知が適用されます。

U.S. GOVERNMENT END USERS:

Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

このソフトウェアもしくはハードウェアは様々な情報管理アプリケーションでの一般的な使用のために開発されたものです。このソフトウェアもしくはハードウェアは、危険が伴うアプリケーション(人的傷害を発生させる可能性があるアプリケーションを含む)への用途を目的として開発されていません。このソフトウェアもしくはハードウェアを危険が伴うアプリケーションで使用する際、安全に使用するために、適切な安全装置、バックアップ、冗長性(redundancy)、その他の対策を講じることは使用者の責任となります。このソフトウェアもしくはハードウェアを危険が伴うアプリケーションで使用したことに起因して損害が発生しても、オラクル社およびその関連会社は一切の責任を負いかねます。

OracleおよびJavaはOracle Corporationおよびその関連企業の登録商標です。その他の名称は、それぞれの所有者の商標または登録商標です。

Intel、Intel Xeonは、Intel Corporationの商標または登録商標です。すべてのSPARCの商標はライセンスをもとに使用し、SPARC International, Inc.の商標または登録商標です。AMD、Opteron、AMDロゴ、AMD Opteronロゴは、Advanced Micro Devices, Inc.の商標または登録商標です。UNIXは、The Open Groupの登録商標です。

このソフトウェアまたはハードウェア、そしてドキュメントは、第三者のコンテンツ、製品、サービスへのアクセス、あるいはそれらに関する情報を提供することがあります。オラクル社およびその関連会社は、第三者のコンテンツ、製品、サービスに関して一切の責任を負わず、いかなる保証もいたしません。オラクル社およびその関連会社は、第三者のコンテンツ、製品、サービスへのアクセスまたは使用によって損失、費用、あるいは損害が発生しても一切の責任を負いかねます。

目次

はじめに	7
Oracle の関連ドキュメント	7
関連ドキュメント	7
ドキュメントのフィードバック	7
サポートとアクセシビリティー	. 8
1. HBA の概要	. 9
キットの内容	9
HBA の機能	9
SAS/SATA の機能	10
RAID の機能	11
HDD および SSD を使用した有効なドライブ混在構成	12
オペレーティングシステムおよびテクノロジの要件	12
システムの相互運用性	13
ホストプラットフォームのサポート	13
ストレージシステムのサポート	14
ソフトウェアサポート	14
ブートサポート	14
2. ハードウェアの取り付けと取り外し	15
ESD および取り扱いに関する注意事項の順守	15
HBA の取り付け	16
▼ ハードウェアの取り付けの準備をする	16
▼ HBA を取り付けるには	16
▼ HBA を内部ストレージデバイスに接続する	18
▼ 取り付けを完了するには	20
HBA の LED	21
次のステップ	22
HBA の取り外し	22
▼ HBA を取り外すには	22
3. ブート前の環境でのブート可能ドライブの作成	23
ブート前の環境でのブート可能ドライブの作成の概要	23
ユーティリティーの概要	24
ブート可能ドライブを作成するための方法	24
ブート可能ドライブの作成 (SPARC)	25
▼ ブート可能ドライブを作成するには (SPARC)	25
pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)	25
既存の論理ドライブ構成をインポートする (SPARC)	27
ブート可能ドライブの別名を作成する (SPARC)	28
ブート可能ドライブの作成 (x86)	29
▼ ブート可能ドライブを作成する (x86)	29

.1-7 (00)	
する (x86)	30
pcli ユーティリティーを使用してブート可能ドライブを作成する (x86) 3	37
既存の論理ドライブ構成をインポートする (x86)	37
▼ 外部ディスクドライブから x86 サーバーをブートする	39
HBA 論理ドライブのラベルを検証する	41
▼ 論理ドライブのラベルが有効であることを検証する	41
次のステップ 4	43
Oracle Solaris OS のインストール	43
▼ Oracle Solaris OS のインストールの準備をする	43
▼ Oracle Solaris OS をインストールする	43
次のステップ	44
4. HBA ソフトウェアのインストール	45
Oracle Solaris のドライバおよびファームウェアのインストール	45
ファームウェアの更新	45
Linux のドライバおよびファームウェアのインストール	46
▼ Linux ドライバをインストールするには	46
▼ Linux のファームウェアをダウンロードして更新するには	46
Windows Server のドライバおよびファームウェアのインストール	46
▼ Windows ドライバをインストールするには	46
ファームウェアの更新 4	47
VMware のドライバおよびファームウェアのインストール	47
RAID 構成ユーティリティーのインストール	47
5. 既知の問題	49
MegaRAID Storage Manager に関する問題	
▼ BackingStoreException エラーメッセージが GUI の起動時に表示され	
\$	49
端末ウィンドウにデバッグメッセージが表示される 5	
別のホストに接続しようとするとエラーメッセージが表示される 5	50
GUI および CLI のログインパスワードを入力できない 5	51
MSM GUI で管理アクションを選択できない 5	51
MSM GUI でドライブグループを作成できない 5	51
sas_snmp エラーおよび sas_ir_snmp エラーが MSM GUI のインストール時	
	52
▼ MSM GUI を起動しようとしたときに接続拒否エラーメッセージが表示され	
3	52
MSM GUI でモニタリングシステムが MegaRAID サーバーとして表示され	
3	53
root ユーザーに切り替えたあとに MSM GUI が起動されない 5	53
青色の取り外し可能 LED が点灯しないためディスクを特定できない 5	
ユーティリティー関連の問題 {	
UEFI HII メニューからコントローライベントを保存できない 5	
WebBIOS ユーティリティーのメニューの「Advanced Software Options (高	
度なソフトウェアオプション)」機能がサポートされていない 5	55

WebBIOS ユーティリティーを使用したときにマウスの動作が不安定になる	55
MegaCLI のログファイルが /tmp ディレクトリに保存される	55
サポートされていない RAID レベルが MegaCLI ユーティリティーで表示され	
<u> გ</u>	55
MegaCli64 -AdpAlILog -aALL コマンドの実行後にエラーメッセージが表示され	
<u> გ</u>	56
WebBIOS ユーティリティーでマウスクリックが検出されない	56
WebBIOS ユーティリティーでコピーバックプロセスがいつ完了するかわからな	
N	56
ストレージに関する問題	56
オペレーティングシステムをブートできない	57
ドライブの再挿入後に青色の取り外し可能 LED が点灯する	57
システムのリブート後に通常とは異なるメッセージが表示される	57
A. HBA の仕様	59
物理的な寸法	59
HBA のカードのレイアウト	59
HBA のジャンパとコネクタ	60
環境仕様	60
耐障害性	61
電気特性	61
用語集	63

このドキュメントの使用法

この設置ガイドでは、Oracle の内蔵 Sun Storage 6G ビット/秒 (Gb) Serial Attached SCSI/SATA (SAS) PCI Express (PCIe) RAID ホストバスア ダプタ (HBA) (このドキュメント内では内蔵 Sun Storage 6 Gb SAS PCIe RAID HBA と呼ぶ) の設置方法と取り外し方法について説明します。また、HBA に必要なドライバ、パッチ、およびファームウェアをインストールする方法 についても説明するほか、製品の既知の問題も示します。

このドキュメントは、技術者、システム管理者、アプリケーションサービスプロバイダ (ASP)、およびハードウェアのトラブルシューティングや交換について熟練したユーザーを対象としています。

この前書きには、次のトピックが含まれています。

- 7ページの「Oracle の関連ドキュメント」
- ・ 7ページの「関連ドキュメント」
- 7ページの「ドキュメントのフィードバック」
- 8ページの「サポートとアクセシビリティー」

Oracle の関連ドキュメント

ローカライズ版を含む、各種の Oracle ドキュメントを表示、印刷、または購入するには、次のサイトにアクセスしてください: http://www.oracle.com/documentation

HBA およびコンバージドネットワークアダプタのドキュメントにアクセスするには、次のサイトにアクセスしてください: http://www.oracle.com/technetwork/documentation/oraclestorage-networking-190061.html

関連ドキュメント

オンラインのドキュメントは、次の URL で参照できます。

http://www.lsi.com/sep/Pages/oracle/index.aspx

アプリケーション/ハードウェア	タイトル	形式	場所
MegaRAID グラフィカルユーザーインタフェース (GUI)	MegaRAID SAS ソフトウェアのユーザーズガイド	PDF	オンライン
	MegaRAID SAS ソフトウェアのリリースノート	PDF	オンライン
インテリジェントバッテリバックアップユニット	『MegaRAID iBBU08 Intelligent Battery Backup Unit Quick Installation Guide』	PDF	オンライン

ドキュメントのフィードバック

このドキュメントについてのフィードバックをお寄せください。

http://www.oracle.com/goto/docfeedback

このドキュメントの使用法 7

サポートとアクセシビリティー

説明	リンク
My Oracle Support を通じた電子的なサポートへのアクセス。	http://support.oracle.com
	聴覚障害の方へ
	http://www.oracle.com/accessibility/support.html
アクセシビリティーに対する Oracle の コミットメントについて学習します。	http://www.oracle.com/us/corporate/accessibility/index.html

•••第1章

HBA の概要

この章では、LSI テクノロジを使用する、Oracle の内蔵 Sun Storage 6G ビット/秒 (6 Gb) Serial Attached SCSI/SATA (SAS) PCI Express (PCIe) RAID ホストバスアダプタ (HBA) の概要について説明します。また、HBA をサポートする各種のオペレーティングシステム、ホストプラットフォーム、ストレージ、およびインフラストラクチャー構成についても説明します。

この章には次のトピックが含まれています。

- 9ページの「キットの内容」
- 9ページの「HBA の機能」
- 12 ページの「HDD および SSD を使用した有効なドライブ混在構成」
- ・ 12 ページの「オペレーティングシステムおよびテクノロジの要件」
- 13 ページの「システムの相互運用性」
- 14ページの「ブートサポート」

キットの内容

- Sun Storage 6 Gb SAS PCIe RAID 内蔵 HBA
- 『Accessing Documentation』ドキュメント

注記

HBA 出荷キットに含まれる『Accessing Documentation』には、Oracle HBA の設置ガイドの参照方法が記載されています。この HBA に関連する Oracle 以外のドキュメントの参照方法については、7 ページの「関連ドキュメント」を参照してください。

HBA の機能

内蔵 Sun Storage 6 Gb SAS PCIe RAID HBA (SGX-SAS6-R-INT-Z、SG-SAS6-R-INT-Z) は、2 つの SFF-8087 x4 内部 Mini SAS コネクタを通じて 8 つの内部 6 Gb SAS/SATA ポートをサポートする薄型の PCI Express 2.0 RAID コントローラです。

第1章 HBA の概要 9

注記

この HBA でサポートされる SATA の種類は SATA II だけです。

この HBA には、LSI インテリジェントバッテリバックアップユニット 08 (LSIiBBU08) を直接またはリモートで接続できます。このバッテリバックアップユニットについては、LSI のドキュメント、『*MegaRAID iBBU08 Intelligent Battery Backup Unit Quick Installation Guide*』を参照してください (このドキュメントは、次の LSI Web サイトの Oracle サポート領域にあります): http://www.lsi.com/downloads/Public/RAID Controllers/RAID Controllers Common Files/46307-00_MegaRaid_LSIiBBU08_QIG.pdf

この HBA は次の機能をサポートしています:

- ・ 2 つの内部コネクタ
- PCI Express ホストインタフェースは以前のリビジョンの PCI バスおよび PCI-X バスとの下位互換性がある (『PCI Express Specification』、revision 2.0 の定義に基づく)
- PCI Express x8 レーン幅 (x16 接続をサポート)
- ・ ポイントツーポイントのシリアルアーキテクチャーによるデバイス間の簡単な配線
- レーンあたり最大 5 ギガビット/秒の PCI Express のパフォーマンス
- ・ MegaRAID ファームウェアインタフェース (MFI) アーキテクチャーによる高いパフォーマンス
- ・ 高いスループットと低い CPU 使用率によるホストプロセッサのオフロード

SAS/SATA の機能

この HBA でサポートされる SAS/SATA の機能を次に示します:

- シリアル SCSI プロトコル (SSP) およびシリアル ATA トンネリングプロトコル (STP) (Serial Attached SCSI (SAS) Specification, version 2.0 の定義に基づく)
- ・ ANSI (Serial Attached SCSI Standard, version 2.0 の定義に基づく)
- ・ Serial ATA II プロトコル (Serial ATA Specification, version 1.0a および Serial ATAII; Extension to the Serial ATA Specification, version 1.1 の定義に基づく)
- ・ SCSI 情報ユニットを使用したデータの転送
- エクスパンダを使用することで最大 248 個のデバイスをサポートするスケーラブルなインタフェース
- ワイドポートのサポート: 単一のクワッドポート内の2つ、3つ、または4つのPHYで構成
- ・ 単一の PHY から成るナローポート
- 8 つの完全に独立した PHY
- PHY あたり 6 Gb/秒の Serial Attached SCSI データ転送

注記

PHY はそれぞれ 6 Gb/秒の SAS リンク速度に対応できますが、同時に 6 Gb/秒のリンク速度 で動作できるのは 8 つの PHY のうちの 4 つだけです。これは、6G ビット/秒で動作するように 設計されていないプラットフォームに対応するためです。

- ・ PHY あたり 3 Gb/秒の SATA II データ転送
- ・ 次の SATA II の機能をサポート:
 - ・ PHY ごとにドライブの起動順序を構成可能
 - ・ ホットプラグ
 - · Native Command Queuing
 - PHY ごとの稼働インジケータと障害インジケータ
 - ポートセレクタ (デュアルポートドライブ用)

RAID の機能

この HBA でサポートされる RAID の機能を次に示します:

- ・ すべての機能を備えたハードウェアベースの RAID 実装
- 高速な 512M バイト DDR/DDR2 800 MHz オンボード SDRAM インタフェースとハード ウェア RAID アシスト排他的論理和 (XOR) エンジンの統合
- 複数のデバイス間のデータストライプ化
- データをバックアップするためのデータのミラー化またはパリティーブロック
- RAID レベル 0、1、5、6、10、50、および 60 のサポート
- ・ 複数のストライプサイズのサポート
- 負荷分散
- パスフェイルオーバー
- ・ オンライン RAID レベル移行
- ドライブの移行とローミング
- ・メディアスキャン
- ・ 展開後にリブートが不要
- ・ ドライブグループあたり 200 を超える Qtag
- 再構築レートをユーザーが構成可能
- ・ RAID システムの構成情報を格納するための 32K バイトの非揮発性ランダムアクセスメモ リー (NVRAM) (MegaRAID SAS ファームウェアはアップグレードを容易にするためフラッシュ ROM に格納される)

12 ページの図 1.1 に、この HBA の物理的配置を示します。

第1章 HBA の概要 11

図1.1 Oracle の Sun Storage 6 Gb SAS PCle RAID 内蔵 HBA

HDD および SSD を使用した有効なドライブ混在構成

この HBA では、ラベル付き SATA II ドライブ、SAS ドライブ、またはその両方を使用した接続が サポートされます。使用できるドライブの種類に関する基本的な規則を次にいくつか示します。

- ・ 論理ボリユーム内:
 - SAS ドライブと SATA ドライブを混在させることができます (すべての半導体ドライブ (SSD) またはすべてのハードディスクドライブ (HDD) のどちらか)。

注記

単一の RAID ボリュームで SAS ドライブと SATA ドライブを混在させることもできますが、ドライブのパフォーマンスの問題が発生することがあるため、Oracle ではこの構成をサポートしていません。

- ・ 種類に関係なく、HDD と SSD を混在させることはできません。
- ・ **格納装置 (SAS エクスパンダまたは直接接続の SAS ケーブル)** 内では、格納装置自体の制限の範囲内であれば、どの種類のドライブも混在させることができます。

オペレーティングシステムおよびテクノロジの要件

12 ページの表 1.1 に、HBA で必要なオペレーティングシステム (OS) とテクノロジレベルの 最小要件を示します。

表1.1 サポートされるオペレーティングシステム/テクノロジのバージョン

オペレーティングシステム/テク サポートされるバージョン (最小) ノロジ

x86 (32 ビットおよび 64 ビット) プラットフォーム版の Oracle Solaris 10 OS

- SRU7 を適用した Oracle Solaris 11.1
- 少なくともパッチ 149176-02 および 145649-04 を適用した Oracle Solaris 10 01/13

最新のパッチおよび SRU を入手するには、http://support.oracle.com にアクセスしてください

オペレーティングシステム/テク サポートされるバージョン (最小) ノロジ

ビット) プラットフォーム版の Oracle Solaris OS

SPARC (32 ビットおよび 64 ・ SRU7 を適用した Oracle Solaris 11.1

・ 少なくともパッチ 149175-02 および 145648-04 を適用した Oracle Solaris 10 01/13

最新のパッチおよび SRU を入手するには、http:// support.oracle.com にアクセスしてください

Linux OS (64 ビット)

・ Red Hat Enterprise Linux (RHEL) 5.9 および 6.4

• SUSE Linux Enterprise Server (SLES) 11 SP2

・ Oracle Enterprise Linux 5.9 および 6.4 (Red Hat Compatible Kernel (RHCK) および Unbreakable

Enterprise Kernel (UEK) 2 以上)

仮想マシンの OS

Oracle VM 3.2.1

Microsoft Windows OS (64 ・ Windows Server 2008 R2 (SP1 を含む)

ビット)

• Windows Server 2012

VMware テクノロジ

• VMware ESX/ESXi 5.0 • VMware ESX/ESXi 5.1

システムの相互運用性

このセクションでは、ホストのプラットフォーム、ストレージ、およびソフトウェアのサポート情報につ いて説明します。このセクションには、次のトピックが含まれています。

- 13 ページの「ホストプラットフォームのサポート」
- 14ページの「ストレージシステムのサポート」
- ・ 14 ページの「ソフトウェアサポート」

ホストプラットフォームのサポート

この HBA は、13 ページの表 1.2 に示すプラットフォームでサポートされています。最新情報 については、システムのプロダクトノートを参照してください。

サポートされるオペレーティングシステムとテクノロジのバージョンについて は、12 ページの表 1.1 を参照してください。

表1.2 ホストプラットフォームのサポート

プラットフォーム	サポートされる OS/テクノロジ
Oracle SPARC サーバー	
SPARC T3-1	Oracle Solaris
SPARC T3-2	Oracle Solaris
SPARC T4-2	Oracle Solaris

Oracle x86 サーバー

第1章 HBA の概要 13

プラットフォーム	サポートされる OS/テクノロジ
Sun Fire X4170 M2	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Fire X4270 M2	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Fire X4470	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Server X2-4	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Server X3-2	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Server X3-2L	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Server X4-2	Oracle Solaris、Linux、仮想マシン、VMware、および Windows
Sun Server X4-2L	Oracle Solaris、Linux、仮想マシン、VMware、および Windows

ストレージシステムのサポート

この HBA でサポートされるストレージは、内蔵ディスクドライブだけです。

ソフトウェアサポート

インストール、フラッシュ、および BIOS 構成のユーティリティーが提供されています。この HBA は、主要なすべてのオペレーティングシステムに対して MegaRAID ファームウェアインタフェース (MFI) アーキテクチャーを使用するため、より優れた thin ドライバによるより高いパフォーマンス の実現が可能になります。使用しているオペレーティングシステムをサポートするデバイスドライバ を入手するには、http://www.lsi.com/sep/Pages/oracle/index.aspx にアクセスしてください。

HBA のインストールの管理には MegaRAID SAS ソフトウェアを使用します。詳細は、http://www.lsi.com/sep/Pages/oracle/index.aspx にある *MegaRAID SAS ソフトウェアのユーザーズ ガイト*を参照してください。

ブートサポート

この HBA からのブートは、次のオペレーティングシステムとテクノロジの環境でサポートされます。

- SPARC および x86 プラットフォーム版の Oracle Solaris 10 01/13 OS
- SPARC および x86 プラットフォーム版の Oracle Solaris 10 11.1 OS
- ・ RHEL 5.9 および 6.4 OS
- SLES 11 SP2 OS
- ・ Oracle Linux 5.9 および 6.4 OS
- · Oracle VM 3.2.1 OS
- ・ Windows Server 2008 R2 (SP1 を含む) OS
- Windows Server 2012 OS
- ・ ESX および ESXi Server version 5.0 および 5.1 テクノロジ

ハードウェアの取り付けと取り外し

この章では、HBA の取り付けおよび取り外し方法について説明します。詳細な 手順については、ストレージシステムの設置ガイドまたはサービスガイド、および HBA に接続されるストレージデバイスの設置ガイドを参照してください。

この章は、次の内容で構成されています。

- 15 ページの「ESD および取り扱いに関する注意事項の順守」
- 16ページの「HBA の取り付け」
- 21ページの「HBA の LED」
- 22ページの「次のステップ」
- 22ページの「HBA の取り外し」

ESD および取り扱いに関する注意事項の順守

注意

不注意な取り扱いまたは、静電放電 (ESD) によって、HBA が損傷する場合があります。静電気に弱い部品の損傷を防ぐため、HBA は常に注意して取り扱ってください。

ESD に関連する損傷の可能性を最小限に抑えるため、ワークステーション静電気防止用マットと ESD リストストラップを両方とも使用してください。ESD リストストラップは、信頼できる電器店で 購入するか、Oracle から直接購入できます (パーツ番号 #250-1007)。

ESD による問題を防ぐため、次の注意事項を守ってください。

- ・ HBA をシステムに取り付ける準備ができるまで、HBA は静電気防止袋に入れておいてください。
- ・ HBA を取り扱う際は、正しく装着しアース処理したリストストラップなどの適切な ESD 保護処置を行い、適切な ESD アース手法に従ってください。
- ・ 必ず HBA の金属製の筐体部分を持ってください。
- ・ 静電気防止袋から出した HBA は、適切にアース処理した静電気防止作業面パッドの上に置いてください。

HBA の取り付け

- 16 ページの「ハードウェアの取り付けの準備をする」
- 16 ページの「HBA を取り付けるには」
- 18 ページの「HBA を内部ストレージデバイスに接続する」
- ・ 20 ページの「取り付けを完了するには」

▼ ハードウェアの取り付けの準備をする

- 1. この製品の安全性に関する情報を読んで、この注意事項に従います。 この HBA の安全性と法令遵守のドキュメントを参照してください。
- 2. この HBA と、この HBA がサポートする RAID レベルの物理的な特性について理解します。
 - 12 ページの図 1.1 を参照してください。
- 3. アレイで使用する RAID レベルに必要な数の初期化されたディスクドライブがあることを確認します。
 - 最適なパフォーマンスを得るには、仮想ドライブを作成するときと似たようなドライブ (種類、速度、およびサイズ) を使用します。アレイではさまざまなサイズのディスクドライブを使用できますが、アレイはもっとも小容量で遅いディスクドライブの能力によって制限されます。 詳細は、http://www.lsi.com/sep/Pages/oracle/index.aspx にある *MegaRAID SAS* ソフトウェアのユーザーズガイトを参照してください。
 - この HBA は、SAS ディスクドライブと SATA II ディスクドライブの両方をサポートしています。
- 4. 使用する HBA と内蔵ディスクドライブに適したケーブルがあることを確認します。 HBA に接続するホスト側に SFF-8087 x4 コネクタ付きのストレート SAS ケーブルが 1 本 以上必要です (接続先のコネクタは、ハードディスクドライブ格納装置の接続要件に応じて 異なります)。SAS の仕様を満たし、長さが 10 メートル (393.70 インチ) 未満の SAS ケーブルを使用します。
 - 購入時に Oracle システムに付属している、Oracle が提供する SAS ケーブルのみを使用するようにしてください。詳細、および Oracle システム用のケーブルの購入方法については、http://www.oracle.com を参照してください。ケーブルコネクタには特別な形状の切り欠けが付いており、向きが誤っていると挿入できないようになっています。
- 5. HBA が入った箱を静電気の発生しない環境で開梱し、HBA に損傷がないかどうかを調べます。

注記

HBA を取り付ける準備ができるまで、HBA は静電気防止袋に入れておきます。損傷があった場合は、ご購入先にお問い合わせください。

▼ HBA を取り付けるには

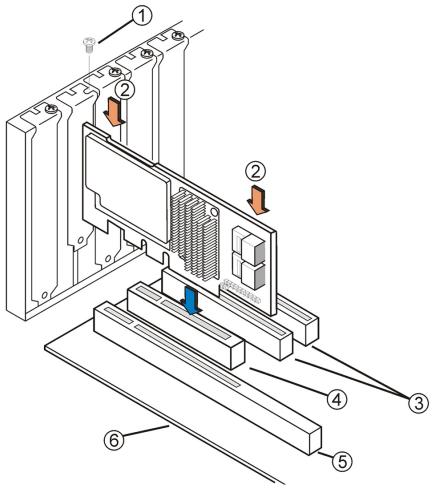
1. 静電気防止用リストストラップを着用し、保護袋から HBA を取り出します。 15 ページの「ESD および取り扱いに関する注意事項の順守」を参照してください。

- 2. HBA のジャンパが望ましい位置に設定されていることを確認します。 ジャンパは出荷時に設定されており、通常は変更する必要はありません。HBA のジャンパの 位置については、59 ページの「HBA のカードのレイアウト」を参照してください。
- 3. オプションのリムーバブルメモリーがある場合は、モジュールがデュアルインラインメモリーモジュール (DIMM) ソケットにしっかりと固定されていることを確認します。

注記

この HBA にはオンボード DDR2 メモリーがあります。

- 4. 使用可能な PCI Express スロットをシステムに配置する方法については、使用しているシステムのサービスマニュアルまたは設置マニュアルを参照してください。
- 5. HBA の PCI Express バスコネクタを PCI Express スロットに配置します。



注記

PCIe スロットの中には、PCIe グラフィックスカードしかサポートしないものもあります。それらの PCIe スロットに HBA を取り付けた場合、HBA は機能しません。

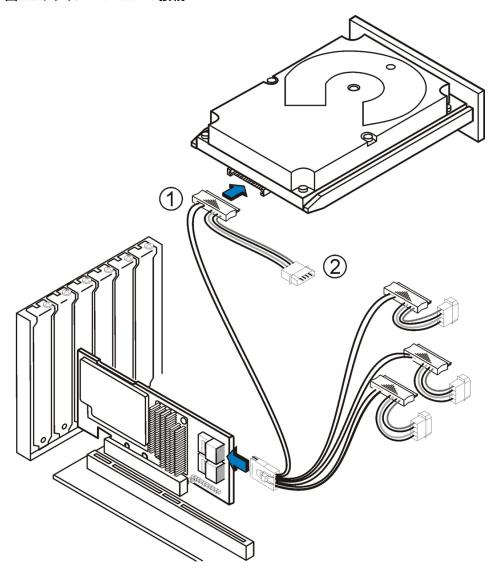
6. HBA が PCIe スロットにしっかり固定されるまでゆっくりと押し込み、固定部品のねじを使用して留め具をシステムシャーシに固定します (18 ページの図 2.1 を参照)。

図2.1 Oracle の Sun Storage 6 Gb SAS PCle RAID 内蔵 HBA の取り付け

図の説明

- 1 固定部品のねじ
- 2 ここを押し込む
- 32 ビットスロット (3.3 V)
- 4 PCIe スロット
- 5 64 ビットスロット (3.3 V)
- 6 マザーボードの端

注記


格納装置の構成は、この図に示す構成とは異なる場合があります。

▼ HBA を内部ストレージデバイスに接続する

- 1. システムで SAS デバイス、SATA II デバイス、またはその両方を構成して取り付けます。 詳細は、デバイスのドキュメントを参照してください。
- 2. SAS ケーブルの一方の SFF-8087 x4 Mini-SAS コネクタを HBA の内部ポート JT6 または JT7 に接続します (19 ページの図 2.2 を参照)。

購入時に Oracle システムに付属している、Oracle が提供する SAS ケーブルのみを使用するようにしてください。ケーブルは次のサイトで購入することもできます: http://www.oracle.com

図2.2 ドライブへの HBA の接続

図の説明

- 1 HDD コネクタ
- 2 電源コネクタ
- 3. SFF-8087 x4 Mini-SAS ケーブルのもう一方の端を SAS ドライブまたはSATA ドライブのコネクタに接続します。

注記

エクスパンダを使用する場合を除き、1 つの SAS PHY に接続できるデバイスの数は 1 つです。

▼ 取り付けを完了するには

- 1. 必要に応じて、システムのドキュメントに従って、システムのカバーを元に戻し、AC 電源コード を再接続します。
- 2. HBA を取り付けるためにシステムの電源を切断する必要があった場合は、再度システムの電源を入れます。

注記

SAS デバイス、SATA II デバイス、またはその両方の電源は、必ずホストシステムの電源と同時かその前までに入れてください。それらのデバイスより先にシステムの電源を入れると、デバイスが認識されないことがあります。

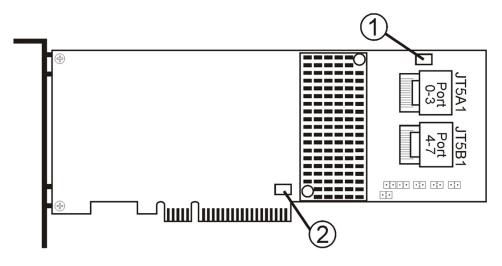
- 3. システムに OS をインストールする必要がある場合は、23 ページの第3章の手順を実行してから次の手順に進んでください。
- 4. OS がすでに x86 システムにインストールされている場合は、次の手順に従います。
 - a. システムの電源投入プロセス中に、BIOS のブートメッセージで、WebBIOS ユーティリティーのプロンプト (CTRL+H を押す) と Preboot コマンド行 (pcli) ユーティリティーのプロンプト (CTRL+Y を押す) が表示されることを確認します。
 - これらのユーティリティーのプロンプトが表示された場合、BIOS で HBA カードが検出されています。
 - b. LSI Web サイトの Oracle サポート領域 (http://www.lsi.com/sep/Pages/oracle/index.aspx) にアクセスし、MegaRAID Storage Manager ソフトウェアおよび MegaCLI ユーティリティーソフトウェアとサポートドキュメントをダウンロードします。
 - c. MegaRAID ソフトウェアと MegaCLI ソフトウェアを、ストレージを管理するシステムに インストールします。
 - d. MegaRAID Storage Manager ソフトウェアまたは MegaCLI ユーティリティーから、HBA 用の論理ドライブを作成します。
- 5. OS がすでに SPARC システムにインストールされている場合は、次の手順に従います。
 - a. システムの電源投入プロセス中に、ok プロンプトで **probe-scsi-all** コマンドを使用して、システムが HBA を認識していることを確認します。

probe-scsi-all コマンドによって、ホストに接続された SCSI デバイスが次の例のように表示されます。

{0} ok probe-scsi-all

/pci@0/pci@0/pci@8/pci@0/pci@a/LSI,mrsas@0
/pci@0/pci@0/pci@1/pci@0/pci@0/usb@0,2/storage@2
Unit 0 Removable Read Only device TSSTcorpCD/DVDW TS-T632ASR03
{0} ok#

この例では、SAS 2 コントローラ (LSI, mrsas@0) と CD-ROM ドライブ (storage@2) が示されています。


b. LSI Web サイトの Oracle サポート領域 (http://www.lsi.com/sep/Pages/oracle/index.aspx) にアクセスし、MegaRAID Storage Manager および MegaCLI ユーティリティーソフトウェアとサポートドキュメントをダウンロードします。

- c. MegaRAID Storage Manager ソフトウェアと MegaCLI ユーティリティーソフトウェア を、ストレージを管理するサーバーにインストールします。
- d. MegaRAID Storage Manager ソフトウェアまたは MegaCLI ユーティリティーソフトウェアから、HBA 用の論理ドライブを作成します。

HBA の LED

この HBA には、表示できるシステムエラー LED とハートビート LED の 2 つの LED があります。21 ページの図 2.3 に LED を示します。

図2.3 HBA の内部コネクタと LED

図の説明

- 1 CRT6A1 システムエラー LED
- 2 CRT4B1 システムハートビート LED

赤色のシステムエラー LED (CRT6A1) は、エラーステータスのときに点灯します。緑色のシステムハートビート LED (CRT4B1) は、SAS2108 RAID オンチップ (ROC) ASIC が正常に動作していることを示します。

システムハートビート LED とシステムエラー LED の各状態を21 ページの表 2.1 に示します。

表2.1 システムハートビート LED とシステムエラーステータス LED

状態	意味
ハートビート LED	
消灯	ASIC が正常に動作していません。
点滅	ASIC が正常に動作しています。
ステータスエラー LED	
消灯	システムエラーはありません。
点灯	システムエラーがあります。

次のステップ

Oracle Solaris OS を使用する場合は、これで取り付けが完了です。Oracle Solaris OS の最新のパッチは、システム製品の Web サイトから入手できます。

Oracle Solaris OS 以外のサポート対象オペレーティングシステムを使用する場合は、45ページの第4章の説明に従って、オペレーティングシステム用の HBA ドライバをインストールします。

HBA の取り外し

何らかの理由でシステムから HBA を取り外す必要がある場合は、このセクションの手順に従います。

▼ HBA を取り外すには

- 1. HBA を取り外しできるように、オペレーティングシステムを準備します。
- 2. 静電気防止用リストストラップを着用します。 15ページの「ESD および取り扱いに関する注意事項の順守」を参照してください。
- 3. システムのシャーシ内に HBA を設置する方法については、使用しているシステムのサービスマニュアルを参照してください。
- 4. HBA をシステムのシャーシに固定している固定部品のねじを取り外し、HBA が PCIe スロットから完全に外れるまでゆっくりと引き上げます。
- 5. (オプション) HBA のバッテリを交換する必要がある場合は、次の手順を実行します。
 - a. プラスのドライバを使用して、バッテリを HBA に固定している 3 本のねじを緩めます。
 - b. ねじを外し、バッテリを引き出して、バッテリコネクタを HBA コネクタ (JT3B1) から切り離します。
 - 59 ページの図 A.1 を参照してください。
 - c. 新しいバッテリを HBA に慎重に押し込んで、バッテリコネクタを HBA コネクタ (JT3B1) に接続します。
 - d. 22 ページのステップ 5.bの 3 本のねじを HBA の穴に締め付けて、バッテリを HBA に固定します。
 - e. HBA をシステムシャーシに再度取り付けるには、16 ページの「HBA を取り付けるには」の手順に従います。
- 6. カバーをシステムに再度取り付けるには、使用しているシステムのサービスマニュアルを参照 してください。

ブート前の環境でのブート可能ドライブの作成

この章では、システムにオペレーティングシステム (OS) をインストールする前に HBA をブートデバイスとして使用する方法を説明します。

注記

すでに OS がインストールされているシステムに HBA をインストールする場合は、この章のタスクは実行しないでください。代わりに、20 ページの「取り付けを完了するには」の説明に従って HBA のインストールを実行してください。

この章は、次の内容で構成されています。

- ・ 23 ページの「ブート前の環境でのブート可能ドライブの作成の概要」
- 25 ページの「ブート可能ドライブの作成 (SPARC)」
- 29ページの「ブート可能ドライブの作成 (x86)」
- 41 ページの「HBA 論理ドライブのラベルを検証する」
- 43 ページの「Oracle Solaris OS のインストール」
- 44ページの「次のステップ」

ブート前の環境でのブート可能ドライブの作成の概要

インストールオプションの 1 つとして、まだ OS がインストールされていないシステムに HBA を取り付けることができます。このインストールオプションでは、HBA をブートデバイスとして使用する場合に、HBA の論理ドライブを作成して、HBA からブートできます。SPARC システムでは、これらのアクションを Preboot コマンド行インタフェース (pcli) ユーティリティーを使用して実行します。x86 システムでは、BIOS 設定ユーティリティー (UEFI ブート) の Unified Extensible Firmware Interface (UEFI) の「Configuration Options」メニューから実行するか、システムがレガシー BIOS ブートに設定されている場合は、pcli ユーティリティーと組み合わせて、WebBIOS ユーティリティーから実行します。

このセクションには、次のトピックが含まれています。

- ・ 24 ページの「ユーティリティーの概要」
- 24 ページの「ブート可能ドライブを作成するための方法」

ユーティリティーの概要

次のユーティリティーを使用すると、HBA をブートデバイスに指定できます。

・ pcli ユーティリティー - システム BIOS をレガシーモードでブートするように設定している (BIOS 設定ユーティリティーの「Boot」メニューから指定可能) 場合にのみ、SPARC および x86 システムの両方で実行できるレガシーユーティリティー。このユーティリティーにアクセスするには、リモートコンソール (SPARC) でブレークを実行するか、ブート中に Ctrl+Y キーを押します (x86)。 このユーティリティーは、オープンブート PROM (OBP) 環境から実行できる RAID コマンドの実装です。pcli ユーティリティーを使用して論理ドライブを作成すると、そのドライブを HBA でシステムに公開できるようになります。

pcli ユーティリティーのコマンドセットは、MegaCli ユーティリティーのコマンドセットと同じです。したがって、この章に出てくる pcli コマンドの構文や構造は、http://www.lsi.com/sep/Pages/oracle/index.aspx にある *MegaRAID SAS ソフトウェアのユーザーズガイド*で、対応する MegaCli コマンドの説明を参照することによって確認できます。

・BIOS 設定ユーティリティーの「Configuration Options」メニュー - システム BIOS を Unified Extensible Firmware Interface (UEFI) BIOS モードでブートするように設定している (BIOS 設定ユーティリティーの「Boot」メニューから指定可能) 場合にのみ、x86 システムで実行できるユーティリティー。このユーティリティーにアクセスするには、ブート中にプロンプトが表示されたら、F2 キーを押し、右矢印キーを使用して、画面上部の「Configuration Options」メニューに移動します。「Configuration Options」メニューに移動します。「Configuration Options」メニューに移動します。「Configuration Options」メニューでは、オペレーティングシステムのブート用の標準の環境を提供し、物理ディスクおよび RAID ボリュームの管理とブート前のアプリケーションの実行が可能です。

注記

一部のオペレーティングシステムバージョンでは、UEFI BIOS モードはサポートされていません。 オペレーティングシステムで UEFI BIOS モードがサポートされるかどうかについては、システムと オペレーティングシステムのドキュメントを参照してください。

• WebBIOS ユーティリティー - システム BIOS をレガシーモードでブートするように設定している 場合にのみ、x86 システムで実行できるレガシーユーティリティー。このユーティリティーにアクセ スするには、システムのブート中に Ctrl+H と入力します。このユーティリティーは、作成した物理 ディスクと論理ボリュームを管理できる、グラフィカルユーザーインタフェース (GUI) から構成さ れます。x86 システムのブートドライブを指定するには、このユーティリティーを使用します。

ブート可能ドライブを作成するための方法

この章では、HBA を取り付けるシステムの種類に応じた手順を実行する必要があります。

- ・ HBA を SPARC システムにインストールする場合は、25 ページの「ブート可能ドライブの 作成 (SPARC)」に進んでください。
- ・ HBA を x86 システムにインストールする場合は、29 ページの「ブート可能ドライブの作成 (x86)」に進んでください。

ブート可能ドライブの作成 (SPARC)

このセクションでは、SPARC システムで論理ドライブを作成またはインポートし、そのドライブの別名を作成する方法を説明します。この作業が完了すると、その論理ドライブに Oracle Solaris OS をインストールしてブートドライブとして使用できるようになります。x86 システムを使用している場合は、このセクションの手順は実行しないでください。代わりに、29 ページの「ブート可能ドライブの作成 (x86)」に進んでください。

このセクションには、次のトピックが含まれています。

- 25 ページの「ブート可能ドライブを作成するには (SPARC)」
- 25 ページの「pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)」
- 27 ページの「既存の論理ドライブ構成をインポートする (SPARC)」
- 28 ページの「ブート可能ドライブの別名を作成する (SPARC)」

▼ ブート可能ドライブを作成するには (SPARC)

- 1. 次のいずれかを実行します。
 - 25 ページの「pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)」の説明に従って、論理ドライブを作成します。

または:

- 27 ページの「既存の論理ドライブ構成をインポートする (SPARC)」の説明に従って、別の MegaRAID コントローラから論理ドライブ構成をインポートします。
- 2. 28 ページの「ブート可能ドライブの別名を作成する (SPARC)」の説明に従って、ドライブ の別名を作成します。

pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)

このセクションでは、pcli ユーティリティーを使用して、SPARC システムで Oracle Solaris オペレーティングシステム (OS) をインストールする前に論理ドライブを作成する方法を説明します。このセクションは、次の内容で構成されています。

- 25 ページの「pcli ユーティリティーを使用する準備をするには」
- 27 ページの「pcli ユーティリティーを使用して論理ドライブを作成するには」

▼ pcli ユーティリティーを使用する準備をするには

1. xterm または gnome の端末ウィンドウを開きます。 pcli コマンドでは、詳細な出力が大量に生成される場合があります。xterm および gnome の端末ウィンドウには、そのような出力を表示するのに便利なスクロールバー機能が用意されています。

注記

xterm や gnome ウィンドウのようなスクロールバーのある端末ウィンドウを使用できない場合は、pcli のページ設定機能を使用できます。この機能を使用すると、行数を指定して、そこで画面への出力が一時停止されるようにすることができ、キーを押すと続きが出力されます。たとえば、次の pcli コマンドでは、画面への出力が一度に 20 行ずつ行われます: {0} ok cli -

AdpAllInfo -page 20

- 2. 次のいずれかのタスクを実行して、OBP 環境に入ります:
 - Oracle の Sun キーボードで STOP+A キーを押します。
 - リモートコンソールからブレークを実行します。
- 3. **show-devs** コマンドを使用してシステムのデバイスパスを一覧表示し、HBA のデバイスパスを選択します。

{0} ok show-devs

< . . . >

/pci@1e,600000/pci@0/pci@3/**LSI,mrsas@0**/pci@1e,600000/pci@0/pci@3/LSI,mrsas@0/disk
/pci@1e,600000/pci@0/pci@3/LSI,mrsas@1
<...>

4. **select-dev** コマンドを使用して、実行する pcli コマンドの対象となる HBA を選択します。 {0} ok "/pci@1e,600000/pci@0/pci@3/LSI,mrsas@0" select-dev これで、すべての pcli コマンドの実行対象となる HBA が選択されました。したがって、MegaCli ユーティリティーの場合のように、実行する pcli コマンドで HBA を指定する必要はありません。たとえば、pcli コマンド -AdpAllInfo を実行すると、ここで選択した HBA に自動的に適用されます。一方、MegaCli ユーティリティーで同等のコマンドを実行する場合は、指定したカードにのみ適用されます (下の例では o カード)。

SPARC pcli: {0} ok cli -AdpAllInfo MegaCli: MegaCli -AdpAllInfo -a0

5. 前の手順で、目的のカードを特定して選択できた場合は、26 ページのステップ 6 に進んでください。そうではなく、**select-dev** の出力に同じ RAID アダプタカードが複数表示された場合は、**-AdpAllInfo** コマンドを使用して、目的のカードを特定して選択します。

{0} ok cli -AdpAllInfo

Product Name : LSI MegaRAID SAS 9261-8i Product Name : LSI MegaRAID SAS 9280-8e

-AdpAllInfo コマンドは、HBA の製品名を表示します。LSI MegaRAID SAS 9261-8i という HBA 名の末尾の 8i は、このカードが内蔵カードであることを示しています。外部カードの場合は、名前の末尾が 8e になります。

6. 次の表に、有用な pcli コマンドを示します。

pcli コマンド	説明
cli -PdList	すべての物理ドライブを一覧表示します。
cli -CfgLdAdd	RAID 論理ドライブを作成します。

pcli コマンド	説明
cli -CfgLdDel	論理ドライブを削除します。
cli -LdPdInfo	論理ドライブの情報を表示します。
cli -AdpAllInfo	HBA の構成情報を表示します。

これで、pcli コマンドを使用して HBA の論理ドライブ (MegaRAID 仮想ドライブ) を作成する準備が整いました。

▼ pcli ユーティリティーを使用して論理ドライブを作成するには

1. **-PdList** コマンドを使用して、HBA に接続されているすべての物理ドライブを一覧表示します。

HBA に直接接続されているドライブには、Enclosure Device ID 番号 252 が割り当てられます (このように接続できるのは 8 つの物理ドライブだけです)。SAS エクスパンダまたは外部格納装置を経由して HBA に接続されているドライブには、別の Enclosure Device ID 値が割り当てられます。次の例では、出力で一覧表示される物理ドライブが HBA に直接接続されます (Enclosure Device ID 値は 252)。

{0} ok cli -PdList

Adapter #0

Enclosure Device ID: 252

Slot Number: 0

<...>

- 2. **-CfgLdAdd** コマンドを使用して、物理ディスクから論理ドライブ (MegaRAID 仮想ディスク) を作成します。
- {0} ok cli -CfgLdAdd -r0[252:0] -- for RAID 0, with Enclosure #252 and Slot 0 --
- {0} ok cli -CfgLdAdd -r1[E0:S0,E1:S1] -- for RAID 1 --
 - 3. format(1M) ユーティリティーを使用して、論理ドライブを作成した物理ディスクにラベルを付けます。

HBA で使用されるすべてのディスクには、ラベルを付けるか、ボリューム構成テーブル (VTOC) を含めるようにしてください。HBA でラベルの付いていないディスクを使用しようと すると、そのディスクが OS によって認識されない場合や OS のインストール自体が失敗する場合があります。ディスクのラベル付けの詳細は、物理ディスクのドキュメントを参照してく ださい

4. 28 ページの「ブート可能ドライブの別名を作成する (SPARC)」の説明に従って、ドライブ の別名を作成します。

既存の論理ドライブ構成をインポートする (SPARC)

25 ページの「pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)」で 説明したように、論理ドライブを作成する代わりに、別の MegaRAID コントローラから既存の論理 ドライブ (MegaRAID 仮想ディスク) 構成をインポートする必要が生じる場合があります。既存の 構成をインポートするには、このセクションの手順を実行します。

▼ 別のコントローラから既存の論理ドライブ構成をインポートするには (SPARC)

注記

インポートできるのは MegaRAID 論理ドライブだけです。Integrated RAID (IR) 論理ドライブ はインポートできません。

1. **-LdPdInfo** コマンドを使用して、既存のコントローラ上の論理ドライブ (仮想ディスク) がシステムに認識されていることを確認します。

```
{0} ok cli -LdPdInfo
Adapter #0
Number of Virtual Disks: 1
Virtual Disk: 0 (Target Id: 0)
```

2. -CfgForeign -Import コマンドを使用して、論理ドライブを HBA にインポートします。

```
{0} ok cli -CfgForeign -Import
```

3. 28 ページの「ブート可能ドライブの別名を作成する (SPARC)」の説明に従って、ドライブ の別名を作成します。

ブート可能ドライブの別名を作成する (SPARC)

25 ページの「pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)」または 27 ページの「既存の論理ドライブ構成をインポートする (SPARC)」の説明に従って、ブート可能ドライブを作成またはインポートすると、そのブート可能ドライブの別名を作成できます。別名を使用すると、ドライブをブートするプロセスが簡単になります。

▼ ブート可能ドライブの別名を作成するには (SPARC)

1. **show-disks** コマンドを実行して、システム上のディスクを一覧表示します。 HBA ドライブは、次の例のように、**LSI,mrsas@**number というラベルで判別できます (ここで、number は、最初に検出された HBA では 0 になり、追加の HBA が検出されるたびに 1 が加算されます)。

```
{0} ok show-disks
<...>
a) /pci@1e,600000/pci@0/pci@3/LSI,mrsas@0/disk
b) /pci@1e,600000/pci@0/pci@3/LSI,mrsas@1/disk
c) /pci@1e,600000/pci@0/pci@3/LSI,mrsas@2/disk
<...>
q) NO SELECTION
Enter Selection, q to quit:
```

2. 別名を作成するブート可能ドライブを選択します。

```
    a) /pci@1e,600000/pci@0/pci@3/LSI,mrsas@0/disk
    b) /pci@1e,600000/pci@0/pci@3/LSI,mrsas@1/disk
    c) /pci@1e,600000/pci@0/pci@3/LSI,mrsas@2/disk
    ...>
    q) NO SELECTION
    Enter Selection, q to quit: c
```

/pci@1e,600000/pci@0/pci@3/LSI,mrsas@2/disk has been selected.

3. **nvalias** alias-name HBA-drive-path コマンドを使用して、28 ページのステップ 2 で 選択したブート可能ドライブの別名を作成します (デバイスパスを貼り付けるには Ctrl+Y キーを押します)。

次の例では、別名は mydev です。

- {0} ok nvalias mydev /pci@1e,600000/pci@0/pci@3/LSI,mrsas@2/disk
- 4. これで、**boot** alias-name コマンドを使用してブート可能ドライブからブートできるようになりました。
 - {0} ok boot mydev
- 5. オプションとして、このブート可能ドライブをブートデバイスのリストに追加して、自動的にこのドライブからブートするようにブートデバイスの順序を制御するには、次のコマンドを実行します。

{0} ok printenv boot-device
boot-device = disk0 disk1
{0} ok setenv boot-device mydev disk0
boot-device = mydev disk0

この例では、別名 mydev が disk0 (ブートデバイスリストの最初のディスク) として設定されています。これにより、自動的にブート可能ドライブ /pci@1e,600000/pci@0/pci@3/LSI,mrsas@2/disk からブートするようになります。

6. 作成したブート可能ドライブのラベルを検証します (41 ページの「HBA 論理ドライブの ラベルを検証する」を参照)。

ブート可能ドライブの作成 (x86)

このセクションでは、x86 システムで論理ドライブを作成またはインポートし、そのドライブをブート可能にする方法を説明します。これにより、その論理ドライブに OS をインストールしてブートドライブとして使用できるようになります。SPARC システムを使用している場合は、このセクションの手順は実行しないでください。代わりに、25 ページの「ブート可能ドライブの作成 (SPARC)」に進んでください。

▼ ブート可能ドライブを作成する (x86)

- 次のいずれかを実行します。
 - 論理ドライブを作成します。
 - ・ システム BIOS を UEFI BIOS モードでブートするように設定している 場合 (BIOS 設定ユーティリティーの「Boot」メニューから指定できます) は、30 ページの「「Configuration Options」メニューを使用してブート可能論 理ドライブを作成する (x86)」の手順を実行して、新しい論理ドライブを作成しま す
 - ・ システム BIOS をレガシーモードでブートするように設定している場合は、37 ページの「pcli ユーティリティーを使用してブート可能ドライブを作成する(x86)」および 39 ページの「外部ディスクドライブから x86 サーバーをブートする」のセクションの手順を実行して、新しい論理ドライブを作成します。
 - 別のコントローラから既存の論理ドライブ構成をインポートします。

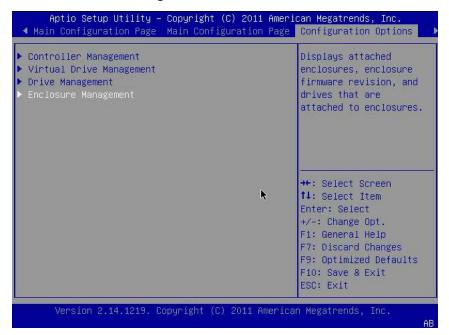
- ・ システム BIOS を UEFI BIOS モードでブートするように設定している 場合 (BIOS 設定ユーティリティーの「Boot」メニューから指定できます) は、38 ページの「「Configuration Options」メニューを使用して既存の論理ド ライブ構成をインポートする (x86)」の手順を実行して、論理ドライブをインポートし ます。
- ・ システム BIOS をレガシーモードでブートするように設定している場合 は、38 ページの「レガシーブートモードを使用して既存の論理ドライブ構成をインポートする (x86)」の手順を実行して、論理ドライブをインポートします。

「Configuration Options」メニューを使用してブート可能論理ドライブを作成する (x86)

このセクションでは、BIOS 設定ユーティリティーの「Configuration Options」メニューを使用して、x86 システムで論理ドライブを作成する方法を説明します。これにより、論理ドライブをブート可能として定義し、その論理ドライブにオペレーティングシステムをインストールできます。

「Configuration Options」メニューから論理ドライブを作成するには、ファームウェアパッケージ 12.12.0-0079 からファームウェアバージョン 2.120.203-1440 以上を HBA にインストールする必要があります。このセクションのステップを実行する前に、HBA のファームウェアレベルを検証して、必要に応じてファームウェアの更新を実行してください。ファームウェアの更新については、45ページの第4章を参照してください。

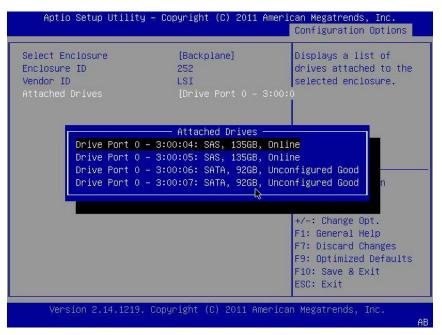
x86 システムに論理ドライブを作成するには、次の手順を下記の順序で実行します。


- 30 ページの「ドライブおよびそのスロットを検証する (x86)」
- 32ページの「論理ドライブを作成する(x86)」
- 34ページの「論理ドライブの作成を確認する(x86)」

▼ ドライブおよびそのスロットを検証する (x86)

次の手順は、論理ドライブ構成で使用するドライブの識別に役に立ちます。

- 1. Integrated Lights Out Manager (ILOM) ソフトウェアまたは Video Graphics Array (VGA) ビデオポートから、システムコンソールにアクセスします。
- 2. システムのブートを開始します。 ブートプロセス中に、システム内の、検出された SAS アダプタと、検出された HBA に接続されているデバイスに関する情報が BIOS の初期化バナーに一覧表示されます。
- 3. ブート中にプロンプトが表示されたら、F2 キーを押して、BIOS 設定ユーティリティーを起動し、 右矢印キーを使用して、「Configuration Options」メニューに移動します。
- 4. 矢印キーを使用して、「Enclosure Managment」メニューオプションに移動し、Enter キーを 押します。


図3.1「Enclosure Management」メニューオプション

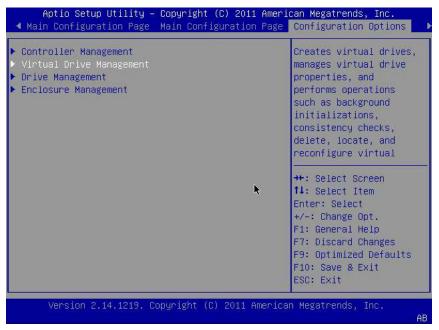
5. プロパティページが表示されたら、矢印キーを使用して「Attached Drives」フィールドに移動し、Enter キーを押します。

「Attached Drives」ポップアップウィンドウが表示されます。次の例では、スロット 4、5、6、および 7 に 4 つのドライブがあります。スロット 6 および 7 は現在使用されていません (**Unconfigured Good** テキストで示されています)。

図3.2「Attached Drives」ポップアップウィンドウ

6. 接続されているドライブを確認し、あとで参照できるように、それぞれのスロットをメモしておきます。

これらのドライブは、論理ドライブ構成の一部として使用できます。32 ページの「論理ドライブを作成する (x86)」を参照してください。


▼ 論理ドライブを作成する (x86)

30 ページの「ドライブおよびそのスロットを検証する (x86)」の説明に従って、論理ドライブ構成に使用できるドライブを確認したら、これらのドライブを使用して論理ドライブを作成できます。次の手順では、RAID 1 ボリュームの作成に、31 ページのステップ 5 (**3:00:06**, **3:00:07**) のドライブ 6 および 7 が使用されています。

ファームウェアパッケージ 12.12.0-0079 からファームウェアバージョン 2.120.203-1440 以上をHBA にインストールする必要があります。

1. 「Attached Drives」ポップアップウィンドウ (31 ページの図 3.2) から、Esc キーを押して「Configuration Options」ページに戻り、「Virtual Drive Management」メニューオプションに移動して、Enter キーを押します。

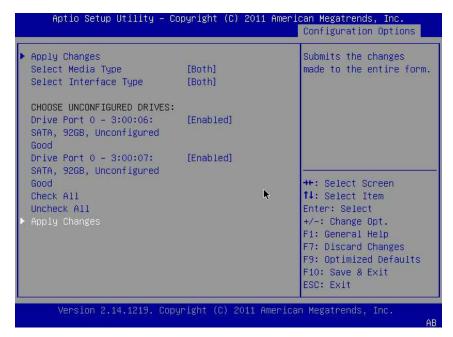
図3.3「Virtual Drive Management」メニューオプションを選択する


2. メニューオプションが表示されたら、矢印キーを使用して「Create Configuration」メニューオプションに移動し、Enter キーを押します。

図3.4「Create Configuration」メニューオプションの選択

3. ページが表示されたら、「Select RAID Level」フィールドに移動して「RAID1」を選択し、「Select Drives」フィールドに移動して、Enter キーを押します。 次の例では、RAID 1 レベルが選択されています。各自の要件に基づいて、別のレベルの RAID ボリュームを作成することもできます。

図3.5 RAID 1 レベルおよびドライブの選択

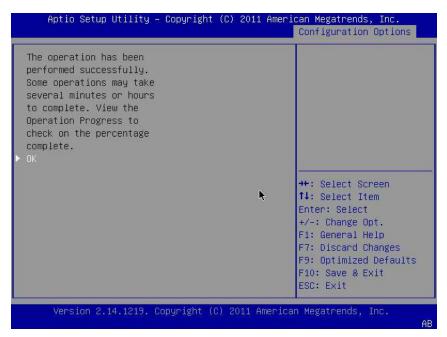


- 4. RAID ボリューム構成で目的のドライブごとに、次を実行します:
 - a. 矢印キーを使用して、ドライブに移動します。
 - b. 矢印キーを使用して、ドライブに関連付けられている「Enabled」または「Disabled」フィールドに移動します。

c. プラス (+) またはマイナス (-) キーを使用して、フィールドの値を「Enabled」に変更し、Enter キーを押します。

ドライブが「Enabled」として表示されます。次の例では、ドライブ 6 および 7 が有効になっています。

図3.6 RAID ボリューム 1 構成のドライブを有効にする


- 5. 論理ドライブの一部にするドライブをすべて有効にしたら、矢印キーを使用して、同じページの「Apply Changes」フィールドに移動し、Enter キーを押します。 有効にしたドライブで論理ドライブが作成され、「Confirmation」ページが表示されます。
- 6. 34 ページの「論理ドライブの作成を確認する (x86)」のステップを実行します。

▼ 論理ドライブの作成を確認する (x86)

この手順を実行する前に、ドライブとスロット (30 ページの「ドライブおよびそのスロットを検証する (x86)」) を検証し、論理ドライブを作成します (32 ページの「論理ドライブを作成する (x86)」)。

1. 論理ドライブ構成で目的のドライブを有効にしたら (34 ページのステップ 5)、矢印キーを使用して、「Conifrmation」ページの「OK」フィールドに移動し、Enter キーを押して構成を確認します。

図3.7「Confirmation」ページで「OK」を選択する

2. オプションで、ドライブ名を指定し、その他の変更を加え、「Save Configuration」フィールド に移動して、Enter キーを押します。

図3.8「Save Configuration」の選択。


仮想ドライブの作成を続行するかどうかをたずねるページが表示されます。

- 3. 次を実行してドライブの作成を確認します:
 - a. 矢印キーを使用して、「Confirm」フィールドに移動します。
 - b. 「Confirm」フィールドの値を「Enabled」に変更し、Enter キーを押します。

「Yes」または「No」フィールドが表示されます。

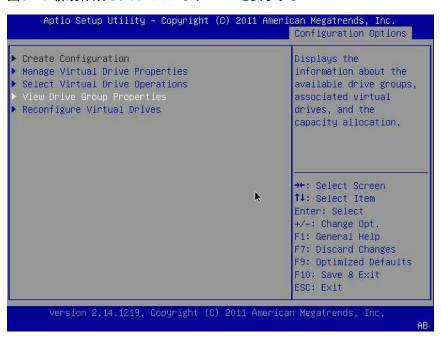

c. 矢印キーを使用して「Yes」フィールドに移動し、Enter キーを押します。 これで、論理ドライブの作成プロセスが完了しました。

図3.9 論理ドライブ作成を確認する

4. 論理ドライブ (仮想ドライブ) が作成されたことを確認するには、矢印キーを使用して「Virtual Drive Group Properties」メニューオプション (33 ページの図 3.4) に移動し、Enter キーを押して、表示されるページで論理ドライブの情報を確認します。

図3.10 新規作成された RAID ボリュームを表示する

5. 設定ユーティリティーを終了し、リブートして Oracle System Assistant ユーティリティーを起動し、その論理ドライブに OS をインストールするか、ブートドライブを操作します。

pcli ユーティリティーを使用してブート可能ドライブを作成する (x86)

システム BIOS をレガシーモードでブートするように設定している場合は、このセクションの手順を実行して、OS をインストールする前に、論理ドライブを x86 システムで作成する必要があります。

注記

レガシー BIOS ブートモードで、グラフィカルユーザーインタフェースを使用して x86 システムでブート可能ドライブを作成する場合は、WebBIOS ユーティリティーから実行できます。WebBIOS ユーティリティーにアクセスするには、システムをブートして、プロンプトが表示されたら Ctrl+H キーを押します。WebBIOS ユーティリティーの詳細は、http://www.lsi.com/sep/Pages/oracle/index.aspx にある MegaRAID SAS ソフトウェアのユーザーズガイ/を参照してください。

▼ pcli ユーティリティーを使用して論理ドライブを作成する (x86)

- 1. 25 ページの「pcli ユーティリティーを使用してブート可能ドライブを作成する (SPARC)」の手順に従いますが、x86 システムでは次の点に注意する必要があります。
 - ・ x86 システムから pcli ユーティリティーにアクセスするには、システムをブートして、プロンプトが表示されたら Ctrl+Y キーを押します。
 - ・ x86 システムでは、pcli コマンドを実行するたびに HBA を指定する必要があります。 たとえば、25 ページのステップ 1 の注にある pcli のページ設定機能を使用する には、目的の HBA に応じて、コマンド (-a0、-a1 など) で HBA を指定する必要があり ます。この点が、同じコマンドを SPARC システムから実行する場合と異なります。

\$-AdpAllInfo -a0 -page 20 -- Issued from an x86 system -- **{0} ok cli -AdpAllInfo -page 20 --** Issued from a SPARC system --

- この例では、x86 システムから実行されるコマンドでは HBA **-a0** (コントローラ 0) が 指定されています。x86 システムでは、**pcli** コマンドを実行するたびに HBA を指定 する必要があるため、25 ページの「pcli ユーティリティーを使用する準備をするに は 」セクションの手順のうち、**pcli** コマンドを実行する前に HBA を選択する部分の手 順はすべて省略する必要があります。
- ・ 前述の例からもわかるように、pcli コマンドを実行する際に各 pcli コマンドの前に cli を入力する必要はありません。
- ・ x86 システムのプロンプトはドル記号 (\$) です。
- 27 ページのステップ 3 で説明したように、x86 システム上の物理ディスクにラベル を付けるには、使用しているオペレーティングシステムに対して fdisk コマンドを実行します。
- 2. 39 ページの「外部ディスクドライブから x86 サーバーをブートする」の手順を実行し、論理ドライブをブート可能にします。

既存の論理ドライブ構成をインポートする (x86)

論理ドライブ (MegaRAID 仮想ディスク) を作成する代わりに、別の MegaRAID コントローラから既存の論理ドライブ構成をインポートする必要が生じる場合があります。システム BIOS ブートモードに基づいて、次の方法のいずれかを使用して、既存の論理ドライブ構成をインポートします。

• 38 ページの「「Configuration Options」メニューを使用して既存の論理ドライブ構成をインポートする (x86)」

• 38 ページの「レガシーブートモードを使用して既存の論理ドライブ構成をインポートする (x86)」

▼「Configuration Options」メニューを使用して既存の論理ドライブ構成をインポートする (x86)

この手順を実行するのは、システム BIOS を UEFI モードでブートするように設定している場合のみです。

注記

インポートできるのは MegaRAID 論理ドライブだけです。Integrated RAID (IR) 論理ドライブ はインポートできません。

- 1. Integrated Lights Out Manager (ILOM) ソフトウェアまたは Video Graphics Array (VGA) ビデオポートから、システムコンソールにアクセスします。
- 2. システムのブートを開始します。 ブートプロセス中に、システム内の、検出された SAS アダプタと、検出された HBA に接続されているデバイスに関する情報が BIOS の初期化バナーに一覧表示されます。
- 3. ブート中にプロンプトが表示されたら、F2 キーを押して、BIOS 設定ユーティリティーを起動し、 右矢印キーを使用して、「Configuration Options」メニューに移動します。
- 4. 矢印キーを使用して「Manage Foreign Configuration」フィールドに移動し、Enter キーを 押します。
- 5. 矢印キーを使用して、「Preview Foreign Configuration」メニューオプションに移動し、Enter キーを押します。
- 6. 矢印キーを使用して、「Preview Foreign Configuration」画面の下部に移動し、次のいずれかを実行します。
 - ・ 既存の異種構成をクリアする場合は、「Clear Foreign Configuration」フィールドに移動し、Enter キーを押します。これにより、その構成のすべてのデータが破棄されます。
 - 新しい異種構成をインポートする場合は、「Import Foreign Configuration」フィールドに移動し、Enter キーを押します。
- 7. 矢印キーを使用して「Confirm Enabled」フィールドに移動し、「Yes」に移動して Enter キーを押します。

インポートされたドライブがブート可能になります。Oracle System Assistant を使用するとドライブに OS をインストールできます。

▼ レガシーブートモードを使用して既存の論理ドライブ構成をインポートする (x86)

この手順を実行するのは、システム BIOS をレガシーモードでブートするように設定している場合のみです。

注記

インポートできるのは MegaRAID 論理ドライブだけです。Integrated RAID (IR) 論理ドライブ はインポートできません。

1. **-LdPdInfo** コマンドを使用して、既存のコントローラ上の RAID ボリューム (仮想ディスク) が システムに認識されていることを確認します。

\$-LdPdInfo -a0
Adapter #0
Number of Virtual Disks: 1
Virtual Disk: 0 (Target Id: 0)

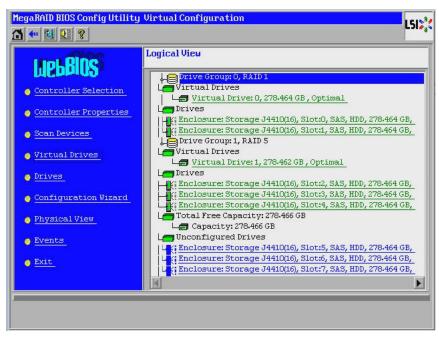
- 2. **-CfgForeign -Import** コマンドを使用して、論理ドライブを HBA にインポートします。 **\$-CfgForeign -Import -a0**
- 3. 39 ページの「外部ディスクドライブから x86 サーバーをブートする」の説明に従って、論理ドライブをシステムのブートドライブとして定義します。

▼ 外部ディスクドライブから x86 サーバーをブートする

システム BIOS がレガシーモードでブートするように設定されている場合は、論理ドライブを作成またはインポートすると、そのドライブを使用して HBA からブートできます。この HBA では、複数の論理ドライブをブートドライブとして設定することはできません。

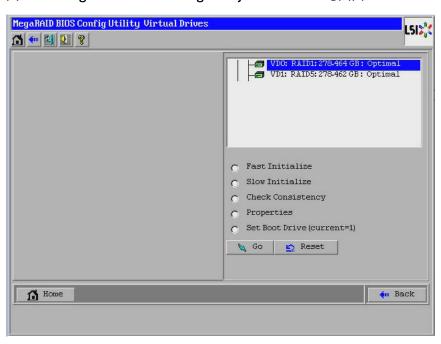
このセクションでは、x86 システムで WebBIOS ユーティリティーを使用して HBA からブートする 方法を説明します。

- 1. システムのブートを開始します。 CTRL+H キーを押すと WebBIOS 構成ユーティリティーにアクセスできることを知らせるメッ セージが表示されます。
- 2. **CTRL+H** キーを押して WebBIOS ユーティリティーにアクセスします。「Adapter Selection」画面が表示されます。


図3.11「Adapter Selection」画面

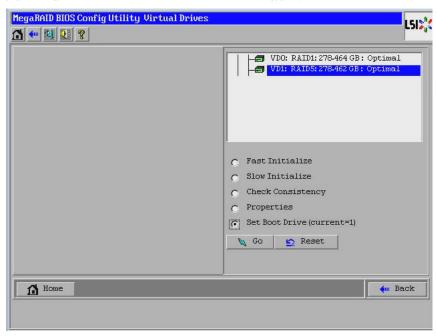
- 3. Tab キーを使用して目的のアダプタに移動して、Enter キーを押します。
- 4. Tab キーを使用して「Start」ボタンに移動して、Enter キーを押します。

「MegaRAID BIOS Config Utility Virtual Configuration」画面が表示されます。


図3.12 「MegaRAID BIOS Config Utility Virtual Configuration」画面

5. 左側のナビゲーションメニューで、Tab キーを使用して「Virtual Drives」メニューオプション に移動し、Enter キーを押します。

「MegaRAID BIOS Config Utility Virtual Drives」画面が表示されます。


図3.13「MegaRAID BIOS Config Utility Virtual Drives」画面

6. Tab キーを使用してドライブのリストに移動し、矢印キーを使用して、ブートドライブとして設定 するドライブを選択します。

7. ドライブが青で強調表示された状態で、Tab キーを使用して「Set Boot Drive (current=number)」フィールドに移動して、Enter キーを押すと、フィールドの横のラジオボタンが選択されます。

図3.14 仮想ドライブを HBA のブートドライブに指定する

- 8. Tab キーを使用して「Go」ボタンに移動して、Enter キーを押します。 これで、選択したドライブが HBA のブートドライブになります。
- 9. ユーティリティーを終了するには、「Back」ボタンを使用してメインメニューに戻り、「Exit」メニューオプションに移動して Enter キーを押します。
- 10. 41 ページの「HBA 論理ドライブのラベルを検証する」の説明に従って、システムをリブートし、論理ドライブのラベルを検証します。

HBA 論理ドライブのラベルを検証する

この HBA を使用する場合、少なくとも 1 つの論理ドライブを作成するまでは、OS にドライブが表示されません。このセクションでは、HBA 用に作成した論理ドライブに有効な Oracle Solaris ラベルがあり、OS で認識されることを検証する方法について説明します。場合によっては、論理ドライブが認識されるようにするために、format コマンド (SPARC システムの場合) または fdisk コマンド (x86 システムの場合) を使用して再度ラベルを付ける必要があります。

▼ 論理ドライブのラベルが有効であることを検証する

注記

参考までに、このセクションでは、Oracle Solaris OS を実行する SPARC システムでの手順の 例を示します。サポートされている OS を実行する x86 システムの場合は、ディスクのラベルを検証するために、その OS に対して fdisk コマンドを使用します。fdisk コマンドを使用したディスク のラベル付けの詳細は、OS のドキュメントを参照してください。

1. root ユーザーで、format コマンドを実行します。

```
# format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
0. c1t0d0 <DEFAULT cyl 24611 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@a/pci17c2,10@4/sd@0,0
1. c1t1d0 <DEFAULT cyl 24810 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@a/pci17c2,10@4/sd@1,0
2. c3t8d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@8,0
3. c3t9d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@9,0
4. c3t10d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@a,0
5. c3t11d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@b,0
6. c3t12d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@c,0
7. c3t13d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@d,0
Specify disk (enter its number):
```

2. プロンプトが表示されたら、取り付けた HBA カードに接続されているディスクドライブの番号 を入力して、Enter を押します。

「Format」メニューが表示されます。

```
# format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
0. c1t0d0 <DEFAULT cyl 24611 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@a/pci17c2,10@4/sd@0,0
1. c1t1d0 <DEFAULT cyl 24810 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@a/pci17c2,10@4/sd@1,0
2. c3t8d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@8,0
3. c3t9d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@9,0
4. c3t10d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@a,0
5. c3t11d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@b,0
6. c3t12d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
 /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@c,0
7. c3t13d0 <DEFAULT cyl 24619 alt 2 hd 27 sec 107>
  /pci@0,0/pci1022,7450@b/pci1000,10c0@1,1/sd@d,0
Specify disk (enter its number): 2
selecting c3t8d0
[disk formatted]
```

3. 2 つのプロンプトに \mathbf{q} と入力して、テストと「FORMAT MENU」を終了します。

```
analyze> q
FORMAT MENU:
    disk - select a disk
    type - select (define) a disk type
    partition - select (define) a partition table
    current - describe the current disk
    format - format and analyze the disk
    fdisk - run the fdisk program
    repair - repair a defective sector
```

```
label - write label to the disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
verify - read and display labels
save - save new disk/partition definitions
inquiry - show vendor, product and revision
scsi - independent SCSI mode selects
cache - enable, disable or query SCSI disk cache
volname - set 8-character volume name
!<cmd> - execute <cmd>, then return
quit
format> q#
```

次のステップ

SPARC システムに HBA を取り付ける場合は、43 ページの「Oracle Solaris OS のインストール」で説明するように、Oracle Solaris OS をインストールします。

x86 システムに HBA を取り付ける場合は、サポートされている OS をインストールします (サポートされている OS のリストについては、12 ページの「オペレーティングシステムおよびテクノロジの要件」を参照)。x86 システムに Oracle Solaris OS をインストールする予定がある場合は、43 ページの「Oracle Solaris OS のインストール」の手順に従ってください。

Oracle Solaris OS のインストール

この章の説明に従って作成またはインポートしたブート可能ドライブに Oracle Solaris 10 01/13 OS 以上をインストールできます。Oracle Solaris 10 01/13 OS 以降の Oracle Solaris OS には、HBA に必要なドライバが用意されています。このセクションには、次のトピックが含まれています。

- 43 ページの「Oracle Solaris OS のインストールの準備をする」
- 43 ページの「Oracle Solaris OS をインストールする」

▼ Oracle Solaris OS のインストールの準備をする

・ この章の説明に従って、Oracle Solaris OS をインストールするブート可能ドライブを作成またはインポートします。

▼ Oracle Solaris OS をインストールする

- 1. Oracle のダウンロードサイトから Oracle Solaris 10 01/13 OS 以上を入手します。 http://www.oracle.com/technetwork/server-storage/solaris10/overview/index.html
- 2. Oracle Solaris 10 インストールドキュメントの説明に従って、通常のインストールを実行します。
- 3. システムに特に必要なパッチがあれば適用します。 Oracle Solaris のパッチは次の Web ページで入手できます。 http://support.oracle.com
- 4. システムをリブートします。

reboot

これで、Oracle Solaris OS をインストールした RAID ボリュームをシステムが参照できるようになり、この RAID ボリュームからブートできます。

次のステップ

20 ページの「取り付けを完了するには」の説明に従って HBA を取り付けます。

・・・ 第 4 章

HBA ソフトウェアのインストール

ハードウェアの取り付けが完了し、システムに電源を入れたら、この章の、使用しているオペレーティングシステムに関する手順に従って、HBA ドライバと、設置に必要なその他のユーティリティーをインストールします。

この章は、次の内容で構成されています。

- 45ページの「Oracle Solaris のドライバおよびファームウェアのインストール」
- 46 ページの「Linux のドライバおよびファームウェアのインストール」
- 46 ページの「Windows Server のドライバおよびファームウェアのインストール」
- 47 ページの「VMware のドライバおよびファームウェアのインストール」
- 47 ページの「RAID 構成ユーティリティーのインストール」

Oracle Solaris のドライバおよびファームウェアのインストール

この HBA の最新のドライバ (mpt_sas) は、Oracle Solaris 10 01/13 OS および Oracle Solaris 11.1 OS の一部として含まれています。Oracle Solaris OS の最新バージョンは、次の Web ページで入手できます。

http://www.oracle.com/technetwork/server-storage/solaris10/overview/index.html

HBA には、ドライバが機能するために、少なくとも次のパッチと SRU が必要です。

- Oracle Solaris 10 01/13 (SPARC 環境版): パッチ 149175-02 および 145648-04
- Oracle Solaris 10 01/13 (x86 環境版): パッチ 149176-02 および 45649-04
- Oracle Solaris 11.1: SRU 7

Solaris のパッチは次の Web ページで入手できます。

http://support.oracle.com

ファームウェアの更新

HBA 用の Solaris のファームウェアおよびブートコードの更新は、付属のドキュメントとともに次の Web ページからダウンロードできます。

http://www.lsi.com/sep/Pages/oracle/index.aspx

Linux のドライバおよびファームウェアのインストール

使用している特定のホストプラットフォームでサポートされる Linux のリリースを確認するには、Oracle のハードウェアプラットフォームのドキュメントを参照してください。

Linux OS でこの HBA が動作するために必要な Linux ドライバは、次の Oracle 指定 Web ページからダウンロードできます:

http://www.lsi.com/sep/Pages/oracle/index.aspx

▼ Linux ドライバをインストールするには

- 1. ホストにログインします。
- 2. ブラウザを使用して http://www.lsi.com/sep/Pages/oracle/index.aspx にアクセスします。
- 3. タイプを選択し、目的の HBA のモデル (SG(X)-SAS6-R-INT-Z) を選択します。
- 4. 使用しているハードウェアプラットフォーム上の Linux リリース (Red Hat Enterprise Linux または SuSE Linux Enterprise Server) によってサポートされる Linux ドライバを選択して、ダウンロードします。
- 5. その Linux ドライバに対応する Readme ファイルを選択してダウンロードし、Readme の説明に従ってドライバのインストールを実行します。

▼ Linux のファームウェアをダウンロードして更新するには

・ 次の Web ページから、HBA 用の Linux のファームウェアおよびブートコードの更新を付属 のドキュメントとともにダウンロードします。

http://www.lsi.com/sep/Pages/oracle/index.aspx

Windows Server のドライバおよびファームウェアのインストール

使用している特定のホストプラットフォームでサポートされる Windows のリリースを確認するには、Oracle のハードウェアプラットフォームのドキュメントを参照してください。

この HBA が動作するために必要な Windows Server のドライバは、次の Oracle 指定 Web ページからダウンロードできます:

http://www.lsi.com/sep/Pages/oracle/index.aspx

▼ Windows ドライバをインストールするには

- ホストにログインします。
- 2. ブラウザを使用して http://www.lsi.com/sep/Pages/oracle/index.aspx にアクセスします。
- 3. タイプを選択し、目的の HBA のモデル (SG(X)-SAS6-R-INT-Z) を選択します。
- 4. 使用しているハードウェアプラットフォーム上の Windows リリースによってサポートされる特定の Windows ドライバを選択して、ダウンロードします。

5. その Windows ドライバに対応する Readme ファイルを選択してダウンロードし、Readme の説明に従ってドライバのインストールを実行します。

ファームウェアの更新

HBA 用の Windows のファームウェアおよびブートコードの更新は、付属のドキュメントとともに次の Web ページからダウンロードできます。

http://www.lsi.com/sep/Pages/oracle/index.aspx

VMware のドライバおよびファームウェアのインストール

この HBA ドライバは、VMware ESX Server のインストール内容の一部として含まれています。VMware ESX Server のインストールでは、ドライバを追加でインストールする必要はありません。

RAID 構成ユーティリティーのインストール

HBA では、RAID レベル 0.1.5.6.00.10.50、および 60 を構成できます。HBA で使用できる RAID 構成ユーティリティーを次に示します。

- ・ **MegaRAID SAS ソフトウェア** グラフィカルユーザーインタフェースで HBA の RAID ボ リュームを作成できます。
- ・ MegaCLI ユーティリティー コマンド行から HBA の RAID ボリュームを作成できます。

これらのユーティリティーは、関連ドキュメントとともに次の Web ページからダウンロードできます。

http://www.lsi.com/sep/Pages/oracle/index.aspx

・・・第5章

既知の問題

この章では、この HBA の補足情報および回避方法に関する情報について説明します。サービス担当者が使用する固有のバグ ID 番号が記載されています。

この章には次のトピックが含まれています。

- 49 ページの「MegaRAID Storage Manager に関する問題」
- ・ 54 ページの「ユーティリティー関連の問題」
- ・ 56 ページの「ストレージに関する問題」

MegaRAID Storage Manager に関する問題

このセクションは、次の内容で構成されています。

- 49 ページの「BackingStoreException エラーメッセージが GUI の起動時に表示される」
- 50 ページの「端末ウィンドウにデバッグメッセージが表示される」
- 50 ページの「別のホストに接続しようとするとエラーメッセージが表示される」
- 51 ページの「GUI および CLI のログインパスワードを入力できない」
- 51 ページの「MSM GUI で管理アクションを選択できない」
- 51 ページの「MSM GUI でドライブグループを作成できない」
- 52 ページの「sas_snmp エラーおよび sas_ir_snmp エラーが MSM GUI のインストール 時に発生する」
- 52 ページの「MSM GUI を起動しようとしたときに接続拒否エラーメッセージが表示される」
- 53 ページの「MSM GUI でモニタリングシステムが MegaRAID サーバーとして表示される」
- ・ 53 ページの「root ユーザーに切り替えたあとに MSM GUI が起動されない」
- 54 ページの「青色の取り外し可能 LED が点灯しないためディスクを特定できない」

▼ BackingStoreException エラーメッセージが GUI の起動時に表示される バグ 15568174

第5章 既知の問題 49

問題: これらの Java エラーメッセージは、root 以外のユーザーとして MegaRAID Storage Manager (MSM) のグラフィカルユーザーインタフェース (GUI) を起動しようとした場合に表示されます。

回避方法: MSM GUI を起動できるのは root ユーザーだけであるため、次の手順を実行します。

- 1. MSM GUI の既存のプロセスを停止します。
- 2. システムからログアウトし、root ユーザーとしてログインし直します。
- 3. MSM GUI の新しいセッションを開始します。

端末ウィンドウにデバッグメッセージが表示される

バグ 15569066

問題: MSM GUI を起動した端末ウインドウに、エラー以外のデバッグメッセージが大量に表示されることがあります。

回避方法: ありません。これらのメッセージに対してアクションは必要はありません。エラーまたは例外であることがメッセージに明示的に示されてる場合を除き、メッセージを無視してかまいません。

別のホストに接続しようとするとエラーメッセージが表示される

バグ 15584190

問題: MSM GUI ソフトウェアがインストールされていないホストに MSM GUI を使用して接続しようとすると、MSM GUI を起動した端末に、次の Java 例外およびエラーメッセージが表示されることがあります。

```
Socket connection to xxx.xxx.xxx failed once..try again
  Socket connection to xxx.xxx.xxx failed on retry
  Fatal Error : Can not create SASKernel object !
   java.net.ConnectException: Connection refused
          at java.net.PlainSocketImpl.socketConnect(Native Method)
          at java.net.PlainSocketImpl.doConnect(Unknown Source)
          at java.net.PlainSocketImpl.connectToAddress(Unknown Source)
          at java.net.PlainSocketImpl.connect(Unknown Source)
          at java.net.SocksSocketImpl.connect(Unknown Source)
          at java.net.Socket.connect(Unknown Source)
          at com.oracle.net.ssl.internal.ssl.SSLSocketImpl
.connect(Unknown Source)
          at com.oracle.net.ssl.internal.ssl.SSLSocketImpl
.<init>(Unknown Source)
          at com.oracle.net.ssl.internal.ssl.SSLSocketFactoryImpl
.createSocket(Unknown Source)
          at Framework.Network.CachedSSLSocketFactory
.createSocket(Unknown Source) at KernelNetwork.RAIDSocket
.processCommand(Unknown Source)
          at SASKernel.SASKernel.queryServerList(Unknown Source)
          at GUI.RemoteServerPanel.scanRemoteServers(Unknown Source)
          at GUI.RemoteServerPanel$8.doInBackground(Unknown Source)
          at GUI.RemoteServerPanel$8.doInBackground(Unknown Source)
          at javax.swing.SwingWorker$1.call(Unknown Source)
          at java.util.concurrent.FutureTask$Sync.innerRun(Unknown
Source)
.....Continued on next
```

```
page......
```

回避方法: MSM GUI ソフトウェアがインストールされていないホストに接続しないようにします。 MSM GUI で意図せずにそのような接続を試行してしまった場合は、「IP Address」テキストボックスに既知の MSM GUI ホストの IP アドレスを入力し、「Discover Host」をクリックします。 このようにすれば、生成されるエラーメッセージは無視してかまいません。

GUI および CLI のログインパスワードを入力できない

バグ 15614882

問題: RedHat 5.4 OS が稼働するシステムで MSM GUI または MegaCLI ユーティリティーを 使用している場合、先にログインモードを選択しないと、ログインダイアログボックスでパスワードを 入力できないことがあります。これは、RedHat 5.4 OS のインストール時に、「All Languages」オプションを選択しなかった場合に発生する可能性があります。

回避方法: すでに RedHat OS をインストールしている場合は、「Login Mode」リストボックスでログインモード (「Full Access」または「View Only」) を選択してから、ログインパスワードを入力します。

RedHat 5.4 OS をインストールする必要がある場合は、インストールプロセスで、プロンプトが表示されたら「All Languages」オプションを選択します。

MSM GUI で管理アクションを選択できない

バグ 15625059

問題: SLES 11 OS が稼働しているサーバーのリブート後に MSM GUI を起動したときに、MSM GUI でサーバーは検出されるものの、ホスト名や OS の種類のデータが表示されず、管理アクションを選択できない (グレー表示される) ことがあります。

回避方法: すべての MSM GUI ウィンドウを閉じ、次のコマンドを実行して vivaldiframeworkd サービスを再起動します。

service vivaldiframeworkd restart

これで、MSM GUI を再起動し、管理アクションを選択できるようになります。

MSM GUI でドライブグループを作成できない

バグ 15637746

第5章 既知の問題 51

問題: MSM GUI を使用して複数のセッションでドライブグループを作成する場合、ドライブグループ 0 がすでに作成されていても、ドライブグループ 0 を作成するものと見なされます。その結果、すべてのドライブグループの作成が失敗します。

回避方法:後続のワークセッションで追加のドライブグループの作成が必要になった場合は、MegaCLIユーティリティーまたは WebBIOSユーティリティーを使用して作成します。

sas_snmp エラーおよび sas_ir_snmp エラーが MSM GUI のインストール時 に発生する

バグ 15643382

問題: Linux OS が稼働するシステムへの MSM GUI ソフトウェアのインストールプロセス で、sas_snmp ファイルおよび sas_ir_snmp ファイルをインストールするときに次のエラーが発生 することがあります。

```
Installing sas_snmp-3.17-1080
 Preparing...
                      [100%]
                      1:sas_snmp
[100%]
 ldconfig: /usr/lib/libsassmp.so.0 is not a symbolic link
 /etc/snmp/snmpd.conf file not found. Please check the filepath
 Exiting ....
 error: %post(sas_snmp-3.17-1080.i386) scriptlet failed, exit status 1
 Installing sas_ir_snmp-3.17-1081
                      Preparing...
[100%]
                      1:sas_ir_snmp
[100%]
 ldconfig: /usr/lib/libsassmp.so.0 is not a symbolic link
 /etc/snmp/snmpd.conf file not found. Please check the filepath
 error: %post(sas_ir_snmp-3.17-1081.i386) scriptlet failed, exit status
```

同様に、それらのいずれかのファイルをアンインストールするときにも、次のエラーが発生することがあります。

```
# rpm -e sas_ir_snmp
Unregistering Service
error: %preun(sas_ir_snmp-3.17-1081.i386) scriptlet failed, exit status
1
```

回避方法: これらのエラーを回避するには、MSM GUI をインストールする前に、sas_snmp ファイルおよび sas_ir_snmp ファイルをアンインストールします。

```
# rpm -e --noscripts sas_snmp
# rpm -e --noscripts sas_ir_snmp
```

▼ MSM GUI を起動しようとしたときに接続拒否エラーメッセージが表示される バグ 15568181

問題: MSM GUI が表示されるコンピュータで xhost アクセス制御が有効になっている場合、GUI の起動時に次の Java 例外が発生することがあります。

```
# /var/opt/MegaRaidStorageManager/startupui.sh
Xlib: connection to ":0.0" refused by server
Xlib: No protocol specified
Exception in thread "main" java.lang.NoClassDefFoundError: Could not i
nitialize class oracle.awt.X11GraphicsEnvironment
        at java.lang.Class.forNameO(Native Method)
        at java.lang.Class.forName(Unknown Source)
        at java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment(Un
known Source)
        at oracle.awt.X11.XToolkit.<clinit>(Unknown Source)
        at java.lang.Class.forNameO(Native Method)
        at java.lang.Class.forName(Unknown Source)
        at java.awt.Toolkit$2.run(Unknown Source)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.awt.Toolkit.getDefaultToolkit(Unknown Source)
        at oracle.swing.SwingUtilities2$AATextInfo.getAATextInfo(Unknown
Source)
        at javax.swing.plaf.metal.MetalLookAndFeel.initComponentDefaul
ts(Unknown Source)
        at javax.swing.plaf.basic.BasicLookAndFeel.getDefaults(Unknown
        at javax.swing.plaf.metal.MetalLookAndFeel.getDefaults(Unknown
Source)
        at javax.swing.UIManager.setLookAndFeel(Unknown Source)
        at javax.swing.UIManager.setLookAndFeel(Unknown Source)
        at javax.swing.UIManager.initializeDefaultLAF(Unknown Source)
        at javax.swing.UIManager.initialize(Unknown Source)
        at javax.swing.UIManager.maybeInitialize(Unknown Source)
```

回避方法: この Java 例外を回避するには、次の手順を実行します。

- 1. **xhost** + コマンドを実行して xhost アクセス制御を無効にします。
- 2. MSM サーバーにログインし、システムに応じた適切な DISPLAY 変数を設定します。
- 3. MSM GUI を起動します。

MSM GUI でモニタリングシステムが MegaRAID サーバーとして表示される

バグ 15584191

問題: ほかの MegaRAID システムをモニターするためにシステム (「モニタリングシステム」) に MSM GUI がインストールされている場合、モニタリングシステムに MegaRAID ハードウェアが なくても、モニタリングシステム自体が MegaRAID サーバーとして表示されることがあります。

回避方法: ありません。この表示は無視してかまいません。

root ユーザーに切り替えたあとに MSM GUI が起動されない

バグ 15587630

問題: 通常のユーザーとしてシステムにログインしたあと、**startupui.sh** コマンドを実行する直前に **sudo** コマンドまたは **su root** コマンドを実行すると、MSM GUI が起動されないことがあります。

第5章 既知の問題 53

回避方法: su コマンドまたは sudo コマンドを実行する前に、xhost + コマンドを実行してアクセス制御を無効にします。または、最初から root ユーザーとしてシステムにログインします。

青色の取り外し可能 LED が点灯しないためディスクを特定できない

バグ 15625166

問題: ドライブが 8 つ以下のシステムで MSM GUI を使用している場合、GUI でディスクを右クリックして「Prepare for Removal」を選択したときに、GUI では取り外し可能であることが報告されますが、ディスクの青色の取り外し可能 LED は一瞬しか (またはまったく) 点灯しないことがあります。

回避方法: MSM GUI で取り外し可能であることが報告されたディスクは、安全に取り外すことができます。そのようにするディスクを見つけるのに支援が必要な場合は、MSM GUI、MegaCLI ユーティリティー、または WebBIOS ユーティリティーの検出機能を使用してください。

ユーティリティー関連の問題

このセクションは、次の内容で構成されています。

- 54 ページの「UEFI HII メニューからコントローライベントを保存できない」
- 55 ページの「WebBIOS ユーティリティーのメニューの「Advanced Software Options (高度なソフトウェアオプション)」機能がサポートされていない」
- 55 ページの「WebBIOS ユーティリティーを使用したときにマウスの動作が不安定になる」
- 55 ページの「MegaCLI のログファイルが /tmp ディレクトリに保存される」
- 55 ページの「サポートされていない RAID レベルが MegaCLI ユーティリティーで表示される」
- 56 ページの「MegaCli64 -AdpAlILog -aALL コマンドの実行後にエラーメッセージが表示される」
- 56 ページの「WebBIOS ユーティリティーでマウスクリックが検出されない」

UEFI HII メニューからコントローライベントを保存できない

バグ 15757979

問題: この HBA が Sun Server X3 -2 システムに取り付けられており、UEFI HII メニューから コントローライベントを保存しようとすると、次の現象が発生する可能性があります。

- コントローライベントが、指定したディレクトリに保存されません。
- ・ HII メニューでのディレクトリの選択が、選択した USB スティックを反映するように変更されません。

回避方法: これらの潜在的な問題の発生に対処するには、次の手順を実行します。

- 1. 「File System」ドロップダウンメニューから、コントローライベントを保存するファイルシステムを選択します。
- 2. 「Select File Systems」をクリックします。
- 3. 「Directories」ドロップダウンメニューから、イベントを保存するディレクトリを選択します。

実際のディレクトリ名を選択すると、「Directories」メニューにドットが表示されます。ディレクトリ名は表示されません。

4. 「Select Directory」をクリックします。

「Select Directory」をクリックすると、ディレクトリの選択をコミットできます。

5. 「Save Events」をクリックします。

イベントが、選択したメディアおよびディレクトリに保存されるようになります。

WebBIOS ユーティリティーのメニューの「Advanced Software Options (高度なソフトウェアオプション)」機能がサポートされていない

バグ 15690187

問題: WebBIOS ユーティリティーのメインメニューで「Advanced Software Options (高度なソフトウェアオプション)」機能を選択した場合、追加のソフトウェア機能を有効にするアクティベーションコードを入力するように求められます。Oracle では、この機能をサポートしていないため、この画面で入力するアクティベーションコードは提供されません。

回避方法: このメニュー項目は Oracle によってサポートされていないため、無視します。

WebBIOS ユーティリティーを使用したときにマウスの動作が不安定になる

バグ 15654618

問題: ILOM リモートコンソール (ユーティリティーに直接接続されていない) から WebBIOS ユーティリティーを使用する場合、マウスの動作が不安定になる場合があります。

回避方法: ILOM のマウスモードを Relative に設定します。これでも問題が解決されない場合は、キーボードの Tab、Shift+Tab、Return、および矢印キーを使用して、WebBIOS ユーティリティーをナビゲートします。

MegaCLI のログファイルが /tmp ディレクトリに保存される

バグ 15585065

問題: MegaCLI ユーティリティーのログファイルが、誤って /tmp ディレクトリに保存されることがあります。

回避方法: ログファイルを /tmp ディレクトリから /var/opt/LSImegacli ディレクトリに移動します。これにより、以降にシステムをリブートしてもログファイルが保持されます。

サポートされていない RAID レベルが MegaCLI ユーティリティーで表示される

バグ 15598545

問題: MegaCli -Adpallinfo -ainstance-number-of-adapter コマンド (例: MegaCli - Adpallinfo -a1) の出力でサポートされる RAID レベルを確認するときに、次のサポートされていない RAID レベルが表示されることがあります。

第5章 既知の問題 55

- PRL 11
- スパニング対応 PRL 11
- SRL 3

回避方法: ありません。これらの RAID レベルは無視してかまいません。

MegaCli64 -AdpAllLog -aALL コマンドの実行後にエラーメッセージが表示される

バグ 15621333

問題: Oracle Enterprise Linux (OEL) 5.3 OS が稼働しているシステムの再構築中に **MegaCli64 -AdpAllLog -aALL** コマンドを実行すると、次のエラーメッセージが表示されること があります (実際には数行に分けて出力される場合があります)。

sh: :cat: command not found Segmentation fault

回避方法: MegaCli64 -AdpAlILog -aALL コマンドは、再構築の開始前か完了後に実行してください。

WebBIOS ユーティリティーでマウスクリックが検出されない

バグ 15585928

問題: 複数の Sun Blade 6000 システム構成で、CMM ILOM ソフトウェアに接続されているドングルの USB コネクタに接続されたマウスを使用している場合、マウスクリックを 3 回以上続けて行わないと WebBIOS ユーティリティーで認識されないことがあります。ダウンクリックは認識されても、アップクリックが認識されない場合もあります。

回避方法: 選択を繰り返すか、MegaCLI ユーティリティーを使用します。

WebBIOS ユーティリティーでコピーバックプロセスがいつ完了するかわからない

バグ 15598979

問題: WebBIOS ユーティリティーからコピーバックプロセスを開始した場合、プロセスの進捗状況がフィードバックで示されません。

回避方法: MegaRAID Storage Manager の GUI を使用してコピーバックプロセスをモニターできます。

ストレージに関する問題

このセクションは、次の内容で構成されています。

- 57 ページの「オペレーティングシステムをブートできない」
- 57 ページの「ドライブの再挿入後に青色の取り外し可能 LED が点灯する」
- 57ページの「システムのリブート後に通常とは異なるメッセージが表示される」

オペレーティングシステムをブートできない

バグ15692815

問題: HBA が取り付けられたシステムのリブートの開始後、オペレーティングシステムがブートに失敗します。これは、HBA に構成されている仮想ドライブの数が 50 を超えている場合に発生します。

回避方法: HBA には 50 台を超える仮想ドライブを構成しないでください。そうすると、システム BIOS が正しいブートデバイスを識別できなくなるため、オペレーティングシステムがブートできなく なります。

ドライブの再挿入後に青色の取り外し可能 LED が点灯する

バグ 15606073

問題: WebBIOS ユーティリティーで、9 つ以上の物理ドライブがあるシステム上のドライブに対して「取り外しの準備」コマンドを実行した場合、ドライブを抜いて別のスロットに再挿入すると、その新しい別のスロットで青色の取り外し可能 LED が点灯することがあります。

回避方法: 青色の LED を消灯させるには、次のいずれかを実行して「取り外しの準備」コマンドを取り消します:

- **WebBIOS ユーティリティー**で、ドライブが現在配置されているスロットに対して「Undo Removal」 > 「OK」の順に選択します。
- ・ **MSM GUI** で、ドライブを右クリックし、「Undo Prepare for Removal」メニューオプションを選択します。
- ・ MegaCLI ユーティリティーで、次のように入力します:

MegaCli -PdPrpRmv -UnDo -physdrv[enclosure-number:slot-number] **-a**number-of-adapter-that-is-controlling-the-drive

システムのリブート後に通常とは異なるメッセージが表示される

バグ 15612242

問題: リブートプロセス中に次のようなメッセージが表示されることがあります:

my-space = number_o

回避方法: ありません。このメッセージは無視してかまいません。

第5章 既知の問題 57

HBA の仕様

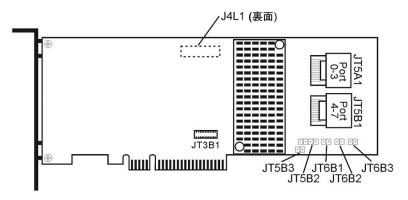
この付録には、HBA の仕様が含まれています。

この付録は、次の内容で構成されています。

- 59 ページの「物理的な寸法」
- 59 ページの「HBA のカードのレイアウト」
- 60ページの「環境仕様」
- 61 ページの「耐障害性」
- 61 ページの「電気特性」

物理的な寸法

HBA のカードのサイズは次のとおりです。


高さ: 94.31 mm (2.731 インチ)

長さ: 167.64 mm (6.6 インチ)

HBA のカードのレイアウト

HBA は、2 つの SFF-8087 x4 内部 Mini SAS コネクタを通じて 8 つの内蔵 SAS/SATA ポートを制御します。 59 ページの図 A.1 に、HBA のジャンパとコネクタを示します。

図A.1 HBA のカードのレイアウト

付録A HBA の仕様 59

HBA のジャンパとコネクタ

60 ページの表 A.1 に、HBA のジャンパとコネクタを示します。

表A.1 HBA のジャンパとコネクタ

コネクタ	説明	コメント	
JT3B1	バッテリバックアップコネクタ	20 ピンのコネクタ	
		LSIiBBU08 インテリジェントバッテリ バックアップユニットを直接 RAID コント ローラに接続します。	
JT5A1	x4 SAS ポート 0-3 Mini SAS 4i コネクタ	Mini SAS 4x コネクタ	
		コントローラからのケーブルを SAS または SATA II のドライブか SAS 拡張カードに 接続します。	
JT5B1	x4 SAS ポート 4-7 Mini SAS 4i コネクタ	Mini SAS 4x コネクタ	
		コントローラからのケーブルを SAS または SATA II のドライブか SAS 拡張カードに 接続します。	
JT5B2	UART (Universal Asynchronous Receiver Transmitter) デバッグ	4 ピンのコネクタ	
JT5B3	「工場出荷時のデフォルト設定」コネクタ	Oracle 用に予約されています。 2 ピンのコネクタ	
		ボードの設定を出荷時のデフォルトに戻し ます。	
JT6B1	LSI テストヘッダー	2 ピンのコネクタ	
		Oracle 用に予約されています。	
JT6B2	グローバルドライブ障害 LED ヘッダー	2 ピンのコネクタ	
		ドライブが障害状態かどうかを示す LED に接続します。	
JT6B3	SAS アクティビティー LED	2 ピンのコネクタ	
	ヘッダー	ドライブの動作状態を示す LED に接続します。	

環境仕様

HBA の環境要件を61 ページの表 A.2 に示します。

表A.2 HBA の環境仕様

仕様	動作時	非動作時
温度	 +10°C - +60°C (バッテリバックアップユニットなし) 	• -30°C - +80°C (バッテリバックアップユニットなし)
	・ +10°C - +55°C (iBBU バッテリバックアッ プあり)	・ 0° C - + 56° C (iBBU バッテリバックアップあり)
湿度	5 - 90% RH、結露なし、最高 40°C、最高湿球 温度 27°C、限界状況で 16 時間まで設置可 能	93% RH、結露なし、最高 40°C、120 時間
高度	40°C で 3200m、4 時間まで設置可能	0°C で 12,200m、4 時間まで設置可能
振動	0.25 G (全方向、スイープ 5 - 500 - 5 Hz)、ス イープ回数 5 (全方向、1 オクターブ/分)	1.2 G (全方向、スイープ 5 - 500 - 5 Hz)、ス イープ回数 5 (全方向、1 オクターブ/分)
衝撃	5.5 G、11 ms 半正弦、x 軸、y 軸、および z 軸 で 10±の衝撃	33 G、11 ms 半正弦、x 軸、y 軸、および z 軸 で 3± の衝撃
通気	200 リニアフィート/分 (LFPM) 以上	200 リニアフィート/分 (LFPM) 以上

耐障害性

61 ページの表 A.3 に、HBA の耐障害性機能を示します。

表A.3 耐障害性機能

-	
仕様	НВА
SMART のサポート ¹	あり
キャッシュメモリー用のオプションの バッテリバックアップ	LSIiBBU08 バッテリーバックアップ。512M バイトのデータを 最大 48 時間保持する 3.7V/1350mAH のバッテリーパック
ドライブ障害検出	自動
ホットスペアを使用したドライブの再 構築	自動
パリティーの生成とチェック	あり

 $[\]overline{^1}$ Self Monitoring Analysis and Reporting Technology (SMART) では、予測可能なすべてのドライブ障害の最大 70% が検出されます。さらに、すべてのモーター、ヘッド、およびドライブ電子回路の内部パフォーマンスの監視も行われます。

電気特性

すべての電力は、PCI Express 3.3V レールおよび 12V レールを通じて HBA に供給されます。3 .3V レールと 12V レールから動作するオンボードスイッチングレギュレータ回路により、必要な電圧が供給されます。コントローラの一般的な電流消費は、次の状態によって決まります。

- ・ 状態 1: ハードリセット中
- ・ 状態 2: ディスク負荷テスト中
- ・ 状態 3: DOS プロンプトでのアイドル状態

付録A HBA の仕様 61

供給電圧は、 $12V \pm 8\%$ (PCI エッジコネクタからのみ) と $3.3V \pm 9\%$ (PCI エッジコネクタからのみ) です。62 ページの表 A.4 に、各電圧の 3 つの状態に対応するコントローラの電源情報を示します。

表A.4 HBA の電源

PCI エッジコネクタ	状態 1	状態 2	状態 3
3.3V 電源	330mA	330mA	330mA
+12V 電源	1.00A	1.81A	1.53A
3.3V 補助電源	30mA	30mA	30mA

+12V は、オプションの iBBU バッテリバックアップ式ドーターカード上のバッテリーパックの充電 回路で使用されます。iBBU ドーターカードが搭載されている場合の消費電力は次のようになります: バッテリーパックの高速充電中: +12V の電流で 230mA

用語集

A_sB

BIOS

Basic Input/Output System (基本入出力システム) の頭字語。基本的な 読み取り/書き込み機能を提供するソフトウェアです。通常はファームウェア (ROM ベース) として保持されます。コンピュータのマザーボード上のシステム BIOS は、システムをブートおよび制御します。ホストアダプタ上の BIOS は、シ ステム BIOS の拡張機能として動作します。

C

configuration (構成)

システムがどのように設定されているかを指します。コンピュータシステムを構成するハードウェアコンポーネント (コンピュータ、モニター、キーボード、および周辺デバイス) の組み合わせ、またはハードウェアコンポーネント同士の通信を可能にするソフトウェア設定です。

D

device driver (デバイスドライバ)

マイクロプロセッサが OS を通じて周辺デバイスの処理を指示できるようにする プログラム。

domain validation (ドメイン 検証) ホストからデバイスに対して、ネゴシエーションが行われたデータ転送率で通信 できるかどうかを照会するためのソフトウェア手続き。

drive group (ドライブグループ)

物理ドライブのグループ。複数のドライブ上のストレージスペースを結合して、単一セグメントのストレージスペースにします。ホットスペアドライブをアクティブなドライブとしてドライブグループに含めることはできません。

E

EEPROM

Electronically Erasable Programmable Read-Only Memory (電気的に 消去できるプログラム可能な読み取り専用メモリー) の頭字語。通常は構成情報を格納するメモリーチップです。電源を切っても長期間安定するストレージで、 書き換えることができます。「NVRAM」を参照してください。

external SAS device (外部 SAS デバイス) コンピュータキャビネットの外部に設置された SAS デバイス。このデバイスは、特定タイプのシールド付きケーブルを使用して接続されます。

F

Fusion-MPT architecture (Fusion-MPT アーキテクチャー)

Fusion-Message Passing Technology アーキテクチャーの頭字語。Fusion-MPT を構成する主な要素は、Fusion-MPT ファームウェア、ファイバチャネルと SCSI ハードウェア、およびこれらのアーキテクチャーをサポートするオペレーティングシステムレベルのドライバです。Fusion-MPT アーキテクチャーは、ファイバチャネルと SCSI デバイスの両方をサポートするシングルバイナリのオペレーティングシステムドライバを提供します。

G, H

host (ホスト)

RAID アダプタが取り付けられているコンピュータシステム。RAID アダプタを使用して、SCSI バスに接続されたデバイスとの間で情報を転送します。

用語集 63

host adapter board (ホスト アダプタボード)

コンピュータシステムへのデバイス接続を提供する回路基板または集積回路。

Host Bus Adapter (ホストバ スアダプタ)

ネットワークデバイスやストレージデバイスとホストを接続するハードウェア。

hot spare (ホットスペア)

アイドル状態で電源がオンの待機ドライブ。ドライブに障害が発生したときにす ぐに使用できます。ホットスペアには、ユーザーデータは格納されません。ホットス ペアは、単一の冗長アレイ専用にすることも、アダプタによって管理されるすべ てのアレイのグローバルホットスペアプールの一部にすることもできます。

ドライブに障害が発生すると、アダプタファームウェアによって、障害の発生 したドライブのデータがホットスペアに自動的に切り替えられて再構築され ます。データを再構築できるのは、冗長性を持つ仮想ドライブ (RAID レベル 1、5、6、10、50、および 60 が対象で、RAID レベル 0 は不可) からだけで、 ホットスペアには十分な容量が必要です。

internal SAS device (内部 SAS デバイス)

コンピュータキャビネットの内部に設置された SAS デバイス。このデバイスは、 シールド付きケーブルを使用して接続されます。

J. K. L. M

main memory (主記憶)

CPU から直接アクセスできるコンピュータメモリーの一部 (通常は RAM と同 義)。

Ν

NVRAM

Nonvolatile Random Access Memory (非揮発性ランダムアクセスメモ リー) の頭字語。構成情報を格納する EEPROM (Electronically Erasable Read-Only Memory) チップです。「EEPROM」を参照してください。

O, P

PCI

Peripheral Component Interconnect (周辺機器インターコネクト) の頭字 語。デバイスをコンピュータメモリーに直接接続できるようにする高性能なローカ ルバス仕様です。PCI ローカルバスにより、33 MHz の 32 ビットデータパスか ら 33 MHz の 64 ビットデータパスに、および 66 MHz の 32 ビットデータパス から 66 MHz の 64 ビットデータパスに透過的にアップグレードできます。

PCI Express

Peripheral Component Interconnect Express (周辺機器インターコネクト Express) の頭字語。デバイスをコンピュータメモリーに直接接続できるようにす る高性能なローカルバス仕様です。PCI Express は、2 組のポイントツーポイン トのデータラインでデータを転送する双方向のシリアル接続です。PCI Express は、デスクトップ、ワークステーション、モバイル、サーバー、通信、組み込みデバ イスなど、さまざまなシステムの統合 I/O アーキテクチャーとして設計されてお り、PCI 仕様を強化したものです。

peripheral device (周辺デ

バイス)

コンピュータとともに、コンピュータの制御下で使用されるハードウェア (ビデオモ ニター、ドライブ、プリンタ、CD-ROM など)。SCSI 周辺装置は、Sun Storage 6 Gb SAS PCIe RAID 内蔵 HBA (ホストアダプタ) を通じて制御されます。

PHY

シリアルバスで転送されるデータパケットの送受信に必要なインタフェース。

各 PHY は、別の SATA デバイス上の PHY との接続における物理的なリンク の一方となることができます。物理的なリンクには、2 つの差動信号ペアを形成 する 4 本のワイヤーが含まれます。一方の差動ペアは信号を送信し、他方の差 動ペアは信号を受信します。両方の差動ペアは同時に動作し、受信方向と送信 方向の両方で並行データ伝送を可能にします。

Q. R. S

SAS

Serial Attached SCSI の頭字語。実証済みの SCSI プロトコルセットを利 用する、シリアル方式によるポイントツーポイントのエンタープライズレベルの デバイスインタフェースです。SAS インタフェースは、パラレル SCSI と比較し て性能が高く、配線が単純で、コネクタが小さく、ピン数が少なく、所要電力も 抑えられています。SAS アダプタでは、Serial ATA と互換性のある共通の電 気接続インタフェースと物理接続インタフェースを使用します。SAS アダプタ は、ANSI Serial Attached SCSI Standard, Version 2.0 をサポートしてい ます。また、Serial ATA II (SATA II) プロトコル (Serial ATA Specification. Version 1.0a で規定)をサポートしています。SAS インタフェースと SATA II インタフェースをサポートする SAS アダプタは、サーバーとハイエンドのワークス テーション環境のバックボーンを提供する汎用アダプタです。SAS RAID アダプ タの各ポートは、SAS デバイスまたは SATA II デバイス、あるいはその両方を サポートします。

SAS device (SAS デバイス)

SAS 規格に準拠し、SAS ケーブルで SAS バスに接続されるデバイス。これに は、SAS RAID アダプタ (ホストアダプタ) や SAS 周辺装置が含まれます。

SATA

Serial Advanced Technology Attachment (シリアル ATA) の頭字語。物 理ストレージインタフェースの標準規格。SATA は、デバイス間のポイントツーポ イント接続を提供するシリアルリンクです。シリアルケーブルは細くなっているの で、システム内の通気が向上し、シャーシの小型化が可能になります。

SMP

Serial Management Protocol (シリアル管理プロトコル) の頭字語。SMP に より、トポロジ管理情報が、接続されている SAS エクスパンダデバイスと直接 通信されます。アダプタ上の各 PHY は、SMP イニシエータとして機能できま

spanning (スパニング)

複数のドライブを結合して単一の論理ドライブにする方法。すべてのドライブ 容量を 1 つのドライブグループにまとめる場合は、ドライブのスパニング (結 合) を行い、オペレーティングシステムで 1 つの大きなドライブと認識されるよ うにすることができます。詳細は、http://www.lsi.com/sep/Pages/oracle/ index.aspx にある MegaRAID SAS ソフトウェアのユーザーズガイトを参照してくだ さい。

SSP

Serial SCSI Protocol (シリアル SCSI プロトコル) の頭字語。SSP は、ほかの SAS デバイスと通信できるようにします。SAS アダプタ上の各 PHY は、SSP イニシエータまたは SSP ターゲットとして機能できます。

STP

Serial Tunneling Protocol (シリアルトンネリングプロトコル) の頭字語。STP は、接続されているエクスパンダを通して SATA II デバイスと通信できるように します。SAS アダプタ上の各 PHY は、STP イニシエータとして機能できます。

stripe size (ストライプサイ ズ)

パリティードライブを除く、1つのストライプで使用される合計ドライブ容量。たと えば、ストライプに 64K バイトのドライブ容量があり、ストライプの各ドライブに 16K バイトのデータが存在するとします。この場合、ストライプサイズは 64K バ イトで、ストライプエレメントサイズは 16K バイトになります。このストライプの深 さは 4 です (ストライプに 4 台のドライブ)。各論理ドライブのストライプサイズ

用語集 65

として指定できるのは、8K バイト、16K バイト、32K バイト、64K バイト、128K バイト、256K バイト、512K バイト、または 1M バイトです。ストライプサイズ を大きくすると、特に読み取りのほとんどが順次である場合に、読み取りのパフォーマンスが向上します。読み取りのほとんどがランダムである場合は、ストライプサイズを小さくしてください。

striping (ストライプ化)

ドライブのストライプ化とは、1 つのデータを複数のドライブに書き込むことです。 各ストライプは、複数のドライブに広がりますが、各ドライブの一部しか使用しません。したがって、各ドライブには、通常、複数のストライプがあります。1 つのストライプで使用される容量は、そのストライプに含まれている各ドライブで同じです。単一のドライブ上に存在するストライプの一部は、ストライプエレメントと呼ばれます。ストライプ化自体はデータ冗長性を提供しませんが、パリティーと組み合わせたストライプ化により、データ冗長性を実現できます。

T, U, V, W, X, Y, Z

virtual drive (仮想ドライブ)

RAID コントローラによって 1 つ以上のドライブから作成されるストレージ単位。 仮想ドライブは複数のドライブから作成することもできますが、オペレーティング システムでは単一のドライブとして認識されます。使用する RAID レベルに応じ て、仮想ドライブは、ドライブの障害に備えて冗長データを保持できます。