This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which can create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which can create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which can create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved.
Contents

Preface ... 15

1 **Overview of Oracle Solaris System Tuning** .. 19
 What’s New in Oracle Solaris System Tuning? ... 19
 What’s New in Solaris System Tuning in the Solaris 10 Release? 21
 Default Stack Size .. 21
 System V IPC Configuration ... 22
 NFSv4 Parameters ... 23
 New and Changed TCP/IP Parameters ... 24
 SPARC: Translation Storage Buffer (TSB) Parameters .. 26
 SCTP Tunable Parameters ... 26
 Tuning a Solaris System ... 26
 Tuning Format of Tunable Parameters Descriptions .. 27
 Tuning the Solaris Kernel ... 28
 /etc/system File ... 29
 kmdb Command ... 30
 mdb Command ... 30
 Special Solaris tune and var Structures .. 31
 Viewing Solaris System Configuration Information .. 32
 sysdef Command ... 32
 kstat Utility .. 32

2 **Oracle Solaris Kernel Tunable Parameters** .. 33
 Where to Find Tunable Parameter Information .. 34
 General Kernel and Memory Parameters .. 34
 physemem ... 34
 zfs_arc_min .. 35
Contents

kmem_flags .. 61
General Driver Parameters ... 63
moddebug ... 63
ddi_msix_alloc_limit ... 64
General I/O Parameters ... 65
maxphys ... 65
rlim_fd_max ... 66
rlim_fd_cur ... 67
General File System Parameters .. 67
ncsize ... 67
rstchown .. 68
dnlc_dir_enable ... 69
dnlc_dir_min_size .. 69
dnlc_dir_max_size .. 70
segmap_percent ... 71
UFS Parameters ... 71
bufhwm and bufhwm_pct ... 71
ndquot ... 73
ufs_ninode .. 74
ufs_WRITES ... 75
ufs_LWandufs_HW ... 76
freebehind .. 77
smallfile .. 77
TMPFS Parameters .. 78
tmpfs:tmpfs_maxkmem ... 78
tmpfs:tmpfs_minfree ... 79
Pseudo Terminals ... 79
pt_cnt ... 80
pt_pctofmem .. 81
pt_max_pzy .. 81
STREAMS Parameters ... 82
nstrpush .. 82
strmsgsz .. 82
strctlsz .. 83
System V Message Queues ... 83
System V Semaphores ... 84
3 **NFS Tunable Parameters** .. 97

Where to Find Tunable Parameter Information .. 97

Tuning the NFS Environment ... 97

NFS Module Parameters ... 98

nfs:nfs3_pathconf_disable_cache ... 98

nfs:nfs4_pathconf_disable_cache ... 98

nfs:nfs_allow_preepoch_time ... 99

nfs:nfs_cots_timeo ... 100

nfs:nfs3_cots_timeo ... 100

nfs:nfs4_cots_timeo ... 101

nfs:nfs_do_symlink_cache ... 102

nfs:nfs3_do_symlink_cache ... 102

nfs:nfs4_do_symlink_cache ... 103

nfs:nfs_dynamic ... 104
nfs:nfs3_dynamic ... 104
nfs:nfs_lookup_neg_cache ... 105
nfs:nfs3_lookup_neg_cache ... 105
nfs:nfs4_lookup_neg_cache ... 106
nfs:nfs_max_threads ... 107
nfs:nfs3_max_threads ... 108
nfs:nfs4_max_threads ... 109
nfs:nfs_nra .. 109
nfs:nfs3_nra ... 110
nfs:nfs4_nra ... 111
nfs:nrnnode ... 111
nfs:nfs_shrinkreaddir .. 112
nfs:nfs3_shrinkreaddir .. 113
nfs:nfs_write_error_interval ... 114
nfs:nfs_write_error_to_cons_only 114
nfs:nfs_disable_rddir_cache ... 115
nfs:nfs_bsize ... 116
nfs:nfs3_bsize ... 116
nfs:nfs4_bsize ... 117
nfs:nfs_async_clusters ... 118
nfs:nfs3_async_clusters ... 119
nfs:nfs4_async_clusters ... 120
nfs:nfs_async_timeout ... 120
nfs:nacache ... 121
nfs:nfs3_jukebox_delay .. 122
nfs:nfs3_max_transfer_size ... 123
nfs:nfs4_max_transfer_size ... 124
nfs:nfs3_max_transfer_size_clts ... 124
nfs:nfs3_max_transfer_size_cots ... 125

nfssrv Module Parameters .. 126
nfssrv:nfs_portmon .. 126
nfssrv:rfs_write_async ... 126
nfssrv:nfsauth_ch_cache_max ... 127
nfssrv:exi_cache_time ... 128
rpcmod Module Parameters .. 129
rpcmod:clnt_max_conns ... 129
4 Internet Protocol Suite Tunable Parameters

Where to Find Tunable Parameter Information ... 135
Overview of Tuning IP Suite Parameters .. 135
Internet Request for Comments (RFCs) ... 136
IP Tunable Parameters .. 136
 ip_icmp_err_interval and ip_icmp_err_burst ... 136
 ip_respond_to_echo_broadcast and ip6_respond_to_echo_multicast 137
 ip_send_redirects and ip6_send_redirects ... 137
 ip_forward_src_routed and ip6_forward_src_routed ... 137
 ip_addrs_per_if ... 138
 ip_strict_dst_multihoming and ip6_strict_dst_multihoming ... 138
 ip_multidata_outbound ... 139
 ip_squeue_fanout ... 139
 ip_soft_rings_cnt .. 140
TCP Tunable Parameters .. 142
 tcp_deferred_ack_interval .. 142
 tcp_local_dack_interval ... 142
 tcp_deferred_acks_max ... 143
 tcp_local_dacks_max .. 143
 tcp_wscale_always .. 144
 tcp_tstamp_always .. 144
 tcp_xmit_hiwat .. 145
 tcp_rcv_hiwat .. 145
 tcp_max_buf ... 145
 tcp_cwnd_max .. 146
 tcp_slow_start_initial .. 146
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp_slow_start_after_idle</td>
<td>147</td>
</tr>
<tr>
<td>tcp_sack_permitted</td>
<td>147</td>
</tr>
<tr>
<td>tcp_rev_src_routes</td>
<td>148</td>
</tr>
<tr>
<td>tcp_time_wait_interval</td>
<td>148</td>
</tr>
<tr>
<td>tcp_ecn_permitted</td>
<td>148</td>
</tr>
<tr>
<td>tcp_conn_req_max_q</td>
<td>149</td>
</tr>
<tr>
<td>tcp_conn_req_max_q0</td>
<td>150</td>
</tr>
<tr>
<td>tcp_conn_req_min</td>
<td>151</td>
</tr>
<tr>
<td>tcp_rst_sent_rate_enabled</td>
<td>151</td>
</tr>
<tr>
<td>tcp_rst_sent_rate</td>
<td>152</td>
</tr>
<tr>
<td>tcp_mdt_max_pbufs</td>
<td>152</td>
</tr>
<tr>
<td>TCP/IP Parameters Set in the /etc/system File</td>
<td>152</td>
</tr>
<tr>
<td>TCP Parameters With Additional Cautions</td>
<td>154</td>
</tr>
<tr>
<td>UDP Tunable Parameters</td>
<td>157</td>
</tr>
<tr>
<td>udp_xmit_hiwat</td>
<td>157</td>
</tr>
<tr>
<td>udp_recv_hiwat</td>
<td>157</td>
</tr>
<tr>
<td>UDP Parameter With Additional Caution</td>
<td>157</td>
</tr>
<tr>
<td>IPQoS Tunable Parameter</td>
<td>158</td>
</tr>
<tr>
<td>ip_policy_mask</td>
<td>158</td>
</tr>
<tr>
<td>SCTP Tunable Parameters</td>
<td>159</td>
</tr>
<tr>
<td>sctp_max_init_retr</td>
<td>159</td>
</tr>
<tr>
<td>sctp_pa_max_retr</td>
<td>159</td>
</tr>
<tr>
<td>sctp_pp_max_retr</td>
<td>160</td>
</tr>
<tr>
<td>sctp_cwnd_max</td>
<td>160</td>
</tr>
<tr>
<td>sctp_ipv4_ttl</td>
<td>160</td>
</tr>
<tr>
<td>sctp_heartbeat_interval</td>
<td>161</td>
</tr>
<tr>
<td>sctp_new_secret_interval</td>
<td>161</td>
</tr>
<tr>
<td>sctp_initial_mtu</td>
<td>161</td>
</tr>
<tr>
<td>sctp_deferred_ack_interval</td>
<td>162</td>
</tr>
<tr>
<td>sctp_ignore_path_mtu</td>
<td>162</td>
</tr>
<tr>
<td>sctp_initial_ssthresh</td>
<td>162</td>
</tr>
<tr>
<td>sctp_xmit_hiwat</td>
<td>162</td>
</tr>
<tr>
<td>sctp_xmit_lowat</td>
<td>163</td>
</tr>
<tr>
<td>sctp_recv_hiwat</td>
<td>163</td>
</tr>
<tr>
<td>sctp_max_buf</td>
<td>163</td>
</tr>
<tr>
<td>sctp_ipv6_hoplimit</td>
<td>164</td>
</tr>
<tr>
<td>Parameter</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>sctp_rto_min</td>
<td>164</td>
</tr>
<tr>
<td>sctp_rto_max</td>
<td>164</td>
</tr>
<tr>
<td>sctp_rto_initial</td>
<td>165</td>
</tr>
<tr>
<td>sctp_cookie_life</td>
<td>165</td>
</tr>
<tr>
<td>sctp_max_in_streams</td>
<td>165</td>
</tr>
<tr>
<td>sctp_initial_out_streams</td>
<td>166</td>
</tr>
<tr>
<td>sctp_shutack_wait_bound</td>
<td>166</td>
</tr>
<tr>
<td>sctp_maxburst</td>
<td>166</td>
</tr>
<tr>
<td>sctp_addip_enabled</td>
<td>167</td>
</tr>
<tr>
<td>sctp_prsctp_enabled</td>
<td>167</td>
</tr>
</tbody>
</table>

5 Network Cache and Accelerator Tunable Parameters

Where to Find Tunable Parameters Information 169

Tuning NCA Parameters ... 169

 nca:nca_conn_hash_size ... 170
 nca:nca_conn_req_max_q .. 170
 nca:nca_conn_req_max_q0 ... 170
 nca:nca_ppmax ... 171
 nca:nca_vpmx ... 171

General System Tuning for the NCA ... 172

 sq_max_size ... 172
 ge:ge_intr_mode .. 173

6 System Facility Parameters

System Default Parameters ... 176

 autos ... 176
 cron ... 176
 devfsadm .. 176
 dhcpagent .. 176
 fs ... 176
 ftp ... 176
 inetinit ... 177
 init ... 177
 ipsec ... 177
A Tunable Parameters Change History

- **Kernel Parameters**
 - Process-Sizing Tunables
 - General Driver Parameter
 - General I/O Tunable Parameters
 - General Kernel and Memory Parameters
 - fsflush and Related Parameters
 - Paging-Related Tunable Parameters
 - General File System Parameters
 - ncsizel (Solaris 10 Release)
 - UFS Tunable Parameters
 - TMPFS Parameters
 - sun4u or sun4v Specific Parameters (Solaris 10 Releases)

- **NFS Tunable Parameters**
 - nfs:nfs3_nra (Solaris 10)
 - nfs:rrnode (Solaris 9 8/03)
 - nfs:nfs_write_error_interval (Solaris 9 8/03)
 - nfs:nfs_write_error_to_cons_only (Solaris 9 8/03)
Preface

The Oracle Solaris Tunable Parameters Reference Manual provides reference information about Oracle Solaris OS kernel and network tunable parameters. This manual does not provide tunable parameter information about desktop systems or Java environments.

This manual contains information for both SPARC based and x86 based systems.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor architectures. The supported systems appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 terms mean the following:

- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” relates specifically to 64-bit x86 compatible CPUs.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl.

Who Should Use This Book

This book is intended for experienced Solaris system administrators who might need to change kernel tunable parameters in certain situations. For guidelines on changing Solaris tunable parameters, refer to “Tuning a Solaris System” on page 26.

How This Book Is Organized

The following table describes the chapters and appendixes in this book.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, "Overview of Oracle Solaris System Tuning"</td>
<td>An overview of tuning a Solaris system. Also provides a description of the format used in the book to describe the kernel tunables.</td>
</tr>
</tbody>
</table>
Other Resources for Solaris Tuning Information

This table describes other resources for Solaris tuning information.

<table>
<thead>
<tr>
<th>Tuning Resource</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online performance tuning information</td>
<td>http://www.solarisinternals.com/si/index.php</td>
</tr>
<tr>
<td>In-depth technical white papers</td>
<td>http://developers.sun.com/solaris/</td>
</tr>
</tbody>
</table>

Documentation, Support, and Training

See the following web sites for additional resources:

- Documentation (http://docs.sun.com)
- Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.
Oracle Welcomes Your Comments

Oracle welcomes your comments and suggestions on the quality and usefulness of its documentation. If you find any errors or have any other suggestions for improvement, go to http://docs.sun.com and click Feedback. Indicate the title and part number of the documentation along with the chapter, section, and page number, if available. Please let us know if you want a reply.

Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a range of resources related to Oracle software:

- Discuss technical problems and solutions on the Discussion Forums (http://forums.oracle.com).

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is rm filename.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User's Guide. A cache is a copy that is stored locally. Do not save the file. Note: Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>
Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

TABLE P-2 Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
Overview of Oracle Solaris System Tuning

This section provides overview information about the format of the tuning information in this manual. This section also describes the different ways to tune a Solaris system.

- “What’s New in Oracle Solaris System Tuning?” on page 19
- “What’s New in Solaris System Tuning in the Solaris 10 Release?” on page 21
- “Tuning a Solaris System” on page 26
- “Tuning Format of Tunable Parameters Descriptions” on page 27
- “Tuning the Solaris Kernel” on page 28
- “Special Solaris tuned and var Structures” on page 31
- “Viewing Solaris System Configuration Information” on page 32
- “kstat Utility” on page 32

What's New in Oracle Solaris System Tuning?

This section describes new or changed parameters in this Oracle Solaris release.

- **Solaris 10 10/09**: This release includes the zfs_arc_min and zfs_arc_max parameter descriptions. For more information, see “zfs_arc_min” on page 35 and “zfs_arc_max” on page 35.

- **Solaris 10 10/09**: This release includes the ddi_msix_alloc_limit parameter that can be used to increase the number of MSI-X interrupts that a device instance can allocate. For more information, see “ddi_msix_alloc_limit” on page 64.

- **Solaris 10 5/09**: A previous version of this manual incorrectly identified the range of the tcp_local_dack_interval parameter as 1 millisecond to 1 minute. The correct range is 10 milliseconds to 1 minute. For more information, see “tcp_local_dack_interval” on page 142.

- **Solaris 10 10/08**: The Solaris 10 version of this manual inadvertently included the nfs4_shrinkreaddir parameter information. This parameter is not available.

- **Solaris 10 10/08**: For information about tuning ZFS file systems, see the following site:
Solaris 10 5/08: Memory locality group parameters will be provided in a Solaris 10 5/08 kernel patch. For more information about these parameters, see “Locality Group Parameters” on page 91.

Solaris 10 5/08: The Solaris 10 version of this manual inadvertently included the nfs4_dynamic parameter information. This parameter is not available.

Solaris 10 5/08: The translation storage buffers parameters in the “sun4u or sun4v Specific Parameters” on page 87 section are being revised to provide better information. In this release, the following parameters have changed:
- "default_tsb_size" on page 89
- "enable_tsb_rss_sizing" on page 90
- "tsb_rss_factor" on page 90

Solaris 10 5/08: The Solaris 10 version of this manual inadvertently included the tcp_keepalive_abort_interval parameter information. This parameter is only available in the Open Solaris release.

Solaris 10 8/07: Parameter information was updated to include sun4v systems. For more information, see the following references:
- "maxphys" on page 65
- "tmpfs:tmpfs_maxkmem" on page 78
- "sun4u or sun4v Specific Parameters” on page 87

Solaris 10 8/07: The range value for the maxpgio parameter information that was previously published in this book was incorrect. For more information, see "maxpgio" on page 58.

Solaris 10 8/07: The IP instances project enables you to configure a zone as an exclusive-IP zone and assign exclusive access of some LANs or VLANs to that zone. The previous behavior of shared-IP zones remains the default behavior. The exclusive-IP zone means that all aspects of the TCP/IP state and policy are per exclusive-IP zone, including TCP/IP tunable parameters. The introduction of the IP instances feature means that the following TCP parameters can only be set in the global zone because they require the PRIV_SYS_NET_CONFIG privilege:
- "ip_squeue_fanout" on page 139
- "ip_squeue_worker_wait" on page 153
- "ip_soft_rings_cnt" on page 140

The other TCP, IP, UDP, and SCTP parameters and route metrics only require the PRIV_SYS_IP_CONFIG privilege. Each exclusive-IP zone controls its own set of these parameters. For shared-IP zones, TCP, IP, UDP, SCTP, and route parameters are controlled by the global zone since the settings of these parameters are shared between the global zone and all shared IP zones.

What's New in Solaris System Tuning in the Solaris 10 Release?

This section describes new or changed parameters in the Solaris 10 release.

- “Default Stack Size” on page 21
- “System V IPC Configuration” on page 22
- “NFSv4 Parameters” on page 23
- “New and Changed TCP/IP Parameters” on page 24
- “SPARC: Translation Storage Buffer (TSB) Parameters” on page 26
- “SCTP Tunable Parameters” on page 26

Default Stack Size

A new parameter, default_stksize, specifies the default stack size of all threads, kernel or user. The lwp_default_stksize parameter is still available, but it does not affect all kernel stacks. If default_stksize is set, it overrides lwp_default_stksize. For more information, see “default_stksize” on page 36.
System V IPC Configuration

In this Solaris release, all System V IPC facilities are either automatically configured or can be controlled by resource controls. Facilities that can be shared are memory, message queues, and semaphores.

Resource controls allow IPC settings to be made on a per-project or per-process basis on the local system or in a name service environment.

In previous Solaris releases, IPC facilities were controlled by kernel tunables. You had to modify the `/etc/system` file and reboot the system to change the default values for these facilities.

Because the IPC facilities are now controlled by resource controls, their configuration can be modified while the system is running.

Many applications that previously required system tuning to function might now run without tuning because of increased defaults and the automatic allocation of resources.

The following table identifies the now obsolete IPC tunables and the possible resource controls that could be used as replacements. An important distinction between the obsolete IPC tunables and resource controls is that the IPC tunables were set on a system-wide basis and the resource controls are set on a per-project or per-process basis.

<table>
<thead>
<tr>
<th>Resource Control</th>
<th>Obsolete Tunable</th>
<th>Old Default Value</th>
<th>Maximum Value</th>
<th>New Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>process.max-msg-qbytes</td>
<td>msgsys:msginfo_msgmnb</td>
<td>4096</td>
<td>ULONG_MAX</td>
<td>65536</td>
</tr>
<tr>
<td>process.max-msg-messages</td>
<td>msgsys:msginfo_msgsq</td>
<td>40</td>
<td>UINT_MAX</td>
<td>8192</td>
</tr>
<tr>
<td>process.max-sem-ops</td>
<td>semsys:seminfo_semop</td>
<td>10</td>
<td>INT_MAX</td>
<td>512</td>
</tr>
<tr>
<td>process.max-sem-nsems</td>
<td>semsys:seminfo_sems</td>
<td>25</td>
<td>SHRT_MAX</td>
<td>512</td>
</tr>
<tr>
<td>project.max-shm-memory</td>
<td>shmsys:shminfo_shmmax*</td>
<td>0x8000000</td>
<td>UINT64_MAX</td>
<td>1/4 of physical memory</td>
</tr>
<tr>
<td>project.max-shm-ids</td>
<td>shmsys:shminfo_shmmni</td>
<td>100</td>
<td>2^{24}</td>
<td>128</td>
</tr>
<tr>
<td>project.max-msg-ids</td>
<td>msgsys:msginfo_msgmi</td>
<td>50</td>
<td>2^{24}</td>
<td>128</td>
</tr>
<tr>
<td>project.max-sem-ids</td>
<td>semsys:seminfo_semmni</td>
<td>10</td>
<td>2^{24}</td>
<td>128</td>
</tr>
</tbody>
</table>

* Note that the `project.max-shm-memory` resource control limits the total amount of shared memory of one project, whereas previously, the `shmsys:shminfo_shmmax` parameter limited the size of a single shared memory segment.

Obsolete parameters can still be included in the /etc/system file on a Solaris system. If so, the parameters are used to initialize the default resource control values as in previous Solaris releases. For more information, see “Parameters That Are Obsolete or Have Been Removed” on page 195. However, using the obsolete parameters is not recommended.

The following related parameters have been removed. If these parameters are included in the /etc/system file on a Solaris system, the parameters are commented out.

```bash
semsys:seminfo_semmns
semsys:seminfo_semmnu
semsys:seminfo_semmume
semsys:seminfo_semmap
shmsys:shminfo_shmmap
msgsys:msginfo_msgseg
msgsys:msginfo_msgssz
msgsys:msginfo_msgmax
```

For the current list of available resource controls, see `rctladm(1M)`. For information about configuring resource controls, see `project(4)`, and Chapter 6, “Resource Controls (Overview),” in System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones.

NFSv4 Parameters

The following parameters for the NFSv4 protocol are included in this release:

- "nfs:nfs4_pathconf_disable_cache" on page 98
- "nfs:nfs4_cots_timeo" on page 101
- "nfs:nfs4_do_symlink_cache" on page 103
- "nfs:nfs4_lookup_neg_cache" on page 106
- "nfs:nfs4_max_threads" on page 109
- "nfs:nfs4_nra" on page 111
- "nfs:nfs4_bsize" on page 117
- "nfs:nfs4_async_clusters" on page 120
- "nfs:nfs4_max_transfer_size" on page 124

For information about NFSv4 parameters, see “NFS Module Parameters” on page 98.
New and Changed TCP/IP Parameters

The following IP parameters have been added in this Solaris release:
- “ip_squeue_worker_wait” on page 153
- “ip_squeue_fanout” on page 139
- “ipcl_conn_hash_size” on page 153

The following TCP parameters are new in this Solaris release:
- “tcp_rst_sent_rate_enabled” on page 151
- “tcp_rst_sent_rate” on page 152
- “tcp_mdt_max_pbufs” on page 152

The following TCP/IP parameters are obsolete in this Solaris release:
- ipc_tcp_conn_hash_size
- tcp_compression_enabled
- tcp_conn_hash_size
- ip_forwarding
- ip6_forwarding
- xxx_forwarding

IP Forwarding Changes

In this Solaris release, IP forwarding is enabled or disabled by using the routeadm command or the ifconfig commands instead of setting the following tunable parameters with the ndd command:
- ip_forwarding
- ip6_forwarding
- xxx_forwarding

Using the routeadm command and the ifconfig command instead of the ndd command to set IP forwarding provides the following advantages:
- All settings are persistent across reboots
- The new ifconfig router and -router commands can be placed in the /etc/hostname.interface files, along with other ifconfig commands that are run when the interface is initially configured.

To enable IPv4 or IPv6 packet forwarding on all interfaces of a system, you would use the following commands:

```
# routeadm -e ipv4-forwarding
# routeadm -e ipv6-forwarding
```
To disable IPv4 or IPv6 packet forwarding on all interfaces of a system, you would use the following commands:

```bash
# routeadm -d ipv4-forwarding
# routeadm -d ipv6-forwarding
```

In previous Solaris releases, you would enable IPv4 or IPv6 packet forwarding on all interfaces of a system as follows:

```bash
# ndd -set /dev/ip ip_forwarding 1
# ndd -set /dev/ip ip6_forwarding 1
```

In previous Solaris releases, you would disable IPv4 or IPv6 packet forwarding on all interfaces of a system as follows:

```bash
# ndd -set /dev/ip ip_forwarding 0
# ndd -set /dev/ip ip6_forwarding 0
```

If you want to enable IP forwarding on a specific IPv4 interface or IPv6 interface, you would use syntax similar to the following for your interface. The bge0 interface is used as an example.

```bash
# ifconfig bge0 router
# ifconfig bge0 inet6 router
```

If you want to disable IP forwarding on a specific IPv4 interface or IPv6 interface, you would use syntax similar to the following for your interface. The bge0 interface is used as an example.

```bash
# ifconfig bge0 -router
# ifconfig bge0 inet6 -router
```

Previously, IP forwarding was enabled on a specific interface as follows:

```bash
# ndd -set /dev/ip bge0:ip_forwarding 1
# ndd -set /dev/ip bge0:ip6_forwarding 1
```

Previously, IP forwarding on a specific interface was disabled as follows:

```bash
# ndd -set /dev/ip ip_forwarding 0
# ndd -set /dev/ip ip6_forwarding 0
```

If you want any of the preceding `routeadm` settings to take effect on the running system, use the following command:
For more information, see `routeadm(1M)` and `ifconfig(1M)`.

SPARC: Translation Storage Buffer (TSB) Parameters

New parameters for tuning Translation Storage Buffer (TSB) are included in this release. For information about TSB parameters, see "sun4u or sun4v Specific Parameters" on page 87.

SCTP Tunable Parameters

Stream Control Transmission Protocol (SCTP), a reliable transport protocol that provides services similar to the services provided by TCP, is provided in this Solaris release. For more information about SCTP tunable parameters, see “SCTP Tunable Parameters” on page 159.

Tuning a Solaris System

The Solaris OS is a multi-threaded, scalable UNIX operating system that runs on SPARC and x86 processors. It is self-adjusting to system load and demands minimal tuning. In some cases, however, tuning is necessary. This book provides details about the officially supported kernel tuning options available for the Solaris OS.

The Solaris kernel is composed of a core portion, which is always loaded, and a number of loadable modules that are loaded as references are made to them. Many variables referred to in the kernel portion of this guide are in the core portion. However, a few variables are located in loadable modules.

A key consideration in system tuning is that setting system parameters (or system variables) is often the least effective action that can be done to improve performance. Changing the behavior of the application is generally the most effective tuning aid available. Adding more physical memory and balancing disk I/O patterns are also useful. In a few rare cases, changing one of the variables described in this guide will have a substantial effect on system performance.

Remember that one system’s `/etc/system` settings might not be applicable, either wholly or in part, to another system’s environment. Carefully consider the values in the file with respect to the environment in which they will be applied. Make sure that you understand the behavior of a system before attempting to apply changes to the system variables that are described here.

We recommend that you start with an empty `/etc/system` file when moving to a new Solaris release. As a first step, add only those tunables that are required by in-house or third-party applications. Any tunables that involve System V IPC (semaphores, shared memory, and message queues) have been modified in the Solaris 10 release and should be changed in your
environment. For more information, see “System V IPC Configuration” on page 22. After baseline testing has been established, evaluate system performance to determine if additional tunable settings are required.

Caution – The tunable parameters described in this book can and do change from Solaris release to Solaris release. Publication of these tunable parameters does not preclude changes to the tunable parameters and their descriptions without notice.

Tuning Format of Tunable Parameters Descriptions

The format for the description of each tunable parameter is as follows:

- Parameter Name
- Description
- Data Type
- Default
- Range
- Units
- Dynamic?
- Validation
- Implicit
- When to Change
- Zone Configuration
- Commitment Level
- Change History

Parameter Name

Is the exact name that is typed in the /etc/system file, or found in the /etc/default/facility file.

Most parameters names are of the form parameter where the parameter name does not contain a colon (:). These names refer to variables in the core portion of the kernel. If the name does contain a colon, the characters to the left of the colon reference the name of a loadable module. The name of the parameter within the module consists of the characters to the right of the colon. For example:

module_name:variable

Description

Briefly describes what the parameter does or controls.

Data Type

Indicates the signed or unsigned short integer or long integer with the following distinctions:

- On a system that runs a 32-bit kernel, a long integer is the same size as an integer.
On a system that runs a 64-bit kernel, a long integer is twice the width in bits as an integer. For example, an unsigned integer = 32 bits, an unsigned long integer = 64 bits.

<table>
<thead>
<tr>
<th>Units</th>
<th>(Optional) Describes the unit type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>What the system uses as the default value.</td>
</tr>
<tr>
<td>Range</td>
<td>Specifies the possible range allowed by system validation or the bounds of the data type.</td>
</tr>
<tr>
<td></td>
<td>- MAXINT – A shorthand description for the maximum value of a signed integer (2,147,483,647)</td>
</tr>
<tr>
<td></td>
<td>- MAXUINT – A shorthand description for the maximum value of an unsigned integer (4,294,967,295)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, if the parameter can be changed on a running system with the mdb or kmdb debugger. No, if the parameter is a boot time initialization only.</td>
</tr>
<tr>
<td>Validation</td>
<td>Checks that the system applies to the value of the variable either as specified in the /etc/system file or the default value, as well as when the validation is applied.</td>
</tr>
<tr>
<td>Implicit</td>
<td>(Optional) Provides unstated constraints that might exist on the parameter, especially in relation to other parameters.</td>
</tr>
<tr>
<td>When to Change</td>
<td>Explains why someone might want to change this value. Includes error messages or return codes.</td>
</tr>
<tr>
<td>Zone Configuration</td>
<td>Identifies whether the parameter can be set in a exclusive-IP zone or must be set in the global zone. None of the parameters can be set in shared-IP zones.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Identifies the stability of the interface. Many of the parameters in this manual are still evolving and are classified as unstable. For more information, see attributes(5).</td>
</tr>
<tr>
<td>Change History</td>
<td>(Optional) Contains a link to the Change History appendix, if applicable.</td>
</tr>
</tbody>
</table>

Tuning the Solaris Kernel

The following table describes the different ways tunable parameters can be applied.
Apply Tunable Parameters in These Ways

<table>
<thead>
<tr>
<th>Tunable Parameters Method</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify the <code>/etc/system</code> file</td>
<td>"/etc/system File" on page 29</td>
</tr>
<tr>
<td>Use the kernel debugger (kmdb)</td>
<td>"kmdb Command" on page 30</td>
</tr>
<tr>
<td>Use the modular debugger (mdb)</td>
<td>"mdb Command" on page 30</td>
</tr>
<tr>
<td>Use the ndd command to set TCP/IP parameters</td>
<td>Chapter 4, "Internet Protocol Suite Tunable Parameters"</td>
</tr>
<tr>
<td>Modify the <code>/etc/default</code> files</td>
<td>“Tuning NCA Parameters” on page 169</td>
</tr>
</tbody>
</table>

/etc/system File

The `/etc/system` file provides a static mechanism for adjusting the values of kernel parameters. Values specified in this file are read at boot time and are applied. Any changes that are made to the file are not applied to the operating system until the system is rebooted.

Prior to the Solaris 8 release, `/etc/system` entries that set the values of parameters were applied in two phases:

- The first phase obtains various bootstrap parameters (for example, `maxusers`) to initialize key system parameters.
- The second phase calculates the base configuration by using the bootstrap parameters, and all values specified in the `/etc/system` file are applied. In the case of the bootstrap parameters, reapplied values replace the values that are calculated or reset in the initialization phase.

The second phase sometimes caused confusion to users and administrators by setting parameters to values that seem to be impermissible or by assigning values to parameters (for example, `max_nprocs`) that have a value overridden during the initial configuration.

Starting in the Solaris 8 release, one pass is made to set all the values before the configuration parameters are calculated.

Example — Setting a Parameter in `/etc/system`

The following `/etc/system` entry sets the number of read-ahead blocks that are read for file systems mounted using NFS version 2 software.

```
set nfs:nfs_nra=4
```

Recovering From an Incorrect Value

Make a copy of the `/etc/system` file before modifying it so that you can easily recover from incorrect value. For example:

```
# cp /etc/system /etc/system.good
```
If a value specified in the /etc/system file causes the system to become unbootable, you can recover with the following command:

```
ok boot -a
```

This command causes the system to ask for the name of various files used in the boot process. Press the Return key to accept the default values until the name of the /etc/system file is requested. When the Name of system file [/etc/system]: prompt is displayed, type the name of the good /etc/system file or /dev/null:

```
Name of system file [/etc/system]: /etc/system.good
```

If /dev/null is specified, this path causes the system to attempt to read from /dev/null for its configuration information. Because this file is empty, the system uses the default values. After the system is booted, the /etc/system file can be corrected.

For more information on system recovery, see System Administration Guide: Basic Administration.

kmdb Command

kmdb is a interactive kernel debugger with the same general syntax as mdb. An advantage of interactive kernel debugger is that you can set breakpoints. When a breakpoint is reached, you can examine data or step through the execution of kernel code.

kmdb can be loaded and unloaded on demand. You do not have to reboot the system to perform interactive kernel debugging, as was the case with kadb.

For more information, see kmdb(1).

mdb Command

Starting with the Solaris 8 release is the modular debugger, mdb, is unique among Solaris debuggers because it is easily extensible. A programming API is available that allows compilation of modules to perform desired tasks within the context of the debugger.

mdb also includes a number of desirable usability features, including command-line editing, command history, built-in output pager, syntax checking, and command pipelining. mdb is the recommended post-mortem debugger for the kernel.

For more information, see mdb(1).

Example—Using mdb to Change a Value

To change the value of the integer parameter maxusers from 495 to 512, do the following:
Special Solaris tune and var Structures

Solaris tunable parameters come in a variety of forms. The tune structure defined in the `/usr/include/sys/tunable.h` file is the runtime representation of `tune_t_fsflushr`, `tune_t_minarmem`, and `tune_t_flkrec`. After the kernel is initialized, all references to these variables are found in the appropriate field of the `tune` structure.

Various documents (for example, previous versions of Solaris System Administration Guide, Volume 2) have stated that the proper way to set parameters in the `tune` structure is to use the syntax, `tune:field-name` where `field-name` is replaced by the actual parameter name listed above. This process silently fails. The proper way to set parameters for this structure at boot time is to initialize the special parameter that corresponds to the desired field name. The system initialization process then loads these values into the `tune` structure.

A second structure into which various tunable parameters are placed is the `var` structure named `v`. You can find the definition of a `var` structure in the `/usr/include/sys/var.h` file. The runtime representation of variables such as `autoup` and `bufhwm` is stored here.

Do not change either the `tune` or `var` structure on a running system. Changing any field in these structures on a running system might cause the system to panic.

Special Solaris tune and var Structures

Solaris tunable parameters come in a variety of forms. The `tune` structure defined in the `/usr/include/sys/tunable.h` file is the runtime representation of `tune_t_fsflushr`, `tune_t_minarmem`, and `tune_t_flkrec`. After the kernel is initialized, all references to these variables are found in the appropriate field of the `tune` structure.

Various documents (for example, previous versions of Solaris System Administration Guide, Volume 2) have stated that the proper way to set parameters in the `tune` structure is to use the syntax, `tune:field-name` where `field-name` is replaced by the actual parameter name listed above. This process silently fails. The proper way to set parameters for this structure at boot time is to initialize the special parameter that corresponds to the desired field name. The system initialization process then loads these values into the `tune` structure.

A second structure into which various tunable parameters are placed is the `var` structure named `v`. You can find the definition of a `var` structure in the `/usr/include/sys/var.h` file. The runtime representation of variables such as `autoup` and `bufhwm` is stored here.

Do not change either the `tune` or `var` structure on a running system. Changing any field in these structures on a running system might cause the system to panic.
Viewing Solaris System Configuration Information

Several tools are available to examine system configuration information. Some tools require superuser privilege. Other tools can be run by a non-privileged user. Every structure and data item can be examined with the kernel debugger by using \texttt{mdb} on a running system or by booting under \texttt{kmdb}.

For more information, see \texttt{mdb(1)} or \texttt{kadb(1M)}.

\textbf{sysdef Command}

The \texttt{sysdef} command provides the values of System V IPC settings, STREAMS tunables, process resource limits, and portions of the \texttt{tune} and \texttt{v} structures. For example, the \texttt{sysdef} “Tunable Parameters” section from on a 512-Mbyte Sun Ultra 80 system is as follows:

\begin{verbatim}
10387456 maximum memory allowed in buffer cache (bufhwm)
 7930 maximum number of processes (v.v.proc)
 99 maximum global priority in sys class (MAXCLSPRI)
 7925 maximum processes per user id (v.v.maxup)
 30 auto update time limit in seconds (NAUTOUP)
 25 page stealing low water mark (GPGSLO)
 5 fsflush run rate (FSFLUSHR)
 25 minimum resident memory for avoiding deadlock (MINARMEM)
 25 minimum swapable memory for avoiding deadlock (MINASMEM)
\end{verbatim}

For more information, see \texttt{sysdef(1M)}.

\textbf{kstat Utility}

\texttt{kstat} are data structures maintained by various kernel subsystems and drivers. They provide a mechanism for exporting data from the kernel to user programs without requiring that the program read kernel memory or have superuser privilege. For more information, see \texttt{kstat(1M)} or \texttt{kstat(3KSTAT)}.

\textbf{Note} – \texttt{kstat} data structures with \texttt{system} pages name in the \texttt{unix} module do not report statistics for \texttt{cachefree}. \texttt{cachefree} is not supported, starting in the Solaris 9 release.
This chapter describes most of the Oracle Solaris kernel tunable parameters.

- “General Kernel and Memory Parameters” on page 34
- “fsflush and Related Parameters” on page 40
- “Process-Sizing Parameters” on page 44
- “Paging-Related Parameters” on page 48
- “Swapping-Related Parameters” on page 59
- “Kernel Memory Allocator” on page 61
- “General Driver Parameters” on page 63
- “General I/O Parameters” on page 65
- “General File System Parameters” on page 67
- “UFS Parameters” on page 71
- “TMPFS Parameters” on page 78
- “Pseudo Terminals” on page 79
- “STREAMS Parameters” on page 82
- “System V Message Queues” on page 83
- “System V Semaphores” on page 84
- “System V Shared Memory” on page 84
- “Scheduling” on page 85
- “Timers” on page 86
- “sun4u or sun4v Specific Parameters” on page 87
- “Locality Group Parameters” on page 91
- “Solaris Volume Manager Parameters” on page 94
Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS tunable parameters</td>
<td>Chapter 3, “NFS Tunable Parameters”</td>
</tr>
<tr>
<td>Internet Protocol Suite tunable parameters</td>
<td>Chapter 4, “Internet Protocol Suite Tunable Parameters”</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) tunable parameters</td>
<td>Chapter 5, “Network Cache and Accelerator Tunable Parameters”</td>
</tr>
</tbody>
</table>

General Kernel and Memory Parameters

This section describes general kernel parameters that are related to physical memory and stack configuration.

physmem

Description: Modifies the system’s configuration of the number of physical pages of memory after the Solaris OS and firmware are accounted for.

Data Type: Unsigned long

Default: Number of usable pages of physical memory available on the system, not counting the memory where the core kernel and data are stored

Range: 1 to amount of physical memory on system

Units: Pages

Dynamic?: No

Validation: None

When to Change: Whenever you want to test the effect of running the system with less physical memory. Because this parameter does not take into account the memory used by the core kernel and data, as well as various other data structures allocated early in the startup process, the value of physmem should be less than the actual number of pages that represent the smaller amount of memory.

Commitment Level: Unstable
zfs_arc_min

Description
Determines the minimum size of the ZFS Adjustable Replacement Cache (ARC). See also “zfs_arc_max” on page 35.

Data Type
Unsigned Integer (64-bit)

Default
1/32nd of physical memory or 64 Mbytes, whichever value is larger.

Range
64 Mbytes to zfs_arc_max

Units
Bytes

Dynamic?
No

Validation
Yes, the range is validated.

When to Change
When a system's workload demand for memory fluctuates, the ZFS ARC caches data at a period of weak demand and then shrinks at a period of strong demand. However, ZFS does not shrink below the value of zfs_arc_min. The default value of zfs_arc_min is 12% of memory on large memory systems and so, can be a significant amount of memory. If a workload's highest memory usage requires more than 88% of system memory, consider tuning this parameter.

Commitment Level
Unstable

Change History
For information, see “zfs_arc_min (Solaris 10 Releases)” on page 182.

zfs_arc_max

Description
Determines the maximum size of the ZFS Adjustable Replacement Cache (ARC). See also “zfs_arc_min” on page 35.

Data Type
Unsigned Integer (64-bit)

Default
Three-fourths of memory on systems with less than 4 Gbytes of memory

physmem minus 1 Gbyte on systems with greater than 4 Gbytes of memory

Range
64 Mbytes to physmem

Units
Bytes

Dynamic?
No

Validation
Yes, the range is validated.
When to Change

If a future memory requirement is significantly large and well defined, you might consider reducing the value of this parameter to cap the ARC so that it does not compete with the memory requirement. For example, if you know that a future workload requires 20% of memory, it makes sense to cap the ARC such that it does not consume more than the remaining 80% of memory.

Commitment Level

Unstable

Change History

For information, see “zfs_arc_max (Solaris 10 Releases)” on page 182.

default_stksize

Description

Specifies the default stack size of all threads. No thread can be created with a stack size smaller than default_stksize. If default_stksize is set, it overrides lwp_default_stksize. See also “lwp_default_stksize” on page 37.

Data Type

Integer

Default

- 3 x PAGESIZE on SPARC systems
- 2 x PAGESIZE on x86 systems
- 5 x PAGESIZE on AMD64 systems

Range

Minimum is the default values:
- 3 x PAGESIZE on SPARC systems
- 2 x PAGESIZE on x86 systems
- 5 x PAGESIZE on AMD64 systems

Maximum is 32 times the default value.

Units

Bytes in multiples of the value returned by the getpagesize parameter. For more information, see getpagesize(3C).

Dynamic?

Yes. Affects threads created after the variable is changed.

Validation

Must be greater than or equal to 8192 and less than or equal to 262,144 (256 x 1024). Also must be a multiple of the system page size. If these conditions are not met, the following message is displayed:

Illegal stack size, Using N

The value of N is the default value of default_stksize.
When to Change

When the system panics because it has run out of stack space. The best solution for this problem is to determine why the system is running out of space and then make a correction.

Increasing the default stack size means that almost every kernel thread will have a larger stack, resulting in increased kernel memory consumption for no good reason. Generally, that space will be unused. The increased consumption means other resources that are competing for the same pool of memory will have the amount of space available to them reduced, possibly decreasing the system’s ability to perform work. Among the side effects is a reduction in the number of threads that the kernel can create. This solution should be treated as no more than an interim workaround until the root cause is remedied.

Commitment Level

Unstable

lwp_default_stksize

Description

Specifies the default value of the stack size to be used when a kernel thread is created, and when the calling routine does not provide an explicit size to be used.

Data Type

Integer

Default

- 8192 for x86 platforms
- 24,576 for SPARC platforms
- 20,480 for AMD64 platforms

Range

Minimum is the default values:
- 3 x PAGESIZE on SPARC systems
- 2 x PAGESIZE on x86 systems
- 5 x PAGESIZE on AMD64 systems

Maximum is 32 times the default value.

Units

Bytes in multiples of the value returned by the getpagesize parameter. For more information, see `getpagesize(3C)`.

Dynamic?

Yes. Affects threads created after the variable is changed.

Validation

Must be greater than or equal to 8192 and less than or equal to 262,144 (256 x 1024). Also must be a multiple of the system page size. If these conditions are not met, the following message is displayed:

Illegal stack size, Using N
The value of N is the default value of `lwp_default_stksize`.

When to Change
When the system panics because it has run out of stack space. The best solution for this problem is to determine why the system is running out of space and then make a correction.

Increasing the default stack size means that almost every kernel thread will have a larger stack, resulting in increased kernel memory consumption for no good reason. Generally, that space will be unused. The increased consumption means other resources that are competing for the same pool of memory will have the amount of space available to them reduced, possibly decreasing the system's ability to perform work. Among the side effects is a reduction in the number of threads that the kernel can create. This solution should be treated as no more than an interim workaround until the root cause is remedied.

Commitment Level
Unstable

Change History
For information, see “`lwp_default_stksize (Solaris 9 Releases)`” on page 182.

logevent_max_q_sz

Description
Maximum number of system events allowed to be queued and waiting for delivery to the `syseventd` daemon. Once the size of the system event queue reaches this limit, no other system events are allowed on the queue.

Data Type
Integer

Default
5000

Range
0 to MAXINT

Units
System events

Dynamic?
Yes

Validation
The system event framework checks this value every time a system event is generated by `ddi_log_sysevent` and `sysevent_post_event`.

For more information, see `ddi_log_sysevent(9F)` and `sysevent_post_event(3SYSEVENT)`.

When to Change
When error log messages indicate that a system event failed to be logged, generated, or posted.

Commitment Level
Unstable
segkpsize

Description
Specifies the amount of kernel pageable memory available. This memory is used primarily for kernel thread stacks. Increasing this number allows either larger stacks for the same number of threads or more threads. This parameter can only be set on a system running a 64-bit kernel. A system running a 64-bit kernel uses a default stack size of 24 Kbytes.

Data Type
Unsigned long

Default
- 64-bit kernels, 2 Gbytes
- 32-bit kernels, 512 Mbytes

Range
- 64-bit kernels, 512 Mbytes to 24 Gbytes

Units
8-Kbyte pages

Dynamic?
No

Validation
Value is compared to minimum and maximum sizes (512 Mbytes and 24 Gbytes for 64-bit systems). If smaller than the minimum or larger than the maximum, it is reset to 2 Gbytes. A message to that effect is displayed.

The actual size used in creation of the cache is the lesser of the value specified in `segkpsize` after the validation checking or 50 percent of physical memory.

When to Change
Required to support large numbers of processes on a system. The default size of 2 Gbytes, assuming at least 1 Gbyte of physical memory is present. This default size allows creation of 24-Kbyte stacks for more than 87,000 kernel threads. The size of a stack in a 64-bit kernel is the same, whether the process is a 32-bit process or a 64-bit process. If more than this number is needed, `segkpsize` can be increased, assuming sufficient physical memory exists.

Commitment Level
Unstable

Change History
For information, see “segkpsize (Solaris 9 12/02 Release)” on page 183.

noexec_user_stack

Description
Enables the stack to be marked as nonexecutable, which helps make buffer-overflow attacks more difficult.
A Solaris system running a 64-bit kernel makes the stacks of all 64-bit applications nonexecutable by default. Setting this parameter is necessary to make 32-bit applications nonexecutable on systems running 64-bit or 32-bit kernels.

Note – This parameter exists on all systems running the Solaris 2.6, 7, 8, 9, or 10 releases, but it is only effective on 64–bit SPARC and AMD64 architectures.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 (enabled)</td>
</tr>
<tr>
<td>Units</td>
<td>Toggle (on/off)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes. Does not affect currently running processes, only processes created after the value is set.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Should be enabled at all times unless applications are deliberately placing executable code on the stack without using <code>mprotect</code> to make the stack executable. For more information, see <code>mprotect(2)</code>.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
<tr>
<td>Change History</td>
<td>For information, see “noexec_user_stack (Solaris 9 Releases)” on page 182.</td>
</tr>
</tbody>
</table>

fsflush and Related Parameters

This section describes `fsflush` and related tunables.

fsflush

The system daemon, `fsflush`, runs periodically to do three main tasks:

1. On every invocation, `fsflush` flushes dirty file system pages over a certain age to disk.
2. On every invocation, `fsflush` examines a portion of memory and causes modified pages to be written to their backing store. Pages are written if they are modified and if they do not meet one of the following conditions:
 - Pages are kernel page
Pages are free
Pages are locked
Pages are associated with a swap device
Pages are currently involved in an I/O operation

The net effect is to flush pages from files that are mapped with mmap with write permission and that have actually been changed.

Pages are flushed to backing store but left attached to the process using them. This will simplify page reclamation when the system runs low on memory by avoiding delay for writing the page to backing store before claiming it, if the page has not been modified since the flush.

3. fsflush writes file system metadata to disk. This write is done every \(n \)th invocation, where \(n \) is computed from various configuration variables. See "tune_t_fsflushr" on page 41 and "autoup" on page 42 for details.

The following features are configurable:

- Frequency of invocation (tune_t_fsflushr)
- Whether memory scanning is executed (dopageflush)
- Whether file system data flushing occurs (doiflush)
- The frequency with which file system data flushing occurs (autoup)

For most systems, memory scanning and file system metadata synchronizing are the dominant activities for fsflush. Depending on system usage, memory scanning can be of little use or consume too much CPU time.

tune_t_fsflushr

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the number of seconds between fsflush invocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>1</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>Seconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>If the value is less than or equal to zero, the value is reset to 1 and a warning message is displayed. This check is done only at boot time.</td>
</tr>
<tr>
<td>When to Change</td>
<td>See the autoup parameter.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
autoup

Description Along with tune_t_flushr, autoup controls the amount of memory examined for dirty pages in each invocation and frequency of file system synchronizing operations.

The value of autoup is also used to control whether a buffer is written out from the free list. Buffers marked with the B_DELWRI flag (which identifies file content pages that have changed) are written out whenever the buffer has been on the list for longer than autoup seconds. Increasing the value of autoup keeps the buffers in memory for a longer time.

Data Type Signed integer

Default 30

Range 1 to MAXINT

Units Seconds

Dynamic? No

Validation If autoup is less than or equal to zero, it is reset to 30 and a warning message is displayed. This check is done only at boot time.

Implicit autoup should be an integer multiple of tune_t_fsflushr. At a minimum, autoup should be at least 6 times the value of tune_t_fsflushr. If not, excessive amounts of memory are scanned each time fsflush is invoked.

The total system pages multiplied by tune_t_fsflushr should be greater than or equal to autoup to cause memory to be checked if dopageflush is non-zero.

When to Change Here are several potential situations for changing autoup, tune_t_fsflushr, or both:

- Systems with large amounts of memory – In this case, increasing autoup reduces the amount of memory scanned in each invocation of fsflush.
- Systems with minimal memory demand – Increasing both autoup and tune_t_fsflushr reduces the number of scans made. autoup should be increased also to maintain the current ratio of autoup / tune_t_fsflushr.
Systems with large numbers of transient files (for example, mail servers or software build machines) – If large numbers of files are created and then deleted, fsflush might unnecessarily write data pages for those files to disk.

Commitment Level Unstable

dopageflush

Description Controls whether memory is examined for modified pages during fsflush invocations. In each invocation of fsflush, the number of physical memory pages in the system is determined. This number might have changed because of a dynamic reconfiguration operation. Each invocation scans by using this algorithm: total number of pages x tune_t_fsflushr / autoup pages

Data Type Signed integer

Default 1 (enabled)

Range 0 (disabled) or 1 (enabled)

Units Toggle (on/off)

Dynamic? Yes

Validation None

When to Change If the system page scanner rarely runs, which is indicated by a value of 0 in the sr column of vmstat output.

Commitment Level Unstable

Change History For information, see “dopageflush (Solaris 10 Releases)” on page 183.

doiflush

Description Controls whether file system metadata syncs will be executed during fsflush invocations. This synchronization is done every Nth invocation of fsflush where N= (autoup / tune_t_fsflushr). Because this algorithm is integer division, if tune_t_fsflushr is greater than autoup, a synchronization is done on every invocation of fsflush because the code checks to see if its iteration counter is greater than or equal to N. Note that N is computed once on invocation of fsflush. Later changes to tune_t_fsflushr or autoup have no effect on the frequency of synchronization operations.
Process-Sizing Parameters

Several parameters (or variables) are used to control the number of processes that are available on the system and the number of processes that an individual user can create. The foundation parameter is `maxusers`. This parameter drives the values assigned to `max_procs` and `maxuprc`.

maxusers

Description

Originally, `maxusers` defined the number of logged in users the system could support. When a kernel was generated, various tables were sized based on this setting. Current Solaris releases do much of its sizing based on the amount of memory on the system. Thus, much of the past use of `maxusers` has changed. A number of subsystems that are still derived from `maxusers`:

- The maximum number of processes on the system
- The number of quota structures held in the system
- The size of the directory name look-up cache (DNLC)
maxusers

Data Type: Signed integer
Default: Lesser of the amount of memory in Mbytes or 2048
Range: 1 to 2048, based on physical memory if not set in the /etc/system file
1 to 4096, if set in the /etc/system file
Units: Users
Dynamic?: No. After computation of dependent parameters is done, maxusers is never referenced again.
Validation: None
When to Change: When the default number of user processes derived by the system is too low. This situation is evident when the following message displays on the system console:

```
out of processes
```

You might also change this parameter when the default number of processes is too high, as in these situations:

- Database servers that have a lot of memory and relatively few running processes can save system memory when the default value of maxusers is reduced.
- If file servers have a lot of memory and few running processes, you might reduce this value. However, you should explicitly set the size of the DNLC. See "ncsize" on page 67.
- If compute servers have a lot of memory and few running processes, you might reduce this value.

Commitment Level: Unstable

reserved_procs

Description: Specifies the number of system process slots to be reserved in the process table for processes with a UID of root (0). For example, `fs flush` has a UID of root (0).
Data Type: Signed integer
Default: 5
Range: 5 to MAXINT
Units: Processes
Dynamic?: No. Not used after the initial parameter computation.
Starting in the Solaris 8 release, any `/etc/system` setting is honored.

Commitment Level: Unstable

When to Change: Consider increasing to 10 + the normal number of UID 0 (root) processes on system. This setting provides some cushion should it be necessary to obtain a root shell when the system is otherwise unable to create user-level processes.

pidmax

Description: Specifies the value of the largest possible process ID. Valid for Solaris 8 and later releases.

`pidmax` sets the value for the `maxpid` variable. Once `maxpid` is set, `pidmax` is ignored. `maxpid` is used elsewhere in the kernel to determine the maximum process ID and for validation checking.

Any attempts to set `maxpid` by adding an entry to the `/etc/system` file have no effect.

Data Type: Signed integer

Default: 30,000

Range: 266 to 999,999

Units: Processes

Dynamic? No. Used only at boot time to set the value of `pidmax`.

Validation: Yes. Value is compared to the value of `reserved_procs` and 999,999. If less than `reserved_procs` or greater than 999,999, the value is set to 999,999.

Implicit: `max_nprocs` range checking ensures that `max_nprocs` is always less than or equal to this value.

When to Change: Required to enable support for more than 30,000 processes on a system.

Commitment Level: Unstable
max_nprocs

Description
Specifies the maximum number of processes that can be created on a system. Includes system processes and user processes. Any value specified in /etc/system is used in the computation of maxuprc.

This value is also used in determining the size of several other system data structures. Other data structures where this parameter plays a role are as follows:

- Determining the size of the directory name lookup cache (if ncs5ize is not specified)
- Allocating disk quota structures for UFS (if ndquot is not specified)
- Verifying that the amount of memory used by configured system V semaphores does not exceed system limits
- Configuring Hardware Address Translation resources for x86 platforms.

Data Type
Signed integer

Default
10 + (16 x maxusers)

Range
266 to value of maxpid

Dynamic?
No

Validation
Yes. The value is compared to maxpid and set to maxpid if it is larger. On x86 platforms, an additional check is made against a platform-specific value. max_nprocs is set to the smallest value in the triplet (max_nprocs, maxpid, platform value). Both SPARC and x86 platforms use 65,534 as the platform value.

When to Change
Changing this parameter is one of the steps necessary to enable support for more than 30,000 processes on a system.

Commitment Level
Unstable

Change History
For information, see “max_nprocs (Solaris 9 Releases)” on page 181.

maxuprc

Description
Specifies the maximum number of processes that can be created on a system by any one user.

Data Type
Signed integer

Default
max_nprocs - reserved_procs
Paging-Related Parameters

<table>
<thead>
<tr>
<th>Range</th>
<th>I to max_nprocs - reserved_procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Processes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>Yes. This value is compared to max_nprocs - reserved_procs and set to the smaller of the two values.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When you want to specify a hard limit for the number of processes a user can create that is less than the default value of however many processes the system can create. Attempting to exceed this limit generates the following warning messages on the console or in the messages file: out of per-user processes for uid N</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

Paging-Related Parameters

The Solaris OS uses a demand paged virtual memory system. As the system runs, pages are brought into memory as needed. When memory becomes occupied above a certain threshold and demand for memory continues, paging begins. Paging goes through several levels that are controlled by certain parameters.

The general paging algorithm is as follows:

- A memory deficit is noticed. The page scanner thread runs and begins to walk through memory. A two-step algorithm is employed:
 1. A page is marked as unused.
 2. If still unused after a time interval, the page is viewed as a subject for reclaim.

If the page has been modified, a request is made to the pageout thread to schedule the page for I/O. Also, the page scanner continues looking at memory. Pageout causes the page to be written to the page's backing store and placed on the free list. When the page scanner scans memory, no distinction is made as to the origin of the page. The page might have come from a data file, or it might represent a page from an executable’s text, data, or stack.

- As memory pressure on the system increases, the algorithm becomes more aggressive in the pages it will consider as candidates for reclamation and in how frequently the paging algorithm runs. (For more information, see “fastscan” on page 56 and “slowscan” on page 56.) As available memory falls between the range lotsfree and minfree, the system linearly increases the amount of memory scanned in each invocation of the pageout thread from the value specified by slowscan to the value specified by fastscan. The system uses the desfree parameter to control a number of decisions about resource usage and behavior.
The system initially constrains itself to use no more than 4 percent of one CPU for pageout operations. As memory pressure increases, the amount of CPU time consumed in support of pageout operations linearly increases until a maximum of 80 percent of one CPU is consumed. The algorithm looks through some amount of memory between slowscan and fastscan, then stops when one of the following occurs:

- Enough pages have been found to satisfy the memory shortfall.
- The planned number of pages have been looked at.
- Too much time has elapsed.

If a memory shortfall is still present when pageout finishes its scan, another scan is scheduled for 1/4 second in the future.

The configuration mechanism of the paging subsystem was changed, starting in the Solaris 9 release. Instead of depending on a set of predefined values for fastscan, slowscan, and handspreadpages, the system determines the appropriate settings for these parameters at boot time. Setting any of these parameters in the /etc/system file can cause the system to use less than optimal values.

Caution – Remove all tuning of the VM system from the /etc/system file. Run with the default settings and determine if it is necessary to adjust any of these parameters. Do not set either cachefree or priority_paging. They have been removed, starting in the Solaris 9 release.

Beginning in the Solaris 7 5/99 release, dynamic reconfiguration (DR) for CPU and memory is supported. A system in a DR operation that involves the addition or deletion of memory recalculates values for the relevant parameters, unless the parameter has been explicitly set in /etc/system. In that case, the value specified in /etc/system is used, unless a constraint on the value of the variable has been violated. In this case, the value is reset.

lotsfree

Description
Serves as the initial trigger for system paging to begin. When this threshold is crossed, the page scanner wakes up to begin looking for memory pages to reclaim.

Data Type
Unsigned long

Default
The greater of 1/64th of physical memory or 512 Kbytes

Range
The minimum value is 512 Kbytes or 1/64th of physical memory, whichever is greater, expressed as pages using the page size returned by getpagesize. For more information, see `getpagesize(3C)`.
The maximum value is the number of physical memory pages. The maximum value should be no more than 30 percent of physical memory. The system does not enforce this range, other than that described in the Validation section.

<table>
<thead>
<tr>
<th>Units</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic?</td>
<td>Yes, but dynamic changes are lost if a memory-based DR operation occurs.</td>
</tr>
<tr>
<td>Validation</td>
<td>If lotsfree is greater than the amount of physical memory, the value is reset to the default.</td>
</tr>
<tr>
<td>Implicit</td>
<td>The relationship of lotsfree being greater than desfree, which is greater than minfree, should be maintained at all times.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When demand for pages is subject to sudden sharp spikes, the memory algorithm might be unable to keep up with demand. One workaround is to start reclaiming memory at an earlier time. This solution gives the paging system some additional margin. A rule of thumb is to set this parameter to 2 times what the system needs to allocate in a few seconds. This parameter is workload dependent. A DBMS server can probably work fine with the default settings. However, you might need to adjust this parameter for a system doing heavy file system I/O. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 512 Kbytes, expressed as pages using the page size returned by getpagesize.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

desfree

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the preferred amount of memory to be free at all times on the system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned integer</td>
</tr>
<tr>
<td>Default</td>
<td>lotsfree / 2</td>
</tr>
<tr>
<td>Range</td>
<td>The minimum value is 256 Kbytes or 1/128th of physical memory, whichever is greater, expressed as pages using the page size returned by getpagesize.</td>
</tr>
</tbody>
</table>
The maximum value is the number of physical memory pages. The maximum value should be no more than 15 percent of physical memory. The system does not enforce this range other than that described in the Validation section.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or calculated from the new physical memory value.

Validation If `desfree` is greater than `lotsfree`, `desfree` is set to `lotsfree / 2`. No message is displayed.

Implicit The relationship of `lotsfree` being greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

Side Effects Several side effects can arise from increasing the value of this parameter. When the new value nears or exceeds the amount of available memory on the system, the following can occur:

- Asynchronous I/O requests are not processed, unless available memory exceeds `desfree`. Increasing the value of `desfree` can result in rejection of requests that otherwise would succeed.
- NFS asynchronous writes are executed as synchronous writes.
- The swapper is awakened earlier, and the behavior of the swapper is biased towards more aggressive actions.
- The system might not prefault as many executable pages into the system. This side effect results in applications potentially running slower than they otherwise would.

When to Change For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 256 Kbytes, expressed as pages using the page size returned by `getpagesize`.

Commitment Level Unstable

minfree

Description Specifies the minimum acceptable memory level. When memory drops below this number, the system biases allocations toward allocations necessary to successfully complete pageout operations or to swap processes completely out of memory. Either allocation denies or blocks other allocation requests.
DataType Unsigned integer

Default des\text{free} / 2

Range The minimum value is 128 Kbytes or 1/256th of physical memory, whichever is greater, expressed as pages using the page size returned by \texttt{getpagesize}.

The maximum value is the number of physical memory pages. The maximum value should be no more than 7.5 percent of physical memory. The system does not enforce this range other than that described in the Validation section.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the \texttt{/etc/system} file or calculated from the new physical memory value.

Validation If \texttt{min\text{free}} is greater than \texttt{des\text{free}}, \texttt{min\text{free}} is set to \texttt{des\text{free}} / 2. No message is displayed.

Implicit The relationship of \texttt{lots\text{free}} being greater than \texttt{des\text{free}}, which is greater than \texttt{min\text{free}}, should be maintained at all times.

When to Change The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 128 Kbytes, expressed as pages using the page size returned by \texttt{getpagesize}.

Commitment Level Unstable

The **throttle\text{free}**

Description Specifies the memory level at which blocking memory allocation requests are put to sleep, even if the memory is sufficient to satisfy the request.

Data Type Unsigned integer

Default \texttt{min\text{free}}

Range The minimum value is 128 Kbytes or 1/256th of physical memory, whichever is greater, expressed as pages using the page size returned by \texttt{getpagesize}.

The maximum value is the number of physical memory pages. The maximum value should be no more than 4 percent of physical memory. The system does not enforce this range other than that described in the Validation section.

<table>
<thead>
<tr>
<th>Units</th>
<th>Pages</th>
</tr>
</thead>
</table>

| Dynamic? | Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the /etc/system file or calculated from the new physical memory value. |

| Validation | If throttlefree is greater than desfree, throttlefree is set to minfree. No message is displayed. |

| Implicit | The relationship of lotsfree is greater than desfree, which is greater than minfree, should be maintained at all times. |

| When to Change | The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 128 Kbytes, expressed as pages using the page size returned by getpagesize. For more information, see getpagesize(3C). |

| Commitment Level | Unstable |

pageout_reserve

The number of pages reserved for the exclusive use of the pageout or scheduler threads. When available memory is less than this value, nonblocking allocations are denied for any processes other than pageout or the scheduler. Pageout needs to have a small pool of memory for its use so it can allocate the data structures necessary to do the I/O for writing a page to its backing store. This variable was introduced in the Solaris 2.6 release to ensure that the system would be able to perform a pageout operation in the face of the most severe memory shortage.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>throttlefree / 2</td>
</tr>
<tr>
<td>Range</td>
<td>The minimum value is 64 Kbytes or 1/512th of physical memory, whichever is greater, expressed as pages using the page size returned by getpagesize(3C).</td>
</tr>
</tbody>
</table>
The maximum is the number of physical memory pages. The maximum value should be no more than 2 percent of physical memory. The system does not enforce this range, other than that described in the Validation section.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or calculated from the new physical memory value.

Validation If `pageout_reserve` is greater than `throttlefree / 2`, `pageout_reserve` is set to `throttlefree / 2`. No message is displayed.

Implicit The relationship of `lotsfree` being greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

When to Change The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 64 Kbytes, expressed as pages using the page size returned by `getpagesize`.

Commitment Level Unstable

pages_pp_maximum

Description Defines the number of pages that must be unlocked. If a request to lock pages would force available memory below this value, that request is refused.

Data TypeUnsigned long

DefaultThe greater of (`tune_t_minarmem + 100` and `[4% of memory available at boot time + 4 Mbytes]`)

RangeMinimum value enforced by the system is `tune_t_minarmem + 100`. The system does not enforce a maximum value.

UnitsPages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or was calculated from the new physical memory value.
Validation

If the value specified in the `/etc/system` file or the calculated default is less than `tune_t_minarmem + 100`, the value is reset to `tune_t_minarmem + 100`.

No message is displayed if the value from the `/etc/system` file is increased. Validation is done only at boot time and during dynamic reconfiguration operations that involve adding or deleting memory.

When to Change

When memory-locking requests fail or when attaching to a shared memory segment with the `SHARE_MMU` flag fails, yet the amount of memory available seems to be sufficient.

Excessively large values can cause memory locking requests (`mlock`, `mlockall`, and `memcntl`) to fail unnecessarily. For more information, see `mlock(3C)`, `mlockall(3C)`, and `memcntl(2)`.

Commitment Level

Unstable

Change History

For information, see “pages_pp_maximum (Solaris Releases Prior to Solaris 9 Releases)” on page 183.

`tune_t_minarmem`

Description

Defines the minimum available resident (not swappable) memory to maintain necessary to avoid deadlock. Used to reserve a portion of memory for use by the core of the OS. Pages restricted in this way are not seen when the OS determines the maximum amount of memory available.

Data Type

Signed integer

Default

25

Range

1 to physical memory

Units

Pages

Dynamic?

No

Validation

None. Large values result in wasted physical memory.

When to Change

The default value is generally adequate. Consider increasing the default value if the system locks up and debugging information indicates that no memory was available.

Commitment Level

Unstable
fastscan

Description: Defines the maximum number of pages per second that the system looks at when memory pressure is highest.

Data Type: Signed integer

Default: The lesser of 64 Mbytes and 1/2 of physical memory.

Range: 1 to one-half of physical memory

Units: Pages

Dynamic?: Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided by /etc/system or calculated from the new physical memory value.

Validation: The maximum value is the lesser of 64 Mbytes and 1/2 of physical memory.

When to Change: When more aggressive scanning of memory is preferred during periods of memory shortfall, especially when the system is subject to periods of intense memory demand or when performing heavy file I/O.

Commitment Level: Unstable

slowscan

Description: Defines the minimum number of pages per second that the system looks at when attempting to reclaim memory.

Data Type: Signed integer

Default: The smaller of 1/20th of physical memory in pages and 100.

Range: 1 to fastscan / 2

Units: Pages

Dynamic?: Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the /etc/system file or calculated from the new physical memory value.

Validation: If slowscan is larger than fastscan / 2, slowscan is reset to fastscan / 2. No message is displayed.

When to Change: When more aggressive scanning of memory is preferred during periods of memory shortfall, especially when the system is subject to periods of intense memory demand.
Commitment Level: Unstable

min_percent_cpu

Description: Defines the minimum percentage of CPU that pageout can consume. This parameter is used as the starting point for determining the maximum amount of time that can be consumed by the page scanner.

Data Type: Signed integer

Default: 4

Range: 1 to 80

Units: Percentage

Dynamic?: Yes

Validation: None

When to Change: Increasing this value on systems with multiple CPUs and lots of memory, which are subject to intense periods of memory demand, enables the pager to spend more time attempting to find memory.

Commitment Level: Unstable

handspreadpages

Description: The Solaris OS uses a two-handed clock algorithm to look for pages that are candidates for reclaiming when memory is low. The first hand of the clock walks through memory marking pages as unused. The second hand walks through memory some distance after the first hand, checking to see if the page is still marked as unused. If so, the page is subject to being reclaimed. The distance between the first hand and the second hand is **handspreadpages**.

Data Type: Unsigned long

Default: fastscan

Range: 1 to maximum number of physical memory pages on the system

Units: Pages

Dynamic?: Yes. This parameter requires that the kernel reset_hands parameter also be set to a non-zero value. Once the new value of **handspreadpages** has been recognized, reset_hands is set to zero.
Validation The value is set to the lesser of either the amount of physical memory and the \texttt{handspreadpages} \textit{value}.

When to Change When you want to increase the amount of time that pages are potentially resident before being reclaimed. Increasing this value increases the separation between the hands, and therefore, the amount of time before a page can be reclaimed.

Commitment Level Unstable

\textbf{pages_before_pager}

Description Defines part of a system threshold that immediately frees pages after an I/O completes instead of storing the pages for possible reuse. The threshold is \texttt{lots_free + pages_before_pager}. The NFS environment also uses this threshold to curtail its asynchronous activities as memory pressure mounts.

Data Type Signed integer

Default 200

Range 1 to amount of physical memory

Units Pages

Dynamic? No

Validation None

When to Change You might change this parameter when the majority of I/O is done for pages that are truly read or written once and never referenced again. Setting this variable to a larger amount of memory keeps adding pages to the free list.

You might also change this parameter when the system is subject to bursts of severe memory pressure. A larger value here helps maintain a larger cushion against the pressure.

Commitment Level Unstable

\textbf{maxpgio}

Description Defines the maximum number of page I/O requests that can be queued by the paging system. This number is divided by 4 to get the actual
maximum number used by the paging system. This parameter is used to throttle the number of requests as well as to control process swapping.

Data Type
Signed integer

Default
40

Range
1 to a variable maximum that depends on the system architecture, but mainly by the I/O subsystem, such as the number of controllers, disks, and disk swap size

Units
I/0s

Dynamic?
No

Validation
None

Implicit
The maximum number of I/O requests from the pager is limited by the size of a list of request buffers, which is currently sized at 256.

When to Change
Increase this parameter to page out memory faster. A larger value might help to recover faster from memory pressure if more than one swap device is configured or if the swap device is a striped device. Note that the existing I/O subsystem should be able to handle the additional I/O load. Also, increased swap I/O could degrade application I/O performance if the swap partition and application files are on the same disk.

Commitment Level
Unstable

Change History
For information, see “maxpgio (Solaris 10 Releases)” on page 183.

Swapping-Related Parameters

Swapping in the Solaris OS is accomplished by the swapfs pseudo file system. The combination of space on swap devices and physical memory is treated as the pool of space available to support the system for maintaining backing store for anonymous memory. The system attempts to allocate space from disk devices first, and then uses physical memory as backing store. When swapfs is forced to use system memory for backing store, limits are enforced to ensure that the system does not deadlock because of excessive consumption by swapfs.

swapfs_reserve

Description
Defines the amount of system memory that is reserved for use by system (UID = 0) processes.
Data Type
Unsigned long

Default
The smaller of 4 Mbytes and 1/16th of physical memory

Range
The minimum value is 4 Mbytes or 1/16th of physical memory, whichever is smaller, expressed as pages using the page size returned by `getpagesize`.

The maximum value is the number of physical memory pages. The maximum value should be no more than 10 percent of physical memory. The system does not enforce this range, other than that described in the Validation section.

Units
Pages

Dynamic?
No

Validation
None

When to Change
Generally not necessary. Only change when recommended by a software provider, or when system processes are terminating because of an inability to obtain swap space. A much better solution is to add physical memory or additional swap devices to the system.

Commitment Level
Unstable

Description
Defines the desired amount of physical memory to be kept free for the rest of the system. Attempts to reserve memory for use as swap space by any process that causes the system’s perception of available memory to fall below this value are rejected. Pages reserved in this manner can only be used for locked-down allocations by the kernel or by user-level processes.

Data Type
Unsigned long

Default
The larger of 2 Mbytes and 1/8th of physical memory

Range
1 to amount of physical memory

Units
Pages

Dynamic?
No

Validation
None

When to Change
When processes are failing because of an inability to obtain swap space, yet the system has memory available.
The Solaris kernel memory allocator distributes chunks of memory for use by clients inside the kernel. The allocator creates a number of caches of varying size for use by its clients. Clients can also request the allocator to create a cache for use by that client (for example, to allocate structures of a particular size). Statistics about each cache that the allocator manages can be seen by using the `kstat -c kmem_cache` command.

Occasionally, systems might panic because of memory corruption. The kernel memory allocator supports a debugging interface (a set of flags), that performs various integrity checks on the buffers. The kernel memory allocator also collects information on the allocators. The integrity checks provide the opportunity to detect errors closer to where they actually occurred. The collected information provides additional data for support people when they try to ascertain the reason for the panic.

Use of the flags incurs additional overhead and memory usage during system operations. The flags should only be used when a memory corruption problem is suspected.

kmem_flags

Description
The Solaris kernel memory allocator has various debugging and test options that were extensively used during the internal development cycle of the Solaris OS. Starting in the Solaris 2.5 release, a subset of these options became available. They are controlled by the `kmem_flags` variable, which was set with a kernel debugger, and then rebooting the system. Because of issues with the timing of the instantiation of the kernel memory allocator and the parsing of the `/etc/system` file, it was not possible to set these flags in the `/etc/system` file until the Solaris 8 release.

Five supported flag settings are described here.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIT</td>
<td>0x1</td>
<td>The allocator maintains a log that contains recent history of its activity. The number of items logged depends on whether CONTENTS is also set. The log is a fixed size. When space is exhausted, earlier records are reclaimed.</td>
</tr>
<tr>
<td>Flag</td>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>TEST</td>
<td>0x2</td>
<td>The allocator writes a pattern into freed memory and checks that the pattern is unchanged when the buffer is next allocated. If some portion of the buffer is changed, then the memory was probably used by a client that had previously allocated and freed the buffer. If an overwrite is identified, the system panics.</td>
</tr>
<tr>
<td>REDZONE</td>
<td>0x4</td>
<td>The allocator provides extra memory at the end of the requested buffer and inserts a special pattern into that memory. When the buffer is freed, the pattern is checked to see if data was written past the end of the buffer. If an overwrite is identified, the kernel panics.</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>0x8</td>
<td>The allocator logs up to 256 bytes of buffer contents when the buffer is freed. This flag requires that AUDIT also be set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The numeric value of these flags can be logically added together and set by the /etc/system file, starting in the Solaris 8 release, or for previous releases, by booting kadb and setting the flags before starting the kernel.</td>
</tr>
<tr>
<td>LITE</td>
<td>0x100</td>
<td>Does minimal integrity checking when a buffer is allocated and freed. When enabled, the allocator checks that the redzone has not been written into, that a freed buffer is not being freed again, and that the buffer being freed is the size that was allocated. This flag is available as of the Solaris 7 3/99 release. Do not combine this flag with any other flags.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 - 15 or 256 (0x100)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes. Changes made during runtime only affect new kernel memory caches. After system initialization, the creation of new caches is rare.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When memory corruption is suspected</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
General Driver Parameters

moddebug

Description When this parameter is enabled, messages about various steps in the module loading process are displayed.

Data Type Signed integer

Default 0 (messages off)

Range Here are the most useful values:

- 0x80000000 – Prints [un] loading... message. For every module loaded, messages such as the following appear on the console and in the /var/adm/messages file:

Nov 5 16:12:28 sys genunix: [ID 943528 kern.notice] load 'sched/TS_DPTBL' id 9 loaded @ 0x10126438/0x10438dd8 size 132/2064

- 0x40000000 – Prints detailed error messages. For every module loaded, messages such as the following appear on the console and in the /var/adm/messages file:

Nov 5 16:16:50 sys krtld: [ID 284770 kern.notice] kobj_open: can't open /platform/SUNW, Ultra-80/kernel/sched/TS_DPTBL
Nov 5 16:16:50 sys krtld: [ID 284770 kern.notice] kobj_open: can't open /platform/sun4u/kernel/sched/TS_DPTBL
Nov 5 16:16:50 sys krtld: [ID 797908 kern.notice] kobj_open: '/kernel/sch...
Nov 5 16:16:50 sys krtld: [ID 605504 kern.notice] descr = 0x2a
Nov 5 16:16:50 sys krtld: [ID 642728 kern.notice] kobj_read_file: size=34,
Nov 5 16:16:50 sys krtld: [ID 217760 kern.notice] offset=0
Nov 5 16:16:50 sys krtld: [ID 136382 kern.notice] kobj_read: req 8192 bytes,
Nov 5 16:16:50 sys krtld: [ID 295980 kern.notice] got 4224
Nov 5 16:16:50 sys krtld: [ID 426732 kern.notice] read 1000 bytes
Nov 5 16:16:50 sys krtld: [ID 720464 kern.notice] copying 34 bytes
Nov 5 16:16:50 sys krtld: [ID 234587 kern.notice] count = 34
[33 lines elided]
Nov 5 16:16:50 sys genunix: [ID 943528 kern.notice]
General Driver Parameters

- **load 'sched/TS_DPTBL' id 9 loaded @ 0x10126438/0x10438dd8 size 132/2064**
- **Nov 5 16:16:50 sys genunix: [ID 131579 kern.notice]**
 - installing TS_DPTBL, module id 9.
 - Nov 5 16:16:50 sys genunix: [ID 324367 kern.notice]
- **init 'sched/TS_DPTBL' id 9 loaded @ 0x10126438/0x10438dd8 size 132/2064**

- **0x20000000** - Prints even more detailed messages. This value doesn't print any additional information beyond what the **0x40000000** flag does during system boot. However, this value does print additional information about releasing the module when the module is unloaded.

These values can be added together to set the final value.

- **Dynamic?** Yes
- **Validation** None
- **When to Change** When a module is either not loading as expected, or the system seems to hang while loading modules. Note that when **0x40000000** is set, system boot is slowed down considerably by the number of messages written to the console.
- **Commitment Level** Unstable

ddi_msix_alloc_limit

- **Description** This parameter, available on x86 systems only, controls the number of Extended Message Signaled Interrupts (MSI-X) that a device instance can allocate. Due to an existing system limitation, the default value is 2. You can increase the number of MSI-X interrupts that a device instance can allocate by increasing the value of this parameter. This parameter can be set either by editing the `/etc/system` file or by setting it with `mdb` before the device driver attach occurs.

- **Data Type** Signed integer
- **Default** 2
- **Range** 1 to 16
- **Dynamic?** Yes
- **Validation** None
- **When to Change** To increase the number of MSI-X interrupts that a device instance can allocate. However, if you increase the number of MSI-X interrupts that a device instance can allocate, adequate interrupts might not be
available to satisfy all allocation requests. If this happens, some devices might stop functioning or the system might fail to boot. Reduce the value or remove the parameter in this case.

Commitment Level Unstable

Change History For information, see “ddi_msix_alloc_limit (Solaris 10 Release and OpenSolaris 2009.06 Release)” on page 181.

General I/O Parameters

maxphys

Description Defines the maximum size of physical I/O requests. If a driver encounters a request larger than this size, the driver breaks the request into maxphys sized chunks. File systems can and do impose their own limit.

Data Type Signed integer

Default 131,072 (sun4u or sun4v) or 57,344 (x86). The sd driver uses the value of 1,048,576 if the drive supports wide transfers. The ssd driver uses 1,048,576 by default.

Range Machine-specific page size to MAXINT

Units Bytes

Dynamic? Yes, but many file systems load this value into a per-mount point data structure when the file system is mounted. A number of drivers load the value at the time a device is attached to a driver-specific data structure.

Validation None

When to Change When doing I/O to and from raw devices in large chunks. Note that a DBMS doing OLTP operations issues large numbers of small I/Os. Changing maxphys does not result in any performance improvement in that case.

You might also consider changing this parameter when doing I/O to and from a UFS file system where large amounts of data (greater than 64 Kbytes) are being read or written at any one time. The file system should be optimized to increase contiguity. For example, increase the
size of the cylinder groups and decrease the number of inodes per cylinder group. UFS imposes an internal limit of 1 Mbyte on the maximum I/O size it transfers.

Commitment Level Unstable
Change History For information, see “maxphys (Solaris 10 Releases)” on page 182.

rlim_fd_max

Description Specifies the “hard” limit on file descriptors that a single process might have open. Overriding this limit requires superuser privilege.

Data Type Signed integer
Default 65,536
Range 1 to MAXINT
Units File descriptors
Dynamic? No
Validation None
When to Change When the maximum number of open files for a process is not enough. Other limitations in system facilities can mean that a larger number of file descriptors is not as useful as it might be. For example:

- A 32-bit program using standard I/O is limited to 256 file descriptors. A 64-bit program using standard I/O can use up to 2 billion descriptors. Specifically, standard I/O refers to the stdio(3C) functions in libc(3LIB).

- select is by default limited to 1024 descriptors per fd_set. For more information, see select(3C). Starting with the Solaris 7 release, 32-bit application code can be recompiled with a larger fd_set size (less than or equal to 65,536). A 64-bit application uses an fd_set size of 65,536, which cannot be changed.

An alternative to changing this on a system wide basis is to use the plimit(1) command. If a parent process has its limits changed by plimit, all children inherit the increased limit. This alternative is useful for daemons such as inetd.

Commitment Level Unstable
Change History For information, see “rlim_fd_max (Solaris 8 Release)” on page 182.
rlim_fd_cur

Description
Defines the "soft" limit on file descriptors that a single process can have open. A process might adjust its file descriptor limit to any value up to the "hard" limit defined by rlim_fd_max by using the setrlimit() call or by issuing the limit command in whatever shell it is running. You do not require superuser privilege to adjust the limit to any value less than or equal to the hard limit.

Data Type
Signed integer

Default
256

Range
1 to MAXINT

Units
File descriptors

Dynamic?
No

Validation
Compared to rlim_fd_max. If rlim_fd_cur is greater than rlim_fd_max, rlim_fd_cur is reset to rlim_fd_max.

When to Change
When the default number of open files for a process is not enough. Increasing this value means only that it might not be necessary for a program to use setrlimit to increase the maximum number of file descriptors available to it.

Commitment Level
Unstable

ncsize

Description
Defines the number of entries in the directory name look-up cache (DNLC). This parameter is used by UFS, NFS, and ZFS to cache elements of path names that have been resolved.

Starting with the Solaris 8 6/00 release, the DNLC also caches negative look-up information, which means it caches a name not found in the cache.

Data Type
Signed integer

Default

\[(4 \times (v.v.proc + maxusers) + 320) + (4 \times (v.v.proc + maxusers) + 320) / 100\]
General File System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to <code>MAXINT</code></td>
</tr>
<tr>
<td>Units</td>
<td>DNLC entries</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None. Larger values cause the time it takes to unmount a file system to increase as the cache must be flushed of entries for that file system during the unmount process.</td>
</tr>
<tr>
<td>When to Change</td>
<td>Prior to the Solaris 8 6/00 release, it was difficult to determine whether the cache was too small. You could make this inference by noting the number of entries returned by <code>kstat -n ncstats</code>. If the number seems high, given the system workload and file access pattern, this might be due to the size of the DNLC. Starting with the Solaris 8 6/00 release, you can use the <code>kstat -n dnlcstats</code> command to determine when entries have been removed from the DNLC because it was too small. The sum of the <code>pick_heuristic</code> and the <code>pick_last</code> parameters represents otherwise valid entries that were reclaimed because the cache was too small. Excessive values of <code>ncsize</code> have an immediate impact on the system because the system allocates a set of data structures for the DNLC based on the value of <code>ncsize</code>. A system running a 32-bit kernel allocates 36-byte structures for <code>ncsize</code>, while a system running a 64-bit kernel allocates 64-byte structures for <code>ncsize</code>. The value has a further effect on UFS and NFS, unless <code>ufs_ninode</code> and <code>nfs:nnode</code> are explicitly set.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
<tr>
<td>Change History</td>
<td>For information, see “ncsize (Solaris 10 Release)” on page 183.</td>
</tr>
</tbody>
</table>

rstchown

Description Indicates whether the POSIX semantics for the `chown` system call are in effect. POSIX semantics are as follows:

- A process cannot change the owner of a file, unless it is running with UID 0.
- A process cannot change the group ownership of a file to a group in which it is not currently a member, unless it is running as UID 0.

For more information, see `chown(2)`.

Data Type Signed integer
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
<th>Units</th>
<th>Dynamic?</th>
<th>Validation</th>
<th>When to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnlc_dir_enable</td>
<td>Enables large directory caching</td>
<td>1 (enabled)</td>
<td>0 (disabled) or 1 (enabled)</td>
<td>Toggle</td>
<td>Yes</td>
<td>None</td>
<td>When POSIX semantics are not wanted. Note that turning off POSIX semantics opens the potential for various security holes. Doing so also opens the possibility of a user changing ownership of a file to another user and being unable to retrieve the file without intervention from the user or the system administrator.</td>
</tr>
<tr>
<td>dnlc_dir_min_size</td>
<td>Specifies the minimum number of entries cached for one directory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note – This parameter has no effect on NFS or ZFS file systems.
General File System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnlc_dir_min_size</td>
<td>Specifies the maximum number of entries cached for one directory.</td>
</tr>
</tbody>
</table>

Note – This parameter has no effect on NFS or ZFS file systems.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>40</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXUINT (no maximum)</td>
</tr>
<tr>
<td>Units</td>
<td>Entries</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, this parameter can be changed at any time.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>If performance problems occur with caching small directories, then increase dnlc_dir_min_size. Note that individual file systems might have their own range limits for caching directories. For instance, UFS limits directories to a minimum of ufs_min_dir_cache bytes (approximately 1024 entries), assuming 16 bytes per entry.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnlc_dir_max_size</td>
<td>Specifies the maximum number of entries cached for one directory.</td>
</tr>
</tbody>
</table>

Note – This parameter has no effect on NFS or ZFS file systems.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>MAXUINT (no maximum)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXUINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, this parameter can be changed at any time.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>If performance problems occur with large directories, then decrease dnlc_dir_max_size.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
segmap_percent

Description
Defines the maximum amount of memory that is used for the fast-access file system cache. This pool of memory is subtracted from the free memory list.

Data Type
Unsigned integer

Default
12 percent of free memory at system startup time

Range
2 Mbytes to 100 percent of physmem

Units
% of physical memory

Dynamic?
No

Validation
None

When to Change
If heavy file system activity is expected, and sufficient free memory is available, you should increase the value of this parameter.

Commitment Level
Unstable

UFS Parameters

bufhwm and bufhwm_pct

Description
Defines the maximum amount of memory for caching I/O buffers. The buffers are used for writing file system metadata (superblocks, inodes, indirect blocks, and directories). Buffers are allocated as needed until the amount of memory (in Kbytes) to be allocated exceed bufhwm. At this point, metadata is purged from the buffer cache until enough buffers are reclaimed to satisfy the request.

For historical reasons, bufhwm does not require the ufs: prefix.

Data Type
Signed integer

Default
2 percent of physical memory

Range
80 Kbytes to 20 percent of physical memory, or 2 TB, whichever is less. Consequently, bufhwm_pct can be between 1 and 20.

Units
bufhwm: Kbytes

bufhwm_pct: percent of physical memory
Dynamic? No. `bufhwm` and `bufhwm_pct` are only evaluated at system initialization to compute hash bucket sizes. The limit in bytes calculated from these parameters is then stored in a data structure that adjusts this value as buffers are allocated and deallocated.

Modifying `bufhwm` or `bufhwm_pct` at runtime has no effect.

Validation

If `bufhwm` is less than its lower limit of 80 Kbytes or greater than its upper limit (the lesser of 20 percent of physical memory, 2 TB, or one quarter (1/4) of the maximum amount of kernel heap), it is reset to the upper limit. The following message appears on the system console and in the `/var/adm/messages` file if an invalid value is attempted:

"binit: bufhwm (value attempted) out of range (range start..range end). Using N as default."

"Value attempted" refers to the value specified in the `/etc/system` file or by using a kernel debugger. `N` is the value computed by the system based on available system memory. Likewise, if `bufhwm_pct` is set to a value that is outside the allowed range of 1 percent to 20 percent, it is reset to the default of 2 percent. And, the following message appears on the system console and in the `/var/adm/messages` file:

"binit: bufhwm_pct(value attempted) out of range(0..20). Using 2 as default."

If both `bufhwm` or `bufhwm_pct` are set to non-zero values, `bufhwm` takes precedence.

When to Change

Because buffers are only allocated as they are needed, the overhead from the default setting is the required allocation of control structures for the buffer hash headers. These structures consume 52 bytes per potential buffer on a 32-bit kernel and 96 bytes per potential buffer on a 64-bit kernel.

On a 512-Mbyte 64-bit kernel, the number of hash chains calculates to 10316 / 32 == 322, which scales up to next power of 2, 512. Therefore, the hash headers consume 512 x 96 bytes, or 48 Kbytes. The hash header allocations assume that buffers are 32 Kbytes.

The amount of memory, which has not been allocated in the buffer pool, can be found by looking at the `bfreelist` structure in the kernel with a kernel debugger. The field of interest in the structure is `b_bufsize`, which is the possible remaining memory in bytes. Looking at it with the `buf` macro by using the `mdb` command:
The default value for bufhwm on this system, with 6 Gbytes of memory, is 122277. You cannot determine the number of header structures used because the actual buffer size requested is usually larger than 1 Kbyte. However, some space might be profitably reclaimed from control structure allocation for this system.

The same structure on a 512-Mbyte system shows that only 4 Kbytes of 10144 Kbytes has not been allocated. When the biostats kstat is examined with kstat -n biostats, it is determined that the system had a reasonable ratio of buffer_cache_hits to buffer_cache_lookups as well. As such, the default setting is reasonable for that system.

Commitment Level Unstable

Change History For information, see “bufhwm (Solaris 9 Releases)” on page 184.

ndquot

Description Defines the number of quota structures for the UFS file system that should be allocated. Relevant only if quotas are enabled on one or more UFS file systems. Because of historical reasons, the ufs: prefix is not needed.

Data Type Signed integer

Default ((maxusers x 40) / 4) + max_nprocs

Range 0 to MAXINT

Units Quota structures

Dynamic? No

Validation None. Excessively large values hang the system.

When to Change When the default number of quota structures is not enough. This situation is indicated by the following message displayed on the console or written in the message log:

dquot table full

Commitment Level Unstable
ufs_ninode

Description

Specifies the number of inodes to be held in memory. Inodes are cached globally for UFS, not on a per-file system basis.

A key parameter in this situation is ufs_ninode. This parameter is used to compute two key limits that affect the handling of inode caching. A high watermark of ufs_ninode / 2 and a low watermark of ufs_ninode / 4 are computed.

When the system is done with an inode, one of two things can happen:

- The file referred to by the inode is no longer on the system so the inode is deleted. After it is deleted, the space goes back into the inode cache for use by another inode (which is read from disk or created for a new file).
- The file still exists but is no longer referenced by a running process. The inode is then placed on the idle queue. Any referenced pages are still in memory.

When inodes are idled, the kernel defers the idling process to a later time. If a file system is a logging file system, the kernel also defers deletion of inodes. Two kernel threads handle this deferred processing. Each thread is responsible for one of the queues.

When the deferred processing is done, the system drops the inode onto either a delete queue or an idle queue, each of which has a thread that can run to process it. When the inode is placed on the queue, the queue occupancy is checked against the low watermark. If the queue occupancy exceeds the low watermark, the thread associated with the queue is awakened. After the queue is awakened, the thread runs through the queue and forces any pages associated with the inode out to disk and frees the inode. The thread stops when it has removed 50 percent of the inodes on the queue at the time it was awakened.

A second mechanism is in place if the idle thread is unable to keep up with the load. When the system needs to find a vnode, it goes through the ufs_vget routine. The first thing vget does is check the length of the idle queue. If the length is above the high watermark, then it takes two inodes off the idle queue and "idles" them (flushes pages and frees inodes). vget does this before it gets an inode for its own use.

The system does attempt to optimize by placing inodes with no in-core pages at the head of the idle list and inodes with pages at the end of the
idle list. However, the system does no other ordering of the list. Inodes are always removed from the front of the idle queue.

The only time that inodes are removed from the queues as a whole is when a synchronization, unmount, or remount occur.

For historical reasons, this parameter does not require the \texttt{ufs} prefix.

\begin{itemize}
 \item **Data Type**: Signed integer
 \item **Default**: \texttt{ncsize}
 \item **Range**: 0 to MAXINT
 \item **Units**: Inodes
 \item **Dynamic?**: Yes
 \item **Validation**: If \texttt{ufs_ninode} is less than or equal to zero, the value is set to \texttt{ncsize}.
 \item **When to Change**: When the default number of inodes is not enough. If the \texttt{maxsize} reached field as reported by \texttt{kstat -n inode_cache} is larger than the \texttt{maxsize} field in the \texttt{kstat}, the value of \texttt{ufs_ninode} might be too small. Excessive inode idling can also be a problem.
 \item **You can identify excessive inode idling by using \texttt{kstat -n inode_cache} to look at the \texttt{inode_cache kstat}. Thread \texttt{idles} are inodes idled by the background threads while \texttt{vget idles} are idles by the requesting process before using an inode.
 \item **Commitment Level**: Unstable
\end{itemize}

ufs_WRITES

\begin{itemize}
 \item **Description**: If \texttt{ufs_WRITES} is non-zero, the number of bytes outstanding for writes on a file is checked. See \texttt{ufs_HW} to determine whether the write should be issued or deferred until only \texttt{ufs_LW} bytes are outstanding. The total number of bytes outstanding is tracked on a per-file basis so that if the limit is passed for one file, it won't affect writes to other files.
 \item **Data Type**: Signed integer
 \item **Default**: 1 (enabled)
 \item **Range**: 0 (disabled) or 1 (enabled)
 \item **Units**: Toggle (on/off)
 \item **Dynamic?**: Yes
\end{itemize}
Validation None
When to Change When you want UFS write throttling turned off entirely. If sufficient I/O capacity does not exist, disabling this parameter can result in long service queues for disks.
Commitment Level Unstable

ufs_LW and ufs_HW

Description ufs_HW specifies the number of bytes outstanding on a single file barrier value. If the number of bytes outstanding is greater than this value and ufs_WRITES is set, then the write is deferred. The write is deferred by putting the thread issuing the write to sleep on a condition variable.

ufs_LW is the barrier for the number of bytes outstanding on a single file below which the condition variable on which other sleeping processes are toggled. When a write completes and the number of bytes is less than ufs_LW, then the condition variable is toggled, which causes all threads waiting on the variable to awaken and try to issue their writes.

Data Type Signed integer
Default 8 x 1024 x 1024 for ufs_LW and 16 x 1024 x 1024 for ufs_HW
Range 0 to MAXINT
Units Bytes
Dynamic? Yes
Validation? None
Implicit ufs_LW and ufs_HW have meaning only if ufs_WRITES is not equal to zero. ufs_HW and ufs_LW should be changed together to avoid needless churning when processes awaken and find that either they cannot issue a write (when ufs_LW and ufs_HW are too close) or they might have waited longer than necessary (when ufs_LW and ufs_HW are too far apart).

When to Change Consider changing these values when filesystems consist of striped volumes. The aggregate bandwidth available can easily exceed the current value of ufs_HW. Unfortunately, this parameter is not a per-file system setting.
You might also consider changing this parameter when *ufs_throttles* is a non-trivial number. Currently, *ufs_throttles* can only be accessed with a kernel debugger.

Commitment Level: Unstable

freebehind

Description: Enables the *freebehind* algorithm. When this algorithm is enabled, the system bypasses the file system cache on newly read blocks when sequential I/O is detected during times of heavy memory use.

Data Type: Boolean

Default: 1 (enabled)

Range: 0 (disabled) or 1 (enabled)

Dynamic? Yes

Validation None

When to Change: The *freebehind* algorithm can occur too easily. If no significant sequential file system activity is expected, disabling *freebehind* makes sure that all files, no matter how large, will be candidates for retention in the file system page cache. For more fine-grained tuning, see *smallfile*.

Commitment Level: Unstable

smallfile

Description: Determines the size threshold of files larger than this value are candidates for no cache retention under the *freebehind* algorithm.

Large memory systems contain enough memory to cache thousands of 10-Mbyte files without making severe memory demands. However, this situation is highly application dependent.

The goal of the *smallfile* and *freebehind* parameters is to reuse cached information, without causing memory shortfalls by caching too much.

Data Type: Signed integer

Default: 32,768
Range: 0 to 2,147,483,647
Dynamic?: Yes
Validation: None
When to Change: Increase small file if an application does sequential reads on medium-sized files and can most likely benefit from buffering, and the system is not otherwise under pressure for free memory. Medium-sized files are 32 Kbytes to 2 Gbytes in size.
Commitment Level: Unstable

TMPFS Parameters

tmpfs:tmpfs_maxkmem

Description: Defines the maximum amount of kernel memory that TMPFS can use for its data structures (tmpnodes and directory entries).

Data Type: Unsigned long

Default: One page or 4 percent of physical memory, whichever is greater.

Range: Number of bytes in one page (8192 for sun4u or sun4v systems, 4096 for all other systems) to 25 percent of the available kernel memory at the time TMPFS was first used.

Units: Bytes

Dynamic?: Yes

Validation: None

When to Change: Increase if the following message is displayed on the console or written in the messages file:

```
tmp_memalloc: tmpfs over memory limit
```

The current amount of memory used by TMPFS for its data structures is held in the tmp_kmemspace field. This field can be examined with a kernel debugger.

Commitment Level: Unstable

Change History: For information, see “tmpfs:tmpfs_maxkmem (Solaris 10 Releases)” on page 185.
tmpfs:tmpfs_minfree

Description
Defines the minimum amount of swap space that TMPFS leaves for the rest of the system.

Data Type
Signed long

Default
256

Range
0 to maximum swap space size

Units
Pages

Dynamic?
Yes

Validation
None

When to Change
To maintain a reasonable amount of swap space on systems with large amounts of TMPFS usage, you can increase this number. The limit has been reached when the console or messages file displays the following message:

```
fs-name: File system full, swap space limit exceeded
```

Commitment Level
Unstable

Change History
For information, see “tmpfs:tmpfs_minfree (Solaris 8 Releases)” on page 185.

Pseudo Terminals

Pseudo terminals, ptys, are used for two purposes in Solaris software:

- Supporting remote logins by using the telnet, rlogin, or rsh commands
- Providing the interface through which the X Window system creates command interpreter windows

The default number of pseudo-terminals is sufficient for a desktop workstation. So, tuning focuses on the number of ptys available for remote logins.

Previous versions of Solaris required that steps be taken to explicitly configure the system for the preferred number of ptys. Starting with the Solaris 8 release, a new mechanism removes the necessity for tuning in most cases. The default number of ptys is now based on the amount of memory on the system. This default should be changed only to restrict or increase the number of users who can log in to the system.

Three related variables are used in the configuration process:
- **pt_cnt** – Default maximum number of pty’s.
- **pt_pctofmem** – Percentage of kernel memory that can be dedicated to pty support structures. A value of zero means that no remote users can log in to the system.
- **pt_max_pty** – Hard maximum for number of pty’s.

`pt_cnt` has a default value of zero, which tells the system to limit logins based on the amount of memory specified in `pt_pctofmem`, unless `pt_max_pty` is set. If `pt_cnt` is non-zero, pty’s are allocated until this limit is reached. When that threshold is crossed, the system looks at `pt_max_pty`. If `pt_max_pty` has a non-zero value, it is compared to `pt_cnt`. The pty allocation is allowed if `pt_cnt` is less than `pt_max_pty`. If `pt_max_pty` is zero, `pt_cnt` is compared to the number of pty’s supported based on `pt_pctofmem`. If `pt_cnt` is less than this value, the pty allocation is allowed. Note that the limit based on `pt_pctofmem` only comes into play if both `pt_cnt` and `ptms_ptymax` have default values of zero.

To put a hard limit on pty’s that is different than the maximum derived from `pt_pctofmem`, set `pt_cnt` and `ptms_ptymax` in `/etc/system` to the preferred number of pty’s. The setting of `ptms_pctofmem` is not relevant in this case.

To dedicate a different percentage of system memory to pty support and let the operating system manage the explicit limits, do the following:

- Do not set `pt_cnt` or `ptms_ptymax` in `/etc/system`.
- Set `pt_pctofmem` in `/etc/system` to the preferred percentage. For example, set `pt_pctofmem=10` for a 10 percent setting.

Note that the memory is not actually allocated until it is used in support of a pty. Once memory is allocated, it remains allocated.

pt_cnt

Description

The number of available `/dev/pts` entries is dynamic up to a limit determined by the amount of physical memory available on the system. `pt_cnt` is one of three variables that determines the minimum number of logins that the system can accommodate. The default maximum number of `/dev/pts` devices the system can support is determined at boot time by computing the number of pty structures that can fit in a percentage of system memory (see `pt_pctofmem`). If `pt_cnt` is zero, the system allocates up to that maximum. If `pt_cnt` is non-zero, the system allocates to the greater of `pt_cnt` and the default maximum.

Data Type

Unsigned integer

Default

0
Range | 0 to maxpid
Units | Logins/windows
Dynamic? | No
Validation | None
When to Change | When you want to explicitly control the number of users who can remotely log in to the system.
Commitment Level | Unstable

pt_pctofmem

Description | Specifies the maximum percentage of physical memory that can be consumed by data structures to support /dev/pts entries. A system running a 64-bit kernel consumes 176 bytes per /dev/pts entry. A system running a 32-bit kernel consumes 112 bytes per /dev/pts entry.
Data Type | Unsigned integer
Default | 5
Range | 0 to 100
Units | Percentage
Dynamic? | No
Validation | None
When to Change | When you want to either restrict or increase the number of users who can log in to the system. A value of zero means that no remote users can log in to the system.
Commitment Level | Unstable

pt_max_pty

Description | Defines the maximum number of ptys the system offers
Data Type | Unsigned integer
Default | 0 (Uses system-defined maximum)
Range | 0 to MAXUINT
Units | Logins/windows
STREAMS Parameters

nstrpush

Description
Specifies the number of modules that can be inserted into (pushed onto) a STREAM.

Data Type
Signed integer

Default
9

Range
9 to 16

Units
Modules

Dynamic?
Yes

Validation
None

When to Change
At the direction of your software vendor. No messages are displayed when a STREAM exceeds its permitted push count. A value of EINVAL is returned to the program that attempted the push.

Commitment Level
Unstable

strmsgsz

Description
Specifies the maximum number of bytes that a single system call can pass to a STREAM to be placed in the data part of a message. Any write exceeding this size is broken into multiple messages. For more information, see `write(2)`.

Data Type
Signed integer
System V Message Queues

System V message queues provide a message-passing interface that enables the exchange of messages by queues created in the kernel. Interfaces are provided in the Solaris environment to enqueue and dequeue messages. Messages can have a type associated with them. Enqueueing places messages at the end of a queue. Dequeuing removes the first message of a specific type from the queue or the first message if no type is specified.

For information about System V message queues in the Solaris 10 release, see “System V IPC Configuration” on page 22.
System V Semaphores

System V semaphores provide counting semaphores in the Solaris OS. A semaphore is a counter used to provide access to a shared data object for multiple processes. In addition to the standard set and release operations for semaphores, System V semaphores can have values that are incremented and decremented as needed (for example, to represent the number of resources available). System V semaphores also provide the ability to do operations on a group of semaphores simultaneously as well as to have the system undo the last operation by a process if the process dies.

For information about the changes to semaphore resources in the Solaris 10 release, see “System V IPC Configuration” on page 22.

For detailed information about using the new resource controls in the Solaris 10 release, see Chapter 6, “Resource Controls (Overview),” in System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones.

For legacy information about the obsolete System V semaphore parameters, see “Parameters That Are Obsolete or Have Been Removed” on page 195.

System V Shared Memory

System V shared memory allows the creation of a segment by a process. Cooperating processes can attach to the memory segment (subject to access permissions on the segment) and gain access to the data contained in the segment. This capability is implemented as a loadable module. Entries in the /etc/system file must contain the shmsys: prefix. Starting with the Solaris 7 release, the keyserv daemon uses System V shared memory.

A special kind of shared memory known as intimate shared memory (ISM) is used by DBMS vendors to maximize performance. When a shared memory segment is made into an ISM segment, the memory for the segment is locked. This feature enables a faster I/O path to be followed and improves memory usage. A number of kernel resources describing the segment are then shared between all processes that attach to the segment in ISM mode.
For information about the changes to shared memory resources in the Solaris 10 release, see “System V IPC Configuration” on page 22.

For detailed information about using the new resource controls in the Solaris 10 release, see Chapter 6, “Resource Controls (Overview),” in System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones.

For legacy information about the obsolete System V shared memory parameters, see “Parameters That Are Obsolete or Have Been Removed” on page 195.

segspt_minfree

Description

Identifies pages of system memory that cannot be allocated for ISM shared memory.

Data Type

Unsigned long

Default

5 percent of available system memory when the first ISM segment is created

Range

0 to 50 percent of physical memory

Units

Pages

Dynamic?

Yes

Validation

None. Values that are too small can cause the system to hang or performance to severely degrade when memory is consumed with ISM segments.

When to Change

On database servers with large amounts of physical memory using ISM, the value of this parameter can be decreased. If ISM segments are not used, this parameter has no effect. A maximum value of 128 Mbytes (0x4000) is almost certainly sufficient on large memory machines.

Commitment Level

Unstable

Scheduling

rechoose_interval

Description

Specifies the number of clock ticks before a process is deemed to have lost all affinity for the last CPU it ran on. After this interval expires, any CPU is considered a candidate for scheduling a thread. This parameter
is relevant only for threads in the timesharing class. Real-time threads are scheduled on the first available CPU.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>3</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When caches are large, or when the system is running a critical process or a set of processes that seem to suffer from excessive cache misses not caused by data access patterns. Consider using the processor set capabilities available as of the Solaris 2.6 release or processor binding before changing this parameter. For more information, see psrset(1M) or pbind(1M).</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

Timers

hires_tick

<table>
<thead>
<tr>
<th>Description</th>
<th>When set, this parameter causes the Solaris OS to use a system clock rate of 1000 instead of the default value of 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>0</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 (enabled)</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When you want timeouts with a resolution of less than 10 milliseconds, and greater than or equal to 1 millisecond.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
timer_max

Description Specifies the number of POSIX timers available.

Data Type Signed integer

Default 32

Range 0 to MAXINT

Dynamic? No. Increasing the value can cause a system crash.

Validation None

When to Change When the default number of timers offered by the system is inadequate. Applications receive an EAGAIN error when executing timer_create system calls.

Commitment Level Unstable

sun4u or sun4v Specific Parameters

consistent_coloring

Description Starting with the Solaris 2.6 release, the ability to use different page placement policies on the UltraSPARC (sun4u) platform was introduced. A page placement policy attempts to allocate physical page addresses to maximize the use of the L2 cache. Whatever algorithm is chosen as the default algorithm, that algorithm can potentially provide less optimal results than another algorithm for a particular application set. This parameter changes the placement algorithm selected for all processes on the system.

Based on the size of the L2 cache, memory is divided into bins. The page placement code allocates a page from a bin when a page fault first occurs on an unmapped page. The page chosen depends on which of the three possible algorithms are used:

- **Page coloring** – Various bits of the virtual address are used to determine the bin from which the page is selected. This is the default algorithm in the Solaris 8 release. consistent_coloring is set to zero to use this algorithm. No per-process history exists for this algorithm.
Virtual addr=physical address – Consecutive pages in the program selects pages from consecutive bins. consistent_coloring is set to 1 to use this algorithm. No per-process history exists for this algorithm.

Bin-hopping – Consecutive pages in the program generally allocate pages from every other bin, but the algorithm occasionally skips more bins. consistent_coloring is set to 2 to use this algorithm. Each process starts at a randomly selected bin, and a per-process memory of the last bin allocated is kept.

Dynamic? Yes
Validation None. Values larger than 2 cause a number of WARNING: AS_2_BIN: bad consistent coloring value messages to appear on the console. The system hangs immediately thereafter. A power-cycle is required to recover.

When to Change When the primary workload of the system is a set of long-running high-performance computing (HPC) applications. Changing this value might provide better performance. File servers, database servers, and systems with a number of active processes (for example, compile or time sharing servers) do not benefit from changes.

Commitment Level Unstable

tsbs_alloc_hiwater_factor

Description Initializes tsb_alloc_hiwater to impose an upper limit on the amount of physical memory that can be allocated for translation storage buffers (TSBs) as follows:

\[
\text{tsb_alloc_hiwater} = \frac{\text{physical memory (bytes)}}{\text{tsb_alloc_hiwater_factor}}
\]

When the memory that is allocated to TSBs is equal to the value of tsb_alloc_hiwater, the TSB memory allocation algorithm attempts to reclaim TSB memory as pages are unmapped.

Exercise caution when using this factor to increase the value of tsb_alloc_hiwater. To prevent system hangs, the resulting high water value must be considerably lower than the value of swapfs_minfree and segspt_minfree.

Data Type Integer
Default 32
Range 1 to MAXINIT

Note that a factor of 1 makes all physical memory available for allocation to TSBs, which could cause the system to hang. A factor that is too high will not leave memory available for allocation to TSBs, decreasing system performance.

Dynamic? Yes
Validation None
When to Change Change the value of this parameter if the system has many processes that attach to very large shared memory segments. Under most circumstances, tuning of this variable is not necessary.
Commitment Level Unstable

default_tsb_size

Description Selects size of the initial translation storage buffers (TSBs) allocated to all processes.

Data Type Integer
Default Default is 0 (8 Kbytes), which corresponds to 512 entries
Range Possible values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8 Kbytes</td>
</tr>
<tr>
<td>1</td>
<td>16 Kbytes</td>
</tr>
<tr>
<td>3</td>
<td>32 Kbytes</td>
</tr>
<tr>
<td>4</td>
<td>128 Kbytes</td>
</tr>
<tr>
<td>5</td>
<td>256 Kbytes</td>
</tr>
<tr>
<td>6</td>
<td>512 Kbytes</td>
</tr>
<tr>
<td>7</td>
<td>1 Mbyte</td>
</tr>
</tbody>
</table>

Dynamic? Yes
Validation None
When to Change
Generally, you do not need to change this value. However, doing so might provide some advantages if the majority of processes on the system have a larger than average working set, or if resident set size (RSS) sizing is disabled.

Commitment Level
Unstable

Change History
For information, see “default_tsb_size (Solaris 10 Releases)” on page 186.

enable_tsb_rss_sizing

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables a resident set size (RSS) based TSB sizing heuristic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Boolean</td>
</tr>
<tr>
<td>Default</td>
<td>1 (TSBs can be resized)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (TSBs remain at tsb_default_size) or 1 (TSBs can be resized)</td>
</tr>
</tbody>
</table>

If set to 0, then tsb_rss_factor is ignored.

Dynamic?
Yes

Validation
Yes

When to Change
Can be set to 0 to prevent growth of the TSBs. Under most circumstances, this parameter should be left at the default setting.

Commitment Level
Unstable

Change History
For information, see “enable_tsb_rss_sizing (Solaris 10 Releases)” on page 186.

tsb_rss_factor

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the RSS to TSB span ratio of the RSS sizing heuristic. This factor divided by 512 yields the percentage of the TSB span which must be resident in memory before the TSB is considered as a candidate for resizing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Integer</td>
</tr>
<tr>
<td>Default</td>
<td>384, resulting in a value of 75%. Thus, when the TSB is 3/4 full, its size will be increased. Note that some virtual addresses typically map to the same slot in the TSB. Therefore, conflicts can occur before the TSB is at 100% full.</td>
</tr>
</tbody>
</table>
Range: 0 to 512
Dynamic?: Yes
Validation: None
When to Change: If the system is experiencing an excessive number of traps due to TSB misses, for example, due to virtual address conflicts in the TSB, you might consider decreasing this value toward 0.

For example, changing tsbrss_factor to 256 (effectively, 50%) instead of 384 (effectively, 75%) might help eliminate virtual address conflicts in the TSB in some cases, but will use more kernel memory, particularly on a heavily loaded system.

TSB activity can be monitored with the trapstat -T command.

Commitment Level: Unstable
Change History: For information, see “tsb_rss_factor (Solaris 10 Releases)” on page 186.

Locality Group Parameters

This section provides generic memory tunables, which apply to any SPARC or x86 system that uses a Non-Uniform Memory Architecture (NUMA).

lpg_alloc_prefer

Description: Controls a heuristic for allocation of large memory pages when the requested page size is not immediately available in the local memory group, but could be satisfied from a remote memory group.

By default, the Solaris OS allocates a remote large page if local free memory is fragmented, but remote free memory is not. Setting this parameter to 1 indicates that additional effort should be spent attempting to allocate larger memory pages locally, potentially moving smaller pages around to coalesce larger pages in the local memory group.

Data Type: Boolean
Default: 0 (Prefer remote allocation if local free memory is fragmented and remote free memory is not)
Range 0 (Prefer remote allocation if local free memory is fragmented and remote free memory is not)

1 (Prefer local allocation whenever possible, even if local free memory is fragmented and remote free memory is not)

Dynamic? No

Validation None

When to Change This parameter might be set to 1 if long-running programs on the system tend to allocate memory that is accessed by a single program, or if memory that is accessed by a group of programs is known to be running in the same locality group (lgroup). In these circumstances, the extra cost of page coalesce operations can be amortized over the long run of the programs.

This parameter might be left at the default value (0) if multiple programs tend to share memory across different locality groups, or if pages tend to be used for short periods of time. In these circumstances, quick allocation of the requested size tends to be more important than allocation in a particular location.

Page locations and sizes might be observed by using the NUMA observability tools, available at http://hub.opensolaris.org/bin/view/Main/. TLB miss activity might be observed by using the trapstat -T command.

Commitment Level Uncommitted

lgrp_mem_default_policy

Description This variable reflects the default memory allocation policy used by the Solaris OS. This variable is an integer, and its value should correspond to one of the policies listed in the sys/lgrp.h file.

Data Type Integer

Default 1, LGRP_MEM_POLICY_NEXT indicating that memory allocation defaults to the home lgroup of the thread performing the memory allocation.

Range Possible values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LGRP_MEM_POLICY_DEFAULT</td>
<td>use system default policy</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>LGRP_MEM_POLICY_NEXT</td>
<td>next to allocating thread’s home lgroup</td>
</tr>
<tr>
<td>2</td>
<td>LGRP_MEM_POLICY_RANDOM_PROC</td>
<td>randomly across process</td>
</tr>
<tr>
<td>3</td>
<td>LGRP_MEM_POLICY_RANDOM_PSET</td>
<td>randomly across processor set</td>
</tr>
<tr>
<td>4</td>
<td>LGRP_MEM_POLICY_RANDOM</td>
<td>randomly across all lgroups</td>
</tr>
<tr>
<td>5</td>
<td>LGRP_MEM_POLICY_ROUNDROBIN</td>
<td>round robin across all lgroups</td>
</tr>
<tr>
<td>6</td>
<td>LGRP_MEM_POLICY_NEXT_CPU</td>
<td>near next CPU to touch memory</td>
</tr>
</tbody>
</table>

Dynamic? No
Validation None
When to Change For applications that are sensitive to memory latencies due to allocations that occur from remote versus local memory on systems that use NUMA.
Commitment Level Uncommitted

lgrp_mem_pset_aware

Description If a process is running within a user processor set, this variable determines whether randomly placed memory for the process is selected from among all the lgroups in the system or only from those lgroups that are spanned by the processors in the processor set.

For more information about creating processor sets, see `psrset(1M)`.

Data Type Boolean
Default 0, the Solaris OS selects memory from all the lgroups in the system
Range
- 0, the Solaris OS selects memory from all the lgroups in the system (default)
- 1, try selecting memory only from those lgroups that are spanned by the processors in the processor set. If the first attempt fails, memory can be allocated in any lgroup.

Dynamic? No
Validation None
When to Change
Setting this value to a value of one (1) might lead to more reproducible performance when processor sets are used to isolate applications from one another.

Commitment Level
Uncommitted

Solaris Volume Manager Parameters

md_mirror:md_resync_bufsz

Description
Sets the size of the buffer used for resynchronizing RAID 1 volumes (mirrors) as the number of 512-byte blocks in the buffer. Setting larger values can increase resynchronization speed.

Data Type
Integer

Default
The default value is 128. Larger systems could use higher values to increase mirror resynchronization speed.

Range
128 to 2048

Units
Blocks (512 bytes)

Dynamic?
No

Validation
None

When to Change
If you use Solaris Volume Manager RAID 1 volumes (mirrors), and you want to increase the speed of mirror resynchronizations. Assuming that you have adequate memory for overall system performance, you can increase this value without causing other performance problems.

If you need to increase the speed of mirror resynchronizations, increase the value of this parameter incrementally (using 128-block increments) until performance is satisfactory. On fairly large or new systems, a value of 2048 seems to be optimal. High values on older systems might hang the system.

Commitment Level
Unstable
md:mirrored_root_flag

Description: Overrides Solaris Volume Manager requirements for replica quorum and forces Solaris Volume Manager to start if any valid state database replicas are available.

The default value is disabled, which requires that a majority of all replicas are available and synchronized before Solaris Volume Manager will start.

Data Type: Boolean values
Default: 0 (disabled)
Range: 0 (disabled) or 1 (enabled)
Dynamic?: No
Validation: None
When to Change: Use of this parameter is not supported.

Some people using Solaris Volume Manager accept the risk of enabling this parameter if all three of the following conditions apply:
- When root (/) or other system-critical file systems are mirrored
- Only two disks or controllers are available
- An unattended reboot of the system is required

If this parameter is enabled, the system might boot with a stale replica that inaccurately represents the system state (including which mirror sides are good or in Maintenance state). This situation could result in data corruption or system corruption.

Change this parameter only if system availability is more important than data consistency and integrity. Closely monitor the system for any failures. You can mitigate the risk by keeping the number of failed, Maintenance, or hot-swapped volumes as low as possible.

For more information about state database replicas, see Chapter 6, "State Database (Overview)," in Solaris Volume Manager Administration Guide.

Commitment Level: Unstable
This section describes the NFS tunable parameters.

- “Tuning the NFS Environment” on page 97
- “NFS Module Parameters” on page 98
- “nfssrv Module Parameters” on page 126
- “rpcmod Module Parameters” on page 129

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris kernel tunables</td>
<td>Chapter 2, “Oracle Solaris Kernel Tunable Parameters”</td>
</tr>
<tr>
<td>Internet Protocol Suite tunable parameters</td>
<td>Chapter 4, ”Internet Protocol Suite Tunable Parameters”</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) tunable parameters</td>
<td>Chapter 5, ”Network Cache and Accelerator Tunable Parameters”</td>
</tr>
</tbody>
</table>

Tuning the NFS Environment

You can define NFS parameters in the /etc/system file, which is read during the boot process. Each parameter includes the name of its associated kernel module. For more information, see “Tuning a Solaris System” on page 26.
Caution – The names of the parameters, the modules that they reside in, and the default values can change between releases. Check the documentation for the version of the active SunOS release before making changes or applying values from previous releases.

NFS Module Parameters

This section describes parameters related to the NFS kernel module.

nfs:nfs3_pathconf_disable_cache

Description Controls the caching of pathconf information for NFS Version 3 mounted file systems.

Data Type Integer (32-bit)

Default 0 (caching enabled)

Range 0 (caching enabled) or 1 (caching disabled)

Units Boolean values

Dynamic? Yes

Validation None

When to Change The pathconf information is cached on a per file basis. However, if the server can change the information for a specific file dynamically, use this parameter to disable caching. There is no mechanism for the client to validate its cache entry.

Commitment Level Unstable

nfs:nfs4_pathconf_disable_cache

Description Controls the caching of pathconf information for NFS Version 4 mounted file systems.

Data Type Integer (32-bit)

Default 0 (caching enabled)

Range 0 (caching enabled) or 1 (caching disabled)

Units Boolean values

Dynamic? Yes
Validation: None
When to Change: The `pathconf` information is cached on a per file basis. However, if the server can change the information for a specific file dynamically, use this parameter to disable caching. There is no mechanism for the client to validate its cache entry.
Commitment Level: Unstable

nfs:nfs_allow_preepoch_time

Description: Controls whether files with incorrect or negative time stamps should be made visible on the client.

Historically, neither the NFS client nor the NFS server would do any range checking on the file times being returned. The over-the-wire timestamp values are unsigned and 32-bits long. So, all values have been legal.

However, on a system running a 32-bit Solaris kernel, the timestamp values are signed and 32-bits long. Thus, it would be possible to have a timestamp representation that appeared to be prior to January 1, 1970, or *pre-epoch*.

The problem on a system running a 64-bit Solaris kernel is slightly different. The timestamp values on the 64-bit Solaris kernel are signed and 64-bits long. It is impossible to determine whether a time field represents a full 32-bit time or a negative time, that is, a time prior to January 1, 1970.

It is impossible to determine whether to sign extend a time value when converting from 32 bits to 64 bits. The time value should be sign extended if the time value is truly a negative number. However, the time value should not be sign extended if it does truly represent a full 32-bit time value. This problem is resolved by simply disallowing full 32-bit time values.

Data Type: Integer (32-bit)
Default: 0 (32-bit time stamps disabled)
Range: 0 (32-bit time stamps disabled) or 1 (32-bit time stamps enabled)
Units: Boolean values
Dynamic?: Yes
Validation: None

When to Change: Even during normal operation, it is possible for the timestamp values on some files to be set very far in the future or very far in the past. If access to these files is preferred using NFS mounted file systems, set this parameter to 1 to allow the timestamp values to be passed through unchecked.

Commitment Level: Unstable

nfs:nfs_cots_timeo

Description: Controls the default RPC timeout for NFS version 2 mounted file systems using connection-oriented transports such as TCP for the transport protocol.

Data Type: Signed integer (32-bit)

Default: 600 (60 seconds)

Range: 0 to $2^{31} - 1$

Units: 10th of seconds

Dynamic?: Yes, but the RPC timeout for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation: None

When to Change: TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 2 client might time out prematurely.

Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value too much might result in situations where a retransmission is not detected for long periods of time.

Commitment Level: Unstable

nfs:nfs3_cots_timeo

Description: Controls the default RPC timeout for NFS version 3 mounted file systems using connection-oriented transports such as TCP for the transport protocol.
nfs:nfs4_cots_timeo

Description
Controls the default RPC timeout for NFS version 4 mounted file systems using connection-oriented transports such as TCP for the transport protocol.

The NFS Version 4 protocol specification disallows retransmission over the same TCP connection. Thus, this parameter primarily controls how quickly the client responds to certain events, such as detecting a forced unmount operation or detecting how quickly the server fails over to a new server.

Data Type
Signed integer (32-bit)

Default
600 (60 seconds)

Range
0 to $2^{31} - 1$

Units
10th of seconds

Dynamic?
Yes, but this parameter is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation

None

When to Change

TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 4 client might time out prematurely.

Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value too much might result in situations where a retransmission is not detected for long periods of time.

Commitment Level

Unstable

nfs:nfs_do_symlink_cache

- **Description**: Controls whether the contents of symbolic link files are cached for NFS version 2 mounted file systems.
- **Data Type**: Integer (32–bit)
- **Default**: 1 (caching enabled)
- **Range**: 0 (caching disabled) or 1 (caching enabled)
- **Units**: Boolean values
- **Dynamic?**: Yes
- **Validation**: None
- **When to Change**: If a server changes the contents of a symbolic link file without updating the modification timestamp on the file or if the granularity of the timestamp is too large, then changes to the contents of the symbolic link file might not be visible on the client for extended periods. In this case, use this parameter to disable the caching of symbolic link contents. Doing so makes the changes immediately visible to applications running on the client.

Commitment Level

Unstable

nfs:nfs3_do_symlink_cache

- **Description**: Controls whether the contents of symbolic link files are cached for NFS version 3 mounted file systems.
- **Data Type**: Integer (32-bit)
nfs:nfs4_do_symlink_cache

Description
Controls whether the contents of symbolic link files are cached for NFS version 4 mounted file systems.

Data Type
Integer (32-bit)

Default
1 (caching enabled)

Range
0 (caching disabled) or 1 (caching enabled)

Units
Boolean values

Dynamic?
Yes

Validation
None

When to Change
If a server changes the contents of a symbolic link file without updating the modification timestamp on the file or if the granularity of the timestamp is too large, then changes to the contents of the symbolic link file might not be visible on the client for extended periods. In this case, use this parameter to disable the caching of symbolic link contents. Doing so makes the changes immediately visible to applications running on the client.

Commitment Level
Unstable
nfs:nfs_dynamic

Description: Controls whether a feature known as *dynamic retransmission* is enabled for NFS version 2 mounted file systems using connectionless transports such as UDP. This feature attempts to reduce retransmissions by monitoring server response times and then adjusting RPC timeouts and read- and write-transfer sizes.

Data Type: Integer (32-bit)

Default: 1 (enabled)

Range: 0 (disabled) or 1 (enabled)

Dynamic?: Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation: None

When to Change: Do not change this parameter.

Commitment Level: Unstable

nfs:nfs3_dynamic

Description: Controls whether a feature known as *dynamic retransmission* is enabled for NFS version 3 mounted file systems using connectionless transports such as UDP. This feature attempts to reduce retransmissions by monitoring server response times and then adjusting RPC timeouts and read- and write-transfer sizes.

Data Type: Integer (32-bit)

Default: 0 (disabled)

Range: 0 (disabled) or 1 (enabled)

Units: Boolean values

Dynamic?: Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation: None

When to Change: Do not change this parameter.

Commitment Level: Unstable
nfs:nfs_lookup_neg_cache

Description
Controls whether a negative name cache is used for NFS version 2 mounted file systems. This negative name cache records file names that were looked up, but not found. The cache is used to avoid over-the-network look-up requests made for file names that are already known to not exist.

Data Type
Integer (32-bit)

Default
1 (enabled)

Range
0 (disabled) or 1 (enabled)

Units
Boolean values

Dynamic?
Yes

Validation
None

When to Change
For the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems. It is assumed that the file system on the server is not changing or is changing very slowly, and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, use this parameter to disable the negative cache.

If you disable the `nfs:nfs_disable_rddir_cache` parameter, you should probably also disable this parameter. For more information, see “nfs:nfs_disable_rddir_cache” on page 115.

Commitment Level
Unstable

nfs:nfs3_lookup_neg_cache

Description
Controls whether a negative name cache is used for NFS version 3 mounted file systems. This negative name cache records file names that were looked up, but were not found. The cache is used to avoid over-the-network look-up requests made for file names that are already known to not exist.

Data Type
Integer (32-bit)
Default 1 (enabled)
Range 0 (disabled) or 1 (enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change For the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems. It is assumed that the file system on the server is not changing or is changing very slowly, and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, use this parameter to disable the negative cache.

If you disable the nfs:nfs_disable_rddir_cache parameter, you should probably also disable this parameter. For more information, see “nfs:nfs_disable_rddir_cache” on page 115.

Commitment Level Unstable

nfs::nfs4_lookup_neg_cache

Description Controls whether a negative name cache is used for NFS version 4 mounted file systems. This negative name cache records file names that were looked up, but were not found. The cache is used to avoid over-the-network look-up requests made for file names that are already known to not exist.

Data Type Integer (32-bit)
Default 1 (enabled)
Range 0 (disabled) or 1 (enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change: For the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems. It is assumed that the file system on the server is not changing or is changing very slowly, and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, use this parameter to disable the negative cache.

If you disable the `nfs:nfs_disable_rddir_cache` parameter, you should probably also disable this parameter. For more information, see “nfs:nfs_disable_rddir_cache” on page 115.

Commitment Level: Unstable

nfs:nfs_max_threads

Description: Controls the number of kernel threads that perform asynchronous I/O for the NFS version 2 client. Because NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, readdir for readdir read-ahead, write for putpage and pageio operations, commit, and inactive for cleanup operations that the client performs when it stops using a file.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (16-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>8</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 2^{15} - 1</td>
</tr>
<tr>
<td>Units</td>
<td>Threads</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>To increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the</td>
</tr>
</tbody>
</table>
NFS client does not overload the network. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level Unstable

nfs:nfs3_max_threads

Description Controls the number of kernel threads that perform asynchronous I/O for the NFS version 3 client. Because NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, readdir for readdir read-ahead, write for putpage and pageio requests, and commit.

Data Type Integer (16-bit)

Default 8

Range 0 to 2^{15} - 1

Units Threads

Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change To increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the NFS client does not overload the network. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level Unstable
nfs:nfs4_max_threads

Description
Controls the number of kernel threads that perform asynchronous I/O for the NFS version 4 client. Because NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, write-behind, directory read-ahead, and cleanup operations that the client performs when it stops using a file.

Data Type Integer (16-bit)
Default 8
Range 0 to $2^{15} - 1$
Units Threads
Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None
When to Change To increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the NFS client does not overload the network. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.
Commitment Level Unstable

nfs:nfs_nra

Description
Controls the number of read-ahead operations that are queued by the NFS version 2 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for one logical block of file data.

Data Type Integer (32-bit)
Default 4
nfs:nfs3_nra

Description

Controls the number of read-ahead operations that are queued by the NFS version 3 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for one logical block of file data.

Data Type

Integer (32-bit)

Default

4

Range

0 to $2^{31} - 1$

Units

Logical blocks. (See "nfs:nfs3_bsize" on page 116.)

Dynamic?

Yes

Validation

None

When to Change

To increase or reduce the number of read-ahead requests that are outstanding for a specific file at any given time. For example, for a very low bandwidth network or on a low memory client, you might want to decrease this value so that the NFS client does not overload the network or the system memory. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level

Unstable
Change History

For information, see "nfs:nfs3_nra (Solaris 10)" on page 186.

nfs:nfs4_nra

Description Controls the number of read-ahead operations that are queued by the NFS version 4 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for one logical block of file data.

Data Type Integer (32-bit)

Default 4

Range 0 to $2^{31} - 1$

Units Logical blocks. (See “nfs:nfs4_bsize” on page 117.)

Dynamic? Yes

Validation None

When to Change To increase or reduce the number of read-ahead requests that are outstanding for a specific file at any given time. For example, for a very low bandwidth network or on a low memory client, you might want to decrease this value so that the NFS client does not overload the network or the system memory. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level Unstable

nfs:nrnode

Description Controls the size of the rnode cache on the NFS client.

The rnode, used by both NFS version 2, 3, and 4 clients, is the central data structure that describes a file on the NFS client. The rnode contains the file handle that identifies the file on the server. The rnode also contains pointers to various caches used by the NFS client to avoid network calls to the server. Each rnode has a one-to-one association with a vnode. The vnode caches file data.
The NFS client attempts to maintain a minimum number of rnodes to attempt to avoid destroying cached data and metadata. When an rnode is reused or freed, the cached data and metadata must be destroyed.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>The default setting of this parameter is 0, which means that the value of nrrnode should be set to the value of the ncsizze parameter. Actually, any non positive value of nrrnode results in nrrnode being set to the value of ncsizze.</td>
</tr>
<tr>
<td>Range</td>
<td>1 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>rnodes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. This value can only be changed by adding or changing the parameter in the /etc/system file, and then rebooting the system.</td>
</tr>
<tr>
<td>Validation</td>
<td>The system enforces a maximum value such that the rnode cache can only consume 25 percent of available memory.</td>
</tr>
<tr>
<td>When to Change</td>
<td>Because rnodes are created and destroyed dynamically, the system tends to settle upon a nrrnode-size cache, automatically adjusting the size of the cache as memory pressure on the system increases or as more files are simultaneously accessed. However, in certain situations, you could set the value of nrrnode if the mix of files being accessed can be predicted in advance. For example, if the NFS client is accessing a few very large files, you could set the value of nrrnode to a small number so that system memory can cache file data instead of rnodes. Alternately, if the client is accessing many small files, you could increase the value of nrrnode to optimize for storing file metadata to reduce the number of network calls for metadata. Although it is not recommended, the rnode cache can be effectively disabled by setting the value of nrrnode to 1. This value instructs the client to only cache 1 rnode, which means that it is reused frequently.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
<tr>
<td>Change History</td>
<td>For information, see "nfs:nrrnode (Solaris 9 8/03)" on page 186.</td>
</tr>
</tbody>
</table>

nfs:nfs_shrinkreaddir

Description Some older NFS servers might incorrectly handle NFS version 2 READDIR requests for more than 1024 bytes of directory information. This problem is due to a bug in the server implementation. However, this parameter contains a workaround in the NFS version 2 client.
When this parameter is enabled, the client does not generate a READDIR request for larger than 1024 bytes of directory information. If this parameter is disabled, then the over-the-wire size is set to the lesser of either the size passed in by using the getdents system call or by using NFS_MAXDATA, which is 8192 bytes. For more information, see getdents(2).

nfs:nfs3_shrinkreaddir

Description
Some older NFS servers might incorrectly handle NFS version 3 READDIR requests for more than 1024 bytes of directory information. This problem is due to a bug in the server implementation. However, this parameter contains a workaround in the NFS version 3 client.

When this parameter is enabled, the client does not generate a READDIR request for larger than 1024 bytes of directory information. If this parameter is disabled, then the over-the-wire size is set to the minimum of either the size passed in by using the getdents system call or by using MAXBSIZE, which is 8192 bytes. For more information, see getdents(2).

Data Type Integer (32-bit)
Default 0 (disabled)
Range 0 (disabled) or 1 (enabled)
Units Boolean values
Dynamic? Yes

Commitment Level Unstable

Chapter 3 • NFS Tunable Parameters

nfs:nfs_write_error_interval

Description: Controls the time duration in between logging ENOSPC and EDQUOT write errors received by the NFS client. This parameter affects NFS version 2, 3, and 4 clients.

Data Type: Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default: 5 seconds

Range: 0 to $2^{31} - 1$ on 32-bit platforms
0 to $2^{63} - 1$ on 64-bit platforms

Units: Seconds

Dynamic?: Yes

Validation: None

When to Change: Increase or decrease the value of this parameter in response to the volume of messages being logged by the client. Typically, you might want to increase the value of this parameter to decrease the number of out of space messages being printed when a full file system on a server is being actively used.

Commitment Level: Unstable

Change History: For information, see “nfs:nfs_write_error_interval (Solaris 9 8/03)” on page 186.

nfs:nfs_write_error_to_cons_only

Description: Controls whether NFS write errors are logged to the system console and syslog or to the system console only. This parameter affects messages for NFS version 2, 3, and 4 clients.

Data Type: Integer (32-bit)
nfs:nfs_disable_rddir_cache

Description: Controls the use of a cache to hold responses from READDIR and READDIRPLUS requests. This cache avoids over-the-wire calls to the server to retrieve directory information.

Data Type: Integer (32-bit)
Default: 0 (caching enabled)
Range: 0 (caching enabled) or 1 (caching disabled)
Units: Boolean values
Dynamic?: Yes
Validation: None
When to Change: Examine the value of this parameter if interoperability problems develop due to a server that does not update the modification time on a directory when a file or directory is created in it or removed from it. The symptoms are that new names do not appear in directory listings after they have been added to the directory or that old names do not disappear after they have been removed from the directory.

This parameter controls the caching for NFS version 2, 3, and 4 mounted file systems. This parameter applies to all NFS mounted file systems, so caching cannot be disabled or enabled on a per file system basis.
If you disable this parameter, you should also disable the following parameters to prevent bad entries in the DNLC negative cache:

- “nfs:nfs_lookup_neg_cache” on page 105
- “nfs:nfs3_lookup_neg_cache” on page 105
- “nfs:nfs4_lookup_neg_cache” on page 106

nfs:nfs_bsize

Description
Controls the logical block size used by the NFS version 2 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type
Unsigned integer (32-bit)

Default
8192 bytes

Range
0 to \(2^{31} - 1\)

Units
Bytes

Dynamic?
Yes, but the block size for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than PAGESIZE for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.

When to Change
Do not change this parameter.

Commitment Level
Unstable

nfs:nfs3_bsize

Description
Controls the logical block size used by the NFS version 3 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type
Unsigned integer (32-bit)
nfs:nfs4_bsize

Description
Controls the logical block size used by the NFS version 4 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type
Unsigned integer (32-bit)

Default
32,768 (32 Kbytes)

Range
0 to $2^{31} - 1$

Units
Bytes

Dynamic?
Yes, but the block size for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than `PAGESIZE` for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>32,768 (32 Kbytes)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, but the block size for a file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.</td>
</tr>
<tr>
<td>Validation</td>
<td>None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than <code>PAGESIZE</code> for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.</td>
</tr>
</tbody>
</table>
When to Change: Examine the value of this parameter when attempting to change the maximum data transfer size. Change this parameter in conjunction with the `nfs:nfs4_max_transfer_size` parameter. If larger transfers are preferred, increase both parameters. If smaller transfers are preferred, then just reducing this parameter should suffice.

Commitment Level: Unstable

nfs:nfs_async_clusters

Description: Controls the mix of asynchronous requests that are generated by the NFS version 2 client. The four types of asynchronous requests are read-ahead, putpage, pageio, and readdir-ahead. The client attempts to round-robin between these different request types to attempt to be fair and not starve one request type in favor of another.

However, the functionality in some NFS version 2 servers such as write gathering depends upon certain behaviors of existing NFS Version 2 clients. In particular, this functionality depends upon the client sending out multiple `WRITE` requests at about the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each request type that are sent out before changing types.

Data Type: Unsigned integer (32-bit)

Default: 1

Range: 0 to 2^{31} - 1

Units: Asynchronous requests

Dynamic? Yes. However, the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation: None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular request type to be processed before moving on to the next type. This effectively disables the fairness portion of the algorithm.

When to Change: To increase the number of each type of asynchronous request that is generated before switching to the next type. Doing so might help with server functionality that depends upon clusters of requests coming from the client.
Commitment Level Unstable

nfs:nfs3_async_clusters

Description
Controls the mix of asynchronous requests that are generated by the NFS version 3 client. The five types of asynchronous requests are read-ahead, putpage, pageio, readdir-ahead, and commit. The client attempts to round-robin between these different request types to attempt to be fair and not starve one request type in favor of another.

However, the functionality in some NFS version 3 servers such as write gathering depends upon certain behaviors of existing NFS version 3 clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at about the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each request type that are sent out before changing types.

Data Type Unsigned integer (32-bit)

Default 1

Range 0 to $2^{31} - 1$

Units Asynchronous requests

Dynamic? Yes, but the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular request type to be processed before moving on to the next type. This value effectively disables the fairness portion of the algorithm.

When to Change To increase the number of each type of asynchronous operation that is generated before switching to the next type. Doing so might help with server functionality that depends upon clusters of operations coming from the client.

Commitment Level Unstable
nfs:nfs4_async_clusters

Description
Controls the mix of asynchronous requests that are generated by the NFS version 4 client. The six types of asynchronous requests are read-ahead, putpage, pageio, readdir-ahead, commit, and inactive. The client attempts to round-robin between these different request types to attempt to be fair and not starve one request type in favor of another.

However, the functionality in some NFS version 4 servers such as write gathering depends upon certain behaviors of existing NFS version 4 clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at about the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each request type that are sent out before changing types.

Data Type
Unsigned integer (32-bit)

Default
1

Range
0 to $2^{31} - 1$

Units
Asynchronous requests

Dynamic?
Yes, but the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular request type to be processed before moving on to the next type. This effectively disables the fairness portion of the algorithm.

When to Change
To increase the number of each type of asynchronous request that is generated before switching to the next type. Doing so might help with server functionality that depends upon clusters of requests coming from the client.

Commitment Level
Unstable

nfs:nfs_async_timeout

Description
Controls the duration of time that threads, which execute asynchronous I/O requests, sleep with nothing to do before exiting. When there are no more requests to execute, each thread goes to sleep.
If no new requests come in before this timer expires, the thread wakes up and exits. If a request does arrive, a thread is woken up to execute requests until there are none again. Then, the thread goes back to sleep waiting for another request to arrive, or for the timer to expire.

Data Type Integer (32-bit)

Default 6000 (1 minute expressed as 60 sec * 100Hz)

Range 0 to $2^{31} - 1$

Units Hz. (Typically, the clock runs at 100Hz.)

Dynamic? Yes

Validation None. However, setting this parameter to a non positive value causes these threads exit as soon as there are no requests in the queue for them to process.

When to Change If the behavior of applications in the system is known precisely and the rate of asynchronous I/O requests can be predicted, it might be possible to tune this parameter to optimize performance slightly in either of the following ways:

- By making the threads expire more quickly, thus freeing up kernel resources more quickly
- By making the threads expire more slowly, thus avoiding thread create and destroy overhead

Commitment Level Unstable

nfs:nacache

Description Tunes the number of hash queues that access the file access cache on the NFS client. The file access cache stores file access rights that users have with respect to files that they are trying to access. The cache itself is dynamically allocated. However, the hash queues used to index into the cache are statically allocated. The algorithm assumes that there is one access cache entry per active file and four of these access cache entries per hash bucket. Thus, by default, the value of this parameter is set to the value of the nrnode parameter.

Data Type Integer (32-bit)

Default The default setting of this parameter is 0. This value means that the value of nacache should be set to the value of the nrnode parameter.

Range 1 to $2^{31} - 1$
Units
Access cache entries

Dynamic?
No. This value can only be changed by adding or changing the parameter in the `/etc/system` file, and then rebooting system.

Validation
None. However, setting this parameter to a negative value will probably cause the system to try to allocate a very large set of hash queues. While trying to do so, the system is likely to hang.

When to Change
Examine the value of this parameter if the basic assumption of one access cache entry per file would be violated. This violation could occur for systems in a timesharing mode where multiple users are accessing the same file at about the same time. In this case, it might be helpful to increase the expected size of the access cache so that the hashed access to the cache stays efficient.

Commitment Level
Unstable

nfs:nfs3_jukebox_delay

Description
Controls the duration of time that the NFS version 3 client waits to transmit a new request after receiving the `NFS3ERR_JUKEBOX` error from a previous request. The `NFS3ERR_JUKEBOX` error is generally returned from the server when the file is temporarily unavailable for some reason. This error is generally associated with hierarchical storage, and CD or tape jukeboxes.

Data Type
Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default
1000 (10 seconds expressed as 10 sec * 100Hz)

Range
0 to 2^{31} - 1 on 32-bit platforms

0 to 2^{63} - 1 on 64-bit platforms

Units
Hz. (Typically, the clock runs at 100Hz.)

Dynamic?
Yes

Validation
None

When to Change
Examine the value of this parameter and perhaps adjust it to match the behaviors exhibited by the server. Increase this value if the delays in making the file available are long in order to reduce network overhead due to repeated retransmissions. Decrease this value to reduce the delay in discovering that the file has become available.

Commitment Level
Unstable
nfs:nfs3_max_transfer_size

Description
Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, READDIR, or READDIRPLUS request. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type
Integer (32-bit)

Default
1,048,576 (1 Mbyte)

Range
0 to 2^{31} - 1

Units
Bytes

Dynamic?
Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

There is also a limit on the maximum transfer size when using NFS over the UDP transport. UDP has a hard limit of 64 Kbytes per datagram. This 64 Kbytes must include the RPC header as well as other NFS information, in addition to the data portion of the request. Setting the limit too high might result in errors from UDP and communication problems between the client and the server.

When to Change
To tune the size of data transmitted over the network. In general, the nfs:nfs3_bsize parameter should also be updated to reflect changes in this parameter.

For example, when you attempt to increase the transfer size beyond 32 Kbytes, update nfs:nfs3_bsize to reflect the increased value. Otherwise, no change in the over-the-wire request size is observed. For more information, see "nfs:nfs3_bsize" on page 116.

If you want to use a smaller transfer size than the default transfer size, use the mount command’s -wsize or -rsize option on a per-file system basis.

Commitment Level
Unstable

Change History
For information, see “nfs:nfs3_max_transfer_size (Solaris 9 8/03)” on page 187.
nfs:nfs4_max_transfer_size

Description: Controls the maximum size of the data portion of an NFS version 4 READ, WRITE, READDIR, or READDIRPLUS request. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type: Integer (32-bit)

Default: 32,768 (32 Kbytes)

Range: 0 to \(2^{31} - 1\)

Units: Bytes

Dynamic?: Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation: None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

There is also a limit on the maximum transfer size when using NFS over the UDP transport. For more information on the maximum for UDP, see "nfs:nfs3_max_transfer_size" on page 123.

When to Change: To tune the size of data transmitted over the network. In general, the nfs:nfs4_bsize parameter should also be updated to reflect changes in this parameter.

For example, when you attempt to increase the transfer size beyond 32 Kbytes, update nfs:nfs4_bsize to reflect the increased value. Otherwise, no change in the over-the-wire request size is observed. For more information, see "nfs:nfs4_bsize" on page 117.

If you want to use a smaller transfer size than the default transfer size, use the mount command’s -wsize or -rsize option on a per-file system basis.

Commitment Level: Unstable

nfs:nfs3_max_transfer_size_clts

Description: Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, READDIR, or READDIRPLUS request over UDP. This
parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Parameter Details

Data Type
- Integer (32-bit)

Default
- 32,768 (32 Kbytes)

Range
- 0 to $2^{31} - 1$

Units
- Bytes

Dynamic?
- Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
- None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

When to Change
- Do not change this parameter.

Commitment Level
- Unstable

nfs:nfs3_max_transfer_size_cots

Description
- Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, READDIR, or READDIRPLUS request over TCP. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type
- Integer (32-bit)

Default
- 1048576 bytes

Range
- 0 to $2^{31} - 1$

Units
- Bytes

Dynamic?
- Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
- None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

When to Change
- Do not change this parameter unless transfer sizes larger than 1 Mbyte are preferred.
This section describes NFS parameters for the nfssrv module.

nfssrv:nfs_portmon

Description
Controls some security checking that the NFS server attempts to do to enforce integrity on the part of its clients. The NFS server can check whether the source port from which a request was sent was a reserved port. A reserved port has a number less than 1024. For BSD-based systems, these ports are reserved for processes being run by root. This security checking can prevent users from writing their own RPC-based applications that defeat the access checking that the NFS client uses.

Data Type
Integer (32-bit)

Default
0 (security checking disabled)

Range
0 (security checking disabled) or 1 (security checking enabled)

Units
Boolean values

Dynamic?
Yes

Validation
None

When to Change
Use this parameter to prevent malicious users from gaining access to files by using the NFS server that they would not ordinarily have access to. However, the reserved port notion is not universally supported. Thus, the security aspects of the check are very weak. Also, not all NFS client implementations bind their transport endpoints to a port number in the reserved range. Thus, interoperability problems might result if the security checking is enabled.

Commitment Level
Unstable

nfssrv:rfs_write_async

Description
Controls the behavior of the NFS version 2 server when it processes WRITE requests. The NFS version 2 protocol mandates that all modified data and metadata associated with the WRITE request reside on stable storage before the server can respond to the client. NFS version 2 WRITE
requests are limited to 8192 bytes of data. Thus, each WRITE request might cause multiple small writes to the storage subsystem. This can cause a performance problem.

One method to accelerate NFS version 2 WRITE requests is to take advantage of a client behavior. Clients tend to send WRITE requests in batches. The server can take advantage of this behavior by clustering together the different WRITE requests into a single request to the underlying file system. Thus, the data to be written to the storage subsystem can be written in fewer, larger requests. This method can significantly increase the throughput for WRITE requests.

nfssrv Module Parameters

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1 (clustering enabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (clustering disabled) or 1 (clustering enabled)</td>
</tr>
<tr>
<td>Units</td>
<td>Boolean values</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Some very small NFS clients, particularly PC clients, might not batch WRITE requests. Thus, the behavior required from the clients might not exist. In addition, the clustering in the NFS version 2 server might just add overhead and slow down performance instead of increasing it.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

nfssrv:nfsauth_ch_cache_max

Description: Controls the size of the cache of client handles that contact the NFS authentication server. This server authenticates NFS clients to determine whether they are allowed access to the file handle that they are trying to use.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>16</td>
</tr>
<tr>
<td>Range</td>
<td>0 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>Client handles</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
</tbody>
</table>
When to Change This cache is not dynamic, so attempts to allocate a client handle when all are busy will fail. This failure results in requests being dropped by the NFS server because they could not be authenticated. Most often, this result is not a problem because the NFS client just times out and retransmits the request. However, for soft-mounted file systems on the client, the client might time out, not retry the request, and then return an error to the application. This situation might be avoided if you ensure that the size of the cache on the server is large enough to handle the load.

Commitment Level Unstable

nfssrv:exi_cache_time

Description Controls the duration of time that entries are held in the NFS authentication cache before being purged due to memory pressure in the system.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default 3600 seconds (1 hour)

Range 0 to $2^{31} - 1$ on 32-bit platforms

0 to $2^{63} - 1$ on 64-bit platforms

Units Seconds

Dynamic? Yes

Validation None

When to Change The size of the NFS authentication cache can be adjusted by varying the minimum age of entries that can get purged from the cache. The size of the cache should be controlled so that it is not allowed to grow too large, thus using system resources that are not allowed to be released due to this aging process.

Commitment Level Unstable
This section describes NFS parameters for the \texttt{rpcmod} module.

\textbf{\texttt{rpcmod:clnt_max_conns}}

- **Description**: Controls the number of TCP connections that the NFS client uses when communicating with each NFS server. The kernel RPC is constructed so that it can multiplex RPCs over a single connection. However, multiple connections can be used, if preferred.

- **Data Type**: Integer (32-bit)

- **Default**: 1

- **Range**: 1 to $2^{31} - 1$

- **Units**: Connections

- **Dynamic?**: Yes

- **Validation**: None

- **When to Change**: In general, one connection is sufficient to achieve full network bandwidth. However, if TCP cannot utilize the bandwidth offered by the network in a single stream, then multiple connections might increase the throughput between the client and the server.

- **Commitment Level**: Unstable

Increasing the number of connections doesn’t come without consequences. Increasing the number of connections also increases kernel resource usage needed to keep track of each connection.

\textbf{\texttt{rpcmod:clnt_idle_timeout}}

- **Description**: Controls the duration of time on the client that a connection between the client and server is allowed to remain idle before being closed.

- **Data Type**: Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

- **Default**: 300,000 milliseconds (5 minutes)

- **Range**: 0 to $2^{31} - 1$ on 32-bit platforms

 0 to $2^{63} - 1$ on 64-bit platforms
rpcmod:svc_idle_timeout

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the duration of time on the server that a connection between the client and server is allowed to remain idle before being closed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)</td>
</tr>
<tr>
<td>Default</td>
<td>360,000 milliseconds (6 minutes)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 2^{31} - 1 on 32-bit platforms</td>
</tr>
<tr>
<td></td>
<td>0 to 2^{63} - 1 on 64-bit platforms</td>
</tr>
<tr>
<td>Units</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Use this parameter to change the time that idle connections are allowed to exist on the server before being closed. You might want to close connections at a faster rate to avoid consuming system resources.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

rpcmod:svc_default_stksize

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the size of the kernel stack for kernel RPC service threads.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Integer (32-bit)</td>
</tr>
<tr>
<td>Default</td>
<td>The default value is 0. This value means that the stack size is set to the system default.</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 2^{11} - 1</td>
</tr>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
</tbody>
</table>
Dynamic? Yes, for all new threads that are allocated. The stack size is set when the thread is created. Therefore, changes to this parameter do not affect existing threads but are applied to all new threads that are allocated.

Validation None

When to Change Very deep call depths can cause the stack to overflow and cause red zone faults. The combination of a fairly deep call depth for the transport, coupled with a deep call depth for the local file system, can cause NFS service threads to overflow their stacks.

Set this parameter to a multiple of the hardware pagesize on the platform.

Commitment Level Unstable

rpcmod:svc_default_max_same_xprt

Description Controls the maximum number of requests that are processed for each transport endpoint before switching transport endpoints. The kernel RPC works by having a pool of service threads and a pool of transport endpoints. Any one of the service threads can process requests from any one of the transport endpoints. For performance, multiple requests on each transport endpoint are consumed before switching to a different transport endpoint. This approach offers performance benefits while avoiding starvation.

Data Type Integer (32-bit)

Default 8

Range 0 to \(2^{31} - 1\)

Units Requests

Dynamic? Yes, but the maximum number of requests to process before switching transport endpoints is set when the transport endpoint is configured into the kernel RPC subsystem. Changes to this parameter only affect new transport endpoints, not existing transport endpoints.

Validation None

When to Change Tune this parameter so that services can take advantage of client behaviors such as the clustering that accelerate NFS version 2 WRITE requests. Increasing this parameter might result in the server being better able to take advantage of client behaviors.

Commitment Level Unstable
rpcmod:maxdupreqs

Description
Controls the size of the duplicate request cache that detects RPC-level retransmissions on connectionless transports. This cache is indexed by the client network address and the RPC procedure number, program number, version number, and transaction ID. This cache avoids processing retransmitted requests that might not be idempotent.

Data Type
Integer (32-bit)

Default
1024

Range
1 to $2^{31} - 1$

Units
Requests

Dynamic?
The cache is dynamically sized, but the hash queues that provide fast access to the cache are statically sized. Making the cache very large might result in long search times to find entries in the cache.

Do not set the value of this parameter to 0. This value prevents the NFS server from handling non idempotent requests.

Validation
None

When to Change
Examine the value of this parameter if false failures are encountered by NFS clients. For example, if an attempt to create a directory fails, but the directory is actually created, perhaps that retransmitted `MKDIR` request was not detected by the server.

The size of the cache should match the load on the server. The cache records non idempotent requests and so only needs to track a portion of the total requests. The cache does need to hold the information long enough to be able to detect a retransmission by the client. Typically, the client timeout for connectionless transports is relatively short, starting around 1 second and increasing to about 20 seconds.

Commitment Level
Unstable

rpcmod:cotsmaxdupreqs

Description
Controls the size of the duplicate request cache that detects RPC-level retransmissions on connection-oriented transports. This cache is indexed by the client network address and the RPC procedure number, program number, version number, and transaction ID. This cache avoids processing retransmitted requests that might not be idempotent.
<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1024</td>
</tr>
<tr>
<td>Range</td>
<td>1 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>Requests</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>The cache is dynamically sized, but the hash queues that provide fast access to the cache are statically sized. Making the cache very large might result in long search times to find entries in the cache. Do not set the value of this parameter to 0. It prevents the NFS server from handling non-idempotent requests.</td>
</tr>
<tr>
<td>When to Change</td>
<td>Examine the value of this parameter if false failures are encountered by NFS clients. For example, if an attempt to create a directory fails, but the directory is actually created, it is possible that a retransmitted <code>mkdir</code> request was not detected by the server. The size of the cache should match the load on the server. The cache records non-idempotent requests and so only needs to track a portion of the total requests. It does need to hold the information long enough to be able to detect a retransmission on the part of the client. Typically, the client timeout for connection oriented transports is very long, about 1 minute. Thus, entries need to stay in the cache for fairly long times.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
This chapter describes various Internet Protocol suite parameters, such as TCP, IP, UDP, and SCTP.

- "IP Tunable Parameters" on page 136
- "TCP Tunable Parameters" on page 142
- "UDP Tunable Parameters" on page 157
- "IPQoS Tunable Parameter" on page 158
- "SCTP Tunable Parameters" on page 159
- "Per-Route Metrics" on page 167

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris kernel tunables</td>
<td>Chapter 2, "Oracle Solaris Kernel Tunable Parameters"</td>
</tr>
<tr>
<td>NFS tunable parameters</td>
<td>Chapter 3, "NFS Tunable Parameters"</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) tunable parameters</td>
<td>Chapter 5, "Network Cache and Accelerator Tunable Parameters"</td>
</tr>
</tbody>
</table>

Overview of Tuning IP Suite Parameters

For new information about IP forwarding, see "New and Changed TCP/IP Parameters" on page 24.

You can set all of the tuning parameters described in this chapter by using the ndd command except for the following parameters:

- "ipcl_conn_hash_size" on page 153
These parameters can only be set in the /etc/system file.

For example, use the following syntax to set TCP/IP parameters by using the ndd command:

```
# ndd -set driver parameter
```

For more information, see ndd(1M).

Although the SMF framework provides a method for managing system services, ndd commands are still included in system startup scripts. For more information on creating a startup script, see “Using Run Control Scripts” in System Administration Guide: Basic Administration.

IP Suite Parameter Validation

All parameters described in this section are checked to verify that they fall in the parameter range. The parameter’s range is provided with the description for each parameter.

Internet Request for Comments (RFCs)

Internet protocol and standard specifications are described in RFC documents. You can get copies of RFCs from ftp://ftp.rfc-editor.org/in-notes. Browse RFC topics by viewing the rfc-index.txt file at this site.

IP Tunable Parameters

ip_icmp_err_interval and ip_icmp_err_burst

Description

Controls the rate of IP in generating IPv4 or IPv6 ICMP error messages. IP generates only up to \textit{ip_icmp_err_burst} IPv4 or IPv6 ICMP error messages in any \textit{ip_icmp_err_interval}.

The \textit{ip_icmp_err_interval} parameter protects IP from denial of service attacks. Setting this parameter to 0 disables rate limiting. It does not disable the generation of error messages.

Default

- 100 milliseconds for \textit{ip_icmp_err_interval}
- 10 error messages for \textit{ip_icmp_err_burst}

Range

- 0 – 99,999 milliseconds for \textit{ip_icmp_err_interval}
- 1 – 99,999 error messages for \textit{ip_icmp_err_burst}
Dynamic? Yes
When to Change If you need a higher error message generation rate for diagnostic purposes.
Commitment Level Unstable

ip respond**_**_to**_** echo**_**_ broadcast and ip6 respond**_**_ to**_** echo**_**_ multicast**

Description Controls whether IPv4 or IPv6 responds to a broadcast ICMPv4 echo request or a multicast ICMPv6 echo request.
Default 1 (enabled)
Range 0 (disabled) or 1 (enabled)
Dynamic? Yes
When to Change If you do not want this behavior for security reasons, disable it.
Commitment Level Unstable

ip_send_redirects and ip6_send_redirects

Description Controls whether IPv4 or IPv6 sends out ICMPv4 or ICMPv6 redirect messages.
Default 1 (enabled)
Range 0 (disabled) or 1 (enabled)
Dynamic? Yes
When to Change If you do not want this behavior for security reasons, disable it.
Commitment Level Unstable

ip_forward_src_routed and ip6_forward_src_routed

Description Controls whether IPv4 or IPv6 forwards packets with source IPv4 routing options or IPv6 routing headers.
Default 0 (disabled)
ip_addrs_per_if

Description
Defines the maximum number of logical interfaces associated with a real interface.

Default
256

Range
1 to 8192

Dynamic?
Yes

When to Change
Do not change the value. If more logical interfaces are required, you might consider increasing the value. However, recognize that this change might have a negative impact on IP's performance.

Commitment Level
Unstable

ip_strict_dst_multihoming and ip6_strict_dst_multihoming

Description
Determines whether a packet arriving on a non forwarding interface can be accepted for an IP address that is not explicitly configured on that interface. If `ip_forwarding` is enabled, or `xxx:ip_forwarding` for the appropriate interfaces is enabled, then this parameter is ignored, because the packet is actually forwarded.

Refer to RFC 1122, 3.3.4.2.

Default
0 (loose multihoming)

Range
0 = Off (loose multihoming)
1 = On (strict multihoming)

Dynamic?
Yes
When to Change If a machine has interfaces that cross strict networking domains (for example, a firewall or a VPN node), set this parameter to 1.

Commitment Level Unstable

ip_multidata_outbound

Description

Enables the network stack to send more than one packet at one time to the network device driver during transmission.

Enabling this parameter reduces the per-packet processing costs by improving host CPU utilization, network throughput, or both.

This parameter now controls the use of multidata transmit (MDT) for transmitting IP fragments. For example, when sending out a UDP payload larger than the link MTU. When this tunable is enabled, IP fragments of a particular upper-level protocol, such as UDP, are delivered in batches to the network device driver. Disabling this feature results in both TCP and IP fragmentation logic in the network stack to revert back to sending one packet at a time to the driver.

The MDT feature is only effective for device drivers that support this feature.

See also “tcp_mdt_max_pbufs” on page 152.

Default 1 (Enabled)

Range 0 (disabled) or 1 (enabled)

Dynamic? Yes

When to Change If you do not want this parameter enabled for debugging purposes or for any other reasons, disable it.

Commitment Level Unstable

Change History For information, see “ip_multidata_outbound (Solaris 10 Release)” on page 187.

ip_queue_fanout

Description

Determines the mode of associating TCP/IP connections with queues

A value of 0 associates a new TCP/IP connection with the CPU that creates the connection. A value of 1 associates the connection with
multiple queues that belong to different CPUs. The number of queues that are used to fanout the connection is based upon “ip_soft_rings_cnt” on page 140.

Default 0
Range 0 or 1
Dynamic? Yes
When to Change Consider setting this parameter to 1 to spread the load across all CPUs in certain situations. For example, when the number of CPUs exceed the number of NICs, and one CPU is not capable of handling the network load of a single NIC, change this parameter to 1.
Zone Configuration This parameter can only be set in the global zone.
Commitment Level Unstable
Change History For information, see “ip_squeue_fanout (Solaris 10 11/06 Release)” on page 189.

ip_soft_rings_cnt

Description Determines the number of queues to be used to fanout the incoming TCP/IP connections.

Note – The incoming traffic is placed on one of the rings. If the ring is overloaded, packets are dropped. For every packet that gets dropped, the kstat dls counter, dls_soft_ring_pkt_drop, is incremented.

Default 2
Range 0 - nCPUs, where nCPUs is the maximum number of CPUs in the system
Dynamic? No. The interface should be plumbed again when changing this parameter.
When to Change Consider setting this parameter to a value greater than 2 on systems that have 10 Gbps NICs and many CPUs.
Zone Configuration This parameter can only be set in the global zone.
Commitment Level Obsolete
Change History For information, see “ip_soft_rings_cnt (Solaris 10 11/06 Release)” on page 189.
IP Tunable Parameters With Additional Cautions

Changing the following parameters is not recommended.

ip_ire_pathmtu_interval

Description
Specifies the interval in milliseconds when IP flushes the path maximum transfer unit (PMTU) discovery information, and tries to rediscover PMTU.

Refer to RFC 1191 on PMTU discovery.

Default
10 minutes

Range
5 seconds to 277 hours

Dynamic?
Yes

When to Change
Do not change this value.

Commitment Level
Unstable

ip_icmp_return_data_bytes and ip6_icmp_return_data_bytes

Description
When IPv4 or IPv6 sends an ICMPv4 or ICMPv6 error message, it includes the IP header of the packet that caused the error message. This parameter controls how many extra bytes of the packet beyond the IPv4 or IPv6 header are included in the ICMPv4 or ICMPv6 error message.

Default
64 bytes

Range
8 to 65,536 bytes

Dynamic?
Yes

When to Change
Do not change the value. Including more information in an ICMP error message might help in diagnosing network problems. If this feature is needed, increase the value.

Commitment Level
Unstable
TCP Tunable Parameters

tcp_deferred_ack_interval

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the time-out value for the TCP-delayed acknowledgment (ACK) timer for hosts that are not directly connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>100 milliseconds</td>
</tr>
<tr>
<td>Range</td>
<td>1 millisecond to 1 minute</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not increase this value to more than 500 milliseconds.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

tcp_local_dack_interval

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the time-out value for TCP-delayed acknowledgment (ACK) timer for hosts that are directly connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>50 milliseconds</td>
</tr>
<tr>
<td>Range</td>
<td>10 milliseconds to 500 milliseconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not increase this value to more than 500 milliseconds.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
Change History
For information, see “`tcp_local_dack_interval (Solaris 10 Releases)`” on page 187.

`tcp_deferred_acks_max`

Description Specifies the maximum number of TCP segments received from remote destinations (not directly connected) before an acknowledgment (ACK) is generated. TCP segments are measured in units of maximum segment size (MSS) for individual connections. If set to 0 or 1, no ACKs are delayed, assuming all segments are 1 MSS long. The actual number is dynamically calculated for each connection. The value is the default maximum.

Default 2

Range 0 to 16

Dynamic? Yes

When to Change Do not change the value. In some circumstances, when the network traffic becomes very bursty because of the delayed ACK effect, decrease the value. Do not decrease this value below 2.

Commitment Level Unstable

`tcp_local_dacks_max`

Description Specifies the maximum number of TCP segments received from directly connected destinations before an acknowledgment (ACK) is generated. TCP segments are measured in units of maximum segment size (MSS) for individual connections. If set to 0 or 1, it means no ACKs are delayed, assuming all segments are 1 MSS long. The actual number is dynamically calculated for each connection. The value is the default maximum.

Default 8

Range 0 to 16

Dynamic? Yes

When to Change Do not change the value. In some circumstances, when the network traffic becomes very bursty because of the delayed ACK effect, decrease the value. Do not decrease this value below 2.

Commitment Level Unstable
tcp_wscale_always

Description

When this parameter is enabled, which is the default setting, TCP always sends a SYN segment with the window scale option, even if the window scale option value is 0. Note that if TCP receives a SYN segment with the window scale option, even if the parameter is disabled, TCP responds with a SYN segment with the window scale option. In addition, the option value is set according to the receive window size.

Refer to RFC 1323 for the window scale option.

Default	1 (enabled)
Range	0 (disabled) or 1 (enabled)
Dynamic?	Yes
When to Change	If there is an interoperability problem with an old TCP stack that does not support the window scale option, disable this parameter.
Commitment Level	Unstable
Change History	For information, see “tcp_wscale_always (Solaris 9 Releases)” on page 190.

tcp_tstamp_always

Description

If set to 1, TCP always sends a SYN segment with the timestamp option. Note that if TCP receives a SYN segment with the timestamp option, TCP responds with a SYN segment with the timestamp option even if the parameter is set to 0.

Default	0 (disabled)
Range	0 (disabled) or 1 (enabled)
Dynamic?	Yes
When to Change	If getting an accurate measurement of round-trip time (RTT) and TCP sequence number wraparound is a problem, enable this parameter. Refer to RFC 1323 for more reasons to enable this option.
Commitment Level	Unstable
tcp_xmit_hiwat

Description: Defines the default send window size in bytes. Refer to "Per-Route Metrics" on page 167 for a discussion of setting a different value on a per-route basis. See also “tcp_max_buf” on page 145.

Default: 49,152
Range: 4096 to 1,073,741,824
Dynamic?: Yes
When to Change: An application can use setsockopt(3XNET) SO_SNDBUF to change the individual connection's send buffer.
Commitment Level: Unstable

tcp_recv_hiwat

Description: Defines the default receive window size in bytes. Refer to "Per-Route Metrics" on page 167 for a discussion of setting a different value on a per-route basis. See also “tcp_max_buf” on page 145 and “tcp_recv_hiwat_minmss” on page 156.

Default: 49,152
Range: 2048 to 1,073,741,824
Dynamic?: Yes
When to Change: An application can use setsockopt(3XNET) SO_RCVBUF to change the individual connection's receive buffer.
Commitment Level: Unstable

tcp_max_buf

Description: Defines the maximum buffer size in bytes. This parameter controls how large the send and receive buffers are set to by an application that uses setsockopt(3XNET).

Default: 1,048,576
Range: 8192 to 1,073,741,824
Dynamic?: Yes
When to Change

If TCP connections are being made in a high-speed network environment, increase the value to match the network link speed.

Commitment Level

Unstable

tcp_cwnd_max

Description

Defines the maximum value of the TCP congestion window (cwnd) in bytes.

For more information on the TCP congestion window, refer to RFC 1122 and RFC 2581.

Default

1,048,576

Range

128 to 1,073,741,824

Dynamic?

Yes

When to Change

Even if an application uses `setsockopt(3XNET)` to change the window size to a value higher than `tcp_cwnd_max`, the actual window used can never grow beyond `tcp_cwnd_max`. Thus, `tcp_max_buf` should be greater than `tcp_cwnd_max`.

Commitment Level

Unstable

tcp_slow_start_initial

Description

Defines the maximum initial congestion window (cwnd) size in the maximum segment size (MSS) of a TCP connection.

Refer to RFC 2414 on how the initial congestion window size is calculated.

Default

4

Range

1 to 4

Dynamic?

Yes

When to Change

Do not change the value.

If the initial cwnd size causes network congestion under special circumstances, decrease the value.

Commitment Level

Unstable
tcp_slow_start_after_idle

Description
The congestion window size in the maximum segment size (MSS) of a TCP connection after it has been idled (no segment received) for a period of one retransmission timeout (RTO).

Refer to RFC 2414 on how the initial congestion window size is calculated.

- **Default**: 4
- **Range**: 1 to 16,384
- **Dynamic?**: Yes
- **When to Change**: For more information, see "tcp_slow_start_initial" on page 146.
- **Commitment Level**: Unstable

tcp_sack_permitted

Description
If set to 2, TCP always sends a SYN segment with the selective acknowledgment (SACK) permitted option. If TCP receives a SYN segment with a SACK-permitted option and this parameter is set to 1, TCP responds with a SACK-permitted option. If the parameter is set to 0, TCP does not send a SACK-permitted option, regardless of whether the incoming segment contains the SACK permitted option.

Refer to RFC 2018 for information on the SACK option.

- **Default**: 2 (active enabled)
- **Range**: 0 (disabled), 1 (passive enabled), or 2 (active enabled)
- **Dynamic?**: Yes
- **When to Change**: SACK processing can improve TCP retransmission performance so it should be actively enabled. Sometimes, the other side can be confused with the SACK option actively enabled. If this confusion occurs, set the value to 1 so that SACK processing is enabled only when incoming connections allow SACK processing.
- **Commitment Level**: Unstable
tcp_rev_src_routes

Description
If set to 0, TCP does not reverse the IP source routing option for incoming connections for security reasons. If set to 1, TCP does the normal reverse source routing.

Default
0 (disabled)

Range
0 (disabled) or 1 (enabled)

Dynamic?
Yes

When to Change
If IP source routing is needed for diagnostic purposes, enable it.

Commitment Level
Unstable

tcp_time_wait_interval

Description
Specifies the time in milliseconds that a TCP connection stays in TIME-WAIT state.

For more information, refer to RFC 1122, 4.2.2.13.

Default
60,000 (60 seconds)

Range
1 second to 10 minutes

Dynamic?
Yes

When to Change
Do not set the value lower than 60 seconds.

For information on changing this parameter, refer to RFC 1122, 4.2.2.13.

Commitment Level
Unstable

tcp_ecn_permitted

Description
Controls Explicit Congestion Notification (ECN) support.

If this parameter is set to 0, TCP does not negotiate with a peer that supports the ECN mechanism.

If this parameter is set to 1 when initiating a connection, TCP does not tell a peer that it supports ECN mechanism.
However, TCP tells a peer that it supports ECN mechanism when accepting a new incoming connection request if the peer indicates that it supports ECN mechanism in the SYN segment.

If this parameter is set to 2, in addition to negotiating with a peer on the ECN mechanism when accepting connections, TCP indicates in the outgoing SYN segment that it supports the ECN mechanism when TCP makes active outgoing connections.

Refer to RFC 3168 for information on ECN.

<table>
<thead>
<tr>
<th>Default</th>
<th>1 (passive enabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (disabled), 1 (passive enabled), or 2 (active enabled)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>ECN can help TCP better handle congestion control. However, there are existing TCP implementations, firewalls, NATs, and other network devices that are confused by this mechanism. These devices do not comply to the IETF standard. Because of these devices, the default value of this parameter is set to 1. In rare cases, passive enabling can still cause problems. Set the parameter to 0 only if absolutely necessary.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

tcp_conn_req_max_q

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the default maximum number of pending TCP connections for a TCP listener waiting to be accepted by accept(SOCKET). See also “tcp_conn_req_max_q” on page 150.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>128</td>
</tr>
<tr>
<td>Range</td>
<td>1 to 4,294,967,296</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>For applications such as web servers that might receive several connection requests, the default value might be increased to match the incoming rate. Do not increase the parameter to a very large value. The pending TCP connections can consume excessive memory. Also, if an application</td>
</tr>
</tbody>
</table>
cannot handle that many connection requests fast enough because the number of pending TCP connections is too large, new incoming requests might be denied.

Note that increasing tcp_conn_req_max_q does not mean that applications can have that many pending TCP connections. Applications can use listen() to change the maximum number of pending TCP connections for each socket. This parameter is the maximum an application can use listen() to set the number to. Thus, even if this parameter is set to a very large value, the actual maximum number for a socket might be much less than tcp_conn_req_max_q, depending on the value used in listen().

Commitment Level Unstable
Change History For information, see “xxx:ip_forwarding (Solaris 9 Releases)” on page 192.

tcp_conn_req_max_q0

Description Specifies the default maximum number of incomplete (three-way handshake not yet finished) pending TCP connections for a TCP listener.

For more information on TCP three-way handshake, refer to RFC 793. See also “tcp_conn_req_max_q” on page 149.

Default 1024
Range 0 to 4,294,967,296
Dynamic? Yes
When to Change For applications such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate.

The following explains the relationship between tcp_conn_req_max_q0 and the maximum number of pending connections for each socket.

When a connection request is received, TCP first checks if the number of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum (N) for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete
pending TCP connections exceeds the sum of \(N \) and \(tcp_conn_req_max_q0 \). If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.

Commitment Level: Unstable
Change History: For information, see “xxx:ip_forwarding (Solaris 9 Releases)” on page 192.

tcp_conn_req_min

Description: Specifies the default minimum value for the maximum number of pending TCP connection requests for a listener waiting to be accepted. This is the lowest maximum value of `listen(3SOCKET)` that an application can use.

Default: 1
Range: 1 to 1024
Dynamic?: Yes
When to Change: This parameter can be a solution for applications that use `listen(3SOCKET)` to set the maximum number of pending TCP connections to a value too low. Increase the value to match the incoming connection request rate.

Commitment Level: Unstable

tcp_rst_sent_rate_enabled

Description: If this parameter is set to 1, the maximum rate of sending a RST segment is controlled by the `ndd` parameter, `tcp_rst_sent_rate`. If this parameter is set to 0, no rate control when sending a RST segment is available.

Default: 1 (enabled)
Range: 0 (disabled) or 1 (enabled)
Dynamic?: Yes
When to Change: This tunable helps defend against denial of service attacks on TCP by limiting the rate by which a RST segment is sent out. The only time this rate control should be disabled is when strict conformance to RFC 793 is required.
Commitment Level Unstable

tcp_rst_sent_rate
Description Sets the maximum number of RST segments that TCP can send out per second.
Default 40
Range 0 to 4,294,967,296
Dynamic? Yes
When to Change In a TCP environment, there might be a legitimate reason to generate more RSTs than the default value allows. In this case, increase the default value of this parameter.
Commitment Level Unstable

tcp_mdt_max_pbufs
Description Specifies the number of payload buffers that can be carried by a single M_MULTIDATA message that is generated by TCP. See also “ip_multidata_outbound” on page 139.
Default 16
Range 1 to 16
Dynamic? Yes
When to Change Decreasing this parameter might aid in debugging device driver development by limiting the amount of payload buffers per M_MULTIDATA message that is generated by TCP.
Commitment Level Unstable

TCP/IP Parameters Set in the /etc/system File
The following parameters can be set only in the /etc/system file. After the file is modified, reboot the system.

For example, the following entry sets the ipcl_conn_hash_size parameter:

set ip:ipcl_conn_hash_size=value
ipcl_conn_hash_size

Description: Controls the size of the connection hash table used by IP. The default value of 0 means that the system automatically sizes an appropriate value for this parameter at boot time, depending on the available memory.

Data Type: Unsigned integer

Default: 0

Range: 0 to 82,500

Dynamic?: No. The parameter can only be changed at boot time.

When to Change: If the system consistently has tens of thousands of TCP connections, the value can be increased accordingly. Increasing the hash table size means that more memory is wired down, thereby reducing available memory to user applications.

Commitment Level: Unstable

ip_squeue Worker_wait

Description: Governsthemaximumdelayinwakingupaworkerthreadtoprocess TCP/IP packetsthat are enqueued on ansqueue. An squeue is a serialization queuethat is used by the TCP/IP kernel codeto process TCP/IP packets.

Default: 10 milliseconds

Range: 0 – 50 milliseconds

Dynamic?: Yes

When to Change: Considertuningthis parameter if latency is an issue, and network traffic is light. For example, if the machine serves mostly interactive network traffic.

The default value usually works best on a network file server, a web server, or any server that has substantial network traffic.

Zone Configuration: This parameter can only be set in the global zone.

Commitment Level: Unstable

Change History: For information, see “ip_squeue Worker_wait (Solaris 10 11/06 Release)” on page 189.
TCP Parameters With Additional Cautions

Changing the following parameters is not recommended.

tcp_ip_abort_interval
Description: Specifies the default total retransmission timeout value for a TCP connection. For a given TCP connection, if TCP has been retransmitting for `tcp_ip_abort_interval` period of time and it has not received any acknowledgment from the other endpoint during this period, TCP closes this connection.

For TCP retransmission timeout (RTO) calculation, refer to RFC 1122, 4.2.3. See also "`tcp_rexmit_interval_max` on page 154".

Default: 8 minutes
Range: 500 milliseconds to 1193 hours
Dynamic?: Yes
When to Change: Do not change this value. See “`tcp_rexmit_interval_max` on page 154” for exceptions.
Commitment Level: Unstable

tcp_rexmit_interval_initial
Description: Specifies the default initial retransmission timeout (RTO) value for a TCP connection. Refer to “Per-Route Metrics” on page 167 for a discussion of setting a different value on a per-route basis.

Default: 3 seconds
Range: 1 millisecond to 20 seconds
Dynamic?: Yes
When to Change: Do not change this value. Lowering the value can result in unnecessary retransmissions.
Commitment Level: Unstable

tcp_rexmit_interval_max
Description: Defines the default maximum retransmission timeout value (RTO). The calculated RTO for all TCP connections cannot exceed this value. See also “`tcp_ip_abort_interval` on page 154”.

Default: 60 seconds
tcp_rexmit_interval_max

Description: Specifies the default minimum retransmission timeout (RTO) value. The calculated RTO for all TCP connections cannot be lower than this value. See also "tcp_rexmit_interval_max" on page 154.

<table>
<thead>
<tr>
<th>Default</th>
<th>400 milliseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1 millisecond to 20 seconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change the value in a normal network environment.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

TCP's RTO calculation should cope with most RTT fluctuations. If, in some very special circumstances, the round-trip time (RTT) for a connection is about 10 seconds, increase this value. If you change this value, you should change the tcp_rexmit_interval_max parameter. Change the value of tcp_rexmit_interval_max to at least eight times the value of tcp_rexmit_interval_min.

tcp_rexmit_interval_extra

Description: Specifies a constant added to the calculated retransmission timeout (RTO).

<table>
<thead>
<tr>
<th>Default</th>
<th>0 milliseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to 2 hours</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change the value.</td>
</tr>
</tbody>
</table>

Commitment Level | Unstable
When the RTO calculation fails to obtain a good value for a connection, you can change this value to avoid unnecessary retransmissions.

Commitment Level: Unstable

tcp_tstamp_if_wscale

Description: If this parameter is set to 1, and the window scale option is enabled for a connection, TCP also enables the timestamp option for that connection.

Default: 1 (enabled)

Range: 0 (disabled) or 1 (enabled)

Dynamic? Yes

When to Change: Do not change this value. In general, when TCP is used in high-speed network, protection against sequence number wraparound is essential. Thus, you need the timestamp option.

Commitment Level: Unstable

tcp_recv_hiwat_minmss

Description: Controls the default minimum receive window size. The minimum is `tcp_recv_hiwat_minmss` times the size of maximum segment size (MSS) of a connection.

Default: 4

Range: 1 to 65,536

Dynamic? Yes

When to Change: Do not change the value. If changing it is necessary, do not change the value lower than 4.

Commitment Level: Unstable
UDP Tunable Parameters

udp_xmit_hiwat

Description: Defines the default maximum UDP socket datagram size. For more information, see “udp_max_buf” on page 158.

Default: 57,344 bytes

Range: 1,024 to 1,073,741,824 bytes

Dynamic?: Yes

When to Change: Note that an application can use `setsockopt(3XNET)` SO_SNDBUF to change the size for an individual socket. In general, you do not need to change the default value.

Commitment Level: Unstable

Change History: For information, see “udp_xmit_hiwat (Solaris 9 Releases)” on page 193.

udp_recv_hiwat

Description: Defines the default maximum UDP socket receive buffer size. For more information, see “udp_max_buf” on page 158.

Default: 57,344 bytes

Range: 128 to 1,073,741,824 bytes

Dynamic?: Yes

When to Change: Note that an application can use `setsockopt(3XNET)` SO_RCVBUF to change the size for an individual socket. In general, you do not need to change the default value.

Commitment Level: Unstable

Change History: For information, see “udp_recv_hiwat (Solaris 9 Releases)” on page 194.

UDP Parameter With Additional Caution

Changing the following parameter is not recommended.
IPQoS Tunable Parameter

udp_max_buf
Description Controls how large send and receive buffers can be for a UDP socket.
Default 2,097,152 bytes
Range 65,536 to 1,073,741,824 bytes
Dynamic? Yes
When to Change Do not change the value. If this parameter is set to a very large value, UDP socket applications can consume too much memory.
Commitment Level Unstable
Change History For information, see “udp_max_buf (Solaris 9 Releases)” on page 194.

IPQoS Tunable Parameter

ip_policy_mask
Description Enables or disables IPQoS processing in any of the following callout positions: forward outbound, forward inbound, local outbound, and local inbound. This parameter is a bitmask as follows:

<table>
<thead>
<tr>
<th>Not Used</th>
<th>Not Used</th>
<th>Not Used</th>
<th>Forward Outbound</th>
<th>Forward Inbound</th>
<th>Local Outbound</th>
<th>Local Inbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A 1 in any of the position masks or disables IPQoS processing in that particular callout position. For example, a value of 0x01 disables IPQoS processing for all the local inbound packets.

Default The default value is 0, meaning that IPQoS processing is enabled in all the callout positions.
Range 0 (0x00) to 15 (0x0F). A value of 15 indicates that IPQoS processing is disabled in all the callout positions.
Dynamic? Yes
When to Change If you want to enable or disable IPQoS processing in any of the callout positions.
Commitment Level Unstable
SCTP Tunable Parameters

sctp_max_init_retr

Description: Controls the maximum number of attempts an SCTP endpoint should make at resending an INIT chunk. The SCTP endpoint can use the SCTP initiation structure to override this value.

Default: 8

Range: 0 to 128

Dynamic?: Yes

When to Change: The number of INIT retransmissions depend on "sctp_pa_max_retr" on page 159. Ideally, sctp_max_init_retr should be less than or equal to sctp_pa_max_retr.

Commitment Level: Unstable

sctp_pa_max_retr

Description: Controls the maximum number of retransmissions (over all paths) for an SCTP association. The SCTP association is aborted when this number is exceeded.

Default: 10

Range: 1 to 128

Dynamic?: Yes

When to Change: The maximum number of retransmissions over all paths depend on the number of paths and the maximum number of retransmission over each path. Ideally, sctp_pa_max_retr should be set to the sum of "sctp_pp_max_retr" on page 160 over all available paths. For example, if there are 3 paths to the destination and the maximum number of retransmissions over each of the 3 paths is 5, then sctp_pa_max_retr should be set to less than or equal to 15. (See the Note in Section 8.2, RFC 2960.)

Commitment Level: Unstable
sctp_pp_max_retr

Description Controls the maximum number of retransmissions over a specific path. When this number is exceeded for a path, the path (destination) is considered unreachable.

Default 5
Range 1 to 128
Dynamic? Yes
When to Change Do not change this value to less than 5.
Commitment Level Unstable

sctp_cwnd_max

Description Controls the maximum value of the congestion window for an SCTP association.

Default 1,048,576
Range 128 to 1,073,741,824
Dynamic? Yes
When to Change Even if an application uses `setsockopt(3XNET)` to change the window size to a value higher than `sctp_cwnd_max`, the actual window used can never grow beyond `sctp_cwnd_max`. Thus, "sctp_max_buf" on page 163 should be greater than `sctp_cwnd_max`.
Commitment Level Unstable

sctp_ipv4_ttl

Description Controls the time to live (TTL) value in the IP version 4 header for the outbound IP version 4 packets on an SCTP association.

Default 64
Range 1 to 255
Dynamic? Yes
When to Change Generally, you do not need to change this value. Consider increasing this parameter if the path to the destination is likely to span more than 64 hops.
Commitment Level Unstable
sctp_heartbeat_interval

Description: Computes the interval between HEARTBEAT chunks to an idle destination, that is allowed to heartbeat.

An SCTP endpoint periodically sends an HEARTBEAT chunk to monitor the reachability of the idle destinations transport addresses of its peer.

Default: 30 seconds
Range: 0 to 86,400 seconds
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 8.3.
Commitment Level: Unstable

sctp_new_secret_interval

Description: Determines when a new secret needs to be generated. The generated secret is used to compute the MAC for a cookie.

Default: 2 minutes
Range: 0 to 1,440 minutes
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 5.1.3.
Commitment Level: Unstable

sctp_initial_mtu

Description: Determines the initial maximum send size for an SCTP packet including the length of the IP header.

Default: 1500 bytes
Range: 68 to 65,535
Dynamic?: Yes
When to Change: Increase this parameter if the underlying link supports frame sizes that are greater than 1500 bytes.
Commitment Level: Unstable
sctp_deferred_ack_interval
Description Sets the time-out value for SCTP delayed acknowledgment (ACK) timer in milliseconds.
Default 100 milliseconds
Range 1 to 60,000 milliseconds
Dynamic? Yes
When to Change Refer to RFC 2960, section 6.2.
Commitment Level Unstable

sctp_ignore_path_mtu
Description Enables or disables path MTU discovery.
Default 0 (disabled)
Range 0 (disabled) or 1 (enabled)
Dynamic? Yes
When to Change Enable this parameter if you want to ignore MTU changes along the path. However, doing so might result in IP fragmentation if the path MTU decreases.
Commitment Level Unstable

sctp_initial_ssthresh
Description Sets the initial slow start threshold for a destination address of the peer.
Default 102,400
Range 1024 to 4,294,967,295
Dynamic? Yes
When to Change Refer to RFC 2960, section 7.2.1.
Commitment Level Unstable

sctp_xmit_hiwat
Description Sets the default send window size in bytes. See also "sctp_max_buf" on page 163.
sctp_xmit_lowat

Description
Controls the lower limit on the send window size.

Default	102,400
Range	8,192 to 1,073,741,824
Dynamic?	Yes
When to Change	An application can use `getsockopt(3SOCKET) SO_SNDBUF` to change the individual association’s send buffer.
Commitment Level	Unstable

sctp_recv_hiwat

Description
Controls the default receive window size in bytes. See also “sctp_max_buf” on page 163.

Default	102,400
Range	8,192 to 1,073,741,824
Dynamic?	Yes
When to Change	An application can use `getsockopt(3SOCKET) SO_RCVBUF` to change the individual association’s receive buffer.
Commitment Level	Unstable

sctp_max_buf

Description
Controls the maximum buffer size in bytes. It controls how large the send and receive buffers are set to by an application that uses `getsockopt(3SOCKET)`.

Default	102,400
Range	8,192 to 1,073,741,824
Dynamic?	Yes
When to Change	Generally, you do not need to change this value. This parameter sets the minimum size required in the send buffer for the socket to be marked writable. If required, consider changing this parameter in accordance with “sctp_xmit_hiwat” on page 162.
SCTP Tunable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
<th>Dynamic?</th>
<th>When to Change</th>
<th>Commitment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sctp_default</code></td>
<td></td>
<td>1,048,576</td>
<td>8,192 to 1,073,741,824</td>
<td>Yes</td>
<td>Increase the value of this parameter to match the network link speed if associations are being made in a high-speed network environment.</td>
<td>Unstable</td>
</tr>
<tr>
<td><code>sctp_ipv6_hoplimit</code></td>
<td>Sets the value of the hop limit in the IP version 6 header for the outbound IP version 6 packets on an SCTP association.</td>
<td>60</td>
<td>0 to 255</td>
<td>Yes</td>
<td>Generally, you do not need to change this value. Consider increasing this parameter if the path to the destination is likely to span more than 60 hops.</td>
<td>Unstable</td>
</tr>
<tr>
<td><code>sctp_rto_min</code></td>
<td>Sets the lower bound for the retransmission timeout (RTO) in milliseconds for all the destination addresses of the peer.</td>
<td>1,000</td>
<td>500 to 60,000</td>
<td>Yes</td>
<td>Refer to RFC 2960, section 6.3.1.</td>
<td>Unstable</td>
</tr>
<tr>
<td><code>sctp_rto_max</code></td>
<td>Controls the upper bound for the retransmission timeout (RTO) in milliseconds for all the destination addresses of the peer.</td>
<td>60,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Default</td>
<td>Range</td>
<td>Dynamic?</td>
<td>When to Change</td>
<td>Commitment Level</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>sctp_rto_initial</td>
<td>Controls the initial retransmission timeout (RTO) in milliseconds for all the destination addresses of the peer.</td>
<td>3,000</td>
<td>1,000 to 60,000,000</td>
<td>Yes</td>
<td>Refer to RFC 2960, section 6.3.1.</td>
<td>Unstable</td>
</tr>
<tr>
<td>sctp_cookie_life</td>
<td>Sets the lifespan of a cookie in milliseconds.</td>
<td>60,000</td>
<td>10 to 60,000,000</td>
<td>Yes</td>
<td>Generally, you do not need to change this value. This parameter might be changed in accordance with "sctp_rto_max" on page 164.</td>
<td>Unstable</td>
</tr>
<tr>
<td>sctp_max_in_streams</td>
<td>Controls the maximum number of inbound streams permitted for an SCTP association.</td>
<td>32</td>
<td>1 to 65,535</td>
<td>Yes</td>
<td>Refer to RFC 2960, section 5.1.1.</td>
<td></td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sctp_initial_out_streams

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the maximum number of outbound streams permitted for an SCTP association.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>32</td>
</tr>
<tr>
<td>Range</td>
<td>1 to 65,535</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Refer to RFC 2960, section 5.1.1.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

sctp_shutack_wait_bound

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the maximum time, in milliseconds, to wait for a SHUTDOWN ACK after having sent a SHUTDOWN chunk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>60,000</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 300,000</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Generally, you do not need to change this value. This parameter might be changed in accordance with "sctp_rto_max" on page 164.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

sctp_maxburst

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the limit on the number of segments to be sent in a burst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>4</td>
</tr>
<tr>
<td>Range</td>
<td>2 to 8</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>You do not need to change this parameter. You might change it for testing purposes.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
sctp_addip_enabled

- **Description**: Enables or disables SCTP dynamic address reconfiguration.
- **Default**: 0 (disabled)
- **Range**: 0 (disabled) or 1 (enabled)
- **Dynamic?**: Yes
- **When to Change**: The parameter can be enabled if dynamic address reconfiguration is needed. Due to security implications, enable this parameter only for testing purposes.
- **Commitment Level**: Unstable

sctp_prsctp_enabled

- **Description**: Enables or disables the partial reliability extension (RFC 3758) to SCTP.
- **Default**: 1 (enabled)
- **Range**: 0 (disabled) or 1 (enabled)
- **Dynamic?**: Yes
- **When to Change**: Disable this parameter if partial reliability is not supported in your SCTP environment.
- **Commitment Level**: Unstable

Per-Route Metrics

Starting in the Solaris 8 release, you can use per-route metrics to associate some properties with IPv4 and IPv6 routing table entries.

For example, a system has two different network interfaces, a fast Ethernet interface and a gigabit Ethernet interface. The system default `tcp_recv_hiwat` is 24,576 bytes. This default is sufficient for the fast Ethernet interface, but may not be sufficient for the gigabit Ethernet interface.

Instead of increasing the system’s default for `tcp_recv_hiwat`, you can associate a different default TCP receive window size to the gigabit Ethernet interface routing entry. By making this association, all TCP connections going through the route will have the increased receive window size.

For example, the following is in the routing table (`netstat -rn`), assuming IPv4:
In this example, do the following:

```
# route change -net 192.123.124.0 -recvpipe x
```

Then, all connections going to the 192.123.124.0 network, which is on the ge0 link, use the receive buffer size x, instead of the default 24567 receive window size.

If the destination is in the a.b.c.d network, and no specific routing entry exists for that network, you can add a prefix route to that network and change the metric. For example:

```
# route add -net a.b.c.d 192.123.123.1 -netmask w.x.y.z
# route change -net a.b.c.d -recvpipe y
```

Note that the prefix route's gateway is the default router. Then, all connections going to that network use the receive buffer size y. If you have more than one interface, use the `-ifp` argument to specify which interface to use. This way, you can control which interface to use for specific destinations. To verify the metric, use the `route(1M)` get command.
This chapter describes some of the Network Cache and Accelerator (NCA) tunable parameters.

- "nca:nca_conn_hash_size" on page 170
- "nca:nca_conn_req_max_q" on page 170
- "nca:nca_conn_req_max_q0" on page 170
- "nca:nca_ppmax" on page 171
- "nca:nca_vpmmax" on page 171
- "sq_max_size" on page 172
- "ge:ge_intr_mode" on page 173

Where to Find Tunable Parameters Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris kernel tunables</td>
<td>Chapter 2, "Oracle Solaris Kernel Tunable Parameters"</td>
</tr>
<tr>
<td>NFS tunable parameters</td>
<td>Chapter 3, "NFS Tunable Parameters"</td>
</tr>
<tr>
<td>Internet Protocol Suite tunable parameters</td>
<td>Chapter 4, "Internet Protocol Suite Tunable Parameters"</td>
</tr>
</tbody>
</table>

Tuning NCA Parameters

Setting these parameters is appropriate on a system that is a dedicated web server. These parameters allocate more memory for caching pages. You can set all of the tuning parameters described in this chapter in the `/etc/system` file.

For information on adding tunable parameters to the `/etc/system` file, see “Tuning the Solaris Kernel” on page 28.
nca:nca_conn_hash_size

Description: Controls the hash table size in the NCA module for all TCP connections, adjusted to the nearest prime number.

Default: 383 hash table entries

Range: 0 to 201,326,557

Dynamic?: No

When to Change: When the NCA's TCP hash table is too small to keep track of the incoming TCP connections. This situation causes many TCP connections to be grouped together in the same hash table entry. This situation is indicated when NCA is receiving many TCP connections, and system performance decreases.

Commitment Level: Unstable

nca:nca_conn_req_max_q

Description: Defines the maximum number of pending TCP connections for NCA to listen on.

Default: 256 connections

Range: 0 to 4,294,967,295

Dynamic?: No

When to Change: When NCA closes a connection immediately after it is established because it already has too many established TCP connections. If NCA is receiving many TCP connections and can handle a larger load, but is refusing any more connections, increase this parameter. Doing so allows NCA to handle more simultaneous TCP connections.

Commitment Level: Unstable

nca:nca_conn_req_max_q0

Description: Defines the maximum number of incomplete (three-way handshake not yet finished) pending TCP connections for NCA to listen on.

Default: 1024 connections

Range: 0 to 4,294,967,295

Dynamic?: No
When to Change | When NCA refuses to accept any more TCP connections because it already has too many pending TCP connections. If NCA is receiving many TCP connections and can handle a larger load, but is refusing any more connections, increase this parameter. Doing so allows NCA to handle more simultaneous TCP connections.

Commitment Level | Unstable

`nca:nca_ppmax`

Description | Specifies the maximum amount of physical memory (in pages) used by NCA for caching the pages. This value should not be more than 75 percent of total memory.

Default | 25 percent of physical memory

Range | 1 percent to maximum amount of physical memory

Dynamic? | No

When to Change | When using NCA on a system with more than 512 Mbytes of memory. If a system has a lot of physical memory that is not being used, increase this parameter. Then, NCA will efficiently use this memory to cache new objects. As a result, system performance will increase.

This parameter should be increased in conjunction with `nca_vpmax`, unless you have a system with more physical memory than virtual memory (a 32-bit kernel that has greater than 4 Gbytes memory). Use `pagesize(1)` to determine your system’s page size.

Commitment Level | Unstable

`nca:nca_vpmax`

Description | Specifies the maximum amount of virtual memory (in pages) used by NCA for caching pages. This value should not be more than 75 percent of the total memory.

Default | 25 percent of virtual memory

Range | 1 percent to maximum amount of virtual memory

Dynamic? | No

When to Change | When using NCA on a system with more than 512 Mbytes of memory. If a system has a lot of virtual memory that is not being used, increase
this parameter. Then, NCA will efficiently use this memory to cache new objects. As a result, system performance will increase.

This parameter should be increased in conjunction with nca_ppmax. Set this parameter about the same value as nca_vpmax, unless you have a system with more physical memory than virtual memory.

Commitment Level Unstable

General System Tuning for the NCA

In addition to setting the NCA parameters, you can do some general system tuning to benefit NCA performance. If you are using gigabit Ethernet (ge driver), you should set the interface in interrupt mode for better results.

For example, a system with 4 Gbytes of memory that is booted under 64-bit kernel should have the following parameters set in the /etc/system file. Use pagesize to determine your system’s page size.

```
set sq_max_size=0
set ge:ge_intr_mode=1
set nca:nca_conn_hash_size=82500
set nca:nca_conn_req_max_q=100000
set nca:nca_conn_req_max_q0=100000
set nca:nca_ppmax=393216
set nca:nca_vpmax=393216
```

sq_max_size

Description
Sets the depth of the syncq (number of messages) before a destination STREAMS queue generates a QFULL message.

Default
10000 messages

Range
0 (unlimited) to MAXINT

Dynamic?
No

When to Change
When NCA is running on a system with a lot of memory, increase this parameter to allow drivers to queue more packets of data. If a server is under heavy load, increase this parameter so that modules and drivers can process more data without dropping packets or getting backlogged.

Solaris 8 and later releases – Do not set this parameter to 0 on production systems. If you need to change this parameter, gradually increase this value, and monitor the system.
Solaris 7 and earlier releases – Do not set this parameter to 0 on production systems. If you need to change this parameter, gradually increase this value to a maximum of 100, and monitor the system.

Commitment Level Unstable
Change History For information, see “sq_max_size (Solaris 9 12/02 Release)” on page 194.

g:ge_intr_mode

Description Enables the ge driver to send packets directly to the upper communication layers rather than queue the packets
Default 0 (queue packets to upper layers)
Range 0 (enable) or 1 (disable)
Dynamic? No
When to Change When NCA is enabled, set this parameter to 1 so that the packet is delivered to NCA in interrupt mode for faster processing.
Commitment Level Unstable
This chapter describes most of the parameters default values for various system facilities.

- “autofs” on page 176
- “cron” on page 176
- “devfsadm” on page 176
- “dhcpcagent” on page 176
- “fs” on page 176
- “ftp” on page 176
- “inetinit” on page 177
- “init” on page 177
- “ipsec” on page 177
- “kbd” on page 177
- “keyserv” on page 177
- “login” on page 177
- “mpathd” on page 177
- “nfs” on page 177
- “nfslogd” on page 178
- “nss” on page 178
- “passwd” on page 178
- “power” on page 178
- “rpc.nisd” on page 178
- “su” on page 178
- “syslog” on page 178
- “sys-suspend” on page 178
- “tar” on page 178
- “utmpd” on page 179
- “yppasswd” on page 179
System Default Parameters

The functioning of various system facilities is governed by a set of values that are read by each facility on startup. The values stored in a file for each facility are located in the /etc/default directory. Not every system facility has a file located in this directory.

autofs

This facility enables you to configure autofs parameters such as automatic timeout, displaying or logging status messages, browsing autofs mount points, and tracing. For details, see autofs(4).

cron

This facility enables you to disable or enable cron logging.

devfsadm

This file is not currently used.

dhcpagent

Client usage of DHCP is provided by the dhcpagent daemon. When ifconfig identifies an interface that has been configured to receive its network configuration from DHCP, it starts the client daemon to manage that interface.

For more information, see the /etc/default/dhcpagent information in the FILES section of dhcpagent(1M).

fs

File system administrative commands have a generic and file system-specific portion. If the file system type is not explicitly specified with the -F option, a default is applied. The value is specified in this file. For more information, see the Description section of default_fs(4).

ftp

This facility enables you to set the ls command behavior to the RFC 959 NLST command. The default ls behavior is the same as in the previous Solaris release.

For details, see ftp(4).
inetinit
This facility enables you to configure TCP sequence numbers and to enable or disable support for 6to4 relay routers.

init
For details, see the `/etc/default/init` information in the FILES section of `init(1M)`.
All values in the file are placed in the environment of the shell that `init` invokes in response to a single user boot request. The `init` process also passes these values to any commands that it starts or restarts from the `/etc/inittab` file.

ipsec
This facility enables you to configure parameters, such as IKE daemon debugging information and the `ikeadm` privilege level.

kbd
For details, see the Extended Description section of `kbd(1)`.

keyserv
For details, see the `/etc/default/keyserv` information in the FILES section of `keyserv(1M)`.

login
For details, see the `/etc/default/login` information in the FILES section of `login(1)`.

mpathd
This facility enables you to set `in.mpathd` configuration parameters.
For details, see `in.mpathd(1M)`.

nfs
This facility enables you to set NFS daemon configuration parameters.
For details, see `nfs(4)`.
nfslogd
For details, see the Description section of nfslogd(1M).

nss
This facility enables you to configure initgroups(3C) lookup parameters.
For details, see nss(4).

passwd
For details, see the /etc/default/passwd information in the FILES section of passwd(1).

power
For details, see the /etc/default/power information in the FILES section of pmconfig(1M).

rpc.nisd
For details, see the /etc/default/rpc.nisd information in the FILES section of rpc.nisd(1M).

su
For details, see the /etc/default/su information in the FILES section of su(1M).

syslog
For details, see the /etc/default/syslogd information in the FILES section of syslogd(1M).

sys-suspend
For details, see the /etc/default/sys-suspend information in the FILES section of sys-suspend(1M).

tar
For a description of the -f function modifier, see tar(1).
If the TAPE environment variable is not present and the value of one of the arguments is a number and -f is not specified, the number matching the archiveN string is looked up in the /etc/default/tar file. The value of the archiveN string is used as the output device with the blocking and size specifications from the file.

For example:

```
% tar -c 2 /tmp/*
```

This command writes the output to the device specified as archive2 in the /etc/default/tar file.

utmpd

The utmpd daemon monitors /var/adm/utmpx (and /var/adm/utmp in earlier Solaris versions) to ensure that utmp entries inserted by non-root processes by pututxline(3C) are cleaned up on process termination.

Two entries in /etc/default/utmpd are supported:

- **SCAN_PERIOD** – The number of seconds that utmpd sleeps between checks of /proc to see if monitored processes are still alive. The default is 300.
- **MAX_FDS** – The maximum number of processes that utmpd attempts to monitor. The default value is 4096 and should never need to be changed.

yppasswdd

This facility enables you to configure whether a user can successfully set a login shell to a restricted shell when using the passwd -r nis -e command.

For details, see *rpc.yppasswdd(1M)*.
This chapter describes the change history of specific tunable parameters. If a parameter is in this section, it has changed from a previous release. Parameters whose functionality has been removed are listed also.

- “Kernel Parameters” on page 181
- “NFS Tunable Parameters” on page 186
- “TCP/IP Tunable Parameters” on page 187
- “Network Cache and Accelerator (NCA) Tunable Parameters” on page 194
- “Parameters That Are Obsolete or Have Been Removed” on page 195

Kernel Parameters

Process-Sizing Tunables

max_nprocs (Solaris 9 Releases)

The Solaris 10 description section was updated by removing the text “sun4m.”

General Driver Parameter

ddi_msix_alloc_limit (Solaris 10 Release and OpenSolaris 2009.06 Release)

This parameter is new starting in the Solaris 10 10/09 release and the OpenSolaris 2009.06 release. For more information, see "ddi_msix_alloc_limit" on page 64.
General I/O Tunable Parameters

maxphys (Solaris 10 Releases)
The default value is updated to include sun4v systems. For more information, see “maxphys” on page 65.

maxphys (Solaris 9 Releases)
The text “126,976 (sun4m)” was removed from the Solaris 10 maxphys default section.

rlim_fd_max (Solaris 8 Release)
In the Solaris 8 version, the default is 1024. In later Solaris releases, the default is 65,536.

General Kernel and Memory Parameters

zfs_arc_min (Solaris 10 Releases)
This parameter description is newly documented in the Solaris 10 10/09 release. For more information, see “zfs_arc_min” on page 35.

zfs_arc_max (Solaris 10 Releases)
This parameter description is newly documented in the Solaris 10 10/09 release. For more information, see “zfs_arc_max” on page 35.

noexec_user_stack (Solaris 9 Releases)
The Solaris 10 description section was updated by removing the text “and sun4m” and adding the text “64–bit SPARC and AMD64.”

lwp_default_stksize (Solaris 9 Releases)
The Solaris 10 description section was updated by adding default and maximum values for AMD64.

The Solaris 10 default value for SPARC platforms was changed to 24,576.

noexec_user_stack (Solaris 2.6, 7, and 8 Releases)
The Solaris 9 description section was updated by removing the text “and sun4d.”
segkpsize (Solaris 9 12/02 Release)

In previous Solaris 9 releases, units were incorrectly identified as Mbytes instead of 8-Kbyte pages. In addition, the following text is removed from the range and default descriptions in the Solaris 10 release because this parameter is only available on systems running 64-bit kernels:

32-bit kernels, 512 Mbytes

fsflush and Related Parameters

dopageflush (Solaris 10 Releases)

In the Solaris 10 10/08 release, the description was clarified by including that number of physical memory pages are examined.

Paging-Related Tunable Parameters

maxpgio (Solaris 10 Releases)

In the Solaris 10 versions, the range value was incorrectly documented as 1 to 1024. The actual range depends on system architecture and I/O subsystems. For more information, see "maxpgio" on page 58.

pages_pp_maximum (Solaris Releases Prior to Solaris 9 Releases)

In the Solaris 8 versions, the default description is as follows:

Maximum of the triplet (200, tune_t_minarmem + 100, [10% of memory available at boot time])

General File System Parameters

ncsize (Solaris 9 and Previous Releases)

In the Solaris 9 release and previous releases, the nfs:nrnode parameter was incorrectly identified as nfs:nfs_rnode in the when to change description.

ncsize (Solaris 10 Release)

In the Solaris 10 release, the default value of the ncsize parameter was incorrectly described as follows:

$$4 \times (v.v_proc + \text{maxusers}) + 320 / 100$$
The correct default value is as follows:

\[(4 \times (v.v_{\text{proc}} + \text{maxusers}) + 320) + 4 \times (v.v_{\text{proc}} + \text{maxusers}) + 320 / 100\]

For more information, see “ncsize” on page 67.

UFS Tunable Parameters

bufhwm (Solaris 9 Releases)

This parameter information changed significantly in the Solaris 10 release. Please see “bufhwm and bufhwm_pct” on page 71 for more information.

Description

Maximum amount of memory for caching I/O buffers. The buffers are used for writing file system metadata (superblocks, inodes, indirect blocks, and directories). Buffers are allocated as needed until the amount to be allocated would exceed bufhwm. At this point, enough buffers are reclaimed to satisfy the request.

For historical reasons, this parameter does not require the ufs: prefix.

Data Type

Signed integer

Default

2% of physical memory

Range

80 Kbytes to 20% of physical memory

Units

Kbytes

Dynamic?

No. Value is used to compute hash bucket sizes and is then stored into a data structure that adjusts the value in the field as buffers are allocated and deallocated. Attempting to adjust this value without following the locking protocol on a running system can lead to incorrect operation.

Validation

If bufhwm is less than 80 Kbytes or greater than the lesser of 20% of physical memory or twice the current amount of kernel heap, it is reset to the lesser of 20% of physical memory or twice the current amount of kernel heap. The following message appears on the system console and in the `/var/adm/messages` file.

"binit: bufhwm out of range (value attempted). Using N."

Value attempted refers to the value entered in `/etc/system` or by using the `kadb -d` command. N is the value computed by the system based on available system memory.

When to Change

Since buffers are only allocated as they are needed, the overhead from the default setting is the allocation of a number of control structures to handle the maximum possible number of buffers. These structures consume 52
bytes per potential buffer on a 32-bit kernel and 104 bytes per potential buffer on a 64-bit kernel. On a 512 Mbyte 64-bit kernel this consumes 104*10144 bytes, or 1 Mbyte. The header allocations assumes buffers are 1 Kbyte in size, although in most cases, the buffer size is larger.

The amount of memory, which has not been allocated in the buffer pool, can be found by looking at the bfreelist structure in the kernel with a kernel debugger. The field of interest in the structure is bufsize, which is the possible remaining memory in bytes. Looking at it with the buf macro by using mdb:

```
# mdb -kLoading modules: [ unix krtd genunix ip nfs ipc ]
> bfreelists->buf
bfreelist:
[ elided ]
bfreelist + 0x78: bufsize [ elided ]
    75734016
```

bufhwm on this system, with 6 Gbytes of memory, is 122277. It is not directly possible to determine the number of header structures used since the actual buffer size requested is usually larger than 1 Kbyte. However, some space might be profitably reclaimed from control structure allocation for this system.

The same structure on the 512 Mbyte system shows that only 4 Kbytes of 10144 Kbytes has not been allocated. When the biostats kstat is examined with kstat -n biostats, it is seen that the system had a reasonable ratio of buffer_cache_hits to buffer_cache_lookups as well. This indicates that the default setting is reasonable for that system.

| Commitment Level | Unstable |

TMPFS Parameters

tmpfs:tmpfs_maxkmem (Solaris 10 Releases)
The range description is updated to include sun4v systems. For more information, see “tmpfs:tmpfs_maxkmem” on page 78.

tmpfs:tmpfs_minfree (Solaris 8 Releases)
In the Solaris 8 versions, the units was incorrectly described as “Bytes,” instead of “Pages.”
sun4u or sun4v Specific Parameters (Solaris 10 Releases)

The title of the Sun-4u Specific Parameters section was revised in the Solaris 10 8/07 release to include sun4v systems.

default_tsb_size (Solaris 10 Releases)

The default description has changed. For more information, see “default_tsb_size” on page 89.

enable_tsb_rss_sizing (Solaris 10 Releases)

The description and default and range values have changed. For more information, see “enable_tsb_rss_sizing” on page 90.

tsb_rss_factor (Solaris 10 Releases)

The when to change example text was changed to this:

For example, changing tsb_rss_factor to 256 (effectively, 50%) instead of 384 (effectively, 75%) might help eliminate virtual address conflicts in the TSB in some cases, but will use more kernel memory, particularly on a heavily loaded system.

NFS Tunable Parameters

nfs:nfs3_nra (Solaris 10)

The default value was incorrectly documented in the Solaris 10 release. The default value is 4.

nfs:nrnode (Solaris 9 8/03)

The Solaris 10 description was updated to include the text “NFS version 4 client.”

nfs:nfs_write_error_interval (Solaris 9 8/03)

The Solaris 10 description was updated to include the text “NFS version 4 client.”
nfs:nfs_write_error_to_cons_only (Solaris 98/03)
The Solaris 10 description was updated to include the text “NFS version 4 client.”

nfs:nfs_disable_rddir_cache (Solaris 98/03)
The Solaris 10 when to change text was updated to include the text “NFS version 4 client.”

nfs:nfs3_max_transfer_size (Solaris 98/03)
The Solaris 10 default description was updated to 1,048,576 (1 Mbyte) from 32,768 (32 Kbytes).

TCP/IP Tunable Parameters

tcp_local_dack_interval (Solaris 10 Releases)
The range of this parameter was incorrectly documented in previous Solaris releases. The correct range is 10 milliseconds to 1 minute.

ip_forward_src_routed and ip6_forward_src_routed (Solaris 10 Release)
The default value of these parameters was incorrectly documented in the Solaris 9 and Solaris 10 releases. The correct default value is disabled.
Description Controls whether IPv4 or IPv6 forwards packets with source IPv4 routing options or IPv6 routing headers.
Default 1 (enabled)

ip_multidata_outbound (Solaris 10 Release)
This parameter was enhanced in the Solaris 10 release to deliver IP fragments in batches to the network driver. For more information, see “ip_multidata_outbound” on page 139.
Description Enables the network stack to send more than one packet at one time to the network device driver during transmission.
Enabling this parameter reduces the per-packet processing costs by improving host CPU utilization, network throughput, or both.

The multidata transmit (MDT) feature is only effective for device drivers that support this feature.

See also “tcp_mdt_max_pbufs” on page 152.

Default 1 (Enabled)
Range 0 (disabled) or 1 (enabled)
Dynamic? Yes
When to Change If you do not want this parameter enabled for debugging purposes or for any other reasons, disable it.
Commitment Level Unstable
Change History For information, see “ip_multidata_outbound (Solaris 9 Release)” on page 188.

ip_multidata_outbound (Solaris 9 Release)

This parameter information changed significantly in releases after the Solaris 9.8/03 release. Please see “ip_multidata_outbound” on page 139 for more information.

Description This parameter enables the network stack to send more than one packet at one time to the network device driver during transmission.

Enabling this parameter reduces the per-packet processing costs by improving the host CPU utilization and/or network throughput.

The multidata transmit (MDT) feature is only effective for device drivers that support this feature.

The following parameter must be enabled in the /etc/system file to use the MDT parameter:

set ip:ip_use_dl_cap = 0x1

Default Disabled
Range 0 (disabled), 1 (enabled)
Dynamic? Yes
When to Change This feature can be enabled at any time to allow for improved system performance with the following cautions:
Enabling this feature might change the appearance of any packets between the IP layer and the DLPI provider. So, any third-party STREAMS module that is dynamically inserted between the IP layer and the DLPI provider by using `ifconfig`'s `modinsert` feature, which doesn't understand the MDT STREAMS data type, might not work.

Modules that are inserted between the IP and the DLPI provider with the `autopush` mechanism might not work as well.

- Keep this feature disabled when a STREAMS module is not MDT aware. For example, the public domain utilities such as ipfilter, Checkpoint Firewall-1, and so on, are not MDT aware.

Commitment Level

Unstable

ip_squeue_fanout *(Solaris 10 11/06 Release)*

Zone configuration information was added in the Solaris 10 8/07 release. For more information, see “ip_squeue_fanout” on page 139.

ip_squeue_worker_wait *(Solaris 10 11/06 Release)*

Zone configuration information was added in the Solaris 10 8/07 release. For more information, see “ip_squeue_worker_wait” on page 153. In addition, this parameter was moved to “TCP/IP Parameters Set in the /etc/system File” on page 152.

ip_soft_rings_cnt *(Solaris 10 11/06 Release)*

Zone configuration information was added in the Solaris 10 8/07 release. For more information, see “ip_soft_rings_cnt” on page 140.

ip_squeue_write *(Solaris 10 Release)*

This parameter was incorrectly documented in the Solaris 10 release. It has been removed.

tcp_conn_hash_size *(Solaris 9 Releases)*

This parameter was removed in the Solaris 10 release.
tcp_wscale_always (Solaris 9 Releases)

The default value of this parameter was changed to enabled in the Solaris 10 release.

Description
When this parameter is enabled, which is the default setting, TCP always sends a SYN segment with the window scale option, even if the window scale option value is 0. Note that if TCP receives a SYN segment with the window scale option, even if the parameter is disabled, TCP responds with a SYN segment with the window scale option. In addition, the option value is set according to the receive window size.

Refer to RFC 1323 for the window scale option.

Default
0 (disabled)

Range
0 (disabled) or 1 (enabled)

Dynamic?
Yes

When to Change
If there is an interoperability problem with an old TCP stack that does not support the window scale option, disable this parameter.

Commitment Level
Unstable
ipc_tcp_conn_hash_size *(Solaris 9 Releases)*

This parameter was removed in the Solaris 10 release.

Description
Controls the hash table size in an IP module for all active (in ESTABLISHED state) TCP connections.

Data Type
Unsigned integer

Default
512

Range
512 to 2,147,483,648

Implicit
It should be a power of two.

Dynamic?
No. This parameter can only be changed at boot time.

Validation
If you set the parameter to a value that is not a power of 2, it is rounded up to the nearest power of two.

When to Change
If the system consistently has tens of thousands of active TCP connections, increase the value accordingly. With the default value, the system performs well up to a few thousand active connections. Note that increasing the hash table size means more memory consumption so set an appropriate value to avoid wasting memory unnecessarily.

Commitment Level
Unstable

tcp_compression_enabled *(Solaris 9 Releases)*

This parameter was removed in the Solaris 10 release.

Description
If set to 1, protocol control blocks of TCP connections in TIME-WAIT state are compressed to reduce memory usage. If set to 0, no compression is done. See "tcp_time_wait_interval" on page 148 also.

Default
1 (enabled)

Range
0 (disabled), 1 (enabled)

Dynamic?
Yes

When to Change
Do not turn off the compression mechanism.

Commitment Level
Unstable
ip_forwarding and ip6_forwarding (Solaris 9 Releases)

These parameters are obsolete in the Solaris 10 release.

Description
Controls whether IP does IPv4 or IPv6 forwarding between interfaces. See also "xxx:ipforwarding (Solaris 9 Releases)" on page 192.

Default
0 (disabled)

Range
0 (disabled) or 1 (enabled)

Dynamic?
Yes

When to Change
If IP forwarding is needed, enable it.

Commitment Level
Unstable

xxx:ip_forwarding (Solaris 9 Releases)

This parameter is obsolete in the Solaris 10 release.

Description
Enables IPv4 forwarding for a particular xxx interface. The exact name of the parameter is interface-name:ip_forwarding. For example, two interfaces are hme0 and hme1. Here are their corresponding parameter names:

```
hme0:ip_forwarding and hme1:ip_forwarding
```

Default
0 (disabled)

Range
0 (disabled) or 1 (enabled)

Dynamic?
Yes

When to Change
If you need IPv4 forwarding, use this parameter to enable forwarding on a per-interface basis.

Commitment Level
Unstable

tcp_conn_req_max_q0 (Solaris 8 Release)

The when to change text was revised in later Solaris releases from this:

When to Change
For applications, such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate.
The following explains the relationship between `tcp_conn_req_max_q0` and the maximum number of pending connections for each socket.

When a connection request is received, TCP first checks if the number \(N\) of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete pending TCP connections exceeds the sum of \(N\) and `tcp_conn_req_max_q0`. If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.

When to Change

For applications, such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate.

The following explains the relationship between `tcp_conn_req_max_q0` and the maximum number of pending connections for each socket.

When a connection request is received, TCP first checks if the number of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum \(N\) for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete pending TCP connections exceeds the sum of \(N\) and `tcp_conn_req_max_q0`. If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.

UDP Tunable Parameters

`udp_xmit_hiwat` *(Solaris 9 Releases)*

The default value and range of values changed in the Solaris 10 release.

- **Default** 8192 bytes
- **Range** 4096 to 65,536 bytes
udp_recv_hiwat *(Solaris 9 Releases)*

The default value and range of values changed in the Solaris 10 release.

Default 8192 bytes

Range 4096 to 65,536 bytes

udp_max_buf *(Solaris 9 Releases)*

The default value changed in the Solaris 10 release.

Default 262,144 bytes

Network Cache and Accelerator (NCA) Tunable Parameters

sq_max_size *(Solaris 9 12/02 Release)*

This parameter information changed significantly in later Solaris releases. Please see "sq_max_size" on page 172 for more information.

Description The depth of the syncq (number of messages) before a destination streams queue generates a QFULL message.

Default 2 messages

Range 1 to 0 (unlimited)

Dynamic? No

When to Change When NCA is running on a system with a lot of memory, increase this parameter to allow drivers to queue more packets of data. If a server is under heavy load, increase this parameter so modules and drivers may process more data without dropping packets or getting backlogged.

Commitment Level Unstable
Parameters That Are Obsolete or Have Been Removed

The following section describes parameters that are obsolete or have been removed from more recent Solaris releases.

Paging-Related Tunables

cachefree (Solaris 8 Releases)
Obsolete in Solaris 9 and later releases.

Description The Solaris 8 release changes the way file system pages are cached. These changes subsume the priority paging capability.

Note – Remove both cachefree and priority_paging settings in the /etc/system file.

The caching changes remove most of the pressure on the virtual memory system resulting from file system activity. Several statistics exhibit new behavior:

- Page reclaims are higher because pages are now explicitly added to the free list after I/O completes.
- Free memory is now higher because the free memory count now includes a large component of the file cache.
- Scan rates are drastically reduced.

Commitment Level Obsolete

priority_paging (Solaris 8 Releases)
Obsolete in Solaris 9 and later releases.

Description This variable sets cachefree to 2 times lotsfree.

The Solaris 8 release changes the way file system pages are cached. These changes subsume the priority paging capability.

Note – Remove both cachefree and priority_paging settings in the /etc/system file.
System V Message Queue Parameters

msgsys:msginfo_msgmni (Solaris 9 Releases)
Obsolete in the Solaris 10 release.

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum number of message queues that can be created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>50</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into msgmni field of msginfo structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When msgget(2) calls return with an error of ENOSPC or at the recommendation of a software vendor.</td>
</tr>
</tbody>
</table>

msgsys:msginfo_msgtql (Solaris 9 Releases)
Obsolete in the Solaris 10 release.

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum number of messages that can be created. If a msgsnd call attempts to exceed this limit, the request is deferred until a message header is available. Or, if the request has set the IPC_NOWAIT flag, the request fails with the error EAGAIN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>40</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into msgtql field of msginfo structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When msgsnd() calls block or return with error of EAGAIN, or at the recommendation of a software vendor.</td>
</tr>
</tbody>
</table>

Commitment Level

- Obsolete
- Unstable
msgsys:msginfo_msgmnb (Solaris 9 Releases)

Obsolete in the Solaris 10 release.

Description: Maximum number of bytes that can be on any one message queue.

Data Type: Unsigned long

Default: 4096

Range: 0 to amount of physical memory

Units: Bytes

Dynamic?: No. Loaded into msgmnb field of msginfo structure.

Validation: None

When to Change: When msgsnd() calls block or return with an error of EAGAIN, or at the recommendation of a software vendor.

Commitment Level: Unstable

msgsys:msginfo_msgssz (Solaris 9 Releases)

Removed in the Solaris 10 release.

Description: Specifies size of chunks system uses to manage space for message buffers.

Data Type: Signed integer

Default: 40

Range: 0 to MAXINT

Dynamic?: No. Loaded into msgtql field of msginfo structure.

Validation: The space consumed by the maximum number of data structures that would be created to support the messages and queues is compared to 25% of the available kernel memory at the time the module is loaded. If the number is too big, the message queue module refuses to load and the facility is unavailable. This computation does include the space that might be consumed by the messages. This situation occurs only when the module is first loaded.

When to Change: When the default value is not enough. Generally changed at the recommendation of software vendors.

Commitment Level: Obsolete
msgsys:msginfo_msgmap (Solaris 9 Releases)
Removed in the Solaris 10 release.

Description Number of messages the system supports.
Data Type Signed integer
Default 100
Range 0 to MAXINT
Dynamic? No

Validation The space consumed by the maximum number of data structures that would be created to support the messages and queues is compared to 25% of the available kernel memory at the time the module is loaded. If the number is too big, the message queue module refuses to load and the facility is unavailable. This computation does include the space that might be consumed by the messages. This situation occurs only when the module is first loaded.

When to Change When the default value is not enough. Generally changed at the recommendation of software vendors.
Commitment Level Obsolete

msgsys:msginfo_msgseg (Solaris 9 Releases)
Removed in the Solaris 10 release.

Description Number of msginfo_msgssz segments the system uses as a pool for available message memory. Total memory available for messages is msginfo_msgseg * msginfo_msgssz.
Data Type Signed short
Default 1024
Range 0 to 32,767
Dynamic? No

Validation The space consumed by the maximum number of data structures that would be created to support the messages and queues is compared to 25% of the available kernel memory at the time the module is loaded. If the number is too big, the message queue module refuses to load and the facility is unavailable. This computation does not include the space that might be consumed by the messages. This situation occurs only when the module is first loaded.
When to Change	When the default value is not enough. Generally changed at the recommendation of software vendors.
Commitment Level | Obsolete

msgsys:msginfo_msgmax *(Solaris 9 Releases)*

Removed in the Solaris 10 release.

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum size of System V message.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned long</td>
</tr>
<tr>
<td>Default</td>
<td>2048</td>
</tr>
<tr>
<td>Range</td>
<td>0 to amount of physical memory</td>
</tr>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into msgmax field of msginfo structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When <code>msgsnd(2)</code> calls return with error of EINVAL or at the recommendation of a software vendor.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

System V Semaphore Parameters

semsys:seminfo_semmni *(Solaris 9 Releases)*

Obsolete in the Solaris 10 release.

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the maximum number of semaphore identifiers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>10</td>
</tr>
<tr>
<td>Range</td>
<td>1 to 65,535</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>Compared to SEMA_INDEX_MAX (currently 65,535) and reset to that value if larger. A warning message is written to the console, messages file, or both.</td>
</tr>
</tbody>
</table>
| When to Change | When the default number of sets is not enough. Generally changed at the recommendation of software vendors. No error messages are
displayed when an attempt is made to create more sets than are currently configured. Instead, the application receives a return code of ENOSPC from a semget call.

For more information, see `semget(2)`.

Commitment Level Unstable

semsys:seminfo_semmsl *(Solaris 9 Releases)*

Obsolete in the Solaris 10 release.

Description Specifies the maximum number of System V semaphores per semaphore identifier.

Data Type Signed integer

Default 25

Range 1 to MAXINT

Dynamic? No

Validation The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25 percent of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.

When to Change When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to create more semaphores in a set than are currently configured. The application sees a return code of EINVAL from a `semget(2)` call.

Commitment Level Unstable

semsys:seminfo_semopm *(Solaris 9 Releases)*

Obsolete in the Solaris 10 release.

Description Specifies the maximum number of System V semaphore operations per semop call. This parameter refers to the number of sembufs in the sops array that is provided to the semop() system call. For more information, see `semop(2)`.

Data Type Signed integer

Default 10

Range 1 to MAXINT
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data Type</th>
<th>Default</th>
<th>Range</th>
<th>Dynamic?</th>
<th>Validation</th>
<th>When to Change</th>
<th>Commitment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>semsys:seminfo_semmns</td>
<td>Maximum number of System V semaphores on the system.</td>
<td>Signed integer</td>
<td>60</td>
<td>1 to MAXINT</td>
<td>No</td>
<td>The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.</td>
<td>When the default number of semaphores is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to create more semaphores than are currently configured. The application sees a return code of ENOSPC from a semget(2) call.</td>
<td>Unstable</td>
</tr>
<tr>
<td>semsys:seminfo_semmnu</td>
<td>Total number of undo structures supported by the System V semaphore system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters That Are Obsolete or Have Been Removed
Parameters That Are Obsolete or Have Been Removed

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>30</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the default value is not enough. Generally changed at the recommendation of software vendors. No error message is displayed when an attempt is made to perform more undo operations than are currently configured. The application sees a return value of ENOSPC from a semop(2) call when the system runs out of undo structures.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

semsys:seminfo semume (Solaris 9 Releases)

<table>
<thead>
<tr>
<th>Description</th>
<th>Removed in the Solaris 10 release.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>10</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to perform more undo operations than are currently configured. The application sees a return code of EINVAL from a semop(2) call.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
semsys:seminfo_semvmx (Solaris 9 Releases)
Removed in the Solaris 10 release.

- **Description**: Maximum value a semaphore can be set to.
- **Data Type**: Unsigned short
- **Default**: 32,767
- **Range**: 1 to 65,535
- **Dynamic?**: No
- **Validation**: None
- **When to Change**: When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when the maximum value is exceeded. The application sees a return code of ERANGE from a semop(2) call.

Commitment Level: Unstable

semsys:seminfo_semaem (Solaris 9 Releases)
Removed in the Solaris 10 release.

- **Description**: Maximum value that a semaphore’s value in an undo structure can be set to.
- **Data Type**: Unsigned short
- **Default**: 16,384
- **Range**: 1 to 65,535
- **Dynamic?**: No
- **Validation**: None
- **When to Change**: When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to perform more undo operations than are currently configured. The application sees a return code of EINVAL from a semop(2) call.

Commitment Level: Unstable
System V Shared Memory Parameters

shmsys:shminfo_shmmni (Solaris 9 Releases)

Obsolete in the Solaris 10 release.

<table>
<thead>
<tr>
<th>Description</th>
<th>System wide limit on number of shared memory segments that can be created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>100</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into shmmni field of shinfo structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>The amount of space consumed by the maximum possible number of data structures to support System V shared memory is checked against 25% of the currently available kernel memory at the time the module is loaded. If the memory consumed is too large, the attempt to load the module fails.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the system limits are too low. Generally changed on the recommendation of software vendors.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

shmsys:shminfo_shmmax (Solaris 9 Releases)

Obsolete in the Solaris 10 release.

Description	Maximum size of system V shared memory segment that can be created. This parameter is an upper limit that is checked before the application sees if it actually has the physical resources to create the requested memory segment. Attempts to create a shared memory section whose size is zero or whose size is larger than the specified value will fail with an EINVAL error. This parameter specifies only the largest value the operating system can accept for the size of a shared memory segment. Whether the segment can be created depends entirely on the amount of swap space available on the system and, for a 32-bit process, whether there is enough space available in the process's address space for the segment to be attached.
Data Type	Unsigned long
Default	8,388,608
Parameters That Are Obsolete or Have Been Removed

<table>
<thead>
<tr>
<th>Range</th>
<th>0 - MAXUINT32 on 32-bit systems, 0 – MAXUINT64 on 64-bit systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into shmmax field of shminfo structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the default value is too low. Generally changed at the recommendation of software vendors, but unless the size of a shared memory segment needs to be constrained, setting this parameter to the maximum possible value has no side effects.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

shmsys:shminfo_shmmin (Solaris 8 Release)

Obsolete in the Solaris 9 release. Variable is present in kernel for compatibility reasons but is no longer used.

shmsys:shminfo_shmseg (Solaris 8 Release)

Obsolete in the Solaris 9 release. Variable is present in kernel for compatibility reasons but is no longer used.
Revision History for This Manual

This section describes the revision history for this manual.

- “Current Version: Oracle Solaris 10 9/10 Release” on page 207
- “New or Changed Parameters in the Solaris 10 Release” on page 209
- “New or Changed Parameters in the Solaris 9 Releases” on page 213
- “New Parameters in the Solaris 8 Release” on page 214

Current Version: Oracle Solaris 10 9/10 Release

The current version of this manual applies to the Oracle Solaris 10 9/10 release.

New or Changed Parameters in the Oracle Solaris Release

The following sections describe new, changed, or obsolete kernel tunables.

- **Solaris 10 10/09:** This release includes the `zfs_arc_min` and `zfs_arc_max` parameter descriptions. For more information, see “`zfs_arc_min` on page 35” and “`zfs_arc_max` on page 35.

- **Solaris 10 10/09:** This release includes the `ddi_msix_alloc_limit` parameter that can be used to increase the number of MSI-X interrupts that a device instance can allocate. For more information, see “`ddi_msix_alloc_limit` on page 64.”

- **Solaris 10 5/09:** This release includes corrected range information for the `tcp_local_dack_interval` parameter. For more information, see “`tcp_local_dack_interval` on page 142.”

- **Solaris 10 10/08:** The Solaris 10 version of this manual inadvertently included the `nfs4_shrinkreaddir` parameter information. This parameter is not available.

- **Solaris 10 10/08:** For information about tuning ZFS file systems, see the following site: http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide
Solaris 10 5/08: Memory locality group parameters will be provided in a Solaris 10 5/08 kernel patch. For more information about these parameters, see “Locality Group Parameters” on page 91.

Solaris 10 5/08: The Solaris 10 version of this manual inadvertently included the nfs4_dynamic parameter information. This parameter is not available.

Solaris 10 5/08: The translation storage buffers parameters in the “sun4u or sun4v Specific Parameters” on page 87 section are being revised to provide better information. In this release, the following parameters have changed:
- “default_tcb_size” on page 89 – The default text has been clarified.
- “enable_tcb_rss_sizing” on page 90 – The default text was incorrect and has been corrected.
- “tsb_rss_factor” on page 90 – The example section referred to percentages rather than the more appropriate parameter units. This issue has been resolved.

Solaris 10 5/08: The Solaris 10 version of this manual inadvertently included the tcp_keepalive_abort_interval parameter information. This parameter is only available in the OpenSolaris release.

Solaris 10 8/07: Parameter information was updated to include sun4v systems. For more information, see the following references:
- “maxphys” on page 65
- “tmpfs:tmpfs_maxkmem” on page 78
- “sun4u or sun4v Specific Parameters” on page 87

Solaris 10 8/07: The range value for the maxpgio parameter information that was previously published in this book was incorrect. For more information, see “maxpgio” on page 58.

Solaris 10 8/07: For information about changes to parameters that can only be changed in the global zone, see “What's New in Oracle Solaris System Tuning?” on page 19

Solaris 10 8/07: The ip_squeue_write parameter information that was previously published in this book was incorrect and has been removed.

Solaris 10 11/06: The default value of ncsize parameter was incorrectly documented in the Solaris 10 release. For more information, see “ncsize” on page 67.

Solaris 10 11/06: The default value of nfs:nfs3_nra parameter was incorrectly documented in the Solaris 10 release. The default value is 4. For more information, see “nfs:nfs3_nra” on page 110.

Solaris 10 6/06: The ip_squeue_fanout parameter has been modified. For more information, see “ip_squeue_fanout” on page 139.

Solaris 10 6/06: The sq_max_size parameter was incorrectly documented in the Solaris 10 release. The default value is 10000 messages. For more information, see “sq_max_size” on page 172.

Solaris 10 6/06: The default value of the logevent_max_q_sz parameter changed from 2000 events to 5000 events. For more information, see “logevent_max_q_sz” on page 38.
New or Changed Parameters in the Solaris 10 Release

The following sections describe new, changed, or obsolete kernel tunables.

Solaris Kernel Tunable Parameters

General Kernel and Memory Parameters

The parameter, “default_stksize” on page 36, is new in the Solaris 10 release.

The “lwp_default_stksize” on page 37 and “noexec_user_stack” on page 39 parameters are changed in this release.

UFS

The following parameters are modified in the Solaris 10 release:

- “bufhwm and bufhwm_pct” on page 71
- “ncsize” on page 67

General File System

The following parameters are newly documented in the Solaris 10 release:

- “freebehind” on page 77
- “segmap_percent” on page 71
System V Message Queues
The following parameters have been removed in the Solaris 10 release:
- msgsys:msginfo_msgmap
- msgsys:msginfo_msgmax
- msgsys:msginfo_msgseg
- msgsys:msginfo_msgssz

The following parameters are obsolete as of the Solaris 10 release:
- msgsys:msginfo_msgmnb
- msgsys:msginfo_msgmni
- msgsys:msginfo_msgsqtql

System V Semaphores
The following parameters have been removed in the Solaris 10 release:
- semsys:seminfo_semmaem
- semsys:seminfo_semmap
- semsys:seminfo_semmns
- semsys:seminfo_semmnu
- semsys:seminfo_semvmx
- semsys:seminfo_semume
- semsys:seminfo_semussz

System V Shared Memory
The following parameters have been removed from the Solaris 10 release:
- shmsys:shminfo_shmmin
- shmsys:shminfo_shmseg

The following parameters are obsolete.
- shmsys:shminfo_shmmni
- shmsys:shminfo_shmmmax

TSB Parameters
The following TSB parameters are new in the Solaris 10 release:
- "tsb_alloc_hiwater_factor" on page 88
- "default_tsb_size" on page 89
NFS Parameters

The stability level of all NFS parameters was changed from “Evolving” to “Unstable.”

The following NFSv4 parameters are new in the Solaris 10 release:

- "nfs:nfs4_async_clusters" on page 120
- "nfs:nfs4_bsize" on page 117
- "nfs:nfs4_cots_timeo" on page 101
- "nfs:nfs4_do_symlink_cache" on page 103
- "nfs:nfs4_lookup_neg_cache" on page 106
- "nfs:nfs4_max_threads" on page 109
- "nfs:nfs4_max_transfer_size" on page 124
- "nfs:nfs4_nra" on page 111
- "nfs:nfs4_pathconf_disable_cache" on page 98

The following NFS parameters are new or changed in the Solaris 10 release:

- "nfs:nfs_nra" on page 109
- "nfs:nfs3_nra" on page 110
- "nfs:nfs3_shrinkreaddir" on page 113

The following NFS parameters were previously provided in error and have been removed:

- nfsserv:nfs_shrinkreaddir
- nfsserv:nfs3_shrinkreaddir

TCP/IP Parameters

The following IP parameters are new in the Solaris 10 release:

- "ip_queue_queue_wait" on page 153
- "ip_queue_fanout" on page 139
- "ipcl_conn_hash_size" on page 153

The following TCP parameters are new in this Solaris release:

- "tcp_rst_sent_rate_enabled" on page 151
- "tcp_rst_sent_rate" on page 152
- "tcp_mdt_max_pbufs" on page 152

The following TCP/IP parameters are obsolete in the Solaris 10 release:

- tcp_conn_hash_size
SCTP Tunable Parameters

The following SCTP parameters are new in the Solaris 10 release:

- `sctp_max_init_retr` on page 159
- `sctp_pa_max_retr` on page 159
- `sctp_pp_max_retr` on page 160
- `sctp_cwnd_max` on page 160
- `sctp_ipv4_ttl` on page 160
- `sctp_heartbeat_interval` on page 161
- `sctp_new_secret_interval` on page 161
- `sctp_initial_mtu` on page 161
- `sctp_deferred_ack_interval` on page 162
- `sctp_ignore_path_mtu` on page 162
- `sctp_initial_ssthresh` on page 162
- `sctp_xmit_hiwat` on page 162
- `sctp_xmit_lowat` on page 163
- `sctp_recv_hiwat` on page 163
- `sctp_max_buf` on page 163
- `sctp_ipv6_hoplimit` on page 164
- `sctp_rto_min` on page 164
- `sctp_rto_max` on page 164
- `sctp_rto_initial` on page 165
- `sctp_cookie_life` on page 165
- `sctp_max_in_streams` on page 165
- `sctp_initial_out_streams` on page 166
- `sctp_shutack_wait_bound` on page 166
- `sctp_maxburst` on page 166
- `sctp_addip_enabled` on page 167
- `sctp_prsctp_enabled` on page 167

System Facility Parameters

The following system facilities are new in the Solaris 10 release:

- `autofs` on page 176
- `ftp` on page 176
The inetd system facility is obsolete in the Solaris 10 release.

Removal of sun4m Support

The sun4m platform is not supported in the Solaris 10 release. The following parameters were modified to reflect the removal of sun4m support:

- `max_nprocs`
- `maxphys`
- `noexec_user_stack`

New or Changed Parameters in the Solaris 9 Releases

The following sections describe new or changed parameters in the Solaris 9 releases.

ip_policy_mask

This parameter is new in the Solaris 9 12/02 release. For information, see “`ip_policy_mask`” on page 158.

Removal of sun4d Support

The sun4d platform is not supported in the Solaris 9 release. The following parameters were modified to reflect the removal of sun4d support:

- `max_nprocs`
- `maxphys`
- `noexec_user_stack`

Unsupported or Obsolete Parameters

`priority Paging` and `cachefree` are **Not Supported**

The priority paging and cachefree tunable parameters are not supported in the Solaris 9 release. They have been replaced with an enhanced file system caching architecture that implements paging policies similar to priority paging, but are always enabled. Attempts to set these parameters in the `/etc/system` file result in boot-time warnings such as:

- `sorry, variable 'priority Paging' is not defined in the 'kernel'`
- `sorry, variable 'cachefree' is not defined in the 'kernel'`
The SUNWcsr packages that contain the /etc/system file have been modified so that the inclusion of the priority_paging or cachefree tunable parameters are prohibited. If you upgrade to the Solaris 9 release or add the SUNWcsr packages and your /etc/system file includes the priority_paging or cachefree parameters, the following occurs:

1. This message is displayed if the priority_paging or cachefree parameters are set in the /etc/system file:

 /etc/system has been modified since it contains references to priority paging tunables. Please review the changed file.

2. Comments are inserted in the /etc/system file before any line that sets priority_paging or cachefree. For example, if priority_paging is set to 1, the following lines are inserted before the line with the priority_paging value:

 *NOTE: As of Solaris 9, priority paging is unnecessary and has been removed.
 * Since references to priority paging-related tunables will now result in boot-time warnings, the assignment below has been commented out. For more details, see the Solaris 9 Release Notes, or the "Solaris Tunable Parameters Reference Manual".

System V Shared Memory

The following parameters are obsolete:

- shmsys:shminfo_shmmin
- shmsys:shminfo_shmseg

New Parameters in the Solaris 8 Release

logevent_max_q_sz

This parameter is new in the Solaris 8 1/01 release. For information, see “logevent_max_q_sz” on page 38.
Index

A
autofs, 176
autoup, 42

B
bufhwm, 71, 184
bufhwm_pct, 71

C
cachefree, 195, 213
consistent_coloring, 87
cron, 176

D
ddi_msi Alloc_limit parameter, 64
default_stksize, 36
default_tsb_size, 89
desfree, 50
dhcpagent, 176
dnlc_dir_enable, 69
dnlc_dir_max_size, 70
dnlc_dir_min_size, 69
doiflush, 43
dopageflush, 43, 183

E
enable_tsb_rss_sizing, 90

F
fastscan, 56
freebehind, 77
fs, 176
fsflush, 40
ftp, 176

G
ge_intr_mode, 173

H
handspreadpages, 57
hires_tick, 86

I
inetinit, 177
init, 177
ip_addrs_per_if, 138
ip_forward_src routed, 137, 187, 209
ip_forwarding, 192
ip_icmp_err_burst, 136
ip_icmp_err_interval, 136
ip_icmp_return_data_bytes, 141
ip_ire_pathmtu_interval, 141
ip_multidata_outbound, 139, 188
ip_policy_mask, 158, 213
ip_respond_to_echo_broadcast, 137
ip_send_redirects, 137
ip_squeue_fanout, 139, 208
ip_strict_dst_multihoming, 138
ip6_forward_src_routed, 137, 187, 209
ip6_forwarding, 192
ip6_icmp_return_data_bytes, 141
ip6_respond_to_echo_multicast, 137
ip6_send_redirects, 137
ip6_strict_dst_multihoming, 138
ipc_tcp_conn_hash_size, 191
ipcl_conn_hash_size, 153
ipcs, 177

keyserv, 177
lgrp_mem_pset_aware, 93
login, 177
lotsfree, 49
lpg_alloc_prefer, 91
lpg_mem_default_policy, 92
lwp_default_stksize, 37, 209
max_nprocs, 47, 181, 182, 213
maxpgio, 58, 183
maxphys, 65, 213
maxpid, 46
maxuprc, 47
maxusers, 44
minfree, 51
moddebug, 63
npall, 177
ndd, 136
ndquot, 73
nfs_max_threads, 107
nfs_nacache, 121
nfs:nfs_allow_preepoch_time, 99
nfs:nfs_async_clusters, 118
nfs:nfs_async_timeout, 120
nfs:nfs_bsize, 116
nfs:nfs_cots_timeo, 100
nfs:nfs_disable_rddir_cache, 115, 187
nfs:nfs_do_symlink_cache, 102
nfs:nfs_dynamic, 104
nfs:nfs_lookup_neg_cache, 105
nfs:nfs_nra, 109
nfs:nfs_shrinkreaddir, 113
nfs:nfs_write_error_interval, 114, 186
nfs:nfs_write_error_to_cons_only, 114, 187
nfs:nfs3_async_clusters, 119
nfs:nfs3_bsize, 116
nfs:nfs3_cots_timeo, 100
nfs:nfs3_do_symlink_cache, 102
nfs:nfs3_dynamic, 104
nfs:nfs3_jukebox_delay, 122
nfs:nfs3_lookup_neg_cache, 105
nfs:nfs3_max_threads, 108
nfs:nfs3_max_transfer_size, 123, 187
nfs:nfs3_max_transfer_size_clts, 124
nfs:nfs3_max_transfer_size_cots, 125
nfs:nfs3_nra, 110, 186
nfs:nfs3_pathconf_disable_cache, 98
nfs:nfs3_shrinkreaddir, 113
nfs:nfs4_async_clusters, 120
nfs:nfs4_bsize, 117
nfs:nfs4_cots_timeo, 101
nfs:nfs4_do_symlink_cache, 103
nfs:nfs4_lookup_neg_cache, 106
nfs:nfs4_max_threads, 109
nfs:nfs4_max_transfer_size, 124
nfs:nfs4_nra, 111
nfs:nfs4_pathconf_disable_cache, 98
nfs:nrnode, 112, 186
nfslogd, 178
nfssrv:exi_cache_time, 128
nfssrv:nfs_portmon, 126
nfssrv:nfsauth_ch_cache_max, 127
nfssrv:nfs_write_async, 127
noexec_user_stack, 40, 182, 213
nss, 178
nstrpush, 82

P
pageout_reserve, 53
pages_before_pager, 58
pages_pp_maximum, 54, 183
passwd, 178
physmem, 34
pidmax, 46
power, 178
priority_paging, 195, 213
pt_cnt, 80
pt_max_pty, 81
pt_pctofmem, 81

R
rechoose_interval, 85
reserved_procs, 45
rlim_fd_cur, 67
rlim_fd_max, 66, 182
routeadm, 24
rpc.nisd, 178
rpcmod:clnt_idle_timeout, 129
rpcmod:clnt_max_conns, 129
rpcmod:csfmaxdupreqs, 132
rpcmod:maxdupreqs, 132
rpcmod:svc_default_stksize, 130
rpcmod:svc_idle_timeout, 130
rstchown, 68

S
sctp_addip_enabled, 167
sctp_cookie_life, 165
sctp_cwnd_max, 160
sctp Deferred_acks Interval, 162
sctp heartbeat_interval, 161
sctp ignore path mtu, 162
sctp initial mtu, 161
sctp initial out_streams, 166
sctp initial sthresh, 162
sctp ipv4 TTL, 160
sctp ipv6 hoplimit, 164
sctp max buf, 163
sctp max in streams, 165
sctp max init retr, 159
sctp maxburst, 166
sctp new secret_interval, 161
sctp pp max retr, 160
sctp prsctp_enabled, 167
sctp recv hiwat, 163
sctp rto max, 164, 165
sctp rto min, 164
sctp shutack_wait_bound, 166
sctp xmit hiwat, 162
sctp xmit lowat, 163
segkpsize, 183
segmap_percent, 71
segspert_minfree, 85
sem.sys:seminfo_semaem, 203
sem.sys:seminfo_semmni, 199
sem.sys:seminfo_semmns, 201
sem.sys:seminfo_semmnu, 201
sem.sys:seminfo_semmnl, 200
sem.sys:seminfo_semmopm, 200
sem.sys:seminfo_semmume, 202
sem.sys:seminfo_semmvnx, 203
shm.sys:shminfo_shmmax, 204
shm.sys:shminfo_shmmni, 205, 210, 214
shm.sys:shminfo_shmmin, 204
shm.sys:shminfo_shmseg, 205, 210, 214
slowscan, 56
smallfile, 77
sq_max_size, 172, 194, 208, 209
strmsgsz, 82, 83
su, 178
sun4u, 87, 186
sun4v, 87, 186
swapfs_minfree, 60
swapfs_reserve, 59
sys-suspend, 178
syslog, 178
tcp_rexmit_interval_extra, 155
tcp_rexmit_interval_initial, 154
tcp_rexmit_interval_max, 154
tcp_rexmit_interval_min, 155
tcp_rst_sent_rate, 152
tcp_rst_sent_rate_enabled, 151
tcp_sack_permitted, 147
tcp_slow_start_after_idle, 147
tcp_slow_start_initial, 146
tcp_time_wait_interval, 148
tcp_tstamp_always, 144
tcp_tstamp_if_wscale, 156
tcp_wsacle_always, 144, 190
tcp_xmit_hiwat, 145
throttlefree, 52
timer_max, 87
tmpfs_maxkmem, 78
tmpfs_minfree, 79
tmpfs:tmpfs_maxkmem, 185
tmpfs:tmpfs_minfree, 185
tsb_alloc_hiwater, 88
tsb/rss size, 90
tune_t_fsflushr, 41
tune_t_minarmem, 55

T
tar, 178
tcp_compression_enabled, 191
tcp_conn_hash_size, 190
tcp_conn_req_max_q, 149
tcp_conn_req_max_q0, 150
tcp_conn_req_min, 151
tcp_cwnd_max, 146
tcp_deferred_ack_interval, 142
tcp_deferred_acks_max, 143
tcp_ecn_permitted, 149
tcp_ip_abort_interval, 154
tcp_local_dack_interval, 142, 187
tcp_local_dacks_max, 143
tcp_max_buf, 145
tcp_mdt_max_pbufs, 152
tcp_recv_hiwat, 145
tcp_recv_hiwat_minmss, 156
tcp_rev_src_routes, 148

U
udp_max_buf, 158, 194
udp_recv_hiwat, 157, 194
udp_xmit_hiwat, 157, 193
ufs_HW, 76
ufs_LW, 76
ufs_ninode, 74
ufs:ufs_WRITES, 75
utmpd, 179

X
xxx:ip_forwarding, 192
Index

Y
yppasswdd, 179

Z
zfs_arc_max, 35,182
zfs_arc_min, 35,182