Solaris 動的トレースガイド

以下は、入出力要求が発行されるたびに関連情報を出力するスクリプトです。

#pragma D option quiet

BEGIN
{
	printf("%10s %58s %2s\n", "DEVICE", "FILE", "RW");
}

io:::start
{
	printf("%10s %58s %2s\n", args[1]->dev_statname,
	    args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W");
}

x86 ラップトップシステム上で Acrobat Reader をコールドスタートした場合、次のような出力が得られます。


# dtrace -s ./iosnoop.d
    DEVICE                                                       FILE RW
     cmdk0                                 /opt/Acrobat4/bin/acroread  R
     cmdk0                                 /opt/Acrobat4/bin/acroread  R
     cmdk0                                                  <unknown>  R
     cmdk0                           /opt/Acrobat4/Reader/AcroVersion  R
     cmdk0                                                  <unknown>  R
     cmdk0                                                  <unknown>  R
     cmdk0                                                     <none>  R
     cmdk0                                                  <unknown>  R
     cmdk0                                                     <none>  R
     cmdk0                 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3  R
     cmdk0                 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3  R
     cmdk0                 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3  R
     cmdk0                                                     <none>  R
     cmdk0                                                  <unknown>  R
     cmdk0                                                  <unknown>  R
     cmdk0                                                  <unknown>  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0                                                     <none>  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0                                                  <unknown>  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0                                                     <none>  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0   /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0             /opt/Acrobat4/Reader/intelsolaris/bin/acroread  R
     cmdk0                                                  <unknown>  R
     cmdk0        /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0  R
     cmdk0                                                     <none>  R
     cmdk0        /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0  R
     cmdk0        /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0  R
       ...

入出力が特定のファイル内のデータに関連していない場合、<none> エントリが出力されています。 これらの入出力は、任意の書式のメタデータ用です。ファイルのパス名が未知である場合、<unknown> エントリが出力されています。このような事態はめったに発生しません。

連想配列を使って各入出力の所要時間を追跡することにより、上のスクリプト例を少し複雑にすることもできます。次の例を参照してください。

#pragma D option quiet

BEGIN
{
	printf("%10s %58s %2s %7s\n", "DEVICE", "FILE", "RW", "MS");
}

io:::start
{
	start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
	this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
	printf("%10s %58s %2s %3d.%03d\n", args[1]->dev_statname,
	    args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W",
	    this->elapsed / 10000000, (this->elapsed / 1000) % 1000);
	start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

アイドル状態の x86 ラップトップシステム上で上記スクリプト例を実行し、USB ストレージデバイスを差し込むと、次のような出力が得られます。


# dtrace -s ./iotime.d
    DEVICE                                                 FILE RW      MS
     cmdk0                                 /kernel/drv/scsa2usb  R  24.781
     cmdk0                                 /kernel/drv/scsa2usb  R  25.208
     cmdk0                                    /var/adm/messages  W  25.981
     cmdk0                                 /kernel/drv/scsa2usb  R   5.448
     cmdk0                                               <none>  W   4.172
     cmdk0                                 /kernel/drv/scsa2usb  R   2.620
     cmdk0                                    /var/adm/messages  W   0.252
     cmdk0                                            <unknown>  R   3.213
     cmdk0                                               <none>  W   3.011
     cmdk0                                            <unknown>  R   2.197
     cmdk0                                    /var/adm/messages  W   2.680
     cmdk0                                               <none>  W   0.436
     cmdk0                                    /var/adm/messages  W   0.542
     cmdk0                                               <none>  W   0.339
     cmdk0                                    /var/adm/messages  W   0.414
     cmdk0                                               <none>  W   0.344
     cmdk0                                    /var/adm/messages  W   0.361
     cmdk0                                               <none>  W   0.315
     cmdk0                                    /var/adm/messages  W   0.421
     cmdk0                                               <none>  W   0.349
     cmdk0                                               <none>  R   1.524
     cmdk0                                            <unknown>  R   3.648
     cmdk0                                 /usr/lib/librcm.so.1  R   2.553
     cmdk0                                 /usr/lib/librcm.so.1  R   1.332
     cmdk0                                 /usr/lib/librcm.so.1  R   0.222
     cmdk0                                 /usr/lib/librcm.so.1  R   0.228
     cmdk0                                 /usr/lib/librcm.so.1  R   0.927
     cmdk0                                               <none>  R   1.189
       ...
     cmdk0                            /usr/lib/devfsadm/linkmod  R   1.110
     cmdk0         /usr/lib/devfsadm/linkmod/SUNW_audio_link.so  R   1.763
     cmdk0         /usr/lib/devfsadm/linkmod/SUNW_audio_link.so  R   0.161
     cmdk0           /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so  R   0.819
     cmdk0           /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so  R   0.168
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_disk_link.so  R   0.886
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_disk_link.so  R   0.185
     cmdk0        /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so  R   0.778
     cmdk0        /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so  R   0.166
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so  R   1.634
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so  R   0.163
     cmdk0            /usr/lib/devfsadm/linkmod/SUNW_md_link.so  R   0.477
     cmdk0            /usr/lib/devfsadm/linkmod/SUNW_md_link.so  R   0.161
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_misc_link.so  R   0.198
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_misc_link.so  R   0.168
     cmdk0          /usr/lib/devfsadm/linkmod/SUNW_misc_link.so  R   0.247
     cmdk0     /usr/lib/devfsadm/linkmod/SUNW_misc_link_i386.so  R   1.735
       ... 

この出力から、このシステムの力学についてさまざまな観察が可能です。まず、最初のいくつかの入出力の実行に長い時間がかかっていること (それぞれの所要時間は約 25 ミリ秒) に注目します。これは、cmdk0 デバイスがラップトップによって電源管理されていたためと考えられます。次に、USB 大容量記憶装置の処理のため scsa2usb(7D) ドライバがロードされた際の入出力を観察します。さらに、この装置が報告される時点で、/var/adm/messages への書き込みが発生していることに注目します。最後に、デバイスリンクジェネレータ (ファイル名の末尾が link.so のファイル) の読み取りを観察します。デバイスリンクジェネレータは、新しく接続されたデバイスを処理していると考えられます。

io プロバイダを使用すると、iostat(1M) 出力について詳しい情報を得ることができます。次の例のような iostat 出力を調べるとします。


extended device statistics                   
device       r/s    w/s   kr/s   kw/s wait actv  svc_t  %w  %b 
cmdk0        8.0    0.0  399.8    0.0  0.0  0.0    0.8   0   1 
sd0          0.0    0.0    0.0    0.0  0.0  0.0    0.0   0   0 
sd2          0.0  109.0    0.0  435.9  0.0  1.0    8.9   0  97 
nfs1         0.0    0.0    0.0    0.0  0.0  0.0    0.0   0   0 
nfs2         0.0    0.0    0.0    0.0  0.0  0.0    0.0   0   0

iotime.d スクリプトを使用して、次の例のように、入出力が行われるたびに確認できます。


    DEVICE                                               FILE RW      MS
       sd2                                  /mnt/archives.tar  W   0.856
       sd2                                  /mnt/archives.tar  W   0.729
       sd2                                  /mnt/archives.tar  W   0.890
       sd2                                  /mnt/archives.tar  W   0.759
       sd2                                  /mnt/archives.tar  W   0.884
       sd2                                  /mnt/archives.tar  W   0.746
       sd2                                  /mnt/archives.tar  W   0.891
       sd2                                  /mnt/archives.tar  W   0.760
       sd2                                  /mnt/archives.tar  W   0.889
     cmdk0                      /export/archives/archives.tar  R   0.827
       sd2                                  /mnt/archives.tar  W   0.537
       sd2                                  /mnt/archives.tar  W   0.887
       sd2                                  /mnt/archives.tar  W   0.763
       sd2                                  /mnt/archives.tar  W   0.878
       sd2                                  /mnt/archives.tar  W   0.751
       sd2                                  /mnt/archives.tar  W   0.884
       sd2                                  /mnt/archives.tar  W   0.760
       sd2                                  /mnt/archives.tar  W   3.994
       sd2                                  /mnt/archives.tar  W   0.653
       sd2                                  /mnt/archives.tar  W   0.896
       sd2                                  /mnt/archives.tar  W   0.975
       sd2                                  /mnt/archives.tar  W   1.405
       sd2                                  /mnt/archives.tar  W   0.724
       sd2                                  /mnt/archives.tar  W   1.841
     cmdk0                      /export/archives/archives.tar  R   0.549
       sd2                                  /mnt/archives.tar  W   0.543
       sd2                                  /mnt/archives.tar  W   0.863
       sd2                                  /mnt/archives.tar  W   0.734
       sd2                                  /mnt/archives.tar  W   0.859
       sd2                                  /mnt/archives.tar  W   0.754
       sd2                                  /mnt/archives.tar  W   0.914
       sd2                                  /mnt/archives.tar  W   0.751
       sd2                                  /mnt/archives.tar  W   0.902
       sd2                                  /mnt/archives.tar  W   0.735
       sd2                                  /mnt/archives.tar  W   0.908
       sd2                                  /mnt/archives.tar  W   0.753

この出力からは、archives.tar というファイルが、cmdk0 によって (/export/archives で) 読み取られており、またデバイス sd2 へ (/mnt で) 書き込まれているかのように見えます。しかし、archives.tar という名前のファイルが 2 つ存在し、並行して別々に処理されるということは通常ありえません。さらに詳しく調べたい場合は、デバイス、アプリケーション、プロセス ID、および転送バイト数を集積します。次の例を参照してください。

#pragma D option quiet

io:::start
{
	@[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);
}

END
{
	printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
	printa("%10s %20s %10d %15@d\n", @);
}

このスクリプトを数秒間実行すると、次のような出力が得られます。


# dtrace -s ./whoio.d
^C
    DEVICE                  APP        PID           BYTES
     cmdk0                   cp        790         1515520
       sd2                   cp        790         1527808

出力から、このアクティビティが、あるデバイスから別のデバイスへの archives.tar ファイルのコピーであったことがわかります。このことから別の疑問が自然にわいてきます: 一方のデバイスの速度がもう一方のデバイスよりも高速なのでしょうか。 コピーするときはどちらのデバイスがリミッタになるのでしょうか。こうした問題に答えるには、各デバイスの秒当たりの転送バイト数より、各デバイスの有効なスループットを把握する必要があります。スループットを特定するには、次のようなスクリプトを使用します。

#pragma D option quiet

io:::start
{
	start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
	/*
	 * We want to get an idea of our throughput to this device in KB/sec.
	 * What we have, however, is nanoseconds and bytes.  That is we want
	 * to calculate:
	 *
	 *                        bytes / 1024
	 *                  ------------------------
	 *                  nanoseconds / 1000000000
	 *
	 * But we can't calculate this using integer arithmetic without losing
	 * precision (the denomenator, for one, is between 0 and 1 for nearly
	 * all I/Os).  So we restate the fraction, and cancel:
	 * 
	 *     bytes      1000000000         bytes        976562
	 *   --------- * -------------  =  --------- * -------------  
	 *      1024      nanoseconds          1        nanoseconds
	 *
	 * This is easy to calculate using integer arithmetic; this is what
	 * we do below.
	 */
	this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
	@[args[1]->dev_statname, args[1]->dev_pathname] =
	    quantize((args[0]->b_bcount * 976562) / this->elapsed);
	start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

END
{
	printa("  %s (%s)\n%@d\n", @);
}

このスクリプトを数秒間実行すると、次のような出力が得られます。


  sd2 (/devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0:r)

           value  ------------- Distribution ------------- count    
              32 |                                         0        
              64 |                                         3        
             128 |                                         1        
             256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  2257     
             512 |                                         1        
            1024 |                                         0        

  cmdk0 (/devices/pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0:a)

           value  ------------- Distribution ------------- count    
             128 |                                         0        
             256 |                                         1        
             512 |                                         0        
            1024 |                                         2        
            2048 |                                         0        
            4096 |                                         2        
            8192 |@@@@@@@@@@@@@@@@@@                       172      
           16384 |@@@@@                                    52       
           32768 |@@@@@@@@@@@                              108      
           65536 |@@@                                      34       
          131072 |                                         0        

この出力から、sd2 がリミッタデバイスであることは明白です。sd2 のスループットは毎秒 256 - 512K バイトです。一方、cmdk0 は、毎秒 8M バイトから 64M バイトを超える速さで入出力を行います。このスクリプトは、iostat で出力されるデバイス名と、デバイスの完全パスとの両方を出力します。デバイスについてさらに詳しく知りたい場合は、次の例のように、prtconf にデバイスのパスを指定します。


# prtconf -v /devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0
disk, instance #2 (driver name: sd)
    Driver properties:
        name='lba-access-ok' type=boolean dev=(29,128)
        name='removable-media' type=boolean dev=none
        name='pm-components' type=string items=3 dev=none
            value='NAME=spindle-motor' + '0=off' + '1=on'
        name='pm-hardware-state' type=string items=1 dev=none
            value='needs-suspend-resume'
        name='ddi-failfast-supported' type=boolean dev=none
        name='ddi-kernel-ioctl' type=boolean dev=none
    Hardware properties:
        name='inquiry-revision-id' type=string items=1
            value='1.04'
        name='inquiry-product-id' type=string items=1
            value='STORAGE DEVICE'
        name='inquiry-vendor-id' type=string items=1
            value='Generic'
        name='inquiry-device-type' type=int items=1
            value=00000000
        name='usb' type=boolean
        name='compatible' type=string items=1
            value='sd'
        name='lun' type=int items=1
            value=00000000
        name='target' type=int items=1
            value=00000000

強調部分からわかるように、このデバイスはリムーバブル USB 記憶装置です。

この節の例では、すべての入出力要求について調べてきました。しかし、1 種類の要求だけを調べたい場合もあります。以下の例では、書き込みが発生しているディレクトリと、この書き込みを実行しているアプリケーションを追跡します。

#pragma D option quiet

io:::start
/args[0]->b_flags & B_WRITE/
{
	@[execname, args[2]->fi_dirname] = count();
}

END
{
	printf("%20s %51s %5s\n", "WHO", "WHERE", "COUNT");
	printa("%20s %51s %5@d\n", @);
}

このスクリプトを、デスクトップの作業負荷で一定期間実行すると、次に示すように、興味深い結果が得られます。


# dtrace -s ./whowrite.d
^C
              WHO                                             WHERE COUNT
               su                                          /var/adm     1
          fsflush                                              /etc     1
          fsflush                                                 /     1
          fsflush                                          /var/log     1
          fsflush                                  /export/bmc/lisa     1
              esd   /export/bmc/.phoenix/default/78cxczuy.slt/Cache     1
          fsflush                              /export/bmc/.phoenix     1
              esd         /export/bmc/.phoenix/default/78cxczuy.slt     1
               vi                                          /var/tmp     2
               vi                                              /etc     2
              cat                                            <none>     2
             bash                                                 /     2
               vi                                            <none>     3
            xterm                                          /var/adm     3
          fsflush                                       /export/bmc     7
  MozillaFirebird                                            <none>     8
              vim                                       /export/bmc     9
  MozillaFirebird                                       /export/bmc    10
          fsflush                                          /var/adm    11
         devfsadm                                              /dev    14
              ksh                                            <none>    71
              ksh                                       /export/bmc    71
          fsflush         /export/bmc/.phoenix/default/78cxczuy.slt   119
  MozillaFirebird         /export/bmc/.phoenix/default/78cxczuy.slt   119
          fsflush                                            <none>   211
  MozillaFirebird   /export/bmc/.phoenix/default/78cxczuy.slt/Cache   591
          fsflush   /export/bmc/.phoenix/default/78cxczuy.slt/Cache   666
            sched                                            <none>  2385

この出力から、事実上すべての書き込みが Mozilla Firebird のキャッシュと関連付けられていることがわかります。<none> エントリが表示されている書き込みは、おそらく UFS ログに関連付けられている書き込みです。この書き込みは、ファイルシステム上の別の書き込みによって引き起こされます。ロギングの詳細については、ufs(7FS) のマニュアルページを参照してください。この例では、io プロバイダを使って、ソフトウェアの上位層で発生した問題の検出方法を示します。この場合、このスクリプトの構成に問題があります。 Web ブラウザのキャッシュが tmpfs(7FS) ファイルシステム内のディレクトリにあれば、この Web ブラウザによる入出力はずっと少なく(おそらく皆無に) なるはずです。

前の例では、start プローブと done プローブしか使われていません。アプリケーションの入出力がブロックされる理由と、その期間を調べたい場合は、wait-start プローブと wait-done プローブを使用します。以下のスクリプトでは、io プローブと sched プローブ (第 26 章sched プロバイダを参照) の両方を使って、StarSuite ソフトウェアの入出力待ち時間と CPU 時間とを比較します。

#pragma D option quiet

sched:::on-cpu
/execname == "soffice.bin"/
{
	self->on = vtimestamp;
}

sched:::off-cpu
/self->on/
{
	@time["<on cpu>"] = sum(vtimestamp - self->on);
	self->on = 0;
}

io:::wait-start
/execname == "soffice.bin"/
{
	self->wait = timestamp;
}

io:::wait-done
/self->wait/
{
	@io[args[2]->fi_name] = sum(timestamp - self->wait);
	@time["<I/O wait>"] = sum(timestamp - self->wait);
	self->wait = 0;
}

END
{
	printf("Time breakdown (milliseconds):\n");
	normalize(@time, 1000000);
	printa("  %-50s %15@d\n", @time);

	printf("\nI/O wait breakdown (milliseconds):\n");
	normalize(@io, 1000000);
	printa("  %-50s %15@d\n", @io);
}

StarSuite ソフトウェアのコールドスタート実行中にこのスクリプトを実行すると、次のような結果が得られます。


Time breakdown (milliseconds):
  <on cpu>                                                      3634
  <I/O wait>                                                   13114

I/O wait breakdown (milliseconds):
  soffice.tmp                                                      0
  Office                                                           0
  unorc                                                            0
  sbasic.cfg                                                       0
  en                                                               0
  smath.cfg                                                        0
  toolboxlayout.xml                                                0
  sdraw.cfg                                                        0
  swriter.cfg                                                      0
  Linguistic.dat                                                   0
  scalc.cfg                                                        0
  Views.dat                                                        0
  Store.dat                                                        0
  META-INF                                                         0
  Common.xml.tmp                                                   0
  afm                                                              0
  libsimreg.so                                                     1
  xiiimp.so.2                                                      3
  outline                                                          4
  Inet.dat                                                         6
  fontmetric                                                       6
  ...
  libucb1.so                                                      44
  libj641si_g.so                                                  46
  libX11.so.4                                                     46
  liblng641si.so                                                  48
  swriter.db                                                      53
  libwrp641si.so                                                  53
  liblocaledata_ascii.so                                          56
  libi18npool641si.so                                             65
  libdbtools2.so                                                  69
  ofa64101.res                                                    74
  libxcr641si.so                                                  82
  libucpchelp1.so                                                 83
  libsot641si.so                                                  86
  libcppuhelper3C52.so                                            98
  libfwl641si.so                                                 100
  libsb641si.so                                                  104
  libcomphelp2.so                                                105
  libxo641si.so                                                  106
  libucpfile1.so                                                 110
  libcppu.so.3                                                   111
  sw64101.res                                                    114
  libdb-3.2.so                                                   119
  libtk641si.so                                                  126
  libdtransX11641si.so                                           127
  libgo641si.so                                                  132
  libfwe641si.so                                                 150
  libi18n641si.so                                                152
  libfwi641si.so                                                 154
  libso641si.so                                                  173
  libpsp641si.so                                                 186
  libtl641si.so                                                  189
  <unknown>                                                      189
  libucbhelper1C52.so                                            195
  libutl641si.so                                                 213
  libofa641si.so                                                 216
  libfwk641si.so                                                 229
  libsvl641si.so                                                 261
  libcfgmgr2.so                                                  368
  libsvt641si.so                                                 373
  libvcl641si.so                                                 741
  libsvx641si.so                                                 885
  libsfx641si.so                                                 993
  <none>                                                        1096
  libsw641si.so                                                 1365
  applicat.rdb                                                  1580

この出力からわかるように、StarSuite のコールドスタート時間の大部分は入出力待ち時間です。(入出力待ち時間が 13.1 秒であるのに対し、CPU 時間は 3.6 秒。)このスクリプトを StarSuite ソフトウェアのウォームスタートで実行すると、ページキャッシュによって入出力時間が短縮されることがわかります。次の出力例を参照してください。


Time breakdown (milliseconds):
  <I/O wait>                                                       0
  <on cpu>                                                      2860

I/O wait breakdown (milliseconds):
  temp                                                             0
  soffice.tmp                                                      0
  <unknown>                                                        0
  Office                                                           0

コールドスタートの出力から、applicat.rdb ファイルが一番入出力待ち時間が長いファイルであることがわかります。これはおそらく、ファイルへの入出力回数が多いためです。このファイルに対して実行された入出力について調べるには、次の D スクリプトを使用します。

io:::start
/execname == "soffice.bin" && args[2]->fi_name == "applicat.rdb"/
{
	@ = lquantize(args[2]->fi_offset != -1 ?
	    args[2]->fi_offset / (1000 * 1024) : -1, 0, 1000);
}

このスクリプトは、fileinfo_t 構造体の fi_offset フィールドを使って、ファイルのどの部分がアクセスされているのかをメガバイトの粒度で調べます。StarSuite ソフトウェアのコールドスタート中にこのスクリプトを実行すると、次のような出力が得られます。


# dtrace -s ./applicat.d
dtrace: script './applicat.d' matched 4 probes
^C


           value  ------------- Distribution ------------  count    
             < 0 |                                         0        
               0 |@@@                                      28       
               1 |@@                                       17       
               2 |@@@@                                     35       
               3 |@@@@@@@@@                                72       
               4 |@@@@@@@@@@                               78       
               5 |@@@@@@@@                                 65       
               6 |                                         0

この出力から、ファイルの最初の 6M バイトだけがアクセスされていることがわかります。これは、おそらく、ファイルサイズが 6M バイトであるためです。また、ファイル全体がアクセスされているわけではないこともわかります。StarSuite のコールドスタートにかかる時間を短縮したい場合は、ファイルのアクセスパターンを把握する必要があります。ファイルの必要な部分がほぼ連続しているなら、StarSuite の実行前にスカウトスレッドを実行して、あらかじめファイルへの入出力を行なっておくと、コールドスタート時間を短縮できます。この方法は、ファイルのアクセスの手段が mmap(2) である場合に特に有効です。しかしながら、この方法で短縮できるコールドスタート時間は約 1.6 秒です。これだけのために、アプリケーションをさらに複雑にし、管理負荷を増やすメリットはありません。どちらにしても、io プロバイダで収集したデータを使って、最終的に得られる利益を正確に推測できます。