System Administration Guide: Devices and File Systems
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2004, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are protected by U.S. and international copyright laws and conventions as well as other intellectual property laws and treaties. Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

"Commercial computer software" or "commercial technical data" consistent with DFARS 252.227-7014 and FAR 227.702-1 and DFARS 252.227-7015 and FAR 227.702-3. Copyright © 2004, 2010, Oracle and/or its affiliates. All rights reserved.

Copyright © 2004, 2010, Oracle and/or its affiliates. All rights reserved.
Contents

Preface ... 21

1 Managing Removable Media (Overview) .. 25
 What's New in Removable Media? ... 25
 vold is Managed by the Service Management Facility (SMF) .. 25
 Improvements to Volume Management (vold) .. 26
 Where to Find Managing Removable Media Tasks .. 27
 Removable Media Features and Benefits ... 27
 Comparison of Manual and Automatic Mounting ... 28
 Overview of Accessing Removable Media .. 28

2 Managing Removable Media (Tasks) .. 31
 Managing Removable Media (Task Map) ... 31
 Formatting Diskettes .. 32
 Removable Media Hardware Considerations .. 32
 ▼ How to Load Removable Media .. 33
 ▼ How to Format a Diskette (rmformat) .. 34
 ▼ How to Create a File System on Removable Media .. 35
 ▼ How to Create a File System on a DVD-RAM ... 37
 ▼ How to Check a File System on Removable Media .. 38
 ▼ How to Repair Bad Blocks on Removable Media .. 38
 Applying Read or Write Protection and Password Protection to Removable Media 39
 ▼ How to Enable or Disable Write Protection on Removable Media .. 39
 ▼ How to Enable or Disable Read or Write Protection and Set a Password on Removable Media ... 39
8 Using USB Devices (Tasks) ... 131

Managing USB Devices in the Oracle Solaris OS (Roadmap) ... 131
Using USB Mass Storage Devices (Task Map) ... 132
Using USB Mass Storage Devices ... 133
Using USB Diskette Devices .. 135
Using Non-Compliant USB Mass Storage Devices .. 135
Hot-Plugging USB Mass Storage Devices ... 136
Preparing to Use a USB Mass Storage Device With \(vo\texttt{ld}\) Running ... 139
▼ How to Display USB Device Information ... 140
▼ How to Create a File System on a USB Mass Storage Device ... 140
▼ How to Create a File System on a USB Mass Storage Device Without \(vo\texttt{ld}\) Running 142
▼ How to Modify Partitions and Create a PCFS File System on a USB Mass Storage Device Without \(vo\texttt{ld}\) Running ... 144
▼ How to Create a Solaris Partition and Modify the Slices on a USB Mass Storage Device Without \(vo\texttt{ld}\) Running ... 148
▼ How to Mount or Unmount a USB Mass Storage Device Without \(vo\texttt{ld}\) Running 149
Troubleshooting Tips for USB Mass Storage Devices .. 151
Disabling Specific USB Drivers ... 151
▼ How to Disable Specific USB Drivers .. 152
▼ How to Remove Unused USB Device Links ... 152
Using USB Audio Devices (Task Map) ... 152
Using USB Audio Devices ... 153
Hot-Plugging Multiple USB Audio Devices ... 154
▼ How to Add USB Audio Devices .. 154
10 Managing Disks (Overview) ... 179
 What's New in Disk Management? ... 179
 Two-Terabyte Disk Support for Installing and Booting the Solaris OS 180
 iSNS Support in the Solaris iSCSI Target and Initiator 180
 Solaris iSCSI Target Support .. 181
 Solaris iSCSI Initiator Support .. 181
 x86: Disk Management in the GRUB Boot Environment 182
 Support for SCSI Disks That Are Larger Than 2 Terabytes 183
 Where to Find Disk Management Tasks ... 183
 Overview of Disk Management .. 184
 Disk Terminology .. 184
 About Disk Labels .. 184
 EFI Disk Label ... 185
 About Disk Slices .. 189
 format Utility ... 193
 Partitioning a Disk .. 196
 Partition Table Terminology ... 196
 Displaying Partition Table Information ... 197
 Using the Free Hog Slice ... 199

11 Administering Disks (Tasks) ... 201
 Administering Disks (Task Map) .. 201
 Identifying Disks on a System .. 202
 ▼ How to Identify the Disks on a System ... 202
 Formatting a Disk .. 205
 ▼ How to Determine if a Disk Is Formatted .. 205
 ▼ How to Format a Disk ... 206
 Displaying Disk Slices ... 207
 ▼ How to Display Disk Slice Information ... 207
 Creating and Examining a Disk Label ... 209
 ▼ How to Label a Disk ... 209
 ▼ How to Examine a Disk Label ... 211
 Recovering a Corrupted Disk Label .. 213
Contents

▼ How to Recover a Corrupted Disk Label ... 213
Adding a Third-Party Disk .. 215
 Creating a format . dat Entry .. 216
▼ How to Create a format . dat Entry ... 216
Automatically Configuring SCSI Disk Drives ... 216
▼ How to Automatically Configure a SCSI Drive .. 217
Repairing a Defective Sector .. 218
▼ How to Identify a Defective Sector by Using Surface Analysis 219
▼ How to Repair a Defective Sector ... 220
Tips and Tricks for Managing Disks .. 221
 Debugging format Sessions .. 221
 Labeling Multiple Disks by Using the prtvtoc and fmthard Commands 222

12 SPARC: Adding a Disk (Tasks) .. 223
 SPARC: Adding a System Disk or a Secondary Disk (Task Map) 223
 SPARC: Adding a System Disk or a Secondary Disk .. 224
▼ SPARC: How to Connect a System Disk and Boot .. 224
▼ SPARC: How to Connect a Secondary Disk and Boot ... 225
▼ SPARC: How to Create Disk Slices and Label a Disk ... 226
▼ SPARC: How to Create a UFS File System ... 227
▼ SPARC: How to Install a Boot Block on a System Disk ... 227

13 x86: Adding a Disk (Tasks) .. 233
 x86: Adding a System Disk or a Secondary Disk (Task Map) 233
 x86: Adding a System Disk or a Secondary Disk .. 234
▼ x86: How to Connect a System Disk ... 235
 Changing the fdisk Partition Identifier .. 235
▼ How to Change the Solaris fdisk Identifier ... 236
▼ x86: How to Connect a Secondary Disk and Boot ... 237
 x86: Guidelines for Creating an fdisk Partition .. 238
▼ x86: How to Create a Solaris fdisk Partition ... 239
▼ x86: How to Create Disk Slices and Label a Disk .. 244
▼ x86: How to Create File Systems .. 245
▼ x86: How to Install a Boot Block on a System Disk ... 246
14 Configuring Oracle Solaris iSCSI Targets and Initiators (Tasks) ... 247
 iSCSI Technology (Overview) ... 247
 Solaris iSCSI Software and Hardware Requirements ... 248
Setting Up Solaris iSCSI Targets and Initiators (Task Map) .. 249
 Configuring Solaris iSCSI Targets and Initiators ... 250
▼ How to Prepare for a Solaris iSCSI Configuration .. 252
 Setting Up Your Solaris iSCSI Target Devices .. 252
 Configuring Authentication in Your iSCSI-Based Storage Network .. 254
 Using a Third-Party RADIUS Server to Simplify CHAP Management in Your iSCSI Configuration .. 257
▼ How to Configure iSCSI Target Discovery ... 258
▼ How to Remove Discovered iSCSI Targets ... 259
 Accessing iSCSI Disks .. 260
▼ How to Access iSCSI Disks Upon Reboot .. 261
▼ Monitoring Your iSCSI Configuration .. 263
 Modifying iSCSI Initiator and Target Parameters .. 265
 Setting Up Solaris iSCSI Multipathed Devices .. 268
▼ How to Enable Multiple iSCSI Sessions for a Target .. 269
Troubleshooting iSCSI Configuration Problems .. 271
 No Connections to the iSCSI Target From the Local System .. 272
 iSCSI Device or Disk Is Not Available on the Local System ... 273
 Use LUN Masking When Using the iSNS Discovery Method .. 273
 General iSCSI Error Messages ... 274

15 The format Utility (Reference) .. 279
 Recommendations and Requirements for Using the format Utility .. 279
 format Menu and Command Descriptions .. 280
 partition Menu ... 282
 x86: fdisk Menu ... 282
 analyze Menu ... 283
 defect Menu .. 285
 format.dat File .. 286
 Contents of the format.dat File .. 286
 Syntax of the format.dat File .. 287
 Keywords in the format.dat File ... 287
Partition Tables (format.dat)
- Specifying an Alternate Data File for the format Utility

<table>
<thead>
<tr>
<th>Specification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rules for Input to format Commands</td>
<td>290</td>
</tr>
<tr>
<td>Specifying Numbers to format Commands</td>
<td>290</td>
</tr>
<tr>
<td>Specifying Block Numbers to format Commands</td>
<td>291</td>
</tr>
<tr>
<td>Specifying format Command Names</td>
<td>291</td>
</tr>
<tr>
<td>Specifying Disk Names to format Commands</td>
<td>292</td>
</tr>
<tr>
<td>Getting Help on the format Utility</td>
<td>292</td>
</tr>
</tbody>
</table>

Managing File Systems (Overview)
- What's New in File Systems?
- File System Monitoring Tool (fsstat)
- Oracle Solaris ZFS File System
- Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)
- Where to Find File System Management Tasks
- Overview of File Systems
- Types of File Systems
- Commands for UFS File System Administration
- How File System Commands Determine the File System Type
- Manual Pages for Generic and Specific File System Commands
- Default Solaris File Systems
- UFS File System
- UFS File System Features
- Planning UFS File Systems
- 64-bit: Support of Multiterabyte UFS File Systems
- UFS Logging
- UFS Snapshots
- UFS Direct Input/Output (I/O)
- Mounting and Unmounting File Systems
- The Mounted File System Table
- The Virtual File System Table
- The NFS Environment
- Automounting (autofs)
- Determining a File System’s Type
- How to Determine a File System’s Type
17 Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks) ..325
Creating an Oracle Solaris ZFS File System ..325
▼ How to Create an Oracle Solaris ZFS File System ..326
Creating a UFS File System ..326
▼ How to Create a UFS File System ...327
▼ How to Create a Multiterabyte UFS File System ...328
▼ How to Expand a Multiterabyte UFS File System ...330
▼ How to Expand a UFS File System to a Multiterabyte UFS File System331
Troubleshooting Multiterabyte UFS File System Problems ...332
Creating a Temporary File System (TMPFS) ..333
▼ How to Create and Mount a TMPFS File System ..333
Creating and Mounting a Loopback File System (LOFS) ..334
▼ How to Create and Mount an LOFS File System ..334

18 Mounting and Unmounting File Systems (Tasks) ..337
Overview of Mounting File Systems ..337
Commands for Mounting and Unmounting UFS File Systems338
Commonly Used UFS Mount Options ..339
Field Descriptions for the /etc/vfstab File ..341
Mounting File Systems ..342
▼ How to Determine Which File Systems Are Mounted ...342
▼ How to Add an Entry to the /etc/vfstab File ..343
▼ How to Mount a File System (/etc/vfstab File) ...344
▼ How to Mount a UFS File System (mount Command) ..346
▼ How to Mount a UFS File System Without Large Files (mount Command)346
▼ How to Mount an NFS File System (mount Command) ...347
▼ x86: How to Mount a PCFS (DOS) File System From a Hard Disk (mount Command) ... 348
Unmounting UFS File Systems ...349
Prerequisites for Unmounting File Systems ..350
▼ How to Verify a File System is Unmounted ...350
▼ How to Stop All Processes Accessing a File System ..350
▼ How to Unmount a File System ...351

19 Using The CacheFS File System (Tasks) ..353
High-Level View of Using the CacheFS File System (Task Map)353
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the CacheFS File System</td>
<td>354</td>
</tr>
<tr>
<td>How a CacheFS File System Works</td>
<td>354</td>
</tr>
<tr>
<td>CacheFS File System Structure and Behavior</td>
<td>355</td>
</tr>
<tr>
<td>Creating and Mounting a CacheFS File System (Task Map)</td>
<td>356</td>
</tr>
<tr>
<td>▼ How to Create the Cache</td>
<td>357</td>
</tr>
<tr>
<td>Mounting a File System in the Cache</td>
<td>357</td>
</tr>
<tr>
<td>▼ How to Mount a CacheFS File System (mount)</td>
<td>358</td>
</tr>
<tr>
<td>▼ How to Mount a CacheFS File System (/etc/vfstab)</td>
<td>360</td>
</tr>
<tr>
<td>▼ How to Mount a CacheFS File System (autofs)</td>
<td>360</td>
</tr>
<tr>
<td>Maintaining a CacheFS File System (Task Map)</td>
<td>361</td>
</tr>
<tr>
<td>Maintaining a CacheFS File System</td>
<td>362</td>
</tr>
<tr>
<td>▼ Modifying a CacheFS File System</td>
<td>363</td>
</tr>
<tr>
<td>▼ How to Display Information About a CacheFS File System</td>
<td>363</td>
</tr>
<tr>
<td>▼ Consistency Checking of a CacheFS File System</td>
<td>364</td>
</tr>
<tr>
<td>▼ How to Specify Cache Consistency Checking on Demand</td>
<td>364</td>
</tr>
<tr>
<td>▼ How to Delete a CacheFS File System</td>
<td>364</td>
</tr>
<tr>
<td>▼ How to Check the Integrity of a CacheFS File System</td>
<td>365</td>
</tr>
<tr>
<td>Packing a Cached File System (Task Map)</td>
<td>366</td>
</tr>
<tr>
<td>Packing a CacheFS File System</td>
<td>367</td>
</tr>
<tr>
<td>▼ How to Pack Files in the Cache</td>
<td>367</td>
</tr>
<tr>
<td>▼ How to Display Packed Files Information</td>
<td>368</td>
</tr>
<tr>
<td>▼ Using Packing Lists</td>
<td>369</td>
</tr>
<tr>
<td>▼ How to Create a Packing List</td>
<td>370</td>
</tr>
<tr>
<td>▼ How to Pack Files in the Cache With a Packing List</td>
<td>370</td>
</tr>
<tr>
<td>Unpacking Files or Packing Lists From the Cache</td>
<td>371</td>
</tr>
<tr>
<td>▼ How to Unpack Files or Packing Lists From the Cache</td>
<td>371</td>
</tr>
<tr>
<td>Troubleshooting cachefs pack Errors</td>
<td>372</td>
</tr>
<tr>
<td>Collecting CacheFS Statistics (Task Map)</td>
<td>375</td>
</tr>
<tr>
<td>Collecting CacheFS Statistics</td>
<td>376</td>
</tr>
<tr>
<td>▼ How to Set Up CacheFS Logging</td>
<td>377</td>
</tr>
<tr>
<td>▼ How to Locate the CacheFS Log File</td>
<td>377</td>
</tr>
<tr>
<td>▼ How to Stop CacheFS Logging</td>
<td>378</td>
</tr>
<tr>
<td>▼ How to View the Working Set (Cache) Size</td>
<td>378</td>
</tr>
<tr>
<td>Viewing CacheFS Statistics</td>
<td>379</td>
</tr>
<tr>
<td>▼ How to View CacheFS Statistics</td>
<td>380</td>
</tr>
</tbody>
</table>
20 Configuring Additional Swap Space (Tasks) .. 381
 About Swap Space .. 381
 Swap Space and Virtual Memory ... 381
 Swap Space and the TMPFS File System ... 382
 Swap Space as a Dump Device ... 383
 Swap Space and Dynamic Reconfiguration .. 383
 Configuring Swap Space in a SAN Environment ... 384
 How Do I Know If I Need More Swap Space? ... 384
 Swap-Related Error Messages ... 384
 TMPFS-Related Error Messages ... 385
 How Swap Space Is Allocated ... 385
 Swap Areas and the /etc/vfstab File ... 385
 Planning for Swap Space .. 386
 Allocating Swap Space for UFS-Based Systems .. 386
 Allocating Swap Space for ZFS-Based Systems ... 387
 Monitoring Swap Resources .. 387
 Adding More Swap Space .. 389
 Creating a Swap File in a UFS Root Environment ... 389
 ▼ How to Create a Swap File and Make It Available in UFS Root Environment 390
 Adding or Changing Swap Space in an Oracle Solaris ZFS Root Environment 391
 ▼ How to Add Swap Space in an Oracle Solaris ZFS Root Environment .. 391
 Removing a Swap File From Use ... 392
 ▼ How to Remove Unneeded Swap Space .. 392

21 Checking UFS File System Consistency (Tasks) ... 395
 File System Consistency .. 396
 How the File System State Is Recorded .. 396
 What the fsck Command Checks and Tries to Repair ... 397
 Why UFS File System Inconsistencies Might Occur .. 397
 UFS Components That Are Checked for Consistency .. 398
 fsck Summary Message ... 403
 Interactively Checking and Repairing a UFS File System .. 403
 ▼ How to Check the root (/), /usr, or /var File Systems From an Alternate Boot Device 404
 ▼ How to Check Other File Systems (Not root (/), /usr, or /var) ... 406
 Preening UFS File Systems ... 408
Preface

System Administration Guide: Devices and File Systems is part of a set that includes a significant part of the Oracle Solaris system administration information. This guide contains information for both SPARC based and x86 based systems.

This book assumes you have completed the following tasks:

- Installed the SunOS 5.10 Operating System
- Set up all the networking software that you plan to use

For the Oracle Solaris 10 releases, new features of interest to system administrators are covered in sections called _What’s New in …?_ in the appropriate chapters.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of processor architectures. The supported systems appear in the _Solaris 10 Hardware Compatibility List_ at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 terms mean the following:

- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” relates specifically to 64-bit compatible CPUs.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the _Solaris 10 Hardware Compatibility List_.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this document. Sun does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Sun will not be responsible or liable for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any such content, goods, or services that are available on or through such sites or resources.
Who Should Use This Book

This book is intended for anyone responsible for administering one or more systems running the Solaris Oracle Solaris 10 release. To use this book, you should have 1–2 years of UNIX system administration experience. Attending UNIX system administration training courses might be helpful.

How the System Administration Guides Are Organized

Here is a list of the topics that are covered by the System Administration Guides.

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Administration Guide: Basic Administration</td>
<td>User accounts and groups, server and client support, shutting down and booting a system, and managing services</td>
</tr>
<tr>
<td>System Administration Guide: Advanced Administration</td>
<td>Terminals and modems, system resources (disk quotas, accounting, and crontabs), system processes, and troubleshooting Oracle Solaris software problems</td>
</tr>
<tr>
<td>System Administration Guide: Devices and File Systems</td>
<td>Removable media, disks and devices, file systems, and backing up and restoring data</td>
</tr>
<tr>
<td>System Administration Guide: IP Services</td>
<td>TCP/IP network administration, IPv4 and IPv6 address administration, DHCP, IPsec, IKE, Solaris IP filter, Mobile IP, IP network multipathing (IPMP), and IPQoS</td>
</tr>
<tr>
<td>System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)</td>
<td>DNS, NIS, and LDAP naming and directory services, including transitioning from NIS to LDAP and transitioning from NIS+ to LDAP</td>
</tr>
<tr>
<td>System Administration Guide: Naming and Directory Services (NIS+)</td>
<td>NIS+ naming and directory services</td>
</tr>
<tr>
<td>System Administration Guide: Network Services</td>
<td>Web cache servers, time-related services, network file systems (NFS and autofs), mail, SLP, and PPP</td>
</tr>
<tr>
<td>System Administration Guide: Printing</td>
<td>Printing topics and tasks, using services, tools, protocols, and technologies to set up and administer printing services and printers</td>
</tr>
<tr>
<td>System Administration Guide: Security Services</td>
<td>Auditing, device management, file security, BART, Kerberos services, PAM, Solaris Cryptographic Framework, privileges, RBAC, SASL, and Solaris Secure Shell</td>
</tr>
<tr>
<td>Book Title</td>
<td>Topics</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones</td>
<td>Resource management topics projects and tasks, extended accounting, resource controls, fair share scheduler (FSS), physical memory control using the resource capping daemon (rcapd), and resource pools; virtualization using Solaris Zones software partitioning technology and lx branded zones</td>
</tr>
<tr>
<td>Oracle Solaris ZFS Administration Guide</td>
<td>ZFS storage pool and file system creation and management, snapshots, clones, backups, using access control lists (ACLs) to protect ZFS files, using ZFS on a Solaris system with zones installed, emulated volumes, and troubleshooting and data recovery</td>
</tr>
<tr>
<td>Oracle Solaris Trusted Extensions Administrator’s Procedures</td>
<td>System administration that is specific to the Oracle Solaris’ Trusted Extensions feature</td>
</tr>
<tr>
<td>Oracle Solaris Trusted Extensions Configuration Guide</td>
<td>Starting with the Solaris 10 5/08 release, describes how to plan for, enable, and initially configure the Oracle Solaris’ Trusted Extensions feature</td>
</tr>
</tbody>
</table>

Documentation, Support, and Training

See the following web sites for additional resources:

- [Documentation](http://docs.sun.com)
- [Support](http://www.oracle.com/us/support/systems/index.html)
- [Training](http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Welcomes Your Comments

Oracle welcomes your comments and suggestions on the quality and usefulness of its documentation. If you find any errors or have any other suggestions for improvement, go to http://docs.sun.com and click Feedback. Indicate the title and part number of the documentation along with the chapter, section, and page number, if available. Please let us know if you want a reply.

[Oracle Technology Network](http://www.oracle.com/technetwork/index.html) offers a range of resources related to Oracle software:

- Discuss technical problems and solutions on the [Discussion Forums](http://forums.oracle.com).
What Typographic Conventions Mean

The following table describes the typographic conventions used in this book.

TABLE P–1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on screen computer output</td>
<td>Edit your .login file. Use <code>ls -a</code> to list all files. `machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with on screen computer output</td>
<td><code>machine_name% su Password:</code></td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Command-line placeholder: replace with a real name or value</td>
<td>To delete a file, type <code>rm filename</code>.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, or words to be emphasized</td>
<td>Read Chapter 6 in User’s Guide. These are called class options. Do not save changes yet.</td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell prompt</td>
<td><code>machine_name%</code></td>
</tr>
<tr>
<td>C shell superuser prompt</td>
<td><code>machine_name#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell prompt</td>
<td><code>$</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser prompt</td>
<td><code>#</code></td>
</tr>
</tbody>
</table>
This chapter provides general guidelines for managing removable media in the Solaris OS.

This is a list of the overview information in this chapter.

- “What’s New in Removable Media?” on page 25
- “Where to Find Managing Removable Media Tasks” on page 27
- “Removable Media Features and Benefits” on page 27
- “Comparison of Manual and Automatic Mounting” on page 28
- “Overview of Accessing Removable Media” on page 28

What’s New in Removable Media?

The following section describes new removable media features in the Solaris release.

- “vold is Managed by the Service Management Facility (SMF)” on page 25
- “Improvements to Volume Management (vold)” on page 26

For a complete listing of new Solaris features and a description of Solaris releases, see Oracle Solaris 10 9/10 What’s New.

vold is Managed by the Service Management Facility (SMF)

Solaris 10 1/06: The volume management daemon, vold, is now managed by the Service Management Facility (SMF). This means you can use the svcadm disable command to disable the following new volfs service, if appropriate:

svcadm disable volfs

You can identify the status of the volfs service by using this command:
What's New in Removable Media?

$ svc volfs
 STATE STIME FMRI
 online Sep 29 svc:/system/filesystem/volfs:default

For more information, see `smf(5)`.

You can use the `svccfg` command to display and to set additional `vold` properties. For example, you could temporarily enable `vold` logging to help troubleshooting a problem. For example:

```
# svccfg
svccfg:
svccfg: select system/filesystem/volfs
svccfg: system/filesystem/volfs> setprop vold/log_debuglevel=3
svccfg: system/filesystem/volfs> exit
# svcadm disable volfs
# svcadm enable volfs
```

You can also use the `svccfg` command to display a listing of settable `vold` properties.

```
# svccfg
svccfg:
svccfg: select volfs
svccfg: system/filesystem/volfs> listprop vold/*
vold/config_file astring
vold/log_debuglevel count 3
vold/log_file astring
vold/log_trace boolean false
vold/log_verbose boolean false
vold/root_dir astring
vold/never_writeback_label boolean false
svccfg: system/filesystem/volfs> exit
```

For a description of these properties, see the `vold(1M)`.

Improvements to Volume Management (vold)

Solaris 10 1/06: Removable media management is improved. Previously, `vold` did not create device links for removable devices that contain no media. Now, device links are properly created for devices that contain no media, similar to the following:

```
lrwxrwxrwx 1 root root 28 Jun 13 13:09 /vol/dev/aliases/cdrom0 ->
  /vol/dev/rdsk/c2t2d0/nomedia
```

Now, you can use the `cdisc` and `rformat` commands to list devices that have no media when `vold` is running.

You can revert back to the previous `vold` behavior by changing the following `support nomedia` entry in the `/etc/vold.conf` file as follows:

```
support media
```

Then, restart `vold`. For more information, see `vold.conf(4)`.
In addition, `vold` is now hot-plug aware. This improvement means that if you insert removable media, the media is automatically detected and mounted by `vold`. There should be no need to restart `vold` manually to recognize and mount a file system from any removable media device.

If you are using a legacy or non-USB diskette device, then you might need to issue the `volcheck` command before `vold` can recognize the media.

If the media is detected, but for some reason, is unmounted, then you'll need to run the following commands:

```
# volrmount -i rmdisk0
```

Before you hot-remove a removable media device, eject the media first. For example:

```
# eject rmdisk0
```

Where to Find Managing Removable Media Tasks

Use these references to find step-by-step instructions for managing removable media.

<table>
<thead>
<tr>
<th>Removable Media Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access removable media</td>
<td>Chapter 3, "Accessing Removable Media (Tasks)"</td>
</tr>
<tr>
<td>Format removable media</td>
<td>Chapter 2, "Managing Removable Media (Tasks)"</td>
</tr>
<tr>
<td>Write data CDs and DVDs and music CDs</td>
<td>Chapter 4, "Writing CDs and DVDs (Tasks)"</td>
</tr>
</tbody>
</table>

Removable Media Features and Benefits

The Solaris release gives users and software developers a standard interface for dealing with removable media. Removable media services provide the following benefits:

- Automatically mounts removable media. For a comparison of manual and automatic mounting, see the following section.
- Enables you to access removable media without having to become superuser.
- Allows you to give other systems on the network automatic access to any removable media on your local system. For more information, see Chapter 3, "Accessing Removable Media (Tasks)."
Comparison of Manual and Automatic Mounting

The following table compares the steps involved in manual mounting (without removable media services) and automatic mounting (with removable media management) of removable media.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Manual Mounting</th>
<th>Automatic Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert media.</td>
<td>Insert media.</td>
</tr>
<tr>
<td>2</td>
<td>Become superuser.</td>
<td>For diskettes, use the <code>volcheck</code> command.</td>
</tr>
<tr>
<td>3</td>
<td>Determine the location of the media device.</td>
<td>Removable media services automatically perform many of the tasks that are required to manually mount and work with removable media.</td>
</tr>
<tr>
<td>4</td>
<td>Create a mount point.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Make sure you are not in the mount point directory.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mount the device and use the proper mount options.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Exit the superuser account.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Work with files on media.</td>
<td>Work with files on media.</td>
</tr>
<tr>
<td>9</td>
<td>Become superuser.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Unmount the media device.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Eject media.</td>
<td>Eject media.</td>
</tr>
<tr>
<td>12</td>
<td>Exit the superuser account.</td>
<td></td>
</tr>
</tbody>
</table>

Overview of Accessing Removable Media

Essentially, removable media services enable you to access removable media just as manual mounting does, but more easily and without the need for superuser access.

If your system has more than one type of removable device, see the following table for their access points.
TABLE 1–2 How to Access Data on Removable Media

<table>
<thead>
<tr>
<th>Access</th>
<th>Insert</th>
<th>Find the Files Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files on the first diskette</td>
<td>The diskette and type <code>volcheck</code> on the command line</td>
<td><code>/floppy</code></td>
</tr>
<tr>
<td>Files on the removable hard disk</td>
<td>The removable hard disk and type <code>volcheck</code> on the command line</td>
<td><code>/rmdisk/rmdisk0 or /rmdisk/rmdisk1</code></td>
</tr>
<tr>
<td>Files on the first CD</td>
<td>The CD and wait for a few seconds</td>
<td><code>/cdrom/volume-name</code></td>
</tr>
<tr>
<td>Files on the first DVD</td>
<td>The DVD and wait for a few seconds</td>
<td><code>/cdrom/volume-name</code></td>
</tr>
</tbody>
</table>

TABLE 1–3 Where to Access Removable Media

<table>
<thead>
<tr>
<th>Access File Systems With This Path</th>
<th>Access Raw Data With This Path</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/floppy/floppy0</code></td>
<td><code>/vol/dev/aliases/floppy0</code></td>
</tr>
<tr>
<td><code>/floppy/floppy1</code></td>
<td><code>/vol/dev/aliases/floppy1</code></td>
</tr>
<tr>
<td><code>/cdrom/cdrom0</code></td>
<td><code>/vol/dev/aliases/cdrom0</code></td>
</tr>
<tr>
<td><code>/cdrom/cdrom1</code></td>
<td><code>/vol/dev/aliases/cdrom1</code></td>
</tr>
<tr>
<td><code>/rmdisk/rmdisk0 or</code></td>
<td><code>/vol/dev/aliases/rmdisk0 or</code></td>
</tr>
<tr>
<td><code>/rmdisk/rmdisk1</code></td>
<td><code>/vol/dev/aliases/rmdisk1</code></td>
</tr>
<tr>
<td><code>/pcmem/pcmem0</code></td>
<td><code>/vol/dev/aliases/pcmem0</code></td>
</tr>
</tbody>
</table>
Managing Removable Media (Tasks)

This chapter describes how to manage removable media from the command line in the Solaris OS.

For information on the procedures associated with managing removable media, see “Managing Removable Media (Task Map)” on page 31. For background information on removable media, see Chapter 1, “Managing Removable Media (Overview).”

Managing Removable Media (Task Map)

The following task map describes the tasks for managing removable media.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Load media.</td>
<td>Insert the diskette into the drive and type the <code>volcheck</code> command.</td>
<td>“How to Load Removable Media” on page 33</td>
</tr>
<tr>
<td>2. (Optional) Format the diskette.</td>
<td>Format diskette.</td>
<td>“How to Format a Diskette (rmformat)” on page 34</td>
</tr>
<tr>
<td>3. (Optional) Add a UFS or PCFS file system.</td>
<td>Add a UFS or PCFS file system to use the media for transferring files.</td>
<td>“How to Create a File System on Removable Media” on page 35</td>
</tr>
<tr>
<td>4. (Optional) Check the media.</td>
<td>Verify the integrity of the file system on the media.</td>
<td>“How to Check a File System on Removable Media” on page 38</td>
</tr>
<tr>
<td>5. (Optional) Repair bad blocks on the media.</td>
<td>Repair any bad blocks on the media, if necessary.</td>
<td>“How to Repair Bad Blocks on Removable Media” on page 38</td>
</tr>
</tbody>
</table>
Formatting Diskettes

You can use the `rmformat` command to format and protect rewritable diskettes. This utility does not require superuser privilege unless `vold` is not running. File systems are mounted automatically. So, you might have to unmount media before you can format it, if the media contains an existing file system.

The `rmformat` command has three formatting options:

- **quick** – This option formats diskettes without certification or with limited certification of certain tracks on the media.
- **long** – This option completely formats diskettes. For some devices, the use of this option might include the certification of the whole media by the drive.
- **force** – This option formats completely without user confirmation. For diskettes with a password-protection mechanism, this option clears the password before formatting. This feature is useful when a password is forgotten. On diskettes without password protection, this option forces a long format.

Removable Media Hardware Considerations

Keep the following restrictions in mind when working with diskettes:

- **SPARC and x86 UFS formats are different.** SPARC uses little-endian bit coding, x86 uses big-endian. Media formatted for UFS is restricted to the hardware platform on which they were formatted. So, a diskette formatted for UFS on a SPARC based platform cannot be used for UFS on an x86 platform. Likewise, a diskette formatted for UFS on an x86 platform cannot be used on a SPARC platform.

- A complete format for SunOS file systems consists of the basic "bit" formatting in addition the structure to support a SunOS file system. A complete format for a DOS file system consists of the basic "bit" formatting in addition the structure to support either an MS-DOS or an NEC-DOS file system. The procedures required to prepare a media for each type of file system are different. Therefore, before you format a diskette, consider which procedure to follow. For more information, see “Managing Removable Media (Task Map)” on page 31.

Diskette Hardware Considerations

Keep the following in mind when formatting diskettes:

- For information on diskette names, see Table 3–1.
Diskettes that are not named (that is, they have no "label") are assigned the default name of unnamed_floppy.

Diskettes that are not named (that is, they have no "label") are assigned the default name of floppy.

A Solaris system can format the following diskette types:

- UFS
- MS-DOS or NEC-DOS (PCFS)
- UDFS

On a Solaris system (either SPARC or x86), you can format diskettes with the following densities.

<table>
<thead>
<tr>
<th>Diskette Size</th>
<th>Diskette Density</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5"</td>
<td>High density (HD)</td>
<td>1.44 MB</td>
</tr>
<tr>
<td>3.5"</td>
<td>Double density (DD)</td>
<td>720 KB</td>
</tr>
</tbody>
</table>

By default, the diskette drive formats a diskette to a like density. This default means that a 1.44 MB drive attempts to format a diskette for 1.44 MB, regardless of whether the diskette is, in fact, a 1.44 MB diskette, unless you instruct it otherwise. In other words, a diskette can be formatted to its capacity or lower, and a drive can format to its capacity or lower.

How to Load Removable Media

For information about removable media hardware considerations, see "Removable Media Hardware Considerations" on page 32.

1. **Insert the media.**

2. **Ensure that the media is formatted.**

 If you aren’t sure, insert the media and check the status messages in the system console window, as described in Step 3. If you need to format the media, go to "How to Format a Diskette (rmformat)" on page 34.

3. **(Optional) Notify volume management if you are using a legacy, non-USB diskette device.**

 `$ volcheck -v`

 Two status messages are possible:

 - media was found
 - Volume management detected the media and will attempt to mount it in the directory described in Table 3–1.
If the media is formatted properly, no error messages appear in the console.

If the media is not formatted, the “media was found” message is still displayed. However, error messages similar to the following appear in the system console window:

```
fdo: unformatted diskette or no diskette in the drive
fdo: read failed (40 1 0)
fdo: bad format
```

You must format the media before volume management can mount it. For more information, see Chapter 2, “Managing Removable Media (Tasks).”

no media was found Volume management did not detect the media. Ensure that the media is inserted properly, and run volcheck again. If unsuccessful, check the media, which could be damaged. You can also try to mount the media manually.

4 Verify that the media was mounted by listing its contents.

For example, do the following for a diskette:

```
$ ls /floppy
floppy0 myfiles
```

Tip – floppy0 is a symbolic link to the actual name of the diskette. In this case, myfiles. If the diskette has no name but is formatted correctly, the system refers to it as unnamed_floppy.

If nothing appears under the /floppy directory, the diskette was either not mounted or is not formatted properly. To find out, run the mount command and look for the line that begins with /floppy (usually at the end of the listing):

```
/floppy/name on /vol/dev/diskette0/name
```

If this line does not appear, the diskette was not mounted. Check the system console window for error messages.

▼ **How to Format a Diskette (rmformat)**

You can use the rmformat command to format a diskette. By default, this command creates two partitions on the media: partition 0 and partition 2 (the whole media).
1 Verify that removable media service is running. If so, you can use the shorter nickname for the device name.

```
$ svcs volfs
STATE     STIME   FMRI
online    10:39:12 svc:/system/filesystem/volfs:default
```

For information on restarting removable media services, see “How to Disable or Enable Removable Media Services” on page 44. For information on identifying media device names, see “Using Removable Media Names” on page 42.

2 Format the diskette.

```
$ rmformat -F [ quick | long | force ] device-name
```

See “Formatting Diskettes” on page 32 for more information on `rmformat` formatting options.

If the `rmformat` output indicates bad blocks, see “How to Repair Bad Blocks on Removable Media” on page 38.

3 (Optional) Label the diskette with an 8-character label.

```
$ rmformat -b label device-name
```

For information on creating a DOS label, see `mkfs_pcfs(1M)`.

Example 2–1 Formatting a Diskette

This example shows how to format a diskette.

```
$ rmformat -F quick /dev/rdiskette
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
..............................................................
```

How to Create a File System on Removable Media

1 (Optional) Format the diskette.

```
$ rmformat -F quick device-name
```

2 (Optional) Create an alternate Solaris partition table.

```
$ rmformat -s slice-file device-name
```

A sample slice file appears similar to the following:

```
slices: 0 = 0, 30MB, "wm", "home" :
  1 = 30MB, 51MB :
  2 = 0, 94MB, "wm", "backup" :
  6 = 81MB, 13MB
```
3 Become superuser.

4 Determine the appropriate file system type and select one of the following:

- Create a UFS file system. For example:

  ```
  # newfs /vol/dev/aliases/floppy0
  ```

- Create a PCFS file system. For example:

  ```
  # mkfs -F pcfs /dev/rdsk/c0t4d0s2:c
  ```

- Create a UDFS file system. For example:

  ```
  # mkfs -F udfs /dev/rdsk/c0t1d0s1
  ```

Example 2–2 Formatting a Diskette for a UFS File System

The following example shows how to format a diskette and create a UFS file system on the diskette.

```
$ rmformat -F quick /vol/dev/aliases/floppy0
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
$ su
# /usr/sbin/newfs /vol/dev/aliases/floppy0
newfs: construct a new file system /dev/rdiskette: (y/n)? y
/dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors
  1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -F ufs -o b=#) at: 32, 640, 1184, 1792, 2336,
#
```

```
$ rmformat -F quick /dev/rdiskette
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
$ su
# /usr/sbin/newfs /dev/rdiskette
newfs: construct a new file system /dev/rdiskette: (y/n)? y
/dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors
  1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -F ufs -o b=#) at: 32, 640, 1184, 1792, 2336,
#
```

Example 2–3 Formatting a Diskette for a PCFS File System

This example shows how to create a PCFS file system with an alternate fdisk partition. In these examples, vold is not running.

```
$ rmformat -F quick /dev/rdsk/c0t4d0s2:c
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
$ su
# fdisk /dev/rdsk/c0t4d0s2:c
```
mkfs -F pcfs /dev/rdsk/c0t4d0s2:c
Construct a new FAT file system on /dev/rdsk/c0t4d0s2:c: (y/n)? y
#

This example shows how to create a PCFS file system without an fdisk partition.

$ rmformat -F quick /dev/rdiskette
Formatting will erase all the data on disk.
Do you want to continue? (y/n) y
$ su
mkfs -F pcfs -o nobdisk,size=2 /dev/rdiskette
Construct a new FAT file system on /dev/rdiskette: (y/n)? y
#

▼ How to Create a File System on a DVD-RAM

Currently, vold doesn't support DVD-RAM devices. So, if you disable vold to use a DVD-RAM device, you cannot use CD-R, CD-RW, DVD-R, DVD-RW, DVD+R, DVD+RW devices because vold is not available during the time that it is disabled.

1 Become superuser.
2 Stop vold.
 # svcadm disable volfs
3 Create a file system on the DVD-RAM device.
 - Create a UFS file system. For example:
 # newfs /dev/rdsk/c0t0d0s2
 - Create a UDFS file system. For example:
 # mkfs -F udfs /dev/rdsk/c0t0d0s2
4 Mount the file system.
 - Mount a UFS file system. For example:
 # mount -F ufs /dev/dsk/c0t0d0s2 /mnt
 - Mount a UDFS file system. For example:
 # mount -F udfs /dev/dsk/c0t0d0s2 /mnt
5 Verify that you can read or write to the file system.
6 When finished, eject the DVD-RAM.
How to Check a File System on Removable Media

1. Become superuser.

2. Identify the file system type and select one of the following:
 - Check a UFS file system.

     ```
     # fsck -F ufs device-name
     ```
 - Check a UDFS file system.

     ```
     # fsck -F udfs device-name
     ```
 - Check a PCFS file system.

     ```
     # fsck -F pcfs device-name
     ```

Example 2–4 Checking a PCFS File System on Removable Media

The following example shows how check the consistency of a PCFS file system on media. In this example, vold is not running.

```
# fsck -F pcfs /dev/rdsk/c0t4d0s2
** /dev/rdsk/c0t4d0s2
** Scanning file system meta-data
** Correcting any meta-data discrepancies
1457664 bytes.
0 bytes in bad sectors.
0 bytes in 0 directories.
0 bytes in 0 files.
1457664 bytes free.
512 bytes per allocation unit.
2847 total allocation units.
2847 available allocation units.
#
```

How to Repair Bad Blocks on Removable Media

You can only use the `rmformat` command to verify, analyze, and repair bad sectors that are found during verification if the drive supports bad block management. Most diskettes and USB memory sticks do not support bad block management.
If the drive supports bad block management, a best effort is made to rectify the bad block. If the bad block cannot be rectified despite the best effort mechanism, a message indicates the failure to repair the media.

1 **Repair bad blocks on removable media.**

 $ rmformat -c block-numbers device-name

 Supply the block number in decimal, octal, or hexadecimal format from a previous `rmformat` session.

2 **Verify the media.**

 $ rmformat -V read device-name

Applying Read or Write Protection and Password Protection to Removable Media

You can apply read protection or write protection, and set a password, on removable media that support this feature.

How to Enable or Disable Write Protection on Removable Media

1 **Determine whether you want to enable or disable write protection and select one of the following:**

 - **Enable write protection.**

 $ rmformat -w enable device-name

 - **Disable write protection.**

 $ rmformat -w disable device-name

2 **Verify whether the media’s write protection is enabled or disabled.**

 $ rmformat -p device-name

How to Enable or Disable Read or Write Protection and Set a Password on Removable Media

You can apply a password with a maximum of 32 characters for removable media that support this feature.
You will receive a warning message if you attempt to apply a password on media that does not support this feature.

1 Determine whether you want to enable or disable read protection or write protection and set a password. Select one of the following:

- Enable read protection or write protection.

 $ rmformat -W enable device-name
 Please enter password (32 chars maximum): xxx
 Please reenter password:

 $ rmformat -R enable device-name
 Please enter password (32 chars maximum): xxx
 Please reenter password:

- Disable read protection or write protection and remove the password.

 $ rmformat -W disable device-name
 Please enter password (32 chars maximum): xxx

 $ rmformat -R disable device-name
 Please enter password (32 chars maximum): xxx

2 Verify whether the media's read protection or write protection is enabled or disabled.

 $ rmformat -p device-name

Example 2–5 Enabling or Disabling Read or Write Protection and Password Protection

This example shows how to enable write protection and set a password on a diskette.

```
$ rmformat -W enable /vol/dev/aliases/floppy0
Please enter password (32 chars maximum): xxx
Please reenter password: xxx
```

This example shows to disable read protection and remove the password on a diskette.

```
$ rmformat -R disable /vol/dev/aliases/floppy0
Please enter password (32 chars maximum): xxx
```
This chapter describes how to access removable media from the command line in the Solaris OS.

For information on the procedures associated with accessing removable media, see the following:

- “Accessing Removable Media (Task Map)” on page 41
- “Accessing Removable Media on a Remote System (Task Map)” on page 47

For background information on removable media, see Chapter 1, “Managing Removable Media (Overview).”

Accessing Removable Media (Task Map)

The following task map describes the tasks for accessing removable media.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (Optional) Add the removable media drive.</td>
<td>Add the removable media drive to your system, if necessary.</td>
<td>“How to Add a New Removable Media Drive” on page 43</td>
</tr>
<tr>
<td>2. (Optional) Decide whether you want to use removable media with or without volume management (vo1d).</td>
<td>Volume management (vo1d) runs by default. Decide whether you want to use removable media with or without volume management.</td>
<td>“How to Disable or Enable Removable Media Services” on page 44</td>
</tr>
<tr>
<td>3. Access removable media.</td>
<td>Access different kinds of removable media with or without volume management running.</td>
<td>“How to Access Information on Removable Media” on page 44</td>
</tr>
<tr>
<td>4. (Optional) Copy files or directories.</td>
<td>Copy files or directories from the media as you would from any other location in the file system.</td>
<td>“How to Copy Information From Removable Media” on page 45</td>
</tr>
</tbody>
</table>
Task Instructions

<table>
<thead>
<tr>
<th>Task Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Find out if the media is still in use.</td>
<td>Before ejecting the media, find out if it is still in use. "How to Determine If Removable Media Is Still in Use" on page 45</td>
</tr>
<tr>
<td>6. Eject the media.</td>
<td>When you finish, eject the media from the drive. "How to Eject Removable Media" on page 46</td>
</tr>
</tbody>
</table>

Accessing Removable Media

You can access information on removable media with or without using volume management. For information on accessing information on removable media with GNOME's File Manager, see the GNOME desktop documentation.

Volume management (`vold`) actively manages all removable media devices. So, any attempt to access removable media with device names such as `/dev/rdsk/cntndnsn` or `/dev/dsk/cntndnsn` will be unsuccessful.

Using Removable Media Names

You can access all removable media with different names. The following table describes the different media names that can be accessed with or without volume management.

TABLE 3-1 Removable Media Names

<table>
<thead>
<tr>
<th>Media</th>
<th>Volume Management Device Name</th>
<th>Volume Management Device Alias Name</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>First diskette drive</td>
<td><code>/floppy</code></td>
<td><code>/vol/dev/aliases/floppy0</code></td>
<td><code>/dev/rdiskette</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>/vol/dev/rdiskette0/</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>volume-name</code></td>
</tr>
<tr>
<td>First, second, third CD-ROM or DVD-ROM drives</td>
<td><code>/cdrom0</code></td>
<td><code>/vol/dev/aliases/cdrom0</code></td>
<td><code>/vol/dev/rdsk/cntn[dn]/</code></td>
</tr>
<tr>
<td></td>
<td><code>/cdrom1</code></td>
<td><code>/vol/dev/aliases/cdrom1</code></td>
<td><code>volume-name</code></td>
</tr>
<tr>
<td></td>
<td><code>/cdrom2</code></td>
<td><code>/vol/dev/aliases/cdrom2</code></td>
<td></td>
</tr>
<tr>
<td>USB memory stick</td>
<td><code>/rmdisk/noname</code></td>
<td><code>/vol/dev/aliases/rmdisk0</code></td>
<td><code>/vol/dev/dsk/cntndn/volume-name:c</code></td>
</tr>
</tbody>
</table>
Guidelines for Accessing Removable Media Data

Most CDs and DVDs are formatted to the ISO 9660 standard, which is portable. So, most CDs and DVDs can be mounted by volume management. However, CDs or DVDs with UFS file systems are not portable between architectures. So, they must be used on the architecture for which they were designed.

For example, a CD or DVD with a UFS file system for a SPARC platform cannot be recognized by an x86 platform. Likewise, an x86 UFS CD cannot be mounted by volume management on a SPARC platform. The same limitation generally applies to diskettes. However, some architectures share the same bit structure, so occasionally a UFS format specific to one architecture will be recognized by another architecture. Still, the UFS file system structure was not designed to guarantee this compatibility.

To accommodate the different formats, the CD or DVD is split into slices. Slices are similar in effect to partitions on hard disks. The 9660 portion is portable, but the UFS portion is architecture-specific. If you are having trouble mounting a CD or DVD, particularly if it is an installation CD or DVD, make sure that its UFS file system is appropriate for your system's architecture. For example, you can check the label on the CD or DVD.

How to Add a New Removable Media Drive

Generally, most modern bus types support hot-plugging. If your system's bus type supports hot-plugging, you might only need to do step 5 below. If your system's bus type does not support hot-plugging, you might have to do the following tasks, which are described in steps 1-6 below.

- Create the /reconfigure file.
- Reboot the system so that volume management recognizes the new media drive.

For more information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

1 Become superuser.

2 Create the /reconfigure file.

 # touch /reconfigure

3 Bring the system to run level 0.

 # init 0

4 Turn off power to the system.

5 Connect the new media drive.

 See your hardware handbook for specific instructions.
6 Turn on power to the system.
 The system automatically comes up to multiuser mode.

▼ How to Disable or Enable Removable Media Services

Occasionally, you might want to manage media without using removable media services. This section describes how to disable and enable removable media services.

Disabling these services means that you would have to mount all media manually by using the mount command.

1 Ensure that the media is not being used.
 If you are not sure whether you have found all users of the media, use the fuser command, see “How to Determine If Removable Media Is Still in Use” on page 45.

2 Become superuser.

3 Select one of the following:
 ■ Disable removable media services.

 # svcadm disable volfs
 ■ Enable removable media services.

 # svcadm enable volfs
 volume management starting.

▼ How to Access Information on Removable Media

1 Insert the media.
 The media is mounted after a few seconds.

2 List the contents of the media.

 % ls /media
 Use the appropriate device name to access information by using the command-line interface. See Table 3–1 for an explanation of device names.

Example 3–1 Accessing Information on Removable Media

This example shows how to access information on a diskette.

 $ ls /floppy
 myfile
This example shows how to access information on a USB memory stick.

```
$ ls /rmdisk
rmdisk0/  rmdisk1/
```

This example shows how to access information on a DVD.

```
$ ls /cdrom
cdrom0   sol_10_910_sparc
```

How to Copy Information From Removable Media

You can access files and directories on removable media as with any other file system. The only significant restrictions are related to ownership and permissions.

For instance, if you copy a file from a DVD into your file system, you are the owner. However, you won’t have write permissions because the file on the DVD never had them. You must change the permissions yourself.

1. **Ensure that the media is mounted.**

   ```
   $ ls /media
   ```
 The `ls` command displays the contents of a mounted media. If no contents are displayed, see “How to Access Information on Removable Media” on page 44.

2. **(Optional) Copy the files or directories.**
 For example, for a DVD, you would do the following:

   ```
   $ cp /cdrom/sol_10_910_sparc/Solaris_10/Tools/add_install_client .
   $ ls -l
   -rwxr-xr-x 1 pmorph gelfs 64065 Jul 12 2010 add_install_client
   ```

How to Determine If Removable Media Is Still in Use

1. **Become superuser.**

2. **Identify the processes that are accessing the media.**

   ```
   # fuser -u /media
   ```
 The `-u` displays the user of the media.

 For more information, see `fuser(1M)`.

3. **(Optional) Kill the process accessing the media.**

   ```
   # fuser -u -k /media
   ```
 The `-k` kills the processes accessing the media.
Caution – Killing the processes that are accessing the media should only be used in emergency situations.

4 Verify that the process is gone.
 # pgrep process-ID

Example 3–2 Determining If the Media Is Still in Use

The following example shows that the user pmorph, is accessing the /cdrom/sol_10_910_sparc/Solaris_10/Tools directory.

 # fuser -u /cdrom/sol_10_910_sparc/Solaris_10/Tools
 /cdrom/sol_910_sparc/Solaris_10/Tools: 902c(pmorph) 339c(pmorph)

How to Eject Removable Media

1 Ensure that the media is not being used.
Remember, media is “being used” if a shell or an application is accessing any of its files or directories. If you are not sure whether you have found all users of a DVD (for example, a shell hidden behind a desktop tool might be accessing it), use the fuser command. See “How to Determine If Removable Media Is Still in Use” on page 45.

2 Eject the media.
 # eject media
For example, for a DVD, you would do the following:

 # eject cdrom
For example, for a USB memory stick, you would do the following:

 # eject rmdisk0

Tip – You can view the removable device name with the eject -l command.
Accessing Removable Media on a Remote System (Task Map)

The following task map describes the tasks need to access removable media on a remote system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make local media available to remote systems.</td>
<td>configure your system to share its media drives to make any media in those drives available to other systems.</td>
<td>"How to Make Local Media Available to Other Systems" on page 47</td>
</tr>
<tr>
<td>2. Access removable media on remote systems.</td>
<td>Access the remote media on the local system.</td>
<td>"How to Access Information on Removable Media" on page 44</td>
</tr>
</tbody>
</table>

▼ How to Make Local Media Available to Other Systems

You can configure your system to share its media drives to make any media in those drives available to other systems. One exception is musical CDs. Once your media drives are shared, other systems can access the media they contain simply by mounting them. For instructions, see "How to Access Removable Media on Remote Systems" on page 48.

1 Become superuser.

2 Confirm that the media is loaded.

3 Add the following entry to the /etc/dfs/dfstab file.
 For example:

   ```bash
   share -F nfs -o ro /cdrom/sol_10_910_sparc
   ```

4 Determine whether the NFS server service is running.
 # svcs *nfs*
 The following output is returned from the svcs command if NFS server service is running:

   ```bash
   online 14:28:43 svc:/network/nfs/server:default
   ```

5 Identify the NFS server status, and select one of the following:
 - If the NFS server service is running, go to Step 7.
 - If the NFS server service is not running, go to the next step.

6 Start the NFS server service.
 # svcadm enable network/nfs/server
 Verify that the NFS daemons are running.
For example:

```
# svcs -p svc:/network/nfs/server:default
STATE   STIME   FMRI
online   Aug 30  svc:/network/nfs/server:default
         Aug 30  319 mountd
         Aug 30  323 nfsd
```

7 Verify that the media is indeed available to other systems.

If the media is available, its share configuration is displayed.

```
# share
-   /cdrom/sol_10_910_sparc  ro  **
```

Example 3–3 Making Local DVDs or CDs Available to Other Systems

The following example shows how to make any local DVD available to other systems on the network.

```
# vi /etc/dfs/dfstab
(Add the following line:)
# share -F nfs -o ro /media
# svcs *nfs*
# svcadm enable network/nfs/server
# svcs -p svc:/network/nfs/server:default
# share
-   /cdrom/sol_10_910_sparc  ro  **
```

Example 3–4 Making Local Diskettes Available to Other Systems

The following example shows how to make any local diskette available to other systems on the network.

```
# vi /etc/dfs/dfstab
(Add the following line, for example)
share -F nfs -o ro /floppy/myfiles
# svcs *nfs*
# svcadm enable network/nfs/server
# svcs -p svc:/network/nfs/server:default
# volcheck -v
media was found
# share
-   /floppy/myfiles  rw  **
```

How to Access Removable Media on Remote Systems

You can access media on a remote system by manually mounting the media into your file system. Also, the remote system must have shared its media according to the instructions in “How to Make Local Media Available to Other Systems” on page 47.
1 Select an existing directory to serve as the mount point. Or create a mount point.

```
$ mkdir /directory
```

where /directory is the name of the directory that you create to serve as a mount point for the remote system’s DVD.

2 Find the name of the media you want to mount.

```
$ showmount -e system-name
```

3 As superuser, mount the media.

```
# mount -F nfs -o ro system-name/media/media-name local-mount-point
```

- **system-name**: Is the name of the system whose media you will mount.
- **media-name**: Is the name of the media you want to mount.
- **local-mount-point**: Is the local directory onto which you will mount the remote media.

4 Log out as superuser.

5 Verify that the media has been mounted.

```
$ ls /media
```

Example 3–5 Accessing DVDs or CDs on Remote Systems

The following example shows how to automatically access the remote DVD named sol_10_910_sparc from the remote system starbug using autofs.

```
% showmount -e starbug
export list for starbug:
/cdrom/sol_10_910_sparc (everyone)
$ /net/starbug/cdrom/sol_10_910_sparc
```

Example 3–6 Accessing Diskettes on Other Systems

The following example shows how to automatically access myfiles from the remote system mars using autofs.

```
$ showmount -e mars
$ cd /net/mars
$ ls /floppy
floppy0 myfiles
```
Writing CDs and DVDs (Tasks)

This chapter provides step-by-step instructions for writing and copying data CDs and DVDs and audio CDs with the `cdrw` command.

- “How to Restrict User Access to Removable Media With RBAC” on page 54
- “How to Identify a CD or DVD Writer” on page 55
- “How to Check the CD or DVD Media” on page 55
- “How to Create an ISO 9660 File System for a Data CD or DVD” on page 56
- “How to Create a Multi-Session Data CD” on page 57
- “How to Create an Audio CD” on page 59
- “How to Extract an Audio Track on a CD” on page 60
- “How to Copy a CD” on page 61
- “How to Erase CD-RW Media” on page 62

Working With Audio CDs and Data CDs and DVDs

You can use the `cdrw` command to write file systems for CDs and DVDs in ISO 9660 format with Rock Ridge or Joliet extensions on CD-R, CD-RW, DVD-RW, or DVD+RW media devices.

You can use the `cdrw` command to perform the following tasks:

- Create data CDs and DVDs.
- Create audio CDs.
- Extract audio data from an audio CD.
- Copy CDs and DVDs.
- Erase CD-RW media.

The `cdrw` command is available starting in the following releases:

- Software Supplement for the Solaris 8 Operating Environment 1/01 CD
- Part of the Solaris release starting in the Solaris 9 release
For information on recommended CD-R or CD-RW devices, go to:

CD/DVD Media Commonly Used Terms

This section defines commonly used terms related to CD/DVD media.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-R</td>
<td>CD read media that can be written once and after that, can only be read from.</td>
</tr>
<tr>
<td>CD-RW</td>
<td>CD rewritable media that can be written to and erased. CD-RW media can only be read by CD-RW devices.</td>
</tr>
<tr>
<td>DVD-R</td>
<td>Digital video disk (recordable) that can be written once and after that, can only be read from. These devices have much larger capacity than CD-R media.</td>
</tr>
<tr>
<td>DVD+R</td>
<td>Digital video disk (recordable) that can be written once and after that, can only be read from. DVD+R devices have more complete error management system than DVD-R, which allows for more accurate burning to media, independent of the quality of the media.</td>
</tr>
<tr>
<td>DVD-RW</td>
<td>Digital video disk (rewritable) with storage capacity equal to a DVD-R. This media can be re-recorded by first erasing the entire disk.</td>
</tr>
<tr>
<td>DVD+RW</td>
<td>Digital video disk (random-access rewritable) with storage capacity equal to a DVD+R. This medium allows overwriting of individual blocks without erasing the entire disk.</td>
</tr>
<tr>
<td>DVD-RAM</td>
<td>Digital video disk (random access memory, rewritable) with circular rather than spiral tracks and hard sectoring.</td>
</tr>
<tr>
<td>ISO 9660</td>
<td>ISO, an acronym for Industry Standards Organization, is an organization that sets standards for computer storage formats. An ISO 9660 file system is a standard CD or DVD file system that enables you to read the same CD or DVD on any major computer platform. The standard, issued in 1988, was written by an industry group named High Sierra, named after the High Sierra Hotel in Nevada. Almost all computers with CD or DVD drives can read files from an ISO 9660 file system.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Joliet extensions</td>
<td>Adds Windows file system information.</td>
</tr>
<tr>
<td>Rock Ridge extensions</td>
<td>Adds UNIX file system information. (Rock Ridge is named after the town in the movie Blazing Saddles.) Note – These extensions are not exclusive. You can specify both mke2fs -R and -j options for compatibility with both systems. (See mke2fs(8M) for details.)</td>
</tr>
<tr>
<td>MMC-compliant recorder</td>
<td>Acronym for Multi Media Command, which means these recorders comply with a common command set. Programs that can write to one MMC-compliant recorder should be able to write to all other recorders.</td>
</tr>
<tr>
<td>Red Book CDDA</td>
<td>Acronym for Compact Disc Digital Audio, which is an industry standard method for storing digital audio on compact discs. Also known by the term "Red Book" format. The official industry specification calls for one or more audio files sampled in 16-bit stereo sound at a sampling rate of 44.1 kilohertz (kHz).</td>
</tr>
</tbody>
</table>

Commonly used terms when writing to CD media are:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blanking</td>
<td>The process of erasing data from the CD-RW media.</td>
</tr>
<tr>
<td>mke2fs</td>
<td>The command to create ISO file system on a CD.</td>
</tr>
<tr>
<td>session</td>
<td>A complete track with lead-in and lead-out information.</td>
</tr>
<tr>
<td>track</td>
<td>A complete data or audio unit.</td>
</tr>
</tbody>
</table>

Writing CD and DVD Data and Audio CDs

The process of writing to a CD or DVD cannot be interrupted and needs a constant stream of data. Consider using the cdrw -S option to simulate writing to the media to verify that the system can provide data at a sufficient rate for writing to the CD or DVD.

Write errors can be caused by one of the following problems:

- The media cannot handle the drive speed. For example, some media are only certified for 2x or 4x speeds.
- The system is running too many heavy processes that are starving the writing process.
- Network congestion is causing delays in reading the image, and the image is on a remote system.
- The source drive is slower than the destination drive.
If any of these problems occur, you can lower the writing speed of the device by using the `cdrw -p` option.

For example, the following command shows how to simulate writing at 4x speed:

```
$ cdrw -iS -p 4 image.iso
```

Note – CD-R, CD-RW (not MRW formatted), DVD-R, and DVD-RW media support simulation mode (`-S`), but DVD-RAM, DVD+R, DVD+RW, and any MRW-formatted media and some others do not support simulation mode. The following message is displayed if simulation mode is not supported:

```
Media does not support simulated writing
```

For more information about media types, see "CD/DVD Media Commonly Used Terms" on page 52.

You can also use the `cdrw -C` option to use the stated media capacity for copying an 80-minute CD. Otherwise, the `cdrw` command uses a default value of 74 minutes for copying an audio CD.

For more information, see `cdrw(1)`.

Restricting User Access to Removable Media With RBAC

By default, all users can access removable media starting in the Solaris 9 release. However, you can restrict user access to removable media by setting up a role through role-based access control (RBAC). Access to removable media is restricted by assigning the role to a limited set of users.

For a discussion of using roles, see "Role-Based Access Control (Overview)" in System Administration Guide: Security Services.

How to Restrict User Access to Removable Media With RBAC

1. Become superuser or assume an equivalent role.

2. Start the Solaris Management Console.

   ```
   $ /usr/sadm/bin/smc &
   ```

 For more information on starting the console, see “Starting the Solaris Management Console” in System Administration Guide: Basic Administration.
3 Set up a role that includes the Device Management rights.
 For more information, see Chapter 9, “Using Role-Based Access Control (Tasks),” in System Administration Guide: Security Services.

4 Add users who need to use the cdrw command to the newly created role.

5 Comment the following line in the /etc/security/policy.conf file:

 AUTHS_GRANTED=solaris.device.cdrw

 If you do not do this step, all users still have access to the cdrw command, not just the members of the device management role.
 After this file is modified, the device management role members are the only users who can use the cdrw command. Everyone else is denied access with the following message:

 Authorization failed, Cannot access disks.

▼ How to Identify a CD or DVD Writer

1 Identify the CD or DVD writers on the system.
 For example:

 $ cdrw -l
 Looking for CD devices...
 Node | Connected Device | Device type
 --------------------------- +----------------------------- +-----------------
 cdrom0 | YAMAHA CRW8824S 1.0d | CD Reader/Writer

2 Identify a specific CD or DVD writer.
 For example:

 $ cdrw -a filename.wav -d cdrom2

3 Identify whether the media is blank or whether a table of contents exists on the media.
 For example:

 $ cdrw -M
 Device : YAMAHA CRW8824S
 Firmware : Rev. 1.00 (26/04/00)
 Media is blank

▼ How to Check the CD or DVD Media

The cdrw command works with or without removable media services running. For more information about disabling or enabling removable media services, see "How to Disable or Enable Removable Media Services” on page 44.
1 Insert a CD or DVD into the drive.
 The CD or DVD can be any CD or DVD that the drive can read.

2 Check that the drive is connected properly by listing the drive.

 $ cdrw -l
 Looking for CD devices...
 Node Connected Device Device type
 -----------------------+--------------------------------+-----------------
 cdrom1 | YAMAHA CRW8824S 1.0d | CD Reader/Writer

 (Optional) If you do not see the drive in the list, select one of the following so that the system recognizes the drive.
 ■ Perform a reconfiguration boot.
 # touch /reconfigure
 # init 6
 ■ Add the drive without rebooting the system
 # drvconfig
 # disks
 Then restart removable media services.
 # svcadm disable volfs
 # svcadm enable volfs

Creating a Data CD or DVD

Prepare the data first by using the `mkisofs` command to convert the file and file information into the High Sierra format used on CDs or DVDs.

How to Create an ISO 9660 File System for a Data CD or DVD

1 Insert a blank CD or DVD into the drive.

2 Create the ISO 9660 file system on the new CD or DVD.

 $ mkisofs -r /pathname > cd-file-system
 -r Creates Rock Ridge information and resets file ownerships to zero.
 /pathname Identifies the path name used to create the ISO 9660 file system.
 > cd-file-system Identifies the name of the file system to be put on the CD or DVD.
3 Copy the file system onto the CD or DVD.

$ cdrw -i cd-file-system

The -i cd-file-system specifies the image file for creating a data CD or DVD.

Example 4–1 Creating an ISO 9660 File System for a Data CD or DVD

The following example shows how to create an ISO 9660 file system for a data CD or DVD.

$ mkisofs -r /home/dubs/ufs_dir > ufs_cd
Total extents actually written = 56
Total translation table size: 0
Total rockridge attributes bytes: 329
Total directory bytes: 0
Path table size(bytes): 10
Max brk space used 8000
56 extents written (0 Mb)

Then, copy the file system onto the CD or DVD.

$ cdrw -i ufs_cd
Initializing device...done.
Writing track 1...done.
Finalizing (Can take several minutes)...done.

▼ How to Create a Multi-Session Data CD

This procedure describes how to put more than one session on a CD. This procedure includes an example of copying the infoA and infoB directories onto the CD.

1 Create the file system for the first CD session.

$ mkisofs -o infoA -r -V my_infoA /data/infoA
Total translation table size: 0
Total rockridge attributes bytes: 24507
Total directory bytes: 34816
Path table size(bytes): 98
Max brk space used 2e000
8929 extents written (17 Mb)

-o infoA Identifies the name of the ISO file system.
-r Creates Rock Ridge information and resets file ownerships to zero.
-V my_infoA Identifies a volume label to be used as the mount point by removable media services.
/data/infoA Identifies the ISO image directory to create.
2 Copy the ISO file system for the first session onto the CD.

 $ cdrw -iO infoA
 Initializing device...done.
 Writing track 1...done.
 Finalizing (Can take several minutes)...done.
 -i infoA Identifies the name of the image file to write to the CD.
 -O Keeps the CD open for writing.

3 Re-insert the CD after it is ejected.

4 Identify the path name of the CD media to include in the next write session.

 $ eject -n
 .
 .
 .
 cdrom0 -> /vol/dev/rdsk/c2t4d0/my_infoA
 Note the /vol/dev/... path name.

5 Identify the next writeable address on the CD to write the next session.

 % cdrw -M /cdrom
 Device : YAMAHA CRW8424S
 Firmware : Rev. 1.0d (06/10/99)

 Track No. |Type |Start address

 1 |Audio |0
 2 |Audio |33057
 3 |Data |60887
 4 |Data |68087
 5 |Data |75287
 Leadout |Data |84218

 Last session start address: 75287
 Next writable address: 91118

 Note the address in the Next writable address output so that you can provide this address
 when you write the next session.

6 Create the next ISO file system for the next CD session, and write it onto the CD.

 $ mkisofs -o infoB -r -C 0,91118 -M /vol/dev/rdsk/c2t4d0/my_infoA
 /data/infoB

 Total translation table size: 0
 Total rockridge attributes bytes: 16602
 Total directory bytes: 22528
 Path table size(bytes): 86
 Max brk space used 20000
 97196 extents written (189 Mb)
 -o infoB Identifies the name of the ISO file system.
Creating an Audio CD

You can use the `cdrw` command to create audio CDs from individual audio tracks or from .au and .wav files.

The supported audio formats are describes in the following table:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>Sun .au file with data in Red Book CDDA format</td>
</tr>
<tr>
<td>wav</td>
<td>RIFF (.wav) file with data in Red Book CDDA format</td>
</tr>
<tr>
<td>cda</td>
<td>.cda file with raw CD audio data, which is 16-bit PCM stereo at 44.1 kHz sample rate in little-endian byte order</td>
</tr>
<tr>
<td>aur</td>
<td>.aur files with raw CD data in big-endian byte order</td>
</tr>
</tbody>
</table>

If no audio format is specified, the `cdrw` command tries to determine the audio file format based on the file extension. The case of the characters in the extension is ignored.

How to Create an Audio CD

This procedure describes how to copy audio files onto a CD.

1 Insert a blank CD into the CD-RW drive.

2 Change to the directory that contains the audio files.

$ cd /myaudiodir

3 Copy the audio files onto the CD.

$ cdrw -a track1.wav track2.wav track3.wav

The -a option creates an audio CD.
Example 4–2 Creating an Audio CD

The following example shows how to create an audio CD.

```bash
$ cdrw -a bark.wav chirp.au meow.wav
Initializing device...done.
Writing track 1...done.
Writing track 2...done.
Writing track 3...done.
Finalizing (Can take several minutes)...done.
```

The following example shows how to create a multisession audio CD. The CD is ejected after the first session is written. You would need to re-insert the CD before the next writing session.

```bash
$ cdrw -aO groucho.wav chico.au harpo.wav
Initializing device...done.
Writing track 1...done.
Writing track 2...done.
Writing track 3...done.
Finalizing (Can take several minutes)...done.
<Re-insert CD>
$ cdrw -a zeppo.au
Initializing device...done.
Writing track 1...done.
Finalizing (Can take several minutes)...done.
```

▼ How to Extract an Audio Track on a CD

Use the following procedure to extract an audio track from a CD and copy the audio track to a new CD.

If you don’t use the `cdrw -T` option to specify the audio file type, the `cdrw` command uses the filename extension to determine the audio file type. For example, the `cdrw` command detects that this file is a `.wav` file.

```bash
$ cdrw -x 1 testme.wav
```

1 Insert an audio CD into the CD-RW drive.

2 Extract an audio track.

```bash
$ cdrw -x -T audio-type 1 audio-file
-x  Extracts audio data from an audio CD.
T audio-type  Identifies the type of audio file to be extracted. Supported audio types are sun, wav, cda, or aur.
```
Identify the audio track to be extracted.

3 Copy the track to a new CD.

$ cdrw -a audio-file

Example 4–3 Extracting and Creating Audio CDs

The following example shows how to extract the first track from an audio CD and name the file song1.wav.

$ cdrw -x -T wav 1 song1.wav
Extracting audio from track 1...done.

This example shows how to copy a track to an audio CD.

$ cdrw -a song1.wav
Initializing device...done.
Writing track 1...done.
Finalizing (Can take several minutes)...done.

How to Copy a CD

This procedure describes how to extract all the tracks from an audio CD into a directory and then copy all of them onto a blank CD.

Note – By default, the cdrw command copies the CD into the /tmp directory. The copying might require up to 700 MB of free space. If there is insufficient space in the /tmp directory for copying the CD, use the -m option to specify an alternate directory.

1 Insert an audio CD into a CD-RW drive.

2 Create a directory for the audio files.

$ mkdir /music_dir

3 Extract the tracks from the audio CD.

$ cdrw -c -m music_dir
An Extracting audio ... message is display for each track.
The CD is ejected when all the tracks are extracted.

4 Insert a blank CD and press Return.

After the tracks are extracted, the audio CD is ejected. You are prompted to insert a blank CD.
Example 4–4 Copying a CD

This example shows how to copy one CD to another CD. You must have two CD-RW devices to do this task.

$ cdru -c -s cdrom0 -d cdrom1

How to Erase CD-RW Media

You have to erase existing CD-RW data before the CD can be rewritten.

- **Erase the entire media or just the last session on the CD by selecting one of the following:**
 - Erase the last session only.
 $ cdru -d cdrom0 -b session
 Erasing just the last session with the -b session option is faster than erasing the entire media with the -b all option. You can use the -b session option even if you used the cdru command to create a data or audio CD in just one session.
 - Erase the entire media.
 $ cdru -d cdrom0 -b all
This chapter provides overview information and step-by-step instructions for managing peripheral devices, such as disks, DVD drives, and tape devices, in the Solaris release.

This is a list of the overview information in this chapter.

- “What’s New in Device Management?” on page 63
- “Where to Find Device Management Tasks” on page 66
- “About Device Drivers” on page 68
- “Automatic Configuration of Devices” on page 68
- “Displaying Device Configuration Information” on page 70
- “Accessing Devices” on page 76

This is a list of the step-by-step instructions in this chapter.

- “How to Display System Configuration Information” on page 71
- “How to Add a Device Driver” on page 75
- “How to Add a Peripheral Device” on page 74

Device management in the Solaris release usually involves adding and removing peripheral devices from systems, possibly adding a third-party device driver to support a device, and displaying system configuration information.

What’s New in Device Management?

This section provides information about new device management features in the Solaris release.

- “New Hot Plugging Features” on page 64
- “x86: Device Detection Tool” on page 64
- “Support for PCI Express (PCIe)” on page 64
- “USB and 1394 (FireWire) Support Enhancements” on page 65
- “Improved Device In Use Error Checking” on page 65
For a complete listing of new Solaris features and a description of Solaris releases, see Oracle Solaris 10 9/10 What's New.

New Hot Plugging Features

Oracle Solaris 10 9/10: In this Solaris release, the hotplug command is available to manage hot pluggable connections on PCI Express (PCIe) and PCI SHPC (Standard Hot Plug Controller) devices. This feature is not supported on other bus types, such as USB and SCSI.

You would still use the cfgadm to manage hot pluggible USB and SCSI devices as in previous Solaris releases. The benefit of using the hotplug features in this release is that in addition to enable and disable operations, the hotplug command provides offline and online capabilities for your supported PCI devices.

For more information, see “PCIe Hot-Plugging With the (hotplug) Command” on page 87.

x86: Device Detection Tool

Solaris 10 5/08: You can use the device detection tool to identify whether your x86 hardware is supported in this Solaris release. For more information, go to the following site:

http://www.sun.com/bigadmin/hcl/hcts/device_detect.jsp

Support for PCI Express (PCIe)

Solaris 10 11/06: This Solaris release provides support for the PCI Express (PCIe) interconnect, which is designed to connect peripheral devices to desktop, enterprise, mobile, communication, and embedded applications, on both SPARC and x86 systems.

In the previous Solaris 10 6/06 release, PCIe devices were only available on x86 systems.

The PCIe interconnect is an industry-standard, high-performance, serial I/O bus. For details on PCIe technology, go to the following site:

http://www.pcisig.com/home

The PCIe software provides the following features in this Solaris release:

- Support for extended PCIe configuration space
- Support for PCIe baseline error handling and MSI interrupts
- Modified IEEE-1275 properties for PCIe devices
- PCIe hotplug support (both native and ACPI-based) by enhancing the cfgadm_pci component of the cfgadm command
ATTN Button usage based PCIe peripheral autoconfiguration

The administrative model for hotplugging PCIe peripherals is the same as for PCI peripherals, which uses the `cfgadm` command.

Check your hardware platform guide to ensure that PCIe and PCIe hotplug support is provided on your system. In addition, carefully review the instructions for physically inserting or removing adapters on your system and the semantics of device auto-configuration, if applicable.

For information about using the `cfgadm` command with PCIe peripherals, see “PCI or PCIe Hot-Plugging With the `cfgadm` Command (Task Map)” on page 98.

USB and 1394 (FireWire) Support Enhancements

Solaris 10 6/06: In this Solaris release, both non-removable USB storage devices and 1394 mass storage devices are identified as hotpluggable devices at the driver level. This new behavior means that these devices can be connected or disconnected without rebooting the system and configured or unconfigured automatically without intervention. These changes are made at the kernel level and do not impact the use of these devices. For example, the responsibility of mounting and unmounting these devices is controlled by the removable media management services.

In addition, non-removable USB devices and 1394 mass storage devices can be accessed and labeled by using the `format` utility. However, you can override the new hotpluggable behavior of these devices by setting the `remvalue` to true in the `/kernel/drv/scsa2usb.conf` file. Setting this parameter to true means that the device is treated as a removable media device at the driver level, if that behavior is preferred.

For more information on using these devices, see `scsa1394(7D)` and “Using USB Mass Storage Devices (Task Map)” on page 132.

Improved Device In Use Error Checking

Solaris 10 6/06: This feature was undocumented previously.

The following utilities have been enhanced to detect when a specified device is in use:

- `dumpadm`
- `format`
- `mkfs` and `newfs`
- `swap`

These enhancements mean that the above utilities might detect some of the following usage scenarios:
Where to Find Device Management Tasks

The following table describes where to find step-by-step instructions for hot-plugging devices and adding serial devices, such as printers and modems, and peripheral devices, such as a disk, DVD drive, or tape device.

<table>
<thead>
<tr>
<th>Device Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a disk that is not hot-pluggable.</td>
<td>Chapter 12, "SPARC: Adding a Disk (Tasks)," or Chapter 13, "x86: Adding a Disk (Tasks)"</td>
</tr>
<tr>
<td>Hot-plug a SCSI or PCI device.</td>
<td>“SCSI Hot-Plugging With the cfgadm Command” on page 89 or "PCI or PCIe Hot-Plugging With the cfgadm Command" on page 99</td>
</tr>
<tr>
<td>Hot-plug a USB device.</td>
<td>"Using USB Mass Storage Devices (Task Map)" on page 132</td>
</tr>
<tr>
<td>Add a DVD drive or tape device.</td>
<td>"How to Add a Peripheral Device" on page 74</td>
</tr>
</tbody>
</table>
Managing Devices in the Solaris OS

The following sections provide overview information about features that manage devices in the Solaris OS. For information about accessing devices, see “Accessing Devices” on page 76.

Power Management of Devices

The United States Environmental Protection Agency created the Energy Star guidelines for computer products to encourage the use of energy-efficient computer systems and to reduce air pollution associated with energy generation. To meet these guidelines, Sun hardware is designed to use power efficiently. In addition, power management software is provided to configure the power management settings.

For more information about power managing your system, see your specific hardware documentation or power.conf(4).

Power Management of Fibre Channel Devices

Power management of Sun systems has been provided in many previous Solaris releases. For example, the internal drives on the following systems are power managed by default:

- SunBlade 1000 or 2000
- SunBlade 100 or 150
- SunBlade 2500 or 1500

The default settings in the /etc/power.conf file ensure Energy Star compliance and fully support power management of these systems.

The following adapters connect external Fibre Channel storage devices:

- Sun StorEdge PCI Dual Fibre Channel Host Adapter
- Sun StorEdge PCI Single Fibre Channel Network Adapter

If a combination of the above adapters and Sun systems are used to attach external Fibre Channel storage devices, the external storage devices will also be power managed by default.
Under the following conditions, power management should be disabled:

- If the system has Fibre Channel attached disks that are connected to a storage area network (SAN)
- If the system has Fibre Channel attached disks that are used in a multi-initiator configuration, such as with the SunCluster software
- If the system is using IP over a Fibre Channel interface (see fcip(7D))

Power management should not be enabled when more than one Solaris system might share the same devices, as in the above conditions.

You can disable power management for the system by changing the `autopm` keyword in the `/etc/power.conf` file as follows:

```
autopm disable
```

Then, reconfigure power management by running the `pmconfig` command or by rebooting the system.

For more information, see `power.conf(4)` and `pmconfig(1M)`.

About Device Drivers

A computer typically uses a wide range of peripheral devices and mass-storage devices. Your system, for example, probably has a disk drive, a keyboard and a mouse, and some kind of magnetic backup medium. Other commonly used devices include the following:

- DVD drives
- Printers and plotters
- Light pens
- Touch-sensitive screens
- Digitizers
- Tablet-and-stylus pairs

The Solaris software does not directly communicate with all these devices. Each type of device requires different data formats, protocols, and transmission rates.

A *device driver* is a low-level program that allows the operating system to communicate with a specific piece of hardware. The driver serves as the operating system's "interpreter" for that piece of hardware.

Automatic Configuration of Devices

The kernel consists of a small generic core with a platform-specific component and a set of modules. The kernel is configured automatically in the Solaris release.
A kernel module is a hardware or software component that is used to perform a specific task on the system. An example of a loadable kernel module is a device driver that is loaded when the device is accessed.

The platform-independent kernel is /kernel/genunix. The platform-specific component is /platform/uname -m/kernel/unix.

The kernel modules are described in the following table.

<table>
<thead>
<tr>
<th>TABLE 5-2 Description of Solaris Kernel Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>/platform/uname -m/kernel</td>
</tr>
<tr>
<td>/kernel</td>
</tr>
<tr>
<td>/usr/kernel</td>
</tr>
</tbody>
</table>

The system determines what devices are attached to it at boot time. Then, the kernel configures itself dynamically, loading needed modules into memory. At this time, device drivers are loaded when devices, such as disk devices and tape devices, are accessed. This process is called autoconfiguration because all kernel modules are loaded automatically when they are needed.

You can customize the way in which kernel modules are loaded by modifying the /etc/system file. For instructions on modifying this file, see system(4).

Features and Benefits of Autoconfiguration

The benefits of autoconfiguration are as follows:

- Main memory is used more efficiently because modules are loaded when needed.
- There is no need to reconfigure the kernel when new devices are added to the system.
- Drivers can be loaded and tested without having to rebuild the kernel and reboot the system.

Autoconfiguration is used when you add a new device (and driver) to the system. At this time, you might need to perform reconfiguration boot so that the system recognizes the new device unless the device is hot-pluggable. For information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

What You Need for Unsupported Devices

Device drivers needed to support a wide range of standard devices are included in the Solaris release. These drivers can be found in the /kernel/drv and /platform/uname -m/kernel/drv directories.
However, if you have purchased an unsupported device, the manufacturer should provide the software that is needed for the device to be properly installed, maintained, and administered.

At a minimum, this software includes a device driver and its associated configuration (.conf) file. The .conf files reside in the

 drv

directories. This software might also include custom maintenance and administrative utilities because the device might be incompatible with Solaris utilities.

For more information about what you need for unsupported devices, contact your device manufacturer.

Displaying Device Configuration Information

Three commands are used to display system and device configuration information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>ManPage</th>
</tr>
</thead>
<tbody>
<tr>
<td>prtconf</td>
<td>Displays system configuration information, including the total amount of memory and the device configuration as described by the system’s device hierarchy. The output displayed by this command depends upon the type of system.</td>
<td>prtconf(1M)</td>
</tr>
<tr>
<td>sysdef</td>
<td>Displays device configuration information, including system hardware, pseudo devices, loadable modules, and selected kernel parameters.</td>
<td>sysdef(1M)</td>
</tr>
<tr>
<td>dmesg</td>
<td>Displays system diagnostic messages as well as a list of devices attached to the system since the last reboot.</td>
<td>dmesg(1M)</td>
</tr>
</tbody>
</table>

For information on the device names that are used to identify devices on the system, see “Device Naming Conventions” on page 77.

driver not attached Message

The following driver-related message might be displayed by the prtconf and sysdef commands:

device, *instance #number (driver not attached)*

This message does not always mean that a driver is unavailable for this device. This message means that no driver is currently attached to the device instance because no device exists at this node or the device is not in use. Drivers are loaded automatically when the device is accessed. They are unloaded when the device is not in use.
How to Display System Configuration Information

Use the output of the `prtconf` and `sysdef` commands to identify which disk, tape, and DVD devices are connected to the system. The output of these commands displays the `driver not attached` messages next to the device instances. Because these devices are always being monitored by some system process, the `driver not attached` message is usually a good indication that no device exists at that device instance.

Use the `sysdef` command to display system configuration information that include pseudo devices, loadable modules, and selected kernel parameters.

- **Display system and device configuration information.**
 - Display all the devices connected to a system.

 For example, the following `prtconf -v` output on a SunBlade 1000 identifies the disk devices connected to the system. The detailed disk information is described in the `Device Minor Nodes` section within the `ssd/fp` driver section.
    ```
    $ /usr/sbin/prtconf -v | more
    ...
    Device Minor Nodes:
    dev=(118,8)
    dev_path=/pci@0,600000/SUNW,qlc@4/fp@0,0/ssd@w21000
      spectype=blk type=minor
      dev_link=/dev/dsk/c0t1d0s0
    dev_path=/pci@0,600000/SUNW,qlc@4/fp@0,0/ssd@w21000
      spectype=chr type=minor
      dev_link=/dev/rdsk/c0t1d0s0
    dev=(118,9)
    dev_path=/pci@0,600000/SUNW,qlc@4/fp@0,0/ssd@w21000
      spectype=blk type=minor
      dev_link=/dev/dsk/c0t1d0s1
    dev_path=/pci@0,600000/SUNW,qlc@4/fp@0,0/ssd@w21000
    ...
    ```
 - Display information about one specific device connected to the system.

 For example, the following `prtconf` output on a SunBlade 1000 displays the `ssd` instance number for `/dev/dsk/c0t1d0s0`.
    ```
    # prtconf -v /dev/dsk/c0t1d0s0
    ssd, instance #1
    ```

- **Display only the devices that are attached to the system.**
  ```
  # prtconf | grep -v not
  ```

- **Display device usage information.**
For example, the following `fuser` command displays which processes are accessing the `/dev/console` device.

```
# fuser -d /dev/console
/dev/console: 346o 323o
```

Example 5–1 Displaying System Configuration Information

The following `prtconf` output is displayed on a SPARC based system.

```
# prtconf
System Configuration: Sun Microsystems sun4u
Memory size: 512 Megabytes
System Peripherals (Software Nodes):

SUNW,Sun-Blade-1000
  scsi_vhci, instance #0
    packages (driver not attached)
      SUNW,builtin-drivers (driver not attached)
      deblocker (driver not attached)
      disk-label (driver not attached)
      terminal-emulator (driver not attached)
      obp-tftp (driver not attached)
      dropins (driver not attached)
      kbd-translator (driver not attached)
      ufs-file-system (driver not attached)
      chosen (driver not attached)
      openprom (driver not attached)
        client-services (driver not attached)
        options, instance #0
        aliases (driver not attached)
        memory (driver not attached)
        virtual-memory (driver not attached)
      SUNW,UltraSPARC-III, instance #0
        memory-controller, instance #0
      SUNW,UltraSPARC-III, instance #1
        memory-controller, instance #1
        pci, instance #0
          ebus, instance #0
            flashprom (driver not attached)
            bbc (driver not attached)
            ppm, instance #0
            i2c, instance #0
              dimm-fru, instance #0
              dimm-fru, instance #1
              dimm-fru, instance #2
              dimm-fru, instance #3
              nvram, instance #4
              idprom (driver not attached)
            i2c, instance #1
              cpu-fru, instance #5
              temperature, instance #0
              cpu-fru, instance #6
              temperature, instance #1
              fan-control, instance #0
              motherboard-fru, instance #7
            i2c-bridge (driver not attached)
```
beep, instance #0
rtc, instance #0
gpio (driver not attached)
pmc (driver not attached)
floppy (driver not attached)
parallel (driver not attached)
serial, instance #0
network, instance #0
firewire, instance #0
usb, instance #0
scsi (driver not attached)
disk (driver not attached)
tape (driver not attached)
scsi (driver not attached)
disk (driver not attached)
tape (driver not attached)
pcl, instance #1
SUNW,qlc, instance #0
fp (driver not attached)
fp, instance #1
ssd, instance #1
ssd, instance #0 (driver not attached)
ssd, instance #2 (driver not attached)
ssd, instance #3 (driver not attached)
ssd, instance #4 (driver not attached)
ssd, instance #5 (driver not attached)
ssd, instance #6 (driver not attached)
upa, instance #0
SUNW,ffb, instance #0 (driver not attached)
ppm, instance #0
pseudo, instance #0

The following sysdef output is displayed from an x86 based system.

sysdef
* Hostid
*
 29f10b4d
*
* i86pc Configuration
*
* Devices
*
+boot (driver not attached)
memory (driver not attached)
aliases (driver not attached)
chosen (driver not attached)
i86pc-memory (driver not attached)
i86pc-mmu (driver not attached)
openprom (driver not attached)
options, instance #0
packages (driver not attached)
delayed-writes (driver not attached)
itu-props (driver not attached)
isa, instance #0
 motherboard (driver not attached)
Adding a Peripheral Device to a System

Adding a new peripheral device that is not-pluggable usually involves the following:

- Shutting down the system
- Connecting the device to the system
- Rebooting the system

Use “How to Add a Peripheral Device” on page 74 to add the following devices that are not hot-pluggable to a system:

- DVD drive
- Secondary disk drive
- Tape drive
- SBUS card

In some cases, you might have to add a third-party device driver to support the new device.

For information on hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

▼ How to Add a Peripheral Device

1 Become superuser.

2 (Optional) If you need to add a device driver to support the device, complete the procedure “How to Add a Device Driver” on page 75.

3 Create the /reconfigure file.

   ```bash
   # touch /reconfigure
   ```

 The /reconfigure file causes the Solaris software to check for the presence of any newly installed devices the next time you turn on or boot your system.
4 Shut down the system.
 # shutdown -i0 -g30 -y
 -i0 Brings the system to the 0 init state, which is the appropriate state for turning the
 system power off for adding and removing devices.
 -g30 Shuts the system down in 30 seconds. The default is 60 seconds.
 -y Continues the system shutdown without user intervention. Otherwise, you are
 prompted to continue the shutdown process.

5 Select one of the following to turn off power to the system after it is shut down:
 - For SPARC platforms, it is safe to turn off power if the ok prompt is displayed.
 - For x86 platforms, it is safe to turn off power if the type any key to continue prompt is
 displayed.

6 Turn off power to all peripheral devices.
 For the location of power switches on any peripheral devices, refer to the hardware installation
 guides that accompany your peripheral devices.

7 Install the peripheral device, making sure that the device you are adding has a different target
 number than the other devices on the system.
 Often, a small switch is located at the back of the disk for selecting the target number.
 Refer to the hardware installation guide that accompanies the peripheral device for information
 on installing and connecting the device.

8 Turn on the power to the system.
 The system boots to multiuser mode, and the login prompt is displayed.

9 Verify that the peripheral device has been added by attempting to access the device.
 For information on accessing the device, see “Accessing Devices” on page 76.

▼ How to Add a Device Driver

 This procedure assumes that the device has already been added to the system. If not, see “What
 You Need for Unsupported Devices” on page 69.

1 Become superuser.

2 Place the tape, diskette, or DVD into the drive.
3 Install the driver.

 # pkgadd [-d] device package-name

 -d device Identifies the device path name that contains the package.

 package-name Identifies the package name that contains the device driver.

4 Verify that the package has been added correctly.

 # pkgchk package-name

 #

 The system prompt returns with no response if the package is installed correctly.

Example 5–2 Adding a Device Driver

The following example shows how to install and verify a package called XYZdrv.

 # pkgadd XYZdrv
 (licensing messages displayed)
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 Installation of <XYZdrv> was successful.
 # pkgchk XYZdrv
 #

Accessing Devices

You need to know how to specify device names when using commands to manage disks, file systems, and other devices. In most cases, you can use logical device names to represent devices that are connected to the system. Both logical and physical device names are represented on the system by logical and physical device files.

How Device Information Is Created

When a system is booted for the first time, a device hierarchy is created to represent all the devices connected to the system. The kernel uses the device hierarchy information to associate drivers with their appropriate devices. The kernel also provides a set of pointers to the drivers that perform specific operations.
How Devices Are Managed

The devfs file system manages the /devices directory, which is the name space of all devices on the system. This directory represents the physical devices that consist of actual bus and device addresses.

The dev file system manages the /dev directory, which is the name space of logical device names.

By default, the devfsadm command attempts to load every driver in the system and attach to all possible device instances. Then, devfsadm creates the device files in the /devices directory and the logical links in the /dev directory. The devfsadm command also maintains the path_to_inst instance database.

Updates to the /dev and /devices directories in response to dynamic reconfiguration events or file system accesses are handled by devfsadm, the daemon version of the devfsadm command. This daemon is started by the service management facility when a system is booted.

Because the devfsadm daemon automatically detects device configuration changes generated by any reconfiguration event, there is no need to run this command interactively.

For more information, see the following references:

- devfsadm(1M)
- dev(7FS)
- devfs(7FS)
- path_to_inst(4)

Device Naming Conventions

Devices are referenced in three ways in the Oracle Solaris OS.

- **Physical device name** – Represents the full device path name in the device information hierarchy. The physical device name is created by when the device is first added to the system. Physical device files are found in the /devices directory.

- **Instance name** – Represents the kernel's abbreviation name for every possible device on the system. For example, sd0 and sd1 represent the instance names of two disk devices. Instance names are mapped in the /etc/path_to_inst file.

- **Logical device name** – The logical device name is created by when the device is first added to the system. Logical device names are used with most file system commands to refer to devices. For a list of file commands that use logical device names, see Table 5–3. Logical device files in the /dev directory are symbolically linked to physical device files in the /devices directory.
The preceding device name information is displayed with the following commands:

- dmesg
- format
- sysdef
- prtconf

Logical Disk Device Names

Logical device names are used to access disk devices when you perform the following tasks:

- Add a new disk to the system.
- Move a disk from one system to another system.
- Access or mount a file system residing on a local disk.
- Back up a local file system.

Many administration commands take arguments that refer to a disk slice or file system.

Refer to a disk device by specifying the subdirectory to which it is symbolically linked, either
/dev/dsk or /dev/rdsk, followed by a string identifying the particular controller, disk, and slice.

FIGURE 5-1 Description of Logical Device Names

```
/dev/[r]dsk/cvt/wdx[xy,ps]
```

- Slice number (s0 to s7) or fdisk partition number (p0 to p4)
- Drive number
- Physical bus target number
- Logical controller number
- Raw disk device subdirectory
- Devices directory

Specifying the Disk Subdirectory

Disk and file administration commands require the use of either a **raw** (or **character**) device interface, or a **block** device interface. The distinction is made by how data is read from the device.

Raw device interfaces transfer only small amounts of data at a time. Block device interfaces include a buffer from which large blocks of data are read at once.
Different commands require different interfaces:

- When a command requires the raw device interface, specify the /dev/rdsk subdirectory. (The “r” in rdsk stands for “raw.”)
- When a command requires the block device interface, specify the /dev/dsk subdirectory.
- When you are not sure whether a command requires use of /dev/dsk or /dev/rdsk, check the man page for that command.

The following table shows which interface is required for some commonly used disk and file system commands.

<table>
<thead>
<tr>
<th>Command Reference</th>
<th>Interface Type</th>
<th>Example of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>df(1M)</td>
<td>Block</td>
<td>df /dev/dsk/c0t3d0s6</td>
</tr>
<tr>
<td>fsck(1M)</td>
<td>Raw</td>
<td>fsck -p /dev/rdsk/c0t0d0s0</td>
</tr>
<tr>
<td>mount(1M)</td>
<td>Block</td>
<td>mount /dev/dsk/c1t0d0s7 /export/home</td>
</tr>
<tr>
<td>newfs(1M)</td>
<td>Raw</td>
<td>newfs /dev/rdsk/c0t0d1s1</td>
</tr>
<tr>
<td>prtvtoc(1M)</td>
<td>Raw</td>
<td>prtvtoc /dev/rdsk/c0t0d0s2</td>
</tr>
</tbody>
</table>

Direct and Bus-Oriented Controllers

You might access disk partitions or slices differently depending upon whether the disk device is connected to a direct or bus-oriented controller. Generally, direct controllers do not include a target identifier in the logical device name.

The conventions for both types of controllers are explained in the following subsections.

Note – Controller numbers are assigned automatically during system initialization. The numbers are strictly logical and imply no direct mapping to physical controllers.

x86: Disks With Direct Controllers

To specify a slice on a disk with an IDE controller on an x86 based system, follow the naming convention shown in the following figure.
To indicate the entire Solaris \texttt{fdisk} partition, specify slice 2 (s2).

If you have only one controller on your system, \(w \) is usually 0.

Disks With Bus-Oriented Controllers

To specify a slice on a disk with a bus-oriented controller, SCSI for instance, follow the naming convention shown in the following figure.

On a SPARC based system with directly connected disks such as the IDE disks on an UltraSPARC system, the naming convention is the same as that for systems with bus-oriented controllers.

If you have only one controller on your system, \(w \) is usually 0.

For SCSI controllers, \(x \) is the target address set by the switch on the back of the unit, and \(y \) is the logical unit number (LUN) of the drive attached to the target. If the disk has an embedded controller, \(y \) is usually 0. For more information about SCSI addressing on SPARC based systems, see the SunSolve Info Doc 48041 and \texttt{scsi_address(9S)}.

To indicate the whole disk, specify slice 2 (s2).

Logical Tape Device Names

Logical tape device files are found in the \texttt{/dev/rmt/*} directory as symbolic links from the \texttt{/devices} directory.
The first tape device connected to the system is 0 (/dev/rmt/0). Tape density values (l, m, h, c, and u) are described in Chapter 29, "Managing Tape Drives (Tasks)."

Logical Removable Media Device Names

Since removable media is managed by removable media management services, the logical device name is usually not used unless you want to mount the media manually.

The logical device name that represents the removable media devices on a system are described in Chapter 3, "Accessing Removable Media (Tasks)."
This chapter provides instructions for dynamically configuring devices in the Solaris OS. You can add, remove, or replace devices in the Solaris OS while the system is still running, if the system components support hot-plugging. If the system components do not support hot-plugging, you can reboot the system to reconfigure the devices.

For information on the procedures associated with dynamically configuring devices, see the following:

- “SCSI Hot-Plugging With the \texttt{cfgadm} Command (Task Map)” on page 88
- “PCI or PCIe Hot-Plugging With the \texttt{cfgadm} Command (Task Map)” on page 98
- “Application Developer RCM Script (Task Map)” on page 106
- “System Administrator RCM Script (Task Map)” on page 107

For information on hot-plugging USB devices with the \texttt{cfgadm} command, see “Hot-Plugging USB Devices With the \texttt{cfgadm} Command” on page 157.

For information on hot-plugging InfiniBand devices with \texttt{cfgadm} command, see Chapter 9, “Using InfiniBand Devices (Overview/Tasks).”

For information about accessing devices, see “Accessing Devices” on page 76.

Dynamic Reconfiguration and Hot-Plugging

Hot-plugging is the ability to physically add, remove, or replace system components while the system is running. *Dynamic reconfiguration* refers to the ability to hot-plug system components. This term also refers to the general ability to move system resources (both hardware and software) around in the system or to disable them in some way without physically removing them from the system.

Generally, you can hot-plug the following bus types:

- USB
In addition, you can hot-plug the following devices with the `cfgadm` command:

- USB devices on SPARC and x86 platforms
- SCSI devices on SPARC and x86 platforms
- PCI devices on SPARC and x86 platforms
- PCIe devices on SPARC or x86 platforms
- InfiniBand devices on SPARC and x86 devices

Features of the `cfgadm` command include the following:

- Displaying system component status
- Testing system components
- Changing component configurations
- Displaying configuration help messages

The benefit of using the `cfgadm` command to reconfigure systems components is that you can add, remove, or replace components while the system is running. An added benefit is that the `cfgadm` command guides you through the steps needed to add, remove, or replace system components.

For step-by-step instructions on hot-plugging components, see the following:

- “SCSI Hot-Plugging With the `cfgadm` Command” on page 89
- “PCI or PCIe Hot-Plugging With the `cfgadm` Command” on page 99
- `cfgadm(1M)`

Note – Not all SCSI and PCI controllers support hot-plugging with the `cfgadm` command.

As part of Sun's high availability strategy, dynamic reconfiguration is expected to be used in conjunction with additional layered products, such as alternate pathing or fail over software. Both products provide fault tolerance in the event of a device failure.

Without any high availability software, you can replace a failed device by manually stopping the appropriate applications, unmounting noncritical file systems, and then proceeding with the add or remove operations.
Note – Some systems have slots that hot-pluggable and slots that are not hot-pluggable. For information about hot-plugging devices on your specific hardware configuration, such as on enterprise-level systems, refer to your hardware configuration documentation.

Attachment Points

The `cfgadm` command displays information about attachment points, which are locations in the system where dynamic reconfiguration operations can occur.

An attachment point consists of the following:

- An occupant, which represents a hardware component that can be configured into the system
- A receptacle, which is the location that accepts the occupant

Attachment points are represented by logical and physical attachment point IDs (Ap_Ids). The physical Ap_Id is the physical path name of the attachment point. The logical Ap_Id is a user-friendly alternative for the physical Ap_Id. For more information on Ap_Ids, refer to `cfgadm(1M)`.

The logical Ap_Id for a SCSI Host Bus Adapter (HBA), or SCSI controller, is usually represented by the controller number, such as c0.

In cases where no controller number has been assigned to a SCSI HBA, then an internally generated unique identifier is provided. An example of a unique identifier for a SCSI controller is the following:

```
fas1:scsi
```

The logical Ap_Id for a SCSI device usually has this format:

```
HBA-logical-apid::device-identifier
```

In the following example, c0 is the logical Ap_Id for the SCSI HBA:

```
c0::dsk/c0t3d0
```

The device identifier is typically derived from the logical device name for the device in the `/dev` directory. For example, a tape device with logical device name, `/dev/rmt/1`, has the following logical Ap_Id:

```
c0::rmt/1
```

If a logical Ap_Id of a SCSI device cannot be derived from the logical name in the `/dev` directory, then an internally generated unique identifier is provided. An example of an identifier for the `/dev/rmt/1` tape device is the following:
c0::st4

For more information on SCSI Ap_Ids, refer to `cfgadm_scsi(1M)`.

The `cfgadm` command represents all resources and dynamic reconfiguration operations in terms of a common set of states (such as configured and unconfigured) and operations (such as connect, configure, unconfigure, and so on). For more information on these common states and operations, see `cfgadm(1M)`.

The following table shows the receptacle and occupant states for the SCSI HBA attachment points.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
<th>Occupant State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>N/A for SCSI HBA</td>
<td>configured</td>
<td>One or more devices is configured on the bus</td>
</tr>
<tr>
<td>disconnected</td>
<td>Bus quiesced</td>
<td>unconfigured</td>
<td>No devices are configured</td>
</tr>
<tr>
<td>connected</td>
<td>Bus active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table shows the receptacle and occupant states for SCSI device attachment points.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
<th>Occupant State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>N/A for SCSI devices</td>
<td>configured</td>
<td>Device is configured</td>
</tr>
<tr>
<td>disconnected</td>
<td>Bus quiesced</td>
<td>unconfigured</td>
<td>Device is not configured</td>
</tr>
<tr>
<td>connected</td>
<td>Bus active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The state of SCSI attachment points is unknown unless special hardware indicates otherwise. For instructions on displaying SCSI component information, see "How to Display Information About SCSI Devices" on page 89.

Detaching PCI or PCIe Adapter Cards

A PCI adapter card that is hosting nonvital system resources can be removed if the device driver supports hot-plugging. A PCI adapter card is not detachable if it is a vital system resource. For a PCI adapter card to be detachable, the following conditions must be met:

- The device driver must support hot-plugging.
- Critical resources must be accessible through an alternate pathway.

For example, if a system has only one Ethernet card installed in it, the Ethernet card cannot be detached without losing the network connection. This detachment requires additional layered software support to keep the network connection active.
Attaching PCI or PCIe Adapter Cards

A PCI adapter card can be added to the system as long as the following conditions are met:

- There are slots available.
- The device driver supports hot-plugging for this adapter card.

For step-by-step instructions on adding or removing a PCI adapter card, see "PCI or PCIe Hot-Plugging With the cfgadm Command" on page 99.

PCle Hot-Plugging With the (hotplug) Command

You can use the hotplug command to manage hot pluggible connections, where a connection can be a connector or port, on PCI Express (PCIe) and PCI SHPC devices only. A hotplug connector is a physical representation in the system where a component is inserted or removed. A hotplug port is a logical representation in the system device tree where the connection of a device to the system is managed.

You can use the hotplug features to online or offline a device, even an on-board device, without physically adding or removing the device from the system.

You must enable the hotplug service to manage devices with the hotplug command.

```
# svcadm enable svc:/system/hotplug:default
```

The following examples describe how to use the hotplug command.

Display all the PCI/PCIe hot pluggible connectors/ports (virtual and physical) in the system as follows:

```
# hotplug list -lv
```

Configure an Ethernet card in a PCIe slot. For example:

```
# hotplug enable /pci0,0 pcie0
```

Unconfigure an Ethernet card in a PCIe slot. For example:

```
# hotplug disable /pci0,0 pcie0
```

Offline a PCI device node, which means detach the device driver for that node. For example:

```
# hotplug offline /pci0,0/pci1 pci.0,2
```

Online a PCI device node, which means attach the driver for that node. For example:

```
# hotplug online /pci0,0/pci1 pci.0,2
```
Troubleshooting PCI Hot Plug Operations (hotplug)

The following service must be running to use the hotplug command.

svc:/system/hotplug:default

Otherwise, you will see the following message:

ERROR: hotplug service is not available.

The following error message is displayed on systems that do not have any supported I/O buses:

ERROR: there are no connections to display.

(See hotplug(1m) for more information.)

The above message could mean that the system might have other hot-pluggable I/O devices, but you need to use the `cfgadm` command rather than the `hotplug` command to manage these devices.

SCSI Hot-Plugging With the `cfgadm` Command (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about SCSI devices.</td>
<td>Display information about SCSI controllers and devices.</td>
<td>"How to Display Information About SCSI Devices" on page 89</td>
</tr>
<tr>
<td>Unconfigure a SCSI controller.</td>
<td>Unconfigure a SCSI controller.</td>
<td>"How to Unconfigure a SCSI Controller" on page 90</td>
</tr>
<tr>
<td>Configure a SCSI controller.</td>
<td>Configure a SCSI controller that was previously unconfigured.</td>
<td>"How to Configure a SCSI Controller" on page 90</td>
</tr>
<tr>
<td>Configure a SCSI device.</td>
<td>Configure a specific SCSI device.</td>
<td>"How to Configure a SCSI Device" on page 91</td>
</tr>
<tr>
<td>Disconnect a SCSI controller.</td>
<td>Disconnect a specific SCSI controller.</td>
<td>"How to Disconnect a SCSI Controller" on page 92</td>
</tr>
<tr>
<td>Connect a SCSI controller.</td>
<td>Connect a specific SCSI controller that was previously disconnected.</td>
<td>"SPARC: How to Connect a SCSI Controller" on page 93</td>
</tr>
<tr>
<td>Add a SCSI device to a SCSI bus.</td>
<td>Add a specific SCSI device to a SCSI bus.</td>
<td>"SPARC: How to Add a SCSI Device to a SCSI Bus" on page 93</td>
</tr>
<tr>
<td>Replace an identical device on a SCSI controller.</td>
<td>Replace a device on the SCSI bus with another device of the same type.</td>
<td>"SPARC: How to Replace an Identical Device on a SCSI Controller" on page 94</td>
</tr>
<tr>
<td>Remove a SCSI device.</td>
<td>Remove a SCSI device from the system.</td>
<td>"SPARC: How to Remove a SCSI Device" on page 95</td>
</tr>
</tbody>
</table>
Task Description For Instructions

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshoot SCSI configuration</td>
<td>Resolve a failed SCSI unconfigure</td>
<td>"How to Resolve a Failed SCSI Unconfigure Operation" on page 98</td>
</tr>
<tr>
<td>problems.</td>
<td>operation.</td>
<td></td>
</tr>
</tbody>
</table>

SCSI Hot-Plugging With the `cfgadm` Command

This section describes various SCSI hot-plugging procedures that you can perform with the `cfgadm` command.

Note – The SCSI framework generally supports hot-plugging of SCSI devices. However, you should consult your hardware documentation to confirm whether hot-plugging is supported for your SCSI devices.

These procedures use specific devices as examples to illustrate how to use the `cfgadm` command to hot-plug SCSI components. The device information that you supply, and that the `cfgadm` command displays, depends on your system configuration.

▼ How to Display Information About SCSI Devices

The following procedure uses SCSI controllers `c0` and `c1` and the devices that are attached to them in the examples of the type of device configuration information that you can display with the `cfgadm` command.

Note – If the SCSI device is not supported by the `cfgadm` command, the device does not display in the `cfgadm` command output.

1. **Become superuser.**

2. **Display information about attachment points on the system.**

   ```
   # cfgadm -l
   Ap_Id Type  Receptacle Occupant Condition
   c0 scsi-bus connected configured unknown
   c1 scsi-bus connected configured unknown
   ```

 In this example, `c0` and `c1` represent two SCSI controllers.

3. **Display information about a system’s SCSI controllers and their attached devices.**

   ```
   # cfgadm -al
   Ap_Id Type  Receptacle Occupant Condition
   c0 scsi-bus connected configured unknown
   ```
Note – The `cfgadm -l` command displays information about SCSI HBAs but not SCSI devices. Use the `cfgadm -a l` command to display information about SCSI devices such as disk and tapes.

How to Unconfigure a SCSI Controller

The following procedure uses SCSI controller `c1` in the example of unconfiguring a SCSI controller.

1. **Become superuser.**

2. **Unconfigure a SCSI controller.**
   ```shell
   # cfgadm -c unconfigure c1
   ```

3. **Verify that the SCSI controller is unconfigured.**
   ```shell
   # cfgadm -a l
   ```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>unavailable</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

 Notice that the Occupant column for `c1` specifies unconfigured, indicating that the SCSI bus has no configured occupants.

 If the unconfigure operation fails, see “How to Resolve a Failed SCSI Unconfigure Operation” on page 98.

How to Configure a SCSI Controller

The following procedure uses SCSI controller `c1` in the example of configuring a SCSI controller.

1. **Become superuser.**

2. **Configure a SCSI controller.**
   ```shell
   # cfgadm -c configure c1
   ```
3 Verify that the SCSI controller is configured.

```
# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>unavailable</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

The previous unconfigure procedure removed all devices on the SCSI bus. Now all the devices are configured back into the system.

\[▼ \]

How to Configure a SCSI Device

The following procedure uses SCSI disk c1t4d0 in the example of configuring a SCSI device.

1 Become superuser.

2 Identify the device to be configured.

```
# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>unavailable</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

3 Configure the SCSI device.

```
# cfgadm -c configure c1::dsk/c1t4d0
```

4 Verify that the SCSI device is configured.

```
# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t3d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::dsk/c1t4d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
How to Disconnect a SCSI Controller

Caution – Disconnecting a SCSI device must be done with caution, particularly when you are dealing with controllers for disks that contain critical file systems such as root (/), usr, var, and the swap partition. The dynamic reconfiguration software cannot detect all cases where a system hang might result. Use this procedure with caution.

The following procedure uses SCSI controller c1 in the example of disconnecting a SCSI device.

1 Become superuser.

2 Verify that the device is connected before you disconnect it.

 # cfgadm -al

 Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c0::dsk/c0t0d0 disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1 scsi-bus connected configured unknown
 c1::dsk/c1t3d0 disk connected configured unknown
 c1::dsk/c1t4d0 disk connected configured unknown

3 Disconnect the SCSI controller.

 # cfgadm -c disconnect c1

 WARNING: Disconnecting critical partitions may cause system hang.
 Continue (yes/no)? y

 Caution – This command suspends all I/O activity on the SCSI bus until the cfgadm -c connect command is used. The cfgadm command does some basic checking to prevent critical partitions from being disconnected, but it cannot detect all cases. Inappropriate use of this command can result in a system hang and could require a system reboot.

4 Verify that the SCSI bus is disconnected.

 # cfgadm -al

 Ap_Id Type Receptacle Occupant Condition
 c0 scsi-bus connected configured unknown
 c0::dsk/c0t0d0 disk connected configured unknown
 c0::rmt/0 tape connected configured unknown
 c1 unavailable disconnected configured unknown
 c1::dsk/c1t3d0 unavailable disconnected configured unknown
 c1::dsk/c1t4d0 unavailable disconnected configured unknown

 The controller and all the devices that are attached to it are disconnected from the system.
SPARC: How to Connect a SCSI Controller

The following procedure uses SCSI controller c1 in the example of connecting a SCSI controller.

1 Become superuser.

2 Verify that the device is disconnected before you connect it.

```
# cfgadm -a1
Ap_Id Type Receptacle Occupant Condition
--- -------- --------- ---------- --------
c0   scsi-bus connected configured unknown
```

3 Connect the SCSI controller.

```
# cfgadm -c connect c1
```

4 Verify that the SCSI controller is connected.

```
# cfgadm -a1
Ap_Id Type Receptacle Occupant Condition
--- -------- --------- ---------- --------
c0   scsi-bus connected configured unknown
```

SPARC: How to Add a SCSI Device to a SCSI Bus

SCSI controller c1 is used in the example of how to add a SCSI device to a SCSI bus.

Note – When you add devices, you specify the Ap_Id of the SCSI HBA (controller) to which the device is attached, not the Ap_Id of the device itself.

1 Become superuser.

2 Identify the current SCSI configuration.

```
# cfgadm -a1
Ap_Id Type Receptacle Occupant Condition
--- -------- --------- ---------- --------
c0   scsi-bus connected configured unknown
```
Add the SCSI device to the SCSI bus.

a. Type the following `cfgadm` command.
 For example:
   ```
   # cfgadm -x insert_device c1
   Adding device to SCSI HBA: /devices/sbus@1f,0/SUNW,fas@1,8800000
   This operation will suspend activity on SCSI bus: c1
   ```

b. Type `y` at the `Continue (yes/no)?` prompt to proceed.
   ```
   Continue (yes/no)? y
   SCSI bus quiesced successfully.
   It is now safe to proceed with hotplug operation.
   I/O activity on the SCSI bus is suspended while the hot-plug operation is in progress.
   ```

c. Connect the device and then power it on.

d. Type `y` at the `Enter y if operation is complete or n to abort (yes/no)?` prompt.
   ```
   Enter y if operation is complete or n to abort (yes/no)? y
   ```

4 Verify that the device has been added.
   ```
   # cfgadm -al
   Ap_Id  Type  Receptacle  Occupant  Condition
   c0     scsi-bus  connected  configured  unknown
   c0::dsk/c0t0d0 disk  connected  configured  unknown
   c0::rmt/0 tape  connected  configured  unknown
   c1     scsi-bus  connected  configured  unknown
   c1::dsk/c1t3d0 disk  connected  configured  unknown
   c1::dsk/c1t4d0 disk  connected  configured  unknown
   ```
 A new disk has been added to controller c1.

▼ **SPARC: How to Replace an Identical Device on a SCSI Controller**

The following procedure uses SCSI disk `c1t4d0` in the example of replacing an identical device on a SCSI controller.

1 Become superuser.

2 Identify the current SCSI configuration.
   ```
   # cfgadm -al
   Ap_Id  Type  Receptacle  Occupant  Condition
   c0     scsi-bus  connected  configured  unknown
   c0::dsk/c0t0d0 disk  connected  configured  unknown
   c0::rmt/0 tape  connected  configured  unknown
   c1     scsi-bus  connected  configured  unknown
   ```
Replace a device on the SCSI bus with another device of the same type.

a. Type the following `cfgadm` command.
 For example:
   ```
   # cfgadm -x replace_device c1::dsk/c1t4d0
   Replacing SCSI device: /devices/sbus@1f,0/SUNW,fas@1,8800000/sd@4,0
   This operation will suspend activity on SCSI bus: c1
   ```

b. Type `y` at the `Continue (yes/no) ?` prompt to proceed.
 I/O activity on the SCSI bus is suspended while the hot-plug operation is in progress.
   ```
   Continue (yes/no) ? y
   SCSI bus quiesced successfully.
   It is now safe to proceed with hotplug operation.
   ```

c. Power off the device to be removed and remove it.

d. Add the replacement device. Then, power it on.
 The replacement device should be of the same type and at the same address (target and lun) as the device to be removed.

e. Type `y` at the `Enter y if operation is complete or n to abort (yes/no) ?` prompt.
   ```
   Enter y if operation is complete or n to abort (yes/no) ? y
   ```

4 Verify that the device has been replaced.

   ```
   # cfgadm -al
   Ap_Id Type Receptacle Occupant Condition
   c0 scsi-bus connected configured unknown
   c0::dsk/c0t0d0 disk connected configured unknown
   c0::rmt/0 tape connected configured unknown
   c1 scsi-bus connected configured unknown
   c1::dsk/c1t3d0 disk connected configured unknown
   c1::dsk/c1t4d0 disk connected configured unknown
   ```

▼ SPARC: How to Remove a SCSI Device

The following procedure uses SCSI disk c1t4d0 in the example of removing a device on a SCSI controller.

1 Become superuser.

2 Identify the current SCSI configuration.

   ```
   # cfgadm -al
   Ap_Id Type Receptacle Occupant Condition
   ```
SCSI Hot-Plugging With the `cfgadm` Command

3 Remove the SCSI device from the system.

a. Type the following `cfgadm` command.
 For example:

   ```
   # cfgadm -x remove_device c1::dsk/c1t4d0
   Removing SCSI device: /devices/sbus@1f,0/SUNW,fas@1,88000000/sd@4,0
   This operation will suspend activity on SCSI bus: c1
   ```

b. Type `y` at the `Continue (yes/no)`? prompt to proceed.

 Continue (yes/no)? y
 SCSI bus quiesced successfully.
 It is now safe to proceed with hotplug operation.
 I/O activity on the SCSI bus is suspended while the hot-plug operation is in progress.

c. Power off the device to be removed and remove it.

d. Type `y` at the `Enter y if operation is complete or n to abort (yes/no)`? prompt.

 Enter y if operation is complete or n to abort (yes/no)? y

 Note – This step must be performed if you are removing a SCSI RAID device from a SCSI RAID array.

4 Verify that the device has been removed from the system.

   ```
   # cfgadm -al
   Ap_Id Type Receptacle Occupant Condition
   c0 scsi-bus connected configured unknown
   c0::dsk/c0t0d0 disk connected configured unknown
   c0::rmt/0 tape connected configured unknown
   c1 scsi-bus connected configured unknown
   c1::dsk/c1t3d0 disk connected configured unknown
   c1::dsk/c1t4d0 disk connected configured unknown
   ```

Troubleshooting SCSI Configuration Problems

This section provides error messages and possible solutions for troubleshooting SCSI configuration problems. For more information on troubleshooting SCSI configuration problems, see `cfgadm(1M)`.
Error Message

cfgadm: Component system is busy, try again: failed to offline:
 Resource Information
 /dev/dsk/c1t0d0s0 mounted filesystem "/file-system"

Cause
You attempted to remove or replace a device with a mounted file system.

Solution
Unmount the file system that is listed in the error message and retry the cfgadm operation.

Error Message

cfgadm: Component system is busy, try again: failed to offline:
 Resource Information
 /dev/dsk/device-name swap area

Cause
If you use the cfgadm command to remove a system resource, such as a swap device or a dedicated dump device, a similar error message is displayed if the system resource is still active.

Solution
Unconfigure the swap areas on the device that is specified and retry the cfgadm operation.

Error Message

cfgadm: Component system is busy, try again: failed to offline:
 Resource Information
 /dev/dsk/device-name dump device (swap)

Cause
You attempted to remove or replace a dump device that is configured on a swap area.

Solution
Unconfigure the dump device that is configured on the swap area and retry the cfgadm operation.

Error Message

cfgadm: Component system is busy, try again: failed to offline:
 Resource Information
 /dev/dsk/device-name dump device (dedicated)

Cause
You attempted to remove or replace a dedicated dump device.
Solution
Unconfigure the dedicate dump device and retry the `cfgadm` operation.

▼ How to Resolve a Failed SCSI Unconfigure Operation

Use this procedure if one or more target devices are busy and the SCSI unconfigure operation fails. Otherwise, future dynamic reconfiguration operations on this controller and target devices will fail with a `dr in progress` message.

1 Become superuser.

2 Reconfigure the controller.
 `# cfgadm -c configure device-name`

PCI or PCIe Hot-Plugging With the `cfgadm` Command (Task Map)

The following task map describes the tasks for managing PCI or PCIe devices on your system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display PCI slot configuration information.</td>
<td>Display the status of PCI hot-pluggable devices and slots on the system.</td>
<td>"How to Display PCI Slot Configuration Information" on page 99</td>
</tr>
<tr>
<td>Remove a PCI adapter card.</td>
<td>Unconfigure the card, disconnect power from the slot, and remove the card from the system.</td>
<td>"How to Remove a PCI Adapter Card" on page 101</td>
</tr>
<tr>
<td>Add a PCI adapter card.</td>
<td>Insert the adapter card into a hot-pluggable slot, connect power to the slot, and configure the card.</td>
<td>"How to Add a PCI Adapter Card" on page 102</td>
</tr>
<tr>
<td>Troubleshoot PCI configuration problems.</td>
<td>Identify error message and possible solutions to resolve PCI configuration problems.</td>
<td>"Troubleshooting PCI Configuration Problems" on page 104</td>
</tr>
</tbody>
</table>
PCI or PCIe Hot-Plugging With the \texttt{cfgadm} Command

This section provides step-by-step instructions for hot-plugging PCI or PCIe adapter cards on SPARC and x86 systems.

In addition to the \texttt{cfgadm} command, the \texttt{prtconf} command is helpful during hot-plug operations. The \texttt{prtconf} command displays additional configuration information that pertains to the hardware.

After adding hardware, you can use the \texttt{prtconf} command to verify that the hardware is configured correctly. For example, after a configure operation, use the \texttt{prtconf -D} command to verify that the driver is attached to the newly installed hardware device. If the device driver has not been added to the system prior to hardware configuration, it may be manually added by using the \texttt{add_drv} command.

For more information, see \texttt{prtconf(1M)} and \texttt{add_drv(1M)}.

In the examples, only PCI attachment points are listed, for brevity. The attachment points that are displayed on your system depend on your system configuration.

PCIe Led Indicator Behavior

You might observe the LED indicators on the system to get a visual indication about the status of the slot’s hot-plug operation. The LED behavior, in case of PCI Express, matches that defined in the PCI Express specification or the behavior might otherwise be platform dependent.

Please refer to your platform guide for specific details. In case of PCI Express, when the Attention Button is pressed, the power indicator blinks, which indicates the beginning of a state transition. The blinking ends when the state transition has ended.

How to Display PCI Slot Configuration Information

This procedure has been updated to include PCIe configuration information.

The \texttt{cfgadm} command displays the status of PCI hot-pluggable devices and slots on a system. For more information, see \texttt{cfgadm(1M)}.

1. Become superuser.

2. Display PCI configuration information.
 - Display PCI slot configuration information.
 For example:
cfgadm

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pci1:hpc0_slot0</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>pci1:hpc0_slot1</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>pci1:hpc0_slot2</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>pci1:hpc0_slot3</td>
<td>ethernet/hp</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>pci1:hpc0_slot4</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

- Display specific PCI device information.

For example:

```
# cfgadm -s "cols=ap_id:type:info" pci
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>pci1:hpc0_slot0</td>
<td>unknown</td>
<td>Slot 7</td>
</tr>
<tr>
<td>pci1:hpc0_slot1</td>
<td>unknown</td>
<td>Slot 8</td>
</tr>
<tr>
<td>pci1:hpc0_slot2</td>
<td>unknown</td>
<td>Slot 9</td>
</tr>
<tr>
<td>pci1:hpc0_slot3</td>
<td>ethernet/hp</td>
<td>Slot 10</td>
</tr>
<tr>
<td>pci1:hpc0_slot4</td>
<td>unknown</td>
<td>Slot 11</td>
</tr>
</tbody>
</table>

The logical Ap_Id, pci1:hpc0_slot0, is the logical Ap_Id for hot-pluggable slot, Slot 7. The component hpc0 indicates the hot-pluggable adapter card for this slot, and pci1 indicates the PCI bus instance. The Type field indicates the type of PCI adapter card that is present in the slot.

- Display PCIe slot configuration information.

For example:

```
# cfgadm pci
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcie1</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>pcie2</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>pcie3</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>pcie4</td>
<td>ethernet/hp</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>pcie5</td>
<td>pci-pci/hp</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>pcie6</td>
<td>unknown</td>
<td>disconnected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

- Display specific PCIe device information.

For example:

```
# cfgadm -s "cols=ap_id:busy:o_state" pci
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Busy</th>
<th>Occupant</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcie1</td>
<td>n</td>
<td>unconfigured</td>
</tr>
<tr>
<td>pcie2</td>
<td>n</td>
<td>unconfigured</td>
</tr>
<tr>
<td>pcie3</td>
<td>n</td>
<td>unconfigured</td>
</tr>
<tr>
<td>pcie4</td>
<td>n</td>
<td>configured</td>
</tr>
<tr>
<td>pcie5</td>
<td>n</td>
<td>configured</td>
</tr>
<tr>
<td>pcie6</td>
<td>n</td>
<td>configured</td>
</tr>
</tbody>
</table>

Note – The logical Ap_Id in most cases should match the slot label that is silk-screened on the system chassis. Refer to your platform guide for the cfgadm output of the hot-pluggable slots. The Busy field can be displayed to ensure that the Ap_Id is not transitioning to another state before a hot-plug operation is attempted.
How to Remove a PCI Adapter Card

The following procedure has been updated for removing a PCIe adapter card. However, the procedure to remove an adapter card is the same whether you are using PCI or PCIe.

1. **Become superuser.**

2. **Determine which slot the PCI adapter card is in.**
 For example:
   ```
   # cfgadm pci
   Ap_Id       Type       Receptacle Occupant Condition
   pcie1       unknown    empty     unconfigured unknown
   pcie2       unknown    empty     unconfigured unknown
   pcie3       unknown    empty     unconfigured unknown
   pcie4       etherne/hp connected configured ok
   pcie5       pci-pci/hp connected configured ok
   pcie6       unknown    disconnected unconfigured unknown
   ```

3. **Stop the application that has the device open.**
 For example, if the device is an Ethernet card, use the `ifconfig` command to bring down the interface and unplug the interface.

4. **Unconfigure the device manually by using the `cfgadm(1M)` command as shown below. Or, if you have a PCIe adapter card, use the auto-configuration method, such as pressing the slot's Attention Button as defined by your platform guide.**
   ```
   # cfgadm -c unconfigure pce4
   ```

5. **Confirm that the device has been unconfigured.**
 For example:
   ```
   # cfgadm pci
   Ap_Id       Type       Receptacle Occupant Condition
   pcie1       unknown    empty     unconfigured unknown
   pcie2       unknown    empty     unconfigured unknown
   pcie3       unknown    empty     unconfigured unknown
   pcie4       unknown    connected unconfigured unknown
   pcie5       pci-pci/hp connected configured ok
   pcie6       unknown    disconnected unconfigured unknown
   ```

 Note – The Type and Condition also become unknown when the device is unconfigured.

6. **Disconnect the power to the slot manually. If the auto-configuration method is used, this step is not necessary. Refer to your platform guide for more information.**
   ```
   # cfgadm -c disconnect pce4
   ```
7 Confirm that the device has been disconnected.
 For example:
    ```bash
    # cfgadm pci
    Ap_Id  Type       Receptacle  Occupant  Condition
    pcie1  unknown   empty       unconfigured  unknown
    pcie2  unknown   empty       unconfigured  unknown
    pcie3  unknown   empty       unconfigured  unknown
    pcie4  unknown   disconnected unconfigured unknown
    pcie5  pci-pci/hp connected  configured  ok
    pcie6  unknown   disconnected unconfigured unknown
    ```

8 Follow appropriate instructions in your platform guide to remove the PCI adapter card. After the card is removed, the Receptacle state is empty.
 For example:
    ```bash
    # cfgadm pci
    Ap_Id  Type       Receptacle  Occupant  Condition
    pcie1  unknown   empty       unconfigured  unknown
    pcie2  unknown   empty       unconfigured  unknown
    pcie3  unknown   empty       unconfigured  unknown
    pcie4  unknown   empty       unconfigured  unknown
    pcie5  pci-pci/hp connected  configured  ok
    pcie6  unknown   disconnected unconfigured unknown
    ```

Note – The auto-configuration method can be enabled or disabled at boot, depending on the platform implementation. Set the auto-configuration method as appropriate for your environment.

How to Add a PCI Adapter Card

The following procedure has been updated for adding a PCIe adapter card. However, the procedure to add an adapter card is the same whether you are using PCI or PCIe.

1 Become superuser.

2 Identify the hot-pluggable slot and open latches.
 For example, pcie3.
    ```bash
    # cfgadm pci
    Ap_Id  Type       Receptacle  Occupant  Condition
    pcie1  unknown   empty       unconfigured  unknown
    pcie2  unknown   empty       unconfigured  unknown
    pcie3  unknown   empty       unconfigured  unknown
    pcie4  unknown   empty       unconfigured  unknown
    pcie5  pci-pci/hp connected  configured  ok
    pcie6  unknown   disconnected unconfigured unknown
    ```

3 Follow the appropriate instructions in your platform guide to insert a PCI adapter card into the slot.
4 Determine which slot the PCI adapter card is in after it is inserted.
 For example:
   ```
   # cfgadm pci
   Ap_Id Type Receptacle Occupant Condition
   pcie1 unknown empty unconfigured unknown
   pcie2 unknown empty unconfigured unknown
   pcie3 unknown disconnected unconfigured unknown
   pcie4 unknown empty unconfigured unknown
   pcie5 unknown pci-pci/hp connected configured ok
   pcie6 unknown disconnected unconfigured unknown
   ```

5 Connect the power to the slot manually using the `cfgadm` command. Or, if you have a PCIe adapter card, use the auto-configuration method, such as pressing the slot's Attention Button as defined by your platform guide.
 For example:
   ```
   # cfgadm -c connect pcie3
   ```

6 Confirm that the attachment point is connected.
 For example:
   ```
   # cfgadm pci
   Ap_Id Type Receptacle Occupant Condition
   pcie1 unknown empty unconfigured unknown
   pcie2 unknown empty unconfigured unknown
   pcie3 unknown connected unconfigured unknown
   pcie4 unknown empty unconfigured unknown
   pcie5 unknown pci-pci/hp connected configured ok
   pcie6 unknown disconnected unconfigured unknown
   ```

7 Configure the PCI adapter card manually by using the `cfgadm` command as shown below. If using the auto-configuration method, this step should not be necessary. Refer to your platform guide for more information.
 For example:
   ```
   # cfgadm -c configure pcie3
   ```

8 Verify the configuration of the PCI adapter card in the slot.
 For example:
   ```
   # cfgadm pci
   Ap_Id Type Receptacle Occupant Condition
   pcie1 unknown empty unconfigured unknown
   pcie2 unknown empty unconfigured unknown
   pcie3 etherne/hp connected configured unknown
   pcie5 pci-pci/hp connected configured ok
   pcie6 unknown disconnected unconfigured unknown
   ```

9 Configure any supporting software if this device is a new device.
 For example, if this device is an Ethernet card, use the `ifconfig` command to set up the interface.
Note – The auto-configuration method can be enabled or disabled at boot, depending on the platform implementation. Set the auto-configuration method as appropriate for your environment.

Troubleshooting PCI Configuration Problems

Error Message

cfgadm: Configuration operation invalid: invalid transition

Cause
An invalid transition was attempted.

Solution
Check whether the \texttt{cfgadm -c} command was issued appropriately. Use the \texttt{cfgadm} command to check the current receptacle and occupant state and to make sure that the Ap_Id is correct.

Error Message

cfgadm: Attachment point not found

Cause
The specified attachment point was not found.

Solution
Check whether the attachment point is correct. Use the \texttt{cfgadm} command to display a list of available attachment points. Also check the physical path to see if the attachment point is still there.

Reconfiguration Coordination Manager (RCM) Script Overview

The Reconfiguration Coordination Manager (RCM) is the framework that manages the dynamic removal of system components. By using RCM, you can register and release system resources in an orderly manner.

You can use the new RCM script feature to write your own scripts to shut down your applications, or to cleanly release the devices from your applications during dynamic reconfiguration. The RCM framework launches a script automatically in response to a reconfiguration request, if the request impacts the resources that are registered by the script.

You can also release resources from applications manually before you dynamically remove the resource. Or, you can use the \texttt{cfgadm} command with the -f option to force a reconfiguration
operation. However, this option might leave your applications in an unknown state. Also, the
manual release of resources from applications commonly causes errors.

The RCM script feature simplifies and better controls the dynamic reconfiguration process. By
creating an RCM script, you can do the following:

- Automatically release a device when you dynamically remove a device. This process also
closes the device if the device is opened by an application.
- Run site-specific tasks when you dynamically remove a device from the system.

What Is an RCM Script?

- An executable shell script (Perl, sh, csh, or ksh) or binary program that the RCM daemon
 runs. Perl is the recommended language.
- A script that runs in its own address space by using the user ID of the script file owner.
- A script that is run by the RCM daemon when you use the \texttt{cfgadm} command to dynamically
 reconfigure a system resource.

What Can an RCM Script Do?

You can use an RCM script to release a device from an application when you dynamically
remove a device. If the device is currently open, the RCM script also closes the device.

For example, an RCM script for a tape backup application can inform the tape backup
application to close the tape drive or shut down the tape backup application.

How Does the RCM Script Process Work?

You can invoke an RCM script as follows:

$ \texttt{script-name command [args \ldots]}

An RCM script performs the following basic steps:

1. Takes the RCM command from command-line arguments.
2. Executes the command.
3. Writes the results to \texttt{stdout} as name-value pairs.
4. Exits with the appropriate exit status.

The RCM daemon runs one instance of a script at a time. For example, if a script is running, the
RCM daemon does not run the same script until the first script exits.
RCM Script Commands

You must include the following RCM commands in an RCM script:
- `scriptinfo` – Gathers script information
- `register` – Registers interest in resources
- `resourceinfo` – Gathers resource information

You might include some or all of the following RCM commands:
- `queryremove` – Queries whether the resource can be released
- `preremove` – Releases the resource
- `postremove` – Provides post-resource removal notification
- `undoremove` – Undoes the actions done in `preremove`

For a complete description of these RCM commands, see `rcmscript(4)`.

RCM Script Processing Environment

When you dynamically remove a device, the RCM daemon runs the following:
- The script's `register` command to gather the list of resources (device names) that are identified in the script.
- The script's `queryremove` and `preremove` commands prior to removing the resource if the script's registered resources are affected by the dynamic remove operation.
- The script's `postremove` command if the remove operation succeeds. However, if the remove operation fails, the RCM daemon runs the script's `undoremove` command.

RCM Script Tasks

The following sections describe the RCM script tasks for application developers and system administrators.

Application Developer RCM Script (Task Map)

The following task map describes the tasks for an application developer who is creating an RCM script.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the resources your application uses.</td>
<td>Identify the resources (device names) your application uses that you could potentially dynamically remove.</td>
<td><code>cfgadm(1M)</code></td>
</tr>
</tbody>
</table>
Task Description For Instructions

1. **Identify the commands to release the resource.**
 - Identify the commands for notifying the application to cleanly release the resource from the application.
 - Application documentation

2. **Identify the commands for post-removal of the resource.**
 - Include the commands for notifying the application of the resource removal.
 - `rcmscript(4)`

3. **Identify the commands if the resource removal fails.**
 - Include the commands for notifying the application of the available resource.
 - `rcmscript(4)`

4. **Write the RCM script.**
 - Write the RCM script based on the information identified in tasks 1-3.
 - “Tape Backup RCM Script Example” on page 110

5. **Install the RCM script.**
 - Add the script to the appropriate script directory.
 - “How to Install an RCM Script” on page 108

6. **Test the RCM script**
 - Test the script by running the script commands manually and by initiating a dynamic reconfiguration operation.
 - “How to Test an RCM Script” on page 109

System Administrator RCM Script (Task Map)

The following task map describes the tasks for a system administrator who is creating an RCM script to do site customization.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Identify the resources to be dynamically removed.</td>
<td>Identify the resources (device names) to be potentially removed by using the <code>cfgadm -l</code> command.</td>
</tr>
<tr>
<td>2.</td>
<td>Identify the applications to be stopped.</td>
<td>Identify the commands for stopping the applications cleanly.</td>
</tr>
<tr>
<td>3.</td>
<td>Identify the commands for pre-removal and post-removal of the resource.</td>
<td>Identify the actions to be taken before and after the resource is removed.</td>
</tr>
<tr>
<td>4.</td>
<td>Write the RCM script.</td>
<td>Write the RCM script based on the information identified in tasks 1-3.</td>
</tr>
<tr>
<td>5.</td>
<td>Install the RCM script.</td>
<td>Add the script to the appropriate script directory.</td>
</tr>
</tbody>
</table>
Task Description

6. Test the RCM script. Test the script by running the script commands manually and by initiating a dynamic reconfiguration operation.

Naming an RCM Script

A script must be named as `vendor,service` where the following applies:

- **vendor**: Is the stock symbol of the vendor that provides the script, or any distinct name that identifies the vendor.
- **service**: Is the name of the service that the script represents.

Installing or Removing an RCM Script

You must be superuser (root) to install or remove an RCM script. Use this table to determine where you should install your RCM script.

<table>
<thead>
<tr>
<th>Directory Location</th>
<th>Script Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/rcm/scripts</code></td>
<td>Scripts for specific systems</td>
</tr>
<tr>
<td><code>(/usr/platform/uname -i)/lib/rcm/scripts</code></td>
<td>Scripts for a specific hardware implementation</td>
</tr>
<tr>
<td><code>(/usr/platform/uname -m)/lib/rcm/scripts</code></td>
<td>Scripts for a specific hardware class</td>
</tr>
<tr>
<td><code>/usr/lib/rcm/scripts</code></td>
<td>Scripts for any hardware</td>
</tr>
</tbody>
</table>

How to Install an RCM Script

1. Become superuser.

2. Copy the script to the appropriate directory.
 - See Table 6–1.
 - For example:
     ```bash
     # cp SUNW,sample.pl /usr/lib/rcm/scripts
     ```

3. Change the user ID and the group ID of the script to the desired values.
   ```bash
   # chown username:groupname /usr/lib/rcm/scripts/SUNW,sample.pl
   ```
4 Send SIGHUP to the RCM daemon.
 # pkill -HUP -x -u root rcm_daemon

▼ How to Remove an RCM Script

1 Become superuser.

2 Remove the script from the RCM script directory.
 For example:
 # rm /usr/lib/rcm/scripts/SUNW,sample.pl

3 Send SIGHUP to the RCM daemon.
 # pkill -HUP -x -u root rcm_daemon

▼ How to Test an RCM Script

1 Set environment variables, such as RCM_ENV_FORCE, in the command-line shell before running your script.
 For example, in the Korn shell, use the following:
 $ export RCM_ENV_FORCE=TRUE

2 Test the script by running the script commands manually from the command line.
 For example:
 $ script-name scriptinfo
 $ script-name register
 $ script-name preremove resource-name
 $ script-name postremove resource-name

3 Make sure that each RCM script command in your script prints appropriate output to stdout.

4 Install the script in the appropriate script directory.
 For more information, see “How to Install an RCM Script” on page 108.

5 Test the script by initiating a dynamic remove operation.
 For example, assume your script registers the device, /dev/dsk/c1t0d0s0. Try these commands.
 $ cfgadm -c unconfigure c1::dsk/c1t0d0
 $ cfgadm -f -c unconfigure c1::dsk/c1t0d0
 $ cfgadm -c configure c1::dsk/c1t0d0
Caution – Make sure that you are familiar with these commands because they can alter the state of the system and cause system failures.

Tape Backup RCM Script Example

This example illustrates how to use an RCM script for tape backups.

What the Tape Backup RCM Script Does

The tape backup RCM script performs the following steps:

1. Sets up a dispatch table of RCM commands.
2. Calls the dispatch routine that corresponds to the specified RCM command and exits with status 2 for unimplemented RCM commands.
3. Sets up the scriptinfo section.

 `rcm_script_func_info=Tape backup appl script for DR`

4. Registers all tape drives in the system by printing all tape drive device names to stdout.

 `rcm_resource_name=/dev/rmt/$f`

 If an error occurs, the script prints the error information to stdout.

 `rcm_failure_reason=$errmsg`

5. Sets up the resource information for the tape device.

 `rcm_resource_usage_info=Backup Tape Unit Number $unit`

6. Sets up the preremove information by checking if the backup application is using the device. If the backup application is not using the device, the dynamic reconfiguration operation continues. If the backup application is using the device, the script checks RCM_ENV_FORCE. If RCM_ENV_FORCE is set to FALSE, the script denies the dynamic reconfiguration operation and prints the following message:

 `rcm_failure_reason=tape backup in progress pid=...`

 If RCM_ENV_FORCE is set to TRUE, the backup application is stopped, and the reconfiguration operation proceeds.

Outcomes of the Tape Backup Reconfiguration Scenarios

Here are the various outcomes if you use the `cfgadm` command to remove a tape device without the RCM script.

- If you use the `cfgadm` command and the backup application is not using the tape device, the operation succeeds.
- If you use the `cfgadm` command and the backup application is using the tape device, the operation fails.
Here are the various outcomes if you use the `cfgadm` command to remove a tape device with the RCM script.

- If you use the `cfgadm` command and the backup application is not using the tape device, the operation succeeds.
- If you use the `cfgadm` command without the `-f` option and the backup application is using the tape device, the operation fails with an error message similar to the following:
  ```
  tape backup in progress pid=...
  ```
- If you use the `cfgadm -f` command and the backup application is using the tape device, the script stops the backup application and the `cfgadm` operation succeeds.

Example—Tape Backup RCM Script

```perl
#!/usr/bin/perl -w
#
# A sample site customization RCM script.
#
# When RCM_ENV_FORCE is FALSE this script indicates to RCM that it cannot
# release the tape drive when the tape drive is being used for backup.
# When RCM_ENV_FORCE is TRUE this script allows DR removing a tape drive
# when the tape drive is being used for backup by killing the tape
# backup application.
#
use strict;
my ($cmd, %dispatch);
$cmd = shift(@ARGV);
# dispatch table for RCM commands
%dispatch = {
    "scriptinfo" => \&do_scriptinfo,
    "register"  => \&do_register,
    "resourceinfo" => \&do_resourceinfo,
    "queryremove" => \&do_preremove,
    "preremove"  => \&do_preremove
};

if (defined($dispatch{$cmd})) {
    \&{$dispatch{$cmd}};
} else {
    exit (2);
}

sub do_scriptinfo
{
    print "rcm_script_version=1\n";
    print "rcm_script_func_info=Tape backup appl script for DR\n";
    exit (0);
}

sub do_register
{
my ($dir, $f, $errmsg);

$dir = opendir(RMT, "\dev/rmt");
if (!$dir) {
  $errmsg = "Unable to open /dev/rmt directory: $!";
  print "rcm_failure_reason=$errmsg\n";
  exit (1);
}

while ($f = readdir(RMT)) {
  # ignore hidden files and multiple names for the same device
  if (($f !~ \^/\.) && ($f =~ \^[0-9]+$/)) {
    print "rcm_resource_name=\dev/rmt/$f\n";
  }
}

closedir(RMT);
exit (0);

sub do_resourceinfo
{
  my ($rsrc, $unit);

  $rsrc = shift(@ARGV);
  if ($rsrc =~ \^/dev/rmt\/[0-9]+$/) {
    $unit = $1;
    print "rcm_resource_usage_info=Backup Tape Unit Number $unit\n";
    exit (0);
  } else {
    print "rcm_failure_reason=Unknown tape device!\n"
    exit (1);
  }
}

sub do_preremove
{
  my ($rsrc);

  $rsrc = shift(@ARGV);

  # check if backup application is using this resource
  #if (the backup application is not running on $rsrc) {
    # allow the DR to continue
    # exit (0);
  #}

  # If RCM_ENV_FORCE is FALSE deny the operation.
  # If RCM_ENV_FORCE is TRUE kill the backup application in order
  # to allow the DR operation to proceed
  #
  if ($ENV{RCM_ENV_FORCE} eq 'TRUE') {
    if ($cmd eq 'preremove') {
      # kill the tape backup application
    }
    exit (0);
  } else {
    #
    # indicate that the tape drive can not be released
# since the device is being used for backup by the
tape backup application
print "rcm_failure_reason=tape backup in progress pid=...\n"
;
exit (3);
This chapter provides an overview of Universal Serial Bus (USB) devices in the Oracle Solaris OS.

This is a list of the overview information in this chapter.

- “What's New in USB Devices?” on page 115
- “Overview of USB Devices” on page 119
- “About USB in the Oracle Solaris OS” on page 125

For recent information about USB devices, go to the following site:


For general information about USB devices, go to the following site:

http://developers.sun.com/solaris/developer/support/driver/usb.html

For step-by-step instructions on using USB devices in the Oracle Solaris OS, see Chapter 8, "Using USB Devices (Tasks)."

For general information about dynamic reconfiguration and hot-plugging, see Chapter 6, "Dynamically Configuring Devices (Tasks)."

For information on configuring USB printers, see System Administration Guide: Printing.

What's New in USB Devices?

The following section describes new USB features in the Solaris release.

- “EHCI Isochronous Transfer Support” on page 116
- “Support for CDC ACM Devices” on page 116
- “Changed USB Device Hotpluggable Behavior” on page 116
- “USB Power Budgeting” on page 117
What's New in USB Devices?

- "Oracle Solaris ZFS Support on USB Devices" on page 116
- "Support for Prolific and Keyspan Serial Adapters" on page 117
- "x86: Support for USB CDs and DVDs in GRUB-Based Booting" on page 117
- "USB Virtual Keyboard and Mouse Support" on page 117
- "vold Provides Awareness of Hot-Plugged USB Devices" on page 118

For a complete listing of new Solaris features and a description of Solaris releases, see Oracle Solaris 10 9/10 What’s New.

**EHCI Isochronous Transfer Support**

**Solaris 10 8/07:** USB EHCI host controller driver provides isochronous transfer support for USB 2.0 or high-speed isochronous devices. For more information, see `usb_isoc_request(9S)`.

**Support for CDC ACM Devices**

**Solaris 10 8/07:** Support for CDC ACM devices is provided in this release. For more information, see “USB Driver Enhancements” on page 122.

**Changed USB Device Hotpluggable Behavior**

**Solaris 10 6/06:** This feature information has been revised in the Solaris 10 11/06 release.

This Solaris release introduces a new device attribute, `hotpluggable`, to identify those devices that can be connected or disconnected without rebooting the system and configured or unconfigured automatically without user intervention. All USB and 1394 devices are identified as hotpluggable devices to gain those benefits described in “Using USB Mass Storage Devices” on page 133. In addition, non-removable media USB and 1394 devices are no longer identified as removable-media devices and no longer have a `removable-media` attribute.

The changes are primarily made at the kernel level to improve support for non-removable media USB and 1394 devices, and improve the performance for those devices. However, these changes do not impact the use of these devices. For example, the responsibility of mounting and unmounting these devices is controlled by `vold`. From a user’s perspective, the only visible changes are the hotpluggable and removable-media attributes of a device.

For more information, see “USB and 1394 (FireWire) Support Enhancements” on page 65.

**Oracle Solaris ZFS Support on USB Devices**

You can create and mount ZFS file systems on USB mass storage devices. For information about using USB mass storage devices, see “Using USB Mass Storage Devices” on page 133.

For information about creating and mounting ZFS file systems, see `zfs(1M)` and `zpool(1M)`.
Support for Prolific and Keyspan Serial Adapters

**Solaris 10 6/06:** Previously, this feature was incorrectly identified as available in the Solaris 10 1/06 release. This feature is available starting in the Solaris 10 6/06 release.

USB Power Budgeting

**Solaris 10 6/06:** This Solaris release includes power budgeting of USB devices to better manage the power that is distributed to USB devices. Power budget control helps prevent over-current conditions from occurring and generally makes using USB devices safer. For more information about Solaris USB power budgeting limitations, see "Bus-Powered Devices" on page 127.

x86: Support for USB CDs and DVDs in GRUB-Based Booting

**Solaris 10 1/06:** You can use the following USB features in the GRUB-based booting environment:

- Installing from USB CD or DVD drives
- Booting from USB storage devices. You must install the Solaris release on the USB drive before you can boot from it.

For more information about GRUB-based booting, see Chapter 9, "Shutting Down and Booting a System (Overview)," in *System Administration Guide: Basic Administration.*

USB Virtual Keyboard and Mouse Support

**Solaris 10 1/06:** USB virtual keyboard and mouse support enables you to hook up multiple keyboards and multiple mice, where the set of keyboards or mice behave as one virtual keyboard or mouse. This means that the input of each physical device is coalesced into a single input stream. For example, if you type SHIFT on one keyboard and A on another, the character echoed is an uppercase A.

Also supported is the ability to add a USB keyboard or mouse to a laptop and have these devices work as one device with the laptop’s PS/2 keyboard and pad.

In addition, support for barcode readers is provided by the virtual keyboard and mouse feature.

For more information, refer to `virtualkm(7D)`.
**vold Provides Awareness of Hot-Plugged USB Devices**

**Solaris 10 1/06:** The removable media manager (vold) is now hotplug aware. There is no need to restart this daemon to mount a USB mass storage device that has been hot-inserted. However, for some devices, it might still be necessary to manually mount the devices as vold is not always successful. In the case where vold fails to automatically mount a USB device, stop vold, like this:

```bash
/etc/init.d/volmgt stop
```

For information about manually mounting a USB mass storage device, see “How to Mount or Unmount a USB Mass Storage Device Without vold Running” on page 149.

**Solaris Support for USB Devices**

Use the following table to identify Solaris support information for specific USB 1.1 and USB 2.0 devices.

<table>
<thead>
<tr>
<th>USB Device</th>
<th>Solaris 8 HW S/03 and Later Releases</th>
<th>Solaris 9 Releases</th>
<th>Solaris 10 Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>General USB 1.1 device support</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>General USB 2.0 device support</td>
<td>SPARC only</td>
<td>SPARC and x86 (Solaris 9/04)</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>Specific USB 1.1 and USB 2.0 device support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>audio devices (See notes below.)</td>
<td>USB 1.1 only:</td>
<td>USB 1.1 only:</td>
<td>USB 1.1 only:</td>
</tr>
<tr>
<td></td>
<td>Not supported on a USB 2.0 hub</td>
<td>Not supported on a USB 2.0 hub</td>
<td>Supported on a USB 2.0 hub</td>
</tr>
<tr>
<td>generic USB driver (<em>ugen</em>(7D))</td>
<td>SPARC only</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>hid devices (keyboard and mouse devices, <em>hid</em>(7D))</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>hubs (<em>hubd</em>(7D))</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>printers</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>serial devices (Edgeport (usbser_edge(7D)), Prolific (usbsprl(7D)), Keyspan (usbsksp(7D)))</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
<tr>
<td>storage devices (<em>scsa2usb</em>(7D))</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
<td>SPARC and x86</td>
</tr>
</tbody>
</table>
Overview of USB Devices

Universal Serial Bus (USB) was developed by the PC industry to provide a low-cost solution for attaching peripheral devices, such as keyboards, mouse devices, and printers, to a system.

USB connectors are designed to fit only one type of cable, in one way. The primary design motivation for USB was to alleviate the need for multiple connector types for different devices. This design reduces the clutter on the back panel of a system.

Devices connect to USB ports on external USB hubs, or on a root hub that is located on the computer itself. Since hubs have several ports, several branches of a device tree can stem from a hub.

For more information, see usba(7D) or go to the following site:

http://www.usb.org/home
Commonly Used USB Acronyms

The following table describes the USB acronyms that are used in the Oracle Solaris OS. For a complete description of USB components and acronyms, go to:

http://www.usb.org/home

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGEN</td>
<td>USB generic driver</td>
<td>ugen(7D)</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
<td>usb(7D)</td>
</tr>
<tr>
<td>USBA</td>
<td>Universal Serial Bus Architecture (Solaris)</td>
<td>usba(7D)</td>
</tr>
<tr>
<td>USBAI</td>
<td>USBA Client Driver Interface (Solaris)</td>
<td>N/A</td>
</tr>
<tr>
<td>HCD</td>
<td>USB host controller driver</td>
<td>N/A</td>
</tr>
<tr>
<td>EHCI</td>
<td>Enhanced Host Controller Interface</td>
<td>ehci(7D)</td>
</tr>
<tr>
<td>OHCI</td>
<td>Open Host Controller Interface</td>
<td>ohci(7D)</td>
</tr>
<tr>
<td>UHCI</td>
<td>Universal Host Controller Interface</td>
<td>uhci(7D)</td>
</tr>
</tbody>
</table>

USB Bus Description

The USB specification is openly available and free of royalties. The specification defines the electrical and mechanical interfaces of the bus and the connectors.

USB employs a topology in which hubs provide attachment points for USB devices. The host controller contains the root hub, which is the origin of all USB ports in the system. For more information about hubs, see “USB Host Controller and Hubs” on page 128.
Figure 7–1 shows a system with three active USB ports. The first USB port connects a USB memory stick. The second USB port connects an external hub, which in turn, connects a cdrw device and a composite keyboard/mouse device. As a composite device, this keyboard contains a USB controller, which operates both the keyboard and an attached mouse. The keyboard and the mouse share a common USB bus address because they are directed by the same USB controller.

Figure 7–1 also shows an example of a hub and a printer as a compound device. The hub is an external hub that is enclosed in the same casing as the printer. The printer is permanently connected to the hub. The hub and printer have separate USB bus addresses.

The device tree path name for some of the devices that are displayed in Figure 7–1 are listed here.

- Memory stick: `/pci@1f,4000/usb@5/storage@1`
- Keyboard: `/pci@1f,4000/usb@5/hub@2/device@1/keyboard@0`
- Mouse: `/pci@1f,4000/usb@5/hub@2/device@1/mouse@1`
- cdrw device: `/pci@1f,4000/usb@5/hub@2/storage@3`
- Printer: `/pci@1f,4000/usb@5/hub@3/printer@1`
USB Devices and Drivers

USB devices with similar attributes and services are grouped into device classes. Each device class has a corresponding driver. Devices within a class are managed by the same device driver pair. However, the USB specification also allows for vendor-specific devices that are not part of a specific class.

The Human Interface Device (HID) class contains devices that are user-controlled such as the following devices:

- Keyboards
- Mouse devices
- Joysticks

The Communication Device class includes the following devices:

- Modems
- Ethernet adapters

Other device classes include the following classes:

- Audio
- Monitor
- Printer
- Storage Device

Each USB device contains descriptors that reflect the class of the device. A device class specifies how its members should behave in configuration and data transfer. You can obtain additional class information from:

http://www.usb.org/home

For more information about USB devices supported in the Solaris release, see `usb(7D)`.

USB Driver Enhancements

The following USB driver enhancements are included.

- **USB CDC ACM device support** – The `acm` driver can work with devices that are compliant with the USB Communication Class Device specification’s Abstract Control Model and some PCMCIA cards that have modem capabilities.
  
  The `pppd` daemon can access these devices through the `/dev/term/[0-9]*` entries. For more information, see `pppd(1M)`.
  
  For more information, see `usbsacm(7D)`.

- **Generic USB driver** – USB devices can now be accessed and manipulated by applications using standard UNIX `read(2)` and `write(2)` system calls, and without writing a special kernel driver. Additional features include:
Applications have access to raw device data and device status.
The driver supports control, bulk, and interrupt (in and out) transfers.

Starting in the Solaris 10 6/06 release, the ugen driver no longer needs to bind explicitly to a device. By default, usb_midi binds to devices that lack a class driver and exports a ugen interface that works with libusb. For example, you can plug in a USB camera that is not a mass-storage device and use a libusb application to access it. In addition, both scsa2usb and usbprn drivers export ugen interfaces and libusb applications can be used on these classes of devices directly.

For more information, refer to ugen(7D).

**USB serial driver support**

- Digi Edgeport USB support – The Edgeport USB driver only works with Edgeport devices and not with other USB serial devices.
  - New devices are accessed as /dev/term/[0-9]* and /dev/cua/[0-9]*.
  - USB serial ports are usable as any other serial port would be, except that they cannot serve as a local serial console. The fact that their data is run through a USB port is transparent to the user.

For more information, see usbser_edge(7D), or go to the following sites:

- [http://www.digi.com](http://www.digi.com)

- Keyspan – The Keyspan USB serial driver only works with Keyspan devices, which currently supports the USA-19HS and USA-49WLC models.
  For more information, see usbsksp(7D).

- Prolific – The Prolific USB serial driver only works with devices based on the PL2303 chipset.
  For more information, see usbsprl(7D).

For more information about the USB to serial devices support, go to the following site:


- **Documentation and binary support for user-written kernel and userland drivers** – For up-to-date information on USB driver development, go to:
  - Chapter 20, "USB Drivers,” in Writing Device Drivers
  - Appendix C, “Making a Device Driver 64-Bit Ready,” in Writing Device Drivers
  - Device Driver Tutorial
The EHCI, OHCI, and UHCI Drivers

Features of the EHCI driver include:

- Complies with enhanced host controller interface that supports USB 2.0.
- Supports high-speed control, bulk, interrupt, and isochronous transfers.
- The USB 2.0 chip has one EHCI controller and one or more OHCI or UHCI controllers.
- A USB 1.1 device is dynamically assigned to the OHCI or UHCI controller when it is plugged in. A USB 2.0 device is dynamically assigned to the EHCI controller when it is plugged in.

Use the `prtconf` command output to identify whether your system supports USB 1.1 or USB 2.0 devices. For example:

```
prtconf -D | egrep "ehci|ohci|uhci"
```

If your `prtconf` output identifies an EHCI controller, your system supports USB 2.0 devices.

If your `prtconf` output identifies an OHCI or UHCI controller, your system supports USB 1.1 devices.

**Solaris USB Architecture (USBA)**

USB devices can be represented as two levels of device tree nodes. A device node represents the entire USB device. One or more child `interface` nodes represent the individual USB interfaces on the device.

Driver binding is achieved by using the compatible name properties. For more information, refer to 3.2.2.1 of the IEEE 1275 USB binding and *Writing Device Drivers*. A driver can either bind to the entire device and control all the interfaces, or can bind to just one interface. If no vendor or class driver claims the entire device, a generic USB multi-interface driver is bound to the device-level node. This driver attempts to bind drivers to each interface by using compatible names properties, as defined in section 3.3.2.1 of the IEEE 1275 binding specification.

The Solaris USB Architecture (USBA) adheres to the USB 1.1 and USB 2.0 specifications and is part of the Solaris Device Driver Interface (DDI). The USBA model is similar to Sun Common SCSI Architecture (SCSA). As the following figure shows, the USBA is a thin layer that provides a generic USB transport-layer abstraction to client drivers, providing them with services that implement core generic USB functionality.
This section describes information you should know about USB in the Oracle Solaris OS.

### USB 2.0 Features

The following USB 2.0 features are included:

- **Better performance** – Increased data throughput for devices connected to USB 2.0 controllers, up to 40 times faster than USB 1.1 devices.
  
  You can take advantage of the high-speed USB protocol when accessing high-speed USB devices, such as DVDs and hard disks.

- **Backward Compatibility** – Compatibility with 1.0 and 1.1 devices and drivers so that you can use the same cables, connectors, and software interfaces.

For a description of USB devices and terminology, see “Overview of USB Devices” on page 119.

### USB 2.0 Device Features and Compatibility Issues

USB 2.0 devices are defined as high-speed devices that follow the USB 2.0 specification. You can refer to the USB 2.0 specification at [http://www.usb.org/home](http://www.usb.org/home).

To identify the speed of your USB device in the Solaris 10 releases, check the `/var/adm/messages` file for messages similar to the following:

Dec 13 17:05:57 mysystem usba: [ID 912658 kern.info] USB 2.0 device (usb50d,249) operating at hi speed (USB 2.x) on USB 2.0 external hub: storage@4, scsa2usb0 at bus address 4
Here are some of the USB devices that are supported in this Solaris release:

- Mass storage devices, such as CD-RWs, hard disks, DVDs, digital cameras, diskettes, tape drives, memory sticks, and multi-format card readers
- Keyboards and mouse devices
- Audio devices, such as speakers and microphones

For a full listing of USB devices that have been verified on the Solaris release, go to:


Additional storage devices might work by modifying the scsa2usb.conf file. For more information, see scsa2usb(7D).

Solaris USB 2.0 device support includes the following features:

- Increased USB bus speed from 12 MB/sec to 480 MB/sec. This increase means devices that support the USB 2.0 specification can run significantly faster than their USB 1.1 counterparts, when they are connected to a USB 2.0 port.

A USB 2.0 port might be one of the following possibilities:

- A port on a USB 2.0 PCI card
- A port on a USB 2.0 hub that is connected to USB 2.0 port
- A port on a SPARC or x86 computer motherboard

A USB 2.0 PCI card might be needed for older SPARC platforms.

- For a list of USB 2.0 PCI cards that have been verified for the Solaris release, go to:

- USB 1.1 devices work as they have in the past, even if you have both USB 1.1 and USB 2.0 devices on the same system.

- While USB 2.0 devices operate on a USB 1.x port, their performance is significantly better when they are connected to a USB 2.0 port.

- A USB 2.0 host controller has one high-speed Enhanced Host Controller Interface (EHCI) and one or more OpenHCI Host Controller Interface (OHCI) or Universal Host Controller Interface (UHCI) embedded controllers. Devices connected to a USB 2.0 port are dynamically assigned to either an EHCI or OHCI controller, depending on whether they support USB 2.0.
Note – USB 2.0 storage devices that are connected to a port on a USB 2.0 PCI card, and that were used with a prior Solaris release in the same hardware configuration, can change device names after upgrading to this release. This change occurs because these devices are now seen as USB 2.0 devices and are taken over by the EHCI controller. The controller number, w in /dev/[r]dsk/cwtxdzys, is changed for these devices.

Also note that the speed of a USB device is limited to what the parent port can support. For example, if a USB 2.0 external hub is followed by a USB 1.x hub and a USB 2.0 device downstream, devices that are connected to the USB 2.0 external hub run at full speed and not high speed.

For more information on USB 2.0 device support, see `ehci(7D)` and `usba(7D)`.

**Bus-Powered Devices**

Bus-powered hubs use power from the USB bus to which they are connected, to power devices connected to them. Special care must be taken to not overload these hubs, because the power these hubs offer to their downstream devices is limited.

Starting in the Solaris 10 6/06 release, power budgeting is implemented for USB devices. This feature has the following limitations:

- Cascading two bus-powered hubs is prohibited.
- Each bus-powered hub is allowed a maximum of 100 mA only for each port.
- Only self-powered or low bus-powered devices are allowed to connect to a bus-powered hub. High bus-powered devices are denied the connection. Some hubs or devices can report a false power source, such that the connection might be unpredictable.

**USB Keyboards and Mouse Devices**

Keep the following issues in mind when using USB keyboards and mouse devices:

- Do not move the keyboard and mouse *during* a reboot or at the `ok` prompt on a SPARC system. You can move the keyboard and mouse to another hub at any time *after* a system reboot. After you plug in a keyboard and mouse, they are fully functional again.
- The keys just to the left of the keypad might not function on some third-party USB keyboards.
- **SPARC** – Keep the following issues in mind when using USB keyboards and mouse devices on SPARC systems:
The power key on a USB keyboard behaves differently than the power key on the Sun type 5 keyboard. On a USB keyboard, you can suspend or shut down the system by using the SUSPEND/SHUTDOWN key. However, you cannot use that key to power up the system.

Before the boot process finishes, the OpenBoot PROM (OBP) limits keyboard and mouse devices to the motherboard root hub ports only.

USB keyboard and mouse devices cannot be used simultaneously with Sun Type 3, 4, or 5 keyboards on legacy SPARC systems, such as the Ultra 80.

For information about multiple keyboard and mouse device support, see `virtualkm(7D)`.

### USB Wheel Mouse Support

Starting in the Solaris 9 9/04 release, the following wheel mouse features are supported:

- Support for more than 3 buttons is available on USB or PS/2 mouse devices.
- Wheel mouse scrolling is available on a USB or PS/2 mouse device. This support means that rolling the wheel on a USB or a PS/2 mouse results in a scroll in the application or window under mouse focus. StarOffice, Firefox, and GNOME applications support wheel mouse scrolling. However, other applications might not support wheel mouse scrolling.

### USB Host Controller and Hubs

A USB hub is responsible for the following:

- Monitoring the insertion or removal of a device on its ports
- Power managing individual devices on its ports
- Controlling power to its ports

The USB host controller has an embedded hub called the root hub. The ports that are visible at the system’s back panel are the ports of the root hub. The USB host controller is responsible for the following:

- Directing the USB bus. Individual devices cannot arbitrate for the bus.
- Polling the devices by using a polling interval that is determined by the device. The device is assumed to have sufficient buffering to account for the time between the polls.
- Sending data between the USB host controller and its attached devices. Peer-to-peer communication is not supported.
USB Hub Devices

- Do not cascade hubs beyond four levels on either SPARC based systems or x86 based systems. On SPARC systems, the OpenBoot PROM cannot reliably probe beyond four levels of devices.
- Do not plug a bus-powered hub into another bus-powered hub in a cascading style. A bus-powered hub does not have its own power supply.
- Do not connect a device that requires a large amount of power to a bus-powered hub. These devices might be denied connection to bus-powered hubs or might drain the hub of power for other devices. An example of such a device is a USB diskette device.

SPARC: USB Power Management

Suspending and resuming USB devices is fully supported on SPARC systems. However, do not suspend a device that is busy and never remove a device when the system is powered off under a suspend shutdown.

The USB framework makes a best effort to power manage all devices on SPARC based systems with power management enabled. Power managing a USB device means that the hub driver suspends the port to which the device is connected. Devices that support remote wake up can notify the system to wake up everything in the device’s path so that the device can be used. The host system could also wake up the device if an application sends an I/O to the device.

All HID devices (keyboard, mouse, hub, and storage devices), hub devices, and storage devices are power managed by default if they support remote wake-up capability. A USB printer is power managed only between two print jobs. Devices that are managed by the generic USB driver (UGEN) are power managed only when they are closed.

When power management is running to reduce power consumption, USB leaf devices are powered down first. After all devices that are connected to a hub’s ports are powered down, the hub is powered down after some delay. To achieve the most efficient power management, do not cascade many hubs.

For information about using the SUSPEND/SHUTDOWN key on SPARC systems, see “USB Keyboards and Mouse Devices” on page 127.

Guidelines for USB Cables

Keep the following guidelines in mind when connecting USB cables:

- Always use USB 2.0 compliant, fully rated (480 Mbit/sec) 20/28 AWG cables for connecting USB 2.0 devices.
- The maximum cable length that is supported is 5 meters.
Do not use cable extenders. For best results, use a self-powered hub to extend cable length.

For more information, go to:

http://www.usb.org/about/faq/ans5
This chapter provides step-by-step instructions for using USB devices in the Oracle Solaris OS.

For information on the procedures associated with using USB devices, see the following:

- "Managing USB Devices in the Oracle Solaris OS (Roadmap)” on page 131
- "Using USB Mass Storage Devices (Task Map)” on page 132
- "Using USB Audio Devices (Task Map)” on page 152
- "Hot-Plugging USB Devices With the cfgadm Command (Task Map)” on page 156

For recent information about USB devices, go to the following site:


For overview information about using USB devices, see Chapter 7, "Using USB Devices (Overview).”

Managing USB Devices in the Oracle Solaris OS (Roadmap)

Use this road map to identify all the tasks for managing USB devices in the Oracle Solaris OS. Each task points to a series of additional tasks such as using USB devices, hot-plugging USB devices, and adding USB audio devices.

For information about using USB components in the Oracle Solaris OS, see "About USB in the Oracle Solaris OS” on page 125.
### Using USB Mass Storage Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use USB mass storage devices.</td>
<td>A USB mass storage device must contain a file system before you can add data to it. In addition, a USB diskette must be formatted before file systems can be created and mounted on them. This section also describes how to physically add or remove USB devices from your system.</td>
<td>&quot;Using USB Mass Storage Devices (Task Map)&quot; on page 132</td>
</tr>
<tr>
<td>Add USB audio devices.</td>
<td>Use this task map to identify tasks associated with adding USB audio devices.</td>
<td>&quot;Using USB Audio Devices (Task Map)&quot; on page 152</td>
</tr>
<tr>
<td>Add or remove USB devices to and from your system with the <code>cfgadm</code> command.</td>
<td>You can logically add or remove USB devices to and from your system with the <code>cfgadm</code> command.</td>
<td>&quot;Hot-Plugging USB Devices With the <code>cfgadm</code> Command (Task Map)&quot; on page 156</td>
</tr>
</tbody>
</table>

### Using USB Mass Storage Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add or remove a USB mass storage device.</td>
<td>Select one of the following to add a USB mass storage device: Add a USB mass storage device. Add a USB camera to access digital images. Remove a USB mass storage device without <code>vold</code> running.</td>
<td>&quot;How to Add a USB Mass Storage Device Without <code>vold</code> Running&quot; on page 137</td>
</tr>
<tr>
<td>Add a non-compliant USB mass storage device.</td>
<td>Add a non-compliant USB mass storage device by adding an entry to <code>scsa2usb.conf</code>.</td>
<td>&quot;How to Use a Non-Compliant USB Mass Storage Device&quot; on page 135</td>
</tr>
<tr>
<td>Prepare to use a USB mass storage device.</td>
<td>Prepare to use a USB mass storage device with <code>vold</code> running.</td>
<td>&quot;Preparing to Use a USB Mass Storage Device With <code>vold</code> Running&quot; on page 139</td>
</tr>
<tr>
<td>Display USB device information.</td>
<td>Display information about USB devices.</td>
<td>&quot;How to Display USB Device Information&quot; on page 140</td>
</tr>
</tbody>
</table>
Using USB Mass Storage Devices

Starting in the Solaris 9 release, the following USB removable mass storage devices are supported:

- CD-RWs
- Hard disks
- DVDs
- Digital cameras
- Diskette devices
- SmartMedia and CompactFlash devices

For information about using USB mass storage devices with the Oracle Solaris ZFS file system, see “What’s New in USB Devices?” on page 115

For a complete list of USB devices that are supported in the Oracle Solaris OS, see:

In previous Solaris releases, all USB storage devices were identified as removable media devices, which provides many of the following advantages, including automatic mounting. In the Solaris 10 6/06 release, USB mass storage devices are identified as hotpluggable devices but also enjoy the advantages of USB removable devices that are listed below. For more information about the hotpluggable behavior, see “USB and 1394 (FireWire) Support Enhancements” on page 65.

- Starting in the Solaris 10 1/06 release, a hot-pluggable device is automatically mounted. For more information, see “voold Provides Awareness of Hot-Plugged USB Devices” on page 118.
- USB storage devices with standard MS-DOS or Windows (FAT) file systems are supported.
- You can use the user-friendly rmformat command to create slices. You can also use the fdisk command to partition a USB device, but never use the format utility or the rmformat -F command to physically format a USB drive.
- Use the rmformat command to display all USB devices with media inserted. For example, see “How to Display USB Device Information” on page 140.
- Non-root users can now access USB storage devices, since the mount command is no longer needed. The device is automatically mounted and is available under the /rmdisk directory. If a new device is connected while the system is down, do a reconfiguration boot with the boot -r command so that the device is recognized.
- These devices can be managed with or without removable media services.
- Disks with FAT file systems can be mounted and accessed. For example:
  ```bash
 mount -F pcfs /dev/dsk/c2t0d0s0:c /mnt
  ```
- All USB storage devices are now power managed, except for those that support LOG SENSE pages. Devices with LOG SENSE pages are usually SCSI drives connected through a USB-to-SCSI bridge device.
- Applications might work differently with USB mass storage devices. Keep the following issues in mind when using applications with USB storage devices:
  - Applications might make incorrect assumptions about the size of the media since only smaller devices like diskettes were removable previously.
  - Requests by applications to eject media on devices where this would be inapplicable, such as a hard drive, will succeed and do nothing.
  - If you prefer the behavior in previous Solaris releases where all USB mass storage were treated as removable media devices, then you can force the old behavior by updating the /kernel/drv/scsa2usb.conf file.

For more information on using USB mass storage devices, see scsa2usb(7D).
Using USB Diskette Devices

USB diskette devices appear as removable media devices. USB diskette devices are not managed by the fd (floppy) driver. Applications that issue ioctl(2) calls intended for the fd (native floppy) driver will fail. Applications that issue only read(2) and write(2) calls will succeed. Other applications, such as SunPCI and rmformat, also succeed.

The USB diskette device is identified as a SCSI removable media device. The device is available for access under the /rmdisk directory.

For more information on how to use USB diskette devices, see Chapter 1, “Managing Removable Media (Overview).”

Using Non-Compliant USB Mass Storage Devices

Some devices might be supported by the USB mass storage driver even though they do not identify themselves as compliant with the USB mass storage class or identify themselves incorrectly. The scsa2usb.conf file contains an attribute-override list that lists the vendor ID, product ID, and revision for matching mass storage devices, as well as fields for overriding the default device attributes. The entries in this list are commented out by default. These entries can be copied and uncommented to enable support of particular devices.

If you connect a USB mass storage device to a system running this Solaris release and the system is unable to use it, you can check the /kernel/drv/scsa2usb.conf file to see if there is a matching, commented entry for this device. Follow the information given in the scsa2usb.conf file to see if a particular device can be supported by using the override information.

For a listing of recommended USB mass storage devices, go to:

For more information, see scsa2usb(7D).

▼ How to Use a Non-Compliant USB Mass Storage Device

1 Become superuser.

2 Add an entry to the /kernel/drv/scsa2usb.conf file.
The following entry is appropriate for a USB memory stick.
attribute-override-list = "vid=* reduced-cmd-support=true";

3 Either reboot the system or do the following:
   a. Remove the device.
b. Manually update the driver.
   
   ```bash
 # update_drv -f scsa2usb
   ```

c. Add the device.

---

**Hot-Plugging USB Mass Storage Devices**

Hot-plugging a device means the device is added or removed without shutting down the operating system or powering off the system. All USB devices are hot-pluggable.

The removable media manager is now aware of hot-plugged devices. You can just plug in the device, which is mounted in a few seconds. If nothing happens, check to see if it is mounted.

Make sure that removable media services are running.

```bash
svc status volfs
STATE STIME FMRI
online 10:39:12 svc:/system/filesystem/volfs:default

svc status hal dbus rmvolmgr
STATE STIME FMRI
online May_03 svc:/system/dbus:default
online May_03 svc:/system/hal:default
online May_03 svc:/system/filesystem/rmvolmgr:default
```

The file system can be mounted from the device if it is valid and it is recognized.

If it fails to mount, stop `vold`.

```bash
svcadm disable volfs
```

If the file system on the device is not automatically mounted, try a manual mount.

Before hot-removing the device, find the name of the device in the `eject -l` command’s alias name. Then eject the device’s media. If you don’t do this, the device is released and the port is usable again, but the file system on the device might have been damaged.

When you hot-plug a USB device, the device is immediately seen in the system’s device hierarchy, as displayed in the `prtconf` command output. When you remove a USB device, the device is removed from the system’s device hierarchy, unless you are using the device.

If you are using a device when it is unplugged, the device node remains, but the driver controlling this device stops all activity on the device. Any new I/O activity issued to this device returns an error.

In this situation, the system prompts you to plug in the original device. If the device is no longer available, stop the applications. After a few seconds, the port becomes available again.
Note – Data integrity might be impaired if you remove an active or open device. Always close the device before removing, except the attached keyboard and mouse, which can be moved while active.

▼ How to Add a USB Mass Storage Device Without vold Running

1 For information on disabling removable media management, see “How to Disable or Enable Removable Media Services” on page 44.

2 Verify that vold is not running.

   ```
 # svcs volfs
 STATE STIME FMRI
 disabled 10:39:12 svc:/system/filesystem/volfs:default
   ```

3 Connect the USB mass storage device.

4 Verify that the USB device has been added.

   Locate the USB disk device links, which might be among device links of non-USB storage devices, as follows:

   ```
 $ rmmformat
 Looking for devices...
 1. Logical Node: /dev/rdsk/c3t0d0p0
 Physical Node: /pci@0,0/pci108e,4131@2,1/storage@4/disk@0,0
 Connected Device: USB2.0 Flash Disk 2.00
 Device Type: Removable
   ```

▼ How to Add a USB Camera

If the camera’s media uses a PCFS file system, it will be automatically mounted. If the device does not bind to the scsa2usb driver, use libusb applications for transferring the pictures. For more information, refer to /usr/sfw/share/doc/libusb/libusb.txt.

1 Become superuser.

2 Plug in and turn on the USB camera.

   The system creates a logical device for the camera. After the camera is plugged in, output is written to the /var/adm/messages file to acknowledge the device’s connection. The system treats the camera as a storage device.

3 Examine the output that is written to the /var/adm/messages file.

   ```
 # more /var/adm/messages
   ```
Examining this output enables you to determine which logical device was created so that you can then use that device to access your images. The output looks similar to the following:

```
Jul 15 09:53:35 buffy usba: [ID 349649 kern.info] OLYMPUS, C-3040ZOOM, 000153719068
Jul 15 09:53:35 buffy genunix: [ID 936769 kern.info] scsa2usb1 is /pci@0,0/pci925,1234@7,2/storage@2
Jul 15 09:53:36 buffy scsi: [ID 193665 kern.info] sd3 at scsa2usb1: target 0 lun 0
```

Match the device with a mountable /dev/dsk link entry, by doing the following:

```
ls -l /dev/dsk/c*0 | grep /pci@0,0/pci925,1234@7,2/storage@2
lrwxrwxrwx 1 root root 58 Jun 14 2010 c3t0d0p0 -> ../../devices/pci@0,0/pci925,1234@7,2/storage@2/disk@0,0:a
```

4 Mount the USB camera file system.
The camera’s file system is most likely a PCFS file system. If file system is PCFS, then it should be automatically mounted.

To manually mount the file system on an x86 system, you would use syntax similar to the following:

```
mount -F pcfs /dev/dsk/c3t0d0p0:c /mnt
```

To manually mount the file system on a SPARC system, you would use syntax similar to the following:

```
mount -F pcfs /dev/dsk/c3t0d0s0:c /mnt
```

For information on mounting file systems, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

For information on mounting different PCFS file systems, see `mount_pcfs(1M)`.

5 Verify that the image files are available.
For example:

```
ls /mnt/DCIM/100OLYMP/
P7220001.JPG* P7220003.JPG* P7220005.JPG*
P7220002.JPG* P7220004.JPG* P7220006.JPG*
```

6 View and manipulate the image files created by the USB camera.
For example:

```
/usr/dt/bin/sdtimage P7220001.JPG &
```

7 Unmount the file system before disconnecting the camera.
For example:

```
umount /mnt
```

8 (Optional) Turn off and disconnect the camera.
How to Remove a USB Mass Storage Device Without \texttt{vold} Running

This procedure is performed with removable media services disabled.

1. Become superuser.

2. For information on disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 44.

3. Verify that removable media services are not running.

\begin{verbatim}
# svcs volfs
STATE STIME FMRI
disabled Sep_29 svc:/system/filesystem/volfs:default
\end{verbatim}

4. Stop any active applications that are using the device.

5. Unmount the device.

6. Remove the device.

Preparing to Use a USB Mass Storage Device With \texttt{vold} Running

You can access information on removable media with or without using removable media services. For information on accessing information on removable media with GNOME’s File Manager, see the GNOME desktop documentation.

After the USB device is formatted, it is usually mounted under the \texttt{/rmdisk/label} directory.

The device nodes are created under the \texttt{/vol/dev} directory. For more information on configuring removable storage devices, see \texttt{rmmount.conf(4)} or \texttt{vold.conf(4)}.

The following procedures describe how to manage USB mass storage devices without \texttt{vold} running. The device nodes are created under the \texttt{/dev/rdsk} directory for character devices and under the \texttt{/dev/dsk} directory for block devices. Device links are created when the devices are hot-plugged. For more information, see \texttt{scsa2usb(7D)}.

If the device cannot be identified by removable media services, then try to manually mount the device. First, use the \texttt{rmformat} command to identify the device path and then use the \texttt{mount} command to manually mount the device as superuser.

If the device is manually mounted, then you would unmount it using the \texttt{umount} command as superuser.

For more information about mounting and unmounting USB devices, see “How to Mount or Unmount a USB Mass Storage Device Without \texttt{vold} Running” on page 149.
How to Display USB Device Information

Display information about USB devices.

For example, use the `prtconf` command to display USB device information. The `prtconf` output in this example has been truncated to only display USB device information.

```
$ prtconf
 usb, instance #0
 hub, instance #2
 device, instance #8
 interface (driver not attached)
 printer (driver not attached)
 mouse, instance #14
 device, instance #9
 keyboard, instance #15
 mouse, instance #16
 storage, instance #7
 disk (driver not attached)
 communications, instance #10
 modem (driver not attached)
 data (driver not attached)
 storage, instance #0
 disk (driver not attached)
 storage, instance #1
 disk (driver not attached)
```

For example, use the `rmformat` command to display USB device information.

```
$ rmformat
Looking for devices...
 1. Volmgnt Node: /vol/dev/aliases/cdrom0
 Logical Node: /dev/rdsk/c0t2d0s2
 Physical Node: /pci@1f,0/pci@1,1/ide@3/sd@2,0
 Connected Device: LG CD-ROM CRD-8322B 1.03
 Device Type: CD Reader
```

How to Create a File System on a USB Mass Storage Device

A USB diskette must be formatted before you can add a file system to it. All other USB mass storage devices just need a PCFS or UFS file system before they can be used. Keep the following key points in mind when formatting a USB device:

- Do not use the `rmformat -F` except on a USB diskette.
- If the default slices are not acceptable, use the `rmformat -s` command to create slices. Use the `fdisk` utility to partition a USB device, if needed. For step-by-step instructions, see:
  - “How to Modify Partitions and Create a PCFS File System on a USB Mass Storage Device Without vold Running” on page 144
  - “How to Create a Solaris Partition and Modify the Slices on a USB Mass Storage Device Without vold Running” on page 148
If the USB device is automatically mounted, you will have to unmount it before you can create a file system on the USB device.

Note – Perform steps 4-5 only if you need to format a USB diskette.

1 Become superuser.

2 Add the USB device to your system. For information on hot-plugging USB devices, see:
   
   - “Hot-Plugging USB Mass Storage Devices” on page 136
   - “Hot-Plugging USB Devices With the cfgadm Command (Task Map)” on page 156

3 (Optional) Identify the USB device.
   
   For example:
   
   ```
 # cd /dev/rdsk
 # ls -l c*0 | grep usb
 lrwxrwxrwx 1 root root 55 Mar 5 10:35 c2t0d0s0 ->
 ../../devices/pci@1f,0/usb@c,3/storage@3/disk@0,0:a,raw
   ```
   
   In this example, the diskette device is c2t0d0s0.

4 Insert a diskette into the diskette drive, if necessary.

5 Format the diskette, if necessary.
   
   ```
 % rmformat -F long raw-device
   ```
   
   For example, on a SPARC system:
   
   ```
 % rmformat -F long /dev/rdsk/c2t0d0s2
   ```
   
   For example, on an x86 system:
   
   ```
 % rmformat -F long /dev/rdsk/c3t0d0p0
   ```

6 Determine the file system type and make sure the device is unmounted. Then, select one of the following:

   For more information about unmounting a USB device, see “How to Mount or Unmount a USB Mass Storage Device Without vold Running” on page 149.
   
   - Create a PCFS file system.
     
     ```
 # mkfs -F pcfs -o nobdisk,size=size raw-device
     ```
     
     Specify the -size option in 512-byte blocks.
     
     The following example shows how to create a PCFS file system on a 1.4-MB diskette on a SPARC system:
The following example shows how to create a PCFS file system on a 1.4-MB diskette on an x86 system:

```
mkfs -F pcfs /dev/rdsk/c2t0d0p0
Construct a new FAT file system on /dev/rdsk/c2t0d0p0: (y/n)? y
```

The following example shows how to create a PCFS file system on a 100-MB USB memory stick on a SPARC system:

```
mkfs -F pcfs /dev/rdsk/c5t0d0s2:c
```

The following example shows how to create a PCFS file system on a 100-MB USB memory stick on an x86 system:

```
mkfs -F pcfs /dev/rdsk/c5t0d0p0:c
```

This command can take several minutes to complete.

- Create a UFS file system.

```
newfs raw-device
```

For example:

```
newfs /dev/rdsk/c4t0d0s7
```

Consider using the `newfs -f 4096` option or `newfs -T` option for large USB hard disks.

---

**Note** – UFS file system overhead consumes a significant portion of space on a diskette, due to a diskette’s limited storage capacity.

See the next two procedures for a detailed example of creating a PCFS file system and modifying slices on a USB mass storage device.

▼ **How to Create a File System on a USB Mass Storage Device Without `vold` Running**

Use this procedure to add a file system to a USB mass storage device with removable media services disabled.

A USB diskette must be formatted before you can add a file system to it. All other USB mass storage devices just need a PCFS or UFS file system before they can be used. Keep the following key points in mind when formatting a USB diskette:

- Do not use the `rmformat -F` except on a USB diskette.
- If the default slices are not acceptable, use the `rmformat -s` command to create slices. Use the `fdisk` utility to partition a USB device, if needed. For step-by-step instructions, see:
Note – Perform steps 7–8 only if you need to format a USB diskette.

1 **Become superuser.**

2 For information on disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 44.

3 **Verify that removable media services are not running.**
   
   ```bash
 # svcs volfs
   ```
   
   STATE STIME FMRI
   disable 10:39:12 svc:/system/filesystem/volfs:default

4 **Add the USB device to your system.**
   
   For information on hot-plugging USB devices, see:
   - “Hot-Plugging USB Mass Storage Devices” on page 136
   - “Hot-Plugging USB Devices With the `cfgadm` Command (Task Map)” on page 156

5 **(Optional) Identify the USB device.**
   
   The following example identifies a USB diskette device.

   ```bash
 # cd /dev/rdsk
 # ls -l c*0 | grep usb
 lrwxrwxrwx 1 root root 55 Mar 5 10:35 c2t0d0s0 -> ../../devices/pci@1f,0/usb@c,3/storage@3/disk@0,0:a,raw
   ```
   
   In this example, the diskette device is c2t0d0s0.

6 **Insert a diskette into the diskette drive, if necessary.**

7 **Format the diskette, if necessary.**
   
   ```bash
 % rmformat -F long raw-device
   ```
   
   For example, on a SPARC system:

   ```bash
 % rmformat -F long /dev/rdsk/c2t0d0s2
   ```
   
   For example, on an x86 system:

   ```bash
 % rmformat -F long /dev/rdsk/c3t0d0p0
   ```

8 **Determine the file system type and select one of the following:**
Create a PCFS file system.

```bash
mkfs -F pcfs -o nofdisk, size=size raw-device
```

Specify the `-size` option in 512-byte blocks.

The following example shows how to create a PCFS file system on a 1.4-MB diskette on a SPARC system:

```bash
mkfs -F pcfs -o nofdisk, size=2880 /dev/rdsk/c4t0d0s2
```

The following example shows how to create a PCFS file system on a 1.4-MB diskette on an x86 system:

```bash
mkfs -F pcfs -o nofdisk, size=2880 /dev/rdsk/c4t0d0p0
```

The following example shows how to create a PCFS file system on a 100-MB USB memory stick on a SPARC system:

```bash
mkfs -F pcfs /dev/rdsk/c5t0d0s2:c
```

The following example shows how to create a PCFS file system on a 100-MB USB memory stick on an x86 system:

```bash
mkfs -F pcfs /dev/rdsk/c5t0d0p0:c
```

This command can take several minutes to complete.

Create a UFS file system.

```bash
newfs raw-device
```

For example:

```bash
newfs /dev/rdsk/c4t0d0s7
```

Consider using the `newfs -f 4096` option or `newfs -T` option for large USB hard disks.

---

**Note** – UFS file system overhead consumes a significant portion of space on a diskette, due to a diskette’s limited storage capacity.

See the next two procedures for a detailed example of creating a PCFS file system and modifying slices on a USB mass storage device.

---

**How to Modify Partitions and Create a PCFS File System on a USB Mass Storage Device Without `vold` Running**

The following steps describe how to delete an existing partition, create a new partition, and then create a PCFS file system on the USB device with removable media services disabled. Make sure you back up any data before you perform this task.
1 Become superuser.

2 For information about disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 44.

3 Start the fdisk utility.
   For example:
   ```
 # fdisk /dev/rdsk/c3t0d0p0
   ```

4 Delete the partition by selecting option 3.
   For example:
   ```
 Total disk size is 29 cylinders
 Cylinder size is 2048 (512 byte) blocks
 |
 Partition Status Type Start End Length %
 =========== ====== ============ ===== === ====== ===
 1 Active Solaris2 1 28 28 97
 |
 SELECT ONE OF THE FOLLOWING:
 1. Create a partition
 2. Specify the active partition
 3. Delete a partition
 4. Change between Solaris and Solaris2 Partition IDs
 5. Exit (update disk configuration and exit)
 6. Cancel (exit without updating disk configuration)
 Enter Selection: 3
   ```

5 Choose the partition number to delete.
   For example:
   ```
 Total disk size is 29 cylinders
 Cylinder size is 2048 (512 byte) blocks
 |
 Partition Status Type Start End Length %
 =========== ====== ============ ===== === ====== ===
 1 Active Solaris2 1 28 28 97
 |
 SELECT ONE OF THE FOLLOWING:
 1. Create a partition
 2. Specify the active partition
 3. Delete a partition
 4. Change between Solaris and Solaris2 Partition IDs
 5. Exit (update disk configuration and exit)
 6. Cancel (exit without updating disk configuration)
 Specify the partition number to delete (or enter 0 to exit): 1
   ```

Partition deleted.
6 Create a partition.
For example:

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING: no partitions are defined!

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 1

7 Select the FAT32 partition type.

Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING: no partitions are defined!

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Select the partition type to create:
1=SOLARIS2  2=UNIX    3=PCIXDS  4=Other
5=DOS12    6=DOS16   7=DOSEXT  8=DOSBIG
9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32
D=FAT32LBA E=DOSEXTLBA F=EFI  0=Exit?  c

8 Specify the percentage of disk to use for this partition.

Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING: no partitions are defined!

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Select the partition type to create:
Specify the percentage of disk to use for this partition (or type "c" to specify the size in cylinders). **100**

9 **Select whether the new partition should be the active partition or an inactive partition.**

Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>---</td>
</tr>
</tbody>
</table>

WARNING: no partitions are defined!

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)

Select the partition type to create:
Should this become the active partition? If yes, it will be activated each time the computer is reset or turned on.
Please type "y" or "n". **n**

10 **Update the disk configuration and exit.**

Total disk size is 29 cylinders
Cylinder size is 2048 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>---</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: **5**

11 **Create the PCFS file system on this partition.**

For example:

```
mksfs -F pcfs -o fat=32 /dev/rdsk/c3t0d0p0:c
```

Construct a new FAT file system on /dev/rdsk/c3t0d0p0:c: (y/n)? **y**
How to Create a Solaris Partition and Modify the Slices on a USB Mass Storage Device Without \texttt{vold} Running

The following steps illustrate how to create a Solaris partition and modify the slices with removable media services disabled.

Make sure you back up any data before you perform this task.

1. Become superuser.

2. For information on disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 44.

3. Start the \texttt{fdisk} utility.

   For example:
   
   \begin{verbatim}
   # fdisk /dev/rdsk/c5t0d0s2
   No fdisk table exists. The default partition for the disk is:
   
   a 100\% "SOLARIS System" partition
   
   Type "y" to accept the default partition, otherwise type "n" to edit the
   partition table.
   
   y
   \end{verbatim}

4. Display the current slices.

   For example:
   
   \begin{verbatim}
   # prtvtoc /dev/rdsk/c5t0d0s2
   */dev/rdsk/c5t0d0s2 partition map
   *
   * Dimensions:
   * 512 bytes/sector
   * 63 sectors/track
   * 255 tracks/cylinder
   * 16065 sectors/cylinder
   * 5836 cylinders
   * 5836 accessible cylinders
   *
   * Flags:
   * 1: unmountable
   * 10: read-only
   *
   * Partition Tag Flags First Sector Sector Count Last Sector Mount Directory
   * 0 0 00 0 93755340 93755339
   * 2 0 00 0 93755340 93755339
   \end{verbatim}

5. Create a text file with the slice information.

   For example:
   
   slices: 0 = 0, 5GB, "wm", "home" :
   1 = 8225280000, 6GB :
2 = 0, 44GB, "wm", "backup":
6 = 1650560000, 15GB

Make sure each slice starts on a cylinder boundary. For example, slice 1 starts at 82280000 bytes, which is the cylinder size in bytes multiplied by 1000.

For more information, see the -s option description in rmformat(1).

6 Create the slices by including the slice file created above.
For example:
```
rmformat -s slice_file /dev/rdsk/c5t0d0s2
```

7 View the new slice information.
For example:
```
prtvtoc /dev/rdsk/c5t0d0s2
```
```
* /dev/rdsk/c5t0d0s2 partition map
* * Dimensions:
* * 512 bytes/sector
* * 63 sectors/track
* * 255 tracks/cylinder
* * 16065 sectors/cylinder
* * 5836 cylinders
* * 5836 accessible cylinders
* * * Flags:
* * 1: unmountable
* * 10: read-only
* * * Unallocated space:
* * First Sector Last Sector Count Sector
* * 10485760 5579240 16064999
* * 28647912 3482088 32129999
* * 63587280 30168060 93755339
* * * * Partition Tag Flags First Sector Count Sector Last Mount Directory
0 8 00 0 10485760 10485759
1 3 01 16065000 12582912 28647911
2 5 00 0 92274688 92274688 92274687
6 4 00 32130000 31457280 63587279
```

▼ How to Mount or Unmount a USB Mass Storage Device Without vold Running

The following steps illustrate how to mount and unmount a USB mass storage device with removable media services disabled.

1 Become superuser.
2 For information on disabling removable media services, see “How to Disable or Enable Removable Media Services” on page 44.

3 Verify that removable media services are not running.

```
svcs volfs
STATE STIME FMRI
disabled 10:39:12 svc:/system/filesystem/volfs:default
```

(Optional) Identify the device.

For example:

```
cd /dev/rdsk
ls -l c*0 | grep usb
lrwxrwxrwx 1 root root 55 Mar 5 10:35 c2t0d0s0 ->
../../devices/pci@1f,0/usb@c,3/storage@3/disk@0,0:a,raw
```

In this example, the diskette device is c2t0d0s0.

5 Select one of the following to mount or umount a USB mass storage device:

- Mount a USB mass storage device.

```
mount [-F fstype] block-device mount-point
```

This example shows how to mount a device with a UFS file system:

```
mount /dev/dsk/c1t0d0s2 /mnt
```

This example shows how to mount a device with a PCFS file system on a SPARC system:

```
mount -F pcfs /dev/dsk/c3t0d0s2:c /mnt
```

This example shows how to mount a device with a PCFS file system on an x86 system:

```
mount -F pcfs /dev/dsk/c3t0d0p0:c /mnt
```

This example shows how to mount a CD with a read-only HSFS file system:

```
mount -F hsfs -o ro /dev/dsk/c1t0d0s2 /mnt
```

- Unmount a USB mass storage device.

First, be sure no one is using the file system on the device.

For example:

```
fuser -c -u /mnt
```

```
umount /mnt
```

6 Eject the device, which is optional for CD or diskette devices.

```
eject /dev/[r]dsk/cntndnsn
```

For example:

```
eject /dev/rdsk/c1t0d0s2
```
Troubleshooting Tips for USB Mass Storage Devices

Keep the following tips in mind if you have problems adding or removing a USB mass storage device.

Check the `/var/adm/messages` file for failures to enumerate the device. For enumeration failures, possibly, insert the USB hub or remove a hub and connect it directly to a root USB hub.

- If USB devices are added or removed when the system is down, you must perform a reconfiguration boot.

```
ok boot -r
```

If you have problems accessing a device that was connected while the system is running, try the following command:

```
devfsadm
```

- Do not move devices around if the system has been powered down by a suspend operation. For more information, see “SPARC: USB Power Management” on page 129.

- If a device has been hot removed while in use by applications and is no longer available, then stop the applications. Use the `prtconf` command to see whether the device node has been removed.

Disabling Specific USB Drivers

You can disable specific types of USB devices by disabling their client driver. For example, USB printers can be disabled by disabling the `usbprn` driver that directs them. Disabling `usbprn` does not affect other kinds of devices, such as USB storage devices.

The following table identifies some USB device types and their corresponding drivers.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Driver to Disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td><code>usb_ac</code> and <code>usb_as</code></td>
</tr>
<tr>
<td>HID (usually keyboard and mouse)</td>
<td><code>hid</code></td>
</tr>
<tr>
<td>Storage</td>
<td><code>scsa2usb</code></td>
</tr>
<tr>
<td>Printer</td>
<td><code>usbprn</code></td>
</tr>
<tr>
<td>Serial</td>
<td><code>usbser_edge</code></td>
</tr>
</tbody>
</table>

If you disable a driver for a USB device that is still connected to the system, you see a console message similar to the following:

```
usba10: WARNING: usba: no driver found for device name
```
How to Disable Specific USB Drivers

1 Become superuser.

2 Exclude the driver alias entry from the /etc/system file.
   For example, include the following exclude statement to exclude the usbprn driver.
   ```
 exclude: usbprn
   ```

3 Reboot the system.
   ```
 # init 6
   ```

How to Remove Unused USB Device Links

Use this procedure if a USB device is removed while the system is powered off. Removing the USB device while the system is powered off can leave device links for devices that do not exist.

1 Become superuser.

2 Close all applications that might be accessing the device.

3 Remove the unused links for a specific USB class.
   For example:
   ```
 # devfsadm -C -c audio
   ```
   Or, just remove the dangling links:
   ```
 # devfsadm -C
   ```

Using USB Audio Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add USB audio devices.</td>
<td>Add a USB microphone and speakers.</td>
<td>&quot;How to Add USB Audio Devices&quot; on page 154</td>
</tr>
<tr>
<td>Identify your system’s primary audio device.</td>
<td>Identify which audio device is your primary audio device.</td>
<td>&quot;How to Identify Your System’s Primary Audio Device&quot; on page 155</td>
</tr>
<tr>
<td>Change the primary USB audio device.</td>
<td>You might want to make one audio device the primary audio device if you remove or change your USB audio devices.</td>
<td>&quot;How to Change the Primary USB Audio Device&quot; on page 155</td>
</tr>
</tbody>
</table>
Using USB Audio Devices

For information about USB audio support in specific Solaris releases, see “Solaris Support for USB Devices” on page 118.

This Solaris release provides USB audio support that is implemented by a pair of cooperating drivers, usb_ac and usb_as. The audio control driver, usb_ac, is a Solaris USB Architecture compliant client driver that provides the controlling interface to user applications. The audio streaming driver, usb_as, processes audio data messages during play and record. It sets sample frequency and precision, and encodes requests from the usb_ac driver. Both drivers comply with the USB audio class 1.0 specification.

Some audio devices can set volume under software control. A STREAMS module, usb_ah, is pushed on top of the HID driver for managing this function.

Solaris supports USB audio devices that are play-only, record-only, or record and play. Hot-plugging of USB audio devices is supported.

- USB audio devices are supported on SPARC Ultra and x86 platforms that have USB connectors.
- USB audio devices that are supported in the Solaris 8 10/01, Solaris 8 2/02, or Solaris 9 releases must support a fixed 44100 or 48000 Hz sampling frequency to play or record. The 44100 Hz or 48000 Hz sampling frequency is no longer required in the Solaris 10 release.
- For fully supported audio data format information, see usb_ac(7D).

The primary audio device is /dev/audio. You can verify that /dev/audio is pointing to USB audio by using the following command:

```
% mixerctl
Device /dev/audioctl:
 Name = USB Audio
 Version = 1.0
 Config = external

Audio mixer for /dev/audioctl is enabled
```
After you connect your USB audio devices, you access them with the audioplay and audiorecord command through the /dev/sound/ device links.

Note that the /dev/audio and /dev/sound/N devices can refer to speakers, microphones, or combination devices. If you refer to the incorrect device type, the command fails. For example, the audioplay command fails if you try to use it with a microphone.

You can select a specific default audio device for most Sun audio applications, such as audioplay and audiorecord, by setting the AUDIODEV shell variable or by specifying the -d option for these commands. However, setting AUDIODEV does not work for third-party applications that have /dev/audio hardcoded as the audio file.

When you plug in a USB audio device, it automatically becomes the primary audio device, /dev/audio, unless /dev/audio is in use. For instructions on changing /dev/audio from on-board audio to USB audio and vice versa, refer to "How to Change the Primary USB Audio Device" on page 155, and usb_ac(7D).

Hot-Plugging Multiple USB Audio Devices

If a USB audio device is plugged into a system, it becomes the primary audio device, /dev/audio. It remains the primary audio device even after the system is rebooted. If additional USB audio devices are plugged in, the last one becomes the primary audio device.

For additional information on troubleshooting USB audio device problems, see usb_ac(7D).

▼ How to Add USB Audio Devices

1 Plug in the USB speaker.
   The primary audio device, /dev/audio, points to the USB speaker.
   % ls -l /dev/audio
   lrwxrwxrwx 1 root root 10 Feb 13 08:46 /dev/audio -> usb/audio0

2 (Optional) Remove the speaker. Then, plug it back in.
   If you remove the speaker, the /dev/audio device reverts back to on-board audio.
   % ls -l /dev/audio
   lrwxrwxrwx 1 root root 7 Feb 13 08:47 /dev/audio -> sound/0

3 Add a USB microphone.
   % ls -l /dev/audio
   lrwxrwxrwx 1 root root 10 Feb 13 08:54 /dev/audio -> usb/audio1
How to Identify Your System's Primary Audio Device

This procedure assumes that you have already connected the USB audio devices.

- **Examine your system's new audio links.**
  - Display your system's new audio links with the `ls` command.
    
    For example:
    ```
 % ls -lt /dev/audio*
 lrwxrwxrwx 1 root root 7 Jul 23 15:46 /dev/audio -> usb/audio0
 lrwxrwxrwx 1 root root 10 Jul 23 15:46 /dev/audioctl ->
 usb/audioctl0/
 % ls -lt /dev/sound/*
 lrwxrwxrwx 1 root root 74 Jul 23 15:46 /dev/sound/1 ->
 ../../devices/pci@1f,4000/usb@5/hub@1/device@3/sound-control@0:...
 lrwxrwxrwx 1 root root 77 Jul 23 15:46 /dev/sound/1ctl ->
 ../../devices/pci@1f,4000/usb@5/hub@1/device@3/sound-control@0:...
 lrwxrwxrwx 1 root other 66 Jul 23 14:21 /dev/sound/0 ->
 ../../devices/pci@1f,4000/ebus@1/SUNW,CS4231@14,200000:sound,audio
 lrwxrwxrwx 1 root other 69 Jul 23 14:21 /dev/sound/0ctl ->
 ../../devices/pci@1f,4000/ebus@1/SUNW,CS4231@14,200000:sound,audioctl
 %
    ```

    Notice that the primary audio device, `/dev/audio`, is pointing to the newly plugged in USB audio device, `/dev/usb/audio0`.

- You can also examine your system's USB audio devices with the `prtconf` command and look for the USB device information.
  ```
 % prtconf
 ...
 ...
 usb, instance #0
 hub, instance #0
 mouse, instance #0
 keyboard, instance #1
 device, instance #0
 sound-control, instance #0
 sound, instance #0
 input, instance #0
  ```

How to Change the Primary USB Audio Device

- **Select one of the following to change the primary USB audio device.**
If you want the on-board audio device to become the primary audio device, remove the USB audio devices. The /dev/audio link then points to the /dev/sound/0 entry. If the /dev/sound/0 entry is not the primary audio device, then either shut down the system and use the boot -r command, or run the devfsadm -i command as root.

If you want the USB audio device to become primary audio device, just plug it in and check the device links.

Troubleshooting USB Audio Device Problems

Sometimes, USB speakers do not produce any sound, even though the driver is attached and the volume is set to high. Hot-plugging the device might not change this behavior.

The workaround is to power cycle the USB speakers.

Key Points of Audio Device Ownership

Keep the following key points of audio device ownership in mind when working with audio devices:

- When you plug in a USB audio device and you are logged in on the console, the console is the owner of the /dev/* entries. This situation means you can use the audio device as long as you are logged in to the console.
- If you are not logged in to the console when you plug in a USB audio device, root becomes the owner of the device. However, if you log in to the console and attempt to access the USB audio device, device ownership changes to the console. For more information, see logindevperm(4).
- When you remotely log in with the rlogin command and attempt to access the USB audio device, the ownership does not change. This means that, for example, unauthorized users cannot listen to conversations over a microphone owned by someone else.

Hot-Plugging USB Devices With the cfgadm Command (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display USB bus information</td>
<td>Display information about USB devices and buses.</td>
<td>&quot;How to Display USB Bus Information (cfgadm)&quot; on page 158</td>
</tr>
<tr>
<td>Unconfigure a USB device</td>
<td>Logically unconfigure a USB device that is still physically connected to the system.</td>
<td>&quot;How to Unconfigure a USB Device&quot; on page 159</td>
</tr>
</tbody>
</table>
Configure a USB device.

Configure a USB device that was previously unconfigured.

“How to Configure a USB Device” on page 159

Logically disconnect a USB device.

You can logically disconnect a USB device if you are not physically near the system.

“How to Logically Disconnect a USB Device” on page 160

Logically connect a USB device.

Logically connect a USB device that was previously logically disconnected or unconfigured.

“How to Logically Connect a USB Device” on page 160

Disconnect a USB device subtree.

Disconnect a USB device subtree, which is the hierarchy (or tree) of devices below a hub.

“How to Logically Disconnect a USB Device Subtree” on page 161

Reset a USB device.

Reset a USB device to logically remove and re-create the device.

“How to Reset a USB Device” on page 161

Change the default configuration of a multi-configuration USB device.

Change the default configuration of a multi-configuration USB device.

“How to Change the Default Configuration of a Multi-Configuration USB Device” on page 161

---

### Hot-Plugging USB Devices With the `cfgadm` Command

You can add and remove a USB device from a running system without using the `cfgadm` command. However, a USB device can also be logically hot-plugged without physically removing the device. This scenario is convenient when you are working remotely and you need to disable or reset a non functioning USB device. The `cfgadm` command also provides a way to display the USB device tree, including manufacturer and product information.

The `cfgadm` command displays information about attachment points, which are locations in the system where dynamic reconfiguration operations can occur. An attachment point consists of the following:

- An occupant, which represents a hardware resource, such as a USB device, that might be configured into the system
- A receptacle, which is the location that accepts the occupant, such as a USB port

Attachment points are represented by logical and physical attachment point IDs (Ap_Id). The physical Ap_Id is the physical path name of the attachment point. The logical Ap_Id is a user-friendly alternative for the physical Ap_Id. For more information on Ap_Id, see `cfgadm_usb(1M)`.

The `cfgadm` command provides the following USB device status information.
Receptacle State	Description
empty/unconfigured | The device is not physically connected.
disconnected/unconfigured | The device is logically disconnected and unavailable, even though the device could still be physically connected.
connected/unconfigured | The device is logically connected, but unavailable. The device is visible in prtconf output.
connected/configured | The device is connected and available.

The following sections describe how to hot-plug a USB device through the software with the \texttt{cfgadm} command. All of the sample USB device information in these sections has been truncated to focus on relevant information.

\section*{How to Display USB Bus Information (\texttt{cfgadm})}

For examples of using the \texttt{prtconf} command to display USB configuration information, see “How to Display USB Device Information” on page 140.

\subsection*{1 Display USB bus information.}

For example:

```
% cfgadm
Ap_Id Type Receptacle Occupant Condition
usb0/4.5 usb-hub connected configured ok
usb0/4.5.1 usb-device connected configured ok
usb0/4.5.2 usb-printer connected configured ok
usb0/4.5.3 usb-mouse connected configured ok
usb0/4.5.4 usb-device connected configured ok
usb0/4.5.5 usb-storage connected configured ok
usb0/4.5.6 usb-communi connected configured ok
usb0/4.5.7 unknown empty unconfigured ok
```

In the preceding example, usb0/4.5.1 identifies a device connected to port 1 of the second-level external hub, which is connected to port 5 of first-level external hub, which is connected to the first USB controller’s root hub, port 4.

\subsection*{2 Display specific USB device information.}

For example:

```
% cfgadm -l -s "cols=ap_id:info"
Ap_Id Information
usb0/4.5.1 Mfg: Inside Out Networks Product: Edgeport/421 NConfigs: 1
Config: 0 ...
usb0/4.5.2 Mfg: <undef> Product: <undef> NConfigs: 1 Config: 0 ...
usb0/4.5.3 Mfg: Mitsumi Product: Apple USB Mouse NConfigs: 1
Config: 0 ...
usb0/4.5.4 Mfg: NMB Product: NMB USB KB/PS2 M NConfigs: 1 Config: 0
```

System Administration Guide: Devices and File Systems • September 2010
**How to Unconfigure a USB Device**

You can unconfigure a USB device that is still physically connected to the system. However, a driver will never attach to the device. Note that a USB device remains in the prtconf output even after that device is unconfigured.

1. **Become superuser.**

2. **Unconfigure the USB device.**
   For example:
   ```
 # cfgadm -c unconfigure usb0/4.7
 Unconfigure the device: /devices/pci@8,700000/usb@5,3/hub@4:4.7
 This operation will suspend activity on the USB device
 Continue (yes/no)? y
   ```

3. **Verify that the device is unconfigured.**
   For example:
   ```
 # cfgadm
 Ap_Id Type Receptacle Occupant Condition
 usb0/4.5 usb-hub connected configured ok
 usb0/4.5.1 usb-device connected configured ok
 usb0/4.5.2 usb-printer connected configured ok
 usb0/4.5.3 usb-mouse connected configured ok
 usb0/4.5.4 usb-device connected configured ok
 usb0/4.5.5 usb-storage connected configured ok
 usb0/4.5.6 usb-communi connected configured ok
 usb0/4.5.7 unknown empty unconfigured ok
 usb0/4.6 usb-storage connected configured ok
 usb0/4.7 usb-storage connected unconfigured ok
   ```

**How to Configure a USB Device**

1. **Become superuser.**

2. **Configure a USB device.**
   For example:
   ```
 # cfgadm -c configure usb0/4.7
   ```
Verify that the USB device is configured.
For example:

```
cfgadm usb0/4.7
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/4.7</td>
<td>usb-storage</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

How to Logically Disconnect a USB Device

If you want to remove a USB device from the system and the `prtconf` output, but you are not physically near the system, just logically disconnect the USB device. The device is still physically connected. However, the device is logically disconnected, unusable, and not visible to the system.

1. Become superuser.
2. Disconnect a USB device.
   For example:
   ```
 # cfgadm -c disconnect -y usb0/4.7
   ```
3. Verify that the device is disconnected.
   For example:
   ```
 # cfgadm usb0/4.7
   ```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/4.7</td>
<td>unknown</td>
<td>disconnected</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
</tbody>
</table>

How to Logically Connect a USB Device

Use this procedure to logically connect a USB device that was previously logically disconnected or unconfigured.

1. Become superuser.
2. Connect a USB device.
   For example:
   ```
 # cfgadm -c configure usb0/4.7
   ```
3. Verify that the device is connected.
   For example:
   ```
 # cfgadm usb0/4.7
   ```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/4.7</td>
<td>usb-storage</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

The device is now available and visible to the system.
### How to Logically Disconnect a USB Device Subtree

Use this procedure to disconnect a USB device subtree, which is the hierarchy (or tree) of devices below a hub.

1. **Become superuser.**
2. **Remove a USB device subtree.**
   - For example:
   ```bash
 # cfgadm -c disconnect -y usb0/4
   ```
3. **Verify that the USB device subtree is disconnected.**
   - For example:
   ```bash
 # cfgadm usb0/4
 Ap_Id Type Receptacle Occupant Condition
 usb0/4 unknown disconnected unconfigured ok
   ```

### How to Reset a USB Device

If a USB device behaves erratically, use the `cfgadm` command to reset the device, which logically removes and re-creates the device.

1. **Become superuser.**
2. **Make sure that the device is not in use.**
3. **Reset the device.**
   - For example:
   ```bash
 # cfgadm -x usb_reset -y usb0/4.7
   ```
4. **Verify that the device is connected.**
   - For example:
   ```bash
 # cfgadm usb0/4.7
 Ap_Id Type Receptacle Occupant Condition
 usb0/4.7 usb-storage connected configured ok
   ```

### How to Change the Default Configuration of a Multi-Configuration USB Device

Keep the following in mind when working with multi-configuration USB devices:
A USB device configuration defines how a device presents itself to the operating system. This method is different from system device configurations discussed in other \texttt{cfgadm} sections.

Some USB devices support multiple configurations, but only one configuration can be active at a time.

Multi-configuration devices can be identified by examining the \texttt{cfgadm -lv} output. \texttt{N\_configs} will be greater than 1.

The default USB configuration is configuration 1. The current configuration is reflected in \texttt{cfgadm -lv} output as \texttt{Config}.

Changes to the default configuration persist across reboots, hot-removes, and the reconfiguration of the device, as long as the device is reconnected to the same port.

1. **Make sure that the device is not in use.**

2. **Change the default USB configuration.**

   For example:
   ```bash
 # cfgadm -x usb_config -o config=2 usb0/4
 Setting the device: /devices/pci@1f,0/usb@c,3:4
to USB configuration 2
 This operation will suspend activity on the USB device
 Continue (yes/no)? yes
   ```

3. **Verify that the device changed.**

   For example:
   ```bash
 # cfgadm -lv usb0/4
 Ap_Id Receptacle Occupant Condition Information When Type
 Busy Phys_Id
 usb0/4 connected unconfigured ok Mfg: Sun 2000
 Product: USB-B0B0 aka Robotech
 With 6 EPPS High Clk Mode N__configs: 7 Config: 2 : EVAL Board Setup
 unavailable
 usb-device n /devices/pci@1f,0/usb@c,3:4
   ```

   Note that \texttt{Config:} now shows 2.
InfiniBand (IB) is a I/O technology based on switch fabrics. It provides high bandwidth, low latency interconnect for attaching I/O devices to hosts and for host-to-host communication.

This is a list of the overview information in this chapter.

- “Overview of InfiniBand Devices” on page 163
- “Dynamically Reconfiguring IB Devices (cfgadm)” on page 166

For information on the procedures associated with using IB devices, see the following:

- “Dynamically Reconfiguring IB Devices (Task Map)” on page 164
- “Using the uDAPL Application Interface With InfiniBand Devices” on page 175

For general information about dynamic reconfiguration and hot-plugging, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

**Overview of InfiniBand Devices**

IB devices are managed by the Solaris IB nexus driver. This driver supports 5 types of devices:

- IB Port devices
- IB virtual physical point of attachment (VPPA) devices
- IB HCA service (HCA_SVC) devices
- Pseudo devices
- I/O controller (IOC) devices

The IB nexus driver queries the Solaris IB Device Manager (IBDM) for services, referred in this guide as *communication services*, to enumerate the IB Port, HCA_SVC, and IB VPPA devices.

The Port devices bind a communication service to a given port# of a Host Channel Adapter (HCA). The VPPA devices bind a communication service to a port#, p_key# combination instead. The HCA_SVC devices bind a communication service to a given HCA. Note that the
Port devices and the HCA_SVC devices always use a p_key (partition key) whose value is zero. The Port, HCA_SVC, and VPPA devices are children of the HCA and are enumerated through the ib.conf file. For more information, see `ib(7D)`.

The IOC devices are children of the IB nexus driver and are part of an I/O unit. The pseudo devices are also children of the IB nexus driver and refer to all other devices that provide their own configuration files to enumerate. For more information, see `ib(4)`.

The possible IB device tree path name(s) are listed in the following table.

<table>
<thead>
<tr>
<th>Device</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC device</td>
<td>/ib/ioc@1730000007F510C,1730000007F50</td>
</tr>
<tr>
<td>IB pseudo device</td>
<td>/ib/&lt;driver&gt;@&lt;unit-address&gt;</td>
</tr>
<tr>
<td>IB VPPA device</td>
<td>/pci@1f,2000/pci@1/pci15b3,5a44@0/ibport@&lt;port#&gt;,&lt;p_key&gt;,&lt;service&gt;</td>
</tr>
<tr>
<td>IB HCA_SVC device</td>
<td>/pci@1f,2000/pci@1/pci15bc,5a44@0/ibport@0,&lt;service&gt;</td>
</tr>
<tr>
<td>IB Port device</td>
<td>/pci@1f,2000/pci@1/pci15b3,5a44@0/ibport@&lt;port#&gt;,0,&lt;service&gt;</td>
</tr>
<tr>
<td>HCA</td>
<td>/pci@1f,2000/pci@1/pci15b3,5a44@0</td>
</tr>
</tbody>
</table>

Note that the IB HCA_SVC devices have zero as the port# and the p_key.

The IB components in the preceding table are described as follows:

- `<services>` is a communication service. For example, `ipib` is the communication service used by the `ibd` kernel client driver.
- `<p_key>` is the partition key value being used.
- `<port>` is the port number.
- `<unit-address>` refers to IB kernel client driver’s property by this name specified in its `driver.conf` file. For more information, see `driver.conf(4)`.

### Dynamically Reconfiguring IB Devices (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display IB device information.</td>
<td>Display information about the IB devices on your system.</td>
<td>&quot;How to Display IB Device Information&quot; on page 167</td>
</tr>
<tr>
<td>Configure or unconfigure an IOC device.</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>For Instructions</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Unconfigure an IOC device.</td>
<td>Configure an IOC device.</td>
<td>“How to Unconfigure an IOC Device” on page 168</td>
</tr>
<tr>
<td>Unconfigure an IOC device.</td>
<td>Configure an IOC device.</td>
<td>“How to Configure an IOC Device” on page 169</td>
</tr>
<tr>
<td>Configure or unconfigure a port or VPPA device.</td>
<td>Select one of the following:</td>
<td>“How to Unconfigure an IB Port, HCA_SVC, or a VPPA Device” on page 169</td>
</tr>
<tr>
<td>Unconfigure a port or a VPPA device.</td>
<td>Configure a port or a VPPA device.</td>
<td>“How to Configure a IB Port, HCA_SVC, or a VPPA Device” on page 170</td>
</tr>
<tr>
<td>Configure or unconfigure an IB pseudo device.</td>
<td>Select one of the following:</td>
<td>“How to Unconfigure an IB Pseudo Device” on page 170</td>
</tr>
<tr>
<td>Unconfigure an IB pseudo device.</td>
<td>Configure an IB pseudo device.</td>
<td>“How to Configure an IB Pseudo Device” on page 171</td>
</tr>
<tr>
<td>Display kernel IB clients of an HCA.</td>
<td>You might need to display information about kernel IP clients of an HCA, particularly if you're going to unconfigure an HCA.</td>
<td>“How to Display Kernel IB Clients of an HCA” on page 171</td>
</tr>
<tr>
<td>Configure or unconfigure an IB HCA.</td>
<td>Select one of the following:</td>
<td>“How to Unconfigure IB Devices Connected to an HCA” on page 171</td>
</tr>
<tr>
<td>Unconfigure IB devices that are connected to an HCA.</td>
<td>Configure IB devices that are connected to an HCA.</td>
<td>“Configuring an IB HCA” on page 172</td>
</tr>
<tr>
<td>Update the IB p_key tables.</td>
<td>If the p_key table information of a HCA port changes, IBTF and IBDM need to be notified so that their internal p_key databases are updated.</td>
<td>“How to Update the IB p_key Tables” on page 172</td>
</tr>
<tr>
<td>Display IB communication services</td>
<td>Display the IB communication services that are currently in use by the IBTF.</td>
<td>“How to Display IB Communication Services” on page 173</td>
</tr>
</tbody>
</table>
Dynamically Reconfiguring IB Devices (cfgadm)

One can configure or unconfigure an IB device from a running system by using the `cfgadm` CLI only. This command also provides a way to display the IB fabric, manage communication services, and update `p_key` table databases. For more information, see `cfgadm_ib(1M)`.

The `cfgadm` CLI manages dynamic reconfiguration, referred to in this guide as DR, of the entire IB fabric as seen by a host. The `cfgadm` operations are supported on all the IB devices, such as Port, VPPA, HCA_SVC, IOC, and pseudo devices.

The `cfgadm` command displays information about attachment points (Ap_Ids), which are locations in the system where DR operations can occur. For details on the Ap_Ids that `cfgadm` supports, see `cfgadm_ib.1M`. Note that all IB Ap_Ids are shown as connected.

The `cfgadm` command provides the following IB device status information.

<table>
<thead>
<tr>
<th>Receptacle State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected/configured/ok</td>
<td>The device is connected and available. The <code>devinfo</code> node is present.</td>
</tr>
<tr>
<td>connected/unconfigured/unknown</td>
<td>The device is unavailable and no <code>devinfo</code> node or device driver exists for this device. Or, the device was never configured for use by ib nexus driver. The device might be known to the IB Device Manager.</td>
</tr>
</tbody>
</table>

The following sections describe how to dynamically reconfigure (DR) IB devices with the `cfgadm` command. All of the sample IB device information in these sections has been truncated to focus on relevant information.
How to Display IB Device Information

You can use the `prtconf` command to display general information about IB devices. For example:

```
$ prtconf
 pci, instance #0
 pci15b3,5a44, instance #0
 ibport, instance #253
 ibport, instance #254
 ibport, instance #255
 ...
 ib, instance #0
 ioc, instance #243
 ioc, instance #244
 ioc, instance #245
 ioc, instance #246
 ioc, instance #247
 ...
```

In the preceding example, `pci15b3, 5a44` refers to an IB HCA.

Use the following steps to display specific IB device information.

1. Become superuser.

2. Display IB fabric information.

For example:

```
cfgadm -a

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib</td>
<td>IB-Fabric</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::173000000870</td>
<td>IB-HCA</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::1730000007F5198</td>
<td>IB-IOC</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::1730000007F5199</td>
<td>IB-IOC</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::173000000870,0,hnfs</td>
<td>IB-HCA SVC</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::173000000871,0,sdp</td>
<td>IB-PORT</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::173000000872,0,sdp</td>
<td>IB-PORT</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::173000000871,8001,ipib</td>
<td>IB-VPPA</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib::173000000872,8001,ipib</td>
<td>IB-VPPA</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>ib:::ibgen,0</td>
<td>IB-PSEUDO</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>
```

In the preceding example output, the components are described as follows:

- `Ap_Id ib::173000000872,0,sdp` identifies an IB Port device that is connected to port 2 and is bound to the `sdp` service.

- `Ap_Id ib::173000000872,8001,ipib` identifies an IB VPPA device that is connected to port 2, using a `p_key` value of `0x8001`, and is bound to the `ibd` service.
Ap_Id ib::1730000008070,0,hnfs
Identifies an IB HCA_SVC device bound to the hnfs service.

Ap_Id ib::1730000007F5198
Identifies an IOC device.

Ap_Id ib::ibgen,0
Identifies a pseudo device.

3 Display specific IB device information.
For example, for an IB VPPA device:

```bash
cfgadm -al -s "cols=ap_id:info" ib::1730000008072,8001,ipib
Ap Id Information
ib::1730000008072,8001,ipib ipib
#
```

For example, for an IB HCA device:

```bash
cfgadm -al -s "cols=ap_id:info" hca::1730000008070
Ap Id Information
hca::1730000008070 VID: 0x15b3, PID: 0x5a44, #ports: 0x2, port1 GUID: 0x1730000008071, port2 GUID: 0x1730000008072
#
```

The preceding output displays the number of ports and their GUIDs.

▼ How to Unconfigure an IOC Device

You can unconfigure an IB device that is still physically connected to the system, but a driver will never attach to it.

1 Become superuser.

2 Unconfigure the IB device.
For example:

```bash
cfgadm -c unconfigure ib::1730000007F5198
Unconfigure the device: /devices/ib:fabric::1730000007F5198
This operation will suspend activity on the IB device
Continue (yes/no)? y
#
```

3 Verify that the device is unconfigured.
For example:

```bash
cfgadm -a ib::1730000007F5198
ib::1730000007F5198 IB-IOC connected unconfigured unknown
#
```
How to Configure an IOC Device

1. Become superuser.

2. Configure a IB device.
   For example:
   ```sh
 # cfgadm -yc configure ib::1730000007F5198
   ```

3. Verify that the IB device is configured.
   For example:
   ```sh
 # cfgadm -al ib::1730000007F5198
<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib::1730000007F5198</td>
<td>IB-IOC</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>
   ```

How to Unconfigure an IB Port, HCA_SVC, or a VPPA Device

Use the following steps if you want to remove an IB Port, HCA_SVC, or a VPPA device from the system.

The example below illustrates how to unconfigure a VPPA device, but the same procedure applies to Port and HCA_SVC devices as well.

1. Become superuser.

2. Unconfigure the IB VPPA device.
   For example:
   ```sh
 # cfgadm -c unconfigure ib::1730000007F51,8001,ipib
 Unconfigure the device: /devices/ib:fabric::1730000007F51,8001,ipib
 This operation will suspend activity on the IB device
 Continue (yes/no)? Y
 #
   ```

3. Verify that the device is disconnected.
   For example:
   ```sh
 # cfgadm -a ib::1730000007F51,8001,ipib
<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib::1730000007F51,8001,ipib</td>
<td>IB-VPPA</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
 #
   ```
**How to Configure a IB Port, HCA_SVC, or a VPPA Device**

Use the following steps if you want to configure an IB Port, HCA_SVC, or a VPPA device on the system.

The example below illustrates how to configure a VPPA device, but similar steps can be used to configure Port and HCA_SVC devices as well.

1. Become superuser.
2. Configure the IB VPPA device.

   For example:
   ```
 # cfgadm -c configure ib::1730000007F51,8001,ipib
   ```
3. Verify that the device is connected.

   For example:
   ```
 # cfgadm -a ib::1730000007F51,8001,ipib
 Ap_Id Type Receptacle Occupant Condition
 ib::1730000007F51,8001,ipib IB-VPPA connected configured ok
   ```

   **Note** – A `cfgadm` based configure or unconfigure operation of IB Port and HCA_SVC devices is similar to the preceding examples for an IB VPPA device.

**How to Unconfigure an IB Pseudo Device**

Use the following steps if you want to remove an IB pseudo device from the system.

1. Become superuser.
2. Unconfigure the IB pseudo device.

   For example:
   ```
 # cfgadm -c unconfigure ib::ibgen,0
 Unconfigure the device: /devices/ib:fabric::ibgen,0
 This operation will suspend activity on the IB device
 Continue (yes/no)? Y
 #
   ```
3. Verify that the device is disconnected.

   ```
 # cfgadm -a ib::ibgen,0
 Ap_Id Type Receptacle Occupant Condition
 ib::ibgen,0 IB-PSEUDO connected unconfigured unknown
   ```
How to Configure an IB Pseudo Device

Use the following steps to configure an IB pseudo device.

1. Become superuser.

2. Configure the IB pseudo device.
   
   For example:
   ```
 # cfgadm -yc configure ib::ibgen,0
   ```

3. Verify that the device is connected.
   
   For example:
   ```
 # cfgadm -a ib::ibgen,0
 Ap_Id Type Receptacle Occupant Condition
 ib::ibgen,0 IB-PSEUDO connected configured ok
   ```

How to Display Kernel IB Clients of an HCA

The following IB configadm plugin command can be invoked to list kernel IB clients using this HCA. Note that the last column would show a "yes" if a kernel IB client uses another HCA. IB Managers and kernel clients that do not use the HCA are shown with an Ap_Id of "-".

Display kernel IB clients of an HCA.

For example:
```bash
$ cfgadm -x list_clients hca:173000007F50
Ap_Id IB Client Alternate HCA
ib::173000007F51D0 ibgen no
ib::173000007F51D1 ibgen no
ib::173000007F51,8001,ipib ibd no
ib::ibgen,0 ibgen no
- ibdm no
- ibmf no
- nfs/ib no
$```

How to Unconfigure IB Devices Connected to an HCA

An actual DR of an HCA is beyond the scope of the IB configadm plugin. Although DR of an HCA can be achieved by using the plugin of the underlying bus. For example, a PCI based HCA can use the configadm_pci command. For more information, see configadm_pci(1M).

However, the IB configadm plugin assists in the HCA DR by listing its kernel IB clients as illustrated in steps below.
1 Become superuser.

2 List the kernel IB clients of the HCA.
 For example:

   ```
   # cfgadm -x list_clients hca:1730000007F50
   Ap_Id   IB Client Alternate HCA
   ib::1730000007F51D0  ibgen   no
   ib::1730000007F51D1  ibgen   no
   ib::1730000007F51,8001,ipib ibd   no
   - ibgen,0         ibgen   no
   - ibdm           no
   - ibmf           no
   - nfs/ib        no
   ```

3 Unconfigure kernel IB clients, such as Port, VPPA, HCA_SVC, or IOC devices, that do not have alternate HCAs present.
 For example:

   ```
   # cfgadm -x unconfig_clients hca:1730000008070
   Unconfigure Clients of HCA /devices/ib:1730000008070
   This operation will unconfigure IB clients of this HCA
   Continue (yes/no)? y
   ```

4 Verify that the kernel IB clients of the HCA are unconfigured.

   ```
   # cfgadm -x list_clients hca:1730000007F50
   Ap_Id   IB Client Alternate HCA
   - ibdm   no
   - ibmf   no
   - nfs/ib no
   #
   ```

Configuring an IB HCA

Invoke the bus-specific `cfgadm` plugin to configure the HCA. The exact details are beyond the scope of this chapter.

▼ How to Update the IB p_key Tables

If the p_key table information of an HCA ports changes, for example, additional p_keys are enabled or disabled, InfiniBand Transport Framework (IBTF) and IBDM need to be notified so that their internal p_key databases are updated. The `cfgadm` command helps update the p_key databases of IBTF and IBDM. For more information, see `ibtl(7D)` and `ibdm(7D)`.

1 Become superuser.
2 Update the p_key tables.
 For example:
 # cfgadm -x update_pkey_tbls -y ib

▼ How to Display IB Communication Services

Use the following steps to display the communication services that are currently in use by the IBTF.

1 Become superuser.

2 Display IB communication services.
 For example:
 # cfgadm -x list_services ib
 Port communication services:
 srp
 VPPA communication services:
 ibd
 HCA_SVC communication services:
 hnfs

▼ How to Add a VPPA Communication Service

Use the following steps to add a new VPPA communication service.

Similar steps can be used to add a new HCA_SVC or a port communication service.

1 Become superuser.

2 Add a new VPPA communication service.
 For example:
 # cfgadm -o comm=vppa,service=new -x add_service ib

3 Verify that the new service has been added.
 For example:
 # cfgadm -x list_services ib
 Port communication services:
 srp
 VPPA communication services:
 ibd
 new
 HCA_SVC communication services:
 nfs_service
 #
How to Remove an Existing IB Port, HCA_SVC, or a VPPA Communication Service

Use the following steps to delete an existing IB Port, HCA_SVC, or a VPPA communication service.

1 Become superuser.

2 Remove a VPPA communication service.
 For example:
   ```
   # cfgadm -o comm=vppa,service=new -x delete_service ib
   ```

3 Verify that the communications service has been removed.
 For example:
   ```
   # cfgadm -x list_services ib
   Port communication services:
   srp
   VPPA communication services:
   ibd
   HCA_SVC communication services:
   hnfs
   #
   ```

How to Update an IOC Configuration

Use the following steps to update properties of all the IOC device nodes or for a particular IOC Ap_Id. The properties that can get updated are as follows:

- port-list
- port-entries
- service-id
- service-name

For more information on these properties, see `ib(7D)`.

Note that these properties may not get updated if there is no configuration change. The following example describes how to update a particular IOC’s configuration. If you need to update the configuration of all the IOCs, then specify the static `ib Ap_Id` instead of the particular IOC `Ap_Id`.

1 Become superuser.
Using the uDAPL Application Interface With InfiniBand Devices

User Direct Access Programming Library (uDAPL) is a standard API that promotes data center application data messaging performance, scalability, and reliability over Remote Direct Memory Access (RDMA) capable interconnects such as InfiniBand. The uDAPL interface is defined by the DAT collaborative. For more information about the DAT collaborative, go to the following site:

http://www.datcollaborative.org

The Solaris release provides the following uDAPL features:

- A standard DAT registry library, libdat. For more information, see libdat(3LIB).
- A standard service provider registration file, dat.conf. For more information, see dat.conf(4).
- Support for multiple service providers so that each provider specifies their own uDAPL library path, version number, and so on, in their own service_provider.conf file. For more information, see, service_provider.conf(4).
- An administrative tool, the datadm command, to configure dat.conf. For more information, see datadm(1M).
- A new resource control property, project.max-device-locked-memory, to regulate the amount of locked down physical memory.
- A naming scheme that uses either IPv4 or IPv6 addresses that leverage the IP infrastructure, such as ARP in IPv4 and neighbor discovery in IPv6, for address resolution. The Solaris uDAPL Interface Adapter directly maps to an IPoIB device instance.
- Support for the standard Address Translation Scheme that is used by the DAT collaborative community.
- A uDAPL service provider library to support the Mellanox Tavor Host Channel Adapter with automatic registration to the dat.conf registration file.
- Supports both SPARC platform and x86 platforms.
How to Enable uDAPL

1 Become superuser.

2 Confirm that the following packages are installed. Or, install them, if needed.
 - SUNWib – Sun InfiniBand Framework
 - SUNWtavor – Sun Tavor HCA Driver
 - SUNWipoib – Sun IP over InfiniBand
 - SUNWudaplr – Direct Access Transport (DAT) registry package (root)
 - SUNWudaplue – Direct Access Transport (DAT) registry packages (usr)
 - SUNWudapltr – Service Provider for Tavor packages (root)
 - SUNWudapltue – Service Provider for Tavor packages (usr)

3 Select one of the following to plumb the IPoIB interfaces.
 - Manually plumb the interfaces with the `ifconfig` and `datadm` commands.
 For example:
     ```
     # ifconfig ibd1 plumb
     # ifconfig ibd1 192.168.0.1/24 up
     # datadm -a /usr/share/dat/SUNWudaplt.conf
     ```
 - Automatically plumb the interfaces by doing the following:
 - Create the following file with the appropriate IP address.
       ```
       /etc/hostname.ibd1
       ```
 - Reboot the system.

Updating the DAT Static Registry

You can use the `datadm` command to maintain the DAT static registry, the `dat.conf` file. For more information about this file, see `dat.conf(4)`.

The `datadm` command can also be used to register or unregister a service provider to the `dat.conf` file. For more information, see `datadm(1M)`.

When IPoIB interface adapters are added or removed, run the `datadm` command to update the `dat.conf` file to reflect the current state of the system. A new set of interface adapters for all the service providers that are currently installed will be regenerated.
How to Update the DAT Static Registry

1. Become superuser.

2. Update the DAT static registry after you add or remove IPoIP interface adapters from the system.

 # datadm -u

3. Display the updated DAT static registry.

 # datadm

How to Register a Service Provider in the DAT Static Registry

1. Become superuser.

2. Update the DAT static registry after you add Sun's service provider for the Mellanox Tavor Host Channel Adapter.

 # datadm -a /usr/share/dat/SUNWudaplt.conf

3. Display the updated DAT static registry.

 # datadm -v

How to Unregister a Service Provider from the DAT Static Registry

1. Become superuser.

2. Update the DAT static registry after you remove Sun's service provider for the Mellanox Tavor Host Channel Adapter from the system.

 # datadm -r /usr/share/dat/SUNWudaplt.conf

3. Display the updated DAT static registry.

 # datadm -v
Managing Disks (Overview)

This chapter provides overview information about Oracle Solaris disk slices and introduces the format utility.

This is a list of overview information in this chapter.

- “What’s New in Disk Management?” on page 179
- “Where to Find Disk Management Tasks” on page 183
- “Overview of Disk Management” on page 184
- “Disk Terminology” on page 184
- “About Disk Labels” on page 184
- “About Disk Slices” on page 189
- “format Utility” on page 193
- “Partitioning a Disk” on page 196

For instructions on how to add a disk to your system, see Chapter 12, “SPARC: Adding a Disk (Tasks),” or Chapter 13, “x86: Adding a Disk (Tasks).”

What’s New in Disk Management?

This section describes new disk management features in the Solaris release.

- “Two-Terabyte Disk Support for Installing and Booting the Solaris OS” on page 180
- “iSNS Support in the Solaris iSCSI Target and Initiator” on page 180
- “Solaris iSCSI Target Support” on page 181
- “Solaris iSCSI Initiator Support” on page 181
- “x86: Disk Management in the GRUB Boot Environment” on page 182
- “Support for SCSI Disks That are Larger Than 2 Terabytes” on page 183

For a complete listing of new Solaris features and a description of Solaris releases, see Oracle Solaris 10 9/10 What’s New.
Two-Terabyte Disk Support for Installing and Booting the Solaris OS

Solaris 10 10/09: In previous Solaris releases, you could not install and boot the Solaris OS from a disk that was greater than 1 TB in size. In this Solaris release, you can install and boot the Solaris OS from a disk that is up to 2 TB in size. In previous releases, you also had to use an EFI label for a disk that is larger than 1 TB. In this release, you can use the VTOC label on any size disk, but the addressable space by the VTOC is limited to 2 TB.

The Solaris disk drivers and disk utilities have been updated to provide the following support:

- Installing and booting the Solaris OS on a two-terabyte disk must be connected to a system that runs a 64-bit kernel, with a minimum of 1 GB of memory.
- You can use the `format -e` utility to label a disk of any size with a VTOC label, but the addressable space is limited to 2 TB.
- The default label that is used by the `format` utility and the installation software for a disk that is less than 2 TB in size is a VTOC label.
- You can use the `fdisk` utility on a disk that is greater than 1 TB on x86 systems. Support is added for up to 2-TB partitions in the MBR for non-EFI partition types. This support means that Solaris partitions can go up to 2 TB. Other non-EFI partitions may be subject to a limit depending on partition type.
 - When the `fdisk` utility is run on a disk that is greater than 2 TB in size, a warning message is displayed to indicate that you cannot create a non-EFI partition that is greater than 2 TB.
- The Solaris Volume Manager software has been modified to create metadevices that support physical disks with VTOC labels up to 2 TB in size.

Keep in mind that you cannot move a disk over 1 TB with a legacy MBR or a legacy VTOC to a previous Solaris release. EFI labeled disks continue to work as in previous Solaris releases.

For more information about the EFI label changes in this release, see “EFI Disk Label” on page 185.

iSNS Support in the Solaris iSCSI Target and Initiator

Solaris 10 8/07: This Solaris release provides support for the Internet Storage Name Service (iSNS) protocol in the Solaris iSCSI target and initiator software. The iSNS protocol allows for the automated discovery, management, and configuration of iSCSI devices on a TCP/IP network.

In this Solaris release, you can use the `iscsiadm` command to add access to an existing third-party iSNS server or you can use the Solaris iSNS server to automatically discover the iSCSI devices in your network. The iSNS server can be specified by hostname or IP address. After you add the iSNS server information, you will need to enable access to the server.
See the following resources for step-by-step instructions:

- For information about configuring the Solaris iSCSI target to use a third-party iSNS server, see Chapter 14, “Configuring Oracle Solaris iSCSI Targets and Initiators (Tasks),” and iscsitadm(1M).
- For information about configuring the Solaris iSCSI target with a Solaris iSNS server in the Solaris Express release, see Chapter 15, “Configuring and Managing the Solaris Internet Storage Name Service (iSNS),” in System Administration Guide: Devices and File Systems.

Solaris iSCSI Target Support

Solaris 10 8/07: This Solaris release provides support for iSCSI target devices, which can be disk or tape devices. Previous Solaris releases provide support for iSCSI initiators. The advantage of setting up Solaris iSCSI targets is you might have existing Fibre-Channel devices that can be connected to clients without the cost of Fibre-Channel HBAs. In addition, systems with dedicated arrays can now export replicated storage with ZFS or UFS file systems.

You can use the iscsitadm command to set up and manage your iSCSI target devices. For the disk device that you select as your iSCSI target, you'll need to provide an equivalently sized ZFS or UFS file system as the backing store for the iSCSI daemon.

After the target device is set up, use the iscsiadm command to identify your iSCSI targets, which will discover and use the iSCSI target device.

For more information, see Chapter 14, “Configuring Oracle Solaris iSCSI Targets and Initiators (Tasks),” iscsiadm(1M), and iscsitadm(1M).

Note – A previous version of this guide incorrectly indicated that the Solaris iSCSI target support was available in the Solaris 10 11/06 release. This feature is available starting in the Solaris 10 8/07 release.

Solaris iSCSI Initiator Support

Solaris 10 1/06: iSCSI is an Internet Protocol (IP)-based storage networking standard for linking data storage subsystems. By carrying SCSI commands over IP networks, the iSCSI protocol enables you to mount disk devices, from across the network, onto your local system. On your local system, you can use the devices like block devices.

For more information, see Chapter 14, “Configuring Oracle Solaris iSCSI Targets and Initiators (Tasks),”
Solaris iSCSI Initiator Support Enhancements

Solaris 10 6/06: The following enhancements have been added to the Solaris iSCSI initiator support:

- Dynamic target removal support – Provides the ability to remove (or log out) an iSCSI target without rebooting the system. If you try to remove or disable a discovery method or address, and the target is not in use, the target is removed and related resources are released. If the target is in use, the discovery address or method remains enabled, and in use message is displayed.

 For more information, see “How to Remove Discovered iSCSI Targets” on page 259.

- Internet Storage Name Service (iSNS) client support – Enables the iSCSI initiator to discover the targets to which it has access using as little configuration as possible. It also provides state change notification functionality to notify the iSCSI initiator when changes in operational state of storage nodes occur. The `iscsiadm` command has been enhanced to support iSNS discovery.

 For more information, see “How to Configure iSCSI Target Discovery” on page 258.

- Multiple session target (MS/T) support – Provides the ability to create more iSCSI sessions or paths to a target on demand. The additional iSCSI paths provide higher bandwidth aggregation and availability in specific configurations, such as iSCSI arrays that support login redirection. The iSCSI MS/T feature should be used in combination with MPxIO or other multipathing software. The `iscsiadm` command has been enhanced to support MS/T.

 For more information about configuring Solaris iSCSI initiators, see Chapter 14, “Configuring Oracle Solaris iSCSI Targets and Initiators (Tasks),” and `iscsiadm(1M)`.

x86: Disk Management in the GRUB Boot Environment

Solaris 10 1/06: The GRUB boot menu has replaced the previous method for booting an x86 system. In the area of disk management, you use the GRUB interface when booting from an alternative device to replace a system disk or when installing the bootblocks.

The GRUB boot environment provides the following features:

- **Solaris failsafe boot** – A Solaris failsafe boot option that boots into the minroot so you can recover from a problem that is preventing the system from booting without having to boot from an alternative device. Use the arrow keys to select the following option from the GRUB boot menu and then press return:

 `Solaris failsafe`

 You’ll need to reboot the system after using the Solaris failsafe boot option.

- **Network boot** – Boot from the network by pressing the F12 key during the BIOS configuration phase.
Single-user boot – Boot to single-user mode by selecting this option from the Solaris failsafe boot menu:

```
kern /platform/i86pc/multiboot
```

Then, use the `e` (edit) option to add the `-s` single-user option. For example:

```
kern /platform/i86pc/multiboot -s
```

Press return and then press the b key to boot the system. Press control-D to boot the system back to multiuser mode.

In the GRUB environment, you cannot use the `fmt`hard command to install the boot blocks automatically when run on an x86 system. You must install the boot blocks separately.

For detailed feature information and instructions on using the new GRUB based booting on x86 systems, see “Booting an x86 Based System by Using GRUB (Task Map)” in *System Administration Guide: Basic Administration*.

For instructions for managing disks in the GRUB boot environment, see the following references:

- “x86: How to Install a Boot Block on a System Disk” on page 246
- “x86: How to Connect a System Disk” on page 235

This feature is not available on SPARC systems.

Support for SCSI Disks That are Larger Than 2 Terabytes

Solaris 10 1/06: The SCSI driver, `ssd` or `sd`, supports 2 terabytes and greater. The SCSI driver, `ssd` or `sd`, is limited to 2 TB in previous Solaris releases.

The `format` utility can be used to label, configure, and partition these larger disks. For information about using the EFI disk label on large disks and restrictions with the `fdisk` utility, see “Restrictions of the EFI Disk Label” on page 186.

Where to Find Disk Management Tasks

Use these references to find step-by-step instructions for managing disks.

<table>
<thead>
<tr>
<th>Disk Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format a disk and examine a disk label.</td>
<td>Chapter 11, “Administering Disks (Tasks)”</td>
</tr>
<tr>
<td>Add a new disk to a SPARC system.</td>
<td>Chapter 12, “SPARC: Adding a Disk (Tasks)”</td>
</tr>
</tbody>
</table>
Overview of Disk Management

Managing disks in the Oracle Solaris OS usually involves setting up the system and running the Solaris installation program to create the appropriate disk slices and file systems and to install the Oracle Solaris OS. Occasionally, you might need to use the `format` utility to add a new disk drive or replace a defective disk drive.

Disk Terminology

Before you can effectively use the information in this section, you should be familiar with basic disk architecture. In particular, you should be familiar with the following terms:

<table>
<thead>
<tr>
<th>Disk Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track</td>
<td>A concentric ring on a disk that passes under a single stationary disk head as the disk rotates.</td>
</tr>
<tr>
<td>Cylinder</td>
<td>The set of tracks with the same nominal distance from the axis about which the disk rotates.</td>
</tr>
<tr>
<td>Sector</td>
<td>Section of each disk platter. A sector holds 512 bytes.</td>
</tr>
<tr>
<td>Block</td>
<td>A data storage area on a disk. A disk block is 512 bytes.</td>
</tr>
<tr>
<td>Disk controller</td>
<td>A chip and its associated circuitry that controls the disk drive.</td>
</tr>
<tr>
<td>Disk label</td>
<td>The first sector of a disk that contains disk geometry and partition information.</td>
</tr>
<tr>
<td>Device driver</td>
<td>A kernel module that controls a hardware or virtual device.</td>
</tr>
</tbody>
</table>

For additional information, see the product information from your disk’s manufacturer.

About Disk Labels

A special area of every disk is set aside for storing information about the disk’s controller, geometry, and slices. This information is called the disk’s label. Another term that is used to
described the disk label is the VTOC (Volume Table of Contents) on a disk with a VTOC label. To label a disk means to write slice information onto the disk. You usually label a disk after you change its slices.

The Solaris release supports the following two disk labels:

- **SMI** – The traditional VTOC label for disks that are less than 2 TB in size.
- **EFI** – Provides support for disks that are larger than 2 TB on systems that run a 64-bit Solaris kernel. The Extensible Firmware Interface GUID Partition Table (EFI GPT) disk label is also available for disks less than 2 TB that are connected to a system that runs a 32-bit Solaris kernel.

If you fail to label a disk after you create slices, the slices will be unavailable because the OS has no way of “knowing” about the slices.

EFI Disk Label

The EFI label provides support for physical disks and virtual disk volumes that are greater than 2 TB in size. This release also includes updated disk utilities for managing disks greater than 2 TB in size. The UFS file system is compatible with the EFI disk label, and you can create a UFS file system greater than 2 TB. For information on creating a multiterabyte UFS file system, see “64-bit: Support of Multiterabyte UFS File Systems” on page 312.

The unbundled Sun QFS file system is also available if you need to create file systems greater than 1 TB. For information on the Sun QFS file system, see *Sun QFS, Sun SAM-FS, and Sun SAM-QFS File System Administrator's Guide*.

The Solaris Volume Manager software can also be used to manage disks greater than 1 TB in this Solaris release. For information on using Solaris Volume Manager, see *Solaris Volume Manager Administration Guide*.

The VTOC label is still available for disks less than 2 terabytes in size. If you are only using disks smaller than 2 TB on your systems, managing disks will be the same as in previous Solaris releases. In addition, you can use the `format -e` command to label a disk 2 TB in size or less with an EFI label. For more information, see Example 11–6.

You can use the `format -e` command to apply an EFI label to a disk if the system is running the appropriate Solaris release. However, you should review the important information in "Restrictions of the EFI Disk Label" on page 186 before attempting to apply an EFI label.

You can also use the `format -e` command to reapply a VTOC label if the EFI label is no longer needed. For example:

```bash
# format
Specify disk (enter its number): 2
selecting c0t5d0
```
format> label
[0] SMI Label
[1] EFI Label
Specify Label type[1]: 0
Warning: This disk has an EFI label. Changing to SMI label will erase all current partitions.
Continue? yes
Auto configuration via format.dat[no]?
Auto configuration via generic SCSI-2[no]?
format> quit

Caution – Keep in mind that changing disk labels will destroy any data on the disk.

Comparison of the EFI Label and the VTOC Label
The EFI disk label differs from the VTOC disk label in the following ways:

■ Provides support for disks greater than 2 terabytes in size.
■ Provides usable slices 0-6, where slice 2 is just another slice.
■ Partitions (or slices) cannot overlap with the primary or backup label, nor with any other partitions. The size of the EFI label is usually 34 sectors, so partitions usually start at sector 34. This feature means that no partition can start at sector zero (0).
■ No cylinder, head, or sector information is stored in the EFI label. Sizes are reported in blocks.
■ Information that was stored in the alternate cylinders area, the last two cylinders of the disk, is now stored in slice 8.
■ If you use the format utility to change partition sizes, the unassigned partition tag is assigned to partitions with sizes equal to zero. By default, the format utility assigns the usr partition tag to any partition with a size greater than zero. You can use the partition change menu to reassign partition tags after the partitions are changed. However, you cannot change a partition with a non-zero size to the unassigned partition tag.

Restrictions of the EFI Disk Label
Keep the following restrictions in mind when determining whether using disks greater than 1 terabyte is appropriate for your environment:

■ Layered software products intended for systems with VTOC-labeled disks might be incapable of accessing a disk with an EFI disk label.
■ A disk with an EFI label is not recognized on systems running previous Solaris releases.
■ You cannot boot from a disk with an EFI disk label.
On x86-based systems, you can use the `fdisk` command on a disk with an EFI label that is greater than 2 TB in size.

You cannot use the Solaris Management Console’s Disk Manager tool to manage disks with EFI labels. Use the `format` utility to partition disks with EFI labels. Then, you can use the Solaris Management Console’s Enhanced Storage Tool to manage volumes and disk sets with EFI-labeled disks.

The EFI specification prohibits overlapping slices. The entire disk is represented by `cxydz`.

The EFI disk label provides information about disk or partition sizes in sectors and blocks, but not in cylinders and heads.

The following `format` options are either not supported or are not applicable on disks with EFI labels:

- The `save` option is not supported because disks with EFI labels do not need an entry in the `format.dat` file.
- The `backup` option is not applicable because the disk driver finds the primary label and writes it back to the disk.

Support for EFI-Labeled Disks on x86 Systems

Solaris support for the EFI disk label is available on x86 systems. Use the following command to add an EFI label on an x86 system:

```
# format -e
> [0] SMI Label
> [1] EFI Label
> Specify Label type[0]: 1
> WARNING: converting this device to EFI labels will erase all current
> fdisk partition information. Continue? yes
```

Previous label information is not converted to the EFI disk label.

You will have to recreate the label’s partition information manually with the `format` command. You cannot use the `fdisk` command on a disk with an EFI label that is 2 terabytes in size. If the `fdisk` command is run on disk that is greater than 2 TB in size to create a Solaris partition, the Solaris partition is limited to 2 TB. For more information about EFI disk labels, see the preceding section.

Installing a System With an EFI-Labeled Disk

The Solaris installation utilities automatically recognize disks with EFI labels. However, you cannot use the Solaris installation program to repartition these disks. You must use the `format` utility to repartition an EFI-labeled disk before or after installation. The Solaris Upgrade and Live Upgrade utilities also recognize a disk with an EFI label. However, you cannot boot a system from an EFI-labeled disk.

After the Solaris release is installed on a system with an EFI-labeled disk, the partition table appears similar to the following:
Current partition table (original):
Total disk sectors available: 2576924638 + 16384 (reserved sectors)

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>First Sector</th>
<th>Size</th>
<th>Last Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>34</td>
<td>1.20TB</td>
<td>2576924636</td>
</tr>
<tr>
<td>1</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>reserved</td>
<td>wm</td>
<td>2576924638</td>
<td>8.00MB</td>
<td>2576941021</td>
</tr>
</tbody>
</table>

Managing Disks With EFI Disks Labels
Use the following table to locate information on managing disks with EFI disk labels.

<table>
<thead>
<tr>
<th>Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the system is already installed, connect the disk to the system and perform a reconfiguration boot.</td>
<td>“SPARC: Adding a System Disk or a Secondary Disk (Task Map)” on page 223 or “x86: Adding a System Disk or a Secondary Disk (Task Map)” on page 233</td>
</tr>
<tr>
<td>Repartition the disk by using the format utility, if necessary.</td>
<td>“SPARC: How to Create Disk Slices and Label a Disk” on page 226 or “x86: How to Create Disk Slices and Label a Disk” on page 244</td>
</tr>
<tr>
<td>Create disk volumes, and if needed, create soft partitions by using Solaris Volume Manager. Or, set up a ZFS storage pool.</td>
<td>Chapter 2, “Storage Management Concepts,” in Solaris Volume Manager Administration Guide or “Creating a ZFS Storage Pool” in Oracle Solaris ZFS Administration Guide</td>
</tr>
<tr>
<td>Create UFS file systems for the new disk by using the newfs command.</td>
<td>“SPARC: How to Create a UFS File System” on page 231 or “x86: How to Create File Systems” on page 245</td>
</tr>
<tr>
<td>Or, create a ZFS file system.</td>
<td>“How to Create ZFS File Systems” in Oracle Solaris ZFS Administration Guide</td>
</tr>
<tr>
<td>Clone a disk with an EFI label</td>
<td>Example 28–2</td>
</tr>
</tbody>
</table>

Troubleshooting Problems With EFI Disk Labels
Use the following error messages and solutions to troubleshoot problems with EFI-labeled disks.

Error Message

Dec 3 09:26:48 holoship scsi: WARNING: /sbus@a,0/SUNW,socal@d,10000/sf@0/ssf@w50020f23000090a4.0 {ssd1}:
Dec 3 09:26:48 holoship disk has 2576941056 blocks, which is too large for a 32-bit kernel
Cause
You attempted to boot a system running a 32-bit SPARC or x86 kernel with a disk greater than 1 terabyte.

Solution
Boot a system running a 64-bit SPARC or x86 kernel with a disk greater than 1 terabyte.

ErrorMessage
Dec 3 09:12:17 holoship scsi: WARNING: /sbus@a,0/SUNW,socal@d,10000/sf01,0/ssd@50020f23000002a4,0 (ssd1):
Dec 3 09:12:17 holoship corrupt label - wrong magic number

Cause
You attempted to add a disk to a system running an older Solaris release.

Solution
Add the disk to a system running the Solaris release that supports the EFI disk label.

About Disk Slices
Files stored on a disk are contained in file systems. Each file system on a disk is assigned to a slice, which is a group of sectors set aside for use by that file system. Each disk slice appears to the Oracle Solaris OS (and to the system administrator) as though it were a separate disk drive.

For information about file systems, see Chapter 16, “Managing File Systems (Overview).”

Note – Slices are sometimes referred to as partitions. Certain interfaces, such as the format utility, refer to slices as partitions.

When setting up slices, remember these rules:

- Each disk slice holds only one file system.
- No file system can span multiple slices.

Slices are set up slightly differently on SPARC and x86 platforms. The following table summarizes the differences.

<table>
<thead>
<tr>
<th>SPARC Platform</th>
<th>x86 Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>The entire disk is devoted to Oracle Solaris OS.</td>
<td>Disk is divided into fdisk partitions, one fdisk partition per operating system.</td>
</tr>
<tr>
<td>VTOC – The disk is divided into 8 slices, numbered 0-7.</td>
<td>VTOC – The Solaris fdisk partition is divided into 10 slices, numbered 0-9.</td>
</tr>
<tr>
<td>EFI – The disk is divided into 7 slices, numbered 0-6.</td>
<td>EFI – The disk is divided into 7 slices, numbered 0-6</td>
</tr>
</tbody>
</table>

Overview of Disk Management
Solaris Volume Manager, previously the Solstice DiskSuite, has a partitioning feature, soft partitions. Soft partitions enable more than eight partitions per disk.

For general information about Solaris Volume Manager, see Chapter 2, "Storage Management Concepts," in Solaris Volume Manager Administration Guide. For information on soft partitions, see Chapter 12, "Soft Partitions (Overview),” in Solaris Volume Manager Administration Guide.

Disk Slices

The following table describes the slices that might be found on a system that runs the Oracle Solaris OS.

On x86 systems:

- Disks are divided into *fdisk* partitions. An *fdisk* partition is a section of the disk that is reserved for a particular operating system, such as the Oracle Solaris OS.
- The Oracle Solaris OS places ten slices, numbered 0-9, on a Solaris *fdisk* partition.

<table>
<thead>
<tr>
<th>Slice</th>
<th>File System</th>
<th>Usually Found on Client or Server Systems?</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root (/)</td>
<td>Both</td>
<td>Holds files and directories that make up the OS. EFI – You cannot boot from a disk with an EFI label.</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>Both</td>
<td>Provides virtual memory, or swap space.</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>Both</td>
<td>VTOC – Refers to the entire disk, by convention. The size of this slice should not be changed. EFI – Optional slice to be defined based on your site’s needs.</td>
</tr>
<tr>
<td>3</td>
<td>/export, for example</td>
<td>Both</td>
<td>Optional slice that can be defined based on your site’s needs. Can be used on a server to hold alternative versions of operating systems that are required by client systems.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Both</td>
<td>Optional slice to be defined based on your site’s needs.</td>
</tr>
</tbody>
</table>
TABLE 10–2 Customary Disk Slices (Continued)

<table>
<thead>
<tr>
<th>Slice</th>
<th>File System</th>
<th>Usually Found on Client or Server Systems?</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>/opt, for example</td>
<td>Both</td>
<td>Optional slice to be defined based on your site's needs. Can be used to hold application software added to a system. If a slice is not allocated for the /opt file system during installation, the /opt directory is put in slice 0.</td>
</tr>
<tr>
<td>6</td>
<td>/usr</td>
<td>Both</td>
<td>Holds OS commands (also known as executables). This slice also holds documentation, system programs (init and syslogd, for example), and library routines.</td>
</tr>
<tr>
<td>7</td>
<td>/home or /export/home</td>
<td>Both</td>
<td>Holds files that are created by users.</td>
</tr>
<tr>
<td>8</td>
<td>N/A</td>
<td>N/A</td>
<td>VTOC – Contains GRUB boot information. EFI – A reserved slice created by default. This area is similar to the VTOC's alternate cylinders. Do not modify or delete this slice.</td>
</tr>
<tr>
<td>9 (x86 only)</td>
<td>—</td>
<td>Both</td>
<td>EFI – Not applicable. VTOC – Provides an area that is reserved for alternate disk blocks. Slice 9 is known as the alternate sector slice.</td>
</tr>
</tbody>
</table>

Note – On a disk with a VTOC label, do not modify slice or use slice 2 to store a file system. Products, such as Solaris Volume Manager, Solaris Live Upgrade, and installgrub, do not work correctly if slice 2 is modified in any way.

Using Raw Data Slices

The disk label is stored in block 0 of each disk. So, third-party database applications that create raw data slices must not start at block 0. Otherwise, the disk label will be overwritten, and the data on the disk will be inaccessible.

Do not use the following areas of the disk for raw data slices, which are sometimes created by third-party database applications:

- Block 0 where the disk label is stored
- Slice 2, which represents the entire disk with a VTOC label
Slice Arrangements on Multiple Disks

Although a single large disk can hold all slices and their corresponding file systems, two or more disks are often used to hold a system's slices and file systems.

Note – A slice cannot be split between two or more disks. However, multiple swap slices on separate disks are allowed.

For instance, a single disk might hold the root (/) file system, a swap area, and the /usr file system, while another disk holds the /export/home file system and other file systems that contain user data.

In a multiple disk arrangement, the disk that contains the OS and swap space (that is, the disk that holds the root (/) and /usr file systems and the slice for swap space) is called the system disk. Other disks are called secondary disks or non-system disks.

When you arrange a system's file systems on multiple disks, you can modify file systems and slices on the secondary disks without having to shut down the system or reload the OS.

When you have more than one disk, you also increase input-output (I/O) volume. By distributing disk load across multiple disks, you can avoid I/O bottlenecks.

Determining Which Slices to Use

When you set up a disk's file systems, you choose not only the size of each slice, but also which slices to use. Your decisions about these matters depend on the configuration of the system to which the disk is attached and the software you want to install on the disk.

System configurations that need disk space are as follows:

- Servers
- Stand-alone systems

Each system configuration can use slices in a different way. The following table lists some examples.

<table>
<thead>
<tr>
<th>Slice</th>
<th>Servers</th>
<th>Stand-alone Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>root</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>swap</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>/export</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 10–3 System Configurations and Slices (Continued)

<table>
<thead>
<tr>
<th>Slice</th>
<th>Servers</th>
<th>Stand-alone Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>/usr</td>
<td>/usr</td>
</tr>
<tr>
<td>7</td>
<td>/export/home</td>
<td>/home</td>
</tr>
</tbody>
</table>

For more information about system configurations, see “Overview of System Types” in System Administration Guide: Basic Administration.

Note – The Solaris installation utility provides default slice sizes based on the software you select for installation.

format Utility

Read the following overview of the `format` utility and its uses before proceeding to the “how-to” or reference sections.

The `format` utility is a system administration tool that is used to prepare hard disk drives for use on your Solaris system.

The following table shows the features and associated benefits that the `format` utility provides.

TABLE 10–4 Features and Benefits of the format Utility

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searches your system for all</td>
<td>Reports on the following:</td>
</tr>
<tr>
<td>attached disk drives</td>
<td>■ Target location</td>
</tr>
<tr>
<td></td>
<td>■ Disk geometry</td>
</tr>
<tr>
<td></td>
<td>■ Whether the disk is formatted</td>
</tr>
<tr>
<td></td>
<td>■ If the disk has mounted partitions</td>
</tr>
<tr>
<td>Retrieves disk labels</td>
<td>Convenient for repair operations</td>
</tr>
<tr>
<td>Repairs defective sectors</td>
<td>Allows administrators to repair disk drives with recoverable errors</td>
</tr>
<tr>
<td></td>
<td>instead of sending the drive back to the manufacturer</td>
</tr>
<tr>
<td>Formats and analyzes a disk</td>
<td>Creates sectors on the disk and verifies each sector</td>
</tr>
<tr>
<td>Partitions a disk</td>
<td>Divides a disk into slices so that individual file systems can be created on separate slices</td>
</tr>
<tr>
<td>Labels a disk</td>
<td>Writes disk name and configuration information to the disk for future retrieval (usually for repair operations)</td>
</tr>
</tbody>
</table>

The `format` utility options are described in Chapter 15, “The format Utility (Reference).”
When to Use the format Utility

Disk drives are partitioned and labeled by the Solaris installation utility when you install the Solaris release. You can use the format utility to do the following:

- Display slice information
- Partition a disk
- Add a disk drive to an existing system
- Format a disk drive
- Label a disk
- Repair a disk drive
- Analyze a disk for errors

The main reason a system administrator uses the format utility is to partition a disk. These steps are covered in Chapter 12, “SPARC: Adding a Disk (Tasks),” and Chapter 13, “x86: Adding a Disk (Tasks).”

See the following section for guidelines on using the format utility.

Guidelines for Using the format Utility

<table>
<thead>
<tr>
<th>TABLE 10–5 format Utility Guidelines</th>
<th>Task</th>
<th>Guidelines</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format a disk</td>
<td></td>
<td>■ Any existing data is destroyed when you reformat a disk.</td>
<td>"How to Format a Disk" on page 206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ The need for formatting a disk drive has decreased as more and more manufacturers ship their disk drives formatted and partitioned. You might not need to use the format utility when you add a disk drive to an existing system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ If a disk has been relocated and is displaying many disk errors, you can attempt to reformat it. Reformatting automatically remaps any bad sectors.</td>
<td></td>
</tr>
<tr>
<td>Replace a system disk</td>
<td></td>
<td>■ Data from the damaged system disk must be restored from a backup medium. Otherwise, the system will have to be reinstalled by using the installation utility.</td>
<td>"SPARC: How to Connect a System Disk and Boot" on page 224, "x86: How to Connect a System Disk" on page 235, or, if the system must be reinstalled, Oracle Solaris 10 9/10 Installation Guide: Basic Installations</td>
</tr>
</tbody>
</table>
TABLE 10-5 format Utility Guidelines (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Guidelines</th>
<th>For More Information</th>
</tr>
</thead>
</table>
| Divide a disk into slices. | ■ Any existing data is destroyed when you repartition and relabel a disk with existing slices.
■ Existing data must be copied to backup media before the disk is repartitioned and restored. | “SPARC: How to Create Disk Slices and Label a Disk” on page 226 or “x86: How to Create Disk Slices and Label a Disk” on page 244 |
| Add a secondary disk to an existing system. | ■ Any existing data must be restored from backup media if the secondary disk is reformatted or repartitioned. | “SPARC: How to Connect a Secondary Disk and Boot” on page 225 or “x86: How to Connect a Secondary Disk and Boot” on page 237 |
| Repair a disk drive. | ■ Some customer sites prefer to replace rather than repair defective drives. If your site has a repair contract with the disk drive manufacturer, you might not need to use the format utility to repair disk drives.
■ The repair of a disk drive usually means that a bad sector is added to a defect list. New controllers remap bad sectors with no system interruption.
■ If the system has an older controller, you might need to remap a bad sector and restore any lost data. | “Repairing a Defective Sector” on page 218 |

Formatting a Disk

In most cases, disks are formatted by the manufacturer or reseller. So, they do not need to be reformatted when you install the drive. To determine if a disk is formatted, use the format utility. For more information, see "How to Determine if a Disk Is Formatted” on page 205.

If you determine that a disk is not formatted, use the format utility to format the disk.

When you format a disk, you accomplish two steps:

■ The disk media is prepared for use.
■ A list of disk defects based on a surface analysis is compiled.
Caution – Formatting a disk is a destructive process because it overwrites data on the disk. For this reason, disks are usually formatted only by the manufacturer or reseller. If you think disk defects are the cause of recurring problems, you can use the format utility to do a surface analysis. However, be careful to use only the commands that do not destroy data. For details, see “How to Format a Disk” on page 206.

A small percentage of total disk space that is available for data is used to store defect and formatting information. This percentage varies according to disk geometry, and decreases as the disk ages and develops more defects.

Formatting a disk might take anywhere from a few minutes to several hours, depending on the type and size of the disk.

Partitioning a Disk

The format utility is most often used by system administrators to partitioning a Disk. The steps are as follows:

- Determining which slices are needed
- Determining the size of each slice or partition
- Using the format utility to partition the disk
- Labeling the disk with new partition information
- Creating the file system for each partition

The easiest way to partition a disk is to use the modify command from the partition menu of the format utility. The modify command allows you to create partitions by specifying the size of each partition without having to keep track of the starting cylinder boundaries. The modify command also keeps track of any disk space that remains in the “free hog” slice.

Partition Table Terminology

An important part of the disk label is the partition table. The partition table identifies a disk’s slices, the slice boundaries (in cylinders), and the total size of the slices. You can display a disk’s partition table by using the format utility. The following describes partition table terminology.

<table>
<thead>
<tr>
<th>Partition Term</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>0–7</td>
<td>VTOC – Partitions or slices, numbered 0–7.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFI – Partitions or slices, numbered 0–6.</td>
</tr>
</tbody>
</table>
TABLE 10-6 Partition Table Terminology (Continued)

<table>
<thead>
<tr>
<th>Partition Term</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>0=UNASSIGNED 1=BOOT 2=ROOT 3=SWAP 4=USR 5=BACKUP 7=VAR 8=HOME 11=RESERVED</td>
<td>A numeric value that usually describes the file system mounted on this partition.</td>
</tr>
<tr>
<td>Flags</td>
<td>wm</td>
<td>The partition is writable and mountable.</td>
</tr>
<tr>
<td></td>
<td>wu rm</td>
<td>The partition is writable and unmountable. This state is the default for partitions that are dedicated for swap areas. (However, the mount command does not check the “not mountable” flag.)</td>
</tr>
<tr>
<td></td>
<td>rm</td>
<td>The partition is read only and mountable.</td>
</tr>
</tbody>
</table>

Partition flags and tags are assigned by convention and require no maintenance.

For more information on displaying the partition table, see the following references:

- “Displaying Partition Table Information” on page 197
- “How to Display Disk Slice Information” on page 207
- “How to Examine a Disk Label” on page 211

Displaying Partition Table Information

The following `format` utility output shows an example of a partition table from a 74-GB disk with a VTOC label displayed:

```
Total disk cylinders available: 38756 + 2 (reserved cylinders)
```

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>3 - 2083</td>
<td>4.00GB</td>
<td>(2081/0/0)</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>2084 - 3124</td>
<td>2.00GB</td>
<td>(1041/0/0)</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wm</td>
<td>0 - 38755</td>
<td>74.51GB</td>
<td>(38756/0/0)</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0)</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0)</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0)</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0)</td>
</tr>
<tr>
<td>7</td>
<td>home</td>
<td>wu</td>
<td>3125 - 38755</td>
<td>68.50GB</td>
<td>(35631/0/0)</td>
</tr>
<tr>
<td>8</td>
<td>boot</td>
<td>wu</td>
<td>0 - 0</td>
<td>1.97MB</td>
<td>(1/0/0)</td>
</tr>
<tr>
<td>9</td>
<td>alternates</td>
<td>wu</td>
<td>1 - 2</td>
<td>3.94MB</td>
<td>(2/0/0)</td>
</tr>
</tbody>
</table>

The partition table displayed by the `format` utility contains the following information.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part</td>
<td>Partition or slice number. See Table 10-6 for a description of this column.</td>
</tr>
</tbody>
</table>
The following is an example of an EFI disk label displayed by using the `prtvtoc` command.

```
# prtvtoc /dev/rdsk/c4t1d0s0
* /dev/rdsk/c4t1d0s0 partition map
*  
* Dimensions:
*  512 bytes/sector
*  2576941056 sectors
*  2576940989 accessible sectors
*  
* Flags:
*  1: unmountable
*  10: read-only
*  
* Partition Tag Flags First Sector Count Last Sector Mount Directory
* 0 2 00 34 629145600 629145633
* 1 4 00 629145634 629145600 1258291233
* 6 4 00 1258291234 1318633404 2576924637
* 8 11 00 2576924638 16384 2576941021
```

The output of the `prtvtoc` command provides information in the following three sections:

- **Dimensions**
- **Flags**
- **Partition Table**

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition</td>
<td>Partition or slice number. For a description of this column, see Table 10–6.</td>
</tr>
<tr>
<td>Tag</td>
<td>Partition tag. For a description of this column, see Table 10–6.</td>
</tr>
<tr>
<td>Flags</td>
<td>Partition flag. For a description of this column, see Table 10–6.</td>
</tr>
<tr>
<td>First Sector</td>
<td>The first sector of the slice.</td>
</tr>
</tbody>
</table>
Using the Free Hog Slice

When you use the format utility to change the size of one or more disk slices, you designate a temporary slice that will expand and shrink to accommodate the resizing operations.

This temporary slice donates, or "frees," space when you expand a slice, and receives, or "hogs," the discarded space when you shrink a slice. For this reason, the donor slice is sometimes called the free hog.

The free hog slice exists only during installation or when you run the format utility. There is no permanent free hog slice during day-to-day operations.

For information on using the free hog slice, see "SPARC: How to Create Disk Slices and Label a Disk" on page 226 or "x86: How to Create Disk Slices and Label a Disk" on page 244.
This chapter contains disk administration procedures. Many procedures described in this chapter are optional if you are already familiar with how disks are managed on systems running the Oracle Solaris OS.

For information on the procedures associated with administering disks, see “Administering Disks (Task Map)” on page 201.

For overview information about disk management, see Chapter 10, ”Managing Disks (Overview).”

Administering Disks (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the disks on a system.</td>
<td>If you are not sure of the types of disks on a system, use the format utility to identify the disk types.</td>
<td>“How to Identify the Disks on a System” on page 202</td>
</tr>
<tr>
<td>Format the disk.</td>
<td>Determine whether a disk is already formatted by using the format utility.</td>
<td>“How to Determine if a Disk Is Formatted” on page 205</td>
</tr>
<tr>
<td></td>
<td>In most cases, disks are already formatted. Use the format utility if you need to format a disk.</td>
<td>“How to Format a Disk” on page 206</td>
</tr>
<tr>
<td>Display slice information.</td>
<td>Display slice information by using the format utility.</td>
<td>“How to Display Disk Slice Information” on page 207</td>
</tr>
<tr>
<td>Label the disk.</td>
<td>Create the disk label by using the format utility.</td>
<td>“How to Label a Disk” on page 209</td>
</tr>
</tbody>
</table>
Identifying Disks on a System

Use the `format` utility to discover the types of disks that are connected to a system. You can also use the `format` utility to verify that a disk is known to the system. For detailed information on using the `format` utility, see Chapter 15, “The `format` Utility (Reference).”

How to Identify the Disks on a System

1. **Become superuser or assume an equivalent role.**
 Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Identify the disks that are recognized on the system by using the `format` utility.**
   ```
   # format
   ```
 The `format` utility displays a list of disks that it recognizes under AVAILABLE DISK SELECTIONS.

Example 11–1 Identifying the Disks on a System

The following example shows `format` command output is from a system with one disk.
format
AVAILABLE DISK SELECTIONS:
0. c0t1d0 <FUJITSU MAN3367M SUN36G 1804 43d671f>
 /pci@1f,0/pci@1,1/scsi@2/sd@1,0

The output associates a disk's physical and logical device name to the disk's marketing name, which appears in angle brackets «>. See the example below. This method is an easy way to identify which logical device names represent the disks that are connected to your system. For a description of logical and physical device names, see “Device Naming Conventions” on page 77.

The following example uses a wildcard to display the four disks that are connected to a second controller.

format /dev/rdsk/c2*
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c2t10d0s0 <SUN9.0G cyl 4924 alt 2 hd 27 sec 133>
 /sbus@3,0/SUNW,fas@3,8800000/sd@a,0
1. /dev/rdsk/c2t11d0s0 <SUN9.0G cyl 4924 alt 2 hd 27 sec 133>
 /sbus@3,0/SUNW,fas@3,8800000/sd@b,0
2. /dev/rdsk/c2t14d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@3,0/SUNW,fas@3,8800000/sd@e,0
3. /dev/rdsk/c2t15d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@3,0/SUNW,fas@3,8800000/sd@f,0

Specify disk (enter its number):

The following example shows how to identify the disks on a SPARC based system.

format
0. c0t1d0 <FUJITSU MAN3367M SUN36G 1804 43d671f>
 /pci@1f,0/pci@1,1/scsiq2/sd@1,0

Specify disk (enter its number):

The output identifies that disk 0 (target 1) is connected to the second SCSI host adapter (scsi@2), which is connected to the second PCI interface (/pci@1f0/pci@1,1...). The output also associates both the physical and logical device name to the disk's marketing name, SUN36G.

The following example shows how to identify the disks on an x86 based system.

format
AVAILABLE DISK SELECTIONS:
0. c0d0 <DEFAULT cyl 615 alt 2 hd 64 sec 63>
 /pci0,0/pci-ide@7,1/ata0/cmdk0,0
1. c0d1 <DEFAULT cyl 522 alt 2 hd 32 sec 63>
 /pci0,0/pci-ide@7,1/ata0/cmdk0,1
2. c1d0 <DEFAULT cyl 817 alt 2 hd 256 sec 63>
 /pci0,0/pci-ide@7,1/ata1/cmdk0,0

Specify disk (enter its number):

The output shows that disk 0 is connected to the first PCI host adapter (pci-ide@7...), which is connected to the ATA interface (ata...). If the format output on an x86 based system does not identify disks by their marketing names, then you can use the format utility's type and label features as described in the following steps to include the disk's marketing name.
The following steps must be done while the disk or system is inactive, which means booting from an installation DVD or the network. In addition, the final step is to relabel the disk, which can remove any existing partition information or data.

```bash
# format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
  0. c1t0d0 <DEFAULT cyl 49779 alt 2 hd 4 sec 720>
      /pci@0,0/pci1022,7450@a/pci17c2,10@04/sd@0,0
  1. c1t1d0 <DEFAULT cyl 8921 alt 2 hd 255 sec 63>
      /pci@0,0/pci1022,7450@a/pci17c2,10@04/sd@1,0
  2. c2t1d0 <SEAGATE-ST318404LSUN18G-4203-16.87GB>
      /pci@0,0/pci1022,7450@b/pci1000,10c@01/sd@1,0
  3. c2t2d0 <SEAGATE-ST318404LSUN18G-4203-16.87GB>
      /pci@0,0/pci1022,7450@b/pci1000,10c@01/sd@2,0
  ...
  7. c2t6d0 <IBM-DDYST1835SUN18G-S94N-16.87GB>
      /pci@0,0/pci1022,7450@b/pci1000,10c@01/sd@6,0

Specify disk (enter its number): 7
selecting c2t6d0
[disk formatted]
format> type
AVAILABLE DRIVE TYPES:
  0. Auto configure
  1. other
Specify disk type (enter its number)[1]: 0
c2t6d0: configured with capacity of 16.87GB
<IBM-DDYST1835SUN18G-S94N-16.87GB>
selecting c2t6d0
[disk formatted]
format> label
Ready to label disk, continue? yes
format> disk

AVAILABLE DISK SELECTIONS:
  0. c1t0d0 <DEFAULT cyl 49779 alt 2 hd 4 sec 720>
      /pci@0,0/pci1022,7450@a/pci17c2,10@04/sd@0,0
  1. c1t1d0 <DEFAULT cyl 8921 alt 2 hd 255 sec 63>
  ...
  7. c2t6d0 <IBM-DDYST1835SUN18G-S94N-16.87GB>
      /pci@0,0/pci1022,7450@b/pci1000,10c@01/sd@6,0

More Information
If the format Utility Does Not Recognize a Disk ...
- Go to Chapter 12, “SPARC: Adding a Disk (Tasks),” or Chapter 13, “x86: Adding a Disk (Tasks).”
- Go to “Creating a format.dat Entry” on page 216.
- Go to “How to Label a Disk” on page 209.
- Connect the disk to the system by using your disk hardware documentation.
Disks are typically formatted by the manufacturer or reseller. They usually do not need to be reformatted when you install the drive.

A disk must be formatted before you can do the following:

- Write data to the disk. However, most disks are already formatted.
- Use the Solaris installation utility to install the system.

**Caution** – Formatting a disk is a destructive process because it overwrites data on the disk. For this reason, disks are usually formatted only by the manufacturer or reseller. If you think disk defects are the cause of recurring problems, you can use the `format` utility to do a surface analysis. However, be careful to use only the commands that do not destroy data.

### How to Determine if a Disk Is Formatted

1. Become superuser or assume an equivalent role.
2. Invoke the `format` utility.
   ```
 # format
   ```
   A numbered list of disks is displayed.
3. Type the number of the disk that you want to check.
   ```
 Specify disk (enter its number): 0
   ```
4. Verify that the disk you chose is formatted by noting the following message:
   ```
 [disk formatted]
   ```

#### Example 11–2 Determining if a Disk Is Formatted

The following example shows that disk `c1t0d0` is formatted.

```bash
format /dev/rdsk/c1*t
AVAILABLE DISK SELECTIONS:
 0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,ispq2,10000/sd@0,0
 1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,ispq2,10000/sd@1,0
 2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,ispq2,10000/sd@8,0
 3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,ispq2,10000/sd@9,0
Specify disk (enter its number): 0
selecting /dev/rdsk/c1t0d0s0
[disk formatted]
```
How to Format a Disk

1. Become superuser or assume an equivalent role.
2. Invoke the `format` utility.
   ```
 # format
   ```
   A numbered list of disks is displayed.
3. Type the number of the disk that you want to format.
   ```
 Specify disk (enter its number): 0
   ```
   **Caution** – Do not select the system disk. If you format your system disk, you delete the OS and any data on this disk.
4. To begin formatting the disk, type `format` at the `format>` prompt. Confirm the command by typing `y`.
   ```
 format> format
 Ready to format. Formatting cannot be interrupted and takes 23 minutes (estimated). Continue? yes
   ```
5. Verify that the disk format was successful by noting the following messages:
   ```
 Beginning format. The current time Tue ABC xx xx:xx:xx xxxx
 Formatting... done
 Verifying media...
 pass 0 - pattern = 0xc6dec6de
 2035/12/18
 pass 1 - pattern = 0x6db6db6d
 2035/12/18
 Total of 0 defective blocks repaired.
   ```
6. Exit the `format` utility.
   ```
 format> quit
   ```

Example 11–3 Formatting a Disk

The following example shows how to format the disk c0t6d0.

```
format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
```
Displaying Disk Slices

You can use the `format` utility to check whether a disk has the appropriate disk slices. If you determine that a disk does not contain the slices you want to use, use the `format` utility to re-create them and label the disk. For information on creating disk slices, see "SPARC: How to Create Disk Slices and Label a Disk" on page 226 or "x86: How to Create Disk Slices and Label a Disk" on page 244.

Note – The `format` utility uses the term `partition` instead of `slice`.

▼ How to Display Disk Slice Information

1. Become superuser or assume an equivalent role.

2. Invoke the `format` utility.

   ```
 # format
   ```

   A numbered list of disks is displayed.

3. Type the number of the disk for which you want to display slice information.

   ```
 Specify disk (enter its number): 6
   ```

   ```
 selecting c0t6d0
   ```

   ```
 [disk formatted]
   ```

   ```
 format> format
   ```

   ```
 Ready to format. Formatting cannot be interrupted
 and takes 332 minutes (estimated). Continue? y
   ```

   ```
 Beginning format. The current time is Mon Jul 12 10:52:10 2010
   ```

   ```
 Formatting...
   ```

   ```
 Verifying media...
   ```

   ```
 Total of 0 defective blocks repaired.
   ```

   ```
 format> quit
   ```
Select the partition menu.

```
format> partition
```

Display the slice information for the selected disk.

```
partition> print
```

Exit the format utility.

```
partition> q
format> q
```

Verify the displayed slice information by identifying specific slice tags and slices.
If the screen output shows that no slice sizes are assigned, the disk probably does not have slices.

**Example 11–4** Displaying Disk Slice Information

The following example displays slice information for a disk with a VTOC label.

```
format
Searching for disks...done
Specify disk (enter its number): 1
Selecting c0t0d0
format> partition
partition> print
Current partition table (original):
Total disk cylinders available: 8892 + 2 (reserved cylinders)

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>1110 - 4687</td>
<td>1.61GB</td>
<td>(0/3578/0) 3381210</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>0 - 1109</td>
<td>512.00MB</td>
<td>(0/1110/0) 1048950</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wm</td>
<td>0 - 8891</td>
<td>4.01GB</td>
<td>(0/8892/0) 8482940</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>6</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>7</td>
<td>home</td>
<td>wm</td>
<td>4688 - 8891</td>
<td>1.89GB</td>
<td>(0/4204/0) 3972780</td>
</tr>
</tbody>
</table>
partition> q
format> q
```

For a detailed description of the slice information in these examples, see Chapter 10, “Managing Disks (Overview).”

The following example shows the slice information for a disk with an EFI label.

```
format
Searching for disks...done
Specify disk (enter its number): 9
Selecting c4t1d0 [disk formatted]
format> partition
partition> print
```
Creating and Examining a Disk Label

The labeling of a disk is usually done during system installation or when you are creating new disk slices. You might need to relabel a disk if the disk label becomes corrupted. For example, from a power failure.

The format utility attempts to automatically configure any unlabeled SCSI disk. If the format utility is able to automatically configure an unlabeled disk, it displays a message similar to the following:

```
c0t0d1: configured with capacity of 4.00GB
```

**Tip** – For information on labeling multiple disks with the same disk label, see “Labeling Multiple Disks by Using the prtvtoc and fmthard Commands” on page 222.

▼ **How to Label a Disk**

You can use the following procedure to do the following:

- Label a disk with a VTOC or an EFI label for a disk 2 terabytes in size.
- Label a disk that is greater than 2 terabytes in size with an EFI label.

If you want to put an EFI label on disk smaller than 2 terabytes, see Example 11–6.

1. **Become superuser or assume an equivalent role.**
2. **Invoke the format utility.**
   ```
 # format
   ```
   A numbered list of disks is displayed.
3. **Type the number of the disk that you want to label.**
   ```
 Specify disk (enter its number): 1
   ```
If the format utility recognizes the disk type, the next step is to search for a backup label to label the disk. Labeling the disk with the backup label labels the disk with the correct partitioning information, the disk type, and disk geometry.

4 **Select one of the following to label the disk:**
   - If the disk is unlabeled and was successfully configured, go to Step 5 to label the disk.
     The format utility will ask if you want to label the disk.
   - If the disk is labeled but you want to change the disk type, or if the format utility was not able to automatically configure the disk, proceed to Step 6 to set the disk type and label the disk.

5 **Label the disk by typing y at the Label it now? prompt.**
   Disk not labeled. Label it now? y
   The disk is now labeled. Go to step 10 to exit the format utility.

6 **Enter type at the format> prompt.**
   format> type
   The Available Drive Types menu is displayed.

7 **Select a disk type from the list of possible disk types.**
   Specify disk type (enter its number)[12]: 12
   Or, select 0 to automatically configure a SCSI-2 disk. For more information, see "How to Automatically Configure a SCSI Drive" on page 217.

8 **Label the disk. If the disk is not labeled, the following message is displayed.**
   Disk not labeled. Label it now? y
   Otherwise, you are prompted with this message:
   Ready to label disk, continue? y

9 **Verify the disk label.**
   format> verify

10 **Exit the format utility.**
    format> q
    #

**Example 11–5** Labeling a Disk

The following example shows how to automatically configure and label a 1.05-GB disk.
Labeling a Disk 2 Terabytes or Less With an EFI Label

The following example shows how to use the `format -e` command to label a disk that is 2 terabytes or less with an EFI label. Remember to verify that your layered software products will continue to work on systems with EFI-labeled disks. For general information on EFI label restrictions, see "Restrictions of the EFI Disk Label" on page 186.

```
format -e
Searching for disks...done
AVAILABLE DISK SELECTIONS:
 1. c1t9d0 <SUNW18g cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@9,0
 2. c1t8d0 <SUNW18g cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@8,0
 3. c1t7d0 <SUNW18g cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@7,0
 4. c1t6d0 <SUNW18g cyl 7506 alt 2 hd 19 sec 248>
 /sbus@2,0/QLGC,isp@2,10000/sd@6,0
Specify disk (enter its number): 4
selecting c1t9d0
[disk formatted]
format> label
[0] SMI Label
[1] EFI Label
Specify Label type[0]: 1
Ready to label disk, continue? yes
format> quit
```

How to Examine a Disk Label

Examine disk label information by using the `prtvtoc` command. For a detailed description of the disk label and the information that is displayed by the `prtvtoc` command, see Chapter 10, "Managing Disks (Overview)."

1. Become superuser or assume an equivalent role.

2. Display the disk label information.

```
prtvtoc /dev/rdsk/device-name
```
where `device-name` is the raw disk device you want to examine.

### Example 11–7 Examining a Disk Label

The following example shows disk label information for a disk with a VTOC label.

```
prtvtoc /dev/rdsk/c0t0d0s0
 * /dev/rdsk/c0t0d0s0 partition map
 *
 * Dimensions:
 * 512 bytes/sector
 * 63 sectors/track
 * 15 tracks/cylinder
 * 945 sectors/cylinder
 * 8894 cylinders
 * 8892 accessible cylinders
 *
 * Flags:
 * 1: unmountable
 * 10: read-only
 *
 * First Sector Last
 * Partition Tag Flags Sector Count Sector Mount Directory
 0 2 00 1048950 3381210 4430159 /
 1 3 01 0 1048950 1048949
 2 5 00 0 8402940 8402939
 7 8 00 4430160 3972780 8402939 /export/home
```

The following example shows disk label information for a disk with an EFI label.

```
prtvtoc /dev/rdsk/c3t1d0s0
 * /dev/rdsk/c3t1d0s0 partition map
 *
 * Dimensions:
 * 512 bytes/sector
 * 2479267840 sectors
 * 2479267773 accessible sectors
 *
 * Flags:
 * 1: unmountable
 * 10: read-only
 *
 * First Sector Last
 * Partition Tag Flags Sector Count Sector Mount Directory
 0 2 00 34 262144 262177
 1 3 01 262178 262144 524321
 6 4 00 524322 2478727100 2479251421
 8 11 00 2479251422 16384 2479267805
```
Recovering a Corrupted Disk Label

Sometimes, a power or system failure causes a disk’s label to become unrecognizable. A corrupted disk label doesn’t always mean that the slice information or the disk’s data must be re-created or restored.

The first step to recovering a corrupted disk label is to label the disk with the correct geometry and disk type information. You can complete this step through the normal disk labeling method, by using either automatic configuration or manual disk type specification.

If the `format` utility recognizes the disk type, the next step is to search for a backup label to label the disk. Labeling the disk with the backup label labels the disk with the correct partitioning information, the disk type, and disk geometry.

How to Recover a Corrupted Disk Label

1. **Boot the system to single-user mode.**
   If necessary, boot the system from a local Solaris DVD or the network in single-user mode to access the disk.
   
   See Chapter 12, “Booting an Oracle Solaris System (Tasks),” in *System Administration Guide: Basic Administration* or “Booting an x86 Based System by Using GRUB (Task Map)” in *System Administration Guide: Basic Administration* for information on booting the system.

2. **Relabel the disk.**
   
   ```sh
 # format
   ```
   The `format` utility attempts to automatically configure any unlabeled SCSI disk. If the `format` utility is able to configure the unlabeled and corrupted disk, it will display this message:

   ```
 /dev/cwtx0: configured with capacity of 123MB
   ```
   The `format` utility then displays a numbered list of disks on the system.

3. **Type the number of the disk that you need to recover.**
   
   Specify disk (enter its number): 1

4. **Select one of the following to determine how to label the disk.**
   
   - If the disk was configured successfully, follow Steps 5 and 6. Then go to step 12.
   
   - If the disk was not configured successfully, follow Steps 7–11. Then go to step 12.

5. **Search for the backup label.**
   
   ```sh
 format> verify
 Warning: Could not read primary label.
 Warning: Check the current partitioning and 'label' the disk or
   ```
use the 'backup' command.

Backup label contents:

Volume name = < >
ascii name = <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>

pcyl = 2038
ncyl = 2036
acyl = 2
nhead = 14
nsect = 72

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>0 - 300</td>
<td>148.15MB</td>
<td>(301/0/0) 303408</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>301 - 524</td>
<td>110.25MB</td>
<td>(224/0/0) 225792</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wm</td>
<td>0 - 2035</td>
<td>1002.09MB</td>
<td>(2036/0/0) 2052288</td>
</tr>
<tr>
<td>3</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>4</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>5</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
<tr>
<td>6</td>
<td>usr</td>
<td>wm</td>
<td>525 - 2035</td>
<td>743.70MB</td>
<td>(1511/0/0) 1523088</td>
</tr>
<tr>
<td>7</td>
<td>unassigned</td>
<td>wm</td>
<td>0</td>
<td>0</td>
<td>(0/0/0) 0</td>
</tr>
</tbody>
</table>

6 If the `format` utility was able to find a backup label and the backup label contents appear satisfactory, use the `backup` command to label the disk with the backup label.

```
format> backup
Disk has a primary label, still continue? y
```

Searching for backup labels...found.
Restoring primary label
The disk label has been recovered. Go to Step 12.

7 If the `format` utility was not able to automatically configure the disk, specify the disk type by using the `type` command.

```
format> type
```

The Available Drives Type menu is displayed.

8 Select 0 to automatically configure the disk. Or, select a disk type from the list of possible disk types.

Specify disk type (enter its number) [12]: 12

9 If the disk was successfully configured, reply with no when the `format` utility asks if you want to label the disk.

```
Disk not labeled. Label it now? no
```

10 Use the `verify` command to search for backup labels.

```
format> verify
Warning: Could not read primary label.
Warning: Check the current partitioning and 'label' the disk or use the 'backup' command.
```

```
If the `format` utility was able to find a backup label and the backup label contents appear satisfactory, use the `backup` command to label the disk with the backup label.

```
format> backup
Disk has a primary label, still continue? y
Searching for backup labels...found.
Restoring primary label
```

The disk label has been recovered.

Exit the `format` utility.

```
format> q
```

Verify the file systems on the recovered disk by using the `fsck` command.

For information on using the `fsck` command, see Chapter 21, “Checking UFS File System Consistency (Tasks).”

Adding a Third-Party Disk

The Solaris OS supports many third-party disks. However, for the disk to be recognized, you might need to supply either a device driver, a `format.dat` entry, or both. Other options for adding disks are as follows:

- If you are adding a SCSI disk, you might try the `format` utility’s automatic configuration feature. For more information, see "Automatically Configuring SCSI Disk Drives" on page 216.

- You might try hot-plugging a PCI, SCSI, or USB disk. For more information, see Chapter 5, “Managing Devices (Overview/ Tasks).”

If the third-party disk is designed to work with standard SunOS compatible device drivers, then the creation of an appropriate `format.dat` entry should suffice to allow the disk to be recognized by the `format` utility. In other cases, you need to load a third-party device driver to support the disk.

Note—Sun cannot guarantee that its `format` utility will work properly with all third-party disk drivers. If the disk driver is not compatible with the Solaris `format` utility, the disk drive vendor should supply you with a custom disk formatting program.

This section discusses what to do if some of this software support is missing. Typically, you discover that software support is missing when you invoke the `format` utility and find that the disk type is not recognized.

Supply the missing software as described in this section. Then, refer to the appropriate configuration procedure for adding system disks or secondary disks in Chapter 12, “SPARC: Adding a Disk (Tasks),” or Chapter 13, “x86: Adding a Disk (Tasks).”
Creating a format.dat Entry

Unrecognized disks cannot be formatted without precise information about the disk's geometry and operating parameters. This information is supplied in the `/etc/format.dat` file.

Note – SCSI-2 disks do not require a `format.dat` entry. The `format` utility automatically configures the SCSI-2 drivers if the disks are powered on during a reconfiguration boot. For step-by-step instructions on configuring a SCSI disk drive automatically, see “How to Automatically Configure a SCSI Drive” on page 217.

If your disk is unrecognized, use a text editor to create an entry in `format.dat` for the disk. You need to gather all the pertinent technical specifications about the disk and its controller before you start. This information should have been provided with the disk. If not, contact the disk manufacturer or your supplier.

How to Create a format.dat Entry

1. Become superuser or assume an equivalent role.

2. Make a copy of the `/etc/format.dat` file.
   ```bash
   # cp /etc/format.dat /etc/format.dat.gen
   ```

3. Modify the `/etc/format.dat` file to include an entry for the third-party disk.
 Use the `format.dat` information that is described in Chapter 15, “The format Utility (Reference).”
 Also, use the disk’s hardware product documentation to gather the required information.

Automatically Configuring SCSI Disk Drives

The `format` utility automatically configures SCSI disk drives even if that specific type of drive is not listed in the `/etc/format.dat` file. This feature enables you to format, create slices for, and label any disk driver that is compliant with the SCSI-2 specification for disk device mode sense pages.

Here are other options for adding disks:

- If you are adding a SCSI disk, you might try the `format` utility’s automatic configuration feature.

- You might try hot-plugging a PCI, SCSI, or USB disk. For more information, see Chapter 5, “Managing Devices (Overview/Tasks)”
The following steps are involved in configuring a SCSI drive by using automatic configuration:

- Shutting down the system
- Attaching the SCSI disk drive to the system
- Turning on the disk drive
- Performing a reconfiguration boot
- Using the `format` utility to automatically configure the SCSI disk drive

After the reconfiguration boot, invoke the `format` utility. The `format` utility will attempt to configure the disk and, if successful, alert the user that the disk was configured. For step-by-step instructions on automatically configuring a SCSI disk drive, see “How to Automatically Configure a SCSI Drive” on page 217.

Here’s an example of a partition table for a 1.3-GB SCSI disk drive that was displayed by the `format` utility.

<table>
<thead>
<tr>
<th>Part</th>
<th>Tag</th>
<th>Flag</th>
<th>Cylinders</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root</td>
<td>wm</td>
<td>0 - 96</td>
<td>64.41MB</td>
<td>(97/0/0)</td>
</tr>
<tr>
<td>1</td>
<td>swap</td>
<td>wu</td>
<td>97 - 289</td>
<td>128.16MB</td>
<td>(193/0/0)</td>
</tr>
<tr>
<td>2</td>
<td>backup</td>
<td>wu</td>
<td>0 - 1964</td>
<td>1.27GB</td>
<td>(1965/0/0)</td>
</tr>
<tr>
<td>6</td>
<td>usr</td>
<td>wm</td>
<td>290 - 1964</td>
<td>1.09GB</td>
<td>(1675/0/0)</td>
</tr>
</tbody>
</table>

How to Automatically Configure a SCSI Drive

1. **Become superuser or equivalent role.**

2. **Create the `/reconfigure` file that will be read when the system is booted.**

   ```bash
   # touch /reconfigure
   ```

3. **Shut down the system.**

   ```bash
   # shutdown -i0 -gn -y
   
   -i0     Brings the system down to init level 0, the power-down state.
   
   -gn     Notifies logged-in users that they have n seconds before the system begins to shut down.
   
   -y     Specifies that the command should run without user intervention.
   
   The ok prompt is displayed after the system is shut down.
   ```

4. **Turn off the power to the system and all external peripheral devices.**

5. **Ensure that the disk you are adding has a different target number than the other devices on the system.**

 Typically, a small switch is located at the back of the disk for this purpose.
6 Connect the disk to the system, and check the physical connections.
Refer to the disk’s hardware installation guide for details.

7 Turn on the power to all external peripherals.

8 Turn on the power to the system.
The system boots and displays the login prompt.

9 Log back in as superuser or assume an equivalent role.

10 Invoke the `format` utility, and select the disk that you want to configure automatically.

```
# format
Searching for disks...done
c1t0d0: configured with capacity of 1002.09MB
AVAILABLE DISK SELECTIONS:
 0. c0t1d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
    /iommu@/f,e0000000/sbus@f,e0001000/espdma@f,4000000/esp@f,8000000/sd@1,0
 1. c0t3d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72>
    /iommu@/f,e0000000/sbus@f,e0001000/espdma@f,4000000/esp@f,8000000/sd@3,0
Specify disk (enter its number): 1
```

11 Type `yes` in response to the prompt to label the disk.
Typing `y` causes the disk label to be generated and written to the disk by using SCSI automatic configuration.

```
Disk not labeled. Label it now? y
```

12 Verify the disk label.
```
format> verify
```

13 Exit the `format` utility.
```
format> q
```

Repairing a Defective Sector

If a disk on your system has a defective sector, you can repair the disk by following procedures in this section. You might become aware of defective sectors when you do the following:

- Run surface analysis on a disk

For more information on the analysis feature of the `format` utility, see “analyze Menu” on page 283.
The defective area reported while your system is running might not be accurate. Because the system does disk operations many sectors at a time, it is often hard to pinpoint exactly which sector caused a given error. To find the exact sector or sectors, use “How to Identify a Defective Sector by Using Surface Analysis” on page 219.

- Get multiple error messages from the disk driver concerning a particular portion of the disk while your system is running.

 Console messages that are related to disk errors appear similar to the following:

 WARNING: /io-unit@/f,e0200000/sbi@0,0/QLGC,isp@0,10000/sd@0,0 (sd33):
 Error for command ‘read’ Error Level: Retryable
 Requested Block 126, Error Block: 179
 Sense Key: Media Error
 Vendor ‘name’:
 ASC = 0x11 (unrecovered read error), ASCQ = 0x0, FRU = 0x0

 This message indicates that block 179 might be defective. You would relocate the bad block by using the format utility’s repair command. Or, you would use the analyze command with the repair option enabled.

▼ How to Identify a Defective Sector by Using Surface Analysis

1 Become superuser or assume an equivalent role.

2 Unmount the file system in the slice that contains the defective sector.

 # umount /dev/dsk/device-name

 For more information, see mount(1M).

3 Invoke the format utility.

 # format

4 Select the affected disk.

 Specify disk (enter its number):1
 selecting c0t2d0:
 [disk formatted]
 Warning: Current Disk has mounted partitions.

5 Select the analyze menu.

 format> analyze
6 **Set up the analysis parameters by typing setup at the analyze> prompt.**

Use the parameters shown here:

```bash
analyze> setup
Analyze entire disk [yes]? n
Enter starting block number [0, 0/0/0]: 12330
Enter ending block number [2052287, 2035/13/71]: 12360
Loop continuously [no]? y
Repair defective blocks [yes]? n
Stop after first error [no]? n
Use random bit patterns [no]? n
Enter number of blocks per transfer [126, 0/1/54]: 1
Verify media after formatting [yes]? y
Enable extended messages [no]? n
Restore defect list [yes]? y
Create defect label [yes]? y
```

7 **Find the defect by using the read command.**

```bash
analyze> read
Ready to analyze (won't harm SunOS). This takes a long time, but is interruptible with Control-C. Continue? y
pass 0
2035/12/125/7/24
pass 1
Block 12354 (18/4/18), Corrected media error (hard data ecc)
25/7/24
^C
Total of 1 defective blocks repaired.
```

▼ **How to Repair a Defective Sector**

1 **Become superuser or assume an equivalent role.**

2 **Invoke the format utility.**

```bash
# format
```

3 **Select the disk that contains the defective sector.**

```bash
Specify disk (enter its number): 1
selecting c0t3d0
[disk formatted]
format>
```

4 **Select the repair command.**

```bash
format> repair
```

5 **Type the defective block number.**

```bash
Enter absolute block number of defect: 12354
Ready to repair defect, continue? y
```
Tips and Tricks for Managing Disks

Use the following tips to help you manage disks more efficiently.

Debugging format Sessions

Invoke the `format -M` command to enable extended and diagnostic messages for ATA and SCSI devices.

EXAMPLE 11-8 Debugging format Sessions

In this example, the series of numbers under `Inquiry` represent the hexadecimal value of the inquiry data that is displayed to the right of the numbers.

```
# format -M
Searching for disks...done
AVAILABLE DISK SELECTIONS:
   0. c0t1d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72> /iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/sd@1,0
   1. c0t3d0 <SUN1.05 cyl 2036 alt 2 hd 14 sec 72> /iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/sd@3,0

Specify disk (enter its number): 0
selecting c0t3d0
[disk formatted]
format> inquiry
Inquiry:
00 00 02 02 8f 00 00 12 53 45 41 47 41 54 45 20 ........NAME....
53 54 31 31 32 30 30 4e 20 53 55 4e 31 2e 30 35 ST11200N SUN1.05
38 33 35 38 30 30 30 33 30 32 30 39 00 00 00 00 835800030209....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .................
00 43 6f 70 79 72 69 67 68 74 20 28 63 29 20 31 .Copyright (c) 1
39 39 32 20 53 65 61 67 61 74 65 20 41 6c 6c 20 992 NAME All
72 69 67 68 74 73 20 72 65 73 65 72 6e 64 20 rights reserved
38 30 30 00
Vendor:  name
Product: ST11200N SUN1.05
Revision: 8358
format>
```
Labeling Multiple Disks by Using the `prtvtoc` and `fmthard` Commands

Use the `prtvtoc` and `fmthard` commands to label multiple disks with the same disk geometry.

Use the following `for` loop in a script to copy a disk label from one disk and replicate it on multiple disks.

```bash
# for i in xyz
> do
>   prtvtoc /dev/rdsk/cwtxysz | fmthard -s - /dev/rdsk/cwts{i}d0s2
> done
```

EXAMPLE 11-9 Labeling Multiple Disks

In this example, the disk label from `c2t0d0s0` is copied to four other disks.

```bash
# for i in 1 2 3 5
> do
>   prtvtoc /dev/rdsk/c2t0d0s0 | fmthard -s - /dev/rdsk/c2t{i}d0s2
> done
```

`fmthard`: New volume table of contents now in place.

`fmthard`: New volume table of contents now in place.

`fmthard`: New volume table of contents now in place.

`fmthard`: New volume table of contents now in place.

#
This chapter describes how to add a disk to a SPARC system.

For information on the procedures associated with adding a disk to a SPARC system, see “SPARC: Adding a System Disk or a Secondary Disk (Task Map)” on page 223.

For overview information about disk management, see Chapter 10, “Managing Disks (Overview).” For step-by-step instructions on adding a disk to an x86 based system, see Chapter 13, “x86: Adding a Disk (Tasks).”

Although the procedures that describe how to add a disk can be used with a ZFS file system, a ZFS file system is not directly mapped to a disk or a disk slice. You must create a ZFS storage pool before creating a ZFS file system. For more information, see Oracle Solaris ZFS Administration Guide

SPARC: Adding a System Disk or a Secondary Disk (Task Map)

The following task map identifies the procedures for adding a disk to a SPARC based system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Connect the disk and boot.</td>
<td>System Disk
Connect the new disk and boot from a local or remote Solaris DVD.
Secondary Disk
Connect the new disk and perform a reconfiguration boot so that the system will recognize the disk.</td>
<td>“SPARC: How to Connect a System Disk and Boot” on page 224
“SPARC: How to Connect a Secondary Disk and Boot” on page 225</td>
</tr>
</tbody>
</table>
2. Create slices and label the disk.

Create disk slices and label the disk if the disk manufacturer has not already done so.

“SPARC: How to Create Disk Slices and Label a Disk” on page 226

3. Create file systems.

Create UFS file systems on the disk slices by using the newfs command. You must create the root (/) or /usr file system, or both, for a system disk.

“SPARC: How to Create a UFS File System” on page 231

4. Restore UFS file systems.

Restore the root (/) or /usr file system, or both, on the system disk. If necessary, restore file systems on the secondary disk.

Chapter 26, “Restoring UFS Files and File Systems (Tasks)”

5. Install boot block.

System Disk Only. Install the boot block on the root (/) file system so that the system can boot.

“SPARC: How to Install a Boot Block on a System Disk” on page 232

SPARC: Adding a System Disk or a Secondary Disk

A system disk contains the root (/) or /usr file systems, or both. If the disk that contains either of these file systems becomes damaged, you have two ways to recover:

- You can reinstall the entire Oracle Solaris OS.
- Or, you can replace the system disk and restore your file systems from a backup medium.

A secondary disk does not contain the root (/) and /usr file systems. A secondary disk usually contains space for user files. You can add a secondary disk to a system for more disk space. Or, you can replace a damaged secondary disk. If you replace a secondary disk on a system, you can restore the old disk’s data on the new disk.

SPARC: How to Connect a System Disk and Boot

This procedure assumes that the system is shut down.

1. Disconnect the damaged system disk from the system.

2. Ensure that the disk you are adding has a different target number than the other devices on the system.

 Typically, a small switch is located at the back of the disk for this purpose.

3. Connect the replacement system disk to the system and check the physical connections.

 Refer to the disk’s hardware installation guide for details.
Follow the instructions in the following table, depending on whether you are booting from a local Solaris DVD or a remote Solaris DVD from the network.

<table>
<thead>
<tr>
<th>Boot Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>From a Solaris DVD in a local drive</td>
<td>1. Make sure the Solaris DVD is in the drive.</td>
</tr>
<tr>
<td></td>
<td>2. Boot from the media to single-user mode:</td>
</tr>
<tr>
<td></td>
<td><code>ok boot cdrom -s</code></td>
</tr>
<tr>
<td>From the network</td>
<td>Boot from the network to single-user mode:</td>
</tr>
<tr>
<td></td>
<td><code>ok boot net -s</code></td>
</tr>
</tbody>
</table>

After a few minutes, the root prompt (#) is displayed.

More Information

After You Connect a System Disk and Boot ...

After you boot the system, you can create slices and a disk label on the disk. Go to "SPARC: How to Create Disk Slices and Label a Disk" on page 226.

SPARC: How to Connect a Secondary Disk and Boot

If you are adding a disk with an EFI disk label, see "EFI Disk Label" on page 185 for more information.

Generally, most modern bus types support hot-plugging. If your system’s bus type supports hot-plugging, you might not need to do steps 2 or 3 below.

For more information about hot-plugging devices, see Chapter 6, "Dynamically Configuring Devices (Tasks)."

1. **Become superuser or assume an equivalent role.**

2. **(Optional) If the disk type is unsupported by the Solaris software, add the device driver for the disk by following the instructions included with the hardware.**

 For information on creating a format.dat entry for the disk, see "How to Create a format.dat Entry" on page 216, if necessary.

3. **(Optional) Create the /reconfigure file that will be read when the system is booted.**

   ```shell
   # touch /reconfigure
   ```

 The /reconfigure file causes the SunOS software to check for the presence of any newly installed peripheral devices when you power on or boot your system later.
4 Shut down the system.
 # shutdown -i0 -gn -y
 -i0 Changes to run level 0, the power-down state.
 -gn Notifies logged-in users that they have \(n \) seconds before the system begins to shut down.
 -y Specifies that the command should run without user intervention.
 The ok prompt is displayed after the Oracle Solaris OS is shut down.

5 Turn off the power to the system and all external peripheral devices.

6 Ensure that the disk you are adding has a different target number than the other devices on the system.
 Typically, a small switch is located at the back of the disk for this purpose.

7 Connect the disk to the system and check the physical connections.
 Refer to the disk’s hardware installation guide for details.

8 Turn on the power to all external peripheral devices.

9 Turn on the power to the system.
 The system boots and displays the login prompt.

More Information After You Connect a Secondary Disk and Boot ...
 After you boot the system, you can create slices and a disk label on the disk. Go to “SPARC: How to Create Disk Slices and Label a Disk” on page 226.

▼ SPARC: How to Create Disk Slices and Label a Disk

1 Become superuser or assume an equivalent role.

2 Invoke the format utility.
 # format
 A numbered list of available disks is displayed. For more information, see format(1M).

3 Type the number of the disk that you want to repartition.
 Specify disk (enter its number): disk-number
 disk-number is the number of the disk that you want to repartition.
4 Select the partition menu.
 format > partition

5 Display the current partition (slice) table.
 partition > print

6 Start the modification process.
 partition > modify

7 Set the disk to all free hog.
 Choose base (enter number) [0]? 1
 For more information about the free hog slice, see “Using the Free Hog Slice” on page 199.

8 Create a new partition table by answering y when prompted to continue.
 Do you wish to continue creating a new partition table based on above table[yes]? y

9 Identify the free hog partition (slice) and the sizes of the slices when prompted.
 When adding a system disk, you must set up slices for:
 ■ root (slice 0) and swap (slice 1)
 ■ /usr (slice 6)
 After you identify the slices, the new partition table is displayed.
 For an example of creating disk slices, see Example 12–1.

10 Make the displayed partition table the current partition table by answering y when prompted.
 Okay to make this the current partition table[yes]? y
 If you do not want the current partition table and you want to change it, answer no and go to Step 6.

11 Name the partition table.
 Enter table name (remember quotes): "partition-name"
 where partition-name is the name for the new partition table.

12 Label the disk with the new partition table after you have finished allocating slices on the new disk.
 Ready to label disk, continue? yes

13 Quit the partition menu.
 partition > q
Verify the disk label.

format> verify

Exit the format utility.

format> q

Example 12-1 SPARC: Creating Disk Slices and Labeling a System Disk

The following example shows the format utility being used to divide a 18-GB disk into three slices: one slice for the root (/) file system, one slice for the swap area, and one slice for the /usr file system.

```bash
# format
AVAILABLE DISK SELECTIONS:
  0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
       /sbus0,0/QLGC,ispq2,10000/sd@0,0
  1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
       /sbus0,0/QLGC,ispq2,10000/sd@1,0
  2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
       /sbus0,0/QLGC,ispq2,10000/sd@8,0
  3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
       /sbus0,0/QLGC,ispq2,10000/sd@9,0

Specify disk (enter its number): 0
selecting c1t0d0
[disk formatted]
format> partition
partition> print
partition> modify
Select partitioning base:
  0. Current partition table (original)
  1. All Free Hog
Part  Tag  Flag  Cylinders  Size  Blocks
 0  root  wm  0  0  (0/0/0)  0
 1  swap  wu  0  0  (0/0/0)  0
 2  backup  wu  0 - 7505  16.86GB (7506/0/0) 35368272
 3  unassigned  wm  0  0  (0/0/0)  0
 4  unassigned  wm  0  0  (0/0/0)  0
 5  unassigned  wm  0  0  (0/0/0)  0
 6  usr  wm  0  0  (0/0/0)  0
 7  unassigned  wm  0  0  (0/0/0)  0

Choose base (enter number) [0]? 1
table based on above table[yes]? yes
Free Hog partition[6]? 6
Enter size of partition ‘0’ [0b, 0c, 0.00mb, 0.00gb]: 4gb
Enter size of partition ‘1’ [0b, 0c, 0.00mb, 0.00gb]: 4gb
Enter size of partition ‘3’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘4’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘5’ [0b, 0c, 0.00mb, 0.00gb]:
Enter size of partition ‘7’ [0b, 0c, 0.00mb, 0.00gb]:
Part  Tag  Flag  Cylinders  Size  Blocks
 0  root  wm  0 - 1780  4.00GB (1781/0/0) 8392072
 1  swap  wu  1781 - 3561  4.00GB (1781/0/0) 8392072
 2  backup  wu  0 - 7505  16.86GB (7506/0/0) 35368272
```
SPARC: Creating Disk Slices and Labeling a Secondary Disk

The following example shows the format utility being used to divide a 18-GB disk into one slice for the /export/home filesystem.

```
# format /dev/rdsk/c1*
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd00,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd01,0
2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd08,0
3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd09,0

Specify disk (enter its number): 1
selecting c1t1d0
[disk formatted]
```

Example 12–2 SPARC: Creating Disk Slices and Labeling a Secondary Disk

The following example shows the format utility being used to divide a 18-GB disk into one slice for the /export/home file system.

```
# format /dev/rdsk/c1*
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd00,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd01,0
2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd08,0
3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd09,0

Specify disk (enter its number): 1
selecting c1t1d0
[disk formatted]
```

Example 12–2 SPARC: Creating Disk Slices and Labeling a Secondary Disk

The following example shows the format utility being used to divide a 18-GB disk into one slice for the /export/home file system.

```
# format /dev/rdsk/c1*
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd00,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd01,0
2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd08,0
3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd09,0

Specify disk (enter its number): 1
selecting c1t1d0
[disk formatted]
```

Example 12–2 SPARC: Creating Disk Slices and Labeling a Secondary Disk

The following example shows the format utility being used to divide a 18-GB disk into one slice for the /export/home file system.

```
# format /dev/rdsk/c1*
AVAILABLE DISK SELECTIONS:
0. /dev/rdsk/c1t0d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd00,0
1. /dev/rdsk/c1t1d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd01,0
2. /dev/rdsk/c1t8d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd08,0
3. /dev/rdsk/c1t9d0s0 <SUN18G cyl 7506 alt 2 hd 19 sec 248>
   /sbus02,0/OLOGC,isp02,10000/sd09,0

Specify disk (enter its number): 1
selecting c1t1d0
[disk formatted]
```
The following example shows how to use the format utility to divide a 1.15 terabyte disk with an EFI label into three slices.

format
.
.
.
partition> modify
Select partitioning base:
 0. Current partition table (original)
 1. All Free Hog
Choose base (enter number) [0]? 1

Do you wish to continue creating a new partition table based on above table [yes]? y

Free Hog partition[6]? 4

Enter size of partition 0 [0b, 34e, 0mb, 0gb, 0tb]:
Enter size of partition 1 [0b, 34e, 0mb, 0gb, 0tb]:
Enter size of partition 2 [0b, 34e, 0mb, 0gb, 0tb]: 400gb
Enter size of partition 3 [0b, 838860834e, 0mb, 0gb, 0tb]: 400gb
Enter size of partition 5 [0b, 1677721634e, 0mb, 0gb, 0tb]:
Enter size of partition 6 [0b, 1677721634e, 0mb, 0gb, 0tb]:

Enter size of partition '6' [0b, 0c, 0.00mb, 0.00gb]:

Enter size of partition '7' [0b, 0c, 0.00mb, 0.00gb]:
Ready to label disk, continue? yes
partition> q

More Information

After You Create Disk Slices and Label a Disk ...

After you create disk slices and label the disk, you can create file systems on the disk. Go to "SPARC: How to Create a UFS File System" on page 231.

▼ SPARC: How to Create a UFS File System

1 Become superuser or assume an equivalent role.

2 Create a file system for each slice.
 # newfs /dev/rdsk/cwtxdysz
 where /dev/rdsk/cwtxdysz is the raw device for the file system to be created.

 For more information about the newfs command, see Chapter 17, “Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks),” or newfs(1M).

3 Verify the new file system by mounting it.
 # mount /dev/dsk/cwtxdysz /mnt
 # ls
 lost+found

More Information

After Creating a UFS File System ...

- **System Disk** – You need to restore the root (/) and /usr file systems on the disk.
 - Go to Chapter 26, “Restoring UFS Files and File Systems (Tasks).”
 - After the root (/) and /usr file systems are restored, install the boot block. Go to “SPARC: How to Install a Boot Block on a System Disk” on page 232.

- **Secondary Disk** – You might need to restore file systems on the new disk. Go to Chapter 26, “Restoring UFS Files and File Systems (Tasks).” If you are not restoring file systems on the new disk, you are finished adding a secondary disk.

- For information on making the file systems available to users, see Chapter 18, "Mounting and Unmounting File Systems (Tasks)."
SPARC: How to Install a Boot Block on a System Disk

1. **Become superuser or assume an equivalent role.**

2. **Install a boot block on the system disk.**

 For a UFS root file system:
   ```
   # installboot /usr/platform/'uname -i'/lib/fs/ufs/bootblk
   /dev/rdsk/cwtxdy0
   /usr/platform/'uname -i'/lib/fs /ufs/bootblk
   /dev/rdsk/cwtxdy0
   
   Is the boot block code.
   /dev/rdsk/cwtxdy0
   
   Is the raw device of the root (/) file system.
   
   For a ZFS root file system:
   ```
   ```
   # installboot -F zfs /usr/platform/'uname -i'/lib/fs/zfs/bootblk
   /dev/rdsk/cwtxdy0
   /usr/platform/'uname -i'/lib/fs/zfs/bootblk
   /dev/rdsk/cwtxdy0
   
   Is the boot block code.
   /dev/rdsk/cwtxdy0
   
   Is the raw device of the root (/) file system.
   
   For more information, see installboot(1M).
   ```

3. **Verify that the boot blocks are installed by rebooting the system to run level 3.**
   ```
   # init 6
   ```

**Example 12–3 **

SPARC: Installing a Boot Block on a System Disk

The following example shows how to install the boot block on a UFS root file system.

```
# installboot /usr/platform/sun4u/lib/fs/ufs/bootblk
/dev/rdsk/c0t0d0s0
```

The following example shows how to install the boot block on a ZFS root file system.

```
# installboot -F zfs /usr/platform/'uname -i'/lib/fs/zfs/bootblk /dev/rdsk/c0t1d0s0
```
This chapter describes how to add a disk to an x86 based system.

For information on the procedures associated with adding a disk to an x86 based system, see “x86: Adding a System Disk or a Secondary Disk (Task Map)” on page 233.

For overview information about disk management, see Chapter 10, “Managing Disks (Overview).” For step-by-step instructions on adding a disk to a SPARC based system, see Chapter 12, “SPARC: Adding a Disk (Tasks).”

Although the procedures that describe how to add a disk and create an fdisk partition can be used with a ZFS file systems, ZFS file system is not directly mapped to a disk or a disk slice. You must create a ZFS storage pool before creating a ZFS file system. For more information, see Oracle Solaris ZFS Administration Guide.

x86: Adding a System Disk or a Secondary Disk (Task Map)

The following task map identifies the procedures for adding a disk to an x86 based system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Connect the disk and boot.</td>
<td>System Disk
Connect the new disk and boot from a local or remote Solaris DVD.
Secondary Disk
Connect the new disk and perform a reconfiguration boot so that the system will recognize the disk.</td>
<td>“x86: How to Connect a System Disk” on page 235
“x86: How to Connect a Secondary Disk and Boot” on page 237</td>
</tr>
</tbody>
</table>
2. (Optional) Change the fdisk partition identifier. The Solaris 10 fdisk partition identifier on x86 systems has been changed from 130 (0x82) to 191 (0xbf). You can use a new fdisk menu option to switch back and forth between the new and old identifier.

3. Create slices and label the disk. Create disk slices and label the disk if the disk manufacturer has not already done so.

4. Create file systems. Create UFS file systems on the disk slices with the newfs command. You must create the root (/) or /usr file system (or both) for a system disk.

5. Restore UFS file systems. Restore the root (/) or /usr file system (or both) on the system disk. If necessary, restore file systems on the secondary disk.

6. Install boot block. System Disk Only. Install the boot block on the root (/) file system so that the system can boot.

x86: Adding a System Disk or a Secondary Disk

A system disk contains the root (/) or /usr file systems, or both. If the disk that contains either of these file systems becomes damaged, you have two ways to recover:

- You can reinstall the entire Oracle Solaris OS.
- Or, you can replace the system disk and restore your file systems from a backup medium.

A secondary disk doesn’t contain the root (/) and /usr file systems. A secondary disk usually contains space for user files. You can add a secondary disk to a system for more disk space. Or, you can replace a damaged secondary disk. If you replace a secondary disk on a system, you can restore the old disk’s data on the new disk.
x86: How to Connect a System Disk

This procedure assumes that the operating system is shutdown.

1. Disconnect the damaged system disk from the system.

2. Ensure that the disk you are adding has a different target number than the other devices on the system.
 Typically, a small switch is located at the back of the disk for this purpose.

3. Connect the replacement system disk to the system, and check the physical connections.
 Refer to the disk’s hardware installation guide for details.

4. Boot the system.
 This procedure assumes that you are booting from GRUB’s Solaris failsafe boot option.
 a. Press any key to reboot the system if the system displays the Press any key to reboot prompt. Or, use the reset button to restart the system if the system is shut down.
 The GRUB menu is displayed after a few minutes.
 b. Use the arrow keys to select the Solaris failsafe boot option.
 c. Press return.
 d. At the Do you wish to automatically update boot archives? prompt answer no.
 The root prompt (#) is displayed.

Note – You must reboot the system when you want to exit Solaris failsafe boot mode. You cannot reboot the system to multiuser mode until the system disk is successfully added, the data is restored, and the bootblocks are installed.

More Information

After You Connect a System Disk ...

You can create an fdisk partition if the disk is less than 1 terabyte size. Go to “x86: How to Create a Solaris fdisk Partition” on page 239.

Changing the fdisk Partition Identifier

The Solaris fdisk partition identifier on x86 systems has been changed from 130 (0x82) to 191 (0xbf). All Solaris commands, utilities, and drivers have been updated to work with either fdisk identifier. There is no change in fdisk functionality.
How to Change the Solaris fdisk Identifier

A new fdisk menu option enables you to switch back and forth between the new and old identifier. The fdisk identifier can be changed even when the file system that is contained in the partition is mounted.

Two type values in the fdisk menu reflect the old and new identifiers as follows:

- Solaris identifies 0x82
- Solaris2 identifies 0xbf

1. Become superuser.

2. Display the current fdisk identifier.
 For example:

 Total disk size is 39890 cylinders
 Cylinder size is 4032 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active</td>
<td>x86 Boot</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Solaris2</td>
<td>7</td>
<td>39889</td>
<td>39883</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Select option 4 from the fdisk menu to change the fdisk partition identifier back to 0x82.
 SELECT ONE OF THE FOLLOWING:
 1. Create a partition
 2. Specify the active partition
 3. Delete a partition
 4. Change between Solaris and Solaris2 Partition IDs
 5. Exit (update disk configuration and exit)
 6. Cancel (exit without updating disk configuration)
 Enter Selection: 4

4. Select option 5 to update your disk configuration and exit.

5. If necessary, select option 4 from the fdisk menu to change the fdisk partition identifier back to 0xbf.
 For example:

 Total disk size is 39890 cylinders
 Cylinder size is 4032 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active</td>
<td>x86 Boot</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Solaris</td>
<td>7</td>
<td>39889</td>
<td>39883</td>
<td>100</td>
</tr>
</tbody>
</table>

 SELECT ONE OF THE FOLLOWING:
 1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: 4

Select option 5 to update your disk configuration and exit.

▼ x86: How to Connect a Secondary Disk and Boot

If you are adding a disk with an EFI disk label on an x64 system, see “EFI Disk Label” on page 185 for more information.

Generally, most modern bus types support hot-plugging. If your system’s bus type supports hot-plugging, you might not need to do steps 2 or 3 below.

For more information about hot-plugging devices, see Chapter 6, “Dynamically Configuring Devices (Tasks).”

1 Become superuser or assume an equivalent role.

2 (Optional) If the disk is unsupported by the Solaris software, add the device driver for the disk by following the instructions included with the hardware.

3 (Optional) Create the /reconfigure file that will be read when the system is booted.
 # touch /reconfigure

 The /reconfigure file causes the SunOS software to check for the presence of any newly installed peripheral devices when you power on or boot your system later.

4 Shut down the system.
 # shutdown -i0 -gn -y
 -i0 Brings the system down to run level 0, the power-down state.
 -gn Notifies logged-in users that they have n seconds before the system begins to shut down.
 -y Specifies that the command should run without user intervention.

 The Press any key to reboot prompt is displayed.

5 Turn off the power to the system and all external peripheral devices.

6 Ensure that the disk you are adding has a different target number than the other devices on the system.

 Typically, a small switch is located at the back of the disk for this purpose.
7 Connect the disk to the system and check the physical connections.
 Refer to the disk's hardware installation guide for details.

8 Turn on the power to all external peripheral devices.

9 Turn on the power to the system.
 The system boots and displays the login prompt.

More Information

After You Connect a Secondary Disk and Boot ...

After the system is booted, you can create an fdisk partition if the disk is less than 1 terabyte in size. Go to “x86: How to Create a Solaris fdisk Partition” on page 239.

x86: Guidelines for Creating an fdisk Partition

Follow these guidelines when you set up one or more fdisk partitions.

- The fdisk command cannot be used on disks with an EFI label that are greater than 1 terabyte in size.
- The disk can be divided into a maximum of four fdisk partitions. One of partitions must be a Solaris partition.
- The Solaris partition must be made the active partition on the disk. The active partition is partition whose operating system will be booted by default at system startup.
- Solaris fdisk partitions must begin on cylinder boundaries.
- Solaris fdisk partitions must begin at cylinder 1, not cylinder 0, on the first disk because additional boot information, including the master boot record, is written in sector 0.
- The Solaris fdisk partition can be the entire disk. Or, you might want to make it smaller to allow room for a DOS partition. You can also make a new fdisk partition on a disk without disturbing existing partitions (if sufficient space is available) to create a new partition.

x86 only – Solaris slices are also called partitions. Certain interfaces might refer to a slice as a partition.

fdisk partitions are supported only on x86 based systems. To avoid confusion, Solaris documentation tries to distinguish between fdisk partitions and the entities within the Solaris fdisk partition. These entities might be called slices or partitions.
x86: How to Create a Solaris fdisk Partition

Before You Begin

If you need information about fdisk partitions, see "x86: Guidelines for Creating an fdisk Partition" on page 238.

1 Become superuser or assume an equivalent role.

2 Invoke the format utility.

 # format

 A numbered list of disks is displayed.

 For more information, see format(1M).

3 Type the number of the disk on which to create a Solaris fdisk partition.

 Specify disk (enter its number): disk-number

 where disk-number is the number of the disk on which you want to create a Solaris fdisk partition.

4 Select the fdisk menu.

 format> fdisk

 The fdisk menu that is displayed depends upon whether the disk has existing fdisk partitions. Determine the next step by using the following table.

<table>
<thead>
<tr>
<th>Task</th>
<th>Go To</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Solaris fdisk partition to span the entire disk.</td>
<td>Step 5</td>
<td>Example 13–1</td>
</tr>
<tr>
<td>Create a Solaris fdisk partition and preserve one or more existing non Solaris fdisk partitions.</td>
<td>Step 6</td>
<td>Example 13–2</td>
</tr>
<tr>
<td>Create a Solaris fdisk partition and one or more additional non Solaris fdisk partition.</td>
<td>Step 6</td>
<td>Example 13–3</td>
</tr>
</tbody>
</table>

5 Create and activate a Solaris fdisk partition that spans the entire disk by specifying y at the prompt. Then, go to step 13.

No fdisk table exists. The default partition for the disk is:

a 100% "SOLARIS System" partition

Type "y" to accept the default partition, otherwise type "n" to edit the partition table.

y
6. Specify \(n \) at the prompt if you do not want the Solaris fdisk partition to span the entire disk.

Type "y" to accept the default partition, otherwise type "n" to edit the partition table.

\(n \)

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

<table>
<thead>
<tr>
<th>Cylinders</th>
<th>Partition Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>===========</td>
<td>==================</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:

1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection:

Select option 1, Create a partition, to create an fdisk partition.

Enter Selection: 1

8. Create a Solaris fdisk partition by selecting 1(=Solaris2).

Indicate the type of partition you want to create

1=SOLARIS2 2=UNIX 3=PCIXDS 4=Other
5=DOS12 6=DOS16 7=DOSXEXT 8=DOSBIG
9=DOS16LBA A=x86 Boot B=Diagnoitic C=FAT32
D=FAT32LBA E=DOSXTLBA F=EFI 0=Exit

9. Identify the percentage of the disk to be reserved for the Solaris fdisk partition. Keep in mind the size of any existing fdisk partitions when you calculate this percentage.

Specify the percentage of disk to use for this partition (or type "c" to specify the size in cylinders). \(nn \)

10. Activate the Solaris fdisk partition by typing y at the prompt.

Should this to become the active partition? If yes, it will be activated each time the computer is reset or turned on.

Please type "y" or "n". y

The Enter Selection prompt is displayed after the fdisk partition is activated.

11. Select option 1, Create a partition, to create another fdisk partition.

See steps 8–10 for instructions on creating an fdisk partition.

12. Update the disk configuration, and exit the fdisk menu from the selection menu.

Selection: 5

13. Relabel the disk by using the label command.

format> label
Ready to label disk, continue? yes
format>
14 Quit the format utility.

format> quit

Example 13–1 x86: Creating a Solaris fdisk Partition That Spans the Entire Drive

The following example uses the format utility’s fdisk option to create a Solaris fdisk partition that spans the entire drive.

format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
 0. c0d0 <DEFAULT cyl 2466 alt 2 hd 16 sec 63>
 /pci@0,0/pci-ide@7,1/ide@0/cmdk@0,0
 1. c0d1 <DEFAULT cyl 522 alt 2 hd 32 sec 63>
 /pci@0,0/pci-ide@7,1/ide@0/cmdk@1,0
 2. c1d0 <DEFAULT cyl 13102 alt 2 hd 16 sec 63>
 /pci@0,0/pci-ide@7,1/ide@1/cmdk@0,0
Specify disk (enter its number): 0
selecting c0d0
Controller working list found
[disk formatted]
format> fdisk
No fdisk table exists. The default partitioning for your disk is:

 a 100% "SOLARIS System" partition.

Type "y" to accept the default partition, otherwise type "n" to edit the partition table. y
format> label
Ready to label disk, continue? yes
format> quit

Example 13–2 x86: Creating a Solaris fdisk Partition While Preserving an Existing fdisk Partition

The following example shows how to create a Solaris fdisk partition on a disk that has an existing DOS-BIG fdisk partition.

format> fdisk
Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

<table>
<thead>
<tr>
<th>Partition</th>
<th>Status</th>
<th>Type</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active</td>
<td>DOS-BIG</td>
<td>1</td>
<td>699</td>
<td>699</td>
<td>20</td>
</tr>
</tbody>
</table>

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: 1
Indicate the type of partition you want to create
1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other
5=DOS 6=DOS16 7=DOS16 EX 8=DOSBIG
9=DOS16 LBA A=x86 Boot B=Diagnostic C=FAT32
D=FAT32 LBA E=DOS16 LBA F=EFI 0=Exit?

Indicate the percentage of the disk you want this partition to use (or enter "c" to specify in cylinders). 80
Should this become the active partition? If yes, it will be activated each time the computer is or turned on.
Please type "y" or "n". y

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

Cylinders
Partition Status Type Start End Length %
======== ====== ============ ===== === ====== ===
1 DOS-BIG 1 699 699 20
2 Active Solaris2 700 3497 2798 80

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 5
Partition 2 is now the active partition
format> label
Ready to label disk, continue? yes
format> q

Example 13–3 x86: Creating a Solaris fdisk Partition and an Additional fdisk Partition

This following example shows how to create a Solaris fdisk partition and a DOSBIG fdisk partition.

format> fdisk
No fdisk table exists. The default partitioning for your disk is:
a 100% "SOLARIS System" partition.
Type 'y' to accept the default partition, otherwise type 'n' to edit the partition table.

Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

Cylinders
Partition Status Type Start End Length %
======== ====== ============ ===== === ====== ===
1 DOS-BIG 1 699 699 20
2 Active Solaris2 700 3497 2798 80

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

Enter Selection: 1
Indicate the type of partition you want to create
1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other
Specify the percentage of disk to use for this partition (or type "c" to specify the size in cylinders). 20
Should this become the Active partition? If yes, it will be activated each time the computer is reset or turned on. Please type "y" or "n".
Total disk size is 3498 cylinders
Cylinder size is 1199 (512 byte) blocks

Cylinders
Partition Status Type Start End Length %
--------- ------ ------ -------- ------ ------- ----
1 DOS-BIG 1 699 699 20

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection: 5

Partition 2 is now the Active partition
format> q

More Information
After You Create a Solaris fdisk Partition ...

After you create a Solaris fdisk partition on the disk, you can create slices on the disk. Go to "x86: How to Create Disk Slices and Label a Disk" on page 244.
x86: How to Create Disk Slices and Label a Disk

1. Become superuser or assume an equivalent role.
2. Invoke the `format` utility.
   ```
   # format
   ```
 A numbered list of disks is displayed.
3. Type the number of the disk that you want to repartition.
   ```
   Specify disk (enter its number): disk-number
   ```
 where `disk-number` is the number of the disk that you want to repartition.
4. Select the partition menu.
   ```
   format> partition
   ```
5. Display the current partition (slice) table.
   ```
   partition> print
   ```
6. Start the modification process.
   ```
   partition> modify
   ```
7. Set the disk to all free hog.
   ```
   Choose base (enter number) [0]? 1
   ```
 For more information about the free hog slice, see “Using the Free Hog Slice” on page 199.
8. Create a new partition table by answering yes when prompted to continue.
   ```
   Do you wish to continue creating a new partition table based on above table[yes]? yes
   ```
9. Identify the free hog partition (slice) and the sizes of the slices when prompted.
 When adding a system disk, you must set up slices for the following:
 - root (slice 0) and swap (slice 1) and/or
 - `/usr` (slice 6)
 After you identify the slices, the new partition table is displayed.
10. Make the displayed partition table the current partition table by answering yes when prompted.
    ```
    Okay to make this the current partition table[yes]? yes
    ```
 If you don’t want the current partition table and you want to change it, answer no and go to Step 6.
Name the partition table.

Enter table name (remember quotes): "partition-name"

where partition-name is the name for the new partition table.

Label the disk with the new partition table after you have finished allocating slices on the new disk.

Ready to label disk, continue? yes

Quit the partition menu.

partition> quit

Verify the new disk label.

format> verify

Exit the format utility.

format> quit

More Information

After You Create Disk Slices and Label a Disk ...

After you create disk slices and label the disk, you can create file systems on the disk. Go to "x86: How to Create File Systems" on page 245.

x86: How to Create File Systems

1 Become superuser or assume an equivalent role.

2 Create a file system for each slice.

newfs /dev/rdsk/cwtxdysz

where /dev/rdsk/cwtxdysz is the raw device for the file system to be created.

For more information about the newfs command, see Chapter 17, “Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks),” or newfs(1M).

3 Verify the new file system by mounting.

mount /dev/dsk/cwtxdysz /mnt
ls /mnt

lost+found

More Information

After You Create File Systems ...

- System Disk – You need to restore the root (/) and /usr file systems on the disk.
 - Go to Chapter 26, “Restoring UFS Files and File Systems (Tasks).”
After the root (/) and /usr file systems are restored, install the boot block. Go to “x86: How to Install a Boot Block on a System Disk” on page 246.

Secondary Disk – You might need to restore file systems on the new disk. Go to Chapter 26, “Restoring UFS Files and File Systems (Tasks).” If you are not restoring file systems on the new disk, you are finished adding a secondary disk.

For information on making the file systems available to users, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

\section*{x86: How to Install a Boot Block on a System Disk}

1. Become superuser or assume an equivalent role.

2. Install the boot blocks on the system disk.

   ```bash
   # /sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/cwtxdysz
   /boot/grub/stage1  Is the partition boot file.
   /boot/grub/stage2  Is the boot block code.
   /dev/rdsk/cwtxdysz  Is the raw device name that represents the location of the GRUB menu, /boot/grub/menu.lst on the Solaris root slice.
   
   For more information, see installgrub(1M).
   ```

3. Verify that the boot blocks are installed by rebooting the system to run level 3.

   ```bash
   # init 6
   ```

Example 13–4 x86: Installing a Boot Block on a System Disk

The following example shows how to install the boot blocks on an x86 system.

```bash
# /sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c1d0s0
stage1 written to partition 0 sector 0 (abs 2016)
stage2 written to to partition 0, 227 sectors starting 50 (abs 2066)
```
Configuring Oracle Solaris iSCSI Targets and Initiators (Tasks)

This chapter describes how to configure Solaris iSCSI targets and initiators, available in the Oracle Solaris release. For information about the procedures associated with configuring iSCSI targets and initiators, see “Setting Up Solaris iSCSI Targets and Initiators (Task Map)” on page 249.

For information about Solaris iSCSI initiator features in the latest Solaris 10 release, see “What’s New in Disk Management?” on page 179

For troubleshooting Solaris iSCSI configuration problems, see “Troubleshooting iSCSI Configuration Problems” on page 271.

iSCSI Technology (Overview)

iSCSI is an acronym for Internet SCSI (Small Computer System Interface), an Internet Protocol (IP)-based storage networking standard for linking data storage subsystems. This networking standard was developed by the Internet Engineering Task Force (IETF). For more information about the iSCSI technology, see RFC 3720:

http://www.ietf.org/rfc/rfc3720.txt

By carrying SCSI commands over IP networks, the iSCSI protocol enables you to access block devices from across the network as if they were connected to the local system.

If you want to use storage devices in your existing TCP/IP network, the following solutions are available:

- iSCSI block devices or tape – Translates SCSI commands and data from the block level into IP packets. Using iSCSI in your network is advantageous when you need to have block-level access between one system and the target device, such as a tape device or a database. Access to a block-level device is not locked so that you could have multiple users or systems accessing a block-level device such as an iSCSI target device.
- NFS – Transfers file data over IP. The advantage of using NFS in your network is that you can share file data across many systems. Access to file data is locked appropriately when many users are accessing data that is available in an NFS environment.

Here are the benefits of using Solaris iSCSI targets and initiators:

- The iSCSI protocol runs across existing Ethernet networks.
 - You can use any supported network interface card (NIC), Ethernet hub, or Ethernet switch.
 - One IP port can handle multiple iSCSI target devices.
 - You can use existing infrastructure and management tools for IP networks.
- You might have existing Fibre-Channel devices that can be connected to clients without the cost of Fibre-Channel HBAs. In addition, systems with dedicated arrays can now export replicated storage with ZFS or UFS file systems.
- There is no upper limit on the maximum number of configured iSCSI target devices.
- The protocol can be used to connect to Fibre Channel or iSCSI Storage Area Network (SAN) environments with the appropriate hardware.

Here are the current limitations or restrictions of using the Solaris iSCSI initiator software:

- Support for iSCSI devices that use SLP is not currently available.
- Boot support for iSCSI devices is not currently available.
- iSCSI targets cannot be configured as dump devices.
- iSCSI supports multiple connections per session, but the current Solaris implementation only supports a single connection per session.
 For more information, see RFC 3720.
- Transferring large amounts of data over your existing network can have an impact on performance.

Solaris iSCSI Software and Hardware Requirements

- Solaris iSCSI software and devices
- Solaris 10 release (at least the 1/06 release) for Solaris iSCSI initiator software
- Solaris 10 release (at least the 8/07 release) for Solaris iSCSI target software
- The following Solaris 10 software packages:
 - SUNWiscsir – Sun iSCSI Device Driver (root)
 - SUNWiscsiu – Sun iSCSI Management Utilities (usr)
 - SUNWiscsitgtr – Sun iSCSI Target Device Driver (root)
 - SUNWiscsitgtu – Sun iSCSI Target Management Utilities (usr)
- Any supported NIC
Setting Up Solaris iSCSI Targets and Initiators (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the iSCSI software and hardware requirements.</td>
<td>Identify the software and hardware requirements for setting up an iSCSI-based storage network.</td>
<td>“Solaris iSCSI Software and Hardware Requirements” on page 248</td>
</tr>
<tr>
<td>2. Set up your iSCSI target devices.</td>
<td>Connect and set up your Solaris iSCSI target devices. In addition, you can set up third-party target devices. See your vendor’s documentation for setup instructions. Set up iSNS discovery on your Solaris iSCSI target, if an iSNS server is available.</td>
<td>“Setting Up Your Solaris iSCSI Target Devices” on page 252</td>
</tr>
<tr>
<td>3. Prepare for your Solaris iSCSI configuration.</td>
<td>Make sure you have the correct software versions and hardware installed.</td>
<td>“How to Prepare for a Solaris iSCSI Configuration” on page 252</td>
</tr>
<tr>
<td>4. (Optional) Set up authentication in your Solaris iSCSI configuration.</td>
<td>Decide whether you want to use authentication in your Solaris iSCSI configuration: Consider using unidirectional CHAP or bidirectional CHAP. Consider using a third-party RADIUS server to simplify CHAP management.</td>
<td>“How to Configure CHAP Authentication for Your iSCSI Initiator” on page 255 “How to Configure CHAP Authentication for Your iSCSI Target” on page 256 “How to Configure RADIUS for Your iSCSI Configuration” on page 257</td>
</tr>
<tr>
<td>5. Configure the iSCSI target discovery method.</td>
<td>Select the iSCSI target discovery method best suited for your environment.</td>
<td>“How to Configure iSCSI Target Discovery” on page 258</td>
</tr>
<tr>
<td>6. (Optional) Remove discovered iSCSI targets.</td>
<td>You might need to remove a discovered iSCSI target.</td>
<td>“How to Remove Discovered iSCSI Targets” on page 259</td>
</tr>
</tbody>
</table>
Configuring Solaris iSCSI Targets and Initiators

Configuring your Solaris iSCSI targets and initiators involves the following steps:

- Identifying the hardware and software requirements
- Configuring your IP network
- Connecting and setting up your iSCSI target device
- (Optional) Configuring iSCSI authentication between the iSCSI initiator and the iSCSI target, if necessary
- Configuring the iSCSI target discovery method
- Creating file systems on your iSCSI disks
- Monitoring your iSCSI configuration

The iSCSI configuration information is stored in the /etc/iscsi directory. This information requires no administration.

iSCSI Terminology

Review the following terminology before configuring iSCSI targets and initiators.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator</td>
<td>The driver that initiates SCSI requests to the iSCSI target.</td>
</tr>
</tbody>
</table>
Target device
The iSCSI storage component.

Discovery
The process that presents the initiator with a list of available targets.

Discovery method
The way in which the iSCSI targets can be found. Three methods are currently available:
- **Internet Storage Name Service (iSNS)** – Potential targets are discovered by interacting with one or more iSNS servers.
- **SendTargets** – Potential targets are discovered by using a discovery-address.
- **Static** – Static target addressing is configured.

Configuring Dynamic or Static Target Discovery

Determine whether you want to configure one of the dynamic device discovery methods or use static iSCSI initiator targets to perform device discovery.

- **Dynamic device discovery** – If an iSCSI node exposes many targets, such as an iSCSI to Fibre-Channel bridge, you can supply the iSCSI node IP address/port combination and allow the iSCSI initiator to use the SendTargets features to perform device discovery.

Two dynamic device discovery methods are available:

- **SendTargets** - If an iSCSI node exposes a large number of targets, such as an iSCSI to Fibre-Channel bridge, you can supply the iSCSI node IP address/port combination and allow the iSCSI initiator to use the SendTargets features to perform the device discovery.

- **iSNS** - iSNS (Internet Storage Name Service) allows the iSCSI initiator to discover the targets to which it has access using as little configuration information as possible. It also provides state change notification to notify the iSCSI initiator when changes in the operational state of storage nodes occur. To use the iSNS discovery method, you can supply the iSNS server address/port combination and allow the iSCSI initiator to query the iSNS servers that you specified to perform the device discovery. The default port for the iSNS server is 3205. For more information about iSNS, see RFC 4171:

 The iSNS discovery service provides an administrative model to discover all targets in a network.

- **Static device discovery** – If an iSCSI node has few targets or if you want to restrict the targets that the initiator attempts to access, you can statically configure the *target-name* by using the following static target address naming convention:

 `target,target-address[:port-number]`

 You can determine the static target address from the array's management tool.
Note – Do not configure an iSCSI target to be discovered by both static and dynamic device discovery methods. The consequence of using redundant discovery methods might be slow performance when the initiator is communicating with the iSCSI target device.

How to Prepare for a Solaris iSCSI Configuration

This procedure assumes that you are logged in to the local system where you want to access a configured iSCSI target device.

1 Become superuser.

2 Verify that the iSCSI software packages are installed.

 initiator# pkginfo SUNWiscsiu SUNWiscsir
 system SUNWiscsiu Sun iSCSI Device Driver (root)
 system SUNWiscsir Sun iSCSI Management Utilities (usr)

3 Verify that you are running at least the Solaris 10 1/06 release.

4 Confirm that your TCP/IP network is setup.

5 Connect your iSCSI target devices and confirm that they are configured.

 For example, determine if the iSCSI target device is reachable by using the telnet command to connect to the iSCSI target device using port 3260. If the connection is refused, see “Troubleshooting iSCSI Configuration Problems” on page 271.

 For information about connecting your third-party iSCSI target devices, see your vendor documentation.

Setting Up Your Solaris iSCSI Target Devices

You can use the iscsitadm command to set up and manage your Solaris iSCSI target devices, which can be disk or tape devices. For the device that you select as your iSCSI target, you must provide an equivalently sized ZFS or UFS file system as the backing store for the iSCSI daemon.

For information about setting up a Solaris iSCSI target device with ZFS, see “ZFS and Solaris iSCSI Improvements” in Oracle Solaris ZFS Administration Guide.

After the target device is set up, use the iscsiadm command to identify your iSCSI targets, which will discover and use the iSCSI target device.

For more information, see iscsitadm(1M) and iscsiadm(1M).

The basic process is as follows:
Identify the backing store directory – For each target and logical unit that is created, the iSCSI daemon needs to store some information. By default, the backing store for this device is also located in the base directory. So, if the host system has a large ZFS pool to use, it might be easiest to allow the daemon to store everything in that location. If the backing store needs to be spread out, it’s possible to specify the backing store location during the creation of each logical unit.

Create the iSCSI target – By default, the CLI assumes that the requested device type is an LBA of logical unit 0. If a pass through mode is desired for character devices, the -raw option must be used. After the creation of the first LUN, other LUNs might be created for the same iSCSI target by specifying -lun number.

The daemon starts a background task that initializes the LUN to zeros. If, during that initialization, the underlying file system becomes 100 percent full, the daemon removes the target. During this initialization, the LUN is marked as being offline and cannot be used by an initiator. During this time, however, it is possible to have an initiator discover this LUN. The Solaris initiator waits until it receives an Inventory Change notification and then automatically brings the device online.

How to Create an iSCSI Target

This procedure assumes that you are logged in to the local system that contains the iSCSI targets.

1. **Become superuser.**
2. **Identify the backing store directory.**

 For example:

   ```
   target# iscsitadm modify admin -d /export/sandbox
   ```
3. **Create an iSCSI target.**

 For example:

   ```
   target# iscsitadm create target --size 2g sandbox
   ```
4. **Display information about the iSCSI target.**

 For example:

   ```
   target# iscsitadm list target -v sandbox
   ```
5. **Set up your iSCSI initiator to discover and use this target.**

 For more information, see “How to Configure iSCSI Target Discovery” on page 258.

How to Configure iSNS Discovery for the Solaris iSCSI Target

If your network includes a third-party iSNS server or a Sun iSNS server, you can set up iSNS target discovery on your Solaris iSCSI targets.
This procedure assumes that you are logged in to the local system where you want to access a configured iSCSI target device.

1 Become superuser.

2 Add the iSNS server information.
 For example:
   ```
   initiator# iscsitadm modify admin --isns-server ip-address or hostname[:port]
   ```
 Identify the ip-address of the iSNS server in your network.
 This step adds the iSNS server information to all of the Solaris iSCSI targets.

3 Enable iSNS server discovery.
 For example:
   ```
   initiator# iscsitadm modify admin --isns-access enable
   ```
 This step enables iSNS discovery for all of the Solaris iSCSI targets.

Configuring Authentication in Your iSCSI-Based Storage Network

Setting up authentication for your iSCSI devices is optional.

In a secure environment, authentication is not required because only trusted initiators can access the targets.

In a less secure environment, the target cannot determine if a connection request is truly from a given host. In that case, the target can authenticate an initiator by using the Challenge-Handshake Authentication Protocol (CHAP).

CHAP authentication uses the notion of a challenge and response, which means that the target challenges the initiator to prove its identity. For the challenge/response method to work, the target must know the initiator's secret key, and the initiator must be set up to respond to a challenge. Refer to the array vendor's documentation for instructions on setting up the secret key on the array.

iSCSI supports unidirectional and bidirectional authentication:

- **Unidirectional authentication** enables the target to authenticate the identity of the initiator.
- **Bidirectional authentication** adds a second level of security by enabling the initiator to authenticate the identity of the target.
How to Configure CHAP Authentication for Your iSCSI Initiator

This procedure assumes that you are logged in to the local system where you want to securely access the configured iSCSI target device.

1 **Become superuser.**

2 **Determine whether you want to configure unidirectional or bidirectional CHAP.**
 - Unidirectional authentication, the default method, enables the target to validate the initiator. Complete steps 3–5 only.
 - Bidirectional authentication adds a second level of security by enabling the initiator to authenticate the target. Complete steps 3–9.

3 **Unidirectional CHAP – Set the secret key on the initiator.**
 For example, the following command initiates a dialogue to define the CHAP secret key.
   ```bash
   initiator# iscsiadm modify initiator-node --CHAP-secret
   ```
 Note – The CHAP secret length must be a minimum of 12 characters and a maximum of 16 characters.

4 **(Optional) Unidirectional CHAP – Set the CHAP name on the initiator.**
 By default, the initiator's CHAP name is set to the initiator node name.
 You can use the following command to change the initiator’s CHAP name.
   ```bash
   initiator# iscsiadm modify initiator-node --CHAP-name new-CHAP-name
   ```
 In the Solaris environment, the CHAP name is always set to the initiator node name by default. The CHAP name can be set to any length text that is less than 512 bytes. The 512-byte length limit is a Solaris limitation. However, if you do not set the CHAP name, it is set to the initiator node name upon initialization.

5 **Unidirectional CHAP – Enable CHAP authentication on the initiator after the secret has been set.**
   ```bash
   initiator# iscsiadm modify initiator-node --authentication CHAP
   ```
 CHAP requires that the initiator node have both a user name and a password. The user name is typically used by the target to look up the secret for the given username.

6 **Select one of the following to enable or disable Bidirectional CHAP.**
 - Bidirectional CHAP – Enable bidirectional authentication parameters on the target.
 For example:
     ```bash
     initiator# iscsiadm modify target-param -B enable eui.5000ABCD78945E2B
     ```
 - Disable bidirectional CHAP. For example:
Setting Up Solaris iSCSI Targets and Initiators (Task Map)

- Become superuser.

- Set the CHAP secret name for the target.
 A convention is to use the host name for the secret name. For example:

 target# iscsitadm modify admin -H stormpike

- Specify the CHAP secret.
 The CHAP secret must be between 12 and 16 characters. For example:

 target# iscsitadm modify admin -C
 Enter secret: xxxxxx
 Re-enter secret: xxxxxx

- Create an initiator object that will be associated with one or more targets.
 This step is done so that you can associate a friendly name (normally the host name, in this case
 monster620) with the IQN value, instead of typing it in every time. For example:

 # iscsitadm create initiator -n iqn.1986-03.com.sun: 01:00e01553307.4399f40e monster620

- Provide the same CHAP name that was used on the initiator.
 This name can be different from the friendly name that was used for the initiator object. For
 example:

 target# iscsitadm modify initiator -H monster620 monster620
6 Use the same CHAP secret that was used on the initiator.
 For example:
 target# iscsitadm modify initiator -C monster620
 Enter secret: xxxxxxx
 Re-enter secret: xxxxxxx

7 Associate the initiator object with one or more targets.
 For example:
 target# iscsitadm modify target -l monster620 sandbox

Using a Third-Party RADIUS Server to Simplify CHAP Management in Your iSCSI Configuration

You can use a third-party RADIUS server to simplify CHAP secret management. A RADIUS server is a centralized authentication service. While you must still specify the initiator’s CHAP secret, you are no longer required to specify each target’s CHAP secret on each initiator when using bidirectional authentication with a RADIUS server.

For more information, see:

How to Configure RADIUS for Your iSCSI Configuration

This procedure assumes that you are logged in to the local system where you want to securely access the configured iSCSI target device.

1 Become superuser.

2 Configure the initiator node with the IP address and port (the default port is 1812) of the RADIUS server.
 For example:
 initiator# iscsiadm modify initiator-node --radius-server 10.0.0.72:1812

3 Configure the initiator node with the shared secret of the RADIUS server.
 initiator# iscsiadm modify initiator-node --radius-shared-secret

 Note – The Solaris iSCSI implementation requires that the RADIUS server is configured with a shared secret before the Solaris iSCSI software can interact with the RADIUS server.

4 Enable the RADIUS server.
 initiator# iscsiadm modify initiator-node --radius-access enable
Solaris iSCSI and RADIUS Server Error Messages

This section describes the error messages that are related to a Solaris iSCSI and RADIUS server configuration, along with potential solutions for recovery.

empty RADIUS shared secret

Cause: The RADIUS server is enabled on the initiator, but the RADIUS shared secret is not set.

Solution: Configure the initiator with the RADIUS shared secret. For more information, see "How to Configure RADIUS for Your iSCSI Configuration" on page 257.

WARNING: RADIUS packet authentication failed

Cause: The initiator failed to authenticate the RADIUS data packet. This error can occur if the shared secret configured on the initiator node is different from the shared secret on the RADIUS server.

Reconfigure the initiator with the correct RADIUS shared secret. For more information, see "How to Configure RADIUS for Your iSCSI Configuration" on page 257.

▼ How to Configure iSCSI Target Discovery

This procedure assumes that you are logged in to the local system where you want to configure access to an iSCSI target device.

1. **Become superuser.**

2. **Configure the target device to be discovered dynamically or statically using one of the following methods:**

 - Configure the device to be dynamically discovered (SendTargets).
 For example:
     ```bash
     initiator# iscsiadm add discovery-address 10.0.0.1:3260
     ```
 - Configure the device to be dynamically discovered (iSNS).
 For example:
     ```bash
     initiator# iscsiadm add iSNS-server 10.0.0.1:3205
     ```
 - Configure the device to be statically discovered.
 For example:
     ```bash
     initiator# iscsiadm add static-config eui.5000ABCD78945E2B,10.0.0.1
     ```

 The iSCSI connection is not initiated until the discovery method is enabled. See the next step.

3. **Enable the iSCSI target discovery method using one of the following:**
If you have configured a dynamically discovered (SendTargets) device, enable the SendTargets discovery method.

```
initiator# iscsiadm modify discovery --sendtargets enable
```

If you have configured a dynamically discovered (iSNS) device, enable the iSNS discovery method.

```
initiator# iscsiadm modify discovery --iSNS enable
```

If you have configured static targets, enable the static target discovery method.

```
initiator# iscsiadm modify discovery --static enable
```

4 Create the iSCSI device links for the local system.

```
initiator# devfsadm -i iscsi
```

How to Remove Discovered iSCSI Targets

After removing a discovery address, iSNS server, or static configuration, or after disabling a discovery method, the associated targets are logged out. If these associated targets are still in use, for example, they have mounted file systems, the logout of these devices will fail, and they will remain on the active target list.

This optional procedure assumes that you are logged in to the local system where access to an iSCSI target device has already been configured.

1 Become superuser.

2 (Optional) Disable an iSCSI target discovery method using one of the following:

- If you need to disable the SendTargets discovery method, use the following command:


  ```
  initiator# iscsiadm modify discovery --sendtargets disable
  ```

- If you need to disable the iSNS discovery method, use the following command:

  ```
  initiator# iscsiadm modify discovery --iSNS disable
  ```

- If you need to disable the static target discovery method, use the following command:

  ```
  initiator# iscsiadm modify discovery --static disable
  ```

3 Remove an iSCSI device discovery entry using one of the following:

- Remove an iSCSI SendTargets discovery entry.

 For example:

  ```
  initiator# iscsiadm remove discovery-address 10.0.0.1:3260
  ```

- Remove an iSCSI iSNS discovery entry.

 For example:
iscsiadm remove isns-server 10.0.0.1:3205
- Remove a static iSCSI discovery entry.
 For example:

 initiator# iscsiadm remove static-config eui.5000ABCD78945E2B,10.0.0.1

Note – If you attempt to disable or remove a discovery entry that has an associated logical unit in use, the disable or remove operation fails with the following message:

logical unit in use

If this error occurs, stop all associated I/O on the logical unit, unmount the file systems, and so on. Then, repeat the disable or remove operation.

4 **Remove the iSCSI target device.**

Remove a target by specifying the logical unit number (LUN). If you did not specify a LUN when the target was created, a value of 0 was used. LUN 0 must be the last LUN removed if multiple LUNs are associated with a target.

For example:

 initiator# iscsitadm delete target --lun 0 sandbox

Accessing iSCSI Disks

If you want to access the iSCSI disks upon reboot, create the file system on the disk, and add an `/etc/vfstab` entry as you would with a UFS file system on a SCSI device. Then, create a new SMF service for mounting iSCSI disks that depends on the iSCSI initiator service. For more information, see "How to Access iSCSI Disks Upon Reboot" on page 261.

After the devices have been discovered by the Solaris iSCSI initiator, the login negotiation occurs automatically. The Solaris iSCSI driver determines the number of available LUNs and creates the device nodes. Then, the iSCSI devices can be treated as any other SCSI device.

You can view the iSCSI disks on the local system by using the `format` utility.

In the following `format` output, disks 2 and 3 are iSCSI LUNs that are not under MPxIO control. Disks 21 and 22 are iSCSI LUNs under MPxIO control.

 initiator# format
 AVAILABLE DISK SELECTIONS:

 0. c0t1d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424> /pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@w500000e010685cf1,0
 1. c0t2d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424> /pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@w500000e0106e3ba1,0
 2. c3t0d0 <ABCSTORAGE-100E-00-2.2 cyl 20813 alt 2 hd 16 sec 63> /iscsi/disk@0000iqn.2001-05.com.abcstorage%3A6-8a900-477d70401-
How to Access iSCSI Disks Upon Reboot

Follow the steps below to access iSCSI disks after the system is rebooted.

1. Add entries for the iSCSI LUN(s) to the `/etc/vfstab` file. Set the mount at boot option to no.

```
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
# /dev/dsk/c3t600144F04B555F370000093D0495800d0s0 - /mnt ufs - no -
```

2. Create an SMF service manifest that automatically mounts the iSCSI LUN after the system is rebooted.

For example, create an XML manifest file, `/var/svc/manifest/network/iscsi/iscsimount.xml`, with the following contents:

```
<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1" >
<service_bundle type="manifest" name="iscsimount">
  <service
    name="iscsimount"
    type="service"
    version="1">
    <single_instance/>
    <!-- We depend on the iscsi initiator service -->
    <dependency
      name="client"
      type="service"
      grouping="require_all"
      restart_on="none">
      <service_fmri value="svc:/network/iscsi/initiator"/>
    </dependency>
    <instance name="default" enabled="false">
      <!-- mount iSCSI volumes -->
    </instance>
  </service>
</service_bundle>
```
Create the following files in the `/var/tmp` directory.

The following sample bash shell scripts `mount` and `umount` iSCSI disks from the `/mnt` directory.

```bash
bash-4.0# cat /var/tmp/iscsi_mount
#!/usr/bin/bash
mount /mnt #Add multiple iscsi lun(s) to mount
```

```bash
bash-4.0# cat /var/tmp/iscsi_umount
#!/usr/bin/bash
umount /mnt #Add multiple iscsi lun(s) to umount
```

Set execute permission on these scripts. For example:

```bash
bash-4.0# chmod u+x /var/tmp/iscsi_mount
bash-4.0# chmod u+x /var/tmp/iscsi_umount
```

4 Import the manifest.

```bash
# svccfg import /var/svc/manifest/network/iscsi/iscsimount.xml
# svccfg enable iscsimount
```
Note – After this service is enabled, you might get the following messages when the system is shut down or rebooted:

```
iscsi: NOTICE: iscsi session(4) - session logout failed (1)
iscsi: NOTICE: iscsi discovery failure - SendTargets method is not enabled
iscsi: NOTICE: iscsi discovery failure - iSNS method is not enabled
```

You can safely ignore these messages or you can run the following command just prior to reboot to avoid the messages:

```
# svcadm disable -t iscsimount
```

After the devices have been discovered by the Solaris iSCSI initiator, the login negotiation occurs automatically. The Solaris iSCSI driver determines the number of available LUNs and creates the device nodes. Then, the iSCSI devices can be treated as any other SCSI device.

Monitoring Your iSCSI Configuration

You can display information about the iSCSI initiator and target devices by using the `iscsiadm list` command.

1. **Become superuser.**
2. **Display information about the iSCSI initiator.**
 For example:
   ```
   # iscsiadm list initiator-node
   Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
   Initiator node alias: zzr1200
   Login Parameters (Default/Configured):
     Header Digest: NONE/-
     Data Digest: NONE/-
     Authentication Type: NONE
     RADIUS Server: NONE
     RADIUS access: unknown
     Configured Sessions: 1
   ```
3. **Display information about which discovery methods are in use.**
 For example:
   ```
   # iscsiadm list discovery
   Discovery:
     Static: enabled
     Send Targets: enabled
     iSNS: enabled
   ```

Example 14-1 Displaying iSCSI Target Information

The following example shows how to display the parameter settings for a specific iSCSI target.
iscsiadm list target-param iqn.1992-08.com.abcstorage:sn.33592219

The iscsiadm list target-param -v command displays the following information:

- The authentication settings for the target
- The default settings for the target login parameters
- The configured value for each login parameter

The iscsiadm list target-param -v command displays the default parameter value before the / designator and the configured parameter value after the / designator. If you have not configured any parameters, the configured parameter value displays as a hyphen (-). For more information, see the following examples.

iscsiadm list target-param -v eui.50060e8004275511 Target: eui.50060e8004275511

Alias: -
Bi-directional Authentication: disabled
Authentication Type: NONE
Login Parameters (Default/Configured):
 Data Sequence In Order: yes/-
 Data PDU In Order: yes/-
 Default Time To Retain: 20/-
 Default Time To Wait: 2/-
 Error Recovery Level: 0/-
 First Burst Length: 65536/-
 Immediate Data: yes/-
 Initial Ready To Transfer (R2T): yes/-
 Max Burst Length: 262144/-
 Max Outstanding R2T: 1/-
 Max Receive Data Segment Length: 65536/-
 Max Connections: 1/-
 Header Digest: NONE/-
 Data Digest: NONE/-
Configured Sessions: 1

The following example output displays the parameters that were negotiated between the target and the initiator.

iscsiadm list target -v eui.50060e8004275511 Target: eui.50060e8004275511

TPGT: 1
ISID: 4000002a0000
Connections: 1
CID: 0
IP address (Local): 172.90.101.71:32813
IP address (Peer): 172.90.101.40:3260
Discovery Method: Static
Login Parameters (Negotiated):
 Data Sequence In Order: yes
 Data PDU In Order: yes
 Default Time To Retain: 0
 Default Time To Wait: 3
 Error Recovery Level: 0
 First Burst Length: 65536
 Immediate Data: yes
Initial Ready To Transfer (R2T): yes
Max Burst Length: 262144
Max Outstanding R2T: 1
Max Receive Data Segment Length: 65536
Max Connections: 1
Header Digest: NONE
Data Digest: NONE

Modifying iSCSI Initiator and Target Parameters

You can modify parameters on both the iSCSI initiator and the iSCSI target device. However, the only parameters that can be modified on the iSCSI initiator are the following:

- **iSCSI initiator node name** – You can change the initiator node name to a different name. If you change the initiator node name, the targets that were discovered by iSNS might be removed from the initiator's target list, depending on the discovery domain configuration on the iSNS server at the time when the name was changed. For more information, see "How to Modify iSCSI Initiator and Target Parameters" on page 265.

- **Header digest** – NONE, the default value or CRC32.

- **Data digest** – NONE, the default value or CRC32.

- **Authentication and CHAP secret** – For more information about setting up authentication, see "How to Configure CHAP Authentication for Your iSCSI Initiator" on page 255.

- **Configured sessions** – For more information about configuring multiple sessions, see "How to Enable Multiple iSCSI Sessions for a Target" on page 269.

The iSCSI driver provides default values for the iSCSI initiator and iSCSI target device parameters. If you modify the parameters of the iSCSI initiator, the modified parameters are inherited by the iSCSI target device, unless the iSCSI target device already has different values.

Caution – Ensure that the target software supports the parameter to be modified. Otherwise, you might be unable to log in to the iSCSI target device. See your array documentation for a list of supported parameters.

Modifying iSCSI parameters should be done when I/O between the initiator and the target is complete. The iSCSI driver reconnects the session after the changes are made by using the iscsiadm modify command.

How to Modify iSCSI Initiator and Target Parameters

The first part of this procedure illustrates how modified parameters of the iSCSI initiator are inherited by the iSCSI target device. The second part of this procedure shows how to actually modify parameters on the iSCSI target device.

This optional procedure assumes that you are logged in to the local system where access to an iSCSI target device has already been configured.
1 Become superuser.

2 List the current parameters of the iSCSI initiator and target device.

 a. List the current parameters of the iSCSI initiator. For example:

```
initiator# iscsiadm list initiator-node
Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
Initiator node alias: zzr1200
Login Parameters (Default/Configured):
   Header Digest: NONE/-
   Data Digest: NONE/-
   Authentication Type: NONE
   RADIUS Server: NONE
   RADIUS access: unknown
   Configured Sessions: 1
```

 b. List the current parameters of the iSCSI target device. For example:

```
initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
   Alias: -
   Bi-directional Authentication: disabled
   Authentication Type: NONE
   Login Parameters (Default/Configured):
      Data Sequence In Order: yes/-
      Data PDU In Order: yes/-
      Default Time To Retain: 20/-
      Default Time To Wait: 2/-
      Error Recovery Level: 0/-
      First Burst Length: 65536/-
      Immediate Data: yes/-
      Initial Ready To Transfer (R2T): yes/-
      Max Burst Length: 262144/-
      Max Outstanding R2T: 1/-
      Max Receive Data Segment Length: 65536/-
      Max Connections: 1/-
      Header Digest: NONE/-
      Data Digest: NONE/-
   Configured Sessions: 1
```

Note that both header digest and data digest parameters are currently set to NONE for both the iSCSI initiator and the iSCSI target device.

To review the default parameters of the iSCSI target device, see the `iscsiadm list target-param` output in Example 14–1.

3 Modify the parameter of the iSCSI initiator.

 For example, set the header digest to CRC32.

```
initiator# iscsiadm modify initiator-node -h CRC32
```

If you change the initiator node name, the targets that were discovered by iSNS might be logged out and removed from the initiator's target list, if the new name does not belong to the same
discovery domain as that of the targets. However, if the targets are in use, they are not removed. For example, if a file is open or a file system is mounted on these targets, the targets will not removed.

You might also see new targets after the name change if these targets and the new initiator node name belong to the same discovery domain.

4 Verify that the parameter was modified.

a. Display the updated parameter information for the iSCSI initiator. For example:

```
initiator# iscsiadm list initiator-node
Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
Initiator node alias: zzr1200
Login Parameters (Default/Configured):
    Header Digest: NONE/CRC32
    Data Digest: NONE/-
    Authentication Type: NONE
    RADIUS Server: NONE
    RADIUS access: unknown
    Configured Sessions: 1
```

Note that the header digest is now set to CRC32.

b. Display the updated parameter information for the iSCSI target device. For example:

```
initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
    Alias: -
    Bi-directional Authentication: disabled
    Authentication Type: NONE
    Login Parameters (Default/Configured):
        Data Sequence In Order: yes/-
        Data PDU In Order: yes/-
        Default Time To Retain: 20/-
        Default Time To Wait: 2/-
        Error Recovery Level: 0/-
        First Burst Length: 65536/-
        Immediate Data: yes/-
        Initial Ready To Transfer (R2T): yes/-
        Max Burst Length: 262144/-
        Max Outstanding R2T: 1/-
        Max Receive Data Segment Length: 65536/-
        Max Connections: 1/-
        Header Digest: CRC32/-
        Data Digest: NONE/-
    Configured Sessions: 1
```

Note that the header digest is now set to CRC32.

5 Verify that the iSCSI initiator has reconnected to the iSCSI target. For example:

```
initiator# iscsiadm list target -v iqn.1992-08.com.abcstorage:sn.84186266
    TPGT: 2
    ISID: 4000002a0000
    Connections: 1
```
6 **(Optional) Unset an iSCSI initiator parameter or an iSCSI target device parameter.**

You can unset a parameter by setting it back to its default setting by using the `iscsiadm modify` command. Or, you can use the `iscsiadm remove` command to reset all target properties to the default settings.

The `iscsiadm modify target-param` command changes only the parameters that are specified on the command line.

The following example shows how to reset the header digest to NONE:

```
initiator# iscsiadm modify target-param -h none iqn.1992-08.com.abcstorage:sn...
```

For information about the `iscsiadm remove target-param` command, see `iscsiadm(1M)`.

Setting Up Solaris iSCSI Multipathed Devices

Consider the following guidelines for using Solaris iSCSI multipathed (MPxIO) devices:

- **Solaris iSCSI and MPxIO** – MPxIO supports target port aggregation and availability in Solaris iSCSI configurations that configure multiple sessions per target (MS/T) on the iSCSI initiator.
 - Use IPMP for aggregation and failover of two or more NICs.
 - A basic configuration for an iSCSI host is a server with two NICs that are dedicated to iSCSI traffic. These NICs are configured by using IPMP. Additional NICs are provided for non-iSCSI traffic to optimize performance.
 - Active multipathing can only be achieved by using the Solaris iSCSI MS/T feature, and the failover and redundant of an IPMP configuration.
 - If one NIC fails in an IPMP configuration, IPMP handles the failover. The MPxIO driver does not notice the failure. In a non-IPMP configuration, the MPxIO driver fails and offline the path.
 - If one target port fails in an IPMP configuration, the MPxIO driver notices the failure and provides the failover. In a non-IPMP configuration, the MPxIO driver notices the failure and provides the failover.

For more information about using the Solaris iSCSI MS/T feature with IPMP and multipathing, see SunSolve Infodoc 207607, *Understanding an iSCSI MS/T multi-path configuration.*
For information about configuring multiple sessions per target, see "How to Enable Multiple iSCSI Sessions for a Target" on page 269. For information about configuring IPMP, see Part VI, “IPMP,” in System Administration Guide: IP Services.

Solaris iSCSI, Fibre-Channel (FC), and MPxIO – The MPxIO driver provides the following behavior in more complex iSCSI/FC configurations:

- If you have dual iSCSI to FC bridges in an FC SAN, iSCSI presents target paths to MPxIO. MPxIO matches the unique SCSI per LUN identifier, and if they are identical, presents one path to the iSCSI driver.
- If you have a configuration that connects a target by using both iSCSI and FC, the MPxIO driver can provide different transports to the same device. In this configuration, MPxIO utilizes both paths.
- If you are using iSCSI and FC in combination with MPxIO, make sure that the MPxIO settings in the `/kernel/drv/fp.conf` file and the `/kernel/drv/iscsi.conf` files match the MPxIO configuration that you want supported. For example, in `fp.conf`, you can determine whether MPxIO is enabled globally on the HBA or on a per-port basis.

Third-party hardware considerations – Find out if your third-party HBA is qualified to work with Solaris iSCSI and MPxIO.

If you are using a third-party HBA, you might need to ask your third-party HBA vendor for the symmetric-option information for the `/kernel/drv/scsi_vhci.conf` file.

How to Enable Multiple iSCSI Sessions for a Target

This procedure can be used to create multiple iSCSI sessions that connect to a single target. This scenario is useful with iSCSI target devices that support login redirection or have multiple target portals in the same target portal group. Use iSCSI multiple sessions per target with Solaris SCSI Multipathing (MPxIO). You can also achieve higher bandwidth if you utilize multiple NICs on the host side to connect to multiple portals on the same target.

The MS/T feature creates two or more sessions on the target by varying the initiator’s session ID (ISID). Enabling this feature creates two SCSI layer paths on the network so that multiple targets are exposed through the iSCSI layer to the Solaris I/O layer. The MPxIO driver handles the reservations across these paths.

For more information about how iSCSI interacts with MPxIO paths, see “Setting Up Solaris iSCSI Multipathed Devices” on page 268.

Review the following items before configuring multiple sessions for an iSCSI target:

- A typical MS/T configuration has two or more configured-sessions.

 However, if your storage supports multiple TPGTs and if you are using SendTarget discovery on your host system, then the number of configured sessions can be set to 1. SendTarget discovery automatically detects the existence of multiple paths and multiple target sessions are created.
Confirm that the mpxio configuration parameter is enabled in the /kernel/drv/iscsi.conf file.

```
# cd /kernel/drv
# grep mpxio iscsi.conf
iscsi.conf:mpxio-disable="no";
```

Confirm that the multiplenetwork connections are configured by using IPMP.

Confirm that the multiplenetwork connections are available.

```
# ifconfig -a
```

1. Become superuser.

2. List the current parameters for the iSCSI initiator and target.

 a. List the current parameters for the iSCSI initiator. For example:

      ```
      initiator# iscsiadm list initiator-node
      Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
      Initiator node alias: zzr1200
      ...
      Configured Sessions: 1
      ```

 b. List the current parameters of the iSCSI target device. For example:

      ```
      initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
      Alias: -
      ...
      Configured Sessions: 1
      ```

 The configured sessions value is the number of configured iSCSI sessions that will be created for each target name in a target portal group.

3. Select one of the following to modify the number of configured sessions either at the initiator node to apply to all targets or at a target level to apply to a specific target.

 The number of sessions for a target must be between 1 and 4.

 a. Apply the parameter to the iSCSI initiator node.
 For example:
      ```
      initiator# iscsiadm modify initiator-node -c 2
      ```

 b. Apply the parameter to the iSCSI target.
 For example:
      ```
      ```

 c. Bind configured sessions to one or more local IP addresses.
Configured sessions can also be bound to a specific local IP address. Using this method, one or more local IP addresses are supplied in a comma-separated list. Each IP address represents an iSCSI session. This method can also be done at the initiator-node or target-param level. For example:

```
initiator# iscsiadm modify initiator-node -c 10.0.0.1,10.0.0.2
```

Note – If the specified IP address is not routable, the address is ignored and the default Solaris route and IP address is used for this session.

4 Verify that the parameter was modified.

a. Display the updated information for the initiator node. For example:

```
initiator# iscsiadm list initiator-node
Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
Initiator node alias: zzr1200
...
Configured Sessions: 2
```

b. Display the updated information for the target node. For example:

```
initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
  Alias: -
...
Configured Sessions: 2
```

5 List the multiple paths by using the `mpathadm list lu` command to confirm that the OS device name matches the `iscsiadm list` output, and that the path count is 2 or more.

Troubleshooting iSCSI Configuration Problems

The following tools are available to troubleshoot general iSCSI configuration problems:

- **snoop** – This tool has been updated to support iSCSI packets.
- **wireshark** – This product is available from http://www.wireshark.org/.

Both tools can filter iSCSI packets on port 3260.

The following sections describe various iSCSI troubleshooting and error message resolution scenarios.
No Connections to the iSCSI Target From the Local System

▼ How to Troubleshoot iSCSI Connection Problems

1 Become superuser.

2 List your iSCSI target information.
 For example:

   ```
   initiator# iscsiadm list target
   Target: iqn.2001-05.com.abcstorage:6-8a0900-37ad70401-bcfff02df8a421df-zzr1200-01
   TPGT: default
   ISID: 4000002a0000
   Connections: 0
   ```

3 If no connections are listed in the `iscsiadm list target` output, check the `/var/adm/messages` file for possible reasons why the connection failed.
 You can also verify whether the connection is accessible by using the `ping` command or by connecting to the storage device's iSCSI port by using the `telnet` command to ensure that the iSCSI service is available. The default port is 3260.
 In addition, check the storage device's log file for errors.

4 If your target is not listed in the `iscsiadm list target` output, check the `/var/adm/messages` file for possible causes.
 If you are using SendTargets as the discovery method, try listing the `discovery-address` using the `-v` option to ensure that the expected targets are visible to the host. For example:

   ```
   initiator# iscsiadm list discovery-address -v 10.0.0.1
   Discovery Address: 10.0.0.1:3260
   Target name: eui.210000203787dfc0
   Target address: 10.0.0.1:11824
   Target name: eui.210000203787e07b
   Target address: 10.0.0.1:11824
   ```

 If you are using iSNS as the discovery method, try enabling the iSNS discovery method and listing the `isns-server` using the `-v` option to ensure that the expected targets are visible to the host. For example:

   ```
   initiator# iscsiadm list isns-server -v
   iSNS Server IP Address: 10.20.56.3205
   Target name: iqn.1992-08.com.xyz:sn.1234566
   Target address: 10.20.57.161:3260, 1
   Target address: 10.20.56.206:3260, 1
   Target address: 10.20.56.206:3260, 1
   ```
iSCSI Device or Disk Is Not Available on the Local System

▼ How to Troubleshoot iSCSI Device or Disk Unavailability

1. Become superuser.

2. Identify the LUNs that were discovered on this target during enumeration.

 For example:

   ```
   # iscsiadm list target -S
   Target: iqn.2001-05.com.abcstorage:6-8a0900-37ad70401-bcfff02df8a421df-zzr1200-01
   TPGT: default
   ISID: 4000002a0000
   Connections: 1
   LUN: 0
   Vendor: ABCSTOR
   Product: 0010
   OS Device Name: /dev/rdsk/c3t34d0s2
   ```

 The -S option shows which LUNs were discovered on this target during enumeration. If you think a LUN should be listed but it is not, review the /var/adm/messages file to see if an error was reported. Check the storage device’s log files for errors. Also, ensure that any storage device LUN masking is properly configured.

Use LUN Masking When Using the iSNS Discovery Method

Avoid using the iSNS discovery domain as the means to control storage authorization to specific initiators. Use LUN masking instead if you want to make sure that only authorized initiators can access a LUN.

If you remove a target from a discovery domain while the target is in use, the iSCSI initiator does not log out from this target. If you do not want this initiator to access this target (and the associated LUNs), you must use LUN masking. Removing the target from the discovery domain is not sufficient.
General iSCSI Error Messages

This section describes the iSCSI messages that might be found in the /var/adm/messages file and potential solutions for recovery.

The message format is as follows:

```
iscsi TYPE (OID) STRING (STATUS-CLASS#/STATUS-DETAIL#)
```

- **TYPE**: Is either connection or session.
- **OID**: Is the object ID of the connection or session. This ID is unique for an OS instance.
- **STRING**: Is a description of the condition.
- **STATUS-CLASS#/STATUS-DETAIL#**: These values are returned in an iSCSI login response as defined by RFC 3720.

iscsi connection(OID) login failed - Miscellaneous iSCSI initiator errors.

Cause: The device login failed due to some form of initiator error.

iscsi connection(OID) login failed - Initiator could not be successfully authenticated.

Cause: The device could not successfully authenticate the initiator.

Solution: If applicable, verify that the settings for CHAP names, CHAP passwords, or the RADIUS server are correct.

iscsi connection(OID) login failed - Initiator is not allowed access to the given target.

Cause: The device cannot allow the initiator access to the iSCSI target device.

Solution: Verify your initiator name and confirm that it is properly masked or provisioned by the storage device.

iscsi connection(OID) login failed - Requested ITN does not exist at this address.

Cause: The device does not provide access to the iSCSI target name (ITN) that you are requesting.

Solution: Verify that the initiator discovery information is specified properly and that the storage device is configured properly.
iscsi connection(OID) login failed - Requested ITN has been removed and no forwarding address is provided.
 Cause: The device can no longer provide access to the iSCSI target name (ITN) that you are requesting.

 Solution: Verify that the initiator discovery information has been specified properly and that the storage device has been configured properly.

iscsi connection(OID) login failed - Requested iSCSI version range is not supported by the target.
 Cause: The initiator’s iSCSI version is not supported by the storage device.

iscsi connection(OID) login failed - No more connections can be accepted on this Session ID (SSID).
 Cause: The storage device cannot accept another connection for this initiator node to the iSCSI target device.

iscsi connection(OID) login failed - Missing parameters (e.g., iSCSI initiator and/or target name).
 Cause: The storage device is reporting that the initiator or target name has not been properly specified.

 Solution: Properly specify the iSCSI initiator or target name.

iscsi connection(OID) login failed - Target hardware or software error.
 Cause: The storage device encountered a hardware or software error.

 Solution: Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - iSCSI service or target is not currently operational.
 Cause: The storage device is currently not operational.

 Solution: Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - Target has insufficient session, connection or other resources.
 Cause: The storage device has insufficient resources.

 Solution: Consult the storage documentation, or contact the storage vendor for further assistance.
iscsi connection(OID) login failed - unable to initialize authentication

iscsi connection(OID) login failed - unable to set authentication

iscsi connection(OID) login failed - unable to set username

iscsi connection(OID) login failed - unable to set password

iscsi connection(OID) login failed - unable to set ipsec

iscsi connection(OID) login failed - unable to set remote authentication

Cause: The initiator was unable to initialize or set authentication properly.

Solution: Verify that your initiator settings for authentication are properly configured.

iscsi connection(OID) login failed - unable to make login pdu

Cause: The initiator was unable to make a login payload data unit (PDU) based on the initiator or storage device settings.

Solution: Try resetting any target login parameters or other nondefault settings.

iscsi connection(OID) login failed - failed to transfer login

iscsi connection(OID) login failed - failed to receive login response

Cause: The initiator failed to transfer or receive a login payload data unit (PDU) across the network connection.

Solution: Verify that the network connection is reachable.

iscsi connection(OID) login failed - received invalid login response (OP CODE)

Cause: The storage device has responded to a login with an unexpected response.

iscsi connection(OID) login failed - login failed to authenticate with target

Cause: The initiator was unable to authenticate the storage device.

Solution: Verify that your initiator settings for authentication are properly configured.

iscsi connection(OID) login failed - initiator name is required

Cause: An initiator name must be configured to perform all actions.

Solution: Verify that the initiator name is configured.

iscsi connection(OID) login failed - authentication receive failed

iscsi connection(OID) login failed - authentication transmit failed

Cause: The initiator was unable to transmit or receive authentication information.

Solution: Verify network connectivity with the storage device or the RADIUS server, as applicable.
iscsi connection\((OID)\) login failed - login redirection invalid

Cause: The storage device attempted to redirect the initiator to an invalid destination.

Solution: Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection\((OID)\) login failed - target protocol group tag mismatch, expected \(<TPGT>\), received \(<TPGT>\)

Cause: The initiator and target had a TPGT (target portal group tag) mismatch.

Solution: Verify your TPGT discovery settings on the initiator or the storage device.

iscsi connection\((OID)\) login failed - can’t accept \(\text{PARAMETER}\) in security stage

Cause: The device responded with an unsupported login parameter during the security phase of login.

Solution: The parameter name is noted for reference. Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection\((OID)\) login failed - \(\text{HeaderDigest}=\text{CRC32}\) is required, can’t accept \(\text{VALUE}\)

iscsi connection\((OID)\) login failed - \(\text{DataDigest}=\text{CRC32}\) is required, can’t accept \(\text{VALUE}\)

Cause: The initiator is only configured to accept a \(\text{HeaderDigest}\) or \(\text{DataDigest}\) that is set to \(\text{CRC32}\) for this target. The device returned the value of \(\text{VALUE}\).

Solution: Verify that the initiator and device digest settings are compatible.

iscsi connection\((OID)\) login failed - \(\text{HeaderDigest}=\text{None}\) is required, can’t accept \(\text{VALUE}\)

iscsi connection\((OID)\) login failed - \(\text{DataDigest}=\text{None}\) is required, can’t accept \(\text{VALUE}\)

Cause: The initiator is only configured to accept a \(\text{HeaderDigest}\) or \(\text{DataDigest}\) that is set to \(\text{NONE}\) for this target. The device returned the value of \(\text{VALUE}\).

Solution: Verify that the initiator and device digest settings are compatible.

iscsi connection\((OID)\) login failed - can’t accept \(\text{PARAMETER}\)

Cause: The initiator does not support this parameter.

iscsi connection\((OID)\) login failed - can’t accept \(\text{MaxOutstandingR2T}\) \(\text{VALUE}\)

Cause: The initiator does not accept \(\text{MaxOutstandingR2T}\) of the noted \(\text{VALUE}\).
iscsi connection(OID) login failed - can’t accept MaxConnections VALUE

Cause: The initiator does not accept the maximum connections of the noted VALUE.

iscsi connection(OID) login failed - can’t accept ErrorRecoveryLevel VALUE

Cause: The initiator does not accept an error recovery level of the noted VALUE.

iscsi session(OID) NAME offline

Cause: All connections for this target NAME have been removed or have failed.

iscsi connection(OID) failure - unable to schedule enumeration

Cause: The initiator was unable to enumerate the LUNs on this target.

Solution: You can force LUN enumeration by running the devfsadm -i iscsi command. For more information, see devfsadm(1M).

iscsi connection(OID) unable to connect to target NAME (errno:ERRNO)

Cause: The initiator failed to establish a network connection.

Solution: For information about the specific ERRNO on the connection failure, see the /usr/include/sys/errno.h file.
This chapter describes the format utility’s menus and commands.

This is a list of the reference information in this chapter.

- “Recommendations and Requirements for Using the format Utility” on page 279
- “format Menu and Command Descriptions” on page 280
- “format.dat File” on page 286
- “Rules for Input to format Commands” on page 290
- “Getting Help on the format Utility” on page 292

For a overview of when to use the format utility, see “format Utility” on page 193.

Recommendations and Requirements for Using the format Utility

You must be superuser or have assumed an equivalent role to use the format utility. Otherwise, the following error message is displayed when you try to use the format utility:

```
$ format
Searching for disks...done
No permission (or no disks found)!
```

Keep the following guidelines in mind when you use the format utility and want to preserve the existing data:

- Back up all files on the disk drive.
- Save all your defect lists in files by using the format utility’s dump command. The file name should include the drive type, model number, and serial number.
- Save the paper copies of the manufacturer’s defect list that was shipped with your drive.
format Menu and Command Descriptions

The format main menu appears similar to the following:

```
FORMAT MENU:
  disk   - select a disk
  type   - select (define) a disk type
  partition - select (define) a partition table
  current - describe the current disk
  format - format and analyze the disk
  fdisk   - run the fdisk program (x86 only)
  repair  - repair a defective sector
  label   - write label to the disk
  analyze - surface analysis
  defect  - defect list management
  backup  - search for backup labels
  verify  - read and display labels
  save    - save new disk/partition definitions
  inquiry - show vendor, product and revision
  volname - set 8-character volume name
 !<cmd>  - execute <cmd>, then return
  quit
```

The following table describes the main menu items for the format utility.

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Command or Menu?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>Command</td>
<td>Lists all of the system’s drives. Also lets you choose the disk you want to use in subsequent operations. This disk is referred to as the current disk.</td>
</tr>
<tr>
<td>type</td>
<td>Command</td>
<td>Identifies the manufacturer and model of the current disk. Also displays a list of known drive types. Choose the Auto configure option for all SCSI-2 disk drives.</td>
</tr>
<tr>
<td>partition</td>
<td>Menu</td>
<td>Creates and modifies slices. For more information, see “partition Menu” on page 282.</td>
</tr>
</tbody>
</table>
| current | Command | Displays the following information about the current disk:
 - Device name and device type
 - Number of cylinders, alternate cylinders, heads and sectors
 - Physical device name |
TABLE 15–1 The Main Menu Item Descriptions for the `format` Utility (Continued)

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Command or Menu?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>Command</td>
<td>Formats the current disk by using one of these sources of information in this order:
1. Information that is found in the <code>format.dat</code> file
2. Information from the automatic configuration process
3. Information that you type at the prompt if no <code>format.dat</code> entry exists
This command does not apply to IDE disks. IDE disks are preformatted by the manufacturer.</td>
</tr>
<tr>
<td>fdisk</td>
<td>Menu</td>
<td>x86 platform only: Runs the <code>fdisk</code> program to create a Solaris <code>fdisk</code> partition.
The <code>fdisk</code> command cannot be used on disks with an EFI label that are greater than 1 terabyte in size.</td>
</tr>
<tr>
<td>repair</td>
<td>Command</td>
<td>Repairs a specific block on the current disk.</td>
</tr>
<tr>
<td>label</td>
<td>Command</td>
<td>Writes a new label to the current disk.</td>
</tr>
<tr>
<td>analyze</td>
<td>Menu</td>
<td>Runs read, write, and compare tests. For more information, see "analyze Menu" on page 283.</td>
</tr>
<tr>
<td>defect</td>
<td>Menu</td>
<td>Retrieves and displays defect lists. For more information, see "defect Menu" on page 285. This feature does not apply to IDE disks. IDE disks manage defects automatically.</td>
</tr>
<tr>
<td>backup</td>
<td>Command</td>
<td>VTOC – Searches for backup labels.
EFI – Not supported.</td>
</tr>
<tr>
<td>verify</td>
<td>Command</td>
<td>Displays the following information about the current disk:
■ Device name and device type
■ Number of cylinders, alternate cylinders, heads and sectors
■ Partition table</td>
</tr>
<tr>
<td>save</td>
<td>Command</td>
<td>VTOC – Saves new disk and partition information.
EFI – Not applicable.</td>
</tr>
<tr>
<td>inquiry</td>
<td>Command</td>
<td>SCSI disks only – Displays the vendor, product name, and revision level of the current drive.</td>
</tr>
<tr>
<td>volname</td>
<td>Command</td>
<td>Labels the disk with a new eight-character volume name that you specify.</td>
</tr>
<tr>
<td>quit</td>
<td>Command</td>
<td>Exits the <code>format</code> menu.</td>
</tr>
</tbody>
</table>
partition Menu

The partition menu appears similar to the following:

```
format> partition
PARTITION MENU:
0 - change '0' partition
1 - change '1' partition
2 - change '2' partition
3 - change '3' partition
4 - change '4' partition
5 - change '5' partition
6 - change '6' partition
7 - change '7' partition
select - select a predefined table
modify - modify a predefined partition table
name - name the current table
print - display the current table
label - write partition map and label to the disk
quit
```

The following table describes the partition menu items.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>change 'n' partition</td>
<td>Enables you to specify the following information for the new partition:</td>
</tr>
<tr>
<td></td>
<td>■ Identification tag</td>
</tr>
<tr>
<td></td>
<td>■ Permission flags</td>
</tr>
<tr>
<td></td>
<td>■ Starting cylinder</td>
</tr>
<tr>
<td></td>
<td>■ Size</td>
</tr>
<tr>
<td>select</td>
<td>Enables you to choose a predefined partition table.</td>
</tr>
<tr>
<td>modify</td>
<td>Enables you to change all the slices in the partition table. This command</td>
</tr>
<tr>
<td></td>
<td>is preferred over the individual change 'x' partition commands.</td>
</tr>
<tr>
<td>name</td>
<td>Enables you to specify a name for the current partition table.</td>
</tr>
<tr>
<td>print</td>
<td>Displays the current partition table.</td>
</tr>
<tr>
<td>label</td>
<td>Writes the partition map and the label to the current disk.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the partition menu.</td>
</tr>
</tbody>
</table>

x86: fdisk Menu

The fdisk menu appears on x86 based systems only and appears similar to the following.
format> fdisk
Total disk size is 14169 cylinders
Cylinder size is 2510 (512 byte) blocks

Partition Status Type Start End Length %
----- ------ ----- ------ ------- ------ ----
1 Active x86 Boot 1 9 9 0
2 Solaris2 10 14168 14159 100

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)
Enter Selection:

The following table describes the fdisk menu items.

TABLE 15-3 x86: Descriptions for fdisk Menu Items

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a partition</td>
<td>Creates an fdisk partition. You must create a separate partition for each OS such as Solaris or DOS. There is a maximum of four partitions per disk. You are prompted for the size of the fdisk partition as a percentage of the disk.</td>
</tr>
<tr>
<td>Specify the active partition</td>
<td>Enables you to specify the partition to be used for booting. This menu item identifies where the first stage boot program looks for the second stage boot program.</td>
</tr>
<tr>
<td>Delete a partition</td>
<td>Deletes a previously created partition. This command destroys all the data in the partition.</td>
</tr>
<tr>
<td>Change between Solaris and Solaris2 Partition IDs</td>
<td>Changes partition IDs from 130 (0x82) to 191 (0xbf) and back again.</td>
</tr>
<tr>
<td>Exit (update disk configuration and exit)</td>
<td>Writes a new version of the partition table and exits the fdisk menu.</td>
</tr>
<tr>
<td>Cancel (exit without updating disk configuration)</td>
<td>Exits the fdisk menu without modifying the partition table.</td>
</tr>
</tbody>
</table>

analyze Menu

The analyze menu appears similar to the following.

format> analyze
ANALYZE MENU:
The following table describes the analyze menu items.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>Reads each sector on the current disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>refresh</td>
<td>Reads then writes data on the current disk without harming the data. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>test</td>
<td>Writes a set of patterns to the disk without harming the data. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>write</td>
<td>Writes a set of patterns to the disk then reads back the data on the disk. Destroys existing data on the disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>compare</td>
<td>Writes a set of patterns to the disk, reads back the data, and then compares it to the data in the write buffer. Destroys existing data on the disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>purge</td>
<td>Removes all data from the disk so that the data cannot be retrieved by any means. Data is removed by writing three distinct patterns over the entire disk (or a section of the disk). If the verification passes, a hex-bit pattern is written over the entire disk (or a section of the disk). Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>verify</td>
<td>In the first pass, writes unique data to each block on the entire disk. In the next pass, reads and verifies the data. Destroys existing data on the disk. Repairs defective blocks as a default.</td>
</tr>
<tr>
<td>print</td>
<td>Displays the data in the read/write buffer.</td>
</tr>
</tbody>
</table>
TABLE 15–4 Descriptions for analyze Menu Items

(Continued)

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
</table>
| setup | Enables you to specify the following analysis parameters:
 Analyze entire disk? yes
 Starting block number: depends on drive
 Ending block number: depends on drive
 Loop continuously? no
 Number of passes: 2
 Repair defective blocks? yes
 Stop after first error? no
 Use random bit patterns? no
 Number of blocks per transfer: 126 (0/n/n)
 Verify media after formatting? yes
 Enable extended messages? no
 Restore defect list? yes
 Restore disk label? yes |
| config | Displays the current analysis parameters. |
| quit | Exits the analyze menu. |

defect Menu

The defect menu appears similar to the following:

```plaintext
format> defect

defect MENU:
  primary - extract manufacturer’s defect list
  grown - extract manufacturer’s and repaired defects lists
  both - extract both primary and grown defects lists
  print - display working list
  dump - dump working list to file
  quit

defect>
```

The following table describes the defect menu items.

TABLE 15–5 The defect Menu Item Descriptions

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Reads the manufacturer’s defect list from the disk drive and updates the in-memory defect list.</td>
</tr>
<tr>
<td>grown</td>
<td>Reads the grown defect list and then updates the in-memory defect list. Grown defects are defects that have been detected during analysis.</td>
</tr>
<tr>
<td>both</td>
<td>Reads both the manufacturer’s defect list and the grown defect list. Then, updates the in-memory defect list.</td>
</tr>
</tbody>
</table>
TABLE 15–5 The defect Menu Item Descriptions (Continued)

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>print</td>
<td>Displays the in-memory defect list.</td>
</tr>
<tr>
<td>dump</td>
<td>Saves the in-memory defect list to a file.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the defect menu.</td>
</tr>
</tbody>
</table>

format.dat File

The format.dat file that is shipped with the Oracle Solaris OS supports many standard disks. If your disk drive is not listed in the format.dat file, you can do the following:

- Add an entry to the format.dat file for the disk.
- Add entries with the format utility by selecting the type command and choosing the other option.

Adding an entry to the format.dat file can save time if the disk drive will be used throughout your site. To use the format.dat file on other systems, copy the file to each system that will use the specific disk drive that you added to the format.dat file.

You might need to modify the /etc/format.dat file for your system if you have one of the following:

- A disk that is not supported by the Oracle Solaris OS
- A disk with a partition table that is different from the Oracle Solaris OS’s default configuration

Note – Do not alter default entries in the /etc/format.dat file. If you want to alter the default entries, copy the entry, give the entry a different name, and make the appropriate changes to avoid confusion.

The /etc/format.dat is not applicable for disks with EFI labels.

Contents of the format.dat File

The format.dat contains disk drive information that is used by the format utility. Three items are defined in the format.dat file:

- Search paths
- Disk types
- Slice tables
Syntax of the format.dat File

The following syntax rules apply to the /etc/format.dat file:

- The pound sign (#) is the comment character. Any text on a line after a pound sign is not interpreted by the format utility.
- Each definition in the format.dat file appears on a single logical line. If the definition is longer than one line long, all lines but the last line of the definition must end with a backslash (\).
- A definition consists of a series of assignments that have an identifier on the left side and one or more values on the right side. The assignment operator is the equal sign (=). The assignments within a definition must be separated by a colon (:).
- White space is ignored by the format utility. If you want an assigned value to contain white space, enclose the entire value in double quotation marks ("'). This syntax causes the white space within the quotes to be preserved as part of the assignment value.
- Some assignments can have multiple values on the right side. Separate values by a comma.

Keywords in the format.dat File

The format.dat file contains disk definitions that are read by the format utility when it is started. Each definition starts with one of the following keywords: disk_type or partition. These keywords are described in the following table.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk_type</td>
<td>Defines the controller and disk model. Each disk_type definition contains information that concerns the physical geometry of the disk. The default data file contains definitions for the controllers and disks that the Oracle Solaris OS supports. You need to add a new disk_type definition only if you have an unsupported disk. You can add as many disk_type definitions to the data file as you want.</td>
</tr>
<tr>
<td>partition</td>
<td>Defines a partition table for a specific disk type. The partition table contains the partition information, plus a name that lets you refer to it in the format utility. The default format.dat file contains default partition definitions for several kinds of disk drives. Add a partition definition if you recreated partitions on any of the disks on your system. Add as many partition definitions to the data file as you need.</td>
</tr>
</tbody>
</table>
Disk Type (format.dat)

The disk_type keyword in the format.dat file defines the controller and disk model. Each disk_type definition contains information about the physical geometry of the disk. The default format.dat file contains definitions for the controllers and disks that the Oracle Solaris OS supports. You need to add a new disk_type only if you have an unsupported disk. You can add as many disk_type definitions to the data file as you want.

The keyword itself is assigned the name of the disk type. This name appears in the disk’s label, and is used to identify the disk type whenever the format utility is run. Enclose the name in double quotation marks to preserve any white space in the name. The following table describes the identifiers that must also be assigned values in all disk_type definitions.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrl</td>
<td>Identifies the controller type for the disk type. Currently, the supported values are SCSI and ATA.</td>
</tr>
<tr>
<td>ncy</td>
<td>Specifies the number of data cylinders in the disk type. This determines how many logical disk cylinders the system will be allowed to access.</td>
</tr>
<tr>
<td>acy</td>
<td>Specifies the number of alternate cylinders in the disk type. These cylinders are used by the format utility to store information such as the defect list for the drive. You should always reserve at least two cylinders for alternates.</td>
</tr>
<tr>
<td>pcy</td>
<td>Specifies the number of physical cylinders in the disk type. This number is used to calculate the boundaries of the disk media. This number is usually equal to ncy plus acy.</td>
</tr>
<tr>
<td>nhead</td>
<td>Specifies the number of heads in the disk type. This number is used to calculate the boundaries of the disk media.</td>
</tr>
<tr>
<td>nsect</td>
<td>Specifies the number of data sectors per track in the disk type. This number is used to calculate the boundaries of the disk media. Note that this number includes only the data sectors. Any spares are not reflected in the number of data sections per track.</td>
</tr>
<tr>
<td>rpm</td>
<td>Specifies the rotations per minute of the disk type. This information is put in the label and later used by the file system to calculate the optimal placement of file data.</td>
</tr>
</tbody>
</table>

Other identifiers might be necessary, depending on the controller. The following table describes the identifiers that are required for SCSI controllers.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmt_time</td>
<td>Specifies a number that indicates how long it takes to format a given drive. See the controller manual for more information.</td>
</tr>
</tbody>
</table>
TABLE 15-8 Required disk_type Identifiers for SCSI Controllers (format.dat) (Continued)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache</td>
<td>Specifies a number that controls the operation of the on-board cache while the format utility is operating. See the controller manual for more information.</td>
</tr>
<tr>
<td>trks_zone</td>
<td>Specifies a number that identifies how many tracks that exist per defect zone, to be used in alternate sector mapping. See the controller manual for more information.</td>
</tr>
<tr>
<td>asect</td>
<td>Specifies a number that identifies how many sectors are available for alternate mapping within a given defect zone. See the controller manual for more information.</td>
</tr>
</tbody>
</table>

EXAMPLE 15-1 Required disk_type Identifiers for SCSI Controllers (format.dat)

The following are examples of disk_type definitions:

```plaintext
disk_type = "SUN1.3G"
  : ctlr = SCSI : fmt_time = 4
  : trks_zone = 17 : asect = 6 : atrks = 17
  : rpm = 5400 : bpt = 44823

disk_type = "SUN2.1G"
  : ctlr = SCSI : fmt_time = 4
  : rpm = 5400 : bpt = 44823

disk_type = "SUN2.9G"
  : ctlr = SCSI : fmt_time = 4
  : rpm = 5400
```

Partition Tables (format.dat)

A partition table in the format.dat file defines a slice table for a specific disk type.

The partition keyword in the format.dat file is assigned the name of the partition table. Enclose the name in double quotation marks to preserve any white space in the name. The following table describes the identifiers that must be assigned values in all partition tables.

TABLE 15-9 Required Identifiers for Partition Tables (format.dat)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>The name of the disk_type that this partition table is defined for. This name must appear exactly as it does in the disk_type definition.</td>
</tr>
<tr>
<td>ctrl</td>
<td>The disk controller type that this partition table can be attached to. Currently, the supported values are ATA for ATA controllers and SCSI for SCSI controllers. The controller type that is specified here must also be defined for the disk_type that you specified in the disk_type definition.</td>
</tr>
</tbody>
</table>
The other identifiers in a slice definition describe the actual partition information. The identifiers are the numbers 0 through 7. These identifiers are optional. Any partition that is not explicitly assigned is set to 0 length. The value of each of these identifiers is a pair of numbers separated by a comma. The first number is the starting cylinder for the partition. The second is the number of sectors in the slice.

EXAMPLE 15-2 Required Identifiers for Partition Tables (format.dat)

The following are some examples of slice definitions:

```plaintext
partition = "SUN1.3G" \ 
  : disk = "SUN1.3G" : ctrl = SCSI \ 
    : 0 = 0, 34000 : 1 = 25, 133280 : 2 = 0, 2672400 : 6 = 123, 2505120

partition = "SUN2.1G" \ 
  : disk = "SUN2.1G" : ctrl = SCSI \ 
    : 0 = 0, 62320 : 1 = 41, 197600 : 2 = 0, 4154160 : 6 = 171, 3894240

partition = "SUN2.9G" \ 
  : disk = "SUN2.9G" : ctrl = SCSI \ 
    : 0 = 0, 195426 : 1 = 94, 390852 : 2 = 0, 5683986 : 6 = 282, 5097708
```

Specifying an Alternate Data File for the format Utility

The format utility determines the location of an alternate file by the following methods in this order:

1. If a file name is given with the format -x option, that file is always used as the data file.
2. If the -x option is not specified, then the format utility searches the current directory for a file named format.dat. If the file exists, it is used as the data file.
3. If neither of these methods yields a data file, the format utility uses the /etc/format.dat file as the data file. This file is shipped with the Oracle Solaris OS and should always be present.

Rules for Input to format Commands

When you use the format utility, you need to provide various kinds of information. This section describes the rules for this information. For information on using format's help facility when you specify data, see “Getting Help on the format Utility” on page 292.

Specifying Numbers to format Commands

Several places in the format utility require number as input. You must either specify the appropriate data or select a number from a list of choices. In either case, the help facility causes format to display the upper and lower limits of the number expected. Simply enter the
appropriate number. The number is assumed to be in decimal format unless a base is explicitly specified as part of the number (for example, 0x for hexadecimal).

The following are examples of integer input:

Enter number of passes [2]: 34
Enter number of passes [34] 0xf

Specifying Block Numbers to format Commands

Whenever you are required to specify a disk block number, there are two ways to do so:

- Specify the block number as an integer
- Specify the block number in the cylinder/head/sector format

You can specify the information as an integer that represents the logical block number. You can specify the number in any base, but the default is decimal. The maximum operator (a dollar sign, $) can also be used here so that format utility can select the appropriate value. Logical block format is used by the SunOS disk drivers in error messages.

The other way to specify a block number is by using cylinder/head/sector format. In this method, you must specify explicitly the three logical components of the block number: the cylinder, head, and sector values. These values are still logical. However, they allow you to define regions of the disk that are related to the layout of the media.

If any of the cylinder/head/sector numbers are not specified, the value is assumed to be zero. You can also use the maximum operator in place of any of the numbers. Then, the format utility will select the appropriate value. The following are some examples of cylinder, head, and sector values:

Enter defective block number: 34/2/3
Enter defective block number: 23/1/
Enter defective block number: 457//
Enter defective block number: 12345
Enter defective block number: 0xabcd
Enter defective block number: 334/$/2
Enter defective block number: 892//$

The format utility always displays block numbers in both formats. Also, the help facility shows you the upper and lower limits of the block number expected, in both formats.

Specifying format Command Names

Command names are needed as input whenever the format utility displays a menu prompt. You can abbreviate the command names, as long as what you type is sufficient to uniquely identify the command desired.
For example, use `p` to access the partition menu from the `format` menu. Then, type `p` to display the current slice table.

```
format> p
PARTITION MENU:
  0  - change '0' partition
  1  - change '1' partition
  2  - change '2' partition
  3  - change '3' partition
  4  - change '4' partition
  5  - change '5' partition
  6  - change '6' partition
  7  - change '7' partition
select - select a predefined table
modify - modify a predefined partition table
name - name the current table
print - display the current table
label - write partition map and label to the disk
quit
partition> p
```

Specifying Disk Names to `format` Commands

At certain points in the `format` utility, you must name something. In these cases, you are free to specify any string you want for the name. If the name has white space in it, the entire name must be enclosed in double quotation marks ("'). Otherwise, only the first word of the name is used.

For example, if you want to identify a specific partition table for a disk, you can use the `name` subcommand that is available from the `partition` menu:

```
partition> name
Enter table name (remember quotes): "new disk3"
```

Getting Help on the `format` Utility

The `format` utility provides a help facility that you can use whenever the `format` utility is expecting input. You can request help about what input is expected by typing a question mark (?). The `format` utility displays a brief description of what type of input is needed.

If you type a `?` at a menu prompt, a list of available commands is displayed.

The man pages associated with the `format` utility include the following:

- `format(1M)` – Describes the basic `format` utility capabilities and provides descriptions of all command-line variables.
- `format.dat(4)` – Describes disk drive configuration information for the `format` utility.
Managing File Systems (Overview)

Managing file systems is one of your most important system administration tasks. This is a list of the overview information in this chapter.

- “What’s New in File Systems?” on page 293
- “Where to Find File System Management Tasks” on page 301
- “Overview of File Systems” on page 301
- “Types of File Systems” on page 302
- “Commands for UFS File System Administration” on page 308
- “Default Solaris File Systems” on page 309
- “Swap Space” on page 307
- “UFS File System” on page 311
- “Mounting and Unmounting File Systems” on page 317
- “Determining a File System’s Type” on page 322

What’s New in File Systems?

This section describes new file system features in the Solaris release.

- “File System Monitoring Tool (fsstat)” on page 293
- “Oracle Solaris ZFS File System” on page 294
- “Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)” on page 294

For a complete listing of new Solaris features and a description of Solaris releases, see Oracle Solaris 10 9/10 What’s New.

File System Monitoring Tool (fsstat)

Solaris 10 6/06: A new file system monitoring tool, fsstat, is available to report file system operations. You can use several options to report activity, such as by mount point or by file system type.
For example, the following `fsstat` command displays all ZFS file system operations since the ZFS module was loaded:

```
$ fsstat zfs
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
268K 145K 93.6K 28.0M 71.1K 186M 2.74M 12.9M 56.2G 1.61M 9.46G zfs
```

For example, the following `fsstat` command displays all file system operations since the `/export/ws` file system mounted.

```
$ fsstat /export/ws
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
0 0 0 18.1K 0 12.6M 5 20000 /export/ws
```

The default form is to report statistical information in easy to understand values, such as GB, KB, and MB.

For more information, see `fsstat(1M)`.

Oracle Solaris ZFS File System

Solaris 10 6/06: Oracle Solaris ZFS, a revolutionary new file system, provides simple administration, transactional semantics, end-to-end data integrity, and immense scalability. In addition, ZFS provides the following administration features:

- Backup and restore capabilities
- Device management support
- GUI administration tool
- Persistent snapshots and cloning features
- Quotas that can be set for file systems
- RBAC-based access control
- Storage pool space reservations for file systems
- Support for Solaris systems that have zones installed

For more information about using ZFS, see *Oracle Solaris ZFS Administration Guide*.

Enhancements to UFS File System Utilities (`fsck`, `mkfs`, and `newfs`)

Solaris 10 6/06: The file system check utility, `fsck`, has been enhanced to include features from the FreeBSD 4.9 version of the `fsck` program, as well as other enhancements.

The `fsck` utility in this Solaris release includes the following improvements:
Checks and repairs file systems more thoroughly and provides improved error messages. For example, in some scenarios, fsck determines what structures are missing and replaces them appropriately.

- Automatically searches for backup superblocks.
- Reports when fsck needs to be rerun.
- When clearing directories, fsck now attempts to recover directory contents immediately and therefore, reduces the time spent rerunning this utility.
- If fsck finds duplicate blocks, and not all files that reference the duplicate blocks were cleared, fsck reports the inode numbers at the end of the fsck run. Then, you can use the find command to review the inodes that are damaged.
- Improved error messages regarding the status of extended attributes and other special files, such as device files and ACL entries, are included.
- Includes a -v option to enable more verbose messages.

In addition, the newfs and mkfs commands have been updated to include new options for displaying a file system’s superblock information in text or dumping the superblock information in binary format.

```
newfs [ -S or -B ] /dev/rdsk/...  
-S      Displays the file system's superblock in text
-B      Dumps the file system's superblock in binary
```

```
mkfs [ -o calcsb or -o calcbinsb ] /dev/rdsk/... size
  -o calcsb     Displays the file system's superblock in text
  -o calcbinsb  Dumps the file system's superblock in binary
```

The fsck utility uses this superblock information to search for backup superblocks.

The following sections describe specific fsck enhancements and their corresponding error messages. For step-by-step instructions on using the fsck utility to repair a damaged superblock, see “How to Restore a Bad Superblock (Solaris 10/06 Release)” on page 410.

Automatic Search for Backup Superblocks

The following fsck error message examples illustrate the automatic backup superblock discovery feature.
Caution – If a file system has a damaged superblock and it was created with `newfs` or `mkfs` customized parameters, such as `ntrack` or `nsect`, using `fsck`'s automatically discovered superblock for the repair process could damage your file system.

In the case of a file system that was created with customized parameters and it has a bad superblock, `fsck` provides the prompt to cancel the `fsck` session:

CANCEL FILESYSTEM CHECK?

- If the file system was created with the `newfs` command and `fsck` responds that just the primary superblocks are corrupted, then consider letting `fsck` restore the superblock.

```bash
# fsck /dev/dsk/c1t2d0s0
** /dev/rdsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? no

LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes

FOUND ALTERNATE SUPERBLOCK 32 WITH NEWFS

USE ALTERNATE SUPERBLOCK? yes

FOUND ALTERNATE SUPERBLOCK AT 32 USING NEWFS

If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

** CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
CORRECT GLOBAL SUMMARY
SALVAGE? y

** UPDATE STANDARD SUPERBLOCK? y

81 files, 3609 used, 244678 free (6 frags, 30584 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

- If the file system was created with the `mkfs` command and `fsck` responds that just the primary superblocks are corrupted, then consider letting `fsck` restore the superblock.
The following example illustrates what would happen if you specified `fsck`'s `-y` option in a damaged superblock scenario. You are automatically dropped out of the `fsck` session. A message is displayed to rerun it with the alternate superblock.

```bash
fsck -y /dev/dsk/c1t2d0s0
** /dev/dsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes

SEARCH FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes

CALCULATED GENERIC SUPERBLOCK WITH MKFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.
```
CANCEL FILESYSTEM CHECK? yes

Please verify that the indicated block contains a proper superblock for the filesystem (see fsdb(1M)).

FSCK was running in YES mode. If you wish to run in that mode using the alternate superblock, run 'fsck -y -o b=453920 /dev/rdsk/c1t2d0s0'.

The following fsck error message scenario illustrates the new prompts for the backup superblock, but the fsck run is not canceled, in this example. Canceling the fsck session would be an appropriate response if this file system was created with customized parameters or if there is some other concern about running fsck on this file system.

The various superblock error conditions are provided in *italics* as follows:

```
fsck /dev/rdsk/c0t1d0s0
** /dev/rdsk/c0t1d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED
BAD SUPERBLOCK AT BLOCK 16: NUMBER OF DATA BLOCKS OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: INODES PER GROUP OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: MAGIC NUMBER WRONG
BAD SUPERBLOCK AT BLOCK 16: BAD VALUES IN SUPER BLOCK
BAD SUPERBLOCK AT BLOCK 16: NCG OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: CPG OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: NCYL IS INCONSISTENT WITH NCG*CPG
BAD SUPERBLOCK AT BLOCK 16: SIZE OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: NUMBER OF DIRECTORIES OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: ROTATIONAL POSITION TABLE SIZE OUT OF RANGE
BAD SUPERBLOCK AT BLOCK 16: SIZE OF CYLINDER GROUP SUMMARY AREA WRONG
BAD SUPERBLOCK AT BLOCK 16: INOPB NONSENSICAL RELATIVE TO BSIZE

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? yes

FOUND ALTERNATE SUPERBLOCK 32 WITH MKFS

USE ALTERNATE SUPERBLOCK? yes

FOUND ALTERNATE SUPERBLOCK AT 32 USING MKFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2a - Check Duplicated Names
** Phase 2b - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
SALVAGE? yes

UPDATE STANDARD SUPERBLOCK? yes

82 files, 3649 used, 244894 free (6 frags, 30611 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

fsck Reports When it Needs to be Rerun

Better reporting by fsck about when it needs to be rerun should alleviate the time and necessity of running it multiple times, which can be particularly time consuming on large file systems.

The following new messages prompt you to rerun the fsck utility at the end of an error scenario:

***** PLEASE RERUN FSCK *****

Or:

Please rerun fsck(1M) to correct this.

These new prompts resolve the previous difficulty in determining whether fsck should be rerun or not.

Unless you are prompted to rerun fsck as in the above messages, there is no need to run fsck, even after you see the following message:

***** FILE SYSTEM WAS MODIFIED *****

However, it doesn’t harm the file system to rerun fsck after this message. This message is just informational about fsck’s corrective actions.

New fsck Messages Regarding Extended Attributes

New fsck messages are included that report on and repair files with extended attributes. For example:

BAD ATTRIBUTE REFERENCE TO I=1 FROM I=96

Attribute directory I=97 not attached to file I=96
 I=96 OWNER=root MODE=48755
 SIZE=512 MTIME=Jul 12 10:55:10 2010
 DIR= <xattr>

FIX? yes
Better Handling of Duplicate Blocks or Fragments

The fsck error messages now report information about blocks, fragments, or a LFNs, which are the logical fragment numbers from the start of the file. For example, you might see output similar to the following:

** Phase 1 - Check Blocks and Sizes
FRAGMENT 784 DUP I=38 LFN 0
FRAGMENT 785 DUP I=38 LFN 1
FRAGMENT 786 DUP I=38 LFN 2
.
.
.

fsck processes objects as fragments, but in previous Solaris releases, only reported object information as blocks. It now correctly reports as fragments.

If fsck finds error conditions that involve duplicate blocks or fragments, fsck offers to display the uncleared files at end of the fsck output. For example, you might see output similar to the following:

LIST REMAINING DUPS? yes

Some blocks that were found to be in multiple files are still assigned to file(s).

Fragments sorted by inode and logical offsets:

<table>
<thead>
<tr>
<th>Inode 38:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Offset</td>
</tr>
<tr>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000100</td>
</tr>
</tbody>
</table>
Then, you can use the `find -i inode-number` command to identify the name of inode 38, in this example.

Where to Find File System Management Tasks

Use these references to find step-by-step instructions for managing file systems.

<table>
<thead>
<tr>
<th>File System Management Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make local and remote files available to users.</td>
<td>Chapter 18, “Mounting and Unmounting File Systems (Tasks)”</td>
</tr>
<tr>
<td>Connect and configure new disk devices.</td>
<td>Chapter 10, “Managing Disks (Overview)”</td>
</tr>
<tr>
<td>Design and implement a backup schedule and restore files and file systems, as needed.</td>
<td>Chapter 23, “Backing Up and Restoring UFS File Systems (Overview)”</td>
</tr>
<tr>
<td>Check for and correct file system inconsistencies.</td>
<td>Chapter 21, “Checking UFS File System Consistency (Tasks)”</td>
</tr>
</tbody>
</table>

Overview of File Systems

A file system is a structure of directories that is used to organize and store files. The term *file system* is used to describe the following:

- A particular type of file system: disk-based, network-based, or virtual
- The entire file tree, beginning with the root (/) directory
- The data structure of a disk slice or other media storage device
- A portion of a file tree structure that is attached to a mount point on the main file tree so that the files are accessible

Usually, you know from the context which meaning is intended.

The Oracle Solaris OS uses the *virtual file system* (VFS) architecture, which provides a standard interface for different file system types. The VFS architecture enables the kernel to handle basic operations, such as reading, writing, and listing files. The VFS architecture also makes it easier to add new file systems.
Types of File Systems

The Oracle Solaris OS supports three types of file systems:

- Disk-based
- Network-based
- Virtual

To identify the file system type, see “Determining a File System’s Type” on page 322.

Disk-Based File Systems

Disk-based file systems are stored on physical media such as hard disks, DVDs, and diskettes. Disk-based file systems can be written in different formats. The available formats are described in the following table.

<table>
<thead>
<tr>
<th>Disk-Based File System</th>
<th>Format Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFS</td>
<td>UNIX file system (based on the BSD Fat Fast File system that was provided in the 4.3 Tahoe release). UFS is the default disk-based file system for the Oracle Solaris OS. Before you can create a UFS file system on a disk, you must format the disk and divide it into slices. For information on formatting disks and dividing disks into slices, see Chapter 10, “Managing Disks (Overview).”</td>
</tr>
<tr>
<td>ZFS</td>
<td>The ZFS file system is available in the Solaris 10 6/06 release. For more information, see the Oracle Solaris ZFS Administration Guide.</td>
</tr>
<tr>
<td>HSFS</td>
<td>High Sierra, Rock Ridge, and ISO 9660 file system. High Sierra is the first CD-ROM file system. ISO 9660 is the official standard version of the High Sierra file system. The HSFS file system is used on CD-ROMs, and is a read-only file system. Solaris HSFS supports Rock Ridge extensions to ISO 9660. When present on a CD-ROM, these extensions provide all UFS file system features and file types, except for writability and hard links.</td>
</tr>
<tr>
<td>PCFS</td>
<td>PC file system, which allows read- and write- access to data and programs on DOS-formatted disks that are written for DOS-based personal computers.</td>
</tr>
<tr>
<td>UDFS</td>
<td>The Universal Disk Format (UDFS) file system, the industry-standard format for storing information on the optical media technology called DVD (Digital Versatile Disc or Digital Video Disc).</td>
</tr>
</tbody>
</table>

Each type of disk-based file system is customarily associated with a particular media device, as follows:

- UFS with hard disk
- HSFS with CD-ROM
- PCFS with diskette
UDF with DVD

However, these associations are not restrictive. For example, CD-ROMs and diskettes can have UFS file systems created on them.

The Universal Disk Format (UDFS) File System

For information about creating a UDFS file system on removable media, see “How to Create a File System on Removable Media” on page 35.

The UDF file system is the industry-standard format for storing information on DVD (Digital Versatile Disc or Digital Video Disc) optical media.

The UDF file system is provided as dynamically loadable 32-bit and 64-bit modules, with system administration utilities for creating, mounting, and checking the file system on both SPARC and x86 platforms. The Solaris UDF file system works with supported ATAPI and SCSI DVD drives, CD-ROM devices, and disk and diskette drives. In addition, the Solaris UDF file system is fully compliant with the UDF 1.50 specification.

The UDF file system provides the following features:

- Ability to access the industry-standard CD-ROM and DVD-ROM media when they contain a UDF file system
- Flexibility in exchanging information across platforms and operating systems
- A mechanism for implementing new applications rich in broadcast-quality video, high-quality sound, and interactivity using the DVD video specification based on UDF format

The following features are not included in the UDF file system:

- Support for write-once media, (CD-RW), with either the sequential disk-at-once recording and incremental recording
- UFS components such as quotas, ACLs, transaction logging, file system locking, and file system threads, which are not part of the UDF 1.50 specification

The UDF file system requires the following:

- At least the Solaris 7 11/99 release
- Supported SPARC or x86 platform
- Supported CD-ROM or DVD-ROM device

The Solaris UDF file system implementation provides the following:

- Support for industry-standard read/write UDF version 1.50
- Fully internationalized file system utilities
Network-Based File Systems

Network-based file systems can be accessed from the network. Typically, network-based file systems reside on one system, typically a server, and are accessed by other systems across the network.

With NFS, you can administer distributed *resources* (files or directories) by exporting them from a server and mounting them on individual clients. For more information, see "The NFS Environment" on page 320.

Virtual File Systems

Virtual file systems are memory-based file systems that provide access to special kernel information and facilities. Most virtual file systems do not use file system disk space. However, the CacheFS file system uses a file system on the disk to contain the cache. Also, some virtual file systems, such as the temporary file system (TMPFS), use the swap space on a disk.

CacheFS File System

The CacheFS file system can be used to improve the performance of remote file systems or slow devices such as CD-ROM drives. When a file system is cached, the data that is read from the remote file system or CD-ROM is stored in a cache on the local system.

If you want to improve the performance and scalability of an NFS or CD-ROM file system, you should use the CacheFS file system. The CacheFS software is a general purpose caching mechanism for file systems that improves NFS server performance and scalability by reducing server and network load.

Designed as a layered file system, the CacheFS software provides the ability to cache one file system on another. In an NFS environment, CacheFS software increases the client per server ratio, reduces server and network loads, and improves performance for clients on slow links, such as Point-to-Point Protocol (PPP). You can also combine a CacheFS file system with the autofs service to help boost performance and scalability.

For detailed information about the CacheFS file system, see Chapter 19, "Using The CacheFS File System (Tasks)."

NFS Version 4 and CacheFS Compatibility Issues

If both the CacheFS client and the CacheFS server are running NFS version 4, files are no longer cached in a front file system. All file access is provided by the back file system. Also, since no files are being cached in the front file system, CacheFS-specific mount options, which are meant to affect the front file system, are ignored. CacheFS-specific mount options do not apply to the back file system.
Note – The first time you configure your system for NFS version 4, a warning appears on the console to indicate that caching is no longer performed.

If you want to implement your CacheFS mounts as in previous Solaris releases, then specify NFS version 3 in your CacheFS mount commands. For example:

```
mount -F cachefs -o backfstype=nfs,cachedir=/local/mycache,vers=3
starbug:/docs /docs
```

Temporary File System

The temporary file system (TMPFS) uses local memory for file system reads and writes. Typically, using memory for file system reads and writes is much faster than using a UFS file system. Using TMPFS can improve system performance by saving the cost of reading and writing temporary files to a local disk or across the network. For example, temporary files are created when you compile a program. The OS generates a much disk activity or network activity while manipulating these files. Using TMPFS to hold these temporary files can significantly speed up their creation, manipulation, and deletion.

Files in TMPFS file systems are not permanent. These files are deleted when the file system is unmounted and when the system is shut down or rebooted.

TMPFS is the default file system type for the /tmp directory in the Oracle Solaris OS. You can copy or move files into or out of the /tmp directory, just as you would in a UFS file system.

The TMPFS file system uses swap space as a temporary backing store. If a system with a TMPFS file system does not have adequate swap space, two problems can occur:

- The TMPFS file system can run out of space, just as regular file systems do.
- Because TMPFS allocates swap space to save file data (if necessary), some programs might not execute because of insufficient swap space.

For information about creating TMPFS file systems, see Chapter 17, “Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks).” For information about increasing swap space, see Chapter 20, “Configuring Additional Swap Space (Tasks).”

The Loopback File System

The loopback file system (LOFS) lets you create a new virtual file system so that you can access files by using an alternative path name. For example, you can create a loopback mount of the root (/) directory on /tmp/newroot. This loopback mounts make the entire file system hierarchy appear as if it is duplicated under /tmp/newroot, including any file systems mounted from NFS servers. All files will be accessible either with a path name starting from root (/), or with a path name that starts from /tmp/newroot.
For information on how to create LOFS file systems, see Chapter 17, “Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks).”

Process File System

The process file system (PROCFS) resides in memory and contains a list of active processes, by process number, in the /proc directory. Information in the /proc directory is used by commands such as ps. Debuggers and other development tools can also access the address space of the processes by using file system calls.

Caution – Do not delete files in the /proc directory. The deletion of processes from the /proc directory does not kill them. /proc files do not use disk space, so there is no reason to delete files from this directory.

The /proc directory does not require administration.

Additional Virtual File Systems

These additional types of virtual file systems are listed for your information. They do not require administration.

<table>
<thead>
<tr>
<th>Virtual File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTFS</td>
<td>CTFs (the contract file system) is the interface for creating, controlling, and observing contracts. A contract enhances the relationship between a process and the system resources it depends on by providing richer error reporting and (optionally) a means of delaying the removal of a resource. The service management facility (SMF) uses process contracts (a type of contract) to track the processes which compose a service, so that a failure in a part of a multi-process service can be identified as a failure of that service.</td>
</tr>
<tr>
<td>FIFOFS (first-in first-out)</td>
<td>Named pipe files that give processes common access to data</td>
</tr>
<tr>
<td>FDFS (file descriptors)</td>
<td>Provides explicit names for opening files by using file descriptors</td>
</tr>
<tr>
<td>MNTFS</td>
<td>Provides read-only access to the table of mounted file systems for the local system</td>
</tr>
<tr>
<td>NAMEFS</td>
<td>Used mostly by STREAMS for dynamic mounts of file descriptors on top of files</td>
</tr>
<tr>
<td>OBJFS</td>
<td>The OBJFS (object) file system describes the state of all modules currently loaded by the kernel. This file system is used by debuggers to access information about kernel symbols without having to access the kernel directly.</td>
</tr>
</tbody>
</table>
Virtual File System Description

<table>
<thead>
<tr>
<th>Virtual File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAREFS</td>
<td>Provides read-only access to the table of shared file systems for the local system</td>
</tr>
<tr>
<td>SPECFS (special)</td>
<td>Provides access to character special devices and block devices</td>
</tr>
<tr>
<td>SWAPFS</td>
<td>Used by the kernel for swapping</td>
</tr>
</tbody>
</table>

libc_hwcap

The mount output on an x86 system might include a loopback mount of a libc_hwcap library, a hardware-optimized implementation of libc. This libc implementation is intended to optimize the performance of 32-bit applications.

This loopback mount requires no administration and consumes no disk space.

Extended File Attributes

The UFS, NFS, and TMPFS file systems have been enhanced to include extended file attributes. Extended file attributes enable application developers to associate specific attributes to a file. For example, a developer of an application used to manage a windowing system might choose to associate a display icon with a file. Extended file attributes are logically represented as files within a hidden directory that is associated with the target file.

You can use the runat command to add attributes and execute shell commands in the extended attribute namespace. This namespace is a hidden attribute directory that is associated with the specified file.

To use the runat command to add attributes to a file, you first have to create the attributes file.

```
$ runat filea cp /tmp/attrdata attr.1
```

Then, use the runat command to list the attributes of the file.

```
$ runat filea ls -l
```

For more information, see the runat(1) man page.

Many Solaris file system commands have been modified to support file system attributes by providing an attribute-aware option. Use this option to query, copy, or find file attributes. For more information, see the specific man page for each file system command.

Swap Space

The Oracle Solaris OS uses some disk slices for temporary storage rather than for file systems. These slices are called swap slices, or swap space. Swap space is used for virtual memory storage areas when the system does not have enough physical memory to handle current processes.
Since many applications rely on swap space, you should know how to plan for, monitor, and add more swap space, when needed. For an overview about swap space and instructions for adding swap space, see Chapter 20, “Configuring Additional Swap Space (Tasks).”

Commands for UFS File System Administration

Most commands for file system administration have both a generic component and a file system–specific component. Whenever possible, you should use the generic commands, which call the file system–specific component. The following table lists the generic commands for file system administration. These commands are located in the `/usr/sbin` directory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clri</td>
<td>Clears inodes</td>
<td>clri(1M)</td>
</tr>
<tr>
<td>df</td>
<td>Reports the number of free disk blocks and files</td>
<td>df(1M)</td>
</tr>
<tr>
<td>ff</td>
<td>Lists file names and statistics for a file system</td>
<td>ff(1M)</td>
</tr>
<tr>
<td>fsck</td>
<td>Checks the integrity of a file system and repairs any damage found</td>
<td>fsck(1M)</td>
</tr>
<tr>
<td>fsdb</td>
<td>Debugs the file system</td>
<td>fsdb(1M)</td>
</tr>
<tr>
<td>fstyp</td>
<td>Determines the file system type</td>
<td>fstyp(1M)</td>
</tr>
<tr>
<td>labelit</td>
<td>Lists or provides labels for file systems when they are copied to tape (for use only by the <code>volcopy</code> command)</td>
<td>labelit(1M)</td>
</tr>
<tr>
<td>mkfs</td>
<td>Creates a new file system</td>
<td>mkfs(1M)</td>
</tr>
<tr>
<td>mount</td>
<td>Mounts local and remote file systems</td>
<td>mount(1M)</td>
</tr>
<tr>
<td>mountall</td>
<td>Mounts all file systems that are specified in the virtual file system table (<code>/etc/vfstab</code>)</td>
<td>mountall(1M)</td>
</tr>
<tr>
<td>ncheck</td>
<td>Generates a list of path names with their inode numbers</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>umount</td>
<td>Unmounts local and remote file systems</td>
<td>umount(1M)</td>
</tr>
<tr>
<td>umountall</td>
<td>Unmounts all file systems that are specified in the virtual file system table (<code>/etc/vfstab</code>)</td>
<td>umountall(1M)</td>
</tr>
<tr>
<td>volcopy</td>
<td>Creates an image copy of a file system</td>
<td>volcopy(1M)</td>
</tr>
</tbody>
</table>
How File System Commands Determine the File System Type

The generic file system commands determine the file system type by following this sequence:

1. From the `-F` option, if supplied.
2. By matching a special device with an entry in the `/etc/vfstab` file (if the `special` device is supplied). For example, `fsck` first looks for a match against the `fsck device` field. If no match is found, the command then checks the `special` device field.
3. By using the default specified in the `/etc/default/fs` file for local file systems and in the `/etc/dfs/fstypes` file for remote file systems.

Manual Pages for Generic and Specific File System Commands

Both the generic commands and specific commands have manual pages in the `man pages` section 1M: System Administration Commands. The manual pages for the generic file system commands provide information about generic command options only. The manual page for a specific file system command has information about options for that file system. To look at a manual page for a specific file system, append an underscore and the abbreviation for the file system type to the generic command name.

For example, to see the specific manual page for mounting a UFS file system, type the following:

```bash
$ man mount_ufs
```

For example, to see the specific manual page for mounting a ZFS file system, type the following:

```bash
$ man zfs
```

Default Solaris File Systems

The ZFS or UFS file system is hierarchical, starting with the root directory (`/`) and continuing downwards through a number of directories. The Solaris installation process enables you to install a default set of directories and uses a set of conventions to group similar types of files together.

For a description of the contents of Solaris file systems and directories, see `filesystem(5)`.

The following table provides a summary of the default Solaris file systems.
The Default Solaris File Systems

<table>
<thead>
<tr>
<th>File System or Directory</th>
<th>File System Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/)</td>
<td>UFS or ZFS</td>
<td>The top of the hierarchical file tree. The root (/) directory contains the directories and files that are critical for system operation, such as the kernel, the device drivers, and the programs used to boot the system. The root (/) directory also contains the mount point directories where local and remote file systems can be attached to the file tree.</td>
</tr>
<tr>
<td>/usr</td>
<td>UFS or ZFS</td>
<td>System files and directories that can be shared with other users. Files that run only on certain types of systems are in the /usr file system or directory (for example, SPARC executables). Files that can be used on all types of systems, such as the man pages, might be placed in the /usr/share directory.</td>
</tr>
<tr>
<td>/export/home or /home</td>
<td>NFS, UFS, or ZFS</td>
<td>The mount point for user home directories, which store user work files. By default, the /home directory is an automounted file system. On stand-alone systems, the /home directory might be a UFS file system or a ZFS file system.</td>
</tr>
<tr>
<td>/var</td>
<td>UFS or ZFS</td>
<td>System files and directories that are likely to change or grow over the life of the local system. These include system logs, such as vi and ex backup files.</td>
</tr>
<tr>
<td>/opt</td>
<td>NFS, UFS or ZFS</td>
<td>Optional mount point for third-party software. On some systems, the /opt directory might be a UFS file system or ZFS file system.</td>
</tr>
<tr>
<td>/tmp</td>
<td>TMPFS</td>
<td>Temporary files, which are removed each time the system is booted or the /tmp file system is unmounted.</td>
</tr>
<tr>
<td>/proc</td>
<td>PROCFS</td>
<td>A list of active processes, by process number.</td>
</tr>
<tr>
<td>/etc/mnttab</td>
<td>MNTFS</td>
<td>A virtual file system that provides read-only access to the table of mounted file systems for the local system.</td>
</tr>
<tr>
<td>/var/run</td>
<td>TMPFS</td>
<td>A memory-based file system for storing temporary files that are not needed after the system is booted.</td>
</tr>
<tr>
<td>/system/contract</td>
<td>CTFS</td>
<td>A virtual file system that maintains contract information.</td>
</tr>
<tr>
<td>/system/object</td>
<td>OBJFS</td>
<td>A virtual file system that is used by debuggers to access information about kernel symbols without having to access the kernel directly.</td>
</tr>
</tbody>
</table>

The root (/) and /usr file systems are required to run a system. Some of the most basic commands in the /usr file system (like mount) are also included in the root (/) file system. As such, they are available when the system boots or is in single-user mode, and /usr is not mounted. For more detailed information on the default directories for the root (/) and /usr file systems, see Chapter 22, "UFS File System (Reference)."
UFS File System

See the following sections for details about the UFS file system.

- “UFS File System Features” on page 311
- “Planning UFS File Systems” on page 312
- “64-bit: Support of Multiterabyte UFS File Systems” on page 312
- “UFS Logging” on page 314
- “UFS Snapshots” on page 316
- “UFS Direct Input/Output (I/O)” on page 316

UFS File System Features

UFS is the default disk-based file system in Oracle Solaris OS. Most often, when you administer a disk-based file system, you are administering UFS file systems. UFS provides the following features.

<table>
<thead>
<tr>
<th>UFS Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended fundamental types (EFT)</td>
<td>Provides 32-bit user ID (UID), group ID (GID), and device numbers.</td>
</tr>
<tr>
<td>Large file systems</td>
<td>Allows files of about 1 terabyte in size in a file system that can be up to 16 terabytes in size. You can create a multiterabyte UFS file system on a disk with an EFI disk label.</td>
</tr>
<tr>
<td>Logging</td>
<td>UFS logging bundles the multiple metadata changes that comprise a complete UFS operation into a transaction. Sets of transactions are recorded in an on-disk log and are applied to the actual UFS file system's metadata.</td>
</tr>
<tr>
<td>Multiterabyte file systems</td>
<td>A multiterabyte file system enables creation of a UFS file system up to approximately 16 terabytes of usable space, minus approximately one percent overhead.</td>
</tr>
<tr>
<td>State flags</td>
<td>Shows the state of the file system: clean, stable, active, logging, or unknown. These flags eliminate unnecessary file system checks. If the file system is “clean,” “stable,” or “logging,” file system checks are not run.</td>
</tr>
</tbody>
</table>

For detailed information about the UFS file system structure, see Chapter 22, "UFS File System (Reference)."
Planning UFS File Systems

When laying out file systems, you need to consider possible conflicting demands. Here are some suggestions:

- Distribute the workload as evenly as possible among different I/O systems and disk drives. Distribute the /export/home file system and swap space evenly across disks.
- Keep pieces of projects or members of groups within the same file system.
- Use as few file systems per disk as possible. On the system (or boot) disk, you should have three file systems: root (/), /usr, and swap space. On other disks, create one or at most two file systems, with one file system preferably being additional swap space. Fewer, roomier file systems cause less file fragmentation than many small, over crowded file systems. Higher-capacity tape drives and the ability of the ufsdump command to handle multiple volumes make it easier to back up larger file systems.
- If you have some users who consistently create very small files, consider creating a separate file system with more inodes. However, most sites do not need to keep similar types of user files in the same file system.

For information on default file system parameters as well as procedures for creating new UFS file systems, see Chapter 17, “Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks).”

64-bit: Support of Multiterabyte UFS File Systems

This Solaris release provides support for multiterabyte UFS file systems on systems that run a 64-bit Solaris kernel.

Previously, UFS file systems were limited to approximately 1 terabyte on both 64-bit and 32-bit systems. All UFS file system commands and utilities have been updated to support multiterabyte UFS file systems.

For example, the ufsdump command has been updated with a larger block size for dumping large UFS file systems:

```
# ufsdump 0f /dev/md/rdsk/d97 /dev/md/rdsk/d98
Dump: Date of this level 0 dump: Mon Jul 12 10:51:10 2010
Dump: Date of last level 0 dump: the epoch
Dump: Dumping /dev/md/rdsk/d97 to /dev/md/rdsk/d98
Dump: Mapping [regular files]
Dump: Mapping [directories]
Dump: Writing 32 Kilobyte records
Dump: Estimated 17439410 blocks (8515.34MB).
Dump: Dumping [directories]
Dump: Dumping [regular files]
```

Administering UFS file systems that are less than 1 terabyte remains the same. No administration differences exist between UFS file systems that are less than one terabyte and file systems that are greater than 1 terabyte.
You can initially create a UFS file system that is less than 1 terabyte and specify that it can eventually be expanded into a multiterabyte file system by using the newfs -T option. This option sets the inode and fragment density to scale appropriately for a multiterabyte file system.

Using the newfs -T option when you create a UFS file system less than 1 terabyte on a system running a 32-bit kernel enables you to eventually expand this file system by using the growfs command when you boot this system under a 64-bit kernel. For more information, see newfs(1M).

You can use the fstyp -v command to identify whether a UFS file system has multiterabyte support by checking the following value in the magic column:

```
# /usr/sbin/fstyp -v /dev/md/rdsk/d3 | head -5
ufs magic decade format dynamic time Mon Jul 12 11:12:36 2010
```

A UFS file system with no multiterabyte support has the following fstyp output:

```
# /usr/sbin/fstyp -v /dev/md/rdsk/d0 | head -5
ufs magic 11954 format dynamic time Mon Jul 12 12:41:29 2010
```

You can use the growfs command to expand a UFS file system to the size of the slice or the volume without loss of service or data. For more information, see growfs(1M).

Two new related features are multiterabyte volume support with the EFI disk label and multiterabyte volume support with Solaris Volume Manager. For more information, see "EFI Disk Label" on page 185 and the Solaris Volume Manager Administration Guide.

Features of Multiterabyte UFS File Systems

Multiterabyte UFS file systems include the following features:

- Provides the ability to create a UFS file system up to 16 terabytes in size.
- Provides the ability to create a file system less than 16 terabytes that can later be increased in size up to 16 terabytes.
- Multiterabyte file systems can be created on physical disks, Solaris Volume Manager's logical volumes, and Veritas' VxVM logical volumes.
- Multiterabyte file systems benefit from the performance improvements of having UFS logging enabled. Multiterabyte file systems also benefit from the availability of logging because the fsck command might not have to be run when logging is enabled.
- When you create a partition for your multiterabyte UFS file system, the disk will be labeled automatically with an EFI disk label. For more information on EFI disk labels, see "EFI Disk Label" on page 185.
- Provides the ability to snapshot a multiterabyte file system by creating multiple backing store files when a file system is over 512 GB.
Limitations of Multiterabyte UFS File Systems

Limitations of multiterabyte UFS file systems are as follows:

- This feature is not supported on 32-bit systems.
- You cannot mount a file system greater than 1 terabyte on a system that is running a 32-bit Solaris kernel.
- There is no support for individual files greater than 1 terabyte.
- The maximum number of files is 1 million files per terabyte of a UFS file system. For example, a 4-terabyte file system can contain 4 million files. This limit is intended to reduce the time it takes to check the file system with the fsck command.
- The maximum quota that you can set on a multiterabyte UFS file system is 2 terabytes of 1024-byte blocks.

Where to Find Multiterabyte UFS Tasks

Use these references to find step-by-step instructions for working with multiterabyte UFS file systems.

<table>
<thead>
<tr>
<th>Multiterabyte UFS Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create multiterabyte UFS file systems</td>
<td>“How to Create a Multiterabyte UFS File System” on page 328</td>
</tr>
<tr>
<td></td>
<td>“How to Expand a Multiterabyte UFS File System” on page 330</td>
</tr>
<tr>
<td></td>
<td>“How to Expand a UFS File System to a Multiterabyte UFS File System” on page 331</td>
</tr>
<tr>
<td>Create a multiterabyte UFS snapshot</td>
<td>Example 25–2</td>
</tr>
<tr>
<td>Troubleshoot multiterabyte UFS problems</td>
<td>“Troubleshooting Multiterabyte UFS File System Problems” on page 332</td>
</tr>
</tbody>
</table>

UFS Logging

UFS logging bundles the multiple metadata changes that comprise a complete UFS operation into a transaction. Sets of transactions are recorded in an on-disk log. Then, they are applied to the actual UFS file system's metadata.

At reboot, the system discards incomplete transactions, but applies the transactions for completed operations. The file system remains consistent because only completed transactions are ever applied. This consistency remains even when a system crashes. A system crash might interrupt system calls and introduces inconsistencies into a UFS file system.
UFS logging provides two advantages:

- If the file system is already consistent due to the transaction log, you might not have to run the `fsck` command after a system crash or an unclean shutdown. For more information on unclean shutdowns, see “What the `fsck` Command Checks and Tries to Repair” on page 397.
- The performance of UFS logging improves or exceeds the level of performance of non-logging file systems. This improvement can occur because a file system with logging enabled converts multiple updates to the same data into single updates. Thus, reducing the number of overhead disk operations required.

Logging is enabled by default for all UFS file systems, except under the following conditions:

- When logging is explicitly disabled.
- If there is insufficient file system space for the log.

In previous Solaris releases, you had to manually enable UFS logging.

Keep the following issues in mind when using UFS logging:

- Ensure that you have enough disk space for your general system needs, such as for users and applications, and for UFS logging.
- If you don’t have enough disk space for logging data, a message similar to the following is displayed:

```bash
# mount /dev/dsk/c0t4d0s0 /mnt
/mnt: No space left on device
Could not enable logging for /mnt on /dev/dsk/c0t4d0s0.
#
```

However, the file system is still mounted. For example:

```bash
# df -h /mnt
Filesystem size used avail capacity Mounted on
/dev/dsk/c0t4d0s0 142M 142M 0K 100% /mnt
#
```

- A UFS file system with logging enabled that is generally empty will have some disk space consumed for the log.
- If you upgrade to this Solaris release from a previous Solaris release, your UFS file systems will have logging enabled, even if the `logging` option was not specified in the `/etc/vfstab` file. To disable logging, add the `nologging` option to the UFS file system entries in the `/etc/vfstab` file.

The UFS transaction log has the following characteristics:

- Is allocated from free blocks on the file system.
- Sized at approximately 1 MB per 1 GB of file system space, up to 256 MB. The log size might be larger, up to a maximum of 512 MB, if the file system has a large number of cylinder groups.
- Continually flushed as it fills up
- Also flushed when the file system is unmounted or as a result of any `lockfs` command.

If you need to enable UFS logging, specify the `-o logging` option with the `mount` command in the `/etc/vfstab` file or when you manually mount the file system. Logging can be enabled on any UFS file system, including the root (`/`) file system. Also, the `fsdb` command has new debugging commands to support UFS logging.

In some operating systems, a file system with logging enabled is known as a *journaling* file system.

UFS Snapshots

You can use the `fssnap` command to create a read-only snapshot of a file system. A *snapshot* is a file system's temporary image that is intended for backup operations.

See Chapter 25, "Using UFS Snapshots (Tasks)," for more information.

UFS Direct Input/Output (I/O)

Direct I/O is intended to boost bulk I/O operations. Bulk I/O operations use large buffer sizes to transfer large files (larger than 256 KB).

Using UFS direct I/O might benefit applications, such as database engines, that do their own internal buffering. UFS direct I/O allows the same kind of I/O concurrency that occurs when raw devices are accessed. Now you can get the benefit of file system naming and flexibility with very little performance penalty. Check with your database vendor to see if it can enable UFS direct I/O in its product configuration options.

Direct I/O can also be enabled on a file system by using the `forcedirectio` option to the `mount` command. Enabling direct I/O is a performance benefit only when a file system is transferring large amounts of sequential data.

When a file system is mounted with this option, data is transferred directly between a user’s address space and the disk. When forced direct I/O is not enabled for a file system, data transferred between a user’s address space and the disk is first buffered in the kernel address space.

The default behavior is no forced direct I/O on a UFS file system. For more information, see `mount_ufs(1M)`.
Mounting and Unmounting File Systems

Before you can access the files on a file system, you need to mount the file system. When you mount a file system, you attach that file system to a directory (mount point) and make it available to the system. The root (/) file system is always mounted. Any other file system can be connected or disconnected from the root (/) file system.

When you mount a file system, any files or directories in the underlying mount point directory are unavailable as long as the file system is mounted. These files are not permanently affected by the mounting process. They become available again when the file system is unmounted. However, mount directories are typically empty because you usually do not want to obscure existing files.

For example, the following figure shows a local file system, starting with a root (/) file system and the sbin, etc, and opt subdirectories.

To access a local file system from the /opt file system that contains a set of unbundled products, you must do the following:

- First, you must create a directory to use as a mount point for the file system you want to mount, for example, /opt/unbundled.
Once the mount point is created, you can mount the file system by using the mount command. This command makes all of the files and directories in /opt/unbundled available, as shown in the following figure.

For step-by-step instructions on how to mount file systems, see Chapter 18, "Mounting and Unmounting File Systems (Tasks)."

The Mounted File System Table

Whenever you mount or unmount a file system, the /etc/mnttab (mount table) file is modified with the list of currently mounted file systems. You can display the contents of this file by using the cat or more commands. However, you cannot edit this file. Here is an example of an /etc/mnttab file:

```
$ more /etc/mnttab
rpool/ROOT/zfs509BE  /   zfs   dev=4010002   0
/devices /devices    devfs dev=50000000  1235087509
ctfs /system/contract cctfs dev=5040001   1235087509
proc /proc proc dev=5060000  1235087509
mnttab /etc/mnttab   mntfs dev=50c00000  1235087509
```
The Virtual File System Table

Manually mounting file systems every time you wanted to access them would be a very
time-consuming and error-prone. To avoid these problems, the virtual file system table (the
/etc/vfstab file) provides a list of file systems and information on how to mount them.

The /etc/vfstab file provides two important features:

- You can specify file systems to automatically mount when the system boots. ZFS file systems
 are automatically mounted at boot time by an SMF service without entries in the vfstab file.
- You can mount file systems by using only the mount point name. The /etc/vfstab file
 contains the mapping between the mount point and the actual device slice name.

A default /etc/vfstab file is created when you install a system, depending on the selections
during installation. However, you can edit the /etc/vfstab file on a system whenever you
want. To add an entry, the information you need to specify is as follows:

- The device where the file system resides
- The file system mount point
- File system type
- Whether you want the file system to mount automatically when the system boots (by using
 the mountall command)
- Any mount options

The following is an example of an /etc/vfstab file for a system that runs a UFS root file system.
Comment lines begin with #. This example shows an /etc/vfstab file for a system with two
disks (c0t0d0 and c0t3d0).

The Virtual File System Table

Mounting and Unmounting File Systems
In this example, root (/) and /usr, the mount at boot field value is specified as no. These file systems are mounted by the kernel as part of the boot sequence before the mountall command is run.

The following vfsstab example if from a system that runs a ZFS root file system.

```
# cat /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
fd - /dev/fd fd - no -
/proc - /proc proc - no -
/dev/zvol/dsk/rpool/swap - - swap - no -
/devices - /devices devfs - no -
sharefs - /etc/dfs/sharetabsharefs - no -
ctfs - /system/contract ctfs - no -
objs - /system/object objs - no -
swap - /tmp tmpfs - yes -
```

ZFS file systems are mounted automatically by the SMF service at boot time. You can mount ZFS file systems from the vfsstab by using the legacy mount feature. For more information, see Oracle Solaris ZFS Administration Guide.

For descriptions of each /etc/vfstab field and information on how to edit and use the file, see Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

The NFS Environment

NFS is a distributed file system service that can be used to share resources (files or directories) from one system, typically a server, with other systems on the network. For example, you might want to share third-party applications or source files with users on other systems.

NFS makes the actual physical location of the resource irrelevant to the user. Instead of placing copies of commonly used files on every system, NFS allows you to place one copy on one system’s disk and let all other systems access it from the network. Under NFS, remote files are virtually indistinguishable from local files.

For more information, see Chapter 4, “Managing Network File Systems (Overview),” in System Administration Guide: Network Services.

A system becomes an NFS server if it has resources to share on the network. A server keeps a list of currently shared resources and their access restrictions (such as read/write or read-only access).
When you share a resource, you make it available for mounting by remote systems.

You can share a resource in these ways:

- By using the `share` or `shareall` command
- By adding an entry to the `/etc/dfs/dfstab` (distributed file system table) file and rebooting the system

For information on how to share resources, see Chapter 18, "Mounting and Unmounting File Systems (Tasks)." For a complete description of NFS, see Chapter 4, "Managing Network File Systems (Overview)," in System Administration Guide: Network Services.

NFS Version 4

Sun's implementation of the NFS version 4 distributed file access protocol is included in the Solaris release.

NFS version 4 integrates file access, file locking, and mount protocols into a single, unified protocol to ease traversal through a firewall and improve security. The Solaris implementation of NFS version 4 is fully integrated with Kerberos V5, also known as SEAM, thus providing authentication, integrity, and privacy. NFS version 4 also enables the negotiation of security flavors to be used between the client and the server. With NFS version 4, a server can offer different security flavors for different file systems.

For more information about NFS Version 4 features, see “What's New With the NFS Service” in System Administration Guide: Network Services.

Automounting (autofs)

You can mount NFS file system resources by using a client-side service called autofs. The autofs service enables a system to automatically mount and unmount NFS resources whenever you access them. The resource remains mounted as long as you remain in the directory and are using a file within that directory. If the resource is not accessed for a certain period of time, it is automatically unmounted.

The autofs service provides the following features:

- NFS resources don't need to be mounted when the system boots, which saves booting time.
- Users don't need to know the root password to mount and unmount NFS resources.
- Network traffic might be reduced because NFS resources are mounted only when they are in use.

The autofs service is initialized by the `autofs` utility, which runs automatically when a system is booted. The `autofs` daemon runs continuously and is responsible for the mounting and unmounting of NFS file systems on an as-needed basis. By default, the `/home` file system is mounted by the `autofs` daemon.
With autofs, you can specify multiple servers to provide the same file system. This way, if one of these servers is down, autofs can try to mount the file system from another machine.

For complete information on how to set up and administer autofs, see *System Administration Guide: IP Services*.

Determining a File System's Type

You can determine a file system's type by using one of the following:

- The FS type field in the virtual file system table (the `/etc/vfstab` file)
- The `/etc/default/fs` file for local file systems
- The `/etc/dfs/fstypes` file for NFS file systems

How to Determine a File System's Type

This procedure works whether or not the file system is mounted.

Determine a file system’s type by using the `grep` command.

```bash
$ grep mount-point fs-table

mount-point Specifies the mount point name of the file system for which you want to know the file system type. For example, the `/var` directory.

fs-table Specifies the absolute path to the file system table in which to search for the file system's type. If the file system is mounted, `fs-table` should be `/etc/mnttab`. If the file system isn't mounted, `fs-table` should be `/etc/vfstab`.

Information for the mount point is displayed.
```

Note – If you have the raw device name of a disk slice, you can use the `fstyp` command to determine a file system’s type (if the disk slice contains a file system). For more information, see `fstyp(1M)`.

EXAMPLE 16–1 Determining a File System’s Type

The following example uses the `/etc/vfstab` file to determine the file system type for the `/export` file system.

```bash
$ grep /export /etc/vfstab
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /export ufs 2 yes -
$  
```

The following example uses the `/etc/mnttab` file to determine the file system type of the currently mounted diskette.
The following example uses the `fstyp` command to determine the file system type.

```bash
# fstyp /dev/rasd/c0t0d0s0
zfs
```
Creating ZFS, UFS, TMPFS, and LOFS File Systems (Tasks)

This chapter describes how to create ZFS, UFS, temporary (TMPFS), and loopback (LOFS) file systems. Because TMPFS and LOFS are virtual file systems, you actually “access” them by mounting them.

This is a list of the step-by-step instructions in this chapter.

- “Creating an Oracle Solaris ZFS File System” on page 325
- “How to Create a UFS File System” on page 327
- “How to Create a Multiterabyte UFS File System” on page 328
- “How to Expand a Multiterabyte UFS File System” on page 330
- “How to Expand a UFS File System to a Multiterabyte UFS File System” on page 331
- “How to Create and Mount a TMPFS File System” on page 333
- “How to Create and Mount an LOFS File System” on page 334

Note – For instructions on how to create UFS and DOS file systems on removable media, see Chapter 1, “Managing Removable Media (Overview).”

Creating an Oracle Solaris ZFS File System

A ZFS file system is not directly tied to a specific disk partition. A ZFS file system is contained with a ZFS storage pool that can contain many devices. Either whole disks or disk slices can be added to a ZFS storage pool. Within a pool, you will probably want to create additional file systems. File systems provide points of administration that allow you to manage different sets of data within the same pool.

For more information about creating ZFS storage pools and file systems, see Oracle Solaris ZFS Administration Guide.
How to Create an Oracle Solaris ZFS File System

1. You must be superuser or assume an equivalent role.

2. Create a ZFS storage pool.
 The following example illustrates how to create a simple mirrored storage pool named tank and a ZFS file system named tank in one command. Assume that the whole disks /dev/dsk/c1t0d0 and /dev/dsk/c2t0d0 are available for use.
   ```
   # zpool create tank mirror c1t0d0 c2t0d0
   ```

3. Create a ZFS file system.
   ```
   # zfs create tank/fs
   ```
 The new ZFS file system, tank/fs, can use as much of the disk space as needed, and is automatically mounted at /tank/fs.

4. Confirm that the file system is created.
   ```
   # zfs list -r tank
   NAME USED AVAIL REFER MOUNTPOINT
   tank 117K 268G 21K /tank
   tank/fs 21K 268G 21K /tank/fs
   ```

Creating a UFS File System

Before you can create a UFS file system on a disk, the disk must be formatted and divided into slices. A disk slice is a physical subset of a disk that is composed of a single range of contiguous blocks. A slice can be used either as a raw device that provides, for example, swap space, or to hold a disk-based file system. See Chapter 10, “Managing Disks (Overview),” for complete information on formatting disks and dividing disks into slices.

Disk and storage management products, such as Solaris Volume Manager, create more sophisticated volumes. Volumes expand beyond single-slice or single-disk boundaries. For more information about using volumes, see Solaris Volume Manager Administration Guide.

Note – Solaris device names use the term slice (and the letter s in the device name) to refer to the slice number. Slices are also called partitions.

You need to create UFS file systems only occasionally, because the Oracle Solaris OS automatically creates them as part of the installation process. You need to create (or re-create) a UFS file system when you want to do the following:

- Add or replace disks
- Change the existing partitioning structure of a disk
Fully restore of a file system

The `newfs` command is the standard way to create UFS file systems. The `newfs` command is a convenient front end to the `mkfs` command, which actually creates the new file system. The `newfs` command reads parameter defaults, such as tracks per cylinder and sectors per track, from the label for the disk that will contain the new file system. The options you choose are passed to the `mkfs` command to build the file system.

For information about the default parameters that are used by the `newfs` command, see `newfs(1M)`.

How to Create a UFS File System

Before You Begin
Ensure that you have met the following prerequisites:

- The disk must be formatted and divided into slices.
- If you are re-creating an existing UFS file system, unmount it.
- You need to know the device name of the slice that will contain the file system.

For information on finding disks and disk slice numbers, see Chapter 11, "Administering Disks (Tasks)."

For information on formatting disks and dividing disks into slices, see Chapter 10, "Managing Disks (Overview)."

1. **You must be superuser or assume an equivalent role.**

2. **Create the UFS file system.**

   ```bash
   # newfs [-N] [-b size] [-i bytes] /dev/rdsk/device-name
   ```

 - `-N` Displays what parameters the `newfs` command would pass to the `mkfs` command without actually creating the file system. This option is a good way to test the `newfs` command.

 - `-b size` Specifies the block size for the file system, either 4096 or 8192 bytes per block. The default is 8192.

 - `-i bytes` Specifies the number of bytes per inode. The default varies depending on the disk size. For more information, see `newfs(1M)`.

 `device-name` Specifies the disk device name on which to create the new file system.

 The system asks for confirmation.
Creating a UFS File System

Caution – Be sure you have specified the correct device name for the slice before performing this step. If you specify the wrong slice, you will erase its contents when the new file system is created. This error might cause the system to panic.

3 To verify the creation of the UFS file system, check the new file system.

```
# fsck /dev/rdsk/device-name
```

where `device-name` argument specifies the name of the disk device that contains the new file system.

The `fsck` command checks the consistency of the new file system, reports any problems, and prompts you before it repairs the problems. For more information on the `fsck` command, see Chapter 21, “Checking UFS File System Consistency (Tasks),” or `fsck(1M)`.

Example 17–1 Creating a UFS File System

The following example shows how to create a UFS file system on `/dev/rdsk/c0t1d0s7`.

```
# newfs /dev/rdsk/c0t1d0s7
/dev/rdsk/c0t1d0s7: 725760 sectors in 720 cylinders of 14 tracks, 72 sectors
354.4MB in 45 cyl groups (16 c/g, 7.8MB/g, 3776 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 16240, 32480, 48656, 64864, 81072, 97280, 113488, 129696, 145904, 162112,
178320, 194528, 210736, 226944, 243152, 258860, 274288, 290496, 306704,
322912, 339120, 355328, 371536, 387744, 403952, 420160, 436368, 452576,
468784, 484992, 501200, 516128, 532336, 548544, 564752, 580960, 597168,
613376, 629584, 645792, 662000, 678208, 694416, 710624,
fsck /dev/rdsk/c0t1d0s7
#`

More Information After You Create a UFS File System...

To mount the UFS file system and make it available, go to Chapter 18, “Mounting and Unmounting File Systems (Tasks).”

How to Create a Multiterabyte UFS File System

Support for a multiterabyte UFS file system assumes the availability of multiterabyte LUNs, provided as Solaris Volume Manager or VxVM volumes, or as physical disks greater than 1 terabyte.

Before you can create a multiterabyte UFS file system, verify that you have done either of the following:
- Created a multiterabyte disk partition by using the format utility or the Solaris installation utilities
- Set up a multiterabyte volume with Solaris Volume Manager

For more information about multiterabyte UFS file systems, see “64-bit: Support of Multiterabyte UFS File Systems” on page 312.

1 **Become superuser.**

2 **Create a multiterabyte UFS file system on a logical volume.**

   For example, this command creates a UFS file system for a 1.8 terabyte volume:

   ```
 # newfs /dev/md/rdsk/d99
 newfs: construct a new file system /dev/md/rdsk/d99: (y/n)? y
 /dev/md/rdsk/d99: 385902752 sectors in 620158 cylinders of 48 tracks, 128 sectors
 188474.0MB in 4393 cyl groups (143 c/g, 429.0MB/g, 448 i/g)
 super-block backups (for fsck -F ufs -o b=#) at:
 32, 878752, 1757472, 2636192, 3514912, 4393632, 5272352, 6151072, 702...
 Initializing cylinder groups:
 ..
 super-block backups for last 10 cylinder groups at:
 3850872736, 3851751456, 3852630176, 3853508896, 3854387616, 3855266336,
 3856145056, 3857023776, 3857902496, 3858781216,
 #
   ```

3 **Verify the integrity of the newly created file system.**

   For example:

   ```
 # fsck /dev/md/rdsk/d99
 ** /dev/md/rdsk/d99
 ** /dev/md/rdsk/d99
 ** Last Mounted on
 ** Phase 1 - Check Blocks and Sizes
 ** Phase 2 - Check Pathnames
 ** Phase 3 - Check Connectivity
 ** Phase 4 - Check Reference Counts
 ** Phase 5 - Check Cyl groups
 2 files, 2 used, 24117322 free (0 frags, 24117322 blocks, 0.0% fragmentation)
 #
   ```

4 **Mount and verify the newly created file system.**

   For example:

   ```
 # mount /dev/md/dsk/d99 /bigdir
 # df -h /bigdir
 Filesystem size used avail capacity Mounted on
 /dev/md/dsk/d99 1.8T 64M 1.8T 1% /bigdir
   ```
How to Expand a Multiterabyte UFS File System

After a multiterabyte UFS file system is created, you can use the `growfs` command to expand the file system. For example, using the file system that was created for the volume in the preceding procedure, you can add another disk to this volume. Then, expand the file system.

1 Become superuser.

2 Add another disk to the volume.

For example:

```bash
metattach d99 c4t5d0s4
```
d99: component is attached

```bash
metastat
```
d99: Concat/Stripe

```bash
Size: 5145882624 blocks (2.4 TB)
```

```bash
Stripe 0:
Device Start Block Dbase Reloc
c0t1d0s4 36864 Yes Yes
```

```bash
Stripe 1:
Device Start Block Dbase Reloc
c3t7d0s4 0 No Yes
```

```bash
Stripe 2:
Device Start Block Dbase Reloc
c1t1d0s4 0 No Yes
```

```bash
Stripe 3:
Device Start Block Dbase Reloc
c4t5d0s4 0 No Yes
```

3 Expand the file system.

For example:

```bash
growfs -v /dev/md/rdsk/d99
```

```bash
/usr/lib/fs/ufs/mkfs -G /dev/md/rdsk/d99 5145882624
```

```bash
/dev/md/rdsk/d99: 5145882624 sectors in 837546 cylinders of 48 tracks,
```

```bash
128 sectors
```

```bash
2512638.0MB in 5857 cyl groups (143 c/g, 429.00MB/g, 448 i/g)
```

```bash
super-block backups (for fsck -F ufs -o b=#) at:
```

```bash
32, 878752, 1757472, 2636192, 3514912, 4393632, 5272352, 6151072, 702...
```

```bash
Initializing cylinder groups:
```

........................................................................
```

```bash
super-block backups for last 10 cylinder groups at:
```

```bash
5137130400, 5138009120, 5138887840, 5139766560, 5140645280, 5141524000,
```

```bash
5142402720, 5143281440, 5144160160, 5145038880,
```

#

4 Mount and verify the expanded file system.

For example:

```bash
# mount /dev/md/dsk/d99 /bigdir
```

```bash
# df -h /bigdir
```

```bash
Filesystem size used avail capacity Mounted on
```

```bash
/dev/md/dsk/d99 2.4T 64M 2.4T 1% /bigdir
```
How to Expand a UFS File System to a Multiterabyte UFS File System

Use the following procedure to expand a UFS file system to greater than 1 terabyte in size. This procedure assumes that the *newfs -T* option was used initially to create the UFS file system.

1. **Become superuser.**

2. **Identify the size of the current disk or volume.**
 For example, the following volume is 800 gigabytes:

   ```
   # metadstat d98
   d98: Concat/Stripe
   Size: 1677754368 blocks (800 GB)
   Stripe 0:
     Device Start Block Dbase Reloc
     c0t1d0s4 0 No Yes
   Stripe 1:
     Device Start Block Dbase Reloc
     c3t7d0s4 0 No Yes
   ```

3. **Increase the volume to greater than 1 terabyte.**
 For example:

   ```
   # metadattach d98 c0t1d0s4
   d98: component is attached
   # metadstat d98
   d98: Concat/Stripe
   Size: 2516631552 blocks (1.2 TB)
   Stripe 0:
     Device Start Block Dbase Reloc
     c0t1d0s4 0 No Yes
   Stripe 1:
     Device Start Block Dbase Reloc
     c3t7d0s4 0 No Yes
   Stripe 2:
     Device Start Block Dbase Reloc
     c1t1d0s4 0 No Yes
   ```

4. **Expand the UFS file system for the disk or volume to greater than 1 terabyte.**
 For example:

   ```
   growfs -v /dev/md/rdsk/d98
   /usr/lib/fs/ufs/mkfs -G /dev/md/rdsk2 d98 2516631552
   /dev/md/rdsk/d98: 2516631552 sectors in 68268 cylinders of 144 tracks, 256 sectors
   1228824.0MB in 2731 cyl groups (25 c/g, 450.00MB/g, 448 i/g)
   super-block backups (for fsck -f ufs -o b#) at:
   32, 921888, 1843744, 2765600, 3687456, 4609312, 5531168, 6453024, 737...
   8296736, Initializing cylinder groups:
   ......................................................
   super-block backups for last 10 cylinder groups at:
   ```
5 Mount and verify the expanded file system.

For example:

```
# mount /dev/md/dsk/d98 /datadir
# df -h /datadir
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>size</th>
<th>used</th>
<th>avail</th>
<th>capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/md/dsk/d98</td>
<td>1.2T</td>
<td>64M</td>
<td>1.2T</td>
<td>1%</td>
<td>/datadir</td>
</tr>
</tbody>
</table>

Troubleshooting Multiterabyte UFS File System Problems

Use the following error messages and solutions to troubleshoot problems with multiterabyte UFS file systems.

Error Message (similar to the following):

```
mount: /dev/rdsk/c0t0d0s0 is not this fstype.
```

Cause
You attempted to mount a UFS file system that is greater than 1 terabyte on a system running a Solaris release that does not support this feature.

Solution
Mount a UFS file system that is greater than 1 terabyte on a system running a current Solaris release.

Error Message

"File system was not set up with the multi-terabyte format." "Its size cannot be increased to a terabyte or more."

Cause
You attempted to expand a file system that was not created by using the newfs -T command.

Solution

1. Back up the data for the file system that you want to expand to greater than 1 terabyte.
2. Re-create the file system by using the newfs command to create a multiterabyte file system.
3. Restore the backup data into the newly created file system.
Creating a Temporary File System (TMPFS)

A temporary file system (TMPFS) uses local memory for file system reads and writes, which is typically much faster than reads and writes in a UFS file system. TMPFS file systems can improve system performance by saving the cost of reading and writing temporary files to a local disk or across the network. Files in TMPFS file systems do not survive across reboots or unmounts.

If you create multiple TMPFS file systems, be aware that they all use the same system resources. Files created under one TMPFS file system use up space available for any other TMPFS file system, unless you limit TMPFS sizes by using the -o size option of the mount command.

For more information, see the tmpfs(7FS).

How to Create and Mount a TMPFS File System

1. Become superuser or assume an equivalent role.

2. Create the directory that you want to mount as the TMPFS file system, if necessary.

   ```bash
   mkdir /mount-point
   ```
 where **mount-point** is the directory on which the TMPFS file system is mounted.

3. Mount the TMPFS file system.

   ```bash
   mount -F tmpfs [-o size=number] swap mount-point
   ```

 - `-o size=number` Specifies the size limit of the TMPFS file system in MB.

 - `mount-point` Specifies the directory on which the TMPFS file system is mounted.

 To set up the system to automatically mount a TMPFS file system at boot time, see Example 17–3.

4. Verify that the TMPFS file system has been created.

   ```bash
   mount -v
   ```

Example 17-2 Creating and Mounting a TMPFS File System

The following example shows how to create, mount, and limit the size of the TMPFS file system, `/export/reports`, to 50 MB.

```bash
# mkdir /export/reports
# chmod 777 /export/reports
# mount -F tmpfs -o size=50m swap /export/reports
# mount -v
```
Mounting a TMPFS File System at Boot Time

You can set up the system to automatically mount a TMPFS file system at boot time by adding an /etc/vfstab entry. The following example shows an entry in the /etc/vfstab file that mounts /export/test as a TMPFS file system at boot time. Because the size=number option is not specified, the size of the TMPFS file system on /export/test is limited only by the available system resources.

\[
\text{swap - /export/test tmpfs - yes -}
\]

For more information on the /etc/vfstab file, see "Field Descriptions for the /etc/vfstab File" on page 341.

Creating and Mounting a Loopback File System (LOFS)

An LOFS file system is a virtual file system that provides an alternate path to an existing file system. When other file systems are mounted onto an LOFS file system, the original file system does not change.

For more information, see the lofs(7FS).

Note – Be careful when creating LOFS file systems. Because LOFS file systems are virtual file systems, the potential for confusing both users and applications is enormous.

How to Create and Mount an LOFS File System

1. Become superuser or assume an equivalent role.

2. Create the directory you want to mount as an LOFS file system, if necessary.
 \[
 \# \text{mkdir loopback-directory}
 \]

3. Grant the appropriate permissions and ownership on the newly created directory.

4. Create the mount point where you want to mount the LOFS file system, if necessary.
 \[
 \# \text{mkdir /mount-point}
 \]

5. Mount the LOFS file system.
 \[
 \# \text{mount -F lofs loopback-directory /mount-point}
 \]

 loopback-directory Specifies the file system to be mounted on the loopback mount point.

 /mount-point Specifies the directory on which to mount the LOFS file system.
6 Verify that the LOFS file system has been mounted.
 # mount -v

Example 17–4 Creating and Mounting an LOFS File System

The following example shows how to create, mount, and test new software in the /new/dist directory as a loopback file system without actually having to install it.

 # mkdir /tmp/newroot
 # mount -F lofs /new/dist /tmp/newroot
 # chroot /tmp/newroot newcommand

Example 17–5 Mounting an LOFS File System at Boot Time

You can set up the system to automatically mount an LOFS file system at boot time by adding an entry to the end of the /etc/vfstab file. The following example shows an entry in the /etc/vfstab file that mounts an LOFS file system for the root (/) file system on /tmp/newroot.

 / - /tmp/newroot lofs - yes -

Ensure that the loopback entries are the last entries in the /etc/vfstab file. Otherwise, if the /etc/vfstab entry for a loopback file system precedes the file systems to be included in it, the loopback file system cannot be mounted.

See Also For more information on the /etc/vfstab file, see "Field Descriptions for the /etc/vfstab File" on page 341.
Mounting and Unmounting File Systems (Tasks)

This chapter describes how to mount and unmount file systems in the Oracle Solaris OS.

This is a list of the step-by-step instructions in this chapter.

- “How to Determine Which File Systems Are Mounted” on page 342
- “How to Add an Entry to the /etc/vfstab File” on page 343
- "How to Mount a File System (/etc/vfstab File)” on page 344
- “How to Mount a UFS File System (mount Command)” on page 346
- “How to Mount a UFS File System Without Large Files (mount Command)” on page 346
- “How to Mount an NFS File System (mount Command)” on page 347
- “x86: How to Mount a PCFS (DOS) File System From a Hard Disk (mount Command)” on page 348
- “How to Verify a File System is Unmounted” on page 350
- “How to Stop All Processes Accessing a File System” on page 350
- “How to Unmount a File System” on page 351

Overview of Mounting File Systems

After you create a file system, you need to make it available to the system so that you can use it. You make a file system available by mounting it, which attaches the file system to the system directory tree at the specified mount point. The root (/) file system is always mounted.

The following table provides guidelines on mounting file systems based on how you use them.

<table>
<thead>
<tr>
<th>Mount Type Needed</th>
<th>Suggested Mount Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local or remote file systems that need to be mounted</td>
<td>The mount command that you type manually from the command line.</td>
</tr>
<tr>
<td>infrequently</td>
<td></td>
</tr>
</tbody>
</table>
Overview of Mounting File Systems

<table>
<thead>
<tr>
<th>Mount Type Needed</th>
<th>Suggested Mount Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local UFS file systems that need to be mounted frequently. Local ZFS file systems are automatically mounted by an SMF service.</td>
<td>The <code>/etc/vfstab</code> file, which mounts the file system automatically when the system is booted in multi user state.</td>
</tr>
</tbody>
</table>
| Remote UFS file systems, such as home directories, that need to be mounted frequently | - The `/etc/vfstab` file, which automatically mounts the file system when the system is booted in multiuser state.
 - autofs, which automatically mounts the file system when you access it or unmounts the file system when you change to another directory. |

You can mount removable media that contains a file system by inserting the media into the drive and running the `volcheck` command, if necessary. For more information on mounting removable media, see Chapter 1, “Managing Removable Media (Overview).”

Commands for Mounting and Unmounting UFS File Systems

The following table lists the commands in the `/usr/sbin` directory that you use to mount and unmount UFS file systems.

TABLE 18–1 Commands for Mounting and Unmounting UFS File Systems

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mount</code></td>
<td>Mounts file systems and remote resources.</td>
<td><code>mount(1M)</code></td>
</tr>
<tr>
<td><code>mountall</code></td>
<td>Mounts all file systems that are specified in the <code>/etc/vfstab</code> file. The <code>mountall</code> command runs automatically when the system enters multiuser mode.</td>
<td><code>mountall(1M)</code></td>
</tr>
<tr>
<td><code>umount</code></td>
<td>Unmounts file systems and remote resources.</td>
<td><code>mount(1M)</code></td>
</tr>
<tr>
<td><code>umountall</code></td>
<td>Unmounts all file systems that are specified in the <code>/etc/vfstab</code> file.</td>
<td><code>mountall(1M)</code></td>
</tr>
</tbody>
</table>

For more information about mounting and unmounting ZFS file systems, see the *Oracle Solaris ZFS Administration Guide*.

Keep the following key points in mind when using the `mount` and `mountall` commands:
The `mount` and `mountall` commands cannot mount a read/write file system that has known inconsistencies. If you receive an error message from the `mount` or `mountall` command, you might need to check the file system. See Chapter 21, “Checking UFS File System Consistency (Tasks),” for information on how to check the file system.

The `umount` and `umountall` commands do not unmount a file system that is busy. A file system is considered busy if one of the following is true:

- A user is accessing a file or directory in the file system.
- A program has a file open in that file system.
- The file system is shared.

You can use the `remount` option when remounting from read-only access to read-write access only. You cannot remount from read-write access to read-only access.

Commonly Used UFS Mount Options

The following table describes the commonly used options that you can specify with the `mount` `-o` option. If you specify multiple options, separate them with commas (no spaces). For example, `-o ro, nosuid`.

For a complete list of mount options for each file system type, refer to the specific mount man page (for example, `mount_ufs(1M)`). For information about mounting ZFS file systems, see `zfs(1M)`.

<table>
<thead>
<tr>
<th>mount Option</th>
<th>File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bg</td>
<td>fg</td>
<td>NFS</td>
</tr>
<tr>
<td>hard</td>
<td>soft</td>
<td>NFS</td>
</tr>
<tr>
<td>intr</td>
<td>nointr</td>
<td>NFS</td>
</tr>
<tr>
<td>mount Option</td>
<td>File System</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>largefiles</td>
<td>UFS</td>
<td>Enables you to create files larger than 2 GB. The <code>largefiles</code> option means that a file system mounted with this option might contain files larger than 2 GB. If the <code>nolargefiles</code> option is specified, the file system cannot be mounted on a system that is running an older Solaris version. The default is <code>largefiles</code>.</td>
</tr>
<tr>
<td>nolargefiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logging</td>
<td>UFS</td>
<td>Enables or disables logging for the file system. UFS logging is the process of storing transactions (changes that comprise a complete UFS operation) into a log before the transactions are applied to the UFS file system. Logging helps prevent UFS file systems from becoming inconsistent, which means <code>fsck</code> can be bypassed. Bypassing <code>fsck</code> reduces the time to reboot a system if it crashes, or after a system is shut down uncleanly. The log is allocated from free blocks on the file system, and is sized at about 1 MB per 1 GB of file system space, up to 256 MB. The log size might be larger, up to a maximum of 512 MB, if the file system has a large number of cylinder groups.</td>
</tr>
<tr>
<td>nologging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atime</td>
<td>UFS</td>
<td>Suppresses access time updates on files, except when they coincide with updates to the time of the last file status change or the time of the last file modification. For more information, see <code>stat(2)</code>. This option reduces disk activity on file systems where access times are unimportant (for example, a Usenet news spool). The default is normal access time (atime) recording.</td>
</tr>
<tr>
<td>noatime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remount</td>
<td>All</td>
<td>Changes the mount options associated with an already-mounted file system. This option can generally be used with any option except ro. However, what can be changed with this option depends on the file system type.</td>
</tr>
<tr>
<td>retry=n</td>
<td>NFS</td>
<td>Retries the mount operation when it fails. n is the number of times to retry.</td>
</tr>
<tr>
<td>ro</td>
<td>CacheFS, NFS, PCFS, UFS, HSFS</td>
<td>Specifies read/write (rw) or read-only (ro). If you do not specify this option, the default is rw. The default option for HSFS is ro.</td>
</tr>
<tr>
<td>rw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>suid</td>
<td>CacheFS, HSFS, NFS, UFS</td>
<td>Allows or disallows setuid execution. The default is to allow setuid execution.</td>
</tr>
<tr>
<td>nosuid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Field Descriptions for the /etc/vfstab File

An entry in the /etc/vfstab file has seven fields, which are described in the following table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device to mount</td>
<td>This field identifies one of the following:</td>
</tr>
<tr>
<td></td>
<td>- The block device name for a local UFS file system (for example, /dev/dsk/c0t0d0s0).</td>
</tr>
<tr>
<td></td>
<td>- The resource name for a remote file system (for example, myserver:/export/home). For more information about NFS, see System Administration Guide: IP Services.</td>
</tr>
<tr>
<td></td>
<td>- The block device name of the slice on which to swap (for example, /dev/dsk/c0t3d0s1).</td>
</tr>
<tr>
<td></td>
<td>- A directory for a virtual file system.</td>
</tr>
<tr>
<td>device to fsck</td>
<td>The raw (character) device name that corresponds to the UFS file system identified by the device to mount field (for example, /dev/rdsks/c0t0d0s0). This field determines the raw interface that is used by the fsck command. Use a dash (-) when there is no applicable device, such as for a read-only file system or a remote file system.</td>
</tr>
<tr>
<td>mount point</td>
<td>Identifies where to mount the file system (for example, /usr).</td>
</tr>
<tr>
<td>FS type</td>
<td>Identifies the type of file system.</td>
</tr>
<tr>
<td>fsck pass</td>
<td>The pass number used by the fsck command to decide whether to check a UFS file system. When the field contains a dash (-), the file system is not checked. Currently, the fsck pass value in the /etc/vfstab file is ignored during the boot process.</td>
</tr>
<tr>
<td></td>
<td>When the field contains a zero, UFS file systems are not checked. When the field contains a value greater than zero, the UFS file system is always checked.</td>
</tr>
<tr>
<td></td>
<td>All UFS file systems with a value of 1 in this field are checked one at a time in the order they appear in the vfstab file. When the fsck command is run on multiple UFS file systems that have fsck pass values greater than 1 and the preen option (-o p) is used, the fsck command automatically checks the file systems on different disks in parallel to maximize efficiency. Otherwise, the value of the pass number does not have any effect.</td>
</tr>
</tbody>
</table>
| mount at boot | Set to yes or no for whether the file system should be automatically mounted by the mountall command when the system is booted. Note that this field has nothing to do with autofs. The root (/), /usr and /var file systems are not mounted from the vfstab file initially. This field should always be set to no for these file systems and for virtual file systems such as /proc and /dev/fd.
Mounting File Systems

The following sections describe how to mount a UFS file system by adding an entry in the /etc/vfstab file or by using the mount command from the command line.

How to Determine Which File Systems Are Mounted

You can determine which file systems are already mounted by using the mount command.

$ mount [-v]

The -v displays the list of mounted file systems in verbose mode.

EXAMPLE 18-1 Determining Which File Systems Are Mounted

This example shows how to use the mount command to display information about the file systems that are currently mounted.

$ mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/xattr/onerror=...
/devices on /devices read/write/setuid/dev=46c0000 on Thu Sep ...
/system/contract on ctrfs read/write/setuid/devices/dev=43c0001 ...
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/xattr/...
/proc on /proc read/write/setuid/dev=4700000 on Thu Sep 2 ...
/etc/mnttab on mnttab read/write/setuid/dev=47c0000 on Thu Sep 2 ...
/etc/svc/volatile on swap read/write/setuid/devices/xattr/dev=4480001 ...
/system/object on objfs read/write/setuid/devices/dev=44c0001 ...
/dev/fd on fd read/write/setuid/dev=4800000 on Thu Sep 2 ...
/var/run on swap read/write/setuid/xattr/dev=1 on Thu Sep 2 ...
/tmp on swap read/write/setuid/xattr/dev=2 on Thu Sep 2 ...
/stuff on /dev/dsk/c0t0d0s5 read/write/setuid/intr/largefiles/xattr...
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/...
/home/rimmer on pluto:/export/home/rimmer remote/read/write/setuid/xattr/...
$

This example shows how to use the zfs mount command to display information about ZFS file systems that are currently mounted.
Determining Which File Systems Are Mounted

(Continued)

$ zfs mount
rpool/ROOT/zfs509BE /
rpool/export /export
rpool/export/home /export/home
rpool /rpool

▼ How to Add an Entry to the /etc/vfstab File

Use this procedure to mount non-ZFS file systems at boot time unless legacy mount behavior is needed for some ZFS file systems. For more information about mounting ZFS file systems, see Oracle Solaris ZFS Administration Guide.

1 Become superuser or assume an equivalent role.

2 Create a mount point for the file system to be mounted, if necessary.

 # mkdir /mount-point

 There must be a mount point on the local system to mount a file system. A mount point is a directory to which the mounted file system is attached.

3 Edit the /etc/vfstab file and add an entry. Ensure that you do the following:

 a. Separate each field with white space (a space or a tab).

 b. Specify a dash (-) if a field has no contents.

 c. Save the changes.

 For detailed information about the /etc/vfstab field entries, see Table 18–3.

 Note – Because the root (/) file system is mounted read-only by the kernel during the boot process, only the remount option (and options that can be used in conjunction with remount) affect the root (/) entry in the /etc/vfstab file.

 Example 18–2 Adding an Entry to the /etc/vfstab File

 The following example shows how to mount the disk slice /dev/dsk/c0t3d0s7 as a UFS file system to the mount point /files1. The raw character device /dev/rdsk/c0t3d0s7 is specified as the device to fsck. The fsck pass value of 2 means that the file system will be checked, but not sequentially.

 #device device mount FS fsck mount mount
 #to mount to fsck point type pass at boot options

Chapter 18 • Mounting and Unmounting File Systems (Tasks) 343
Mounting File Systems

The following example shows how to mount the /export/man directory from the system pluto as an NFS file system on mount point /usr/man. Neither a device to fsck nor a fsck pass is specified because it's an NFS file system. In this example, mount options are ro (read-only) and soft.

```
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
pluto:/export/man - /usr/man nfs - yes ro,soft
```

The following example shows how to mount the root (/) file system on a loopback mount point, /tmp/newroot. LOFS file systems must always be mounted after the file systems that are in the LOFS file system.

```
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
/
- /tmp/newroot lofs - yes -
```

How to Mount a File System (/etc/vfstab File)

1. **Become superuser or assume an equivalent role.**

2. **Mount a file system listed in the /etc/vfstab file.**

   ```
   # mount /mount-point
   
   where /mount-point specifies an entry in the mount point or device to mount field in the /etc/vfstab file. It is usually easier to specify the mount point.
   ```

Example 18–3 Mounting a File System (/etc/vfstab File)

The following example shows how to mount the /usr/dist file system that is listed in the /etc/vfstab file.

```bash
# mount /usr/dist
```

Example 18–4 Mounting All File Systems (/etc/vfstab File)

The following example shows the messages that are displayed when you use the mountall command and the file systems are already mounted.

```bash
# mountall
/dev/dsk/c0t0d0s7 already mounted
mount: /tmp already mounted
mount: /dev/dsk/c0t0d0s7 is already mounted, /export/home is busy, or the allowable number of mount points has been exceeded
```
When using the `mountall` command, all the file systems with a device to `fsck` entry are checked and fixed, if necessary, before they are mounted.

The following example shows how to mount all the local systems that are listed in the `/etc/vfstab` file.

```
# mountall -l
# mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/xattr/onerror=...
/devices on /devices read/write/setuid/dev=46c0000 on Thu Sep ...
/system/contract on ctrfs read/write/setuid/devices/dev=43c0001 ...
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/xattr/...
/proc on /proc/read/write/setuid/dev=4700000 on Thu Sep 2 ...
/etc/mnttab on mnttab read/write/setuid/dev=47c0000 on Thu Sep 2 ...
/etc/svc/volatile on swap read/write/setuid/devices/xattr/dev=4480001 ...
/system/object on objfs read/write/setuid/devices/dev=44c0001 ...
/dev/fd on fd read/write/setuid/dev=4800000 on Thu Sep 2 ...
/var/run on swap read/write/setuid/xattr/dev=1 on Thu Sep 2 ...
/tmp on swap read/write/setuid/xattr/dev=2 on Thu Sep 2 ...
/stuff on /dev/dsk/c0t0d0s5 read/write/setuid/intr/largefiles/xattr/...
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/...
```

The following example shows how to mount all available ZFS file systems.

```
# zfs mount -a
```

The following example shows how to mount all the remote file systems that are listed in the `/etc/vfstab` file.

```
# mountall -r
# mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/xattr/onerror=...
/devices on /devices read/write/setuid/dev=46c0000 on Thu Sep ...
/system/contract on ctrfs read/write/setuid/devices/dev=43c0001 ...
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/xattr/...
/proc on /proc/read/write/setuid/dev=4700000 on Thu Sep 2 ...
/etc/mnttab on mnttab read/write/setuid/dev=47c0000 on Thu Sep 2 ...
/etc/svc/volatile on swap read/write/setuid/devices/xattr/dev=4480001 ...
/system/object on objfs read/write/setuid/devices/dev=44c0001 ...
/dev/fd on fd read/write/setuid/dev=4800000 on Thu Sep 2 ...
/var/run on swap read/write/setuid/xattr/dev=1 on Thu Sep 2 ...
/tmp on swap read/write/setuid/xattr/dev=2 on Thu Sep 2 ...
/stuff on /dev/dsk/c0t0d0s5 read/write/setuid/intr/largefiles/xattr/...
/stuff on /dev/dsk/c0t0d0s5 read/write/setuid/intr/largefiles/xattr/...
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/...
/home/rimmer on pluto:/export/home/rimmer remote/read/write/setuid/xattr/...
How to Mount a UFS File System (mount Command)

1. Become superuser or assume an equivalent role.

2. Create a mount point for the file system to be mounted, if necessary.
   
   ```
 mkdir /mount-point
   ```
   
   There must be a mount point on the local system to mount a file system. A mount point is a directory to which the mounted file system is attached.

3. Mount the UFS file system.
   
   ```
 mount [-o mount-options] /dev/dsk/device-name /mount-point
   ```
   
   - `-o mount-options` Specifies mount options that you can use to mount a UFS file system. For a list of options, see Table 18–2 or mount_ufs(1M).
   - `/dev/dsk/device-name` Specifies the disk device name for the slice that contains the file system (for example, `/dev/dsk/c0t3d0s7`). To view slice information for a disk, see “How to Display Disk Slice Information” on page 207.
   - `/mount-point` Specifies the directory on which to mount the file system.

Example 18–5 Mounting a UFS File System (mount Command)

The following example shows how to mount `/dev/dsk/c0t3d0s7` on the `/files1` directory.

```
mount /dev/dsk/c0t3d0s7 /files1
```

How to Mount a UFS File System Without Large Files (mount Command)

When you mount a file system, the largefiles option is selected by default. This option enables you to create files larger than 2 GB. If a file system contains large files, you cannot remount the file system with the nolargefiles option or mount it on a system that is running older Solaris versions, until you remove any large files and run the fsck command to reset the state to nolargefiles.

This procedure assumes that the file system is in the `/etc/vfstab` file.

1. Become superuser or assume an equivalent role.

2. Create a mount point for the file system to be mounted, if necessary.
   
   ```
 mkdir /mount-point
   ```
There must be a mount point on the local system to mount a file system. A mount point is a
directory to which the mounted file system is attached.

3 Ensure that no large files exist in the file system.

```bash
cd /mount-point
find . -xdev -size +20000000 -exec ls -l {} \;
```

where /mount-point identifies the mount point of the file system you want to check for large
files.

4 Remove or move any large files in this file system to another file system, if necessary.

5 Unmount the file system.

```bash
umount /mount-point
```

6 Reset the file system state.

```bash
fsck /mount-point
```

7 Remount the file system with the nolargefiles option.

```bash
mount -o nolargefiles /mount-point
```

Example 18–6 Mounting a File System Without Large Files (mount Command)

The following example shows how to check the /datab file system and remount it with the
largefiles option.

```bash
cd /datab
find . -xdev -size +20000000 -exec ls -l {} \;
umount /datab
fsck /datab
mount -o nolargefiles /datab
```

▼ How to Mount an NFS File System (mount Command)

1 Become superuser or assume an equivalent role.

2 Create a mount point for the file system to be mounted, if necessary.

```bash
mkdir /mount-point
```

There must be a mount point on the local system to mount a file system. A mount point is a
directory to which the mounted file system is attached.
Ensure that the resource (file or directory) is available from a server.

To mount an NFS file system, the resource must be made available on the server by using the share command. For information on how to share resources, see “About the NFS Service” in System Administration Guide: Network Services.

Mount the NFS file system.

```
mount -F nfs [-o mount-options] server:/directory /mount-point
```

- `-o mount-options` Specifies mount options that you can use to mount an NFS file system. See Table 18–2 for the list of commonly used mount options or `mount_nfs(1M)` for a complete list of options.

- `server:/directory` Specifies the server’s host name that contains the shared resource, and the path to the file or directory to mount.

- `/mount-point` Specifies the directory on which to mount the file system.

Example 18–7 Mounting an NFS File System (mount Command)

The following example shows how to mount the `/export/packages` directory on `/mnt` from the server `pluto`.

```
mount -F nfs pluto:/export/packages /mnt
```

▼ x86: How to Mount a PCFS (DOS) File System From a Hard Disk (mount Command)

Use the following procedure to mount a PCFS (DOS) file system from a hard disk.

1 Become superuser or assume an equivalent role.

2 Create a mount point for the file system to be mounted, if necessary.

```
mkdir /mount-point
```

There must be a mount point on the local system to mount a file system. A mount point is a directory to which the mounted file system is attached.

3 Mount the PCFS file system.

```
mount -F pcfs [-o rw | ro] /dev/dsk/device-name:logical-drive /mount-point
```

- `-o rw | ro` Specifies that you can mount a PCFS file system read/write (rw) or read-only (ro). If you do not specify this option, the default is `rw`.

- `/dev/dsk/device-name` Specifies the device name of the whole disk (for example, `/dev/dsk/c0t0d0p0`).
logical-drive Specifies either the DOS logical drive letter (c through z) or a drive number (1 through 24). Drive c is equivalent to drive 1 and represents the primary DOS slice on the drive. All other letters or numbers represent DOS logical drives within the extended DOS slice.

/mount-point Specifies the directory on which to mount the file system.

Note that the device-name and logical-drive must be separated by a colon.

Example 18–8  x86: Mounting a PCFS (DOS) File System From a Hard Disk (mount Command)

The following example shows how to mount the logical drive in the primary DOS slice on the /pcfs/c directory.

```
mount -F pcfs /dev/dsk/c0t0d0p0:c /pcfs/c
```

The following example shows how to mount read-only the first logical drive in the extended DOS slice on the /mnt directory.

```
mount -F pcfs -o ro /dev/dsk/c0t0d0p0:2 /mnt
```

Unmounting UFS File Systems

The unmounting of a UFS file system removes it from the file system mount point, and deletes the entry from the /etc/mnttab file. Some file system administration tasks cannot be performed on mounted file systems. You should unmount a UFS file system when the following occurs:

- The file system is no longer needed or has been replaced by a file system that contains more current software.
- You need to check and repair the file system by using the fsck command. For more information about the fsck command, see Chapter 21, “Checking UFS File System Consistency (Tasks).”

File systems should be unmounted before doing a complete backup. For more information about doing backups, see Chapter 24, “Backing Up UFS Files and File Systems (Tasks).”

Note – File systems are automatically unmounted as part of the system shutdown procedure.
In an emergency situation, you can use the `umount -f` option to forcibly unmount a busy file system. This practice is not recommended under normal circumstances because the unmounting of a file system with open files could cause a loss of data. This option is only available for UFS and NFS file systems.

**Prerequisites for Unmounting File Systems**

The prerequisites for unmounting file systems include the following:

- You must be superuser or assume an equivalent role.
- A file system must be available for unmounting. You cannot unmount a file system that is busy. A file system is considered busy if a user is accessing a directory in the file system, if a program has a file open in that file system, or if the file system is being shared. You can make a file system available for unmounting by doing the following:
  - Changing to a directory in a different file system.
  - Logging out of the system.
  - Using the `fuser` command to list all processes that are accessing the file system and to stop them, if necessary. For more details, see “How to Stop All Processes Accessing a File System” on page 350.
    - Notify users if you need to unmount a file system that they are using.
  - Unsharing the file system. For information about unsharing a file system, see `unshare(1M)`.

**How to Verify a File System is Unmounted**

To verify that you unmounted a file system or a number of file systems, examine the output from the `mount` command.

```
$ mount | grep unmounted-file-system
```

**How to Stop All Processes Accessing a File System**

1. Become superuser or assume an equivalent role.

2. List all the processes that are accessing the file system so that you know which processes you are going to stop.

   ```
 # fuser -c [-u] /mount-point
   ```
### Stop all processes that are accessing the file system.

```
fuser -c -k /mount-point
```

A SIGKILL is sent to each process that is using the file system.

**Note** – You should not stop a user’s processes without first warning the user.

### Verify that no processes are accessing the file system.

```
fuser -c /mount-point
```

#### Example 18–9

**Stopping All Processes Accessing a File System**

The following example shows how to stop process 4006c that is using the `/export/home` file system.

```
fuser -c /export/home
/export/home: 4006c
fuser -c -k /export/home
/export/home: 4006c
fuser -c /export/home
/export/home:
```

### How to Unmount a File System

Use the following procedure to unmount a file system, except for the root (/), /usr, or /var file systems.

**Note** – The root (/), /usr, and /var file systems can be unmounted only during a shutdown. The system needs these file systems to function.

1. Ensure that you have met the prerequisites listed in “Prerequisites for Unmounting File Systems” on page 350.

2. Unmount the file system.

```
umount /mount-point
```
where `/mount-point` is the name of the file system that you want to unmount. This can be one of the following:

- The directory name where the file system is mounted
- The device name path of the file system
- The resource for an NFS file system
- The loopback directory for an LOFS file system

### Example 18–10 Unmounting a File System

The following example shows how to unmount a local UFS home file system.

```
umount /export/home
```

The following example shows how to unmount the UFS file system on slice 7.

```
umount /dev/dsk/c0t0d0s7
```

The following example shows how to forcibly unmount the UFS `/export` file system.

```
umount -f /export
```

The following example shows how to unmount all UFS file systems in the `/etc/vfstab` file, except for the root (`/`), `/proc`, `/var`, and `/usr` file systems.

```
umountall
```

The following example shows to unmount all ZFS file systems.

```
zfs umount -a
```

All file systems are unmounted, except for those file systems that are busy.
This chapter describes how to set up and maintain CacheFS file systems.

This is a list of task maps in this chapter.

- “High-Level View of Using the CacheFS File System (Task Map)” on page 353
- “Creating and Mounting a CacheFS File System (Task Map)” on page 356
- “Maintaining a CacheFS File System (Task Map)” on page 361
- “Packing a Cached File System (Task Map)” on page 366
- “Collecting CacheFS Statistics (Task Map)” on page 375

For information on troubleshooting CacheFS errors, see “Troubleshooting cachefspack Errors” on page 372.

Note – For important information about NFS version 4 and the CacheFS software, see “NFS Version 4 and CacheFS Compatibility Issues” on page 304.

### High-Level View of Using the CacheFS File System (Task Map)

Use this task map to identify all the tasks for using CacheFS file systems. Each task points to a series of additional tasks such as creating and mounting CacheFS file systems, and packing and maintaining the cache.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Create and mount a CacheFS file system.</td>
<td>Create the cache and mount the file system in the cache.</td>
<td>“Creating and Mounting a CacheFS File System (Task Map)” on page 356</td>
</tr>
</tbody>
</table>
Overview of the CacheFS File System

The CacheFS file system is a general purpose caching mechanism that improves NFS server performance and scalability by reducing server and network load. Designed as a layered file system, the CacheFS file system provides the ability to cache one file system on another file system. In an NFS environment, the CacheFS file system increases the client per server ratio, reduces server and network loads, and improves performance for clients on slow links, such as Point-to-Point Protocol (PPP).

How a CacheFS File System Works

You create a CacheFS file system on a client system so that file systems you cache can be accessed by the client locally instead of across the network. The following figure shows the relationship of the components that are involved in using CacheFS file systems.

---

### Overview of the CacheFS File System

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Maintain a CacheFS file system.</td>
<td>Display and modify a CacheFS file system by unmounting, removing, or re-creating the cache.</td>
<td>&quot;Maintaining a CacheFS File System (Task Map)&quot; on page 361</td>
</tr>
<tr>
<td>3. (Optional) Pack and unpack a CacheFS file system.</td>
<td>Determine whether you want to pack the cache and use packing lists. Packing the cache ensures that certain files and directories are always updated in the cache.</td>
<td>&quot;Packing a Cached File System (Task Map)&quot; on page 366</td>
</tr>
</tbody>
</table>
The back filesystem is the filesystem that you specify to be mounted in the cache. A back file system can be either NFS or HSFS (High Sierra FileSystem). When the user attempts to access files that are part of the back file system, those files are placed in the cache. The front file system is the file system that is mounted in the cache and is accessed from the local mount point. The front file system type must be UFS.

To the user, the initial request to access a file in a CacheFS file system might seem slow. However, subsequent uses of the same file are faster.

**CacheFS File System Structure and Behavior**

Each cache has a set of parameters that determines the cache structure and how it behaves. The parameters are set to the default values listed in the following table. The default values specify that the entire front file system is used for caching, which is the recommended method of caching file systems.

<table>
<thead>
<tr>
<th>CacheFS File System Parameter</th>
<th>Default Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxblocks</td>
<td>90 %</td>
<td>Sets the maximum number of blocks that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
<tr>
<td>minblocks</td>
<td>0 %</td>
<td>Sets the minimum number of blocks that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
</tbody>
</table>
TABLE 19–1  CacheFS File System Parameters and Their Default Values  (Continued)

<table>
<thead>
<tr>
<th>CacheFS File System Parameter</th>
<th>Default Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshblocks</td>
<td>85%</td>
<td>Sets the number of blocks that must be available in the front file system before a CacheFS file system can claim more than the blocks specified by minblocks.</td>
</tr>
<tr>
<td>maxfiles</td>
<td>90%</td>
<td>Sets the maximum number of available inodes (number of files) that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
<tr>
<td>minfiles</td>
<td>0%</td>
<td>Sets the minimum number of available inodes that a CacheFS file system is allowed to claim within the front file system.</td>
</tr>
<tr>
<td>threshfiles</td>
<td>85%</td>
<td>Sets the number of inodes that must be available in the front file system before a CacheFS file system can claim more files than is specified in minfiles.</td>
</tr>
</tbody>
</table>

Typically, you should not change any of these parameter values. They are set to default values to achieve optimal cache behavior. However, you might want to modify the maxblocks and maxfiles values if you have some room in the front file system that is not used by the cache, and you want to use it for some other file system. You do so by using the cfsadmin command. For example:

```
$ cfsadmin -o maxblocks=60
```

Creating and Mounting a CacheFS File System (Task Map)

Use the procedures in this task map to create and mount a CacheFS file system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Share the file system to be cached.</td>
<td>Verify that the file system you want to cache is shared.</td>
<td>share(1M)</td>
</tr>
<tr>
<td>2. Create the cache.</td>
<td>Use the cfsadmin command to create the cache.</td>
<td>“How to Create the Cache” on page 357</td>
</tr>
<tr>
<td>3. Mount a file system in the cache.</td>
<td>Mount a file system in a cache by using one of the following methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount a CacheFS file system by using the mount command.</td>
<td>“How to Mount a CacheFS File System (mount)” on page 358</td>
</tr>
</tbody>
</table>
Mount a CacheFS file system by editing the /etc/vfstab file.

Mount a cached file system by using the autofs service.

"How to Mount a CacheFS File System (/etc/vfstab)" on page 360

"How to Mount a CacheFS File System (autofs)" on page 360

### How to Create the Cache

1. Become superuser on the client system.

2. Create the cache.

   ```bash
 # cfsadmin -c /cache-directory
   ```

   where `cache-directory` indicates the name of the directory where the cache resides.

   For more information, see `cfsadmin(1M)`.

   **Note** – After you have created the cache, do not perform any operations within the cache directory itself. Doing so could cause conflicts within the CacheFS software.

### Example 19–1 Creating the Cache

The following example shows how to create a cache in the `/local/mycache` directory by using the default cache parameter values.

```bash
mkdir /local
cfsadmin -c /local/mycache
```

### Mounting a File System in the Cache

You specify a file system to be mounted in the cache so that users can locally access files in that file system. The files do not actually get placed in the cache until the user accesses the files.

The following table describes three ways to mount a CacheFS file system.

<table>
<thead>
<tr>
<th>Mount Type for CacheFS File System</th>
<th>Frequency of CacheFS Mount Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the <code>mount</code> command</td>
<td>Every time the system reboots in order to access the same file system.</td>
</tr>
<tr>
<td>Editing the <code>/etc/vfstab</code> file</td>
<td>Only once. The <code>/etc/vfstab</code> file remains unchanged after the system reboots.</td>
</tr>
</tbody>
</table>
Choose the method of mounting file systems that best suits your environment.

You can mount only file systems that are shared. For information on sharing file systems, see `share(1M)`.

**Note** – The caching of the root (/) and /usr file systems is not supported in a CacheFS file system.

### How to Mount a CacheFS File System (`mount`)

1. **Become superuser on the client system.**

2. **Create the mount point, if necessary.**

   ```bash
 # mkdir /mount-point
   ```

   You can create the mount point from anywhere, but it must be a UFS file system. The CacheFS options used with the `mount` command, as shown in the next step, determine that the mount point you create is cached in the cache directory you specify.

3. **Mount a file system in the cache.**

   ```bash
 # mount -F cachefs -o backfstype=fstype,cachedir=/cache-directory[,options] /back-filesystem /mount-point
   ```

   - `fstype` Indicates the file system type of the back file system, which can be either NFS or HSFS.
   - `/cache-directory` Indicates the name of the UFS directory where the cache resides. This name is the same name you specified when you created the cache in “How to Create the Cache” on page 357.
   - `options` Specifies other mount options that you can include when you mount a file system in a cache. For a list of CacheFS mount options, see `mount_cachefs(1M)`.
   - `/back-filesystem` Specifies the mount point of the back file system to cache. If the back file system is an NFS file system, you must specify the host name of the server from which you are mounting the file system and the name of the file system to cache, separated by a colon. For example, `merlin:/data/abc`.
   - `/mount-point` Indicates the directory where the file system is mounted.
4 Verify that the cache you created was actually mounted.

```
cachefsstat /mount-point
```

The `/mount-point` is the CacheFS file system that you created.

For example:

```
cachefsstat /docs
```

```
/docs
 cache hit rate: 100% (0 hits, 0 misses)
 consistency checks: 1 (1 pass, 0 fail)
 modifies: 0
 garbage collection: 0
```

If the file system was not mounted in the cache, an error message similar to the following is displayed:

```
cachefsstat /mount-point
cachefsstat: /mount-point: not a cachefs mountpoint
```

For more information about the `cachefsstat` command, see “Collecting CacheFS Statistics” on page 376.

**Example 19–2** Mounting a CacheFS File System (mount)

The following example shows how to mount the NFS file system `merlin:/docs` as a CacheFS file system named `/docs` in the cache named `/local/mycache`.

```
mkdir /docs
mount -F cachefs -o backfstype=nfs,cachedir=/local/mycache merlin:/docs /docs
```

The following example shows how to make a Solaris 10 DVD available as a CacheFS file system named `/cfssrc`. Because you cannot write to the DVD, the `ro` argument is specified to make the CacheFS file system read-only. This example assumes that the removable media services are not running.

```
mount -F hsfs -o ro /dev/dsk/c0t6d0s0 /soll0
mount -F cachefs -o backfstype=hsfs,cachedir=/cfs/cache,ro,noconst,backpath=/soll0 /dev/dsk/c0t6d0s0 /cfssrc
ls /cfssrc
```

Copyright Solaris_10

The following example shows how to mount a Solaris 10 DVD as a CacheFS file system with `vold` running.

```
mount -F cachefs -o backfstype=hsfs,cachedir=/cfs/cache,ro,noconst,backpath=/cdrom/sol_10_sparc/s0 /vol/dev/dsk/c0t2d0/sol_10_sparc/s0 /cfssrc
```

The following example shows how to mount a DVD as a CacheFS file system with `vold` running.
# mount -F cachefs -o backfstype=hsfs,cachedir=/cfs/cache,ro,noconst,
backpath=/cdrom/epson /vol/dev/dsk/c0t2d0/epson /drvrs

The following example uses the demandconst option to specify consistency checking on
the NFS CacheFS file system /docs, whose back file system is merlin:/docs. For
more information, see “Consistency Checking of a CacheFS File System” on page 363.

# mount -F cachefs -o backfstype=nfs,cachedir=/local/mycache,demandconst merlin:/docs /docs

▼ How to Mount a CacheFS File System (/etc/vfstab)

1 Become superuser on the client system.

2 Using an editor, specify the file systems to be mounted in the /etc/vfstab file.
   See the example that follows.

   For more information on the /etc/vfstab file, see “Field Descriptions for the /etc/vfstab
   File” on page 341.

3 Mount the CacheFS file system.
   # mount /mount-point
   Or, reboot the system.

Example 19–3 Mounting a CacheFS File System (/etc/vfstab)

The following example shows the /etc/vfstab entry for the /data/abc directory from the
remote system starbug that is mounted in the cached directory, /opt/cache.

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
# startbug:/data/abc /local/abc /opt/cache cachefs 7 yes local-access,bg,
nosuid,demandconst,backfstype=nfs,cachedir=/opt/cache

▼ How to Mount a CacheFS File System (autofs)

You can mount a file system in a cache with autofs by specifying the -fstype=cachefs mount
option in your automount map. Note that the CacheFS mount options, for example,
backfstype and cachedir, are also specified in the automount map.

For details on automount maps, see “Task Overview for Autofs Administration” in System
Administration Guide: Network Services or automount(1M).
1 Become superuser on the client system.

2 Using an editor, add the following line to the auto_direct map:

```
/mount-point -fstype=cachefs,cachedir=/directory,backfstype=nfs
server:/file-system
```

3 Using an editor, add the following line to the auto_master map:

```
/-
```

The /- entry is a pointer to check the auto_direct map.

4 Reboot the system.

5 Verify that the entry was made correctly by changing to the file system you mounted in the cache, and then list the contents.

```
cd /filesystem
ls
```

Example 19–4 Mounting a CacheFS File System (autofs)

The following auto_direct entry automatically mounts the CacheFS file system in the /docs directory.

```
/docs -fstype=cachefs,cachedir=/local/mymcache,backfstype=nfs merlin:@/docs
```

Maintaining a CacheFS File System (Task Map)

After a CacheFS file system is set up, it requires little maintenance. Use the optional procedures in this task map if you need to perform maintenance tasks on your CacheFS file systems.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify a CacheFS file system.</td>
<td>Modify CacheFS file system behavior by unmounting, deleting, or re-creating the cache.</td>
<td>“Modifying a CacheFS File System” on page 362</td>
</tr>
<tr>
<td>Display CacheFS file system information.</td>
<td>Display information about CacheFS file systems by using the cfsadmin command.</td>
<td>“How to Display Information About a CacheFS File System” on page 363</td>
</tr>
<tr>
<td>Perform consistency checking.</td>
<td>Perform consistency checking on demand by using the cfsadmin command.</td>
<td>“How to Specify Cache Consistency Checking on Demand” on page 364</td>
</tr>
</tbody>
</table>
## Task Description

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete a CacheFS file system.</td>
<td>Delete a CacheFS file system by using the <code>umount</code> command and the <code>cfsadmin</code> command.</td>
<td>&quot;How to Delete a CacheFS File System&quot; on page 364</td>
</tr>
<tr>
<td>Check the integrity of a CacheFS filesystem.</td>
<td>Check the integrity of a CacheFS filesystem by using the <code>fsck_cachefs</code> command.</td>
<td>&quot;How to Check the Integrity of a CacheFS FileSystem&quot; on page 365</td>
</tr>
</tbody>
</table>

### Maintaining a CacheFS File System

This section describes how to maintain a CacheFS file system.

If you are using the `/etc/vfstab` file to mount file systems, you modify the cache by editing the file system options in the `/etc/vfstab` file. If you are using autofs, you modify the cache by editing the file system options in the autofs maps.

### Modifying a CacheFS File System

When you modify a file system in the cache, you need to delete the cache and then re-create it. You might also need to reboot your machine in single-user mode, depending on how your file systems are shared and accessed.

In the following example, the cache is deleted, re-created, and then mounted again by using `demandconst` option specified for the `/docs` file system.

```plaintext
shutdown -g30 -y
.
.
.
Root password for system maintenance (control-d to bypass):
single-user privilege assigned to /dev/console.
.
.
.
Here is where you might be prompted to run fsck on the file system where the cache is located.

fsck /local
mount /local
cfsadmin -d all /local/mycache
cfsadmin -c /local/mycache
init 6
.
.
.
console login:
```
How to Display Information About a CacheFS File System

1. Become superuser on the client system.

2. Display information about all file systems cached under a specified cache.
   
   ```
 # cfsadmin -l /cache-directory

 where /cache-directory is the name of the directory where the cache resides.
   ```

Example 19–5 Displaying Information About CacheFS File Systems

The following example shows information about the /local/mycache cache directory. In this example, the /docs file system is cached in /local/mycache. The last line displays the name of the CacheFS file system.

```
cfsadmin -l /local/mycache

merlin: /docs: docs

#
```

Consistency Checking of a CacheFS File System

To ensure that the cached directories and files remain current, the CacheFS software periodically checks the consistency of files stored in the cache. To check consistency, the CacheFS software compares the current modification time to the previous modification time. If the modification times are different, all data and attributes for the directory or file are purged from the cache. Then, new data and attributes are retrieved from the back file system.

Consistency Checking on Demand

Consistency checks can be performed only when you explicitly request checks for file systems that are mounted by using the -o demandconst option. If you mount a file system in a cache with this option, then use the cfsadmin command with the -s option to request a consistency check.
check. By default, consistency checking is performed file by file as the files are accessed. If no files are accessed, no checks are performed. Using the `-o demandconst` option avoids the situation where the network is flooded with consistency checks.

For more information, see `mount_cachefs(1M)`.

▼ **How to Specify Cache Consistency Checking on Demand**

1. Become superuser on the client system.

2. Mount the file system in the cache and specify cache consistency checking.
   
   ```
 # mount -F cachefs -o backfstype=nfs,cachedir=/directory,demandconst server:/file-system /mount-point
   ```

3. Initiate consistency checking on a specific CacheFS file system.
   
   ```
 # cfsadmin -s /mount-point
   ```

▼ **How to Delete a CacheFS File System**

1. Become superuser on the client system.

2. Unmount the CacheFS file system.
   
   ```
 # umount /mount-point
   ```
   where `/mount-point` specifies the CacheFS file system that you want to delete.

3. Determine the name of the CacheFS file system (cache ID).
   
   ```
 # cfsadmin -l /cache-directory
 cfsadmin: list cache FS information
 maxblocks 90%
 minblocks 0%
 threshblocks 85%
 maxfiles 90%
 minfiles 0%
 threshfiles 85%
 maxfilesize 3MB
 cache-ID
   ```

4. Delete the CacheFS file system from the specified cache.
   
   ```
 # cfsadmin -d cache-ID /cache-directory
 cache-ID Indicates the name of the CacheFS file system, which is the last line of the cfsadmin -l output. For more information, see "How to Display
Information About a CacheFS File System” on page 363. You can delete all the CacheFS file systems in a particular cache by specifying all for `cache-ID`.

/cache-directory Specifies the directory where the cache resides.

5 Verify that the CacheFS file system has been deleted.

The cache ID of the file system you just deleted should be missing from the `cfsadmin -l` output.

```
# cfsadmin -l /cache-directory
```

```
cfsadmin: list cache FS information
 maxblocks  90%
 minblocks  0%
 threshblocks 85%
 maxfiles  90%
 minfiles  0%
 threshfiles 85%
 maxfilesize 3MB
```

For more information about the fields that are specified in the command output, refer to `cfsadmin(1M)`.

6 Update the resource counts for the cache.

```
# fsck -F cachefs /cache-directory
```

For more information, see “How to Check the Integrity of a CacheFS File System” on page 365.

Example 19–6 Deleting a CacheFS File System

The following example shows how to delete the file systems from the cache.

```
# umount /cfssrc
# cfsadmin -l /cfssrc
# cfsadmin -d _dev_dsk_c0t6d0s0:_cfssrc
# cfsadmin -l
# fsck -F cachefs /cache-directory
```

How to Check the Integrity of a CacheFS File System

Use the `fsck` command to check the integrity of CacheFS file systems. The CacheFS version of the `fsck` command automatically corrects problems without requiring user interaction. You should not need to run the `fsck` command manually for CacheFS file systems because the `fsck` command is run automatically at boot time or when the file system is mounted. If you want to manually check the integrity, you can use the following procedure.

For more information, see `fsck_cachefs(1M)`.
1 Become superuser on the client system.

2 Check the file systems in the specified cache.

   ```
   # fsck -F cachefs [-m -o noclean] /cache-directory
   ``
   
   - `m` Causes the fsck command to check a CacheFS file system without making any repairs.
   - `-o noclean` Forces a check on the CacheFS file systems only. Does not make any repairs.
   - `/cache-directory` Indicates the name of the directory where the cache resides.

Example 19–7 Checking the Integrity of CacheFS File Systems

The following example shows how to check the file systems cached in the `/local/mymcache` cache.

```
fsck -F cachefs /local/mymcache
#
```

Packing a Cached File System (Task Map)

The following task map describes the procedures that are associated with packing a CacheFS file system. All of these procedures are optional.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack files in the cache.</td>
<td>Identify files and directories to be loaded in the cache and pack them.</td>
<td>&quot;How to Pack Files in the Cache&quot; on page 367</td>
</tr>
<tr>
<td>Create a packing list.</td>
<td>Create a packing list if you do not want to specify each individual file</td>
<td>&quot;How to Create a Packing List&quot; on page 370</td>
</tr>
<tr>
<td>Pack files in the cache with a</td>
<td>Specify the name of the packing list of the files to be packed in the cache.</td>
<td>&quot;How to Pack Files in the Cache With a Packing List&quot; on page 370</td>
</tr>
<tr>
<td>packing list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Packing a CacheFS File System

For general use, the CacheFS software operates automatically after it is set up, without requiring any action from the user. Files are cached on a most recently used basis. With the packing feature, you can take a more active role in managing your cache by ensuring that certain files or directories are always updated in the cache.

You can specify files and directories to be loaded in the cache by using the cachefspack command. This command ensures that current copies of these files are available in the cache.

The packing list contains the names of specific files and directories. The packing list can also contain other packing lists. This feature saves you from having to specify individual files and directories when you have many items to pack in your cache.

You can print out a brief help summary of all the cachefspack options by using the -h option as follows:

```
$ cachefspack -h
Must select 1 and only 1 of the following 5 options
 -d Display selected filenames
 -i Display selected filenames packing status
 -p Pack selected filenames
 -u Unpack selected filenames
 -U Unpack all files in directory 'dir'
 -f Specify input file containing rules
 -h Print usage information
 -r Interpret strings in LIST rules as regular expressions
 -s Strip './' from the beginning of a pattern name
 -v Verbose option
files - a list of filenames to be packed/unpacked
```

### How to Pack Files in the Cache

- **Pack files in the cache.**

  ```
 $ cachefspack -p filename
  ```
-p Specifies that you want the file or files to be packed. This option is also the default.

filename Specifies the name of the file or directory you want packed in the cache. When you specify a directory, all of its subdirectories are also packed. For more information, see `cachefspack(1M)`.

Example 19–8  Examples—Packing Files in the Cache

The following example shows the `projects` file being packed in the cache.

```
$ cachefspack -p projects
```
The following example shows three files being packed in the cache.

```
$ cachefspack -p projects updates master_plan
```
The following example shows a directory being packed in the cache.

```
$ cachefspack -p /data/abc/bin
```

\section*{How to Display Packed Files Information}

Display packed files information.

```
$ cachefspack -i[\texttt{v}] cached-filename-or-directory
```

- **i** Specifies that you want to view information about your packed files.

- **v** Is the verbose option.

- **cached-filename-or-directory** Specifies the name of the file or directory for which to display information.

Example 19–9  Displaying Packed Files Information

The following example shows that the `doc_file` file has been successfully packed.

```
$ cachefspack -i doc_file
```

```
cachefspack: file doc_file marked packed YES, packed YES
```

In the following example, the `/data/abc` directory contains the `bin` subdirectory. The `bin` subdirectory has three files: `big`, `medium`, and `small`. Although the `big` and `small` files are specified to be packed, they are not. The `medium` file is successfully packed.

```
$ cd /data/abc
$ cachefspack -i bin
```
If you use the `-iv` options together, you get additional information as to whether the file or directory specified has been flushed from the cache. For example:

```bash
$ cd /data/bin
FSCACHEPACK-4$ cachefspack -iv bin
.
.
.
cachefspack: file /bin/big marked packed YES, packed NO
 nocache YES
cachefspack: file /bin/medium marked packed YES,
 packed YES
 nocache NO
cachefspack: file /bin/small marked packed YES,
 packed NO
 nocache NO
.
.
```

The last line of this example shows that the directory contents have not been flushed from the cache.

## Using Packing Lists

One feature of the `cachefspack` command is the ability to create packing lists.

A packing list contains files or directories to be packed in the cache. If a directory is in the packing list, all of its subdirectories and files will also be packed.

This feature saves the time of having to specify each individual file that you want packed in the cache.
How to Create a Packing List

- Create a packing list file by using vi.
  
  The packing list file format uses the same format as the filesync command. For more information, see filesync(1).

  Two packing list features are the following:
  
  - You can identify files in the packing list as regular expressions rather than literal file names so that you don't have to specify each individual file name.
  - You can pack files from a shared directory by ensuring that you pack only those files that you own.

  For more information on using these features, see cachefspack(1M).

Example 19–10  Creating a Packing List

The following example shows the contents of a packing list file.

```
BASE /home/ignatz
LIST plans
LIST docs
IGNORE *.ps
```

- The path identified with the BASE statement is the directory where you have items you want to pack.
- The two LIST statements identify specific files within that directory to pack.
- The IGNORE statement identifies the file type of .ps, which you do not want to pack.

How to Pack Files in the Cache With a Packing List

- Pack files in the packing list.

```
$ cachefspack -f packing-list
```

- f Specifies that you want to use a packing list.
- packing-list Specifies the name of the packing list.

Example 19–11  Packing Files in the Cache With a Packing List

This example uses the list.pkg file as the packing list for the cachefspack command.

```
$ cachefspack -f list.pkg
```
Unpacking Files or Packing Lists From the Cache

You might need to remove, or *unpack*, a file from the cache. Perhaps you have some files or directories that have a higher priority than others, so you need to unpack the less critical files. For example, you finished up a project and have archived the files that are associated with that project. You are now working on a new project, and therefore, a new set of files.

How to Unpack Files or Packing Lists From the Cache

- Unpack files or packing lists from the cache.
  
  ```
 $ cachefspack -u filename | -U cache-directory

 -u

 Specifies that you want the file or files unpacked. You must specify a file name with this option.

 filename

 Specifies the name of the file or packing list that you want unpacked in the cache.

 -U

 Specifies that you want to unpack all files in the cache.
  ```

  For more information, see *cachefspack*(1M).

Example 19–12 Unpacking Files or Packing Lists From the Cache

The following example shows the file `/data/abc/bin/big` being unpacked from the cache.

```
$ cachefspack -u /data/abc/bin/big
```

The following example shows three files being unpacked from the cache.

```
$ cd /data/abc/bin/big
$ cachefspack -u big small medium
```

The following example shows how to unpack a packing list. A packing list is a file that contains the path to a directory of files:

```
$ cachefspack -uf list.pkg
```

The following example uses the `-U` option to specify that all files in a cache directory being unpacked.

```
$ cachefspack -U /local/mycache
```

You cannot unpack a cache that does not have at least one file system mounted. With the `-U` option, if you specify a cache that does not contain mounted file systems, output similar to the following is displayed:
$ cachefspack -U /local/mycache
    cachefspack: Could not unpack cache /local/mycache, no mounted filesystems in the cache.

**Troubleshooting cachefspack Errors**

You might see the following error messages when you use the cachefspack command.

**cachefspack: pathname - can't open directory: permission denied**

**Cause**
You might not have the correct permissions to access the file or directory.

**Action**
Set the correct permissions.

**cachefspack: pathname - can't open directory: no such file or directory**

**Cause**
You might not have specified the correct file or directory.

**Action**
Check for a possible typo.

**cachefspack: pathname - can't open directory: stale NFS file handle**

**Cause**
The file or directory might have been moved or deleted from the server at the time you attempted to access it.

**Action**
Verify that the file or directory on the server is still accessible.

**cachefspack: pathname - can't open directory: interrupted system call**

**Cause**
You might have inadvertently pressed Control-C while issuing the command.

**Action**
Reissue the command.

**cachefspack: pathname - can't open directory: I/O error**

**Cause**
You might have a hardware problem.

**Action**
Check your hardware connections.
cachefspack: error opening dir
Cause
You might not have specified the correct file or directory. The path identified after the BASE command in the file format could be a file and not a directory. The path specified must be a directory.
Action
Check for a possible typo. Check the path identified after the BASE command in your file format. Ensure that the path identifies a directory, not a file.

cachefspack: unable to get shared objects
Cause
The executable might be corrupt or in a format that is not recognizable.
Action
Replace the executable.

cachefspack: filename - can't pack file: permission denied
Cause
You might not have the correct permissions to access the file or directory.
Action
Set the correct permissions.

cachefspack: filename - can't pack file: no such file or directory
Cause
You might not have specified the correct file or directory.
Action
Check for a possible typo.

cachefspack: filename - can't pack file: stale NFS file handle
Cause
The file or directory might have been moved or deleted from the server at the time you attempted to access it.
Action
Verify that the file or directory on the server is still accessible.

cachefspack: filename - can't pack file: interrupted system call
Cause
You might have inadvertently pressed Control-C while issuing the command.
Action
Reissue the command.
cachefspack:  

Caused can’t pack file: I/O error

Action
Check your hardware connections.

cachefspack:  

Caused can’t pack file: no space left on device.

Action
You need to increase the size of the cache by increasing disk space.

cachefspack:  

Caused can’t unpack file: permission denied

Action
Set the correct permissions.

cachefspack:  

Caused can’t unpack file: no such file or directory

Action
Check for a possible typo.

cachefspack:  

Caused can’t unpack file: stale NFS file handle

Action
Verify that the file or directory on the server is still accessible.

cachefspack:  

Caused can’t unpack file: interrupted system call

Action
Reissue the command.

cachefspack:  

Caused can’t unpack file I/O error

Action
You might have a hardware problem.
Collecting CacheFS Statistics (Task Map)

The following task map shows the steps involved in collecting CacheFS statistics. All these procedures are optional.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up logging.</td>
<td>Set up logging on a CacheFS file system by using the cachefslog command.</td>
<td>“How to Set Up CacheFS Logging” on page 377</td>
</tr>
<tr>
<td>Locate the log file.</td>
<td>Locate the log file by using the cachefslog command.</td>
<td>“How to Locate the CacheFS Log File” on page 377</td>
</tr>
<tr>
<td>Stop logging.</td>
<td>Stop logging by using the cachefslog command.</td>
<td>“How to Stop CacheFS Logging” on page 378</td>
</tr>
<tr>
<td>View the cache size.</td>
<td>View the cache size by using the cachefswsize command.</td>
<td>“How to View the Working Set (Cache) Size” on page 378</td>
</tr>
</tbody>
</table>
Collecting CacheFS Statistics

Collecting CacheFS statistics enables you to do the following:

- Determine an appropriate cache size.
- Observe the performance of the cache.

These statistics help you determine the trade-off between your cache size and the desired performance of the cache.

The following table describes the CacheFS statistics commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cachefslog</td>
<td>Specifies the location of the log file. This command also displays where the statistics are currently being logged, and enables you to stop logging.</td>
<td>cachefslog(1M)</td>
</tr>
<tr>
<td>cachewssize</td>
<td>Interprets the log file to give a recommended cache size.</td>
<td>cachewssize(1M)</td>
</tr>
<tr>
<td>cachefsstat</td>
<td>Displays statistical information about a specific CacheFS file system or all CacheFS file systems. The information provided in the command output is taken directly from the cache.</td>
<td>cachefsstat(1M)</td>
</tr>
</tbody>
</table>

**Note** – You can issue the CacheFS statistics commands from any directory. You must be superuser to issue the cachewssize command.

The CacheFS statistics begin accumulating when you create the log file. When the work session is over, stop the logging by using the cachefslog -h command, as described in “How to Stop CacheFS Logging” on page 378.

Before using the CacheFS statistics commands, you must do the following:

- Set up your cache by using the cfsadmin command.
Decide on an appropriate length of time to allow statistical information to collect in the log file you create. The length of time should equal a typical work session. For example, a day, a week, or a month.

Select a location or path for the log file. Ensure that sufficient space to allows for the growth of the log file. The longer you intend to allow statistical information to collect in the log file, the more space you need.

**Note** – The following procedures are presented in a recommended order. This order is not required.

### How to Set Up CacheFS Logging

1. **Set up logging.**
   
   ```bash
 $ cachefslog -f log-file-path /mount-point

 - **-f** Sets up logging.
 - **log-file-path** Specifies the location of the log file. The log file is a standard file you create with an editor, such as vi.
 - **/mount-point** Designates the mount point (CacheFS file system) for which statistics are being collected.

 2. **Verify that you correctly set up the log file.**

   ```bash
   $ cachefslog /mount-point
   ```

 Example 19–13 Setting Up CacheFS Logging

 The following example shows how to set up the `/var/tmp/samlog` log file to collect statistics about the `/home/sam` directory.

   ```bash
   $ cachefslog -f /var/tmp/samlog /home/sam
   
   /var/tmp/samlog: /home/sam
   ```

How to Locate the CacheFS Log File

- **Display where CacheFS statistics are being logged.**

  ```bash
  $ cachefslog /mount-point
  ```

 where `/mount-point` specifies the CacheFS file system for which you want to view the statistics. You can also use the `cachefslog` command with no options to locate a log file for a particular mount point.
Example 19–14 Locating the CacheFS Log File

The following example shows what you would see if a log file has been set up. The location of the log file is /var/tmp/stufflog.

```
$ cachefslog /home/stuff
  /var/tmp/stufflog: /home/stuff
```

The following example shows that no log file has been set up for the specified file system.

```
$ cachefslog /home/zap
  not logged: /home/zap
```

How to Stop CacheFS Logging

Use the cachefslog -h option to stop logging.

```
$ cachefslog -h /mount-point
```

The following example shows how to stop logging on /home/stuff.

```
$ cachefslog -h /home/stuff
  not logged: /home/stuff
```

If you get a system response other than the response specified here, you did not successfully stop logging. Determine if you are using the correct log file name and mount point.

▼ How to View the Working Set (Cache) Size

You might want to check if you need to increase the size of the cache. Or, you might want to determine the ideal cache size based on your activity since you last used the cachefslog command for a particular mount point.

1 Become superuser on the client system.

2 View the current cache size and highest logged cache size.
 # cachefswwsize log-file-path
 For more information, see cachefswwsize(1M).
Example 19–15 Viewing the Working Set (Cache) Size

In the following example, the end size is the size of the cache at the time you issued the `cachefswsize` command. The high water size is the largest size of the cache during the timeframe in which logging occurred.

```bash
# cachefswsize /var/tmp/samlog
```

```
/home/sam
  end size: 10688k
  high water size: 10704k

/opt
  end size: 128k
  high water size: 128k

/nfs/saturn.dist
  end size: 1472k
  high water size: 1472k

/data/abc
  end size: 7168k
  high water size: 7168k

/nfs/venus.svr4
  end size: 4688k
  high water size: 5000k

/data
  end size: 4992k
  high water size: 4992k

total for cache
  initial size: 110960k
  end size: 30872k
  high water size: 30872k
```

Viewing CacheFS Statistics

The following table explains the terminology that is displayed in the statistics output for CacheFS file systems.
How to View CacheFS Statistics

View the statistics with the `cachefsstat` command. You can view the statistics at any time. For example, you do not have to set up logging in order to view the statistics.

- **View CacheFS statistics.**

  ```bash
  $ cachefsstat /mount-point
  ``

  where `/mount-point` specifies the CacheFS file system for which you want to view the statistics.

  If you do not specify the mount point, statistics for all mounted CacheFS file systems will be displayed.

**Example 19–16** Viewing CacheFS Statistics

This example shows how to view statistics on the cached file system, `/home/sam`.

```bash
$ cachefsstat /home/sam
 cache hit rate: 73% (1234 hits, 450 misses)
 consistency checks: 700 (650 pass, 50 fail)
 modifies: 321
 garbage collection: 0
```
This chapter provides guidelines and step-by-step instructions for configuring additional swap space after the Oracle Solaris OS is installed.

This is a list of the step-by-step instructions in this chapter.

- “How to Create a Swap File and Make It Available in UFS Root Environment” on page 390
- “How to Add Swap Space in an Oracle Solaris ZFS Root Environment” on page 391
- “How to Remove Unneeded Swap Space” on page 392

This is a list of the overview information in this chapter.

- “About Swap Space” on page 381
- “How Do I Know If I Need More Swap Space?” on page 384
- “How Swap Space Is Allocated” on page 385
- “Planning for Swap Space” on page 386
- “Monitoring Swap Resources” on page 387
- “Adding More Swap Space” on page 389

**About Swap Space**

You should understand the features of the SunOS swap mechanism to determine the following:

- Swap space requirements
- The relationship between swap space and the TMPFS file system
- How to recover from error messages related to swap space

**Swap Space and Virtual Memory**

Solaris software uses some disk slices for temporary storage rather than for file systems. These slices are called swap slices. Swap slices are used as virtual memory storage areas when the system does not have enough physical memory to handle current processes.
The virtual memory system maps physical copies of files on disk to virtual addresses in memory. Physical memory pages that contain the data for these mappings can be backed by regular files in the file system, or by swap space. If the memory is backed by swap space it is referred to as anonymous memory because no identity is assigned to the disk space that is backing the memory.

The Oracle Solaris OS uses the concept of virtual swap space, a layer between anonymous memory pages and the physical storage (or disk-backed swap space) that actually back these pages. A system’s virtual swap space is equal to the sum of all its physical (disk-backed) swap space plus a portion of the currently available physical memory.

Virtual swap space has these advantages:

- The need for large amounts of physical swap space is reduced because virtual swap space does not necessarily correspond to physical (disk) storage.
- A pseudo file system called SWAPFS provides addresses for anonymous memory pages. Because SWAPFS controls the allocation of memory pages, it has greater flexibility in deciding what happens to a page. For example, SWAPFS might change the page’s requirements for disk-backed swap storage.

**Swap Space and the TMPFS File System**

The TMPFS file system is activated automatically in the Solaris environment by an entry in the /etc/vfstab file. The TMPFS file system stores files and their associated information in memory (in the /tmp directory) rather than on disk, which speeds access to those files. This feature results in a major performance enhancement for applications such as compilers and DBMS products that use /tmp heavily.

The TMPFS file system allocates space in the /tmp directory from the system’s swap resources. This feature means that as you use up space in the /tmp directory, you are also using up swap space. So, if your applications use the /tmp directory heavily and you do not monitor swap space usage, your system could run out of swap space.

Do use the following if you want to use TMPFS, but your swap resources are limited:

- Mount the TMPFS file system with the size option (-o size) to control how much swap resources TMPFS can use.
- Use your compiler’s TMPDIR environment variable to point to another larger directory.
  
  Using your compiler’s TMPDIR variable only controls whether the compiler is using the /tmp directory. This variable has no effect on other programs’ use of the /tmp directory.
**Swap Space as a Dump Device**

A *dump device* is usually disk space that is reserved to store system crash dump information. By default, a system’s dump device is configured to be a swap slice in a UFS root environment. If possible, you should configure an alternate disk partition as a *dedicated dump device* instead to provide increased reliability for crash dumps and faster reboot time after a system failure. You can configure a dedicated dump device by using the `dumpadm` command. For more information, see Chapter 17, “Managing System Crash Information (Tasks),” in *System Administration Guide: Advanced Administration*.

In a ZFS root environment, swap and dump are configured as separate ZFS volumes. The advantages to this model are as follows:

- You don’t have to partition a disk to include swap and dump areas.
- Swap and dump devices benefit from the underlying ZFS I/O pipeline architecture.
- You can set characteristics, such as compression, on swap and dump devices.
- You can reset swap and dump device sizes. For example:

```bash
zfs set volsize=2G rpool/dump
zfs get volsize rpool/dump
NAME PROPERTY VALUE SOURCE
 rpool/dump volsize 2G -
```

Keep in mind that reallocating a large dump device is a time-consuming process.

- On an active system, you might consider adding a second swap volume to increase overall swap size.

For more information about using ZFS swap and dump devices, see “ZFS Support for Swap and Dump Devices” in *Oracle Solaris ZFS Administration Guide*.

If you are using a volume manager to manage your disks in a UFS environment, such as Solaris Volume Manager, do not configure your dedicated dump device to be under its control. You can keep your swap areas under Solaris Volume Manager’s control, which is a recommended practice. However, for accessibility and performance reasons, configure another disk as a dedicated dump device outside of Solaris Volume Manager’s control.

**Swap Space and Dynamic Reconfiguration**

A good practice is to allocate enough swap space to support a failing CPU or system board during dynamic reconfiguration. Otherwise, a CPU or system board failure might result in your host or domain rebooting with less memory.

Without having this additional swap space available, one or more of your applications might fail to start due to insufficient memory. This problem would require manual intervention either to add additional swap space or to reconfigure the memory usage of these applications.
If you have allocated additional swap space to handle a potential loss of memory on reboot, all of your intensive applications might start as usual. This means the system will be available to the users, perhaps possibly slower due to some additional swapping.

For more information, see your hardware dynamic reconfiguration guide.

**Configuring Swap Space in a SAN Environment**

Review the following points to determine whether you might configure swap space on a network-connected disk, such as in a SAN environment:

- Diagnosing swap space issues on a locally-attached disk is easier than diagnosing swap space issues on a network-connected disk.
- The performance of swap space over a SAN should be comparable to swap space configured on a locally-attached disk.
- Adding more memory to a system with performance issues, after analyzing performance data, might resolve a swap over SAN performance problem better than moving the swap to a locally-attached disk.

**How Do I Know If I Need More Swap Space?**

Use the `swap -l` command to determine if your system needs more swap space.

For example, the following `swap -l` output shows that this system’s swap space is almost entirely consumed or at 100% allocation.

```bash
% swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 136,1 16 1638608 88
```

When a system’s swap space is at 100% allocation, an application’s memory pages become temporarily locked. Application errors might not occur, but system performance will likely suffer.

For information on adding more swap space to your system, see “How to Create a Swap File and Make It Available in UFS Root Environment” on page 390.

**Swap-Related Error Messages**

These messages indicate that an application was trying to get more anonymous memory. However, no swap space was left to back it.

```bash
application: is out of memory
malloc error: 0
```
TMPFS-Related Error Messages

The following message is displayed if a page could not be allocated when a file was being written. This problem can occur when TMPFS tries to write more than it is allowed or if currently executed programs are using a lot of memory.

directory: File system full, swap space limit exceeded

The following message means that TMPFS ran out of physical memory while attempting to create a new file or directory:

directory: File system full, memory allocation failed

For information on recovering from the TMPFS-related error messages, see `tmpfs(7FS)`.

How Swap Space Is Allocated

Initially, swap space is allocated as part of the Solaris installation process. If you use the installation program's automatic layout of disk slices and do not manually change the size of the swap slice, the Solaris installation program allocates a default swap area of 512 MB for a UFS root environment. In a ZFS root environment, the default swap size is generally in the 512 MB to 2 GB range.

For general guidelines on allocating swap space, see “Planning for Swap Space” on page 386.

You can allocate additional swap space to the system by creating a swap file in a UFS root environment. Swap files are not supported in a ZFS root environment. For information about creating a swap file, see “Adding More Swap Space” on page 389.

Swap Areas and the `/etc/vfstab` File

After the system is installed, swap slices and swap files are listed in the `/etc/vfstab` file. They are activated by the `/sbin/swapadd` script when the system is booted.

An entry for a swap device in the `/etc/vfstab` file contains the following:

- The full path name of the swap slice or swap file on system with a UFS root file system or a swap volume path name on a system with a ZFS root file system
- File system type of the swap slice or swap file
The file system that contains a swap file must be mounted before the swap file is activated. So, in the /etc/vfstab file, ensure that the entry that mounts the file system comes before the entry that activates the swap file.

Planning for Swap Space

The most important factors in determining swap space size are the requirements of the system’s software applications. For example, large applications such as computer-aided design simulators, database management products, transaction monitors, and geologic analysis systems can consume as much as 200–1000 MB of swap space.

Consult your application vendors for swap space requirements for their applications.

If you are unable to determine swap space requirements from your application vendors, use the following general guidelines based on your system type to allocate swap space.

<table>
<thead>
<tr>
<th>System Type</th>
<th>Swap Space Size</th>
<th>Dedicated Dump Device Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>System with about 4 GB of physical memory</td>
<td>1 GB</td>
<td>1 GB</td>
</tr>
<tr>
<td>Mid-range server with about 8 GB of physical memory</td>
<td>2 GB</td>
<td>2 GB</td>
</tr>
<tr>
<td>High-end server with about 16 to 128 GB of physical memory</td>
<td>4 GB</td>
<td>4 GB</td>
</tr>
<tr>
<td>High-end server with more than 128 GB of physical memory</td>
<td>1/4 of physical memory size</td>
<td>1/4 of physical memory size</td>
</tr>
</tbody>
</table>

Note – Crash dump content is compressed so the dump device does not have to be the same size as physical memory. By default, the dump content value is set to kernel pages. However, if the dump content value is set to dump all memory pages, then consider increasing the dump size to half the size of physical memory or more.

Allocating Swap Space for UFS-Based Systems

In addition to preceding general guidelines, consider allocating swap space or disk space for a UFS-based system for the following:

- A dedicated dump device.
- The /var/crash directory. The default system crash dump content is kernel memory pages only and the dump is compressed before it is written. Consider sizing this directory to the size of the dump device unless you attend to keep several system crash dumps.
Determine whether large applications (such as compilers) will be using the /tmp directory. Then, allocate additional swap space to be used by TMPFS. For information about TMPFS, see “Swap Space and the TMPFS File System” on page 382.

Allocating Swap Space for ZFS-Based Systems

During an initial installation of a ZFS root file system or a Solaris Live Upgrade from a UFS file system to a ZFS root file system, a swap area is automatically created on a ZFS volume in the ZFS root pool, generally in the 512 MB to 2 GB range. In the case of a UFS to ZFS migration by using Solaris Live Upgrade, a swap volume is created based on the sizes of existing swap areas.

In a ZFS root pool, swap devices are not pre-allocated to fixed-size slices, so it is fairly easy to modify the swap size later.

After you assess the swap requirements of your applications, you can use the default swap size or adjust the swap volume size during an initial installation or after the installation, if necessary.

During an initial installation, the default dump volume size is calculated by the kernel based on dumpadm information and the size of physical memory. During a Live Upgrade migration from a UFS root file system to a ZFS root file system, the default dump volume size is set to half the size of physical memory, between 512 MB and 2 GB, in the ZFS BE.

In a ZFS environment, file systems consume space from the pool. The /var/crash directory consumes what it needs depending on how many crash dumps are saved.

Monitoring Swap Resources

The /usr/sbin/swap command is used to manage swap areas. Two options, -l and -s, display information about swap resources.

Use the swap -l command to identify a system’s swap areas. Activated swap devices or files are listed under the swapfile column. For example:

```
swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 136,1 16 1638608 1600528
```

On a system with a ZFS root file system, the swap -l command identifies similar output except that it identifies the ZFS volume path name. For example:

```
swap -l
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 256,1 16 1058800 1058800
```

Use the swap -s command to monitor swap resources.
The used value plus the available value equals the total swap space on the system, which includes a portion of physical memory and swap devices (or files).

You can use the amount of available and used swap space (in the \texttt{swap -s} output) as a way to monitor swap space usage over time. If a system’s performance is good, use \texttt{swap -s} to determine how much swap space is available. When the performance of a system slows down, check the amount of available swap space to determine if it has decreased. Then you can identify what changes to the system might have caused swap space usage to increase.

When using this command, keep in mind that the amount of physical memory available for swap usage changes dynamically as the kernel and user processes lock down and release physical memory.

\textbf{Note} – The \texttt{swap -l} command displays swap space in 512-byte blocks. The \texttt{swap -s} command displays swap space in 1024-byte blocks. If you add up the blocks from \texttt{swap -l} and convert them to KB, the result is less than \texttt{used + available} (in the \texttt{swap -s} output). The reason is that \texttt{swap -l} does not include physical memory in its calculation of swap space.

The output from the \texttt{swap -s} command is summarized in the following table.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Keyword & Description \\
\hline
\texttt{bytes allocated} & The total amount of swap space in 1024-byte blocks that is currently allocated as backing store (disk-backed swap space). \\
\texttt{reserved} & The total amount of swap space in 1024-byte blocks that is not currently allocated, but claimed by memory for possible future use. \\
\texttt{used} & The total amount of swap space in 1024-byte blocks that is either allocated or reserved. \\
\texttt{available} & The total amount of swap space in 1024-byte blocks that is currently available for future reservation and allocation. \\
\hline
\end{tabular}
\caption{Output of the \texttt{swap -s} Command}
\end{table}
Adding More Swap Space

As system configurations change and new software packages are installed, you might need to add more swap space. The easiest way to add more swap space is to use the `mkfile` and `swap` commands to designate a part of an existing UFS or NFS file system as a supplementary swap area. These commands, described in the following sections, enable you to add more swap space without repartitioning a disk.

Alternative ways to add more swap space are to repartition an existing disk or to add another disk. For information on how to repartition a disk, see Chapter 10, "Managing Disks (Overview)."

Creating a Swap File in a UFS Root Environment

You can create a swap file to be used in a UFS root file system. Swap files are currently not supported in a ZFS root environment. The following general steps are involved in creating a swap file:

- Creating a swap file by using the `mkfile` command.
- Activating the swap file by using the `swap` command.
- Adding an entry for the swap file in the `/etc/vfstab` file so that the swap file is activated automatically when the system is booted.

**mkfile Command**

The `mkfile` command creates a file that is suitable for use as either an NFS-mounted swap area or a local swap area. The sticky bit is set, and the file is filled with zeros. You can specify the size of the swap file in bytes (the default) or in KB, blocks, or MB by using the `k`, `b`, or `m` suffixes, respectively.

The following table shows the `mkfile` command options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>Creates an empty file. The size is noted. However, the disk blocks are not allocated until data is written to them.</td>
</tr>
<tr>
<td>-v</td>
<td>Reports the names and sizes of created files.</td>
</tr>
</tbody>
</table>

**Note** – Use the `-n` option only when you create an NFS swap file.
**How to Create a Swap File and Make It Available in UFS Root Environment**

1. **Become superuser.**
   You can create a swap file without root permissions. However, to avoid accidental overwriting, root should be the owner of the swap file.

2. **Create a directory for the swap file, if needed.**

3. **Create the swap file.**
   
   ```
 # mkfile nnn[k|b|m] filename
   ```

   The swap file of the size `nnn` (in KB, bytes, or MB) with the `filename` you specify is created.

4. **Activate the swap file.**
   
   ```
 # /usr/sbin/swap -a /path/filename
   ```

   You must use the absolute path name to specify the swap file. The swap file is added and available until the file system is unmounted, the system is rebooted, or the swap file is removed. Keep in mind that you cannot unmount a file system while some process or program is swapping to the swap file.

5. **Add an entry for the swap file to the `/etc/vfstab` file that specifies the full path name of the file, and designates swap as the file system type.**
   
   `/path/filename` - - swap - no -

6. **Verify that the swap file is added.**
   
   ```
 $ /usr/sbin/swap -l
   ```

---

**Note** – If a swap file does not get activated, make sure that the following service is running:

```
svcs nfs/client
STATE STIME FMRI
enabled 14:14:34 svc:/network/nfs/client:default
```

---

**Example 20–1**  
Creating a Swap File and Making It Available in a UFS Root Environment

The following examples shows how to create a 100-MB swap file called `/files/swapfile`.

```
mkdir /files
mkfile 100m /files/swapfile
swap -a /files/swapfile
vi /etc/vfstab
(An entry is added for the swap file):
/files/swapfile - - swap - no -
```
# Adding or Changing Swap Space in an Oracle Solaris ZFS Root Environment

The following section describes how to add or change swap space in a ZFS root environment. See the previous sections to determine if your system or applications need additional swap space.

## How to Add Swap Space in an Oracle Solaris ZFS Root Environment

1. **Become superuser.**

2. **Identify the current swap volume.**

   A swap volume cannot be removed if it is in use. You can tell if the current swap volume is in use by comparing the blocks identified in the blocks column and blocks identified in the free column. If the blocks in the two columns are equal, the swap area is not busy. For example:

   ```bash
 # swap -l
 swapfile dev swaplo blocks free
 /dev/zvol/dsk/rpool/swap 256,1 16 1058800 1058800

 # zfs get volsize rpool/swap
 NAME PROPERTY VALUE SOURCE
 rpool/swap volsize 517M -

 # zfs set volsize=2g rpool/swap

 # zfs get volsize rpool/swap
 NAME PROPERTY VALUE SOURCE
 rpool/swap volsize 2G -
   ```

3. **Select one of the following to resize the swap volume.**

   a. **If the current swap area is not in use, you can resize the size of the current swap volume.**

      For example:

      ```bash
 # zfs get volsize rpool/swap
 NAME PROPERTY VALUE SOURCE
 rpool/swap volsize 517M -

 # zfs set volsize=2g rpool/swap

 # zfs get volsize rpool/swap
 NAME PROPERTY VALUE SOURCE
 rpool/swap volsize 2G -
      ```

   b. **If the current swap area is in use, you can add another swap volume.**

      For example:

      ```bash
 # zfs create -V 2G rpool/swap2
      ```
c. **Activate the second swap volume.**

For example:

```bash
swap -a /dev/zvol/dsk/rpool/swap2
swap -l
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 256,1 16 1058800 1058800
/dev/zvol/dsk/rpool/swap2 256,3 16 4194288 4194288
```

### Removing a Swap File From Use

If you have unneeded swap space, you can remove it.

∇ **How to Remove Unneeded Swap Space**

1. **Become superuser.**

2. **Remove the swap space.**

   ```bash
 # /usr/sbin/swap -d /path/filename
   ```

   The swap file name is removed so that it is no longer available for swapping. The file itself is not deleted.

3. **Edit the /etc/vfstab file and delete the entry for the swap file.**

4. **Recover the disk space so that you can use it for something else.**

   ```bash
 # rm /path/filename
   ```

   If the swap space is a file, remove it. Or, if the swap space is on a separate slice and you are sure you will not need it again, make a new file system and mount the file system.

   For information on mounting a file system, see Chapter 18, "Mounting and Unmounting File Systems (Tasks)."

5. **Verify that the swap file is no longer available.**

   ```bash
 # swap -l
   ```

### Example 20–2 Removing Unneeded Swap Space

The following examples shows how to delete the /files/swapfile swap file.

```bash
swap -d /files/swapfile
(Remove the swap entry from the /etc/vfstab file)
rm /files/swapfile
swap -l
```
Removing a Swap File From Use

<table>
<thead>
<tr>
<th>swapfile</th>
<th>dev</th>
<th>swaplo</th>
<th>blocks</th>
<th>free</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/dsk/c0t0d0s1</td>
<td>136,1</td>
<td>16</td>
<td>1638608</td>
<td>1600528</td>
</tr>
</tbody>
</table>
Checking UFS File System Consistency (Tasks)

This chapter provides overview information and step-by-step instructions about checking UFS file system consistency.

This is a list of step-by-step instructions in this chapter.
- “How to Check the root (/), /usr, or /var File Systems From an Alternate Boot Device” on page 404
- “How to Check Other File Systems (Not root (/), /usr, or /var)” on page 406
- “How to Preen a UFS File System” on page 408
- “How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)” on page 413
- “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 410

This is a list of the overview information in this chapter.
- “File System Consistency” on page 396
- “How the File System State Is Recorded” on page 396
- “What the fsck Command Checks and Tries to Repair” on page 397
- “Interactively Checking and Repairing a UFS File System” on page 403
- “Restoring a Bad Superblock” on page 410
- “Syntax and Options for the fsck Command” on page 415

For new information about fsck in the Solaris 10 6/06 release, see “Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)” on page 294.

For information about fsck error messages, see Chapter 20, “Resolving UFS File System Inconsistencies (Tasks),” in System Administration Guide: Advanced Administration.

For background information on the UFS file system structures referred to in this chapter, see Chapter 22, “UFS File System (Reference).”
The UFS filesystem relies on an internal set of tables to keep track of inodes used and available blocks. When these internal tables are not properly synchronized with data on a disk, inconsistencies result and file systems need to be repaired.

File systems can be inconsistent because of abrupt termination of the operating system from the following:

- Power failure
- Accidental unplugging of the system
- Turning off the system without proper shutdown procedure
- A software error in the kernel

File system inconsistencies, while serious, are not common. When a system is booted, a check for file system consistency is automatically performed (with the `fsck` command). Often, this file system check repairs problems it encounters.

The `fsck` command places files and directories that are allocated but unreferenced in the `lost+found` directory. An inode number is assigned as the name of unreferenced file and directory. If the `lost+found` directory does not exist, the `fsck` command creates it. If there is not enough space in the `lost+found` directory, the `fsck` command increases its size.

For a description of inodes, see “Inodes” on page 418.

### How the File System State Is Recorded

The `fsck` command uses a state flag, which is stored in the superblock, to record the condition of the file system. This flag is used by the `fsck` command to determine whether a file system needs to be checked for consistency. The flag is used by the `/sbin/rc5` script during booting and by the `fsck -m` command. If you ignore the result from the `fsck -m` command, all file systems can be checked regardless of the setting of the state flag.

For a description of the superblock, see “Superblock” on page 418.

The possible state flag values are described in the following table.

<table>
<thead>
<tr>
<th>State Flag Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSACTIVE</td>
<td>Indicates a mounted file system that has modified data in memory. A mounted file system with this state flag indicates that user data or metadata would be lost if power to the system is interrupted.</td>
</tr>
<tr>
<td>FSBAD</td>
<td>Indicates that the file system contains inconsistent file system data.</td>
</tr>
</tbody>
</table>
What the `fsck` Command Checks and Tries to Repair

This section describes what happens in the normal operation of a file system, what can go wrong, what problems the `fsck` command (the checking and repair utility) looks for, and how this command corrects the inconsistencies it finds.

Why UFS File System Inconsistencies Might Occur

Every working day, hundreds of files might be created, modified, and removed. Each time a file is modified, the operating system performs a series of file system updates. These updates, when written to the disk reliably, yield a consistent file system.

When a user program does an operation to change the file system, such as a write, the data to be written is first copied into an in-core buffer in the kernel. Normally, the disk update is handled asynchronously. The user process is allowed to proceed even though the data write might not happen until long after the write system call has returned. Thus, at any given time, the file system, as it resides on the disk, lags behind the state of the file system that is represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is required for another use or when the kernel automatically runs the `fsflush` daemon (at 30-second intervals). If the system is halted without writing out the in-core information, the file system on the disk might be in an inconsistent state.

A file system can develop inconsistencies in several ways. The most common causes are operator error and hardware failures.

Problems might result from an *unclean shutdown*, if a system is shut down improperly, or when a mounted file system is taken offline improperly. To prevent unclean shutdows, the current state of the file systems must be written to disk (that is, “synchronized”) before you shut down the system, physically take a disk pack out of a drive, or take a disk offline.
Inconsistencies can also result from defective hardware or problems with the disk or controller firmware. Blocks can become damaged on a disk drive at any time. Or, a disk controller can stop functioning correctly.

**UFS Components That Are Checked for Consistency**

This section describes the kinds of consistency checks that the `fsck` command applies to these UFS file system components: superblock, cylinder group blocks, inodes, indirect blocks, and data blocks.

For information about UFS file system structures, see "Structure of Cylinder Groups for UFS File Systems" on page 417.

**Superblock Checks**

The superblock stores summary information, which is the most commonly corrupted component in a UFS file system. Each change to file system inodes or data blocks also modifies the superblock. If the CPU is halted and the last command is not a `sync` command, the superblock almost certainly becomes corrupted.

The superblock is checked for inconsistencies in the following:

- File system size
- Number of inodes
- Free block count
- Free inode count

**File System Size and Inode List Size Checks**

The file system size must be larger than the number of blocks used by the superblock and the list of inodes. The number of inodes must be less than the maximum number allowed for the file system. An inode represents all the information about a file. The file system size and layout information are the most critical pieces of information for the `fsck` command. There is no way to actually check these sizes because they are statically determined when the file system is created. However, the `fsck` command can check that the sizes are within reasonable bounds. All other file system checks require that these sizes be correct. If the `fsck` command detects corruption in the static parameters of the primary superblock, it requests the operator to specify the location of an alternate superblock.

For more information about the structure of the UFS file system, see “Structure of Cylinder Groups for UFS File Systems” on page 417.
Free Block Checks

Free blocks are stored in the cylinder group block maps. The `fsck` command checks that all the blocks marked as free are not claimed by any files. When all the blocks have been accounted for, the `fsck` command checks if the number of free blocks plus the number of blocks that are claimed by the inodes equal the total number of blocks in the file system. If anything is wrong with the block maps, the `fsck` command rebuilds them, leaving out blocks already allocated.

The summary information in the superblock includes a count of the total number of free blocks within the file system. The `fsck` command compares this count to the number of free blocks it finds within the file system. If the counts do not agree, the `fsck` command replaces the count in the superblock with the actual free block count.

Free Inode Checks

Summary information in the superblock contains a count of the free inodes within the file system. The `fsck` command compares this count to the number of free inodes it finds within the file system. If the counts do not agree, `fsck` replaces the count in the superblock with the actual free inode count.

Inodes

The list of inodes is checked sequentially starting with inode 2. (Inode 0 and inode 1 are reserved). Each inode is checked for inconsistencies in the following:

- Format and type
- Link count
- Duplicate block
- Bad block numbers
- Inode size

Format and Type of Inodes

Each inode contains a mode word, which describes the type and state of the inode. Inodes might be one of nine types:

- Regular
- Directory
- Block special
- Character special
- FIFO (named pipe)
- Symbolic link
- Shadow (used for ACLs)
- Attribute directory
- Socket

Inodes might be in one of three states:
Allocated
Unallocated
Partially allocated

When the file system is created, a fixed number of inodes are set aside. However, these inodes are not allocated until they are needed. An *allocated inode* is one that points to a file. An *unallocated inode* does not point to a file and, therefore, should be empty. The *partially allocated* state means that the inode is incorrectly formatted. An inode can get into this state if, for example, bad data is written into the inode list because of a hardware failure. The only corrective action the *fsck* command can take is to clear the inode.

### Link Count Checks

Each inode contains a count of the number of directory entries linked to it. The *fsck* command verifies the link count of each inode by examining the entire directory structure, starting from the root (/) directory, and calculating an actual link count for each inode.

Discrepancies between the link count stored in the inode and the actual link count as determined by the *fsck* command might be one of three types:

- The stored count is *not* 0, and the actual count is 0.
  This condition can occur if no directory entry exists for the inode. In this case, the *fsck* command puts the disconnected file in the *lost+found* directory.
- The stored count is *not* 0 and the actual count is *not* 0. However, the counts are *unequal*.
  This condition can occur if a directory entry has been added or removed, but the inode has not been updated. In this case, the *fsck* command replaces the stored link count with the actual link count.
- The stored count is 0, and the actual count is not 0.
  In this case, the *fsck* command changes the link count of the inode to the actual count.

### Duplicate Block Checks

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed by the inode. Because indirect blocks are owned by an inode, inconsistencies in indirect blocks directly affect the inode that owns the indirect block.

The *fsck* command compares each block number claimed by an inode to a list of allocated blocks. If another inode already claims a block number, the block number is put on a list of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block number.

If duplicate blocks are found, the *fsck* command makes a second pass of the inode list to find the other inode that claims each duplicate block. The *fsck* command cannot determine with certainty which inode is in error. So, the *fsck* command prompts you to choose which inode should be kept and which inode should be cleared. Note that a large number of duplicate blocks in an inode might be caused by an indirect block not being written to the file system.
Bad Block Number Checks
The `fsck` command checks each block number claimed by an inode to determine whether its value is higher than the value of the first data block and lower than that of the last data block in the file system. If the block number is outside this range, it is considered a bad block number.

Bad block numbers in an inode might be caused by an indirect block not being written to the file system. The `fsck` command prompts you to clear the inode.

Inode Size Checks
Each inode contains a count of the number of data blocks that it references. The number of actual data blocks is the sum of the allocated data blocks and the indirect blocks. The `fsck` command computes the number of data blocks and compares that block count against the number of blocks that the inode claims. If an inode contains an incorrect count, the `fsck` command prompts you to fix it.

Each inode contains a 64-bit size field. This field shows the number of characters (data bytes) in the file associated with the inode. A rough check of the consistency of the size field of an inode uses the number of characters shown in the size field to calculate how many blocks should be associated with the inode, and then compares that number to the actual number of blocks claimed by the inode.

Indirect Blocks
Indirect blocks are owned by an inode. Therefore, inconsistencies in an indirect block affect the inode that owns it. Inconsistencies that can be checked are the following:

- Blocks already claimed by another inode
- Block numbers outside the range of the file system

These consistency checks listed are also performed for direct blocks.

Data Blocks
An inode can directly or indirectly reference three kinds of data blocks. All referenced blocks must be of the same kind. The three types of data blocks are the following:

- Plain data blocks
- Symbolic-link data blocks
- Directory data blocks

Plain data blocks contain the information stored in a file. Symbolic-link data blocks contain the path name stored in a symbolic link. Directory data blocks contain directory entries. The `fsck` command can check only the validity of directory data blocks.

Directories are distinguished from regular files by an entry in the mode field of the inode. Data blocks associated with a directory contain the directory entries. Directory data blocks are checked for inconsistencies involving the following:
■ Directory inode numbers that point to unallocated inodes
■ Directory inode numbers that are greater than the number of inodes in the file system
■ Incorrect directory inode numbers for “.” and “..” directories
■ Directories that are disconnected from the file system

**Directory Unallocated Checks**

If the inode number in a directory data block points to an unallocated inode, the `fsck` command removes the directory entry. This condition can occur if the data blocks that contain a new directory entry are modified and written out, but the inode does not get written out. This condition can occur if the CPU is shut down abruptly.

**Bad Inode Number Checks**

If a directory entry inode number points beyond the end of the inode list, the `fsck` command removes the directory entry. This condition can occur when bad data is written into a directory data block.

**Incorrect “.” and “..” Entry Checks**

The directory inode number entry for “.” must be the first entry in the directory data block. The directory inode number must reference itself. That is, its value must be equal to the inode number for the directory data block.

The directory inode number entry for “..” must be the second entry in the directory data block. The directory inode number value must be equal to the inode number of the parent directory or the inode number of itself if the directory is the root (/) directory.

If the directory inode numbers for “.” and “..” are incorrect, the `fsck` command replaces them with the correct values. If there are multiple hard links to a directory, the first hard link found is considered the real parent to which “..” should point. In this case, the `fsck` command recommends that you have it delete the other names.

**Disconnected Directories**

The `fsck` command checks the general connectivity of the file system. If a directory that is not linked to the file system is found, the `fsck` command links the directory to the `lost+found` directory of the file system. This condition can occur when inodes are written to the file system. However, the corresponding directory data blocks are not.

**Regular Data Blocks**

Data blocks associated with a regular file hold the contents of the file. The `fsck` command does not attempt to check the validity of the contents of a regular file’s data blocks.
**fsck Summary Message**

When you run the `fsck` command interactively and it completes successfully, a message similar to the following is displayed:

```
fsck /dev/rdsk/c0t0d0s7
** /dev/rdsk/c0t0d0s7
** Last Mounted on /export/home
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
2 files, 9 used, 2833540 free (20 frags, 354190 blocks, 0.0% fragmentation)
#
```

The last line of `fsck` output describes the following information about the file system:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>files</code></td>
<td>Number of inodes in use</td>
</tr>
<tr>
<td><code>used</code></td>
<td>Number of fragments in use</td>
</tr>
<tr>
<td><code>free</code></td>
<td>Number of unused fragments</td>
</tr>
<tr>
<td><code>frags</code></td>
<td>Number of unused non-block fragments</td>
</tr>
<tr>
<td><code>blocks</code></td>
<td>Number of unused full blocks</td>
</tr>
<tr>
<td><code>% fragmentation</code></td>
<td>Percentage of fragmentation, where: free fragments x 100 / total fragments in the file system</td>
</tr>
</tbody>
</table>

For information about fragments, see “Fragment Size” on page 421.

**Interactively Checking and Repairing a UFS File System**

You might need to interactively check file systems in the following instances:

- When they cannot be mounted
- When they develop inconsistencies while in use

When an in-use file system develops inconsistencies, error messages might be displayed in the console window or the system messages file. Or, the system might crash. For example, the system messages file, `/var/adm/messages`, might include messages similar to the following:

```
Sep 5 13:42:40 hostname ufs: [ID 879645 kern.notice] NOTICE: /: unexpected free inode 630916, run fsck(1M)
```

`hostname` is the system reporting the error.
Before using the `fsck` command, you might want to refer to these references for information on resolving `fsck` error messages:

- "Syntax and Options for the `fsck` Command" on page 415
- Chapter 20, "Resolving UFS File System Inconsistencies (Tasks)," in *System Administration Guide: Advanced Administration*

Keep the following points in mind when running the `fsck` command to check UFS file systems:

- A file system *should* be inactive when you use `fsck` to check a file system. File system changes waiting to be flushed to disk or file system changes that occur during the `fsck` checking process can be interpreted as file system corruption. These issues may not be a reliable indication of a problem.

- A file system *must* be inactive when you use `fsck` to repair that file system. File system changes waiting to be flushed to disk or file system changes that occur during the `fsck` repairing process might cause the file system to become corrupted. Or, they might cause the system to crash.

-Unmount a file system before you use `fsck` on that file system. Doing so ensures that the file system data structures are consistent as possible. The only exceptions are for the active root (`/`), `/usr`, and `/var` file systems because they must be mounted to run `fsck`.

- If you need to repair the root (`/`), `/usr`, and `/var` file systems, boot the system from an alternate device, if possible, so that these file systems are unmounted and inactive.
  
  For step-by-step instructions on running `fsck` on the root (`/`), `/usr`, or `/var` file systems, see “How to Check the root (`/`), `/usr`, or `/var` File Systems From an Alternate Boot Device” on page 404.

**How to Check the root (`/`), `/usr`, or `/var` File Systems From an Alternate Boot Device**

For new information about `fsck` in the Solaris 10 6/06 release, see “Enhancements to UFS File System Utilities (`fsck`, `mkfs`, and `newfs`)” on page 294. There is no need to rerun `fsck` if you see the following message:

```
***** FILE SYSTEM WAS MODIFIED *****
```

However, it doesn’t harm the file system to rerun `fsck` after this message. This message is just informational about `fsck`'s corrective actions.

This procedure assumes that a local Solaris DVD or network boot server is available so that you can boot the system from an alternate device.
For information on restoring a bad superblock, see “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 410 or “How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)” on page 413.

1. **Become superuser or assume an equivalent role.**

2. **For systems with mirrored root (/) file systems only: Detach the root (/) mirror before booting from the alternate device, or you risk corrupting the file system.**

   For information on detaching the root (/) mirror, see “Working With Submirrors” in *Solaris Volume Manager Administration Guide*. 

3. **Identify the device, such as /dev/dsk/c0t0d0s0, of the root (/), /usr, or /var file system that needs to be checked.**

   You'll need to supply this device name when booted from an alternate device. Identifying this device when you are already booted from the alternate device is more difficult.

4. **Boot the system with the root (/), /usr, or /var file system that needs to be checked from an alternate device, such as a local Solaris DVD or the network, in single-user mode.**

   Doing so ensures that there is no activity on these file systems.

   For example:
   
   ```
 # init 0
 ok boot net -s
 .
 .
 .
 #
   ```

5. **Check the device that contains the root (/), /usr, or /var file system as identified in Step 3.**

   If the hardware for the file system to be checked or repaired has changed, the device names might have changed. Check that the `fsck -n` message `Last Mounted on ...` indicates the expected device for the file system.

   In this example, the root (/) file system to be checked is /dev/dsk/c0t0d0s0.

   ```
 # fsck -n /dev/dsk/c0t0d0s0
 ** /dev/dsk/c0t0d0s0 (NO WRITE)
 ** Last Mounted on /
 .
 .
 .

 fsck /dev/dsk/c0t0d0s0
 ** /dev/dsk/c0t0d0s0
 ** Last Mounted on /
 ** Phase 1 - Check Blocks and Sizes
 ** Phase 2 - Check Pathnames
 .
 .
   ```
Interactively Checking and Repairing a UFS File System

6 Correct any reported fsck errors.
   For information on how to respond to the error message prompts while you interactively check one or more UFS file systems, see Chapter 20, "Resolving UFS File System Inconsistencies (Tasks)," in System Administration Guide: Advanced Administration.

7 If fsck cannot repair all of the problems after running it, see “Fixing a UFS File System That the fsck Command Cannot Repair” on page 409.

8 Mount the repaired file system to determine if any files exist in the lost+found directory.
   Individual files put in the lost+found directory by the fsck command are renamed with their inode numbers. If possible, rename the files and move them where they belong. Try to use the grep command to match phrases within individual files and the file command to identify file types.
   Eventually, remove unidentifiable files or directories left in the lost+found directory so that it doesn’t fill up unnecessarily.

9 Bring the system back to multiuser mode.
   # init 6

10 For systems with mirrored root (/) file systems only: Reattach the root (/) mirror.

▼ How to Check Other File Systems (Not root (/), /usr, or /var)

For new information about fsck in the Solaris 10 6/06 release, see “Enhancements to UFS File System Utilities (fsck, mkfs, and newfs)” on page 294. There is no need to rerun fsck if you see the following message:

***** FILE SYSTEM WAS MODIFIED *****

However, it doesn't harm the file system to rerun fsck after this message. This message is just informational about fsck's corrective actions.

This procedure assumes that the file system to be checked is unmounted.

For information on restoring a bad superblock, see “How to Restore a Bad Superblock (Solaris 10 6/06 Release)” on page 410 or “How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)” on page 413.

1 Become superuser or assume an equivalent role.
2 Unmount the local file system to ensure that there is no activity on the file system.

Specify the mount point directory or /dev/dsk/device-name as arguments to the fsck command. Any inconsistency messages are displayed.

For example:

```
umount /export/home
fsck /dev/rdsk/c0t0d0s7
** /dev/dsk/c0t0d0s7
** Last Mounted on /export/home
```

3 Correct any reported fsck errors.

For information on how to respond to the error message prompts while you interactively check one or more UFS file systems, see Chapter 20, “Resolving UFS File System Inconsistencies (Tasks),” in System Administration Guide: Advanced Administration.

4 If fsck cannot repair all of the problems after running it, see “Fixing a UFS File System That the fsck Command Cannot Repair” on page 409.

5 Mount the repaired file system to determine if there are any files in the lost+found directory.

Individual files put in the lost+found directory by the fsck command are renamed with their inode numbers.

6 Rename and move any files put in the lost+found directory.

If possible, rename the files and move them where they belong. Try to use the grep command to match phrases within individual files and the file command to identify file types.

Eventually, remove unidentifiable files or directories left in the lost+found directory so that it doesn’t fill up unnecessarily.

Example 21-1 Interactively Checking Non-root (/) or Non-/usr File Systems

The following example shows how to check the /dev/rdsk/c0t0d0s6 file system and correct the incorrect block count. This example assumes that the file system is unmounted.

```
fsck /dev/rdsk/c0t0d0s6
** Phase 1 - Check Block and Sizes
INCORRECT BLOCK COUNT I=2529 (6 should be 2)
CORRECT? y
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Cylinder Groups
929 files, 8928 used, 2851 free (75 frags, 347 blocks, 0.6%)
```
Preening UFS File Systems

The `fsck -o p` command (p is for preen) checks UFS file systems and automatically fixes the problems that normally result from an unexpected system shutdown. This command exits immediately if it encounters a problem that requires operator intervention. This command also permits parallel checking of file systems.

You can run the `fsck -o p` command to preen the file systems after an unclean shutdown. In this mode, the `fsck` command does not look at the clean flag and does a full check. These actions are a subset of the actions that the `fsck` command takes when it runs interactively.

How to Preen a UFS File System

This procedure assumes that the file system is unmounted or inactive.

1. Become superuser or assume an equivalent role.

2. Unmount the UFS file system.
   ```
 # umount /mount-point
   ```

3. Check the UFS file system with the preen option.
   ```
 # fsck -o p /dev/rdsk/device-name
   ```
   You can preen individual file systems by using `/mount-point` or `/dev/rdsk/device-name` as arguments to the `fsck` command.

Example 21–2 Preening a UFS File System

The following example shows how to preen the `/export/home` file system.

```
fsck -o p /export/home
```
Fixing a UFS File System That the fsck Command Cannot Repair

The fsck command operates in several passes, and a problem corrected in a later pass can expose other problems that are only detected by earlier passes. Therefore, it is sometimes necessary to run fsck until it no longer reports any problems. Doing so ensures that all errors have been found and repaired.

Pay attention to the information displayed by the fsck command. This information might help you fix the problem. For example, the messages might point to a damaged directory. If you delete the directory, you might find that the fsck command runs cleanly.

If the fsck command still cannot repair the file system, try to use the ff, clri, and ncheck commands to figure out and fix what is wrong. For information about how to use these commands, see the following references:

- fsdb(1M)
- ff(1M)
- clri(1M)
- ncheck(1M)

Ultimately, you might need to re-create the file system and restore its contents from backup media.

For information about restoring complete file systems, see Chapter 26, “Restoring UFS Files and File Systems (Tasks).”

If you cannot fully repair a file system but you can mount it read-only, try using the cp, tar, or cpio commands to retrieve all or part of the data from the file system.

If hardware disk errors are causing the problem, you might need to reformat and repartition the disk again before re-creating and restoring file systems. Check that the device cables and connectors are functional before replacing the disk device. Hardware errors usually display the same error again and again across different commands. The format command tries to work around bad blocks on the disk. However, if the disk is too severely damaged, the problems might persist, even after reformating. For information about using the format command, see format(1M). For information about installing a new disk, see Chapter 12, “SPARC: Adding a Disk (Tasks),” or Chapter 13, “x86: Adding a Disk (Tasks).”
Restoring a Bad Superblock

When the superblock of a file system becomes damaged, you must restore it. The `fsck` command tells you when a superblock is bad. Fortunately, copies of the superblock are stored within a file system.

You can use the `fsck -o b` command to replace the superblock with one of these copies or use `fsck`'s automatic search for backup superblocks feature, which is new in the Solaris 10 6/06 release. For more information about this feature, see "Automatic Search for Backup Superblocks" on page 295.

For more information about the superblock, see “Superblock” on page 418.

If the superblock in the root (/) file system becomes damaged and you cannot restore it, you have two choices:

- Reinstall the system.
- Boot from the network or local Solaris DVD, and attempt the following steps. If these steps fail, recreate the root (/) file system by using the `newfs` command and restore it from a backup copy.

How to Restore a Bad Superblock (Solaris 10 6/06 Release)

This procedure is new in the Solaris 10 6/06 release. If your file system has a bad superblock, `fsck` automatically calculates an alternative superblock as seen in the following messages:

BAD SUPERBLOCK AT ...

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS?
LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS?

Caution – If a file system with a damaged superblock was created with `newfs` or `mkfs` customized parameters, such as `ntrack` or `nsect`, using `fsck`'s automatically calculated superblock for the repair process could irreparably damage your file system.

In the case of a file system that was created with customized parameters and it has a bad superblock, `fsck` provides the following prompt to cancel the `fsck` session:

CANCEL FILESYSTEM CHECK?

Canceling the `fsck` session would be an appropriate response if this file system was created with customized parameters or if there is some other concern about running `fsck` on this file system.
1. Become superuser or assume an equivalent role.

2. Check the file system with the suspected bad superblock.
   
   ```
 # fsck /dev/rdsk/c0t1d0s0
 ** /dev/rdsk/c0t1d0s0
 BAD SUPERBLOCK at ...
   ```

3. Determine how the file system was created and select one of the following:
   - The file system was created with the newfs command.
     - fsck responds that all superblocks are corrupt and it must use a generic superblock. Answer the fsck prompts as described in the example below.

   ![Caution](note)
   
   **Caution** – Do not use this option if the file system was created with customized parameters. This option should only be used as a last resort. Be prepared to restore the file system from a backup copy.

   ```
 # fsck /dev/dsk/c1t2d0s0
 ** /dev/dsk/c1t2d0s0
 BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

 LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? no

 LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? yes

 SEARCH FOR ALTERNATE SUPERBLOCKS FAILED.

 USE GENERIC SUPERBLOCK FROM MKFS? no

 USE GENERIC SUPERBLOCK FROM NEWFS? yes

 CALCULATED GENERIC SUPERBLOCK WITH NEWFS
 If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

 CANCEL FILESYSTEM CHECK? no

 ** Last Mounted on
 ** Phase 1 - Check Blocks and Sizes
 ** Phase 2 - Check Pathnames
 ** Phase 3a - Check Connectivity
 ** Phase 3b - Verify Shadows/ACLs
 ** Phase 4 - Check Reference Counts
 ** Phase 5 - Check Cylinder Groups
 CORRECT GLOBAL SUMMARY
 SALVAGE? y
UPDATE STANDARD SUPERBLOCK? y

81 files, 3609 used, 244678 free (6 frags, 30584 blocks, 0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

- fsck responds that it found an alternate superblock with a message similar to the following:

 FOUND ALTERNATE SUPERBLOCK 32 WITH NEWFS

 With this fsck scenario, follow the prompts as shown in "Automatic Search for Backup Superblocks" on page 295.

- The file system was created with the mkfs command.

- fsck responds that all superblocks are corrupt and must use a generic superblock. Answer the fsck prompts as described in the example below.

Caution – Do not use this option if the file system was created with customized parameters. This option should only be used as a last resort. Be prepared to restore the file system from a backup copy.

```
# fsck /dev/dsk/c1t2d0s0
** /dev/rdsk/c1t2d0s0
BAD SUPERBLOCK AT BLOCK 16: BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? yes

LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? no

SEARCH FOR ALTERNATE SUPERBLOCKS FAILED.

USE GENERIC SUPERBLOCK FROM MKFS? yes

CALCULATED GENERIC SUPERBLOCK WITH MKFS
If filesystem was created with manually-specified geometry, using auto-discovered superblock may result in irrecoverable damage to filesystem and user data.

CANCEL FILESYSTEM CHECK? no

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
CORRECT GLOBAL SUMMARY
SALVAGE? y

UPDATE STANDARD SUPERBLOCK?  y
```
fsck responds that it found an alternate superblock with a message similar to the following:

```
FOUND Alternate Superblock 32 with MKFS
```

With this fsck scenario, follow the prompts as shown in “Automatic Search for Backup Superblocks” on page 295.

4 Answer the prompts to salvage and restore the superblock.

There is no need to rerun fsck when you see the following message:
```
***** FILE SYSTEM WAS MODIFIED *****
```

However, it doesn’t harm the file system to rerun fsck after this message. This message is just informational about fsck’s corrective actions.

▼ How to Restore a Bad Superblock (Solaris 8, 9, and 10 Releases)

1 Become superuser or assume an equivalent role.

2 Determine whether the bad superblock is in the root (/), /usr, or /var file system and select one of the following:

- If the bad superblock is in either the root (/), /usr, or /var file system, then boot from the network or a locally connected Solaris DVD.

From a locally-connected DVD, use the following command:

```
ok boot cdrom -s
```

From the network where a boot or install server is already setup, use the following command:

```
ok boot net -s
```

If you need help stopping the system, see Chapter 12, “Booting an Oracle Solaris System (Tasks),” in System Administration Guide: Basic Administration or “Booting an x86 Based System by Using GRUB (Task Map)” in System Administration Guide: Basic Administration.

- If the bad superblock is not in either the root (/), /usr, /var file system, change to a directory outside the damaged file system and unmount the file system.

```
# umount /mount-point
```
Restoring a Bad Superblock

3 Display the superblock values by using the `newfs -N` command.

   ```
   # newfs -N /dev/rdsk/device-name
   ```

 The command output displays the block numbers that were used for the superblock copies when the `newfs` command created the file system, unless the file system was created with special parameters. For information on creating a customized file system, see "Customizing UFS File System Parameters" on page 420.

4 Provide an alternate superblock by using the `fsck` command.

   ```
   # fsck -F ufs -o b=block-number /dev/rdsk/device-name
   ```

 The `fsck` command uses the alternate superblock you specify to restore the primary superblock. You can always try 32 as an alternate block. Or, use any of the alternate blocks shown by the `newfs -N` command.

Example 21–3 Restoring a Bad Superblock (Solaris 8, 9, and 10 Releases)

The following example shows how to restore the superblock copy 5264.

   ```
   # newfs -N /dev/rdsk/c0t3d0s7
   /dev/rdsk/c0t3d0s7: 163944 sectors in 506 cylinders of 9 tracks, 36 sectors
   83.9MB in 32 cyl groups (16 c/g, 2.65MB/g, 1216 i/g)
   super-block backups (for fsck -b #) at:
   32, 5264, 10496, 15728, 20960, 26192, 31424, 36656, 41888,
   47120, 52352, 57584, 62816, 68048, 73280, 78512, 83744, 89208,
   93440, 98672, 103904, 109136, 114368, 119600, 124832, 130064, 135296,
   140528, 145760, 150992, 156224, 161456,
   # fsck -F ufs -o b=5264 /dev/rdsk/c0t3d0s7
   Alternate superblock location: 5264.
   ** /dev/rdsk/c0t3d0s7**
   ** Last Mounted on**
   ** Phase 1 - Check Blocks and Sizes**
   ** Phase 2 - Check Pathnames**
   ** Phase 3 - Check Connectivity**
   ** Phase 4 - Check Reference Counts**
   ** Phase 5 - Check Cyl groups**
   36 files, 867 used, 75712 free (16 frags, 9462 blocks, 0.0% fragmentation)
   ***** FILE SYSTEM WAS MODIFIED *****
   #
   ```
Syntax and Options for the `fsck` Command

The `fsck` command checks and repairs inconsistencies in file systems. If you run the `fsck` command without any options, it interactively asks for confirmation before making repairs. This command has four options.

<table>
<thead>
<tr>
<th>Command and Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fsck -m</code></td>
<td>Checks whether a file system can be mounted</td>
</tr>
<tr>
<td><code>fsck -y</code></td>
<td>Assumes a yes response for all repairs</td>
</tr>
<tr>
<td><code>fsck -n</code></td>
<td>Assumes a no response for all repairs</td>
</tr>
<tr>
<td><code>fsck -o p</code></td>
<td>Noninteractively preens the file system, fixing all expected (innocuous) inconsistencies, but exits when a serious problem is encountered</td>
</tr>
</tbody>
</table>
Structure of Cylinder Groups for UFS File Systems

When you create a UFS file system, the disk slice is divided into cylinder groups. A cylinder group is comprised of one or more consecutive disk cylinders. Cylinder groups are then further divided into addressable blocks to control and organize the structure of the files within the cylinder group. Each type of block has a specific function in the file system. A UFS file system has these four types of blocks.

<table>
<thead>
<tr>
<th>Block Type</th>
<th>Type of Information Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot block</td>
<td>Information used when the system is booted</td>
</tr>
<tr>
<td>Superblock</td>
<td>Detailed information about the file system</td>
</tr>
<tr>
<td>Inode</td>
<td>All information about a file</td>
</tr>
<tr>
<td>Storage or data block</td>
<td>Data for each file</td>
</tr>
</tbody>
</table>

The following sections provide additional information about the organization and function of these blocks.
Boot Block

The boot block stores objects that are used in booting the system. If a file system is not to be used for booting, the boot block is left blank. The boot block appears only in the first cylinder group (cylinder group 0) and is the first 8 KB in a slice.

Superblock

The superblock stores much of the information about the file system, which includes the following:

- Size and status of the file system
- Label, which includes the file system name and volume name
- Size of the file system logical block
- Date and time of the last update
- Cylinder group size
- Number of data blocks in a cylinder group
- Summary data block
- File system state
- Path name of the last mount point

Because the superblock contains critical data, multiple superblocks are made when the file system is created.

A summary information block is kept within the superblock. The summary information block is not replicated, but is grouped with the primary superblock, usually in cylinder group 0. The summary block records changes that take place as the file system is used. In addition, the summary block lists the number of inodes, directories, fragments, and storage blocks within the file system.

Inodes

An inode contains all the information about a file except its name, which is kept in a directory. An inode is 128 bytes. The inode information is kept in the cylinder information block, and contains the following:

- The type of the file:
 - Regular
 - Directory
 - Block special
 - Character special
 - FIFO, also known as named pipe
 - Symbolic link
- Socket
- Other inodes – Attribute directory and shadow (used for ACLs)
- The mode of the file (the set of read-write-execute permissions)
- The number of hard links to the file
- The user ID of the owner of the file
- The group ID to which the file belongs
- The number of bytes in the file
- An array of 15 disk-block addresses
- The date and time the file was last accessed
- The date and time the file was last modified
- The date and time the inode was changed

The array of 15 disk-block addresses (0 to 14) points to the data blocks that store the contents of the file. The first 12 are direct addresses. That is, they point directly to the first 12 logical storage blocks of the file contents. If the file is larger than 12 logical blocks, the 13th address points to an indirect block, which contains direct-block addresses instead of file contents. The 14th address points to a double indirect block, which contains addresses of indirect blocks. The 15th address is for triple indirect addresses. The following figure shows this chaining of address blocks starting from the inode.

FIGURE 22–1 Address Chain for a UFS File System

Data Blocks

Data blocks, also called *storage blocks*, contain the rest of the space that is allocated to the file system. The size of these data blocks is determined when a file system is created. By default, data blocks are allocated in two sizes: an 8-KB logical block size, and a 1-KB fragment size.
For a regular file, the data blocks contain the contents of the file. For a directory, the data blocks contain entries that give the inode number and the file name of the files in the directory.

Free Blocks

Blocks that are not currently being used as inodes, as indirect address blocks, or as storage blocks are marked as free in the cylinder group map. This map also keeps track of fragments to prevent fragmentation from degrading disk performance.

To give you an idea of the structure of a typical UFS file system, the following figure shows a series of cylinder groups in a generic UFS file system.

Customizing UFS File System Parameters

Before you alter the default file system parameters that are assigned by the `newfs` command, you need to understand them. This section describes these parameters:

- "Logical Block Size" on page 421
- "Fragment Size" on page 421
- "Minimum Free Space" on page 422
- "Rotational Delay" on page 422 (Obsolete)
- "Optimization Type" on page 422
- "Number of Inodes (Files)" on page 423

For a description of the command options that customize these parameters, see `newfs(1M)` and `mkfs_ufs(1M)`.
Logical Block Size

The *logical block size* is the size of the blocks that the UNIX kernel uses to read or write files. The logical block size is usually different from the physical block size. The physical block size is usually 512 bytes, which is the size of the smallest block that the disk controller can read or write.

Logical block size is set to the page size of the system by default. The default logical block size is 8192 bytes (8 KB) for UFS file systems. The UFS file system supports block sizes of 4096 or 8192 bytes (4 or 8 KB). The recommended logical block size is 8 KB.

SPARC only – You can specify only the 8192-byte block size on the sun-4u platform.

To choose the best logical block size for your system, consider both the performance you want and the available space. For most UFS systems, an 8-KB file system provides the best performance, offering a good balance between disk performance and the use of space in primary memory and on disk.

As a general rule, to increase efficiency, use a larger logical block size for file systems when most of the files are very large. Use a smaller logical block size for file systems when most of the files are very small. You can use the `quot -c filesystem` command on a file system to display a complete report on the distribution of files by block size.

However, the page size set when the file system is created is probably the best size in most cases.

Fragment Size

As files are created or expanded, they are allocated disk space in either full logical blocks or portions of logical blocks called *fragments*. When disk space is needed for a file, full blocks are allocated first, and then one or more fragments of a block are allocated for the remainder. For small files, allocation begins with fragments.

The ability to allocate fragments of blocks to files, rather than just whole blocks, saves space by reducing *fragmentation* of disk space that results from unused holes in blocks.

You define the *fragment size* when you create a UFS file system. The default fragment size is 1 KB. Each block can be divided into 1, 2, 4, or 8 fragments, which results in fragment sizes from 8192 bytes to 512 bytes (for 4-KB file systems only). The lower bound is actually tied to the disk sector size, typically 512 bytes.

For multiterabyte file systems, the fragment size must be equal to the file system block size.
Note – The upper bound for the fragment is the logical block size, in which case the fragment is not a fragment at all. This configuration might be optimal for file systems with very large files when you are more concerned with speed than with space.

When choosing a fragment size, consider the trade-off between time and space: A small fragment size saves space, but requires more time to allocate. As a general rule, to increase storage efficiency, use a larger fragment size for file systems when most of the files are large. Use a smaller fragment size for file systems when most of the files are small.

Minimum Free Space

The *minimum free space* is the percentage of the total disk space that is held in reserve when you create the file system. The default reserve is \(((64 \text{ MB/partition size}) \times 100)\), rounded down to the nearest integer and limited between 1 percent and 10 percent, inclusively.

Free space is important because file access becomes less and less efficient as a file system gets full. As long as an adequate amount of free space exists, UFS file systems operate efficiently. When a file system becomes full, using up the available user space, only root can access the reserved free space.

Commands such as `df` report the percentage of space that is available to users, excluding the percentage allocated as the minimum free space. When the command reports that more than 100 percent of the disk space in the file system is in use, some of the reserve has been used by root.

If you impose quotas on users, the amount of space available to them does not include the reserved free space. You can change the value of the minimum free space for an existing file system by using the `tunefs` command.

Rotational Delay

This parameter is obsolete. The value is always set to 0, regardless of the value you specify.

Optimization Type

The *optimization type* parameter is set to either `space` or `time`.

- **Space** – When you select space optimization, disk blocks are allocated to minimize fragmentation and disk use is optimized.
- **Time** – When you select time optimization, disk blocks are allocated as quickly as possible, with less emphasis on their placement. When sufficient free space exists, allocating disk blocks is relatively easy, without resulting in too much fragmentation. The default is `time`.
You can change the value of the optimization type parameter for an existing file system by using the `tunefs` command.

For more information, see `tunefs(1M)`.

Number of Inodes (Files)

The number of bytes per inode specifies the density of inodes in the file system. The number is divided into the total size of the file system to determine the number of inodes to create. Once the inodes are allocated, you cannot change the number without re-creating the file system.

The default number of bytes per inode is 2048 bytes (2 KB) if the file system is less than 1 GB. If the file system is larger than 1 GB, the following formula is used:

<table>
<thead>
<tr>
<th>File System Size</th>
<th>Number of Bytes Per Inode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 1 GB</td>
<td>2048</td>
</tr>
<tr>
<td>Less than 2 GB</td>
<td>4096</td>
</tr>
<tr>
<td>Less than 3 GB</td>
<td>6144</td>
</tr>
<tr>
<td>3 GB up to 1 TB</td>
<td>8192</td>
</tr>
<tr>
<td>Greater than 1 TB or created with <code>-T</code> option</td>
<td>1048576</td>
</tr>
</tbody>
</table>

If you have a file system with many symbolic links, they can lower the average file size. If your file system is going to have many small files, you can give this parameter a lower value. Note, however, that having too many inodes is much better than running out of inodes. If you have too few inodes, you could reach the maximum number of files on a disk slice that is practically empty.

Maximum UFS File and File System Size

The maximum size of a UFS file system is about 16 TB of usable space, minus about one percent overhead. A *sparse* file can have a logical size of one terabyte. However, the actual amount of data that can be stored in a file is approximately one percent less than 1 TB because of the file system overhead.

Maximum Number of UFS Subdirectories

The maximum number of subdirectories per directory in a UFS file system is 32,767. This limit is predefined and cannot be changed.
This chapter provides guidelines and planning information for backing up and restoring UFS file systems by using the `ufsdump` and `ufsrestore` commands.

This is a list of the overview information in this chapter.

- “Where to Find UFS Backup and Restore Tasks” on page 425
- “Introduction to Backing Up and Restoring UFS File Systems” on page 426
- “Why You Should Back Up File Systems” on page 426
- “Planning Which UFS File Systems to Back Up” on page 427
- “Choosing the Type of Backup” on page 428
- “Choosing a Tape Device” on page 429
- “High-Level View of Backing Up and Restoring UFS File Systems (Task Map)” on page 430
- “Considerations for Scheduling Backups” on page 431
- “Sample Backup Schedules” on page 434

Where to Find UFS Backup and Restore Tasks

<table>
<thead>
<tr>
<th>Backup or Restore Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up file systems by using the <code>ufsdump</code> command.</td>
<td>Chapter 24, “Backing Up UFS Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>Create UFS snapshots by using the <code>fssnap</code> command.</td>
<td>Chapter 25, “Using UFS Snapshots (Tasks)”</td>
</tr>
<tr>
<td>Restore file systems by using the <code>ufsrestore</code> command.</td>
<td>Chapter 26, “Restoring UFS Files and File Systems (Tasks)”</td>
</tr>
<tr>
<td>Copy files and directories by using the <code>cpio</code>, <code>dd</code>, <code>pax</code>, and <code>cpio</code> commands.</td>
<td>Chapter 28, “Copying UFS Files and File Systems (Tasks)”</td>
</tr>
</tbody>
</table>
Introduction to Backing Up and Restoring UFS File Systems

Backing up file systems means copying file systems to removable media, such as tape, to safeguard against loss, damage, or corruption. Restoring file systems means copying reasonably current backup files from removable media to a working directory.

This chapter describes the `ufsdump` and `ufsrestore` commands for backing up and restoring UFS file systems. Other commands are available for copying files and file systems for the purpose of sharing or transporting files. The following table provides pointers to all commands that copy individual files and file systems to other media.

TABLE 23–1 Commands for Backing Up and Restoring Files and File Systems

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up one or more file systems to a local tape device or a remote tape device.</td>
<td><code>ufsdump</code></td>
<td>Chapter 24, "Backing Up UFS Files and File Systems (Tasks)," or Chapter 27, "UFS Backup and Restore Commands (Reference)"</td>
</tr>
<tr>
<td>Create read-only copies of file systems.</td>
<td><code>fssnap</code></td>
<td>Chapter 25, "Using UFS Snapshots (Tasks)"</td>
</tr>
<tr>
<td>Back up all file systems for systems on a network from a backup server.</td>
<td>Solstice Backup software</td>
<td>Solstice Backup 6.1 Administration Guide</td>
</tr>
<tr>
<td>Back up and restore an NIS+ master server.</td>
<td><code>nisbackup</code> and <code>nisrestore</code></td>
<td>System Administration Guide: Naming and Directory Services (NIS+)</td>
</tr>
<tr>
<td>Copy, list, and retrieve files on a tape or diskette.</td>
<td><code>tar</code>, <code>cpio</code>, or <code>pax</code></td>
<td>Chapter 28, "Copying UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td>Copy the master disk to a clone disk.</td>
<td><code>dd</code></td>
<td>Chapter 28, "Copying UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td>Restore complete file systems or individual files from removable media to a working directory.</td>
<td><code>ufsrestore</code></td>
<td>Chapter 26, "Restoring UFS Files and File Systems (Tasks)"</td>
</tr>
</tbody>
</table>

Why You Should Back Up File Systems

Backing up files is one of the most crucial system administration functions. You should perform regularly scheduled backups to prevent loss of data due to the following types of problems:

- System crashes
- Accidental deletion of files
- Hardware failures
Introduction to Backing Up and Restoring UFS File Systems

- Natural disasters such as fire, hurricanes, or earthquakes
- Problems when you reinstall or upgrade a system

Planning Which UFS File Systems to Back Up

You should back up all file systems that are critical to users, including file systems that change frequently. The following tables provide general guidelines on the file systems to back up for stand-alone systems and servers.

TABLE 23–2 File Systems to Back Up for Stand-alone Systems

<table>
<thead>
<tr>
<th>File System to Back Up</th>
<th>Description</th>
<th>Back Up Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/) – slice 0</td>
<td>This file system contains the kernel and possibly the /var directory. The /var directory contains temporary files, logging files, or status files, and possibly contains frequently updated system accounting and mail files.</td>
<td>At regular intervals such as weekly or daily</td>
</tr>
<tr>
<td>/usr – slice 6, /opt</td>
<td>The /usr and /opt file systems contain software and executables. The /opt directory is either part of root (/) or is its own file system.</td>
<td>Occasionally</td>
</tr>
<tr>
<td>/export/home – slice 7</td>
<td>This file system can contain the directories and subdirectories of all users on the stand-alone system.</td>
<td>More often than root (/) or /usr, perhaps as often as once a day, depending on your site’s needs</td>
</tr>
<tr>
<td>/export, /var, or other file systems</td>
<td>The /export file system can contain the kernel and executables for diskless clients. The /var directory contains temporary files, logging files, or status files.</td>
<td>As your site requires</td>
</tr>
</tbody>
</table>
TABLE 23–3 UFS File Systems to Back Up for Servers

<table>
<thead>
<tr>
<th>File System to Back Up</th>
<th>Description</th>
<th>Back Up Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/) – slice 0</td>
<td>This file system contains the kernel and executables. If you frequently add and remove users and systems on the network, you have to change configuration files in this file system. In this case, you should do a full backup of the root (/) file system at intervals between once a week and once a month. If your site keeps user mail in the /var/mail directory on a mail server, which client systems then mount, you might want to back up root (/) daily. Or, backup the /var directory, if it is a separate file system.</td>
<td>Once a day to once a month depending on your site’s needs.</td>
</tr>
<tr>
<td>/export – slice 3</td>
<td>This file system can contain the kernel and executables for diskless clients. Because the information in this file system is similar to the server’s root directory in slice 0, the file system does not change frequently. You need to back up this file system only occasionally, unless your site delivers mail to client systems. Then, you should back up /export more frequently.</td>
<td>Once a day to once a month, depending on your site’s needs.</td>
</tr>
<tr>
<td>/usr – slice 6, /opt</td>
<td>The /usr and /opt file systems contain software and executables. The /opt directory is either part of root (/) or is its own file system. These file systems are fairly static unless software is added or removed frequently.</td>
<td>Once a day to once a month, depending on your site’s needs.</td>
</tr>
<tr>
<td>/export/home – slice 7</td>
<td>This file system can contains the home directories of all the users on the system. The files in this file system are volatile.</td>
<td>Once a day to once a week.</td>
</tr>
</tbody>
</table>

Choosing the Type of Backup

You can perform full or incremental backups by using the `ufsddump` command. You can create a temporary image of a file system by using the `fssnap` command. The following table lists the differences between these types of backup procedures.
Table 23–4 Differences Between Types of Backups

<table>
<thead>
<tr>
<th>Backup Type</th>
<th>Result</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Copies a complete file system or directory</td>
<td>All data is in one place</td>
<td>Requires large numbers of backup tapes that take a long time to write. Takes longer to retrieve individual files because the drive has to move sequentially to the point on the tape where the file is located. You might have to search multiple tapes.</td>
</tr>
<tr>
<td>Snapshot</td>
<td>Creates a temporary image of a file system</td>
<td>System can be in multiuser mode</td>
<td>System performance might degrade while the snapshot is created.</td>
</tr>
<tr>
<td>Incremental</td>
<td>Copies only those files in the specified file system that have changed since a previous backup</td>
<td>Easier to retrieve small changes in file systems</td>
<td>Finding which incremental tape contains a file can take time. You might have to go back to the last full backup.</td>
</tr>
</tbody>
</table>

Choosing a Tape Device

The following table shows typical tape devices that are used for storing file systems during the backup process. The storage capacity depends on the type of drive and the data being written to the tape. For more information on tape devices, see Chapter 29, "Managing Tape Drives (Tasks)."

Table 23–5 Typical Media for Backing Up File Systems

<table>
<thead>
<tr>
<th>Backup Media</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-inch reel tape</td>
<td>140 MB (6250 bpi)</td>
</tr>
<tr>
<td>2.5-GB 1/4-inch cartridge (QIC) tape</td>
<td>2.5 GB</td>
</tr>
<tr>
<td>DDS3 4-mm cartridge tape (DAT)</td>
<td>12–24 GB</td>
</tr>
<tr>
<td>14-GB 8-mm cartridge tape</td>
<td>14 GB</td>
</tr>
<tr>
<td>DLT 7000 1/2-inch cartridge tape</td>
<td>35–70 GB</td>
</tr>
</tbody>
</table>
High-Level View of Backing Up and Restoring UFS File Systems

Use this task map to identify all the tasks for backing up and restoring file systems. Each task points to a series of additional tasks, such as determining the type of backup to perform.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the file systems to back up.</td>
<td>Identify which file systems need to be backed up on a daily, weekly, or monthly basis.</td>
<td>"Planning Which UFS File Systems to Back Up" on page 427</td>
</tr>
<tr>
<td>2. Determine the type of backup.</td>
<td>Determine the type of backup you need for the file systems at your site.</td>
<td>"Choosing the Type of Backup" on page 428</td>
</tr>
<tr>
<td>3. Create the backup.</td>
<td>Use one of the following methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you want to have full and incremental backups of your file systems, use the <code>ufsdump</code> command.</td>
<td>Chapter 24, "Backing Up UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td></td>
<td>If you want to create a snapshot of a file system while it is active and mounted, consider using the <code>fssnap</code> command.</td>
<td>Chapter 25, "Using UFS Snapshots (Tasks)"</td>
</tr>
<tr>
<td></td>
<td>If you just want to have full backups of your personal home directory or smaller, less-important file systems, use the <code>tar</code>, <code>cpio</code>, or <code>pax</code> commands.</td>
<td>Chapter 28, "Copying UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td>4. (Optional) Restore a file system.</td>
<td>Select the restoration method that is based on the command used to back up the files or file system:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restore a file system backup that was created with the <code>ufsdump</code> command.</td>
<td>Chapter 26, "Restoring UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td></td>
<td>Restore a file system that was created with the <code>tar</code>, <code>cpio</code>, or <code>pax</code> command.</td>
<td>Chapter 28, "Copying UFS Files and File Systems (Tasks)"</td>
</tr>
<tr>
<td>5. (Optional) Restore the root (/) or /usr file system.</td>
<td>Restoring the root (/) or /usr file system is more complicated than restoring a noncritical file system. You need to boot from a local Solaris DVD or from the network while these file systems are being restored.</td>
<td>"How to Restore a UFS root (/) and /usr File System" on page 472</td>
</tr>
</tbody>
</table>
Considerations for Scheduling Backups

A backup schedule is the schedule that you establish to run the `ufsdump` command. This section identifies considerations to think about when you create a backup schedule. This section also includes sample backup schedules.

The backup schedule that you create depends on the following:

- Your need to minimize the number of tapes that are used for backups
- The time available for doing backups
- The time available for doing a full restore of a damaged file system
- The time available for retrieving individual files that are accidentally deleted

How Often Should You Do Backups?

If you do not need to minimize time requirements and the number of media that is used for backups, you can do full backups every day. However, this backup method is not realistic for most sites, so incremental backups are used most often. In this case, you should back up your site enough to so that you can restore files from the last four weeks. This schedule requires at least four sets of tapes, one set for each week. You would then reuse the tapes each month. In addition, you should archive the monthly backups for at least a year. Then, keep yearly backups for a number of years.

Backup Interval Terms and Definitions

The following table describes backup interval terms and definitions.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot</td>
<td>Creates a temporary image of a file system.</td>
</tr>
<tr>
<td>Full backup</td>
<td>Copies a complete file system or directory.</td>
</tr>
</tbody>
</table>
Incremental backup

Copies only those files in the specified file system that have changed since a previous backup. Incremental backup types include the following:

- **Daily, cumulative** – Copies a day’s worth of file changes on Monday. Then, overwrites Monday’s backup with file changes from Tuesday, Wednesday, and so on.
- **Daily, incremental** – Copies a day’s worth of file changes so that you have distinct tapes of Monday’s changes, Tuesday’s changes, and so on.
- **Weekly cumulative** – Copies the files that have changed during the week and includes the previous week’s file changes.
- **Weekly incremental** – Copies the files that have changed during the week since the previous weekly backup.

Guidelines for Scheduling Backups

The following table provides guidelines for scheduling backups. For additional backup schedule considerations, see “Considerations for Scheduling Backups” on page 431.

TABLE 23-6 Guidelines for Backup Schedules

<table>
<thead>
<tr>
<th>File Restoration Need</th>
<th>Backup Interval</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>To restore different versions of files (for example, file systems that are used for word processing)</td>
<td>Do daily incremental backups every working day. Do not reuse the same tape for daily incremental backups.</td>
<td>This schedule saves all files modified that day, as well as those files still on disk that were modified since the last backup of a lower level. However, with this schedule, you should use a different tape each day because you might otherwise be unable to restore the needed version of the file. For example, a file that changed on Tuesday, and again on Thursday, goes onto Friday’s lower-level backup appearing as it did Thursday night, not Tuesday night. If a user needs the Tuesday version, you cannot restore it unless you have a Tuesday backup tape (or a Wednesday backup tape). Similarly, a file that is present on Tuesday and Wednesday, but removed on Thursday, does not appear on the Friday lower-level backup.</td>
</tr>
</tbody>
</table>
Table 23-6 Guidelines for Backup Schedules (Continued)

<table>
<thead>
<tr>
<th>File Restoration Need</th>
<th>Backup Interval</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>To quickly restore a complete file system</td>
<td>Do lower-level backups more frequently.</td>
<td>—</td>
</tr>
<tr>
<td>To back up a number of file systems on the same server</td>
<td>Consider staggering the schedule for different file systems.</td>
<td>This way you’re not doing all level 0 backups on the same day.</td>
</tr>
<tr>
<td>To minimize the number of tapes used</td>
<td>Increase the level of incremental backups that are done across the week.</td>
<td>Only changes from day to day are saved on each daily tape.</td>
</tr>
<tr>
<td></td>
<td>Increase the level of backups that are done at the end of the week. Put each day’s and week’s</td>
<td>Only changes from week to week (rather than the entire month) are saved on the weekly tapes.</td>
</tr>
<tr>
<td></td>
<td>incremental backups onto the same tape.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Put each day’s and week’s incremental backups onto the same tape.</td>
<td>To do so, use the no rewind option of the ufsdump command, such as specifying /dev/rmt/0n.</td>
</tr>
</tbody>
</table>

Using Dump Levels to Create Incremental Backups

The dump level you specify in the ufsdump command (0–9) determines which files are backed up. Dump level 0 creates a full backup. Levels 1–9 are used to schedule incremental backups, but have no defined meanings. Levels 1–9 are just a range of numbers that are used to schedule cumulative or discrete backups. The only meaning levels 1–9 have is in relationship to each other, as a higher or lower number. A lower dump number always restarts a full or a cumulative backup. The following examples show the flexibility of the incremental dump procedure using levels 1–9.

Example—Dump Levels for Daily, Cumulative Backups

Doing daily, cumulative incremental backups is the most commonly used backup schedule and is recommended for most situations. The following example shows a schedule that uses a level 9 dump Monday through Thursday, and a level 5 dump on Friday restarts process.
In the preceding example, you could have used other numbers in the 1–9 range to produce the same results. The key is using the same number Monday through Thursday, with any lower number on Friday. For example, you could have specified levels 4, 4, 4, 4, 2 or 7, 7, 7, 7, 5.

Example—Dump Levels for Daily, Incremental Backups

The following example shows a schedule where you capture only a day’s work on different tapes. This type of backup is referred to as a daily, incremental backup. In this case, sequential dump level numbers are used during the week (3, 4, 5, 6) with a lower number (2) on Friday. The lower number on Friday restarts the processing.

In the preceding example, you could have used the sequence 6, 7, 8, 9 followed by 2, or 5, 6, 7, 8 followed by 3. Remember, the numbers themselves have no defined meaning. You attribute meaning by ordering them in a specified sequence, as described in the examples.

Sample Backup Schedules

This section provides sample backup schedules. All schedules assume that you begin with a full backup (dump level 0), and that you use the -u option to record each backup in the /etc/dumpdates file.
Example—Daily Cumulative, Weekly Cumulative Backup Schedule

Table 23–7 shows the most commonly used incremental backup schedule. This schedule is recommended for most situations. With this schedule, the following occurs:

- Each day, all files that have changed since the lower-level backup at the end of the previous week are saved.
- For each weekday level 9 backup, the previous level 0 or level 5 backup is the closest backup at a lower level. Therefore, each weekday tape contains all the files that changed since the end of the previous week or the initial level 0 backup for the first week.
- For each Friday level 5 backup, the closest lower-level backup is the level 0 backup done at the beginning of the month. Therefore, each Friday’s tape contains all the files changed during the month up to that point.

<table>
<thead>
<tr>
<th>TABLE 23–7 Daily Cumulative/Weekly Cumulative Backup Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating</td>
</tr>
<tr>
<td>1st of Month</td>
</tr>
<tr>
<td>Week 1</td>
</tr>
<tr>
<td>Week 2</td>
</tr>
<tr>
<td>Week 3</td>
</tr>
<tr>
<td>Week 4</td>
</tr>
</tbody>
</table>

The following table shows how the contents of the tapes can change across two weeks with the daily cumulative, weekly cumulative schedule. Each letter represents a different file.

<table>
<thead>
<tr>
<th>TABLE 23–8 Contents of Tapes for Daily Cumulative/Weekly Cumulative Backup Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
</tr>
<tr>
<td>Week 1</td>
</tr>
<tr>
<td>Week 2</td>
</tr>
</tbody>
</table>

Tape Requirements for the Daily Cumulative, Weekly Cumulative Schedule

With this schedule, you need six tapes if you want to reuse daily tapes. However, you need nine tapes if you want to use four different daily tapes:

- One tape for the level 0 backup
- Four tapes for Fridays
- One or four daily tapes

If you need to restore a complete file system, you need the following tapes:
The level 0 tape
- The most recent Friday tape
- The most recent daily tape since the last Friday tape, if any

Example—Daily Cumulative, Weekly Incremental Backup Schedule

The following table shows a schedule where each weekday tape accumulates all files that changed since the beginning of the week, or the initial level 0 backup for the first week. In addition, each Friday’s tape contains all the files that changed that week.

<table>
<thead>
<tr>
<th>TABLE 23–9 Daily Cumulative, Weekly Incremental Backup Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating</td>
</tr>
<tr>
<td>1st of Month</td>
</tr>
<tr>
<td>Week 1</td>
</tr>
<tr>
<td>Week 2</td>
</tr>
<tr>
<td>Week 3</td>
</tr>
<tr>
<td>Week 4</td>
</tr>
</tbody>
</table>

The following table shows how the contents of the tapes can change across two weeks with the daily cumulative, weekly incremental backup schedule. Each letter represents a different file.

<table>
<thead>
<tr>
<th>TABLE 23–10 Contents of Tapes for Daily Cumulative, Weekly Incremental Backup Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
</tr>
<tr>
<td>Week 1</td>
</tr>
<tr>
<td>Week 2</td>
</tr>
</tbody>
</table>

Tape Requirements for the Daily Cumulative, Weekly Incremental Backup Schedule

With this schedule, you need six tapes if you want to reuse daily tapes. However, you need nine tapes if you want to use four different daily tapes:

- One tape for the level 0 backup
- Four tapes for Fridays
- One or four daily tapes

If you need to restore a complete file system, you need the following tapes:

- The level 0 tape
- All the Friday tapes
The most recent daily tape since the last Friday tape, if any

Example—Daily Incremental, Weekly Cumulative Backup Schedule

The following table shows a schedule where each weekday tape contains only the files that changed since the previous day. In addition, each Friday’s tape contains all files changed since the initial level 0 backup at the beginning of the month.

<table>
<thead>
<tr>
<th></th>
<th>Floating</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st of Month</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

The following table shows how the contents of the tapes can change across two weeks with the daily incremental, weekly cumulative schedule. Each letter represents a different file.

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>cd</td>
</tr>
<tr>
<td>Week 2</td>
<td>jkl</td>
<td>m</td>
<td>n</td>
<td>o</td>
<td>pq</td>
</tr>
</tbody>
</table>

Tape Requirements for Daily Incremental, Weekly Cumulative Schedule

With this schedule, you need at least 9 tapes if you want to reuse daily tapes, which is not recommended. Preferably, you need 21 tapes if you save weekly tapes for a month: one tape for the level 0, 4 tapes for the Fridays, and 4 or 16 daily tapes.

- 1 tape for the level 0 backup
- 4 tapes for all the Friday backups
- 4 or 16 daily tapes

If you need to restore the complete file system, you need the following tapes:

- The level 0 tape
- The most recent Friday tape
- All the daily tapes since the last Friday tape, if any
Example—Monthly Backup Schedule for a Server

The following table shows an example backup strategy for a heavily used file server on a small network where users are doing file-intensive work, such as program development or document production. This example assumes that the backup period begins on a Sunday and consists of four seven-day weeks.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Date</th>
<th>Dump Level</th>
<th>Tape Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>root (/)</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export/home</td>
<td>1st Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>1st Monday</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1st Tuesday</td>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>1st Wednesday</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1st Thursday</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>1st Friday</td>
<td>9</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>1st Saturday</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>root (/)</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export/home</td>
<td>2nd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>2nd Monday</td>
<td>9</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>2nd Tuesday</td>
<td>9</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>2nd Wednesday</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2nd Thursday</td>
<td>9</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>2nd Friday</td>
<td>9</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>2nd Saturday</td>
<td>5</td>
<td>L</td>
</tr>
<tr>
<td>root (/)</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
</tbody>
</table>
TABLE 23–13 Example of Monthly Backup Schedule for a Server (Continued)

<table>
<thead>
<tr>
<th>Directory</th>
<th>Date</th>
<th>Dump Level</th>
<th>Tape Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>/export/home</td>
<td>3rd Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>3rd Monday</td>
<td>9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>3rd Tuesday</td>
<td>9</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>3rd Wednesday</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>3rd Thursday</td>
<td>9</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>3rd Friday</td>
<td>9</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>3rd Saturday</td>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>root(/)</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/usr</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td>/export/home</td>
<td>4th Sunday</td>
<td>0</td>
<td>n tapes</td>
</tr>
<tr>
<td></td>
<td>4th Monday</td>
<td>9</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>4th Tuesday</td>
<td>9</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>4th Wednesday</td>
<td>5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>4th Thursday</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>4th Friday</td>
<td>9</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>4th Saturday</td>
<td>5</td>
<td>X</td>
</tr>
</tbody>
</table>

With this schedule, you use 4n tapes, the number of tapes needed for 4 full backups of the root (/), /usr, /export, and /export/home file systems. Also, you need 24 additional tapes for the incremental backups of the /export/home file systems. This schedule assumes that each incremental backup uses one tape and that you save the tapes for a month.

Here's how this schedule works:

1. On each Sunday, do a full backup (level 0) of the root (/), /usr, /export, and /export/home file systems. Save the level 0 tapes for at least three months.

2. On the first Monday of the month, use tape A to do a level 9 backup of the /export/home file system. The ufsdump command copies all files changed since the previous lower-level backup. In this case, the previous lower-level backup is the level 0 backup that you did on Sunday.

3. On the first Tuesday of the month, use tape B to do a level 9 backup of the /export/home file system. Again, the ufsdump command copies all files changed since the last lower-level backup, which is Sunday’s level 0 backup.
4. On the first Wednesday of the month, use tape C to do a level 5 backup of the /export/home file system. The `ufsdump` command copies all files that changed since Sunday.

5. Do the Thursday and Friday level 9 backups of the /export/home file system on tapes D and E. The `ufsdump` command copies all files that changed since the last lower-level backup, which is Wednesday's level 5 backup.

6. On the first Saturday of the month, use tape F to do a level 5 backup of /export/home. The `ufsdump` command copies all files changed since the previous lower-level backup (in this case, the level 0 backup you did on Sunday). Store tapes A–F until the first Monday of the next four-week period, when you use them again.

7. Repeat steps 1–6 for the next three weeks, using tapes G–L and 4n tapes for the level 0 backup on Sunday, and so on.

8. For each four-week period, repeat steps 1–7, using a new set of tapes for the level 0 backups and reusing tapes A–X for the incremental backups. The level 0 tapes could be reused after three months.

This schedule lets you save files in their various states for a month. This plan requires many tapes, but ensures that you have a library of tapes to draw upon. To reduce the number of tapes, you could reuse Tapes A–F each week.
This chapter describes the procedures for backing up file systems by using the `ufsdump` command.

For information on these procedures, see “Back Up UFS Files and File System (Task Map)” on page 441.

For overview information about performing backups, see Chapter 23, “Back Up and Restore UFS File Systems (Overview).”

For information about backing up individual files to diskettes, see Chapter 28, “Copying UFS Files and File Systems (Tasks).”

For additional information on the `ufsdump` command, see Chapter 27, “UFS Backup and Restore Commands (Reference).”

Backing Up UFS Files and File System (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prepare for file system backups.</td>
<td>Identify the file systems, the type of backup, and the tape device to be used for the backups.</td>
<td>“Preparing for File System Backups” on page 442</td>
</tr>
<tr>
<td>2. Determine the number of tapes needed to back up a file system.</td>
<td>Determine the number of tapes that are needed for a full backup of a file system.</td>
<td>“How to Determine the Number of Tapes Needed for a Full Backup” on page 443</td>
</tr>
</tbody>
</table>
Preparing for File System Backups

The preparation for backing up file systems begins with planning, which is described in Chapter 23, "Backing Up and Restoring UFS File Systems (Overview)," and includes choosing the following:

- The file systems to back up
- The type of backup (full or incremental) to perform
- A backup schedule
- A tape drive

For more information, see Chapter 23, "Backing Up and Restoring UFS File Systems (Overview)."

This section describes two other tasks you might need to perform before you back up file systems:

- Finding the names of file systems to back up
- Determining the number of tapes that are needed for a full backup

How to Find UFS File System Names

1. Display the contents of the /etc/vfstab file.

 $ more /etc/vfstab

2. Look in the mount point column for the name of the file system.

3. Use the directory name listed in the mount point column when you back up the file system.

Example 24–1 Finding File System Names

In this example, the file systems to be backed up are root (/), /usr, and /export/home.

```
# more /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
```
How to Determine the Number of Tapes Needed for a Full Backup

1. Become superuser or assume an equivalent role.

2. Estimate the size of the backup in bytes.

   ```bash
   # ufsdump S file-system
   ```

 Use the $ option to display the estimated number of bytes that are needed to do the backup if this is the first backup of the file system.

 Use the $S option to display the estimated number of bytes that are needed to do the backup if this is not the first backup of the file system.

3. Divide the estimated size by the capacity of the tape to determine how many tapes you need.

 For a list of tape capacities, see Table 23–5.

Example 24–2 Determining the Number of Tapes

In this example, the file system easily fits on a 150-MB tape.

```bash
# ufsdump S /export/home
178176
```

Back up a UFS File System

The following are general guidelines for performing backups:

- Use single-user mode or unmount the file system, unless you are creating a snapshot of a file system. For information about UFS snapshots, see Chapter 25, "Using UFS Snapshots (Tasks)."
Be aware that backing up file systems when directory-level operations (such as creating, removing, and renaming files) and file-level activity are occurring simultaneously means that some data will not be included in the backup.

You can run the `ufsdump` command from a single system and remotely back up groups of systems across the network through remote shell or remote login. In addition, you can direct the output to the system on which the tape device is located. Typically, the tape device is located on the system from which you run the `ufsdump` command, but it does not have to be.

Another way to back up files to a remote device is to pipe the output from the `ufsdump` command to the `dd` command. For information about using the `dd` command, see Chapter 28, “Copying UFS Files and File Systems (Tasks).”

If you are doing remote backups across the network, the system with the tape device must have entries in its `/rhost` file for each client that will be using the device. Also, the system that initiates the backup must be included in the `/rhosts` file on each system that it will back up.

How to Back Up a UFS File System to Tape

The following are general steps for backing up file systems by using the `ufsdump` command. The examples show specific uses of options and arguments.

1. **Become superuser or assume an equivalent role.**

2. **Bring the system to run level 5 (single-user mode).**

 For example:
   ```
   # shutdown -g30 -y
   ```

3. **(Optional) Check the file system for consistency.**

 For example:
   ```
   # fsck -m /dev/rdsk/c0t0d0s7
   ```

 The `fsck -m` command checks for the consistency of file systems. For example, power failures can leave files in an inconsistent state. For more information on the `fsck` command, see Chapter 21, “Checking UFS File System Consistency (Tasks).”

4. **If you need to back up file systems to a remote tape drive, follow these steps:**

 a. **On the system to which the tape drive is attached (the tape server), add the following entry to its `/rhosts` file:**

      ```
      host root
      ```

 The `host` entry specifies the name of the system on which you will run the `ufsdump` command to perform the backup.
b. On the tape server, verify that the host added to the / .rhost s file is accessible through the name service.

5 Identify the device name of the tape drive.
The default tape drive is the /dev/rmt/0 device.

6 Insert a tape that is write-enabled into the tape drive.

7 Back up file systems.
 # ufsdump options arguments filenames
 You can back up file systems or directories, or files within file systems. For information on backing up individual files, see tar(1) or cpio(1).

 The following examples show how to use the most common ufsdump options and arguments:
 ■ Example 24–3
 ■ Example 24–4
 ■ Example 24–5
 ■ Example 24–6

 For other ufsdump options and arguments, see Chapter 27, “UFS Backup and Restore Commands (Reference).”

8 If prompted, remove the tape and insert the next tape volume.

9 Label each tape with the volume number, dump level, date, system name, disk slice, and file system.

10 Bring the system back to run level 3 by pressing Control-D.

11 Verify that the backup was successful.
 # ufsrestore tf device-name

Example 24–3 Performing a Full Backup of a UFS root (/) File system

 The following example shows how to do a full backup of the root (/) file system. The system in this example is brought to single-user mode before the backup. The following ufsdump options are included:
 ■ 0 specifies a 0 level dump (or a full backup).
 ■ u specifies that the /etc/dumpdates file is updated with the date of this backup.
 ■ c identifies a cartridge tape device.
 ■ f /dev/rmt/0 identifies the tape device.
 ■ / is the file system being backed up.
For example:

```
# init 0
ok boot -s
.
.
.
# ufsdump 9ucf /dev/rmt/0 /
DUMP: Date of this level 9 dump: Mon Jul 12 10:00:50 2010
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s0 (starbug:/) to /dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 1843276 blocks (900.04MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 1843252 blocks (900.03MB) on 1 volume at 6602 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Mon Jul 12 10:22:50 MDT 2010
# ufsrestore tf /dev/rmt/0
  2 .
  3 ./lost+found
  4 ./usr
  5 ./var
  6 ./export
  7 ./bin
  8 ./dev
.
.
# (Press Control-D to bring system to run level 3)
```

Example 24–4 Performing an Incremental Backup of a UFS root (/) File System

The following example shows how to do an incremental backup of the root (/) file system in single-user mode. The following `ufs_dump` options are included:

- 9 specifies a 9 level dump (or an incremental backup).
- u specifies that the `/etc/dumpdates` file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f `/dev/rmt/0` identifies the tape device.
- / is the file system being backed up.

```
# init 0
ok boot -s
# ufsdump 9ucf /dev/rmt/0 /
DUMP: Date of this level 9 dump: Mon Jul 12 10:52:50 2010
DUMP: Date of last level 0 dump: Mon Jul 12 10:50:50 2010
DUMP: Dumping /dev/rdsk/c0t0d0s0 (starbug:/) to /dev/rmt/0.
DUMP: Mapping (Pass I) [directories]
DUMP: Mapping (Pass II) [directories]
```
Performing a Full Backup of a UFS Home Directory

The following example shows how to do a full backup of the /export/home/kryten home directory. The following ufsdump options are included:

- 0 specifies that this is a 0 level dump (or a full backup).
- u specifies that the /etc/dumpdates file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f /dev/rmt/0 identifies the tape device.
- /export/home/kryten is the directory being backed up.
ufsdump 0ucf /dev/rmt/0 /export/home/kryten
DUMP: Date of this level 0 dump: Wed Jul 10 10:35:18 2010
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s7 (starbug:/export/home) to /dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 105158 blocks (51.35MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 105082 blocks (51.31MB) on 1 volume at 5025 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 9 dump on Mon Jul 12 10:38:14 2010

ufsrestore tf /dev/rmt/0

Example 24–6 Performing a Full Backup to a Remote System (Solaris 10 Data to Solaris 10 System)

The following example shows how to do a full backup of a local /export/home file system on a Solaris 10 system (mars) to a tape device on a remote Solaris 10 system (earth) in single-user mode. The systems must be set up so that remote access is enabled. The following ufsdump options are included:

- 0 specifies a 0 level dump (or a full backup).
- u specifies that the /etc/dumpdates file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f earth:/dev/rmt/0 identifies the remote system name and tape device.
- /export/home is the file system being backed up.

ufsdump 0ucf earth:/dev/rmt/0 /export/home
DUMP: Date of this level 0 dump: Mon Jul 12 10:36:30 MDT 2010
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s7 (mars:/export/home) to earth:/dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 105172 blocks (51.35MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 105082 blocks (51.31MB) on 1 volume at 4425 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Mon Jul 12 10:39:30 MDT 2010

Example 24–6 Performing a Full Backup to a Remote System (Solaris 10 Data to Solaris 10 System)

The following example shows how to do a full backup of a local /export/home file system on a Solaris 10 system (mars) to a tape device on a remote Solaris 10 system (earth) in single-user mode. The systems must be set up so that remote access is enabled. The following ufsdump options are included:

- 0 specifies a 0 level dump (or a full backup).
- u specifies that the /etc/dumpdates file is updated with the date of this backup.
- c identifies a cartridge tape device.
- f earth:/dev/rmt/0 identifies the remote system name and tape device.
- /export/home is the file system being backed up.

ufsdump 0ucf earth:/dev/rmt/0 /export/home
DUMP: Date of this level 0 dump: Mon Jul 12 10:36:30 MDT 2010
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t0d0s7 (mars:/export/home) to earth:/dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Writing 63 Kilobyte records
DUMP: Estimated 105172 blocks (51.35MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 105082 blocks (51.31MB) on 1 volume at 4425 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Mon Jul 12 10:39:30 MDT 2010
ufsrestore tf earth:/dev/rmt/0
 2 .
 3 ./lost+found
 4 ./kryten
 5 ./kryten/filea
 6 ./kryten/fileb
 7 ./kryten/filec
 8 ./kryten/letters
 9 ./kryten/letters/letter1
 10 ./kryten/letters/letter2
 11 ./kryten/letters/letter3
 12 ./kryten/reports
 .
 .
 .
Using UFS Snapshots (Tasks)

This chapter describes how to create and back up UFS snapshots.

For information on the procedures associated with creating UFS snapshots, see “Using UFS Snapshots (Task Map)” on page 451.

For overview information about performing backups, see Chapter 23, "Backing Up and Restoring UFS File Systems (Overview)."

Using UFS Snapshots (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Create a UFS snapshot.</td>
<td>Create a read-only copy of a file system by using the <code>fssnap</code> command.</td>
<td>“How to Create a UFS Snapshot” on page 455</td>
</tr>
<tr>
<td>2. Display UFS snapshot information.</td>
<td>Identify UFS snapshot information such as the raw snapshot device.</td>
<td>“How to Display UFS Snapshot Information” on page 456</td>
</tr>
<tr>
<td>3. (Optional) Delete a UFS snapshot.</td>
<td>Delete a snapshot that is already backed up or no longer needed.</td>
<td>“How to Delete a UFS Snapshot” on page 457</td>
</tr>
<tr>
<td>4. (Optional) Back up a UFS snapshot.</td>
<td>Choose one of the following backup methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create a full backup of a UFS snapshot by using the <code>ufsdump</code> command.</td>
<td>“How to Create a Full Backup of a UFS Snapshot (<code>ufsdump</code>)” on page 458</td>
</tr>
<tr>
<td></td>
<td>Create an incremental backup of a UFS snapshot by using the <code>ufsdump</code> command.</td>
<td>“How to Create an Incremental Backup of a UFS Snapshot (<code>ufsdump</code>)” on page 459</td>
</tr>
</tbody>
</table>
UFSSnapshotsOverview

You can use the `fssnap` command to back up file systems while the file system is mounted. This command to creates a read-only snapshot of a file system. A *snapshot* is a file system’s temporary image that is intended for backup operations.

When the `fssnap` command is run, it creates a virtual device and a backing-store file. You can back up the *virtual device*, which looks and acts like a real device, with any of the existing Solaris backup commands. The *backing-store file* is a bitmap file that contains copies of pre-snapshot data that has been modified since the snapshot was taken.

Keep the following key points in mind when specifying backing-store files:

- The destination path of the backing store files must have enough free space to hold the file system data. The size of the backing store files vary with the amount of activity on the file system.
- The backing store file location must be different from the file system that is being captured in a snapshot.
- The backing-store files can reside on any type of file system, including another UFS file system or an NFS file system.
- Multiple backing-store files are created when you create a snapshot of a UFS file system that is larger than 512 GB.
- Backing-store files are sparse files. The logical size of a sparse file, as reported by the `ls` command, is not the same as the amount of space that has been allocated to the sparse file, as reported by the `du` command.

For more information about creating snapshots for a UFS file system larger than 512 GB, see “Creating a Multiterabyte UFS Snapshot” on page 454.

Why Use UFS Snapshots?

The UFS snapshots feature provides additional availability and convenience for backing up a file system because the file system remains mounted and the system remains in multiuser mode during backups. Then, you can use the `tar` or `cpio` commands to back up a UFS snapshot to
tape for more permanent storage. If you use the `ufsdump` command to perform backups, the system should be in single-user mode to keep the file system inactive when you perform backups.

The `fssnap` command gives administrators of non enterprise-level systems the power of enterprise-level tools, such as Sun StorEdge Instant Image, without the large storage demands.

The UFS snapshots feature is similar to the Instant Image product. Although UFS snapshots can make copies of large file systems, Instant Image is better suited for enterprise-level systems. UFS snapshots is better suited for smaller systems. Instant Image allocates space equal to the size of the entire file system that is being captured. However, the backing-store file that is created by UFS snapshots occupies only as much disk space as needed.

This table describes specific differences between UFS snapshots and Instant Image.

<table>
<thead>
<tr>
<th>UFS Snapshots</th>
<th>Sun StorEdge Instant Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the backing-store file depends on how much data has changed since the snapshot was taken</td>
<td>Size of the backing-store file equals the size of the entire file system being copied</td>
</tr>
<tr>
<td>Does not persist across system reboots</td>
<td>Persists across system reboots</td>
</tr>
<tr>
<td>Works on UFS file systems</td>
<td>Cannot be used with root (/) or /usr file systems</td>
</tr>
<tr>
<td>Available starting with the Solaris 8 1/01 release</td>
<td>Part of Sun StorEdge products</td>
</tr>
</tbody>
</table>

UFS Snapshots Performance Issues

When the UFS snapshot is first created, users of the file system might notice a slight pause. The length of the pause increases with the size of the file system to be captured. While the snapshot is active, users of the file system might notice a slight performance impact when the file system is written to. However, they see no impact when the file system is read.

Creating and Deleting UFS Snapshots

When you use the `fssnap` command to create a UFS snapshot, observe how much disk space the backing-store file consumes. The backing-store file initially uses no space, and then it grows quickly, especially on heavily used systems. Make sure that the backing-store file has enough space to expand. Or, limit its size with the `-o maxsize=n [k, m, g]` option, where `n [k, m, g]` is the maximum size of the backing-store file.
Caution – If the backing-store file runs out of space, the snapshot might delete itself, which causes the backup to fail. Check the /var/adm/messages file for possible snapshot errors.

You can also specify a directory for the backing-store path, which means a backing store file is created in the directory specified. For example, if /var/tmp is specified for the backing-store path, the following backing-store file is created.

/var/tmp/snapshot0

If you created one large root (/) file system instead of creating separate file systems for /export/home, /usr, and so on, you will be unable to create a snapshot of those separate file systems. For example, this system does not have a separate file system for /usr as indicated under the Mounted on column:

```
# df -k /usr
Filesystem           kbytes used  avail capacity Mounted on
/dev/dsk/c0t0d0s0       3618177  2190002  1391994        62%  /
```

If you attempt to create a snapshot for the /usr file system, you will see a message similar to the following:

```
# fssnap -F ufs -o bs=/snaps/usr.back.file /usr
snapshot error: Invalid backing file path
```

This message indicates that you cannot have the backing store file on the same file system as the file system being snapped, which is the case for the /usr file system, in this example.

For more information, see the fssnap_ufs(1M) man page.

Creating a Multiterabyte UFS Snapshot

Creating a multiterabyte UFS snapshot is identical to creating a snapshot for a smaller UFS file system. The only difference is that multiple backing store files are created for each 512 GB of file system space.

Keep the following key points in mind when creating a snapshot for a file system that is larger than 512 GB:

- Multiple backing store files are created.
 - If you specify a backing store file name when the snapshot is created, then the subsequent backing store file names will be iterated based on the file name that you specify. The subsequent backing-store files will have the same name, but with the suffixes .2, .3, and so on.
If you only specify a backing store file destination (or directory) and not a backing store filename, then multiple backing store file names will be created and iterated with the suffixes .2, .3, and so on.

The `fssnap -i` command only reports the first backing store file name even if multiple backing store files have been created. However, the reported backing-store length is the combined sizes of all the backing store files for the snapshot.

Note – Backing-store files are sparse files. The logical size of a sparse file, as reported by the `ls` command, is not the same as the amount of space that has been allocated to the sparse file, as reported by the `du` command.

After you have backed up the snapshot or you would just like to remove the snapshot, you will have to remove the backing store files manually if you did not use the `unlink` option when the snapshot was created.

For an example of creating a snapshot for a file system that is larger than 512 GB, see Example 25–2.

For more information, see `fssnap_ufs(1M)`.

How to Create a UFS Snapshot

1. **Become superuser or assume an equivalent role.**

2. **Make sure that the file system has enough disk space for the backing-store file.**

   ```
   # df -k
   ```

3. **Make sure that a backing-store file of the same name and location does not already exist.**

   ```
   # ls /backing-store-file
   ```

4. **Create the UFS snapshot.**

   ```
   # fssnap -F ufs -o bs=/backing-store-file /file-system
   ```

 Note – The backing-store file must reside on a different file system than the file system that is being captured using UFS snapshots.

5. **Verify that the snapshot has been created.**

   ```
   # /usr/lib/fs/ufs/fssnap -i /file-system
   ```
Creating a UFS Snapshot

The following examples show how to create a snapshot of the /usr file system. The backing-store file is /scratch/usr.back.file. The virtual device is /dev/fssnap/1.

```
# fssnap -F ufs -o bs=/scratch/usr.back.file /usr
/dev/fssnap/1
```

The following example shows how to limit the backing-store file to 500 MB.

```
# fssnap -F ufs -o maxsize=500m,bs=/scratch/usr.back.file /usr
/dev/fssnap/1
```

Creating a Multiterabyte UFS Snapshot

The following example shows how to create a snapshot of a 1.6 TB UFS file system.

```
# fssnap -F ufs -o bs=/var/tmp /datab
# /usr/lib/fs/ufs/fssnap -i /datab
```

<table>
<thead>
<tr>
<th>Snapshot number</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Device</td>
<td>/dev/fssnap/2</td>
</tr>
<tr>
<td>Raw Device</td>
<td>/dev/rfssnap/2</td>
</tr>
<tr>
<td>Mount point</td>
<td>/datab</td>
</tr>
<tr>
<td>Device state</td>
<td>idle</td>
</tr>
<tr>
<td>Backing store path</td>
<td>/var/tmp/snapshot3</td>
</tr>
<tr>
<td>Backing store size</td>
<td>0 KB</td>
</tr>
<tr>
<td>Maximum backing store size</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Snapshot create time</td>
<td>Mon Jul 12 10:37:50 2010</td>
</tr>
<tr>
<td>Copy-on-write granularity</td>
<td>32 KB</td>
</tr>
</tbody>
</table>

How to Display UFS Snapshot Information

You can display the current snapshots on the system by using the `fssnap -i` option. If you specify a file system, you see detailed information about that file system snapshot. If you don’t specify a file system, you see information about all of the current UFS snapshots and their corresponding virtual devices.

Note – Use the UFS file system-specific `fssnap` command to view the extended snapshot information as shown in the following examples.

1. Become superuser or assume an equivalent role.

2. List all current snapshots.

 For example:
   ```
   # /usr/lib/fs/ufs/fssnap -i
   Snapshot number : 0
   Block Device : /dev/fssnap/0
   ```
Raw Device: /dev/rfssnap/0
Mount point: /export/home
Device state: idle
Back ing store path: /var/tmp/snapshot0
Back ing store size: 0 KB
Maximum back ing store size: Unlimited
Snapshot create time: Mon Jul 12 10:37:50 2010
Copy-on-write granularity: 32 KB

3 Display detailed information about a specific snapshot.
For example:

```
# /usr/lib/fs/ufs/fssnap -i /export
Snapshot number: 1
Block Device: /dev/fssnap/1
Raw Device: /dev/rfssnap/1
Mount point: /export
Device state: idle
Back ing store path: /var/tmp/snapshot1
Back ing store size: 0 KB
Maximum back ing store size: Unlimited
Snapshot create time: Mon Jul 12 10:37:50 2010
Copy-on-write granularity: 32 KB
```

Deleting a UFS Snapshot

When you create a UFS snapshot, you can specify that the back ing-store file is unlinked. An unlinked back ing-store file is removed after the snapshot is deleted. If you don’t specify the -o un link option when you create a UFS snapshot, you must manually delete the back ing-store file.

The back ing-store file occupies disk space until the snapshot is deleted, whether you use the -o un link option to remove the back ing-store file or you manually delete the file.

▼ How to Delete a UFS Snapshot

You can delete a snapshot either by rebooting the system or by using the fssnap -d command. When you use this command, you must specify the path of the file system that contains the UFS snapshot.

1 Become superuser or assume an equivalent role.

2 Identify the snapshot to be deleted.
```
# /usr/lib/fs/ufs/fssnap -i
```

3 Delete the snapshot.
```
# fssnap -d /file-system
Deleted snapshot 1.
```
If you did not use the -o unlink option when you created the snapshot, manually delete the backing-store file.

```
# rm /file-system/backing-store-file
```

Example 25–3 Deleting a UFS Snapshot

The following example shows how to delete a snapshot and assumes that the -o unlink option was not used.

```
# fssnap -i
  0 /export/home
  1 /export
# fssnap -d /export
Deleted snapshot 1.
# rm /var/tmp/snapshot1
```

Backing Up a UFS Snapshot

You can create a full backup or an incremental backup of a UFS snapshot. You can use the standard Solaris backup commands to back up a UFS snapshot.

The virtual device that contains the UFS snapshot acts as a standard read-only device. So, you can back up the virtual device as if you were backing up a file system device.

If you are using the `ufsdump` command to back up a UFS snapshot, you can specify the snapshot name during the backup. See the following procedure for more information.

How to Create a Full Backup of a UFS Snapshot (`ufsdump`)

1. **Become superuser or assume an equivalent role.**

2. **Identify the UFS snapshot to be backed up.**

   ```
   # /usr/lib/fs/ufs/fssnap -i /file-system
   ```

 For example:

   ```
   # /usr/lib/fs/ufs/fssnap -i /usr
   Snapshot number : 1
   Block Device     : /dev/fssnap/1
   Raw Device       : /dev/rfssnap/1
   Mount point      : /usr
   Device state     : idle
   Backing store path : /var/tmp/snapshot2
   ```
Backing store size : 544 KB
Maximum backing store size : Unlimited
Snapshot create time : Mon Jul 12 10:37:50 2010
Copy-on-write granularity : 32 KB

3 Back up the UFS snapshot.

ufsdump 0ucf /dev/rmt/0 /snapshot-name

For example:

ufsdump 0ucf /dev/rmt/0 /dev/rdssnap/1

4 Verify that the snapshot has been backed up.

For example:

ufsrestore tf /dev/rmt/0

▼ How to Create an Incremental Backup of a UFS Snapshot (ufsdump)

Backing up a UFS snapshot incrementally means that only the files that have been modified since the last snapshot are backed up. Use the ufsdump command with the N option. This option specifies the file system device name to be inserted into the /etc/dumpdates file for tracking incremental dumps.

The following ufsdump command specifies an embedded fssnap command to create an incremental backup of a file system.

1 Become superuser or assume an equivalent role.

2 Create an incremental backup of a UFS snapshot.

For example:

ufsdump 1ufN /dev/rmt/0 /dev/rdsk/c0t1d0s0 'fssnap -F ufs -o raw,bs=/export/scratch,unlink /dev/rdsk/c0t1d0s0'

In this example, the -o raw option is used to display the name of the raw device instead of the block device. By using this option, you make it easier to embed the fssnap command in commands (such as the ufsdump command) that require the raw device instead.

3 Verify that the snapshot has been backed up.

ufsrestore ta /dev/rmt/0
How to Back Up a UFS Snapshot (tar)

If you are using the tar command to back up the snapshot, mount the snapshot before backing it up.

1 Become superuser or assume an equivalent role.

2 Create a mount point for the snapshot.
 For example:

   ```
   # mkdir /backups/home.bkup
   ```

3 Mount the snapshot.

   ```
   # mount -F ufs -o ro /dev/fssnap/1 /backups/home.bkup
   ```

4 Change to the mounted snapshot directory.

   ```
   # cd /backups/home.bkup
   ```

5 Back up the snapshot with the tar command.

   ```
   # tar cvf /dev/rmt/0 .
   ```

Restoring Data From a UFS Snapshot Backup

The backup created from the virtual device is essentially just a backup of what the original file system looked like when the snapshot was taken. When you restore a file system from the backup, restore as if you had taken the backup directly from the original file system. Such a restore uses the ufsrestore command. For information on using the ufsrestore command to restore a file or file system, see Chapter 26, “Restoring UFS Files and File Systems (Tasks).”
This chapter describes how to use the `ufsrestore` command to restore files and file systems that were backed up by using the `ufsdump` command.

For information on the procedures associated with restoring files and file systems, see "Restoring UFS Files and File System Backups (Task Map)” on page 461.

For information about other commands you can use to archive, restore, copy, or move files and file systems, see Chapter 28, “Copying UFS Files and File Systems (Tasks).”

For information about backing up and restoring file systems, see Chapter 23, “Back Up and Restoring UFS File Systems (Overview).”

Restoring UFS Files and File System Backups (Task Map)

The following task map describes the procedures associated with restoring files and file systems.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare to restore files and</td>
<td>Identify the file systems or files to be restored, the tape device, and how</td>
<td>"Preparing to Restore UFS Files and File Systems” on page 462</td>
</tr>
<tr>
<td>file systems.</td>
<td>you will restore them.</td>
<td></td>
</tr>
<tr>
<td>Determine which tapes to use.</td>
<td>Refer to your backup tapes to find the date of the last backup that contains</td>
<td>“How to Determine Which Tapes to Use” on page 463</td>
</tr>
<tr>
<td></td>
<td>the file or file system that you need to restore.</td>
<td></td>
</tr>
<tr>
<td>Restore files.</td>
<td>Choose one of the following restore methods:</td>
<td></td>
</tr>
</tbody>
</table>
Preparing to Restore UFS Files and File Systems

The ufsrestore command copies files to disk, relative to the current working directory, from backups that were created by using the ufsdump command. You can use the ufsrestore command to reload an entire file system hierarchy from a level 0 dump and incremental dumps that follow it. You can also use this command to restore one or more single files from any backup tape. If you run the ufsrestore command as superuser, files are restored with their original owner, last modification time, and mode (permissions).

Before you start to restore files or file systems, you need to know the following:

- The tapes (or diskettes) you need to restore from
- The raw device name on which you want to restore the file system
- The type of tape device you will use
- The device name (local or remote) for the tape device

Determining the UFS File System Name

If you have properly labeled your backup tapes, you should be able to use the file system name (/dev/rdsk/device-name) from the tape label. For more information, see “How to Find UFS File System Names” on page 442.

Determining the Type of Tape Device You Need

You must use a tape device that is compatible with the backup media to restore the files. The format of the backup media determines which drive you must use to restore files. For example, if your backup media is 8-mm tape, you must use an 8-mm tape device to restore the files.
Determining the Tape Device Name

You might have specified the tape device name (/dev/rmt/n) as part of the backup tape label information. If you are using the same drive to restore a backup tape, you can use the device name from the label. For more information on media devices and device names, see Chapter 29, “Managing Tape Drives (Tasks).”

Restoring UFS Files and File Systems

When you back up files and directories, you save them relative to the file system in which they belong. When you restore files and directories, the `ufsrestore` command re-creates the file hierarchy in the current working directory.

For example, files backed up from the `/export/doc/books` directory (where `/export` is the file system) are saved relative to `/export`. In other words, the `book1` file in the `books` directory is saved as `.doc/books/book1` on the tape. Later on, if you restored the `.doc/books/book1` file to the `/var/tmp` directory, the file would be restored to `/var/tmp/doc/books/book1`.

When you restore individual files and directories, you should restore them to a temporary location, such as the `/var/tmp` directory. After you verify the files, you can move them to their proper locations. However, you can restore individual files and directories to their original locations. If you do so, be sure you are not overwriting newer files with older versions from the backup tape.

To avoid conflicts with other users, you might want to create and change to a subdirectory, such as the `/var/tmp/restore` file, in which to restore the files.

If you are restoring a hierarchy, you should restore the files to a temporary directory on the same file system where the files will reside. Then, you can use the `mv` command to move the entire hierarchy where it belongs after it is restored.

Note – Do not restore files in the `/tmp` directory even temporarily. The `/tmp` directory is usually mounted as a TMPFS file system. TMPFS does not support UFS file system attributes such as ACLs.

▼ How to Determine Which Tapes to Use

1. Ask the user for the approximate date the files to be restored were last modified.

2. Refer to your backup plan to find the date of the last backup that contains the file or file system.
 To retrieve the most recent version of a file, work backward through the incremental backups from highest to lowest dump level and from most recent to least recent date, unless the user requests otherwise.
3. If you have online archive files, identify the correct media.

 `# ufsrestore ta archive-name /path/filename /path/filename`

 t Lists each file on the tape.

 a Reads the table of contents from the online archive file instead of from the tape.

 `archive-name` Identifies the online archive file name.

 `./path/filename` Identifies the filename or file names you are looking for on the online archive. If successful, the `ufsrestore` command prints out the inode number and file name. If unsuccessful, `ufsrestore` prints an error message.

 For more information, see the `ufsrestore(1M)` man page.

4. Insert the media that contains the files to be restored in the drive and verify the correct media.

 `# ufsrestore tf /dev/rmt/ n /path/filename /path/filename`

 Be sure to use the complete path for each `filename`. If a file is in the backup, its name and inode number are listed. Otherwise, a message states that the file is not on the volume.

5. If you have multiple backup files on the same tape, position the tape at the backup file you want to use.

 `# ufsrestore xfs /dev/rmt/ n tape-number`

Example 26-1 Determining Which Tapes to Use

The following example shows how to check if the `/etc/passwd` file is in the online archive.

 `# ufsrestore ta /var/tmp/root.archive ./etc/passwd`

The following example shows how to verify that the `/etc/passwd` file is on the backup tape.

 `# ufsrestore tf /dev/rmt/0 ./etc/passwd`

▼ How to Restore UFS Files Interactively

1. Become superuser or assume an equivalent role.

2. (Optional) Write-protect the tapes for safety.

3. Insert the volume 1 tape into the tape drive.
4 Change to a directory that will be used to restore the files to temporarily.

 # cd /var/tmp

5 Start the interactive restoration.

 # ufsrestore if /dev/rmt/n

 Some informational messages and the ufsrestore> prompt are displayed.

6 Create a list of files to be restored.

 a. List the contents of a directory.

 ufsrestore> ls [directory-name]

 b. Change to a directory.

 ufsrestore> cd directory-name

 c. Create a list of files and directories that you want to restore.

 ufsrestore> add filenames

 d. (Optional) Remove any directory or file from the list of files to be restored, if necessary.

 ufsrestore> delete filename

7 (Optional) Display the file names as they are being restored.

 ufsrestore> verbose

8 Restore the files.

 ufsrestore> extract

 The ufsrestore command asks you which volume number to use.

9 Type the volume number and press Return. If you have only one volume, type 1 and press Return.

 Specify next volume #: 1

 The files and directories in the list are extracted and restored to the current working directory.

10 To maintain the mode of the current directory, enter n at the set owner/mode prompt.

 set owner/mode for '.'? [yn] n

 You must wait while the ufsrestore command performs its final cleanup.

11 Quit the ufsrestore program.

 ufsrestore> quit

 You then see the shell prompt.
12 Verify the restored files.

a. List the restored files and directories.

```bash
# ls -l
```

A list of files and directories is displayed.

b. Check the list to be sure that all the files and directories you specified in the list have been restored.

13 Move the files to the proper directories.

Example 26–2 Restoring UFS Files Interactively

The following example shows how to extract the `/etc/passwd` and `/etc/shadow` files from the backup tape.

```bash
# cd /var/tmp
# ufsrestore if /dev/rmt/0
ufsrestore> ls
.
.: 
太阳/ export/ net/ sbin/ usr/
Sources/ etools/ opt/ scde/ var/
bin home/ ptools/ set/ vol/
dev/ lib/ platform/ share/
devices/ lost+found/ proc/ src/
etc/ mnt/ rtools/ tmp/
ufsrestore> cd etc
ufsrestore> add passwd shadow
ufsrestore> verbose
verbose mode on
ufsrestore> extract
Extract requested files
You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #: 1
extract file ./etc/shadow
extract file ./etc/passwd
Add links
Set directory mode, owner, and times.
set owner/mode for './'? [yn] n
ufsrestore> quit
# cd etc
# mv passwd /etc
# mv shadow /etc
# ls -l /etc
```
How to Restore Specific UFS Files Noninteractively

1. Become superuser or assume an equivalent role.

2. (Optional) Write-protect the tape for safety.

3. Insert the volume 1 tape into the tape drive.

4. Change to a directory that will be used to restore files to temporarily.
   ```
   # cd /var/tmp
   ```

5. Restore the file or files.
   ```
   # ufsrestore xvf /dev/rmt/n filename
   ```
 - `x`: Tells `ufsrestore` to copy specific files or directories in the `filename` argument.
 - `v`: Displays the file names as they are restored.
 - `f /dev/rmt/n`: Identifies the tape device name.
 - `filename`: Specifies one or more file names or directory names, separated by spaces. For example:
     ```
     ./export/home/user1/mail ./export/home/user2/mail
     ```

6. Type the volume number where files are located. Press Return.
   ```
   Specify next volume #: 1
   ```
 The file or files are restored to the current working directory.

7. To maintain the mode of the current directory, type `n` and press Return at the set owner/mode prompt.
   ```
   set owner/mode for ‘.’? [yn] n
   ```

8. Verify the restored files.
 a. List the restored files and directories.
      ```
      # ls -l
      ```
 A list of files and directories is displayed.
 b. Check the list to be sure that all the files and directories you specified in the list have been restored.

9. Move the files to the proper directories.
Example 26–3 Restoring Specific Files Noninteractively

The following example shows how to noninteractively restore the passwd and shadow files to the /var/tmp directory.

```
# cd /var/tmp
# ufsrestore xvf /dev/rmt/0 ./etc/passwd ./etc/shadow
Verify volume and initialize maps
Media block size is 126
Dump date: Wed Jul 14 13:36:17 2010
Dumped from: the epoch
Level 0 dump of / on starbug:/dev/dsk/c0t0d0s0
Label: none
Extract directories from tape
Initialize symbol table.
Extract requested files
You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start with the last volume and work towards the first.
Specify next volume #: 1
extract file ./etc/passwd
extract file ./etc/shadow
Add links
Set directory mode, owner, and times.
Specify next volume #:1
extract file ./etc/passwd
extract file ./etc/shadow
Add links
Set directory mode, owner, and times.
set owner/mode for "."? [yn] n
# cd etc
# mv passwd /etc
# mv shadow /etc
# ls -l /etc
```

Example 26–4 Restoring Files From a Remote Tape Device

You can restore files from a remote tape drive by adding remote-host: to the front of the tape device name, when using the ufsrestore command.

The following example shows how to restore files by using a remote tape drive /dev/rmt/0 on the system venus.

```
# ufsrestore xf venus:/dev/rmt/0 ./etc/hosts
```

How to Restore a Complete UFS File System

Occasionally, a file system becomes so damaged that you must completely restore it. Typically, you need to restore a complete file system after a disk failure. You might need to replace the hardware before you can restore the software. For information on how to replace a disk, see...
Full restoration of a file system such as `/export/home` can take a lot of time. If you have consistently backed up file systems, you can restore them to their state from the time of the last incremental backup.

Note – You cannot use this procedure to restore the root (`/`) or `/usr` file systems. For instructions on restoring these file systems, see “How to Restore a UFS root (`/`) and `/usr` File System” on page 472.

1. **Become superuser or assume an equivalent role.**

2. **If necessary, unmount the file system.**

   ```
   # umount /dev/rdsk/device-name
   Or:
   
   # umount /file-system
   ```

3. **Create the new file system.**

   ```
   # newfs /dev/rdsk/device-name
   ```

 You are asked if you want to construct a new file system on the raw device. Verify that the `device-name` is correct so that you don’t destroy the wrong file system.

 For more information, see the `newfs(1M)` man page.

4. **Confirm that the new file system should be created.**

   ```
   newfs: construct a new file system /dev/rdsk/cwtxdysz:(y/n)? y
   ```

 The new file system is created.

5. **Mount the new file system on a temporary mount point.**

   ```
   # mount /dev/dsk/device-name /mnt
   ```

6. **Change to the mount point directory.**

   ```
   # cd /mnt
   ```

7. **(Optional) Write-protect the tapes for safety.**

8. **Insert the first volume of the level 0 tape into the tape drive.**

9. **Restore the files.**

   ```
   # ufsrestore rvf /dev/rmt/n
   ```
The dump level 0 backup is restored. If the backup required multiple tapes, you are prompted to load each tape in numeric order.

10 Remove the tape and load the next level tape in the drive.
Always restore tapes starting with dump level 0 and continuing until you reach the highest dump level.

11 Repeat Step 8 through Step 10 for each dump level, from the lowest to the highest level.

12 Verify that the file system has been restored.
 # ls

13 Remove the restoresymtable file.
 # rm restoresymtable
 The restoresymtable file that is created and used by the ufsrestore command to check-point the restore is removed.

14 Change to another directory.
 # cd /

15 Unmount the newly restored file system.
 # umount /mnt

16 Remove the last tape and insert a new tape that is not write-protected in the tape drive.

17 Make a level 0 backup of the newly restored file system.
 # ufsdump 0ucf /dev/rmt/n /dev/rdsk/device-name
 A level 0 backup is performed. Always immediately do a full backup of a newly created file system because the ufsrestore command repositions the files and changes the inode allocation.

18 Mount the restored file system.
 # mount /dev/dsk/device-name mount-point
 The restored file system is mounted and available for use.

19 Verify that the restored and mounted file system is available.
 # ls mount-point

Example 26–5 Restoring a Complete UFS File System

The following example shows how to restore the /export/home file system.
newfs /dev/rdsk/c0t0d0s7
newfs: /dev/rdsk/c0t0d0s7 last mounted as /export/home
newfs: construct a new file system /dev/rdsk/c0t0d0s7: (y/n)? y
/dev/rdsk/c0t0d0s7: 143358064 sectors in 23334 cylinders of 48 tracks, 128 sectors
69999.1MB in 1459 cyl groups (16 c/g, 48.00MB/g, 5824 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 98464, 196928, 295392, 393856, 492320, 590784, 689248, 787712, 885176.
Initializing cylinder groups:

.....................................
super-block backups for last 10 cylinder groups at:
142447776, 142546208, 142644640, 142743072, 142841504, 142940936, 143040368,
143139800, 143239232, 143338664

mount /dev/dsk/c0t0d0s7 /mnt
cd /mnt
ufsrestore rvf /dev/rmt/0
Verify volume and initialize maps
Media block size is 126
Dump date: Wed Jul 14 12:45:33 2010
Dumped from: the epoch
Level 0 dump of /export/home on starbug:/dev/dsk/c0t0d0s7
Label: none
Begin level 0 restore
Initialize symbol table.
Extract directories from tape
Calculate extraction list.
Warning: ./lost+found: File exists
Make node ./rimmer
Make node ./rimmer/wdir
Make node ./lister
Make node ./pmorph
Make node ./inquisitor
Make node ./kryten
Make node ./kryten/letters
Make node ./kryten/reports
Extract new leaves.
Check pointing the restore
extract file ./rimmer/words
extract file ./rimmer/words1
extract file ./rimmer/words2
extract file ./rimmer/words3
extract file ./rimmer/wdir/words
extract file ./rimmer/wdir/words1
extract file ./rimmer/wdir/words2
extract file ./rimmer/wdir/words3

Add links
Set directory mode, owner, and times.
Check the symbol table.
Check pointing the restore
rm restoresymtable
cd /
umount /mnt
ufsdump 0ucf /dev/rmt/0 /export/home

...
How to Restore a UFS root (/) and /usr File System

1. Become superuser or assume an equivalent role.

2. Add a new system disk to the system where the root (/) and /usr file systems will be restored.
 For a detailed description about adding a system disk, refer to “SPARC: How to Connect a System Disk and Boot” on page 224 or “x86: How to Connect a System Disk” on page 235.

3. Mount the new file system on a temporary mount point.
   ```
   # mount /dev/dsk/device-name /mnt
   ```

4. Change to the /mnt directory.
   ```
   # cd /mnt
   ```

5. (Optional) Write-protect the tapes for safety.

6. Create the links for the tape device.
   ```
   # tapes
   ```

7. Restore the root (/) file system.
   ```
   # ufsrestore rvf /dev/rmt/n
   ```
 The dump level 0 tape is restored.

8. Remove the tape and load the next level tape in the drive.
 Always restore tapes starting with dump level 0 and continuing from the lowest to highest dump level.

9. Continue restoring as needed.
   ```
   # ufsrestore rvf /dev/rmt/n
   ```
 The next level tape is restored.

10. Repeat Step 8 and Step 9 for each additional tape.

11. Verify that the file system has been restored.
    ```
    # ls
    ```

12. Remove the restoresymtable file.
    ```
    # rm restoresymtable
    ```
The restore symtable file that is created and used by the ufsrestore command to check-point the restore is removed.

13 Change to the root (/) directory.
 # cd /

14 Unmount the newly created file system.
 # umount /mnt

15 Check the new file system.
 # fsck /dev/rdsk/device-name
 The restored file system is checked for consistency.

16 Create the boot blocks on the root partition.
 On a SPARC system:
 # installboot /usr/platform/`uname-i`/lib/fs/ufs/bootblk
 /dev/rdsk/device-name
 For more information, see the installboot(1M) man page.
 For an example of using the installboot command on a SPARC based system, see Example 26–6.
 On an x86 system:
 # /sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/cwtxdysz
 For more information, see installgrub(1M).
 For an example of using the installgrub command on an x86 based system, see Example 26–7.

17 Insert a new tape in the tape drive.

18 Back up the new file system.
 # ufsdump 0uf /dev/rmt/n /dev/rdsk/device-name
 A dump level 0 backup is performed. Always immediately do a full backup of a newly created file system because the ufsrestore command repositions the files and changes the inode allocation.

19 Repeat steps 5 through 16 for the /usr file system, if necessary.

20 Reboot the system.
 # init 6
 The system is rebooted.
Example 26–6 SPARC: Restoring a UFS root (/) File System

This example shows how to restore the root (/) file system on a SPARC system. This example assumes that the system is booted from a local Solaris DVD or from the network.

```
# mount /dev/dsk/c0t3d0s0 /mnt
# cd /mnt
# tapes
# ufsrestore rvf /dev/rmt/0
# ls
# rm restoresymtable
# cd /
# umount /mnt
# fsck /dev/rdsk/c0t3d0s0
# installboot /usr/platform/sun4u/lib/fs/ufs/bootblk
   /dev/rdsk/c0t3d0s0
# ufsdump 0uf /dev/rmt/0 /dev/rdsk/c0t3d0s0
# init 6
```

Example 26–7 x86: Restoring a UFS root (/) File System

This example shows how to restore the root (/) file system on an x86 system. This example assumes that the system is booted from a GRUB failsafe boot session, local Solaris DVD, or from the network.

```
# mount /dev/dsk/c0t3d0s0 /mnt
# cd /mnt
# tapes
# ufsrestore rvf /dev/rmt/0
# ls
# rm restoresymtable
# cd /
# umount /mnt
# fsck /dev/rdsk/c0t3d0s0
# /sbin/installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c0t3d0s0
  stage1 written to partition 0 sector 0 (abs 2016)
  stage2 written to to partition 0, 227 sectors starting 50 (abs 2066)
# ufsdump 0uf /dev/rmt/0 /dev/rdsk/c0t3d0s0
# init 6
```
This chapter contains reference information on the `ufsdump` and `ufsrestore` commands.

This is a list of the information in this chapter.

- "How the `ufsdump` Command Works" on page 475
- "Specifying `ufsdump` Command Options and Arguments" on page 480
- "The `ufsdump` Command and Security Issues" on page 480
- "Specifying `ufsrestore` Options and Arguments" on page 481

For overview information about performing backups, see Chapter 23, "Backing Up and Restoring UFS File Systems (Overview)."

For information about backup tasks, see Chapter 24, "Backing Up UFS Files and File Systems (Tasks)."

How the `ufsdump` Command Works

The `ufsdump` command makes two passes when it backs up a file system. On the first pass, this command scans the raw device file for the file system and builds a table of directories and files in memory. Then, this command writes the table to the backup media. In the second pass, the `ufsdump` command goes through the inodes in numerical order, reading the file contents and writing the data to the backup media.

Determining Device Characteristics

The `ufsdump` command needs to know only an appropriate tape block size and how to detect the end of media.
Detecting the End of Media

The `ufsdump` command writes a sequence of fixed-size records. When the `ufsdump` command receives notification that a record was only partially written, it assumes that it has reached the physical end of the media. This method works for most devices. If a device is not able to notify the `ufsdump` command that only a partial record has been written, a media error occurs as the `ufsdump` command tries to write another record.

Note – DAT devices and 8-mm tape devices detect end-of-media. Cartridge tape devices and 1/2-inch tape devices do not detect end-of-media.

The `ufsdump` command automatically detects the end-of-media for most devices. Therefore, you do not usually need to use the `-c`, `-d`, `-s`, and `-t` options to perform multivolume backups.

You need to use the end-of-media options when the `ufsdump` command does not understand the way the device detects the end-of-media.

To ensure compatibility with the `restore` command, the `size` option can still force the `ufsdump` command to go to the next tape or diskette before reaching the end of the current tape or diskette.

Copying Data With the `ufsdump` Command

The `ufsdump` command copies data only from the raw disk slice. If the file system is still active, any data in memory buffers is probably not copied. The backup done by the `ufsdump` command does not copy free blocks, nor does it make an image of the disk slice. If symbolic links point to files on other slices, the link itself is copied.

Purpose of the `/etc/dumpdates` File

The `ufsdump` command, when used with the `-u` option, maintains and updates the `/etc/dumpdates` file. Each line in the `/etc/dumpdates` file shows the following information:

- The file system backed up
- The dump level of the last backup
- The day, date, and time of the backup

For example:

```
# cat /etc/dumpdates
/dev/rdsk/c0t0d0s0 0 Wed Jul 7 13:36:17 2010
/dev/rdsk/c0t0d0s7 0 Thu Jul 8 12:53:12 2010
/dev/rdsk/c0t0d0s7 9 Thu Jul 8 13:41:48 2010
```
When you do an incremental backup, the `ufsdump` command checks the `/etc/dumpdates` file to find the date of the most recent backup of the next lower dump level. Then, this command copies to the media all files that were modified since the date of that lower-level backup. After the backup is complete, a new information line, which describes the backup you just completed, replaces the information line for the previous backup at that level.

Use the `/etc/dumpdates` file to verify that backups are being done. This verification is particularly important if you are having equipment problems. If a backup cannot be completed because of equipment failure, the backup is not recorded in the `/etc/dumpdates` file.

If you need to restore an entire disk, check the `/etc/dumpdates` file for a list of the most recent dates and levels of backups so that you can determine which tapes you need to restore the entire file system.

Note – The `/etc/dumpdates` file is a text file that can be edited. However, edit it only at your own risk. If you make changes to the file that do not match your archive tapes, you might be unable to find the tapes (or files) you need.

Backup Device (`dump-file`) Argument

The `dump-file` argument (to the `-f` option) specifies the destination of the backup. The destination can be one of the following:

- Local tape drive
- Local diskette drive
- Remote tape drive
- Remote diskette drive
- Standard output

Use this argument when the destination is not the default local tape drive `/dev/rmt/0`. If you use the `-f` option, then you must specify a value for the `dump-file` argument.

Note – The `dump-file` argument can also point to a file on a local disk or on a remote disk. If done by mistake, this usage can fill up a file system.

Local Tape or Diskette Drive

Typically, the `dump-file` argument specifies a raw device file for a tape device or diskette. When the `ufsdump` command writes to an output device, it creates a single backup file that might span multiple tapes or diskettes.

You specify a tape device or a diskette on your system by using a device abbreviation. The first device is always 0. For example, if you have a SCSI tape controller and one QIC-24 tape drive that uses medium-density formatting, use this device name:
When you specify a tape device name, you can also type the letter “n” at the end of the name to indicate that the tape drive should not rewind after the backup is completed. For example:

/dev/rmt/0mn

Use the “no-rewind” option if you want to put more than one file onto the tape. If you run out of space during a backup, the tape does not rewind before the *ufsdump* command asks for a new tape. For a complete description of device-naming conventions, see “Backup Device Names” on page 506.

Remote Tape or Diskette Drive

You specify a remote tape device or a remote diskette by using the syntax *host:device*. The *ufsdump* command writes to the remote device when superuser on the local system has access to the remote system. If you usually run the *ufsdump* command as superuser, the name of the local system must be included in the /.rhosts file on the remote system. If you specify the device as *user@host:device*, the *ufsdump* command tries to access the device on the remote system as the specified user. In this case, the specified user must be included in the /.rhosts file on the remote system.

Use the naming convention for the device that matches the operating system for the system on which the device resides, not the system from which you run the *ufsdump* command. If the drive is on a system that is running a previous SunOS release (for example, 4.1.1), use the SunOS 4.1 device name (for example, /dev/rst0). If the system is running Solaris software, use the SunOS 5.9 convention (for example, /dev/rmt/0).

Using Standard Output With the *ufsdump* Command

When you specify a dash (-) as the *dump-file* argument, the *ufsdump* command writes to standard output.

Note – The *-v* option (verify) does not work when the *dump-file* argument is standard output.

You can use the *ufsdump* and *ufsrestore* commands in a pipeline to copy a file system by writing to standard output with the *ufsdump* command and reading from standard input with the *ufsrestore* command. For example:

```
# ufsdump 0f - /dev/rdsk/c0t0d0s7 | (cd /home; ufsrestore xf -)
```
Specifying Files to Back Up

You must always include filenames as the last argument on the command line. This argument specifies the source or contents of the backup.

For a file system, specify the raw device file as follows:

/dev/rdsk/c0t0d0s7

You can specify the file system by its mount point directory (for example, /export/home), as long as an entry for it exists in the /etc/vfstab file.

For a complete description of device-naming conventions, see “Backup Device Names” on page 506.

For individual files or directories, type one or more names separated by spaces.

Note – When you use the ufsdump command to back up one or more directories or files (rather than a complete file system), a level 0 backup is done. Incremental backups do not apply.

Specifying Tape Characteristics

If you do not specify any tape characteristics, the ufsdump command uses a set of defaults. You can specify the tape cartridge (c), density (d), size (s), and number of tracks (t). Note that you can specify the options in any order, as long as the arguments that follow match the order of the options.

Limitations of the ufsdump Command

The ufsdump command cannot do the following:

- Automatically calculate the number of tapes or diskettes that are needed for backing up file systems. You can use the dry run mode (-S option) to determine how much space is needed before actually backing up file systems.
- Provide built-in error checking to minimize problems when it backs up an active file system.
- Back up files that are remotely mounted from a server. Files on the server must be backed up on the server itself. Users are denied permission to run the ufsdump command on files they own that are located on a server.
Specifying ufsdump Command Options and Arguments

This section describes how to specify options and arguments for the ufsdump command. The syntax for the ufsdump command is as follows:

```
/usr/sbin/ufsdump options arguments filenames
```

- **options**
 - Is a single string of one-letter option names.

- **arguments**
 - Identifies option arguments and might consist of multiple strings. The option letters and their associated arguments must be in the same order.

- **filenames**
 - Identifies the files to back up. These arguments must always come last, each separated by a space.

Default ufsdump Options

If you run the ufsdump command without any options, use this syntax:

```
# ufsdump filenames
```

The ufsdump command uses these options and arguments, by default:

```
ufsdump 9uf /dev/rmt/0 filenames
```

These options do a level 9 incremental backup to the default tape drive at its preferred density.

For a description of the ufsdump options, see `ufsdump(1M)`.

The ufsdump Command and Security Issues

If you are concerned about security, you should do the following:

- Require superuser access for the ufsdump command.
- Ensure superuser access entries are removed from `/rhosts` files on clients and servers if you are doing centralized backups.

For general information on security, see `System Administration Guide: Security Services`.
Specifying ufsrestore Options and Arguments

The syntax of the ufsrestore command is as follows:

```
/usr/sbin/ufsrestore options arguments filenames
```

- **options** Is a single string of one-letter option names. You must choose one and only one of these options: i, r, R, t, or x. For a description of the ufsrestore options, see ufsrestore(1M).

- **arguments** Follows the option string with the arguments that match the options. The option letters and their associated arguments must be in the same order.

- **filenames** Specifies the file or files to be restored as arguments to the x or t options. These arguments must always come last, separated by spaces.
This chapter describes how to copy UFS files and file systems to disk, tape, and diskettes by using various backup commands.

This is a list of the step-by-step instructions in this chapter.

- “How to Copy a Disk (dd)” on page 486
- “How to Copy Directories Between File Systems (cpio)” on page 490
- “How to Copy Files to a Tape (tar)” on page 491
- “How to List the Files on a Tape (tar)” on page 492
- “How to Retrieve Files From a Tape (tar)” on page 493
- “Copying Files to a Tape With the pax Command” on page 494
- “How to Copy All Files in a Directory to a Tape (cpio)” on page 495
- “How to List the Files on a Tape (cpio)” on page 496
- “How to Retrieve All Files From a Tape (cpio)” on page 496
- “How to Retrieve Specific Files From a Tape (cpio)” on page 497
- “How to Copy Files to a Remote Tape Device (tar and dd)” on page 498
- “How to Extract Files From a Remote Tape Device” on page 500
- “How to Copy Files to a Single Formatted Diskette (tar)” on page 501
- “How to List the Files on a Diskette (tar)” on page 502
- “How to Retrieve Files From a Diskette (tar)” on page 502

Commands for Copying File Systems

When you need to back up and restore complete UFS file systems, use the ufsdump and ufsrestore commands described in Chapter 27, “UFS Backup and Restore Commands (Reference).” When you want to copy or move individual files, portions of file systems, or complete file systems, you can use the procedures described in this chapter instead of the ufsdump and ufsrestore commands.

The following table describes when to use the various backup commands.
TABLE 28–1 When to Use Various Backup Commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up UFS file systems to tape.</td>
<td>ufsdump</td>
<td>"How to Back Up a UFS File System to Tape" on page 444</td>
</tr>
<tr>
<td>Create a file system snapshot.</td>
<td>fssnap</td>
<td>Chapter 25, "Using UFS Snapshots (Tasks)"</td>
</tr>
<tr>
<td>Restore UFS file systems from tape.</td>
<td>ufsrestore</td>
<td>"How to Restore a Complete UFS File System" on page 468</td>
</tr>
<tr>
<td>Transport files to other systems.</td>
<td>pax, tar, or cpio</td>
<td>"Copying Files and File Systems to Tape" on page 491</td>
</tr>
<tr>
<td>Copy files or file systems between disks.</td>
<td>dd</td>
<td>"How to Copy a Disk (dd)" on page 486</td>
</tr>
<tr>
<td>Copy files to diskette.</td>
<td>tar</td>
<td>"How to Copy Files to a Single Formatted Diskette (tar)" on page 501</td>
</tr>
</tbody>
</table>

The following table describes various backup and restore commands.

TABLE 28–2 Summary of Various Backup Commands

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Aware of FileSystem Boundaries?</th>
<th>Supports Multiple Volume Backups?</th>
<th>Physical or Logical Copy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>volcopy</td>
<td>Yes</td>
<td>Yes</td>
<td>Physical</td>
</tr>
<tr>
<td>tar</td>
<td>No</td>
<td>No</td>
<td>Logical</td>
</tr>
<tr>
<td>cpio</td>
<td>No</td>
<td>Yes</td>
<td>Logical</td>
</tr>
<tr>
<td>pax</td>
<td>Yes</td>
<td>Yes</td>
<td>Logical</td>
</tr>
<tr>
<td>dd</td>
<td>Yes</td>
<td>No</td>
<td>Physical</td>
</tr>
<tr>
<td>ufsdump/ufsrestore</td>
<td>Yes</td>
<td>Yes</td>
<td>Logical</td>
</tr>
<tr>
<td>fssnap</td>
<td>N/A</td>
<td>N/A</td>
<td>Logical</td>
</tr>
</tbody>
</table>

The following table describes the advantages and disadvantages of some of these commands.
TABLE 28-3 Advantages and Disadvantages of `tar`, `pax`, and `cpio` Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| `tar` | Use to copy files and directory subtrees to a single tape. | - Available on most UNIX operating systems
- Public domain versions are readily available | - Is not aware of file system boundaries
- Length of full path name cannot exceed 255 characters
- Cannot be used to create multiple tape volumes |
| `pax` | Use to copy files, special files, or file systems that require multiple tape volumes. Or, use when you want to copy files to and from POSIX-compliant systems. | - Better portability than the `tar` or `cpio` commands for POSIX-compliant systems
- Multiple vendor support | Same disadvantages as the `tar` command, except that the `pax` command can create multiple tape volumes |
| `cpio` | Use to copy files, special files, or file systems that require multiple tape volumes. Or, use when you want to copy files from systems running current Solaris releases systems to systems running SunOS 4.0/4.1 releases. | - Packs data onto tape more efficiently than the `tar` command
- Skips over any bad spots in a tape when restoring
- Provides options for writing files with different header formats, such as (`tar`, `ustar`, `crc`, `odc`, `bar`), for portability between different system types
- Creates multiple tape volumes | The command syntax is more difficult than the `tar` or `pax` commands. |

The following sections describes step-by-step instructions and examples of how to use these commands.
Copying File Systems Between Disks

Two commands are used to copy file systems between disks:

- `volcopy`
- `dd`

For more information about `volcopy`, see `volcopy(1M)`.

The next section describes how to use the `dd` command to copy file systems between disks.

Making a Literal File System Copy

The `dd` command makes a literal (block-level) copy of a complete UFS file system to another file system or to a tape. By default, the `dd` command copies standard input to standard output.

```
Note – Do not use the `dd` command with variable-length tape drives without first specifying an appropriate block size.
```

You can specify a device name in place of standard input or standard output, or both. In this example, the contents of the diskette are copied to a file in the `/tmp` directory:

```
$ dd < /floppy/floppy0 > /tmp/output.file
2400+0 records in
2400+0 records out
```

The `dd` command reports on the number of blocks it reads and writes. The number after the + is a count of the partial blocks that were copied. The default block size is 512 bytes.

The `dd` command syntax is different from most other commands. Options are specified as `keyword=value` pairs, where `keyword` is the option you want to set and `value` is the argument for that option. For example, you can replace standard input and standard output with this syntax:

```
$ dd if=input-file of=output-file
```

To use the `keyword=value` pairs instead of the redirect symbols, you would type the following:

```
$ dd if=/floppy/floppy0 of=/tmp/output.file
```

How to Copy a Disk (`dd`)

Keep the following key points in mind when you consider copying a disk:

- Do not use this procedure to copy a disk that is under the control of a volume manager.
The primary methods for copying UFS file system data from one disk or system to another disk or system is by using the `ufsdump` and `ufsrestore` commands. For more information on using these commands, see Chapter 23, “Backing Up and Restoring UFS File Systems (Overview).”

You can clone systems by creating a flash archive and copying it to destination systems. For more information about creating a flash archive, see Oracle Solaris 10 9/10 Installation Guide: Solaris Flash Archives (Creation and Installation).

If you are copying a disk with an EFI disk label, see Example 28–2.

If you are still considering copying a disk with the `dd` command keep the following cautions in mind:

- Make sure that the source disk and destination disk have the same disk geometry.
- Check the UFS file systems on the disk to be copied with the `fsck` utility.
- Make sure the system is in single-user mode when copying a disk with the `dd` command.

1. Become superuser or assume an equivalent role.

2. (Optional) Create the `/reconfigure` file so that the system will recognize the destination disk to be added when it reboots, if necessary.
   ```bash
   # touch /reconfigure
   ```

3. Shut down the system.
   ```bash
   # init 0
   ```

4. Attach the destination disk to the system.

5. Boot the system.
   ```bash
   ok boot -s
   ```

6. Copy the source disk to the destination disk.
   ```bash
   # dd if=/dev/rdsk/device-name of=/dev/rdsk/device-name bs=block-size
   ```
 - `if=/dev/rdsk/device-name` Represents the overlap slice of the master disk device, usually slice 2.
 - `of=/dev/rdsk/device-name` Represents the overlap slice of the destination disk device, usually slice 2.
 - `bs=blocksize` Identifies the block size, such as 128 KB or 256 KB. A large block size decreases the time it takes to copy the disk.

For more information, see `dd(1M)`.
7 Check the new file system.
 # fsck /dev/rdsk/device-name

8 Mount the destination disk's root (/) file system.
 # mount /dev/dsk/device-name /mnt

9 Change to the directory where the /etc/vfstab file is located.
 # cd /mnt/etc

10 Using a text editor, edit the destination disk's /etc/vfstab file to reference the correct device names.
 For example, change all instances of c0t3d0 to c0t1d0.

11 Change to the destination disk's root (/) directory.
 # cd /

12Unmount the destination disk's root (/) file system.
 # umount /mnt

13 Shut down the system.
 # init 0

14 Boot from the destination disk to single-user mode.
 # boot disk
 -s

 Note – The installboot command is not needed for the destination disk because the boot blocks are copied as part of the overlap slice.

15 Unconfigure the destination disk.
 # sys-unconfig
 The system is shut down after it is unconfigured.

16 Boot from the destination disk again and provide its system information, such as host name, time zone, and so forth.
 # boot disk

17 After the system is booted, log in as superuser to verify the system information.
 hostname console login:
Copying a Disk With a VTOC Label (dd)

This example shows how to copy the master disk (with a VTOC label) /dev/rdsk/c0t0d0s2 to the destination disk /dev/rdsk/c0t2d0s2.

Example 28–1

```bash
# touch /reconfigure
# init 0
ok boot
# dd if=/dev/rdsk/c0t0d0s2 of=/dev/rdsk/c0t2d0s2 bs=128k
# fsck /dev/rdsk/c0t2d0s2
# mount /dev/dsk/c0t2d0s2 /mnt
# cd /mnt/etc
# vi vfstab
(Modify entries for the new disk)
# cd /
# umount /mnt
# init 0
# boot disk2 -s
# sys-unconfig
# boot disk2
```

Copying a Disk with an EFI Label (dd)

In previous Solaris releases, slice 2 (s2) was used to represent the entire disk. On a disk with an EFI label, you must use a slightly different procedure to clone or copy disks larger than 1 terabyte so that the UUID of cloned disks is unique. If you do not create a new label for the cloned disk, other software products might corrupt data on EFI-labeled disks if they encounter duplicate UUIDs.

For example:

1. Clone the disk with an EFI label. For example:

   ```bash
   # dd if=/dev/rdsk/c0t0d0 of=/dev/rdsk/c0t2d0 bs=128k
   ```

2. Pipe the prtvtoc output of the disk to be copied to the fmthard command to create a new label for the cloned disk. For example:

   ```bash
   # prtvtoc /dev/rdsk/c0t0d0 | fmthard -s - /dev/rdsk/c0t2d0
   ```

For more information about EFI disk labels, see “EFI Disk Label” on page 185.

Copying Directories Between File Systems (cpio Command)

You can use the cpio (copy in and out) command to copy individual files, groups of files, or complete file systems. This section describes how to use the cpio command to copy complete file systems.
The **cpio** command is an archiving program that copies a list of files into a single, large output file. This command inserts headers between the individual files to facilitate recovery. You can use the cpio command to copy complete file systems to another slice, another system, or to a media device, such as a tape or diskette.

Because the cpio command recognizes end-of-media and prompts you to insert another volume, it is the most effective command, other than *ufsdump*, to use to create archives that require multiple tapes or diskettes.

With the cpio command, you frequently use the `ls` and `find` commands to list and select the files you want to copy, and then to pipe the output to the `cpio` command.

How to Copy Directories Between File Systems (**cpio**)

1. **Become superuser or assume an equivalent role.**

2. **Change to the appropriate directory.**

   ```
   # cd filesystem1
   ```

3. **Copy the directory tree from **filesystem1** to **filesystem2** by using a combination of the **find** and **cpio** commands.**

   ```
   # find . -print -depth | cpio -pdm filesystem2
   ```

 - `.` Starts in the current working directory.
 - `-print` Prints the file names.
 - `-depth` Descends the directory hierarchy and prints file names from the bottom up.
 - `-p` Creates a list of files.
 - `-d` Creates directories as needed.
 - `-m` Sets the correct modification times on directories.

 For more information, see `cpio(1)`.

 The files from the directory name you specify are copied. The symbolic links are preserved.

 You might also specify the `-u` option. This option forces an unconditional copy. Otherwise, older files do not replace newer files. This option might be useful if you want an exact copy of a directory, and some of the files being copied might already exist in the target directory.

4. **Verify that the copy was successful by displaying the contents of the destination directory.**

   ```
   # cd filesystem2
   # ls
   ```
If appropriate, remove the source directory.

```
# rm -rf filesystem1
```

Example 28–3 Copying Directories Between File Systems (cpio)

```
# cd /data1
# find . -print -depth | cpio -pdm /data2
19013 blocks
# cd /data2
# ls
# rm -rf /data1
```

Copying Files and File Systems to Tape

You can use the tar, pax, and cpio commands to copy files and file systems to tape. The command that you choose depends on how much flexibility and precision you require for the copy. Because all three commands use the raw device, you do not need to format or make a file system on tapes before you use them.

The tape drive and device name that you use depend on the hardware configuration for each system. For more information about tape device names, see “Choosing Which Media to Use” on page 505.

Copying Files to Tape (tar Command)

Here is information that you should know before you copy files to tape with the tar command:

- Copying files to a tape with the -c option to the tar command destroys any files already on the tape at or beyond the current tape position.
- You can use file name substitution wildcards (?) and (*) as part of the file names that you specify when copying files. For example, to copy all documents with a .doc suffix, type *.doc as the file name argument.
- You cannot use file name substitution wildcards when you extract files from a tar archive.

How to Copy Files to a Tape (tar)

1. Change to the directory that contains the files you want to copy.
2. Insert a write-enabled tape into the tape drive.
3 Copy the files to tape.

$ tar cvf /dev/rmt/0 filenames

- `c` Indicates that you want to create an archive.
- `v` Displays the name of each file as it is archived.
- `f /dev/rmt/0` Indicates that the archive should be written to the specified device or file.
- `filenames` Indicates the files and directories that you want to copy. Separate multiple files with spaces.

The file names that you specify are copied to the tape, overwriting any existing files on the tape.

4 Remove the tape from the drive. Write the names of the files on the tape label.

5 Verify that the files you copied are on the tape.

$ tar tvf /dev/rmt/0

For more information on listing files on a tar tape, see “How to List the Files on a Tape (tar)” on page 492.

Example 28–4 Copying Files to a Tape (tar)

The following example shows how to copy three files to the tape in tape drive 0.

$ cd /export/home/kryten
$ ls reports
 reportA reportB reportC
$ tar cvf /dev/rmt/0 reports
 a reports/ 0 tape blocks
 a reports/reportA 59 tape blocks
 a reports/reportB 61 tape blocks
 a reports/reportC 63 tape blocks
$ tar tvf /dev/rmt/0

▼ How to List the Files on a Tape (tar)

1 Insert a tape into the tape drive.

2 Display the tape contents.

$ tar tvf /dev/rmt/0

- `t` Lists the table of contents for the files on the tape.
- `v` Used with the `t` option, and provides detailed information about the files on the tape.
Example 28–5

Listing the Files on a Tape (**tar**)
The following example shows a listing of files on the tape in drive 0.

```sh
$ tar tvf /dev/rmt/0
```

```
drwxr-xr-x 0/0 0 Jul 14 13:50 2010 reports/
-r--r--r-- 0/0 206663 Jul 14 13:50 2010 reports/reportC
-r--r--r-- 0/0 206663 Jul 14 13:50 2010 reports/reportB
-r--r--r-- 0/0 206663 Jul 14 13:50 2010 reports/reportA
```

How to Retrieve Files From a Tape (tar**)**

1. Change to the directory where you want to put the files.

2. Insert the tape into the tape drive.

3. Retrieve the files from the tape.

```sh
$ tar xvf /dev/rmt/0 [filenames]
```

- **x** Indicates that the files should be extracted from the specified archive file. All files on the tape in the specified drive are copied to the current directory.

- **v** Displays the name of each file as it is retrieved.

- **f** /dev/rmt/n Indicates the tape device that contains the archive.

- **filenames** Specifies a file to retrieve. Separate multiple files with spaces.

For more information, see the **tar**(1) man page.

4. Verify that the files have been copied.

```sh
$ ls -l
```

Example 28–6

Retrieving Files on a Tape (**tar**)
The following example shows how to retrieve all the files from the tape in drive 0.

```sh
$ cd /var/tmp
$ tar xvf /dev/rmt/0
```

```
  x reports/, 0 bytes, 0 tape blocks
  x reports/reportA, 0 bytes, 0 tape blocks
  x reports/reportB, 0 bytes, 0 tape blocks
  x reports/reportC, 0 bytes, 0 tape blocks
  x reports/reportD, 0 bytes, 0 tape blocks
$ ls -l
```
Copying Files to a Tape With the pax Command

Troubleshooting The names of the files extracted from the tape must exactly match the names of the files that are stored on the archive. If you have any doubts about the names or paths of the files, first list the files on the tape. For instructions on listing the files on the tape, see “How to List the Files on a Tape (tar)” on page 492.

Copying Files to a Tape With the pax Command

▼ How to Copy Files to a Tape (pax)

1 Change to the directory that contains the files you want to copy.

2 Insert a write-enabled tape into the tape drive.

3 Copy the files to tape.

 $ pax -w -f /dev/rmt/0 filenames
 -w Enables the write mode.
 -f /dev/rmt/0 Identifies the tape drive.
 filenames Indicates the files and directories that you want to copy. Separate multiple files with spaces.

 For more information, see the pax(1) man page.

4 Verify that the files have been copied to tape.

 $ pax -f /dev/rmt/0

5 Remove the tape from the drive. Write the names of the files on the tape label.

Example 28–7 Copying Files to a Tape (pax)

The following example shows how to use the pax command to copy all the files in the current directory.

 $ pax -w -f /dev/rmt/0 .
 $ pax -f /dev/rmt/0 filea fileb filec
How to Copy All Files in a Directory to a Tape (cpio)

1. Change to the directory that contains the files you want to copy.

2. Insert a write-enabled tape into the tape drive.

3. Copy the files to tape.
 `$ ls | cpio -oc > /dev/rmt/n`
 `ls` provides the cpio command with a list of file names.
 `cpio -oc` specifies that the cpio command should operate in copy-out mode (-o) and write header information in ASCII character format (-c). These options ensure portability to other vendors' systems.
 `> /dev/rmt/n` specifies the output file.
 All files in the directory are copied to the tape in the drive you specify, overwriting any existing files on the tape. The total number of blocks that are copied is shown.

4. Verify that the files have been copied to tape.
 `$ cpio -civt < /dev/rmt/n`
 `-c` specifies that the cpio command should read files in ASCII character format.
 `-i` specifies that the cpio command should operate in copy-in mode, even though the command is only listing files at this point.
 `-v` displays the output in a format that is similar to the output from the `ls -l` command.
 `-t` lists the table of contents for the files on the tape in the tape drive that you specify.
 `< /dev/rmt/n` specifies the input file of an existing cpio archive.

5. Remove the tape from the drive. Write the names of the files on the tape label.

Example 28–8

Copying All Files in a Directory to a Tape (cpio)

The following example shows how to copy all of the files in the `/export/home/kryten` directory to the tape in tape drive 0.
Copying Files to Tape With the cpio Command

```bash
$ cd /export/home/kryten
$ ls | cpio -oc > /dev/rmt/0
1280 blocks
$ cpio -civt < /dev/rmt/0
-r--r--r-- 1 kryten staff 206663 Jul 14 13:52 2010, filea
-r--r--r-- 1 kryten staff 206663 Jul 14 13:52 2010, fileb
-r--r--r-- 1 kryten staff 206663 Jul 14 13:52 2010, filec
drwxr-xr-x 2 kryten staff 0 Jul 14 13:52 2010, letters
drwxr-xr-x 2 kryten staff 0 Jul 14 13:52 2010, reports
1280 blocks
```

▼ How to List the Files on a Tape (cpio)

Note – Listing the table of contents on a tape takes a long time because the cpio command must process the entire archive.

1. Insert an archive tape into the tape drive.
2. List the files on the tape.

```bash
$ cpio -civt < /dev/rmt/0
```

Example 28–9 Listing the Files on a Tape (cpio)

The following example shows how to list the files on the tape in drive 0.

```bash
$ cpio -civt < /dev/rmt/0
-r--r--r-- 1 kryten staff 206663 Jul 14 13:52 2010, filea
-r--r--r-- 1 kryten staff 206663 Jul 14 13:52 2010, fileb
-r--r--r-- 1 kryten staff 206663 Jul 14 13:52 2010, filec
drwxr-xr-x 2 kryten staff 0 Jul 14 13:52 2010, letters
drwxr-xr-x 2 kryten staff 0 Jul 14 13:52 2010, reports
1280 blocks
```

▼ How to Retrieve All Files From a Tape (cpio)

If the archive was created using relative path names, the input files are built as a directory within the current directory when you retrieve the files. If, however, the archive was created with absolute path names, the same absolute paths are used to re-create the file on your system.

Caution – The use of absolute path names can be dangerous because you might overwrite existing files on your system.

1. Change to the directory where you want to put the files.
2 Insert the tape into the tape drive.

3 Extract all files from the tape.

 $ cpio -icvd < /dev/rmt/n

 -i Extracts files from standard input.
 -c Specifies that the cpio command should read files in ASCII character format.
 -v Displays the files as they are retrieved in a format that is similar to the output from the ls command.
 -d Creates directories as needed.

 < /dev/rmt/n Specifies the output file.

4 Verify that the files were copied.

 $ ls -l

Example 28–10 Retrieving All Files From a Tape (cpio)

The following example shows how to retrieve all files from the tape in drive 0.

 $ cd /var/tmp
 cpio -icvd < /dev/rmt/0
 answers
 sc.directives
 tests
 8 blocks
 $ ls -l

▼ How to Retrieve Specific Files From a Tape (cpio)

1 Change to the directory where you want to put the files.

2 Insert the tape into the tape drive.

3 Retrieve a subset of files from the tape.

 $ cpio -icv "file" < /dev/rmt/n

 -i Extracts files from standard input.
 -c Specifies that the cpio command should read headers in ASCII character format.
Displaysthefilesastheyareretrievedinaformatthatissimilartotheoutput
fromthe`ls`command.

"*file" Specifiesthatallfilesthatmatchthepatternarecopiedtothecurrent
directory. You can specify multiple patterns, but each pattern must be
enclosed in double quotation marks.

< /dev/rmt/n Specifiestheinputfile.

For more information, see the `cpio(1)` man page.

4 Verify that the files were copied.

$ ls -l

Example 28-11 Retrieving Specific Files From a Tape (cpio)
The following example shows how to retrieve all files with the `chapter` suffix from the tape in
drive 0.

$ cd /home/smith/Book
$ cpio -icv "*chapter" < /dev/rmt/0
Boot.chapter
Directory.chapter
Install.chapter
Intro.chapter
31 blocks
$ ls -l

Copying Files to a Remote Tape Device

How to Copy Files to a Remote Tape Device (tar and dd)

1 The following prerequisites must be met to use a remote tape drive:

a. The local host name and optionally, the user name of the user doing the copy, must appear
in the remote system's `/etc/hosts.equiv` file. Or, the user doing the copy must have his or
her home directory accessible on the remote machine, and have the local machine name in
`$HOME/.rhosts`.

For more information, see the `hosts.equiv(4)` man page.

b. An entry for the remote system must be in the local system's `/etc/inet/hosts` file or in the
name service `hosts` file.
2 To test whether you have the appropriate permission to execute a remote command, try the following:

```
$ rsh remotehost echo test
```

If `test` is echoed back to you, you have permission to execute remote commands. If `Permission denied` is echoed back to you, check your setup as described in Step 1.

3 Change to the directory where you want to put the files.

4 Insert the tape into the tape drive.

5 Copy the files to a remote tape drive.

```
$ tar cvf - filenames | rsh remote-host dd of=/dev/rmt/n obs=block-size
```

- `tar cf` Creates a tape archive, lists the files as they are archived, and specifies the tape device.
- `v` Provides additional information about the tar file entries.
- `-` (Hyphen) Represents a placeholder for the tape device.
- `filenames` Identifies the files to be copied. Separate multiple files with spaces.
- `rsh | remote-host` Pipes the `tar` command’s output to a remote shell.
- `dd of=/dev/rmt/n` Represents the output device.
- `obs=block-size` Represents the blocking factor.

6 Remove the tape from the drive. Write the names of the files on the tape label.

Example 28–12 Copying Files to a Remote Tape Drive (`tar` and `dd`)

```
# tar cvf - * | rsh mercury dd of=/dev/rmt/0 obs=126b
a answers/ 0 tape blocks
a answers/test129 1 tape blocks
a sc.directives/ 0 tape blocks
a sc.directives/sc.190089 1 tape blocks
a tests/ 0 tape blocks
a tests/test131 1 tape blocks
6+9 records in
0+1 records out
```
How to Extract Files From a Remote Tape Device

1. Insert the tape into the tape drive.

2. Change to a temporary directory.
 $ cd /var/tmp

3. Extract the files from a remote tape device.
 $ rsh remote-host dd if=/dev/rmt/ | tar xvBpf -

 rsh remote-host Indicates a remote shell that is started to extract the files from the tape device by using the dd command.

 dd if=/dev/rmt/ Indicatestheinputdevice.

 | tar xvBpf - Pipes the output of the dd command to the tar command, which is used to restore the files.

4. Verify that the files have been extracted.
 $ ls -l

Example 28–13 Extracting Files From a Remote Tape Drive

$ cd /var/tmp
$ rsh mercury dd if=/dev/rmt/0 | tar xvBpf -
 x answers/, 0 bytes, 0 tape blocks
 x answers/test129, 48 bytes, 1 tape blocks
 20+0 records in
 20+0 records out
 x sc.directives/, 0 bytes, 0 tape blocks
 x sc.directives/sc.190089, 77 bytes, 1 tape blocks
 x tests/, 0 bytes, 0 tape blocks
 x tests/test131, 84 bytes, 1 tape blocks
$ ls -l

Copying Files and File Systems to Diskette

Before you can copy files or file systems to diskette, you must format the diskette. For information on how to format a diskette, see Chapter 2, “Managing Removable Media (Tasks).”

Use the `tar` command to copy UFS files to a single formatted diskette.

Use the `cpio` command if you need to copy UFS files to multiple formatted diskettes. The `cpio` command recognizes end-of-media and prompts you to insert the next diskette.
What You Should Know When Copying Files to Diskettes

- Copying files to a formatted diskette by using the `tar -c` command destroys any files that are already on the diskette.
- A diskette that contains a tar image is not mountable.
- If you need a multiple-volume interchange utility, use the `cpio` command. The `tar` command is only a single-volume utility.

For more information, see `tar(1)`.

How to Copy Files to a Single Formatted Diskette (tar)

1. Change to the directory that contains the files you want to copy.

2. Insert a formatted diskette that is not write-protected into the drive.

3. Make the diskette available.

   ```
   $ volcheck
   ```

4. Reformat the diskette, if necessary.

   ```
   $ rmformat -U /dev/rdiskette
   Formatting will erase all the data on disk.
   Do you want to continue? (y/n)y
   ```

5. Copy the files to diskette.

   ```
   $ tar cvf /vol/dev/aliases/floppy0 filenames
   ```
 The file names that you specify are copied to the diskette, overwriting any existing files on the diskette.

6. Verify that the files were copied.

   ```
   $ tar tvf /vol/dev/aliases/floppy0
   ```
 For more information on listing files, see “How to List the Files on a Diskette (tar)” on page 502.

7. Remove the diskette from the drive.

8. Write the names of the files on the diskette label.
Example 28–14 Copying Files to a Single Formatted Diskette (tar)

The following example shows how to copy files named evaluation* to a diskette.

```bash
$ cd /home/smith
$ volcheck
$ ls evaluation*
evaluation.doc  evaluation.doc.backup
$ tar cvf /vol/dev/aliases/floppy0 evaluation*
a evaluation.doc 86 blocks
a evaluation.doc.backup 84 blocks
$ tar tvf /vol/dev/aliases/floppy0
```

How to List the Files on a Diskette (tar)

1. Insert a diskette into the drive.

2. Make the diskette available.
   ```bash
   $ volcheck
   ```

3. List the files on a diskette.
   ```bash
   $ tar tvf /vol/dev/aliases/floppy0
   ```

Example 28–15 Listing the Files on a Diskette (tar)

The following example shows how to list the files on a diskette.

```bash
$ volcheck
$ tar tvf /vol/dev/aliases/floppy0
rw-rw-rw-6693/10 44032 Jun 9 15:45 evaluation.doc
rw-rw-rw-6693/10 43008 Jun 9 15:55 evaluation.doc.backup
$```

How to Retrieve Files From a Diskette (tar)

1. Change to the directory where you want to put the files.

2. Insert the diskette into the drive.

3. Make the diskette available.
   ```bash
 $ volcheck
   ```

4. Retrieve files from the diskette.
   ```bash
 $ tar xvf /vol/dev/aliases/floppy0
   ```
All files on the diskette are copied to the current directory.

5 **Verify that the files have been retrieved.**

```
$ ls -l
```

6 **Remove the diskette from the drive.**

### Example 28–16 Retrieving Files From a Diskette (tar)

The following example shows how to retrieve all the files from a diskette.

```
$ cd /home/smith/Evaluations
$ volcheck
$ tar xvf /vol/dev/aliases/floppy0
 x evaluation.doc, 44032 bytes, 86 tape blocks
 x evaluation.doc.backup, 43008 bytes, 84 tape blocks
$ ls -l
```

The following example shows how to retrieve an individual file from a diskette. The file is extracted from the diskette and placed in the current working directory.

```
$ volcheck
$ tar xvf /vol/dev/aliases/floppy0 evaluation.doc
 x evaluation.doc, 44032 bytes, 86 tape blocks
$ ls -l
```

### Archiving Files to Multiple Diskettes

If you are copying large files onto diskettes, you want to be prompted to replace a full diskette with another formatted diskette. The cpio command provides this capability. The cpio commands you use are the same that you would use to copy files to tape, except you would specify `/vol/dev/aliases/floppy0` as the device instead of the tape device name.

For information on how to use the cpio command, see "How to Copy All Files in a Directory to a Tape (cpio)" on page 495.
Managing Tape Drives (Tasks)

This chapter describes how to manage tape drives in the Solaris Operating System (Oracle Solaris OS).

This is a list of the step-by-step instructions in this chapter.
- “How to Display Tape Drive Status” on page 508
- “Retensioning a Magnetic Tape Cartridge” on page 509
- “Rewinding a Magnetic Tape Cartridge” on page 510

This is a list of overview information in this chapter.
- “Choosing Which Media to Use” on page 505
- “Backup Device Names” on page 506
- “Displaying Tape Drive Status” on page 508
- “Guidelines for Drive Maintenance and Media Handling” on page 510

Choosing Which Media to Use

You typically back up Solaris systems by using the following tape media:
- 1/2-inch reel tape
- 1/4-inch streaming cartridge tape
- 8-mm cartridge tape
- 4-mm cartridge tape (DAT)

You can perform backups with diskettes, but doing so is time-consuming and cumbersome.

The media that you choose depends on the availability of the equipment that supports it and of the media (usually tape) that you use to store the files. Although you must do the backup from a local system, you can write the files to a remote device.
The following table shows typical tape devices that are used for backing up file systems. The storage capacity for each device depends on the type of drive and the data being written to the tape.

### TABLE 29–1  Media Storage Capacities

<table>
<thead>
<tr>
<th>Backup Media</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-inch reel tape</td>
<td>140 MB (6250 bpi)</td>
</tr>
<tr>
<td>2.5-GB 1/4-inch cartridge (QIC) tape</td>
<td>2.5 GB</td>
</tr>
<tr>
<td>DDS3 4-mm cartridge tape (DAT)</td>
<td>12–24 GB</td>
</tr>
<tr>
<td>14-GB 8-mm cartridge tape</td>
<td>14 GB</td>
</tr>
<tr>
<td>DLT 7000 1/2-inch cartridge tape</td>
<td>35–70 GB</td>
</tr>
</tbody>
</table>

### Backup Device Names

You specify a tape or diskette to use for backup by supplying a logical device name. This name points to the subdirectory that contains the “raw” device file and includes the logical unit number of the drive. Tape drive naming conventions use a logical, not a physical, device name. The following table shows this naming convention.

### TABLE 29–2  Basic Device Names for Backup Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td>/dev/rmt/n</td>
</tr>
<tr>
<td>Diskette</td>
<td>/vol/dev/rdiskette0/unlabeled</td>
</tr>
</tbody>
</table>

In general, you specify a tape device as shown in the following figure.
If you don’t specify the density, a tape drive typically writes at its “preferred” density. The preferred density usually means the highest density the tape drive supports. Most SCSI drives can automatically detect the density or format on the tape and read it accordingly. To determine the different densities that are supported for a drive, look at the /dev/rmt subdirectory. This subdirectory includes the set of tape device files that support different output densities for each tape.

Also, a SCSI controller can have a maximum of seven SCSI tape drives.

**Specifying the Rewind Option for a Tape Drive**

Normally, you specify a tape drive by its logical unit number, which can run from 0 to n. The following table describes how to specify tape device names with a rewind or a no-rewind option.

**TABLE 29–3 Specifying Rewind or No-Rewind for a Tape Drive**

<table>
<thead>
<tr>
<th>Drive and Rewind Value</th>
<th>Use This Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>First drive, rewind</td>
<td>/dev/rmt/0</td>
</tr>
<tr>
<td>First drive, no rewind</td>
<td>/dev/rmt/0n</td>
</tr>
<tr>
<td>Second drive, rewind</td>
<td>/dev/rmt/1</td>
</tr>
<tr>
<td>Second drive, no rewind</td>
<td>/dev/rmt/1n</td>
</tr>
</tbody>
</table>
Specifying Different Densities for a Tape Drive

By default, the drive writes at its “preferred” density, which is usually the highest density the tape drive supports. If you do not specify a tape device, the command writes to drive number 0 at the default density the device supports.

To transport a tape to a system whose tape drive supports only a certain density, specify a device name that writes at the desired density. The following table describes how to specify different densities for a tape drive.

<table>
<thead>
<tr>
<th>Drive, Density, and Rewind Value</th>
<th>Use This Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>First drive, low density, rewind</td>
<td>/dev/rmt/0l</td>
</tr>
<tr>
<td>First drive, low density, no rewind</td>
<td>/dev/rmt/0ln</td>
</tr>
<tr>
<td>Second drive, medium density, rewind</td>
<td>/dev/rmt/1m</td>
</tr>
<tr>
<td>Second drive, medium density, no rewind</td>
<td>/dev/rmt/1mn</td>
</tr>
</tbody>
</table>

The additional density values are shown in “Backup Device Names” on page 506.

Displaying Tape Drive Status

You can use the status option with the mt command to get status information about tape drives. The mt command reports information about any tape drives that are described in the /kernel/drv/st.conf file.

▶ How to Display Tape Drive Status

1. Load a tape into the drive you want information about.
2. Display the tape drive status.
   
   ```
 # mt -f /dev/rmt/n status
   ```
3. Repeat steps 1–2, substituting tape drive numbers 0, 1, 2, 3, and so on to display information about all available tape drives.

Example 29–1 Displaying Tape Drive Status

The following example shows the status for a QIC-150 tape drive (/dev/rmt/0):
Handling Magnetic Tape Cartridges

If errors occur when a tape is being read, you can retension the tape, clean the tape drive, and then try again.

Retensioning a Magnetic Tape Cartridge

Retension a magnetic tape cartridge with the `mt` command.

For example:

```
$ mt -f /dev/rmt/1 retension
```

Note – Do not retension non-QIC tape drives.
Rewinding a Magnetic Tape Cartridge

To rewind a magnetic tape cartridge, use the `mt` command.

For example:

```bash
$ mt -f /dev/rmt/1 rewind
$```

Guidelines for Drive Maintenance and Media Handling

A backup tape that cannot be read is useless. So, periodically clean and check your tape drives to ensure correct operation. See your hardware manuals for instructions on procedures for cleaning a tape drive. You can check your tape hardware by doing either of the following:

- Copying some files to the tape, reading the files back, and then comparing the original files with the copied files.
- Using the `-v` option of the `ufs_dump` command to verify the contents of the media with the source file system. The file system must be unmounted or completely idle for the `-v` option to be effective.

Be aware that hardware can fail in ways that the system does not report.

Always label your tapes after a backup. If you are using a backup strategy similar to the strategies suggested in Chapter 23, “Backing Up and Restoring UFS File Systems (Overview),” you should indicate on the label “Tape A,” “Tape B,” and so forth. This label should never change. Every time you do a backup, make another tape label that contains the following information:

- The backup date
- The name of the machine and file system that is backed up
- The backup level
- The tape number (1 of n, if the backup spans multiple volumes)
- Any information specific to your site

Store your tapes in a dust-free safe location, away from magnetic equipment. Some sites store archived tapes in fireproof cabinets at remote locations.

You should create and maintain a log that tracks which media (tape volume) stores each job (backup) and the location of each backed-up file.
Index

Numbers and Symbols
/export/home directory, 310
1394 (FireWire) support, description, 65
4.3 Tahoe file system, 302
9660 CD format, 43

A
accessing
disk devices, 78
iSCSI disks (how to), 260
removable media (how to), 44
tape devices, 80
adding
a disk (overview)
SPARC, 224
x86, 234–246
a SCSI device to a SCSI bus (how to), 93
a USB camera (how to), 137
a USB mass storage device without vold running
(how to), 137
adding a new removable media drive (how to), 43
entry to /etc/vfstab file (how to), 343
PCI adapter card (how to), 102
swap to vfstab, 385
USB audio devices (how to), 154
VPPA communication service (how to), 173
allocated inodes, 399
archiving, files to multiple diskettes with cpio
command (how to), 503
autoconfiguration process, 69
autos, 321–322
automounting, and /home, 321

B
backing up
and restoring file systems
commands for, 426
definition, 426
choosing file systems to, 427
full and incremental, definition, 428
preparing for (overview), 442–443
reasons for, 426
types of, 428
backup
device names, 506–508
record of incremental, 477
backup schedules
daily cumulative, weekly cumulative backups, 435
daily cumulative, weekly incremental backups, 436
daily incremental, weekly cumulative backups, 437
examples, 434, 440
for a server, 438–440
guidelines, 432
guidelines for, 431
using dump levels for, 433
bad block numbers, 401
bad inode number, 402
bad superblock, 410
block disk device interface
definition, 78
block disk device interface (Continued)
 when to use, 79
blocks
 bad, 401
 boot, 418
 data, 419–420
 directory data, 401
 duplicate, 400
 free, 420
 indirect, 401
 logical size, 421
 regular data, 402
 special inodes, 399
boot block, 418
BSD Fat Fast File system, 302
bus-oriented disk controllers, 80
bytes (number per inode), 423

C
CacheFS file systems
 (overview), 355
 checking with fsck command (example of), 366
 collecting CacheFS statistics (overview), 376
 creating (how to), 357
 creating a packing list (how to), 370
 deleting (how to), 364
 displaying information about (how to), 363
 displaying packed files (example of), 368
 displaying packed files (how to), 368
 locating CacheFS log file, 377
 mounting (how to), 358
 packing with cachefspack command (how to), 367
 packing with cachefspack command (overview), 367
 parameters, 355
 setting up CacheFS logging (how to), 377
 stopping CacheFS logging, 378
 troubleshooting cachefspack errors, 372
 viewing CacheFS statistics, 380
 cachefspack command
 how to use, 367
 overview, 367
 causes of file system damage, 396
cd rw command
 description, 51
 restricting access to (how to), 54
 writing data CDs and DVDs and audio CDs
 (overview), 53
CDs
 ISO 9660 format, 43
 names, 42
 UFS CDs
 SPARC vs. x86 format, 43
cfgadm
 PCI hot-plugging (overview), 84
 SCSI hot-plugging (overview), 84
cfsadmin command, 357, 364
 changing, primary USB audio device (how to), 156
 character special inodes, 399
 checking
 a file system on removable media (how to), 38
 and repairing file systems, 403
 CacheFS file systems (example of), 366
 file system size, 398
 format and type of inodes, 399
 free blocks, 399
 free inodes, 399
 inode list for consistency, 398
clri command, 308
 collecting, CacheFS statistics (overview), 376
configuring
 a SCSI controller (how to), 90
 a SCSI device (how to), 91
 a USB device (how to), 159
 IB Port, HCA_SVC, or a VPPA device (how to), 170
 IB pseudo device (how to), 171
 IOC device (how to), 169
 iSCSI target discovery (how to), 258
 unidirectional or bidirectional CHAP authentication
 for iSCSI (how to), 255
connecting
 a SCSI controller (how to), 93
 a USB device, logically (how to), 160
copying
 complete file systems (dd), 486
 directories between file systems with cpio command
 (overview), 489
copying (Continued)
 files to diskette (overview), 500
 groups of files with cpio command (overview), 489
 individual files with cpio command (overview), 489
 cpio command
 (overview), 489
 copying directories between file systems (how to), 490
 extract all files from tape (how to), 497
 listing files on tape (how to), 496
creating
 a data CD or DVD file system (how to), 56
 a file system on a DVD-RAM (how to), 37
 a file system on a USB mass storage device (how to), 141
 a file system on removable media (how to), 35
 a full backup of UFS snapshot information (how to), 458
 a packing list (how to), 370
 a UFS snapshot
 (example of), 456
 a UFS snapshot (how to), 455
 file systems (overview), 327
 loopback file system (overview), 334
 swap file, 389
 CTFS file system, 306
 custom parameters for file systems, 420–423
 cylinder group, 417–420

delisting (Continued)
 UFS snapshot information
 (example of), 458
 detecting end of media
 cpio command, 490
 ufsdump command, 476
determining
 file system types, 322
 mounted file systems, 342
 tape device name, 463
 type of tape drive, 462
 /dev/dsk directory, 78
 /dev/rdsk directory, 78
devfsadm command, 77
device driver
 adding, 76
 definition, 68
device names
 backup, 506–508
 finding a file system name, 462
 finding tape, 463
devices, accessing, 76
df command, 79, 308
dfstable file, configuring for shared local removable media (how to), 47
direct I/O, 316
directories
 copying between file systems with cpio command
 (overview), 489
 inodes, 399
 /proc, 306
 /tmp, 305
 unallocated blocks, 402
disabling
 removable media services, 25
 removable media services (how to), 44
 write protection on removable media (how to), 39
disconnect, a USB device, logically (how to), 160
disconnecting
 a SCSI controller (how to), 92
 a USB device subtree, logically (how to), 161
disk
 adding to a (overview)
 x86, 234–246

D

daily discrete backups, 434
damage to file systems, 396
data block, 402, 419–420
data directory blocks, 401
dataadm command, 177
dd command
 (overview), 486
 cloning disks (how to), 487
default
 file system for /tmp (TMPFS), 305
 SunOS file system, 309
deleting
 CacheFS file systems (how to), 364
 deleting (Continued)
 UFS snapshot information
 (example of), 458
detecting end of media
cpio command, 490
ufsdump command, 476
determining
 file system types, 322
 mounted file systems, 342
tape device name, 463
type of tape drive, 462
/dev/dsk directory, 78
/dev/rdsk directory, 78
devfsadm command, 77
device driver
 adding, 76
definition, 68
device names
 backup, 506–508
 finding a file system name, 462
 finding tape, 463
devices, accessing, 76
df command, 79, 308
dfstable file, configuring for shared local removable media (how to), 47
direct I/O, 316
directories
 copying between file systems with cpio command
 (overview), 489
 inodes, 399
 /proc, 306
 /tmp, 305
 unallocated blocks, 402
 disabling
 removable media services, 25
 removable media services (how to), 44
 write protection on removable media (how to), 39
disconnect, a USB device, logically (how to), 160
disconnecting
 a SCSI controller (how to), 92
 a USB device subtree, logically (how to), 161
disk
 adding to a (overview)
 x86, 234–246

Index

513
disk (Continued)
 automatic configuration of SCSI drives, 216
 formatting a (overview), 195
 repairing defective sectors, 218, 221
 when to format (overview), 205

disk-based file systems, 302
disk controllers, 79
disk label
 creating (overview), 209
 description, 184
disk slices
 definition, 189
 determining which slices to use, 192
 displaying information about (overview), 207–209
 requirements for system configurations, 192
diskettes
 archiving files to multiple with cpio command (how to), 503
 creating a file system on (how to), 35
 formatting with rmmformat (how to), 34
 loading with volume management (how to), 33

disks
 adding to a (overview)
 SPARC, 224
 connecting a secondary disk (example of)
 SPARC, 229
 creating disk slices and labeling a disk (example of)
 SPARC, 228
 creating disk slices and labeling a disk (how to)
 SPARC, 226
 determining if formatted (how to), 205
 recovering a corrupted disk label (how to), 213
 recovering a corrupted disk label (overview), 213
 displaying
 disk slice information (overview), 207
 IB communication services (how to), 173
 InfiniBand device information (how to), 167
 information about SCSI devices, 89
 kernel IB clients of an HCA (how to), 171
 packed files (example of), 368
 packed files (how to), 368
 PCI slot configuration information (how to), 99
 removable media user (how to), 45
 swap space, 387–388

 displaying (Continued)
 system configuration information, 70, 73
 USB bus information (how to), 158
 USB device information (how to), 140
 DOS, file system, 302
 driver not attached message, 70
 dump levels
 daily, incremental backups, 434
 definition, 433
 duplicate blocks, 400
 DVD-RAM, creating a file system on (how to), 37
 DVD-ROM, 303
 dynamic reconfiguration, InfiniBand devices, 166
 dynamic reconfiguration (overview), 84

E

 EFI label
 (overview), 185
 comparison with VTOC label, 186
 installing a system with, 187
 restrictions of, 186
 troubleshooting problems, 188
 eject command, removable media (how to), 46
 ejecting, removable media (how to), 46
 enabling
 removable media services (how to), 44
 uDAPL, 176
 write protection on removable media (how to), 39
 end-of-media detection
 cpio command, 490
 ufsdump command, 476
 error messages, iSCSI, 274
 /etc/dfs/dfstab file, configuring for shared
 removable media (how to), 47
 /etc/dumpdates file, 476–477
 extended fundamental types (UFS file system), 311

F

 FDFS file system, 306
 ff command, 308
 FIFO inodes, 399
FIFOFS file system, 306
file system name, 462
file system table, virtual, 319
file systems
4.3 Tahoe, 302
BSD Fat Fast, 302
cached (overview), 355
checking and repairing, 403
checking size, 398
copying complete (dd), 486
creating (overview)
 loopback (LOFS), 334
CTFS, 306
custom parameters, 420–423
cylinder group structure, 417–420
damage to, 396
default SunOS, 309
description of administration commands, 308
disk-based, 302
DOS, 302
/export/home, 310
FDFS, 306
FIFOFS, 306
finding types, 322
fixing, 409
High Sierra, 302
ISO 9660, 302
large, 340
making available (overview), 337–342
manual pages for, 309
MNTFS, 310
FIFOFS, 306
finding types, 322
fixing, 409
High Sierra, 302
ISO 9660, 302
large, 340
making available (overview), 337–342
manual pages for, 309
MNTFS, 310
mount table, 318
NAMEFS, 306
network-based, 304
OBJFS, 306
/opt, 310
PCFS, 302
preening, 408
/proc, 310
process, (overview), 306
PROCFS, (overview), 306
pseudo, (overview), 304
reasons for inconsistencies, 397
SHAREFS, 307
file systems (Continued)
 sharing, 320–321
 SPECFS, 307
 stopping all processes accessing (how to), 350
 SWAPFS, 307
 TMPFS, 305
types of, 302
 UFS, 302
 UNIX, 302
 /usr, 310
 /var, 310
 which to back up, 427
 why you back up, 426
files
 archiving to multiple diskettes with cpio command
 (how to), 503
 commands for copying to media (overview), 483
 /etc/default/fs, 322
 /etc/dfs/fstypes, 322
 in the /proc directory, 306
 retrieving from tape with tar command (how to), 493
 sharing, 320–321
finding
 file system name, 462
tape device name, 463
type of file system, 322
fixing inconsistent file systems, 409
format.dat file
 creating an entry (how to), 216
 creating an entry (overview), 216
 keywords, 287,290
 syntax rules, 287
format of inodes, 399
format utility
 (overview), 193
 analyze menu, 283
 automatic configuration of SCSI disk drives (how to), 218
 automatic configuration of SCSI disk drives
 (overview), 216
 creating a Solaris fdisk partition (how to), 239
 creating disk slices and labeling disk (how to)
 SPARC, 226

515
Index

format utility, creating disk slices and labeling disk (how to) (Continued)
 x86, 244
defect menu, 285–286
determining if a disk is formatted (how to), 205
displaying disk slice information (example of), 208
entering command names (how to), 291
fdisk menu, 282
features and benefits, 193
formatting a disk (example of), 206
guidelines for using, 194–195
identifying disks on a system (examples of), 203
identifying disks on a system (how to), 202
input to, 290, 292
labeling a disk
 example of, 210
main menu, 280
partition menu, 282
recovering corrupted disk label (how to), 213
specifying block numbers (how to), 291
using help facility, 292
when to use, 194
formatting
 a USB mass storage device without vold running (how to), 143
diskettes with rmformat (how to), 34
formatting a disk, (overview), 195
fragment size, 421–422
free blocks, 399, 420
free hog slice, See donor slice
free inodes, 399
free space (minimum), 422
fsck command, 79, 308
 checking
 free blocks, 399
 free inodes, 399
 inode list size, 398
 superblock, 398
 conditions to repair, 397
 FACTIVE state flag, 396
 FSBAD state flag, 396
 FSCLEAN state flag, 396
 FSSTABLE state flag, 396
 preening, 408
 state flags, 396
 syntax and options, 415
 using interactively, 403
fsdb command, 308
fssnap command, creating a UFS snapshot (how to), 455
fsstat command, description, 293
fsstat command (examples of), 293
fstyp command, 308
fstypes file, 322
full backup
 (example of), 445, 447
definition, 429
fuser command
 finding if removable media is in use (how to), 45
 killing processes accessing removable media (how to), 45
G
grep command, 322
GRUB
 managing disks with GRUB
 x86, 182
 Solaris failsafe boot
 x86, 182
H
 High Sierra file system, 302
 /home (automounted), 321
 hot-plugging
 (overview), 84
 adding a SCSI device to a SCSI bus (how to), 93
 adding PCI adapter card (how to), 102
 configuring a SCSI controller (how to), 90
 configuring a SCSI device (how to), 91
 configuring a USB device (how to), 159
 connecting a SCSI controller (how to), 93
 disconnecting a SCSI controller with cfgadm command (how to), 92
 logically connecting a USB device (how to), 160
hot-plugging (Continued)
logically disconnecting a USB device (how to), 160
logically disconnecting a USB device subtree (how to), 161
PCI devices (overview), 99
removing a SCSI device (how to), 95
removing PCI adapter card (how to), 101
replacing an identical SCI device on a SCI controller (how to), 94
unconfiguring a SCI device (how to), 90
unconfiguring a USB device (how to), 159
HSFS, See High Sierra file system

InfiniBand devices (Continued)
unconfiguring IB devices connected an HCA (how to), 172
updating an IOC configuration (how to), 175
updating the IP_ key tables (how to), 173
inode list size, 398
inode states, 399
inodes, 418–419
bad number, 402
block special, 399
canon special, 399
checking format and type, 399
directory, 399
FIFO, 399
link count, 400
number of bytes per, 423
regular, 399
size, 401
symbolic link, 399
installboot command, 232
installgrub command, 246
installing a boot block (how to), SPARC, 232
iSCSI
(overview), 247
accessing iSCSI disks (how to), 260
configuring iSCSI target discovery (how to), 258
configuring unidirectional or bidirectional CHAP authentication for (how to), 255
general iSCSI error messages, 274
modifying iSCSI initiator and target parameters (how to), 265
monitoring your iSCSI configuration (how to), 263
preparing for a Solaris iSCSI configuration (how to), 252
removing discovered iSCSI targets (how to), 259
software and hardware requirements, 248
static and dynamic target discovery, 251
troubleshooting iSCSI configuration problems (how to), 271
iscsiadm add command, adding static or dynamic targets (example of), 258
iscsiadm list, displaying iSCSI configuration information (example of), 263
iscsiadm modify command
 enabling CHAP (example of), 255
 enabling or disabling static or dynamic targets
 (example of), 259
iscsiadm remove command, removing static or
dynamic targets (example of), 260
ISO 9660 file system, 302
ISO standards, 9660 CD format, 43

K
/kernel/drv directory, 69
killing
 all processes accessing a file system (how to), 350
 processes accessing removable media (how to), 45

L
labelit command, 308
large files option, 340
level 0 backup, 433
link count of inodes, 400
loading, diskettes (how to), 33
locating, CacheFS log file, 377
log (record of dumps), 476–477
logical block size, 421
logical device name
 definition, 77
disk, 78
tape, 80
logical device names, removable media, 81
loopback file system (LOFS)
 creating (overview), 334
 mounting, 344
lost+found directory, 396

M
maintaining tape drives, 510
managing
 disks with GRUB
 x86, 182
manual pages, for file systems, 309
media was found message, 33
memory storage (virtual), definition, 381
minimum free space, 422
mkfile command, 389, 390
mkfs command, 308, 327
mkisofs command, create a data CD or DVD file
 system (how to), 56
MNTFS file system, 310
mnttab file, 318
modifying, iSCSI initiator and target parameters (how
to), 265
monitoring, your iSCSI configuration (how to), 263
mount command, 79
mount point, definition, 317
mount table, 318
mountall command, 308
mounting
 a file system with /etc/vfstab, 344
 a USB mass storage device without vold running
 (how to), 150
 all files in vfstab file, 344
 file systems automatically, 321–322
 loopback file systems (LOFS), 344
 NFS file systems, 344
 remote removable media manually (example of), 49
 removable media
 automatic mounting compared to, 28
 UFS file systems, 343
 UFS file systems (how to)
 without large files, 346
mt command, 509

N
NAMEFS file system, 306
nccheck command, 308
network-based file systems, 304
newfs command, 79, 327
NFS
 description, 320
 server description, 320
 vfstab entry for, 344
nfsd daemon
 starting, 47
 verifying if running, 47
no media was found message, 34

O
OBJFS file system, 306
/opt directory, 310
options, for ufsdump command, 480

P
parameters (file system), 420–423
partition (swap), definition, 381
passwd file, restoring from tape (example of), 468
PCFS file system, 302
PCI devices
 adding PCI adapter card (how to), 102
 displaying PCI slot configuration information (how to), 99
 removing PCI adapter card (how to), 101
 troubleshooting PCI configuration problems, 104
PCI Express (PCIe) support, description, 64
physical device name
 definition, 77
power management of devices, description, 67
preening file systems, 408
preparing
 for backing up (overview), 442–443
 to restore files (overview), 462–463
preparing for, Solaris iSCSI configuration (how to), 252
/proc directory, 306, 310
process file system (PROCFS), 306
PROCFS file system, (overview), 306
prtvtoc command, 79
 (example of), 212
pseudo file systems, (overview), 304
R
raw disk device interface, 78, 79
RCM script
 commands for, 106
 overview, 105
reconfiguration boot, 217
 SPARC example, 225
 x86 example, 237
record of
 dumps, 476–477
 incremental backup, 477
registering, service provider in the DAT static registry (how to), 177
regular inodes, 399
removable media
 accessing (examples of), 44
 accessing (how to), 44
 accessing media on other systems (example of), 49
 adding a new removable media drive (how to), 43
 checking a file system on (how to), 38
 creating a file system on (how to), 35
 creating a file system on a DVD-RAM (how to), 37
 disabling or enabling removable media services (how to), 44
 ejecting (how to), 46
 enabling write protection on (how to), 39
 finding out if media is in use (how to), 45
 formatting diskettes with rmformat (how to), 34
 killing processes accessing (how to), 45
 loading diskettes (how to), 33
management, benefits, 27
mounting
 manual compared to automatic, 28
 mounting remote media (example of), 49
 names, 42
 repairing bad blocks on removable media (how to), 38
 services, disabling, 25
removing
 a SCSI device (how to), 95
 a swap file from use, 392
 a USB mass storage device without vold running (how to), 139
 discovered iSCSI targets (how to), 259
removing (Continued)
 existing IB port, HCA_SVC, or a VPPA communication service (how to), 174
 PCI adapter card (how to), 101
repairing, bad blocks on removable media (how to), 38
replacing, an identical SCSI device on a SCSI controller (how to), 94
resetting, a USB device (how to), 161
resolving, a failed SCSI unconfigure operation (how to), 98
restoring bad superblock, 410
restoring file systems
 complete (example of), 470
 complete (how to), 469
determining which tapes to use (how to), 463
preparing to (overview), 462–463
root and /usr (SPARC) (example of), 474
root or /usr (x86) (example of), 474
type of tape drive, 462
restoring files
 interactive restore (example of), 466
 non-interactive restore (example of), 468
restricting, removable media access (how to), 54
retrieving, files from tape with tar command (how to), 493
Rock Ridge extension (HSFS file system), 302
root (/) file system or directory, 310

S
scheduling backups, 431
SCSI devices
 adding a SCSI device to a SCSI bus (how to), 93
 configuring a SCSI controller (how to), 90
 configuring a SCSI device (how to), 91
 connecting a SCSI controller (how to), 93
disconnecting with cfgadm command (how to), 92
 displaying information about (how to), 89
removing a SCSI device (how to), 95
replacing an identical SCSI device on a SCSI controller (how to), 94
resolving a failed SCSI unconfigure operation (how to), 98
troubleshooting SCSI configuration problem, 96

SCSI devices (Continued)
 unconfiguring a SCSI controller (how to), 90
SCSI disk drives, 216
SCSI tape drives, 507
secondary disk
 connecting to the system (how to)
 SPARC, 226
 x86, 237
description, 192
setting up, CacheFS logging, 377
share command, 321
making removable media available to other systems (how to), 47
shareall command, 321
SHAREFS file system, 307
sharing, files, 320–321
size
 checking file system, 398
 fragment, 421–422
 inode, 401
slice (definition), 189
Solaris failsafe boot (how to)
 x86, 235
 x86, 182
Solaris fdisk partition, guidelines, 238–239
space optimization type, 422–423
SPARC based systems, UFS format, 43
SPECFS file system, 307
specifying a disk slice, 79
starting, nfsd daemon, 47
state flag
 fsck, 396
 UFS file systems, 311
stopping
 all processes for a file system (how to), 350
 CacheFS logging, 378
 killing processes accessing removable media (how to), 45
storage (virtual memory), definition, 381
storage capacities (media), 429, 506
structure of cylinder groups, 417–420
SunOS default file system, 309
superblock, 398, 410, 418
svcadm disable, (example of), 25
swap command, 389
swap file
 adding to vfstab, 385
 creating, 389
 displaying, 387–388
 removing from use, 392
swap partition, definition, 381
swapadd command, 385
SWAPFS file system, 307
symbolic links, 399
syntax, fsck command, 415
sysdef command, 71
system disk
 connecting (how to)
 x86, 235
 description, 192

T
tape
capacity, 479
characteristics, 479
retrieving files from with tar command (how to), 493
sizes, 429, 506
storage capacities, 429, 506
tape devices (naming), 81
tape drive
 determining type for restore, 462
 maintaining, 510
 maximum SCSI, 507
 rewind, 507–508
tar command
 (overview), 491
 copying files to remote tape with dd command (how to), 499
 listing files on diskette (how to), 502
 listing files on tape (how to), 492
 retrieving files from diskette (how to), 502
 retrieving files from remote tape with dd command (how to), 500
 retrieving files from tape (how to), 493
temporary file system (TMPFS), overview, 305
time (optimization type), 422–423
/tmp directory, 305, 310
TMPFS file system, overview, 305
troubleshooting
 a failed SCSI unconfigure operation, 98
cache fs pack errors, 372
EFI disk labels, 188
iSCSI configuration problems (how to), 271
PCI configuration problems, 104
SCSI configuration problems, 96
USB audio device problems, 156
USB mass storage devices, 151
type of file systems, 302
type of inodes, 399

U
uDAPL
 (overview), 175
 enabling (how to), 176
 registering a service provider in the DAT static registry (how to), 177
 unregistering a service provider in the DAT static registry (how to), 177
 updating the DAT static registry (how to), 177
UDF file system, 303
UFS CDs, SPARC compared to x86 formats, 43
UFS file system, 302, 311
 extended fundamental types, 311
 large file systems, 311
 logging, 311
 mounting, 343
 mounting with /etc/vfstab, 344
 mounting without large files (how to), 346
 multiterabyte file systems, 311
 state flags, 311
UFS file systems, /, 310
UFS logging, overview, 314
UFS snapshot
 creating (how to), 455
 creating a full backup of (how to), 458
description, 453
ufsdump command
 end-of-media detection, 476
Index

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ufsdump</code> command (Continued)</td>
<td>445, 447</td>
</tr>
<tr>
<td>Full backup (example of)</td>
<td>476</td>
</tr>
<tr>
<td>How data is copied with</td>
<td>475–479</td>
</tr>
<tr>
<td>How it works</td>
<td>446</td>
</tr>
<tr>
<td>Incremental backup (example of)</td>
<td>480</td>
</tr>
<tr>
<td>Limitations</td>
<td>480</td>
</tr>
<tr>
<td>Options and arguments</td>
<td>480</td>
</tr>
<tr>
<td><code>ufsrestore</code> command</td>
<td>481</td>
</tr>
<tr>
<td>Determining which tapes to use (how to)</td>
<td>463</td>
</tr>
<tr>
<td>Preparing to use (overview)</td>
<td>462</td>
</tr>
<tr>
<td><code>umount</code> command</td>
<td>308</td>
</tr>
<tr>
<td><code>umountall</code> command</td>
<td>308</td>
</tr>
<tr>
<td>Unallocated directory blocks</td>
<td>402</td>
</tr>
<tr>
<td>Unallocated inodes</td>
<td>399</td>
</tr>
<tr>
<td>Unconfiguring</td>
<td>90</td>
</tr>
<tr>
<td>A SCSI controller (how to)</td>
<td>159</td>
</tr>
<tr>
<td>A USB device (how to)</td>
<td>159</td>
</tr>
<tr>
<td>IB devices connected an HCA (how to)</td>
<td>172</td>
</tr>
<tr>
<td>IB Port, HCA_SVC, or a VPPA Device (how to)</td>
<td>169</td>
</tr>
<tr>
<td>IB pseudo device (how to)</td>
<td>170</td>
</tr>
<tr>
<td>IOC device (how to)</td>
<td>168</td>
</tr>
<tr>
<td>UNIX file system</td>
<td>302</td>
</tr>
<tr>
<td>Unmounting, a USB mass storage device without <code>vold</code> running (how to)</td>
<td>150</td>
</tr>
<tr>
<td>Unregistering, service provider in the DAT static registry (how to)</td>
<td>177</td>
</tr>
<tr>
<td>Unsupported devices</td>
<td>69</td>
</tr>
<tr>
<td>Updating</td>
<td>119</td>
</tr>
<tr>
<td>DAT static registry (how to)</td>
<td>177</td>
</tr>
<tr>
<td>IOC configuration (how to)</td>
<td>175</td>
</tr>
<tr>
<td>IP p_key tables (how to)</td>
<td>173</td>
</tr>
<tr>
<td>USB devices (overview)</td>
<td>119</td>
</tr>
<tr>
<td>Acronyms</td>
<td>120</td>
</tr>
<tr>
<td>Adding a mass storage device without <code>vold</code> running (how to)</td>
<td>137</td>
</tr>
<tr>
<td>Adding a USB camera (how to)</td>
<td>137</td>
</tr>
<tr>
<td>Adding audio devices (how to)</td>
<td>154</td>
</tr>
<tr>
<td>Audio (overview)</td>
<td>153</td>
</tr>
<tr>
<td>Changing the primary device (how to)</td>
<td>156</td>
</tr>
<tr>
<td>Device ownership</td>
<td>156</td>
</tr>
<tr>
<td>USB devices (Continued)</td>
<td></td>
</tr>
<tr>
<td>Bus description</td>
<td>120</td>
</tr>
<tr>
<td>Bus-powered devices</td>
<td>127</td>
</tr>
<tr>
<td>Cables for</td>
<td>129</td>
</tr>
<tr>
<td>CDC ACM device support</td>
<td>116</td>
</tr>
<tr>
<td>Composite device</td>
<td>121</td>
</tr>
<tr>
<td>Compound device</td>
<td>121</td>
</tr>
<tr>
<td>Configuring a USB device (how to)</td>
<td>159</td>
</tr>
<tr>
<td>Connecting a USB device (how to)</td>
<td>160</td>
</tr>
<tr>
<td>Creating a file system on a mass storage device (how to)</td>
<td>141</td>
</tr>
<tr>
<td>Device classes</td>
<td>122</td>
</tr>
<tr>
<td>Device nodes</td>
<td>124</td>
</tr>
<tr>
<td>Diskette devices (overview)</td>
<td>135</td>
</tr>
<tr>
<td>Displaying bus information (how to)</td>
<td>158</td>
</tr>
<tr>
<td>Displaying USB device information (how to)</td>
<td>140</td>
</tr>
<tr>
<td>Drivers</td>
<td>122</td>
</tr>
<tr>
<td>EHCI, OHCI, and UHCI support</td>
<td>124</td>
</tr>
<tr>
<td>Formatting a mass storage device without <code>vold</code> running (how to)</td>
<td>143</td>
</tr>
<tr>
<td>Host controller and root hub</td>
<td>128</td>
</tr>
<tr>
<td>Hot-plugging (overview)</td>
<td>136</td>
</tr>
<tr>
<td>Hotpluggable attribute</td>
<td>116</td>
</tr>
<tr>
<td>Identifying primary audio device (how to)</td>
<td>155</td>
</tr>
<tr>
<td>Keyboards and mouse devices</td>
<td>127</td>
</tr>
<tr>
<td>Logically disconnecting a USB device (how to)</td>
<td>160</td>
</tr>
<tr>
<td>Logically disconnecting a USB device subtree (how to)</td>
<td>161</td>
</tr>
<tr>
<td>Mounting mass storage without <code>vold</code> running (how to)</td>
<td>150</td>
</tr>
<tr>
<td>Names of</td>
<td>121</td>
</tr>
<tr>
<td>Overview of 2.0 devices</td>
<td>125</td>
</tr>
<tr>
<td>Physical device hierarchy</td>
<td>120</td>
</tr>
<tr>
<td>Power budgeting support</td>
<td>117</td>
</tr>
<tr>
<td>Power management</td>
<td>129</td>
</tr>
<tr>
<td>Prolific and Keyspan serial adapter support</td>
<td>123</td>
</tr>
<tr>
<td>Removable mass storage (overview)</td>
<td>133</td>
</tr>
<tr>
<td>Removing a mass storage device without <code>vold</code> running (how to)</td>
<td>139</td>
</tr>
<tr>
<td>Resetting a USB device (how to)</td>
<td>161</td>
</tr>
<tr>
<td>Solaris USB Architecture (USBA)</td>
<td>124</td>
</tr>
<tr>
<td>Support for ZFS file systems</td>
<td>116</td>
</tr>
<tr>
<td>Troubleshooting audio device problems</td>
<td>156</td>
</tr>
<tr>
<td>Troubleshooting tips for mass storage devices</td>
<td>151</td>
</tr>
</tbody>
</table>
USB devices (Continued)
 unconfiguring a device (how to), 159
 unmounting mass storage without vold running
 (how to), 150
 USB 2.0 support, 126
 using non-compliant mass storage devices
 (overview), 135
 virtual keyboard and mouse support, 117
 wheel mouse support, 128
/usr file system, 310

V
/var directory, 310
verifying, nfsd daemon is running, 47
vfstab file, 322, 385
 adding entries to (how to), 343
 adding swap to, 385
 default, 319
 entry for LOFS, 335
 mounting all files, 344
viewing, CacheFS statistics, 380
virtual file system table, 319
virtual memory storage, definition, 381
vold copy command, 308

W
writing, data CDs and DVDs and audio CDs
 (overview), 53

X
x86 based systems, UFS format, 43