
Solaris SystemManagement
AgentDeveloper’s Guide

SunMicrosystems, Inc.
4150Network Circle
Santa Clara, CA95054
U.S.A.

Part No: 817–3155–11
November 2006

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. All rights reserved.

SunMicrosystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one ormore U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the SunMicrosystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distributionmay includematerials developed by third parties.

Parts of the product may be derived fromBerkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, SunMicrosystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Solstice EnterpriseAgents, Java, and Solaris are trademarks or
registered trademarks of SunMicrosystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

TheOPEN LOOK and SunTMGraphical User Interface was developed by SunMicrosystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license fromXerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOKGUIs and otherwise comply with Sun’s written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws andmay be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclearmaritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified onU.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS”ANDALLEXPRESSOR IMPLIEDCONDITIONS, REPRESENTATIONSANDWARRANTIES, INCLUDINGANY
IMPLIEDWARRANTYOFMERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEORNON-INFRINGEMENT,AREDISCLAIMED, EXCEPTTO
THE EXTENTTHAT SUCHDISCLAIMERSAREHELDTOBE LEGALLY INVALID.

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. Tous droits réservés.

SunMicrosystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis et
dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est unemarque déposée aux
Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, SunMicrosystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Solstice EnterpriseAgents, Java et Solaris sont desmarques de fabrique ou
desmarques déposées de SunMicrosystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont desmarques de
fabrique ou desmarques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par SunMicrosystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par SunMicrosystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient
une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun quimettent en place l’interface
d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine enmatière de contrôle des exportations et
peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
desmissiles, des armes chimiques ou biologiques ou pour le nucléairemaritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais demanière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine enmatière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LADOCUMENTATIONEST FOURNIE "EN L’ETAT" ET TOUTESAUTRES CONDITIONS, DECLARATIONS ETGARANTIES EXPRESSESOUTACITES
SONT FORMELLEMENTEXCLUES, DANS LAMESUREAUTORISEE PAR LALOIAPPLICABLE, YCOMPRISNOTAMMENTTOUTEGARANTIE
IMPLICITE RELATIVEALAQUALITEMARCHANDE,AL’APTITUDEAUNEUTILISATIONPARTICULIEREOUAL’ABSENCEDECONTREFACON.

061002@15490

Contents

Preface ...13

1 Introduction to the SystemManagementAgent ...17
Overview of SNMPAgents ..17
Overview of the SystemManagementAgent ..18

Extending theAgent ...22
FeaturesAdded in SystemManagementAgent ..23

Contents of the SMAfor Developers ..24
File Locations of Developer Files ..24
SMATools ..25
API Libraries ...25
DemonstrationModules ..26
Technical Support for Developers ..27

2 CreatingModules ...29
AboutModules ...29
Overview of CreatingModules ...30
Defining aMIB ..30

MIB File Names ...31
SettingMIB Environment Variables ..32
Generating Code Templates ..33
Modifying Code Templates ...35
Configuring theModule ..35
Delivering theModule ...35
Namespace Issues ...36

Avoiding Namespace Collisions ...36
Module Names ..36
Library Names ...37

3

3 DataModeling ..39
init_moduleRoutine ..39
Scalar Objects ..41

demo_module_1Code Example for Scalar Objects ..41
Modifications for Scalar Data Retrieval ...42

Simple Tables ...43
demo_module_2Code Example for Simple Tables ..44
Modifications for Simple Table Data Retrieval ..44
Data Retrieval From Large Simple Tables ..46
Multiple SET Processing in demo_module_2 ...46

General Tables ...48
demo_module_3Code Example for General Tables ...48

4 StoringModule Data ...51
About StoringModule Data ..51

Configuration Files ...51
DefiningNewConfiguration Tokens ...52

Implementing Persistent Data in aModule ...52
Storing Persistent Data ...53
Reading Persistent Data ...53

demo_module_5Code Example for Persistent Data ..54
Storing Persistent Data in demo_module_5 ..54
Reading Persistent Data in demo_module_5 ..55
Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_5 ..56

5 ImplementingAlarms ...59
Refresh Intervals ...59
Asynchronous TrapNotification ..60
Thresholds for Sending Traps ...60
demo_module_4Code Example forAlarms ...61

Reading Data From the demo_module_4.confConfiguration File ..62
Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_4 ..63
Generating Traps in demo_module_4 ..63

6 DeployingModules ...65
Overview ofModule Deployment ..65

Contents

Solaris SystemManagementAgent Developer’s Guide • November 20064

Choosing DynamicModules or Subagents ...66
LoadingModules Dynamically ...67

� How toDynamically Load aModule and Restart theAgent ...67
� How toDynamically Load aModuleWithout Restarting theAgent ..68

Using Subagents ..70
AgentX Protocol ...70
Functions of a Subagent ...70

Deploying aModule as a Subagent ...71
demo_module_8Code Example for Implementing a Subagent ...72
Subagent Security Guidelines ..72

7 Multiple InstanceModules ...73
ImplementingMultiple Instances of aModule ...73

� HowTo ImplementMultiple InstanceModules ...74
demo_module_6Code Example forMultiple InstanceModules ...75

Enabling Dynamic Updates to aMultiple InstanceModule ...76
demo_module_7Code Example for Dynamic Updates ofMultiple InstanceModules76

Modifying the demo_module_7Code ..76
� How to Enable Dynamic Update of aMulti-InstanceModule ..76

Registering New Instances in theModule ...81

8 Long–Running Data Collection ...83
About Long-Running Data Collection ..83
SNMPAlarmMethod for Data Collection ..84

demo_module_9Code Example for SNMPAlarmMethod ..84
Managing the Timing of Data Collection ..84

SNMPManager PollingMethod for Data Collection ..85
demo_module_10Code Example for SNMPPollingMethod ..86
Avoiding a Race ConditionWhen Polling ...86

9 Entity MIB ..89
About the EntityMIB ...89
SMAEntityMIB Implementation ..91

Using the EntityMIB ..91
� How to Set Up theAgent to Use the EntityMIB ...92

EntityMIBAPI ..92

Contents

5

Physical Table Functions ..93
Physical Contains Table Functions ...98
Logical Table Functions ...100
LPMapping Table Functions ...104
AliasMapping Table Functions ..106

Header Files for EntityMIB Functions ..109
entPhysicalEntry_t Structure ..109
entLogicalEntry_t Structure .. 110

Tips for Using EntityMIB Functions ... 110
demo_module_11Code Example for EntityMIB ... 112

10 Migration of Solstice EnterpriseAgents to the SystemManagementAgent123
WhyMigrate to SMA? ..123
Solstice EnterpriseAgentsMigration Strategy Overview ..124
Migrating Solstice EnterpriseAgent Subagents to SMA ..124

demo_module_12Code Example for Solstice EnterpriseAgents SubagentMigration125
Modifying the SMAInstrumentation Code ..127

A SMAResources ...129
Man Pages ..129
API Functions ...132

B MIBs Implemented in SMA ...139
MIBs Implemented in SMA ..139

Glossary ...141

Index ..145

Contents

Solaris SystemManagementAgent Developer’s Guide • November 20066

Figures

FIGURE 1–1 Net-SNMPArchitecture ..19
FIGURE 3–1 Set Processing State Diagram ..47
FIGURE 8–1 Race ConditionWhen Polling for Data ...87

7

8

Tables

TABLE 1–1 File Locations for Developer Content ..24
TABLE 1–2 Descriptions of DemonstrationModules ..26
TABLE 2–1 Configuration Files for UseWith mib2cTool ...33
TABLE 2–2 Data CollectionDocumentation ..35
TABLE 6–1 Advantages andDisadvantages of DeploymentMethods ...66
TABLE 9–1 EntityMIB Functions Listed by Category ...92
TABLE 10–1 Comparison ofMIB Tools in SMAand Solstice EnterpriseAgents Software125
TABLE 10–2 Comparison of Solstice EnterpriseAgents Templates to SMATemplates126
TABLE A–1 Man Pages for General SNMPTopics ..129
TABLE A–2 Man Pages for SNMPTools ...130
TABLE A–3 Man Pages for SNMPConfiguration Files ..131
TABLE A–4 Man Pages for SNMPDaemons ...132

9

10

Examples

EXAMPLE 9–1 Physical Entities for demo_module_11 ... 113
EXAMPLE 9–2 Logical Entities for demo_module_11 ... 118
EXAMPLE 9–3 Logical to PhysicalMappings for demo_module_11 ... 119
EXAMPLE 9–4 Physical to Logical toMIBAliasMappings for demo_module_11120
EXAMPLE 9–5 Physical Contains Table Entries for demo_module_11 ...121

11

12

Preface

This manual, Solaris SystemManagement Agent Developer’s Guide, describes how to developMIB
modules for use in extending the SystemManagementAgent.

Themanual also includes information aboutmigrating existingmodules that were developed for the
Solstice EnterpriseAgents.

Note –This SolarisTM release supports systems that use the SPARC® and x86 families of processor
architectures: UltraSPARC®, SPARC64,AMD64, Pentium, and Xeon EM64T. The supported systems
appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This
document cites any implementation differences between the platform types.

In this document these x86 related termsmean the following:

� “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
� “x64” points out specific 64-bit information aboutAMD64 or EM64T systems.
� “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

WhoShouldUse This Book
Thismanual is intended for developers who want to add newmanagement data to the System
ManagementAgent. This data can then bemanipulated through networkmanagement programs.

Themanual assumes that you are familiar with the following technologies:

� C programming concepts
� SNMPv1, SNMPv2c, and SNMPv3 protocols
� Structure ofManagement Information (SMI) v1 and v2
� Management Information Base (MIB) structure
� Abstract Syntax Notation (ASN.1)

13

http://www.sun.com/bigadmin/hcl

HowThis Book IsOrganized
Thismanual contains the following chapters:

Chapter 1 provides an introduction to the Simple NetworkManagement Protocol (SNMP) and the
SystemManagementAgent (SMA).

Chapter 2 provides basic guidelines for creating SystemManagementAgentmodules.

Chapter 3 discusses the handling of data in scalar form and in tables.

Chapter 4 explains how to storemodule data that is preserved when the agent is restarted.

Chapter 5 explains how to implement alarms inmodules.

Chapter 6 discusses the ways to deploy yourmodule, as a subagent or a dynamically loadedmodule.

Chapter 7 describes how to implement amodule to allowmore than one instance of themodule to
run on a host.

Chapter 8 discusses the ways that you can enable amodule to collect data over a long period of time.

Chapter 9 describes the EntityMIB and itsAPI functions.

Chapter 10 contains information for developers who want tomigrate an SEAsubagent from Solstice
EnterpriseAgents to use in the SystemManagementAgent.

AppendixA lists SystemManagementAgent resources that youmight find helpful.

Appendix B lists theMIBs that are included in the SystemManagementAgent.

Glossary contains definitions of terms that are used in this manual.

RelatedReading
For general information on SNMPandwritingMIBs, youmight find the following books helpful:

� Essential SNMP byDouglas R.Mauro and Kevin J. Schmidt, published byO’Reilly and
Associates.

� Understanding SNMPMIBs byDavid T. Perkins and EvanMcGinnis, published by Prentice Hall.

If you intend to use the EntityMIB for themanagement of hardware, you should read the following
RFC:

Internet Engineering Task Force RFCNumber 2737 on the EntityMIB at
http://www.ietf.org/rfc/rfc2737.txt.

Preface

Solaris SystemManagementAgent Developer’s Guide • November 200614

http://www.ietf.org/rfc/rfc2737.txt

Documentation, Support, andTraining
The Sunweb site provides information about the following additional resources:

� Documentation (http://www.sun.com/documentation/)
� Support (http://www.sun.com/support/)
� Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1TypographicConventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in theUser’s Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in CommandExamples
The following table shows the default UNIX® system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Preface

15

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–2Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

Solaris SystemManagementAgent Developer’s Guide • November 200616

Introduction to the SystemManagementAgent

The SystemManagementAgent is a Simple NetworkManagement Protocol (SNMP) agent. This
chapter contains the following topics:

� “Overview of SNMPAgents” on page 17
� “Overview of the SystemManagementAgent” on page 18
� “Contents of the SMAfor Developers” on page 24

Overviewof SNMPAgents
SNMPuses the termmanager for the client application that accesses the data about amanaged device
or system. Themanager usually runs on a system that is different from themanaged system. The
term agent is used for the program that implements the protocol stack for servicing the requests from
themanager. The SNMPagent typically runs on themanaged device. The agent offers services on a
designated TCP/IP port. The default SNMPport is 161.

Information about the target device is contained in aManagement Information Base (MIB).MIBs
are used by agents andmanagers so that both programs have knowledge of the data available. The
MIB tells themanager about the device’s functions and data. TheMIB also tells themanager how to
address or access that information in the form ofmanaged objects. To access this management
information, themanager issues requests to the agent. The requests contain identifiers for theMIB’s
data objects that are of interest to themanager. If the request can be successfully completed, the agent
returns a response that contains the values for the required data objects.

Most SNMP agents support the basic SNMPprotocol stack, and someminimalMIBs. However, to
makemanagement of a devicemore effective, additionalMIBsmust be supported on themanaged
device. The additionalMIBs are provided by device vendors to providemanagement information
about custom features of themanaged device.

AMIB that is added to an SNMPagent is commonly known as an extension because theMIB extends
the capabilities of the agent.An agent that can accept extensions is extensible. The System
ManagementAgent (SMA), described in this manual, is an extensible agent. The extensions to the
SystemManagementAgent are called extensionmodules.

1C H A P T E R 1

17

Overviewof the SystemManagementAgent
The SystemManagementAgent (SMA) is an SNMPagent that is based on an open source project,
Net-SNMP at http://www.net-snmp.org. This base agent supports SNMPv1, v2c, and v3 protocols.

Note –TheNet-SNMPversion used in SMAis 5.0.9.

The following diagram shows the structure of the Net-SNMP agent, and is followed by an
explanation of the components.

Overview of the SystemManagementAgent

Solaris SystemManagementAgent Developer’s Guide • November 200618

http://www.net-snmp.org

Message Processor
snmp_api.c

Dispatcher
(associated to transports)

snmp_agent.c

OID registration handler
agent_handler.c

Security module
registration

(snmp_secmod.c)

Authorization
module registration

Repository
(read_config.c)

VACM

USM

Persistent
file

TCP UDP UNIX

Helpers

Proxy

Other SNMP
agents

AgentX

AgentX
subagents

Modules

Transport domains

Agent

FIGURE 1–1Net-SNMPArchitecture

The components of the Net-SNMP agent are:

� Transport domains

TheNet-SNMP agent currently supports the transports TCP, UDP, andUNIXDomain Sockets.
The agent can receive and transmit SNMPmessages through these transports. The agent’s
implementation of each transport implements functions to send and receive raw SNMPdata.
The rawmessages received by the transport domains are passed to themessage processor for
further processing. Themessage processor also transfers raw SNMPmessages to the transport
domain for sending.

Overview of the SystemManagementAgent

Chapter 1 • Introduction to the SystemManagementAgent 19

� Message processor
Themessage processor decodes raw SNMPmessages into internal PDU structures. The
processor also encodes PDUs into raw SNMPmessages. The SNMPmessages are encoded by
using Binary Encoding Rules, which are described in RFC 3416 and RFC 1157. Themessage
processor also handles the security parameters in the SNMPmessages. If themessages include
User-based SecurityModel (USM) security parameters, themessage processor passes the
required parameters to the USMmodule.Additionally, trapmessages frommodules can be sent
to themessage processor for transmission.

� USMmodule
TheUSMmodule handles all processing that is required by the User-based SecurityModel as
defined in RFC 3414. Themodule also implements the SNMP-USER-BASED-SM-MIB as
defined in the same RFC. TheUSMmodule, when initialized, registers with the agent
infrastructure. Themessage processor invokes the USMmodule through this registration.
The USMmodule decrypts incomingmessages. Themodule then verifies authentication data
and creates the PDUs. For outgoingmessages, the USMmodule encrypts PDUs and generates
authentication data. Themodule then passes the PDUs to themessage processor, which then
invokes the dispatcher.
The USMmodule’s implementation of the SNMP-USER-BASED-SM-MIB enables the SNMP
manager to issue commands tomanage users and security keys. TheMIB also enables the agent
to ensure that a requesting user exists and has the proper authentication information.When
authentication is done, the request is carried out by the agent.
The various keys that the USMmodule needs to perform encryption and authentication
operations are stored persistently.
See Chapter 4, “Managing Security,” in Solaris SystemManagement Agent Administration Guide
for more information about USM.

� Dispatcher
The dispatcher is responsible for routingmessages to appropriate destinations.After the USM
module processes an incomingmessage into PDUs, the dispatcher performs an authorization
check. This authorization check is done by the registered access control module, which is the
VACMmodule. If the check succeeds, the dispatcher uses the agent registry to determine the
module that has registered for the relevant object identifier. The dispatcher then invokes
appropriate operations on themodule.Aparticular request might cause the dispatcher to invoke
several modules if the SNMP request containsmultiple variables. The dispatcher keeps track of
outstanding requests through session objects. Responses from themodules are then dispatched
to the transports that are associated with the session objects. Themessage processor performs the
appropriate message encoding.

� VACMmodule
The View-basedAccess ControlModel is described in RFC 3415. This RFC also defines the
SNMP-VIEW-BASED-ACM-MIB. TheMIB specifies objects that are needed to control access to
all MIB data that is accessible through the SNMPagent. Upon initialization, the VACMmodule
registers as the access control module with the agent infrastructure. The VACMmodule
implements access control checks according to several parameters that are derived from the
SNMPmessage. These parameters specify:

Overview of the SystemManagementAgent

Solaris SystemManagementAgent Developer’s Guide • November 200620

� The securitymodel being used, which can be USM, v1 communities, or v2 communities
� The security name, which is user name in USM, and community string in v1 and v2
� The context
� The object being accessed
� The operation being performed

By implementing the SNMP-VIEW-BASED-ACM-MIB, the VACMmodule handles
manipulation of various table entries that aremandated by VACM. These table entries are looked
up in performing the VACM check and aremaintained persistently in the agent configuration
file.

See Chapter 4, “Managing Security,” in Solaris SystemManagement Agent Administration Guide
for more information about VACM.

� Repository
The agent configuration file, snmpd.conf, is the repository for the agent. Configuration tokens
for variousmodules are stored in the repository. Themodules have access to these configuration
tokens when themodules are initialized.Modules can also register callback routines with the
repository. The callbacks are invoked when themodule state needs to be persisted, or written to
disk to be retrieved later.Within the callbacks, eachmodule is allowed to output its state.When
the agent shuts down, the callbacks are used to save themodules’ state.An SNMPSET command
can also be used to cause amodule’s state to be persisted.

� OID registration handler
TheOID registration handler, or agent registry, handles the registration of object identifiers that
are specified bymodules.

� Proxymodule
The proxymodule handles proxy forwarding of SNMPmessages to and from other SNMP
agents. The proxymodule can alsomap between SNMPv1 and SNMPv2 protocols according to
the rules specified in RFC 2576.
The proxymodule stores its configuration tokens in the agent configuration file.Aparticular
configuration entry can associate OIDs within a context with another SNMPagent. The
configuration file also specifies community strings and destination transport end points. By
using these configuration tokens, the proxymodule registers as the handler for the specific OIDs.
When an incoming request for any of the proxymodule’s OIDs reaches the dispatcher, the
dispatcher invokes the proxymodule. The proxymodule then issues appropriate SNMP requests
to the target agents. Responses are returned back to the dispatcher.
The SystemManagementAgent uses the proxymodule for interaction with the Solstice
EnterpriseAgents.

� AgentXmodule
TheAgentXmodule implements RFCs 2741 and 2742. TheAgentXmodule registers as the
handler for theAgentX-related registration tables defined in theAGENTX-MIB. The transports
that are used for theAgentX protocol interactions are specified in the agent configuration file. In
the Net-SNMP agent, the transports are typically UNIX domain sockets.When theAgentX

Overview of the SystemManagementAgent

Chapter 1 • Introduction to the SystemManagementAgent 21

module is initialized, themodule creates sessions on these transports and registers as the handler
for these sessions. In the SystemManagementAgent, the only allowableAgentX transport is
UNIX domain sockets, so only sessions onUNIX domain sockets are created.
When anAgentX subagent starts, the subagent sends its registration requests withmessages that
use theAgentX protocol to themaster agent. The requests are received by the sessions that have
been created by theAgentXmodule. Themessage processor decodes themessage, then invokes
theAgentXmodule. TheAgentXmodule, rather than the dispatchermodule, is the handler for
these sessions.
TheAgentXmodule then registers as the handler for OIDs that are specified in the subagent
registrationmessage.When requests for these OIDs are received by the dispatcher, the requests
are directed to theAgentXmodule, which in turn connects to the required subagent. Requests to
unregister OIDs are handled similarly.

� Extensionmodules
Extensionmodules, which are depicted at the bottom of Figure 1–1, are themeans by which
MIBs are implemented in the agent.An extensionmodule registers with the agent all the object
identifiers that themodulemanages. Themodule also implements functionality to perform
SNMPoperations on themodule’s objects.As shown in Figure 1–1, helper routines or handlers
in theAPI can be inserted between amodule and the agent infrastructure. These handlers can
have various functions, such as handling details of table iterations or providing debug output.

Extending theAgent
TheNet-SNMP agent can be extended in the following ways:

� The agent can be recompiled to include a static module, which becomes part of the agent
infrastructure. Static modules are initialized on agent start up. Examples of static modules
include the VACM andUSMmodules. The SystemManagementAgent was developed by
compiling several static modules forMIBs that are not included in the Net-SNMP agent. See
“FeaturesAdded in SystemManagementAgent” on page 23 for a list of theMIBs included in
SMA.
You cannot deploy your ownmodules as static modules with SMAbecause you cannot recompile
the SMAcode.

� Modules can be loaded into themaster agent’s process image.Ashared object is dynamically
loaded into the agent when the agent is running. The shared object registers the OIDs for the
MIB that is supported by the shared object. The location of the shared object libraries for the
module can be specified through SNMP requests or in the agent configuration file.

� Modules can be loaded into secondary SNMP subagents. Subagents are separate executable
programs that can dynamically register themselves with the agent that is running on the
designated SNMPport. Themonitoring agent processes any SNMP request that comes to the
SNMPport, and can send a request to a subagent, if needed. In this scenario, the agent on the
designated port is called themaster agent. TheAgentX RFCs 2741 and 2742 define the protocols
between the subagent andmaster agent as well as theMIBs that contain details of the
registrations. Formore information onmaster agents and subagents, see Chapter 6.

Overview of the SystemManagementAgent

Solaris SystemManagementAgent Developer’s Guide • November 200622

� Amodule can be delivered as an SNMPagent. Themaster agent can interact with such agents
through a proxymechanism.

Note –The SystemManagementAgent supportsmodule deployment in the form of dynamically
loadedmodules or subagents. The agent also provides a proxymechanism. You cannot recompile the
SystemManagementAgent.

See Chapter 6 for information about how to deploymodules as dynamicmodules and in subagents.

FeaturesAdded in SystemManagementAgent
The SMAproduct includes the Net-SNMP agent, Net-SNMPdeveloper tools, andNet-SNMPAPI
libraries that enable the agent to be extended throughmodules. You can use the tools andAPIs to
create amodule to support the custom features of amanaged device.Amanagement program can
then be used formonitoring andmanaging the device.

The SMAextends the Net-SNMP agent to support the followingMIBs:

� MIB II, described in http://www.ietf.org/rfc/rfc1213.txt, defines the structure of
management information and the networkmanagement protocol for TCP/IP-based networks.
The SMAimplements all the object groups ofMIB II except the EGP group.

� Host ResourcesMIB, described in http://www.ietf.org/rfc/rfc2790.txt, defines the
structure of management information formanaging host systems. The SMAimplements the
same host resourcesMIB that is included in the base Net-SNMP agent.

� SunMIB is theMIB II with Sun-specific object groups added. SunMIBwas originally provided in
the Solstice EnterpriseAgents product beginning with the Solaris 2.6 operating system. The SMA
implements the following groups from the SunMIB:
� Sun System group
� Sun Processes group
� SunHost Performance group

Support for theseMIBs is provided as static modules that run in the SMAagent. The agent was
created by recompiling the Net-SNMP agent to include thesemodules.

The SMAprovides an additionalMIB for hardware, the EntityMIB, in an external dynamically
loadedmodule. The EntityMIB is described in RFC 2737 at
http://www.ietf.org/rfc/rfc2737.txt. The EntityMIB is implemented as a skeletonMIB, so
that module developers can populate the various tables of theMIB. The EntityMIB can be used by a
single agent formanagingmultiple logical entities and physical entities. Formore information about
the EntityMIB, see Chapter 9.

Overview of the SystemManagementAgent

Chapter 1 • Introduction to the SystemManagementAgent 23

http://www.ietf.org/rfc/rfc1213.txt
http://www.ietf.org/rfc/rfc2790.txt
http://www.ietf.org/rfc/rfc2737.txt

Contents of the SMAforDevelopers
SMAincludes the following content for developers:

� Developer tools, and Perl modules needed by the tools
� API libraries for using Net-SNMP functions
� API library for using the EntityMIB functions
� Demomodules, for demonstrating how to implement some types of datamodeling

In addition, you can install the SUNWsmaS package, which contains the source code for Net-SNMP.
See the Solaris SystemManagement Agent Administration Guide for installation instructions.

File Locations ofDeveloper Files
The developer files are installed in the locations that are shown in the following table.

TABLE 1–1 File Locations forDeveloperContent

Directory Developer Content

/usr/demo/sma_snmp Samplemodules for demonstration purposes. See
“DemonstrationModules” on page 26 formore
information.

/usr/sfw/bin Command line tools that are useful for developers. Formore
information on these tools, see “SMATools” on page 25.

/usr/sfw/sbin Executable files for the snmpd agent daemon and snmptrapd
trap daemon, which provide the SNMP services.

/usr/sfw/lib The 32-bit shared libraries that contain theAPI functions
fromNet-SNMP, and the libentity.so library, which
defines functions for using the EntityMIB.

This directory is supplied on all Solaris platforms. See “API
Libraries” on page 25 formore information.

/usr/sfw/lib/sparcv9 The 64-bit shared libraries that contain theAPI functions
fromNet-SNMP, and the libentity.so library, which
defines functions for using the EntityMIB.

This directory is supplied only on 64-bit Solaris on SPARC®
platforms. See “API Libraries” on page 25 formore
information.

/usr/sfw/include Header files needed byAPI libraries.

/usr/sfw/doc/sma_snmp/html HTMLdocumentation for Net-SNMPAPI functions.

/etc/sma/snmp Configuration files that are used by the mib2c tool.

Contents of the SMAfor Developers

Solaris SystemManagementAgent Developer’s Guide • November 200624

TABLE 1–1 File Locations forDeveloper Content (Continued)
Directory Developer Content

/etc/sma/snmp/mibs TheMIBs supported by the SystemManagementAgent.

/usr/perl5/vendor_perl/

5.8.3/sun4-solaris-64int

Perl modules needed by the mib2c tool.

/usr/share/sma_snmp Source code for Net-SNMP. The code is provided in the
SUNWsmaS package, which is not installed by default during
Solaris installation. The packagemust be installedmanually
from the Solaris media. For instructions for installing the
SUNWsmaS package, see the Solaris SystemManagement
Agent Administration Guide.

SMATools
The SMAincludesmany command-line tools, which are described in the sma_snmp(5) man page.

Each tool has an associatedman page. Links to all theman pages for the product are included in
AppendixA. The tools are located in /usr/sfw/bin.

The snmp commands can be used to query the agent to test yourmodules. Read theman pages for
detailed usage information.

API Libraries
The followingAPI libraries are included with the SMAproduct:

� libnetsnmp

� libnetsnmpagent

� libnetsnmpmibs

� libnetsnmphelpers

� libentity

The libentity library is not part of Net-SNMP, but is a customization for the SMAproduct.

On SPARC platforms, the 32–bit Net-SNMP libraries are contained in the /usr/sfw/lib directory.
The 64–bit Net-SNMP libraries are contained in the /usr/sfw/lib/sparcv9 subdirectory.

On x86 platforms, only the 32–bit Net-SNMP libraries are available in the /usr/sfw/lib directory.

The functions contained in the Net-SNMP libraries are used in theMIBmodules that you create, as
well as in the agent. Documentation fromNet-SNMP for using theAPI functions is contained in
/usr/sfw/doc/sma_snmp/html.

The SMAincludes the sameNet-SNMPAPI functions that are available with the open source
Net-SNMP agent. “API Functions” on page 132 includes a list of functions that are certified to work
with the SystemManagementAgent.

Contents of the SMAfor Developers

Chapter 1 • Introduction to the SystemManagementAgent 25

DemonstrationModules
The /usr/demo/sma_snmp directory contains several demonstrationmodules. The demomodules
illustrate methods for creatingmodules to solve various kinds of information-gathering problems.
Later chapters in this manual discuss the demomodules in detail. The following table lists and
describes the demomodules. The table also provides cross-references to the sections that discuss the
demos.

TABLE 1–2Descriptions ofDemonstrationModules

ModuleName Demonstrates Discussed in Section

demo_module_1 Datamodeling for scalar objects “Scalar Objects” on page 41

demo_module_2 Datamodeling for a simple table with writable
objects

“Simple Tables” on page 43

demo_module_3 Datamodeling for a general table “General Tables” on page 48

demo_module_4 Implementing alarms “demo_module_4Code Example for
Alarms” on page 61

demo_module_5 Persistence of module data across agent restarts “demo_module_5Code Example for
Persistent Data” on page 54

demo_module_6 Runningmultiple instances of amodule on a
single host

“ImplementingMultiple Instances
of aModule” on page 73

demo_module_7 Dynamically updatingmulti-instancemodules “Enabling Dynamic Updates to a
Multiple InstanceModule”
on page 76

demo_module_8 Implementing amodule as anAgentX subagent “Deploying aModule as a
Subagent” on page 71

demo_module_9 Implementing objects that wait for external
events without blocking the agent

“SNMPAlarmMethod for Data
Collection” on page 84

demo_module_10 Module design that handles long running data
collections so that their values can be polled by an
SNMPmanager

“SNMPManager PollingMethod
for Data Collection” on page 85

demo_module_11 How to use the EntityMIBAPI functions “SMAEntityMIB
Implementation” on page 91

demo_module_12 How use Solstice EnterpriseAgents code
templates and SMAcode templates to help
re-implement Solstice EnterpriseAgents
subagents as SMAmodules

“Migrating Solstice Enterprise
Agent Subagents to SMA” on page
124

Contents of the SMAfor Developers

Solaris SystemManagementAgent Developer’s Guide • November 200626

Technical Support forDevelopers
Technical support for developers of modules for the SystemManagementAgent is provided through
the Net-SNMPopen source community at http://www.net-snmp.org. Youmight find the
developers discussionmailing list net-snmp-coders@lists.sourceforge.net to be helpful.An
archive for themailing list is located at
http://sourceforge.net/mailarchive/forum.php?forum_id=7152.

Contents of the SMAfor Developers

Chapter 1 • Introduction to the SystemManagementAgent 27

http://www.net-snmp.org
http://sourceforge.net/mailarchive/forum.php?forum_id=7152

28

CreatingModules

This chapter provides basic guidelines for creating SystemManagementAgentmodules. The chapter
includes a process you can use to implement aMIB as amodule in SystemManagementAgent.
Guidelines for naming components of your implementation to avoid conflicts are also included.

The following topics are discussed:

� “AboutModules” on page 29
� “Overview of CreatingModules” on page 30
� “Defining aMIB” on page 30
� “SettingMIB Environment Variables” on page 32
� “Generating Code Templates” on page 33
� “Modifying Code Templates” on page 35
� “Configuring theModule” on page 35
� “Delivering theModule” on page 35
� “Namespace Issues” on page 36

AboutModules
The termmodule as used in this manual has two closely relatedmeanings.Module refers generically
to the “container” of the new pieces of management data that the developer needs to inform the
agent about. In this sense, a module is an abstract concept.

However, an abstract modulemust be represented as a shared object file, which runs on amanaged
system. The shared object file, or the associated program, is often referred to as amodule. Therefore,
a module can be defined as a C program that works with the SMAtomanage additional resources.

All modules communicate through theAPI library functions. TheAPI functions are used whether
themodules are compiled in the agent, or loaded dynamically, or running in a separate subagent.

2C H A P T E R 2

29

Overviewof CreatingModules
You can createmodules for the SystemManagementAgent to allow a specific application, device,
system, or network to bemanaged through amanagement application. The SystemManagement
Agent includes and documents the functions that are required by amodule. The functions are used
to register amodule with the agent, to handle requests formodule data, and to perform othermodule
tasks.

You are not required to code amodulemanually, although you can if you prefer. Refer to the
http://www.net-snmp.org/web site for information about writing amodulemanually. The process
is outside the scope of this document.

The high-level process described in this manual for implementing amodule is as follows:

1. Define theMIB for the objects to bemanaged.

To define aMIB, youmust knowwhatmanagement data is associated with the system or entity to
bemanaged. Youmust assign variable names to each discrete management item. Youmust also
determine the attributes andASN.1 data types. MIB definition is outside the scope of this
manual. See “Defining aMIB” on page 30 formore information aboutMIBs.

2. Generate code templates for amodule from theMIB.

To generate code templates, you convert theMIB nodes into C source code files with the mib2c
tool. The code templates includeAPI functions for registering the data, and handling the requests
for the data. See “Generating Code Templates” on page 33 formore information.

3. Modify the code templates to fill in the data collection andmanagement portions of themodule.

Tomodify the code templates, youmust determine how to implementmuch of the functionality
of the agent. See “Modifying Code Templates” on page 35 formore information.

4. Compile the C files into a shared object file.

You compile amodule for the SystemManagementAgent as you would compile any C shared
object file.

5. Decide on the deploymentmethod and configuration of themodule.

Youmust determine whether to configure themodule as a separate subagent, or to load the
module dynamically into the SNMPagent. See Chapter 6 for information about deployment.

Defining aMIB
MIB definition is one of themore time-consuming steps of creating amodule.MIB syntax can be
quite complicated, and is outside the scope of this document. Refer to “Related Reading” on page 14
for suggestions of other sources of information aboutMIB syntax.

Overview of CreatingModules

Solaris SystemManagementAgent Developer’s Guide • November 200630

http://www.net-snmp.org/

Tip –The mib2c tool, used for convertingMIBs to C code, includes error checking forMIB syntax.
You can use mib2c to check yourMIB syntax as you create yourMIB, even before you are ready to
convert theMIB.

You should consider using one of the standardMIBs that are included with the SMAas amodel for
creating yourMIB. The /etc/sma/snmp/mibs directory contains all the standardMIBs supported by
the SMA.

The followingMIBs can be used as examples to emulate because theMIBs have been found to work
well with mib2c:

� UCD-DLMOD-MIB.txt

� SUN-SEA-EXTENSIONS-MIB.txt

� IP-MIB.txt

Tip – Pay particular attention to the name that is assigned for the MODULE-IDENTITY. This name
should be equal to theMIB file namewith the hyphens removed, and inmixed case. For example,
SUN-SEA-EXTENSIONS-MIB.txt uses sunSeaExtensionsMIB for the MODULE-IDENTITY. AMIB file
that does not use this formatmight not work with mib2c.

The file NET-SNMP-EXAMPLES-MIB.txt is also included in the /etc/sma/snmp/mibs directory, and
might be helpful in explaining how to define a variety ofMIB variable types.

MIBFileNames
Youmust ensure unique names for yourMIB files.All customMIBs to be used with SMAare in the
same namespace as the standardMIBs, even if you keep the customMIBs in a separate directory.
Most of theMIBs derived fromRFCs have RFC numbers in their names to clearly identify theMIBs,
and ensure unique names. OtherMIBs follow naming conventions, which decrease the chances of
duplicate names.

MIBs are usually namedwith the following conventions:

� Use all uppercase letters, and use hyphens to separate segments of the file name.
� Begin theMIB namewith your company name. For example, if theMIB is for a company that is

namedAcme, the first segment of theMIB namemight beACME.
� Indicate the type of objects in themiddle of the name. For example, if theMIB is for a router, you

could use ROUTER in themiddle of the name.
� Include MIB as the last segment of the name.
� Append a .txt file extension.

Asample name that uses these conventions is ACME-ROUTER-MIB.txt.

Defining aMIB

Chapter 2 • CreatingModules 31

SettingMIB EnvironmentVariables
You should set the MIBS and MIBDIRS environment variables to ensure that the tools that use the
MIBs can find and load yourMIB file. Tools that use theMIBs include mib2c and all the snmp
commands such as snmpget, snmpwalk, and snmpset.

Set the MIBS environment variable to include theMIB file that you are using. For example, to add a
MIB called MYTESTMIB.txt to the list ofMIBs, use one of the following commands:

In the csh or tcsh shells:

% setenv MIBS +MYTESTMIB

In the sh or bash shells:

MIBS=+MYTESTMIB;export MIBS

These commands add yourMIB to the list of defaultMIBmodules that the agent supports.

The default search path forMIB files is /etc/sma/snmp/mibs. You canmodify theMIB search path
by setting the MIBDIRS variable. For example, to add the path /home/mydir/mibs to theMIB search
path, type the following commands:

In the csh or tcsh shells:

% setenv MIBDIRS /home/mydir/mibs:/etc/sma/snmp/mibs

% setenv MIBS ALL

In the sh or bash shells:

MIBDIRS=/home/mydir/mibs:/etc/sma/snmp/mibs

export MIBDIRS

MIBS=ALL;export MIBS

Setting MIBS to ALL ensures that mib2c finds all MIBs in the search location forMIB files. Both the
MIB files to be loaded and theMIB file search location can also be configured in the snmp.conf file.
See the snmp.conf(4)man page formore information.

Note –You should avoid copying yourMIBs into the /etc/sma/snmp/mibs directory. That directory
should be reserved for theMIBs provided with SMA.

SettingMIB Environment Variables

Solaris SystemManagementAgent Developer’s Guide • November 200632

GeneratingCodeTemplates
You use the mib2c tool to generate C header files and implementation files from yourMIB. You can
use the generated C files as templates for yourmodule. You canmodify the templates appropriately
for your purposes, and then use the templates tomake yourmodule. Before the file generation
begins, mib2c tests yourMIB node for syntax errors.Any errors are reported to standard output. You
must fix any syntax errors before the code can be generated. This error-checking ability enables you
to use mib2c as you create yourMIB to ensure that theMIB syntax is correct.

Note –Be sure to set yourMIB environment variables as described in “SettingMIB Environment
Variables” on page 32 before you use mib2c.

The mib2c commandmust be run against nodes in theMIB, not on the entireMIB at once. You do
not need to specify theMIB name, but theMIB filemust be located in a directory on yourMIB search
path. On the mib2c command line, youmust specify a configuration file and the name of one ormore
MIB nodes. The configuration filemust matches the type of data in theMIB node. The command
must use the following format:

mib2c -c configfile MIBnode [MIBnode2 MIBnode3 ...]

For example, if you have one node that is called scalarGroup in yourMIB, you could use the
following command to generate the code templates:

% mib2c -c mib2c.scalar.conf scalarGroup

The files scalarGroup.h and scalarGroup.c are generated.

If yourMIB contains both scalar and table data, you should run mib2c separately on theMIB nodes
for each type of data. You specify the appropriate configuration file for each type of data.

The following table lists the mib2c configuration files. The table describes the purpose of each
configuration file, to help you decide which configuration file to use for your data.

TABLE 2–1Configuration Files forUseWith mib2cTool

mib2cConfiguration File Purpose

mib2c.scalar.conf For scalar data, including integers and non-integers. This
configuration file causes mib2c to generate handlers for the scalar
objects in the specifiedMIB node. Internal structural definitions, table
objects, and notifications in theMIB are ignored.

Generating Code Templates

Chapter 2 • CreatingModules 33

TABLE 2–1Configuration Files forUseWith mib2cTool (Continued)
mib2cConfiguration File Purpose

mib2c.int_watch.conf For scalar integers only.When you use this configuration file, mib2c
generates code tomap integer type scalarMIB objects to C variables.
GET or SET requests onMIB objects subsequently have the effect of
getting and setting the corresponding C variables in themodule
automatically. This featuremight be useful if you want to watch, or
monitor, the values of certain objects.

mib2c.iterate.conf For tables of data that are not kept in the agent’s memory. The tables
are located externally, and the tables need to be searched to find the
correct row.When you use this configuration file, mib2c generates a
pair of routines that can iterate through the table. The routines can be
used to select the appropriate row for any given request. The row is
then passed to the single table handler routine. This routine handles
the rest of the processing for all of the column objects, for both GET
and SET requests.

mib2c.create-dataset.conf For tables of data that are kept in the agent’s memory. The table does
not need to be searched to find the correct row. This configuration file
causes mib2c to generate a single handler routine for each table. Most
of the processing is handled internally within the agent, so this handler
routine is only needed if particular column objects require special
processing.

mib2c.array-user.conf For tables of data that are kept in the agent’s memory. The data can be
sorted by the table index. This configuration file causes mib2c to
generate a series of separate routines to handle different aspects of
processing the request.As with the mib2c.create-dataset.conf file,
much of the processing is handled internally in the agent. Many of the
generated routines can be deleted if the relevant objects do not need
special processing.

mib2c.column_defines.conf To create a header file that contains a #define for each column
number in aMIB table.

mib2c.column_enums.conf To create a header file that contains a #define for each enum of
common values used by the columns in aMIB table.

The mib2c(1M)man page includesmore details about using the mib2c tool. You should also see
Chapter 3 formore examples of using mib2c.

Generating Code Templates

Solaris SystemManagementAgent Developer’s Guide • November 200634

ModifyingCodeTemplates
The code templates that are generated by mib2c include code that registers the OIDs for theMIB data
and handles the requests for the data. The init_module routine in themibnode.c template provides
the basic code for data retrieval. Youmustmodify the templates to provide the data collection and
datamanagement, or instrumentation, of yourmodule. See “init_moduleRoutine” on page 39 for
information aboutmodifying the initialization routine.

The following table shows where to findmore information about how to do various types of data
collection.

TABLE 2–2DataCollectionDocumentation

Type of data Reference

Scalar objects “Scalar Objects” on page 41

Simple tables “Simple Tables” on page 43

General tables “General Tables” on page 48

Long running Chapter 8

Configuring theModule
Configuration of themodule depends partly on themodule. You can provide automatic
configuration as part of the installation process for yourmodule.Alternatively, you can provide the
steps and suggestions as part of the end user documentation. If you want users to be able to set
configuration parameters for yourmodule, you can store configuration parameters in a
configuration file. The parameters can then be retrieved by themodule whenever themodule starts.
See Chapter 4 for information.

For anymodule, youmust decide whether to run themodule as a subagent or a dynamically loading
module. See Chapter 6 formore information.

Delivering theModule
When themodule code is complete, youmust decide how to deliver themodule. If you are creating a
module that must be distributed and then be installed, you should use the operating system’s native
software deliverymodel. For the Solaris operating system, you should use packages as described in
theApplication Packaging Developer’s Guide.

Delivering theModule

Chapter 2 • CreatingModules 35

Namespace Issues
This section explains the naming conventions for the SystemManagementAgent. The conventions
are required to enable all developers to avoid namespace collisions.

AvoidingNamespaceCollisions
Namespace is a term used to indicate the complete set of possible names that can exist together in a
certain “space.” Namespaces exist in the computer world and in the real world. For example, the
names of people in a group, such as the passenger list in an aircraft, forms a namespace. In the
computer world, a namespacemight be a list of file names in a directory, or the function names in a
source code file.

Anamespace usually requires names to be unique, to ease the addressing of an individual entity. In
the real world, the names of entities in a namespacemight not always be unique. For example, there
might be two aircraft passengers with the same name. In such situations, an attribute other than the
name of the entities of the namespacemust be used. For example, the seat numbersmight form the
namespace of the passengers on the aircraft.

The namespaces in the computing worldmandate that uniqueness is ensured. For example, you
must have unique names for all the files in a directory or functions that are part of the same program.

Namespace collision occurs if parts of the namespace delivered by different people have the same
names. For example, two vendorsmight come upwith the same library name and install in the same
directory.Arecent trend is tomake the directory name part of the namespace, to ensure different
directories for different vendors or different products. Even if the file names are the same, the file
names are in different directories.

For the SMAdeveloper, several areas are susceptible to namespace collisions. The following sections
discuss naming conventions that youmust follow to greatly reduce the possibility of having naming
issues.

ModuleNames
Themodule name should be based closely on the name of theMIB that is implemented by the
module.MIB name guidelines are discussed in “MIB File Names” on page 31.

Use the following guidelines to name yourmodule, beginning with the name of theMIB file:

� Remove the hyphens
� Remove the wordMIB
� Remove the .txt
� Convert to lowercase

For example, if yourMIB name is ACME-ROUTER-MIB.txt, you should name themodule acmerouter.
When you compile, the shared object that results is acmerouter.so.

Namespace Issues

Solaris SystemManagementAgent Developer’s Guide • November 200636

LibraryNames
Youmust ensure unique names for your custom libraries because all libraries to be used with SMA
are delivered into a single lib namespace. You should observe the following guidelines in naming
your libraries:

� Observe the guidelines for creating uniqueMIB names in “MIB File Names” on page 31.
� Observe the guidelines for naming yourmodule in “Module Names” on page 36.
� Add the prefix lib to yourmodule name to create the name of your library.

For example, assume that yourMIB name is ACME-ROUTER-MIB.txt. Yourmodule name is
acmerouter. The associated library should be named libacmerouter.so. The .so extension is
added when you compile.

Namespace Issues

Chapter 2 • CreatingModules 37

38

DataModeling

This chapter provides information on how tomodify the init_module() routine of amodule to
handle various types of data. The chapter discusses the related code examples that are provided with
the SystemManagementAgent:

demo_module_1 Scalar data example

demo_module_2 Simple table example

demo_module_3 General table example

The chapter includes the following topics:

� “init_moduleRoutine” on page 39
� “Scalar Objects” on page 41
� “Simple Tables” on page 43
� “General Tables” on page 48

init_moduleRoutine
When amodule is loaded in the agent, the agent calls the init_module() routine for themodule. The
init_module() routine registers the OIDs for the objects that themodule handles.After this
registration occurs, the agent associates themodule namewith the registeredOIDs.All modules
must have this init_module() routine.

The mib2c utility creates the init_module() routine for you. The routine provides the basic code for
data retrieval, which youmustmodify appropriately for the type of data.

If you have severalMIB nodes in yourMIB, the mib2c utility creates several .c files. Each generated
file contains an init_mibnode() routine.Amodulemust have only one initialization routine, which
must conform to the convention of init_module(). Therefore, when you havemore than oneMIB

3C H A P T E R 3

39

node represented in yourmodule, youmust combine the initialization content of all the generated .c
files into one file to ensure that the initialization routine for eachMIB node is called by
init_module().

You can combine files to build amodule in one of the following ways:

� Create amodule file to call all the initialization routines.
With this approach, the routine init_myMib() in myMib.cmight look similar to the following
pseudo code:

#include "scalarGroup.h"

#include "tableGroup.h"

...

init_myMib() {

init_scalarGroup();

init_tableGroup();

}

where init_scalarGroup() and init_tableGroup() are in different files.
� Combine the initialization routines’ code into one initialization routine.

If you used this approach, the routine init_myMib()might be similar to the following pseudo
code:

init_myMib() {

<init code - scalarGroup> /* found in scalarGroup.c */

<init code - tableGroup> /* found in tableGroup.c */

}

In both cases, the rest of the code in myMib.cmight be similar to the following pseudo code:

/* get/set handlers for scalarGroup found in scalarGroup.c */

/* get_first/get_next/handler for tableGroup - found in tableGroup.c */

The following sections discuss how the data retrieval codemust bemodified in yourmodule for
different types of data.

init_module Routine

Solaris SystemManagementAgent Developer’s Guide • November 200640

ScalarObjects
Scalar objects are used for singular variables that are not part of a table or an array. If yourMIB
contains scalar objects, youmust run mib2cwith a scalar-specific configuration file on theMIB
nodes that contain the scalars. You should use the following command, wheremibnode1 and
mibnode2 are top-level nodes of scalar data for which you want to generate code:

mib2c -c mib2c.scalar.conf mibnode1 mibnode2 ...

You can specify asmany nodes of scalar data as you want. This command generates two C code files
that are namedmibnode.c andmibnode.h for eachMIB node that is specified in the command line.
Youmustmodify themibnode1.c andmibnode2.c files to enable the agent to retrieve data from
scalar objects. See the mib2c(1M)man page formore information about using the mib2c tool.

Now, compile theMIB and example code as described in “demo_module_1Code Example for Scalar
Objects” on page 41.

demo_module_1CodeExample for ScalarObjects
The demo_module_1 code example is provided to help you understand how tomodify the code
generated by the mib2c command to perform a scalar data retrieval. The demo_module_1 code
example is located by default in the directory /usr/demo/sma_snmp/demo_module_1.

The README_demo_module_1 file contains instructions that describe how to perform the following
tasks:

� Generate code templates from aMIB that contains scalar objects
� Compile source files to generate a shared library object that implements amodule
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_1 is set up to allow you to generate code templates me1LoadGroup.c and
me1LoadGroup.h. You can then compare the generated files to the files demo_module_1.c and
demo_module_1.h. The mib2c utility generates me1LoadGroup.c, which contains the
init_me1LoadGroup() function. You should compare this function to the init_demo_module_1()
function in the demo_module_1.c file.

The demo_module_1.c and demo_module_1.h files have beenmodified appropriately to retrieve
scalar data. You can use these files as amodel for learning how to work with scalar data in your own
module. The instructions then explain how to compile themodified source files to create a
functioningmodule.

Scalar Objects

Chapter 3 • DataModeling 41

Modifications for ScalarDataRetrieval
The demo_module_1 example code, demo_module_1.c, provides the system load average for 1, 5 and
15minutes, respectively.

The init_demo_module_1() function call defines the OIDs for the following three scalar objects:

� me1SystemLoadAvg1min

� me1SystemLoadAvg5min

� me1SystemLoadAvg15min

These OIDs are set up in the demo_module_1.c source file, to reflect what is in the
SDK-DEMO1-MIB.txt. The OIDs are defined as follows:

static oid me1SystemLoadAvg15min_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,1,1,3, 0 };

static oid me1SystemLoadAvg1min_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,1,1,1, 0 };

static oid me1SystemLoadAvg5min_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,1,1,2, 0};

The mib2c command used the netsnmp_register_read_only_instance() function to register
these handler functions:

� get_me1SystemLoadAvg1min()

� get_me1SystemLoadAvg5min()

� get_me1SystemLoadAvg15min()

In this way, when a GET or GET_NEXT request is received, the corresponding handler function is
called.

For example, for the 15minute load average, you canmanually register the
get_me1SystemLoadAvg15min() handler function. The handler retrieves data on the
me1SystemLoadAvg15min scalar. Youmust place the handler in the
netsnmp_register_read_only_instance() function as follows:

netsnmp_register_read_only_instance

(netsnmp_create_handler_registration

("me1SystemLoadAvg15min",

get_me1SystemLoadAvg15min,

me1SystemLoadAvg15min_oid,

OID_LENGTH(me1SystemLoadAvg15min_oid),

HANDLER_CAN_RONLY));

Alternatively, you can use the mib2c command to generate the function bodies of the handler
functions for you. Replace /* XXX... in the generated code with your own data structure for returning
the data to the requests. For instance, the following codemust bemodified:

Scalar Objects

Solaris SystemManagementAgent Developer’s Guide • November 200642

case MODE_GET:

snmp_set_var_typed_value(requests->requestvb, ASN_OCTET_STR, (u_char

) / XXX: a pointer to the scalar’s data */,

/* XXX: the length of the data in bytes */);

break;

This codemust bemodified to include your own data structure for returning data to the requests.
Replace the /* XXX... that is shown in the preceding code.

case MODE_GET:

data = getLoadAvg(LOADAVG_1MIN);

snmp_set_var_typed_value(requests->requestvb, ASN_OCTET_STR, (u_char

*) data , strlen(data));

free(data);

break;

Note that the inputMIB file contains the specification of a table as well as scalar data.When you run
mib2c -c mib2c.scalar.conf scalar-node the template code is generated only for the scalar nodes
in theMIB.

Simple Tables
Asimple table has four characteristics:

� The table is indexed by a single integer value
� Such indexes run from 1 to a determinablemaximum
� All indexes within this range are valid
� The data for a particular index can be retrieved directly by, for example, indexing into an

underlying data structure

If any of these conditions are notmet, the table is not a simple table but a general table. The
techniques described here are applicable only to simple tables.

Note – mib2c assumes that all tables are simple. For information on handling the general tables case,
see “General Tables” on page 48.

If yourMIB contains simple tables, youmust run mib2cwith a configuration file that handles code
generation for simple tables. You should use the following command, wheremibnode1 and
mibnode2 are top level nodes of tabular data for which you want to generate code:

mib2c -c mib2c.iterate.conf mibnode1 mibnode2 ...

You can specify asmany nodes of simple table data as you want. This command generates two C code
files that are namedmibnode.c andmibnode.h for eachMIB node that is specified in the command

Simple Tables

Chapter 3 • DataModeling 43

line. Youmustmodify themibnode1.c andmibnode2.c files to enable the agent to retrieve data from
simple tables. See the mib2c(1M)man page formore information about using the mib2c tool.

The demo_module_2 code example shows how to generate code templates for simple tables.

demo_module_2CodeExample for Simple Tables
The demo_module_2 code example is provided to help you understand how tomodify the code
generated by the mib2c command to perform data retrieval from simple tables. The demo_module_2
code example is located by default in the directory /usr/demo/sma_snmp/demo_module_2.

The README_demo_module_2 file contains instructions that describe how to do the following tasks:

� Generate code templates from aMIB that contains a simple table
� Compile source files to generate a shared library object that implements amodule
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_2 is set up to allow you to generate code templates me1FileTable.c and
me1FileTable.h. You can then compare the generated files to the files demo_module_2.c and
demo_module_2.h.

The mib2c utility generates me1FileTable.c, which contains the init_me1FileTable() function.
You should compare this function to the init_demo_module_2() function in the demo_module_2.c
file.

Modifications for Simple TableDataRetrieval
In demo_module_2.c, the init_demo_module_2 routine calls the
initialize_table_me1FileTable() function. The initialize_table_me1FileTable() function
registers the OID for the table handled by the function. The function also calls someNet-SNMP
functions to initialize the tables.

You should provide the table data in this initialize_table_me1FileTable() function if needed.
The initialize_table_me1FileTable() function performs the following:

Initialization The initialize_table_me1FileTable() function performs the
real table initialization, by performing tasks such as setting the
maximumnumber of rows and columns.

OID Table Definition The initialize_table_me1FileTable() function defines the
table OID:

Simple Tables

Solaris SystemManagementAgent Developer’s Guide • November 200644

static oid me1FileTable_oid[] =

{1,3,6,1,4,1,42,2,2,4,4,1,2,1};

Table Definition The initialize_table_me1FileTable() function sets up the
table’s definition. This function specifies another function to call,
me1FileTable_get_first_data_point(), to process the first
row of data in the table. The function
me1FileTable_get_next_data_point() is called to process the
remaining rows in the table.

netsnmp_table_helper_add_indexes(table_info,

ASN_UNSIGNED, /* index: me1FileIndex */

0);

table_info->min_column = 1;

table_info->max_column = 4;

/* iterator access routines */

iinfo->get_first_data_point =

me1FileTable_get_first_data_point;

iinfo->get_next_data_point =

me1FileTable_get_next_data_point;

iinfo->table_reginfo =

table_info;

iinfo is a pointer to a netsnmp_iterator_info structure.

MasterAgent Registration The initialize_table_me1FileTable() function registers the
table with themaster agent:

netsnmp_register_table_iterator(my_handler, iinfo);

The table iterator is a helper function that modules can use to index through rows in a table.
Functionally, the table iterator is a specialized version of themore generic table helper. The table
iterator eases the burden of GETNEXT processing. The table iterator loops through all the data
indexes retrieved through those function calls that should be supplied by themodule that requests
help. See theAPI documentation at
/usr/sfw/doc/sma_snmp/html/group__table__iterator.html for more information on table
iteratorAPIs.

Note that the inputMIB file contains the specification of table and scalar data. However, when you
run mib2cwith mib2c.iterate.conf and specify the table node name, only template code for the
simple table in theMIB is generated.

Simple Tables

Chapter 3 • DataModeling 45

DataRetrieval FromLarge Simple Tables
Data retrieval from a simple table requires you to use the single, integer index subidentifier to index
into an existing data structure.

With somemodules, this underlying table might be relatively large, or only accessible through a
cumbersome interface. Data retrieval might be very slow, particularly if performing a walk of aMIB
tree requires the table to be reloaded for each variable requested. In these circumstances, a useful
technique is to cache the table on the first read and use that cache for subsequent requests.

To cache the table, youmust have a separate routine to read in the table. The routine uses two static
variables. One variable is a structure or array for the data. The other variable is an additional
timestamp to indicate when the table was last loaded.When a call is made to the routine to read the
table, the routine can first determine whether the cached table is sufficiently new. If the data is recent
enough, the routine can return immediately. The system then uses the cached data. If the cached
version is old enough to be considered out of date, the routine can retrieve the current data. The
routine updates the cached version of the data and the timestamp value. This approach is particularly
useful if the data is relatively static, such as a list of mounted file systems.

Multiple SETProcessing in demo_module_2
The demo_module_2 example code shows how to perform amultiple OID set action. In this case, a
file name and row status are provided.

When the agent processes a SET request, a series of calls to theMIBmodule code aremade. These
calls ensure that all SET requests in the incoming packet can be processed successfully. This
processing allowsmodules the chance to get out of the transaction sequence early. If themodule gets
out of one transaction early, none of the transactions in the set are completed, in order tomaintain
continuity. However, this behaviormakes the code for processing SET requests more complex. The
following diagram is a simple state diagram that shows each step of themaster agent’s SET
processing.

Simple Tables

Solaris SystemManagementAgent Developer’s Guide • November 200646

Start

Succeeds

RESERVE1

Succeeds

RESERVE2

Succeeds

ACTION

FREE

UNDO

Succeeds

COMMIT

Fails

Fails

Fails

FIGURE 3–1 Set Processing StateDiagram

An operation with no failures is illustrated by the vertical path on the left, in the preceding figure. If
any of theMIBmodules that are being acted upon returns an error, the agent branches to one of the
failure states. The failure states are on the right side in the figure. These failure states require you to
clean up and, where necessary, undo the actions of previous steps in yourmodule.

See the me1FileTable_handler() function in the demo_module_2 example code, for how to perform
SET requests in different states. The following is list describes each of the states:

case MODE_SET_RESERVE1 Checks that the value being set is acceptable.

case MODE_SET_RESERVE2 Allocates any necessary resources. For example, calls to the malloc()
function occur here.

case MODE_SET_FREE Frees resources when one of the other values being SET failed for
some reason.

case MODE_SET_ACTION Sets the variable as requested and saves information that might be
needed in order to reverse this SET later.

case MODE_SET_COMMIT Operation is successful. Discards saved information andmakes the
change permanent. For example, writes to the snmpd.conf
configuration file and frees any allocated resources.

case MODE_SET_UNDO Afailure occurred, so resets the variable to its previous value. Frees
any allocated resources.

You can perform the set action using either of the following commands when you use the
demo_module_2 example:

Simple Tables

Chapter 3 • DataModeling 47

snmpset -v1 -c private localhost me1FileTable.1.2.3 s "test"

snmpset -v1 -c private localhost .1.3.6.1.4.1.42.2.2.4.4.1.2.1.1.2.2 s "test"

These commands change the file that you want tomonitor.

Note – In order to use the snmpset command to specify a different file name, youmust have a private
community string in the snmpd.conf file, which is located in /etc/sma/snmp or $HOME/.snmp.

General Tables
Ageneral table differs from a simple table in at least one of the following ways:

� The table is not indexed with a single integer.
For example, if the index is an IP address, the table is a general table.

� Themaximum index cannot be determined easily.
For example, the network interfaces table is a general table because it does not have amaximum
index that you can determine.

� At any given point, some indexesmight be invalid.
For example, a table of currently running softwaremight contain a row for a program that has
just ended, but the table has yet to be updated. The table must be processed as a general table.

� The table data is not directly accessible.
For example, the network interfaces table is maintained in the kernel and cannot be accessed
directly.

The command that you use to generate code templates for general tables is the same command used
for simple tables:

mib2c -c mib2c.iterate.conf mibnode1 mibnode2 ...

The demo_module_3 code example shows howmodify the templates appropriately to retrieve data
from general tables.

demo_module_3CodeExample forGeneral Tables
The demo_module_3 code example is provided to help you understand how tomodify the code
generated by the mib2c command to perform a data retrieval in a general table. The table example
provides information formonitoring a list of files. The demo_module_3 code example is located by
default in the directory /usr/demo/sma_snmp/demo_module_3.

General Tables

Solaris SystemManagementAgent Developer’s Guide • November 200648

The README_demo_module_3 file contains instructions that describe how to perform the following
tasks:

� Generate code templates from aMIB that contains general table
� Compile source files to generate a shared library object that implements amodule
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_3 is set up to allow you to generate code templates me1ContactInfoTable.c and
me1ContactInfoTable.h. You can then compare the generated files to the files demo_module_3.c
and demo_module_3.h.

The me1ContactInfoTable.c and me1ContactInfoTable.h have beenmodified appropriately to
retrieve data from general tables. You can use these files as amodel for learning how to work with
general tables in your ownmodule. The instructions then explain how to compile themodified
source files to create a functioningmodule.

The demo_module_3 code was generated by using mib2cwith the -c mib2c.iterate.conf option.
Some functions have been added to implement a link list to provide the test data.

The example uses some dummy data to perform data retrieval for a two-index table. The code is
similar to the demo_module_2.cwith one extra index. The following code sets up the table with two
indexes:

netsnmp_table_helper_add_indexes(table_info,

ASN_INTEGER, /* index: me1FloorNumber */

ASN_INTEGER, /* index: me1RoomNumber */

0);

Use care in returning the “NEXT” data when function
me1ContactInfoTable_get_next_data_point() is called. For instance, the data in this table is
presorted so the next data is conveniently pointed by the pNext pointer in this example code:

me1ContactEntry* nextNode = (me1ContactEntry*) *my_loop_context;

nextNode = nextNode->pNext;

If your implementation is more complicated, make sure the OIDs are increased incrementally,
(xxx.1.1, xxx.1.2,).

The input MIB file contains the specification of tables and scalars. When you run mib2c -c

mib2c.iterate.conf on a general table node, template code is generated only for the general table
in theMIB.

General Tables

Chapter 3 • DataModeling 49

50

StoringModule Data

This chapter discusses how amodule can store data that persists when the agent is restarted.

The chapter includes the following topics:

� “About StoringModule Data” on page 51
� “Implementing Persistent Data in aModule” on page 52
� “demo_module_5Code Example for Persistent Data” on page 54

About StoringModuleData
Youmight want yourmodule to store persistent data. Persistent data is information such as
configuration settings that themodule stores in a file and reads from that file. The data is preserved
across restarts of the agent.

Modules can store tokens with assigned values inmodule-specific configuration files.A
configuration file is createdmanually. Tokens can be written to the file or read from the file by a
module. Themodule registers handlers that are associated with themodule’s specific configuration
tokens.

Configuration Files
The snmp_config(4) man page discusses SNMP configuration files in general. Theman page
documents the locations where the files can be stored so the agent can find the files. These locations
are on the default search path for SNMP configuration files.

For yourmodules, the best location to store configuration files is in a $HOME/.snmp directory, which is
on the default search path. You can also set the SNMPCONFPATH environment variable if you want to
use a non-default location for configuration files.

When you create your own configuration file, youmust name the filemodule.conf or
module.local.conf. Youmust place the file in one of the directories on the SNMP configuration file
search path.

4C H A P T E R 4

51

Note –Youmight find that theNet-SNMP routines write yourmodule’s configuration file to the
/var/sma_snmp directory. The routinesmake updates to that version of the file. However, the
routines can find the configuration file in other locations when themodule needs to initially read the
file.

DefiningNewConfiguration Tokens
Configuration tokens are used bymodules to get persistent data during runtime.When yourmodule
uses custom configuration tokens, you should create one ormore custom configuration files for the
module. Youmight also choose to create one configuration file for several relatedmodules. You can
define new tokens in the custom configuration file.

Custom tokensmust use the same format as the directives in snmpd.conf. One token is defined in
each line of the configuration file. The configuration tokens are written in the form:

Token Value

For example, your tokenmight be:

my_token 4

Modules should not define custom tokens in the SNMP configuration file,
/etc/sma/snmp/snmpd.conf. If a module stores tokens in /etc/sma/snmp/snmpd.conf, namespace
collisions can potentially occur. See “Avoiding Namespace Collisions” on page 36 formore
information about namespace collisions.

ImplementingPersistentData in aModule
Themodule can register handlers that are associated with tokens in amodule-specific configuration
file with the register_config_handler() function. The handlers can then be used later in the
module for a specific task.

The register_config_handler() is defined as follows:

register_config_handler (const char *type_param, const char *token,

void(*parser)(const char *, char *),

void(*releaser)(void), const char *help)

The first argument to this function designates the base name of the configuration file, which should
be the same as the name of themodule. For example, if the first argument is my_custom_module, then
the agent infrastructure looks for the configuration tokens in the file my_custom_module.conf. Note
that youmust create the configuration filemanually before themodule can use the file.

The second argument to this function designates the configuration token that themodule is looking
for.

Implementing Persistent Data in aModule

Solaris SystemManagementAgent Developer’s Guide • November 200652

Formore information about register_config_handler() and other related functions, see theAPI
documentation in /usr/sfw/doc/sma_snmp/html/group__read__config.html. You can also look
at /usr/demo/sma_snmp/demo_module_5/demo_module_5.c to see how the function is used.

StoringPersistentData
Yourmodulemust use the read_config_store_data() and read_config_store() functions
together with callback functions to store data.

Yourmodulemust first register a callback with the snmp_register_callback() function so that
data is written to the configuration file when the agent shuts down.

The snmp_register_callback() function is as follows:

int snmp_register_callback(int major,

int minor,

SNMPCallback *new_callback,

void *arg);

Youmust setmajor to SNMP_CALLBACK_LIBRARY, setminor to SNMP_CALLBACK_STORE_DATA. When
arg is not set to NULL, arg is a void pointer used whenever the new_callback function is exercised.

The prototype to your callback function, the new_callback pointer, is as follows:

int (SNMPCallback) (int majorID,

int minorID,

void *serverarg,

void *clientarg);

See theAPI documentation formore information about setting up callback registrations with the
agent at /usr/sfw/doc/sma_snmp/html/group__callback.html.

The read_config_store_data() function should be used to create the token-value pair that is to be
written into themodule’s configuration file. The read_config_store() function actually does the
storing when the registered callbacks are exercised upon agent shutdown.

Note –When yourmodule stores persistent data, youmight find that the configuration file is written
to the /var/sma_snmp directory.Modified token-value pairs are appended to the file, rather than
overwriting the previous token-value pairs in the file. The last values that were defined in the file are
the values that are used.

ReadingPersistentData
Data is read from amodule’s configuration file into themodule by using the
register_config_handler() function. For example, you can call the function as follows:

Implementing Persistent Data in aModule

Chapter 4 • StoringModule Data 53

register_config_handler("my_module", "some_token",

load_my_tokens, NULL, NULL);

Whenever the token some_token is read by the agent in my_module.conf file, the load_my_tokens()
function is called with token name and value as arguments. The load_my_tokens() function is
invoked. The data can be parsed by using the read_config_read_data() function.

demo_module_5CodeExample for PersistentData
The demo_module_5 code example demonstrates the persistence of data across agent restart. The
demo is located in the directory /usr/demo/sma_snmp/demo_module_5 by default.

This module implements SDK-DEMO5-MIB.txt. The demo_module_5.c and demo_module_5.h
templates were renamed from the original templates me5FileGroup.c and me5FileGroup.h that
were generated with the mib2c command. The name of the initialization function is changed from
init_me5FileGroup to init_demo_module_5.

See the README_demo_module_5 file in the demo_module_5 directory for the procedures to build and
run the demo.

StoringPersistentData in demo_module_5
This example stores configuration data in the /var/sma_snmp/demo_module_5.conf file.

In demo_module_5.c, the following statement registers the callback function. The callback function
is called whenever the agent sees that module data needs to be stored, such as during normal
termination of the agent.

snmp_register_callback(SNMP_CALLBACK_LIBRARY,

SNMP_CALLBACK_STORE_DATA,

demo5_persist_data,

NULL);

The demo5_persist_data() function uses read_store_config to store data:

int demo5_persist_data(int a, int b, void *c, void *d)

{

char filebuf[300];

sprintf(filebuf, "demo5_file1 %s", file1);

read_config_store(DEMO5_CONF_FILE, filebuf);

sprintf(filebuf, "demo5_file2 %s", file2);

read_config_store(DEMO5_CONF_FILE, filebuf);

demo_module_5 Code Example for Persistent Data

Solaris SystemManagementAgent Developer’s Guide • November 200654

sprintf(filebuf, "demo5_file3 %s", file3);

read_config_store(DEMO5_CONF_FILE, filebuf);

sprintf(filebuf, "demo5_file4 %s", file4);

read_config_store(DEMO5_CONF_FILE, filebuf);

}

In demo_module_5, a new file can be added formonitoring, by using the snmpset command. The
commit phase of the snmpset request uses the read_config_store() function to store file
information:

case MODE_SET_COMMIT:

/*

* Everything worked, so we can discard any saved information,

* and make the change permanent (e.g. write to the config file).

* We also free any allocated resources.

*

*/Persist the file information */

snprintf(&filebuf[0], MAXNAMELEN, "demo5_file%d %s",

data->findex, data->fileName);

read_config_store(DEMO5_CONF_FILE, &filebuf[0]);

/*

* The netsnmp_free_list_data should take care of the allocated

* resources

*/

The persistent data is stored in the /var/sma_snmp/demo_module_5.conf file.

ReadingPersistentData in demo_module_5
Data is read from the configuration files into amodule by registering a callback function to be called
whenever an relevant token is encountered. For example, you can call the function as follows:

register_config_handler(DEMO5_CONF_FILE, "demo5_file1",

demo5_load_tokens, NULL, NULL);

Whenever the demo5_file1 token in the demo_module_5.conf file is read by the agent, the function
demo5_load_tokens() is called with token name and value as arguments. The
demo5_load_tokens() function stores the token value in appropriate variables:

demo_module_5 Code Example for Persistent Data

Chapter 4 • StoringModule Data 55

void

demo5_load_tokens(const char *token, char *cptr)

{

if (strcmp(token, "demo5_file1") == 0) {

strcpy(file1, cptr);

} else if (strcmp(token, "demo5_file2") == 0) {

strcpy(file2, cptr);

} else if (strcmp(token, "demo5_file3") == 0) {

strcpy(file3, cptr);

} else if (strcmp(token, "demo5_file4") == 0) {

strcpy(file4, cptr);

} else {

/* Do Nothing */

}

return;

}

Using SNMP_CALLBACK_POST_READ_CONFIG in
demo_module_5

Afew seconds elapse after agent startup while all configuration tokens are read by themodule.
During this interval, themodule should not perform certain functions. For example, until the
persistent file names are read from /var/sma_snmp/demo_module_5.conf into themodule, the file
table cannot be populated. To handle these cases, a callback function can be set. This callback
function is called when the process of reading the configuration files is complete. For example, you
might call the function as follows:

snmp_register_callback(SNMP_CALLBACK_LIBRARY,

SNMP_CALLBACK_POST_READ_CONFIG, demo_5_post_read_config, NULL);

The demo_5_post_read_config() function is called after the configuration files are read. In this
example, the demo_5_post_read_config() function populates the file table, then registers the
callback function for data persistence.

int

demo5_post_read_config(int a, int b, void *c, void *d)

{ if (!AddItem(file1))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

if (!AddItem(file2))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

if (!AddItem(file3))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

if (!AddItem(file4))

demo_module_5 Code Example for Persistent Data

Solaris SystemManagementAgent Developer’s Guide • November 200656

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

snmp_register_callback

(SNMP_CALLBACK_LIBRARY, SNMP_CALLBACK_STORE_DATA,

demo5_persist_data, NULL);

}

demo_module_5 Code Example for Persistent Data

Chapter 4 • StoringModule Data 57

58

ImplementingAlarms

This chapter explains how to implement alarms inmodules. The demo_module_4 is used to illustrate
techniques.

The chapter contains the following topics:

� “Refresh Intervals” on page 59
� “Asynchronous TrapNotification” on page 60
� “Thresholds for Sending Traps” on page 60
� “demo_module_4Code Example forAlarms” on page 61

Refresh Intervals
Refresh intervals, also known as automatic refresh, can be implemented in the SystemManagement
Agent. You can use a callbackmechanism that calls a specified function at regular intervals. Data
refresh can be implemented by the snmp_alarm_register() function. In demo_module_4, the load
data is refreshed at a configurable time interval, 60 seconds in this example, using the following
callback:

snmp_alarm_register(60, SA_REPEAT, refreshLoadAvg, NULL);

void refreshLoadAvg(unsigned int clientreg, void *clientarg){

// Refresh the load data here

}

The snmp_alarm_register() function can be included in the init_()module() function so that the
refresh interval is set during the initialization of themodule.

5C H A P T E R 5

59

Asynchronous TrapNotification
Typically, checking for trap conditions is done in the following sequence:

1. Get current data for a particular node.
2. Compare the data with a threshold to check if the trap condition is met.
3. Send a trap to themanager if the condition is met.

Steps 2 and 3 are implemented in SMAby calling an algorithm after data for a node is acquired. The
algorithm determines if an alarm condition is met. The algorithm inmost cases involves comparing
the current data with the threshold. If the algorithm indicates that an alarm condition is met, the
appropriate trap functions are called to issue a trap. In demo_module_4, steps 2 and 3 are performed
in the following function:

void refreshLoadAvg(unsigned int clientreg, void *clientarg) {

// Refresh Load data

// Check if Load data crossed thresholds, send trap if necessary.

check_loadavg1_state();

check_loadavg5_state();

check_loadavg15_state();

}

The check_loadavg_state functions compare the current load data with thresholds. The functions
also send the traps if necessary.

Themodulemust use a trap function such as send_v2trap() to send a trap to themanager. Formore
information on SNMP trapAPIs, see /usr/sfw/doc/sma_snmp/html/group__agent__trap.html.
The SNMP trap notifications are defined in SNMP-NOTIFICATION-MIB.txt. For demo_module_4, the
trap notifications are defined in SDK-DEMO4-MIB.txt.

Thresholds for SendingTraps
In the SystemManagementAgent, any configurable data can be stored in amodule-specific
configuration file. Data from this file can be loaded into themodule at the time ofmodule
initialization. Data is read from the configuration files into amodule by registering a callback
function to be called whenever an interesting token is encountered.

register_config_handler("demo_module_4", "threshold_loadavg1",

read_load_thresholds, NULL, NULL);

In this example demo_module_4, whenever a threshold_loadavg1 token is read by the agent in the
demo_module_4.conf file, the read_load_thresholds() function is called, with token name and
value as arguments. The read_load_thresholds() function stores the token value in appropriate

Asynchronous TrapNotification

Solaris SystemManagementAgent Developer’s Guide • November 200660

variables and uses these thresholds to determine alarm conditions. Formore information on the
register_config_handlerAPIs, see the documentation in
/usr/sfw/doc/sma_snmp/html/group__read__config.html.

demo_module_4CodeExample forAlarms
The demo_module_4 code example is provided to help you understand how to implement alarms.
The demo is by default located in the directory /usr/demo/sma_snmp/demo_module_4. The
README_demo_module_4 file in that directory contains instructions that describe how to do the
following tasks:

� Compile source files to generate a shared library object that implements amodule
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_4module implements SDK-DEMO4-MIB.txt. The me4LoadGroup.c and
me4LoadGroup.h files were generated with the mib2c command and thenmodified.

Module data is maintained in the following variables:

loadavg1 Stores data for me4SystemLoadAvg1min

loadavg5 Stores data for me4SystemLoadAvg5min

loadavg15 Stores data for me4SystemLoadAvg15min

The demo_module_4module refreshes data every 60 seconds. During refresh intervals, themodule
also checks whether trap conditions aremet. If trap conditions aremet, an SNMPv2 trap is generated
by themodule. The trap condition in this module is a simple comparison of current data with a
threshold value. If the threshold is crossed, a trap is generated. The threshold data can be configured
through the file demo_module_4.conf, which is installed in $HOME/.snmp.

When an snmpget request for these variables arrives, the following functions are called:

� int get_me4SystemLoadAvg1min()

� int get_me4SystemLoadAvg5min()

� int get_me4SystemLoadAvg15min()

These accessory functions refresh the load data by calling the refreshLoadAvg() function to return
the current load value. However, the reload occurs only in response to a GET request. The load data
must also be refreshed asynchronously without waiting for GET requests from themanager.
Asynchronous refreshing allows trap conditions to be checked continuously in order to alert the
manager of any problems. You can refresh the load data without a request from themanager by
registering a callback function to be called at regular intervals. For example, you can call the function
as follows:

snmp_alarm_register(60, SA_REPEAT, refreshLoadAvg, NULL)

demo_module_4 Code Example forAlarms

Chapter 5 • ImplementingAlarms 61

This function causes the refreshLoadAvg() function to be called every 60 seconds. You can enable a
manager to configure this interval by introducing a token to represent this value in the
demo_module_4.conf file.

See the API documentation at /usr/sfw/doc/sma_snmp/html /group__snmp__alarm.html for
more information on snmp_alarm_register() functions.

ReadingData From the demo_module_4.conf
Configuration File
Data is read from the configuration files into amodule by registering a callback function to be called
whenever an appropriate token is encountered. For example, you can call the function as follows:

register_config_handler(demo_module_4, threshold_loadavg1,

read_load_thresholds, NULL, NULL);

Whenever a threshold_loadavg1 token in the demo_module_4 file is read by the agent, the function
read_load_thresholds() is called with token name and value as arguments. The
read_load_thresholds() function stores the token value in appropriate variables:

void

read_load_thresholds(const char *token, char *cptr)

{

if (strcmp(token, "threshold_loadavg1") == 0) {

threshold_loadavg1=atof(cptr);

} else if (strcmp(token,"threshold_loadavg5") == 0) {

threshold_loadavg5=atof(cptr);

} else if (strcmp(token,"threshold_loadavg15") == 0) {

threshold_loadavg15=atof(cptr);

} else {

/* Do nothing */

}

return;

}

See theAPI documentation about register_config_handler() in
/usr/sfw/doc/sma_snmp/html/group__read__config.html for more information.

demo_module_4 Code Example forAlarms

Solaris SystemManagementAgent Developer’s Guide • November 200662

Using SNMP_CALLBACK_POST_READ_CONFIG in
demo_module_4

Afew seconds elapse after agent startup while all configuration tokens are read by themodule.
During this interval, themodule should not perform certain functions. For example, until the
threshold settings are read from configuration files into themodule, trap condition checks should
not be performed. To handle these cases, a callback function can be set. This callback function is
called when the process of reading the configuration files is complete. For example, you can call the
function as follows:

snmp_register_callback(SNMP_CALLBACK_LIBRARY,

SNMP_CALLBACK_POST_READ_CONFIG,demo_4_post_read_config, NULL);

The demo_4_post_read_config() function is called after the configuration files are read. In this
example, the demo_4_post_read_config() function registers refresh callbacks:

int demo_4_post_read_config(int a, int b, void *c, void *d)

{

/* Refresh the load data every 60 seconds */

snmp_alarm_register(60, SA_REPEAT, refreshLoadAvg, NULL);

/* Acquire the data first time */

refreshLoadAvg(0,NULL);

}

Generating Traps in demo_module_4
The refreshLoadAvg() function is called at regular intervals to refresh data. Immediately after data
is refreshed, the refreshLoadAvg() function checks for trap conditions by calling the following
functions:

� check_loadavg1_state()

� check_loadavg5_state()

� check_loadavg15_state()

In me4LoadGroup.c, a module property could be in one of two states: OK or ERROR. When the current
data value crosses the threshold, the state is set to ERROR. A trap is then generated. The check
functions have the following algorithm:

check_loadavg1_state() {

// Step-1: check condition

if (currentData > threshold_loadavg1) new_loadavg1_state = ERROR;

demo_module_4 Code Example forAlarms

Chapter 5 • ImplementingAlarms 63

// Step-2: Generate trap if necessary

if (new_loadavg1_state > prev_loadavg1_state) {

// Send trap

prev_loadavg1_state=new_loadavg1_state;

} else if(new_loadavg1_state == prev_loadavg1_state) {

/* No Change in state .. Do nothing */

} else if (new_loadavg1_state < prev_loadavg1_state) {

if (new_loadavg1_state == OK) {

prev_loadavg1_state=OK;

// Send OK trap

}

}

}

When the check indicates that the threshold has been crossed, the send_v2trap function is used to
generate an SNMPv2 trap. The trapOID and the varbinds are as specified in the
SDK-DEMO4-MIB.txtMIB. Formore information on SNMP trapAPIs, see
/usr/sfw/doc/sma_snmp/html/group__agent__trap.html.

demo_module_4 Code Example forAlarms

Solaris SystemManagementAgent Developer’s Guide • November 200664

DeployingModules

This chapter discusses the ways to deploy yourmodule. The chapter provides information to help
you decide whether you should use a subagent or a dynamically loadedmodule. Examples of
deploying demonstrationmodules as subagents and dynamically loadedmodules are included.

This chapter contains the following topics:

� “Overview ofModule Deployment” on page 65
� “Choosing DynamicModules or Subagents” on page 66
� “LoadingModules Dynamically” on page 67
� “Using Subagents” on page 70
� “Deploying aModule as a Subagent” on page 71

OverviewofModuleDeployment
With the SystemManagementAgent, you have the following choices for deploying amodule:

� Load themodule dynamically.

When you load amodule dynamically, themodule is included within the SNMPagent without
the need to recompile and relink the agent binary. This method is the only supported way to load
amodule into the SystemManagementAgent. You cannot recompile the agent.

Details of themodule to load are specified in the configuration file.At runtime, the agent reads
the configuration file. The agent locates themodule files that are listed in the configuration file.
The agent thenmerges themodules into the agent process image.

� Implement themodule as anAgentX subagent.

When you use a subagent, themodule is embedded in an external application. The external
application contains code to set up the application to run as anAgentX subagent. The SNMP
agent’s configuration file specifies that the agent is theAgentXmaster agent.When the external
application starts, themodule’s OIDs are registered with the SNMPagent. The subagent
application and the agent use theAgentX protocol to communicate.

6C H A P T E R 6

65

These deploymentmethods have advantages and disadvantages, which are discussed in “Choosing
DynamicModules or Subagents” on page 66. However, the way that you develop yourmodule and
the content of yourmodule have no bearing on how you deploy yourmodule. You can use the same
module, withoutmodification, with either deploymentmethod.

ChoosingDynamicModules or Subagents
In general, when you are first developing and testing yourmodule, you should dynamically load the
module in themaster agent. This method reduces the complexity while you work out any problems
in themodule.When you are ready to deploy amodule, you should compile themodule in a
subagent instead of dynamically loading into themaster agent. By using subagents, you canmore
easily isolate problems in themodule.

However, sometimes a subagent is not the optimal deploymentmethod. Use the following criteria to
determine when to load amodule into amaster agent instead of a subagent:

� If more than five requests per second are targeted to themodule’sMIB, you should consider
loading themodule into themaster agent.

� If yourmodule queries the SYSTEM group often, and queries the IP branch very rarely, load the
module into themaster agent.

� If yourmodule queries the IP branch of theMIB very often, load themodule in the subagent. The
IP group of themoduleMIB is six timesmore computationally costly compared to the SYSTEM
group.

The following table summarizes the primary advantages and disadvantages of dynamically loaded
modules and subagents.

TABLE 6–1Advantages andDisadvantages ofDeploymentMethods

DeploymentMethod Advantages Disadvantages

Dynamically loaded Less complexity compared to
subagent approach

Incurs a slightly greater load on agent at startup.

Makes themaster agentmore vulnerable,
especially if themodule has quality and
performance problems. For example, a module
with quality problemsmight have amemory
violation, which can crash themaster agent.A
module with performance problemsmight
consume toomany system resources, such as
CPU time andmemory. These problemsmight
overload themaster agent, causing themaster
agent not to function properly in processing
other requests.

ChoosingDynamicModules or Subagents

Solaris SystemManagementAgent Developer’s Guide • November 200666

TABLE 6–1Advantages andDisadvantages ofDeploymentMethods (Continued)
DeploymentMethod Advantages Disadvantages

AgentX subagent Isolates themodule processing
from the agent

Incurs an extra cost to themaster agent by
causing the agent to build packets to transport
requests between themaster agent and the
subagent. Themaster agent performs an extra
step of both encoding and decoding for every
incoming request that is targeted to the
subagent. If the subagent gets toomany requests,
the time spent on additional encoding and
decodingmight be excessive.

LoadingModulesDynamically
The simplest way to loadmodules dynamically is to restart the agent after you add entries to the
configuration file. Dynamic loading is the best method to use while you are developing and testing a
module.Most of the demonstrationmodules in /usr/demo/sma_snmp use dynamic loading. You
should use the procedure “How toDynamically Load aModule and Restart theAgent” on page 67
during the development and testing phase.

When you are using themodule in a production environment, that environmentmight require you
not to restart the agent. If you want to loadmodules without restarting the agent, you should use the
procedure “How toDynamically Load aModuleWithout Restarting theAgent” on page 68.

� How toDynamically LoadaModule andRestart the
Agent
Copy themodule shared library object to a libdirectory.

You should keep your .so files in a directory that is writable by non-root users.

As root, edit the agent’s configuration file to enable the agent to dynamically load themodule.

In the /etc/sma/snmp/snmpd.conf file, add a line that is similar to the following, where testmodule
is the name of themodule.
dlmod testmodule /home/username/snmp/lib/testmodule.so

As root, restart the snmpd agent by typing the following command.
svcadm restart svc:/application/management/sma:default

Themodule should now be loaded. You can use snmpget and snmpset commands to access the
module’s data to confirm that themodule is loaded. You shouldmake sure yourMIB can be located
by the snmpget and snmpset commands by setting your MIBDIRS and MIBS environment variables, as
described in “SettingMIB Environment Variables” on page 32.

1

2

3

LoadingModules Dynamically

Chapter 6 • DeployingModules 67

Tip –To unload amodule, you would remove the dlmod line from the snmpd.conf file and restart the
agent.

� How toDynamically LoadaModuleWithout
Restarting theAgent
TheUCD-DLMOD-MIB providesMIB entries for themodule name, path, and status. By setting
theseMIB entries, you can cause the agent to load or unload themodule without restarting the agent.

Note –This procedure causes themodule to be loaded only for the current session of the agent. If you
want themodule to be loaded each time the agent starts, you should add a dlmod line to the
snmpd.conf file. The process of adding the line is described in Step 2 of the previous procedure. Do
not restart the agent after adding the line.

View the UCD-DLMOD-MIB.txt file in /etc/sma/snmp/mibs.
Look for the DlmodEntry and dlmodStatus entries, which appear as follows:
DlmodEntry ::= SEQUENCE {

dlmodIndex Integer32,

dlmodName DisplayString,

dlmodPath DisplayString,

dlmodError DisplayString,

dlmodStatus INTEGER

}

dlmodStatus OBJECT-TYPE

SYNTAX INTEGER {

loaded(1),

unloaded(2),

error(3),

load(4),

unload(5),

create(6),

delete(7)

}

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"The current status of the loaded module."

::= { dlmodEntry 5 }

DlmodEntry defines a row in a table of dynamically loadedmodules.A table row describes an
instance by defining an index, name, path, error code, and status code. You need to set the name,
path, and status of the first empty row of the table.

1

LoadingModules Dynamically

Solaris SystemManagementAgent Developer’s Guide • November 200668

Type the following command to check the first rowof the table. The command can tell youwhether
an instance of a dynamically loadedmodule already exists in the table.

$ /usr/sfw/bin/snmpget -v 1 -c public localhost UCD-DLMOD-MIB::dlmodStatus.1

Error in packet

Reason: (noSuchName) There is no such variable name in this MIB.

Failed object: UCD-DLMOD-MIB::dlmodStatus.1

This response indicates that no other dynamicmodule is defined as instance 1. If you get back a
positive response, examine dlmodStatus.2with the same command.

Create an instance for yourmodule in the table by typing the following command:

$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodStatus.1 i create

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: create(6)

Repeat the snmpget command to show the status of the first instance.

$ /usr/sfw/bin/snmpget -v 1 -c public localhost \

UCD-DLMOD-MIB::dlmodStatus.1

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: unloaded(2)

The instance now exists, but themodule is unloaded currently.

Set the nameandpath to themodule that youwant to load. Type a command that is similar to the
following:

$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodName.1 s "testmodule" \

UCD-DLMOD-MIB::dlmodPath.1 s "/home/username/lib/testmodule.so"

UCD-DLMOD-MIB::dlmodName.1 = STRING: testmodule

UCD-DLMOD-MIB::dlmodPath.1 = STRING: /home/username/lib/testmodule.so

testmodule is the name of yourmodule.

Load themodule by typing the following command:

$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodStatus.1 i load

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: load(4)

This command sets the dlmodStatus.1 variable to load.

Confirm that themodulewas loadedby typing the following command:

$ /usr/sfw/bin/snmpget -v 1 -c public localhost \

UCD-DLMOD-MIB::dlmodStatus.1

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: loaded(1)

The response indicates that themodule is loaded.

2

3

4

5

6

7

LoadingModules Dynamically

Chapter 6 • DeployingModules 69

(Optional) Unload themodule by typing the following command:
$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodStatus.1 i unload

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: unload(5)

(Optional) Confirm that themodulewas unloadedby typing the following command:
$ /usr/sfw/bin/snmpget -v 1 -c public localhost \

UCD-DLMOD-MIB::dlmodStatus.1

Timeout: No Response from localhost.

The lack of response from localhost indicates that themodule is unloaded.

Using Subagents
Using subagents with an extensible SNMP agent avoids the problem of having one very large SNMP
agent. Before subagents were devised, an SNMPagent had to be recompiled to add newmanagement
objects inMIBs. The subagent approach provides the ability to dynamically addmanagement objects
to an agent without recompiling the agent. The need to standardize the way in which agents and
subagents work together led to the development of theAgentX protocol.

AgentXProtocol
TheAgentX protocol enables subagents to connect to themaster agent. The protocol also enables the
master agent to distribute received SNMPprotocol messages to the subagents.

TheAgentX protocol defines an SNMPagent to consist of onemaster agent entity and other
subagent entities. Themaster agent runs on the SNMPport, and sends and receives SNMPmessages
as specified by the SNMP framework documents. Themaster agent does not access the subagents’
management information directly. The subagents do not handle SNMPmessages, but subagents do
access their management information. In short, themaster agent handles SNMP for the subagents,
and only handles SNMP. The subagent handles manipulation ofmanagement data but does not
handle SNMPmessages. The responsibilities of each type of agent are strictly defined. Themaster
agent and subagents communicate throughAgentX protocol messages.AgentX is described in detail
by RFC 2741. See http://www.ietf.org/rfc/rfc2741.txt

The SMAperforms in the role of themaster agent. Subagents that you create can addmanagement
objects to the agent.

Functions of a Subagent
AnAgentX subagent performs the following functions:

� InitiatesAgentX sessions with themaster agent
� RegistersMIB regions with themaster agent

8

9

Using Subagents

Solaris SystemManagementAgent Developer’s Guide • November 200670

http://www.ietf.org/rfc/rfc2741.txt

� Instantiates managed objects
� Binds object IDs (OIDs) within its registeredMIB regions to actual variables
� Performsmanagement operations on variables
� Initiates notifications, or traps

Deploying aModule as a Subagent
You can embed aMIBmodule that was written for the SMAinto an external application. This
application can be run either as an SNMPmaster agent or anAgentX subagent. Generally, you
should run the SMAas themaster agent, and set up your application as a subagent. The subagent
attaches to themaster agent, and registers itsMIBwith themaster agent. By running the SMAas the
master agent, you can easily add and remove subagents while themaster agent continues to run. In
this way, the agent can continue to communicate with networkmanagement applications.

SMAprovides Net-SNMPAPI functions that enable you to embed an SNMPagent orAgentX
subagent into an external application. In your application code, youmust initialize yourmodule, the
SNMP library, and the SNMPagent library. This initialization is done slightly differently depending
on whether the application is to run as amaster agent or anAgentX subagent.

The functions that you use in the agent application include:

� init_agent(char *name)

Initializes the embedded agent. This functionmust be called before the init_snmp() call. The
name is used to specify what configuration file to read when init_snmp() is called later. See the
API documentation at /usr/sfw/doc/sma_snmp/html/group__library.html for more
information.

� init_module()
Initializes yourmodule. This functionmust be called after the agent is initialized.

� init_snmp(char *name)

Initializes the SNMP library, which causes the agent to read the application’s configuration file.
The configuration file can be used to configure access control, for instance. See the
snmp_config(4) and snmpd.conf(4) man pages formore information about configuration files.

� snmp_shutdown(char *name)

Shuts down the subagent, saving any needed persistent data. See theAPI documentation at
/usr/sfw/doc/sma_snmp/html/group__library.html for more information.

Youmust also link against the Net-SNMP libraries in your subagent application. The command

net-snmp-config --agent-libs

displays a list of libraries you need.

The demo_module_8 code example shows you how to create a subagent that calls a module that
returns load averages.

Deploying aModule as a Subagent

Chapter 6 • DeployingModules 71

demo_module_8CodeExample for Implementing a
Subagent
The demo_module_8 code example demonstrates how to deploy amodule in a subagent. The demo is
by default located in the directory /usr/demo/sma_snmp/demo_module_8. The
README_demo_module_8 file within that directory includes procedures for building and running the
samplemodule and subagent program.

Subagent SecurityGuidelines
Youmust be aware of the following security considerations in writing subagents that use theAgentX
protocol:

� TheAgentX protocol does not contain amechanism for authorizing or refusing to initiate
sessions.Access control between subagents andmaster agentmust be done at a lower layer, such
as the transport layer.
The SMAsupports only UNIX domain sockets for communication between themaster agent and
subagents.As a result, themaster agent and subagents must run on the same host.
In open source Net-SNMP, themaster agent and subagent can be on different hosts. The agents
must then use UDP and TCPports for theAgentX communication. Currently, theAgentX
protocol provides no inherent security when using UDP and TCPports. To reduce security risks,
the SMAdoes not allow subagents to use UDP and TCPports.

� TheAgentX protocol does not define any access control mechanism. The protocol also does not
contain amechanism for authorizing or refusing sessions.

� Asubagent can register any subtree. Potentially, a malicious subagent could register an
unauthorized subtree of sensitive information. That subagent could then seemodification
requests to those objects in the tree.Amalicious subagentmight also give answers to SNMP
manager queries. These answersmight cause themanager to perform an action that leads to
information disclosure or other damage.

Deploying aModule as a Subagent

Solaris SystemManagementAgent Developer’s Guide • November 200672

Multiple InstanceModules

This chapter describes how to implement amodule to allowmore than one instance of themodule to
run on a host. The chapter also describes how to dynamically updatemodules withmultiple
instances.

The following topics are discussed:

� “ImplementingMultiple Instances of aModule” on page 73
� “Enabling Dynamic Updates to aMultiple InstanceModule” on page 76
� “demo_module_7Code Example for Dynamic Updates ofMultiple InstanceModules” on page 76

ImplementingMultiple Instances of aModule
For some types of modules, multiple instances of themodule can be run simultaneously on a single
host. For example, consider amodule that monitors the status of a single printer. For a systemwith
several printers, the printer-monitoringmodulemust be loadedmultiple times, once for each
printer. In that scenario, several separate instances of the printer modulemust be running
simultaneously. For suchmodules, youmust distinguish the different instances that are loaded and
running.

SNMPv2 introduced the concept of contexts to identifyMIBmodules that can havemultiple
instances. Each SNMP context is represented by a separateMIB subtree.

In SMA, you can implementmultiple instances of amodule only when the agent is configured to use
SNMPv3. You need to specify an SNMPv3 user and password when loading and unloadingmodules.
You specify an instance name by assigning a string to the contextNamemember of the
netsnmp_handler_registration struct in themodule.

The following procedure tells you how to implementmultiple-instancemodules. The procedure uses
examples from demo_module_6, which you can adapt to your ownmodule.

7C H A P T E R 7

73

� HowTo ImplementMultiple InstanceModules
As root, stop the agent if the agent is already running.
svcadm disable -t svc:/application/management/sma:default

Set up an SNMPv3user.
For example, set up user name myuserwith password mypassword as follows:
$ /usr/sfw/bin/net-snmp-config

--create-snmpv3-user myuser

Enter authentication pass-phrase:

mypassword

Enter encryption pass-phrase:

[press return to reuse the authentication pass-phrase]

Edit themodule to register context names that themodule handles.
Find the init_module routine in themodule.Add code to register context names that themodule
handles.

For example, youmight add the following code:
void

init_filesize(void)

{

// Declare the OID

static oid filesize_oid[] = { 1,3,6,1,4,1,42,2,2,4,4,6,1,1,0 };

// Declare a registration handler

netsnmp_handler_registration *myreg1;

// Declare pointers to character arrays initialized

// to the context name strings

char *filexcon = "fileX";

char *fileycon = "fileY";

// Create a registration handler for the OID.

// filesize is the name of handler.

// get_filesize is the function to call when an SNMP

// request for the OID is received, filesize_oid is the

// OID for which the handler is registered,

// OID_LENGTH(filesize_oid) passes the length of the

// OID array to the agent.

// HANDLER_CAN_RONLY is a constant that specifies that

// this handler only handles get requests.

myreg1 = netsnmp_create_handler_registration

1

2

3

ImplementingMultiple Instances of aModule

Solaris SystemManagementAgent Developer’s Guide • November 200674

("filesize", get_filesize,

filesize_oid, OID_LENGTH(filesize_oid),

HANDLER_CAN_RONLY);

// Assign the string fileX to the contextName member of the

// netsnmp_handler_registration struct

myreg1->contextName=filexcon;

// Register the netsnmp_handler_registration struct with the

// agent. netsnmp_register_read_only is a helper function

// that notifies the agent that this module only handles snmp

// get requests.

netsnmp_register_read_only_instance(myreg1);

}

demo_module_6CodeExample forMultiple Instance
Modules
The demo_module_6 code is located by default in /usr/demo/sma_snmp/demo_module_6. The
README_demo_module_6 file within that directory contains instructions that describe how to perform
the following tasks:

� Compile source files to generate a shared library object that implements amodule
� Set up the agent with an SNMPv3 user
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_6 example shows how to write amodule that registers an object in two different
contexts. The example also shows how to check for the contextName in a request and return a
different value depending on the value of the contextName.

demo_module_6 registers one object, filesize, in two different contexts, fileX, and fileY. The
OIDs are registered by using a read-only instance handler helper. The OIDs do not need to be
read-only. You could also register the OIDs using any of the SMAinstance handler helperAPIs.

The function get_filesize() is registered to handle GET requests for instances of the filesize
object. The get_filesize() function checks the contextName in the reginfo structure that is
passed to the function by the SMA. If the value of contextName is fileX, the function returns
fileX_data, which has been set to the integer 111. If the value of contextName is fileY, the function
returns fileY_data, which has been set to the integer 999.

ImplementingMultiple Instances of aModule

Chapter 7 • Multiple InstanceModules 75

EnablingDynamicUpdates to aMultiple InstanceModule
When you perform a dynamic update to amodule, you use a command tomodify amodule that is
loaded and running with SystemManagementAgent. The SMAdoes not provide amechanism for
dynamically adding and removing instances of managed objects in amulti-instancemodule.
However, you can code yourmodule to enable an administrator or application to use the snmpset
command to update themodule.

The demo_module_7 code example is used to show how to update amodule that has been registered
with the agent.

demo_module_7CodeExample forDynamicUpdates of
Multiple InstanceModules

The demo_module_7 code example shows how to implementmultiple instancemodules. The demo is
by default located in the directory /usr/demo/sma_snmp/demo_module_7. The
README_demo_module_7 file in that directory contains instructions that describe how to perform the
following tasks:

� Compile source files to generate a shared library object that implements amodule
� Set up the agent with an SNMPv3 user
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

Modifying the demo_module_7Code
The following procedure lists the steps you should follow to enable yourmodule to be dynamically
updated. The procedure uses examples from the demo_module_7.c code to illustrate each step. The
code containsmodifications to code templates that were produced by using mib2c on aMIB group in
SDK-DEMO1–MIB.txt.

The demo_module_7 example registers new instances as contexts that represent files. Subsequent
snmpget requests to these contexts retrieve the size of a specified file.

� How toEnableDynamicUpdate of aMulti-InstanceModule

Define twoobjects in theMIB for themodule:

� Astring with read-write MAX-ACCESS that, when set, registers the specified string as a context
name.

� Astring with read-write MAX-ACCESS that, when set, unregisters the specified string context
name.

1

EnablingDynamic Updates to aMultiple InstanceModule

Solaris SystemManagementAgent Developer’s Guide • November 200676

For example, the following objects, which are defined in the SDK-DEMO1-MIB.txt file, register and
unregister a context string that is set with an snmpset request:

me1createContext OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(0..1024))

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"String which when set, registers a context."

::= { me1MultiGroup 2 }

me1removeContext OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(0..1024))

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"String which when set, unregisters a context."

::= { me1MultiGroup 3 }

In themodule, declare the locationwithin theMIB treewhere theOIDs for the context objects should
be registered.
For example, the following code declares the OIDs for context strings:
// Registers a context

static oid me1createContext_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,6,1,2,0 };

// Unregisters a context

static oid me1removeContext_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,6,1,3,0 };

In themodule, register bothOIDs of the context objectswith the SMA.
The following code shows an example:

// Create a read-write registration handler named filesize,

// which calls the set_createContext function to service snmp requests

// for the me1createContext_oid object. The OID_LENGTH argument

// calculates the length of the me1createContext_oid.

myreg1 = netsnmp_create_handler_registration

("filesize",

set_createContext,

me1createContext_oid,

OID_LENGTH(me1createContext_oid),

HANDLER_CAN_RWRITE);

// Create a read-write registration handler named filesize,

// which calls the set_removeContext function to service snmp requests

// for the me1removeContext_oid object. The OID_LENGTH argument

2

3

demo_module_7 Code Example for Dynamic Updates ofMultiple InstanceModules

Chapter 7 • Multiple InstanceModules 77

// calculates the length of the me1removeContext_oid.

myreg1 = netsnmp_create_handler_registration

("filesize",

set_removeContext,

me1removeContext_oid,

OID_LENGTH(me1removeContext_oid),

HANDLER_CAN_RWRITE);

In the set_createContext() function handler code, extract the context name string from the SNMP
message. Register the string as a new context.
The following code shows an example:
int

set_createContext(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

// This handler handles set requests on the m1createContext_oid.

// The handler extracts the string from the snmp set request and

// uses it to register a new context for the me1filesize_oid.

//

// For detailed info. on net-snmp set processing,

// see http://www.net-snmp.org/tutorial-5/toolkit/mib_module/index.html

// The agent calls each SNMP mode in sequence. We include a case

// statement with only a break statement for each snmp set mode the

// the agent handles. In this example, we implement only the

// snmp set action mode. The case statement

// transfers control to the default: case when no other condition

// is satisfied.

netsnmp_handler_registration *myreg;

char *context_names[256];

switch(reqinfo->mode) {

case MODE_SET_RESERVE1:

break;

case MODE_SET_RESERVE2:

break;

case MODE_SET_FREE:

break;

case MODE_SET_ACTION:

// You must allocate memory for this variable because

// the unregister_mib function frees it.

filename = malloc(requests->requestvb->val_len + 1);

snprintf(filename, sizeof(filename), "%s", (u_char *)

requests->requestvb->val.string);

4

demo_module_7 Code Example for Dynamic Updates ofMultiple InstanceModules

Solaris SystemManagementAgent Developer’s Guide • November 200678

// Create a registration handler for the me1filesize_oid

// object in the new context name specified by

// the snmp set on the me1createContext OID.

myreg = netsnmp_create_handler_registration

("test",

get_test,

me1filesize_oid,

OID_LENGTH(me1filesize_oid),

HANDLER_CAN_RONLY);

myreg->contextName=filename;

break;

case MODE_SET_COMMIT:

break;

case MODE_SET_UNDO:

break;

default:

/* we should never get here, so this is a really bad error */

DEBUGMSGTL(("filesize", "default CALLED\n"));

}

return SNMP_ERR_NOERROR;

}

In the set_removeContext handler code, extract the context name string from the SNMPmessage.
Unregister the context.
The following code shows an example:
// This handler handles set requests on the m1removeContext_oid

int

set_removeContext(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

static int PRIORITY = 0;

static int SUB_ID = 0;

static int RANGE_UBOUND = 0;

switch(reqinfo->mode) {

case MODE_SET_RESERVE1:

break;

case MODE_SET_RESERVE2:

break;

case MODE_SET_ACTION:

snprintf(filename, sizeof(filename), "%s\n", (u_char *)

5

demo_module_7 Code Example for Dynamic Updates ofMultiple InstanceModules

Chapter 7 • Multiple InstanceModules 79

requests->requestvb->val.string);

unregister_mib_context(me1filesize_oid, OID_LENGTH(me1filesize_oid),

PRIORITY, SUB_ID, RANGE_UBOUND,

filename);

break;

case MODE_SET_COMMIT:

break;

case MODE_SET_FREE:

break;

case MODE_SET_UNDO:

break;

default:

/* we should never get here, so this is a really bad error */

DEBUGMSGTL(("filesize", "set_removeContext CALLED\n"));

}

return SNMP_ERR_NOERROR;

}

In the handler code for a new context, get the context string from the reginfo->contextName
variable.
/* This handler is called to handle snmp get requests for

the me1filesize_oid for a specified context name. */

int

get_test(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

/* We are never called for a GETNEXT if it’s registered as an

"instance", as it’s "magically" handled for us. */

/* An instance handler also only hands us one request at a time, so

we don’t need to loop over a list of requests; we’ll only get one. */

struct stat buf;

static int fd = 0;

switch(reqinfo->mode) {

case MODE_GET:

if (strcmp(reginfo->contextName, filename) == 0)

// An open() for reading only returns without delay.

6

demo_module_7 Code Example for Dynamic Updates ofMultiple InstanceModules

Solaris SystemManagementAgent Developer’s Guide • November 200680

if ((fd = open(filename, O_NONBLOCK | O_RDONLY)) == -1)

DEBUGMSGTL(("filesize", "ERROR\n"));

if (fstat(fd, &buf) == -1)

DEBUGMSGTL(("filesize", "ERROR\n"));

else

DEBUGMSGTL(("filesize", "FILE SIZE IN BYTES = %d:\n", buf.st_size));

snmp_set_var_typed_value(requests->requestvb, ASN_INTEGER,

(u_char *) &buf.st_size /* XXX: a pointer to the scalar’s data */,

sizeof(buf.st_size) /* XXX: the length of the data in bytes */);

break;

default:

/* we should never get here, so this is a really bad error */

return SNMP_ERR_GENERR;

}

return SNMP_ERR_NOERROR;

}

RegisteringNew Instances in theModule
The demo_module_7 code examplemodule registers context name strings that represent files. GET
requests to these contexts retrieve the size of the file.

You do not need to edit themodule to register new instances. Themodule can be dynamically
updated to register new instances through the snmpset command.Amanagement application passes
the file name to themodule by issuing an snmpset command, of the following format:

/usr/sfw/bin/snmpset -v 3 -u username -l authNoPriv -A "password" \

hostname createContext_OID s "filename"

For example, the register_file script in the demo_module_7 directory issues a command that
registers the file /usr/sfw sbin/snmpd as a new context name with the module:

/usr/sfw/bin/snmpset -v 3 -u myuser -l authNoPriv \

-A "mypassword" localhost .1.3.6.1.4.1.42.2.2.4.4.6.1.2.0 \

s "/usr/sfw/sbin/snmpd"

Themodule registers the set_createContext handler to handle incoming snmpset requests for the
specifiedOID. The set_createContext handler registers the new file name as a context string in the
contextNamemember of the netsnmp_registration_handler struct for the me1filesize_oid.

Amanagement application can request the size of the file in blocks by issuing an snmpget command
of the following format:

demo_module_7 Code Example for Dynamic Updates ofMultiple InstanceModules

Chapter 7 • Multiple InstanceModules 81

/usr/sfw/bin/snmpget -v 3 -u username -n contextname\
-l authNoPriv -A "password" hostname me1filesize_oid

For example, the get_filesize script in the demo_module_7 directory issues a command that is
similar to the following command:

/usr/sfw/bin/snmpget -m+SDK-DEMO6-MIB -v 3 -u myuser \

-n "/usr/sfw/sbin/snmpd" -l authNoPriv -A "mypassword" localhost \

.1.3.6.1.4.1.42.2.2.4.4.6.1.1.0

demo_module_7 Code Example for Dynamic Updates ofMultiple InstanceModules

Solaris SystemManagementAgent Developer’s Guide • November 200682

Long–RunningData Collection

This chapter discusses the ways that you can enable amodule to collect data over a long period of
time without blocking the SystemManagementAgent. The demonstrationmodules demo_module_9
and demo_module_10 illustrate these approaches.

This chapter contains the following topics:

� “About Long-Running Data Collection” on page 83
� “SNMPAlarmMethod for Data Collection” on page 84
� “SNMPManager PollingMethod for Data Collection” on page 85

About Long-RunningData Collection
SNMP is not ideally suited to collecting data that is generated over a period of time. Time-outs
specified by an SNMPmanager are generally only a few seconds, to enablemost problems to be
detected quickly. However, some datamight be useful when looked at over a longer period, for
example, to indicate a developing condition. Such data can only be collected through a long-running
data collection to get around the timeout issue. You can code yourmodule to perform long-running
data collection. You can choose from several different design patterns tomodel such operations.

The following design patterns can be used to enable amodule to handle long-running data
collections through the agent.

SNMP alarm-based approach Themodule registers an SNMPalarm to call a function at a
specified interval. Formost sites, this solution is most useful for
performing long-running data collections. See “SNMPAlarm
Method for Data Collection” on page 84 formore information
and code examples.

SNMPmanager polling The SNMPmanager polls a status variable to find out whether a
data collection is complete, and to determine the age of the data.
The data is retrieved when the status variable returns an
acceptable value. The polling approach is most useful if your site
has one SNMPmanager and several SNMP agents. See “SNMP

8C H A P T E R 8

83

Manager PollingMethod for Data Collection” on page 85 for
more information and code examples.

SNMPAlarmMethod forData Collection
In the SNMPalarmmethod for long-running data collection, themodule registers an SNMPalarm
to call a function at a specified interval. The interval is specified in seconds. The function can be
called one time, or called repeatedly until the alarm is unregistered. Themodule sets a flag that causes
the agent to delegate the SNMP request. By delegating a request, the agent avoids blocking other
requests while responding to a request. The agent caches the SNMP request information to be
retrieved later when the request is handled. The demo_module_9 example demonstrates the
SNMP-alarm-based approach.

demo_module_9CodeExample for SNMPAlarm
Method
The demo_module_9 code is located by default in /usr/demo/sma_snmp/demo_module_9. The
README_demo_module_9 file within that directory contains instructions that describe how to perform
the following tasks:

� Compile source files to generate a shared library object that implements amodule
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_9 example implements the objects defined in the SDK-DEMO9-MIB.txt. The
module demonstrates how to implement objects that normally would block the agent as the agent
waits for external events. The agent can continue responding to other requests while this
implementation waits.

This example uses the following features:

� Sets the delegatedmember of the requests structure to 1 to indicate to the agent that this
request should be delayed. The agent queues this request to be handled later and then is available
to handle other requests. The agent is not blocked by this request.

� Registers an SNMPalarm to update the results at a later time.

Managing the TimingofData Collection
An important aspect of the demo_module_9 example is the relationship between the SNMP timeout
and the delay time interval of themodule. The delay time interval is the interval in seconds after
which the agent sends an alarm to themodule. The delay_time variable in themodule stores this

SNMPAlarmMethod for Data Collection

Solaris SystemManagementAgent Developer’s Guide • November 200684

value. By default, the delay time is set to 1 in themodule. You can change this value by issuing an
snmpset command on the delayedInstanceOid object and supplying an integer value. The
set_demo_module_9 script does issue the snmpset command to change the delay time interval. The
new time interval value is used by themodule to register for an alarmwith the agent.

The agent calls themodule when a snmpget or snmpset is issued on the delayedInstanceOid object.
Instead of returning the requesting data right away, themodule sets a flag to tell the agent that the
request processingmight take a while. The agent is free to handle other requests. Themodule then
registers an alarmwith the agent. Themodule needs someway to get the agent to return to the
module and return the requested data when the data collection has completed. In demo_module_9, a
one-time alarm is set to go off in 1 second. If you want a longer data collection, you can set the
delay_time value to a longer interval. You can also set the alarm to go off repeatedly at a specified
interval.

Themodule registers the alarmwith a callback function.At the specific alarm interval, the agent calls
the callback function in themodule. In demo_module_9, the callback function is
return_delayed_response(), which actually handles the SNMPGET or SNMPSET request.

The client that requested the data with SNMPGETmust wait for the response from the agent. The
snmpget command and other Net-SNMP tools have a default timeout value of 5 seconds. The client
is likely to time out before getting the requested response. For this reason, you should increase the
timeout value for the snmpget and snmpset commands.

You should increase the timeout of the command the amount of time required to complete the data
collection. If you are doing an snmpset, make the timeout value 3 or 4 times longer than the delay
time interval.A longer timeout is needed because a SET operation is more time-consuming than a
GET. The agentmakes several calls to themodule to process a single SET, and each call is delayed by
the delay value.

The -t option is used to set the timeout value. See thesnmpcmd(1M)man page formore information
about common command-line options for Net-SNMP tools.

SNMPManager PollingMethod forData Collection
In the SNMPmanager pollingmethod, an SNMPmanager polls a status variable to find out whether
a data collection is complete.When the data collection is complete, the age of the data is determined.
If the date of the data is not acceptable, themanager can set the status variable to start a new
collection. The pollingmethod is recommended if you have one SNMPmanager that is to control the
polling of one ormore agents. The demo_module_10 example demonstrates the SNMPmanager
polling approach.

SNMPManager PollingMethod for Data Collection

Chapter 8 • Long–RunningData Collection 85

demo_module_10CodeExample for SNMPPolling
Method
The demo_module_10 code is located by default in /usr/demo/sma_snmp/demo_module_10. The
README_demo_module_10 file within that directory contains instructions that tell how to perform the
following tasks:

� Compile source files to generate a shared library object that implements amodule
� Set up the agent to dynamically load themodule
� Test themodule with snmp commands to show that themodule is functioning as expected

The demo_module_10 example implements the objects defined in the SDK-DEMO10-MIB.txt. The
module is designed to handle long-running data collections so that their values can be polled by an
SNMPmanager. Themodule also shows how to implement objects that normally would block the
agent as the agent waits for external events. The agent can continue responding to other requests
while this implementation waits.

The demo_module_10module uses the following features:

� Sets the delegatedmember of the requests structure to 1 to indicate to the agent that this
request should be delayed. The agent queues this request to be handled later and then is available
to handle other requests. The agent is not blocked by this request.

� Registers an SNMPalarm to update the results at a later time.
� Uses status variable to communicate the status of a data collection to the polling SNMP

manager.
� Uses refreshTime variable to return the date and time that the data collection completed.

Avoiding aRaceConditionWhenPolling
Arace condition can occur with two ormoremanagement applications.Whenmultiple applications
issue GET or SET protocol operations that spanmore than a single PDU, competition for the results
occurs. In the case of a long-running data collection, a race condition can occur when themodule
completes data collection. Themodule updates the status variable to indicate that the data is ready
to send. However, the agent issues a secondGET operation on the same variable before the first
request receives the requested data. If themodule starts a new data collection in response to the
second request, no data is available to return to the first request.

In the following figure,Mgr2’s request is received by themodule afterMgr1’s request but before
Mgr1 gets the data. This situation could happen if themodule starts a new data collection while
requests are pending.

SNMPManager PollingMethod for Data Collection

Solaris SystemManagementAgent Developer’s Guide • November 200686

Mgr1 Module
SNMP GET status

Not ready

Mgr1 Module
SNMP GET status

Ready

Module
SNMP GET status

Ready

Module
SNMP GET data xyz

Data xyz

Mgr1 Module
SNMP GET data xyz

No data

Restart data
collection

Mgr2

Mgr2

1

2

3

4

5

FIGURE 8–1RaceConditionWhenPolling forData

To avoid this scenario, a module can define a flag tomaintain the state of outstanding requests.When
an SNMP request is received, themodule checks the flag. Themodule starts a new collection only if
no SNMP requests are outstanding. Themodule returns an SNMP error if requests are outstanding.

SNMPManager PollingMethod for Data Collection

Chapter 8 • Long–RunningData Collection 87

88

EntityMIB

This chapter describes the implementation of the EntityMIB and the associatedAPI functions in the
SystemManagementAgent. The demonstrationmodule demo_module_11 is used to explain how to
use theMIB and the tables that are defined in theMIB. The chapter contains the following topics:

� “About the EntityMIB” on page 89
� “SMAEntityMIB Implementation” on page 91
� “EntityMIBAPI” on page 92
� “Header Files for EntityMIB Functions” on page 109
� “Tips for Using EntityMIB Functions” on page 110
� “demo_module_11Code Example for EntityMIB” on page 112

About the EntityMIB
The EntityMIB is defined by the Internet Engineering Task Force RFC 2737 at
http://www.ietf.org/rfc/rfc2737.txt. This chapter does not describe the EntityMIB in detail.
You should read RFC 2737 before reading this chapter.

The EntityMIB provides amechanism for presenting hierarchies of physical entities by using SNMP
tables. The EntityMIB contains the following groups, which describe the physical elements and
logical elements of amanaged system:

entityPhysical group The entityPhysical group describes the identifiable physical resources
that aremanaged by the agent. Resources include the chassis, boards,
power supplies, sensors, and so on.

Physical entities are represented by rows in the entPhysicalTable,
where one row is provided for each hardware resource. The rows are
called entries. Aparticular row is referred to as an instance. Each table
entry has a unique index, entPhysicalIndex, and contains several
objects that represent common characteristics of the hardware resource.
One object, entPhysicalContainedIn, points to the index of another
row in this table. This object is used to indicate whether an entity is

9C H A P T E R 9

89

http://www.ietf.org/rfc/rfc2737.txt

contained within another entity.Arow for a system boardmight use
entPhysicalContainedIn to specify the index of the row that represents
the chassis where the board is installed.

entityLogical group The entityLogical group describes the logical entities managed by the
agent. Logical entities represent nonphysical, abstract elements that
provide services. The abstract elements are controlled by higher levels of
management. For example, logical entities might represent elements of
platform hardwaremanagement. Such elementsmight include
functions such as OS reboot, hardware reset, and power control. Logical
entities might also represent administrative domains such as Solaris
domains or service controllers.

Logical entities are represented as rows in the entLogicalTable, which
provides one row for each logical entity. Each table row has a unique
index, entLogicalIndex, and contains objects for the logical entity’s
name, description, and type.

Each row also contains security information that is applicable to
SNMPv1, SNMPv2c, and SNMPv3 to allow access to the logical entity’s
MIB information. If an agent represents multiple logical entities with
thisMIB, the agentmust implement the entityLogical group for all
logical entities that are known to the agent. If an agent represents one
logical entity, or multiple logical entities within a single naming scope,
the agent can omit implementation of this group.

entityMapping group The entityMapping group describes the objects that represent the
associations between elements for which a single agent provides
management information. These elements includemultiple logical
entities, physical components, interfaces, and port identifiers.

The entityMapping group contains the following tables:
� The entPhysicalContainsTable provides a hierarchy of the

hardware resources that are represented in the entPhysicalTable.
The entPhysicalContainsTable table is two-dimensional, indexed
first by the entPhysicalIndex of the containing entry, and second
by the entPhysicalChildIndex of the contained entries.

� The entLPMappingTable is the logical-physical mapping table. The
entLPMappingTablemakes associations between logical entities and
physical entities bymapping the indexes of the entLogicalTable to
the indexes of entPhysicalTable For example, the table couldmap
a firewall to a particular board.

� The entAliasMappingTable represents mappings of logical entity
and physical component to externalMIB identifiers.

About the EntityMIB

Solaris SystemManagementAgent Developer’s Guide • November 200690

entityGeneral group This table describes objects that represent general entity information for
which a single agent providesmanagement information. Currently, only
one object exists in this group. The object records the time interval
between agent startup and the last change to the Physical Entity Table or
PhysicalMapping Table.

The RFC 2737 and the ENTITY-MIB.txt file describe these tables inmore detail. The
ENTITY-MIB.txt file is located in the /etc/sma/snmp/mibs directory.

SMAEntityMIB Implementation
The SystemManagementAgent provides amodule called libentity.so for use with the EntityMIB.
This module is contained in the /usr/sfw/include directory.

The libentity.somodule performs the following tasks when loaded:

� Registers OIDs for the EntityMIB
� Creates empty tables for the groups described and defined in RFC 2737
� Handles the rules and constraints of the EntityMIB tables andmaintains table integrity as

specified in RFC 2737
� Provides EntityAPI functions that support amodule’s ability to add, delete, andmodify objects

in the OID space of the EntityMIB

If you want yourmodule to use the EntityMIB, youmust load the libentity.somodule into the
agent before you load yourmodule.

Using the EntityMIB
To use the EntityMIB, youmust write amodule to create objects that reflect the devices that you
want tomanage. You use the objects to populate the empty tables that are created by the
libentity.somodule. Yourmodulemust use theAPI functions that are documented in “Entity
MIBAPI” on page 92. Use demo_module_11, which is described in “demo_module_11Code Example
for EntityMIB” on page 112, to see how that module uses theAPI functions. The demo_module_11
also contains table header files that you need to use theAPI functions. See “Header Files for Entity
MIB Functions” on page 109.

After you write yourmodule, you can use the following procedure to set up the agent to use the
EntityMIB and yourmodule.

SMAEntityMIB Implementation

Chapter 9 • EntityMIB 91

� How toSetUp theAgent toUse the EntityMIB

As root, add the appropriate dlmod statement for your operating system in the agent’s configuration
file /etc/sma/snmp/snmpd.conf.

� Ona64-bit Solaris Operating SystemonSPARC:
dlmod entity /usr/sfw/lib/sparcv9/libentity.so

� Ona32-bit Solaris Operating System:
dlmod entity /usr/sfw/lib/libentity.so

In the /etc/sma/snmp/snmpd.conf file, insert a dlmod statement for yourmodule after the dlmod
statement for the libentity.so.

For example, suppose yourmodule is named libacmerouter.so. Themodule is located in
/home/username/lib. You would enter the following line:
dlmod acmerouter /home/username/lib/libacmerouter.so

Yourmodulemust be loaded after the entitymodule because yourmodule is dependent upon the
entitymodule.

Restart the SNMPagent.
svcadm restart svc:/application/management/sma:default

EntityMIBAPI
This section lists and describes theAPI functions that are provided in the libentity.somodule. Use
these functions in yourmodule when you want to use the EntityMIB.

TABLE 9–1EntityMIB Functions Listed byCategory

Function Category Functions

“Physical Table Functions”
on page 93

allocPhysicalEntry()

getPhysicalEntry()

deletePhysicalTableEntry()

makePhysicalTableEntryStale()

makePhysicalTableEntryLive()

getPhysicalStaleEntry()

getAllChildrenFromPhysicalContainedIn()

1

2

3

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 200692

TABLE 9–1EntityMIB Functions Listed byCategory (Continued)
Function Category Functions

“Physical Contains Table
Functions” on page 98

addPhysicalContainsTableEntry()

deletePhysicalContainsTableEntry()

deletePhysicalContainsParentIndex()

deletePhysicalContainsChildIndex()

getPhysicalContainsChildren()

“Logical Table Functions”
on page 100

allocLogicalEntry()

getLogicalTableEntry()

deleteLogicalTableEntry()

makeLogicalTableEntryStale()

makeLogicalTableEntryLive()

getLogicalStaleEntry()

“LPMapping Table
Functions” on page 104

addLPMappingTableEntry()

deleteLPMappingTableEntry()

deleteLPMappingLogicalIndex()

deleteLPMappingPhysicalIndex()

“AliasMapping Table
Functions” on page 106

addAliasMappingTableEntry()

deleteAliasMappingTableEntry()

deleteAliasMappingLogicalIndex()

deleteAliasMappingPhysicalIndex()

Physical Table Functions
The entPhysicalTable contains one row for each physical entity. The table contains at least one row
for an overall physical entity. Each table entry provides objects to help anNMS to identify and
characterize the entry. Other objects in the table entry help anNMS to relate the particular entry to
other entries in the table.

The following functions are for use with the entPhysicalTable in the EntityMIB.

� “allocPhysicalEntry()” on page 94
� “getPhysicalEntry()” on page 95
� “deletePhysicalTableEntry()” on page 95
� “makePhysicalTableEntryStale()” on page 96
� “makePhysicalTableEntryLive()” on page 96
� “getPhysicalStaleEntry()” on page 97

EntityMIBAPI

Chapter 9 • EntityMIB 93

� “getAllChildrenFromPhysicalContainedIn()” on page 97

allocPhysicalEntry()

Synopsis

extern int allocPhysicalEntry(int physidx, entPhysicalEntry_t *newPhysEntry);

Description

Allocates an entry in the entPhysicalTable. The physidx parameter is the requested physical index.
If physidx= 0, the function tries to use the first available index in the table. If physidx= 1 or greater, the
function tries to use the specified index. If the specified index is in use, the function returns the first
available index in the table.As a result, the returned indexmight not be the same as the requested
physical index.

Thememory that is associated with newPhysEntry can be freed. The function creates an internal
copy of the data.

The entPhysicalEntry_t structure definition is shown in “entPhysicalEntry_t Structure”
on page 109. Special cases for newPhysEntry values are handled as shown in the following table.

Object Value ofnewPhysEntry EntityMIBmodule handling

entPhysicalDescr NULL reject

entPhysicalVendorType NULL { 0, 0 }

entPhysicalName NULL ""

entPhysicalHardwareRev NULL ""

entPhysicalFirmwareRev NULL ""

entPhysicalSoftwareRev NULL ""

entPhysicalSerialNum NULL ""

entPhysicalMfgName NULL ""

entPhysicalModelName NULL ""

entPhysicalAlias NULL ""

entPhysicalAssetID NULL ""

Returns

index allocated to the physical entry.

-1 if an error occurs when adding the entry. Check the log formore details.

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 200694

getPhysicalEntry()

Synopsis

entPhysicalEntry_t *getPhysicalEntry(int index);

Description

Gets the actual physical table entry for the specified index. The caller must not change the values or
release thememory of the entry that is returned. The entPhysicalEntry_t structure definition is
shown in “entPhysicalEntry_t Structure” on page 109.

Returns

getPhysicalEntry() returns the entry for the specified index.

Returns NULL if an error occurs while finding the entry, or if a stale entry exists. In this context, stale
means that the entry details are present in the agentmemory but should not be displayed during any
SNMPoperation.

deletePhysicalTableEntry()

Synopsis

extern int deletePhysicalTableEntry(int xPhysicalIndex);

Description

Deletes the physical table entry that is associated with the specified xPhysicalIndex. The instances of
xPhysicalIndex in the entAliasMappingTable, entLPMappingTable and the
entPhysicalContainsTable are also deleted tomaintain integrity among the various EntityMIB
tables.

Returns

0 for success.

-1 if the xPhysicalIndex is not found.

-2 if a stale entry was found for the xPhysicalIndex. In this context, “stale” means that the entry
details are present in the agentmemory but are not displayed during any SNMPoperation.

EntityMIBAPI

Chapter 9 • EntityMIB 95

makePhysicalTableEntryStale()

Synopsis

extern int makePhysicalTableEntryStale(int xPhysicalIndex);

Description

Makes the physical table entry that is associated with the xPhysicalIndex become stale. In this
context, “stale” means that the entry details are present in the agentmemory but are not displayed
during any SNMPoperation. The index that was allocated to a stale entry is not allocated to another
entry.

When youmake an entry become stale, the instances of xPhysicalIndex in the
entAliasMappingTable, entLPMappingTable and entPhysicalContainsTable are also deleted.
The deletionmaintains integrity among the various EntityMIB tables. Before youmake an entry
stale, youmight want to store the entries that are to be deleted from the tables.

The physical table entry can bemade available or “live” again by calling the
makePhysicalTableEntryLive() functions, which is described in
“makePhysicalTableEntryLive()” on page 96.

Returns

0 for success.

-1 if the xPhysicalIndex is not found.

-2 if a stale entry already exists for xPhysicalIndex.

makePhysicalTableEntryLive()

Synopsis

extern int makePhysicalTableEntryLive(int xPhysicalIndex);

Description

Makes the stale physical table entry associated with the xPhysicalIndex live. In this context, “live”
means that the entry details that are present in the agentmemory are displayed during SNMP
operations. The entry can bemade stale by calling the makePhysicalTableEntryStale() function.
In this context, “stale” means that the entry details are present in the agentmemory but are not
displayed during any SNMPoperation.

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 200696

If a stale entry is made live again, youmust recreate the corresponding entries that were deleted in
the entPhysicalContainsTable, the entLPMappingTable, and the entAliasMappingTable. Use the
appropriate functions for adding an entry to each table: “addPhysicalContainsTableEntry()”
on page 98, “addLPMappingTableEntry()” on page 104, and “addAliasMappingTableEntry()”
on page 107.

Returns

0 for success.

-1 if the xPhysicalIndex is not found.

-2 if a live entry already exists for xPhysicalIndex.

getPhysicalStaleEntry()

Synopsis

entPhysicalEntry_t *getPhysicalStaleEntry(int index);

Description

The caller must not change the values or release thememory of the entry that is returned.

Gets the stale physical table index structure for the specified index. In this context, stale means that
the entry details are present in the agentmemory but are not displayed during any SNMPoperation.
The entPhysicalEntry_t structure definition is shown in “entPhysicalEntry_t Structure”
on page 109.

Returns

Returns the index structure for the specified index.

Returns NULL if an error occurs while finding the entry, or if a live entry exists.

getAllChildrenFromPhysicalContainedIn()

Synopsis

int getAllChildrenFromPhysicalContainedIn(int parentIndex);

Description

Gets the indexes for all children in the entPhysicalTable that have parentIndex as their parent in
the entPhysicalContainedIn field.

EntityMIBAPI

Chapter 9 • EntityMIB 97

Returns

Returns an array of integer indexes with null termination.

Returns NULL if no children, or invalid index, or not enoughmemory when allocating the array.

Physical Contains Table Functions
The entPhysicalContainsTable exposes the container relationships between physical entities. This
table provides the same information that can be found by constructing the virtual containment tree
for a given entPhysicalTable, but in amore direct format.

The following functions are for use with the entPhysicalContainsTable in the EntityMIB:

� “addPhysicalContainsTableEntry()” on page 98
� “deletePhysicalContainsTableEntry()” on page 99
� “deletePhysicalContainsParentIndex()” on page 99
� “deletePhysicalContainsChildIndex()” on page 99
� “getPhysicalContainsChildren()” on page 100

addPhysicalContainsTableEntry()

Synopsis

extern int addPhysicalContainsTableEntry(int entPhysicalIndex, int childIndex);

Description

Adds an entry to the entPhysicalContainsTable table for the specified entPhysicalIndex and
childIndex. The entPhysicalContainedInOID that is present in the entPhysicalTable for the
childIndexmight be replaced by the OID for entPhysicalIndex. The OID is replaced if the
entPhysicalIndex has a lower index than the original index.

Returns

0 for successful addition.

-1 for failure to add.

-2 for stale index.

1 if the entry already exists for the specified entPhysicalIndex and childIndex.

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 200698

deletePhysicalContainsTableEntry()

Synopsis

extern int deletePhysicalContainsTableEntry(int parentIndex, int childIndex);

Description

Deletes the parentIndex or childIndex entry that is present in the entPhysicalContainsTable.

Returns

0 for success.

-1 for failure.

-2 for stale entry, either parent or child, or both.

deletePhysicalContainsParentIndex()

Synopsis

extern int deletePhysicalContainsParentIndex(int parentIndex);

Description

Deletes all entries in the entPhysicalContainsTablewhere the parent index is equal to the specified
parentIndex.

Returns

number of children successfully deleted for the specified parent.

-1 for failure.

-2 for stale parent entry.

deletePhysicalContainsChildIndex()

Synopsis

extern int deletePhysicalContainsChildIndex(int childIndex);

EntityMIBAPI

Chapter 9 • EntityMIB 99

Description

Deletes all entries in the entPhysicalContains table where the child index is equal to the specified
childIndex.

Returns

number of parents successfully deleted for the specified child.

-1 for failure.

-2 for stale child entry.

getPhysicalContainsChildren()

Synopsis

extern int getPhysicalContainsChildren(int parentIndex);

Description

Get the indexes for all the children of the specified parent in the entPhysicalContainsTable.

Returns

Returns an array of integer indexes, with null termination.

Returns NULL if children exist, or if not enoughmemory exists when allocating the array. The array is
a copy that should be freed when done.

Logical Table Functions
The entLogicalTable table contains one row per logical entity. For agents that implementmore
than one naming scope, at least one entrymust exist.Agents that instantiate all MIB objects within a
single naming scope are not required to implement this table.

The following functions are for use with the entLogicalTable in the EntityMIB:

� “allocLogicalEntry()” on page 101
� “deleteLogicalTableEntry()” on page 102
� “makeLogicalTableEntryStale()” on page 102
� “makeLogicalTableEntryLive()” on page 103
� “getLogicalStaleEntry()” on page 104

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 2006100

allocLogicalEntry()

Synopsis

extern int allocLogicalEntry(int logidx, entLogicalEntry_t *xnewLogicalEntry);

Description

Allocates an entry in the Logical Table. The logidx parameter is the requested logical index. If logidx=
0, the function tries to use the first available index in the table. If logidx= 1 or greater, the function
tries to use the specified index. If the specified index is in use, the function returns the first available
index in the table.As a result, the returned indexmight not be the same as the requested logical
index.

The allocLogicalEntry() function returns the logical index that is allocated to the entry. The
memory that is associated with xnewLogicalEntry can be freed. The function creates a internal copy
of the data.

The entLogicalEntry_t structure definition is shown in “entLogicalEntry_t Structure” on page
110. Special cases for xnewLogicalEntry values are handled as shown in the following table.

Object Value of xnewLogicalEntry EntityMIBmodule handling

entLogicalDescr NULL reject

entLogicalType NULL { 1,3,6,1,2,1 }

entLogicalCommunity NULL ""

entLogicalTAddress NULLor "" reject

entLogicalTDomain NULL reject

entLogicalContextEngineId NULL ""

entLogicalContextName NULL ""

Returns

Returns the index allocated to the logical entry.

Returns -1 for error in adding the entry. Check the log formore details.

getLogicalTableEntry()

Synopsis

entLogicalEntry_t *getLogicalTableEntry(int xLogicalIndex);

EntityMIBAPI

Chapter 9 • EntityMIB 101

Description

This function gets the logical table index structure for a particular index. The caller must not change
the value or release thememory of the entry that is returned. The entLogicalEntry_t structure
definition is shown in “entLogicalEntry_t Structure” on page 110.

Returns

Returns the entry that is associated with xLogicalIndex.

Returns NULL on error in finding the entry, or if a stale entry exists.

deleteLogicalTableEntry()

Synopsis

extern int deleteLogicalTableEntry(int xLogicalIndex);

Description

Deletes the logical table entry that is associated with the xLogicalIndex. The instances of
xLogicalIndex in the entAliasMappingTable and the entLPMappingTable are also deleted to
maintain integrity among the various EntityMIB tables.

Returns

0 for success.

-1 if the xLogicalIndex is not found.

-2 if a stale entry was found for xLogicalIndex.

makeLogicalTableEntryStale()

Synopsis

extern int makeLogicalTableEntryStale(int xLogicalIndex);

Description

Makes the logical table entry associated with the xLogicalIndex become stale. In this context, “stale”
means that the entry details are present in the agentmemory but are not displayed during any SNMP
operation. The index that was allocated to a stale entry is not allocated to another entry.

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 2006102

When youmake an entry become stale, the instances of xLogicalIndex in the
entAliasMappingTable, entLPMappingTable and entPhysicalContainsTable are also deleted.
The deletionmaintains integrity among the various EntityMIB tables. Before youmake an entry
stale, youmight want to store the entries that are to be deleted from the other tables.

The stale logical table entry can bemade available again by calling the
makeLogicalTableEntryLive() function, which is described in “makeLogicalTableEntryLive()”
on page 103.

Returns

0 for success.

-1 if the xLogicalIndex is not found.

–2 if a stale entry was found for xLogicalIndex.

makeLogicalTableEntryLive()

Synopsis

extern int makeLogicalTableEntryLive(int xLogicalIndex);

Description

Makes the stale logical table entry associated with the xLogicalIndex become live. In this context,
“live”means that the entry details that are present in the agentmemory are displayed during any
SNMPoperations. The entry can bemade stale by calling the makeLogicalTableEntryStale()
function.

If an entry is made live again, youmust recreate the corresponding entries that were deleted in the
entPhysicalContainsTable, the entLPMappingTable, and the entAliasMappingTable. Use the
appropriate functions for adding an entry to each table: “addPhysicalContainsTableEntry()”
on page 98, “addLPMappingTableEntry()” on page 104, and “addAliasMappingTableEntry()”
on page 107.

Returns

0 for success.

-1 if the xLogicalIndex is not found.

–2 if a live entry already exists for xLogicalIndex.

EntityMIBAPI

Chapter 9 • EntityMIB 103

getLogicalStaleEntry()

Synopsis

entLogicalEntry_t *getLogicalStaleEntry(int index);

Description

Gets the stale logical table index structure for the specified index. The caller must not change the
values or release thememory of the entry that is returned. The entLogicalEntry_t structure
definition is shown in “entLogicalEntry_t Structure” on page 110.

Returns

Returns the stale entry for the specified index.

Returns NULL if the entry is not found, or if a live entry exists.

LPMappingTable Functions
The entLPMappingTable contains zero ormore rows that associate logical entities to physical
equipment. For each logical entity that is known by this agent, there are zero ormoremappings to
the physical resources that are used to realize that logical entity.An agent should limit the number
and nature of entries in this table so that onlymeaningful and non-redundant information is
returned. See the /etc/sma/snmp/mibs/ENTITY-MIB.txt file formore information about the
entLPMappingTable.

The following functions are for use with the entLPMappingTable:

� “addLPMappingTableEntry()” on page 104
� “deleteLPMappingTableEntry()” on page 105
� “deleteLPMappingLogicalIndex()” on page 105
� “deleteLPMappingPhysicalIndex()” on page 106

addLPMappingTableEntry()

Synopsis

extern int addLPMappingTableEntry(int xentLogicalIndex, int xentPhysicalIndex);

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 2006104

Description

Adds an entry to the entLPMappingTablewith the xentLogicalIndex as the primary index and
xentPhysicalIndex as the secondary index.

Returns

0 for successful addition.

1 if the entry already exists for the given xentPhysicalIndex and xentLogicalIndex.

-1 for failure to add.

-2 for stale index.

deleteLPMappingTableEntry()

Synopsis

extern int deleteLPMappingTableEntry(int xentLogicalIndex, int xentPhysicalIndex);

Description

Deletes the entry of the LPMapping table that uses the specified xentLogicalIndex as the primary
index and xentPhysicalIndex as the secondary index.

Returns

0 for successful deletion.

-1 for failure to delete.

-2 for stale entry, either logical index or physical index, or both.

deleteLPMappingLogicalIndex()

Synopsis

extern int deleteLPMappingLogicalIndex(int xentLogicalIndex);

Description

Deletes all the entries of the entLPMappingTable that have the xentLogicalIndex as the primary
index.

EntityMIBAPI

Chapter 9 • EntityMIB 105

Returns

number of successfully deleted entries.

-1 for failure.

-2 for stale logical entry.

deleteLPMappingPhysicalIndex()

Synopsis

extern int deleteLPMappingPhysicalIndex(int xentPhysicalIndex);

Description

Deletes all the entries of the entLPMappingTable that have xentPhysicalIndex as the secondary index.

Returns

number of successfully deleted entries.

–1 if no entry was deleted.

-2 for stale physical entry.

AliasMappingTable Functions
The entAliasMappingTable contains zero ormore rows that representmappings of logical entity
and physical entities for ports to externalMIB identifiers. Each physical port in the system can be
associated with amapping to an external identifier. The external identifier is associated with a
particular logical entity’s naming scope.Awildcardmechanism is provided to indicate that an
identifier is associated withmore than one logical entity.

The following functions are for use with the entAliasMappingTable in the EntityMIB:

� “addAliasMappingTableEntry()” on page 107
� “deleteAliasMappingTableEntry()” on page 107
� “deleteAliasMappingLogicalIndex()” on page 108
� “deleteAliasMappingPhysicalIndex()” on page 108

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 2006106

addAliasMappingTableEntry()

Synopsis

extern int addAliasMappingTableEntry(int xentPhysicalIndex, int xentLogicalIndex, oid*

xAliasMapId, int xAliasMapIdSize);

Description

Adds an entry to the entAliasMappingTablewith the xentPhysicalIndex as the primary index and
xentLogicalIndex as the secondary index. xAliasMapId is the alias (OID) for the entry and
xAliasMapIdSize is the size in bytes of xAliasMapId.

Note that if entAliasMapId = NULL, the request is rejected.

Returns

0 for successful addition.

1 if the entry already exists for the given xentPhysicalIndex and xentLogicalIndex.

-1 for failure.

-2 for stale entry.

deleteAliasMappingTableEntry()

Synopsis

extern int deleteAliasMappingTableEntry(int xentPhysicalIndex, int xentLogicalIndex);

Description

Deletes the entry in the entAliasMappingTable that has xentPhysicalIndex as the primary index and
xentLogicalIndex as the secondary index.

Returns

0 for successful deletion.

-1 for entry not found.

-2 for stale entry.

EntityMIBAPI

Chapter 9 • EntityMIB 107

deleteAliasMappingLogicalIndex()

Synopsis

extern int deleteAliasMappingLogicalIndex(int xentLogicalIndex);

Description

Deletes all entries of the entAliasMappingTable that have xentLogicalIndex as the secondary index.

This function cannot be used to delete all indexes that have an xentLogicalIndex of zero. Use the
deleteAliasMappingTableEntry() function to delete such entries one at a time, with the
appropriate xentPhysicalIndex specified.

Returns

number of entries successfully deleted.

-1 for entry not found.

-2 for stale logical entry.

deleteAliasMappingPhysicalIndex()

Synopsis

extern int deleteAliasMappingPhysicalIndex(int xentPhysicalIndex);

Description

Deletes all entries in the entAliasMappingTablewhose primary indexmatches the specified
xentPhysicalIindex.

Returns

number of entries successfully deleted.

–1 for entry not found.

–2 for stale physical entry.

EntityMIBAPI

Solaris SystemManagementAgent Developer’s Guide • November 2006108

Header Files for EntityMIB Functions
Data declarations and defines that are needed by the EntityMIB functions are included in header
files. The following header files in /usr/demo/sma_snmp/demo_module_11 can be copied and
modified for use with your ownmodules:

entAliasMappingTable.h

entLastChangeTime.h

entLogicalTable.h

entLPMappingTable.h

entPhysicalContainsTable.h

entPhysicalTable.h

The structures defined in entPhysicalTable.h and entLogicalTable.h are shown in the following
sections.

entPhysicalEntry_t Structure
The entPhysicalTable.h header file contains the typedef for the entPhysicalEntry_t structure.
This structure is representative of the entPhysicalTable columns that are defined in RFC 2737. The
entPhysicalEntry_t is defined as follows:

typedef struct entPhysicalEntry_s {

int_l entPhysicalIndex;

char *entPhysicalDescr;

oid *entPhysicalVendorType;

int_l entPhysicalVendorTypeSize;

int_l entPhysicalContainedIn;

int_l entPhysicalClass;

int_l entPhysicalParentRelPos;

char *entPhysicalName;

char *entPhysicalHardwareRev;

char *entPhysicalFirmwareRev;

char *entPhysicalSoftwareRev;

char *entPhysicalSerialNum;

char *entPhysicalMfgName;

char *entPhysicalModelName;

char *entPhysicalAlias;

char *entPhysicalAssetID;

int_l entPhysicalIsFRU;

struct entPhysicalEntry_s *pNextEntry;

} entPhysicalEntry_t;

Header Files for EntityMIB Functions

Chapter 9 • EntityMIB 109

entLogicalEntry_t Structure
The entLogicalTable.h header file contains the typedef for the entLogicalEntry_tstructure. This
structure is representative of the entLogicalTable columns that are defined in RFC 2737. The
entLogicalEntry_t is defined as follows:

typedef struct entLogicalEntry_s {

int_l entLogicalIndex;

char *entLogicalDescr;

oid *entLogicalType;

int_l entLogicalTypeSize;

char *entLogicalCommunity;

char *entLogicalTAddress;

oid *entLogicalTDomain;

int_l entLogicalTDomainSize;

char *entLogicalContextEngineId;

char *entLogicalContextName;

struct entLogicalEntry_s* pNextEntry;

} entLogicalEntry_t;

Tips forUsing EntityMIB Functions
Creating physical or logical entries Create the appropriate physical entries or logical entries first,

before creating the entries in the threemapping tables:
entLPMappingTable, entAliasMappingTable, and the
entPhysicalContainsTable.

Multiple parents For physical entries that havemore than one parent, all
relationshipsmust be defined in the
entPhysicalContainsTable. For example, suppose you
want to define that C is contained inAwith the
entPhysicalContainedIn field. You also want to define that C
is also contained in B. In this case, youmust define that C is
contained inA, and C is contained in B in the
entPhysicalContainsTable.

Recursive Relationships Recursive relationships are not allowed in the
entPhysicalTable and entPhysicalContainsTable. For
example, suppose B is contained inA, and C is contained in
B. In this case,Acannot be contained in C. The parent/child
relationship is defined both in the entPhysicalContainedIn
field of the entPhysicalTable() function and in the

Tips for Using EntityMIB Functions

Solaris SystemManagementAgent Developer’s Guide • November 2006110

entPhysicalContainsTable. The recursive check safeguard
is already built into the addPhysicalContainsTableEntry()
function.

Uniqueness When you specify entPhysicalParentRelPos, the
allocPhysicalEntry() function does not check for
uniqueness. For example, you can specify thatAand B are
contained in C by setting both entPhysicalParentRelPos fields
to the same value. However, doing so would violate RFC
2737. The uniqueness of many fields is not necessarily
checked by the functions. Youmust be aware of this fact
during the design phase.

Deleting physical or logical entries Deleting an entry is similar tomaking the entry stale. Both
deleted and stale entries no longer show up in tables when
performing SNMPoperations.Whether you delete an entry
ormake an entry stale, the corresponding entries are
automatically deleted in the threemapping tables. Note that
you cannot undelete these correspondingmapping tables
entries. This deletion is done tomaintain the integrity of the
tables.

The difference between deleting an entry andmaking the
entry stale is that a stale entry can be restored. Stale entries
can bemade livewith functions that are designed for that
purpose.Adeleted entry cannot be restored.

Deleting Parents The integrity of the entPhysicalTable and
entPhysicalContainsTable are notmaintained if you delete
a parent before you delete the subsequent generations. The
deletePhysicalTableEntry() function does not recursively
remove the parent and its subsequent generations. The
function only removes the specified entry from the tables. If
you do not delete a parent’s generations before deleting the
parent, you leave orphaned children. This practice is a
violation of RFC 2737.

When you delete a parent of amulti-parent child, the
entPhysicalContainedIn parameter is reset automatically to
the lowest of the remaining parent index. RFC 2737 requires
this reset. The entPhysicalParentRelPos parameter is then out
of place. NoAPI function lets you change that parameter.
You canmodify the entPhysicalParentRelPos parameter by
manipulating the entry that is returned by the
getPhysicalTableEntry() function. However, this
approach formodifying entPhysicalParentRelPos is not
supported. If you decide to try this approach, use caution.

Tips for Using EntityMIB Functions

Chapter 9 • EntityMIB 111

Traps Anotification trap is sent out whenever a change is made to
any of the five tables, such as the creation or deletion of
entries.Amechanism exists to suppress traps from being sent
too frequently. The throttling period is five seconds.

RFCConstraints and errors The EntityMIB implementation has some constraints, which
are dictated by RFC 2737. The onlymechanism to notify the
user about an error is through the error codes. Youmust
understand the RFC thoroughly to be aware of the
constraints.

demo_module_11CodeExample for EntityMIB
The /usr/demo/sma_snmp/demo_module_11 code example shows how the EntityMIBmodule can
be used. The demomodule is designed to populate the emptyMIB tables that are created when the
libentity.somodule is dynamically loaded into the agent. The data that is loaded is described in
this section.

You should examine the code in demo_module_11, especially the code in the MyTable.c file. The file
README_demo_module_11 in that directory includes procedures for building and using the example.

The demo_module_11 example refers to a systemwith the following components that need to be
managed:

� Two boards, with two CPUmodules on each board
� One board that contains three ports
� Two logical domains
� Two firewall instances

These components can be divided into the following entities:

� 14 physical entities
1 chassis
3 slots in the chassis
3 boards in the slots
4 CPUmodules in two boards
3 ports in one board

� 4 logical entities
2 domains
2 firewalls

Some of the physical entities are contained in other physical entities. The logical entities are
associated with particular physical entities. The EntityMIB tables should be populated to show the
relationships among the various entities.

demo_module_11 Code Example for EntityMIB

Solaris SystemManagementAgent Developer’s Guide • November 2006112

The following examples demonstrate how theMIB tables could be populated for this system.

EXAMPLE 9–1Physical Entities for demo_module_11

The entPhysicalTablemight be populated with the following values:

� One field-replaceable physical chassis:

entPhysicalDescr.1 == ’Sun Chassis Model b1000’

entPhysicalVendorType.1 == sun.chassisTypes.1

entPhysicalContainedIn.1 == 0

entPhysicalClass.1 == chassis(3)

entPhysicalParentRelPos.1 == -1

entPhysicalName.1 == ’b1000’

entPhysicalHardwareRev.1 == ’A(1.00.02)’

entPhysicalSoftwareRev.1 == ’’

entPhysicalFirmwareRev.1 == ’’

entPhysicalSerialNum.1 == ’C100076544’

entPhysicalMfgName.1 == ’Sun Microsystems’

entPhysicalModelName.1 == ’CHS-1000’

entPhysicalAlias.1 == ’cl-SJ17-3-006:rack1:rtr-U3’

entPhysicalAssetID.1 == ’0007372293’

entPhysicalIsFRU.1 == true(1)

� Slot 1 within the chassis:

entPhysicalDescr.2 == ’Sun Chassis Slot Type AA’

entPhysicalVendorType.2 == sun.slotTypes.1

entPhysicalContainedIn.2 == 1

entPhysicalClass.2 == container(5)

entPhysicalParentRelPos.2 == 1

entPhysicalName.2 == ’S1’

entPhysicalHardwareRev.2 == ’B(1.00.01)’

entPhysicalSoftwareRev.2 == ’’

entPhysicalFirmwareRev.2 == ’’

entPhysicalSerialNum.2 == ’’

entPhysicalMfgName.2 == ’Sun Microsystems’

entPhysicalModelName.2 == ’SLT-AA97’

entPhysicalAlias.2 == ’’

entPhysicalAssetID.2 == ’’

entPhysicalIsFRU.2 == false(2)

� Slot 2 within the chassis:

entPhysicalDescr.3 == ’Sun Chassis Slot Type AA’

entPhysicalVendorType.3 = sun.slotTypes.1

entPhysicalContainedIn.3 == 1

entPhysicalClass.3 == container(5)

demo_module_11 Code Example for EntityMIB

Chapter 9 • EntityMIB 113

EXAMPLE 9–1Physical Entities for demo_module_11 (Continued)

entPhysicalParentRelPos.3 == 2

entPhysicalName.3 == ’S2’

entPhysicalHardwareRev.3 == ’1.00.07’

entPhysicalSoftwareRev.3 == ’’

entPhysicalFirmwareRev.3 == ’’

entPhysicalSerialNum.3 == ’’

entPhysicalMfgName.3 == ’Sun Microsystems’

entPhysicalModelName.3 == ’SLT-AA97’

entPhysicalAlias.3 == ’’

entPhysicalAssetID.3 == ’’

entPhysicalIsFRU.3 == false(2)

� Slot 3 within the chassis:

entPhysicalDescr.4 == ’Sun Chassis Slot Type AA’

entPhysicalVendorType.4 = sun.slotTypes.1

entPhysicalContainedIn.4 == 1

entPhysicalClass.4 == container(5)

entPhysicalParentRelPos.4 == 3

entPhysicalName.4 == ’S3’

entPhysicalHardwareRev.4 == ’1.00.07’

entPhysicalSoftwareRev.4 == ’’

entPhysicalFirmwareRev.4 == ’’

entPhysicalSerialNum.4 == ’’

entPhysicalMfgName.4 == ’Sun Microsystems’

entPhysicalModelName.4 == ’SLT-AA97’

entPhysicalAlias.4 == ’’

entPhysicalAssetID.4 == ’’

entPhysicalIsFRU.4 == false(2)

� Board 1 within Slot 1:

entPhysicalDescr.5 == ’Sun CPU-100’

entPhysicalVendorType.5 == sun.moduleTypes.14

entPhysicalContainedIn.5 == 2

entPhysicalClass.5 == module(9)

entPhysicalParentRelPos.5 == 1

entPhysicalName.5 == ’M1’

entPhysicalHardwareRev.5 == ’1.00.07’

entPhysicalSoftwareRev.5 == ’1.5.1’

entPhysicalFirmwareRev.5 == ’A(1.1)’

entPhysicalSerialNum.5 == ’C100087363’

entPhysicalMfgName.5 == ’Sun Microsystems’

entPhysicalModelName.5 == ’R10-FE00’

entPhysicalAlias.5 == ’rtr-U3:m1:SJ17-3-eng’

demo_module_11 Code Example for EntityMIB

Solaris SystemManagementAgent Developer’s Guide • November 2006114

EXAMPLE 9–1Physical Entities for demo_module_11 (Continued)

entPhysicalAssetID.5 == ’0007372562’

entPhysicalIsFRU.5 == true(1)

� First CPU, in Board 1, within Slot 1:

entPhysicalDescr.6 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.6 == sun.cpuTypes.2

entPhysicalContainedIn.6 == 5

entPhysicalClass.6 == other(1)

entPhysicalParentRelPos.6 == 1

entPhysicalName.6 == ’P1’

entPhysicalHardwareRev.6 == ’G(1.02)’

entPhysicalSoftwareRev.6 == ’’

entPhysicalFirmwareRev.6 == ’1.1’

entPhysicalSerialNum.6 == ’’

entPhysicalMfgName.6 == ’Sun Microsystems’

entPhysicalModelName.6 == ’SFE-400M’

entPhysicalAlias.6 == ’’

entPhysicalAssetID.6 == ’’

entPhysicalIsFRU.6 == false(2)

� Second CPU, in Board 1, within Slot 1:

entPhysicalDescr.7 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.7 == sun.cpuTypes.2

entPhysicalContainedIn.7 == 5

entPhysicalClass.7 == other(1)

entPhysicalParentRelPos.7 == 2

entPhysicalName.7 == ’P2’

entPhysicalHardwareRev.7 == ’G(1.02)’

entPhysicalSoftwareRev.7 == ’’

entPhysicalFirmwareRev.7 == ’1.1’

entPhysicalSerialNum.7 == ’’

entPhysicalMfgName.7 == ’Sun Microsystems’

entPhysicalModelName.7 == ’SFE-400M’

entPhysicalAlias.7 == ’’

entPhysicalAssetID.7 == ’’

entPhysicalIsFRU.7 == false(2)

� Board 2 within Slot 2:

entPhysicalDescr.8 == ’Sun CPU-200’

entPhysicalVendorType.8 == sun.moduleTypes.15

entPhysicalContainedIn.8 == 3

entPhysicalClass.8 == module(9)

entPhysicalParentRelPos.8 == 1

demo_module_11 Code Example for EntityMIB

Chapter 9 • EntityMIB 115

EXAMPLE 9–1Physical Entities for demo_module_11 (Continued)

entPhysicalName.8 == ’M2’

entPhysicalHardwareRev.8 == ’2.01.00’

entPhysicalSoftwareRev.8 == ’3.0.7’

entPhysicalFirmwareRev.8 == ’A(1.2)’

entPhysicalSerialNum.8 == ’C100098732’

entPhysicalMfgName.8 == ’Sun Microsystems’

entPhysicalModelName.8 == ’R10-FE0C’

entPhysicalAlias.8 == ’rtr-U3:m2:SJ17-2-eng’

entPhysicalAssetID.8 == ’0007373982’

entPhysicalIsFRU.8 == true(1)

� Third CPU, in Board 2, within Slot 2:

entPhysicalDescr.9 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.9 == sun.cpuTypes.5

entPhysicalContainedIn.9 == 8

entPhysicalClass.9 == other(1)

entPhysicalParentRelPos.9 == 1

entPhysicalName.9 == ’P3’

entPhysicalHardwareRev.9 == ’CC(1.07)’

entPhysicalSoftwareRev.9 == ’2.0.34’

entPhysicalFirmwareRev.9 == ’1.1’

entPhysicalSerialNum.9 == ’’

entPhysicalMfgName.9 == ’Sun Microsystems’

entPhysicalModelName.9 == ’SFE-400M’

entPhysicalAlias.9 == ’’

entPhysicalAssetID.9 == ’’

entPhysicalIsFRU.9 == false(2)

� Fourth CPU, in Board 2, within Slot 2:

entPhysicalDescr.10 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.10 == sun.cpuTypes.2

entPhysicalContainedIn.10 == 8

entPhysicalClass.10 == other(1)

entPhysicalParentRelPos.10 == 2

entPhysicalName.10 == ’P4’

entPhysicalHardwareRev.10 == ’G(1.04)’

entPhysicalSoftwareRev.10 == ’’

entPhysicalFirmwareRev.10 == ’1.3’

entPhysicalSerialNum.10 == ’’

entPhysicalMfgName.10 == ’Sun Microsystems’

entPhysicalModelName.10 == ’SFE-400M’

entPhysicalAlias.10 == ’’

demo_module_11 Code Example for EntityMIB

Solaris SystemManagementAgent Developer’s Guide • November 2006116

EXAMPLE 9–1Physical Entities for demo_module_11 (Continued)

entPhysicalAssetID.10 == ’’

entPhysicalIsFRU.10 == false(2)

� Board 3 within Slot 3:

entPhysicalDescr.11 == ’Sun port-200’

entPhysicalVendorType.11 == sun.moduleTypes.25

entPhysicalContainedIn.11 == 4

entPhysicalClass.11 == module(9)

entPhysicalParentRelPos.11 == 1

entPhysicalName.11 == ’M2’

entPhysicalHardwareRev.11 == ’2.01.00’

entPhysicalSoftwareRev.11 == ’3.0.7’

entPhysicalFirmwareRev.11 == ’A(1.2)’

entPhysicalSerialNum.11 == ’C100098732’

entPhysicalMfgName.11 == ’Sun Microsystems’

entPhysicalModelName.11 == ’R11-C100’

entPhysicalAlias.11 == ’rtr-U3:m2:SJ17-2-eng’

entPhysicalAssetID.11 == ’0007373982’

entPhysicalIsFRU.11 == true(1)

� Port 1, in Board 3, within Slot 3:

entPhysicalDescr.12 == ’Sun Ethernet-100 Port’

entPhysicalVendorType.12 == sun.portTypes.5

entPhysicalContainedIn.12 == 11

entPhysicalClass.12 == port(10)

entPhysicalParentRelPos.12 == 1

entPhysicalName.12 == ’P3’

entPhysicalHardwareRev.12 == ’CC(1.07)’

entPhysicalSoftwareRev.12 == ’2.0.34’

entPhysicalFirmwareRev.12 == ’1.1’

entPhysicalSerialNum.12 == ’’

entPhysicalMfgName.12 == ’Sun Microsystems’

entPhysicalModelName.12 == ’SFE-P100’

entPhysicalAlias.12 == ’’

entPhysicalAssetID.12 == ’’

entPhysicalIsFRU.12 == false(2)

� Port 2, in Board 3, within Slot 3:

entPhysicalDescr.13 == ’Sun Ethernet-100 Port’

entPhysicalVendorType.13 == sun.portTypes.5

entPhysicalContainedIn.13 == 11

entPhysicalClass.13 == port(10)

entPhysicalParentRelPos.13 == 2

demo_module_11 Code Example for EntityMIB

Chapter 9 • EntityMIB 117

EXAMPLE 9–1Physical Entities for demo_module_11 (Continued)

entPhysicalName.13 == ’Ethernet B’

entPhysicalHardwareRev.13 == ’G(1.04)’

entPhysicalSoftwareRev.13 == ’’

entPhysicalFirmwareRev.13 == ’1.3’

entPhysicalSerialNum.13 == ’’

entPhysicalMfgName.13 == ’Sun Microsystems’

entPhysicalModelName.13 == ’SFE-P100’

entPhysicalAlias.13 == ’’

entPhysicalAssetID.13 == ’’

entPhysicalIsFRU.13 == false(2)

� Port 3, in Board 3, within Slot 3:

entPhysicalDescr.14 == ’Sun Ethernet-100 Port’

entPhysicalVendorType.14 == sun.portTypes.5

entPhysicalContainedIn.14 == 11

entPhysicalClass.14 == port(10)

entPhysicalParentRelPos.14 == 3

entPhysicalName.14 == ’Ethernet B’

entPhysicalHardwareRev.14 == ’G(1.04)’

entPhysicalSoftwareRev.14 == ’’

entPhysicalFirmwareRev.14 == ’1.3’

entPhysicalSerialNum.14 == ’’

entPhysicalMfgName.14 == ’Sun Microsystems’

entPhysicalModelName.14 == ’SFE-P100’

entPhysicalAlias.14 == ’’

entPhysicalAssetID.14 == ’’

entPhysicalIsFRU.14 == false(2)

EXAMPLE 9–2Logical Entities for demo_module_11

The entLogicalTable is populated with the following values when you run demo_module_11:

� Logical Domain “A”

entLogicalDescr.1 == ’Domain A’

entLogicalType.1 == solaris

entLogicalCommunity.1 == ’public-dom1’

entLogicalTAddress.1 == 124.125.126.127:161

entLogicalTDomain.1 == SunExampleDomain

entLogicalContextEngineID.1 == ’’

entLogicalContextName.1 == ’’

� Logical Domain “B”

demo_module_11 Code Example for EntityMIB

Solaris SystemManagementAgent Developer’s Guide • November 2006118

EXAMPLE 9–2 Logical Entities for demo_module_11 (Continued)

entLogicalDescr.2 == ’Domain B’

entLogicalType.2 == solaris

entLogicalCommunity.2 == ’public-dom2’

entLogicalTAddress.2 == 124.125.126.128:161

entLogicalTDomain.2 == SunExampleDomain

entLogicalContextEngineID.2 == ’’

entLogicalContextName.2 == ’’

� Firewall 1

entLogicalDescr.3 == ’Sun Firewall v2.1.1’

entLogicalType.3 == dot1dFirewall

entLogicalCommunity.3 == ’public-firewall1’

entLogicalTAddress.3 == 124.125.126.129:161

entLogicalTDomain.3 == SunExampleDomain

entLogicalContextEngineID.3 == ’’

entLogicalContextName.3 == ’’

� Firewall 2

entLogicalDescr.4 == ’Sun Firewall v2.1.1’

entLogicalType.4 == dot1dFirewall

entLogicalCommunity.4 == ’public-firewall2’

entLogicalTAddress.4 == 124.125.126.130:161

entLogicalTDomain.4 == SunExampleDomain

entLogicalContextEngineID.4 == ’’

entLogicalContextName.4 == ’’

Note – entLogicalTable does not support SNMPv3 in this example.

EXAMPLE 9–3 Logical to PhysicalMappings for demo_module_11

The entLPMappingsTable is populated with the objects and values in the right column of the
following table when you run demo_module_11.

Logical Entity andPhysical Entity Associations Logical to PhysicalMapping Indexes

DomainA(entLogicalIndex.1) uses:
Board 1 (entPhysicalIndex.5)
Port 1 (entPhysicalIndex.12)

entLPPhysicalIndex.1.5 == 5

entLPPhysicalIndex.1.12 == 12

demo_module_11 Code Example for EntityMIB

Chapter 9 • EntityMIB 119

EXAMPLE 9–3 Logical to PhysicalMappings for demo_module_11 (Continued)

Logical Entity andPhysical Entity Associations Logical to PhysicalMapping Indexes

Domain B (entLogicalIndex.2) uses:
Board 2 (entPhysicalIndex.8)
Port 2 (entPhysicalIndex.13)
Port 3 (entPhysicalIndex.14)

entLPPhysicalIndex.2.8 == 8

entLPPhysicalIndex.2.13 == 13

entLPPhysicalIndex.2.14 == 14

Firewall 1 (entLogicalIndex.3) uses:
CPU 1 (entPhysicalIndex.6)
Port 1 (entPhysicalIndex.12)

entLPPhysicalIndex.3.6 == 6

entLPPhysicalIndex.3.12 == 12

Firewall 2 (entLogicalIndex.4) uses:
CPU 3 (entPhysicalIndex.9)
Port 2 (entPhysicalIndex.13)
Port 3 (entPhysicalIndex.14)

entLPPhysicalIndex.4.9 == 9

entLPPhysicalIndex.4.13 == 13

entLPPhysicalIndex.4.14 == 14

Thesemappings are included in the entLPMappingTable because
Firewall 2 uses ports in the board. If the firewall did not use these
ports, then a single mapping to the board, for example
entLPPhysicalIndex.4.11would be sufficient.

EXAMPLE 9–4 Physical to Logical toMIBAliasMappings for demo_module_11

The entAliasMappingTable is populated with the following objects and values when you run
demo_module_11.

If the ifIndex values are shared by all logical entities, the entAliasMappingTablemight be
populated as follows:

entAliasMappingIdentifier.12.0 == ifIndex.1

entAliasMappingIdentifier.13.0 == ifIndex.2

entAliasMappingIdentifier.14.0 == ifIndex.3

The first index in the entAliasMappingIdentifier signifies the physical index. In this case, physical
entities with the indexes 12, 13, and 14 are Port 1, Port 2, and Port 3. In the preceding
entAliasMappingIdentifier assignments, Port 1 is mapped to ifIndex.1, Port 2 is mapped to
ifIndex.2, and Port 3 is mapped to ifIndex.3. This mapping is for all logical entities that use each
of these ports.

If the ifIndex values are not shared by all logical entities, the entAliasMappingTablemight be
populated as follows:

entAliasMappingIdentifier.12.0 == ifIndex.1

entAliasMappingIdentifier.12.3 == ifIndex.101

entAliasMappingIdentifier.13.0 == ifIndex.2

entAliasMappingIdentifier.13.3 == ifIndex.102

entAliasMappingIdentifier.14.0 == ifIndex.3

entAliasMappingIdentifier.14.3 == ifIndex.103

demo_module_11 Code Example for EntityMIB

Solaris SystemManagementAgent Developer’s Guide • November 2006120

EXAMPLE 9–4 Physical to Logical toMIBAliasMappings for demo_module_11 (Continued)

In this case, one logical entity is mapped differently. Firewall 1, which is entLogicalIndex.3, is
mapped as follows:

� ifIndex.101 on Port 1
� ifIndex.102 on Port 2
� ifIndex.103 on Port 3

EXAMPLE 9–5Physical Contains Table Entries for demo_module_11

The following table shows the containment relationships among the physical entities. The right
column of the table lists the entries added to the entPhysicalContainsTable of the EntityMIB by
demo_module_11.

Physical Entity Contains entPhysicalContainsTable Entry

Chassis Slot 1 entPhysicalChildIndex.1.2 == 2

Slot 2 entPhysicalChildIndex.1.3 == 3

Slot 3 entPhysicalChildIndex.1.4 == 4

Slot 1 Board 1 entPhysicalChildIndex.2.5 == 5

Slot 2 Board 2 entPhysicalChildIndex.3.8 == 8

Slot 3 Board 3 entPhysicalChildIndex.4.11 == 11

Board 1 CPU 1 entPhysicalChildIndex.4.6 == 6

CPU 2 entPhysicalChildIndex.4.7 == 7

Board 2 CPU 3 entPhysicalChildIndex.8.9 == 9

CPU 4 entPhysicalChildIndex.8.10 == 10

Board 3 Port 1 entPhysicalChildIndex.11.12 == 12

Port 2 entPhysicalChildIndex.11.13 == 13

Port 3 entPhysicalChildIndex.11.14 == 14

demo_module_11 Code Example for EntityMIB

Chapter 9 • EntityMIB 121

122

Migration of Solstice EnterpriseAgents to the
SystemManagementAgent

This chapter contains information for developers who want tomigrate a subagent from Solstice
EnterpriseAgents to use in the SystemManagementAgent. The chapter uses demo_module_12 to
illustrate procedures. The following topics are discussed:

� “WhyMigrate to SMA?” on page 123
� “Solstice EnterpriseAgentsMigration Strategy Overview” on page 124
� “Migrating Solstice EnterpriseAgent Subagents to SMA” on page 124
� “demo_module_12Code Example for Solstice EnterpriseAgents SubagentMigration” on page 125
� “Modifying the SMAInstrumentation Code” on page 127

WhyMigrate to SMA?
Support for the Solstice EnterpriseAgents softwaremight be discontinued in a future Solaris release.
For this reason, any Solstice EnterpriseAgents subagents that you have createdmust bemigrated to
use the SMA. In this Solaris release, you can run the Solstice EnterpriseAgents software and
associated subagents concurrently with the SMA.

The Solstice EnterpriseAgents product includes mibiisa, a subagent that implementsMIB-II and
the SunMIB. In SMA, the functionality of mibiisa is implemented by theMIB-II portion of the
SMAagent and a new Sun extensions subagent. By default, the mibiisa subagent is disabled in this
Solaris release.

Requests forMIB-II are handled by the SMAagent directly. Requests for the extensions in the Sun
MIB are handled by the seaExtensionsmodule, if that module has been loaded. Requests for the
Solstice EnterpriseAgents master agent, which implements the snmpdx.mib, are handled by the
seaProxymodule if that module has been loaded.

The seaProxymodule generates dynamic proxies based on static and dynamic Solstice Enterprise
Agents subagent registrations. The proxies are not statically defined in snmpd.conf. Note that the
seaProxymodule does not generate proxies for the mibiisa subagent itself. After the dynamic
proxies are generated, the agent’s proxymechanism handles the forwarding of those requests to the
Solstice EnterpriseAgents master agent.

10C H A P T E R 1 0

123

Solstice EnterpriseAgents subagents can still be used with the Solstice EnterpriseAgents master
agent, and thus with SMAby using the seaProxymodule, as explained in Solaris System
Management Agent Administration Guide. However, SMAsupport of the Solstice EnterpriseAgents
software is for a limited transitional time. You shouldmigrate any Solstice EnterpriseAgents
subagents that you have implemented to use the SMAas early as possible.

Solstice EnterpriseAgentsMigration StrategyOverview
The general process for implementing a Solstice EnterpriseAgents subagent as an SMAmodule is as
follows:

1. Obtain theMIB that was used to create the Solstice EnterpriseAgents subagent.
2. Make a copy of theMIB. Name theMIB file according to the guidelines in “MIB File Names”

on page 31, if necessary.
Modify the copy of theMIB for compatibility with mib2c. Use the
SUN-SEA-EXTENSIONS-MIB.txt as amodel formodifying theMIB. Pay particular attention to the
format of theMODULE-IDENTITY group.

3. Use the mib2c tool to generate C code for SMAmodule templates from themodifiedMIB.
4. Use the Solstice EnterpriseAgents mibcodegen tool to generate C code header and stub files for

Solstice EnterpriseAgents modules from the originalMIB.
5. Compare the template code that mib2c produced to the template code that mibcodegen

produced. Examine the instrumentation code from the Solstice EnterpriseAgents subagent to
determine what you need for instrumentation in the SMAmodule.

6. Modify the SMAtemplates to use the appropriate functions to implement similar
instrumentation code.

The following section uses an exampleMIB in demo_module_12 to illustrate this migration process.

Migrating Solstice EnterpriseAgent Subagents to SMA
The SMAdoes not provide a comprehensive tool tomigrate a Solstice EnterpriseAgents subagent to
an SMAmodule.ASolstice EnterpriseAgents subagent uses two types ofAPI functions. One type of
API function is used for interaction with themaster agent, and the other type is used for custom
implementation. The functions for interaction with themaster agent are common among all
subagents. No tool is available that can separate the two types of functions, and put only the custom
implementation code automatically into the corresponding place in the mib2c-generated code.

The simplest way tomigrate a Solstice EnterpriseAgents subagent is first to use theMIB tools of each
environment to create code templates for each environment.

The following table compares aspects of the SMAmib2c tool and the Solstice EnterpriseAgents
mibcodegen tool. This comparisonmight help you to understand the code templates that each tool
produces.

Solstice EnterpriseAgentsMigration StrategyOverview

Solaris SystemManagementAgent Developer’s Guide • November 2006124

TABLE 10–1Comparison ofMIBTools in SMAand Solstice EnterpriseAgents Software

SMAmib2c tool
Solstice Enterprise Agents mibcodegen
tool

Scope of action onMIB mib2c is run against individual nodes in aMIB,
such as a subtree that contains scalars or a table.
Running mib2c against individual tables rather
than a parent subtree or group is advantageous.
You can generate code templates that are
customized according to the way you plan to
implement each table in SMA. For example, you
can generate templates for a table differently if
the table is internal or external to the agent.

mibcodegen is run against the
wholeMIB.

Code generated mib2c generates code for the implementation of
amodule that can be used in SNMPagent or
AgentX subagent frameworks.Well-defined
APIs are used to expose the functionality.

mibcodegen generates code to
make the output represent a
standalone subagent. SNMP is
used to communicate between the
master agent and the subagent.

demo_module_12CodeExample for Solstice Enterprise
Agents SubagentMigration
The demo_module_12 demonstrates how to implement a Solstice EnterpriseAgents subagent as an
SMAmodule.

The demo_module_12 code example is by default located in the directory
/usr/demo/sma_snmp/demo_module_12. The README_demo_module_12 file within that directory
contains instructions that describe how to perform the following tasks:

� Generate SMAtemplate code from the EXAMPLE-MIB, by running the runmib2c script
� Generate Solstice EnterpriseAgents template code from the EXAMPLE-MIB, by running the

runmibcodegen script

You should perform the procedures in demo_module_12 to produce the templates that are analyzed in
the following section.

Analysis of the demo_module_12 Solstice EnterpriseAgents Templates
The mibcodgen tool produced several files. The following table describes and analyzes the files.

Migrating Solstice EnterpriseAgent Subagents to SMA

Chapter 10 • Migration of Solstice EnterpriseAgents to the SystemManagementAgent 125

TABLE 10–2Comparison of Solstice EnterpriseAgents Templates to SMATemplates

Template File Name Content Comparison to SMATemplates

example_tree.c Contains the type or
storage definition for
theMIB information.

Only the OID and column definitions
contained in this file are also used in templates
generated by mib2c. The agent orAgentX
frameworks handle the rest for you.

example_stub.h Contains extern
function definitions for
all get, set, and free
functions that
implement the
variables in theMIB.

For each SNMPgroup, mib2c generates an
include file that defines externs for similar
functions for both scalars and tables.

example_stub.c Contains all get, set,
and free functions that
implement the scalar
variables in theMIB.

For each SNMPgroup, mib2c generates a
source code file. The file implements code for
similar functions for the data types that the
group contains, scalars, or tables.

mib2c also generates the registration code that
is invoked at initialization time. The
registration codemakes the agent aware of the
OIDs that are supported. The registration code
also identifies the get and set functions.

Migrating Solstice EnterpriseAgent Subagents to SMA

Solaris SystemManagementAgent Developer’s Guide • November 2006126

TABLE 10–2Comparison of Solstice EnterpriseAgents Templates to SMATemplates (Continued)
Template File Name Content Comparison to SMATemplates

example_rwTableEntry.c Contains all get, set,
and free functions that
implement the column
variables for
rwTableEntry in the
MIB.

An equivalent file, tableType.c in the
example, is generated by mib2cwith one of the
table configuration options. The
mib2c-generated file contains similar
functions but uses very different index
handling.

mibcodegen generates a getmethod that is
passed a parameter to indicate whether to
perform a get or getnext request.

With mib2c, however, the index handling is
performed prior to invoking the getmethod
to handle a getnext request.Aget_first

method is exposed to the SMAagent so that
the agent can find the first item in a table.A
get_nextmethod handles getting the next row
in the table.When the correct row is found, the
get or setmethod is called with the column to
manipulate. This process applies to getting the
correct row for get, getnext, or set functions
when the data is external to the agent. If the
data is held by the SMAmaster agent, table
registration involves populating the table.
After the table is populated, requests to the
table would be handled directly by the SMA
master agent.

example_trap.c Contains trap
definitions.

mib2c does not generate equivalent code.
Traps can be generated by calling
send_enterprise_trap_vars().

example_appl.c Contains code to
support subagent.

mib2c does not generate equivalent code
because such code is not needed. The SMA
agent orAgentX framework handles the
overhead and invokes the code throughAPI
functions.

Modifying the SMAInstrumentationCode
After you generate and analyze the templates, the task then is to extract the core SNMP get, getnext,
and set processing out of the Solstice EnterpriseAgents subagent code, andmove it to the get and
set handler and get_first/get_nextmethods defined in the SMAmodule approach.

The index handling is removed from each get and set function in Solstice EnterpriseAgents code to
be handled by the SMA. Special methods are used for tables. Context fields are used to store the
current index information so that advancing in the table is relatively simple.

Migrating Solstice EnterpriseAgent Subagents to SMA

Chapter 10 • Migration of Solstice EnterpriseAgents to the SystemManagementAgent 127

128

SMAResources

This appendix lists SystemManagementAgent resources that youmight find helpful.

ManPages
This section lists all theman pages that are associated with the SystemManagementAgent. Theman
pages are listed in tables, which are organized by the type of content documented in the pages:

� Man Pages for General SNMPTopics
� Man Pages for SNMPTools
� Man Pages for SNMPConfiguration Files
� Man Pages for SNMPDaemons

The following table lists man pages for general SNMP information.

TABLE A–1ManPages forGeneral SNMPTopics

ManPage Description

sma_snmp(5) Gives an overview of the SystemManagementAgent, the
Net-SNMP implementation included in the Solaris operating
system.

snmpcmd(1M) Describes the common options for Net-SNMP commands.

snmp_variables(4) Discusses the format that must be used to specify variable
names to Net-SNMP commands.

The following table lists theman pages for Net-SNMP command tools.

AA P P E N D I X A

129

TABLE A–2ManPages for SNMPTools

Manpage Tool Description

mib2c(1M) The mib2c tool uses nodes in aMIB definition file to produce
two C code template files. The templates can be used as a basis
for aMIBmodule.

snmpbulkget(1M) The snmpbulkget utility is an SNMPapplication that uses the
SNMPGETBULK operation to send information to a network
manager.

snmpbulkwalk(1M) The snmpbulkwalk utility is an SNMPapplication that uses
SNMPGETBULK requests to query a network entity efficiently
for a tree of information.

snmpget(1M) The snmpget utility is an SNMPapplication that uses the SNMP
GET request to query for information on a network entity.

snmpgetnext(1M) The snmpgetnext utility is an SNMPapplication that uses the
SNMPGETNEXT request to query for information on a
network entity.

snmpinform(1M) The snmpinform command invokes the snmptrap utility, which
is an SNMPapplication that uses the SNMPTRAPoperation to
send information to a networkmanager.

snmpnetstat(1M) The snmpnetstat command symbolically displays the values of
various network-related information retrieved from a remote
system by using the SNMPprotocol.

snmpset(1M) The snmpset utility is an SNMPapplication that uses the SNMP
SET request to set information on a network entity.

snmptrap(1M) The snmptrap utility is an SNMPapplication that uses the
SNMPTRAPoperation to send information to a network
manager.

snmpusm(1M) The snmpusm utility is an SNMPapplication that can be used to
do simplemaintenance on an SNMPagent’s User-based
SecurityModule (USM) table.

snmpvacm(1M) The snmpvacm utility is a SNMP application that can be used to
domaintenance on an SNMPagent’s View-basedAccess
ControlModule (VACM) table.

snmpwalk(1M) The snmpwalk utility is an SNMPapplication that uses SNMP
GETNEXT requests to query a network entity for a tree of
information.

ManPages

Solaris SystemManagementAgent Developer’s Guide • November 2006130

TABLE A–2ManPages for SNMPTools (Continued)
Manpage Tool Description

snmpdf(1M) The snmpdf command is a networked version of the df
command. snmpdf checks the disk space on the remotemachine
by examining the HOST-RESOURCES-MIB’s hrStorageTable
or the UCD-SNMP-MIB’s dskTable.

snmpdelta(1M) The snmpdelta utility monitors the specifiedOIDs and reports
changes over time.

snmptable(1m) The snmptable utility is an SNMPapplication that repeatedly
uses the SNMPGETNEXT or GETBULK requests to query for
information on a network entity.

snmptest(1M) The snmptest utility is a flexible SNMP application that can
monitor andmanage information on a network entity. The
utility uses a command-line interpreter to enable you to send
different types of SNMP requests to target agents.

snmptranslate(1m) The snmptranslate utility is an application that translates one
ormore SNMPobject identifier values between symbolic
textual forms and numerical forms.

snmpstatus(1) The snmpstatus command is an SNMPapplication that
retrieves several important statistics from a network entity.

The following table lists theman pages associated with configuration files that are used by the
Net-SNMP agent.

TABLE A–3ManPages for SNMPConfiguration Files

ManPage Description

snmp_config(4) Provides an overview of the Net-SNMP configuration files
included with SystemManagementAgent.

snmp.conf(4) The file snmp.conf defines how the Net-SNMP applications
operate. The Net-SNMP applications include snmpget,
snmpwalk, and similar tools.

snmpd.conf(4) The file snmpd.conf defines how the Net-SNMP agent
operates.

snmptrapd.conf(4) The file snmptrapd.conf defines how the Net-SNMP
trap-receiving daemon, snmptrapd, operates when receiving
a trap.

snmpconf(1M) The snmpconf utility is a script that asks you configuration
questions. The utility then creates an snmpd.conf

configuration file that is based on your responses.

ManPages

AppendixA • SMAResources 131

The following table lists theman pages for daemons that are associated with Net-SNMP.

TABLE A–4ManPages for SNMPDaemons

ManPage Description

snmpd(1M) The snmpd daemon is the SNMPagent. The daemon binds to a
port and awaits requests from SNMPmanagement software.

snmptrapd(1M) The snmptrapd daemon is an SNMPapplication that receives
and logs SNMPTRAP and INFORMmessages.

API Functions
The followingNet-SNMPAPI functions have been tested and are certified to work with the System
ManagementAgent. Documentation fromNet-SNMP is provided for all the functions in
/usr/sfw/doc/sma_snmp/html.

netsnmp_mib_handler *netsnmp_create_handler(

const char *name,

Netsnmp_Node_Handler *handler_access_method);

netsnmp_handler_registration *netsnmp_create_handler_registration(

const char *name,

Netsnmp_Node_Handler *handler_access_method,

oid * reg_oid,

size_t reg_oid_len,

int modes);

void

send_enterprise_trap_vars(int trap,

int specific,

oid *enterprise,

int enterprise_length,

netsnmp_variable_list * vars);

void

send_easy_trap(int, int);

API Functions

Solaris SystemManagementAgent Developer’s Guide • November 2006132

void

send_v2trap(netsnmp_variable_list *);

netsnmp_mib_handler *netsnmp_get_debug_handler(void);

void

netsnmp_init_debug_helper(void);

int

netsnmp_register_instance(netsnmp_handler_registration *reginfo);

int

netsnmp_register_read_only_instance(netsnmp_handler_registration *reginfo);

netsnmp_mib_handler *netsnmp_get_instance_handler(void);

netsnmp_mib_handler *netsnmp_get_mode_end_call_handler(

netsnmp_mode_handler_list *endlist);

netsnmp_mode_handler_list *netsnmp_mode_end_call_add_mode_callback(

netsnmp_mode_handler_list *endlist,

int mode,

netsnmp_mib_handler *callbackh);

int

netsnmp_register_scalar(netsnmp_handler_registration *reginfo);

int

netsnmp_register_read_only_scalar(netsnmp_handler_registration *reginfo);

netsnmp_mib_handler *netsnmp_get_scalar_handler(void);

API Functions

AppendixA • SMAResources 133

netsnmp_mib_handler *netsnmp_get_table_handler(

netsnmp_table_registration_info

void

netsnmp_table_helper_add_indexes(va_alist);

int

netsnmp_register_table_iterator(netsnmp_handler_registration *reginfo,

netsnmp_iterator_info *iinfo);

void *

netsnmp_extract_iterator_context(netsnmp_request_info *);

int

netsnmp_set_request_error(netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *request, int error_value);

int

snmp_register_callback(int major,

int minor,

SNMPCallback * new_callback,

void *arg);

int

snmp_call_callbacks(int major,

int minor,

void *caller_arg);

int

snmp_unregister_callback(int major,

int minor,

SNMPCallback * new_callback,

void *arg,

int matchargs);

void

snmp_alarm_unregister(unsigned int clientreg);

API Functions

Solaris SystemManagementAgent Developer’s Guide • November 2006134

void

snmp_alarm_unregister_all(void);

unsigned int

snmp_alarm_register(unsigned int when,

unsigned int flags,

SNMPAlarmCallback * thecallback,

void *clientarg);

unsigned int

snmp_alarm_register_hr(struct timeval t,

unsigned int flags,

SNMPAlarmCallback * cb,

void *cd);

int

snmp_log(int priority, const char *format, ...);

int

snmp_vlog(int priority, const char *format, va_list ap);

int

netsnmp_ds_set_boolean(int storeid,

int which,

int value)

int

agent_check_and_process(int block)

void

snmp_shutdown(const char *type)

void

init_snmp(const char *type)

API Functions

AppendixA • SMAResources 135

int

init_agent(const char *app)

void *

netsnmp_request_get_list_data(netsnmp_request_info *request,

const char *name)

void

netsnmp_request_add_list_data(netsnmp_request_info *request,

netsnmp_data_list *node)

netsnmp_table_request_info *

netsnmp_extract_table_info(netsnmp_request_info *request)

int

netsnmp_register_int_instance (const

char *name, oid *reg_oid, size_t

reg_oid_len, int *it,

Netsnmp_Node_Handler *subhandler)

int

unregister_mib_context (oid *name, size_t len, int priority,

int range_subid, oid range_ubound, const char *context)

int

snmp_set_var_typed_value (netsnmp_variable_list *newvar,

u_char type, const u_char *val_str, size_t val_len)

config_line *

register_config_handler (const char *type_param,

const char *token, void(*parser)(const char *, char *),

void(*releaser)(void), const char *help)

API Functions

Solaris SystemManagementAgent Developer’s Guide • November 2006136

void

unregister_config_handler (const char

*type_param, const char *token)

char *

read_config_read_data (int type, char *readfrom,

void *dataptr, size_t *len)

char *

read_config_store_data (int type, char *storeto, void

*dataptr, size_t *len)

netsnmp_delegated_cache *

netsnmp_create_delegated_cache(

netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests,

void *localinfo);

int

snmp_set_var_value (netsnmp_variable_list *var,

const u_char *valstr, size_tsize)

void netsnmp_table_set_multi_add_default_row(netsnmp_table_data_set *, ...);

void netsnmp_table_set_multi_add_default_row(va_alist);

netsnmp_table_data_set *netsnmp_create_table_data_set(const char *);

netsnmp_table_set_add_indexes;

int

netsnmp_register_table_data_set(netsnmp_handler_registration *,

netsnmp_table_data_set *,

netsnmp_table_registration_info *);

void send_trap_vars(int trap, int specific, netsnmp_variable_list *vars);

API Functions

AppendixA • SMAResources 137

138

MIBs Implemented in SMA

This appendix lists some of theMIBs that are implemented in the SystemManagementAgent.

MIBs Implemented in SMA
This list includes theMIBmodules that have been built into the agent.

UCD-DISKIO-MIB MIBmodule for disk IO statistics

RFC1213-MIB MIB II groups, including IP, TCP, UDP, SYSTEM, ICMP,
SNMP, INTERFACES, and STATISTICS. The EGP group is
not implemented.

UCD-SNMP-MIB Memory usage, watch reporting, load averages, virtual
memory statistics.

SNMP-USER-BASED-SM-MIB SNMPv3 usermodel, security statistics, authentication key
information, privacy protocols, USM storage types.

SNMP-VIEW-BASED-ACM-MIB Group names and access views for View-basedAccess
ControlModel (VACM).

UCD-DLMOD-MIB Names of dynamically loadablemodules, location ofmodule,
status, dynamic load and unload state.

NET-SNMP-AGENT-MIB Defines control andmonitoring structures for the
Net-SNMP agent, gives OIDs and timeout values of all
SNMP registered with the agent.

DISMAN-EVENT-MIB Allows triggering of events and actions formanagement
purposes. TheManagementAgent for Sun Fire servers uses
thisMIB.

HOST-RESOURCES-MIB ThisMIB is for use inmanaging host systems.Ahost in this
context is a computer that is used by one ormore people. The
computer communicates with other similar computers that

BA P P E N D I X B

139

are attached to the network. TheHost ResourcesMIB does
not necessarily apply to devices such as terminal servers,
routers, bridges, andmonitoring equipment, whose primary
function is communications services. However, these types
of communication devices are not explicitly precluded from
beingmanaged with thisMIB. TheHost ResourcesMIB
defines attributes that are common to all Internet hosts
including, for example, both personal computers andUNIX
systems. TheMIB also provides Solaris kernel statistics.

SNMP-NOTIFICATION-MIB The SNMP-NOTIFICATION-MIBmodule definesMIB
objects that providemechanisms to remotely configure
notification parameters. These parameters are used by an
SNMP entity for the generation of notifications, or traps.

SUN-SEA-EXTENSIONS-MIB The SUN-SEA-EXTENSIONS-MIBmodule describes the
Sun-specific extensions toMIB-II.

SUN-SEA-PROXY-MIB The SUN-SEA-PROXY-MIB is used tomanage the Solstice
EnterpriseAgents snmpdxmaster agent daemon.

AGENTX-MIB TheAGENTX-MIBmodule is used for the SNMPAgent
Extensibility Protocol,AgentX. ThisMIBmodule is
implemented by themaster agent butmust be explicitly
enabled in order to be used.

MIBs Implemented in SMA

Solaris SystemManagementAgent Developer’s Guide • November 2006140

Glossary

Asoftware program, typically run on amanaged device, that implements the SNMPprotocol and
services the requests of amanager.Agents can act as proxies for some non-SNMPmanageable
network nodes.

Aprotocol that enables communication between amaster SNMP agent and subagents.

Abstract Syntax NotationOne.Aspecification that is used to encode information between amanager
and agents in amanner that is independent of themachine and network type.

Variables that are used for configuring the SNMPagent ormodules. Values of tokens can be
identifiers, keywords, constants, punctuation, or white space.

Acollection ofmanaged objects accessible by an SNMP entity. The name for a subset of managed
objects.

data acquisition. The process of collecting information from a device.

Data Encryption Standard, a standard encryption algorithm used for securing data.

Code that increases the functionality of the SNMPagent.An extensionmight also be referred to as a
MIBmodule, an extensionmodule, or simply amodule.

Asubagent that does not use theAgentX protocol and requires the use of a proxy to communicate
with the Net-SNMP agent.

Avirtual information store formanaged objects. MIBs define the properties of a device that can be
managed.

Aclient application that accesses data from amanaged device or system.

An agent running on a designated SNMPport. Themaster agent receives SNMP requests from
management applications, dispatches the requests to the appropriate subagents, and sends data
returned by the subagents to the requester. In addition, the subagents can send traps to themaster
agent, which are then forwarded to themanagement application.

agent

Agent
Extensibility
Protocol
(AgentX)

ASN.1

configuration
tokens

context

DAQ

DES

extension

legacy subagent

Management
InformationBase
(MIB)

manager

master agent

141

Themessage digest algorithm, defined in RFC 1321, which converts amessage of arbitrary length
into a unique 128–bit string. TheMD5 algorithm is used to create digital signatures which can be
used to verify data integrity.

Management Information Base.

Astandard that defines theManagement Information Base objects in TCP/IP-based networks that
can bemanaged.MIB II is defined in RFC 1213.

Code that increases the functionality of the SNMPagent.Amodulemight also be referred to as aMIB
module, an extensionmodule, or an extension.

An SNMPagent that is developed as an open source community project. The SystemManagement
Agent is based on the Net-SNMP agent.

An application that is used tomanage andmonitor network devices. The NMSmakes SNMP
requests to the SNMPagent and receives information from the agent.AnNMS is sometimes called a
manager or amanagement application.

Asequence of numbers that uniquely identifies each object in aMIB. TheOID is a series of integers
separated by periods, which indicate the object’s place in theMIB tree. For example, the sequence
1.3.6.1.2.1.1.1.0 specifies the system description within the system group of themanagement subtree.

Protocol Data Unit.Amessage, or packet of data, that is transported through network protocol
layers. Each layer attaches headers to the packet before passing it along to the next layer. The entire
packet, including the user data and headers, is the PDU. SNMPmessages consist of a version
identifier, an SNMP community name, and a PDU. The PDU types supported in SNMPare
GetRequest, GetNextRequest, GetResponse, SetRequest, and Trap.

An agent that acts on behalf of a non-SNMP (foreign) network device. Themanagement station
contacts the proxy agent and indicates the identity of the foreign device. The proxy agent translates
the protocol interactions it receives from themanagement station into the interactions supported by
the foreign device.

Secure HashAlgorithm - Version 1.0, defined in RFC 3174. SHAis a cryptographicmessage digest
algorithm. The algorithm converts amessage into a 160–bit string.

Astandard protocol used tomanage nodes in the Internet community.

An industry-acceptedmethod of organizing object names so that logical access can occur. The SMI
states that eachmanaged object must have a name, a syntax, and an encoding. The name, an object
identifier (OID), uniquely identifies the object. The syntax defines the data type, such as an integer or
a string of octets. The encoding describes how the information associated with themanaged objects
is serialized for transmission betweenmachines.

MD5

MIB

MIB II

module

Net-SNMP

Network
Management
Station (NMS)

Object Identifier
(OID)

PDU

proxy agent

SHA–1

SimpleNetwork
Management
Protocol (SNMP)

Structure of
Management
Information (SMI)

Glossary

Solaris SystemManagementAgent Developer’s Guide • November 2006142

An agent that interacts with amaster agent.

Amessage, sent to amanager, that describes exceptions that occurred on amanaged device.

User-based SecurityModel.Astandard for providing SNMPmessage-level security, described in
RFC 3414 at http://www.ietf.org/rfc/rfc3414.txt. This RFC document also includes aMIB for
remotelymonitoring andmanaging the configuration parameters for the User-based Security
Model.

View-BasedAccess ControlMechanismAstandard for controlling access tomanagement
information, described in RFC 3415 at http://www.ietf.org/rfc/rfc3415.txt. This RFC
document also includes aMIB for remotelymanaging the configuration parameters for the
View-basedAccess ControlModel.

subagent

trap

USM

VACM

Glossary

143

http://www.ietf.org/rfc/rfc3414.txt
http://www.ietf.org/rfc/rfc3415.txt

144

Index

A
agent, SNMP, 17
AgentXmodule, 21
AgentX protocol, 70
AgentX subagents, See subagents
alarms

implementing, 59-64
using with long-running data collection, 84-85

AliasMapping Table functions, 106-108
API functions

EntityMIB, 92-108
Net-SNMP, 132-137

API libraries, 25
asynchronous trap notification, 60

C
code templates

generating, 33
modifying, 35

configuration files, module-specific, 51-52
configuration tokens

defining new, 52
in snmpd.conf, 21

conflicts, naming, 36
contents, for developers, 24

D
data collection, over time, 83-84
datamodeling, 39-49
data persistence, 52-54

demo_module_1 code example, 41
demo_module_10 code example, 86
demo_module_11 code example, 112-121
demo_module_12 code example, 125-127
demo_module_2 code example, 44
demo_module_3 code example, 48-49
demo_module_4 code example, 61-64
demo_module_5 code example, 54-57
demo_module_6 code example, 75
demo_module_7 code example, 76-82
demo_module_8 code example, 72
demo_module_9 code example, 84
demonstrationmodules, descriptions of, 26-27
developer, content in SMA, 24
devices, representing with SNMP tables, 89
dispatcher, 20
dynamically loadingmodules

advantages and disadvantages, 66-67
procedures, 67-70

E
entAliasMappingTable, functions used with, 106-108
entAliasMappingTable of EntityMIB, 90
EntityMIB

API functions, 92-108
AliasMapping Table, 106-108
header files, 109-110
Logical Table, 100-104
LPMapping Table, 104-106
Physical Contains Table, 98-100
Physical Table, 93-98
tips for using, 110-112

145

EntityMIB (Continued)
libentity.so, 91-92
module, 23, 91-92

code example, 112-121
overview, 89-91

entityGeneral group of EntityMIB, 91
entityLogical group of EntityMIB, 90
entityMapping group of EntityMIB, 90
entityPhysical group of EntityMIB, 89
entLogicalTable, functions used with, 100-104
entLPMappingTable, functions used with, 104-106
entLPMappingTable of EntityMIB, 90
entPhysicalContainsTable, functions used with, 98-100
entPhysicalContainsTable of EntityMIB, 90
entPhysicalTable, functions used with, 93
environment variables, MIB, 32
extensible agent, defined, 17
extension,MIB, 17
extensionmodules, 22

F
features added in SMA, 23
file locations, for developer, 24-25
functions, EntityMIB, 92-108

G
general tables

See data retrieval from
demonstration code, 48-49

H
hardware devices, representing with SNMP tables, 89
header files for EntityMIB functions, 109-110
Host ResourcesMIB, 23

I
init_module routine, 39-40

L
libentity.somodule

tasks, 91-92
using with yourmodule, 91-92

library, naming conventions, 37
logical entities, 90

mapping to physical entities, 90
Logical Table functions, 100-104
long-running data collection, 83-84

code example, 84
pollingmethod, 85-87
using alarms, 84-85

LPMapping Table functions, 104-106

M
man pages for SystemManagementAgent, 129-132
manager, SNMP, 17
message processor, 20
MIB

defining, 30
environment variables, 32
examples to emulate, 31
extension, 17
file name conventions, 31
purpose of, 17
syntax checking, 31

MIB II, 23
and Solstice EnterpriseAgents, 123

mib2c, andmigrating Solstice EnterpriseAgents, 124
mib2c

configuration files, 33
generating templates, 33

mibcodegen, andmigrating Solstice Enterprise
Agents, 124

mibiisa subagent, 123
MIBs

implemented in SMA, 139-140
supported in SMA, 23

migrating Solstice EnterpriseAgents subagents
comparison of generated templates, 126-127
guidelines, 124-127
instrumentation code, 127
reasons for, 123
strategy, 124

Index

Solaris SystemManagementAgent Developer’s Guide • November 2006146

module, delivery, 35
modules

about, 29
configuring, 35
creating, 30
deploying, 65-72

guidelines, 66-67
in subagents, 70-71
overview, 65-66

extension
in Net-SNMP architecture, 22

loading
See also deploying

loading dynamically, 67-70
multiple instance, 73-75
naming conventions, 36
storing data, 51-52
types of, 22

multiple instances of amodule
implementing, 73-75
updating dynamically, 76

N
namespace collisions, avoiding, 36
naming conventions

libraries, 37
MIB, 31
modules, 36

Net-SNMP
API functions, 132-137
architecture, 18
component descriptions, 19
differences between SMAand, 23
location ofAPI documentation, 132
version, 18

O
OID registration handler, 21
overview

extending the agent, 22-23
SNMPagents, 17
SystemManagementAgent, 18-23

P
persistent data, 51

implementing in amodule, 52-54
Physical Contains Table functions, 98-100
physical entities, 89

mapping to logical entities, 90
Physical Table functions, 93-98
polling

avoiding race condition, 86-87
for long-running data collection, 85-87

port, SNMP, 17
processingmultiple OID set actions, 46-48
proxymodule, 21

R
race condition in polling, 86-87
refresh intervals, used with alarms, 59
repository, and configuration tokens, 21

S
scalar objects

demonstration code for retrieving, 41
running mib2c on, 41

seaProxymodule, 123
security, guidelines for subagents, 72
set multiple OIDs, 46-48
simple tables, See tables, simple
SNMP-USER-BASED-SM-MIB, 20
SNMP-VIEW-BASED-ACM-MIB, 21
Solstice EnterpriseAgents, Seemigrating Solstice

EnterpriseAgents subagents
source code for Net-SNMP, 24
static modules, 22
storingmodule data, 51-52
structure definitions for EntityMIB functions, 109-110
subagent, functions, 70-71
subagents

advantages and disadvantages, 66-67
AgentX, 70-71
deployingmodules in, 71-72
security guidelines, 72

SunMIB, 23

Index

147

SunMIB (Continued)
and Solstice EnterpriseAgents, 123

support, technical, 27

T
table iterator, 45
tables

general
data retrieval from, 48-49
demonstration code, 48-49

simple
caching, 46
data retrieval from, 43-48
demonstration code, 44

technical support, 27
templates

generating, 33
modifying, 35

thresholds, for sending traps, 60-61
timed data collection, 83-84
transport domains, 19
trap, asynchronous notification, 60
traps, implementing, 59-64

U
USMmodule, 20

V
VACMmodule, 20

Index

Solaris SystemManagementAgent Developer’s Guide • November 2006148

	Solaris System Management Agent Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Reading
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the System Management Agent
	Overview of SNMP Agents
	Overview of the System Management Agent
	Extending the Agent
	Features Added in System Management Agent

	Contents of the SMA for Developers
	File Locations of Developer Files
	SMA Tools
	API Libraries
	Demonstration Modules
	Technical Support for Developers

	Creating Modules
	About Modules
	Overview of Creating Modules
	Defining a MIB
	MIB File Names

	Setting MIB Environment Variables
	Generating Code Templates
	Modifying Code Templates
	Configuring the Module
	Delivering the Module
	Namespace Issues
	Avoiding Namespace Collisions
	Module Names
	Library Names

	Data Modeling
	init_module Routine
	Scalar Objects
	demo_module_1 Code Example for Scalar Objects
	Modifications for Scalar Data Retrieval

	Simple Tables
	demo_module_2 Code Example for Simple Tables
	Modifications for Simple Table Data Retrieval
	Data Retrieval From Large Simple Tables
	Multiple SET Processing in demo_module_2

	General Tables
	demo_module_3 Code Example for General Tables

	Storing Module Data
	About Storing Module Data
	Configuration Files
	Defining New Configuration Tokens

	Implementing Persistent Data in a Module
	Storing Persistent Data
	Reading Persistent Data

	demo_module_5 Code Example for Persistent Data
	Storing Persistent Data in demo_module_5
	Reading Persistent Data in demo_module_5
	Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_5

	Implementing Alarms
	Refresh Intervals
	Asynchronous Trap Notification
	Thresholds for Sending Traps
	demo_module_4 Code Example for Alarms
	Reading Data From the demo_module_4.conf Configuration File
	Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_4
	Generating Traps in demo_module_4

	Deploying Modules
	Overview of Module Deployment
	Choosing Dynamic Modules or Subagents
	Loading Modules Dynamically
	How to Dynamically Load a Module and Restart the Agent
	How to Dynamically Load a Module Without Restarting the Agent

	Using Subagents
	AgentX Protocol
	Functions of a Subagent

	Deploying a Module as a Subagent
	demo_module_8 Code Example for Implementing a Subagent
	Subagent Security Guidelines

	Multiple Instance Modules
	Implementing Multiple Instances of a Module
	How To Implement Multiple Instance Modules
	demo_module_6 Code Example for Multiple Instance Modules

	Enabling Dynamic Updates to a Multiple Instance Module
	demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules
	Modifying the demo_module_7 Code
	How to Enable Dynamic Update of a Multi-Instance Module

	Registering New Instances in the Module

	Long–Running Data Collection
	About Long-Running Data Collection
	SNMP Alarm Method for Data Collection
	demo_module_9 Code Example for SNMP Alarm Method
	Managing the Timing of Data Collection

	SNMP Manager Polling Method for Data Collection
	demo_module_10 Code Example for SNMP Polling Method
	Avoiding a Race Condition When Polling

	Entity MIB
	About the Entity MIB
	SMA Entity MIB Implementation
	Using the Entity MIB
	How to Set Up the Agent to Use the Entity MIB

	Entity MIB API
	Physical Table Functions
	allocPhysicalEntry()
	Synopsis
	Description
	Returns

	getPhysicalEntry()
	Synopsis
	Description
	Returns

	deletePhysicalTableEntry()
	Synopsis
	Description
	Returns

	makePhysicalTableEntryStale()
	Synopsis
	Description
	Returns

	makePhysicalTableEntryLive()
	Synopsis
	Description
	Returns

	getPhysicalStaleEntry()
	Synopsis
	Description
	Returns

	getAllChildrenFromPhysicalContainedIn()
	Synopsis
	Description
	Returns

	Physical Contains Table Functions
	addPhysicalContainsTableEntry()
	Synopsis
	Description
	Returns

	deletePhysicalContainsTableEntry()
	Synopsis
	Description
	Returns

	deletePhysicalContainsParentIndex()
	Synopsis
	Description
	Returns

	deletePhysicalContainsChildIndex()
	Synopsis
	Description
	Returns

	getPhysicalContainsChildren()
	Synopsis
	Description
	Returns

	Logical Table Functions
	allocLogicalEntry()
	Synopsis
	Description
	Returns

	getLogicalTableEntry()
	Synopsis
	Description
	Returns

	deleteLogicalTableEntry()
	Synopsis
	Description
	Returns

	makeLogicalTableEntryStale()
	Synopsis
	Description
	Returns

	makeLogicalTableEntryLive()
	Synopsis
	Description
	Returns

	getLogicalStaleEntry()
	Synopsis
	Description
	Returns

	LP Mapping Table Functions
	addLPMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteLPMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteLPMappingLogicalIndex()
	Synopsis
	Description
	Returns

	deleteLPMappingPhysicalIndex()
	Synopsis
	Description
	Returns

	Alias Mapping Table Functions
	addAliasMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteAliasMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteAliasMappingLogicalIndex()
	Synopsis
	Description
	Returns

	deleteAliasMappingPhysicalIndex()
	Synopsis
	Description
	Returns

	Header Files for Entity MIB Functions
	entPhysicalEntry_t Structure
	entLogicalEntry_t Structure

	Tips for Using Entity MIB Functions
	demo_module_11 Code Example for Entity MIB

	Migration of Solstice Enterprise Agents to the System Management Agent
	Why Migrate to SMA?
	Solstice Enterprise Agents Migration Strategy Overview
	Migrating Solstice Enterprise Agent Subagents to SMA
	demo_module_12 Code Example for Solstice Enterprise Agents Subagent Migration
	Analysis of the demo_module_12 Solstice Enterprise Agents Templates

	Modifying the SMA Instrumentation Code

	SMA Resources
	Man Pages
	API Functions

	MIBs Implemented in SMA
	MIBs Implemented in SMA

	Glossary
	Index

