Multithreaded Programming Guide

Concurrency and Parallelism

In a multithreaded process on a single processor, the processor can switch execution resources between threads, resulting in concurrent execution. Concurrency indicates that more than one thread is making progress, but the threads are not actually running simultaneously. The switching between threads happens quickly enough that the threads might appear to run simultaneously.

In the same multithreaded process in a shared-memory multiprocessor environment, each thread in the process can run concurrently on a separate processor, resulting in parallel execution, which is true simultaneous execution. When the number of threads in a process is less than or equal to the number of processors available, the operating system's thread support system ensures that each thread runs on a different processor. For example, in a matrix multiplication that is programmed with four threads, and runs on a system that has two dual-core processors, each software thread can run simultaneously on the four processor cores to compute a row of the result at the same time.