
International Language Environments
Guide

Part No: 817–2521–11
November 2010

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

101210@25097

Contents

Preface ...13

1 Oracle Solaris Internationalization Overview ..17
Oracle Solaris Internationalization Architecture .. 17
New Internationalization and Localization Features .. 18
Internationalization and Localization Overview ... 20

Basic Steps in Internationalization .. 20
Localization Functions in Oracle Solaris Interfaces ... 22

What Is a Locale? ... 22
C Locale – the Default Locale ... 23
Full and Partial Locales .. 23
Behavior Affected by Locales .. 24
Locale Categories ... 25

Using Locale Categories for Localization ... 25
Time Formats ... 26
Date Formats .. 26
Number Formats .. 27
International Monetary Formats ... 28

Language Word and Letter Differences .. 30
Word Delimiters .. 30
Sort Order ... 30
Character Sets ... 30

Keyboard Differences .. 33
Differences in Paper Sizes ... 33

2 General Internationalization Features ..35
Support for Code Set Independence ... 35

3

CSI Approach ... 36
CSI-enabled Commands ... 36
CSI-enabled Libraries .. 37

Locale Database ... 38
Process Code Format .. 38
Multibyte Support Environment ... 38
Dynamically Linked Applications ... 39
Changed Interfaces .. 39
ctype Macros ... 40
Internationalization APIs in libc ... 41
genmsg Utility ... 48
User-Defined and User-Extensible Code Conversions .. 49
Internationalized Domain Name (IDN) Support .. 49

3 Localization in the Oracle Solaris Environment ... 53
Software Support for Localization ... 53

Summary of the Oracle Solaris Locale Packages .. 53
Adding Additional Locales After Installation ... 54

Supported Locales ... 55
Multiple Key Compose Sequences for Locales ... 64
Keyboard Support in the Oracle Solaris Environment ... 65

Changing Between Keyboards on SPARC Systems ... 68
Changing Between Keyboards on Intel Systems .. 72
Keyboard Layout Illustrations .. 72

New Oracle Solaris Keyboard Software Support ... 80
▼ How to Access Estonian Type 6 USB Keyboard Support .. 80
▼ How to Access French Canadian Type 6 USB Keyboard Support .. 81
▼ How to Access Polish Programmers Type 5 Keyboard Support ... 81

4 Supported Asian Locales ..83
Japanese Localization .. 83

Japanese Locales ... 83
Japanese Character Sets ... 84
Japanese Fonts .. 84
Japanese Input Systems ... 85

Contents

International Language Environments Guide • November 20104

Terminal Setting for Japanese Terminals .. 85
Japanese iconv Module ... 86
User-Defined Character Support ... 86

Indic Localization .. 86
▼ How to Use the Indic Input Methods .. 87

Indic Keyboards ... 87
Understanding the Mappings ... 90
Mapping for the Continuous Phonetic Based Input Method ... 91
How the Continuous Phonetic Input Method Works ... 113

Thai Localization ... 114
Thai Input Methods ... 114
Thai Keyboard Layouts ... 114
Thai Input Method Auxiliary Window ... 115

5 Overview of UTF-8 Locale Support ... 117
Unicode Overview ... 117

Unicode Locale: en_US.UTF-8 Support ... 118
About Desktop Input Methods .. 120
Input Method Support on the Oracle Solaris OS ... 121
Available Input Method Engines ... 121
Basic Usage of Input Method ... 121
Customizing IIIM behaviors .. 122
System Environment ... 122

Locale Environment Variable ... 123
TTY Environment Setup ... 123

Code Conversions ... 127
Configuring Fonts ... 128
DtMail Support .. 128
Programming Environment .. 131

FontSet Used with X Applications ... 131
FontList Definition in CDE/Motif Applications .. 131

6 Complex Text Layout ...133
Overview of CTL Technology .. 133
Overview of CTL Architecture .. 134

Contents

5

CTL Support for X Library Based Applications ... 134
XOC Resources .. 134
Changes in Motif to Support CTL Technology .. 135

XmNlayoutDirection Resource ... 135
XmStringDirection Resource ... 136
XmRendition Resource .. 137
XmText and XmTextField Resource ... 138
XmTextFieldGetLayoutModifier Resource .. 142
XmTextGetLayoutModifier Resource ... 143
XmTextFieldSetLayoutModifier Resource .. 143
XmTextSetLayoutModifier Resource ... 143
XmStringDirectionCreate Resource ... 144

UIL Arguments ... 144
Developing CTL Applications ... 145

Controlling Layout Direction ... 145
Creating a Render Table in a Resource File ... 148

Horizontal Tabs ... 149
Mouse Selection ... 150
Keyboard Selection .. 151
Text Resources and Geometry ... 151
Porting Instructions .. 151

7 Print Filter Enhancement With mp ... 153
Printing for UTF-8 .. 153
mp Print Filter Enhancement Overview .. 154

Using mp With the Locale-Specific Font Configuration File mp.conf 154
Using mp With the Locale-Specific PostScript Prolog Files ... 155
Using mp as an Xprt (X Print Server) Client .. 155
Localization With the mp.confConfiguration File .. 156

▼ How to Add a Printer-Resident Font ... 160
▼ How to Create a Shared Object File ... 161

Adding and Customizing prolog Files ... 162
PostScript File Customization .. 162
.xpr Files ... 165

Contents

International Language Environments Guide • November 20106

A Compose and Dead Key Input ... 171
How to Use Compose and Dead Key Input .. 171

B Language Support Features and Enhancements ... 193
Input Method Features ... 193

Internet Intranet Input Method Framework (IIIMF) Hangul Language Engine 193
libchewing 0.3.0 ... 194
Input Method Switcher Enhancement and EMEA Keyboard Layout Emulation
Support .. 194
IIIMF and Language Engines ... 195
Korean Language Engine With Auxiliary Window Support .. 195
Common Transliteration-based Input Method for All Indian Languages 196
Wubi Input Method ... 196
Input Method Support for Indic ... 196

File Encoding Examiner ... 197
More Japanese iconv Modules for Unicode ... 197
Zero-Country Code Keyboard Layout Support .. 197
Unicode Version 4.0 Support ... 198
Code Conversions for Internationalized Domain Name Support .. 198
New iconv Code Conversions ... 199
Standard Type Services Framework .. 199
Additional Indic Scripts for Support in Unicode Locales ... 199
HKSCS-2001 Support in Hong Kong Locales .. 200

Index ... 201

Contents

7

8

Figures

FIGURE 1–1 Functions and Structure of Locales in the Oracle Solaris operating system 21
FIGURE 2–1 IDN to ACE Conversion ... 50
FIGURE 2–2 ACE to IDN Conversion ... 50
FIGURE 3–1 Arabic Keyboard .. 72
FIGURE 3–2 Belgian Keyboard .. 73
FIGURE 3–3 Cyrillic (Russian) Keyboard ... 73
FIGURE 3–4 Danish Keyboard ... 73
FIGURE 3–5 Finnish Keyboard .. 74
FIGURE 3–6 French Keyboard ... 74
FIGURE 3–7 German Keyboard ... 74
FIGURE 3–8 Italian Keyboard .. 75
FIGURE 3–9 Japanese Keyboard .. 75
FIGURE 3–10 Korean Keyboard ... 75
FIGURE 3–11 Netherlands (Dutch) Keyboard ... 76
FIGURE 3–12 Norwegian Keyboard .. 76
FIGURE 3–13 Portuguese Keyboard .. 76
FIGURE 3–14 Spanish Keyboard .. 77
FIGURE 3–15 Swedish Keyboard ... 77
FIGURE 3–16 Swiss (French) Keyboard .. 77
FIGURE 3–17 Swiss (German) Keyboard .. 78
FIGURE 3–18 Traditional Chinese Keyboard ... 78
FIGURE 3–19 Turkish F Keyboard ... 78
FIGURE 3–20 Turkish Q Keyboard .. 79
FIGURE 3–21 United Kingdom Keyboard .. 79
FIGURE 3–22 United States Keyboard .. 79
FIGURE 3–23 U.S.A./UNIX Keyboard .. 80
FIGURE 4–1 Map for Bengali Consonants .. 92
FIGURE 4–2 Map for Bengali Vowels .. 93

9

FIGURE 4–3 Map for Bengali Others ... 94
FIGURE 4–4 Map for Gujarati Consonants .. 95
FIGURE 4–5 Map for Gujarati Vowels .. 96
FIGURE 4–6 Map for Gujarati Others ... 97
FIGURE 4–7 Map for Gurmukhi Consonants .. 98
FIGURE 4–8 Map for Gurmukhi Vowels .. 99
FIGURE 4–9 Map for Gurmukhi Others ... 99
FIGURE 4–10 Map for Hindi Consonants .. 100
FIGURE 4–11 Map for Hindi Vowels ... 101
FIGURE 4–12 Map for Hindi Others ... 102
FIGURE 4–13 Map for Kannada Consonants ... 103
FIGURE 4–14 Map for Kannada Vowels ... 104
FIGURE 4–15 Map for Kannada Others .. 105
FIGURE 4–16 Map for Malayalam Consonants ... 106
FIGURE 4–17 Map for Malayalam Vowels .. 107
FIGURE 4–18 Map for Malayalam Others .. 108
FIGURE 4–19 Map for Tamil Consonants .. 109
FIGURE 4–20 Map for Tamil Vowels .. 110
FIGURE 4–21 Map for Telugu Consonants .. 111
FIGURE 4–22 Map for Telugu Vowels ... 112
FIGURE 4–23 Map for Telugu Others ... 113
FIGURE 5–1 DtMail New Message Window .. 130
FIGURE 6–1 CTL Architecture .. 134
FIGURE 6–2 Layout Direction .. 146
FIGURE 6–3 Tabbing Behavior .. 150

Figures

International Language Environments Guide • November 201010

Tables

TABLE 1–1 International Time Formats ... 26
TABLE 1–2 International Date Formats .. 26
TABLE 1–3 International Numeric Conventions .. 27
TABLE 1–4 International Monetary Conventions ... 28
TABLE 1–5 User Locales That Support the Euro Currency .. 29
TABLE 1–6 German Locale and Corresponding LC_MONETARYOperand 29
TABLE 1–7 Common International Page Sizes .. 33
TABLE 2–1 Messaging Functions in libcp ... 41
TABLE 2–2 Code Conversion in libc ... 41
TABLE 2–3 Regular Expressions in libc .. 42
TABLE 2–4 Wide Character Class in libc .. 42
TABLE 2–5 Modify and Query Locale in libc ... 42
TABLE 2–6 Query Locale Data in libc ... 42
TABLE 2–7 Character Classification and Transliteration in libc ... 43
TABLE 2–8 Character Collation in libc ... 44
TABLE 2–9 Monetary Formatting in libc .. 44
TABLE 2–10 Date and Time Formatting in libc ... 45
TABLE 2–11 Multibyte Handling in libc ... 45
TABLE 2–12 Wide Character and String Handling in libc .. 45
TABLE 2–13 Formatted Wide-character Input and Output in libc ... 46
TABLE 2–14 Wide Stringslibc .. 47
TABLE 2–15 Wide-Character Input and Output in libc ... 47
TABLE 2–16 iconvCode Conversions .. 50
TABLE 3–1 Asia Locales .. 55
TABLE 3–2 Australia Locales .. 57
TABLE 3–3 Central America Locales ... 57
TABLE 3–4 Central Europe Locales ... 57
TABLE 3–5 Eastern Europe Locales ... 58

11

TABLE 3–6 Middle East Locale .. 60
TABLE 3–7 North Africa Locales ... 60
TABLE 3–8 North America Locales ... 60
TABLE 3–9 Northern Europe Locales .. 61
TABLE 3–10 South America Locales ... 62
TABLE 3–11 Southern Europe Locales .. 63
TABLE 3–12 Western Europe Locales ... 63
TABLE 3–13 Southern Africa Locales .. 64
TABLE 3–14 Diacritical Characters Created With Compose Key .. 65
TABLE 3–15 Support for Regional Keyboards .. 65
TABLE 3–16 Layouts for Type 4, 5, and 5c Keyboards .. 69
TABLE 4–1 Japanese Bitmap Fonts .. 84
TABLE 4–2 Japanese TrueType Fonts ... 85
TABLE 5–1 STREAMS Modules Supported by en_US.UTF-8 .. 123
TABLE 5–2 64–bit STREAMS Modules Supported by en_US.UTF-8 124
TABLE 6–1 New Resources in XmRendition ... 137
TABLE 6–2 New Resources in Xm CTL ... 139
TABLE 6–3 UIL .. 144
TABLE 7–1 Optional Keyword/Value Pairs .. 159
TABLE 7–2 STARTCOMMON/ENDCOMMONKeyword Values .. 168
TABLE A–1 Common Latin-1 Compose Key Sequences ... 172
TABLE A–2 Common Latin-2 Compose Key Sequences ... 175
TABLE A–3 Common Latin-3 Compose Key Sequences ... 177
TABLE A–4 Common Latin-4 Compose Key Sequences ... 177
TABLE A–5 Common Latin-5 Compose Key Sequences ... 179
TABLE A–6 Common Latin-9 Compose Key Sequences ... 179
TABLE A–7 Compose Key Sequences Based on Accent Dead Keys 180
TABLE A–8 Compose Key Sequences in Greek Input Mode ... 186
TABLE A–9 Compose Key Sequences in Greek Input Mode With Three Keys 190
TABLE A–10 Compose Key Sequences in Greek Input Mode With Four Keys 192

Tables

International Language Environments Guide • November 201012

Preface

The International Language Environments Guide introduces the internationalization features
that are new to the Oracle Solaris operating system (Oracle Solaris OS). The guide contains
information on how to use the current Oracle Solaris release to build global software products
that support a variety of languages and cultural conventions.

In addition, the guide provides pointers to other documentation that includes further
information on the internationalization features in this release.

Note – All of the information related to operating systems in the guide pertains to the Oracle
Solaris operating system.

This preface includes the following sections.

■ “About This Book” on page 14
■ “How This Guide Is Organized” on page 14
■ “Related Books and Sites” on page 15
■ “Documentation, Support, and Training” on page 15
■ “Typographic Conventions” on page 16

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. The
supported systems appear in the Solaris 10 Hardware Compatibility List. This document cites
any implementation differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured using
processors compatible with the AMD64 or Intel Xeon/Pentium product families. For supported
systems, see the Oracle Solaris Hardware Compatibility List.

13

http://www.sun.com/bigadmin/hcl
http://docs.sun.com/doc/816-2419

About This Book
This guide written for software developers and system administrators who design and support
global applications in the current Oracle Solaris operating system.

The guide assumes that you have a working knowledge of the C programming language.

How This Guide Is Organized
The chapters in this guide are organized as follows:

■ Chapter 1, “Oracle Solaris Internationalization Overview,” describes the new
internationalization and localization features that are available in the current Oracle Solaris
release.

■ Chapter 2, “General Internationalization Features,” provides introductory information on
Code Set Independence (CSI), the locale database, the libc APIs, and other
internationalization features.

■ Chapter 3, “Localization in the Oracle Solaris Environment,” provides information on the
locales, fonts, and keyboards that are supported for use in the current Oracle Solaris
operating system.

■ Chapter 4, “Supported Asian Locales,” describes the Japanese, Hindi, and Thai localization
support that is offered in the current Oracle Solaris release.

■ Chapter 5, “Overview of UTF-8 Locale Support,” provides information on the available input
methods and code conversion functionality supported for use in the current Oracle Solaris
operating system.

■ Chapter 6, “Complex Text Layout,” describes the Complex Text Layout (CTL) extensions
that enable Motif APIs to support writing systems that require complex transformations
between logical and physical text representations. Writing systems that require complex
transformations include Arabic, Hebrew, and Thai.

■ Chapter 7, “Print Filter Enhancement With mp,” explains printing support with particular
emphasis on the mp print filter.

■ Appendix A, “Compose and Dead Key Input,” describes the commonly used compose key
sequences in the different input modes and key support.

■ Appendix B, “Language Support Features and Enhancements,” describes the language
support enhancements introduced in Solaris with different versions.

Preface

International Language Environments Guide • November 201014

Related Books and Sites
The following books offer further information on the topics discussed in this guide:

■ Oracle Solaris internationalization:
Tuthill, Bill, and David Smallberg. Creating Worldwide Software: Solaris International
Developer's Guide, 2nd edition. Mountain View, California, Sun Microsystems Press, 1997.
This book is available through http://mailto:books@sun.com and http://www.sun.com/books/
. The book offers a general overview of the internationalization process in the Oracle Solaris
operating system.

■ Oracle Solaris Common Desktop Environment:
The Oracle Solaris Common Desktop Environment: Programmer's Guide is part of the CDE
Developer's Collection that is shipped on the Oracle Solaris documentation CD.

■ Chinese and Korean Solaris locales:
Korean Solaris User's Guide
Simplified Chinese Solaris User's Guide
Traditional Chinese Solaris User's Guide

■ OSF/Motif application development:
The OSF/Motif Programmer's Guide, Release 1.2, Englewood Cliffs, New Jersey,
Prentice-Hall, 1993. This book is the Open Software Foundations (OSF) guide on how to use
the OSF/Motif application programming interface to create Motif applications.

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Software Resources
Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technetwork/tutorials/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Preface

15

http://www.oracle.com/publications
http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com
http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

International Language Environments Guide • November 201016

Oracle Solaris Internationalization Overview

This chapter introduces the new features and the key concepts of Oracle Solaris
internationalization and localization. The chapter covers the following topics.

■ “New Internationalization and Localization Features” on page 18
■ “Internationalization and Localization Overview” on page 20
■ “What Is a Locale?” on page 22
■ “Using Locale Categories for Localization” on page 25
■ “Language Word and Letter Differences” on page 30
■ “Keyboard Differences” on page 33
■ “Differences in Paper Sizes” on page 33

Oracle Solaris Internationalization Architecture
The current Oracle Solaris release includes a number of new features, including Unicode 4.0
support for the UTF-8 locales, enhanced keyboard support, and several improvements to the mp
print filter.

The Oracle Solaris internationalization architecture eases the development, the deployment,
and the management of applications and language services around the world. A single
multilingual product provides support for 55 different languages and 345 locales. In addition,
support is available for the complex text layout that is required for Thai and Hindi scripts.
Bidirectional text capability is also supported for languages such as Arabic and Hebrew.

Input methods, character sets, codeset conversion, and other language-related features are
supported for a number of different Oracle Solaris locales. You can deploy applications in
multiple language environments by following standard APIs. You can also customize language
attributes, change converter tables, or add a new input method editor in the Oracle Solaris
environment.

The Oracle Solaris 10 globalization framework enables you to follow a common reference
implementation to enhance the compatibility and the interoperability of global applications.

1C H A P T E R 1

17

The codeset independent approach to globalization enables you to operate in both native
language and Unicode locales. The Oracle Solaris framework provides the power to scale across
platforms. A rich set of data converters ensures interoperability between various encodings and
different third-party platforms.

The Oracle Solaris platform also enables multinational corporations to scale their server
administration worldwide. Unlike competing platforms, the Oracle Solaris platform uses a
service-based approach to administration of language services. Server administrators can
enable language services remotely across a worldwide network, regardless of the client system.
This client-independent approach enables system upgrades without changing client
applications. For example, a user does not have to change a local client application in order to
read email in Arabic sent from an Internet cafe in Paris.

New Internationalization and Localization Features
The following new features are available in the current Oracle Solaris release. More information
about each feature can be found at Appendix B, “Language Support Features and
Enhancements.”

■ Unicode Version 3.2 and 4.0 Support
Unicode Version 4.0 introduces 1226 new characters over Unicode Version 3.2. This
version also includes both normative changes and informative changes as described in
Unicode Standard 4.0 (ISBN 0-321-18578-1).
Unicode 3.2 defines more strict UTF-8 byte sequences as "UTF-8 Corrigendum".

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+D800..U+DFFF ill-formed

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

New Internationalization and Localization Features

International Language Environments Guide • November 201018

http://www.unicode.org/standard/standard.html

These sequences exclude the surrogate code points between U+D800 and U+DFFF. The
sequences also inhibit any other illegal byte values. To comply with the new definition,
Unicode locale methods and the UTF-8 iconv modules are enhanced to detect the newly
defined UTF-8 invalid byte sequences. For more informations, see “Unicode Version 4.0
Support” on page 198.

■ Auto encoding finder
The auto encoding finder is a utility for global character handling. Through a
general-purpose interface, the auto encoding finder provides an easy way to detect the
encoding of a particular file or string. Encoding detection simplifies access to various
language character encodings. For example, the utility simplifies the display of web pages
that do not specify encoding information. Search engines, knowledge databases, and
machine translation tools might also need to detect the encoding of the language data being
accessed. The Auto Encoding Finder tool simplifies this process.
For more information, see the auto_ef(1) or libauto_ef(3LIB) man pages.

■ Locale administrator
The locale administrator enables you to query and configure the locales for a Oracle Solaris
operating system through a command-line interface. Using the localeadm(1M) tool, you
can display information about locale packages that are installed on the system or that reside
on a particular device or directory. You can add and remove locales on the current system
on a per-region basis. For more information see “Software Support for Localization” on
page 53.

■ Locale Creator
Locale Creator is a command line and graphical user interface tool that enables users to
create and install Oracle Solaris locales. Using Locale Creator users can create installable
Oracle Solaris packages containing customized locale data of a specific locale. After the
created package has been installed, the user has a fully-working locale on the system. For
more information, see the following:
■ localectr command at /usr/bin/localectr -h
■ localectr(1M) man page
■ Oracle Solaris Locale Creator

■ iconv Code Conversions
Various new iconv code conversions between single-byte PC and Windows code pages and
various Unicode forms have been added. For more information, see the
iconv_en_US.UTF-8(5) man page.

■ Oracle Solaris Unicode Locales
New Unicode locales are added to Oracle Solaris. The new locales are available on system
login. In addition, all EMEA, Central and South American locales have been migrated to
Common Locale Data Repository (CLDR). For details, see “Supported Locales” on page 55.
For information on CLDR, see Common Locale Data Repository (CLDR)

■ Input Method Support

New Internationalization and Localization Features

Chapter 1 • Oracle Solaris Internationalization Overview 19

http://docs.sun.com/doc/816-5165/auto-ef-1?a=view
http://docs.sun.com/doc/816-5173/libauto-ef-3lib?a=view
http://docs.sun.com/doc/816-5166/localeadm-1m?a=view
http://docs.sun.com/doc/816-5166/localectr-1m?a=view
http://developers.sun.com/global/products_platforms/solaris/reference/techart/locale-creator.html
http://www.unicode.org/cldr

New Internet Intranet Input Method Framework (IIIMF), new Language Engines and
EMEA Keyboard Layout Emulation Support has been added. For more information, see:
“IIIMF and Language Engines ” on page 195 and Appendix B, “Language Support Features
and Enhancements.” For more information, see “Input Method Features” on page 193.

■ Keyboard Layouts Support
New keyboard layouts have been integrated into current version of Oracle Solaris. For more
information see “Keyboard Support in the Oracle Solaris Environment” on page 65.

■ setxkbmap

A new feature for switching keyboard layouts has been integrated into Oracle Solaris and is
available for the Xorg Server. setxkbmap enables switching the keyboard layout
simultaneously when using Xorg Server. This command maps the keyboard using the layout
determined by various options specified on the command line. For information, see the
setxkbmap man pages.

Internationalization and Localization Overview
Internationalization and localization are different procedures. Internationalization is the
process of making software portable between languages or regions, while localization is the
process of adapting software for specific languages or regions. Internationalized software can be
developed using interfaces that modify program behavior at runtime in accordance with
specific cultural requirements. Localization involves establishing online information to support
a language or region, called a locale.

Unlike software that must be completely rewritten before it can work with different native
languages and customs, internationalized software does not require rewriting. The
internationalized software can be ported from one locale to another without change. The Oracle
Solaris system is internationalized, providing the infrastructure and interfaces you need to
create internationalized software.

Basic Steps in Internationalization
An internationalized application's executable image is portable between languages and regions.
To internationalize software:

■ Use the interfaces described in this book to create software with an environment that can be
modified by dynamically recompiling.

■ Divide software into executable code and all the messages that the user might see. Keep the
message strings in a message catalog.

Message strings are translated for a language or region. A locale includes the message strings
and methods to specify sorting.

Internationalization and Localization Overview

International Language Environments Guide • November 201020

To use a localized version of a product, the user sets certain environment variables. The product
then displays messages that are translated into the language of the locale. Date, time, currency,
and other information is formatted and displayed according to locale-specific conventions.
Message translations and online help contents are provided throughout different layers, as
illustrated in the following diagram.

FIGURE 1–1 Functions and Structure of Locales in the Oracle Solaris operating system

X Protocol

XIM
Protocols

Application
Locales

CDE
Locales

CDE/Motif
Libraries

OS
Locales

SunOS
System
Libraries

Language
Engines

X Input
Method
Server

STREAMS
Modules

SunOS
Kernel

Applications

Hardware

X Server

X Locales

X11 Window
System
Libraries

X Protocol

Application

Platform

Note:

Each "Locale" contains translated
messages, help files, resource settings,
fonts, and language engines for the layer.

The CDE Locales and X Locales possibly
include Layout Engine.

The Application Locales include translated
messages and resource settings for locales,
from an application provider. These are
loaded by way of I18N system interfaces.

I18N STREAMS modules support
necessary code conversions for the
terminal environment.

Internationalization and Localization Overview

Chapter 1 • Oracle Solaris Internationalization Overview 21

Localization Functions in Oracle Solaris Interfaces
The OS (operating system) locale layer provides the basic locale database and functions that are
plugged into the OS system interface at the application's runtime. Applications access these OS
locale modules through standard APIs.

The X11 locale layer provides the interface to the X input method and X output method to X11
applications for local text input and display. Fonts enable applications to display characters
from various languages.

CDE/Motif is built on top of the X11 window system. Hence, CDE/Motif can utilize the X11
locale capability through X11 APIs. Oracle Solaris localizations have various locale-specific
configurations for CDE applications in order to make the desktop functional within the target
locale. Message translations and online help contents are provided throughout different layers.

What Is a Locale?
A key concept for application programs is that of a program's locale. The locale is an explicit
model and definition of a native-language environment. The notion of a locale is explicitly
defined and included in the library definitions of the ANSI C Language standard.

A locale consists of a number of categories for which country-dependent formatting or other
specifications exist. A program's locale defines its code sets, date and time formatting
conventions, monetary conventions, decimal formatting conventions, and collation (sort)
order.

A locale can be composed of a base language, country (territory) of use, and an optional codeset.
Codeset is usually assumed. For example, German is de, an abbreviation for Deutsch, while
Swiss German is de_CH, CH being an abbreviation for Confederation Helvetica. This convention
allows for specific differences by country, such as currency unit notation.

More than one locale can be associated with a particular language, which allows for regional
differences. For example, an English-speaking user in the United States can select the en_US
locale (English for the United States), while an English-speaking user in Great Britain can select
en_GB (English for Great Britain).

Generally the locale name is specified by the LANG environment variable. Locale categories are
subordinate to LANG but can be set separately, in which case they override LANG. If the LC_ALL
operand is set, it overrides LANG and all the separate locale categories.

The locale naming convention is:

language[_territory][.codeset] [@modifier]

where a two-letter language code is from ISO 639, a two-letter territory code is from ISO 3166,
codeset is the name of the codeset that is being used in the locale, and modifier is the name of the
characteristics that differentiate the locale from the locale without the modifier.

What Is a Locale?

International Language Environments Guide • November 201022

All Oracle Solaris product locales preserve the Portable Character Set characters with US-ASCII
code values.

For more information on the portable character set, refer to “X/Open CAE Specification:
System Interface Definitions, Issue 5” (ISBN 1–85912–186–1).

A single locale can have more than one locale name. For example, POSIX is the same locale as C.

C Locale – the Default Locale
The C locale, also known as the POSIX locale, is the POSIX system default locale for all
POSIX-compliant systems. The Oracle Solaris operating system is a POSIX system. The Single
UNIX Specification, Version 3, defines the C locale. Register to read and download the
specification at: http://www.unix.org/version3/online.html.

You can specify that your internationalized programs run in the C locale, in one of two ways:

■ Unset all locale environment variables.

system% unsetenv LC_ALL LANG LC_CTYPE LC_COLLATE LC_NUMERIC \

LC_TIME LC_MONETARY LC_MESSAGES

Unsets all locale environment variables. Runs the application in the C locale.
■ Explicitly set the locale to C or POSIX.

system% setenv LC_ALL C

system% setenv LANG C

Some applications check the LANG environment variables without actually calling
setlocale(3C) to reference the current locale. In this case, setenv explicitly sets the C
locale by specifying the LC_ALL and LANG locale environment variables. For the
precedence relationship among locale environment variables, see the setlocale(3C) man
page.

To check the current locale settings in a terminal environment, run the locale(1) command.

system% locale

Full and Partial Locales
A full Oracle Solaris locale has all the listed functions and the localized system messages in the
relevant language. Partial locales have no localized messages installed. All locales in the Oracle
Solaris environment are capable of displaying localized messages, provided that localized
messages for the relevant language are installed. For example, the following locales can be either
partial or full locales:

■ de_DE.ISO8859–1

What Is a Locale?

Chapter 1 • Oracle Solaris Internationalization Overview 23

■ de_DE.ISO8859–15

■ de_DE.UTF-8

■ de_AT.ISO8859–1

■ de_AT.ISO8859–15

■ de_CH.ISO8859–1

When the German message translations are installed from the Oracle Solaris DVD, all of the
above locales become full locales because they have access to a fully translated desktop. The
Oracle Solaris DVD contains message translations for the following languages and locales:
■ German
■ French
■ Spanish
■ Brazilian Portuguese
■ Italian
■ Japanese
■ Korean
■ Simplified Chinese locale
■ Traditional Chinese locale

All partial and full locales as well as message translations are available on the Oracle Solaris
DVD.

Behavior Affected by Locales
Different cultures often use different conventions to format numbers, to write the date and
time, to delimit words and phrases, or to quote written and spoken material. A locale
determines how the following operations, files, formats, and expressions are handled for
different regions:
■ Encoding and processing of text data
■ Language identification and encoding of resource files
■ Rendering and layout of text strings
■ Interchange of text between clients
■ Input method selection to meet the codeset and text processing requirements of the chosen

script
■ Font and icon files that are culturally specific
■ Actions and file types
■ User Interface Definition (UID) files
■ Date and time formats
■ Numeric formats
■ Monetary formats

What Is a Locale?

International Language Environments Guide • November 201024

■ Collation order
■ Regular expression handling specific to the locale
■ Format for informative and diagnostic messages and interactive responses

The Oracle Solaris environment separates language and culture-dependent information from
the application and saves the information outside the application. This method eliminates the
need to translate, rewrite, or recompile the application for each market. The only requirement
to enter a new market is to localize the external information to the local language and customs.

Locale Categories
The locale categories are as follows:

LC_CTYPE Controls the behavior of character handling functions.

LC_TIME Specifies date and time formats, including month names, days of the week,
and common full and abbreviated representations.

LC_MONETARY Specifies monetary formats, including the currency symbol for the locale,
thousands separator, sign position, the number of fractional digits, and so
forth.

LC_NUMERIC Specifies the decimal delimiter (or radix character), the thousands separator,
and the grouping.

LC_COLLATE Specifies a collation order and regular expression definition for the locale.

LC_MESSAGES Specifies the language in which the localized messages are written, and
affirmative and negative responses of the locale (yes and no strings and
expressions).

LO_LTYPE Specifies the layout engine that provides information about language
rendering. Language rendering (or text rendering) depends on the shape and
direction attributes of a script.

Using Locale Categories for Localization
The localization of a product should be done in consultation with native users in that target
language or region. Certain information styles and formats might seem perfectly obvious and
universal to the developer. However, to the user these formats could look awkward, wrong, or
even offensive. The following sections describe the elements in the Oracle Solaris operating
system that you can customize to meet the localization requirements for your product.

Using Locale Categories for Localization

Chapter 1 • Oracle Solaris Internationalization Overview 25

Time Formats
The following table shows some of the ways in which different locales write 11:59 P.M.

TABLE 1–1 International Time Formats

Locale Format

Canadian 23:59

Finnish 23.59

German 23.59 Uhr

Norwegian 23.59

Thai 23:59

British English 23:59

Time is represented by both a 12-hour clock and a 24-hour clock. The hour and minute
separator can be either a colon (:) or a period (.) or a dash (-).

Time zone splits occur between and within countries. Although a time zone can be described in
terms of how many hours it is ahead of, or behind, Coordinated Universal Time, UTC (or
Greenwich Mean Time, GMT), this number is not always an integer. For example,
Newfoundland is in a time zone that is half an hour different from the adjacent time zone.

Daylight Savings Time (DST) starts and ends on dates that can vary from country to country.
Many countries do not implement DST at all. Additionally, Daylight Savings Time can vary
within a time zone. In the U.S. for example, the implementation is a state decision.

Date Formats
The following table shows some of the date formats used around the world. Variations can exist
even within a country.

TABLE 1–2 International Date Formats

Locale Convention Example

Canadian (English) dd/mm/yy 16/07/10

Danish dd/mm/yy 16/07/10

Finnish dd.mm.yyyy 16.07.2010

French dd/mm/yy 16/07/10

Using Locale Categories for Localization

International Language Environments Guide • November 201026

TABLE 1–2 International Date Formats (Continued)
Locale Convention Example

German dd.mm.yy 16.07.10

Italian dd/mm/yy 16/07/10

Norwegian dd.mm.yy 16.07.10

Spanish dd/mm/yy 16/07/10

Swedish yyyy-mm-dd 2010–07–16

Great Britain dd/mm/yyyy 16/07/2010

United States mm/dd/yy 07/16/10

Thai mm/dd/yyyy 07/16/2010

Number Formats
Great Britain and the United States are two of the few places in the world that use a period to
indicate the decimal place. Many other countries use a comma instead. The decimal separator is
also called the radix character. Likewise, while Great Britain and the United States use a comma
to separate groups of thousands, many other countries use a period instead, and some countries
separate thousands groups with a thin space.

Data files containing locale-specific formats are frequently misinterpreted when transferred to a
system in a different locale. For example, a file containing numbers in a French format is not
useful to a British-specific program.

The following table shows some commonly used numeric formats.

TABLE 1–3 International Numeric Conventions

Locale Large Number

Canadian (English) 4,294,967.00

Danish 4.294 967.295,00

Finnish 4 294 967 295,00

French 4 294 967 295,00

German 4,294,967.00

Italian 4.294.967,00

Norwegian 4.294.967.295,00

Spanish 4.294.967.295,00

Using Locale Categories for Localization

Chapter 1 • Oracle Solaris Internationalization Overview 27

TABLE 1–3 International Numeric Conventions (Continued)
Locale Large Number

Swedish 4 294 967 295,00

Great Britain 4,294,967,295.00

United States 4,294,967,295.00

Thai 4,294,967,295.00

Note – No particular locale conventions exist that specify how to separate numbers in a list.

International Monetary Formats
Currency units and presentation order vary greatly around the world. Local and international
symbols for currency can differ. The following table shows monetary formats in some
countries.

TABLE 1–4 International Monetary Conventions

Locale Currency Example

Canadian (English) Dollar ($) $1,234.56

Canadian (French) Dollar ($) 1 234,56$

Danish Kroner (kr) Kr 1.234,56

Finnish Euro () 1 234,56

French Euro () 1,234

Japanese Yen (¥) ¥ 1,234

Norwegian Krone (kr) kr 1.234,56

Swedish Krona (Kr) 1 234,56 Kr

Great Britain Pound (£) £1,234.56

United States Dollar ($) $1,234.56

Thai Baht 2539 Baht

The current release supports the Euro currency. Local currency symbols are still available for
backward compatibility.

Using Locale Categories for Localization

International Language Environments Guide • November 201028

TABLE 1–5 User Locales That Support the Euro Currency

Region Locale Name ISO Code Set

Austria de_AT.ISO8859-15 8859-15

Belgium (French) fr_BE.ISO8859-15 8859-15

Belgium (Flemish) nl_BE.ISO8859-15 8859-15

Denmark da_DK.ISO8859-15 8859-15

Estonia et_EE.ISO8859–15 8859–15

Finland fi_FI.ISO8859-15 8859-15

France fr_FR.ISO8859-15 8859-15

Germany de_DE.ISO8859-15 8859-15

Great Britain en_GB.ISO8859-15 8859-15

Ireland en_IE.ISO8859-15 8859-15

Italy it_IT.ISO8859-15 8859-15

Netherlands nl_NL.ISO8859-15 8859-15

Portugal pt_PT.ISO8859-15 8859-15

Catalan Spain ca_ES.ISO8859-15 8859–15

Spain es_ES.ISO8859-15 8859-15

Sweden sv_SE.ISO8859-15 8859-15

U.S.A. en_US.ISO8859-15 8859-15

Euro locales are based on the ISO8859–15 code set.

Keep in mind that a converted currency amount can require a different amount of space than
the original amount, for example, $1,000 can become 1 000,00 Kr.

The current status of the locale settings for locales within the euro zone is illustrated for the
LC_MONETARY operand of the locale utility. The status for Germany, for example, is shown in
the following table.

TABLE 1–6 German Locale and Corresponding LC_MONETARYOperand

Locale LC_MONETARY

de_DE.ISO8859–1 DM

de_DE.ISO8859–15 Euro

Using Locale Categories for Localization

Chapter 1 • Oracle Solaris Internationalization Overview 29

TABLE 1–6 German Locale and Corresponding LC_MONETARYOperand (Continued)
Locale LC_MONETARY

de_DE.UTF-8 Euro

de_DE.ISO8859–15@euro Euro

de_DE.UTF-8@euro Euro

Language Word and Letter Differences
This section describes important differences between languages.

Word Delimiters
In English, words are usually separated by a space character. Languages such as Chinese,
Japanese, and Thai, however, often have no delimiter between words.

Sort Order
Sorting order for particular characters is not the same in all languages. For example, the
character “ö” sorts with the ordinary “o” in Germany, but sorts separately in Sweden, where it is
the last letter of the alphabet. In some languages, characters have weight to determine the
priority of the character sequences. For example, the Thai dictionary defines sorting through
the sequences of characters that have different weights.

Character Sets
Character sets can differ in the number of alphabetic characters and special characters. While
the English alphabet contains only 26 characters, some languages contain many more
characters. Japanese, for example, can contain over 20,000 characters and Chinese can contain
an even higher number of characters.

Western European Alphabets
The alphabets of most western European countries are similar to the standard 26-character
alphabet used in English-speaking countries. These alphabets often also include some
additional basic characters, some marked or accented characters, and some ligatures.

Language Word and Letter Differences

International Language Environments Guide • November 201030

Japanese Text
Japanese text is composed of three different scripts mixed together:

■ Kanji ideographs derived from Chinese
■ Hiragana and Katakana, two phonetic scripts (or syllabaries)

Although each character in Hiragana has an equivalent in Katakana, Hiragana is the most
common script, with cursive rather than block-like letter forms. Kanji characters are used to
write root words. Katakana is mostly used to represent “foreign” words, that is, words imported
from languages other than Japanese.

Kanji has tens of thousands of characters, but the number commonly used has declined steadily
over the years. Now only about 3500 are frequently used, although the average Japanese writer
has a vocabulary of about 2000 Kanji characters. Nonetheless, computer systems must support
more than 7000 characters in accordance with the Japan Industry Standard (JIS) requirements.
In addition, there are about 170 Hiragana and Katakana characters. On average, 55% of
Japanese text is Hiragana, 35% Kanji, and 10% Katakana. Arabic numerals and Roman letters
are also present in Japanese text.

Although completely avoiding the use of Kanji is possible, most Japanese readers find a text that
is composed without any Kanji hard to understand.

Korean Text
Korean text can be written using a phonetic writing system called Hangul. Hangul has more
than 11,000 characters, which consist of consonants and vowels known as jamos. About 3000
characters from the entire Hangul vocabulary of characters are usually used in Korean
computer systems. Korean also uses ideographs based on the set invented in China, called
Hanja. Korean text requires over 6000 Hanja characters. Hanja is used mostly to avoid
confusion when Hangul would be ambiguous. Hangul characters are formed by combining
consonants and vowels. After these characters are combined, they can compose one syllable,
which is a Hangul character. Hangul characters are often arranged in a square, so that the group
takes up the same space as a Hanja character. Arabic numerals, Roman letters, and special
symbol characters are also present in Korean text.

Thai Text
A Thai character can be defined as a column position on a display screen with four display cells.
Each column position can have up to three characters. The composition of a display cell is based
on the Thai character's classification. Some Thai characters can be composed with another
character's classification. If both characters can be composed together, both characters are in
the same cell. Otherwise, they are in separate cells.

Chinese Text
Chinese usually consists entirely of characters from the ideographic script called Hanzi.

Language Word and Letter Differences

Chapter 1 • Oracle Solaris Internationalization Overview 31

■ In the People's Republic of China (PRC) there are about 7000 commonly used Hanzi
characters in the GB2312 (zh locale), more than 20,000 characters in the GBK charset
(zh.GBK locale), and about 30,000 characters in the GB18030-2000 charset (zh_CN.GB18030
locale), including all CJK extension A characters defined in Unicode 3.0.

■ In Taiwan, the most frequently used charsets are the CNS11643-1992 (zh_TW locale) and the
Big5 (zh_TW.BIG5 locale). They share about 13,000 Hanzi characters.

■ In Hong Kong, 4702 characters have been added into the Big5 charset to become the
Big5-HKSCS charset (zh_HK.BIG5HK).

If a character is not a root character, it usually consists of two or more parts, two being most
common. In two-part characters, one part generally represents meaning, and the other
represents pronunciation. Occasionally both parts represent meaning. The radical is the most
important element, and characters are traditionally arranged by radical, of which there are
several hundred. A single sound can be represented by many different characters, which are not
interchangeable in usage. A single character can have different sounds.

Some characters are more appropriate than others in a given context. The appropriate character
is distinguished phonetically by the use of tones. By contrast, spoken Japanese and Korean lack
tones.

Several phonetic systems represent Chinese. In the People's Republic of China the most
common is pinyin, which uses Roman characters and is widely employed in the West for place
names such as Beijing. The Wade-Giles system is an older phonetic system, formerly used for
place names such as Peking. In Taiwan zhuyin (or bopomofo), a phonetic alphabet with unique
letter forms, is often used instead.

Hebrew Text
Hebrew text is used for writing scripts in the Hebrew and Yiddish languages. Hebrew uses a
bidirectional script. Hebrew letters are written and read from right to left, while numbers are
read from left to right. Any English text that is embedded in Hebrew text is also read from left to
right.

Hebrew uses a 27-character alphabet, and takes punctuation marks and numbers from the
standard Latin (or English) alphabet. Hebrew text also includes vowel and pronunciation
marks. These marks appear either as a dot (dagesh) inside the base character, vowel marks
below the character, or accents to the upper left of the character. These marks are generally only
used in liturgical text, and are rarely seen in day-to-day use. Hebrew has no uppercase letters.

Hindi Text
Hindi text is written in a script called Devanagari, which means the writing of the gods. Hindi is
a phonetic language, and is written as a series of syllables. Each syllable is built up of alphabetic
pieces (the Devanagari characters) of three types: consonant letters, independent vowels, and
dependent vowel signs. The syllable itself consists of a consonant and vowel core, with an

Language Word and Letter Differences

International Language Environments Guide • November 201032

optional preceding consonant. Unlike English, which starts from a baseline, Devanagari
characters hang from a horizontal line (called the head stroke) written at the top of the
characters. These characters can combine or change shape depending on their context. Like
Hebrew, Hindi text makes no distinction between uppercase and lowercase letters.

Keyboard Differences
Not all characters on the U.S. keyboard appear on other keyboards. Similarly, other keyboards
often contain many characters not visible on the U.S. keyboard.

Any keyboard can be used to input characters from any locale because input is handled by the
Oracle Solaris operating system.

Note – On SPARC® and on x86 based platform machines, the Compose key can be used to
produce any Latin character with a diacritic in any of the supported ISO8859 character sets. The
Compose key can be used with Latin-based locales, but not with Korean, Chinese, or Japanese
locales, except the UTF-8 locales.

Differences in Paper Sizes
Within each country, a small number of paper sizes are commonly used. Normally, one of those
sizes is much more common than the others. Most countries follow ISO Standard 216: “Writing
paper and certain classes of printed matter-Trimmed sizes-A and B series.”

Internationalized applications should not make assumptions about the page sizes available to
them. The Oracle Solaris system provides no support for tracking the output page size. This
tracking is the responsibility of the application program. The following table shows common
international page sizes.

TABLE 1–7 Common International Page Sizes

Paper Type Dimensions Countries

ISO A4 21.0 cm by 29.7 cm Everywhere except U.S.

ISO A5 14.8 cm by 21.0 cm Everywhere except U.S.

JIS B4 25.9 cm by 36.65 cm Japan

JIS B5 18.36 cm by 25.9 cm Japan

U.S. Letter 8.5 inches by 11 inches U.S. and Canada

U.S. Legal 8.5 inches by 14 inches U.S. and Canada

Differences in Paper Sizes

Chapter 1 • Oracle Solaris Internationalization Overview 33

Differences in Paper Sizes

International Language Environments Guide • November 201034

General Internationalization Features

This chapter discusses several internationalization features contained in the Oracle Solaris
operating system. The chapter covers the following topics.

■ “Support for Code Set Independence” on page 35
■ “Locale Database” on page 38
■ “Process Code Format” on page 38
■ “Multibyte Support Environment” on page 38
■ “Dynamically Linked Applications” on page 39
■ “Changed Interfaces” on page 39
■ “ctype Macros” on page 40
■ “Internationalization APIs in libc” on page 41
■ “genmsg Utility” on page 48
■ “User-Defined and User-Extensible Code Conversions” on page 49
■ “Internationalized Domain Name (IDN) Support” on page 49

Support for Code Set Independence
EUC is an abbreviation for Extended UNIX® Code. The Oracle Solaris operating system
supports non-EUC encodings such as PC-Kanji (better known as Shift_JIS) in Japan, Big5 in
Taiwan, and GBK in the People's Republic of China. Because a large part of the computer
market demands non-EUC codeset support, the current Oracle Solaris environment provides a
solid framework to enable both EUC and non-EUC code set support. This support is called
Code Set Independence, or CSI.

The goal of CSI is to remove dependencies on specific code sets or encoding methods from
Oracle Solaris operating system libraries and commands. The CSI architecture enables the
Oracle Solaris operating system to support any UNIX file system safe encoding. CSI supports a
number of new code sets, such as UTF-8, PC-Kanji, and Big5.

2C H A P T E R 2

35

CSI Approach
Code set independence enables application and platform software developers to keep their code
independent of any encoding, such as UTF-8. CSI also provides the ability to adopt any new
encoding without having to modify the source code. This architecture approach differs from
Java internationalization because applications do not have to be to be UTF-16–dependent.

Many existing internationalized applications (for example, Motif) automatically inherit CSI
support from the underlying system. These applications work in the new locales without
modification.

CSI is inherently independent from any code sets. However, the following assumptions about
file code encodings (code sets) still apply to the current Oracle Solaris system:

■ File code is a superset of ASCII.
■ NULL byte value (0x00) does not appear as part of multibyte character bytes for support of

null-terminated multibyte character strings.
■ ASCII Slash character byte value (0x2f) does not appear as part of multibyte character bytes

for support of the UNIX path names.

CSI-enabled Commands
This section lists the CSI-enabled commands in the current Oracle Solaris environment. The
man page for each command includes an attribute section that indicates whether the command
is CSI-enabled.

All commands are in the /usr/bin directory, unless otherwise noted.

/usr/lib/diffh

/usr/sbin/accept

/usr/sbin/reject

/usr/ucb/lpr

/usr/xpg4/bin/awk

/usr/xpg4/bin/cp

/usr/xpg4/bin/date

/usr/xpg4/bin/du

/usr/xpg4/bin/ed

/usr/xpg4/bin/edit

/usr/xpg4/bin/egrep

/usr/xpg4/bin/env

/usr/xpg4/bin/ex

/usr/xpg4/bin/expr

/usr/xpg4/bin/fgrep

/usr/xpg4/bin/lp

/usr/xpg4/bin/ls

/usr/xpg4/bin/more

/usr/xpg4/bin/mv

/usr/xpg4/bin/nice

/usr/xpg4/bin/nohup

/usr/xpg4/bin/od

/usr/xpg4/bin/pr

/usr/xpg4/bin/rm

/usr/xpg4/bin/sed

/usr/xpg4/bin/sort

/usr/xpg4/bin/tail

/usr/xpg4/bin/tr

/usr/xpg4/bin/vedit

/usr/xpg4/bin/vi

/usr/xpg4/bin/view

acctcom

apropos

batch

bdiff

cancel

cat

catman

chgrp

chmod

chown

cmp

col

comm

compress

cpio

csh

csplit

Support for Code Set Independence

International Language Environments Guide • November 201036

cut

diff

diff3

disable

echo

expand

file

find

fold

ftp

gencat

geteopt

getoptcvt

head

join

jsh

kill

ksh

lp

man

mkdir

msgfmt

news

nroff

pack

paste

pcat

pg

printf

priocntl

ps

pwd

rcp

red

remsh

rksh

rsh

rsmdir

script

sdiff

settime

sh

split

strconf

strings

sum

tabs

tar

tee

touch

tty

uncompress

unexpand

uniq

unpack

wc

whatis

write

xargs

zcat

CSI-enabled Libraries
Nearly all functions in libc (/usr/lib/libc.so) are CSI-enabled. However, the following
functions in libc are not CSI-enabled and therefore are EUC-dependent functions:

■ csetcol()

■ csetlen()

■ csetno()

■ euccol()

■ euclen()

■ eucscol()

■ getwidth()

■ wcsetno()

In the current Oracle Solaris environment, libgen /usr/ccs/lib/libgen.a and libcurses

/usr/ccs/lib/libcurses.a are internationalized but not CSI-enabled.

Support for Code Set Independence

Chapter 2 • General Internationalization Features 37

Locale Database
The locale database format and structure is private and subject to change in a future release.
When you develop internationalized applications, you use the internationalization APIs in
libc. These APIs are described in “Internationalization APIs in libc” on page 41, rather than
linking to the locale database.

Note – When you work in the Oracle Solaris environment, use the locale databases that are
included with the current Oracle Solaris release. Do not use locales from previous Oracle Solaris
versions.

Process Code Format
The process code format, which is also known as wide-character code format in the Oracle
Solaris operating system, is private and subject to change in a future release. Therefore, when
you develop an international application, do not assume that the process code format is the
same. Instead, use the internationalization APIs in libc described in “Internationalization APIs
in libc” on page 41.

Note – The process code for all Unicode locales is in UTF 32 representation. For more detail on
UTF 32, refer to the Unicode Standard Annex #19: UTF 32 and Unicode Standard Annex #27:
Unicode 3.1 from the Unicode Consortium or http://www.unicode.org/.

Multibyte Support Environment
A multibyte character is a character that cannot be stored in a single byte, such as Chinese,
Japanese, or Korean characters. These characters require 2, 3, or 4 bytes of storage. A more
precise definition can be found in ISO/IEC 9899:1990 subclause 3.13.

The Amendment 1 to ANSI C, which is also known as ISO/IEC 9899:1990, added new
internationalization features, collectively known as the Multibyte Support Environment (MSE).
Amendment 1 defines additional internationalization APIs for multibyte code sets with state
and also for better wide-character handling support.

The programming model enables these multibyte characters to be read in as logical units and
stored internally as wide characters. These wide characters can be processed by the program as
logical entities. Finally, these wide characters can be written out, undergoing appropriate
translation, as logical units.

This procedure is analogous to the way single-byte characters are read in, manipulated, and
written out again. The MSE enables programs to handle multibyte characters using the same
programming model that is used for single-byte characters.

Locale Database

International Language Environments Guide • November 201038

http://www.unicode.org/

Dynamically Linked Applications
You can link applications with the system libraries, such as libc, by using dynamic linking or
static linking. Any application that requires internationalization features in the system libraries
must be dynamically linked. If the application has been statically linked, the operation to set the
locale to anything other than C and POSIX using the setlocale function will fail. Statically
linked applications can operated only in C and POSIX locales.

By default, the linker program tries to link the application dynamically. If the command-line
options to the linker and the compiler include -Bstatic or -dn specifications, your application
might be statically linked. You can check whether an existing application is dynamically linked
using the /usr/bin/ldd command.

For example, the response to the following command indicates that the /sbin/sh command is
not a dynamically linked program:

% /usr/bin/ldd /sbin/sh

ldd: /sbin/sh: file is not a dynamic executable or shared object

The response to the following command indicates that the /usr/bin/ls command has been
dynamically linked with two libraries, libc.so.1 and libdl.so.1.

% /usr/bin/ldd /usr/bin/ls

libc.so.1 => /usr/lib/libc.so.1

libdl.so.1 => /usr/lib/libdl.so.1

Changed Interfaces
libw and libintl have moved to libc and are no longer in libw and libintl.

The shared objects ensure runtime compatibility for existing applications and, together with the
archives, provide compilation environment compatibility for building applications. However,
you no longer must build applications against libw or libintl.

The following list shows the stub entry points in libw:

fgetwc

fgetws

fputwc

fputws

getwc

getwchar

getws

isenglish

isideogram

isnumber

isphonogram

isspecial

iswalnum

iswalpha

iswcntrl

iswctype

iswdigit

iswgraph

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxdigit

putwc

putwchar

putws

strtows

towlower

towupper

ungetwc

watoll

wcscat

wcschr

wcsclen

wcscmp

Changed Interfaces

Chapter 2 • General Internationalization Features 39

wcscoll

wcscpy

wcscspn

wcsftime

wscncat

wcsncmp

wcsncpy

wcspbrk

wcsrchr

wcsspn

wcstod

wcstok

wcstol

wcstoul

wcswcs

wcswidth

wcsxfrm

wctype

wcwidth

wscasecmp

wscat

wschr

wscmp

wscol

wscoll

wscpy

wscspn

wsdup

wslen

wsncasecmp

wsncat

wsncmp

wsncpy

wspbrk

wsprintf

wsrchr

wsscanf

wsspn

wstod

wstok

wstol

wstoll

wstostr

wsxfrm

The following list shows the stub entry points in libintl:

bindtextdomain

dcgettext

dgettext

gettext

textdomain

ctypeMacros
Character classification and character transformation macros are defined in
/usr/include/ctype.h. The current Oracle Solaris environment provides a set of ctype
macros that support character classification and transformation semantics defined by XPG4.
For all XPG4 and XPG4.2 applications to automatically access new macros, one of the following
conditions must be met:

■ _XPG4_CHAR_CLASS is defined.
■ _XOPEN_SOURCE and _XOPEN_VERSION=4 are defined.
■ _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED=1 are defined.

Because _XOPEN_SOURCE, _XOPEN_VERSION, and _XOPEN_SOURCE_EXTENDED bring in extra XPG4
related features in addition to new ctype macros, non-XPG4 or XPG4.2 applications should use
__XPG4_CHAR_CLASS__.

Corresponding ctype functions also exist. The current Oracle Solaris environment functions
also support XPG4 semantics.

ctypeMacros

International Language Environments Guide • November 201040

Internationalization APIs in libc

The current Oracle Solaris environment offers two sets of APIs:
■ Multibyte (file codes)
■ Wide characters (process code)

Wide-character codes are fixed-width units of logical entities. Therefore, you do not have to
keep track of maintaining proper character boundaries when you are using multibyte
characters.

When a program takes input from a file, you can convert your file's multibyte data into
wide-character process code directly with input functions like fscanf and fwscanf or by using
conversion functions like mbtowc and mbsrtowcs after the input. To convert output data from
wide-character format to multibyte character format, use output functions like fwprintf and
fprintf or apply conversion functions like wctomb and wcsrtombs before the output.

The tables in the remainder of this chapter describe the internationalization APIs included in
the current Oracle Solaris system.

The following table describes the messaging function APIs in libc.

TABLE 2–1 Messaging Functions in libcp

Library Routine Description

bindtextdomain() Bind the path for a message domain

catclose() Close a message catalog

catgets() Read a program message

catopen() Open a message catalog

dcgettext()

Get a message from a message catalog with domain and category
specified

dgettext() Get a message from a message catalog with domain specified

gettext() Retrieve a text string from the message database

textdomain() Set and query the current domain

The following table describes the code conversion function APIs in libc.

TABLE 2–2 Code Conversion in libc

Library Routine Description

iconv() Convert codes

Internationalization APIs in libc

Chapter 2 • General Internationalization Features 41

TABLE 2–2 Code Conversion in libc (Continued)
Library Routine Description

iconv_close() Deallocate the conversion descriptor

iconv_open() Allocate the conversion descriptor

The following table describes the regular expression APIs in libc.

TABLE 2–3 Regular Expressions in libc

Library Routine Description

fnmatch() Match file name or path name

regcomp() Compile the regular expression

regerror() Provide a mapping from error codes to error messages

regexec() Execute regular expression matching

regfree() Free memory allocated by regcomp()

The following table describes the wide character function APIs in libc.

TABLE 2–4 Wide Character Class in libc

Library Routine Description

wctrans() Define character mapping

wctype() Define character class

The following table lists the modify and query locale in libc.

TABLE 2–5 Modify and Query Locale in libc

Library Routine Description

setlocale() Modify and query a program's locale

The following table lists the query locale data in libc.

TABLE 2–6 Query Locale Data in libc

Library Routine Description

localeconv() Get monetary and numeric formatting information of
current locale

Internationalization APIs in libc

International Language Environments Guide • November 201042

TABLE 2–6 Query Locale Data in libc (Continued)
Library Routine Description

nl_langinfo() Get language and cultural information of current locale

The following table describes the character classification function APIs in libc.

TABLE 2–7 Character Classification and Transliteration in libc

Library Routine Description

isalnum() Is character alphabetic or digital?

isalpha() Is character alphabetic?

isascii() Is character an ASCII character?

iscntrl() Is character a control character?

isdigit() Is character a digit?

isenglish()

Is wide character in English alphabet from a supplementary code
set?

isgraph() Is character a visible character?

isideogram() Is wide character an ideogram?

islower() Is character lowercase?

isnumber() Is wide character a digit from a supplementary code set?

isphonogram() Is wide character a phonogram?

isprint() Is character printable?

ispunct() Is character a punctuation mark?

isspace() Is character a space?

isspecial() Is special wide character from a supplementary code set?

isupper() Is character uppercase?

iswalnum() Is wide character an alphabetic character or digit?

iswalpha() Is wide character alphabetic?

iswascii() Is wide character an ASCII character?

iswcntrl() Is wide character a control character?

iswdigit() Is wide-character a digit?

iswgraph() Is wide character a visible character?

Internationalization APIs in libc

Chapter 2 • General Internationalization Features 43

TABLE 2–7 Character Classification and Transliteration in libc (Continued)
Library Routine Description

iswlower() Is wide character lowercase?

iswprint() Is wide character a printable character?

iswpunct() Is wide character a punctuation mark?

iswspace() Is wide character a white space?

iswupper() Is wide character uppercase?

iswxdigit() Is wide character a hex digit?

isxdigit() Is character a hex digit?

tolower() Convert an uppercase character to lowercase.

toupper() Convert a lowercase character to uppercase.

towctrans() Wide character mapping.

towlower() Convert an uppercase wide character to lowercase.

towupper() Convert a lowercase wide character to uppercase.

The following table describes the character collation function APIs in libc.

TABLE 2–8 Character Collation in libc

Library Routine Description

strcoll() Collate character strings

strxfrm() Transform character strings for comparison

wcscoll() Collate wide-character strings

wcsxfrm() Transform wide-character strings for comparison

The following table describes the monetary handling function APIs in libc.

TABLE 2–9 Monetary Formatting in libc

Library Routine Description

localeconv() Get monetary formatting information for the current locale

strfmon() Convert monetary value to string representation

The following table describes the date and time formatting in libc.

Internationalization APIs in libc

International Language Environments Guide • November 201044

TABLE 2–10 Date and Time Formatting in libc

Library Routine Description

getdate() Convert user format date and time.

strftime() Convert date and time to string representation. The %u conversion
function conforms to the X/Open CAE Specification, System
Interfaces and Headers, Issue 4, Version 2. This function
represents a weekday as a decimal number [1,7], with 1 now
representing Monday.

strptime() Date and time conversion.

The following table describes the multibyte handling function APIs in libc.

TABLE 2–11 Multibyte Handling in libc

Library Routine Description

btowc() Single-byte to wide-character conversion

mblen() Get number of bytes in a character

mbrlen() Get number of bytes in character (restartable)

mbrtowc() Convert a character to a wide-character code (restartable)

mbsinit() Determine conversion object status

mbsrtowcs()

Convert a character string to a wide-character string
(restartable)

mbstowcs() Convert a character string to a wide-character string

mbtowc() Convert a character to a wide-character code

The following table describes the wide character and string handling in libc.

TABLE 2–12 Wide Character and String Handling in libc

Library Routine Description

wcrtomb() Convert a wide-character code to a character (restartable)

wcscat() Concatenate wide-character strings

wcschr() Find character in wide-character string

wcscmp() Compare wide-character strings

wcscpy() Copy wide-character strings

Internationalization APIs in libc

Chapter 2 • General Internationalization Features 45

TABLE 2–12 Wide Character and String Handling in libc (Continued)
Library Routine Description

wcscspn() Return span of one wide-character string not in another

wcslen() Get length of wide-character string

wcsncat() Concatenate wide-character strings to length n

wcsncmp() Compare wide-character strings to length n

wcsncpy() Copy wide-character strings to length n

wcspbrk() Return pointer to one wide-character string in another

wcsrchr() Find character in wide-character string from right

wcsrtombs() Convert a wide-character string to a character string (restartable)

wcsspn() Return span of one wide-character string in another

wcstod() Convert wide-character string to double precision

wcstok() Move token through wide-character string

wcstol() Convert wide-character string to long integer

wcstombs() Convert wide-character string to multibyte string

wcstoul() Convert wide-character string to unsigned long integer

wscwcs() Find string in wide-character string

wcswidth() Determine number of column positions of a wide-character string

wctob() Wide character to single byte conversion

wctomb() Convert wide-character to multibyte character

wcwidth() Determine number of column positions of a wide character

wscol() Return display width of wide-character string

wsdup() Duplicate wide-character string

The following table describes the formatted wide-character input and output in libc.

TABLE 2–13 Formatted Wide-character Input and Output in libc

Library Routine Description

fwprintf() Print formatted wide-character output

fwscanf() Convert formatted wide-character input

swprintf() Print formatted wide-character output

Internationalization APIs in libc

International Language Environments Guide • November 201046

TABLE 2–13 Formatted Wide-character Input and Output in libc (Continued)
Library Routine Description

swscanf() Convert formatted wide-character input

vfwprintf() Wide-character formatted output of a stdarg argument list

vswprintf() Wide-character formatted output of a stdarg argument list

wprintf() Print formatted wide-character output

wscanf() Convert formatted wide-character input

wsprintf() Generate wide-character string according to format

wsscanf() Formatted input conversion

This table describes the wide strings function APIs in libc.

TABLE 2–14 Wide Stringslibc

Library Routine Description

wcsstr() Find a wide-character substring

wmemchr() Find a wide character in memory

wmemcmp() Compare wide characters in memory

wmemcpy() Copy wide characters in memory

wmemmove() Copy wide characters in memory with overlapping areas

wmemset() Set wide characters in memory

wscasecmp() Compare wide-character strings, ignore case differences

wsncasecmp() Process code-string operations

The following table describes the wide-character input and output in libc.

TABLE 2–15 Wide-Character Input and Output in libc

Library Routine Description

fgetwc() Get multibyte character from stream, convert to wide character

fgetws() Get multibyte string from stream, convert to wide character

fputwc() Convert wide character to multibyte character, puts to stream

fputws() Convert wide character to multibyte string, puts to stream

fwide() Set stream orientation

Internationalization APIs in libc

Chapter 2 • General Internationalization Features 47

TABLE 2–15 Wide-Character Input and Output in libc (Continued)
Library Routine Description

getwchar() Get multibyte character from stdin, convert to wide character

getws() Get multibyte string from stdin, convert to wide character

putwchar() Convert wide character to multibyte character, puts to stdin

putws() Convert wide character to multibyte string, puts to stdin

ungetwc() Push a wide character back into input stream

genmsgUtility
The new genmsg utility can be used with the catgets() family of functions to create
internationalized source message catalogs. The utility examines a source program file for calls
to functions in catgets and builds a source message catalog from the information it finds. For
example:

% cat example.c

...

/* NOTE: %s is a file name */

printf(catgets(catd, 5, 1, "%s cannot be opened."));
/* NOTE: "Read" is a past participle, not a present

tense verb */

printf(catgets(catd, 5, 1, "Read"));
...

% genmsg -c NOTE example.c

The following file(s) have been created.

new msg file = "example.c.msg"
% cat example.c.msg

$quote "
$set 5

1 "%s cannot be opened"
/* NOTE: %s is a file name */

2 "Read"
/* NOTE: "Read" is a past participle, not a present

tense verb */

In the above example, genmsg is run on the source file example.c, which produces a source
message catalog named example.c.msg. The -c option with the argument NOTE causes genmsg
to include comments in the catalog. If a comment in the source program contains the string
specified, the comment appears in the message catalog after the next string extracted from a call
to catgets.

You can use genmsg to number the messages in a message set automatically.

For more information, see the genmsg(1) man page.

To generate a formatted message catalog file, use the gencat(1) utility.

genmsgUtility

International Language Environments Guide • November 201048

For information on the message extraction utility for portable message files (.po files) and also
on how to generate message object files (.mo files) from the .po files.

User-Defined and User-Extensible Code Conversions
You can create user-defined codeset converters using the geniconvtbl utility.

This utility enables user-defined and user-customizable codeset conversions with a standard
system utility and interface like iconv(1) and iconv(3C). This feature enhances the ability of an
application to deal with incompatible data types, particularly data generated from proprietary
or legacy applications. Modification to existing Oracle Solaris codeset conversions is also
supported.

Sample input source files for the utility are available in the
/usr/lib/iconv/geniconvtbl/srcs/ directory.

Once the user-defined code conversions are prepared and placed properly, users can use the
code conversions from the iconv(1) utility and the iconv(3C) functions of both 32-bit and
64-bit Oracle Solaris operating system.

Internationalized Domain Name (IDN) Support
Internationalized Domain Name (IDN) enables the use of non-English native language names
as host and domain names. To use non-English host and domain names, convert these names
into ASCII Compatible Encoding (ACE) encoded names before sending the names to resolver
routines as specified in RFC 3490. System administrators are also required to use ACE names in
system files and applications where the system administration applications do not support the
IDNs.

See RFC 3490 Internationalizing Domain Names in Applications (IDNA).

The APIs for the Internationalized Domain Name in libidnkit(3EXT) provide convenient
conversions between UTF-8 or the application locale's codeset and ACE. If
idn_decodename2(3EXT) is used, you can also specify an arbitrary codeset name as the codeset
of the input argument.

Internationalized Domain Name (IDN) Support

Chapter 2 • General Internationalization Features 49

The following table shows bilateral iconv code conversions that you can use.

TABLE 2–16 iconvCode Conversions

From Code To Code

ACE

ACE-ALLOW-UNASSIGNED

UTF-8

UTF-8

UTF-8

UTF-8

ACE

ACE-ALLOW-UNASSIGNED

The ACE and the ACE-ALLOW-UNASSIGNED iconv code conversion names have the
following meanings:

FIGURE 2–1 IDN to ACE Conversion

Use ACE string as input to resolver
routines such as getaddrinfo(3SOCKET)

IDN host name

idn_encodename()

ACE string xn--wgv71a119e

FIGURE 2–2 ACE to IDN Conversion

ACE string returned from resolver
routines such as getnameinfo(3SOCKET)

IDN host name

idn_decodename()

ACE string xn--wgv71a119e

Internationalized Domain Name (IDN) Support

International Language Environments Guide • November 201050

■ ACE.
ACE is a fromcode or tocode name that can be used in iconv code conversions to refer to
the ASCII Compatible Encoding defined in RFC 3490. This conversion uses STD3 ASCII
rules. Unassigned characters are not allowed. ACE is typically used for storing or giving host
or domain names to machines.

■ ACE-ALLOW-UNASSIGNED.
ACE-ALLOW-UNASSIGNED performs the same operations as ACE except that
ACE-ALLOW-UNASSIGNED allows unassigned characters.
ACE-ALLOW-UNASSIGNED is typically used for query purpose.

The following example shows a conversion from ACE to UTF-8 with input from the
hostnames.txt file. Output goes to standard output.

system% iconv -f ACE -t UTF-8 hostnames.txt

The dedicated IDN conversion utility idnconv(1) provides IDN conversions with various
options. The options control the conversion details.

For information about IDN, the conversion routines, and iconv code conversions, see
libidnkit(3LIB), idn_decodename(3EXT), idn_decodename2(3EXT),
idn_encodename(3EXT), and iconv_en_US.UTF-8(5) man pages.

Internationalized Domain Name (IDN) Support

Chapter 2 • General Internationalization Features 51

52

Localization in the Oracle Solaris Environment

This chapter discusses the localization features in the current Oracle Solaris environment. The
chapter covers the following topics.

■ “Software Support for Localization” on page 53
■ “Supported Locales” on page 55
■ “Multiple Key Compose Sequences for Locales” on page 64
■ “Keyboard Support in the Oracle Solaris Environment” on page 65
■ “New Oracle Solaris Keyboard Software Support” on page 80

Software Support for Localization
This section contains information about the Oracle Solaris locale packages, DVD disk,
localization functions, and script enabling.

Summary of the Oracle Solaris Locale Packages
All current Oracle Solaris locale packages are classified into either full locales or partial locales.

Partial locales are the enablers of the locales. With partial locales installed on the system, users
can input, display, print text, and run applications on the target locales, while the OS/GUI
messages in the Oracle Solaris operating system are English. All partial locale packages are
available on the Oracle Solaris DVD. Japanese and Asian partial locales are packaged according
to the language. Partial locales are packaged according to the geographic region.

Full locale packages include translations of software messages, online help files, optional fonts,
and language-specific features. Full locale packages provide the full set of language features for
many languages. All locales based on the following languages are full locales:

■ German
■ French

3C H A P T E R 3

53

■ Spanish
■ Brazilian Portuguese
■ Italian
■ Japanese
■ Korean
■ Simplified Chinese
■ Traditional Chinese

Full locale packages are packaged according to the language and are available on the Oracle
Solaris DVD.

Note – Partial locale packages (locale enablers) must be installed in order for the full locales to be
functional.

During the Oracle Solaris installation process, you are prompted to choose which geographic
regions' support you require. The locale support that is available after the installation is
completed depends on the choices made at this stage. Note that the English locale ("C") is
installed in any case.

Adding Additional Locales After Installation
You can configure additional locales by using the Locale administrator tool. Using the
localeadm(1M) tool, you can display information about locale packages that are installed on
the system or that reside on a particular device or directory. You can add and remove locales on
the current system on a per-region basis. For example, you can add all locales in the Eastern
European region to the current system.

The locale administrator now enables you to automatically add and remove locale packages on
a per-region basis on the machine, once the system is installed. Because of this capability, you
need not work with individual packages, and thus errors are reduced.

The locale administrator is a supplement to the locale selection logic in the Oracle Solaris
installer. The installer is still considered as the primary application for the correct installation of
Oracle Solaris locales.

Software Support for Localization

International Language Environments Guide • November 201054

http://docs.sun.com/doc/816-5166/localeadm-1m?a=view

Supported Locales
The following tables list all the locales supported in the Oracle Solaris environment. The locale
names conform to international naming standards.

TABLE 3–1 Asia Locales

Locale User Interface Territory Code Set Language Support

bn_IN.UTF-8 English (*) India UTF-8 Bengali (UTF-8) Unicode4.0

en_IN.UTF-8 English India UTF-8 English (UTF-8) Unicode4.0

en_SG.UTF-8 English Singapore UTF-8 English (UTF-8) Unicode4.0

gu_IN.UTF-8 English (*) India UTF-8 Gujarati (UTF-8) Unicode4.0

hi_IN.UTF-8 English India UTF-8 Hindi (UTF-8) Unicode4.0

id_ID.UTF-8 English Indonesia UTF-8 Indonesian (UTF-8) Unicode4.0

ja Japanese Japan eucJP1 Japanese (EUC)

JIS X 0201-1976

JIS X 0208-1990

JIS X 0212-1990

ja_JP.eucJP Japanese Japan eucJP Japanese (EUC)

JIS X 0201-1976

JIS X 0208-1990

JIS X 0212-1990

ja_JP.PCK Japanese Japan PCK2 Japanese (PC Kanji)

JIS X 0201-1976

JIS X 0208-1990

ja_JP.UTF-8 Japanese Japan UTF-8 Japanese (UTF-8) Unicode4.0

kn_IN.UTF-8 English India UTF-8 Kannada (UTF-8) Unicode4.0

ko_KR.EUC Korean Korea 1001 Korean (EUC) KS X 1001

ko_KR.UTF-8 Korean Korea UTF-8 Korean (UTF-8) Unicode4.0

mr_IN.UTF-8 English India UTF-8 Marathi (UTF-8) Unicode4.0
1 eucJP signifies the Japanese EUC code set. Specification of ja_JP.eucJP locale conforms to UI_OSF Japanese Environment Implementation Agreement Version

1.1 and ja locale conforms to the traditional specification from the past Solaris releases.
2 PCK is also known as Shift_JIS (SJIS).

Supported Locales

Chapter 3 • Localization in the Oracle Solaris Environment 55

TABLE 3–1 Asia Locales (Continued)
Locale User Interface Territory Code Set Language Support

ms_MY.UTF-8 English Malaysia UTF-8 Malay (UTF-8) Unicode4.0

ta_IN.UTF-8 English India UTF-8 Tamil (UTF-8) Unicode4.0

te_IN.UTF-8 English India UTF-8 Telugu (UTF-8) Unicode4.0

th_TH.ISO8859-11 English (*) Thailand ISO8859-11 Thai (ISO8859-11)

th_TH.UTF-8 English Thailand UTF-8 Thai (UTF-8) Unicode4.0

th_TH.TIS620 English Thailand TIS620.2533 Thai TIS620.2533

zh_CN.EUC Simplified
Chinese

PRC gb23123 Simplified Chinese (EUC)
GB2312-1980

zh_CN.GBK Simplified
Chinese

PRC GBK 4 Simplified Chinese (GBK)

zh_CN.GB18030 Simplified
Chinese

PRC GB18030–2000
Simplified Chinese
(GB18030–2000) GB18030–2000

zh_CN.UTF-8 Simplified
Chinese

PRC UTF-8 Simplified Chinese (UTF-8)
Unicode4.0

zh_HK.BIG5HK Traditional
Chinese

Hong Kong Big5+HKSCS Traditional Chinese
(BIG5+HKSCS)

zh_HK.UTF-8 Traditional
Chinese

Hong Kong UTF-8 Traditional Chinese (UTF-8)
Unicode4.0

zh_SG.UTF-8 English Singapore UTF-8 Chinese (UTF-8) Unicode4.0

zh_TW.EUC Traditional
Chinese

Taiwan cns11643 Traditional Chinese (EUC) CNS
11643-1992

zh_TW.BIG5 Traditional
Chinese

Taiwan BIG5 Traditional Chinese (BIG5)

zh_TW.UTF-8 Traditional
Chinese

Taiwan UTF-8 Traditional Chinese (UTF-8)
Unicode4.0

3 gb2312 signifies Simplified Chinese EUC code set, which contains GB 1988–80 and GB 2312–80.
4 GBK signifies GB extensions. These extensions include all GB 2312–80 characters and all Unified Han characters of ISO/IEC 10646–1, as well as Japanese Hiragana

and Katakana characters. GBK also includes many characters of Chinese, Japanese, and Korean character sets and of ISO/IEC 10646–1.

(*) Partially translated

Supported Locales

International Language Environments Guide • November 201056

TABLE 3–2 Australia Locales

Locale User Interface Territory Code Set Language Support

en_AU.ISO8859-1 English Australia ISO8859-1 English (Australia)

en_AU.UTF-8 English Australia UTF-8 English (UTF-8) Unicode4.0

en_NZ.ISO8859-1 English New Zealand ISO8859-1 English (New Zealand)

en_NZ.UTF-8 English New Zealand UTF-8 English (UTF-8) Unicode4.0

TABLE 3–3 Central America Locales

Locale User Interface Territory Code Set Language Support

es_CR.ISO8859-1 Spanish Costa Rica ISO8859-1 Spanish (Costa Rica)

es_CR.UTF-8 Spanish Costa Rica UTF-8 Spanish (UTF-8) Unicode4.0

es_GT.ISO8859-1 Spanish Guatemala ISO8859-1 Spanish (Guatemala)

es_GT.UTF-8 Spanish Guatemala UTF-8 Spanish (UTF-8) Unicode4.0

es_NI.ISO8859-1 Spanish Nicaragua ISO8859-1 Spanish (Nicaragua)

es_NI.UTF-8 Spanish Nicaragua UTF-8 Spanish (UTF-8) Unicode4.0

es_PA.ISO8859-1 Spanish Panama ISO8859-1 Spanish (Panama)

es_PA.UTF-8 Spanish Panama UTF-8 Spanish (UTF-8) Unicode4.0

es_SV.ISO8859-1 Spanish El Salvador ISO8859-1 Spanish (El Salvador)

es_SV.UTF-8 Spanish El Salvador UTF-8 Spanish (UTF-8) Unicode4.0

TABLE 3–4 Central Europe Locales

Locale User Interface Territory Code Set Language Support

cs_CZ.ISO8859-2 English Czech
Republic

ISO8859-2 Czech (Czech Republic)

cs_CZ.UTF-8@euro Czech Czech
Republic

UTF-8 Czech (UTF-8) Unicode4.0

cs_CZ.UTF-8 Czech Czech
Republic

UTF-8 Czech (UTF-8) Unicode4.0

de_AT.ISO8859-1 German Austria ISO8859-1 German (Austria)

de_AT.ISO8859-15 German Austria ISO8859-15 German (Austria, ISO8859-15 -
Euro)

de_AT.UTF-8 German Austria UTF-8 German (UTF-8) Unicode4.0

Supported Locales

Chapter 3 • Localization in the Oracle Solaris Environment 57

TABLE 3–4 Central Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

de_CH.ISO8859-1 German Switzerland ISO8859-1 German (Switzerland)

de_CH.UTF-8 German Switzerland UTF-8 German (UTF-8) Unicode4.0

de_DE.UTF-8 German Germany UTF-8 German (Germany,
Unicode4.0)

de_DE.ISO8859-1 German Germany ISO8859-1 German (Germany)

de_DE.ISO8859-15 German Germany ISO8859-15 German (Germany,
ISO8859-15 - Euro)

de_LU.UTF-8 German Luxembourg UTF-8 German (UTF-8) Unicode4.0

fr_CH.ISO8859-1 French Switzerland ISO8859-1 French (Switzerland)

fr_CH.UTF-8 French Switzerland UTF-8 German (UTF-8) Unicode4.0

hu_HU.ISO8859-2 English Hungary ISO8859-2 Hungarian (Hungary)

hu_HU.UTF-8 Hungary Hungarian UTF-8 Hungarian (UTF-8)
Unicode4.0

pl_PL.ISO8859-2 English Poland ISO8859-2 Polish (Poland)

pl_PL.UTF-8 English Poland UTF-8 Polish (Poland, Unicode4.0)

sk_SK.ISO8859-2 English Slovakia ISO8859-2 Slovak (Slovakia)

sk_SK.UTF-8 English (*) Slovakia UTF-8 Slovak (UTF-8) Unicode4.0

(*) Partially translated

TABLE 3–5 Eastern Europe Locales

Locale User Interface Territory Code Set Language Support

bg_BG.ISO8859-5 English Bulgaria ISO8859-5 Bulgarian (Bulgaria)

bg_BG.UTF-8 English (*) Bulgaria UTF-8 Bulgarian (UTF-8)
Unicode4.0

et_EE.ISO8859-15 English Estonia ISO8859-15 Estonian (Estonia)

et_EE.UTF-8 Estonian (*) Estonia UTF-8 Estonian (UTF-8)
Unicode4.0

hr_HR.ISO8859-2 English Croatia ISO8859-2 Croatian (Croatia)

hr_HR.UTF-8 Croatian (*) Croatia UTF-8 Croatian (UTF-8)
Unicode4.0

Supported Locales

International Language Environments Guide • November 201058

TABLE 3–5 Eastern Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

lt_LT.ISO8859-13 English Lithuania ISO8859-13 Lithuanian (Lithuania)

lt_LT.UTF-8 Lithuanian (*) Lithuania UTF-8 Lithuanian (UTF-8)
Unicode4.0

lv_LV.ISO8859-13 English Latvia ISO8859-13 Latvian (Latvia)

lv_LV.UTF-8 Latvian (*) Latvia UTF-8 Latvian (UTF-8)
Unicode4.0

kk_KZ.UTF-8 English Kazakhstan UTF-8 Kazakh (UTF-8)
Unicode4.0

mk_MK.ISO8859-5 English Macedonia ISO8859-5 Macedonian (Macedonia)

mk_MK.UTF-8 Macedonian (*) Macedonia UTF-8 Macedonian (UTF-8)
Unicode4.0

ro_RO.ISO8859-2 English Romania ISO8859-2 Romanian (Romania)

ro_RO.UTF-8 Romanian (*) Romania UTF-8 Romanian (UTF-8)
Unicode4.0

ru_RU.KOI8-R English Russia KOI8-R Russian (Russia, KOI8-R)

ru_RU.ANSI1251 English Russia ansi-1251 Russian (Russia, ANSI
1251)

ru_RU.ISO8859-5 English Russia ISO8859-5 Russian (Russia)

ru_RU.UTF-8 English Russia UTF-8 Russian (Russia,
Unicode4.0)

sh_BA.ISO8859-2@bosnia English Bosnia ISO8859-2 Bosnian (Bosnia)

sh_BA.UTF-8 Serbo-Croatian (*) Bosnia UTF-8 Bosnian (UTF-8)
Unicode4.0

sl_SI.ISO8859-2 English Slovenia ISO8859-2 Slovenian (Slovenia)

sl_SI.UTF-8 Slovenian (*) Slovenia UTF-8 Slovenian (UTF-8)
Unicode4.0

sq_AL.ISO8859-2 English Albania ISO8859-2 Albanian (Albania)

sq_AL.UTF-8 Albanian (*) Albania UTF-8 Albanian (UTF-8)
Unicode4.0

sr_CS.UTF-8 English (**) Serbian UTF-8 Serbia and Montenegro
(UTF-8) Unicode4.0

sr_YU.ISO8859-5 English Serbia ISO8859-5 Serbian (Serbia)

Supported Locales

Chapter 3 • Localization in the Oracle Solaris Environment 59

TABLE 3–5 Eastern Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

tr_TR.ISO8859-9 English Turkey ISO8859-9 Turkish (Turkey)

tr_TR.UTF-8 English Turkey UTF-8 Turkish (Turkey,
Unicode4.0

uk_UA.UTF-8 English Ukraine UTF-8 Ukrainian (UTF-8)
Unicode4.0

(*) Partially translated

(**) Will be obsolete in the next release

TABLE 3–6 Middle East Locale

Locale User Interface Territory Code Set Language Support

he English Israel ISO8859-8 Hebrew (Israel)

he_IL.UTF-8 English (*) Israel UTF-8 (UTF-8) Unicode4.0

(*) Partially translated

TABLE 3–7 North Africa Locales

Locale User Interface Territory Code Set Language Support

ar English Egypt ISO8859-6 Arabic (Egypt)

ar_EG.UTF-8 English Egypt UTF-8 Arabic (Egypt)

ar_SA.UTF-8 Arabic (*) Saudi Arabia UTF-8 Arabic (UTF-8) Unicode4.0

(*) Partially translated

TABLE 3–8 North America Locales

Locale User Interface Territory Code Set Language Support

en_CA.ISO8859-1 English Canada ISO8859-1 English (Canada)

en_CA.UTF-8 English Canada UTF-8 English (UTF-8) Unicode4.0

en_US.ISO8859-1 English USA ISO8859-1 English (U.S.A.)

en_US.ISO8859-15 English USA ISO8859-15 English (U.S.A., ISO8859-15 -
Euro)

en_US.UTF-8 English USA UTF-8 English (U.S.A., Unicode4.0)

Supported Locales

International Language Environments Guide • November 201060

TABLE 3–8 North America Locales (Continued)
Locale User Interface Territory Code Set Language Support

es_MX.ISO8859–1 Spanish Mexico ISO8859–1 Spanish (Mexico)

es_MX.ISO8859-1 Spanish Mexico ISO8859-1 Spanish (ISO8859-1)

es_MX.UTF-8 Spanish Mexico UTF-8 Spanish (UTF-8) Unicode4.0

fr_CA.ISO8859-1 French Canada ISO8859-1 French (Canada)

fr_CA.UTF-8 French Canada UTF-8 French (UTF-8) Unicode4.0

TABLE 3–9 Northern Europe Locales

Locale User Interface Territory Code Set Language Support

da_DK.ISO8859–1 English Denmark ISO8859–1 Danish (Denmark)

da_DK.UTF-8 English (*) Denmark UTF-8 Danish (UTF-8)
Unicode4.0

da_DK.ISO8859–15 English Denmark ISO8859–15 Danish (Denmark,
ISO8859–15–Euro)

fi_FI.ISO8859–1 English Finland ISO8859–1 Finnish, Unicode4.0

fi_FI.ISO8859–15 English Finland ISO8859–15 Finnish (Finland,
ISO8859–15–Euro)

fi_FI.UTF-8 English Finland UTF-8 Finnish (Finland)

is_IS.ISO8859–1 English Iceland ISO8859–1 Icelandic (Iceland)

is_IS.UTF-8 English (*) Iceland UTF-8 Icelandic (UTF-8)
Unicode4.0

nb_NO.ISO8859-1@bokmal English (*) Norway ISO8859-1 Norwegian Bokmel
(ISO8859-1)

nb_NO.UTF-8 English (*) Norway UTF-8 Norwegian (UTF-8)
Unicode4.0

nn_NO.ISO8859-1@nynorsk English (*) Norway ISO8859-1 Norwegian (ISO8859-1)

nn_NO.UTF-8 English (*) Norway UTF-8 Norwegian Nynorsk
(UTF-8) Unicode4.0

no_NO.ISO8859–1@bokmal English Norway ISO8859–1 Norwegian
(Norway-Bokmal)

no_NO.ISO8859-1@nynorsk English Norway ISO8859–1 Norwegian
(Norway-Nynorsk)

sv_SE.ISO8859–1 Swedish Sweden ISO8859–1 Swedish (Sweden)

Supported Locales

Chapter 3 • Localization in the Oracle Solaris Environment 61

TABLE 3–9 Northern Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

sv_SE.ISO8859–15 Swedish Sweden ISO8859–15 Swedish (Sweden,
ISO8859–15–Euro)

sv_SE.UTF-8 Swedish Sweden UTF-8 Swedish (Sweden,
Unicode4.0)

(*) Partially translated

TABLE 3–10 South America Locales

Locale User Interface Territory Code Set Language Support

es_AR.ISO8859-1 Spanish Argentina ISO8859-1 Spanish (Argentina)

es_AR.UTF-8 Spanish Argentina UTF-8 Spanish (UTF-8) Unicode4.0

es_BO.ISO8859-1 Spanish Bolivia ISO8859-1 Spanish (Bolivia)

es_BO.UTF-8 Spanish Bolivia UTF-8 Spanish (UTF-8) Unicode4.0

es_CL.ISO8859-1 Spanish Chile ISO8859-1 Spanish (Chile)

es_CL.UTF-8 Spanish Chile UTF-8 Spanish (UTF-8) Unicode4.0

es_CO.ISO8859-1 Spanish Colombia ISO8859-1 Spanish (Colombia)

es_CO.UTF-8 Spanish Colombia UTF-8 Spanish (UTF-8) Unicode4.0

es_EC.ISO8859-1 Spanish Ecuador ISO8859-1 Spanish (Ecuador)

es_EC.UTF-8 Spanish Ecuador UTF-8 Spanish (UTF-8) Unicode4.0

es_PE.ISO8859-1 Spanish Peru ISO8859-1 Spanish (Peru)

es_PE.UTF-8 Spanish Peru UTF-8 Spanish (UTF-8) Unicode4.0

es_PY.ISO8859-1 Spanish Paraguay ISO8859-1 Spanish (Paraguay)

es_PY.UTF-8 Spanish Paraguay UTF-8 Spanish (UTF-8) Unicode4.0

es_UY.ISO8859-1 Spanish Uruguay ISO8859-1 Spanish (Uruguay)

es_UY.UTF-8 Spanish Uruguay UTF-8 Spanish (UTF-8) Unicode4.0

es_VE.ISO8859-1 Spanish Venezuela ISO8859-1 Spanish (Venezuela)

es_VE.UTF-8 Spanish Venezuela UTF-8 Spanish (UTF-8) Unicode4.0

pt_BR.ISO8859-1 English Brazil ISO8859-1 Portuguese (Brazil)

pt_BR.UTF-8 English Brazil UTF-8 Portuguese (Brazil,
Unicode4.0)

Supported Locales

International Language Environments Guide • November 201062

TABLE 3–11 Southern Europe Locales

Locale User Interface Territory Code Set Language Support

ca_ES.ISO8859-1 English Spain ISO8859-1 Catalan (Spain)

ca_ES.ISO8859-15 English Spain ISO8859-15 Catalan (Spain, ISO8859-15 -
Euro)

ca_ES.UTF-8 English (*) Spain UTF-8 Catalan (UTF-8) Unicode4.0

el_CY.UTF-8 English (*) Cyprus UTF-8 Greek (UTF-8) Unicode4.0

el_GR.ISO8859-7 English Greece ISO8859-7 Greek (Greece)

el_GR.UTF-8 English (*) Greece UTF-8 Greek (UTF-8) Unicode4.0

en_MT.UTF-8 English Malta UTF-8 English (UTF-8) Unicode4.0

es_ES.ISO8859-1 Spanish Spain ISO8859-1 Spanish (Spain)

es_ES.ISO8859-15 Spanish Spain ISO8859-15 Spanish (Spain, ISO8859-15 -
Euro)

es_ES.UTF-8 Spanish Spain UTF-8 Spanish (Spain, Unicode4.0)

it_IT.ISO8859-1 Italian Italy ISO8859-1 Italian (Italy)

it_IT.ISO8859-15 Italian Italy ISO8859-15 Italian (Italy, ISO8859-15 -
Euro)

it_IT.UTF-8 Italian Italy UTF-8 Italian (Italy, Unicode4.0)

pt_PT.ISO8859-1 English Portugal ISO8859-1 Portuguese (Portugal)

pt_PT.ISO8859-15 English Portugal ISO8859-15 Portuguese (Portugal,
ISO8859-15 - Euro)

pt_PT.UTF-8 English (*) Portugal UTF-8 Portuguese (UTF-8)
Unicode4.0

(*) Partially translated

TABLE 3–12 Western Europe Locales

Locale User Interface Territory Code Set Language Support

en_GB.ISO8859-1 English Great Britain ISO8859-1 English (Great Britain)

en_GB.UTF-8 English United Kingdom UTF-8 English (UTF-8) Unicode4.0

en_IE.ISO8859-1 English Ireland ISO8859-1 English (Ireland)

en_IE.ISO8859-15 English Ireland ISO8859-15 English (ISO8859-15

Supported Locales

Chapter 3 • Localization in the Oracle Solaris Environment 63

TABLE 3–12 Western Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

en_IE.UTF-8 English Ireland UTF-8 English (UTF-8) Unicode4.0

fr_BE.ISO8859-1 French Belgium-Walloon ISO8859-1 French (Belgium-Walloon,
Unicode4.0)

fr_BE.ISO8859-15 French Belgium ISO8859-15 French (ISO8859-15)

fr_BE.UTF-8 French Belgium-Walloon UTF-8 French (Belgium-Walloon,
Unicode4.0)

fr_FR.ISO8859-1 French France ISO8859-1 French (France)

fr_FR.UTF-8 French France UTF-8 French (France, Unicode4.0)

fr_LU.UTF-8 French Luxembourg UTF-8 French (UTF-8) Unicode4.0

nl_BE.ISO8859-1 English Belgium-Flemish ISO8859-1 Dutch (Belgium-Flemish)

nl_BE.ISO8859-15 Belgian (*) Belgium ISO8859-15 Dutch (ISO8859-15)

nl_BE.UTF-8 Belgian (*) Belgium UTF-8 Dutch (UTF-8) Unicode4.0

nl_NL.ISO8859-1 English Netherlands ISO8859-1 Dutch (Netherlands)

nl_NL.ISO8859-15 Belgian (*) Netherlands ISO8859-15 Dutch (ISO8859-15)

nl_NL.UTF-8 Belgian (*) Netherlands UTF-8 Dutch (UTF-8) Unicode4.0

(*) Partially translated

TABLE 3–13 Southern Africa Locales

Locale User Interface Territory Code Set Language Support

af_ZA.UTF-8 English South Africa UTF-8 Afrikaans (UTF-8)
Unicode4.0

Multiple Key Compose Sequences for Locales
Many of the Oracle Solaris locales, especially the European and Unicode locales, allow input of
various characters by using the Dead key sequences and also by using Compose key sequences.

Dead keys are included in some specific keyboard layouts where it is necessary to generate
characters composed by two or more letters and symbols. For example, in the French Keyboard
Layout, character egrave (è) can be generated by typing dead_grave (‘) and (e).

The Compose key sequence are used to input characters with diacritical marks and other
characters that are not shown on the keyboard key caps.

Multiple Key Compose Sequences for Locales

International Language Environments Guide • November 201064

The following table shows a few examples of Compose key sequences. For more complete
information about the Compose key sequences, see “How to Use Compose and Dead Key
Input” on page 171.

TABLE 3–14 Diacritical Characters Created With Compose Key

Mark Compose Key Combination Example

Dieresis ” Compose A “ —> A with diaeresis

Caron v Compose Z v —> Z with caron

Breve u Compose G u —> G with breve

Ogonek a Compose A a —> A with Ogonek

Cedilla , Compose K , —> K with cedilla

Registered Sign R O Compose R O —> Registered sign

Inverted Exclamation Mark ! ! Compose ! ! —> Inverted Exclamation Mark

Note – A compose key sequence cannot produce a character unless the character is a part of the
code set in the current locale. For example, because no Z with a caron is in the ISO8859–1
codeset, you cannot input a Z with a caron in the en_US.ISO8859–1 locale.

Keyboard Support in the Oracle Solaris Environment
Keyboards with different layouts for specific regions are supported for SPARC and Intel
Architecture (IA) platforms. The Oracle Solaris operating system supports the regional
keyboards listed in the following table.

TABLE 3–15 Support for Regional Keyboards

Region Country Sun Keyboard (Type 4/5/5c) Sun Keyboard (Type 6) PC Keyboard

Asia Japan X X X

Korea X X X

Taiwan X X X

Europe Belgium X X X

Czech Republic X X

Denmark X X X

Finland X

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 65

TABLE 3–15 Support for Regional Keyboards (Continued)
Region Country Sun Keyboard (Type 4/5/5c) Sun Keyboard (Type 6) PC Keyboard

France X X X

Germany X X X

Great Britain X X X

Greece X X

Hungary X X

Italy X X X

Latvia X X

Lithuania X X

The Netherlands X X X

Norway X X X

Poland X X

Portugal X X X

Russia X X X

Spain X X X

Sweden X X X

Switzerland (French) X X X

Switzerland (German) X X X

Turkey X X X

America Canada (French) X X X

Latin America (Spanish) X

U.S.A. X X X

Middle East Arabic X X

Additionally for the Xorg server, the Oracle Solaris operating system supports the following
regional keyboards:

■ U.S. English
■ Arabic
■ Albania
■ Armenia
■ Azerbaijan

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201066

■ Belarus
■ Belgium
■ Bangladesh
■ India
■ Bosnia and Herzegovina
■ Brazil
■ Bulgaria
■ Myanmar
■ Canada
■ Croatia
■ Czechia
■ Denmark
■ Netherlands
■ Bhutan
■ Estonia
■ Iran
■ Faroe Islands
■ Finland
■ France
■ Georgia
■ Germany
■ Greece
■ Hungary
■ Iceland
■ Israel
■ Italy
■ Japan
■ Kyrgyzstan
■ Kazakhstan
■ Laos
■ Latin American
■ Lithuania
■ Latvia
■ Maori
■ Macedonian
■ Malta
■ Mongolia
■ Norway
■ Poland
■ Portugal
■ Romania
■ Russia
■ Serbian
■ Slovenia

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 67

■ Slovakia
■ Spain
■ Sweden
■ Swiss French
■ Swiss German
■ Syria
■ Tajikistan
■ Sri Lanka
■ Thailand
■ Turkish
■ Turkish (F)
■ Ukraine
■ United Kingdom
■ Uzbekistan
■ Vietnam
■ Ireland
■ Pakistan
■ South Africa

For regions with keyboard layouts that conform to the international standard such as China,
use the keyboard layout support provided for U.S.A. to input the locale's characters. The
underlying keyboard mappings are identical. Some countries, like Japan, Turkey, and
Switzerland, have multiple keyboards, because multiple languages are being used, or because
multiple keyboard layouts exist.

Sun Type 4, 5, and 5c keyboards use Sun I/O interfaces through a Mini DIN 8–pin connection.
Sun Type 6 keyboards have two versions of interfaces:

■ Sun I/O through a Mini DIN 8–pin connection
■ USB

Sun keyboard types are printed on the back of each Sun keyboard.

PC keyboards use various interfaces, such as PS/2 or USB, for example.

Changing Between Keyboards on SPARC Systems
You can change keyboard layouts on a Oracle Solaris system by using the DIP switch settings
under most Sun Type 4, 5 and 5c keyboards. A list of keyboard type, names and corresponding
layout IDs that can be used for the DIP switch settings is in the
/usr/openwin/share/etc/keytables/keytable.map file.

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201068

Note – You cannot change the layout of Type 6 keyboards because the back of the keyboard has
no DIP switch. Some Type 5 and 5c keyboards, for example, U.S.A., U.S.A./UNIX, and Japanese
keyboards have jumpers instead of DIP switches. Other than the xmodmap utility or the kbd -s
command, the SPARC platform does not offer utilities or tools that you can use to switch
keyboards.

The following is a table of the layout ID values for Type 4, 5, and 5c keyboards (1 = switch up, 0
= switch down).

TABLE 3–16 Layouts for Type 4, 5, and 5c Keyboards

DIP Switch Keyboard (Keytable File) Setting in Binary

0 U.S.A. (US4.kt) 000000

1 U.S.A. (US4.kt) 000001

2 Belgium (FranceBelg4.kt) 000010

3 Canada (Canada4.kt) 000011

4 Denmark (Denmark4.kt) 000100

5 Germany (Germany4.kt) 000101

6 Italy (Italy4.kt) 000110

7 The Netherlands (Netherland4.kt) 000111

8 Norway (Norway4.kt) 001000

9 Portugal (Portugal4.kt) 001001

10 (0x0a) Latin America/Spanish (SpainLatAm4.kt) 001010

11 (ox0b) Sweden (SwedenFin4.kt) 001011

12 (0x0c) Switzerland/French (Switzer_Fr4.kt) 001100

13 (0x0d) Switzerland/German (Switzer_Ge4.kt) 001101

14 (0x0e) Great Britain (UK4.kt) 001110

16 (0x10) Korea (Korea4.kt) 010000

17 (0x11) Taiwan (Taiwan4.kt) 010001

23 Russian 100001

33 (0x21) U.S.A. (US5.kt) 100111

34 (0x22) U.S.A./UNIX (US_UNIX5.kt) 100010

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 69

http://linux.die.net/man/1/xmodmap

TABLE 3–16 Layouts for Type 4, 5, and 5c Keyboards (Continued)
DIP Switch Keyboard (Keytable File) Setting in Binary

35 (0x23) France (France5.kt) 100011

36 (0x24) Denmark (Denmark5.kt) 100100

37 (0x25) Germany (Germany5.kt) 100101

38 (0x26) Italy (Italy5.kt) 100110

39 (0x27) The Netherlands (Netherland5.kt) 100111

40 (0x28) Norway (Norway5.kt) 101000

41 (0x29) Portugal (Portugal5.kt) 101001

42 (0x2a) Spain (Spain5.kt) 101010

43 (0x2b) Sweden (Sweden5.kt) 101011

44 (0x2c) Switzerland/French (Switzer_Fr5.kt) 101101

45 (0x2d) Switzerland/German (Switzer_Ge5.kt) 101110

46 (0x2e) Great Britain (UK5.kt) 101111

47 (0x2f) Korea (Korea5.kt) 101111

48 (0x30) Taiwan (Taiwan5.kt) 110000

49 (0x31) Japan (Japan5.kt) 110001

50 (0x32), see also 63
(0x3f)

Canada/French (Canada_Fr5.kt) 110010

51 0(x33) Hungary (Hungary5.kt) 110011

52 (0x34 Poland (Poland5.kt) 110100

53 (0x35) Czech (Czech5.kt) 110101

54 (0x36) Russia (Russia5.kt) 110110

55 (0x37) Latvia (Latvia5.kt) 110111

56 (0x38) see also 62
(0x3e)

Turkey-Q5 (TurkeyQ5.kt) 111000

57 (0x39) Greece (Greece5.kt) 111001

58 (0x3a) Arabic (Arabic5.kt) 111011

59 (0x3b) Lithuania (Lithuania5.kt) 111010

60 (0x3c) Belgium (Belgian5.kt) 111100

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201070

TABLE 3–16 Layouts for Type 4, 5, and 5c Keyboards (Continued)
DIP Switch Keyboard (Keytable File) Setting in Binary

62 (0x3e) Canada/French (Canada_Fr5_TBITS5.kt) 111111

French Canadian

Polish Programmer

Estonian

Keytable file names with 4 are for a Type 4 keyboard. Keytable file names with 5 are for a Type 5
keyboard.

▼ How to Change the Keyboard Layout to the Czech Layout in the Xsun
Server

Determine the correct DIP switch ID (or layout ID) either from the table or from the
/usr/openwin/share/etc/keytables/keytable.mp file. The layout ID value in the
keytable.mp file is a decimal value.

For Czech, the layout ID is 53 in decimal (0x35 in hexadecimal).

Convert the layout ID to binary, or use a proper Setting in Binary value from the column in the
above table. For base conversion, calculator utilities such as dtcalc(1) may be used.

For example, the correct binary value for the Czech keyboard is 110101.

Shut down and power off the system.

Change the DIP switch settings at the back of the keyboard by using the binary value in step 2.

The first DIP switch is on your left. Move the switch up for 1 and down for 0.

The Czech keyboard binary value 110101, corresponds to: Up Up Down Up Down Up

Power on and boot the system for use.

Note – Unlike Type 4 keyboards, Type 5 and 5c keyboards have only five DIP switches. For the
Type 5 and 5c keyboards, disregard the first binary digit. For the Czech Type 5c keyboard, for
example, the correct DIP switch settings are Up Down Up Down Up, using only the last five
digits from 10101.

1

2

3

4

5

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 71

Changing Between Keyboards on Intel Systems
On Intel Architecture systems, a keyboard is selected during the kdmconfig(1M) part of the
installation. To change this setting after installation, exit your GUI desktop environment to the
command-line mode. As superuser, type kdmconfig to run the program. Follow the
instructions to get the desired keyboard layout.

Additionally you can use the setxkbmap feature to change the keyboard layout simultaneously.

How to Change the Keyboard Layout to the Czech Layout in the Xorg
server
The setxkbmap allows switching the keyboard layout simultaneously when using the Xorg
server. This command maps the keyboard. It uses the different command line options. For more
information, see setxkbmap man pages.

Open a terminal and type the following command:

$ /usr/X11/bin/setxkbmap cz

Keyboard Layout Illustrations
The following figure shows the Arabic keyboard.

The following figure shows the Belgian keyboard.

FIGURE 3–1 Arabic Keyboard

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201072

http://docs.sun.com/doc/816-5166/kdmconfig-1m?a=view

The following figure shows the Cyrillic keyboard.

The following figure shows the Danish keyboard.

The following figure shows the Finnish keyboard.

FIGURE 3–2 Belgian Keyboard

FIGURE 3–3 Cyrillic (Russian) Keyboard

FIGURE 3–4 Danish Keyboard

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 73

The following figure shows the French keyboard.

The following figure shows the German keyboard.

The following figure shows the Italian keyboard.

FIGURE 3–5 Finnish Keyboard

FIGURE 3–6 French Keyboard

FIGURE 3–7 German Keyboard

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201074

The following figure shows the Japanese keyboard,

The following shows the Korean keyboard,

The following shows the Netherlands (Dutch) keyboard,

FIGURE 3–8 Italian Keyboard

FIGURE 3–9 Japanese Keyboard

FIGURE 3–10 Korean Keyboard

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 75

The following figure shows the Norwegian keyboard.

The following figure shows the Portuguese keyboard.

The following figure shows the Spanish keyboard.

FIGURE 3–11 Netherlands (Dutch) Keyboard

FIGURE 3–12 Norwegian Keyboard

FIGURE 3–13 Portuguese Keyboard

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201076

The following figure shows the Swedish keyboard.

The following figure shows Swiss (French) keyboard.

The following figure shows the Swiss (German) keyboard.

FIGURE 3–14 Spanish Keyboard

FIGURE 3–15 Swedish Keyboard

FIGURE 3–16 Swiss (French) Keyboard

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 77

The following figure shows the Thai Pattachote keyboard.

The following figure shows the Traditional Chinese keyboard.

The following figure shows the Turkish F keyboard.

The following figure shows the Turkish Q keyboard.

FIGURE 3–17 Swiss (German) Keyboard

FIGURE 3–18 Traditional Chinese Keyboard

FIGURE 3–19 Turkish F Keyboard

Keyboard Support in the Oracle Solaris Environment

International Language Environments Guide • November 201078

The following figure shows the United Kingdom keyboard.

The following figure shows the United States keyboard.

The following figure shows the U.S.A./UNIX keyboard.

FIGURE 3–20 Turkish Q Keyboard

FIGURE 3–21 United Kingdom Keyboard

FIGURE 3–22 United States Keyboard

Keyboard Support in the Oracle Solaris Environment

Chapter 3 • Localization in the Oracle Solaris Environment 79

New Oracle Solaris Keyboard Software Support
Software support for the following additional keyboards is available in this release:

■ Russian Type 6 USB keyboard
■ Estonian Type 6 USB keyboard
■ French Canadian Type 6 USB keyboard
■ Polish programmer's Type 5 keyboard

The software enables users in Russia, Canada, Estonia, and Poland to modify the standard U.S.
keyboard layouts to meet individual language needs. Currently, no hardware is available for the
additional keyboard types. To take advantage of this new keyboard software, follow the steps in
the procedures in this section.

▼ How to Access Estonian Type 6 USB Keyboard Support
Change the US6.kt entry to Estonia6.kt in the
/usr/openwin/share/etc/keytables/keytable.map file.

The modified entry should appear as follows:
6 0 Estonia6.kt

Add one of the following entries to the
/usr/openwin/share/lib/locale/iso_8859_15/Compose file.

The modified entry should appear as follows:
<scaron> : "/xa8" scaron

<scaron> : "/xa6" scaron

<scaron> : "/270" scaron

<scaron> : "/264" scaron

Reboot the system to implement the changes.

FIGURE 3–23 U.S.A./UNIX Keyboard

1

2

3

New Oracle Solaris Keyboard Software Support

International Language Environments Guide • November 201080

▼ How to Access French Canadian Type 6 USB Keyboard
Support

Change the US6.kt entry to Canada6.kt in the
/usr/openwin/share/etc/keytables/keytable.map file.
The modified entry should appear as follows:
6 0 Canada6.kt

Reboot the system to implement the changes.

▼ How to Access Polish Programmers Type 5 Keyboard
Support

Change the Poland5.kt entry to Poland5_pr.kt in the
/usr/openwin/share/etc/keytables/keytable.map file.
The modified entry should appear as follows:
6 0 Poland5_pr.kt

Reboot the system to implement the changes.

1

2

1

2

New Oracle Solaris Keyboard Software Support

Chapter 3 • Localization in the Oracle Solaris Environment 81

82

Supported Asian Locales

This chapter provides information on localization related information for the Japanese, Indic,
and Thai languages. The sections in this chapter are:

■ “Japanese Localization” on page 83
■ “Indic Localization” on page 86
■ “Thai Localization” on page 114

For Korean and Chinese locale support, see the following documents.

■ Oracle Solaris 10 User's Guide - Korean
■ Oracle Solaris 10 User's Guide - Simplified Chinese
■ Oracle Solaris 10 User's Guide - Traditional Chinese

Japanese Localization
This section describes Japanese locale-specific information. For more information, see the
documents in Oracle Solaris 10 User Collection - Japanese (written in Japanese).

Japanese Locales
Four Japanese locales, which support different character encodings, are available in the current
Oracle Solaris environment. The ja and ja_JP.eucJP locales are based on the Japanese EUC.
The ja_JP.eucJP locale conforms to the UI-OSF Japanese Environment Implementation
Agreement Version 1.1 and the ja locale conforms to the traditional specification from earlier
Oracle Solaris releases. The ja_JP.PCK locale is based on PC-Kanji code (known as Shift_JIS)
and the ja_JP.UTF-8 is based on UTF-8.

See the eucJP(5) man page for a map showing Japanese EUC and the character set. See the
PCK(5) man page for the map showing PC-Kanji code and the character set.

4C H A P T E R 4

83

http://docs.sun.com/app/docs/coll/8.45?l=ja

Japanese Character Sets
The supported Japanese character sets include:

■ JIS X 0201–1976
■ JIS X 0208–1990
■ JIS X 0212–1990
■ JIS X 0213:2004 (only characters defined in Unicode4.0)

JIS X 0212–1990 is not supported in the ja_JP.PCK locale. JIS X 0213:2004 is supported in the
ja_JP.UTF-8 locale only. Not all characters defined in the JIS X 0213:2004 are available. Only
those characters defined in the Unicode 4.0 character set are available.

Vendor-defined characters (VDC) and user-defined characters (UDC) are also supported.
VDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X 0212–1990. UDCs
occupy the same code points as VDCs, except those code points allocated for VDCs.

Japanese Fonts
Three Japanese font formats are supported: bitmap, TrueType, and Type1. The Japanese Type1
font includes only JIS X 0212 for printing. The Type1 font is also used by UDC.

Japanese bitmap fonts are described in the following table.

TABLE 4–1 Japanese Bitmap Fonts

Full Family Name Subfamily Format Vendor Encoding

sun gothic R, B PCF(12,14,16,20,24) JIS X 0208–1983,

JIS X 0201–1976

sun minchou R PCF(12,14,16,20,24) JIS X 0208–1983,

JIS X 0201–1976

ricoh hg gothic b R PCF(10,12,14,16,18,20,24) RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh hg mincho l R PCF(10,12,14,16,18,20,24) RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh gothic R PCF(10,12,14,16,18,20,24) RICOH JIS X 0212–1990, JIS X
0213:2004

ricoh mincho R PCF(10,12,14,16,18,20,24) RICOH JIS X 0212–1990, JIS X
0213:2004

ricoh heiseimin R PCF(12,14,16,18,20,24) RICOH JIS X 0212–1990

Japanese Localization

International Language Environments Guide • November 201084

Japanese TrueType fonts are described in the following table.

TABLE 4–2 Japanese TrueType Fonts

Full Family Name Subfamily Format Vendor Encoding

ricoh hg gothic b Fixed TrueType RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh hg mincho l Fixed TrueType RICOH JIS X 0208–.1983, JIS X
0201–1976

ricoh hg gothicb

sun

Fixed, Proportional TrueType RICOH JIS X 0201–176, JIS X 0208–1983,
JIS X 0213–2004

ricoh hg minchol

sun

Fixed, Proportional TrueType RICOH JIS X 0201–1976, JIS X
0208–1983, JIS X 0213–2004

ricoh heiseimin Fixed TrueType RICOH JIS X 0212–1990

Japanese Input Systems
ATOK for Solaris (equivalent to ATOK17) is the default Japanese input system. Wnn6 is also
available. To switch ATOK for Solaris to Wnn6, see Japanese Environment User's Guide
(written in Japanese).The kkcv Japanese input system is available for Japanese Solaris 1.x BCP
support.

Terminal Setting for Japanese Terminals
To use Japanese locales on a character-based terminal (TTY) you must use terminal settings to
make line editing work correctly.

■ If your terminal is a CDE Terminal emulator (dtterm), use stty(1) with the argument
-defeucw in any Japanese locale (ja, ja_JP.PCK, or ja_JP.UTF-8). For example, in the ja
locale you would type:

% setenv LANG ja

% stty defeucw

■ If your terminal is not a CDE Terminal emulator but the code set of your terminal is the
same as that of the current locale, use stty(1) with the argument -defeucw.

■ If your terminal's code set doesn't match that of the current locale, use setterm(1) to enable
code conversion. For example, if you are in the ja locale but your terminal requires PCK
(Shift_JIS code), you would type:

% setenv LANG ja

% setterm -x PCK

See the setterm(3CURSES) man page for details.

Japanese Localization

Chapter 4 • Supported Asian Locales 85

http://docs.sun.com/doc/816-5169/setterm-3curses?a=view

Japanese iconvModule
Several Japanese code set conversions are supported with iconv(1) and iconv(3C). See the
iconv_ja(5) man page for details.

User-Defined Character Support
The user-defined character utility sdtudctool handles both outline (Type1) and bitmap (PCF)
fonts. Some utilities are also available to migrate the UDC fonts that were created by old utilities
in prior releases, such as fontedit, type3creator, and fontmanager.

Indic Localization
Phonetic lookup based input method (Shabdalipi) and continuous phonetic input method are
available for all Indic languages which are supported in the UTF-8 locale. The input methods
and virtual keyboards allow you to enter Indic text in all of the CDE applications.

The following data flow illustrates the workings of the Indic input process.

Codetables

IM Server

Xclient

XIM Lib
Indic Language

Engine

Phonetic Lookup
based IM

Continuous
Phonetic IM

Indic Language
Mapfiles

Internal
interface

SunIM
interface

Indic Localization

International Language Environments Guide • November 201086

http://docs.sun.com/doc/816-5165/iconv-1?a=view
http://docs.sun.com/doc/816-5168/iconv-3c?a=view

▼ How to Use the Indic Input Methods
Click the input status area to display the input method selection menu.

Select an input method from the menu.

Alternatively, you can press the F6 key to select from among the available input methods.

You can also type the Compose-hi key sequence to select the input method that you used
previously.

Press the F5 key to select the Indic script you want to use.

a. For the keyboard-based (indic INSCRIPT keyboard) input method, use the keyboard images
shown in “Indic Keyboards”on page 87.

b. For the phonetic lookup-based input method, type the first English phonetic equivalent
character corresponding to the character in the target script.

Select from a list of choices displayed in the lookup window.

c. For the continuous phonetic input method, type in English phonetic equivalents
continuously.

The corresponding characters in the target script are displayed in the preedit and will be
committed when subsequent input makes the preedit text unambiguous or by an explicit
commit. Refer to figures given in “Mapping for the Continuous Phonetic Based Input
Method” on page 91 for illustrations of the mapping from the English tokens to the UTF-8
codepoints of the target script for the continuous phonetic input method.

Press Control-spacebar to switch back to English/European input mode.

Alternatively, click in the status area to select the English/European input mode from the input
mode selection window.

Indic Keyboards
The following figures show the keyboard layouts that are available for the Indic input method.

The following figure shows the layout of the Bengali keyboard.

1

2

3

4

Indic Localization

Chapter 4 • Supported Asian Locales 87

The following figure shows the layout of the Devanagari keyboard.

The following figure shows the layout of the Gujarati keyboard.

The following figure shows the layout of the Gurmukhi keyboard.

Indic Localization

International Language Environments Guide • November 201088

The following figure shows the layout of the Kannada keyboard.

The following figure shows the layout of the Malayalam keyboard.

The following figure shows the layout of the Tamil keyboard.

Indic Localization

Chapter 4 • Supported Asian Locales 89

The following figure shows the layout of the Teluga keyboard.

Understanding the Mappings
The images in “Mapping for the Continuous Phonetic Based Input Method” on page 91 show
the mappings between English tokens and their equivalent codepoints in each of the target
scripts supported. The CONSONANT category means the mapping is between the English
tokens and consonants of the script. The VOWEL category means that mapping from English
tokens and vowels of the script. The OTHER category includes mapping of characters that do
not exhibit the properties of consonants and vowels (whose form does not change depending
on the surrounding character).

The keywords CONSONANT, VOWEL and OTHER also mean that these characters are part of
Unicode standard. The section SPECIAL CONSONANT, SPECIAL VOWEL or SPECIAL
OTHER means that though in principle these characters display the properties of consonants,
vowels or others they are not officially part of the Unicode standard and are font dependent.
They are assigned codepoint values in Unicode Private User Area. They are supported in Oracle
Solaris UTF-8 locales and the mapping may not work in a different platform.

These mapfiles are not the same as the ones in your system, but slightly edited ones for
removing unneeded keywords for the context of this discussion.

Indic Localization

International Language Environments Guide • November 201090

In the VOWELS and SPECIAL VOWELS section, an independent form and a dependent form
is displayed for the same English token depending on the context. See “How the Continuous
Phonetic Input Method Works” on page 113.

The Malayalam script contains a special ‘CHILLU’ section, that is actually the SPECIAL
OTHER category.

Mapping for the Continuous Phonetic Based Input
Method
The following figures show the existing mappings from English to the phonetic equivalent
characters in the target Indic scripts. Use these illustrations as a reference until you know all the
mappings for the script that you use. Mappings given here are intuitive, so you should be able to
input most of the characters without looking up the illustration.

Note – In these mappings, special characters such as ‘.’ and ‘|’ included as part of the mapping are
escaped with a ‘\’ character. If not escaped, the ‘|’ character acts as a separator when more than
one token represents the same UTF-8 character.

Figure 4–1, Figure 4–2, and Figure 4–3 show the English to Bengali mappings for consonants,
vowels, and others.

Indic Localization

Chapter 4 • Supported Asian Locales 91

FIGURE 4–1 Map for Bengali Consonants

Indic Localization

International Language Environments Guide • November 201092

FIGURE 4–2 Map for Bengali Vowels

Indic Localization

Chapter 4 • Supported Asian Locales 93

Figure 4–4, Figure 4–5, and Figure 4–6 show the English to Gujarati mappings for consonants,
vowels, and others.

FIGURE 4–3 Map for Bengali Others

Indic Localization

International Language Environments Guide • November 201094

FIGURE 4–4 Map for Gujarati Consonants

Indic Localization

Chapter 4 • Supported Asian Locales 95

FIGURE 4–5 Map for Gujarati Vowels

Indic Localization

International Language Environments Guide • November 201096

Figure 4–7, Figure 4–8, and Figure 4–9 show the English to Gurmukhi mappings for
consonants, vowels, and others.

FIGURE 4–6 Map for Gujarati Others

Indic Localization

Chapter 4 • Supported Asian Locales 97

FIGURE 4–7 Map for Gurmukhi Consonants

Indic Localization

International Language Environments Guide • November 201098

Figure 4–10, Figure 4–11, and Figure 4–12 show the English to Hindi mappings for consonants,
vowels, and others.

FIGURE 4–8 Map for Gurmukhi Vowels

FIGURE 4–9 Map for Gurmukhi Others

Indic Localization

Chapter 4 • Supported Asian Locales 99

FIGURE 4–10 Map for Hindi Consonants

Indic Localization

International Language Environments Guide • November 2010100

FIGURE 4–11 Map for Hindi Vowels

Indic Localization

Chapter 4 • Supported Asian Locales 101

Figure 4–13, Figure 4–14, and Figure 4–15 show the English to Kannada mappings for
consonants, vowels, and others.

FIGURE 4–12 Map for Hindi Others

Indic Localization

International Language Environments Guide • November 2010102

FIGURE 4–13 Map for Kannada Consonants

Indic Localization

Chapter 4 • Supported Asian Locales 103

FIGURE 4–14 Map for Kannada Vowels

Indic Localization

International Language Environments Guide • November 2010104

Figure 4–16, Figure 4–17, and Figure 4–18 show the English to Malayalam mappings for
consonants, vowels, and others.

FIGURE 4–15 Map for Kannada Others

Indic Localization

Chapter 4 • Supported Asian Locales 105

FIGURE 4–16 Map for Malayalam Consonants

Indic Localization

International Language Environments Guide • November 2010106

FIGURE 4–17 Map for Malayalam Vowels

Indic Localization

Chapter 4 • Supported Asian Locales 107

Figure 4–19 and Figure 4–20 show the English to Tamil mappings for consonants and vowels.

FIGURE 4–18 Map for Malayalam Others

Indic Localization

International Language Environments Guide • November 2010108

FIGURE 4–19 Map for Tamil Consonants

Indic Localization

Chapter 4 • Supported Asian Locales 109

Figure 4–21,Figure 4–22, and Figure 4–23 show the English to Telugu mappings for
consonants, vowels, and others.

FIGURE 4–20 Map for Tamil Vowels

Indic Localization

International Language Environments Guide • November 2010110

FIGURE 4–21 Map for Telugu Consonants

Indic Localization

Chapter 4 • Supported Asian Locales 111

FIGURE 4–22 Map for Telugu Vowels

Indic Localization

International Language Environments Guide • November 2010112

How the Continuous Phonetic Input Method Works
For each Indic script, a ‘virama’ or equivalent sign combined with a consonant gives the half
form (or ready to combine form) of the consonant. Whenever a multiple key combination
corresponding to a consonant is typed, the consonant + virama form is output, symbolizing
that the characters are ready to combine.

Consonants, at initial input, will assume their half form and will be a full syllable or their
variation when followed by a vowel.

Two consecutive consonants remain as the ready to combine half forms. Half forms can be
converted by the layout engine as a single combined character or can remain as those
independent forms that are also syntactically valid for every language.

Any vowel that forms the beginning of a word or is followed by another vowel appears in
independent form. A vowel that immediately follows a consonant assumes dependent forms.

Characters that do not change shapes in any context are called others. These characters are
neither consonants nor vowels.

Digits and other punctuation marks that do not form a part of a character are mapped one to
one.

Using these principles, a parser is written that will parse the input into these different categories
and output the language-specific Unicode codepoints. The continuous phonetic input method
engine does not deal with layout or rendering, which will be done by other modules in the
system.

FIGURE 4–23 Map for Telugu Others

Indic Localization

Chapter 4 • Supported Asian Locales 113

Thai Localization
The current Oracle Solaris environment supports three Thai input levels and four Thai
keyboard layouts.

Thai Input Methods
The following Thai input methods are supported in this release. These input methods are
specified in the Thai IT Standard for character sequence checking.

1. Passthrough level, no input check
2. Basic input check level
3. Strict input check level

The passthrough level, with no sequence check, is the default in this release as it was in previous
Oracle Solaris releases.

You can use the F2 function key to switch from one input level to the next.

Thai Keyboard Layouts
Four different keyboard layouts are supported for the Thai input method.

■ Kedmanee (TIS820-2531) keyboard layout. The Kedmanee layout was designed for the
typewriter, not the computer keyboard. The limited number of keys on the typewriter
keyboard meant that some of the Thai special characters were not available in the layout.
TIS820-2531 has adopted the Kedmanee layout for use with a computer keyboard.

Thai Localization

International Language Environments Guide • November 2010114

■ TIS820-2538 keyboard layout. This enhanced Kedmanee layout is an updated version of the
TIS820-2531 layout that includes some of the Thai special characters that were unavailable
in the original Kedmanee layout. Currently, TIS820-2538 is the only Thai keyboard layout
standard that is issued by Thai Industrial Standard Institute.

■ Pattajoti keyboard layout. The Pattajoti layout was also designed for the typewriter, but with
better finger-load distribution.

■ Configurable keyboard layout. User-defined keyboard layout for the Thai input method.

Thai Input Method Auxiliary Window
The Thai input method auxiliary window supports the following functions and utilities:
■ Input level switching. You can click the input level button on the auxiliary palette to choose

the passthrough, basic, or strict as your input level.

Thai Localization

Chapter 4 • Supported Asian Locales 115

■ Thai virtual keyboards. You can click the keyboard button to display the Thai virtual
keyboard to use to enter Thai characters.

Thai Localization

International Language Environments Guide • November 2010116

Overview of UTF-8 Locale Support

This chapter provides an overview of UTF-8 locale support. The chapter covers the following
topics:

■ “Unicode Overview” on page 117
■ “Unicode Locale: en_US.UTF-8 Support” on page 118
■ “About Desktop Input Methods” on page 120
■ “System Environment” on page 122
■ “Code Conversions” on page 127
■ “DtMail Support” on page 128
■ “Programming Environment” on page 131

Unicode Overview
Unicode is the universal character encoding standard used for representation of text for
computer processing. Unicode is fully compatible with the international standards ISO/IEC
10646-1:2000 and ISO/IEC 10646–2:2001, and contains all the same characters and encoding
points as ISO/IEC 10646. The Unicode Standard provides additional information about the
characters and their use. Any implementation that conforms to Unicode also conforms to
ISO/IEC 10646.

Unicode provides a consistent way of encoding multilingual plain text and facilitates
exchanging international text files. Computer users who deal with multilingual text, business
people, linguists, researchers, scientists, and others find that the Unicode Standard greatly
simplifies their work. Mathematicians and technicians who regularly use mathematical symbols
and other technical characters also find the Unicode Standard valuable.

The maximum possible number of code points Unicode can support is 1,114,112 through
seventeen 16-bit planes. Each plane can support 65,536 different code points.

5C H A P T E R 5

117

Among the more than one million code points that Unicode can support, version 4.0 curently
defines 96,382 characters at plane 0, 1, 2, and 14. Planes 15 and 16 are for private use characters,
also known as user-defined characters. Planes 15 and 16 together can support total 131,068
user-defined characters.

Unicode can be encoded using any of the following character encoding schemes:

■ UTF-8
■ UTF-16
■ UTF-32

UTF-8 is a variable-length encoding form of Unicode that preserves ASCII character code
values transparently. This form is used as file code in Oracle Solaris Unicode locales.

UTF-16 is a 16-bit encoding form of Unicode. In UTF-16, characters up to 65,535 are encoded
as single 16-bit values. Characters mapped above 65,535 to 1,114,111 are encoded as pairs of
16-bit values (surrogates).

UTF-32 is a fixed-length, 21-bit encoding form of Unicode usually represented in a 32-bit
container or data type. This form is used as the process code (wide-character code) in Oracle
Solaris Unicode locales.

For more details on the Unicode Standard and ISO/IEC 10646 and their various representative
forms, refer to the following sources:

■ The Unicode Standard, Version 4.0 from the Unicode Consortium
■ ISO/IEC 10646-1:2000, Information Technology-Universal Multiple-Octet Character Set

(UCS) - Part 1: Architecture and Basic Multilingual Plane
■ ISO/IEC 10646-2: Information Technology-Universal Multiple-Octet Character Set (UCS) -

Part 2: Secondary Multilingual Plane for Scripts and Symbols, Supplementary Plane for CJK
Ideographs, Special Purpose Plane

■ The Unicode Consortium web site at http://www.unicode.org/.

Unicode Locale: en_US.UTF-8 Support
The Unicode/UTF-8 locales support Unicode 4.0. The en_US.UTF-8 locale provides multiscript
processing support by using UTF-8 as its codeset. This locale handles processing of input and
output text in multiple scripts, and was the first locale with this capability in the Oracle Solaris
operating system. The capabilities of other UTF-8 locales are similar to those of en_us.UTF-8.
The discussion of en_US.UTF-8 that follows applies equally to these locales.

Unicode Overview

International Language Environments Guide • November 2010118

http://www.unicode.org/

Note – UTF-8 is a file-system safe Universal Character Set Transformation Format of
Unicode/ISO/IEC 10646-1 formulated by X/Open-Uniforum Joint Internationalization
Working Group (XoJIG) in 1992 and approved by ISO and IEC, as Amendment 2 to ISO/IEC
10646-1:1993 in 1996. This standard has been adopted by the Unicode Consortium, the
International Standards Organization, and the International Electrotechnical Commission as a
part of Unicode 4.0 and ISO/IEC 10646-1.

Unicode locales in the Oracle Solaris environment support the processing of every code point
value that is defined in Unicode 4.0 and ISO/IEC 10646-1 and 10646-2. Supported scripts
include pan-European and Asian scripts and also complex text layout scripts for the Arabic,
Hebrew, Indic, and Thai languages.

Note – Some Unicode locales, notably the Asian locales, include more Kanji or Hanzi glyphs.

Due to limited font resources, the current Oracle Solaris Unicode locales include character
glyphs from the following character sets.

■ ISO 8859-1 (most Western European languages, such as English, French, Spanish, and
German)

■ ISO 8859-2 (most Central European languages, such as Czech, Polish, and Hungarian)
■ ISO 8859-4 (Scandinavian and Baltic languages)
■ ISO 8859-5 (Russian)
■ ISO 8859-6 (Arabic, including many more presentation-form character glyphs)
■ ISO 8859–7 (Greek)
■ ISO 8859–8 (Hebrew)
■ ISO 8859-9 (Turkish)
■ TIS 620.2533 (Thai, including many more presentation-form character glyphs)
■ ISO 8859–15 (most Western European languages with euro sign)
■ GB 2312–1980 (Simplified Chinese)
■ JIS X 0201–1976, JIS X 0208–1990 (Japanese)
■ KSC 5601–1992 Annex 3 (Korean)
■ GB 18030 (Simplified Chinese)
■ HKSCS (Traditional Chinese, Hong Kong)
■ Big5 (Traditional Chinese, Taiwan)
■ IS 13194.1991, also known as ISCII (Hindi, including many more presentation-form

character glyphs)

Unicode Overview

Chapter 5 • Overview of UTF-8 Locale Support 119

If you try to view characters for which the en_US.UTF-8 locale does not have corresponding
glyphs, the locale displays a no-glyph glyph instead, as shown in the following illustration:

The locale is selectable at installation time and may be designated as the system default locale.

The same level of en_US.UTF-8 locale support is provided for both 64-bit and 32-bit Oracle
Solaris systems.

Note – Motif and CDE desktop applications and libraries support the en_US.UTF-8 locale.
However, XViewTM and OLIT libraries do not support the en_US.UTF-8 locale.

About Desktop Input Methods
CDE provides the ability to enter localized input for an internationalized application using Xm
Toolkit. The XmText[Field] widgets are enabled to interface with input methods from each
locale. Input methods are internationalized because some language environments write their
text from right-to-left, top-to-bottom, and so forth. Within the same application, you can use
different input methods that apply several fonts.

The preedit area displays the string that is being pre-edited. Writing text can be done in four
modes:
■ OffTheSpot
■ OverTheSpot (default)
■ Root
■ None

In OffTheSpot mode, the location is just below the main window area at the right of the status
area. In OverTheSpot mode, the pre-edit area is at the cursor point. In Root mode, the preedit
and status areas are separate from the client's window.

For more details, refer to the XmNpreeditType resource description in the VendorShell(3X)
man page.

About Desktop Input Methods

International Language Environments Guide • November 2010120

Input Method Support on the Oracle Solaris OS
Oracle Solaris has been adopting Internet Intranet Input Method Framework (IIIMF) to
support multiple language input or scripts. The IIIM server starts per user in all the UTF-8
locales and Asian locales. It serves both IIIM and XIM (X input method) clients.

In European UTF-8 locales, Compose key input or dead key input is also available. For more
information, see Appendix A, “Compose and Dead Key Input.”

Available Input Method Engines
Various IMEs (Input Method Engine) are available such as Chinese, Japanese, Korean, Thai,
Indic, Unicode (HEX/OCTAL). IIIMF also supports various EMEA keyboard layout
emulations such as French, Russian or Arabic. You can find the existing IMEs through Input
Method Preference Editor (iiim-properties).

Note – Asian IMEs that includes Chinese, Japanese, Korean, Thai, and Indic are available only
when the corresponding locale support is installed.

Note – The English/European IME (Latin input) mode enables input of some Latin characters
with diacritical marks, for example, á, è, î, õ and ü, without using Compose key. For example, "
+ A generates Ä.

Note – Table Lookup IME to input characters from Unicode character tables has been removed.
Use the Character Map application (charmap) instead.

Basic Usage of Input Method
To activate and deactivate the input method, press the IM trigger key (for example, Shift_L +
Alt_L). The current selected IME is activated. The Default IM trigger key is determined
depending on the locale in which you log in the desktop for the first time. You can confirm the
current IM trigger key by checking the Trigger Keys tab of iiiim-properties.

The IM status window shows the current input mode and selected IME. By default the IM status
window is located at the bottom left corner of each application in the CDE environment. In the
JDS environment, the IM status is shown on the Input Method Switcher application,
iiim-panel resides in the Notification area on the Gnome panel.

Basic Usage of Input Method

Chapter 5 • Overview of UTF-8 Locale Support 121

To switch the IME, click the left mouse button on IM status window or iiim-panel. The
language selection menu appears. Select the appropriate language that you want to switch.

Note – When the IM status window is used, the language selection menu is not available for
gnome (GTK based) applications. You can switch to the IME through non-GTK application if
the option, The language is applied to all applications, is enabled in iiim-properties.
Otherwise use the iiim-panel.

For more information, see iiim-properties online help.

Customizing IIIM behaviors
Input Method Preference Editor, iiim-properties, customizes various IIIM behaviors. For
example, you can change the IM trigger key, display the IM status and language selection menu,
or add and delete IMEs.

You can start iiim-properties from the command line, iiim-panel or the desktop menu
(Preferences menu in JDS and workspace menu->Tools in CDE).

For more customize options and detail information, see iiim-properties online help.

Note – IIIMF version has been upgraded from revision 10 to revision 12 since Oracle Solaris 10
6/06 release and each IME has also been upgraded correspondingly. This document explains
about input methods based on IIIMF revision 12.

To upgrade IIIMF to revision 12 on earlier Oracle Solaris 10 system, apply the following
patches.

120410-xx(SPARC) / 120411-xx(x86) - IIIMF rev.12 patch

121675-xx(SPARC) / 121676-xx(x86) - Japanese ATOK17 patch

121677-xx(SPARC) / 121678-xx(x86) - Japanese Wnn8 patch

120412-xx(SPARC) / 120413-xx(x86) - S-Chinese patch

120414-xx(SPARC) / 120415-xx(x86) - T-Chinese, Korean, Thai, Indic patch

IIIMF revision 10 is no longer supported in any of Oracle Solaris 10 releases.

System Environment
This section describes locale environment variables, TTY environment setup, 32–bit and 64–bit
STREAMS modules, and terminal support.

Customizing IIIM behaviors

International Language Environments Guide • November 2010122

Locale Environment Variable
Be sure you have the en_US.UTF-8 locale installed on your system. To check current locale
settings in various categories, use the locale utility.

system% locale

LANG=en_US.UTF-8

LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_ALL=

To use the en_US.UTF-8 locale desktop environment, choose the locale first. In a TTY
environment, choose the locale first by setting the LANG environment variable to en_US.UTF-8,
as in the following C-shell example:

system% setenv LANG en_US.UTF-8

Make sure that the LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC, LC_MONETARY,
and LC_TIME categories are not set, or are set to en_US.UTF-8. If any of these categories is set,
they override the lower-priority LANG environment variable. See the setlocale(3C) man page
for more details about the hierarchy of environment variables.

You can also start the en_US.UTF-8 environment from the CDE desktop. At the CDE login
screen's Options -> Language menu, choose en_US.UTF-8.

TTY Environment Setup
Depending on the terminal and terminal emulator that you are using, you might need to push
certain code set-specific STREAMS modules onto your streams.

For more information on STREAMS modules and streams in general, see the STREAMS
Programming Guide.

The following table lists the 64–bit STREAMS modules supported by the en_US.UTF-8 locale in
the terminal environment. For more details, see the Oracle Solaris 64–bit Developer's Guide.

TABLE 5–1 STREAMS Modules Supported by en_US.UTF-8

32-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8lat1 Code conversion STREAMS module between UTF-8

and ISO8859-1 (Western European)

/usr/kernel/strmod/sparcv9/u8lat2 Code conversion STREAMS module between UTF-8

and ISO8859-2 (Eastern European)

System Environment

Chapter 5 • Overview of UTF-8 Locale Support 123

http://docs.sun.com/doc/816-5168/setlocale-3c?a=view
http://docs.sun.com/doc/816-4855
http://docs.sun.com/doc/816-4855

TABLE 5–1 STREAMS Modules Supported by en_US.UTF-8 (Continued)
32-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8koi8 Code conversion STREAMS module between UTF-8

and KOI8-R (Cyrillic)

Note – Starting with the Oracle Solaris 10 release, the 32-bit kernel is no longer supported for the
SPARC platform. Table 5–1 applies only to the 32-bit kernel for the x86 platform. For more
details, refer to the Release Notes.

The following table lists the 64–bit STREAMS modules supported by en_US.UTF-8.

TABLE 5–2 64–bit STREAMS Modules Supported by en_US.UTF-8

64-bit STREAMS Module Description

/usr/kernel/strmod/sparcv9/u8lat1 Code conversions STREAMS module between UTF-8

and ISO8859-1 (Western European)

/usr/kernel/strmod/sparcv9/u8lat2 Code conversions STREAMS module between UTF-8

and ISO8859-2 (Eastern European)

/usr/kernel/strmod/sparcv9/u8koi8 Code conversions STREAMS module between UTF-8

and KOI8-R (Cyrillic)

▼ How to Load a STREAMS Kernel Module

As the root user, determine whether you are running a 64-bit Oracle Solaris or 32-bit Oracle
Solaris system.
system# isainfo -v

■ A 64—bit Oracle Solaris system returns the following information:

64-bit sparcv9 applications

32-bit sparc applications

■ A 32—bit Oracle Solaris system returns the following information:

32-bit sparc applications

■ A 32—bit x86 system returns the following information:

32-bit i386 applications

Determine whether your system has already loaded the STREAMS module.
system# modinfo | grep modulename

1

2

System Environment

International Language Environments Guide • November 2010124

If the STREAMS module, such as u8lat1, is already installed, the output looks as follows:

system# modinfo | grep u8lat1

89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)

If the module has not already been loaded, load it using the modload(1M) command.

■ On a 32—bit system, you would type:

system# modload /usr/kernel/strmod/u8lat1

■ On a 64—bit system, you would type:

system# modload /usr/kernel/strmod/sparcv9/u8lat1

The appropriate u8lat1 STREAMS module is loaded in the kernel. You can now push it
onto a stream.

▼ How to Unload a STREAMS Kernel Module

As root, verify that the kernel module is loaded.
For example, to verify the u8lat1 is loaded, you would type:
system# modinfo | grep u8lat1

89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)

Use the modunload(1M) command to unload the kernel.
For example, to unload the u8lat1 module, you would type:
system# modunload -i 89

▼ How to Setup a Latin-2 Terminal and STREAMS Module

Use the strchg(1M), as shown in the second command line
system% cat > tmp/mystreams

ttcompat

ldterm

u8lat1

ptem

^D

system% strchg -f /tmp/mystreams

Be sure that you are either root or the owner of the device when you use strchg(1).

Run the strconf command to examine the current configuration.
system% strconf

ttcompat

ldterm

u8lat1

ptem

pts

system%

3

1

2

1

2

System Environment

Chapter 5 • Overview of UTF-8 Locale Support 125

http://docs.sun.com/doc/816-5166/modload-1m?a=view
http://docs.sun.com/doc/816-5166/modunload-1m?a=view
http://docs.sun.com/doc/816-5165/strchg-1?a=view

Run the strchg command to reset the original configuration.
system% cat > /tmp/orgstreams

ttcompat

ldterm

ptem

^D

system% strchg -f /tmp/orgstreams

dtterm, xterm and Terminals Capable of Input and Output of UTF-8
Characters
Unlike the older releases of the Oracle Solaris operating system, the dtterm and xterm terminal
emulators and any other terminals that support input and output of the UTF-8 code set, do not
need to have any additional STREAMS modules in their streams. The ldterm module is now
codeset independent and supports Unicode/UTF-8 if you set up the terminal environment with
the stty(1) utility.

To set up the proper terminal environment for the Unicode locales, use the stty(1) utility.

system% /bin/stty defeucw

To query the current settings, use the -a option of the stty utility, as shown below:

system% /bin/stty -a

Note – Because /usr/ucb/stty is not internationalized, use /bin/stty instead.

Terminal Support for Latin-1, Latin-2, or KOI8-R
For terminals that support only Latin-1 (ISO8859-1), Latin-2 (ISO8859-2), or KOI8-R, you
should have the following STREAMS configuration:

head <-> ttcompat <-> ldterm <-> u8lat1 <-> TTY

This configuration is only for terminals that support Latin-1. For Latin-2 terminals, replace the
STREAMS module u8lat1 with u8lat2. For KOI8-R terminals, replace the module with
u8koi8.

Make sure you already have the STREAMS module loaded into the kernel.

Saving the Settings in ~/.cshrc

Assuming the necessary STREAMS modules are already loaded with the kernel, you can save
the following lines in your .cshrc file (C shell example) for convenience:

setenv LANG en_US.UTF-8

if ($?USER != 0 && $?prompt != 0) then

cat >! /tmp/mystreams$$ << _EOF

3

System Environment

International Language Environments Guide • November 2010126

http://docs.sun.com/doc/816-5165/stty-1?a=view

ttcompat

ldtterm

u8lat1

ptem

_EOF

/bin/strchg -f /tmp/mystreams$$

/bin/rm -f /tmp/mystreams$$

/bin/stty cs8 -istrip defeucw

endif

With these lines in your.cshrc file, you do not have to type all of the commands each time you
use the STREAMS module. Note that the second _EOF should start from the first column of the
file.

Code Conversions
Unicode locale support adds various code conversions among major code sets of many
countries through iconv and sdtconvtool utilities.

In the current Oracle Solaris environment, the utility geniconvtbl enables user-defined code
conversions. The user-defined code conversions created with the geniconvtbl utility can be
used with both iconv(1) and iconv(3). For more details about this utility, refer to the
geniconvtbl(1) and geniconvtbl(4) man pages.

The available fromcode and tocode names that can be applied to iconv, iconv_open, and
sdtconvtool are described by the following man pages:
■ iconv_1250(5)
■ iconv_1251(5)
■ iconv_646(5)
■ iconv_852(5)
■ iconv_8859-1(5)
■ iconv_8859-2(5)
■ iconv_8859-5(5)
■ iconv_dhn(5)
■ iconv_en_US.UTF-8(5)

■ iconv_ja(5)

■ iconv_ko(5)

■ iconv_koi8-r(5)
■ iconv_mac_cyr(5)
■ iconv_maz(5)
■ iconv_pc_cyr(5)
■ iconv_unicode(5)
■ iconv_zh(5)

■ iconv_zh_TW(5)

For more details about iconv code conversion, see the iconv(1), and sdtconvtool(1) man
pages. For more information about the available code conversions, see the iconv(5) man page.

Code Conversions

Chapter 5 • Overview of UTF-8 Locale Support 127

http://docs.sun.com/doc/816-5165/geniconvtbl-1?a=view
http://docs.sun.com/doc/816-5174/geniconvtbl-4?a=view
http://docs.sun.com/doc/816-5175/iconv-1250-5?a=view
http://docs.sun.com/doc/816-5175/iconv-1251-5?a=view
http://docs.sun.com/doc/816-5175/iconv-646-5?a=view
http://docs.sun.com/doc/816-5175/iconv-852-5?a=view
http://docs.sun.com/doc/816-5175/iconv-8859-1-5?a=view
http://docs.sun.com/doc/816-5175/iconv-8859-2-5?a=view
http://docs.sun.com/doc/816-5175/iconv-8859-5-5?a=view
http://docs.sun.com/doc/816-5175/iconv-dhn-5?a=view
http://docs.sun.com/doc/816-5175/iconv-koi8-r-5?a=view
http://docs.sun.com/doc/816-5175/iconv-mac-cyr-5?a=view
http://docs.sun.com/doc/816-5175/iconv-maz-5?a=view
http://docs.sun.com/doc/816-5175/iconv-pc-cyr-5?a=view
http://docs.sun.com/doc/816-5175/iconv-unicode-5?a=view
http://docs.sun.com/doc/816-5165/iconv-1?a=view
http://docs.sun.com/doc/816-5175/iconv-5?a=view

Note – UCS-2, UCS-4, UTF-16 and UTF-32 are all Unicode/ ISO/IEC 10646 representation
forms that recognize Byte Order Mark (BOM) characters defined in the Unicode 4.0 and
ISO/IEC 10646-1:2000 standards if the character appears at the beginning of the character
stream. Other forms, like UCS-2BE, UCS-4BE, UTF-16BE, and UTF-32BE, are fixed-width
Unicode/ISO/IEC 10646 representation forms that do not recognize the BOM character and
also assume big endian byte ordering. Representation forms like UCS-2LE, UCS-4LE,
UTF-16LE, and UTF-32LE, on the other hand, assume little endian byte ordering. These forms
also do not recognize the BOM character.

For associated scripts and languages of ISO8859–* and KO18–*, see
http://czyborra.com/charsets/iso8869.html.

Configuring Fonts
Oracle Solaris desktop environment uses fontconfig for font configuration. For more
information about how to configure fonts in Oracle Solaris, refer to Chapter 4, “Configuring
Fonts,” in Java Desktop System Release 3 Administration Guide.

DtMail Support
As a result of increased coverage in scripts, Oracle Solaris DtMail running in the en_US.UTF-8
locale supports the following character sets, indicated by the following MIME names:

■ US-ASCII (7-bit US ASCII)
■ UTF-8 (UCS Transmission Format 8 bit)
■ UTF-7 (UCS Transmission Format 7 bit)
■ ISO-8859-1 (Latin-1)
■ ISO-8859-2 (Latin-2)
■ ISO-8859-3 (Latin-3)
■ ISO-8859-4 (Latin-4)
■ ISO-8859-5 (Latin/Cyrillic)
■ ISO-8859-6 (Latin/Arabic)
■ ISO-8859-7 (Latin/Greek)
■ ISO-8859-8 (Latin/Hebrew)
■ ISO-8859-9 (Latin-5)
■ ISO-8859-10 (Latin-6)
■ ISO-8859-13 (Latin-7/Baltic)
■ ISO-8859-14 (Latin-8/Celtic)
■ ISO-8859-15 (Latin-9)
■ ISO-8859-16 (Latin-10)
■ KOI8-R (Cyrillic)

Configuring Fonts

International Language Environments Guide • November 2010128

http://docs.sun.com/doc/817-7306
http://docs.sun.com/doc/817-7306

■ ISO-2022-JP and EUC-JP (Japanese)
■ ISO-2022-KR and EUC-KR (Korean)
■ ISO-2022-CN (Simplified Chinese)
■ ISO-8859–13 (Latin-7/Baltic)
■ ISO-8859–14 (Latin-8/Celtic)
■ KOI8–U (Cyrillic/Ukrainian)
■ Shift_JIS (Japanese in Shift JIS)
■ GB2312 (Simplified Chinese in EUC)
■ TIS-620 (Thai)
■ UTF-16 (UCS Transmission Format 16 bit)
■ UTF-16BE (UTF-16 Big-Endian)
■ UTF-16LE (UTF-16 Little-Endian)
■ Windows-1250
■ Windows-1251
■ Windows-1252
■ Windows-1253
■ Windows-1254
■ Windows-1255
■ Windows-1256
■ Windows-1257
■ Windows-1258
■ Big5 (Traditional Chinese)
■ UTF-32 (UCS Transmission Format 32 bit)
■ UTF-32BE (UTF-32 Big-Endian)
■ UTF-32LE (UTF-32 Little-Endian)

This support enables users to view virtually any kind of email encoded in various character sets
from any region of the world in a single instance of DtMail. DtMail decodes received email by
looking at the MIME charset and content transfer encoding provided with the email.
Windows-125x MIME charsets are supported.

For sending email, you need to specify a MIME charset that is understood by the recipient mail
user agent (mail client), or you can use the default MIME charset provided by the en_US.UTF-8
locale. You can switch the character set of outgoing email, in the New Message window, press
Control Y, or click the Format menu button and then click the Change Char Set button. The
next available character set name displays in the bottom left corner at the top of the Send
button.

If your email message header or message body contains characters that cannot be represented
by the MIME charset specified, the system automatically switches the charset to UTF-8 which
can represent any character.

If your message contains characters from the 7-bit US-ASCII character set only, the default
MIME charset of your email is US-ASCII. Any mail user agent can interpret such email
messages without loss of characters or information.

DtMail Support

Chapter 5 • Overview of UTF-8 Locale Support 129

If your message contains characters from a mixture of scripts, the default MIME charset is
UTF-8. Any 8-bit characters of UTF-8 are encoded with Quoted-Printable encoding. For more
details on MIME, registered MIME charsets, and Quoted-Printable encoding, refer to RFCs
2045, 2046, 2047, 2048, 2049, 2279, 2152, 2237, 1922, 1557, 1555, and 1489.

FIGURE 5–1 DtMail New Message Window

DtMail Support

International Language Environments Guide • November 2010130

Programming Environment
Internationalized applications should automatically enable the en_US.UTF-8 locale. However,
proper FontSet/XmFontList definitions in the application's resource file are required.

For information on internationalized applications, see Creating Worldwide Software: Oracle
Solaris International Developer's Guide, 2nd edition.

FontSet Used with X Applications
For information about the FontSet used with X applications, please see “Unicode Locale:
en_US.UTF-8 Support” on page 118.

Each character set has an associated set of fonts in the Oracle Solaris desktop environment.

The following is a list of the Latin-1 fonts that are supported in the current Oracle Solaris
environment:

-dt-interface system-medium-r-normal-xxs sans utf-10-100-72-72-p-59-iso8859-1

-dt-interface system-medium-r-normal-xs sans utf-12-120-72-72-p-71-iso8859-1

-dt-interface system-medium-r-normal-s sans utf-14-140-72-72-p-82-iso8859-1

-dt-interface system-medium-r-normal-m sans utf-17-170-72-72-p-97-iso8859-1

-dt-interface system-medium-r-normal-l sans utf-18-180-72-72-p-106-iso8859-1

-dt-interface system-medium-r-normal-xl sans utf-20-200-72-72-p-114-iso8859-1

-dt-interface system-medium-r-normal-xxl sans utf-24-240-72-72-p-137-iso8859-1

For information on CDE common font aliases, including -dt-interface user-*

and-dt-application-* aliases, see Common Desktop Environment: Internationalization
Programmer's Guide.

In the en_US.UTF-8 locale, utf is also included in the locale's common font aliases as an
additional attribute in the style field of the X logical font description name. Therefore, to have a
proper set of fonts, the additional style has to be included in the font set creation as in the
following example:

fs = XCreateFontSet(display,

"-dt-interface system-medium-r-normal-s*utf*",
&missing_ptr, &missing_count, &def_string);

FontList Definition in CDE/Motif Applications
As with FontSet definition, the XmFontList resource definition of an application should also
include the additional style attribute supported by the locale.

*fontList:\

-dt-interface system-medium-r-normal-s*utf*:

Programming Environment

Chapter 5 • Overview of UTF-8 Locale Support 131

132

Complex Text Layout

Complex Text Layout (CTL) extensions enable the Motif APIs to support writing systems that
require complex transformations between logical and physical text representations. Arabic,
Hebrew, and Thai languages require such transformations. CTL Motif provides character
shaping, such as ligatures, diacritics, and segment ordering. Support for the transformations of
static and dynamic text widgets is also provided, along with bidirectional text capability and
tabbing for dynamic text widgets. Because text rendering is handled through the rendition
layer, other widget libraries can easily be extended to support CTL.

This chapter covers the following topics:

■ “Overview of CTL Technology” on page 133
■ “Overview of CTL Architecture” on page 134
■ “CTL Support for X Library Based Applications” on page 134
■ “XOC Resources” on page 134
■ “Changes in Motif to Support CTL Technology” on page 135
■ “Developing CTL Applications” on page 145

Overview of CTL Technology
To leverage the new features, users must have the Portable Layout Services (PLS) library and the
appropriate language engine. CTL uses PLS as the interface to the language engine, and uses the
language engine to transform text before the text is rendered. Applications that support CTL
must include additional resources, as described in the CTL documentation.

Specifically, XomCTL supports the following complex language shaping and reordering
features provided by underlying locale-dependent PLS module transformations:

■ Positional variation
■ Ligation (many-to-one) and character composition (one-to-many)
■ Diacritics
■ Bidirectionality

6C H A P T E R 6

133

■ Symmetrical swapping
■ Numeral shaping
■ String validation

Overview of CTL Architecture
The CTL architecture is organized as shown in Figure 6–1. Dt Apps at the top of the stack
employs Motif CTL functionality for rendering text. Motif in turn interfaces with locale-specific
language engines using PLS, and performs transformations to support positional variation,
numeral shaping, and so on.

The CTL architecture supports new languages with a locale-specific engine. In other words,
support for Thai and Vietnamese can be added without altering Motif or Dt Apps.

CTL Support for X Library Based Applications
XomCTL (Complex Text Layout support in X Library Output Module) enables all pure X
Windows applications, such as an X-based terminal emulator, to have CTL support. XomCTL
provides a full-featured Open Source XI18N implementation including X11 dumb font
support.

XOC Resources
The following XOC resources are provided in the current Oracle Solaris environment:

XNText Enables the user to set the text buffer on which CTL operation
needs to be performed

XNTextLayoutNumGlyphs Provides the number of glyphs for the text in the text buffer

XNTextLayoutModifier Same as the XmNLayoutModifier of Motif

FIGURE 6–1 CTL Architecture

PLS/Portable Layout Services

XomCTLMotif

DT Apps/XomCTL Apps

UMLE/Ar/HE/TH/. . .

Overview of CTL Architecture

International Language Environments Guide • November 2010134

XNTextLayoutProperty Same as the PLS Property, input-to-output and
output-to-input

XNTextLayoutMapInpToOut Same as the PLS Property, input-to-output and
output-to-input

XNTextLayoutMapOutToInp Same as the PLS Property, input-to-output and
output-to-input

Descriptions of these resources may be obtained from the specification of X/Open or PLS
Portable Layout Services.

Changes in Motif to Support CTL Technology
The following changes to Motif support the CTL technology:

XmNlayoutDirection Controls object layout

XmStringDirection Specifies the direction in which the system displays
characters of a string

XmRendition Adds new pseudo resources to XmRendition

XmText and XmTextField Affects the layout behavior of the text associated with the
XmRendition

XmTextFieldGetLayoutModifier Returns the layout modifier string of a rendition layout
object

XmTextGetLayoutModifier Returns the value of the current layout object settings of
the rendition associated with the widget

XmTextFieldSetLayoutModifier Sets the layout modifier values for the layout object tied
to its rendition

XmTextSetLayoutModifier Modifies the layout object settings of a rendition
associated with the widget

XmStringDirectionCreate Creates a compound string

XmNlayoutDirectionResource
The XmNlayoutDirection resource controls object layout. This resource interacts with the
orientation value of the LayoutObject in the manner described below.

Changes in Motif to Support CTL Technology

Chapter 6 • Complex Text Layout 135

See section 11.3 of the Motif Programmer's Guide (Release 2.1) for an overview of
XmNlayoutDirection, and especially for a description of the interaction between
XmStringDirection and XmNlayoutDirection.

Determining the Layout Direction
When the XmNlayoutDirection is specified as XmDEFAULT_DIRECTION, the layout direction of
the widget is set at creation time from the governing pseudo-XOC. In the case of dynamic text
(XmText and XmTextField), the governing pseudo-XOC is the one that is associated with the
XmRendition used for the widget. In the case of static text (XmList, XmLabel, XmLabelG), the
layout direction is set from the first compound string component that specifies a direction. This
specification happens in one of two ways:

■ The component is of type XmSTRING_COMPONENT_LAYOUT_PUSH or
XmSTRING_COMPONENT_DIRECTION.

■ The component is of type XmSTRING_COMPONENT_LOCALE_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT, or XmSTRING_COMPONENT_TEXT, from the associated
XmRendition and LayoutObject.

When XmNlayoutDirection is not specified as XmDEFAULT_DIRECTION and the
XmNlayoutModifier @ls orientation value is not specified explicitly in the layout modifier
string, then the XmNlayoutDirection value is passed through to the XOC and its
LayoutObject.

If both XmNlayoutDirection and the XmNlayoutModifier @ls orientation value are
explicitly specified, then the behavior is mixed. The XmNlayoutDirection controls widget
object layout, and the XmNlayoutModifier @ls orientation value controls layout
transformations.

See CAE Specification: Portable Layout Services: Context-dependent and Directional Text (The
Open Group: Feb 1997; ISBN 1-85912-142-X; document number C616) for a description of
portable functions for handling context-dependent and bidirectional text transformations as a
logical extension to the existing POSIX locale model. The document is intended for system and
application programmers who want to provide support for complex-text languages.

XmStringDirectionResource
XmStringDirection is the data type used to specify the direction in which the system displays
characters of a string.

The XmNlayoutDirection resource sets a default rendering direction for any compound string
(XmString) that does not have a component specifying the direction of that string. Therefore, to
set the layout direction, you need to set the appropriate value for the XmNlayoutDirection
resource. You do not need to create compound strings with specific direction components.

Changes in Motif to Support CTL Technology

International Language Environments Guide • November 2010136

When the application renders an XmString, the application should check whether the string
was created with an explicit direction (XmStringDirection). If the string does not provide a
direction component, the application should check the value of the XmNlayoutDirection
resource for the current widget and use that value as the default rendering direction for the
XmString.

XmRenditionResource
CTL adds the new pseudo resources listed in the following table to XmRendition. Descriptions
of the pseudo resources follow the table.

TABLE 6–1 New Resources in XmRendition

Name Class/Type Access Default Value

XmNfontType XmCFontType/XmFontType CSG XmAS_IS

XmNlayoutAttrObject XmClayoutAttrObject/String CG NULL

XmNlayoutModifier XmClayoutModifier/String CSG NULL

XmNfontType

Specifies the type of the Rendition font object. For CTL, the value of this resource must be
the XmFONT_IS_XOC value. If the value does not match, then the XmNlayoutAttrObject and
XmNlayoutModifier resources are ignored.

When the value of this resource is XmFont_IS_XOC and the XmNfont resource is not specified,
then at create time the value of the XmNfontName resource is converted into an XOC object in
either the locale specified by the XmNlayoutAttrObject resource or the current locale.
Furthermore, the value of the XmNlayoutModifier resource is passed through to any layout
object associated with the XOC.

XmNlayoutAttrObject

Specifies the layout AttrObject argument. This resource is used to create the layout object
associated with the XOC associated with this XmRendition. Refer to the layout services
m_create_layout() specification for the syntax and semantics of this string. See the
description of XmNfontType for an explanation of the interaction between the Layout
Modifier Orientation output value and the XmNlayoutDirection widget resource.

XmNlayoutModifier

Specifies the layout values to be passed through to the layout object used with the XOC for
this XmRendition. For the syntax and semantics of this string, see CAE Specification.

Setting this resource using XmRendition{Retrieve,Update} causes the string to be passed
through to the layout object associated with the XOC associated with this rendition. This
mechanism enables you to configure layout services dynamically. Unpredictable behavior

Changes in Motif to Support CTL Technology

Chapter 6 • Complex Text Layout 137

can result if the Orientation, Context, TypeOfText, TextShaping, or ShapeCharset are
changed.

Additional Layout Behavior
The XmNlayoutModifier affects the layout behavior of the text associated with the
XmRendition. For example, if the layout default treatment of numerals is NUMERALS_NOMINAL,
you change to NUMERALS_NATIONAL by setting XmNlayoutModifier to @ls

numerals=nominal:national, or @ls numerals=:national.

The layout values can be classified into the following groups:

■ Encoding description – TypeOfText, TextShaping, ShapeCharset (and locale codeset)
TypeOfText is essentially segment ordering and can be illustrated with opaque blocks.
Modifying these values dynamically through the rendition object is not usually meaningful,
and is almost certain to result in unpredictable behavior.

■ Layout behavior – Orientation, Context, ImplicitAlg, Swapping, and Numerals.
Orientation and Context should not be modified dynamically. You can safely modify
ImplicitAlg, Swapping, and Numerals.

■ Editing behavior – CheckMode

XmText and XmTextFieldResource
Xm CTL extends XmText and XmTextField by adding a parallel set of movement and deletion
actions that operate visually, patterned after the Motif 2.0 CSText widget. The standard Motif
2.1 Text and TextField do not distinguish between logical and physical order: next and
forward mean “to the right,” while previous and backward mean “to the left.” CSText, however,
makes the proper distinction and defines a new set of actions with strictly physical names (for
example, left-character(), delete-right-word(), and so on). These action routines are
defined to be sensitive to the XmNlayoutDirection of the widget and to call the appropriate
next- or previous- action.

The Xm CTL extensions are slightly more complex than the CSText extensions. The Xm CTL
extensions are sensitive not to the global orientation of the widget, but to the specific
directionality of the physical characters surrounding the cursor, as determined by the
pseudo-XOC, including neutral stabilization.

The new resource name enables you to control selection policy, to provide a rendition tag, and
to control alignment.

The set of new Xm CTL actions is roughly the cross product of {Move,Delete,Kill} by
{Left,Right} by {Character,Word}. The action set is listed in the following table.

Changes in Motif to Support CTL Technology

International Language Environments Guide • November 2010138

TABLE 6–2 New Resources in Xm CTL

Name Class/Type Access Default Value

XmNrenditionTag XmCRenditionTag/XmRString CSG XmFONTLIST_DEFAULT_TAG

XmNalignment XmCAlignment/XmRAlignment CSG XmALIGNMENT_BEGINNING

XmNeditPolicy XmCEditPolicy/XmREditPolicy CSG XmEDIT_LOGICAL

XmNrenditionTag

Specifies the rendition tag of the XmRendition that is in the XmNrenderTable resource, used
for a widget.

XmNalignment

Specifies the text alignment used in the widget. Only XmALIGNMENT_END and
XmALIGNMENT_CENTER are supported.

XmNeditPolicy

Specifies the editing policy used for the widget, either XmEDIT_LOGICAL or XmEDIT_VISUAL.
In the case of XmEDIT_VISUAL, selection, cursor movement, and deletion are in a visual style.
Setting this resource also changes the translations for the standard keyboard movement and
deletion events either to the new “visual” actions list or to the existing logical actions.

Character Orientation Action Routines
The forward-cell() and backward-cell() actions query the orientation of the character in
the direction specified. If the direction is left-to-right, these actions call the corresponding
next-/forward- or previous-/backward- variants.

Character Orientation Additional Behavior
The actions determine the orientation of characters by using the Layout Services
transformation OutToInp and Property buffers for the nesting level. The widget's behavior is
therefore dependent on the locale-specific transformation. If the information in the OutToInp
or, especially, Property buffers is inaccurate, the widget might behave unexpectedly. Moreover,
as the locale-specific modules fall outside of the scope of this specification, bidirectional editing
behavior can differ from platform to platform for the same text, application, resource values,
and LayoutObject configuration.

The visual mode actions result in a display of cell-based behavior. The logical mode actions
result in logical character-based behavior. For example, the delete-right-character()
operation deletes the input buffer characters that correspond to the display cell. That is, one
input buffer character whole LayoutObject transformation “property” byte “new cell
indicator” is 1, and all succeeding characters whose “new cell indicator” is 0.

For more information on the Property buffer, see the specification for m_transform_layout()
in CAE Specification.

Changes in Motif to Support CTL Technology

Chapter 6 • Complex Text Layout 139

Similarly, for backward-character(), the insertion point is moved backward one character in
the input buffer, and the cursor is redrawn at the visual location corresponding to the associated
output buffer character. Therefore, several keystrokes are required to move across a composite
display cell. The cursor does not actually change display location as the insertion point moves
across input buffer characters such as diacritics or ligature fragments whose “new cell indicator”
is 0.

This behavior means that deletion operates either from the logical/input buffer side, or from the
display cell level of the physical/output side. No mode exists for a strict, physical
character-by-character deletion because no one-to-one correspondence exists between the
input and output buffers. A given physical character can represent only a fragment of a logical
character, for example.

XmTextAction Routines
The following list describes the XmText action routines.

left-character(extend)

If the XmNeditPolicy is XmEDIT_LOGICAL and it is called without arguments, the insertion
cursor moves back logically by a character. If the insertion cursor is at the beginning of the
line, the insertion cursor moves to the logical last character of the previous line, if one exists.
Otherwise, the insertion cursor position doesn't change.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the left of the cursor
position. If the insertion cursor is at the beginning of the line, then it moves to the end
character of the previous line, if one exists.

If left-character() is called with an extend argument, the insertion cursor moves as in the
case of no argument, and extends the current selection.

The left-character() action produces calls to the XmNmotionVerifyCallback procedures
with the reason value XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this
action can produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer's Reference for more information.

right-character(extend)

If the XmNeditPolicy is XmEDIT_LOGICAL and it is called without any arguments, the
insertion cursor moves logically forward by a character. If the insertion cursor is at the
logical end of the line, this action moves the insertion cursor to the logical start of the next
line, if one exists.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the right of the cursor
position. If the insertion cursor is at the end of the line, it moves the insertion cursor to the
starting of the next line, if one exists.

If called with an argument of extend, XmNeditPolicy moves the insertion cursor as in the
case of no argument, and extends the current selection.

Changes in Motif to Support CTL Technology

International Language Environments Guide • November 2010140

The right-character() action produces calls to the XmNmotionVerifyCallback
procedures with the reason value XmCR_MOVING_INSERT_CURSOR. If called with extend

argument, this action can produce calls to the XmNgainPrimaryCallback procedures. See the
callback description in the Motif Programmer's Reference for more information.

right-word(extend)

If the XmNeditPolicy is XmEDIT_LOGICAL and it is called without any arguments, the
insertion cursor moves to the logical starting character of the logical succeeding word, if one
exists. Otherwise, the cursor moves to the logical end of the current word. If the insertion
cursor is at the logical end of the line or in the logical last word of the line, the cursor moves
to the logical first word in the next line, if one exists. Otherwise, the cursor moves to the
logical end of the current word.

If the XmNeditPolicy is XmEDIT_VISUAL and it is called without arguments, the insertion
cursor moves to the first non whitespace character after the first white space character to the
right or after the end of the line.

If called with an argument of extend, the insertion cursor moves as in the case of no
argument and extends the current selection.

The left-word() action produces calls to the XmNmotionVerifyCallback procedures with
the reason value XmCR_MOVING_INSERT_CURSOR. If called with extend argument, this action
can produce calls to the XmNgainPrimaryCallback procedures. See the callback description
in the Motif Programmer's Reference for more information.

delete-left-character()

If the XmNeditPolicy is XmEDIT_LOGICAL, it is equivalent to delete-previous-char(). If the
XmNeditPolicy is XmEDIT_VISUAL, then in normal mode, if the selection is non-null, it
deletes the selection. Otherwise this action deletes the character to the left of the insertion
cursor. In add mode, if the selection is non-null, the cursor is not disjointed from the
selection, and XmNpendingDelete is set to True, this action deletes the selection. Otherwise,
the action deletes the character to the left of the insertion cursor, which can affect the
selection.

The delete-left-character() action produces calls to the XmNmodifyVerifyCallback
procedures with the reason value XmCR_MODIFYING_TEXT_VALUE and the
XmNvalueChangedCallback procedures with the reason value XmCR_VALUE_CHANGED.

delete-right-character()

If the XmNeditPolicy is XmEDIT_VISUAL, it is equivalent to delete-next-character(). If the
XmNeditPolicy is XmEDIT_VISUAL, then in normal mode, if the selection is a non-null, it
deletes the selection. Otherwise, it deletes the character to the right of the insertion cursor. In
add mode, if there is a non-null selection and the cursor is not disjointed from the selection,
the XmNpendingDelete is set to True and the selection is deleted. Otherwise, the character to
the right of the insertion cursor is deleted. This action can affect the selection.

Changes in Motif to Support CTL Technology

Chapter 6 • Complex Text Layout 141

The delete-right-character() action produces calls to the XmNmodifyVerify-Callback
procedures with reason value XmCR_MODIFYING_TEXT_VALUE, and the
XmNvalue-ChangedCallback procedures with reason value XmCR_VALUE_CHANGED.

A few cell-based routines are implemented to support character composition, ligatures, and
diacritics. In other words, two or more characters might be represented by a single glyph
occupying one presentation cell.

The XmText cell action routines are as described in the following list.

backward-cell(extend)

Moves the insertion cursor back one cell. If the XmNeditPolicy is XmEDIT_LOGICAL, then the
insertion cursor is moved to the start of the cell that precedes the current cell logically, if one
exists. Otherwise, the cursor moves to the start of the current cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the start of cell to the left
of the cursor, if one exists. The prev-cell() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this action can produce
calls to the XmNgainPrimaryCallback procedures. See the callback description in the Motif
Programmer's Reference for more information.

forward-cell(extend)

Moves the insertion cursor to the start of the logical next cell, if one exists. Otherwise this
action moves the cursor to the end of the cell. If the XmNeditPolicy is XmEDIT_LOGICAL, then
the cursor moves forward one cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the start of the cell to the
right of the cursor position, if one exists; otherwise, it moves to the end of the current cell.
The forward-cell() action produces calls to the XmNmotionVerifyCallback procedures
with the reason value XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this
action can produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer's Reference for more information.

XmTextFieldGetLayoutModifierResource
XmTextFieldGetLayoutModifier() returns the layout modifier string that reflects the state of
the layout object tied to its rendition.

The syntax for XmTextFieldGetLayoutModifier() is:

#include <Xm/TextF.h>

string XmTextFieldGetLayoutModifier(Widget widget)

XmTextFieldGetLayoutModifier() accesses the value of the current layout object settings of
the rendition associated with the widget. When the layout object modifier values are changed

Changes in Motif to Support CTL Technology

International Language Environments Guide • November 2010142

using a convenience function, the XmTextFieldGetLayoutModifier function returns the
complete state of the layout object, not the changed values only.

XmTextFieldGetLayoutModifier() returns the layout object modifier values in the form of a
string value.

XmTextGetLayoutModifierResource
XmTextGetLayoutModifier() returns the layout modifier string that reflects the state of the
layout object tied to its rendition.

The syntax for XmTextGetLayoutModifier() is:

#include <Xm/Text.h>

String XmTextGetLayoutModifier(Widget widget)

XmTextGetLayoutModifier accesses the value of the current layout object settings of the
rendition associated with the widget. When the layout object modifier values are changed using
a convenience function, the XmTextGetLayoutModifier function returns the complete state of
the layout object, not just the changed values.

XmTextGetLayoutModifier returns the layout object modifier values in the form of a string
value.

XmTextFieldSetLayoutModifierResource
XmTextFieldSetLayoutModifier() sets the layout modifier values, which changes the
behavior of the layout object tied to its rendition.

The syntax for XmTextFieldSetLayoutModifier() is:

#include <Xm/TextF.h> \

void XmTextFieldSetLayoutModifier(Widget \

widgetstring layout_modifier)

XmTextFieldSetLayoutModifier modifies the layout object settings of a rendition associated
with the widget. When the layout object modifier values are set using this convenience function,
only the attributes specified in the input parameter are changed. The rest of the attributes
remain untouched.

XmTextSetLayoutModifierResource
XmTextSetLayoutModifier() sets the layout modifier values, which changes the behavior of
the layout object tied to its rendition.

The syntax for XmTextSetLayoutModifier() is:

Changes in Motif to Support CTL Technology

Chapter 6 • Complex Text Layout 143

#include <Xm/Text.h>

void XmTextSetLayoutModifier(Widget widget,string layout_modifier)

XmTextSetLayoutModifier modifies the layout object settings of a rendition associated with
the widget. When the layout object modifier values are set using this convenience function, only
the attributes specified in the input parameter are changed; the rest of the attributes are left
untouched.

XmStringDirectionCreateResource
XmStringDirectionCreate creates a compound string.

The syntax for XmTextSetLayoutModifier() is:

#include <Xm/Xm.h>

XmString XmStringDirectionCreate(direction)
XmStringDirection direction

XmStringDirectionCreate creates a compound string with a single component, a direction
with the given value. On the other hand, the XmNlayoutDirection resource sets a default
rendering direction for any compound string (XmString) that does not have a component
specifying the direction for that string. Therefore, to set the layout direction, you set the
appropriate value for the XmNlayoutDirection resource. You need not create compound
strings with specific direction components.

When the application renders an XmString, the application should check whether the string
was created with an explicit direction (XmStringDirection). If the application was provided no
direction component, the application should check the value of the XmNlayoutDirection
resource for the current widget and use that value as the default rendering direction for the
XmString.

UILArguments
The following table shows the UIL argument name and type.

TABLE 6–3 UIL

UIL Argument Name Argument Type

XmNlayoutAttrObject String

XmNlayoutModifier String

XmNrenditionTag String

XmNalignment Integer

UILArguments

International Language Environments Guide • November 2010144

TABLE 6–3 UIL (Continued)
UIL Argument Name Argument Type

XmNeditPolicy Integer

Developing CTL Applications
The following sections explain how to develop CTL applications.

Controlling Layout Direction
The direction of a compound string is stored so that the data structure is equally useful for
describing text in left-to-right languages such as English, Spanish, French, and German, or for
text in right-to-left languages, such as Hebrew and Arabic. In Motif applications, you can set the
layout direction using the XmNlayoutDirection resource from the VendorShell or MenuShell.
The Manager and Primitive widget as well as Gadgets, also have an XmNlayoutDirection

resource. The default value is inherited from the closest ancestor with the same resource.

In the case of an XmText widget, you must specify the vertical direction as well as the horizontal
direction. Setting the layoutDirection to XmRIGHT_TO_LEFT results in the string direction
from right to left, but the cursor moves vertically down. If the vertical direction is important and
you require top-to-bottom alignment, be sure to specify XmRIGHT_TO_LEFT_TOP_TO_BOTTOM.
This setting specifies that the components are laid out from right to left first and then top to
bottom, and results in the desired behavior.

The behavior of the XmText and TextField widgets is also influenced by the XmNalignment and
XmNlayoutModifier resources of the XmRendition. These resources, in addition to
XmNlayoutDirection, control the layout behavior of the Text widget. This behavior is
illustrated in Figure 6–2.

The input string used in the figure is:

The XmNlayoutModifier string @ls orientation= setting values for the following figure are
shown in the left column.

Developing CTL Applications

Chapter 6 • Complex Text Layout 145

As the illustration shows, XmNalignment dictates whether the text is flush right or left in
conjunction with the layout direction. XmNlayoutModifier breaks the text into segments and
arranges them left-to-right or right-to-left, depending on the orientation value. In other words,
if the XmNlayoutDirection is XmRIGHT_TO_LEFT, and the XmNAlignment value is
XmALIGNMENT_BEGINNING, the string is flush right.

EXAMPLE 6–1 Creating a Rendition

The following code creates an XmLabel whose XmNlabelString is of the type XmCHARSET_TEXT,
using the Rendition whose tag is “ArabicShaped.” The Rendition is created with an
XmNlayoutAttrObject of “ar” (corresponding to the locale name for the Arabic locale) and a
layout modifier string that specifies for the output buffer a Numerals value of
NUMERALS_CONTEXTUAL and a ShapeCharset value of “iso8859–6”.

The locale-specific layout module transforms its input text into an output buffer of physical
characters encoded using the 16-bit Unicode codeset. Because an explicit layout locale has been
specified, this text is rendered properly independent of the runtime locale setting. In this
example, the input is encoded in ISO 8859–6.

int n;

Arg args[10];

FIGURE 6–2 Layout Direction

Layout Direction: XmLEFT_TO_RIGHT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Layout Direction: XmRIGHT_TO_LEFT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Developing CTL Applications

International Language Environments Guide • November 2010146

EXAMPLE 6–1 Creating a Rendition (Continued)

Widget w;

XmString labelString;

XmRendition rendition;

XmStringTag renditionTag;

XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */

labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,

XmNlabelType, XmSTRING,

NULL);

n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;

XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=:contextual, shapecharset=iso8859-6"); n++;

renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, argcs

s, n);

renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

EXAMPLE 6–2 Editing a Rendition

The following code creates a TextField widget and a RenderTable with a single Rendition.
Both the XmNlayoutAttrObject and XmNlayoutModifier pseudo resources have been left
unspecified and therefore default to NULL. This value means that the layout object associated
with the Rendition belongs to the default locale, if one exists.

For this example to work properly, the locale must be set to one whose codeset is ISO 8859-6
and whose locale-specific layout module can support the IMPLICIT_BASIC algorithm. The
Rendition's LayoutObject's ImplicitAlg value is modified through the Rendition's
XmNlayoutModifier pseudo resource.

int n;

Arg args[10];

Widget w;

XmRendition rendition;

XmStringTag renditionTag;

XmRenderTable renderTable;

w = XmCreateTextField(parent, "text field", args, 0);

n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);

renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);

Developing CTL Applications

Chapter 6 • Complex Text Layout 147

EXAMPLE 6–2 Editing a Rendition (Continued)

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

....

n = 0;

XtSetArg(args[n], XmNlayoutModifier, "@ls implicitalg=basic");
n++;

XmRenditionUpdate(rendition, args, n);

Creating a Render Table in a Resource File
Renditions and render tables should be specified in resource files for a properly
internationalized application. When the render tables are specified in a file, the program
binaries are made independent of the particular needs of a given locale, and can be easily
customized to local needs.

Render tables are specified in resource files with the following syntax:
resource_spec:[tag[,tag]*]

where tag is some string suitable for the XmNtag resource of a rendition.

This line creates an initial render table containing one or more renditions as specified. The
renditions are attached to the specified tags:

resource_spec[*|.] rendition[*|.]resource_name:value

The following example illustrates the CTL resources related to XmRendition that can be set
using resource files. The fontType must be set to FONT_IS_XOC for the layout object to take
effect. The layoutModifier specified using @ls is passed on to the layout object by the
rendition object.

For a complete list of resources that can be set on the layout object using layoutModifier, see
CAE Specification: Portable Layout Services: Context-dependent and Directional Text, The Open
Group: Feb 1997; ISBN 1-85912-142-X; document number C616.

EXAMPLE 6–3 Creating a Render Table in an Application

Before creating a render table, an application program must first have created at least one of the
renditions that is part of the table. The XmRenderTableAddRenditions() function, as its name
implies, is also used to augment a render table with new renditions. To create a new render
table, call the XmRenderTableAddRenditions() function with a NULL argument in place of an
existing render table.

The following code creates a render table using a rendition created with XmNfontType set to
XmFONT_IS_XOC.

int n;

Arg args[10];

Widget w;

Developing CTL Applications

International Language Environments Guide • November 2010148

EXAMPLE 6–3 Creating a Render Table in an Application (Continued)

XmString labelString;

XmRendition rendition;

XmStringTag renditionTag;

XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */

labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,

XmNlabelType, XmSTRING,

NULL);

n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;

XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=nominal:contextual, shapecharset=iso8859-6"); n++;

renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);

renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Horizontal Tabs
A compound string can contain tab characters that control the placement of text. To interpret
those characters on display, a widget refers the a list of tab stops to the rendition in effect for that
compound string. However, the dynamic widgets TextField and XmText do not use the tab
resource of the rendition. Instead, the widgets compute the tab width using the formula of
8*(width of character 0).

The tab measurement is the distance from the left margin of the compound string display. This
distance is measured from the right margin, if the layout direction is right-to-left. Regardless of
the direction of the text (Arabic right-to-left or English left-to-right), the tab inserts space to the
right or left as specified by the layout direction (XmNlayoutDirection).

The text following a tab is always aligned at the tab stop. The tab stop is calculated from the start
of the widget, which in turn is influenced by XmNlayoutDirection. The behavior of the tabs and
their interaction with directionality of the text and the XmNlayoutDirection of the widget is
illustrated in the following figure.

The input for this illustration is abc\tdef\tgh.

Horizontal Tabs

Chapter 6 • Complex Text Layout 149

Mouse Selection
The user makes a primary selection with mouse button 1. Pressing this button deselects any
existing selection and moves the insertion cursor and the anchor to the position in the text
where the button is pressed. Dragging while holding down mouse button 1 selects all text
between the anchor and the pointer position, deselecting any text outside the range.

The text selected is influenced by the resource XmNeditPolicy, which can be set to
XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to XmEDIT_LOGICAL and the
text selected is bidirectional, the selected text is not contiguous visually and is a collection of
segments. The text in the logical buffer does not have a one-to-one correspondence with the
display.

As a result, the contiguous buffer of logical characters of bidirectional text is not rendered in a
continuous stream of characters. Conversely, when the XmNeditPolicy is set to
XmEDIT_VISUAL, the selected text can be contiguous visually but is segmented in the logical
buffer. Therefore, the sequence of selection, deletion, and insertion of bidirectional text at the
same cursor point does not result in the same string.

FIGURE 6–3 Tabbing Behavior

Layout Direction: XmLEFT_TO_RIGHT

Layout Direction: XmRIGHT_TO_LEFT

Mouse Selection

International Language Environments Guide • November 2010150

Keyboard Selection
The selection operation available with the mouse is also available with the keyboard. The
combination of the Shift and the arrow keys enables the selection of text.

The selected text is influenced by the resource XmNeditPolicy, which can be set to
XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to XmEDIT_LOGICAL and the
selected text is bidirectional, the selected text is not contiguous visually. Because the text in the
logical buffer does not have one-to-one correspondence with the display, the contiguous buffer
of logical characters of bidirectional text is not rendered in a continuous stream of characters.

Conversely, when the XmNeditPolicy is set to XmEDIT_VISUAL, the text selected can be
contiguous visually but is segmented in the logical buffer. Therefore, the sequence of selection,
deletion, and insertion of bidirectional text at the same cursor point does not result in the same
string.

Text Resources and Geometry
The following text resources relate to geometry:

■ The render table XmNrenderTable that the widget uses to select a font or font set and other
attributes in which to display the text.
The Text and Textfield widgets can use only the font-related rendition resources, such as
XmNfontType. These widgets can also specify the attributes of the layout object, such as
XmNlayoutAttrObject. These widgets usually include a locale identifier, and
XmNlayoutModifier, which specifies the layout values to be passed through to the Layout
Object associated with the XOC associated with this XmRendition.

■ A resource (XmNwordWrap) that specifies whether lines are broken at word boundaries when
the text would be wider than the widget.
Breaking a line at a word boundary does not insert a new line into the text. In the case of
cursive languages like Arabic, if the word length is greater than the widget length, the word
is wrapped to the next line. However, the first character in the next line is shaped
independently of the previous character in the logical buffer.

Porting Instructions
The new Motif library enabled for Complex Text Layout (CTL), is located in
/usr/dt/lib/libXm.so.4. If your application links to libXm.so.3 the application does not
support CTL. ldd app_name shows the library to which the application is linking. To port the
existing applications to enable CTL, you need to perform the following steps:

1. Add -DSUN_CTL to your Makefile.

Porting Instructions

Chapter 6 • Complex Text Layout 151

This flag is important and includes the necessary data structures to support CTL. This value
should be set during compilation.

2. Recompile the existing application.
This recompilation automatically links with the CTL-enabled Motif library libXm.so.4.

3. Add the XmText.translations resources to your application resource file. Without these
resources, the layout engine of the locale does not launch.

4. Refer to the sample application attached to your documentation.

Note – Use the font name that is available and appropriate to your locale in the fontName
resource.

For example, if you want cell-based character movement (Thai) in XmTextField or XmText
widgets, set the translations of the corresponding widgets as follows:

XmText.translations: #override \n\

<Key>osfRight:forward-cell() \n\

<Key>osfLeft:backward-cell() \n\

<Key>osfDelete:delete-next-cell() \n\

<Key>osfBackSpace:delete-previous-cell() \n\

Porting Instructions

International Language Environments Guide • November 2010152

Print Filter Enhancement With mp

This chapter describes print enhancement to the mp utility. The chapter discusses the following
topics:

■ “Printing for UTF-8” on page 153
■ “mp Print Filter Enhancement Overview” on page 154
■ “Localization With the mp.confConfiguration File” on page 156
■ “Locale-Dependent prolog Files” on page 162
■ “Adding and Customizing prolog Files” on page 162
■ “PostScript File Customization” on page 162
■ “.xpr Files” on page 165

Printing for UTF-8
An enhanced mp print filter that can print various input file formats including flat text files
written in UTF-8 is available in the current Oracle Solaris environment. This print filter uses
TrueType and Type 1 scalable fonts and X11 bitmap fonts available on the Oracle Solaris
system. The filter can also make use of printer resident fonts and can act as an X print server
client.

The output from the utility is standard PostScript and can be sent to any PostScript printer. The
mp utility can also output any page description language when configured as an X Print server
client, mp is supported by the print server.

To use the utility, type the following command:

system% mp filename | lp

You can also use the utility as a filter, since mp accepts stdin stream:

system% cat filename | mp | lp

7C H A P T E R 7

153

You can set the utility as a printing filter for a line printer. For example, the following command
sequence tells the printer service LP that the printer lp1 accepts only mp format files. This
command also installs the printer lp1 on port /dev/ttya. See the lpadmin(1M) man page for
more details.

system# lpadmin -p lp1 -v /dev/ttya -I MP

system# accept lp1

system# enable lp1

Using lpfilter(1M), you can add the utility for a filter as follows:

system# lpfilter -f lp1 -F pathname

The command tells LP that a converter (in this case, mp) is available through the filter
description file named pathname. pathname contains the following information:

Input types: simple

Output types: MP

Command: /usr/bin/mp

The filter converts the default type file input to PostScript output using /usr/bin/mp.

To print a UTF-8 text file, use the following command:

system% lp -T MP UTF-8-file

Refer to the mp(1) man page for more detail.

mpPrint Filter Enhancement Overview
The mp print filter is enhanced in the current Oracle Solaris release. The latest mp can work
internally in three different modes to produce the output file in a locale to print international
text. The available modes are:

■ Working with the locale-specific font configuration file mp.conf
■ Working with the locale-specific PostScript prolog file prolog.ps
■ Working as an Xprt (X Print Server) client

The following sections describe when to use a specific printing method and which
configuration and supporting files are used by mp for these printing methods.

Using mpWith the Locale-Specific Font Configuration
File mp.conf
If the -D or -P option is not given in the command line, this printing method is the default
method, unless the prolog.ps file is present in either of

mp Print Filter Enhancement Overview

International Language Environments Guide • November 2010154

http://docs.sun.com/doc/816-5166/lpadmin-1m?a=view
http://docs.sun.com/doc/816-5166/lpfilter-1m?a=view
http://docs.sun.com/doc/816-5165/mp-1?a=view

the/usr/openwin/lib/locale/$LANG/print or /usr/lib/lp/locale/$LANG/mp directories.
The prolog.ps file forces mp to print using PostScript embedded fonts in the file. Even if a
prolog.ps exists in a locale, using the -M option ignores the prolog.ps file and uses an mp.conf

file instead, if one exists.

This method uses the /usr/lib/lp/locale/$LANG/mp/mp.conf font configuration file. You
probably do not need to change this file unless you need to print using alternate fonts. This file
can be configured with TrueType, Type 1, or .pcf fonts.

Using mpWith the Locale-Specific PostScript Prolog
Files
The /usr/lib/lp/locale/C/ directory contains .ps print page layout files common for this
mode of printing. A description of how to customize these files is provided in “Adding and
Customizing prolog Files” on page 162

If the -D or -P option is not given in the command line, and
/usr/openwin/lib/locale/$LANG/print/prolog.ps exists, then the prolog.ps file is
prepended to the output. Depending upon the print style of the .ps prolog page, the layout file
is also prepended to the output.

This method of printing makes use of PostScript font files only. Customization of prolog.ps
files is described in “Adding and Customizing prolog Files” on page 162.

Using mp as an Xprt (X Print Server) Client
Using mp as an Xprt client enables mp to print the output of any printer connected to a network
supported by an Xprt print service. As an Xprt client, mp supports PostScript and many versions
of PCL.

The Xprt client attempts a connection to an Xprt server based on the following rules:
■ When the -D printer_name@machine[:dispNum] or -P printer_name@machine[:dispNum]

options are used with the mp command, mp attempts to connect to an Xprt print service on
machine[:dispNum] with printer_name.
If the above attempted connection to machine[:dispNum] fails or if the argument given to -D

or -P is just printer_name, then the mp command checks the XPSERVERLIST for Xprt servers
that support the printer_name argument. For example:

system% setenv XPSERVERLIST "machine1[:dispNum1] machine2[:dispNum2] ..."
■ If no server is found using above rules, mp checks for an XPDISPLAY environment variable set

to machine[:dispNum]. For example:

system% setenv XPDISPLAY "machine[:dispNum]"

mp Print Filter Enhancement Overview

Chapter 7 • Print Filter Enhancement With mp 155

■ If the XPDISPLAY variable is not set or if the variable is invalid, mp tries to connect to the
default display :2100. If the default display value is also invalid, mp exits with an error
message.
The /usr/lib/lp/locale/C/mp directory contains .xpr print page sample layout files for
Xprt client. The sample files are for 300 dpi printers. If the target printer has a different dpi
value, the dpi value of the sample files is automatically converted to the resolution of the
target printer.

Localization With the mp.confConfiguration File
Configuration files provide the flexibility for adding or changing font entries, or font group
entries.

The system default configuration file is /usr/lib/lp/locale/$LANG/mp/mp.conf where $LANG
is a locale environment variable in the locale in which printing occurs. You can specify a
personal configuration file with the -u config.file path option.

A ligature or variant glyph that has been encoded as a character for compatibility is called a
presentation form. The mp.conf file is used mainly for mapping the intermediate code points in
a locale to the presentation forms in the encoding of the font that is used to print that code
point.

Intermediate code points can either be wide characters, or output of the Portable Layout
Services (PLS) layer. Complex Text Layout printing requires the intermediate code points to be
PLS output. The default intermediate code generated by mp is PLS output.

Font formats currently supported are Portable Compiled Format (PCF), TrueType, and Type1
format. Both system-resident and printer-resident Type1 fonts are supported. Keep in mind the
following information about the format and contents of the mp.conf configuration file:

■ Lines must begin with a valid keyword (directive).
■ Arguments to a keyword must appear on the same line as the keyword.
■ Lines that begin with a # character are treated as comments until the end of the line.
■ Numeric arguments that begin with 0x are interpreted as a hexadecimal number.

The different sections in the mp.conf file include:

■ Font aliasing
■ Font group definition
■ Mapping from the intermediate code ranges to the font group in a locale
■ Associating each font with the shared object that maps the intermediate code points to the

presentation forms in the font encoding

mp Print Filter Enhancement Overview

International Language Environments Guide • November 2010156

Font Aliasing
The font aliasing section of the mp.conf file is used to define alias names for each font used for
printing. Each line in this section is of the following form:

FontNameAlias font-alias-name font-type font-path

font-alias-name
The usual convention for aliasing a font name is to specify the encoding/script name of the
font followed by a letter that indicates whether the font is Roman, Bold, Italic, or BoldItalic
(R, B, I or BI).

For example,/usr/openwin/lib/X11/fonts/75dpi/courR18.pcf.Z, because it is an
iso88591 Roman font, can be assigned the alias name iso88591R.

font-type
Possible values are PCF for .pcf fonts, Type1 for Adobe Type1 fonts, and TrueType for
TrueType fonts. Only these three kinds of fonts can be configured in this mp.config file.

font-path
The absolute path name for the font files. For Type1 printer-resident fonts, just specify the
font name, such as Helvetica.

For example,

FontNameAlias prnHelveticaR Type1 Helvetica

Font Group Definition
You can combine same-type fonts to form a font group. The format of the font group is as
follows:

keyword FontGroup.

fontgroupname The group name for the fonts.

GroupType The font type. Create font groups for the same type of fonts only (PCF,
Type1, TrueType).

Roman The Roman font name in the font group.

Bold The Bold font name in the font group.

Italic The Italic font name in the font group.

BoldItalic The BoldItalic font name in the font group.

For creating a group, only a Roman font entry is required. The Bold, Italic, and BoldItalic fonts
are optional. The different types of fonts are used to display the header lines for mail or news
articles, for example. If only the Roman font is defined, that font is used in place of other fonts.

mp Print Filter Enhancement Overview

Chapter 7 • Print Filter Enhancement With mp 157

Mapping Section
The mapping section of the mp.conf files maps from the intermediate code ranges to the font
group in a locale. The format for each line in this section is as follows.

keyword MapCode2Font.

range_start A 4–byte hexadecimal value, starting with 0x, that indicates the start of the code
range to map to one or more font groups.

range_end Indicates the end of the code range to map. If the values is '-', only a single
intermediate code point is mapped to the target font.

group A Type1, PCF, or TrueType font group with which the presentation forms are
to be printed.

Association Section
The association section of the mp.conf file associates each font with the shared object that maps
the intermediate code points to the presentation forms in the font encoding. The format for
each line in this section is as follows:

keyword CnvCode2Font.

font alias name The alias name defined for the font.

mapping function Takes in the intermediate code and returns presentation
forms in font encoding, which is in turn used to get the
glyph index and draw the glyph.

file path having mapping function The .so file name that contains the mapping function.
You can use the utility in dumpcs to ascertain the
intermediate code set for EUC locales.

Note – The current TrueType engine used by mp (1) can work only with format 4 and PlatformID
3 cmap. You can only configure Microsoft .ttf files. Additionally, the character map encoding
has to be Unicode or Symbol for the TrueType font engine to work correctly. Because most of
the .ttf fonts in the Oracle Solaris environment obey these restrictions, you can map all
TrueType fonts in Oracle Solaris software within the mp.conf file.

You can create a shared object that maps a font to correspond with a PCF type1 X Logical Fonts
Description (XLFD). You can then create a shared object that maps from the intermediate code
range to the encoding specified by XLFD. For example:

-monotype-arial-bold-r-normal-bitmap-10-100-75-75-p-54-iso8859-8

The corresponding PCF font is:

mp Print Filter Enhancement Overview

International Language Environments Guide • November 2010158

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/75dpi/ariabd10.pcf.Z

This font is encoded in ISO 8859-8, so shared objects have to map between intermediate code
and corresponding ISO 8859-8 code points.

If a TrueType font with XLFD:

-monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-8

has the corresponding font:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/TrueType/arial__h.ttf

you should map between the intermediate code and Unicode, because the cmap encoding for the
previous TrueType font is in Unicode. In the example of this TrueType font, suppose a sample
intermediate code in the en_US.UTF-8 locale that corresponds to a Hebrew character (produced
by the PLS layer) is 0xe50000e9. Because the font is Unicode encoded, design the function
within the corresponding .so module in such a way that when you are passing 0xe50000e9, the
output corresponds to presentation form in Unicode. The example here is 0x000005d9.

The function prototype for the mapping function should be:

unsigned int function(unsigned int inter_code_pt)

The following are optional keyword/value pairs that you can use in mp.conf:

PresentationForm WC/PLSOutput

The default value is PLSOutput. If the user specifies WC, then the intermediate code points that
are generated are wide characters. For CTL printing, this default value should be used.

If the locale is a non-CTL locale and the keyboard value is PLSOutput, that value is ignored and
the mp generates wide-character codes instead.

You can use the optional keyword/value pairs listed in the following table if the locale supports
CTL. These variables can assume any of the possible values given in the middle column of the
table.

TABLE 7–1 Optional Keyword/Value Pairs

Optional Keyword Optional Value Default

Orientation ORIENTATION_LTR/

ORIENTATION_RTL/

ORIENTATION_CONTEXTUAL

ORIENTATION_LTR

mp Print Filter Enhancement Overview

Chapter 7 • Print Filter Enhancement With mp 159

TABLE 7–1 Optional Keyword/Value Pairs (Continued)
Optional Keyword Optional Value Default

Numerals NUMERALS_NOMINAL/

NUMERALS_NATIONAL/

NUMERALS_CONTEXTUAL

NUMERALS_NOMINAL

TextShaping TEXT_SHAPED/

TEXT_NOMINAL/

TEXT_SHFORM1/

TEXT_SHFORM2/

TEXT_SHFORM3/

TEXT_SHFORM4

TEXT_SHAPED

▼ How to Add a Printer-Resident Font
The example in the following procedure illustrates how to add a new PCF, TrueType, or Type1
printer-resident font to the configuration file.

Complete this procedure to replace the currently configured font. In the first two steps, a PCF
font used to display the characters in the range 0x00000021 - 0x0000007f is replaced with a
TrueType font.

Before you add a new font, look at various components in the configuration file that correspond
to the currently configured font.
FontNameAlias iso88591R PCF /usr/openwin/lib/X11/fonts/75dpi/courR18PCF.Z

FontNameAlias iso88591B PCF /usr/openwin/lib/X11/fonts/75dpi/courB18PCF.Z

.

.

.

FontGroup iso88591 PCF iso88591R iso88591B

.

.

.

MapCode2Font 0x00000020 0x0000007f iso88591

.

.

.

CnvCode2Font iso88591R _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so

CnvCode2Font iso88591B _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so

For example, you could map the
/usr/openwin/lib/locale/ja/X11/fonts/TT/HG-MinchoL.ttf fonts to the en_US.UTF-8

1

mp Print Filter Enhancement Overview

International Language Environments Guide • November 2010160

locale. Because HG-MinchoL.ttf is a Unicode TrueType font file, you use the .so module
mapping function to directly return the incoming ucs-2 code points.

unsigned short _ttfjis0201(unsigned short ucs2) {

return(ucs2);

}

a. Save the mapping to the ttfjis0201.c file.

b. Create a shared object file.
cc -G -Kpic -o ttfjis0201.so ttfjis0201.c

To map a PCF file, such as /usr/openwin/lib/locale/ja/X11/fonts/75dpi/gotmrk20.pcf.Z,
check the following encoding that corresponds to XLFD in the
/usr/openwin/lib/locale/ja/X11/fonts/75dpi/fonts.dir file.
-sun-gothic-medium-r-normal--22-200-75-75-c-100-jisx0201.1976-0

a. For jisx0201 encoding, prepare a shared object that maps from ucs-2 to jisx0201. Obtain
the mapping table for creating the .somodule. For a Unicode locale, find the character set
mappings to Unicode in the ftp.unicode.org/pub/MAPPINGS/ directory.

b. Use these mappings to write a xu2jis0201.c file:
unsigned short _xu2jis0201(unsigned short ucs2) {

if(ucs2 >= 0x20 && ucs2 <= 0x7d)

return (ucs2);

if(ucs2==0x203e)

return (0x7e);

if(ucs2 >= 0xff61 && ucs2 <= 0xff9f)

return (ucs2 - 0xff60 + 0xa0);

return(0);

}

c. When you create a mapping file, include all the usc—2 to jisx0201 cases.
cc -G -o xu2jis0201.so xu2jis0201.c

▼ How to Create a Shared Object File
The examples in the following procedure how you how to create shared object files.

To add a font, edit the lines of the following example that correspond to sections of the mp.conf
file.
This example shows how to add the TrueType font. The .so path points to the xu2jis0201.so
file.
FontNameAlias jis0201R TrueType /home/fn/HG-Minchol.ttf

FontGroup jis0201 TrueType jis0201R

MapCode2Font 0x0020 0x007f jis0201

CnvCode2Font jis0201R _ttfjis0201 <.so path>

2

1

mp Print Filter Enhancement Overview

Chapter 7 • Print Filter Enhancement With mp 161

Note – To add a PCF font, change the keyword from TrueType to PCF.

Invoke the mp command with the changed mp.conffile to print the range 0x0020-0x007f in the
new font.
You can map other Japanese character ranges with the same .so file, For example, you could
map the range 0x0000FF61 0x0000FF9F.

Note – To maintain backward compatibility, you can use the
/usr/openwin/lib/locale/$LANG/print/prolog.ps file to create output in the current locale.
When you use the prolog.ps file, no configuration file is required.

You can find a sample mp.conf file in the /usr/lib/lp/locale/en_US.UTF-8/mp directory.

Adding and Customizing prolog Files
The prolog files can be divided into two main categories:

■ PostScript prolog files (.ps)
■ X print server client prolog files(.xpr).

PostScript File Customization
The PostScript files fall into the following categories:

■ Common prolog file
■ Print layout prolog files

Locale-Dependent prolog Files
The purpose of the prolog.ps file is to set up non-generic fonts. Applications use these
predefined PostScript font names for printing. The prolog file must define at least the following
font names for Desk Set Calendar manager and mp:

■ LC_Times-Roman
■ LC_Times-Bold
■ LC_Helvetica
■ LC_Helvetica-Bold
■ LC_Courier
■ LC_Helvetica-BoldOblique
■ LC_Times-Italic

The following example uses these fonts to print the particular local character set specified:

2

Adding and Customizing prolog Files

International Language Environments Guide • November 2010162

100 100 moveto

/LC_Times-Roman findfont 24 scale font setfont

(Any text string in your locale) show

The Oracle Solaris localization kit provides a sample prolog.ps file for the Japanese
environment. Alternatively, this file is found in the /usr/openwin/lib/locale/ja/print/
directory.

The following example shows how to add or change composite fonts in an existing prolog.ps
file.

%

(Foo-Fine) makecodeset12

(Base-Font) makeEUCfont

%

You could define a composite font called LC_Base-Font, for example. LC_Base-Font might be a
composite of a Foo-Fine font that contains a locale character set and a Base-Font. You do not
need in-depth knowledge of PostScript programming to add or change a font.

The best way to create a prolog.ps file is to study the example version. In the example
prolog.ps, two routines need to be written: makecodeset12 and makeEUCfont. The routine
makecodeset12 sets the local font-encoding information. This routine might differ from locale
to locale. The routine makeEUCfont combines the base font and the locale font to form a
composite font. The creator of the prolog file should have good knowledge of PostScript in
order to write makecodeset12 and makeEUCfont.

The prolog.ps file support is reserved for backward compatibility only. Do not create a new
prolog.ps file for generating printed output for a locale. Use mp.conf instead.

The path for prolog.ps file is

/usr/openwin/lib/locale/$LANG/print/prolog.ps

Common PostScript prolog Files
The common prolog file is mp.common.ps.

Every other page layout prolog file needs to include this file.

The mp.common.ps file resides in the /usr/lib/lp/locale/C/mp/ directory. This file contains a
PostScript routine to re-encode a font from the standard encoding to the ISO 8859–1 encoding.
The .reencodeISO routine is called from the print layout prolog files to change encoding of the
fonts. Usually this prolog file does not need any customization. If you create your own prolog

file, set the environment variable MP_PROLOGUE to point to the directory that contains the
modified prolog files.

Adding and Customizing prolog Files

Chapter 7 • Print Filter Enhancement With mp 163

Print Layout prolog Files
The print layout prolog files, mp.*.ps files, contain routines for controlling the page layout for
printing. In addition to issuing a header and a footer for a print page with user name, print date,
and page number, these prolog files can provide other information. For example, the prolog
files can give effective print area dimensions and landscape and portrait mode of printing to be
used.

The Print Layout prolog files are:

■ mp.pro.ps

■ mp.pro.alt.ps

■ mp.pro.fp.ps

■ mp.pro.ps

■ mp.pro.ts.ps

■ mp.pro.altl.ps

■ mp.pro.ff.ps

■ mp.pro.l.ps

■ mp.pro.ll.ps

■ mp.pro.tm.ps

A set of standard functions needs to be defined in every prolog file. These functions are called
when a new print page starts, a print page ends, or a new column ends. The implementations of
these functions define the print attributes of the printout.

The following PostScript variables are defined at runtime by the mp binary. All the print layout
files can use these variables for printing dynamic information such as user name, subject,
print time. This information taken from the variables normally appears in the header or
footer of the print page.

User The name of the user who is running mp, obtained from the
system passwd file.

MailFor Variable used to hold the name of the type of article to print.
The possible values for this variable are:
■ Listing for – When the input is a text file
■ Mail for – When the input is a mail file
■ Article from – When the input is an article from a news

group

Subject The subject taken from the mail and news headers. You can
use the -s option to force a subject to the mail and news files as
well as to normal text files.

Timenow The time of print that appears in the header and footer. This
information is taken from the localtime() function.

Adding and Customizing prolog Files

International Language Environments Guide • November 2010164

The following functions are implemented in print layout prolog files. All of these functions can
use subfunctions.

endpage Usage: page_number endpage

Called when the bottom of a printed page is reached. This
function restores the graphic context of the page and issues a
showpage. In some prolog files the header and footer
information is displayed in a page-by-page mode rather than
in a column-by-column mode. You can implement this
function to call subfunctions that display the header and
footer gray-scale lozenges.

newpage Usage: page_number newpage

Routines or commands to be executed when a new page
begins. Setting landscape print mode, saving the print graphic
context, and translating the page coordinates are some of the
functions for these routines.

endcol Usage: page_number col_number endcol

Used to display header and footer information, move to the
new print position, and so forth.

To add new print layout prolog files, you need to define the following variables explicitly within
the print layout prolog file:

NumCols Number of columns in a print page. Default is 2.

PrintWidth Width of print area in inches. Default is 6.

PrintHeight Height of print area in inches. Default is 9.

.xpr Files
These files are located by default at /usr/lib/lp/locale/C/mp/. An .xpr file corresponds to
each PostScript prolog layout file except the mp.common.ps file. You can define an alternate
prolog directory by defining the MP_PROLOGUE environment variable.

These files work as keyword/values pairs. Lines that start with # are considered comments.
Spaces separate different tokens unless explicitly stated. Three main sections for each .xpr file
are bound by the following keyword pairs:

■ STARTCOMMON/ENDCOMMON

■ STARTPAGE/ENDPAGE

■ STARTCOLUMN/ENDCOLUMN

Adding and Customizing prolog Files

Chapter 7 • Print Filter Enhancement With mp 165

■ STARTFORCEDPAGE/ENDFORCEDPAGE

■ STARTFORCEDCOLUMN/ENDFORCEDCOLUMN

Certain keyword/value pairs can be used in these three areas. Each area is described in the
following section.

STARTCOMMON/ENDCOMMONKeywords
All the keyword/value pairs that appear after the STARTCOMMON keyword and before the
ENDCOMMON keyword define general properties of the print page. Different valid values for a
keyword are separated by using a slash (/) character.

ORIENTATION 0/1

0 means the printing occurs in portrait and 1 means in landscape.

PAGELENGTH unsigned-integer
A value that indicates the number of lines per logical page.

LINELENGTH unsigned-integer
A value that indicates the number of single-column characters per line.

NUMCOLS unsigned-integer
The number of logical pages per physical page.

HDNGFONTSIZE unsigned-integer
The heading-font point size in decipoints.

BODYFONTSIZE unsigned-integer
The body-font point size in decipoints.

PROLOGDPI unsigned-integer
The dots-per-inch scale in which the current .xpr file is created.

YTEXTBOUNDARY unsigned-integer
This y-coordinate establishes the boundary for text printing in a page or logical page
(column). This boundary is used as an additional check to see whether text printing is
occurring within the expected area. This boundary is needed for Complex Text Layout and
EUC printing, as character height information obtained from corresponding fonts can be
wrong.

STARTTEXT unsigned-integerunsigned-integer
The decipoint x/y points where the actual text printing starts in the first logical page in a
physical page.

PAGESTRING 0/1

The 1 indicates that a page string needs to be appended before the page number in the
heading.

0 indicates that only the page number is displayed.

Adding and Customizing prolog Files

International Language Environments Guide • November 2010166

EXTRAHDNGFONT font string 1, font string 2, ... font string n
The font strings are X Logical Font Descriptions. The token that separates the keyword
EXTRAHDNGFONT from the comma-separated font name list is a quote " character, not a space
or tab. These fonts are given preference over the built-in fonts when the heading is printed.
Usually, EXTRABODYFONT is used to assign printer-resident fonts that are configured in the
/usr/openwin/server/etc/XpConfig/C/print/models/<model name>/fonts directory.

The fonts.dir file contains the XLFD of the printer-resident fonts.

In the .xpr file, a font usually is specified as shown in the following example:

"-monotype-Gill Sans-Regular-r-normal- -*-%d-*-*-p-0-iso8859-2"

The %d, if present, is replaced by mp to the point size of the current heading fonts in the .xpr
file. The x resolution and y resolution are specified by *. The average width field is set as 0 to
indicate selection of a scalable font, if possible. You can also provide more specific font
names.

EXTRABODYFONT font string 1, font string 2, ... font string n
The same as EXTRAHDNGFONT, except that these fonts are used to print the page body.

XDISPLACEMENT signed/unsigned int
Provides the x coordinate displacement to be applied to the page for shifting the contents of
the page in the x direction. This displacement can be a +ve or -ve value.

YDISPLACEMENT signed/unsigned int
The same as x displacement, except that the shifting happens in the y direction.

These two keywords are useful when you deal with some printers that have nonstandard
margin widths that require you to shift the printed contents in a page.

STARTPAGE/ENDPAGEKeywords
The keyword value pairs in this section are bound by STARTPAGE and ENDPAGE keywords. This
section contains drawing and heading information that is to be applied for a physical page. A
physical page can contain many logical pages, but all the drawing routines that are contained
between these keywords are applied only once to a physical page.

The valid drawing entities are LINE and ARC. The XDrawLine() and XDrawArc() functions are
executed on values of these keywords.

The dimensions within this section are mapped in PROLOGDPI units. Angles are in degrees.

LINE x1 y1 x2 y2 The x/y unsigned coordinates define a pair of points for
connecting a line.

ARC x y width height angle1

angle2

x and y are both unsigned integers that represent the arc
origin. Width and height are unsigned integers that represent
the width and height of the arc.

Adding and Customizing prolog Files

Chapter 7 • Print Filter Enhancement With mp 167

USERSTRINGPOS x y Unsigned coordinates represent the position in which the user
information is printed on the heading.

TIMESTRINGPOS x y Unsigned coordinates represent the position in which the time
for printing is printed on the heading.

PAGESTRINGPOS x y Unsigned coordinates represent the position to print the page
string for each printed page.

SUBJECTSTRINGPOS x y Unsigned coordinates represent the position to print the
subject in the page.

STARTFORCEDPAGE/ENDFORCEDPAGE Section
When the -n option is given to mp, all the decorations given within a STARTPAGE/ENDPAGE
section do not print. However, everything included within a STARTFORCEDPAGE/ENDFORCEDPAGE
section prints even if the -n option is given.

STARTCOLUMN/ENDCOLUMN Section
All keywords are the same as described in “STARTPAGE/ENDPAGE Keywords” on page 167 except
that the entries in this section are applied NUMCOLS times to a physical page. If NUMCOLS is 3, then
the printable area of the physical page is divided into three, and lines, arcs, or heading
decorations appear three times per page.

STARTFORCEDCOLUMN/ENDFORCEDCOLUMN Section
When the -n option is given to mp, all the decorations given within a STARTCOLUMN/ENDCOLUMN
section do not print. However, everything included within a
STARTFORCEDCOLUMN/ENDFORCEDCOLUMN section prints even if the -n option is given.

Creating a New .xpr File
When you create a new .xpr prolog file, you specify only the values that differ from the default.

The following table lists the mp program defaults for different keywords if these values are not
specified in the .xpr file for the STARTCOMMON/ENDCOMMON section:

TABLE 7–2 STARTCOMMON/ENDCOMMONKeyword Values

Keyword Value

ORIENTATION 0

PAGELENGTH 60

LINELENGTH 80

Adding and Customizing prolog Files

International Language Environments Guide • November 2010168

TABLE 7–2 STARTCOMMON/ENDCOMMONKeyword Values (Continued)
Keyword Value

YTEXTBOUNDARY 3005

NUMCOLS 01

HDNGFONTSIZE 120

PROLOGDPI 300

STARTTEXT 135 280

PAGESTRING 0

No default values are needed for the other two sections bound by STARTPAGE/ENDPAGE and
STARTCOLUMN/ENDCOLUMN.

To create a page with no decoration, use four logical pages per physical page in portrait format.
Specify the following sections and values:

STARTCOMMON

NUMCOLS 04

LINELENGTH 20

ENDCOMMON

When you create a page with no decoration, you do not need to specify the following two
sections:

STARTPAGE/ENDPAGE

STARTCOLUMN/ENDCOLUMN

These parameters are not needed if you are not putting decorations on the printed page. All the
coordinates are in 300 dpi by default unless you are not specifying the PROLOGDPI keyword. If
the target printer resolution is different, the .xpr file is scaled to fit into that resolution by the
program.

Before you create an .xpr file, you must know the paper dimensions. For U.S. paper, 8.5x11
inches, for a printer of resolution 300 dpi, 2550X3300 are the total dimensions. Most printers
cannot print from the top left corner of the paper. Instead, some margin space is assigned
around the physical paper. Even if you try to print from 0,0 the printing will not be in the top left
corner of the page. Consider this limitation when you create a new .xpr file.

Adding and Customizing prolog Files

Chapter 7 • Print Filter Enhancement With mp 169

170

Compose and Dead Key Input

This appendix describes the compose key sequences in different input modes and the dead key
input.

How to Use Compose and Dead Key Input
To insert characters with diacritical marks or special characters from Latin-1, Latin-2, Latin-4,
Latin-5, and Latin-9, you must type a Compose key sequence, as described in the following
examples.

To display the Ä character:

1. Press and release the Compose key.
2. Press Shift and the A key simultaneously. Release Shift-A.
3. Press and release the ” key.

To display the ¿, character:

1. Press and release the Compose key.
2. Press and release the ? key.
3. Press and release the ? key.

When there is no Compose key available on your keyboard, you can emulate its operation by
simultaneously pressing the Control key and the Shift key.

For the input of the Euro currency symbol (Unicode value U+20AC) from the locale, you can
use any one of following input sequences:

■ AltGraph and E together
■ AltGraph and 4 together
■ AltGraph and 5 together

AA P P E N D I X A

171

With these input sequences, you press both keys simultaneously. If no AltGraph key is available
on your keyboard, you can use certain alternative euro sign input sequences such as Compose e
= or Compose c =.

The following tables show the most commonly used compose sequences for Latin-1, Latin-2,
Latin-3, Latin-4, Latin-5, and Latin-9 script input for the Oracle Solaris operating system.

The following table lists the common Latin-1 Compose key sequences.

TABLE A–1 Common Latin-1 Compose Key Sequences

Press Compose, then Press and Release Press and Release Result

spacebar spacebar no-break space

s 1 superscripted 1

s 2 superscripted 2

s 3 superscripted 3

! ! inverted exclamation mark

x o currency symbol ¤

p ! paragraph symbol ¶

/ u mu u

' " acute accent

, , (comma) cedilla Ç

" " diaeresis

- ^ macron

o o degree °

x x multiplication sign x

+ - plus-minus ±

- - soft hyphen –

- : division sign ÷

- a ordinal (feminine) ª

- o ordinal (masculine) º

- , (comma) not sign ¬

. . middle dot ·

1 2 vulgar fraction ½

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010172

TABLE A–1 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

1 4 vulgar fraction ¼

3 4 vulgar fraction ¾

< < left double angle quotation mark «

> > right double angle quotation mark »

? ? inverted question mark ¿

A ‘ (backquote) A grave À

A ' (single quote) A acute Á

A * A ring above Å

A " A diaeresis Ä

A ^ A circumflex Â

A ~ A tilde Ã

A E AE diphthong Æ

C , (comma) C cedilla Ç

C o copyright sign ©

D - Capital eth ð

E ‘ (backquote) E grave È

E ' E acute É

E " E diaeresis Ë

E ^ E circumflex Ê

I ‘ (backquote) I grave Ì

I ’ I acute Í

I " I diaeresis Ï

I ^ I circumflex Î

L - pound sign £

N ~ N tilde Ñ

O ‘ (backquote) O grave Ò

O ’ O acute Ó

O / O slash Ø

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 173

TABLE A–1 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

O " O diaeresis Ö

O ^ O circumflex Ô

O ~ O tilde Õ

R O registered mark ®

T H Thorn þ

U ‘ (backquote) U grave Ù

U ' U acute Ú

U " U diaeresis Ü

U ^ U circumflex Û

Y ' Y acute ý

Y - yen sign ¥

a ‘ (backquote) a grave à

a ' a acute á

a * a ring above å

a " a diaeresis ä

a ~ a tilde ã

a ^ a circumflex â

a e ae diphthong æ

c , (comma) c cedilla ç

c / cent sign ¢

c o copyright sign ©

d - eth ð

e ‘ (backquote) e grave è

e ' e acute é

e " e diaeresis ë

e ^ e circumflex ê

i ‘ (backquote) i grave ì

i ' i acute í

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010174

TABLE A–1 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

i " i diaeresis ï

i ^ i circumflex î

n ~ n tilde ñ

o ‘ (backquote) o grave ò

o ' o acute ó

o / o slash ø

o " o diaeresis ö

o ^ o circumflex ô

o ~ o tilde õ

s s German double s ß also known as
sharp S

t h thorn þ

u ‘ (backquote) u grave ù

u ' u acute ú

u " u diaeresis ü

u ^ u circumflex û

y ' y acute y

y " y diaeresis ÿ

| | broken bar ¦

The following table lists the common Latin-2 Compose key sequences.

TABLE A–2 Common Latin-2 Compose Key Sequences

Press Compose, then Press and Release Press and Release Result

k k kra

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 175

TABLE A–2 Common Latin-2 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

I _ I macron

I ~ I tilde

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

l , l cedilla

n , n cedilla

o _ o macron

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010176

TABLE A–2 Common Latin-2 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

u _ u macron

n n eng

The following table lists the common Latin-3 Compose key sequences.

TABLE A–3 Common Latin-3 Compose Key Sequences

Press Compose, then Press and Release Press and Release Result

C > C circumflex

C . C dot above

G > G circumflex

G . G dot above

H > H circumflex

J > j circumflex

S > S circumflex

U u U breve

c > c circumflex

c . c dot above

g > g circumflex

g . g dot above

h > h circumflex

j > j circumflex

s > s circumflex

u u u breve

The following table lists the common Latin-4 Compose key sequences.

TABLE A–4 Common Latin-4 Compose Key Sequences

Press Compose, then Press and Release Press and Release Result

k k kra

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 177

TABLE A–4 Common Latin-4 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

I _ I macron

I ~ I tilde

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

l , l cedilla

n , n cedilla

o _ o macron

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010178

TABLE A–4 Common Latin-4 Compose Key Sequences (Continued)
Press Compose, then Press and Release Press and Release Result

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

u _ u macron

n n eng

The following table lists the common Latin-5 Compose key sequences.

TABLE A–5 Common Latin-5 Compose Key Sequences

Press Compose, then Press and Release Press and Release Result

G u G breve

I . I dot above

g u g breve

i . i dotless

The following table lists the Common Latin-9 Compose key sequences.

TABLE A–6 Common Latin-9 Compose Key Sequences

Press Compose, then Press and Release Press and Release Result

o e Ligature oe

O E Ligature OE

Y “ Y diaeresis

If you are using a keyboard that has accent dead keys, use the following compose key sequences.
The dead_acute key name comes from the X11 registered keysym names of X_dead_acute as
shown at /usr/openwin/include/X11/keysymdef.h. The SunFA_Circum and such key names
come from X11 keysym names such as SunXK_FA_Circum shown at
/usr/openwin/include/X11/Sunkeysym.h.

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 179

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys

Press and Release Press and Release Result

dead_grave spacebar grave accent

dead_acute apostrophe acute accent

dead_acute spacebar apostrophe

dead_diaeresis double quote diaeresis

dead_diaeresis spacebar diaeresis

dead_circumflex spacebar circumflex accent

dead_circumflex slash vertical line

dead_circumflex 0 degree sign

dead_circumflex 1 superscript one

dead_circumflex 2 superscript two

dead_circumflex 3 superscript three

dead_circumflex period middle dot

dead_circumflex exclamation point broken bar

dead_circumflex minus macron

dead_circumflex underscore macron

dead_cedilla comma cedilla

dead_cedilla minus not sign

dead_tilde spacebar tilde

dead_grave A A with grave

dead_acute A A with acute

dead_circumflex A A with circumflex

dead_tilde A A with tilde

dead_diaeresis A A with diaeresis

dead_grave a a with grave

dead_acute a a with acute

dead_circumflex a a with circumflex

dead_tilde a a with tilde

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010180

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

dead_diaeresis a a with diaeresis

dead_cedilla C C with cedilla

dead_cedilla c c with cedilla

dead_grave E E with grave

dead_acute E E with acute

dead_circumflex E E with circumflex

dead_diaeresis E E with diaeresis

dead_grave e e with grave

dead_acute e e with acute

dead_circumflex e e with circumflex

dead_diaeresis e e with diaeresis

dead_grave I I with grave

dead_acute I I with acute

dead_circumflex I I with circumflex

dead_diaeresis I I with diaeresis

dead_grave i i with grave

dead_acute i i with acute

dead_circumflex i i with circumflex

dead_diaeresis i i with diaeresis

dead_tilde N N with tilde

dead_tilde n n with tilde

dead_grave O O with grave

dead_acute O O with acute

dead_circumflex O O with circumflex

dead_tilde O O with tilde

dead_diaeresis O O with diaeresis

dead_grave o o with grave

dead_acute o o with acute

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 181

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

dead_circumflex o o with circumflex

dead_tilde o o with tilde

dead_diaeresis o o with diaeresis

dead_cedilla S S with cedilla

dead_cedilla s s with cedilla

dead_grave U U with grave

dead_acute U U with acute

dead_circumflex U U with circumflex

dead_diaeresis U U with diaeresis

dead_grave u u with grave

dead_acute u u with acute

dead_circumflex u u with circumflex

dead_diaeresis u u with diaeresis

dead_acute Y Y with acute

dead_acute y y with acute

dead_diaeresis y y with diaeresis

SunFA_Grave spacebar grave accent

SunFA_Grave A A with grave

SunFA_Grave a a with grave

SunFA_Grave E E with grave

SunFA_Grave e e with grave

SunFA_Grave I I with grave

SunFA_Grave i i with grave

SunFA_Grave O O with grave

SunFA_Grave o o with grave

SunFA_Grave U U with grave

SunFA_Grave u u with grave

SunFA_Acute apostrophe acute accent

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010182

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Acute spacebar apostrophe

SunFA_Acute A A with acute

SunFA_Acute a a with acute

SunFA_Acute C C with acute

SunFA_Acute c c with acute

SunFA_Acute E E with acute

SunFA_Acute e e with acute

SunFA_Acute I I with acute

SunFA_Acute i i with acute

SunFA_Acute L L with acute

SunFA_Acute l l with acute

SunFA_Acute N N with acute

SunFA_Acute n n with acute

SunFA_Acute O O with acute

SunFA_Acute o o with acute

SunFA_Acute R R with acute

SunFA_Acute r r with acute

SunFA_Acute S S with acute

SunFA_Acute s s with acute

SunFA_Acute U U with acute

SunFA_Acute u u with acute

SunFA_Acute Y Y with acute

SunFA_Acute y y with acute

SunFA_Acute Z Z with acute

SunFA_Acute z z with acute

SunFA_Cedilla comma cedilla

SunFA_Cedilla minus not sign

SunFA_Cedilla C C with cedilla

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 183

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Cedilla c c with cedilla

SunFA_Cedilla G G with cedilla

SunFA_Cedilla g g with cedilla

SunFA_Cedilla K K with cedilla

SunFA_Cedilla k k with cedilla

SunFA_Cedilla L L with cedilla

SunFA_Cedilla l l with cedilla

SunFA_Cedilla N N with cedilla

SunFA_Cedilla n n with cedilla

SunFA_Cedilla R R with cedilla

SunFA_Cedilla r r with cedilla

SunFA_Cedilla S S with cedilla

SunFA_Cedilla s s with cedilla

SunFA_Cedilla T T with cedilla

SunFA_Cedilla t t with cedilla

SunFA_Circum spacebar circumflex accent

SunFA_Circum 0 degree sign

SunFA_Circum 1 superscript one

SunFA_Circum 2 superscript two

SunFA_Circum 3 superscript three

SunFA_Circum exclamation point broken bar

SunFA_Circum minus macron

SunFA_Circum underscore macron

SunFA_Circum period middle dot

SunFA_Circum slash vertical line

SunFA_Circum A A with circumflex

SunFA_Circum a a with circumflex

SunFA_Circum C C with circumflex

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010184

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Circum c c with circumflex

SunFA_Circum E E with circumflex

SunFA_Circum e e with circumflex

SunFA_Circum G G with circumflex

SunFA_Circum g g with circumflex

SunFA_Circum H H with circumflex

SunFA_Circum h h with circumflex

SunFA_Circum I I with circumflex

SunFA_Circum i i with circumflex

SunFA_Circum J J with circumflex

SunFA_Circum j j with circumflex

SunFA_Circum O O with circumflex

SunFA_Circum o o with circumflex

SunFA_Circum S S with circumflex

SunFA_Circum s s with circumflex

SunFA_Circum U U with circumflex

SunFA_Circum u u with circumflex

SunFA_Diaeresis double quote diaeresis

SunFA_Diaeresis spacebar diaeresis

SunFA_Diaeresis A A with diaeresis

SunFA_Diaeresis a a with diaeresis

SunFA_Diaeresis E E with diaeresis

SunFA_Diaeresis e e with diaeresis

SunFA_Diaeresis I I with diaeresis

SunFA_Diaeresis i i with diaeresis

SunFA_Diaeresis O O with diaeresis

SunFA_Diaeresis o o with diaeresis

SunFA_Diaeresis U U with diaeresis

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 185

TABLE A–7 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Diaeresis u u with diaeresis

SunFA_Diaeresis y y with diaeresis

SunFA_Diaeresis Y Y with diaeresis

SunFA_Tilde spacebar tilde

SunFA_Tilde A A with tilde

SunFA_Tilde a a with tilde

SunFA_Tilde N N with tilde

SunFA_Tilde n n with tilde

SunFA_Tilde O O with tilde

SunFA_Tilde o o with tilde

The following compose key sequences are supported in the Greek input mode. Some compose
key sequences start with accent dead keys. The abbreviation “ordfemenine” stands for feminine
ordinal indicator key.

TABLE A–8 Compose Key Sequences in Greek Input Mode

Press and Release Press and Release Result

semicolon a lowercase Greek_alpha with tonos

semicolon e lowercase Greek_epsilon with tonos

semicolon h lowercase Greek_eta with tonos

semicolon i lowercase Greek_iota with tonos

semicolon o lowercase Greek_omicron with tonos

semicolon y lowercase Greek_upsilon with tonos

semicolon v lowercase Greek_omega with tonos

semicolon A uppercase Greek_alpha with tonos

semicolon E uppercase Greek_epsilon with tonos

semicolon H uppercase Greek_eta with tonos

semicolon I uppercase Greek_iota with tonos

semicolon O uppercase Greek_omicron with tonos

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010186

TABLE A–8 Compose Key Sequences in Greek Input Mode (Continued)
Press and Release Press and Release Result

semicolon Y uppercase Greek_upsilon with tonos

semicolon V uppercase Greek_omega with tonos

dead_acute Greek_alpha lowercase Greek_alpha with tonos

dead_acute Greek_epsilon lowercase Greek_epsilon with tonos

dead_acute Greek_eta lowercase Greek_eta with tonos

dead_acute Greek_iota lowercase Greek_iota with tonos

dead_acute Greek_omicron lowercase Greek_omicron with tonos

dead_acute Greek_upsilon lowercase Greek_upsilon with tonos

dead_acute Greek_omega lowercase Greek_omega with tonos

dead_acute Greek_ALPHA uppercase Greek_alpha with tonos

dead_acute Greek_EPSILON uppercase Greek_epsilon with tonos

dead_acute Greek_ETA uppercase Greek_eta with tonos

dead_acute Greek_IOTA uppercase Greek_iota with tonos

dead_acute Greek_OMICRON uppercase Greek_omicron with tonos

dead_acute Greek_UPSILON uppercase Greek_upsilon with tonos

dead_acute Greek_OMEGA uppercase Greek_omega with tonos

dead_acute a lowercase Greek_alpha with tonos

dead_acute e lowercase Greek_epsilon with tonos

dead_acute h lowercase Greek_eta with tonos

dead_acute i lowercase Greek_iota with tonos

dead_acute o lowercase Greek_omicron with tonos

dead_acute y lowercase Greek_upsilon with tonos

dead_acute v lowercase Greek_omega with tonos

dead_acute A uppercase Greek_alpha with tonos

dead_acute E uppercase Greek_epsilon with tonos

dead_acute H uppercase Greek_eta with tonos

dead_acute I uppercase Greek_iota with tonos

dead_acute O uppercase Greek_omicron with tonos

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 187

TABLE A–8 Compose Key Sequences in Greek Input Mode (Continued)
Press and Release Press and Release Result

dead_acute Y uppercase Greek_upsilon with tonos

dead_acute V uppercase Greek_omega with tonos

colon i lowercase Greek_iota with dialytika

colon y lowercase Greek_upsilon with
dialytika

colon I uppercase Greek_iota with dialytika

colon Y uppercase Greek_upsilon with
dialytika

dead_diaeresis i lowercase Greek_iota with dialytika

dead_diaeresis y lowercase Greek_upsilon with
dialytika

dead_diaeresis I uppercase Greek_iota with dialytika

dead_diaeresis Y uppercase Greek_upsilon with
dialytika

dead_diaeresis Greek_iota lowercase Greek_iota with dialytika

dead_diaeresis Greek_upsilon lowercase Greek_upsilon with
dialytika

dead_diaeresis Greek_IOTA uppercase Greek_iota with dialytika

dead_diaeresis Greek_UPSILON uppercase Greek_upsilon with
dialytika

semicolon semicolon Greek tonos

colon colon diaeresis/dialytika

ordfeminine 0 plus-minus sign

ordfeminine 1 section sign

ordfeminine 2 superscript two

ordfeminine 3 superscript three

ordfeminine 5 broken bar

ordfeminine 6 copyright sign

ordfeminine 7 not sign

ordfeminine 8 soft hyphen

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010188

TABLE A–8 Compose Key Sequences in Greek Input Mode (Continued)
Press and Release Press and Release Result

ordfeminine 9 degree sign

ordfeminine hyphen vulgar fraction one half

ordfeminine backslash pound sign

ordfeminine braceleft modifier letter reversed comma

ordfeminine braceright modifier letter apostrophe

ordfeminine bracketleft left-pointing double angle quotation
mark

ordfeminine bracketright right-pointing double angle quotation
mark

SunFA_Acute a lowercase Greek_alpha with tonos

SunFA_Acute e lowercase Greek_epsilon with tonos

SunFA_Acute h lowercase Greek_eta with tonos

SunFA_Acute i lowercase Greek_iota with tonos

SunFA_Acute o lowercase Greek_omicron with tonos

SunFA_Acute y lowercase Greek_upsilon with tonos

SunFA_Acute v Greek_omega with tonos

SunFA_Acute A uppercase Greek_alpha with tonos

SunFA_Acute E uppercase Greek_epsilon with tonos

SunFA_Acute H uppercase Greek_eta with tonos

SunFA_Acute O uppercase Greek_omicron with tonos

SunFA_Acute I uppercase Greek_iota with tonos

SunFA_Acute Y uppercase Greek_upsilon with tonos

SunFA_Acute V uppercase Greek_omega with tonos

SunFA_Acute Greek_alpha lowercase Greek_alpha with tonos

SunFA_Acute Greek_epsilon lowercase Greek_epsilon with tonos

SunFA_Acute Greek_eta lowercase Greek_eta with tonos

SunFA_Acute Greek_iota lowercase Greek_iota with tonos

SunFA_Acute Greek_omega lowercase Greek_omega with tonos

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 189

TABLE A–8 Compose Key Sequences in Greek Input Mode (Continued)
Press and Release Press and Release Result

SunFA_Acute Greek_omicron lowercase Greek_omicron with tonos

SunFA_Acute Greek_upsilon lowercase Greek_upsilon with tonos

SunFA_Acute Greek_ALPHA uppercase Greek_alpha with tonos

SunFA_Acute Greek_EPSILON uppercase Greek_epsilon with tonos

SunFA_Acute Greek_ETA uppercase Greek_eta with tonos

SunFA_Acute Greek_IOTA uppercase Greek_iota with tonos

SunFA_Acute Greek_OMICRON uppercase Greek_omicron with tonos

SunFA_Acute Greek_UPSILON uppercase Greek_upsilon with tonos

SunFA_Acute Greek_OMEGA uppercase Greek_omega with tonos

SunFA_Diaeresis i lowercase Greek_iota with dialytika

SunFA_Diaeresis y lowercase Greek_upsilon with
dialytika

SunFA_Diaeresis I uppercase Greek_iota with dialytika

SunFA_Diaeresis Y uppercase Greek_upsilon with
dialytika

SunFA_Diaeresis Greek_iota lowercase Greek_iota with dialytika

SunFA_Diaeresis Greek_upsilon lowercase Greek_upsilon with
dialytika

SunFA_Diaeresis Greek_IOTA uppercase Greek_iota with dialytika

SunFA_Diaeresis Greek_UPSILON uppercase Greek_upsilon with
dialytika

TABLE A–9 Compose Key Sequences in Greek Input Mode With Three Keys

Press and Release Press and Release Press and Release Result

semicolon colon y lowercase Greek_upsilon with
dialytika and tonos

colon semicolon y lowercase Greek_upsilon with
dialytika and tonos

semicolon colon i lowercase Greek_iota with
dialytika and tonos

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010190

TABLE A–9 Compose Key Sequences in Greek Input Mode With Three Keys (Continued)
Press and Release Press and Release Press and Release Result

colon semicolon i lowercase Greek_iota with
dialytika and tonos

dead_acute dead_diaeresis y lowercase Greek_upsilon with
dialytika and tonos

dead_diaeresis dead_acute y lowercase Greek_upsilon with
dialytika and tonos

dead_acute dead_diaeresis i lowercase Greek_iota with
dialytika and tonos

dead_diaeresis dead_acute i lowercase Greek_iota with
dialytika and tonos

dead_acute dead_diaeresis Greek_upsilon lowercase Greek_upsilon with
dialytika and tonos

dead_diaeresis dead_acute Greek_upsilon lowercase Greek_upsilon with
dialytika and tonos

dead_acute dead_diaeresis Greek_iota lowercase Greek_iota with
dialytika and tonos

dead_diaeresis dead_acute Greek_iota lowercase Greek_iota with
dialytika and tonos

SunFA_Acute SunFA_Diaeresis i lowercase Greek_iota with
dialytika and tonos

SunFA_Diaeresis SunFA_Acute i lowercase Greek_iota with
dialytika and tonos

SunFA_Acute SunFA_Diaeresis y lowercase Greek_upsilon with
dialytika and tonos

SunFA_Diaeresis SunFA_Acute y lowercase Greek_upsilon with
dialytika and tonos

SunFA_Acute SunFA_Diaeresis Greek_iota lowercase Greek_iota with
dialytika and tonos

SunFA_Diaeresis SunFA_Acute Greek_iota lowercase Greek_iota with
dialytika and tonos

SunFA_Acute SunFA_Diaeresis Greek_upsilon lowercase Greek_upsilon with
dialytika and tonos

SunFA_Diaeresis SunFA_Acute Greek_upsilon lowercase Greek_upsilon with
dialytika and tonos

How to Use Compose and Dead Key Input

Appendix A • Compose and Dead Key Input 191

TABLE A–10 Compose Key Sequences in Greek Input Mode With Four Keys

Press and Release Press and Release Press and Release Press and Release Result

semicolon

colon

colon

semicolon

semicolon

colon

colon

semicolon

Greek dialytika
tonos

Greek dialytika
tonos

How to Use Compose and Dead Key Input

International Language Environments Guide • November 2010192

Language Support Features and Enhancements

This appendix deals with the language enhancement support features introduced in Oracle
Solaris 10 over different releases. It contains the following sections:
■ “Input Method Features” on page 193
■ “File Encoding Examiner” on page 197
■ “More Japanese iconv Modules for Unicode” on page 197
■ “Zero-Country Code Keyboard Layout Support ” on page 197
■ “Unicode Version 4.0 Support” on page 198
■ “Code Conversions for Internationalized Domain Name Support” on page 198
■ “New iconv Code Conversions” on page 199
■ “Standard Type Services Framework” on page 199
■ “Additional Indic Scripts for Support in Unicode Locales” on page 199
■ “HKSCS-2001 Support in Hong Kong Locales ” on page 200

Input Method Features
This section describes the language support features related to input methods that were added
in different versions of Oracle Solaris operating system

Internet Intranet Input Method Framework (IIIMF)
Hangul Language Engine
This feature is included in the Solaris 10 10/08 release.

The Hangul LE (Language Engine) is a new Korean input method that enhances user
experience. Hangul LE has the following features:

■ User-friendly GUI
■ More convenient Hangul or Hanja input functionalities

BA P P E N D I X B

193

For more information, see the Hangul LE help.

libchewing 0.3.0

This feature is included in the Solaris 10 5/08 release.

Chewing input method (IM) is based on libchewing, which is an open-source library for
Traditional Chinese input. libchewing is upgraded to the libchewing 0.3.0 version.
libchewing 0.3.0 includes the following features:

■ Incompatibility with API/ABI
■ UTF-8 based language engine core for common Unicode environment
■ Includes the libchewing-data subproject
■ Zuin fixes and symbol improvements
■ New binary form of user hash data to speed up loading and solving hash data corruption
■ Improved calculation of internal tree and phone constants
■ Revised tsi.src for richer phrases and avoiding crashes
■ Merge phone and phrase from CNS11643

■ Improved Han-Yu PinYin to use table-lookup implementation
■ Experimental frequency evaluation that recomputes chewing lifetime
■ Implementation of the choice mechanism for symbol pairs
■ Experimental, memory-mapping based, binary data handling to speed up data loading

Input Method Switcher Enhancement and EMEA
Keyboard Layout Emulation Support
This feature is included in the Solaris 10 8/07 release.

The input method switcher application, gnome-im-switcher-applet, is replaced with
iiim-panel, a stand-alone GTK+ application. iiim-panel now starts and resides on the
GNOME panel automatically when you log in to the Java Desktop System (Java DS) in UTF-8 or
Asian locales. iiim-panel can also run in the Common Desktop Environment (CDE).

IIIMF supports language engines that emulate the EMEA keyboard layout such as French,
Polish or Dutch.

For more information, see the iiim-properties online help.

Input Method Features

International Language Environments Guide • November 2010194

IIIMF and Language Engines
This feature is included in the Solaris 10 11/06 release.

The Internet Intranet Input Method Framework (IIIMF) has been upgraded from revision 10 to
revision 12.

This framework provides the following new features:

■ Input Method Switcher — Displays input method status and switches input languages. You
can add the input method switcher to the Java Desktop System (Java DS) panel. Select Add
to Panel -> Utility -> Input Method Switcher to add the input method switcher to the Java
DS panel.

■ Utility for iiim-properties — Supports various input method preferences. Use one of the
following methods to start the iiim-properties utility:
■ Select Launch -> Preferences -> Desktop Preferences -> Input Methods.
■ Click mouse button 3 on the Input method switcher and select Preference.
■ In the CDE environment, select Tool -> Input Method Preference from the CDE main

menu or type iiim-properties at the command prompt.

Each language engine has also been upgraded to the IIIMF revision 12 base. The Japanese
language engines, ATOK12 and Wnn6, have been updated to ATOK for Oracle Solaris and
Wnn8 respectively. ATOK for Oracle Solaris is equivalent to ATOK17. A new Chinese chewing
input method has also been added to the IIIMF.

Korean Language Engine With Auxiliary Window
Support
This feature is included in the Solaris 10 3/05 release.

Korean users of the Oracle Solaris operating system can benefit from more comprehensive
keyboard input method support for the Korean language.

The new Korean Language Engine with auxiliary window support offers Korean users the
following auxiliary windows to control and configure the Korean input method (IM).

■ User-based preferences within one window.
■ A virtual keyboard environment within another window for point-and-click selection of

Korean characters.
■ Within another window, users can choose the symbols that they need from special

characters that are based on code points.
■ Organize all the windows within a special palette of control.

Input Method Features

Appendix B • Language Support Features and Enhancements 195

This IM supports three separate keyboard layouts: 2 beol sik, 3 beol sik 390, and 3 beol

sik final.

Common Transliteration-based Input Method for All
Indian Languages
This feature is included in the Solaris 10 3/05 release.

Users who operate within any Unicode (UTF-8) locale of the Oracle Solaris operating system
can now easily and intuitively input characters from Indian regional languages. Users who
interact with CDE applications, StarOffice, or Mozilla can more easily interact with Indian
scripts.

After selecting the transliteration-based input method (IM), users can type phonetic
equivalents of Indian language scripts in English. These equivalents are then displayed in the
script that is selected, and are correctly shaped and rendered with the help of an underlying
layout and shaper module. As transliteration is the most commonly used input method for
Indian languages, this support can greatly enhance the usability of the eight Indian scripts that
are provided in the Oracle Solaris software.

Wubi Input Method
This feature is included in the Solaris 10 3/05 release.

The Wubi input method (IM) is widely used in China. The encoding rule for Wubi IM is based
on the radical or stroke shape of Chinese characters. Users can rapidly type Chinese characters
through a standard keyboard rather than through slower, phonetic-based input methods.

Input Method Support for Indic
This language support feature has been added to the Solaris 10 3/05 release.

Input support for Indian regional language keyboards has been added to the Oracle Solaris
operating system. Indic language users can type Indic language characters by using their
preferred keyboard layouts in the Oracle Solaris operating system.

Input Method Features

International Language Environments Guide • November 2010196

File Encoding Examiner
This feature is included in the Solaris 10 5/08 release.

The File Encoding Examiner fsexam enables you to convert the name of a file, or the contents of
a plain-text file, from a legacy character encoding to UTF-8 encoding.The fsexam utility include
the following new features:

■ Encoding list customization
■ Encoding auto-detection
■ Support for dry runs, log files, batch conversion, file filtering, symbolic files, command line,

and special file types like the compress file

For more information, see the fsexam(1) and fsexam(4) man pages.

More Japanese iconvModules for Unicode
This feature is included in the Solaris 10 8/07 release.

Starting with this release, the following two types of codeset conversions between the Unicode
and Japanese codesets have been added:

■ In conversion from or to eucJP, PCK (SJIS), and ms932, iconv now supports UTF-16, UCS-2,
UTF-32, UCS-4 and their fixed endian variants, such as UTF-16BE and UTF-16LE, and
UTF-8.

■ iconv now supports codeset name eucJP-ms to provide conversion between Japanese EUC
and Unicode in the same way as Windows. All Unicode encoding variants mentioned
previously, are also supported with eucJP-ms.

For more information, see the iconv_ja(5) man page.

Zero-Country Code Keyboard Layout Support
This feature is included in the Solaris 10 8/07 release and newer releases.

This feature provides a new command option kbd -s language. This option enables users to
configure keyboard layouts in kernel. The Zero-CountryCode keyboard layout feature is
particularly useful on SPARC and x86 systems. In prior releases, all “non-self-ID keyboards”
were always recognized as US layout keyboard but now, with the kbd -s command, it is possible
to correctly configure the keyboard layout in kernel

For more information, see the kbd(1) man page.

Zero-Country Code Keyboard Layout Support

Appendix B • Language Support Features and Enhancements 197

http://docs.sun.com/doc/816-5165/kbd-1?a=view

Unicode Version 4.0 Support
This feature is included in the Solaris 10 3/05 release.

Unicode Version 4.0 introduces 1226 new characters over Unicode Version 3.2.

For more information about UTF-8 byte sequences on Unicode 3.2, see Unicode 3.2 and 4.0
Support in “New Internationalization and Localization Features” on page 18.

The UTF-8 character representation has been also changed to a more secure form. The UTF-8
Corrigendum was originally published in the Unicode Version 3.1 and later updated at the
Unicode Version 3.2.

This feature also implements the more secure UTF-8 character representation and byte
sequences in the iconv code conversions and the following OS-level multibyte functions:

■ mbtowc(3C)
■ mbstowcs(3C)
■ mbrtowc(3C)
■ mblen(3C)
■ mbsrtowcs(3C)
■ fgetwc(3C)
■ mbrlen(3C)

For more information, see Unicode Standard 4.0 (ISBN 0-321-18578-1).

Code Conversions for Internationalized Domain Name
Support

This feature is included in the Solaris Express 10/03 release.

Internationalized Domain Name (IDN) enables the use of non-English native language names
as host and domain names. To use non-English host and domain names, application developers
must convert names into ASCII Compatible Encoding (ACE) names in their applications as
specified in the RFC 3490. System administrators and end users must use ACE names in the
existing system files and applications where the networking or system administration
applications do not support non-English IDNs.

This feature aids in the code conversion. It provids the conversion API with various supported
option arguments, a dedicated IDN encoding conversion utility, and iconv code conversions.
See the following man pages for detail:

■ libidnkit(3LIB)
■ idn_decodename(3EXT)
■ idn_decodename2(3EXT)

Unicode Version 4.0 Support

International Language Environments Guide • November 2010198

http://docs.sun.com/doc/816-5168/mbtowc-3c?a=view
http://docs.sun.com/doc/816-5168/mbstowcs-3c?a=view
http://docs.sun.com/doc/816-5168/mbrtowc-3c?a=view
http://docs.sun.com/doc/816-5168/mblen-3c?a=view
http://docs.sun.com/doc/816-5168/mbsrtowcs-3c?a=view
http://docs.sun.com/doc/816-5168/fgetwc-3c?a=view
http://docs.sun.com/doc/816-5168/mbrlen-3c?a=view
http://www.unicode.org/standard/standard.html
http://docs.sun.com/doc/816-5173/libidnkit-3lib?a=view
http://docs.sun.com/doc/816-5172/idn-decodename-3ext?a=view
http://docs.sun.com/doc/816-5172/idn-decodename2-3ext?a=view

■ idn_encodename(3EXT)
■ idnconv(1)
■ iconv_en_US.UTF-8(5)

New iconvCode Conversions
This feature is included in the Solaris Express 11/04 release.

Various new iconv code conversions between single-byte PC and Windows code pages and
various Unicode forms have been added. Also, several major Asian code pages and UCS-2LE
have been added.

Standard Type Services Framework
This feature is included in the Solaris Express 9/03 release.

The Standard Type Services Framework (STSF) is a pluggable object-based architecture that
allows users to access typographically sophisticated text layout and rendering. The pluggable
architecture of the framework gives users the ability to use different font rasterization engines
and text layout processors to achieve the desired visual representation. The pluggable
architecture also manages fonts and enables application-specific fonts to be created. STSF
includes both a standalone API and an X server extension to handle rendering on the server side
for improved efficiency.

For more information about the project and how to use the API, see http://
stsf.sourceforge.net.

Additional Indic Scripts for Support in Unicode Locales
This feature is included in the Solaris 10 3/05 release.

In addition to the current support for Hindi, Oracle Solaris software supports the following
Indic scripts:

■ Bengali
■ Gurmukhi
■ Gujarati
■ Tamil.
■ Malayalam
■ Telugu
■ Kannada

Speakers of these Indian regional languages have language support in the Oracle Solaris
operating system for any of the Unicode locale environments that Oracle Solaris supports.

Additional Indic Scripts for Support in Unicode Locales

Appendix B • Language Support Features and Enhancements 199

http://docs.sun.com/doc/816-5172/idn-encodename-3ext?a=view
http://docs.sun.com/doc/816-5165/idnconv-1?a=view
http://stsf.sourceforge.net
http://stsf.sourceforge.net

HKSCS-2001 Support in Hong Kong Locales
This feature is included in the Solaris 10 3/05 release.

HKSCS-2001 is a new version of the Hong Kong Supplementary Character Set (HKSCS). This
new version adds 116 characters to the previous HKSC-1999 character set. HKSCS-2001 is
supported in these Oracle Solaris Hong Kong locales: zh_HK.BIG5HK and zh_HK.UTF-8.

HKSCS-2001 Support in Hong Kong Locales

International Language Environments Guide • November 2010200

Index

Numbers and Symbols
16-bit Unicode 3.0 codeset, 146

A
alphabets, 30
APIs, internationalization, 41
applications

FontSet/XmFontList definitions, 131
linking to system libraries, 39
XPG4, 40

Arabic, character support, 119
Arabic keyboard, 72

B
Baltic, character support, 119
Belgian keyboard, 72
Bengali keyboard, 87

C
C locale, 23
CDE

input methods, 120
locale support, 118

character encoding
Unicode, 117
UTF-16, 118
UTF-32, 118

character encoding (Continued)
UTF-8, 118

characters
conversion, 41
multibyte, 38
support, 119

Chinese
bopomofo, 32
Hanzi, 32
Hong Kong, 32
People's Republic of China, 32
pinyin, 32
Taiwan, 32
zhuyin, 32

code set, character support, 119
codeset, 22

conversions, 127
codeset independence (CSI)

ASCII slash, 36
commands, 36–37
dynamically linked applications, 39
Extended UNIX Code (EUC), 35–37
file code encodings, 36
Java internationalization, 36
libraries, 37
locale database, 38
multibyte characters, 38
NULL byte, 36
process code format, 38
Shift-JIS code set, 35–37

commands, CSI, 36–37
Complex Text Layout (CTL), 14

201

Complex Text Layout (CTL) (Continued)
architecture, 134
creating a render table, 148–149
creating a rendition, 146
editing a rendition, 147
horizontal tabs, 149
keyboard selection, 151
layout direction, 145–148
Motif, 135–144
Motif libraries, 151–152
mouse selection, 150
text resources, 151
XOC resources, 134

Compose key, 33
Compose key sequences

accent dead keys, 179
Greek, 186
Latin-2, 175
Latin-3, 177
Latin-4, 177
Latin-5, 179
Latin-9, 179

continuous phonetic input method, Indic script, 113
conversion, user-defined codeset, 49
.cshrc, STREAMS module settings, 126
ctype macros, 40
Cyrillic keyboard, 73
Czech, character support, 119

D
Danish keyboard, 73
date formats, 26
Daylight Savings Time (DST), 26
Devanagari keyboard, 88
DtMail, MIME character sets, 128
dtterm, 126

E
en_US.UTF-8, FontSet definitions, 131
en_US.UTF-8, support, 118
English, character support, 119

F
Finnish keyboard, 73
fonts

aliasing, 156
mapping, 156

FontSet definitions, 131
French keyboard, 74

G
genmsg utility, 48–49
German, character support, 119
German keyboard, 74
GMT offset, 26
Greek

character support, 119
input mode, 186

Gujarati keyboard, 88
Gurmukhi keyboard, 88

H
Hangul, 31
Hanja, 31
Hanzi, 31
Hebrew

character support, 119
Yiddish, 32

Hindi
character support, 119
Devanagari, 32

Hiragana, 31
Hungarian, character support, 119

I
iconv

code conversion, 50
Japanese character code conversion, 86

Indic, input method, 86
input method

Indic, 91

Index

International Language Environments Guide • November 2010202

input method (Continued)
Indic method, 86
Japanese, 85
Thai, 115

input modes
en_US.UTF-8 locale, 120
Greek, 186

internationalization
definition, 20–22
ISO Latin-1, 22

internationalization APIs, 41
Internationalized Domain Name (IDN), 49
ISO Latin-1, 22
ISO8859, character support, 119
Italian keyboard, 74

J
Japanese

character set, 84
character support, 119
font, 84–85
Hiragana, 31
iconv module, 86
input method, 85
Kanji, 31
Katakana, 31
locales, 83

Japanese keyboard, 75

K
Kanji, 31
Kannada keyboard, 89
Katakana, 31
Kedmanee keyboard, 114

enhanced, 115
keyboard

Arabic, 72
Belgian, 72
Bengali, 87
changing layout, 68
CTL selection, 151

keyboard (Continued)
Cyrillic, 73
Danish, 73
Devanagari, 88
Finnish, 73
French, 74
German, 74
Gujarati, 88
Gurmukhi, 88
Italian, 74
Japanese, 75
Kannada, 89
Kedmanee, 114
Kedmanee enhanced, 115
Korean, 75
layouts, 72, 87, 114
Malayalam, 89
Netherlands (Dutch), 75
Norwegian, 76
Pattajoti, 115
Portuguese, 76
regional, 65
Spanish, 76
Swedish, 77
Swiss (French), 77
Swiss (German), 77
Tamil, 89
Teluga, 90
Traditional Chinese, 78
Turkish F, 78
Turkish Q, 78
type 4, 5, and 5c, 69
type 6, 68
U.S.A./UNIX, 79
United Kingdom, 79
United States, 79

Korean
character support, 119
Hangul, 31
Hanja, 31

Korean keyboard, 75

Index

203

L
LANG environment variable, 123
Latin-2, Compose key sequences, 175
Latin-3, Compose key sequences, 177
Latin-4, Compose key sequences, 177
Latin-5, Compose key sequences, 179
Latin-9, Compose key sequences, 179
layout behavior, 138
LC_ALL, 22
libc

APIs, 38
application linking, 35
query locale, 42

libraries, (CSI), 37
linking, applications, 39
local environment variable, 123
locales

Asia, 55
C, 23
categories, 25
character sets, 30
Compose key, 64
cultural conventions, 24
currency, 21
currency formats, 28
date formats, 26
definition, 22
environment variables, 123
full, 23, 53
Japanese, 83
keyboard differences, 33
number formats, 27
page sizes, 33
partial, 23, 53
POSIX, 23
Solaris, 83
sort order, 30
time formats, 26
word delimiters, 30

localization, 83
configuration file, 156
definition, 20–22

M
Malayalam keyboard, 89
map

Bengali characters, 91
Gujarati characters, 94
Gurmukhi characters, 97
Hindi characters, 99
Kannada characters, 102
Malayalam characters, 105
Tamil characters, 108
Telugu characters, 110

mapping, English to phonetic equivalent for Indic
scripts, 91

mbtwoc, 41
message catalogs, 48–49
Motif

TextField, 145
XmNalignment, 139, 145, 146
XmNeditPolicy, 139
XmNlayoutDirection, 135
XmNlayoutDirection, 145
XmNlayoutModifier, 145, 146
XmNrenditionTag, 139
XmRendition, 137, 145
XmStringDirection, 136
XmStringDirectionCreate, 144
XmText, 145
XmTextFieldGetLayoutModifier, 142
XmTextFieldSetLayoutModifier, 143
XmTextGetLayoutModifier, 143
XmTextSetLayoutModifier, 143

mp

PostScript variables, 164
print filter, 153, 154
Xprt client, 155

mp.conf file, 156
multibyte, conversion, 41
multibyte characters, 38

N
Netherlands (Dutch) keyboard, 75
Norwegian keyboard, 76

Index

International Language Environments Guide • November 2010204

P
page sizes, common sizes, 33
Pattajoti keyboard, 115
People's Republic of China, 32
PinYin, 32
Polish, character support, 119
Portable Layout Services (PLS), 156
Portuguese keyboard, 76
POSIX locale, 23
PostScript

prolog files, 162
runtime variables, 164

print filter, 153
prolog files, 162

R
Russian, character support, 119

S
Scandinavian, character support, 119
setlocale command, 123
Simplified Chinese, character support, 119
Spanish, character support, 119
Spanish keyboard, 76
static linking, 39
strconf command, 125
STREAMS

code conversion, 123
loading modules, 124
TTY environment, 123

stty, utilities, 126
Swedish keyboard, 77
Swiss (French) keyboard, 77
Swiss (German) keyboard, 77
system libraries, linking applications to, 39

T
Tamil keyboard, 89
Teluga keyboard, 90

terminal
setting options, 126
support, 126

Thai, 31
character sequence checking, 114–116
character support, 119
input method, 114, 115

time formats, 26
time zones, 26
Traditional Chinese, character support, 119
Traditional Chinese keyboard, 78
TTY environment, setup, 123
Turkish, character support, 119
Turkish F keyboard, 78
Turkish Q keyboard, 78
TypeOfText, 138

U
U.S.A/UNIX keyboard, 79
Unicode, overview, 117
United Kingdom keyboard, 79
United States keyboard, 79
UTC, 26
UTF-8, support, 118
utilities

genmsg, 48
genmsg, 48–49
iconv, 50
locale, 123
stty, 126

W
Western European

character support, 119
wide character, support, 41

X
X Logical Fonts Description (XLFD), 158
X Print Xerver (Xprt), mp, 155

Index

205

XmText

backward-cell(extend), 142
delete-left-character(), 141
delete-right-character(extend), 141
forward-cell(extend), 142
left-character(extend), 140
right-character(extend), 140
right-word(extend), 141

XPG4 applications, 40
.xpr files, 162
xterm, 126

Index

International Language Environments Guide • November 2010206

	International Language Environments Guide
	Preface
	About This Book
	How This Guide Is Organized
	Related Books and Sites
	Documentation, Support, and Training
	Oracle Software Resources
	Typographic Conventions
	Shell Prompts in Command Examples

	Oracle Solaris Internationalization Overview
	Oracle Solaris Internationalization Architecture
	New Internationalization and Localization Features
	Internationalization and Localization Overview
	Basic Steps in Internationalization
	Localization Functions in Oracle Solaris Interfaces

	What Is a Locale?
	C Locale – the Default Locale
	Full and Partial Locales
	Behavior Affected by Locales
	Locale Categories

	Using Locale Categories for Localization
	Time Formats
	Date Formats
	Number Formats
	International Monetary Formats

	Language Word and Letter Differences
	Word Delimiters
	Sort Order
	Character Sets
	Western European Alphabets
	Japanese Text
	Korean Text
	Thai Text
	Chinese Text
	Hebrew Text
	Hindi Text

	Keyboard Differences
	Differences in Paper Sizes

	General Internationalization Features
	Support for Code Set Independence
	CSI Approach
	CSI-enabled Commands
	CSI-enabled Libraries

	Locale Database
	Process Code Format
	Multibyte Support Environment
	Dynamically Linked Applications
	Changed Interfaces
	ctype Macros
	Internationalization APIs in libc
	genmsg Utility
	User-Defined and User-Extensible Code Conversions
	Internationalized Domain Name (IDN) Support

	Localization in the Oracle Solaris Environment
	Software Support for Localization
	Summary of the Oracle Solaris Locale Packages
	Adding Additional Locales After Installation

	Supported Locales
	Multiple Key Compose Sequences for Locales
	Keyboard Support in the Oracle Solaris Environment
	Changing Between Keyboards on SPARC Systems
	How to Change the Keyboard Layout to the Czech Layout in the Xsun Server

	Changing Between Keyboards on Intel Systems
	How to Change the Keyboard Layout to the Czech Layout in the Xorg server

	Keyboard Layout Illustrations

	New Oracle Solaris Keyboard Software Support
	How to Access Estonian Type 6 USB Keyboard Support
	How to Access French Canadian Type 6 USB Keyboard Support
	How to Access Polish Programmers Type 5 Keyboard Support

	Supported Asian Locales
	Japanese Localization
	Japanese Locales
	Japanese Character Sets
	Japanese Fonts
	Japanese Input Systems
	Terminal Setting for Japanese Terminals
	Japanese iconv Module
	User-Defined Character Support

	Indic Localization
	How to Use the Indic Input Methods
	Indic Keyboards
	Understanding the Mappings
	Mapping for the Continuous Phonetic Based Input Method
	How the Continuous Phonetic Input Method Works

	Thai Localization
	Thai Input Methods
	Thai Keyboard Layouts
	Thai Input Method Auxiliary Window

	Overview of UTF-8 Locale Support
	Unicode Overview
	Unicode Locale: en_US.UTF-8 Support

	About Desktop Input Methods
	Input Method Support on the Oracle Solaris OS
	Available Input Method Engines
	Basic Usage of Input Method
	Customizing IIIM behaviors
	System Environment
	Locale Environment Variable
	TTY Environment Setup
	How to Load a STREAMS Kernel Module
	How to Unload a STREAMS Kernel Module
	How to Setup a Latin-2 Terminal and STREAMS Module
	dtterm, xterm and Terminals Capable of Input and Output of UTF-8 Characters
	Terminal Support for Latin-1, Latin-2, or KOI8-R
	Saving the Settings in ~/.cshrc

	Code Conversions
	Configuring Fonts
	DtMail Support
	Programming Environment
	FontSet Used with X Applications
	FontList Definition in CDE/Motif Applications

	Complex Text Layout
	Overview of CTL Technology
	Overview of CTL Architecture
	CTL Support for X Library Based Applications
	XOC Resources
	Changes in Motif to Support CTL Technology
	XmNlayoutDirection Resource
	Determining the Layout Direction

	XmStringDirection Resource
	XmRendition Resource
	Additional Layout Behavior

	XmText and XmTextField Resource
	Character Orientation Action Routines
	Character Orientation Additional Behavior
	XmText Action Routines

	XmTextFieldGetLayoutModifier Resource
	XmTextGetLayoutModifier Resource
	XmTextFieldSetLayoutModifier Resource
	XmTextSetLayoutModifier Resource
	XmStringDirectionCreate Resource

	UIL Arguments
	Developing CTL Applications
	Controlling Layout Direction
	Creating a Render Table in a Resource File

	Horizontal Tabs
	Mouse Selection
	Keyboard Selection
	Text Resources and Geometry
	Porting Instructions

	Print Filter Enhancement With mp
	Printing for UTF-8
	mp Print Filter Enhancement Overview
	Using mp With the Locale-Specific Font Configuration File mp.conf
	Using mp With the Locale-Specific PostScript Prolog Files
	Using mp as an Xprt (X Print Server) Client
	Localization With the mp.confConfiguration File
	Font Aliasing
	Font Group Definition
	Mapping Section
	Association Section

	How to Add a Printer-Resident Font
	How to Create a Shared Object File

	Adding and Customizing prolog Files
	PostScript File Customization
	Locale-Dependent prolog Files
	Common PostScript prolog Files
	Print Layout prolog Files

	.xpr Files
	STARTCOMMON/ENDCOMMON Keywords
	STARTPAGE/ENDPAGE Keywords
	STARTFORCEDPAGE/ENDFORCEDPAGE Section
	STARTCOLUMN/ENDCOLUMN Section
	STARTFORCEDCOLUMN/ENDFORCEDCOLUMN Section
	Creating a New .xpr File

	Compose and Dead Key Input
	How to Use Compose and Dead Key Input

	Language Support Features and Enhancements
	Input Method Features
	Internet Intranet Input Method Framework (IIIMF) Hangul Language Engine
	libchewing 0.3.0
	Input Method Switcher Enhancement and EMEA Keyboard Layout Emulation Support
	IIIMF and Language Engines
	Korean Language Engine With Auxiliary Window Support
	Common Transliteration-based Input Method for All Indian Languages
	Wubi Input Method
	Input Method Support for Indic

	File Encoding Examiner
	More Japanese iconv Modules for Unicode
	Zero-Country Code Keyboard Layout Support
	Unicode Version 4.0 Support
	Code Conversions for Internationalized Domain Name Support
	New iconv Code Conversions
	Standard Type Services Framework
	Additional Indic Scripts for Support in Unicode Locales
	HKSCS-2001 Support in Hong Kong Locales

	Index

