
Sun Identity Manager 8.1 Web
Services

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–5597
February 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Javadoc, Java, and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems,
Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Javadoc, Java et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090312@21990

Contents

Preface ...5

1 Using SPML 1.0 With Sun Identity Manager Web Services ..9
Important Notes About Using SPML 1.0 .. 10
Configuring SPML .. 10

Installing and Modifying Repository Objects ... 10
Editing the Waveset.properties File ... 12
Editing Configuration Objects ... 14

Starting the OpenSPML Browser .. 22
▼ To Start the OpenSPML Browser ... 22

Connecting to the Identity Manager Server ... 22
▼ To Connect to the Identity Manager Server .. 22

Testing Your SPML Configuration ... 23
▼ To Test Your SPML Configuration ... 23

Developing SPML Applications .. 24
ExtendedRequest Examples ... 25
Example Query Form .. 29
Using Trace With SPML ... 30

Example Methods for Implementing SPML .. 31
AddRequest Method .. 31
ModifyRequest Method .. 31
SearchRequest Method .. 32

2 Using SPML 2.0 With Sun Identity Manager Web Services ..35
Important Notes About Using SPML 2.0 .. 35
Basic SPML 2.0 Concepts ... 36

How SPML 2.0 Compares to SPML 1.0 ... 36

3

How SPML 2.0 Concepts Are Mapped to Identity Manager .. 37
Supported SPML 2.0 Capabilities .. 39
SPML Logging .. 57

Configuring Identity Manager to Use SPML 2.0 ... 58
Deciding Which Attributes to Manage ... 59
Configuring the SPML2 Configuration Object .. 60
Configuring web.xml ... 60
Configuring SPML Tracing .. 62

Extending the System .. 62
SPML Connector ... 63

Index ..65

Contents

Sun Identity Manager 8.1 Web Services • February 20094

Preface

Sun Identity Manager 8.1 Web Services contains reference and procedural information designed
to help you use SPML Versions 1.0 or 2.0 to communicate with SunTMIdentity Manager and
SunIdentity Manager Service Provider service provisioning activities. Specifically, this
document describes which features are supported and why, how to configure SPML support,
and how to extend support in the field.

Who Should Use This Book
This book is for application developers and developers who are responsible for deploying
Identity Manager, implementing procedural logic, and using SPML classes to format service
provisioning request messages and to parse response messages.

Related Web Site
For information about using OpenSPML, see http://www.openspml.org.

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

5

http://www.openspml.org

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Preface

Sun Identity Manager 8.1 Web Services • February 20096

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

7

8

Using SPML 1.0 With Sun Identity Manager Web
Services

Service Provisioning Markup Language (SPML) 1.0 is an OASIS standard used to provide an
open interface for communicating with service provisioning activities. You access SunTM

Identity Manager Web Services by using SPML requests for HTTP.

This chapter describes SPML 1.0 support in Sun Identity Manager software (Identity Manager)
and Sun Identity Manager Service Provider (Service Provider) and includes information about
which features are supported and why, how to configure SPML 1.0 support, and how to extend
support in the field.

The information is organized as follows:

■ “Important Notes About Using SPML 1.0” on page 10
■ “Configuring SPML” on page 10
■ “Starting the OpenSPML Browser” on page 22
■ “Connecting to the Identity Manager Server” on page 22
■ “Testing Your SPML Configuration” on page 23
■ “Developing SPML Applications” on page 24
■ “Example Methods for Implementing SPML” on page 31

Note – Identity Manager supports both SPML Version 1.0 and Version 2.0. The concepts
described in this chapter relate specifically to SPML 1.0. However, this information also provides
a good basis for understanding concepts described in Chapter 2, “Using SPML 2.0 With Sun
Identity Manager Web Services.”

1C H A P T E R 1

9

Important Notes About Using SPML 1.0
Before you start working with SPML 1.0 and Identity Manager Web Services, note the
following:

■ For optimal performance when you are working with the Identity Manager Web Services
interfaces, use the OpenSPML Toolkit that is co-packaged with Identity Manager. Using the
openspml.jar file from the http://www.openspml.org web site might cause memory leaks.

■ The Service Provider REF Kit contains an SpmlUsage.java file that demonstrates how to
use the Service Provider SPML interface.

■ You can access Service Provider features through SPML 1.0. (These features are not
available with SPML Version 2.0.)

The Service Provider SPML interface is very similar to the Identity Manager SPML interface.
Differences in configuration and operation are noted in this chapter where appropriate.

Configuring SPML
To expose the SPML interface, you must properly configure the Identity Manager server by
installing and modifying specific repository objects and by editing the Waveset.properties
file.

Instructions for configuring the SPML interface are provided in the following sections:

■ “Installing and Modifying Repository Objects” on page 10
■ “Editing the Waveset.properties File” on page 12
■ “Editing Configuration Objects” on page 14

Installing and Modifying Repository Objects
The following table describes the repository objects that you must install and modify to
configure SPML for Identity Manager.

TABLE 1–1 Repository Objects Used to Configure SPML

Object Description

Configuration:SPML Contains definitions of the SPML schemas supported by the server, and rules for
converting between the SPML schema and the internal view model. Each SPML
schema typically has an associated form.

Important Notes About Using SPML 1.0

Sun Identity Manager 8.1 Web Services • February 200910

http://www.openspml.org

TABLE 1–1 Repository Objects Used to Configure SPML (Continued)
Object Description

SPML Forms Contains one or more form objects that encapsulate the rules for transforming
between the external model (defined by an SPML schema) and the internal
model (defined by an Identity Manager view). Typically, you define one SPML
form for each object class defined in the SPML schema.

Configuration:IDM Schema Configuration Defines user attributes that can be stored in the Identity Manager repository for
access through an SPML filter, and which are queryable and summary attributes
for Identity Manager user objects.
■ Define a queryable attribute for attributes that you want to use in an SPML

filter.

■ Define a summary attribute for attributes that you want returned in an
optimized search.

TaskDefinition:SPMLRequest System task used to process asynchronous SPML requests.

You typically do not have to customize this object.

Identity Manager includes a sample set of SPML configuration objects in the sample/spml.xml
file. You must manually import the sample/spml.xml file because the file is not imported by
default when the repository is initialized.

The sample configuration defines a person class to track the evolving standard schema defined
by the SPML working group. Do not customize this class. You must keep the person class
consistent with the standard schema, except when you are configuring the Service Provider
SPML interface.

When configuring the Service Provider SPML interface, you must install and modify the
Configuration:SPE SPML configuration object as follows:

■ Configure the person class (the only object class defined by default) to use the Service
Provider-specific view handler (IDMXUser).

■ Use the form attribute to define a user form that translates between the SPML request or
SPML response and the view.
The form attribute can take a special value (view): in which no form processing is applied
to the view. For example, the view is passed directly between the client and Identity
Manager.

You access the Service Provider SPML interface from the following (default) path:

/servlet/spespml

For example, if you deploy Identity Manager in the /idm context on host:port, you can access the
interface at the following URL:

http://host:port/idm/servlet/spespml

Configuring SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 11

where:

■ host is the machine on which you are running Identity Manager.
■ port is the number of the TCP port on which the server is listening.

Note – See the SPML 1.0 Specification at http://www.openspml.org for the most current
information about the standard SPML schema.

Editing the Waveset.properties File
The following table describes three optional entries in the Waveset.properties file that you
can use to control how SPML requests are authorized.

TABLE 1–2 Optional Entries in Waveset.properties

Entry Name Description

soap.username Name of the Identity Manager user who performs SPML requests

soap.password Clear text password for the user specified by soap.username

soap.epassword Base-64 representation of an encrypted password for the user specified by
soap.username

Editing soap.epassword and soap.passwordProperties
The user specified in soap.username is known as the proxy user.

You can specify only one password property for the proxy user:

■ Specifying soap.password is the simplest option, but this property exposes a clear text
password in the properties file.

■ Specifying soap.epassword is a more secure option, but you must perform extra steps to
generate an encrypted password.

Establishing a proxy user is convenient for clients because authentication is not required by the
web service. This configuration is common for portal environments where the Identity
Manager server is only accessed by other applications that handle user authentication.

Caution – Using a proxy user can be dangerous if the HTTP port on which the responding server
resides is generally accessible. Anyone who knows the Identity Manager server’s URL and
understands how to build SPML requests can configure Identity Manager operations for the
proxy user to perform.

Configuring SPML

Sun Identity Manager 8.1 Web Services • February 200912

http://www.openspml.org

The SPML standard does not specify how to perform authentication and authorization. Several
related web standards are available for authentication, but these standards are not yet in
common use. At this time, the most common approach for authentication is to use the Secure
Socket Layer (SSL) between applications and the server. Identity Manager does not dictate how
to configure SSL.

If you cannot use a proxy user or SSL, Identity Manager supports a vendor-specific extension to
SPML that allows the client to log in and maintain a session token, which can be used to
authenticate subsequent requests. You can use the LighthouseClient class (an extension of the
SpmlClient class that includes support for specifying credentials) to perform a login request
and pass a session token in all SPML requests.

Note – The Service Provider SPML interface does not support authentication and authorization.
However, you can configure the Identity Manager SPML interface to use the IDMXUser view
instead of using Service Provider SPML.

Service Provider assumes that clients accessing Identity Manager have been authenticated and
authorized by an access management application. The client has all possible rights when using
the Service Provider SPML interface.

To prevent sensitive data from being exposed between the client and Identity Manager,
consider accessing the Service Provider SPML interface over SSL.

Creating an Encrypted Password
Use one of the following methods to create an encrypted password:

■ Open the Identity Manager console and use the encrypt command.
■ Open the Identity Manager Debug pages or console and view the XML for the proxy user.

Find the WSUser element for the password attribute value and use that value for the
soap.epassword property.

Note – To access the Debug pages, open the Identity Manager Administrator interface and
type the following URL:

http://host:port/idm/debug

where host is the local server where Identity Manager is running, and port is the TCP port on
which the server is listening.

Configuring SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 13

Editing Configuration Objects
Applications require a mechanism to send SPML messages and to receive SPML responses.

To configure SPML for Identity Manager, you must edit the following configuration objects:
■ “Configuration: SPML Object” on page 14
■ “Configuration: SPMLPerson Object” on page 17
■ “Configuration: IDM Schema Configuration Object” on page 18
■ “TaskDefinition: SPMLRequest Object” on page 20
■ “Deployment Descriptor” on page 21

Note – The Service Provider SPML interface has only one configuration object,
Configuration:SPE SPML, which is similar to the Configuration:SPML object in structure.

Configuration: SPML Object
The Configuration: SPML object contains definitions for the SPML schemas that you want to
expose, and information about how those SPML schemas are mapped into Identity Manager
views. This information is represented by using a GenericObject that is stored as an extension
of the configuration object.

The following attributes are defined in GenericObject: schemas and classes:

■ Schemas. A list of strings, where each string contains the escaped XML for one SPML
<schema> element. Because the SPML elements are not defined in the waveset.dtd, you
cannot directly include them in an Identity Manager XML document. Instead, you must
include them as escaped text.

■ Classes. A list of objects containing information about the supported SPML classes and how
those classes are mapped into views. Define one object from this list for each class defined by
the SPML schemas on the schemas list.

Initially, the distinction between the two lists might be confusing. The information in the
schemas list defines what Identity Manager returns in response to an SPML SchemaRequest

message. The client uses this information to decide which attributes can be included in other
messages such as AddRequest. Identity Manager does not care about the contents of the
schemas list. This list is simply returned verbatim to the client.

You are not required to define SPML schemas. Identity Manager works without schemas. If you
do not define an SPML schema, Identity Manager returns an empty response after receiving a
schema request message. Without a schema, clients must rely on pre-existing knowledge about
the supported classes and attributes.

Best Practice:

Writing SPML schemas is considered a best practice, because it enables you to use general
purpose tools (such as the OpenSPML Browser) to build requests.

Configuring SPML

Sun Identity Manager 8.1 Web Services • February 200914

Default SPML Configuration

The following example shows the default SPML configuration. The text of the SPML schema
definitions have been omitted for brevity.

EXAMPLE 1–1 Default SPML Configuration

<Configuration name=’SPML’ authType=’SPML’>

<Extension>

<Object>

<Attribute name=’classes’>

<List>

<Object name=’person’>

<Attribute name=’type’ value=’User’/>

<Attribute name=’form’ value=’SPMLPerson’/>

<Attribute name=’default’ value=’true’/>

<Attribute name=’identifier’ value=’uid’/>

</Object>

<!-- Class 'user' defines no form so we'll default to a builtin simplified schema. I don't really like
this but SimpleRpc currently depends on it. -->

<Object name=’user’>

<Attribute name=’type’ value=’User’/>

<Attribute name=’identifier’ value=’waveset.accountId’/>

</Object>

<!-- Class 'userview' defines the form "view" which causes the view to pass through
unmodified--> <Object name=’userview’>

<Attribute name=’type’ value=’User’/>

<Attribute name=’form’ value=’view’/>

<Attribute name=’identifier’ value=’waveset.accountId’/>

<Attribute name=’multiValuedAttributes’>

<List>

<String>waveset.resources</String>

<String>waveset.roles</String>

<String>waveset.applications</String>

</List>

</Attribute>

</Object>

<Object name=’role’>

<Attribute name=’type’ value=’Role’/>

<Attribute name=’form’ value=’SPMLRole’/>

<Attribute name=’default’ value=’true’/>

<Attribute name=’identifier’ value=’name’/> <!-- attribute ...for now? -->
</Object>

</Configuration>

Configuring SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 15

Two classes are defined in this example:

■ The standard person class
■ An Identity Manager extension named request

The following attributes are supported in a class definition:

■ name – Identifies the class name. The name value can correspond to an
<ObjectClassDefinition> element in an SPML schema, although this value is not
required. You can use this name as the value for the objectclass attribute in an
AddRequest or a SearchRequest.

■ type – Defines the Identity Manager view type used to manage instances of this class.
Generally, this attribute is User, but it can be any repository type that is accessible through a
view. For information about views, see Sun Identity Manager Deployment Reference.

■ form – Identifies the name of a configuration object containing a form. This attribute
contains the rules for transforming between the external attributes defined by the class and
the internal view attributes.

■ default – Specify true to indicate that this attribute is the default class for this type only.
For more than one SPML class implemented on the same type, you must designate one class
as the default.

■ identifier – Each class typically defines one attribute as the object identity. The
identifier attribute in the class definition specifies which attribute represents the identity.
Where possible, use the identifier attribute value as the name of the corresponding
repository object you create to represent the instance.

■ filter – When evaluating an SPML search request for a class, you typically include all
repository objects associated with that class in that search. This approach is fine for User
objects, but some classes might be implemented by using generic types such as
TaskDefinition or Configuration, not all of which are considered instances of the SPML
class.
To prevent unwanted objects from being included in the search, you can specify the filter
attribute. The value is expected to be an <AttributeCondition> element or a <List> of
<AttributeCondition> elements. Because custom classes are typically created for the User
type, using a filter is uncommon. The default configuration uses filters to expose a subset of
the TaskInstance objects that are known to have been created to handle asynchronous
SPML requests.

Default Schemas

The schemas attribute contains a list of strings that contain the escaped XML for an SPML
<schema> element. If you examine the spml.xml file, note that the schema elements are
surrounded by a CDATA-marked section. Using CDATA-marked sections is convenient for
escaping long strings of XML. When Identity Manager normalizes the spml.xml file, the
CDATA-marked sections are converted into strings containing < and > character entities.

Configuring SPML

Sun Identity Manager 8.1 Web Services • February 200916

http://docs.sun.com/doc/820-5821

The default SPML configuration includes two schemas:

■ A standard schema that is being defined by the SPML working group.
■ A custom schema that is defined by Identity Manager. Do not customize these schemas.

The Identity Manager schema contains a class definition for request and various extended
requests for common account management operations.

Configuration: SPMLPerson Object
Each class defined in the Configuration:SPML object typically has an associated form object
containing the rules for transforming between the external attribute model defined by the class
and the internal model defined by the associated view.

The following example shows how the standard person class references a form.

EXAMPLE 1–2 Standard PersonClass Referencing a Form

<Configuration name=’SPMLPerson’>

<Extension>

<Form>

<Field name=’cn’>

<Derivation><ref>global.fullname</ref></Derivation>

</Field>

<Field name=’global.fullname’>

<Expansion><ref>cn</ref></Expansion>

</Field>

<Field name=’email’>

<Derivation><ref>global.email</ref></Derivation>

</Field>

<Field name=’global.email’>

<Expansion><ref>email</ref></Expansion>

</Field>

<Field name=’description’>

<Derivation>

<ref>accounts[Lighthouse].description</ref>

</Derivation>

</Field>

<Field name=’accounts[Lighthouse].description’>

<Expansion><ref>description</ref></Expansion>

</Field>

<Field name=’password’>

<Derivation><ref>password.password</ref></Derivation>

</Field>

<Field name=’password.password’>

<Expansion><ref>password</ref></Expansion>

</Field>

<Field name=’sn’>

Configuring SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 17

EXAMPLE 1–2 Standard PersonClass Referencing a Form (Continued)

<Derivation><ref>global.lastname</ref></Derivation>

</Field>

<Field name=’global.lastname’>

<Expansion><ref>sn</ref></Expansion>

</Field>

<Field name=’gn’>

<Derivation><ref>global.firstname</ref></Derivation>

</Field>

<Field name=’global.firstname’>

<Expansion><ref>gn</ref></Expansion>

</Field>

<Field name=’telephone’>

<Derivation>

<ref>accounts[Lighthouse].telephone</ref>

</Derivation>

</Field>

<Field name=’accounts[Lighthouse].telephone’>

<Expansion><ref>telephone</ref></Expansion>

</Field>

</Form>

</Extension>

</Configuration>

SPML class forms
■ Contain no <Display> elements
■ Are only defined for data transformation
■ Are not intended for interactive editing

Each attribute in a class definition contains two field definitions:
■ One field uses a <Derivation> expression to transform the internal view attribute name to

the external name.
■ One field uses an <Expansion> expression to transform the external name to the internal

name.

The form is processed in such a way that when attributes are returned to the client, only the
result of the <Derivation> expressions are included. When attributes are being sent from the
client to the server, only <Expansion> expression results are assimilated back into the view. The
effect is similar to the schema map of a Resource definition.

Configuration: IDM Schema Configuration Object
If you want to use attributes in an SPML search filter, you must define those attributes as
extended attributes for Identity Manager users. Identity Manager stores extended attribute
values in the repository, even when that value is also stored as a resource account attribute.

Configuring SPML

Sun Identity Manager 8.1 Web Services • February 200918

Try to minimize the use of extended attributes. Too many extended attributes can increase the
repository size and might cause consistency problems between attributes stored in Identity
Manager and the real value of the attribute stored on a resource. To use an attribute in an
Identity Manager query, you must declare the attribute as an extended attribute to ensure that
the value is accessible when the repository query indexes are built.

To include attributes in a user’s set of summary attributes, you must define those attributes as
extended attributes. You can use summary attributes to optimize searches by avoiding
deserialization of the object XML, and instead return only a few of the most important user
attributes. In the Identity Manager SPML implementation, summary attributes are returned
when you do not explicitly provide a list of return attributes in the search request.

In the following example, firstname, lastname, fullname, description, and telephone are
extended attributes that are present on the User IDMObjectClassConfiguration after being
defined in IDMAttributeConfigurations. Only firstname, lastname, and telephone are
queryable and summary attributes.

EXAMPLE 1–3 telephone and descriptionDeclared as Extended Attributes

<Configuration name="IDM Schema Configuration"
id=’#ID#Configuration:IDM_Schema_Configuration’
authType=’IDMSchemaConfig’>

<IDMSchemaConfiguration>

<IDMAttributeConfigurations>

<!-- this is the standard set -->
<IDMAttributeConfiguration name=’firstname’

syntax=’STRING’/>
<IDMAttributeConfiguration name=’lastname’

syntax=’STRING’/>
<IDMAttributeConfiguration name=’fullname’

syntax=’STRING’/>
<!-- these are the SPML extensions -->

<IDMAttributeConfiguration name=’description’
syntax=’STRING’/>

<IDMAttributeConfiguration name=’telephone’
syntax=’STRING’/>

</IDMAttributeConfigurations>

<IDMObjectClassConfigurations>

<IDMObjectClassConfiguration name=’User’
extends=’Principal’
description=’User description’>

<IDMObjectClassAttributeConfiguration name=’firstname’
queryable=’true’
summary=’true’/>

<IDMObjectClassAttributeConfiguration name=’lastname’
queryable=’true’
summary=’true’/>

Configuring SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 19

EXAMPLE 1–3 telephone and descriptionDeclared as Extended Attributes (Continued)

<IDMObjectClassAttributeConfiguration name=’fullname’/>
<IDMObjectClassAttributeConfiguration name=’description’/>
<IDMObjectClassAttributeConfiguration name=’telephone’

queryable=’true’
summary=’true’/>

</IDMObjectClassConfiguration>

</IDMObjectClassConfigurations>

</IDMSchemaConfiguration>

</Configuration>

You can customize the list of attributes according to the needs of your site.

The names you choose for extended attributes depend on the mappings performed in the class
form. Because the default SPMLPerson form maps sn into lastname, you must declare the
extended attribute as lastname. The form does not transform the name of telephone or
description, so the extended attribute name comes directly from the SPML schema.

Beyond declaring extended attributes, you must also modify the same Configuration: object
to declare which of the attributes are queryable, or usable in an SPML filter, and which
attributes are summary attributes to be returned by an optimized search result.

TaskDefinition: SPMLRequest Object
The spml.xml file also includes a brief definition for a new system task named SpmlRequest.
You can use this task to implement asynchronous SPML requests. When the server receives an
asynchronous request, it launches a new instance of this task and passes the SPML message as
an input variable for the task. The server then returns the task instance repository ID in the
SPML response for later status requests. For example:

<TaskDefinition name=’SPMLRequest’
executor=’com.waveset.rpc.SpmlExecutor’
execMode=’asyncImmediate’
resultLimit=’86400’>

</TaskDefinition>

Do not change the definition name, the executor name, or the execution mode. You can change
the resultLimit value. When asynchronous requests have completed, the system typically
retains the result value for a specified time so the client can issue an SPML status request to
obtain the results. How long to retain these results is site-specific.

Use a positive resultLimit value to specify how long (in seconds) the system can retain results
after completing a task. The default value for SPMLRequest is typically 3600 seconds or
approximately one hour. Other tasks default to 0 seconds unless you change the task name to a
different value.

Configuring SPML

Sun Identity Manager 8.1 Web Services • February 200920

If negative, the request instance is never removed automatically.

Tip – To avoid cluttering the repository, set the resultLimit value to the shortest possible time.

Note – The Service Provider SPML interface does not support asynchronous requests.

Deployment Descriptor
You must edit the Identity Manager deployment descriptor, typically found in the
WEB-INF/web.xml file, to contain a declaration for the servlet that receives SPML requests.

If you are having difficulty contacting the SPML web service, look in the web.xml file for a
servlet declaration. The following example shows a servlet declaration.

EXAMPLE 1–4 Servlet Declaration

<servlet>

<servlet-name>rpcrouter2</servlet-name>

<display-name>OpenSPML SOAP Router</display-name>

<description>no description</description>

<servlet-class>

org.openspml.server.SOAPRouter

</servlet-class>

<init-param>

<param-name>handlers</param-name>

<param-value>com.waveset.rpc.SimpleRpcHandler</param-value>

</init-param>

<init-param>

<param-name>spmlHandler</param-name>

<param-value>com.waveset.rpc.SpmlHandler</param-value>

</init-param>

<init-param>

<param-name>rpcHandler</param-name>

<param-value>com.waveset.rpc.RemoteSessionHandler</param-value>

</init-param>

</servlet>

This declaration allows you to access addRequest, modifyRequest, and searchRequest web
services through the URL:

http://<host>:<port>/idm/servlet/rpcrouter2

where

■ host is the machine on which you are running Identity Manager.

Configuring SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 21

■ port is the number of the TCP port on which the server is listening.

Although you can, you are not required to define a servlet-mapping. Do not modify the contents
of this servlet declaration.

Starting the OpenSPML Browser
You can use the OpenSPML Browser application to test your Identity Manager SPML
configuration.

▼ To Start the OpenSPML Browser
Open a command window.

At the command prompt, type:

lh spml

Connecting to the Identity Manager Server

▼ To Connect to the Identity Manager Server
Open the OpenSPML browser and click the Connect tab.

1

2

1

Starting the OpenSPML Browser

Sun Identity Manager 8.1 Web Services • February 200922

Type the URL of the Identity Manager server into the Server URL field.

For example, if the server is running on port 8080 on a local machine, the URL would be
http://host:8080/idm/servlet/rpcrouter2.

Testing Your SPML Configuration
After connecting to the OpenSPML browser, use the following procedure to test your
configuration.

▼ To Test Your SPML Configuration
If necessary, click the Connect tab and click Test.

A dialog displays to indicate that the connection was successful.

Click the Schema tab and click Submit.

The system displays a hierarchical view of the schemas supported by the Identity Manager
server.

FIGURE 1–1 Example OpenSPML Browser

2

1

2

Testing Your SPML Configuration

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 23

If you cannot establish a successful connection, do the following:
■ Verify that you typed the URL correctly.
■ If the error message you receive contains phrases such as “no response” or “connection

refused,” the problem is most likely the host or port used in the connection URL.
■ If the error message suggests that a connection was made, but the web application or servlet

could not be located, the problem is most likely in the WEB-INF/web.xml file. See
“Deployment Descriptor” on page 21 for more information.

Developing SPML Applications
After configuring the server, your SPML application requires a mechanism for sending SPML
messages and receiving SPML responses. For JavaTM applications, use the OpenSPML Toolkit to
configure this mechanism.

Note – For optimal performance when you are working with the Identity Manager Web Service
Interfaces, use the OpenSPML Toolkit that is co-packaged with Identity Manager.

Using the openspml.jar file from the http://www.openspml.org/ web site might cause
memory leaks.

The OpenSPML Toolkit provides the following components:

■ Java class model for SPML messages
■ Classes to send and receive messages on the client
■ Classes to receive and process requests on the server

The following table describes the most important classes provided by the toolkit. Each request
type has a corresponding class. Consult the JavadocTM tool distributed with the toolkit for
complete information.

TABLE 1–3 Classes Provided by the OpenSPML Toolkit

Class Description

AddRequest Constructs a message to request creation of a new object. You define the object type by
passing an objectclass attribute. Other passed attributes must adhere to the schema
associated with the object class. SPML does not yet define standard schemas, but you can
configure Identity Manager to support almost all schemas.

BatchRequest Constructs a message that can contain more than one SPML request.

CancelRequest Constructs a message to cancel a request that was formerly executed asynchronously.

Troubleshooting

Developing SPML Applications

Sun Identity Manager 8.1 Web Services • February 200924

http://www.openspml.org/

TABLE 1–3 Classes Provided by the OpenSPML Toolkit (Continued)
Class Description

DeleteRequest Constructs a message to request the deletion of an object.

ModifyRequest Constructs a message to request modification of an object. Include only those attributes that
you want to modify in the request. Attributes omitted from the request will retain their
current values.

SchemaRequest Constructs a message to request information about SPML object classes supported by the
server.

SearchRequest Constructs a message to request object attributes that match certain criteria.

SpmlClient Presents a simple interface for sending and receiving SPML messages.

SpmlResponse Includes the base class for objects representing response messages sent back from the server.
Each request class has a corresponding response class, for example, AddResponse and
ModifyResponse.

StatusRequest Constructs a message to request the status of a request that was formerly executed
asynchronously.

The Service Provider REF Kit contains an SpmlUsage.java file that demonstrates how to use
the Service Provider SPML interface. This REF Kit also contains an ant script that compiles the
SpmlUsage class.

Usage:

java [-Dtrace=true] com.sun.idm.idmx.example.SpmlUsage [URL]

where URL points to the Service Provider SPML interface. The URL defaults to

http://host:port/idm/spespml

where

■ host is the machine on which you are running Identity Manager Service Provider.
■ port is the number of the TCP port on which the server is listening.

You can enable trace for Service Provider to print Service Provider SPML messages to standard
output.

ExtendedRequest Examples
The following table describes the different ExtendedRequest classes that you can use to send
messages to and receive messages from the client.

Developing SPML Applications

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 25

TABLE 1–4 ExtendedRequestClasses for Sending and Receiving Messages

ExtendedRequest Class Description

changeUserPassword Constructs a message to request a user password change.

deleteUser Constructs a message to request a user deletion.

disableUser Constructs a message to request the disabling of a user.

enableUser Constructs a message to request the enabling of a user.

launchProcess Constructs a message to request the launch of a process.

listResourceobjects Constructs a message to request the name of a resource object in the Identity Manager repository,
and the type of object supported by that resource. The request returns a list of names.

resetUserPassword Constructs a message to request the reset of a user password.

runForm Allows you to create custom SPML requests that return information obtained by calling the
Identity Manager Session API.

The server code converts each ExtendedRequest into a view operation.

The following examples illustrate the typical formats for an ExtendedRequest and its classes:

■ “ExtendedRequest Example” on page 26
■ “deleteUser Example” on page 27
■ “disableUser Example” on page 27
■ “enableUser Example” on page 27
■ “launchProcess Example” on page 28
■ “listResourceObjects Example” on page 28
■ “resetUserPassword Example” on page 29
■ “runForm Example” on page 29

ExtendedRequest Example
The following example shows the typical format for an ExtendedRequest.

EXAMPLE 1–5 ExtendedRequestFormat

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("changeUserPassword");
req.setAttribute("accountId", "exampleuser");
req.setAttribute("password", "xyzzy");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Developing SPML Applications

Sun Identity Manager 8.1 Web Services • February 200926

Most SPML ExtendedRequest requests accept the following arguments:

■ accountId – Identifies the Identity Manager user name.
■ accounts – Presents resource names in a comma-delimited list.

– If you pass an accounts argument, the specified SPML operation only updates the
specified resources. You must include the Lighthouse attribute in a non-null accounts
list if you want to update the Identity Manager user in addition to specific resource
accounts.

– If you do not pass an accounts argument, the operation updates all resource accounts
linked to the user, including the Identity Manager user account.

deleteUser Example
The following example shows the typical format for a deleteUser request (View →
Deprovision view).

Note – If you customize this request, there might be side effects.

EXAMPLE 1–6 deleteUserRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("deleteUser");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

disableUser Example
The following example shows the typical format for a disableUser request (View → Disable
view).

EXAMPLE 1–7 disableUserRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("disableUser");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

enableUser Example
The following example shows the typical format for an enableUser request (View → Enable
view).

Developing SPML Applications

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 27

EXAMPLE 1–8 enableUserRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("enableUser");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

launchProcess Example
The following example shows the typical format for a launchProcess request (View → Process
view).

EXAMPLE 1–9 launchProcessRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("launchProcess");
req.setAttribute("process", "my custom process");
req.setAttribute("taskName", "my task instance");
ExtendedResponse res = (ExtendedResponse) client.send(req);

where:
■ launchProcess – Starts the custom processes.
■ process – Name of the TaskDefinition object in the Identity Manager repository to start.
■ taskName – Name of the task needed to start the workflow.

The task instance object holds the runtime state of the process.

The remaining attributes are arbitrary and they are passed into the task.

listResourceObjects Example
The following example shows the typical format for a listResourceObjects request.

EXAMPLE 1–10 listResourceObjectsRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("listResourceObjects");
req.setAttribute("resource", "LDAP");
req.setAttribute("type", "group");
ExtendedResponse res = (ExtendedResponse) client.send(req);

where:
■ resource – Specifies the name of a resource object in the Identity Manager repository.
■ type – Specifies the object type supported by that resource.

Developing SPML Applications

Sun Identity Manager 8.1 Web Services • February 200928

resetUserPassword Example
The following example shows the typical format for a resetUserPassword request (View →
Reset User Password view).

EXAMPLE 1–11 resetUserPasswordRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("resetUserPassword");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

runForm Example
The following example shows the typical format for a runForm request.

EXAMPLE 1–12 runFormRequest

ExtendedRequest req = new ExtendedRequest();

req.setOperationIdentifier("runForm");
req.setAttribute("form", "SPML Get Object Names");
ExtendedResponse res = (ExtendedResponse) client.send(req);

where form is the name of a configuration object containing a form.

Example Query Form
The following example shows a form that is used to run queries and return a list of the Role,
Resource, and Organization names accessible to the current user.

EXAMPLE 1–13 Query Form

<Configuration name=’SPML Get Object Names’>

<Extension>

<Form>

<Field name=’roles’>

<Derivation>

<invoke class=’com.waveset.ui.FormUtil’>

<ref>display.session</ref>

<s>Role</s>

</invoke>

</Derivation>

</Field>

<Field name=’resources’>

<Derivation>

Developing SPML Applications

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 29

EXAMPLE 1–13 Query Form (Continued)

<invoke class=’com.waveset.ui.FormUtil’>

<ref>display.session</ref>

<s>Resource</s>

</invoke>

</Derivation>

</Field>

<Field name=’organizations’>

<Derivation>

<invoke class=’com.waveset.ui.FormUtil’>

<ref>display.session</ref>

<s>ObjectGroup</s>

</invoke>

</Derivation>

</Field>

</Form>

</Extension>

</Configuration>

You use the runForm request to create custom SPML requests that return information obtained
by calling the Identity Manager Session API. For example, when configuring a user interface for
editing user accounts, you might want to provide a selector that displays the names of the
organizations, roles, resources, and policies that can be assigned to a user.

You can configure the SPML interface to expose these objects as SPML object classes and use
searchRequest to query for their names. However, this configuration requires four
searchRequest requests to gather the information. To reduce the number of SPML requests,
encode the queries in a form by using a single runForm request to perform the queries and
return the combined results.

Using Trace With SPML
SPML includes options for turning on trace output so you can log Identity Manager SPML
traffic and diagnose problems.

For more information about tracing SPML, see Chapter 5, “Tracing and Troubleshooting,” in
Sun Identity Manager 8.1 System Administrator’s Guide.

Developing SPML Applications

Sun Identity Manager 8.1 Web Services • February 200930

http://docs.sun.com/doc/820-5823/ahyej?a=view
http://docs.sun.com/doc/820-5823/ahyej?a=view

Example Methods for Implementing SPML
The following examples illustrate some common methods for implementing SPML.

■ “AddRequest Method” on page 31
■ “ModifyRequest Method” on page 31
■ “SearchRequest Method” on page 32

AddRequestMethod
The following example shows a typical AddRequest method.

EXAMPLE 1–14 AddRequestExample

SpmlClient client = new SpmlClient();

client.setURL("http://example.com:8080/idm/spml");
AddRequest req = new AddRequest();

req.setObjectClass("person");
req.setIdentifier("maurelius");
req.setAttribute("gn", "Marcus");
req.setAttribute("sn", "Aurelius");
req.setAttribute("email", "maurelius@example.com");
SpmlResponse res = client.request(req);

if (res.getResult() .equals(SpmlResponse.RESULT_SUCCESS))

System.out.println("Person was successfully created");

ModifyRequestMethod
This section contains two authenticated SPML ModifyRequest examples.

EXAMPLE 1–15 Authenticated SPML Request Example

SpmlClient client = new SpmlClient();

client.setURL("http://example.com:8080/idm/spml");
ModifyRequest req = new ModifyRequest();

req.setIdentifier("maurelius");
req.addModification("email", "marcus.aurelius@example.com");
SpmlResponse res = client.request(req);

if (res.getResult() .equals(SpmlResponse.RESULT_SUCCESS))

System.out.println("Person was successfully modified");

Example Methods for Implementing SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 31

EXAMPLE 1–16 Authenticated SPML Request Example With LighthouseClient

LighthouseClient client = new LighthouseClient();

client.setURL("http://example.com:8080/idm/spml");
client.setUser("maurelius");
client.setPassword("xyzzy");
ModifyRequest req = new ModifyRequest();

req.setIdentifier("maurelius");
req.addModification("email", "marcus.aurelius@example.com");
SpmlResponse res = client.request(req);

if (res.getResult() .equals(SpmlResponse.RESULT_SUCCESS))

System.out.println("Person was successfully modified");

The only difference between these examples is that the second example uses the
LighthouseClient class and two additional method calls to client.setUser and
client.setPassword. For example, you could use this example to avoid setting a proxy user in
Waveset.properties, which results in the audit log reflecting the specified user instead of the
proxy user.

This example is authenticated by client.setUser and client.setPassword when the request
is sent.

SearchRequestMethod
The following example shows a typical SearchRequest method.

EXAMPLE 1–17 SearchRequestExample

SpmlClient client = new SpmlClient();

client.setURL("http://example.com:8080/idm/spml");
SearchRequst req = new SearchRequest();

// specify the attributes to return

req.addAttribute("sn");
req.addAttribute("email");
// specify the filter

FilterTerm ft = new FilterTerm();

ft.setOperation(FilterTerm.OP_EQUAL);

ft.setName("gn");
ft.setValue("Jeff");
req.addFilter(ft);

SearchResponse res = (SearchResponse)client.request(req);

// display the results

List results = res.getResults();

if (results != null) {

for (int i = 0 ; i < results.size() ; i++) {

Example Methods for Implementing SPML

Sun Identity Manager 8.1 Web Services • February 200932

EXAMPLE 1–17 SearchRequestExample (Continued)

SearchResult sr = (SearchResult)results.get(i);

System.out.println("Identifier=" +

sr.getIdentifierString() +

" sn=" +

sr.getAttribute("sn") +

" email=" +

sr.getAttribute("email"));
}

}

Example Methods for Implementing SPML

Chapter 1 • Using SPML 1.0 With Sun Identity Manager Web Services 33

34

Using SPML 2.0 With Sun Identity Manager Web
Services

This chapter describes SPML 2.0 support in Identity Manager, including which features are
supported and why, how to configure SPML 2.0 support, and how to extend support in the field.

This chapter covers the following topics:

■ “Important Notes About Using SPML 2.0” on page 35
■ “Basic SPML 2.0 Concepts” on page 36
■ “Configuring Identity Manager to Use SPML 2.0” on page 58
■ “Extending the System” on page 62
■ “SPML Connector” on page 63

Note – The concepts in this chapter relate specifically to SPML 2.0. Unless noted otherwise, all
references to SPML in this chapter indicate Version 2.0.

You should also read Chapter 1, “Using SPML 1.0 With Sun Identity Manager Web Services,”
for a description of some basic concepts related to using SPML.

Important Notes About Using SPML 2.0
Before you start working with SPML 2.0 and Identity Manager Web Services, note the
following:

■ For optimal performance when you are working with the Identity Manager Web Service
interfaces, use the OpenSPML Toolkit that is co-packaged with Identity Manager. Using the
openspml.jar file from the http://www.openspml.org/ web site might cause memory
leaks.

■ When implementing SPML 2.0, you must modify the configuration to add the
spml2ObjectClass attribute to your schema. The objectclass attribute value provided in
previous releases is now maintained in the spml2ObjectClass attribute.

2C H A P T E R 2

35

http://www.openspml.org/

■ You cannot access Sun Identity Manager Service Provider (Service Provider) features
through SPML 2.0. These features are only available through SPML Version 1.0. See
Chapter 1, “Using SPML 1.0 With Sun Identity Manager Web Services,” for more
information.

Basic SPML 2.0 Concepts
This section explains some basic concepts about SPML 2.0:

■ “How SPML 2.0 Compares to SPML 1.0” on page 36
■ “How SPML 2.0 Concepts Are Mapped to Identity Manager” on page 37
■ “Supported SPML 2.0 Capabilities” on page 39

How SPML 2.0 Compares to SPML 1.0
Identity Manager Web Services support both SPML Version 1.0 and Version 2.0 protocols
(open standards for service provisioning using XML) for communication with provisioning
systems.

Note – See Chapter 1, “Using SPML 1.0 With Sun Identity Manager Web Services,” for
information about using SPML Version 1.0.

SPML 2.0 offers many improvements over SPML 1.0, including the following:

■ Where SPML 1.0 has been called a slightly improved Directory Services Markup Language
(DSML), SPML 2.0 defines an extensible protocol (through Capabilities) with support for a
DSML profile, as well as XML Schema profiles. SPML 2.0 differentiates between the protocol
and the data it carries.

■ The SPML 2.0 protocol enables better interoperability between vendors, especially for the
Core capabilities (those found in 1.0).

You can “extend” SPML 1.0 using ExtendedRequest, but there is no guidance about what
those requests can be. SPML 2.0 defines a set of “standard capabilities” that allow you to add
support in well-defined ways.

■ SPML 2.0 provides additional capabilities (see Table 2–1) that enable you to extend
capabilities or add new capabilities in the future.

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200936

TABLE 2–1 SPML Capabilities

SPML 1.0 Capabilities SPML 2.0 Capabilities

Add Add

Modify Modify

Delete Delete

Lookup Lookup

SchemaRequest ListTargets

Search Search

ExtendedRequest

Captured in “standard” capabilities:
■ Async – Process requirements asynchronously

■ Batch – Process a batch of requests

■ Bulk – Process modifies or deletes using iteration

■ Password – Change, set, reset, validate, or expire passwords

■ Reference – Refer to PSOs between targets

■ Suspend – Enable or disable PSOs

■ Update – Find change records for objects that have been updated (can also
be captured in “custom” capabilities)

How SPML 2.0 Concepts Are Mapped to Identity
Manager
SPML 2.0 uses its own terminology to discuss the objects that are managed by a provisioning
system.

Note – See the OASIS SPML 2.0 specifications at http://www.openspml.org/.

The following sections describe how SPML 2.0 concepts are mapped into Identity Manager:

■ “Understanding Targets” on page 38
■ “Understanding PSOs” on page 38
■ “Understanding PSOIdentifiers” on page 38
■ “Understanding Open Content and OperationalAttributes” on page 39

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 37

http://www.openspml.org/

Understanding Targets
A target is a logical end point in the server. Every target is named and declares the schema of the
objects that it manages. Targets also declare which capabilities (a set of requests) are supported.
See “Understanding PSOs” on page 38 for more information.

Currently, Identity Manager supports only one target. You cannot declare multiple targets. You
can name this target anything you want, but the data objects’ format must conform to the
DSML profile.

A supported target is the one target defined in the spml2.xml file (Configuration:SPML2
object). For example, in “ListTargetsRequest Examples” on page 46, ListTargetResponse
returns one target, spml2-DSML-Target.

Understanding PSOs
As mentioned in the previous section, targets manage Provisioning Service Objects (PSOs). A
PSO is somewhat analogous to a view in Identity Manager, but without behavior. Consequently,
you can think of a PSO as the data portion of an Identity Manager view, a User view in
particular.

Note – Identity Manager only manages Users and requires you to define a user extended
attribute called spml2ObjectClass.

For Identity Manager’s purposes, a PSO is a collection of attributes that are mapped (using a
form) to and from a User view. Each object specifies an objectclass attribute that is used to
map the object to an objectclass definition in the schema defined for the target.

The objectclass attribute is used to find the following:

■ A repoType that is provided to support additional targets later
■ A form that maps the attributes to and from the Identity Manager view

Understanding PSOIdentifiers
SPML includes an object ID that is called a PSOIdentifier (PsoID).

OASIS SPML 2.0 specifications recommend that PsoIDs be opaque to a requestor (client).
Consequently, Identity Manager uses repository IDs (repoIDs) as PsoIDs when adding PSOs to
the system.

A repoID is distinct and it is not meant for presentation to a user. When displaying a PSO to a
user, the requestor should use the equivalent of the waveset.accountid or whatever attributes
are used in the Identity template to present the object’s ID.

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200938

When identifying the PSO (as in a ModifyRequest), the requestor should use the repoID and
not the waveset.accountId. Although the requestor can use the waveset.accountId as a
PsoID, doing so is not recommended and it might change in a future release. Requestors should
try to keep the PsoID opaque.

PSOs use an objectclass attribute to specify the object type. If this attribute is not present
when a request is made, Identity Manager allows you to specify and use a “default” object class,
such as SPMLUser. Internally, the objectclass value is maintained as an spml2ObjectClass

attribute for users. For Identity Manager this attribute must be a user extended attribute. You
might not see an spml2ObjectClass attribute for users that existed before you enabled SPML
2.0.

Understanding Open Content and OperationalAttributes

SPML makes heavy use of xsd:any elements in the .xsds file to provide what the specification
refers to as Open Content. In SPML, Open Content means that most elements can contain
elements of any type. Identity Manager uses this idea to provide OperationalNVPs
(NameValuePairs) and OperationalAttributes that control processing. OperationalNVPs
appear as elements in the XML, while OperationalAttributes appear as attributes. See the
OpenSPML 2.0 Toolkit at http://www.openspml.org for more information.

You can use one NVP in all requests except ListTargetsRequests, and in all responses.
Identity Manager stores a sessionToken in an OperationalNVPs called session that allows the
system to cache sessions on behalf of the user and improves efficiency. For more information
about OperationalNVPs and OperationalAttributes, see “Supported SPML 2.0 Capabilities”
on page 39.

Supported SPML 2.0 Capabilities
Identity Manager supports all Core capabilities in the SPML 2.0 specification that use the DSML
profile. Identity Manager also supports some of the optional standard capabilities (such as
Batch and Async) and partially supports some standard capabilities (such as Bulk).

This section describes which SPML 2.0 capabilities are supported in Identity Manager (where
Identity Manager knowingly varies from the specification and profile documents) and which
OperationalAttributes are required by Identity Manager.

The topics in this section include the following:
■ “Core Capabilities” on page 40
■ “Async Capabilities” on page 47
■ “Batch Capability” on page 49
■ “Bulk Capabilities” on page 50
■ “Password Capabilities” on page 50
■ “Suspend Capabilities” on page 52

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 39

http://www.openspml.org

■ “Search Capability” on page 53

Note – Identity Manager does not support the Reference capability, the Updates capability, or
the CapabilityData class.

The CapabilityData class is used to implement custom capabilities. Identity Manager does not
support the CapabilityData class because none of the supported capabilities use this class.

The OpenSPML 2.0 Toolkit supports CapabilityData in the marshallers, unmarshallers, and
so forth.

CoreCapabilities
Identity Manager supports the Core capabilities described in the following table.

TABLE 2–2 CoreCapabilities

Capability Description Caveats

AddRequest Adds a specified PSO to the
system.

Identity Manager officially supports only a single target.

DeleteRequest Deletes a specified PSO from the
system.

Identity Manager officially supports only a single target.

ListTargetsRequest Lists the targets that are available
through Identity Manager.

■ Identity Manager officially supports a single target.

■ Identity Manager does not require you to use ListTargets as
the first call in a conversation. However, it does allow
operationalAttributes on this request to specify a
username/password pair for establishing a session with the
server. (You can also use Waveset.properties.) In general, it
is more efficient to log in and use the session token. Identity
Manager provides a class called SessionAwareSpml2Client

for this purpose.

LookupRequest Finds and returns the attributes
of the named PSO.

None

ModifyRequest Modifies specified PSO
attributes.

Due to a discrepancy between the main SPML 2.0 specification and
the DSML Profile specification, Identity Manager does not support
select, component, and so forth. Instead Identity Manager uses
DSML Modification Mode and elements according to the DSML
Profile.

Note –

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200940

General caveats include the following:
■ You can provide username and password values for the ListTargetsRequest request.

These values are used as credentials to establish a session, which is identified by the
session token value returned in theListTargetsRequest response. This session is the
context for all following requests that include that session token value as an operational
attribute.
Another way to set up the session is to provide values for the soap.username and
soap.password attributes in Waveset.properties. In this case, no session token is
required.

■ Identity Manager supports only the DSML Profile.

AddRequest and ListTargetsRequest examples follow.

Core Capability Examples

This section provides several Java, XML, and JSP examples.

The following examples adds a user with several attributes. The first example returns all data,
while the second returns only the identifier.

EXAMPLE 2–1 ExampleAddRequest

// ReturnData.EVERYTHING example

SessionAwareSpml2Client client = new SessionAwareSpml2Client("http://example.com:8080/
idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

AddRequest req = new AddRequest();

req.setReturnData(ReturnData.EVERYTHING);

Extensible attrs = new Extensible();

attrs.addOpenContentElement(new DSMLAttr("objectclass", "spml2Person"));
attrs.addOpenContentElement(new DSMLAttr("accountId", "sempiricus"));
attrs.addOpenContentElement(new DSMLAttr("credentials", "password"));
attrs.addOpenContentElement(new DSMLAttr("firstname", "Sextus"));
attrs.addOpenContentElement(new DSMLAttr("lastname", "Empiricus"));
req.setData(attrs);

AddResponse res = (AddResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Received positive add response.");
}

PSO pso = res.getPso();

System.out.println("PSO ID: " + pso.getPsoID().getID());

Extensible psoData = pso.getData();

for (OpenContentElement oce : psoData.getOpenContentElements()) {

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 41

EXAMPLE 2–1 Example AddRequest (Continued)

if (oce instanceof DSMLAttr) {

DSMLAttr attr = (DSMLAttr) oce;

System.out.println(attr.getName() + ": " + attr.getValues()[0].getValue());

}

}

// ReturnData.IDENTIFIER example

SessionAwareSpml2Client client = new SessionAwareSpml2Client("http://example.com:8080/
idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

AddRequest req = new AddRequest();

req.setReturnData(ReturnData.IDENTIFIER);

Extensible attrs = new Extensible();

attrs.addOpenContentElement(new DSMLAttr("objectclass", "spml2Person"));
attrs.addOpenContentElement(new DSMLAttr("accountId", "catullus"));
attrs.addOpenContentElement(new DSMLAttr("credentials", "password"));
attrs.addOpenContentElement(new DSMLAttr("firstname", "Gaius"));
attrs.addOpenContentElement(new DSMLAttr("lastname", "Catullus"));
req.setData(attrs);

AddResponse res = (AddResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Received positive add response.");
}

PSO pso = res.getPso();

System.out.println("PSO ID: " + pso.getPsoID().getID());

Extensible psoData = pso.getData();

if (psoData == null) {

System.out.println("PSO contains no data, as expected.");
}

The following example shows an account lookup.

EXAMPLE 2–2 ExampleLookupRequest

// Lookup example

SessionAwareSpml2Client client = new

SessionAwareSpml2Client("http://example.com:8080/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

PSOIdentifier psoId = new PSOIdentifier("maurelius", null, null);

LookupRequest req = new LookupRequest();

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200942

EXAMPLE 2–2 Example LookupRequest (Continued)

req.setPsoID(psoId);

req.setExecutionMode(ExecutionMode.SYNCHRONOUS);

try {

LookupResponse res = (LookupResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Performed account lookup.");
}

PSO pso = res.getPso();

} catch (Spml2ExceptionWithResponse e) {

System.out.println("Lookup failed: " + e.getMessage());

LookupResponse res = (LookupResponse) e.getResponse();

}

The following example changes the lastname parameter to Antoninus.

EXAMPLE 2–3 ExampleModifyRequest

SessionAwareSpml2Client client = new

SessionAwareSpml2Client("http://example.com:8080/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

PSOIdentifier psoId = new PSOIdentifier("maurelius", null, null);

ModifyRequest req = new ModifyRequest();

req.setPsoID(psoId);

Modification modification = new Modification();

modification.addOpenContentElement(new DSMLModification("lastname", "Antoninus",
ModificationMode.REPLACE));

req.addModification(modification);

ModifyResponse res = (ModifyResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Modified account.");
}

The following example shows the SPML 2.0 request that was sent.

EXAMPLE 2–4 Example Request XML

<addRequest xmlns=’urn:oasis:names:tc:SPML:2:0’ requestID=’rid-spmlv2’

executionMode=’synchronous’>

<openspml:operationalNameValuePair xmlns:openspml=’urn:org:openspml:v2:util:xml

name=’session’ value=’AAALPgAAYD0A...’/>

<data>

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 43

EXAMPLE 2–4 Example Request XML (Continued)

<dsml:attr xmlns:dsml=’urn:oasis:names:tc:DSML:2:0:core’ name=’accountId’>

<dsml:value>exampleSpml2Person</dsml:value>

</dsml:attr>

<dsml:attr xmlns:dsml=’urn:oasis:names:tc:DSML:2:0:core’ name=’objectclass’>

<dsml:value>spml2Person</dsml:value>

</dsml:attr>

<dsml:attr xmlns:dsml=’urn:oasis:names:tc:DSML:2:0:core’ name=’credentials’>

<dsml:value>pwdpwd</dsml:value>

</dsml:attr>

</data>

</addRequest>

This example shows the body of the SPML response that was returned to the client.

EXAMPLE 2–5 Example Response XML

<addResponse xmlns=’urn:oasis:names:tc:SPML:2:0’ status=’success’

requestID=’rid-spmlv2’>

<openspml:operationalNameValuePair xmlns:openspml=’urn:org:openspml:v2:util:xml’

name=’session’ value=’AAALPgAAYD0A...’/>

<pso>

<psoID ID=’anSpml2Person’/>

<data>

<dsml:attr xmlns:dsml=’urn:oasis:names:tc:DSML:2:0:core’ name=’accountId’>

<dsml:value>anSpml2Person</dsml:value>

</dsml:attr>

<dsml:attr xmlns:dsml=’urn:oasis:names:tc:DSML:2:0:core’ name=’objectclass’>

<dsml:value>spml2Person</dsml:value>

</dsml:attr>

<dsml:attr xmlns:dsml=’urn:oasis:names:tc:DSML:2:0:core’ name=’credentials’>

<dsml:value>pwdpwd</dsml:value>

</dsml:attr>

</data>

</pso>

</addResponse>

EXAMPLE 2–6 Example JSP

The following example consists of a .jsp file that invokes an AddRequest through Identity
Manager’s SessionAwareSpml2Client class.

<%@page contentType="text/html"%>
<%@page import="org.openspml.v2.client.*,

com.sun.idm.rpc.spml2.SessionAwareSpml2Client"%>

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200944

EXAMPLE 2–6 Example JSP (Continued)

<%@page import="org.openspml.v2.profiles.dsml.*"%>
<%@page import="org.openspml.v2.profiles.*"%>
<%@page import="org.openspml.v2.util.xml.*"%>
<%@page import="org.openspml.v2.msg.*"%>
<%@page import="org.openspml.v2.msg.spml.*"%>
<%@page import="org.openspml.v2.util.*"%>

<%

final String url = "http://host:port/idm/servlet/openspml2";
%>

<html>

<head><title>SPML2 Test</title></head>

<body>

<%

// need a client.

SessionAwareSpml2Client client = new SessionAwareSpml2Client(url);

// login

client.login("configurator", "password");

// AddRequest

String rid = "rid-spmlv2"; // The RequestId is not strictly required.

Extensible data = new Extensible();

data.addOpenContentElement(new DSMLAttr("accountId", user));

data.addOpenContentElement(new DSMLAttr("objectclass", "spml2Person"));
data.addOpenContentElement(new DSMLAttr("credentials", password));

AddRequest add = new AddRequest(rid, // String requestId,

ExecutionMode.SYNCHRONOUS, // ExecutionMode executionMode,

null, // PSOIdentifier type,

null, // PSOIdentifier containerID,

data, // Extensible data,

null, // CapabilityData[] capabilityData,

null, // String targetId,

null // ReturnData returnData

);

// Submit the request

Response res = client.send(add);

%>

<%= res.toString()%>

</body>

</html>

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 45

ListTargetsRequest Examples
The examples in this section illustrate the ListsTargetsRequest capabilities that are available
using Identity Manager.

EXAMPLE 2–7 Example Client Code

The following example shows how a .jsp file invokes a ListTargetsRequest through Identity
Manager’s SessionAwareSpml2Client class.

<%@page contentType="text/html"%>
<%@page import="org.openspml.v2.client.*,

com.sun.idm.rpc.spml2.SessionAwareSpml2Client"%>
<%@page import="org.openspml.v2.profiles.dsml.*"%>
<%@page import="org.openspml.v2.profiles.*"%>
<%@page import="org.openspml.v2.util.xml.*"%>
<%@page import="org.openspml.v2.msg.*"%>
<%@page import="org.openspml.v2.msg.spml.*"%>
<%@page import="org.openspml.v2.util.*"%>
<%

final String url = "http://host:port/idm/servlet/openspml2";
%>

<html>

<head><title>SPML2 Test</title></head>

<body>

<%

// need a client.

SessionAwareSpml2Client client = new SessionAwareSpml2Client(url);

// login (sends a ListTargetsRequest)

Response res = client.login("configurator", "password");
%>

<%= res.toString()%>

</body>

</html>

EXAMPLE 2–8 Example Request XML

This next example shows the body of the SPML request that is sent.

<listTargetsRequest xmlns=’urn:oasis:names:tc:SPML:2:0’ requestID=’rid[7013]’

executionMode=’synchronous’>

<openspml:operationalNameValuePair xmlns:openspml=’urn:org:openspml:v2:util:xml’

name=’accountId’ value=’configurator’/>

<openspml:operationalNameValuePair xmlns:openspml=’urn:org:openspml:v2:util:xml’

name=’password’ value=’password’/>

</listTargetsRequest>

This example shows the body of the SPML response that is received by or returned to the client.

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200946

EXAMPLE 2–9 Example Response XML

<openspml:operationalNameValuePair

xmlns:openspml="urn:org:openspml:v2:util:xml" name="session" value="AAAM+wAAaC..."/>
<target targetID="spml2-DSML-Target" profile="urn:oasis:names:tc:SPML:2:0:DSML">

<schema>

<spmldsml:schema xmlns:spmldsml="urn:oasis:names:tc:SPML:2:0:DSML">
<spmldsml:objectClassDefinition name="spml2Person">

<spmldsml:memberAttributes>

<spmldsml:attributeDefinitionReference required="true"
name="objectclass"/>

<spmldsml:attributeDefinitionReference required="true"
name="accountId"/>

<spmldsml:attributeDefinitionReference required="true"
name="credentials"/>

<spmldsml:attributeDefinitionReference name="firstname"/>
<spmldsml:attributeDefinitionReference name="lastname"/>
<spmldsml:attributeDefinitionReference name="emailAddress"/>

</spmldsml:memberAttributes>

</spmldsml:objectClassDefinition>

<spmldsml:attributeDefinition name="objectclass"/>
<spmldsml:attributeDefinition description="Account Id" name="accountId"/>
<spmldsml:attributeDefinition description="Credentials, e.g. password"

name="credentials"/>
<spmldsml:attributeDefinition description="First Name" name="firstname"/>
<spmldsml:attributeDefinition description="Last Name" name="lastname"/>
<spmldsml:attributeDefinition description="Email Address"

name="emailAddress"/>
</spmldsml:schema>

<supportedSchemaEntity entityName="spml2Person"/>
</schema>

<capabilities>

<capability namespaceURI="urn:oasis:names:tc:SPML:2:0:async"/>
<capability namespaceURI="urn:oasis:names:tc:SPML:2:0:batch"/>
<capability namespaceURI="urn:oasis:names:tc:SPML:2:0:bulk"/>
<capability namespaceURI="urn:oasis:names:tc:SPML:2:0:password"/>
<capability namespaceURI="urn:oasis:names:tc:SPML:2:0:suspend"/>
<capability namespaceURI="urn:oasis:names:tc:SPML:2:0:search"/>

</capabilities>

</target>

</listTargetsResponse>

AsyncCapabilities
Identity Manager supports the Async capabilities described in the following table.

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 47

TABLE 2–3 AsyncCapabilities

Capability Description OperationalAttributes

CancelRequest Cancels a request, using the request ID. None

StatusRequest Returns the status of a request, using the
request ID.

None

The following example performs an asynchronous status request.

EXAMPLE 2–10 Example Async Requests

String REQUEST_ID = "test-req-id-00000000000001";
String PRE_ASYNC_DELAY = "45";
String POST_ASYNC_DELAY = "15";

SessionAwareSpml2Client client = new

SessionAwareSpml2Client("http://example.com:8080/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

PSOIdentifier psoId = new PSOIdentifier("maurelius", null, null);

LookupRequest lookupReq = new LookupRequest();

lookupReq.setPsoID(psoId);

lookupReq.setReturnData(ReturnData.EVERYTHING);

lookupReq.setRequestID(REQUEST_ID);

lookupReq.setExecutionMode(ExecutionMode.ASYNCHRONOUS);

lookupReq.addOpenContentElement(

new OperationalNameValuePair(

com.sun.idm.rpc.spml2.async.AsyncExecutorTask.IDM_BEFORE_ASYNC_DELAY_NAME,

PRE_ASYNC_DELAY

)

);

lookupReq.addOpenContentElement(

new OperationalNameValuePair(

com.sun.idm.rpc.spml2.async.AsyncExecutorTask.IDM_AFTER_ASYNC_DELAY_NAME,

POST_ASYNC_DELAY

)

);

LookupResponse lookupRes = (LookupResponse) client.send(lookupReq);

if (lookupRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Lookup response is pending.");
}

StatusRequest statusReq = new StatusRequest();

statusReq.setAsyncRequestID(REQUEST_ID);

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200948

EXAMPLE 2–10 Example Async Requests (Continued)

statusReq.setReturnResults(false);

statusReq.setExecutionMode(ExecutionMode.SYNCHRONOUS);

StatusResponse statusRes = (StatusResponse) client.send(statusReq);

if (lookupRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Status response received.");
}

java.util.Iterator responseIterator = statusRes.responseIterator();

while (responseIterator.hasNext()) {

Response nestedResponse = (Response) responseIterator.next();

if (nestedResponse instanceof LookupResponse) {

if (nestedResponse.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Successfully received nested lookup response.");
}

}

}

BatchCapability
Identity Manager supports the Batch capability described in the following table.

TABLE 2–4 BatchCapability

Capability Description OperationalAttributes

BatchRequest Executes a batch of requests. None

The following example performs a batch add operation.

EXAMPLE 2–11 Example Batch Request

SessionAwareSpml2Client client = new

SessionAwareSpml2Client("http://example.com:8080/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

BatchRequest batchReq = new BatchRequest();

for (int i = 1; i <= 10; i++) {

AddRequest addReq = new AddRequest();

Extensible attrs = new Extensible();

attrs.addOpenContentElement(new DSMLAttr("objectclass", "spml2Person"));
attrs.addOpenContentElement(new DSMLAttr("accountId", "test_" +

String.format("%03d", i)));

attrs.addOpenContentElement(new DSMLAttr("credentials", "password"));
addReq.setData(attrs);

addReq.setReturnData(ReturnData.EVERYTHING);

batchReq.addRequest(addReq);

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 49

EXAMPLE 2–11 Example Batch Request (Continued)

}

BatchResponse batchRes = (BatchResponse) client.send(batchReq);

if (batchRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Successfully performed batch add operation.");
}

BulkCapabilities
Identity Manager supports the Bulk capabilities described in the following table.

TABLE 2–5 BulkCapabilities

Capability Description OperationalAttributes

BulkDeleteRequest Executes a bulk delete of PSOs. None

BulkModifyRequest Executes a bulk modify of matching PSOs. None

EXAMPLE 2–12 Example Bulk Delete Request

The following example bulk deletes all users with the lastname Aurelius.

SessionAwareSpml2Client client = new SessionAwareSpml2Client("http://example.com:8080/
idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

BulkDeleteRequest req = new BulkDeleteRequest();

Substrings term = new Substrings();

term.setName("lastname");
term.setInitial(new DSMLValue("Aurelius"));
Filter filter = new Filter(term);

Query q = new Query();

q.setScope(Scope.ONELEVEL);

q.addQueryClause(filter);

req.setExecutionMode(ExecutionMode.SYNCHRONOUS);

req.setQuery(q);

BulkDeleteResponse res = (BulkDeleteResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Successfully performed bulk delete operation.");
}

PasswordCapabilities
Identity Manager supports the Password capabilities described in the following table.

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200950

TABLE 2–6 PasswordCapabilities

Capability Description Caveats

ExpirePasswordRequest Expires a password. ■ You cannot specify resources or targets.
Doing so causes the Identity Manager User
object password to expire; which then causes
the password on all of the user’s resources to
expire.

■ Identity Manager does not support the
remainingLogins attribute. If you set this
attribute to anything other than the default (1
or less), an OperationNotSupported error
occurs.

ResetPasswordRequest Resets a password and returns the new
value on all accounts.

Passwords are sensitive. Use SSL or some other
secure transport.

SetPasswordRequest Sets a password. Passwords are sensitive. Use SSL or some other
secure transport.

ValidatePasswordRequest Determines whether a given password is
valid.

Passwords are sensitive. Use SSL or some other
secure transport.

Example Password capabilities follow.

ResetPasswordRequest Example

The following example illustrates a typical ResetPasswordRequest.

EXAMPLE 2–13 ExampleResetPasswordRequest

ResetPasswordRequest rpr = new ResetPasswordRequest();

...

PSOIdentifier psoId = new PSOIdentifier(accountId, null, null);

rpr.setPsoID(psoId);

...

SetPasswordRequest Example

The following example illustrates a typical SetPasswordRequest.

EXAMPLE 2–14 ExampleSetPasswordRequest

SetPasswordRequest spr = new SetPasswordRequest();

...

PSOIdentifier psoId = new PSOIdentifier(accountId, null, null);

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 51

EXAMPLE 2–14 Example SetPasswordRequest (Continued)

spr.setPsoID(psoId);

spr.setPassword("newpassword");
spr.setCurrentPassword("oldpassword");
...

ValidatePasswordRequest Example

The following example illustrates a typical ValidatePasswordRequest.

EXAMPLE 2–15 ExampleValidatePasswordRequest

ValidatePasswordRequest vpr = new ValidatePasswordRequest();

...

PSOIdentifier psoId = new PSOIdentifier(accountId, null, null);

vpr.setPsoID(psoId);

vpr.setPassword("apassword");
...

SuspendCapabilities
Identity Manager supports the Suspend capabilities described in the following table.

TABLE 2–7 SuspendCapabilities

Capability Description Caveats

ActiveRequest Returns a boolean value that indicates
whether the user is enabled.

None

ResumeRequest Resumes (enables) a PSO user. Does not support EffectiveDate.

If you set EffectiveDate, Identity Manager
returns an OperationNotSupported error.

SuspendRequest Suspends an account/PSO (disables). Does not support EffectiveDate.

If you set EffectiveDate, Identity Manager
returns an OperationNotSupported error.

EXAMPLE 2–16 Suspend Examples

The following examples suspend and resume a request.

// Disable example

SessionAwareSpml2Client client = new SessionAwareSpml2Client("http://example.com:8080
/idm/servlet/openspml2");

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200952

ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

PSOIdentifier psoId = new PSOIdentifier("maurelius", null, null);

SuspendRequest req = new SuspendRequest();

req.setPsoID(psoId);

SuspendResponse res = (SuspendResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Account successfully disabled.");
}

// Enable example

SessionAwareSpml2Client client = new SessionAwareSpml2Client("http://example.com:8080
/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

PSOIdentifier psoId = new PSOIdentifier("maurelius", null, null);

ResumeRequest req = new ResumeRequest();

req.setPsoID(psoId);

ResumeResponse res = (ResumeResponse) client.send(req);

if (res.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Account successfully enabled.");
}

Search Capability
Identity Manager supports the Search capabilities described in the following table.

TABLE 2–8 SearchCapabilities

Capability Description OperationalAttributes

SearchRequest Returns as many users as it can find that match
the specified criteria within the allotted amount
of time. If additional users exist, the request also
returns a handle that can be used within an
IterateRequest.

None

IterateRequest Continues an existing incomplete SearchRequest
or IterateRequest.

None

CloseIteratorRequest Ends an IterateRequest. You may terminate an
IterateRequest before it terminates.

None

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 53

Search Filter Configuration

The DSML search filter is translated to a set of repository attribute conditions. A necessary part
of the translation involves mapping the external DSML attribute name to a queryable repository
attribute. A set of attribute mappings for each searchable type must be defined in the
configuration.

The filter is analyzed and processed according to one of the following categories:

■ Fully-indexed. The filter is converted to equivalent attribute conditions that find exactly the
required objects from the repository. In this case, there is no need to further filter the
resulting objects. A fully indexed search is much faster than a partially indexed or unindexed
search because it does not instantiate views of the queried objects.

■ Partially-indexed. At least one attribute condition is derived from the filter that finds a
superset of the required objects from the repository. For each object, the system instantiates
a view of the object that contains, at minimum, those attributes specified in the filter. It also
checks whether the object matches the filter.

■ Unindexed. No attribute conditions can be derived from the filter to apply against the
repository. This type is similar to a partially-indexed search, except that all objects in the
repository of the requested type are processed.

■ Unsupported. The filter cannot be evaluated. The search operation is rejected.

The SPML2 configuration object contains the following properties

■ SearchIndexRequired. Specifies whether partially-indexed or unindexed searches are
accepted. An example of a search that is not fully-indexed is one whose filter specifies a
non-queryable attribute. The possible values are as follows:
■ full. Indicates that only fully indexed search operations are accepted. This is the default

value.
■ partial. Indicates that partial or fully indexed search operations are accepted.
■ none. Indicates that unindexed search operations are accepted, in addition to partial and

fully indexed operations.
■ SearchSizeLimit. An integer value specifying the maximum total number of objects that

can be returned from a search request. If the search creates an iterator, all subsequent
iterator responses are counted toward the total. A value of 0 indicates there is no limit.
When the limit is exceeded, results are returned up to the limit, and an informational
message is returned to the client indicating that the limit was exceeded.

■ SearchTimeLimit. An integer value specifying the maximum time, in seconds, that an
individual SPMLv2 search request or iterator request is allowed to take before a response is
returned. A value of 0 means there is no limit.

■ queryMappings. A map of existing SPML attribute names and Identity Manager repository
attribute names.

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200954

■ IteratorTimeout. An integer value specifying the maximum time, in seconds, that an
SPMLv2 iterator remains valid after it was last provided in a response. A value must be
specified.

The following capabilities are not supported:
■ org.openspml.v2.profiles.dsml.ApproxMatch

■ org.openspml.v2.profiles.dsml.ExtensibleMatch

Search Examples

The following examples illustrate how to perform searches.

EXAMPLE 2–17 SearchRequest Example

ArrayList<PSO> psos = new ArrayList<PSO>();

SessionAwareSpml2Client client = new SessionAwareSpml2Client("http://example.com:8080
/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

SearchRequest searchReq = new SearchRequest();

EqualityMatch acctIdTerm = new EqualityMatch("firstname", new DSMLValue("Marcus"));
Present emailTerm = new Present("emailAddress");
org.openspml.v2.profiles.dsml.And terms = new

org.openspml.v2.profiles.dsml.And(new FilterItem[] { acctIdTerm, emailTerm });

Filter filter = new Filter(terms);

Query q = new Query();

q.setScope(Scope.ONELEVEL);

q.addQueryClause(filter);

searchReq.setQuery(q);

searchReq.setReturnData(ReturnData.IDENTIFIER);

searchReq.setExecutionMode(ExecutionMode.SYNCHRONOUS);

SearchResponse searchRes = (SearchResponse) client.send(searchReq);

if (searchRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Received search response.");
for (PSO pso : searchRes.getPSOs()) {

psos.add(pso);

}

ResultsIterator iterator = searchRes.getIterator();

while (iterator != null) {

IterateRequest iterReq = new IterateRequest();

iterReq.setIterator(iterator);

iterReq.setExecutionMode(ExecutionMode.SYNCHRONOUS);

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 55

EXAMPLE 2–17 SearchRequest Example (Continued)

IterateResponse iterRes = (IterateResponse) client.send(iterReq);

if (iterRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Found an iterator.");
}

for (PSO pso : iterRes.getPSOs()) {

psos.add(pso);

}

iterator = iterRes.getIterator();

}

}

EXAMPLE 2–18 CloseIterator Example

// Close iterator example

ArrayList<PSO> psos = new ArrayList<PSO>();

SessionAwareSpml2Client client = new

SessionAwareSpml2Client("http://example.com:8080/idm/servlet/openspml2");
ListTargetsResponse loginInfo = client.login("Configurator", "configurator");

SearchRequest searchReq = new SearchRequest();

Present term = new Present("emailAddress");
Filter filter = new Filter(term);

Query q = new Query();

q.setScope(Scope.ONELEVEL);

q.addQueryClause(filter);

searchReq.setQuery(q);

searchReq.setReturnData(ReturnData.EVERYTHING);

searchReq.setExecutionMode(ExecutionMode.SYNCHRONOUS);

SearchResponse searchRes = (SearchResponse) client.send(searchReq);

if (searchRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Received search response.");
for (PSO pso : searchRes.getPSOs()) {

psos.add(pso);

}

ResultsIterator iterator = searchRes.getIterator();

while (iterator != null) {

IterateRequest iterReq = new IterateRequest();

iterReq.setIterator(iterator);

iterReq.setExecutionMode(ExecutionMode.SYNCHRONOUS);

IterateResponse iterRes = (IterateResponse) client.send(iterReq);

Basic SPML 2.0 Concepts

Sun Identity Manager 8.1 Web Services • February 200956

EXAMPLE 2–18 CloseIterator Example (Continued)

if (iterRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Found an iterator.");
}

for (PSO pso : iterRes.getPSOs()) {

psos.add(pso);

}

iterator = iterRes.getIterator();

// For this example, always close the iterator

if (true) {

CloseIteratorRequest closeIterReq = new CloseIteratorRequest();

closeIterReq.setIterator(iterator);

closeIterReq.setExecutionMode(ExecutionMode.SYNCHRONOUS);

CloseIteratorResponse closeIterRes = (CloseIteratorResponse)

client.send(closeIterReq);

if (closeIterRes.getStatus().equals(StatusCode.SUCCESS)) {

System.out.println("Closed iterator.");
break;

}

}

}

}

SPML Logging
Identity Manager can be configured to log SPML requests and responses. If Identity Manager
receives a request or response that is known to the system, it writes pertinent information about
the request to SPML log file. If it receives an unrecognized request, then it logs all the available
information.

The SPML log is configured by editing the SPML configuration object. You cannot manage
SPML logging from the administrator interface.

Access Log Configuration
Edit the following paramters in the SPML configuration object to enable and maintain logging.

■ AccessLogPath. Specifies the full path to the active SPML access log file.
■ AccessLogMaxSize. Specifies the maximum size, in kilobytes, of the active access log can

grow to before it is archive. A value of 0 indicates there is no maximum file size.
■ AccessLogMaxArchiveFiles. Specifies the maximum number of archive log files to preserve.

A value of –1 indicates there is no limit. A value of 0 indicates to keep cycling the active log.

Basic SPML 2.0 Concepts

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 57

Access Log Example
The following sample shows a variety of logged requests.

ListTargetsRequest

2009-02-03T01:16:12.083Z ListTargetsRequest requestID=’rid[9964]’ protocol=’v2’

executionMode=’synchronous’ data=’(accountId=Configurator,password=...)’

2009-02-03T01:16:12.089Z ListTargetsResponse requestID=’rid[9964]’ protocol=’v2’

status=’success’ errorCode=’null’ targets=’((spml2Person(objectclass(required=true),

accountId(required=true),credentials(required=true),firstname(required=null),

lastname(required=null),emailAddress(required=null))))’ etime=40

AddRequest

2009-02-03T01:16:12.582Z AddRequest requestID=’null’ protocol=’v2’

executionMode=’null’ returnData=’everything’

data=’everything’2009-02-03T01:16:13.154Z

AddResponse requestID=’Gen7951-1233623773152’ protocol=’v2’ status=’success’

errorCode=’null’ psoId=’spml2Person:#ID#E413:20EBCB32F11:783B7992-:46D19511056F6FB3’

etime=578

LookupRequest

2009-02-03T01:16:15.024Z LookupRequest requestID=’null’ protocol=’v2’

executionMode=’synchronous’ returnData=’everything’

2009-02-03T01:16:15.130Z LookupResponse requestID=’Gen7953-1233623775127’ protocol=’v2’

status=’success’ errorCode=’null’

psoId=’spml2Person:#ID#8092:20EBCB32F11:783B7992-:46D19511056F6FB3’ etime=112

ModifyRequest

2009-02-03T01:16:15.253Z ModifyRequest requestID=’null’ protocol=’v2’ executionMode=’null’

returnData=’everything’ psoId=’maurelius’ modifications=’(lastname=(Antoninus))’

2009-02-03T01:16:15.915Z ModifyResponse requestID=’Gen7954-1233623775912’ protocol=’v2’

status=’success’ errorCode=’null’

psoId=’spml2Person:#ID#8092:20EBCB32F11:783B7992-:46D19511056F6FB3’ etime=668

Configuring Identity Manager to Use SPML 2.0
This section describes how to configure Identity Manager to use SPML 2.0. The configuration
involves the following:

■ “Deciding Which Attributes to Manage” on page 59
■ “Configuring the SPML2 Configuration Object” on page 60
■ “Configuring web.xml” on page 60
■ “Configuring SPML Tracing” on page 62

Configuring Identity Manager to Use SPML 2.0

Sun Identity Manager 8.1 Web Services • February 200958

Deciding Which Attributes to Manage
When configuring an Identity Manager server to use SPML 2.0, the first step is to decide which
attributes you want to manage through your target.

Note – You can have more than one attribute in the target.

Decide which attribute sets, or object classes, the interface clients can employ to manage users
in the Identity Manager instance using this interface. This set of attributes is a PSO. You must
know how to map these attributes to and from a User view using a form.

This section describes how to configure a system using PSOs that contain the following
attributes for a DSML object class called spml2Person:

■ accountId

■ objectclass

■ credentials

■ firstname

■ lastname

■ emailAddress

You must map these attributes to the User view.

This section also provides short examples that demonstrate how to manage PSOs using SPML
2.0 support in Identity Manager.

Identity Manager provides a sample set of SPML configuration objects in the
sample/spml2.xml file. The sample/spml2.xml file is not imported when the repository is
initialized, so you must manually import the file. See the contents of this file for detailed
information.

Note – The spml2ObjectClass attribute is not present in the User schema by default. If this
attribute is not already enabled, you must manually add the spml2ObjectClass attribute to
your schema before Identity Manager can function as an SPML 2.0 server.

The spml2ObjectClass attribute has been defined in the schema.xml file supplied with Identity
Manager, but the section where you add this attribute to the configuration is commented out.
Assuming that your production schema is in a file derived from that original, you can
uncomment that section, import or re-import the schema file, and restart Identity Manager to
enable use of the SPML 2.0 feature.

After deciding on the format of a PSO, enable the service as described in the following sections.
These sections also contain information about configuring the web.xml file and what features
have been added for SPML 2.0.

Configuring Identity Manager to Use SPML 2.0

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 59

Configuring the SPML2Configuration Object
The sample/spml2.xml file contains an out-of-the-box configuration for SPML 2.0 support.
You can import this file, or one derived from this file, to define the objects that Identity Manager
needs to support SPML 2.0.

You can use the SPML2 configuration object type to change how SPML 2.0 support behaves or to
extend the system.

Note – See “Extending the System” on page 62 for more information about extensions.

Configuring web.xml

If you are using a servlet container such as Tomcat, you can use the web.xml file to set up the
openspmlRouter servlet, which handles SPML 2.0 requests.

Note – The web.xml file ships with a default installation, so no action is required.

The web.xml file contains an optional init-param parameter that you can use to open a
monitor window (in Swing) that displays the flow of SPML 2.0 messages. You can use this
window to monitor the flow of SPML 2.0 messages, which can be useful for debugging
purposes.

The following example shows how to add the lisinit-param parameter.

EXAMPLE 2–19 Adding the init-paramParameter

<init-param>

<param-name>monitor</param-name>

<param-value>org.openspml.v2.util.SwingRPCRouterMonitor</param-value>

</init-param>

The next example contains a commented section and includes information about other
init-param parameters.

EXAMPLE 2–20 Commented Example

<servlet>

<servlet-name>openspmlRouter</servlet-name>

<display-name>OpenSPML SOAP Router</display-name>

<description>A router of RPC traffic - nominally SPML 2.0 over

SOAP</description>

Configuring Identity Manager to Use SPML 2.0

Sun Identity Manager 8.1 Web Services • February 200960

EXAMPLE 2–20 Commented Example (Continued)

<servlet-class>

org.openspml.v2.transport.RPCRouterServlet

</servlet-class>

<!-- The Router uses dispatchers to process SOAP messages. This is one that is in the toolkit that
knows about SOAP. It has its own parameters, via naming convention. See below.
-->

<init-param>

<param-name>dispatchers</param-name>

<param-value>org.openspml.v2.transport.SPMLViaSoapDispatcher</param-value>

</init-param>

<!-- Turn on trace to have the servlet write informational messages to the log.
-->

<init-param>

<param-name>trace</param-name>

<param-value>false</param-value>

</init-param>

<!-- The SpmlViaSOAPDispatcher uses marshallers; there can be a chain, to move XML to SPML
objects and back. -->

<init-param>

<param-name>SpmlViaSoap.spmlMarshallers</param-name>

<param-value>com.sun.idm.rpc.spml2.UberMarshaller</param-value>

</init-param>

<!-- Our marshaller (UberMarshaller) has its own trace setting; which doesn't really do anything in
this release -->

<init-param>

<param-name>SpmlViaSoap.spmlMarshallers.UberMarshaller.trace</param-name>

<param-value>true</param-value>

</init-param>

<!-- Finally, the dispatcher has a list of executors that actually implement the functionality. So, it
sees a request, takes the SOAP envelope off, takes the body from XML to OpenSPML Request classes,
and then asks the list of executors if they can process it. UberExecutor will redispatch the request to
other executors. Those are specified in spml2.xml (Configuration:SPML2). -->

<init-param>

<param-name>SpmlViaSoap.spmlExecutors</param-name>

<param-value>com.sun.idm.rpc.spml2.UberExecutor</param-value>

</init-param>

</servlet>

Configuring Identity Manager to Use SPML 2.0

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 61

Configuring SPML Tracing
SPML provides options for turning on trace output so you can log Identity Manager’s SPML
traffic and diagnose problems.

For more information about tracing SPML, see Chapter 5, “Tracing and Troubleshooting,” in
Sun Identity Manager 8.1 System Administrator’s Guide.

Extending the System
You extend the schema by modifying the configuration object, and you can add executors for
requests by changing the section. Using forms, you can map DSML to Views and back.

It is less obvious, but you can also replace the dispatcher, marshaller, and the UberExecutor,
with those of your own devising.

■ If you do not want to use SOAP, replace the dispatcher in the first case.
■ If you do not want to use HTTP, replace the router with a different kind of servlet.
■ If you want different XML parsing, replace the marshaller with your own.

SPML 2.0 provides a wide-open array of pluggability, which is due to Identity Manager’s use of
the OpenSPML 2.0 Toolkit. The following figure shows the OpenSPML 2.0 Toolkit
architecture.

FIGURE 2–1 OpenSPML 2.0 Toolkit Architecture

Extending the System

Sun Identity Manager 8.1 Web Services • February 200962

http://docs.sun.com/doc/820-5823/ahyej?a=view
http://docs.sun.com/doc/820-5823/ahyej?a=view

SPML Connector
Identity Manager provides a connector to manage communications to the resource. See the Sun
Identity Manager 8.1 Resources Reference for information about implementing this feature.

SPML Connector

Chapter 2 • Using SPML 2.0 With Sun Identity Manager Web Services 63

http://docs.sun.com/doc/820-6551
http://docs.sun.com/doc/820-6551

64

Index

A
accessing Identity Manager Web Services, 9
accountId attribute, 59
accountIds, 26
adapters, SPML 2.0 sample, 63
AddRequest examples, 41-45
AddRequest methods, 15, 31
APIs, Identity Manager Session, 25-29, 29-30
Async capabilities, 37, 47-49
asynchronous SPML 1.0 requests, 10-11, 15, 20-21
attributes

accountId, 59
classes, 14-22
credentials, 59
emailAddress, 59
firstname, 59
GenericObject, 14-22
objectclass, 59
process, 28
schema, 16-17
waveset.accountid, 38-39

authentication, and SPML 1.0, 12-13
authorizing requests, SPML 1.0, 12-14

B
Batch capabilities, 37, 49-50
browsers

OpenSPML, 14, 22-23
starting the SPML 1.0, 22

Bulk capabilities, 37, 50

BulkDeleteRequest capabilities, 50
BulkModifyRequest capabilities, 50

C
calling the Identity Manager Session API, 25-29, 29-30
CancelRequest capabilities, 47-49
capabilities

Async, 37, 47-49
Batch, 37, 49-50
Bulk, 37, 50
BulkDeleteRequest, 50
BulkModifyRequest, 50
Core, 36-37, 39-57
declaring, 38
defining, 36-37
ExpirePasswordRequest, 50-52
extending, 36-37
not supported in SPML 2.0, 39-57
Password, 37, 50-52
Reference, 37, 39-57
ResetPasswordRequest, 50-52
ResumeRequest, 52-53
Search, 39-57
SetPasswordRequest, 50-52
SPML 2.0, 36-37, 39-57
Suspend, 37, 52-53
SuspendRequest, 52-53
Update, 37, 39-57
ValidatePasswordRequest, 50-52

classes attribute, 14-22

65

classes
ExtendedRequest, 26
LighthouseClient, 12-13
object, 10-11, 24-25, 29-30
person, 10-11, 15
provided with OpenSPML Toolkit, 24-25
request, 15

configuration objects
editing for SPML 1.0, 14-22
SPML 1.0, 10-12
SPML2, 60

configuration SPMLPerson object, 17-18
configuring the Identity Manager server, 10-22
configuring

SPML 1.0, 10-22
SPML 2.0, 58-62
SPML 2.0 tracing, 62

connecting to, Identity Manager server, 22-23
Core capabilities, 36-37, 39-57
credentials attribute, 59
credentials, specifying, 12-13

D
declaration servlets, 21-22
default schemas, 16-17
deployment descriptor, 21-22
Derivation expressions, 17
developing SPML 1.0 applications, 24-30
disableUser requests, 27
disabling

PSO users, 52-53
PSOs, 37

dispatcher, 62
DSML object class, 59
DSML profile

Core capabilities, 40-47
DSML Modification Mode, 40
SPML 2.0, 36-37
targets, 38

DSML, mapping to Views, 62

E
emailAddress attribute, 59
enableUser requests, 27-28
enabling

PSO users, 52-53
PSOs, 37

encrypted passwords, 13-14
example methods, SPML 1.0, 31-33
executing batch requests, 49-50
Expansion expressions, 17
ExpirePasswordRequest capabilities, 50-52
expressions

Derivation, 17
Expansion, 17

extended attributes object, 18-20
ExtendedRequest, 26, 36-37
ExtendedRequest classes, 25-29

F
files

openspml.jar, 10, 24-30, 35-36
schema.xml, 59
spml.xml, 16-17, 20-21
spml2.xml, 38, 59, 60
web.xml, 10-11, 21-22, 23-24, 60-61

firstname attribute, 59
form objects, 10-11, 17-18
forms, referencing, 17-18

G
GenericObject attributes, 14-22

I
Identity Manager server

configuring, 10-22
connecting to, 22-23

Identity Manager Web Services, See Web Services.
important notes

for SPML 1.0, 10

Index

Sun Identity Manager 8.1 Web Services • February 200966

important notes (Continued)
for SPML 2.0, 35-36

J
Java applications, sending/receiving messages, 24-30
Java class model, 24-30

L
launchProcess requests, 28
LighthouseClient classes, 12-13
listResourceObjects requests, 28
ListTargetsRequest examples, 46-47

M
marshaller, 62
methods

AddRequest, 15, 31
ModifyRequest, 31-32
SearchRequest, 15, 32-33

ModifyRequest methods, 31-32

N
NVPs, 39

O
object classes, 10-11, 24-25, 29-30
objectclass attribute, 59
Open Content, 39
OpenSPML browser, 14, 22-23
openspml.jar file, 10
openspml.jar files, 24-30, 35-36
OpenSPML Toolkit

architecture, 62
provided classes, 24-25
sending/receiving messages, 24-30

OpenSPML Toolkit (Continued)
using bundled, 10, 24-30, 35-36

openspmlRouter servlet, 60-61
OperationalAttributes, 39
OperationalNVPs, 39

P
Password capabilities, 37, 50-52
passwords, encrypted, 13-14
person classes, 15
process attributes, 28
properties

soap.epassword and soap.password, 12-13
Waveset.properties, 10-22
Waveset.properties, 12-14

proxy user, 12-13
PSO users

disabling, 52-53
enabling, 52-53

PSOIdentifiers, 38-39
PSOs, 38

disabling, 37
enabling, 37

R
REF Kit

sample SPML 2.0 adapter, 63
Service Provider, 10, 24-25

Reference capabilities, 37, 39-57
referencing, forms, 17-18
repository objects, used to configure SPML 1.0, 10-11
repository, SPML 1.0 configuration, 10-12
requestclasses, 15
requests

asynchronous SPML 1.0, 10-11, 15, 20-21
authorizing for SPML 1.0, 12-14
canceling, 47-49
disableUser, 27
enableUser, 27-28
executing, 49-50
launchProcess, 28

Index

67

requests (Continued)
listResourceObjects, 28
resetUserPassword, 29
returning status, 47-49
runForm, 29
Search, 15, 18-20
SPML, 60-61
SPML 1.0 extended, 26

ResetPasswordRequest capabilities, 50-52
ResetPasswordRequest example, 51
resetUserPassword request, 29
ResumeRequest capabilities, 52-53
runForm requests, 29

S
schema.xml file, 59
schemas attribute, 16-17
Search capabilities, 39-57
Search requests, 15, 18-20
SearchRequest methods, 15, 32-33
Secure Socket Layer, See SSL
servers

configuring Identity Manager, 10-22
connection settings, 10-11

Service Provider REF Kit, 10, 24-25
Service Provider SPML, 12-13
Service Provisioning Markup Language, See SPML 1.0

or SPML 2.0.
servlets

declaration, 21-22
openspmlRouter, 60-61

session token, 12-13
SetPasswordRequest capabilities, 50-52
SetPasswordRequest example, 51-52
soap.epassword properties, 12-13
soap.password properties, 12-13
soap.username properties, 12-13
SPML 1.0, 9

asynchronous requests, 10-11, 15
authorizing requests, 12-14
configuration objects, 10-12
configuration SPMLPerson object, 17-18
configuring, 10-22

SPML 1.0 (Continued)
default configuration, 15-16
deployment descriptor, 21-22
developing applications, 24-30
editing configuration objects, 14-22
editing properties, 12-13
example methods, 31-33
extended attributes object, 18-20
ExtendedRequest, 26
form objects, 10-11, 17-18
installing and modifying repository objects, 10-12
openspml.jar file, 10
sending/receiving messages, 24-30
spml.xml file, 20-21
SpmlRequest object, 20-21
starting the browser, 22
tracing messages, 30
troubleshooting, 23-24
Waveset.properties, 12-14

SPML 2.0
AddRequest examples, 41-45
Async capabilities, 47-49
Batch capabilities, 49-50
Bulk capabilities, 50
capabilities, 36-37, 39-57
Core capabilities, 36-37, 40-47
declaring capabilities, 38
extending capabilities, 36-37
important notes, 35-36
improvements over SPML 1.0, 36-37
ListTargetsRequest examples, 46-47
Password capabilities, 50-52
ResetPasswordRequest example, 51
sample adapter, 63
SetPasswordRequest example, 51-52
standard capabilities, 37
Suspend capabilities, 52-53
tracing messages, 62
unsupported capabilities, 39-57
ValidatePasswordRequest example, 52

SPML requests
asynchronous, 20-21
openspmlRouter servlet, 60-61

spml.xml file, 16-17, 20-21

Index

Sun Identity Manager 8.1 Web Services • February 200968

SPML2 configuration object, 60
spml2.xml file, 38, 60
spml2b.xml file, 59
SpmlRequest object, 20-21
SSL

using for Service Provider SPML, 12-13
using for SPML, 50-52
using in Web Services, 12-13

StatusRequest capabilities, 47-49
Suspend capabilities, 37, 52-53
SuspendRequest capabilities, 52-53

T
targets, 38
testing SPML configurations, 22
testing, SPML configuration, 23-24
tracing

SPML 1.0 messages, 30
SPML 2.0 messages, 62

troubleshooting, 23-24

U
UberExecutor, 62
Update capabilities, 37, 39-57

V
ValidatePasswordRequest capabilities, 50-52
ValidatePasswordRequest example, 52

W
waveset.accountid attributes, 38-39
Waveset.properties, 10-22
Waveset.properties, 12-14
Web Services

accessing, 9
important notes, 10, 35-36
SPML 1.0, 9

Web Services (Continued)
SPML 2.0, 35-63

web.xml file, 10-11, 21-22, 23-24, 60-61

Index

69

70

	Sun Identity Manager 8.1 Web Services
	Preface
	Who Should Use This Book
	Related Web Site
	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Using SPML 1.0 With Sun Identity Manager Web Services
	Important Notes About Using SPML 1.0
	Configuring SPML
	Installing and Modifying Repository Objects
	Editing the Waveset.properties File
	Editing soap.epassword and soap.password Properties
	Creating an Encrypted Password

	Editing Configuration Objects
	Configuration: SPML Object
	Default SPML Configuration
	Default Schemas

	Configuration: SPMLPerson Object
	Configuration: IDM Schema Configuration Object
	TaskDefinition: SPMLRequest Object
	Deployment Descriptor

	Starting the OpenSPML Browser
	To Start the OpenSPML Browser

	Connecting to the Identity Manager Server
	To Connect to the Identity Manager Server

	Testing Your SPML Configuration
	To Test Your SPML Configuration

	Developing SPML Applications
	ExtendedRequest Examples
	ExtendedRequest Example
	deleteUser Example
	disableUser Example
	enableUser Example
	launchProcess Example
	listResourceObjects Example
	resetUserPassword Example
	runForm Example

	Example Query Form
	Using Trace With SPML

	Example Methods for Implementing SPML
	AddRequest Method
	ModifyRequest Method
	SearchRequest Method

	Using SPML 2.0 With Sun Identity Manager Web Services
	Important Notes About Using SPML 2.0
	Basic SPML 2.0 Concepts
	How SPML 2.0 Compares to SPML 1.0
	How SPML 2.0 Concepts Are Mapped to Identity Manager
	Understanding Targets
	Understanding PSOs
	Understanding PSOIdentifiers
	Understanding Open Content and OperationalAttributes

	Supported SPML 2.0 Capabilities
	Core Capabilities
	Core Capability Examples
	ListTargetsRequest Examples

	Async Capabilities
	Batch Capability
	Bulk Capabilities
	Password Capabilities
	ResetPasswordRequest Example
	SetPasswordRequest Example
	ValidatePasswordRequest Example

	Suspend Capabilities
	Search Capability
	Search Filter Configuration
	Search Examples

	SPML Logging
	Access Log Configuration
	Access Log Example

	Configuring Identity Manager to Use SPML 2.0
	Deciding Which Attributes to Manage
	Configuring the SPML2 Configuration Object
	Configuring web.xml
	Configuring SPML Tracing

	Extending the System
	SPML Connector

	Index

