Platform Notes: The eri FastEthernet Device Driver
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
</tbody>
</table>

1. **The eRI Device Driver** 1
 Hardware Overview 1
 Operating Speeds and Modes 1
 Auto-Negotiation 2

2. **Configuring the Driver Software** 3
 Configuring the Host File 3
 ▼ To Configure the Host File 3
 Booting From the Network 5
 ▼ To Boot From the Network 5
 Optional Post-Installation Procedures 6
 Setting Driver Parameters 6
 ▼ To Force Network Speed Between 10 Mbps and 100 Mbps 6

3. **Parameter Definitions** 9
 Driver Parameter Values and Definitions 9
Defining the Current Status 11

Inter-Packet Gap Parameters 11

Defining an Additional Delay Before Transmitting a Packet Using lance_mode and ipg0 12

Operational Mode Parameters 13

Operational Mode Priorities 14

Defining the Number of Back-to-Back Packets to Transmit 15

Reporting Transceiver Capabilities 15

Reporting the Link Partner Capabilities 16

4. Setting Parameters 17

Parameter Options 17

Setting Parameters Using ndd 18

Identifying Device Instances 18

▼ To Specify the Device Instance for the ndd Utility 18

Non-Interactive and Interactive Modes 18

Using the ndd Utility in Non-Interactive Mode 19

Using the ndd Utility in Interactive Mode 19

Setting Forced Mode 20

▼ To Select a Transceiver Capability and Set Forced Mode 21

Auto-Negotiation Mode 21

▼ To Set the Mode to Auto-Negotiation 21

Setting Parameters in the /etc/system File 21

▼ To Set ipg1 to 10 and ipg2 to 5 When Rebooting 23

Setting Parameters Using the eri.conf File 24

▼ To Configure Driver Parameters Using eri.conf 24

A. Auto-Negotiation 27

The Auto-Negotiation Protocol 27
Boot Process on the Network 27
Correcting Errors in Negotiating 28
Internal (Local) Transceiver 28

Index 29
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 3-1</td>
<td>eri Driver Parameter, Status, and Descriptions</td>
<td>9</td>
</tr>
<tr>
<td>TABLE 3-2</td>
<td>Read-Only Parameters for Defining the Current Status</td>
<td>11</td>
</tr>
<tr>
<td>TABLE 3-3</td>
<td>Read-Write Inter-Packet Gap Parameter Values and Descriptions</td>
<td>12</td>
</tr>
<tr>
<td>TABLE 3-4</td>
<td>Parameters Defining lance_mode and ipg0</td>
<td>13</td>
</tr>
<tr>
<td>TABLE 3-5</td>
<td>Operational Mode Parameters</td>
<td>13</td>
</tr>
<tr>
<td>TABLE 3-6</td>
<td>Operational Mode Priorities</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 3-7</td>
<td>Back-to-Back Packet Transmission Capability</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 3-8</td>
<td>Read-Only Transceiver Capabilities</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 3-9</td>
<td>Read-Only Link Partner Capabilities</td>
<td>16</td>
</tr>
<tr>
<td>TABLE 4-1</td>
<td>Setting Variables in the /etc/system File</td>
<td>22</td>
</tr>
</tbody>
</table>
Preface

This book describes how to configure the eri driver for Sun systems using the Ethernet function of the RIO application specific integrated circuit (ASIC).

How This Book Is Organized

Chapter 1 describes the eri device driver and includes topics such as operating speeds and modes, and auto-negotiation.

Chapter 2 describes configuring the eri device driver.

Chapter 3 describes the parameter settings for the eri device driver.

Chapter 4 describes how to set the eri device driver parameter values using the ndd utility and also in the /etc/system and /kernel/drv/eri.conf files.

Appendix A provides information about auto-negotiation.

Using UNIX Commands

This document may not contain information on basic UNIX® commands and procedures such as shutting down the system, booting the system, and configuring devices.

See one or more of the following for this information:
- Online documentation for the Solaris™ software environment
- Other software documentation that you received with your system
Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. % You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, when contrasted with on-screen computer output</td>
<td>% su</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, words to be emphasized</td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Command-line variable; replace with a real name or value</td>
<td>To delete a file, type rm filename.</td>
</tr>
</tbody>
</table>

Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell superuser</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser</td>
<td>#</td>
</tr>
</tbody>
</table>

Accessing Sun Documentation Online

The docs.sun.comSM web site enables you to access Sun technical documentation on the Web. You can browse the docs.sun.com archive or search for a specific book title or subject at: http://www.docs.sun.com
Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number (816-2127-10) of this document in the subject line of your email.
The eri Device Driver

The eri device driver handles the SUNW,eri device on Sun systems using the RIO ASIC.

This chapter includes the following sections:
- “Hardware Overview” on page 1
- “Operating Speeds and Modes” on page 1
- “Auto-Negotiation” on page 2

Hardware Overview

The SUNW,eri device provides a 100BASE-TX network interface using the Ethernet function of the RIO ASIC. The driver automatically sets the link speed to 10 or 100 Mbps and conforms to the 100BASE-T IEEE 802.3u Ethernet Standard. The RIO ASIC provides the PCI interface and Media Access Control (MAC) functions. The internal transceiver, which connects to an RJ-45 connector, provides the physical layer functions.

The RIO ASIC is a chip set composed of an I/O chip and a single chip Ethernet transceiver; the eri device driver uses the Ethernet function of this ASIC.

Operating Speeds and Modes

You can operate the link in any of the following speeds and modes with the SUNW, eri device:
- 100 Mbps, full-duplex
100 Mbps, half-duplex
10 Mbps, full-duplex
10 Mbps, half-duplex

The 100BASE-T IEEE 802.3u Ethernet Standard describes these speeds and modes.

Auto-Negotiation

A key feature of the Sun FastEthernet driver is auto-negotiation. The auto-negotiation protocol, as specified by the 100BASE-T IEEE 802.3u Ethernet Standard, selects the operation mode (half-duplex or full-duplex), and the auto-sensing protocol selects the speed (10 Mbps or 100 Mbps) for the adapter. Further information can be found in Appendix A, “Auto-Negotiation” on page 27.
Configuring the Driver Software

This chapter includes information and instructions for configuring the driver software used by the Sun eri FastEthernet PCI adapter.

This chapter includes the following sections:
- “Configuring the Host File” on page 3
- “Booting From the Network” on page 5
- “Optional Post-Installation Procedures” on page 6

Configuring the Host File

The 64-bit driver is included with the Solaris CD.

Before using eri as your network interface, you will need to create and edit system host files, as described in the next section.

To Configure the Host File

1. At the command line, use the `grep` command to search the `/etc/path_to_inst` file for eri devices. For example:

   ```
   # grep eri /etc/path_to_inst
   "/pci@8,700000/network@5,1" 0 "eri"
   ```
2. Create an /etc/hostname.eri\textsubscript{num} file, where \textit{num} is the instance number of each interface you plan to use.

If you want to use the network interface from the example in Step 1, you will need to create a file:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Instance Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/hostname.eri0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Do not create /etc/hostname.eri\textsubscript{num} files for Sun eri FastEthernet network interfaces you plan to leave unused.
- The /etc/hostname.eri\textsubscript{num} file must contain the host name for the appropriate network interface.
- The host name should have an IP address that will need to be entered in the /etc/hosts file.
- The host name should be different from any other host name of any other interface, for example: /etc/hostname.hme0 and /etc/hostname.eri0 cannot share the same host name.

Using the instance examples in Step 1, the following example shows the two /etc/hostname.eri\textsubscript{num} files required for a system called zardoz that has a Sun eri FastEthernet (zardoz, zardoz-11).

```
# cat /etc/hostname.hme0
zardoz
# cat /etc/hostname.eri0
zardoz-11
```

3. Create an appropriate entry in the /etc/hosts file for each active eri network interface.

Using the previous example, you will have:

```
# cat /etc/hosts
#
# Internet host table
#
127.0.0.1   localhost
129.144.10.57 zardoz    loghost
129.144.11.83 zardoz-11
```
Note – The Internet Protocol, version 6 (IPv6), expands the capabilities of IPv4, which is the current version and the default. The Sun eri FastEthernet device driver included in this release of the Solaris operating environment supports both IPv4 and IPv6. IPv4 uses the /etc/hosts configuration file, but IPv6 uses a different configuration file. To transition to, manage, and implement IPv6, refer to the Solaris System Administration documentation.

4. Reboot your system.

Booting From the Network

To use a Sun eri interface as the boot device, perform the following tasks:

▼ To Boot From the Network

1. At the ok prompt type:

 ok show-nets

 The show-nets command lists the system devices. You should see the full path name of the eri devices, similar to the following examples:

 /pci@8,700000/network@5,1

 Note – You need to select only one of these eri devices for booting.

2. At the ok prompt type:

 ok boot full_path_name_of_the_eri_device
Optional Post-Installation Procedures

To customize the performance of the Sun eri FastEthernet driver, perform the tasks in the following sections.

Setting Driver Parameters

The eri device driver, which is loaded from the Solaris CD-ROM, controls the SUNW,eri Ethernet devices. The device driver selects the link speed using the auto-negotiation protocol with the link partner.

You can manually set the eri device driver parameters to customize each SUNW,eri device in your system in one of three ways.

- Set a parameter on a per-device basis by creating the eri.conf file in the /kernel/drv directory.
- Use the ndd utility to temporarily change a parameter. This change is lost when you reboot the system.
- Set the eri driver parameters generally for all SUNW,eri devices in the system by entering the parameter variables in the /etc/system file.

See Chapter 4 “Setting Parameters” for more information.

▼ To Force Network Speed Between 10 Mbps and 100 Mbps

1. At the ok prompt, use the show-nets command to list the system devices.
 You should see the full path names of the eri devices, similar to the following example:

 /pci@8,700000/network@5,1

2. Type:

 ok nvedit

3. Type the following, pressing the Return key at the end of line 0:

 0: probe-all install-console banner
 1: apply transfer-speed=10 full_path_name_of_a_eri_device
Note – If you already have commands in NVRAM, append these lines to the end of the file.

4. Press Control-C after typing `full_path_name_of_a_eri_device`.
 Perform Steps 2 to 4 to set the network speed for each eri network interface.

 Note – In the preceding example, the speed is forced to 10 Mbps. To force the speed to 100 Mbps, replace 10 with 100.

5. At the `ok` prompt type:

   ```
   ok nvstore
   ok setenv use-nvramrc? true
   ```

6. Reboot your system.
 See Setting Forced Mode for more information on forcing network speed.
CHAPTER 3

Parameter Definitions

This chapter describes the parameters and settings for the eri device driver.

Driver Parameter Values and Definitions

The following sections describe the permitted values for the eri driver parameters, which are listed in “Driver Parameter Values and Definitions” on page 9.

- “Defining the Current Status” on page 11, Table 3-2.
- “Inter-Packet Gap Parameters” on page 11, Table 3-3.
- Define extra delay see “Defining an Additional Delay Before Transmitting a Packet Using lance_mode and ipg0” on page 12, Table 3-4.
- Operational mode parameters see “Operational Mode Parameters” on page 13, Table 3-5.
- Operational mode parameters see “Operational Mode Priorities” on page 14, Table 3-6.
- “Defining the Number of Back-to-Back Packets to Transmit” on page 15, Table 3-7.
- Reporting transceiver capabilities see “Reporting Transceiver Capabilities” on page 15, Table 3-8.
- “Reporting the Link Partner Capabilities” on page 16, Table 3-9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Status</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>transciever_inuse</td>
<td>Read only</td>
<td>Defines the current status</td>
<td></td>
</tr>
<tr>
<td>link_status</td>
<td>Read only</td>
<td>Defines the current status</td>
<td>“Defining the Current Status” on page 11</td>
</tr>
<tr>
<td>link_speed</td>
<td>Read only</td>
<td>Defines the current status</td>
<td></td>
</tr>
<tr>
<td>link_mode</td>
<td>Read only</td>
<td>Defines the current status</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Status</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ipg1</td>
<td>Read and write</td>
<td>Inter-packet gap parameter</td>
<td>“Inter-Packet Gap Parameters” on page 11</td>
</tr>
<tr>
<td>ipg2</td>
<td>Read and write</td>
<td>Inter-packet gap parameter</td>
<td></td>
</tr>
<tr>
<td>pace_size</td>
<td>Read and write</td>
<td>Operational mode parameter</td>
<td>“Defining the Number of Back-to-Back Packets to Transmit” on page 15</td>
</tr>
<tr>
<td>adv_autoneg_cap</td>
<td>Read and write</td>
<td>Operational mode parameter</td>
<td>“Operational Mode Parameters” on page 13</td>
</tr>
<tr>
<td>adv_100fdx_cap</td>
<td>Read and write</td>
<td>Operational mode parameter</td>
<td></td>
</tr>
<tr>
<td>adv_100hdx_cap</td>
<td>Read and write</td>
<td>Operational mode parameter</td>
<td></td>
</tr>
<tr>
<td>adv_10fdx_cap</td>
<td>Read and write</td>
<td>Operational mode parameter</td>
<td></td>
</tr>
<tr>
<td>adv_10hdx_cap</td>
<td>Read and write</td>
<td>Operational mode parameter</td>
<td></td>
</tr>
<tr>
<td>autoneg_cap</td>
<td>Read only</td>
<td>Local transceiver auto negotiation capability</td>
<td></td>
</tr>
<tr>
<td>100fdx_cap</td>
<td>Read only</td>
<td>Local transceiver capability of the hardware</td>
<td></td>
</tr>
<tr>
<td>100hdx_cap</td>
<td>Read only</td>
<td>Local transceiver capability of the hardware</td>
<td>“Reporting Transceiver Capabilities” on page 15</td>
</tr>
<tr>
<td>10fdx_cap</td>
<td>Read only</td>
<td>Local transceiver capability of the hardware</td>
<td></td>
</tr>
<tr>
<td>10hdx_cap</td>
<td>Read only</td>
<td>Local transceiver capability of the hardware</td>
<td></td>
</tr>
<tr>
<td>lp_autoneg_cap</td>
<td>Read only</td>
<td>Link partner auto negotiation capability</td>
<td></td>
</tr>
<tr>
<td>lp_100fdx_cap</td>
<td>Read only</td>
<td>Link partner capability</td>
<td>“Reporting the Link Partner Capabilities” on page 16</td>
</tr>
<tr>
<td>lp_100hdx_cap</td>
<td>Read only</td>
<td>Link partner capability</td>
<td></td>
</tr>
<tr>
<td>lp_10fdx_cap</td>
<td>Read only</td>
<td>Link partner capability</td>
<td></td>
</tr>
<tr>
<td>lp_10hdx_cap</td>
<td>Read only</td>
<td>Link partner capability</td>
<td></td>
</tr>
</tbody>
</table>
Defining the Current Status

The read-only parameters described in the following table explain the operational mode of the interface. These parameters define the current status.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Status</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>Read and write</td>
<td>Device instance</td>
<td></td>
</tr>
<tr>
<td>lance_mode</td>
<td>Read and write</td>
<td>Additional delay before transmitting a packet</td>
<td>"Defining an Additional Delay Before Transmitting a Packet Using lance_mode and ipg0" on page 12</td>
</tr>
<tr>
<td>ipg0</td>
<td>Read and write</td>
<td>Additional delay before transmitting a packet</td>
<td></td>
</tr>
</tbody>
</table>

Inter-Packet Gap Parameters

The Ethernet function unit of RIO ASIC supports programmable Inter-Packet Gap (IPG) parameters ipg1 and ipg2. The total IPG is the sum of ipg1 and ipg2. The total IPG is 9.6 microseconds when the link speed set by the auto-negotiation protocol is 10 Mbps. When the link speed is 100 Mbps, the total IPG is 0.96 microseconds.
The following table lists the default values and allowable values for the IPG parameters, \texttt{ipg1} and \texttt{ipg2}.

\begin{table}[h]
\centering
\caption{Read-Write Inter-Packet Gap Parameter Values and Descriptions}
\begin{tabular}{lll}
\hline
Parameter & Values (Byte-time) & Description \\
\hline
\texttt{ipg1} & 0, 255 & \texttt{ipg1} = 8 (default at initialization) \\
\texttt{ipg2} & 0, 255 & \texttt{ipg2} = 4 (default at initialization) \\
\hline
\end{tabular}
\end{table}

By default, the driver sets \texttt{ipg1} to 8-byte time and \texttt{ipg2} to 4-byte time, which are the standard values. (Byte time is the time it takes to transmit one byte on the link, with a link speed of either 100 Mbps or 10 Mbps.)

If your network has systems that use longer IPG (the sum of \texttt{ipg1} and \texttt{ipg2}) and if those machines seem to be slow in accessing the network, increase the values of \texttt{ipg1} and \texttt{ipg2} to match the longer IPGs of other machines.

\section*{Defining an Additional Delay Before Transmitting a Packet Using \texttt{lance_mode} and \texttt{ipg0}}

The Ethernet function unit of RIO ASIC supports a programmable mode called \texttt{lance_mode}. The \texttt{ipg0} parameter is associated with \texttt{lance_mode}.

After a packet is received with \texttt{lance_mode} enabled (default), an additional delay is added by setting the \texttt{ipg0} parameter before transmitting the packet. This delay, set by the \texttt{ipg0} parameter, is in addition to the delay set by the \texttt{ipg1} and \texttt{ipg2} parameters. The additional delay set by \texttt{ipg0} helps to reduce collisions. Systems that have \texttt{lance_mode} enabled might not have enough time on the network.

If \texttt{lance_mode} is disabled, the value of \texttt{ipg0} is ignored and no additional delay is set. Only the delays set by \texttt{ipg1} and \texttt{ipg2} are used. Disable \texttt{lance_mode} if other systems usually send a large number of back-to-back packets.

You can enable the additional delay by setting the \texttt{ipg0} parameter from 0 to 31, which is the nibble time delay. Nibble time is the time it takes to transfer four bits on the link. If the link speed is 10 Mbps, nibble time is equal to 400 ns. If the link speed is 100 Mbps, nibble time is equal to 40 ns.

For example, if the link speed is 10 Mbps, and you set \texttt{ipg0} to 20 nibble times, multiply 20 by 400 ns to get 8000 ns. If the link speed is 100 Mbps, and you set \texttt{ipg0} to 30 nibble times, multiply 30 by 40 ns to get 1200 ns.
The following table defines the `lance_mode` and `ipg0` parameters.

TABLE 3-4 Parameters Defining `lance_mode` and `ipg0`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lance_mode</code></td>
<td>0</td>
<td><code>lance_mode disabled</code></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td><code>lance_mode enabled</code> (default)</td>
</tr>
<tr>
<td><code>ipg0</code></td>
<td>0-31</td>
<td>Additional IPG before transmitting a packet (after receiving a packet)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See the following Note.</td>
</tr>
</tbody>
</table>

Note – The default value of `ipg0` is 16 nibble-times, which is 6.4 microseconds for 10 Mbps and 0.64 microseconds for 100 Mbps.

Operational Mode Parameters

The following table describes the operational mode parameters and their default values.

TABLE 3-5 Operational Mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adv_autoneg_cap</code></td>
<td>Local transceiver capability advertised by the hardware</td>
<td>0 = Forced mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Auto-negotiation (default)</td>
</tr>
<tr>
<td><code>adv_100fdx_cap</code></td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 100 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 100 Mbit/sec full-duplex capable (default)</td>
</tr>
</tbody>
</table>
Operational Mode Priorities

Operational Mode Priorities lists the priority of the operational mode parameters. When the eri driver negotiates with a partner on the network, it implements the operational mode in the order shown in Operational Mode Priorities.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>adv_100fdx_cap</td>
</tr>
<tr>
<td>Second</td>
<td>adv_100hdx_cap</td>
</tr>
<tr>
<td>Third</td>
<td>adv_10fdx_cap</td>
</tr>
<tr>
<td>Fourth</td>
<td>adv_10hdx_cap</td>
</tr>
</tbody>
</table>
Defining the Number of Back-to-Back Packets to Transmit

The `pace_size` parameter (see the following table) defines the maximum number of back-to-back packets you can transmit at one time. If the value is zero, there is no limit to the number of back-to-back packets that can be transmitted.

TABLE 3-7 Back-to-Back Packet Transmission Capability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pace_size</code></td>
<td>1-255</td>
<td>Number of back-to-back packets transmitted at one time</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>No limit to the number of back-to-back packets that can be transmitted (default)</td>
</tr>
</tbody>
</table>

Reporting Transceiver Capabilities

The following table describes the read-only transceiver capabilities. These parameters define the capabilities of the hardware. The local transceiver can support all of these capabilities.

TABLE 3-8 Read-Only Transceiver Capabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>autoneg_cap</code></td>
<td>Local transceiver capability of the hardware</td>
<td>0 = Not capable of auto-negotiation 1 = Auto negotiation capable</td>
</tr>
<tr>
<td><code>100fdx_cap</code></td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 100 Mbit/sec full-duplex capable 1 = 100 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td><code>100hdx_cap</code></td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 100 Mbit/sec half-duplex capable 1 = 100 Mbit/sec half-duplex capable</td>
</tr>
<tr>
<td><code>10fdx_cap</code></td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 10 Mbit/sec full-duplex capable 1 = 10 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td><code>10hdx_cap</code></td>
<td>Local transceiver capability of the hardware; initialized at startup</td>
<td>0 = Not 10 Mbit/sec half-duplex capable 1 = 10 Mbit/sec half-duplex capable</td>
</tr>
</tbody>
</table>
Reporting the Link Partner Capabilities

The following table describes the read-only link partner capabilities.

TABLE 3-9 Read-Only Link Partner Capabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lp_autoneg_cap</td>
<td>0=</td>
<td>No auto-negotiation</td>
</tr>
<tr>
<td></td>
<td>1=</td>
<td>Auto-negotiation</td>
</tr>
<tr>
<td>lp_100fdx_cap</td>
<td>0=</td>
<td>No 100Mbit/sec full-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1=</td>
<td>100Mbit/sec full-duplex</td>
</tr>
<tr>
<td>lp_100hdx_cap</td>
<td>0=</td>
<td>No 100Mbit/sec half-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1=</td>
<td>100Mbit/sec half-duplex</td>
</tr>
<tr>
<td>lp_10fdx_cap</td>
<td>0=</td>
<td>No 10Mbit/sec full-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1=</td>
<td>10Mbit/sec full-duplex</td>
</tr>
<tr>
<td>lp_10hdx_cap</td>
<td>0=</td>
<td>No 10Mbit/sec half-duplex transmission</td>
</tr>
<tr>
<td></td>
<td>1=</td>
<td>10Mbit/sec half-duplex</td>
</tr>
</tbody>
</table>

If the link partner is not capable of auto-negotiation (when `lp_autoneg_cap` is 0), the information described in the previous table is not relevant and the parameter value = 0.

If the link partner is capable of auto-negotiation (when `lp_autoneg_cap` is 1) then the speed and mode information is displayed when you use auto-negotiation and get the link partner capabilities.
Setting Parameters

This chapter describes how to configure the eri driver parameters. Use the ndd utility to configure parameters that are valid until you reboot the system.

To configure the eri driver parameters for all devices in the system so that the parameter values are always in effect (even after rebooting the system), enter the parameter values in the /etc/system file. When the system is rebooted, it reads the /etc/system file and sets the parameter values in that file.

To set the parameters for a particular device in the system, set the parameters in the eri.conf file in the /kernel/drv directory. The parameters set in the eri.conf file have precedence over the parameters set in the /etc/system file and override the parameters set in the /etc/system file. The parameters values set in eri.conf are always in effect (even after rebooting the system).

Parameter Options

You can set the eri device driver parameters in three ways (ndd, /etc/system, and eri.conf), depending on your needs. To set parameters that are valid until you reboot the system, use the ndd utility. Using ndd is a good way to test parameter settings.

To set parameters so they remain in effect after you reboot the system:

- Add the parameter values to /etc/system when you want to configure parameters for all devices in the system.
- Create the eri.conf file and add parameter values to eri.conf when you need to set a particular parameter for a device in the system.
If you want to test parameter settings, use the ndd utility described in “Setting Parameters Using ndd” on page 18. With ndd, the parameters are effective until you reboot the system. To make the parameter settings permanent, enter the values in /etc/system or eri.conf as described in this chapter.

Setting Parameters Using ndd

Use the ndd utility to configure parameters that are valid until you reboot the system. The ndd utility supports any networking driver, which implements the Data Link Provider Interface (DLPI).

The following sections describe how you can use the eri driver and the ndd utility to modify (with the -set option) or display (without the -set option) the parameters for each SUNW,eri device.

Identifying Device Instances

Before you use the ndd utility to get or set a parameter for the eri device, you must specify the device instance for the utility if there is more than one SUNW,eri device.

Note – If there is only one SUNW,eri device, the device is automatically chosen by the ndd utility.

▼ To Specify the Device Instance for the ndd Utility

1. Check the /etc/path_to_inst file to identify the instance associated with a particular device.

2. Use that instance number to select the device as follows:

```
% ndd -set /dev/eri instance instance number
```

The device remains selected until you change the selection.

Non-Interactive and Interactive Modes

You can use the ndd utility in two modes:
Non-interactive

Interactive

In non-interactive mode, you invoke the utility to execute a specific command. Once the command is executed, you exit the utility. In interactive mode, you can use the utility to get or set more than one parameter value. (Refer to the ndd (1M) man page for more information.)

Using the ndd Utility in Non-Interactive Mode

1. To modify a parameter value, use the -set option.
 If you invoke the ndd utility with the -set option, the utility passes value, which must be specified down to the named /dev/eri driver instance, and assigns it to the parameter:

   ```
   % ndd -set /dev/eri parameter value
   ```

2. To display the value of a parameter, specify the parameter name (and omit the value).
 When you omit the -set option, a query operation is assumed and the utility queries the named driver instance, retrieves the value associated with the specified parameter, and prints it:

   ```
   % ndd /dev/eri parameter
   ```

Using the ndd Utility in Interactive Mode

1. To modify a parameter value in interactive mode, specify ndd eri, as shown below.
 The ndd utility then prompts you for the name of the parameter:

   ```
   % ndd /dev/eri
   name to get/set? (Enter the parameter name or ? to view all parameters)
   ```

 After you enter the parameter name, the ndd utility prompts you for the parameter value (see “Driver Parameter Values and Definitions” on page 9 for parameter descriptions).
2. To list all the parameters supported by the eri driver, type:

```
% ndd /dev/eri 
```

(See “Driver Parameter Values and Definitions” on page 9 for parameter descriptions.)

CODE EXAMPLE 4-1 Example of Listing All Parameters Supported by the eri Driver

```
example # ndd /dev/eri 
?

?                             (read only)
transceiver_inuse             (read only)
link_status                   (read only)
link_speed                    (read only)
link_mode                     (read only)
ipg1                          (read and write)
ipg2                          (read and write)
use_int_xcvr                  (read and write)
pace_size                     (read and write)
adv_autoneg_cap               (read and write)
adv_100fdx_cap                (read and write)
adv_100hdx_cap                (read and write)
adv_10fdx_cap                 (read and write)
adv_10hdx_cap                 (read and write)
autoneg_cap                   (read only)
100T4_cap                     (read only)
100fdx_cap                    (read only)
100hdx_cap                    (read only)
10fdx_cap                     (read only)
10hdx_cap                     (read only)
ip_autoneg_cap                (read only)
ip_100fdx_cap                (read only)
ip_100hdx_cap                (read only)
ip_10fdx_cap                 (read only)
ip_10hdx_cap                 (read only)
instance                      (read and write)
lance_mode                    (read and write)
ipg0                          (read and write)
```

Setting Forced Mode

The procedure that follows describes how to set forced mode (not capable of auto-negotiation).
To Select a Transceiver Capability and Set Forced Mode

1. **Select one of the following capabilities:** `adv_100fdx_cap`, `adv_100hdx_cap`, `adv_10fdx_cap`, or `adv_10hdx_cap`, and set its value to 1.

 If you select more than one of the local transceiver capabilities, the driver selects the one that is highest in the priority order.

2. Set the local transceiver capabilities advertised by the hardware to forced mode = 0, which is not capable of auto-negotiation: `adv_autoneg_cap 0`

 Use the `ndd` utility as described in “Using the ndd Utility in Interactive Mode” on page 19 in this chapter.

Auto-Negotiation Mode

To Set the Mode to Auto-Negotiation

1. **Select at least one of the four capabilities** (`adv_100fdx_cap`, `adv_100hdx_cap`, `adv_10fdx_cap`, `adv_10hdx_cap`) that you want to advertise to the remote system, and set its value to 1.

2. Set the local transceiver capabilities advertised by the hardware to 1, the auto-negotiation setting: `adv_autoneg_cap 1`

 Use the `ndd` utility as described in “Using the ndd Utility in Interactive Mode” on page 19 in this chapter.

Setting Parameters in the `/etc/system` File

To configure the `eri` driver parameters for all `SUNW,eri` devices in the system so that the parameter variables are always effective (even after rebooting the system), enter the parameter variables in the `/etc/system` file. When you reboot the system, the system reads the `/etc/system` file and sets these parameter variables in the `eri` module in the operating system kernel.
The following table lists the variables you need to set in the /etc/system file.

TABLE 4-1 Setting Variables in the /etc/system File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipg1</td>
<td>0, 255</td>
<td>ipg1 = 8 (default at initialization)</td>
</tr>
<tr>
<td>ipg2</td>
<td>0, 255</td>
<td>ipg2 = 4 (default at initialization)</td>
</tr>
<tr>
<td>pace_size</td>
<td>1-255</td>
<td>Number of back-to-back packets transmitted at one time</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>No limit to the number of back-to-back packets that can be transmitted (default)</td>
</tr>
<tr>
<td>adv_autoneg_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Forced mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Auto-negotiation (default)</td>
</tr>
<tr>
<td>adv_100fdx_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 100 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 100 Mbit/sec full-duplex capable (default)</td>
</tr>
<tr>
<td>adv_100hdx_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 100 Mbit/sec half-duplex capable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 100 Mbit/sec half-duplex capable (default)</td>
</tr>
<tr>
<td>adv_10fdx_cap</td>
<td>Local transceiver capability advertised by the hardware; read/write parameter</td>
<td>0 = Not 10 Mbit/sec full-duplex capable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 10 Mbit/sec full-duplex capable (default)</td>
</tr>
</tbody>
</table>
These parameter values, described in Chapter 3, are applicable to all SUNW,erii devices on the system. See TABLE 3-2 through TABLE 3-9 for parameter descriptions. An example follows.

To Set ipg1 to 10 and ipg2 to 5 When Rebooting

1. Become superuser.
2. Add the following lines to the `/etc/system` file:

   ```
   set eri:ipg1 = 10
   set eri:ipg2 = 5
   ```

3. Save the `/etc/system` file.
4. Save all files and exit all programs. Exit the windowing system.
5. Reboot the system by typing `init 6` at the superuser prompt.
 The system is halted and then rebooted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adv_10hdx_cap</td>
<td>Local transceiver capability</td>
<td>0 = Not 10 Mbit/sec half-duplex capable</td>
</tr>
<tr>
<td></td>
<td>advertised by the hardware;</td>
<td>1 = 10 Mbit/sec half-duplex capable (default)</td>
</tr>
<tr>
<td></td>
<td>read/write parameter</td>
<td></td>
</tr>
<tr>
<td>lance_mode</td>
<td>0</td>
<td>lance_mode disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>lance_mode enabled (default)</td>
</tr>
<tr>
<td>ipg0</td>
<td>0-31 — Note: The default value</td>
<td>Additional IPG before transmitting a packet (after receiving a packet)</td>
</tr>
<tr>
<td></td>
<td>is 16 nibble-times,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>which is 6.4 microseconds,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for 10 Mbps and 0.64 microseconds for 100 Mbps</td>
<td></td>
</tr>
</tbody>
</table>
Setting Parameters Using the `eri.conf` File

You can also specify the properties described in the section, “Setting Parameters in the `/etc/system File” on page 21,” in this chapter on a per-device basis by creating the `eri.conf` file in the `/kernel/drv` directory. The properties set in the `eri.conf` file will override the parameters set in the `/etc/system` file. Use `eri.conf` when you need to set a particular parameter for a device in the system. The parameters you set are read and write parameters that are listed in Chapter 3.

The man pages for `prtconf (1M), system (4)` and `driver.conf (4)` include additional details. An example follows:

▼ To Configure Driver Parameters Using `eri.conf`

1. Obtain the hardware path name for the device in the device tree.

 Typically this path name and the associated instance number will be present in the `/etc/path_to_inst` file. For example, on a Sun Blade 1000 PCI system, the `/etc/path_to_inst` file will have the following entry:

   ```
   "/pci@8,700000/network@5,1" 0 "eri"
   ```

 - In the entry:
 - The first part within the double quotes specifies the hardware node name in the device tree.
 - The second number is the instance number.
 - The last part in double quotes is the driver name.
 - In the device path name, the last component after the last `/` character and before the `@` character is the device name.
 - The path name before the last component is the parent name.
The comma-separated numbers after the @ character at the end represent the device and function numbers, which are together referred to as unit-address.

To identify a PCI device unambiguously in the eri.conf file, use the name, parent name, and the unit-address for the device. Refer to the pci(4) man page for more information about PCI device specification.

In the first line of the previous example:

- Name = eri
- Parent = /pci@8,700000
- Unit-address = 5,1

2. Set the ipg1 and ipg2 parameters for the above device in the /kernel/drv/eri.conf file:

```bash
name = "eri" parent = "/pci@8,700000" unit-address = "5,1" ipg1=10 ipg2=5;
```
Auto-Negotiation

An understanding of auto-negotiation will help you manage your Sun ethernet FastEthernet interface. Auto-negotiation automates the speed and mode of the interface. Auto-negotiation detects the link partner capabilities and accommodates to them.

The Auto-Negotiation Protocol

Autonegotiation is a key feature of the Sun ethernet FastEthernet driver. The auto-negotiation protocol, as specified by the 100BASE-T IEEE 802.3u Ethernet Standard, selects the operation mode (half-duplex or full-duplex), and the auto-sensing protocol selects the speed (10 Mbps or 100 Mbps) for the adapter.

Boot Process on the Network

The auto-negotiation protocol does the following when the system is booted:

- Identifies all link partner-supported modes of operation
- Advertises its capabilities to the link partner
- Selects the highest common denominator mode of operation based on the following priorities (in decreasing order):

<table>
<thead>
<tr>
<th>Priority</th>
<th>Line Speed and Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>100 Mbps, full-duplex</td>
</tr>
<tr>
<td>Second</td>
<td>100 Mbps, half-duplex</td>
</tr>
<tr>
<td>Third</td>
<td>10 Mbps, full-duplex</td>
</tr>
<tr>
<td>Fourth</td>
<td>10 Mbps, half-duplex</td>
</tr>
</tbody>
</table>
The link partner is the networking device (system, Ethernet hub, or Ethernet switch) at the other end of the link or cable.

Correcting Errors in Negotiating

If the SUNW,eri device is connected to a remote system or interface that is not capable of auto-negotiation, your system automatically selects the correct speed and half-duplex mode.

If the Sun eri FastEthernet is connected to a link partner with which the auto-negotiation protocol fails to operate successfully, you can configure the device so it does not use this protocol. This forces the driver to set up the link in the mode and speed of your choice.

Internal (Local) Transceiver

The internal transceiver also supports a forced mode of operation. This is where the user selects the speed and mode using the ndd utility, by editing the /etc/system file, or by creating an eri.conf file in the kernal/drv/ directory. The ndd utility makes calls to the eri driver to choose the speed and mode.
Index

A
Auto-Negotiation
hardware characteristics, 2

path_to_inst, 3

B
Booting From the Network, 5

C
configuring the driver software, 3
configuring the host file, 3

D
device, 18, 24
devices, 3
DLPI
Data Link Provider Interface, 18
Driver Parameter Values and Definitions, 9

F
Files
/etc/hostname.erinum, 4
/etc/hosts, 4
/etc/path_to_inst, 18, 24
/etc/system, 17, 21, 23
/kernel/drv/eri.conf, 25

eri.conf, 17, 24
H
Hardware Overview, 1
host file, configuring, 3

I
instance, 18
instance number, 4

N
ndd Utility in Interactive Mode, 19
ndd Utility in Non-Interactive Mode, 19
nvedit command, 6
nvstore command, 7

O
Operating Speeds and Modes, 1
Operational Modes
Auto-Negotiation Mode, 21
Setting Forced Mode, 20
Optional Post-Installation Procedures, 6
Parameter Definitions, 9
Parameter Options, 17
Parameters
- 100fdx_cap, 10, 15
- 100hdx_cap, 10, 15
- 10fdx_cap, 10, 15
- 10hdx_cap, 10, 15
- adv_100fdx_cap, 10, 13
- adv_100hdx_cap, 10, 14
- adv_10fdx_cap, 10, 14
- adv_10hdx_cap, 10, 14
- adv_autoneg_cap, 10, 13
- autoneg_cap, 10, 15
Defining an Additional Delay, 12
Defining the Current Status, 11
instance, 11
Inter-Packet Gap Parameters, 11
ipg0, 11, 13
ipg1, 10, 12
ipg2, 10, 12
lance_mode, 11, 13
link_mode, 9, 11
link_speed, 9, 11
link_status, 9, 11
lp_100fdx_cap, 10, 16
lp_100hdx_cap, 10, 16
lp_10fdx_cap, 10, 16
lp_10hdx_cap, 10, 16
lp_autoneg_cap, 10, 16
Number of Back-to-Back Packets to Transmit, 15
Operational Mode, 13
pace_size, 10, 15
Reporting the Link Partner Capabilities, 16
Reporting Transceiver Capabilities, 15
Setting in /etc/system file
- adv_100fdx_cap, 22
- adv_100hdx_cap, 22
- adv_10fdx_cap, 22
- adv_10hdx_cap, 23
- adv_autoneg_cap, 22
- ipg0, 23
- ipg1, 22
- ipg2, 22
- lance_mode, 23
- pace_size, 22
- transceiver_inuse, 9
parent name, 24
Priorities
- Operational Mode Priorities, 14

S
Setting Driver Parameters, 6
Setting Parameters, 17
Setting Parameters in the /etc/system File, 21
Setting Parameters Using ndd, 18
Setting Parameters Using the eri.conf File, 24
show-devs command, 6
show-nets command, 5

T
The eri Device Driver, 1

U
unit-address, 25