Name | Synopsis | Description | Parameters | Return Values | Attributes | See Also
cc [ flag... ] file... -lmlib [ library... ]
#include <mlib.h>
mlib_status mlib_SignalCepstral_F32(mlib_f32 *cepst, 
     const mlib_f32 *signal, void *state);
The mlib_SignalCepstral_F32() function performs cepstral analysis.
The basic operations to compute the cepstrum is shown below.
      +-----------+      +--------+       +-----------+
      |  Fourier  |      |        |       |  Inverse  |
----->|           |----->| log|*| |------>|  Fourier  |----->
 x(n) | Transform | X(k) |        | X'(k) | Transform | c(n)
      +-----------+      +--------+       +-----------+
where x(n) is the input signal and c(n) is its cepstrum. In mathematics, they are
       N-1                2*PI*k*n
X(k) = SUM x(n) * exp(-j*----------)
       n=0                   N
X'(k) = log|X(k)|
        1  N-1                2*PI*k*n
c(n) = --- SUM X'(k) * exp(j*----------)
        N  n=0                   N
Since X'(k) is real and even (symmetric), i.e.
X'(k) = X'(N - k)
the c(n) is real and the equation becomes Cosine transform.
        1  N-1              2*PI*k*n
c(n) = --- SUM X'(k) * cos(----------)
        N  n=0                 N
The cepstral coefficients in LPC is a special case of the above.
See Digital Signal Processing by Alan V. Oppenheim and Ronald W. Schafer, Prentice Hall, 1974.
See Fundamentals of Speech Recognition by Lawrence Rabinerand Biing-Hwang Juang, Prentice Hall, 1993.
The function takes the following arguments:
The cepstral coefficients.
The input signal vector.
Pointer to the internal state structure.
The function returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE.
See attributes(5) for descriptions of the following attributes:
| 
 ATTRIBUTE TYPE  | 
 ATTRIBUTE VALUE  | 
|---|---|
| 
 Interface Stability  | 
 Committed  | 
| 
 MT-Level  | 
 MT-Safe  | 
Name | Synopsis | Description | Parameters | Return Values | Attributes | See Also