Solaris Trusted Extensions
Installation and Configuration
for Solaris 10 11/06 and
Solaris 10 8/07 Releases
Contents

Preface ...................................................................................................................................................13

1 Security Planning for Trusted Extensions ................................................................................................. 19
   Planning for Security in Trusted Extensions ......................................................................................... 19
      Understanding Trusted Extensions ................................................................................................. 20
      Understanding Your Site’s Security Policy ...................................................................................... 20
      Devising an Administration Strategy for Trusted Extensions ........................................................ 21
      Devising a Label Strategy ............................................................................................................... 21
      Planning System Hardware and Capacity for Trusted Extensions ............................................... 22
      Planning Your Trusted Network ..................................................................................................... 23
      Planning for Zones in Trusted Extensions ..................................................................................... 23
      Planning for Multilevel Access ...................................................................................................... 25
      Planning for the LDAP Naming Service in Trusted Extensions ................................................. 26
      Planning for Auditing in Trusted Extensions ................................................................................ 26
      Planning User Security in Trusted Extensions .............................................................................. 26
      Devising an Installation and Configuration Strategy for Trusted Extensions ............................. 28
      Collecting Information Before Installing Trusted Extensions .................................................... 29
      Backing Up the System Before Installing Trusted Extensions .................................................... 29
      Installing Solaris Trusted Extensions Software ............................................................................ 30
      Results of Installing Trusted Extensions From an Administrator’s Perspective .......................... 30

2 Installation and Configuration Roadmap for Trusted Extensions ............................................................... 33
   Task Map: Preparing a Solaris System for Trusted Extensions ........................................................ 33
   Task Map: Preparing For and Installing Trusted Extensions ............................................................. 33
   Task Map: Configuring Trusted Extensions .......................................................................................... 34
3 Installing Solaris Trusted Extensions Software (Tasks) ................................................................. 39
   Install Team Responsibilities ........................................................................................................ 39
   Installing or Upgrading the Solaris OS for Trusted Extensions ................................................ 39
   ▼ Install a Solaris System to Support Trusted Extensions .......................................................... 40
   ▼ Prepare an Installed Solaris System for Trusted Extensions .................................................... 41
   Collecting Information and Making Decisions Before Installing Trusted Extensions ............... 43
   ▼ Collect System Information Before Installing Trusted Extensions ....................................... 43
   ▼ Make System and Security Decisions Before Installing Trusted Extensions ........................ 44
   Installing the Solaris Trusted Extensions Packages (Tasks) ........................................................... 46
   ▼ Install the Solaris Trusted Extensions Packages ....................................................................... 46

4 Configuring Trusted Extensions (Tasks) .......................................................................................... 49
   Setting Up the Global Zone in Trusted Extensions ....................................................................... 49
   ▼ Check and Install Your Label Encodings File ........................................................................ 50
   ▼ Enable IPv6 Networking in Trusted Extensions ....................................................................... 53
   ▼ Create ZFS Pool for Cloning Zones ....................................................................................... 53
   ▼ Reboot and Log In to Trusted Extensions ................................................................................ 54
   ▼ Initialize the Solaris Management Console Server in Trusted Extensions ............................ 56
   ▼ Make the Global Zone an LDAP Client in Trusted Extensions .............................................. 58
   Creating Labeled Zones .................................................................................................................. 60
   ▼ Run the txzonemgr Script ....................................................................................................... 61
   ▼ Configure the Network Interfaces in Trusted Extensions ...................................................... 62
   ▼ Name and Label the Zone ........................................................................................................ 66
   ▼ Install the Labeled Zone ........................................................................................................... 68
   ▼ Boot the Labeled Zone ............................................................................................................. 69
   ▼ Verify the Status of the Zone .................................................................................................... 70
   ▼ Customize the Labeled Zone ..................................................................................................... 71
   ▼ Create Another Zone in Trusted Extensions ............................................................................ 73
   ▼ Add a Network Interface to an Existing Labeled Zone ............................................................ 75
   Creating Roles and Users in Trusted Extensions .......................................................................... 77
   ▼ Create the Security Administrator Role in Trusted Extensions .............................................. 77
   ▼ Create Users Who Can Assume Roles in Trusted Extensions ................................................. 79
   ▼ Verify That the Trusted Extensions Roles Work ...................................................................... 82
   ▼ Enable Users to Log In to a Labeled Zone .............................................................................. 83
   Creating Home Directories in Trusted Extensions ....................................................................... 83
### Contents

- Use the `rlogin` Command to Log In to a Headless System in Trusted Extensions ........... 116
- Use the `ssh` Command to Log In to a Headless System in Trusted Extensions .............. 118
- Set Up Administration by Serial Login in Trusted Extensions .......................................... 119

#### A Site Security Policy ................................................................. 121

- Creating and Managing a Security Policy ......................................................... 121
- Site Security Policy and Trusted Extensions ..................................................... 122
- Computer Security Recommendations ............................................................... 123
- Physical Security Recommendations ................................................................. 124
- Personnel Security Recommendations ............................................................... 125
- Common Security Violations .............................................................................. 125
- Additional Security References ......................................................................... 126
  - U.S. Government Publications ........................................................................ 126
  - UNIX Security Publications ............................................................................. 126
  - General Computer Security Publications ....................................................... 127
  - General UNIX Publications ............................................................................ 127

#### B Using CDE Actions to Install Zones in Trusted Extensions ......................... 129

- Associating Network Interfaces With Zones by Using CDE Actions (Task Map) .......... 129
  - Specify Two IP Addresses for the System by Using a CDE Action .................. 129
  - Specify One IP Address for the System by Using a CDE Action ................... 131
- Preparing to Create Zones by Using CDE Actions (Task Map) ............................. 131
  - Specify Zone Names and Zone Labels by Using a CDE Action ...................... 132
- Creating Labeled Zones by Using CDE Actions (Task Map) ............................... 134
  - Install, Initialize, and Boot a Labeled Zone by Using CDE Actions ............... 135
  - Customize a Booted Zone in Trusted Extensions ......................................... 138
  - Use the Copy Zone Method in Trusted Extensions ........................................... 139
  - Use the Clone Zone Method in Trusted Extensions ......................................... 140

#### C Configuration Checklist for Trusted Extensions ............................................ 143

- Checklist for Configuring Trusted Extensions ..................................................... 143
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary</td>
<td>147</td>
</tr>
<tr>
<td>Index</td>
<td>153</td>
</tr>
</tbody>
</table>
Figures

FIGURE 1–1 Administering a Trusted Extensions System: Task Division by Role .......................... 29
FIGURE 4–1 Trusted Extensions Tools in the Solaris Management Console ............................. 57
Tables

| TABLE 1–1 | Default Host Templates in Trusted Extensions ........................................... 23 |
| TABLE 1–2 | Trusted Extensions Security Defaults for User Accounts .............................. 27 |
Preface

The Solaris Trusted Extensions Installation and Configuration for Solaris 10 11/06 and Solaris 10 8/07 Releases guide provides procedures for configuring Solaris™ Trusted Extensions on the Solaris Operating System. This guide also describes preparing the Solaris system to support a secure installation of Solaris Trusted Extensions.

Caution – This book is used to install Trusted Extensions for the Solaris 10 11/06 and Solaris 10 8/07 releases only. This book can also be used for the Solaris Express Developer Edition 5/07 release.

For later releases, do not use this book. Use the Solaris Trusted Extensions Configuration Guide.

Note – This Solaris release supports systems that use the SPARC® and x86 families of processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems appear in the Solaris OS: Hardware Compatibility Lists at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 related terms mean the following:
- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” points out specific 64-bit information about AMD64 or EM64T systems.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is for knowledgeable system administrators and security administrators who are installing Trusted Extensions software. The level of trust that is required by your site security policy, and your level of expertise, determines who can perform the configuration tasks.
Implementing Site Security

Successfully configuring Trusted Extensions on a system in a way that is consistent with site security requires understanding the security features of Trusted Extensions and your site security policy. Before you install the Solaris Trusted Extensions packages, read Chapter 1, "Security Planning for Trusted Extensions," for information about how to ensure site security when configuring the software.

Trusted Extensions and the Solaris Operating System

Trusted Extensions installs on top of the Solaris Operating System (Solaris OS). Because Trusted Extensions software can modify the Solaris OS, Trusted Extensions can require specific settings for Solaris installation options. For details, see Chapter 3, "Installing Solaris Trusted Extensions Software (Tasks)." Also, Trusted Extensions books supplement Solaris books. As administrators, you need access to Solaris books and Trusted Extensions books.

How This Book Is Organized

Chapter 1, "Security Planning for Trusted Extensions," describes the security issues that you need to consider when configuring Trusted Extensions software on one or more Solaris systems.

Chapter 2, "Installation and Configuration Roadmap for Trusted Extensions," contains task maps for adding Trusted Extensions software to Solaris systems.

Chapter 3, "Installing Solaris Trusted Extensions Software (Tasks)," provides instructions on preparing a Solaris system for Trusted Extensions software. It also includes instructions on adding the packages.

Chapter 4, "Configuring Trusted Extensions (Tasks)," provides instructions on configuring Trusted Extensions software on a system with a monitor.

Chapter 5, "Configuring LDAP for Trusted Extensions (Tasks)," provides instructions on configuring LDAP for Trusted Extensions.

Chapter 6, "Configuring a Headless System With Trusted Extensions (Tasks)," describes how to configure and administer Trusted Extensions software on a headless system.

Appendix A, "Site Security Policy," addresses site security policy and places Trusted Extensions in the context of wider organizational and site security.

Appendix B, "Using CDE Actions to Install Zones in Trusted Extensions," describes how to configure labeled zones by using Trusted CDE actions.

Appendix C, "Configuration Checklist for Trusted Extensions," provides a configuration checklist for the install team.
**Glossary** defines selected terms and phrases that are used in this book.

**How the Solaris Trusted Extensions Books Are Organized**

The Solaris Trusted Extensions documentation set supplements the documentation for the Solaris 10 8/07 release. Review both sets of documentation to get a more complete understanding of Solaris Trusted Extensions. The Solaris Trusted Extensions documentation set consists of the following books.

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Topics</th>
<th>Audience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Trusted Extensions Transition Guide</td>
<td>Provides an overview of the differences between Trusted Solaris 8 software, Solaris 10 8/07 software, and Solaris Trusted Extensions software.</td>
<td>All</td>
</tr>
<tr>
<td>Solaris Trusted Extensions Reference Manual</td>
<td>Provides Solaris Trusted Extensions man pages.</td>
<td>All</td>
</tr>
<tr>
<td>Solaris Trusted Extensions User's Guide</td>
<td>Describes the basic features of Solaris Trusted Extensions. This book contains a glossary.</td>
<td>End users, administrators, developers</td>
</tr>
<tr>
<td>Solaris Trusted Extensions Installation and Configuration for Solaris 10 11/06 and Solaris 10 8/07 Releases</td>
<td>Describes how to plan for, install, and configure Solaris Trusted Extensions.</td>
<td>Administrators, developers</td>
</tr>
<tr>
<td>Solaris Trusted Extensions Administrator's Procedures</td>
<td>Shows how to perform specific administration tasks.</td>
<td>Administrators, developers</td>
</tr>
<tr>
<td>Solaris Trusted Extensions Developer's Guide</td>
<td>Describes how to develop applications with Solaris Trusted Extensions.</td>
<td>Developers, administrators</td>
</tr>
<tr>
<td>Solaris Trusted Extensions Label Administration</td>
<td>Provides information about how to specify label components in the label encodings file.</td>
<td>Administrators</td>
</tr>
<tr>
<td>Compartmented Mode Workstation Labeling: Encodings Format</td>
<td>Describes the syntax used in the label encodings file. The syntax enforces the various rules for well-formed labels for a system.</td>
<td>Administrators</td>
</tr>
</tbody>
</table>

**Related Books from Sun Microsystems**

The following books contain information that is useful when you install Solaris Trusted Extensions software.
**Solaris Books**

*Solaris 10 11/06 Installation Guide: Basic Installations* – Provides guidance on the installation options for the Solaris OS

*Solaris 10 11/06 Installation Guide: Custom JumpStart and Advanced Installations* – Provides guidance on disk space requirements, installation methods, and configuration options

*System Administration Guide: Basic Administration* – Describes basic administrative tasks in the Solaris OS, such as using the Solaris Management Console

*System Administration Guide: Advanced Administration* – Describes more advanced administrative tasks in the Solaris OS, such as print management

*System Administration Guide: IP Services* – Describes network configuration tasks in the Solaris OS

*System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)* – Describes the naming services in the Solaris OS

*System Administration Guide: Security Services* – Describes the security features in the Solaris OS

*System Administration Guide: Solaris Containers-Resource Management and Solaris Zones* – Describes the containment features in the Solaris OS

**Books From Elsewhere**

Your site security policy document – Describes the security policy and security procedures at your site

*Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide* – Describes the Common Desktop Environment (CDE)

The administrator guide for your currently installed operating system – Describes how to back up system files

**Related Third-Party Web Site References**

Third-party URLs are referenced in this document and provide additional, related information.
Note – Sun is not responsible for the availability of third-party web sites that are mentioned in this document. Sun does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Sun will not be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or in connection with the use of or reliance on any such content, goods, or services that are available on or through such sites or resources.

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

- Documentation (http://www.sun.com/documentation/)
- Support (http://www.sun.com/support/)
- Training (http://www.sun.com/training/)

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and suggestions. To share your comments, go to http://docs.sun.com and click Feedback.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is rm filename.</td>
</tr>
</tbody>
</table>
### Table P-1: Typographic Conventions (Continued)

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User’s Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A cache is a copy that is stored locally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not save the file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>

---

### Shell Prompts in Command Examples

The following table shows the default UNIX® system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

#### Table P-2: Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>#</td>
</tr>
</tbody>
</table>
Solaris™ Trusted Extensions implements a portion of your site’s security policy in software. This chapter provides an overview of the security and administrative aspects of configuring the software.

- “Planning for Security in Trusted Extensions” on page 19
- “Results of Installing Trusted Extensions From an Administrator’s Perspective” on page 30

Planning for Security in Trusted Extensions

This section outlines the planning that is required before installing and configuring Trusted Extensions software.

- “Understanding Trusted Extensions” on page 20
- “Understanding Your Site’s Security Policy” on page 20
- “Devising an Administration Strategy for Trusted Extensions” on page 21
- “Devising a Label Strategy” on page 21
- “Planning System Hardware and Capacity for Trusted Extensions” on page 22
- “Planning Your Trusted Network” on page 23
- “Planning for Zones in Trusted Extensions” on page 23
- “Planning for Multilevel Access” on page 25
- “Planning for the LDAP Naming Service in Trusted Extensions” on page 26
- “Planning for Auditing in Trusted Extensions” on page 26
- “Planning User Security in Trusted Extensions” on page 26
- “Devising an Installation and Configuration Strategy for Trusted Extensions” on page 28
- “Collecting Information Before Installing Trusted Extensions” on page 29
- “Backing Up the System Before Installing Trusted Extensions” on page 29
- “Installing Solaris Trusted Extensions Software” on page 30

For a checklist of Trusted Extensions configuration tasks, see Appendix C, “Configuration Checklist for Trusted Extensions.” If you are interested in localizing your site, see “For
Understanding Trusted Extensions

The installation and configuration of Trusted Extensions involves more than loading executable files, specifying your site’s data, and setting configuration variables. Considerable background knowledge is required. Trusted Extensions software provides a labeled environment that is based on the following concepts:

- Capabilities that in most UNIX® environments are assigned to superuser are available to discrete administrative roles.
- In addition to UNIX permissions, access to data is controlled by special security tags. These tags are called labels. Labels are assigned to users, processes, and objects, such as data files and directories.
- The ability to override security policy can be assigned to specific users and applications.

Understanding Your Site’s Security Policy

Trusted Extensions effectively enables you to integrate your site’s security policy with the Solaris OS. Thus, you need to have a good understanding of the scope of your policy and the ability of Trusted Extensions software to accommodate that policy. A well-planned configuration must provide a balance between consistency with your site security policy and convenience for users who are working on the system.

Trusted Extensions is configured by default to conform with the Common Criteria for Information Technology Security Evaluation (ISO/IEC 15408) at Assurance Level EAL4 against the following protection profiles:

- Labeled Security Protection Profile
- Controlled Access Protection Profile
- Role-Based Access Control Protection Profile

To meet these evaluated levels, you must configure LDAP as the naming service. Note that your configuration might no longer conform with the evaluation if you do any of the following:

- Change the kernel switch settings in the /etc/system file.
- Turn off auditing or device allocation.
- Change the default entries in the following configurable files:
  - /usr/openwin/server/etc/*
  - /usr/dt/app-defaults/C/Dt
  - /usr/dt/app-defaults/C/Dtwm

International Customers of Trusted Extensions” on page 22. If you are interested in running an evaluated configuration, see “Understanding Your Site’s Security Policy” on page 20.
Devising an Administration Strategy for Trusted Extensions

The root user or the System Administrator role is responsible for loading the packages from the Solaris Trusted Extensions installation media. You can create roles to divide administrative responsibilities among several functional areas:

- The security administrator is responsible for security-related tasks, such as setting up and assigning sensitivity labels, configuring auditing, and setting password policy.
- The system administrator is responsible for the non-security aspects of setup, maintenance, and general administration.
- The primary administrator is responsible for creating rights profile for the security administrator, and for fixing problems when the security and system administrators do not have sufficient privilege.
- More limited roles can be configured. For example, an operator could be responsible for backing up files.

As part of your administration strategy, you need to decide the following:

- Which users are handling which administration responsibilities
- Which non-administrative users are allowed to run trusted applications, meaning which users are permitted to override security policy, when necessary
- Which users have access to which groups of data

Devising a Label Strategy

Planning labels requires setting up a hierarchy of sensitivity levels and a categorization of information on your system. The label encodings file contains this type of information for your site. You can use one of the label_encodings files that are supplied on the Solaris Trusted Extensions installation media. You could also modify one of the supplied files, or create a new label_encodings file that is specific to your site. The file must include the Sun-specific local extensions, at least the COLOR NAMES section.
Caution – If you are supplying a label_encodings file, you must have the final version of the file ready for use before adding the Solaris Trusted Extensions packages. The file is added before you reboot the system for configuration. The file should be on removable media.

Planning labels also involves planning the label configuration. After adding the Trusted Extensions packages to a system, you need to decide if the system can run at a single label only, or if the system can run at multiple labels. If all of your non-administrative users can operate at the same security label, select a single-label system.

You can also configure whether labels display and which label name format is displayed. For more information, see Solaris Trusted Extensions Label Administration. You can also refer to Compartmented Mode Workstation Labeling: Encodings Format.

For International Customers of Trusted Extensions

When localizing a label_encodings file, international customers must localize the label names only. The administrative label names, ADMIN_HIGH and ADMIN_LOW, must not be localized. All labeled hosts that you contact, from any vendor, must have label names that match the label names in the label_encodings file.

Trusted Extensions supports fewer locales than does the Solaris OS. When you are working in a locale that Trusted Extensions does not support, text that is specific to Trusted Extensions, such as error messages about labels, is not translated into your locale. Solaris software continues to be translated into your locale.

Planning System Hardware and Capacity for Trusted Extensions

System hardware includes the system itself and its attached devices. Such devices include tape drives, microphones, CD-ROM drives, and disk packs. Hardware capacity includes system memory, network interfaces, and disk space.

- Follow the recommendations for installing a Solaris release, as described in "System Requirements and Recommendations" in Solaris 10 11/06 Installation Guide: Basic Installations. Trusted Extensions features can add to those requirements:

  Memory beyond the suggested minimum is required on the following systems:
  - Systems that run the Solaris Management Console, a required administrative GUI
  - Systems that run at more than one sensitivity label
  - Systems that are used by users who can assume an administrative role
More disk space is required on the following systems:
- Systems that store files at more than one label
- Systems whose users can assume an administrative role

Planning Your Trusted Network

For assistance in planning network hardware, see Chapter 2, “Planning Your TCP/IP Network (Tasks),” in System Administration Guide: IP Services.

As in any client-server network, you need to identify hosts by their function, that is, server or client, and configure the software appropriately. For assistance in planning, see Solaris 10 11/06 Installation Guide: Custom JumpStart and Advanced Installations.

Trusted Extensions software recognizes two host types, labeled and unlabeled. Each host type has a default security template, as shown in Table 1-1.

<table>
<thead>
<tr>
<th>Table 1-1 Default Host Templates in Trusted Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Type</td>
</tr>
<tr>
<td>unlabeled</td>
</tr>
<tr>
<td>cipso</td>
</tr>
</tbody>
</table>

If your network can be reached by other networks, you need to specify accessible domains and hosts. You also need to identify which Trusted Extensions hosts are going to serve as gateways. You need to identify the label accreditation range for these gateways, and the sensitivity label at which data from other hosts can be viewed.

The tnrhttp(4) man page provides a complete description of each host type with several examples.

Planning for Zones in Trusted Extensions

Trusted Extensions software is added to the Solaris OS in the global zone. You then configure non-global zones that are labeled. You can create one labeled zone for every unique label, though you do not need to create a zone for every label.
Trusted Extensions Zones and Solaris 10 Zones

Labeled zones differ from typical Solaris 10 zones. Labeled zones are primarily used to segregate data. In Trusted Extensions, regular users cannot remotely log in to a labeled zone. The only interactive interface to a labeled zone is by using the zone console. Only root can gain access to the zone console.

Zone Creation in Trusted Extensions

To create a labeled zone involves copying the entire Solaris OS, and then starting the services for the Solaris OS in every zone. The process can be time-consuming. A faster process is to create one zone, then to copy that zone or clone the contents of that zone. The following table describes your options for zone creation in Trusted Extensions.

<table>
<thead>
<tr>
<th>Zone Creation Method</th>
<th>Effort Required</th>
<th>Characteristics of This Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create each labeled zone from scratch.</td>
<td>Configure, initialize, install, customize, and boot each labeled zone.</td>
<td>▪ This method is supported, and is useful for creating one or two additional zones. The zones can be upgraded.</td>
</tr>
</tbody>
</table>
| Create additional labeled zones from a copy of the first labeled zone. | Configure, initialize, install, and customize one zone. Use this zone as a template for additional labeled zones. | ▪ This method is supported, and is faster than creating zones from scratch. The zones can be upgraded. Use the Copy Zone method if you want Sun Support to help you with any zone difficulties.  
  ▪ This method uses UFS. UFS does not offer the additional isolation for zones that Solaris ZFS offers. |
Zone Creation Method | Effort Required | Characteristics of This Method
--- | --- | ---
Create additional labeled zones from a ZFS snapshot of the first labeled zone. | Set up a ZFS pool from a partition that you set aside during Solaris installation. Configure, initialize, install, and customize one zone. Use this zone as a ZFS snapshot for additional labeled zones. | This method uses Solaris ZFS, and is the fastest method. This method makes every zone a file system, and thus provides more isolation than UFS. ZFS uses much less disk space. If you are testing Trusted Extensions and can reinstall the zones rather than upgrade, this method might be a good choice. This method can be useful on systems whose contents are not volatile, because the system can quickly be reinstalled to a usable state. This method is not supported. Zones that are created by using this method cannot be upgraded when a later version of the OS is released.

Solaris zones affect package installation and patching. For more information, see the following references:

- Solaris 10 11/06 Release Notes
- Solaris Zones and Containers FAQ (http://www.opensolaris.org/os/community/zones/faq)

Planning for Multilevel Access

Typically, printing and NFS are configured as multilevel services. To access multilevel services, a properly configured system requires that every zone be able to access one or more network addresses. The following configurations provide multilevel services:

- As in the Solaris OS, one IP address is assigned for every zone, including the global zone. A refinement of this configuration is to assign a separate network information card (NIC) to each zone. Such a configuration is used to physically separate the single-label networks that are associated with each NIC.
- One all-zones address is assigned. One or more zones can have zone-specific addresses.
A system that meets the following two conditions cannot provide multilevel services:

- One IP address is assigned that the global zone and the labeled zones share.
- No zone-specific addresses are assigned.

If users in labeled zones are not supposed to have access to a local multilevel printer, and you do not need NFS exports of home directories, then you can assign one IP address to a system that you configure with Trusted Extensions. On such a system, multilevel printing is not supported, and home directories cannot be shared. A typical use of this configuration is on a laptop.

Planning for the LDAP Naming Service in Trusted Extensions

If you are not planning to install a network of labeled systems, then you can skip this section. If you are installing a network of systems, LDAP is used by Trusted Extensions as the naming service. A populated Sun Java™ System Directory Server (LDAP server) is required when you configure a network of systems. If your site has an existing LDAP server, you can populate the server with Trusted Extensions databases. To access the server, you set up an LDAP proxy on a Trusted Extensions system.

If your site does not have an existing LDAP server, you then plan to create an LDAP server on a system that is running Trusted Extensions software. The procedures are described in Chapter 5, “Configuring LDAP for Trusted Extensions (Tasks).”

Planning for Auditing in Trusted Extensions

By default, auditing is turned on when Trusted Extensions is installed. Therefore, by default, root login and root logout are audited. To audit the users who are configuring the system, you can create roles early in the configuration process. For the procedure, see “Creating Roles and Users in Trusted Extensions” on page 77.

Planning auditing in Trusted Extensions is the same as in the Solaris OS. For details, see Part VII, "Solaris Auditing," in System Administration Guide: Security Services. While Trusted Extensions adds classes, events, and audit tokens, the software does not change how auditing is administered. For Trusted Extensions additions to auditing, see Chapter 18, "Trusted Extensions Auditing (Overview),” in Solaris Trusted Extensions Administrator’s Procedures.

Planning User Security in Trusted Extensions

Trusted Extensions software provides reasonable security defaults for users. These security defaults are listed in the Table 1–2. Where two values are listed, the first value is the default. The security administrator can modify these defaults to reflect the site’s security policy. After the
security administrator sets the defaults, the system administrator can create all the users, who inherit the established defaults. For descriptions of the keywords and values for these defaults, see the `label_encodings(4)` and `policy.conf(4)` man pages.

**TABLE 1-2**  Trusted Extensions Security Defaults for User Accounts

<table>
<thead>
<tr>
<th>File name</th>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/security/policy.conf</td>
<td>IDLECMD</td>
<td>lock</td>
</tr>
<tr>
<td></td>
<td>IDLETIME</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>LABELVIEW</td>
<td>showsl</td>
</tr>
<tr>
<td></td>
<td>CRYPT_ALGORITHMS_ALLOW</td>
<td>1,2a,md5</td>
</tr>
<tr>
<td></td>
<td>CRYPT_DEFAULT</td>
<td><em>unix</em></td>
</tr>
<tr>
<td></td>
<td>LOCK_AFTER_RETRIES</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>PRIV_DEFAULT</td>
<td>basic</td>
</tr>
<tr>
<td></td>
<td>PRIV_LIMIT</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>AUTHS_GRANTED</td>
<td>solaris.device.cdrw</td>
</tr>
<tr>
<td></td>
<td>PROFS_GRANTED</td>
<td>Basic Solaris User</td>
</tr>
</tbody>
</table>

The **LOCAL DEFINITIONS** section of /etc/security/tsol/label_encodings:
- Default User Clearance: CNF NEED TO KNOW
- Default User Sensitivity Label: PUBLIC

The system administrator can set up a standard user template that sets appropriate system defaults for every user. For example, by default, each user’s initial shell is a Bourne shell. The system administrator can set up a template that gives each user a C shell. For more information, see the Solaris Management Console online help for User Accounts.
Devising an Installation and Configuration Strategy for Trusted Extensions

As in the Solaris OS, Trusted Extensions software is initially installed by the root user. However, allowing the root user to configure the software is not a secure strategy. The following describes the installation and configuration strategies from the most secure strategy to the least secure strategy:

- A two-person installation team installs and configures the software. The configuration process is audited.
  Two people are at the computer when the software is installed. Early in the configuration process, this team creates local users and roles. The team also sets up auditing to audit events that are executed by roles. After roles are assigned to users, and the computer is rebooted, the software enforces task division by role. The audit trail provides a record of the configuration process. For an illustration of a secure configuration process, see Figure 1–1.

- One person installs and configures the software by assuming the appropriate role. The configuration process is audited.
  Early in the configuration process, the root user creates a local user and roles. This user also sets up auditing to audit events that are executed by roles. Once roles have been assigned to the local user, and the computer is rebooted, the software enforces task division by role. The audit trail provides a record of the configuration process.

- One person installs and configures the software by assuming the appropriate role. The configuration process is not audited.
  By using this strategy, no record is kept of the configuration process.

- The root user installs and configures the software. The configuration process is audited.
  The install team sets up auditing to audit every event that root performs during configuration. With this strategy, the team must determine which events to audit. The audit trail does not include the name of the user who is acting as root.

- The root user installs and configures the software.

Task division by role is shown in the following figure. The security administrator sets up auditing, protects file systems, sets device policy, determines which programs require privilege to run, and protects users, among other tasks. The system administrator shares and mounts file systems, installs software packages, and creates users, among other tasks.
Collecting Information Before Installing Trusted Extensions

As when configuring the Solaris OS, collect system, user, network, and label information before configuring Trusted Extensions. For details, see “Collect System Information Before Installing Trusted Extensions” on page 43.

Backing Up the System Before Installing Trusted Extensions

If your system has files that must be saved, perform a backup before installing the Trusted Extensions software. The safest way to back up files is to do a level 0 dump. If you do not have a backup procedure in place, see the administrator’s guide to your current operating system for instructions.
Installing Solaris Trusted Extensions Software

Installing Solaris Trusted Extensions software means installing packages on a Solaris system. For security reasons, some of the options that are available for Solaris installation must not be chosen. For details, see “Installing or Upgrading the Solaris OS for Trusted Extensions” on page 39.

Results of Installing Trusted Extensions From an Administrator's Perspective

After the Trusted Extensions software is installed, the following security features are in place. Many features are configurable by the security administrator.

- Auditing is enabled.
- A Sun label_encodings file is installed and configured.
- Two trusted desktops are added. Solaris Trusted Extensions (CDE) is the trusted version of CDE. Solaris Trusted Extensions (JDS) is the trusted version of the Sun Java Desktop System. Each windowing environment creates Trusted Path workspaces in the global zone.
- As in the Solaris OS, rights profiles for roles are defined. As in the Solaris OS, roles are not defined.
  To use roles to administer Trusted Extensions, you must create the roles. During configuration, you create the Security Administrator role.
- Three Trusted Extensions network databases, tnrhd, tnrhtp, and tnzonecfg are installed. The databases are administered by using the Security Templates tool and the Trusted Network Zones tool in the Solaris Management Console.
- Trusted Extensions provides GUIs to administer the system. Some GUIs are extensions to a Solaris OS GUI.
  - In Trusted CDE, administrative actions are provided in the Trusted_Extensions folder. Some of these actions are used when you initially configure Trusted Extensions. The tools are introduced in Chapter 2, “Trusted Extensions Administration Tools,” in Solaris Trusted Extensions Administrator's Procedures.
  - A trusted editor enables administrators to modify local administrative files. In Trusted CDE, the Admin Editor action invokes a trusted editor.
- The Device Allocation Manager manages attached devices.
- The Solaris Management Console provides Java-based tools to manage local and network administrative databases. The use of these tools is required for managing the trusted network, zones, and users.
This chapter outlines the tasks for installing and configuring Solaris™ Trusted Extensions software.

**Task Map: Preparing a Solaris System for Trusted Extensions**

Ensure that the Solaris OS on which you are installing Trusted Extensions supports the features of Trusted Extensions that you plan to use. Complete one of the two tasks that are described in the following task map.

<table>
<thead>
<tr>
<th>Task</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare an existing or upgraded Solaris installation for Trusted Extensions.</td>
<td>“Prepare an Installed Solaris System for Trusted Extensions” on page 41</td>
</tr>
<tr>
<td>Install the Solaris OS with Trusted Extensions features in mind.</td>
<td>“Install a Solaris System to Support Trusted Extensions” on page 40</td>
</tr>
</tbody>
</table>

**Task Map: Preparing For and Installing Trusted Extensions**

To securely install a Trusted Extensions system before configuring it, complete the tasks that are described in the following task map.

<table>
<thead>
<tr>
<th>Task</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete the preparation of your Solaris system.</td>
<td>“Task Map: Preparing a Solaris System for Trusted Extensions” on page 33</td>
</tr>
</tbody>
</table>
Task Map: Configuring Trusted Extensions

<table>
<thead>
<tr>
<th>Task</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up your system.</td>
<td>For a Trusted Solaris 8 system, back up the system as described in the documentation for your release. A labeled backup can be restored to each identically labeled zone. For a Solaris system, see <em>System Administration Guide: Basic Administration</em>.</td>
</tr>
<tr>
<td>Gather information and make decisions about your system and your Trusted Extensions network.</td>
<td>&quot;Collecting Information and Making Decisions Before Installing Trusted Extensions&quot; on page 43</td>
</tr>
<tr>
<td>Install the Trusted Extensions software packages.</td>
<td>&quot;Install the Solaris Trusted Extensions Packages&quot; on page 46</td>
</tr>
<tr>
<td>Configure the system.</td>
<td>For a system with a monitor, see &quot;Task Map: Configuring Trusted Extensions&quot; on page 34. For a headless system, see &quot;Headless System Configuration in Trusted Extensions (Task Map)&quot; on page 113. For a Sun Ray™, on the Sun documentation website (<a href="http://docs.sun.com">http://docs.sun.com</a>) see <em>Sun Ray Server Software 4.0 Installation and Configuration Guide for the Solaris Operating System</em>. For a laptop, go to the OpenSolaris Community: Security web page (<a href="http://opensolaris.org/os/community/security">http://opensolaris.org/os/community/security</a>). Click Trusted Extensions. On the Trusted Extensions page under Laptop Configurations, click Laptop instructions. To prevent networks from communicating with the global zone, configure the <em>vni0</em> interface. For an example, see the Laptop instructions.</td>
</tr>
</tbody>
</table>

**Task Map: Configuring Trusted Extensions**

For a secure installation, create roles early in the configuration process. The order of tasks when roles configure the system is shown in the following task map.
1. Configure the global zone.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect machine hardware by requiring a password to change</td>
<td>“Controlling Access to System Hardware” in System</td>
</tr>
<tr>
<td>hardware settings.</td>
<td>Administration Guide: Security Services</td>
</tr>
<tr>
<td>Configure labels. Labels <em>must</em> be configured for your site. If</td>
<td>“Check and Install Your Label Encodings File” on page 50</td>
</tr>
<tr>
<td>you plan to use the default <code>label_encodings</code> file, you can skip</td>
<td></td>
</tr>
<tr>
<td>this task.</td>
<td></td>
</tr>
<tr>
<td>If you are running an IPv6 network, you modify the <code>/etc/system</code> file</td>
<td>“Enable IPv6 Networking in Trusted Extensions” on page 53</td>
</tr>
<tr>
<td>to enable IP to recognize labeled packets.</td>
<td></td>
</tr>
<tr>
<td>If you plan to use a Solaris ZFS snapshot to clone zones, create</td>
<td>“Create ZFS Pool for Cloning Zones” on page 53</td>
</tr>
<tr>
<td>the ZFS pool. ZFS is derived from and an acronym for “zettabyte file</td>
<td></td>
</tr>
<tr>
<td>system”.</td>
<td></td>
</tr>
<tr>
<td>Boot to activate a labeled environment. Upon login, you are in the</td>
<td>“Reboot and Log In to Trusted Extensions” on page 54</td>
</tr>
<tr>
<td>global zone. The system’s <code>label_encodings</code> file enforces mandatory</td>
<td></td>
</tr>
<tr>
<td>access control (MAC).</td>
<td></td>
</tr>
<tr>
<td>Initialize the Solaris Management Console. This GUI is used to</td>
<td>“Initialize the Solaris Management Console Server in Trusted Extensions” on page 56</td>
</tr>
<tr>
<td>label zones, among other tasks.</td>
<td></td>
</tr>
<tr>
<td>Create the Security Administrator role and other roles that you</td>
<td>“Creating Roles and Users in Trusted Extensions” on page 77</td>
</tr>
<tr>
<td>plan to use locally. You create these roles just as you would</td>
<td>“Verify That the Trusted Extensions Roles Work” on page 82</td>
</tr>
<tr>
<td>create them in the Solaris OS.</td>
<td></td>
</tr>
<tr>
<td>You can delay this task until the end. For the consequences, see</td>
<td></td>
</tr>
<tr>
<td>“Devising an Installation and Configuration Strategy for Trusted</td>
<td></td>
</tr>
<tr>
<td>Extensions” on page 28.</td>
<td></td>
</tr>
</tbody>
</table>

Skip the next set of tasks if you are using local files administer the system.
2. Configure a naming service.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you plan to use files to administer Trusted Extensions, you can skip the following tasks.</td>
<td>No configuration is required for the files naming service.</td>
</tr>
<tr>
<td>If you have an existing Sun Java™ System Directory Server (LDAP server), add Trusted Extensions databases to the server. Then make your first Trusted Extensions system a proxy of the LDAP server.</td>
<td>Chapter 5, “Configuring LDAP for Trusted Extensions (Tasks)”</td>
</tr>
<tr>
<td>If you do not have an LDAP server, then configure your first system as the server.</td>
<td></td>
</tr>
<tr>
<td>Manually set up an LDAP toolbox for the Solaris Management Console. The toolbox can be used to modify Trusted Extensions attributes on network objects.</td>
<td>“Configuring the Solaris Management Console for LDAP (Task Map)” on page 108</td>
</tr>
<tr>
<td>For systems that are not the LDAP server or proxy server, make them an LDAP client.</td>
<td>“Make the Global Zone an LDAP Client in Trusted Extensions” on page 58</td>
</tr>
<tr>
<td>In the LDAP scope, create the Security Administrator role and other roles that you plan to use. You can delay this task until the end. For the consequences, see “Devising an Installation and Configuration Strategy for Trusted Extensions” on page 28.</td>
<td>“Creating Roles and Users in Trusted Extensions” on page 77 “Verify That the Trusted Extensions Roles Work” on page 82</td>
</tr>
</tbody>
</table>

3. Create labeled zones.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run the txzonemgr command. Follow the menus to configure the network interfaces, then create and customize the first labeled zone. After all zones are successfully customized, you can add zone-specific network addresses to the labeled zones.</td>
<td>“Creating Labeled Zones” on page 60</td>
</tr>
<tr>
<td>Or, use Trusted CDE actions.</td>
<td>Appendix B, ”Using CDE Actions to Install Zones in Trusted Extensions”</td>
</tr>
</tbody>
</table>

Many of the next set of tasks are described in Solaris Trusted Extensions Administrator’s Procedures.
4. Complete system setup.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify additional remote hosts that require a label, one or more multilevel ports, or a different control message policy.</td>
<td>&quot;Configuring Trusted Network Databases (Task Map)&quot; in Solaris Trusted Extensions Administrator's Procedures</td>
</tr>
<tr>
<td>Create a multilevel home directory server, then automount the installed zones.</td>
<td>&quot;Creating Home Directories in Trusted Extensions&quot; on page 83</td>
</tr>
<tr>
<td>Configure auditing, mount file systems, and perform other tasks before enabling users to log in to the system.</td>
<td>Solaris Trusted Extensions Administrator's Procedures</td>
</tr>
<tr>
<td>Add users from an NIS environment to your LDAP server.</td>
<td>&quot;Add an NIS User to the LDAP Server&quot; on page 86</td>
</tr>
<tr>
<td>Add a host and its labeled zones to the LDAP server.</td>
<td>&quot;Configuring Trusted Network Databases (Task Map)&quot; in Solaris Trusted Extensions Administrator's Procedures</td>
</tr>
</tbody>
</table>
Installing Solaris Trusted Extensions Software (Tasks)

This chapter describes how to prepare the Solaris OS for Solaris Trusted Extensions installation. This chapter also describes the information you need before installing the Trusted Extensions packages. Instructions on how to install the packages are also provided.

- “Install Team Responsibilities” on page 39
- “Installing or Upgrading the Solaris OS for Trusted Extensions” on page 39
- “Collecting Information and Making Decisions Before Installing Trusted Extensions” on page 43
- “Installing the Solaris Trusted Extensions Packages (Tasks)” on page 46

Install Team Responsibilities

Trusted Extensions software is designed to be installed and configured by two people with distinct responsibilities. However, the installation program does not enforce this two-role task division. Instead, task division is enforced by roles. Because roles and users are not created until after installation, it is a good practice to have an install team of at least two people present to install Trusted Extensions software.

Installing or Upgrading the Solaris OS for Trusted Extensions

The choice of Solaris installation options can affect the use and security of Trusted Extensions:

- To properly install Trusted Extensions, you must install the underlying Solaris OS securely. For Solaris installation choices that affect Trusted Extensions, see “Install a Solaris System to Support Trusted Extensions” on page 40.
- If you have been using the Solaris OS, check your current configuration against the requirements for Trusted Extensions. For configuration choices that affect Trusted Extensions, see “Prepare an Installed Solaris System for Trusted Extensions” on page 41.
Install a Solaris System to Support Trusted Extensions

This task applies to fresh installations of the Solaris OS. If you are upgrading, see "Prepare an Installed Solaris System for Trusted Extensions" on page 41.

When installing the Solaris OS, take the recommended action on the following installation choices.

The choices follow the order of Solaris installation questions. Installation questions that are not mentioned in this table do not affect Trusted Extensions.

<table>
<thead>
<tr>
<th>Solaris Option</th>
<th>Trusted Extensions Behavior</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS naming service</td>
<td>Trusted Extensions supports files and LDAP for a naming service. For host name resolution, DNS can be used.</td>
<td>Do not choose NIS or NIS+. You can choose None, which is equivalent to files. Later, you can configure LDAP to work with Trusted Extensions.</td>
</tr>
<tr>
<td>NIS+ naming service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade</td>
<td>Trusted Extensions installs labeled zones with particular security characteristics.</td>
<td>If you are upgrading, go to &quot;Prepare an Installed Solaris System for Trusted Extensions&quot; on page 41.</td>
</tr>
<tr>
<td>root password</td>
<td>Administration tools in Trusted Extensions require passwords. If the root user does not have a password, then root cannot configure the system.</td>
<td>Provide a root password. Do not change the default <code>crypt_unix</code> password encryption method. For details, see &quot;Managing Password Information&quot; in System Administration Guide: Security Services.</td>
</tr>
<tr>
<td>Developer Group</td>
<td>Trusted Extensions uses the Solaris Management Console to administer the network. The End User group and smaller groups do not install the packages for the Solaris Management Console.</td>
<td>On any system that you plan to use to administer other systems, do not install the End User, Core, or Reduced Networking Group.</td>
</tr>
<tr>
<td>Select Products</td>
<td>You can install Java ES Software from this screen.</td>
<td>Do not select Solaris 10 Extra Value Software. You add Trusted Extensions software later, in &quot;Installing the Solaris Trusted Extensions Packages (Tasks)&quot; on page 46.</td>
</tr>
<tr>
<td>Custom Install</td>
<td>Because Trusted Extensions installs zones, you might need more disk space in partitions than the default installation supplies.</td>
<td>Choose Custom Install, and lay out the partitions. Consider adding extra swap space for roles. If you plan to clone zones, create a 2000 MB partition for the ZFS pool. For auditing files, best practice is to create a dedicated partition.</td>
</tr>
</tbody>
</table>


▼ Prepare an Installed Solaris System for Trusted Extensions

This task applies to Solaris systems that have been in use, and on which you plan to add Trusted Extensions packages. Also, to install Trusted Extensions on an upgraded Solaris 10 system, follow this procedure. Other tasks that might modify an installed Solaris system can be done after the Trusted Extensions packages have been added.

**Before You Begin**

Trusted Extensions cannot be installed into some Solaris environments:

- If your system is part of a cluster, Trusted Extensions cannot be installed.
- The installation of Trusted Extensions into an alternate boot environment (BE) is not supported. Trusted Extensions can only be installed into the current boot environment.
  
  If `live_upgrade` tools have been used to install the Solaris OS on an alternate BE, the alternate BE must first be activated, and the system must be booted from the new BE before Trusted Extensions packages are added. `Live `upgrade` and BE are explained in the `live_upgrade(5)` man page.

1. **If non-global zones are installed on your system, remove them.**
   
   Or, you can re-install the Solaris OS. If you are going to re-install the Solaris OS, follow the instructions in “Install a Solaris System to Support Trusted Extensions” on page 40.

2. **If your system does not have a root password, create one.**
   
   Administration tools in Trusted Extensions require passwords. If the root user does not have a password, then root cannot configure the system.
   
   Use the default `crypt_unix` password encryption method for the root user. For details, see “Managing Password Information” in *System Administration Guide: Security Services*.
   
   **Note** – Users must not disclose their passwords to another person, as that person might then have access to the data of the user and will not be uniquely identified or accountable. Note that disclosure can be direct, through the user deliberately disclosing her/his password to another person, or indirect, for example, through writing it down, or choosing an insecure password. The Solaris OS provides protection against insecure passwords, but cannot prevent a user from disclosing her or his password, or from writing it down.

3. **If you plan to administer the site from this system, add the Solaris packages for the Solaris Management Console.**
   
   Trusted Extensions uses the Solaris Management Console to administer the network. If your system was installed with the End User group or a smaller group, the system does not have the packages for the Solaris Management Console.
4 If you have created an `xorg.conf` file, you need to modify it.
Add the following line to the end of the Module section in the `/etc/X11/xorg.conf` file:

```
load "xtsol"
```

Note – By default, the `xorg.conf` file does not exist. Do nothing if this file does not exist.

5 If you are upgrading a Solaris Trusted Extensions system, read the following before installing the system:
- Solaris 10 11/06 Release Notes

Tip – To find pertinent information, search for the string Trusted Extensions.

6 If you plan to clone zones, create a partition for the ZFS pool.
To decide on your zone creation method, see “Planning for Zones in Trusted Extensions” on page 23.

7 If you plan to install labeled zones on this system, check that your partitions have sufficient disk space for zones.
Most systems that are configured with Trusted Extensions install labeled zones. Labeled zones can require more disk space than the installed system has set aside.

However, some Trusted Extensions systems do not require that labeled zones be installed. For example, a multilevel printing server, a multilevel LDAP server, or a multilevel LDAP proxy server do not require labeled zones to be installed. These systems might not need the extra disk space.

8 (Optional) Add extra swap space for roles.
Roles administer Trusted Extensions. Consider adding extra swap for role processes.

9 (Optional) Dedicate a partition for audit files.
Trusted Extensions enables auditing by default. For audit files, best practice is to create a dedicated partition.

10 (Optional) To run a hardened configuration, run the `netservices limited` command before you install Trusted Extensions.
```
# netservices limited
```
Collecting Information and Making Decisions Before Installing Trusted Extensions

For each system on which Solaris Trusted Extensions is going to be configured, you need to know some information, and make some decisions about configuration. For example, because you are going to create labeled zones, you might want to set aside disk space where the zones can be cloned as a zettabyte file system (ZFS). Solaris ZFS provides additional isolation for the zones.

Collect System Information Before Installing Trusted Extensions

1. **Determine the system’s main hostname and IP address.**
   
The hostname is the name of the host on the network, and is the global zone. On a Solaris system, the `getent` command returns the hostname, as in:
   
   ```bash
   # getent hosts machine1
   192.168.0.11 machine1
   ```

2. **Determine the IP address assignments for labeled zones.**
   
   A system with two IP addresses can function as a multilevel server. A system with one IP address must have access to a multilevel server in order to print or perform multilevel tasks. For a discussion of IP address options, see “Planning for Multilevel Access” on page 25.

   Most systems require a second IP address for the labeled zones. For example, the following is a host with a second IP address for labeled zones:
   
   ```bash
   # getent hosts machine1-zones
   192.168.0.12 machine1-zones
   ```

3. **Collect LDAP configuration information.**
   
   For the LDAP server that is running Trusted Extensions software, you need the following information:
   
   - The name of the Trusted Extensions domain that the LDAP server serves
   - The IP address of the LDAP server
   - The LDAP profile name that will be loaded

   For an LDAP proxy server, you also need the password for the LDAP proxy.
**Make System and Security Decisions Before Installing Trusted Extensions**

For each system on which Solaris Trusted Extensions is going to be configured, make these configuration decisions before installing the packages.

1. **Decide how securely the system hardware needs to be protected.**
   
   At a secure site, this step has been done for every installed Solaris system.
   
   - For SPARC systems, a PROM security level and password has been provided.
   - For x86 systems, the BIOS is protected.
   - On all systems, root is protected with a password.

2. **Prepare your label_encodings file.**
   
   If you have a site-specific label_encodings file, the file must be checked and installed before other configuration tasks can be started. If your site does not have a label_encodings file, you can use the default file that Sun supplies. Sun also supplies other label_encodings files, which you can find in the `/etc/security/tsol` directory. The Sun files are demonstration files. They might not be suitable for production systems.
   
   To customize a file for your site, see *Solaris Trusted Extensions Label Administration*.

3. **From the list of labels in your label_encodings file, make a list of the labeled zones you need to create.**
   
   For the default label_encodings file, the labels are the following, and the zone names can be similar to the following:

<table>
<thead>
<tr>
<th>Label</th>
<th>Zone Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC</td>
<td>public</td>
</tr>
<tr>
<td>CONFIDENTIAL : INTERNAL</td>
<td>internal</td>
</tr>
<tr>
<td>CONFIDENTIAL : NEED TO KNOW</td>
<td>needtoknow</td>
</tr>
<tr>
<td>CONFIDENTIAL : RESTRICTED</td>
<td>restricted</td>
</tr>
</tbody>
</table>

   For ease of NFS mounting, the zone name of a particular label must be identical on every system. Some systems, such as multilevel print servers, do not need to have labeled zones installed. However, if you do install labeled zones on a print server, the zone names must be identical to the zone names of other systems on your network.
4 Decide when to create roles.

Your site's security policy can require you to administer Trusted Extensions by assuming a role. If so, or if you are configuring the system to satisfy criteria for an evaluated configuration, you must create roles early in the configuration process.

If you are not required to configure the system by using roles, you can choose to configure the system as superuser. This method of configuration is less secure. Audit records do not indicate which user was superuser during configuration. Superuser can perform all tasks on the system, while a role can perform a more limited set of tasks. Therefore, configuration is more controlled when being performed by roles.

5 Choose a zone creation method.

You can create zones from scratch, copy zones, or clone zones. These methods differ in speed of creation, disk space requirements, and robustness. For the trade-offs, see “Planning for Zones in Trusted Extensions” on page 23.

6 Plan your LDAP configuration.

Using local files for administration is practical for non-networked systems.

LDAP is the naming service for a networked environment. A populated LDAP server is required when you configure several machines.

- If you have an existing Sun Java™ System Directory Server (LDAP server), you can create an LDAP proxy server on a system that is running Trusted Extensions. The multilevel proxy server handles communications with the unlabeled LDAP server.
- If you do not have an LDAP server, you can configure a system that runs Trusted Extensions software as a multilevel LDAP server.

7 Decide other security issues for each system and for the network.

For example, you might want to consider the following security issues:

- Determine which devices can be attached to the system and allocated for use.
- Identify which printers at what labels are accessible from the system.
- Identify any systems that have a limited label range, such as a gateway system or a public kiosk.
- Identify which labeled systems can communicate with particular unlabeled systems.
Installing the Solaris Trusted Extensions Packages (Tasks)

Before you install the packages, you should have completed the tasks in “Installing or Upgrading the Solaris OS for Trusted Extensions” on page 39 and “Collecting Information and Making Decisions Before Installing Trusted Extensions” on page 43.

▼ Install the Solaris Trusted Extensions Packages

Packages can be added by using the Java wizard or the pkgadd command. For options to the pkgadd command, see the pkgadd(1M) man page.

1 Insert the Solaris installation media into the drive.

2 Navigate to the Trusted_Extensions directory.
   
   # cd Solaris_release-number/ExtraValue/CoBundled/Trusted_Extensions

3 Load all packages.
   Choose one of the following options:
   
   ▪ Use the Java wizard.
     
     # java wizard
     
     A Java installation GUI prompts you to install the packages.

   ▪ From the Packages directory, use the pkgadd command.
     
     # cd Packages
     # pkgadd -d .
     
     a. Press Return to load all the packages.

     b. Answer y to all the prompts.

4 Check for the proper installation of the packages.

   ▪ In the Java wizard, click the Details button.

   ▪ From the command line, scroll back through the log.
     
     You can also go to the /var/sadm/install/logs directory and read the log.
Tip – You can also use the `pkginfo` command to confirm that the packages are installed.

```
# pkginfo | grep Trust
```

<table>
<thead>
<tr>
<th>system</th>
<th>package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWdttshelp</td>
<td>Trusted Extensions, CDE Desktop Help</td>
<td></td>
</tr>
<tr>
<td>SUNWdttsr</td>
<td>Trusted Extensions, CDE Desktop, (Root)</td>
<td></td>
</tr>
<tr>
<td>SUNWdttsu</td>
<td>Trusted Extensions, CDE Desktop, (Usr)</td>
<td></td>
</tr>
<tr>
<td>SUNWmgts</td>
<td>Trusted Extensions, SMC</td>
<td></td>
</tr>
<tr>
<td>SUNWtsg</td>
<td>Trusted Extensions global</td>
<td></td>
</tr>
<tr>
<td>SUNWtsman</td>
<td>Trusted Extensions Man Pages</td>
<td></td>
</tr>
<tr>
<td>SUNWtsmc</td>
<td>Trusted Extensions SMC Server</td>
<td></td>
</tr>
<tr>
<td>SUNWtsr</td>
<td>Trusted Extensions, (Root)</td>
<td></td>
</tr>
<tr>
<td>SUNWtsu</td>
<td>Trusted Extensions, (Usr)</td>
<td></td>
</tr>
<tr>
<td>SUNWxwts</td>
<td>Trusted Extensions, X Window System</td>
<td></td>
</tr>
</tbody>
</table>

**Troubleshooting**

Java wizard – If the message `Exception in thread "main" java.lang.NoClassDefFoundError: wizard` appears, then you invoked the wizard from the wrong directory.

**Next Steps**

If you are upgrading a Solaris Trusted Extensions system, read the following before continuing:

- Solaris 10 11/06 Release Notes
- Solaris 10 11/06 Release Notes
This chapter covers how to configure Solaris™ Trusted Extensions on a system with a monitor. To work properly, Trusted Extensions software requires configuration of the following: labels, zones, the network, roles, and tools.

- “Setting Up the Global Zone in Trusted Extensions” on page 49
- “Creating Labeled Zones” on page 60
- “Creating Roles and Users in Trusted Extensions” on page 77
- “Creating Home Directories in Trusted Extensions” on page 83
- “Adding Users and Hosts to an Existing Trusted Network” on page 86
- “Troubleshooting Your Trusted Extensions Configuration” on page 88
- “Additional Trusted Extensions Configuration Tasks” on page 91

For other configuration tasks, see Solaris Trusted Extensions Administrator’s Procedures.

Setting Up the Global Zone in Trusted Extensions

Before setting up the global zone, you must make decisions about your configuration. For the decisions, see “Collecting Information and Making Decisions Before Installing Trusted Extensions” on page 43.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect the hardware.</td>
<td>Hardware can be protected by requiring a password to change hardware settings.</td>
<td>“Controlling Access to System Hardware” in System Administration Guide: Security Services</td>
</tr>
<tr>
<td>Configure labels.</td>
<td>Labels must be configured for your site. If you plan to use the default label_encodings file, you can skip this step.</td>
<td>“Check and Install Your Label Encodings File” on page 50</td>
</tr>
</tbody>
</table>
Setting Up the Global Zone in Trusted Extensions

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>For IPv6, modify the <code>/etc/system</code> file.</td>
<td>If you are running an IPv6 network, you modify the <code>/etc/system</code> file to enable IP to recognize labeled packets.</td>
<td>&quot;Enable IPv6 Networking in Trusted Extensions&quot; on page 53</td>
</tr>
<tr>
<td>Create space for a Solaris ZFS snapshot.</td>
<td>If you plan to use a Solaris ZFS snapshot to clone zones, create the ZFS pool. ZFS is derived from and an acronym for “zettabyte file system”. Perform this task if you are going to clone the first zone to create the rest of the labeled zones.</td>
<td>&quot;Create ZFS Pool for Cloning Zones&quot; on page 53</td>
</tr>
<tr>
<td>Reboot and log in.</td>
<td>Upon login, you are in the global zone, which is an environment that recognizes and enforces mandatory access control (MAC).</td>
<td>&quot;Reboot and Log In to Trusted Extensions&quot; on page 54</td>
</tr>
<tr>
<td>Initialize the Solaris Management Console.</td>
<td>Trusted Extensions adds tools to the Solaris Management Console for administering users, roles, zones, and the network.</td>
<td>&quot;Initialize the Solaris Management Console Server in Trusted Extensions&quot; on page 56</td>
</tr>
<tr>
<td>Configure LDAP.</td>
<td>If you are using the LDAP naming service, set up the LDAP service. If you have set up the LDAP service, make this system an LDAP client.</td>
<td>Chapter 5, &quot;Configuring LDAP for Trusted Extensions (Tasks)&quot;</td>
</tr>
</tbody>
</table>

▼ Check and Install Your Label Encodings File

Your encodings file must be compatible with any Trusted Extensions host with which you are communicating.

**Note** – Trusted Extensions installs a default `label_encodings` file. This default file is useful for demonstrations. However, this file might not be a good choice for your use. If you plan to use the default file, you can skip this procedure.

- If you are familiar with encodings files, you can use the following procedure.
- If you are not familiar with encodings files, consult *Solaris Trusted Extensions Label Administration* for requirements, procedures, and examples.

**Caution** – You must successfully install labels before continuing, or the configuration will fail.

**Before You Begin** As the security administrator, you have just added the Trusted Extensions packages, so you are already logged in.
The security administrator is responsible for editing, checking, and maintaining the \texttt{label\_encodings} file. If you plan to edit the \texttt{label\_encodings} file, make sure that the file itself is writable. For more information, see the \texttt{label\_encodings(4)} man page.

1. **Insert the media with the \texttt{label\_encodings} file into the appropriate device.**

2. **Copy the \texttt{label\_encodings} file to the disk.**

3. **Check the syntax of the new label encodings file.**
   
   a. **Open the Trusted\_Extensions folder.**
      
      Click mouse button 3 on the background.

   b. **From the Workspace menu, choose Applications \rightarrow Application Manager.**

   c. **Double-click the Trusted\_Extensions folder icon.**

4. **Double-click the Check Encodings action.**
   
   In the dialog box, type the full path name to the file:

   \texttt{/full-pathname-of-label-encodings-file}

   The \texttt{chk\_encodings} command is invoked to check the syntax of the file. The results are displayed in the Check Encodings dialog box.

5. **Read the contents of the Check Encodings dialog box.**

6. **Do one of the following:**

   - **CONTINUE** If the Check Encodings action reports no errors, you can continue. Go to Step 7.
   
   - **RESOLVE ERRORS** If the Check Encodings action reports errors, the errors must be resolved before continuing. For assistance, see Chapter 3, "Making a Label Encodings File (Tasks)," in Solaris Trusted Extensions Label Administration.

7. **If the file passes the syntax check, click Yes.**
   
   The Check Encodings action creates a backup copy of the original file, then installs the checked version in \texttt{/etc/security/tsol/label\_encodings}. The action then restarts the label daemon.
Caution – Your label encodings file must pass the Check Encodings test before you continue.

Example 4–1 Checking label_encodings Syntax on the Command Line

In this example, the administrator tests several label_encodings files by using the command line.

# /usr/sbin/chk_encodings /var/encodings/label_encodings1
No errors found in /var/encodings/label_encodings1
# /usr/sbin/chk_encodings /var/encodings/label_encodings2
No errors found in /var/encodings/label_encodings2

When management decides to use the label_encodings2 file, the administrator runs a semantic analysis of the file.

# /usr/sbin/chk_encodings -a /var/encodings/label_encodings2
No errors found in /var/encodings/label_encodings2

---> VERSION = MYCOMPANY LABEL ENCODINGS 2.0 10/10/2006

---> CLASSIFICATIONS <---

Classification 1: PUBLIC
  Initial Compartment bits: 10
  Initial Markings bits: NONE

---> COMPARTENTS AND MARKINGS USAGE ANALYSIS <---
...
---> SENSITIVITY LABEL to COLOR MAPPING <---
...

The administrator prints a copy of the semantic analysis for her records, then moves the file to the /etc/security/tsol directory.

# cp /var/encodings/label_encodings2 /etc/security/tsol/label.encodings.10.10.06
# cd /etc/security/tsol
# cp label_encodings label_encodings.tx.orig
# cp label.encodings.10.10.06 label_encodings

Finally, the administrator verifies that the label_encodings file is the company file.

# /usr/sbin/chk_encodings -a /etc/security/tsol/label_encodings | head -4
No errors found in /etc/security/tsol/label_encodings
Enable IPv6 Networking in Trusted Extensions

When IPv6 is disabled, Trusted Extensions cannot forward IPv6 packets with CIPSO options. To enable an IPv6 network in Trusted Extensions, you must add an entry in the `/etc/system` file.

- Type the following entry into the `/etc/system` file:

```
set ip:ip6opt_ls = 0x0a
```

Troubleshooting

- If error messages during boot indicate that your IPv6 configuration is incorrect, correct the entry:
  - Check that the entry is spelled correctly.
  - Check that the system has been rebooted after adding the correct entry to the `/etc/system` file.
- If you install Trusted Extensions on a Solaris system that currently has IPv6 enabled, but you fail to add the IP entry in `/etc/system`, you see the following error message:
  ```
t_optmgmt:
System error: Cannot assign requested address time-stamp
```
- If you install Trusted Extensions on a Solaris system that does not have IPv6 enabled, and you fail to add the IP entry in `/etc/system`, you see the following types of error messages:
  - WARNING: IPv6 not enabled via `/etc/system`
  - Failed to configure IPv6 interface(s): hme0
  - rpcbind: Unable to join IPv6 multicast group for rpc broadcast

Create ZFS Pool for Cloning Zones

If you plan to use a Solaris ZFS snapshot as your zone template, you need to create a ZFS pool from a ZFS file or a ZFS device. This pool holds the snapshot for cloning each zone. You use the `zone` device for your ZFS pool.

Before You Begin

You have set aside disk space during Solaris installation for a ZFS file system. For details, see "Planning for Zones in Trusted Extensions" on page 23.
1 **Unmount the /zone partition.**
   During installation, you created a /zone partition with sufficient disk space of about 2000 MBytes.
   
   ```
   # umount /zone
   ```

2 **Remove the /zone mount point.**
   
   ```
   # rmdir /zone
   ```

3 **Comment out the /zone entry in the vfstab file.**
   
   a. **Prevent the /zone entry from being read.**
      Open the vfstab file in an editor. Prefix the /zone entry with a comment sign.
      
      ```
      #/dev/dsk/cntndnsn /dev/dsk/cntndnsn /zone ufs 2 yes -
      ```

   b. **Copy the disk slice, cntndnsn, to the clipboard.**

   c. **Save the file, and close the editor.**

4 **Use the disk slice to re-create /zone as a ZFS pool.**
   
   ```
   # zpool create -f zone cntndnsn
   ```
   For example, if your /zone entry used disk slice c0t0d0s5, then the command would be the following:

   ```
   # zpool create -f zone c0t0d0s5
   ```

5 **Verify that the ZFS pool is healthy.**
   
   Use one of the following commands:
   
   ```
   # zpool status -x zone
   pool 'zone' is healthy
   ```

   ```
   # zpool list
   NAME SIZE USED AVAIL CAP HEALTH ALTROOT
   /zone 5.84G 80K 5.84G 7% ONLINE -
   ```
   In this example, the install team reserved a 6000MByte partition for zones. For more information, see the zpool(1M) man page.

### Reboot and Log In to Trusted Extensions

At most sites, two or more administrators, who serve as an install team, are present when configuring the system.
Before You Begin

Before you first log in, become familiar with the desktop and label options in Trusted Extensions. For details, see Chapter 2, “Logging In to Trusted Extensions (Tasks),” in Solaris Trusted Extensions User’s Guide.

1 Reboot the system.

```bash
# /usr/sbin/reboot
```

If your system does not have a graphical display, go to Chapter 6, “Configuring a Headless System With Trusted Extensions (Tasks).”

2 Log in to the Solaris Trusted Extensions (CDE) desktop as superuser.

   a. In the login window, select Solaris Trusted Extensions (CDE) as the desktop.
   This Trusted CDE desktop contains actions that are useful when configuring the system.

   b. In the login dialog box, type root and the root password.
   Users must not disclose their passwords to another person, as that person might then have access to the data of the user and will not be uniquely identified or accountable. Note that disclosure can be direct, through the user deliberately disclosing his/her password to another person, or indirect, such as through writing it down, or choosing an insecure password. Trusted Extensions software provides protection against insecure passwords, but cannot prevent a user disclosing his/her password or writing it down.

3 Read the information in the Last Login dialog box.

Then click OK to dismiss the box.
Read the Label Builder.
Click OK to accept the default label.

Once the login process is complete, the Trusted Extensions screen appears briefly, and you are in a desktop session with four workspaces. The Trusted Path symbol is displayed in the trusted stripe.

Note – You must log off or lock the screen before leaving a system unattended. Otherwise, a person can access the system without having to pass identification and authentication, and that person would not be uniquely identified or accountable.

Initialize the Solaris Management Console Server in Trusted Extensions

This procedure enables you to administer users, roles, hosts, zones, and the network on this system. On the first system that you configure, only the files scope is available.

Before You Begin
You must be superuser.

1 Start the Solaris Management Console.
# /usr/sbin/smc &

Note – The first time the Solaris Management Console is started, it performs several registration tasks. These tasks can take a few minutes.

2 Do one of the following if toolbox icons do not appear in the Solaris Management Console:

   a. If the Navigation pane is not visible:

      In the Open Toolbox dialog box that is displayed, click Load next to this system's name under Server.

      If this system does not have the recommended amount of memory and swap, it might take a few minutes for the toolboxes to display. For recommendations, see “Installing or Upgrading the Solaris OS for Trusted Extensions” on page 39.

      b. From the list of toolboxes, select a toolbox whose Policy=TSOL.

      Figure 4–1 shows a This Computer (this-host: Scope=Files, Policy=TSOL) toolbox. Trusted Extensions modifies tools under the System Configuration node.
Caution – Do not choose a toolbox that has no policy. Toolboxes without a listed policy do not support Trusted Extensions.

Your toolbox choice depends on which scope you want to influence.

- To edit local files, choose the Files scope.
- To edit LDAP databases, choose the LDAP scope.

After you complete “Edit the LDAP Toolbox in the Solaris Management Console” on page 110, the LDAP scope is available.

c. Click Open.

- If the Navigation pane is visible, but the toolbox icons are stop signs:
  
a. Exit the Solaris Management Console.
  
b. Restart the Solaris Management Console.

  # /usr/sbin/smc &

3. If you have not yet done so, select a toolbox whose Policy=TSOL.

The following figure shows a This Computer (this-host: Scope=Files, Policy=TSOL) toolbox. Trusted Extensions modifies tools under the System Configuration node.

![Figure 4-1 Trusted Extensions Tools in the Solaris Management Console](image-url)
4 (Optional) Save the current toolbox.
   Saving a Policy=TSOL toolbox enables a Trusted Extensions toolbox to load by default.
   Preferences are saved per role, per host. The host is the Solaris Management Console server.
   a. From the Console menu, choose Preferences.
      The Home toolbox is selected.
   b. Define a Policy=TSOL toolbox as the Home toolbox.
      Put the current toolbox in the Location field by clicking the Use Current Toolbox button.
   c. Click OK to save the preferences.
5 Exit the Solaris Management Console.

See Also
   For an overview of the Trusted Extensions additions to the Solaris Management Console, see
   “Solaris Management Console Tools” in Solaris Trusted Extensions Administrator’s Procedures.
   To use the Solaris Management Console to create security templates, see “Configuring Trusted
   Network Databases (Task Map)” in Solaris Trusted Extensions Administrator’s Procedures.

▼ Make the Global Zone an LDAP Client in Trusted Extensions
   For LDAP, this procedure establishes the naming service configuration for the global zone. If
   you are not using LDAP, you can skip this procedure.

Before You Begin
   The Sun Java™ System Directory Server, that is, the LDAP server, must exist. The server must be
   populated with Trusted Extensions databases, and this system must be able to contact the
   server. So, the system that you are configuring must have an entry in the tnrhdb database on the
   LDAP server, or this system must be included in a wildcard entry before you perform this
   procedure.

   If an LDAP server that is configured with Trusted Extensions does not exist, you must complete
   the procedures in Chapter 5, "Configuring LDAP for Trusted Extensions (Tasks),” before you
   perform this procedure.

1 Save a copy of the original nsswitch.ldap file.
   The standard naming service switch file for LDAP is too restrictive for Trusted Extensions.
   # cd /etc
   # cp nsswitch.ldap nsswitch.ldap.orig

58
If you are using DNS, change the `nsswitch.ldap` file entries for the following services.
The correct entries are similar to the following:

hosts:   files dns ldap

ipnodes: files dns ldap

networks: ldap files

protocols: ldap files

rpc: ldap files

ethers: ldap files

netmasks: ldap files

bootparams: ldap files

publickey: ldap files

services: files

Note that Trusted Extensions adds two entries:

tnrhttp: files ldap
tnrhdb: files ldap

Copy the modified `nsswitch.ldap` file to `nsswitch.conf`.

```
# cp nsswitch.ldap nsswitch.conf
```

In a Trusted CDE workspace, navigate to the Trusted_Extensions folder.

1. Click mouse button 3 on the background.
2. From the Workspace menu, choose Applications → Application Manager.
3. Double-click the Trusted_Extensions folder icon.
   This folder contains actions that set up interfaces, LDAP clients, and labeled zones.

Double-click the Create LDAP Client action.

Answer the following prompts:

- **Domain Name**: Type the domain name
- **Hostname of LDAP Server**: Type the name of the server
- **IP Address of LDAP Server**: Type the IP address
- **LDAP Proxy Password**: Type the password to the server
- **Profile Name**: Type the profile name
6 Click OK.

The following completion message appears:

global zone will be LDAP client of LDAP-server
System successfully configured.

*** Select Close or Exit from the window menu to close this window ***

7 Close the action window.

8 Verify that the information on the server is correct.

a. Open a terminal window, and query the LDAP server.

```bash
# ldapclient list
```

The output looks similar to the following:

```plaintext
NS_LDAP_FILE_VERSION= 2.0
NS_LDAP_BINDDN= cn=proxyagent,ou=profile,dc=domain-name
...
NS_LDAP_BIND_TIME= number
```

b. Correct any errors.

If you get an error, run the Create LDAP Client action with the correct values. For example, the following error can indicate that the system does not have an entry on the LDAP server:

LDAP ERROR (91): Can’t connect to the LDAP server.  
Failed to find defaultSearchBase for domain domain-name

To correct this error, you need to check the LDAP server.

Creating Labeled Zones

The txzonemgr script steps you through all the following tasks that configure labeled zones.

**Caution** – You must be running the Solaris 10 8/07 release of Trusted Extensions to use the txzonemgr procedures. Or, you must install all patches for this release.

If you are running the Solaris 10 11/06 release without current patches, use the procedures in Appendix B, "Using CDE Actions to Install Zones in Trusted Extensions," to configure the labeled zones.
The instructions in this section configure labeled zones on a system that has been assigned at most two IP addresses. For other configurations, see the configuration options in “Task Map: Preparing For and Installing Trusted Extensions” on page 33.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Run the txzonemgr script.</td>
<td>The txzonemgr script creates a GUI that presents the appropriate tasks as you configure your zones.</td>
<td>“Run the txzonemgr Script” on page 61</td>
</tr>
<tr>
<td>2. Manage network interfaces in the global zone.</td>
<td>Configure interfaces in the global zone, or create logical interfaces and configure them in the global zone.</td>
<td>“Configure the Network Interfaces in Trusted Extensions” on page 62</td>
</tr>
<tr>
<td>3. Name and label the zone.</td>
<td>Name the zone with a version of its label, and assign the label.</td>
<td>“Name and Label the Zone” on page 66</td>
</tr>
<tr>
<td>4. Install and boot the zone.</td>
<td>Install the packages in the zone. Configure services in the zone. A Zone Terminal Console enables you to view the activity in the zone.</td>
<td>“Install the Labeled Zone” on page 68 “Boot the Labeled Zone” on page 69</td>
</tr>
<tr>
<td>5. Verify the status of the zone.</td>
<td>Verify that the labeled zone is running, and that the zone can communicate with the global zone.</td>
<td>“Verify the Status of the Zone” on page 70</td>
</tr>
<tr>
<td>6. Customize the zone.</td>
<td>Remove unwanted services from the zone. If the zone is going to be used to create other zones, remove information that is specific to this zone only.</td>
<td>“Customize the Labeled Zone” on page 71</td>
</tr>
<tr>
<td>7. Create the rest of the zones.</td>
<td>Use the method that you have chosen to create your second zone. For a discussion of zone creation methods, see “Planning for Zones in Trusted Extensions” on page 23.</td>
<td>“Create Another Zone in Trusted Extensions” on page 73</td>
</tr>
<tr>
<td>8. (Optional) Add zone-specific network interfaces.</td>
<td>To effect network isolation, add one or more network interfaces to a labeled zone. Typically, this configuration is used to isolate labeled subnets.</td>
<td>“Add a Network Interface to an Existing Labeled Zone” on page 75</td>
</tr>
</tbody>
</table>

▼ **Run the txzonemgr Script**

This script steps you through the tasks to properly configure, install, initialize, and boot labeled zones. In the script, you name each zone, associate the name with a label, install the packages to create a virtual OS, and then boot the zone to start services in that zone. The script includes copy zone and clone zone tasks. You can also halt a zone, change the state of a zone, and add zone-specific network interfaces.

This script presents a dynamically-determined menu that displays only valid choices for the current circumstances. For instance, if the status of a zone is configured, the Install zone menu item is not displayed. Tasks that are completed do not display in the list.

**Before You Begin**

You are superuser.
If you plan to clone zones, you have completed the preparation for cloning zones. If you plan to use your own security templates, you have created the templates.

1. **Open a terminal window in the global zone.**

2. **Run the txzonemgr script.**
   
   ```
   # /usr/sbin/txzonemgr
   ```

   The script opens the Labeled Zone Manager dialog box. This `zenity` dialog box prompts you for the appropriate tasks, depending on the current state of your installation.

   To perform a task, you select the menu item, then press the Return key or click OK. When you are prompted for text, type the text then press the Return key or click OK.

### Configure the Network Interfaces in Trusted Extensions

**Note** – If you are configuring your system to use DHCP or to prevent networks from contacting the global zone, refer to the laptop instructions in the Trusted Extensions section of OpenSolaris Community: Security web page (http://opensolaris.org/os/community/security).

In this task, you configure the networking in the global zone. You must create exactly one `all-zones` interface. An `all-zones` interface is shared by the labeled zones and the global zone. The shared interface is used to route traffic between the labeled zones and the global zone. To configure this interface, do one of the following:

- **Create a logical interface from a physical interface, then share the physical interface.**
  
  This configuration is the simplest to administer. Choose this configuration when your system has been assigned two IP addresses. In this procedure, the logical interface becomes the global zone’s specific address, and the physical interface is shared between the global zone and the labeled zones.

- **Share a physical interface**
  
  Choose this configuration when your system has been assigned one IP address. In this configuration, the physical interface is shared between the global zone and the labeled zones.

- **Share a virtual network interface, vni0**
  
  Choose this configuration when you are configuring DHCP, or when each subnetwork is at a different label. For a sample procedure, refer to the laptop instructions in the Trusted Extensions section of OpenSolaris Community: Security web page (http://opensolaris.org/os/community/security).
To add zone-specific network interfaces, finish and verify zone creation before adding the interfaces. For the procedure, see "Add a Network Interface to an Existing Labeled Zone" on page 75.

Before You Begin

You are superuser in the global zone.

The Labeled Zone Manager is displayed. To open this GUI, see "Run the txzonemgr Script" on page 61.

1 In the Labeled Zone Manager, select Manage Network Interfaces and click OK.

A list of interfaces is displayed.

Note – In this example, the physical interface was assigned a host name and an IP address during installation.

2 Select the physical interface.

A system with one interface displays a menu similar to the following. The annotation is added for assistance:

| vni0 | Down | Virtual Network Interface |
| eri0 | global 10.10.9.9 cipso | Up | Physical Interface |

a. Select the eri0 interface.

b. Click OK

3 Select the appropriate task for this network interface.

You are offered three options:

- View Template
- Assign a label to the interface
- Share
  - Enable the global zone and labeled zones to use this interface
- Create Logical Interface
  - Create an interface to use for sharing

- If your system has one IP address, go to Step 4.

- If your system has two IP addresses, go to Step 6.

4 On a system with one IP address, share the physical interface.

In this configuration, the host’s IP address applies to all zones. Therefore, the host’s address is the all-zones address. This host cannot be used as a multilevel server. For example, users cannot share files from this system. The system cannot be an LDAP proxy server, an NFS home directory server, or a print server.

a. Select Share and click OK.
b. At the prompt, accept the host name.

c. Dismiss the dialog box that displays the netmask.

eri0 all-zones 10.10.9.8 cipso Up

5 Skip the next step.

You are successful when the physical interface is an all-zones interface.

6 On a system with two IP addresses, create a logical interface.
Then, share the physical interface.

This is the simplest Trusted Extensions network configuration. In this configuration, the main IP address can be used by other systems to reach any zone on this system, and the logical interface is zone-specific to the global zone. The global zone can be used as a multilevel server.

a. Select Create Logical Interface and click OK.

Dismiss the dialog box that confirms the creation of a new logical interface.

b. Select Set IP address and click OK.

c. At the prompt, specify the host name for the logical interface and click OK.

For example, specify machine1-services as the host name for the logical interface. The name indicates that this host offers multilevel services.

d. At the prompt, specify the IP address for the logical interface and click OK.

For example, specify 10.10.9.2 as the IP address for the logical interface.

e. Select the logical interface again and click OK.

f. Select Bring Up and click OK.

The interface is displayed as Up.

eri0 global 10.10.9.1 cipso Up
eri0:1 global 10.10.9.2 cipso Up

g. Share the physical interface.

i. Select the physical interface and click OK.

ii. Select Share and click OK.

eri0 all-zones 10.10.9.1 cipso Up
eri0:1 global 10.10.9.2 cipso Up

You are successful when at least one interface is an all-zones interface.
Example 4–2  Viewing the /etc/hosts File on a System With a Shared Logical Interface

On a system where the global zone has a unique interface and labeled zones share a second interface with the global zone, the /etc/hosts file appears similar to the following:

```
# cat /etc/hosts
...
127.0.0.1 localhost
192.168.0.11 machine1 loghost
192.168.0.12 machine1-services
```

In the default configuration, the tn rhdb file appears similar to the following:

```
# cat /etc/security/tsol/tnrhdb
...
127.0.0.1:cipso
192.168.0.11:cipso
192.168.0.12:cipso
0.0.0.0:admin_low
```

If the all-zones interface is not in the tn rhdb file, the interface defaults to cipso.

Example 4–3  Displaying the Shared Interface on a Trusted Extensions System With One IP Address

In this example, the administrator is not planning to use the system as a multilevel server. To conserve IP addresses, the global zone is configured to share its IP address with every labeled zone.

The administrator selects Share for the hme0 interface on the system. The software configures all zones to have logical NICs. These logical NICs share a single physical NIC in the global zone.

The administrator runs the `ifconfig -a` command to verify that the physical interface hme0 on network interface 192.168.0.11 is shared. The value all-zones is displayed:

```
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
       inet 127.0.0.1 netmask ff000000
hme0: flags=1000843<BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
       all-zones
       inet 192.168.0.11 netmask ffff0000 broadcast 192.168.0.255
```

The administrator also examines the contents of the /etc/hostname.hme0 file:

```
192.168.0.11 all-zones
```
Name and Label the Zone

You do not have to create a zone for every label in your label_encodings file, but you can. The administrative GUIs enumerate the labels that can have zones created for them on this system.

Before You Begin

You are superuser in the global zone. The Labeled Zone Manager dialog box is displayed. To open this GUI, see “Run the txzonemgr Script” on page 61. You have configured the network interfaces in the global zone.

You have created any security templates that you need. A security template defines, among other attributes, the label range that can be assigned to a network interface. The default security templates might satisfy your needs.

- For an overview of security templates, see “Network Security Attributes in Trusted Extensions” in Solaris Trusted Extensions Administrator’s Procedures.
- To use the Solaris Management Console to create security templates, see “Configuring Trusted Network Databases (Task Map)” in Solaris Trusted Extensions Administrator’s Procedures.

1 In the Labeled Zone Manager, select Create a new zone and click OK.

You are prompted for a name.

a. Type the name for the zone.

Tip – Give the zone a name that is similar to the zone’s label. For example, the name of a zone whose label is CONFIDENTIAL: RESTRICTED would be restricted.

For example, the default label_encodings file contains the following labels:

PUBLIC
CONFIDENTIAL: INTERNAL USE ONLY
CONFIDENTIAL: NEED TO KNOW
CONFIDENTIAL: RESTRICTED
SANDBOX: PLAYGROUND
MAX LABEL

Although you could create one zone per label, consider creating the following zones:

- On a system for all users, create one zone for the PUBLIC label and three zones for the CONFIDENTIAL labels.
- On a system for developers, create a zone for the SANDBOX: PLAYGROUND label. Because SANDBOX: PLAYGROUND is defined as a disjoint label for developers, only systems that developers use need a zone for this label.
- Do not create a zone for the MAX LABEL label, which is defined to be a clearance.
b. Click OK.

The dialog box displays zone-name: configured above a list of tasks.

2 To label the zone, choose one of the following:

- If you are using a customized label_encodings file, label the zone by using the Trusted Network Zones tool.

a. Open the Trusted Network Zones tool in the Solaris Management Console.

i. Start the Solaris Management Console.
   
   # /usr/sbin/smc &

ii. Open the Trusted Extensions toolbox for the local system.

   Choose Console → Open Toolbox.

   Select the toolbox that is named This Computer (this-host: Scope=Files, Policy=TSOL).

   Click Open.

iii. Under System Configuration, navigate to Computers and Networks.

   Provide a password when prompted.

iv. Double-click the Trusted Network Zones tool.

b. For each zone, associate the appropriate label with the zone name.

i. Choose Action → Add Zone Configuration.

   The dialog box displays the name of a zone that does not have an assigned label.

ii. Look at the zone name, then click Edit.

iii. In the Label Builder, click the appropriate label for the zone name.

   If you click the wrong label, click the label again to deselect it, then click the correct label.

iv. Save the assignment.

   Click OK in the Label Builder, then click OK in the Trusted Network Zones Properties dialog box.
You are finished when every zone that you want is listed in the panel, or the Add Zone
Configuration menu item opens a dialog box that does not have a value for Zone Name.

- **If you are using the default label_encodings file, use the Labeled Zone Manager.**
  Click Select Label menu item and OK to display the list of available labels.

  a. **Select the label for the zone.**
     For a zone that is named `public`, you would select the label `PUBLIC` from the list.

  b. **Click OK.**
     A list of tasks is displayed.

### Install the Labeled Zone

**Before You Begin** You are superuser in the global zone. The zone is installed, and has an assigned a network interface.

The Labeled Zone Manager dialog box is displayed with the subtitle `zone-name: configured`. To open this GUI, see "Run the txzonemgr Script" on page 61.

1. **From the Labeled Zone Manager, select Install and click OK.**

   **Caution** – This process takes some time to finish. Do not perform other tasks while this task is completing.

   The system copies packages from the global zone to the non-global zone. This task installs a labeled virtual operating system in the zone. To continue the example, this task installs the public zone. The GUI displays output similar to the following.

   ```
   # Labeled Zone Manager: Installing zone-name zone
   Preparing to install zone <zonename>
   Creating list of files to copy from the global zone
   Copying <total> files to the zone
   Initializing zone product registry
   Determining zone package initialization order.
   Preparing to initialize <subtotal> packages on the zone.
   Initializing package <number> of <subtotal>: percent complete: percent
   
   Initialized <subtotal> packages on zone.
   Zone <zonename> is initialized.
   The file /zone/internal/root/var/sadm/system/logs/install_log contains a log of the zone installation.
   ```
When the installation is complete, you are prompted for the name of the host. A name is supplied.

2 **Accept the name of the host.**
The dialog box displays zone-name: installed above a list of tasks.

**Troubleshooting**
If warnings that are similar to the following are displayed: Installation of these packages generated errors: SUNWpkgname, read the install log and finish installing the packages.

▼ **Boot the Labeled Zone**

**Before You Begin**
You are superuser in the global zone. The zone is installed, and has an assigned a network interface.

The Labeled Zone Manager dialog box is displayed with the subtitle zone-name: installed. To open this GUI, see “Run the txzonemgr Script” on page 61.

1 In the Labeled Zone manager, select Zone Console and click OK.
A separate console window appears for the current labeled zone.

2 **Select Boot.**
The Zone Terminal Console tracks the progress of booting the zone. If the zone is created from scratch, messages that are similar to the following appear in the console:

[Connected to zone 'public' console]

[NOTICE: Zone booting up]
...
Hostname: zone-name
Loading smf(5) service descriptions: number/total
Creating new rsa public/private host key pair
Creating new dsa public/private host key pair
rebooting system due to change(s) in /etc/default/init

[NOTICE: Zone rebooting]

**Caution** – Do not perform other tasks while this task is completing.

**Troubleshooting**
Sometimes, error messages are displayed and the zone does not reboot. In the Zone Terminal Console, press the Return key. If you are prompted to type y to reboot, type y and press the Return key. The zone reboots.
If this zone was copied or cloned from another zone, continue with “Verify the Status of the Zone” on page 70.

If this zone is the first zone, continue with “Customize the Labeled Zone” on page 71.

▼ Verify the Status of the Zone

Note – The X server runs in the global zone. Each labeled zone must be able to connect with the global zone to use the X server. Therefore, zone networking must work before a zone can be used. For background information, see “Planning for Multilevel Access” on page 25.

1 Verify that the zone has been completely started.

a. In the zone-name: Zone Terminal Console, log in as root.

   hostname console login: root
   Password: Type root password

b. In the Zone Terminal Console, verify that critical services are running.

   # svcs -xv
   svc:/application/print/server:default (LP print server)
   State: disabled since Tue Oct 10 10:10:10 2006
   Reason: Disabled by an administrator.
   See: http://sun.com/msg/SMF-8000-05
   See: lpsched(1M)
   ...

   The sendmail and print services are not critical services.

c. Verify that the zone has a valid IP address.

   # ifconfig -a
   For example, the following output shows an IP address for the hme0 interface.

   # ...
   hme0: flags=1000843<BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
   all-zones
   inet 192.168.0.11 netmask ffffe00 broadcast 192.168.0.255

d. (Optional) Verify that the zone can communicate with the global zone.

   i. Set the DISPLAY variable to point to the X server

      # DISPLAY=global-zone-hostname:nn
      # export DISPLAY
ii. From the terminal window, display a GUI.
   For example, display a clock.
   
   ```
   # /usr/openwin/bin/xclock
   ```

   If the clock at the label of the zone does not appear, the zone networking has not been configured correctly. For debugging suggestions, see “Labeled Zone Is Unable to Access the X Server” on page 89.

iii. Close the GUI before continuing.

2 From the global zone, check the status of the labeled zones.

   ```
   # zoneadm list -v
   ```

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>native</td>
<td>shared</td>
</tr>
<tr>
<td>3</td>
<td>internal</td>
<td>running</td>
<td>/zone/internal</td>
<td>native</td>
<td>shared</td>
</tr>
<tr>
<td>4</td>
<td>needtoknow</td>
<td>running</td>
<td>/zone/needtoknow</td>
<td>native</td>
<td>shared</td>
</tr>
<tr>
<td>5</td>
<td>restricted</td>
<td>running</td>
<td>/zone/restricted</td>
<td>native</td>
<td>shared</td>
</tr>
</tbody>
</table>

▼ Customize the Labeled Zone

If you are going to clone zones or copy zones, this procedure configures a zone to be a template for other zones. In addition, this procedure configures a zone that has not been created from a template for use.

**Before You Begin**

You are superuser in the global zone. You have completed “Verify the Status of the Zone” on page 70.

1 In the Zone Terminal Console, disable services that are unnecessary in a labeled zone.
   If you are copying or cloning this zone, the services that you disable are disabled in the new zones. The services that are online on your system depend on the service manifest for the zone. Use the netservices limited command to turn off services that labeled zones do not need.

   a. Remove many unnecessary services.

      ```
      # netservices limited
      ```

   b. List the remaining services.

      ```
      # svcs
      ```

      ```
      STATE  STIME            FMRI
      online 13:05:00  svc:/application/graphical-login/cde-login:default
      ```
c. Disable graphical login.
   # svcadm disable svc:/application/graphical-login/cde-login
   # svcsc cde-login
   STATE STIME FMRI
   disabled 13:06:22 svc:/application/graphical-login/cde-login:default
   For information about the service management framework, see the smf(5) man page.

2 In the Labeled Zone Manager, select Halt to halt the zone.

3 Before continuing, verify that the zone is shut down.
   In the zone-name:Zone Terminal Console, the following message indicates that the zone is shut down.
   [ NOTICE: Zone halted]
   If you are not copying or cloning this zone, create the remaining zones in the way that you created this first zone. Otherwise, continue with the next step.

4 If you are using this zone as a template for other zones, do the following:
   a. Remove the auto_home_zone-name file.
      In a terminal window in the global zone, remove this file from the zone-name zone.
      # cd /zone/zone-name/root/etc
      # ls auto_home*
      auto home auto home_zone-name
      # rm auto_home_zone-name
      For example, if the public zone is the template for cloning other zones, remove the auto_home_public file:
      # cd /zone/public/root/etc
      # rm auto_home_public
   b. If you plan to clone this zone, create the ZFS snapshot in the next step, then continue with "Create Another Zone in Trusted Extensions" on page 73.
   c. If you plan to copy this zone, complete Step 6, then continue with "Create Another Zone in Trusted Extensions" on page 73.

5 To create a zone template for cloning the remaining zones, select Create Snapshot and click OK.

Caution — The zone for the snapshot must be in a ZFS file system. You created a ZFS file system for the zone in “Create ZFS Pool for Cloning Zones” on page 53.
6 To verify that the customized zone is still usable, select Boot from the Labeled Zone Manager. The Zone Terminal Console tracks the progress of booting the zone. Messages that are similar to the following appear in the console:

```
[Connected to zone 'public' console]

[NOTICE: Zone booting up]
```

Hostname: zonename

Press the Return key for a login prompt. You can log in as root.

▼ Create Another Zone in Trusted Extensions

You have three options:

- You can copy the first zone.
- You can repeat the steps that you used to create the first zone.
- You can clone the first zone.

Before You Begin

You have completed "Customize the Labeled Zone" on page 71.

1 Name and label the zone.
For details, see "Name and Label the Zone" on page 66.

2 Continue with your zone creation strategy by choosing one of the following methods:
You will repeat these steps for every new zone.

- Create every zone from scratch.
  
  a. Complete "Install the Labeled Zone" on page 68.
  
  b. Complete "Boot the Labeled Zone" on page 69.
  
  c. Complete "Verify the Status of the Zone" on page 70.
  
  d. Complete "Customize the Labeled Zone" on page 71.

- Copy the zone that you just labeled.
  
  a. In the Labeled Zone Manager, select Copy and click OK.
b. Select the zone template and click OK.

A window displays the copying process. When the process completes, the zone is installed.

If the Labeled Zone Manager displays `zone-name: configured`, continue with the next step. Otherwise, continue with Step e.

c. Select the menu item Select another zone, and click OK.

d. Select the newly installed zone and click OK.

e. Complete "Boot the Labeled Zone" on page 69.

f. Complete "Verify the Status of the Zone" on page 70.

- Clone the zone that you just labeled.

a. In the Labeled Zone Manager, select Clone and click OK.

b. Select a ZFS snapshot from the list and click OK.

For example, if you created a snapshot from `public`, select the `zone/public@snapshot`.

When the cloning process completes, the zone is installed. If the Labeled Zone Manager displays `zone-name: configured`, continue with the next step. Otherwise, continue with Step e.

c. Select the menu item Select another zone, and click OK.

d. Select the newly installed zone and click OK.

e. Complete "Boot the Labeled Zone" on page 69.

f. Complete "Verify the Status of the Zone" on page 70.

Next Steps

- When you have completed "Verify the Status of the Zone" on page 70 for every zone, and you want each zone to be on a separate physical network, continue with "Add a Network Interface to an Existing Labeled Zone" on page 75.

- If you have not yet created roles, continue with "Creating Roles and Users in Trusted Extensions" on page 77.

- If you have already created roles, continue with "Creating Home Directories in Trusted Extensions" on page 83.
Add a Network Interface to an Existing Labeled Zone

This procedure adds zone-specific network interfaces to existing labeled zones. This configuration supports environments where each zone is connected to a separate physical network.

Note – The global zone must configure an IP address for every subnet in which a non-global zone address is configured.

Before You Begin

You are superuser in the global zone. You have successfully completed “Verify the Status of the Zone” on page 70.

1 In the global zone, type the IP addresses and hostnames for the additional network interfaces into the /etc/hosts file.

Use a standard naming convention, such as adding -zone-name to the name of the host.

```
## /etc/hosts in global zone
10.10.8.2  hostname-zone-name1
10.10.8.3  hostname-global-name1
10.10.9.2  hostname-zone-name2
10.10.9.3  hostname-global-name2
```

2 For the network for each interface, add entries to the /etc/netmasks file.

```
## /etc/netmasks in global zone
10.10.8.0  255.255.255.0
10.10.9.0  255.255.255.0
```

For more information, see the netmasks(4) man page.

3 In the global zone, plumb the zone-specific physical interfaces.

a. Identify the physical interfaces that are already plumbed.
   
   `# ifconfig -a`

b. Configure the global zone addresses on each interface.
   
   `# ifconfig interface-nameN1 plumb`
   `# ifconfig interface-nameN1 10.10.8.3 up`
   `# ifconfig interface-nameN2 plumb`
   `# ifconfig interface-nameN2 10.10.9.3 up`

c. For each global zone address, create a hostname.interface-nameN file.
   
   `# /etc/hostname.interface-nameN1 10.10.8.3`
   `# /etc/hostname.interface-nameN2 10.10.9.3`
The global zone addresses are configured immediately upon system startup. The zone-specific addresses are configured when the zone is booted.

4 **Assign a security template to each zone-specific network interface.**

If the gateway to the network is not configured with labels, assign the admin_low security template. If the gateway to the network is labeled, assign a cipso security template.

You can create security templates of host type cipso that reflect the label of every network. For the procedures to create and assign the templates, see “Configuring Trusted Network Databases (Task Map)” in Solaris Trusted Extensions Administrator’s Procedures.

5 **Halt every labeled zone to which you plan to add a zone-specific interface.**

   ```bash
   # zoneadm -z zone-name halt
   ```

6 **Start the Labeled Zone Manager.**

   ```bash
   # /usr/sbin/txzonemgr
   ```

7 **For each zone where you want to add a zone-specific interface, do the following:**
   
   a. Select the zone.
   
   b. Select Add Network.
   
   c. Name the network interface.
   
   d. Type the IP address of the interface.

8 **In the Labeled Zone Manager for every completed zone, select Zone Console.**

9 **Select Boot.**

10 **In the Zone Console, verify that the interfaces have been created.**

   ```bash
   # ifconfig -a
   ```

11 **Verify that the zone has a route to the gateway for the subnet.**

   ```bash
   # netstat -rn
   ```

**Troubleshooting**

To debug zone configuration, see the following:

- “Troubleshooting Your Trusted Extensions Configuration” on page 88
Creating Roles and Users in Trusted Extensions

If you are already using administrative roles, you might want to add a Security Administrator role. For sites that have not yet implemented roles, the procedure for creating them is similar to the procedure in the Solaris OS. Trusted Extensions adds the Security Administrator role and requires the use of the Solaris Management Console to administer a Trusted Extensions domain.

▼ Create the Security Administrator Role in Trusted Extensions

Role creation in Trusted Extensions is identical to role creation in the Solaris OS. However, in Trusted Extensions, a Security Administrator role is required. To create a local Security Administrator role, you can also use the command-line interface, as in Example 4–4.

Before You Begin

You must be superuser, in the root role, or in the Primary Administrator role.

To create the role on the network, you must have completed “Configuring the Solaris Management Console for LDAP (Task Map)” on page 108.

1 Start the Solaris Management Console.
   
   # /usr/sbin/smc &

2 Select the appropriate toolbox.

   ▪ To create the role locally, use This Computer (this-host: Scope=Files, Policy=TSOL).

   ▪ To create the role in the LDAP service, use This Computer (this-host: Scope=LDAP, Policy=TSOL).

3 Click System Configuration, then click Users.
   You are prompted for your password.

4 Type the appropriate password.

5 Double-click Administrative Roles.

6 From the Action menu, choose Add Administrative Role.
7 **Create the Security Administrator role.**

Use the following information as a guide:

- Role name – secadmin
- Full name – Security Administrator
- Description – Site Security Officer *No proprietary information here.*
- Role ID Number – ≥100
- Role shell – Administrator’s Bourne (profile shell)
- Create a role mailing list – Leave the checkbox selected.
- Password and confirm – Assign a password of at least 6 alphanumeric characters.

The password for the Security Administrator role, and all passwords, must be difficult to guess, thus reducing the chance of an adversary gaining unauthorized access by attempting to guess passwords.

---

**Note** – For all administrative roles, make the account Always Available, and do not set password expiration dates.

- Available and Granted Rights – Information Security, User Security
- Home Directory Server – `home-directory-server`
- Home Directory Path – `/mount-path`
- Assign Users – This field is automatically filled in when you assign a role to a user.

8 **After creating the role, check that the settings are correct.**

Select the role, then double-click it.

Review the values in the following fields:

- Available Groups – Add groups if required.
- Trusted Extensions Attributes – Defaults are correct.
  - For a single-label system where the labels must not be visible, choose Hide for Label: Show or Hide.
- Audit Excluded and Included – Set audit flags only if the role’s audit flags are exceptions to the system settings in the `audit_control` file.

9 **To create other roles, use the Security Administrator role as a guide.**
For examples, see “How to Create and Assign a Role by Using the GUI” in System Administration Guide: Security Services. Give each role a unique ID, and assign to the role the correct rights profile. Possible roles include the following:

- **admin Role** – System Administrator Granted Rights
- **primaryadmin Role** – Primary Administrator Granted Rights
- **oper Role** – Operator Granted Rights

**Example 4–4 Using the roleadd Command to Create a Local Security Administrator Role**

In this example, the root user adds the Security Administrator role to the local system by using the roleadd command. For details, see the roleadd(1M) man page. The root user consults Table 1–2 before creating the role.

```bash
# roleadd -c "Local Security Administrator" -d /export/home1 \\
-u 110 -P "Information Security,User Security" -K lock_after_retries=no \\
-K idletime=5 -K idlecmd=lock -K labelview=showsl \\
-K min_label=ADMIN_LOW -K clearance=ADMIN_HIGH secadmin
```

The root user provides an initial password for the role.

```bash
# passwd -r files secadmin
New Password:  <Type password>
Re-enter new Password:  <Retype password>
passwd: password successfully changed for secadmin
#
```

To assign the role to a local user, see Example 4–5.

**Create Users Who Can Assume Roles in Trusted Extensions**

To create a local user, you can use the command-line interface, as in Example 4–5, instead of the following procedure. Where site security policy permits, you can choose to create a user who can assume more than one administrative role.

For secure user creation, the System Administrator role creates the user, and the Security Administrator role assigns security-relevant attributes, such as a password.

**Before You Begin**

You must be superuser, in the root role, in the Security Administrator role, or in the Primary Administrator role. The Security Administrator role has the least amount of privilege that is required for user creation.

The Solaris Management Console is displayed. For details, see “Create the Security Administrator Role in Trusted Extensions” on page 77.

2. From the Action menu, choose Add User → Use Wizard.

   Caution – The names and IDs of roles and users come from the same pool. Do not use existing names or IDs for the users that you add.

3. Follow the online help.
   You can also follow the procedures in “How to Add a User With the Solaris Management Console’s Users Tool” in System Administration Guide: Basic Administration.

4. After creating the user, double-click the created user to modify the settings.

   Note – For users who can assume roles, make the user account Always Available, and do not set password expiration dates.

   Ensure that the following fields are correctly set:
   - Description – No proprietary information here.
   - Password and confirm – Assign a password of at least 6 alphanumeric characters.

   Note – When the install team chooses a password, the team must select a password that is difficult to guess, thus reducing the chance of an adversary gaining unauthorized access by attempting to guess passwords.

   - Account Availability – Always Available.
   - Trusted Extensions Attributes – Defaults are correct.
     For a single-label system where the labels must not be visible, choose Hide for Label: Show or Hide.
   - Account Usage – Set Idle time and Idle action.
     Lock account – Set to No for any user who can assume a role.

5. Customize the user’s environment.

   - Assign Convenient Authorizations
     After checking your site security policy, you might want to grant your first users the Convenient Authorizations rights profile. With this right, users can allocate devices, print PostScript™ files, print without labels, remotely log in, and shut down the system.
- **Customize user initialization files**
  
  See Chapter 7, "Managing Users, Rights, and Roles in Trusted Extensions (Tasks)," in Solaris Trusted Extensions Administrator's Procedures.

  Also see “Managing Users and Rights With the Solaris Management Console (Task Map)” in Solaris Trusted Extensions Administrator’s Procedures.

- **Create multilabel copy and link files**
  
  On a multilabel system, users and roles can be set up with files that list user initialization files to be copied or linked to other labels. For more information, see “.copy_files and .link_files Files” in Solaris Trusted Extensions Administrator’s Procedures.

**Example 4–5 Using the useradd Command to Create a Local User**

In this example, the root user creates a local user who can assume the Security Administrator role. For details, see the useradd(1M) and atohexlabel(1M) man pages.

First, the root user determines the hexadecimal format of the user’s minimum label and clearance label.

```
# atohexlabel public
0x0002-08-08
# atohexlabel -c "confidential restricted"
0x0004-08-78
```

Next, the root user consults Table 1–2, and then creates the user.

```
# useradd -c "Local user for Security Admin" -d /export/home1 \
-K idletime=10 -K idlemcmd=logout -K lock_after_retries=no \
-K min_label=0x0002-08-08 -K clearance=0x0004-08-78 -K labelview=showsl jandoe
```

Then, the root user provides an initial password.

```
# passwd -r files jandoe
New Password: <Type password>
Re-enter new Password: <Retype password>
passwd: password successfully changed for jandoe
```

Finally, the root user adds the Security Administrator role to the user’s definition. The role was created in “Create the Security Administrator Role in Trusted Extensions” on page 77.

```
# usermod -R secadmin jandoe
```
Verify That the Trusted Extensions Roles Work

To verify each role, assume the role. Then, perform tasks that only that role can perform.

Before You Begin

If you have configured DNS or routing, you must reboot after you create the roles and before you verify that the roles work.

1. For each role, log in as a user who can assume the role.

2. Open the Trusted Path menu.
   - In Trusted CDE, click the workspace switch area.
   - In Trusted JDS, click the trusted symbol.

3. From the menu, assume the role.

4. In the role workspace, start the Solaris Management Console.
   
   $ /usr/sbin/smc &

5. Select the appropriate scope for the role that you are testing.

6. Click System Services, and navigate to Users.
   You are prompted for a password.
   a. Type the role password.
   b. Double-click User Accounts.

7. Click a user.
   - The System Administrator role should be able to modify fields under the General, Home Directory, and Group tabs.
   - The Security Administrator role should be able to modify fields under all tabs.
The Primary Administrator role should be able to modify fields under all tabs.

**Enable Users to Log In to a Labeled Zone**

When the host is rebooted, the association between the devices and the underlying storage must be re-established.

**Before You Begin**
- You have created at least one labeled zone. That zone is not being used for cloning.
- **1** Reboot the system.
- **2** Log in as the root user.
- **3** Restart the zones service.

```bash
# svcs zones
STATE STIME FMRI
offline - svc:/system/zones:default

# svcadm restart svc:/system/zones:default
```
- **4** Log out.

Regular users can now log in. Their session is in a labeled zone.

**Creating Home Directories in Trusted Extensions**

In Trusted Extensions, users need access to their home directories at every label at which the users work. To make every home directory available to the user requires that you create a multilevel home directory server, run the automounter on the server, and export the home directories. On the client side, you can run scripts to find the home directory for every zone for each user, or you can have the user log in to the home directory server.

**Create the Home Directory Server in Trusted Extensions**

**Before You Begin**
- You must be superuser, in the root role, or in the Primary Administrator role.
- **1** Install and configure the home directory server with Trusted Extensions software.
  - If you are cloning zones, make sure that you use a Solaris ZFS snapshot that has empty home directories.
Because users require a home directory at every label that they can log in to, create every zone that a user can log in to. For example, if you use the default label_encodings file, you would create a zone for the PUBLIC label.

2. If you are using UFS and not Solaris ZFS, enable the NFS server to serve itself.
   a. In the global zone, modify the automount entry in the nsswitch.conf file.
      Use the trusted editor to edit the /etc/nsswitch.conf file. For the procedure, see “How to Edit Administrative Files in Trusted Extensions” in Solaris Trusted Extensions Administrator’s Procedures.
      automount: files
   
   b. In the global zone, run the automount command.

3. For every labeled zone, follow the automount procedure in “How to NFS Mount Files in a Labeled Zone” in Solaris Trusted Extensions Administrator’s Procedures. Then, return to this procedure.

4. Verify that the home directories have been created.
   a. Log out of the home directory server.
   b. As a regular user, log in to the home directory server.
   c. In the login zone, open a terminal.
   d. In the terminal window, verify that the user’s home directory exists.
   e. Create workspaces for every zone that the user can work in.
   f. In each zone, open a terminal window to verify that the user’s home directory exists.

5. Log out of the home directory server.

Enable Users to Access Their Home Directories in Trusted Extensions

Users can initially log in to the home directory server to create a home directory that can be shared with other systems. To create a home directory at every label, each user must log in to the home directory server at every label.
Alternatively, you, as administrator, can create a script to create a mount point for home directories on each user's home system before the user first logs in. The script creates mount points at every label at which the user is permitted to work.

**Before You Begin**

The home directory server for your Trusted Extensions domain is configured.

- Choose whether to allow direct login to the server, or whether to run a script.
  - Enable users to log in directly to the home directory server.
    - a. Instruct each user to log in to the home directory server.
      After successful login, the user must log out.
    - b. Instruct each user to log in again, and this time, to choose a different login label.
      The user uses the label builder to choose a different login label. After successful login, the user must log out.
    - c. Instruct each user to repeat the login process for every label that the user is permitted to use.
    - d. Instruct the users to log in from their regular workstation.
      Their home directory for their default label is available. When a user changes the label of a session or adds a workspace at a different label, the user’s home directory for that label is mounted.

- Write a script that creates a home directory mount point for every user, and run the script.

```bash
#!/bin/sh
# for zoneroot in '/usr/sbin/zoneadm list -p | cut -d ":" -f4'; do
if [ $zoneroot != / ]; then
    prefix=$zoneroot/root/export
    for j in 'getent passwd|tr ‘ ’ _’; do
        uid="echo $j|cut -d ":" -f3"
        if [ $uid -ge 100 ]; then
            gid="echo $j|cut -d ":" -f4"
            homedir="echo $j|cut -d ":" -f6"
            mkdir -m 711 -p $prefix$homedir
            chown $uid:$gid $prefix$homedir
            fi
        done
```
a. From the global zone, run this script on the NFS server.

b. Then, run this script on every multilevel desktop that the user is going to log in to.

Adding Users and Hosts to an Existing Trusted Network

If you have users who are defined in NIS maps, you can add them to your network.

To add hosts and labels to hosts, see the following procedures:

- To add a host, you use the Computers and Networks tool set in the Solaris Management Console. For details, see “How to Add Hosts to the System’s Known Network” in Solaris Trusted Extensions Administrator’s Procedures.

  When you add a host to the LDAP server, add all IP addresses that are associated with the host. All-zones addresses, including addresses for labeled zones, must be added to the LDAP server.

- To label a host, see “How to Assign a Security Template to a Host or a Group of Hosts” in Solaris Trusted Extensions Administrator’s Procedures.

▼ Add an NIS User to the LDAP Server

Before You Begin

You must be superuser, in the root role, or in the Primary Administrator role.

1 From the NIS database, gather the information that you need.

   a. Create a file from the user’s entry in the aliases database.
      
      `% ypcat -k aliases | grep login-name > aliases.name`

   b. Create a file from the user’s entry in the passwd database.
      
      `% ypcat -k passwd | grep "FullName" > passwd.name`

   c. Create a file from the user’s entry in the auto_home database.
      
      `% ypcat -k auto_home | grep login-name > auto_home.label`

2 Reformat the information for LDAP and Trusted Extensions.

   a. Use the sed command to reformat the aliases entry.
      
      `% sed 's/ \:/g' aliases.login-name > aliases`
b. Use the `nawk` command to reformat the `passwd` entry.

   ```bash
   % nawk -F: '{print $1":":$3":"$4":"$5":"$6":"$7'" passwd.name > passwd
   ```

   Use the `nawk` command to create a shadow entry.

   ```bash
   % nawk -F: '{print $1":":$2":6445::::":"}' passwd.name > shadow
   ```

   Use the `nawk` command to create a user_attr entry.

   ```bash
   % nawk -F: '{print $1":":lock_after_retries=yes-or-no;profiles=user-profile,...;
   label_view=int-or-ext,show-or-hide;min_label=min-label;
   clearance=max-label;type=normal;roles=role-name,...;
   auths=auth-name,..."'} passwd.name > user_attr
   ```

3 Copy the modified files to the `/tmp` directory on the LDAP server.

   ```bash
   # cp aliases auto_home_internal passwd shadow user_attr /tmp/
   ```

4 Add the entries in the files in Step 3 to the databases on the LDAP server.

   ```bash
   # /usr/sbin/ldapaddent -D "cn=directory manager" -w DM-password \ 
   -a simple -f /tmp/name/aliases aliases
   # /usr/sbin/ldapaddent -D "cn=directory manager" -w DM-password \ 
   -a simple -f /tmp/name/auto_home_internal auto_home_internal
   # /usr/sbin/ldapaddent -D "cn=directory manager" -w DM-password \ 
   -a simple -f /tmp/name/passwd passwd
   # /usr/sbin/ldapaddent -D "cn=directory manager" -w DM-password \ 
   -a simple -f /tmp/name/shadow shadow
   # /usr/sbin/ldapaddent -D "cn=directory manager" -w DM-password \ 
   -a simple -f /tmp/name/user_attr user_attr
   ```

Example 4–6 Adding a User From an NIS Database to the LDAP Server

In the following example, the administrator adds a new user to the trusted network. The user’s information is stored originally in an NIS database. To protect the LDAP server password, the administrator runs the `ldapaddent` commands on the server.

In Trusted Extensions, the new user can allocate devices and assume the Operator role. Because the user can assume a role, the user account does not get locked out. The user’s minimum label is `PUBLIC`. The label at which the user works is `INTERNAL`, so `jan` is added to the `auto_home_internal` database. The `auto_home_internal` database automounts `jan`'s home directory with read-write permissions.

- On the LDAP server, the administrator extracts user information from NIS databases.

   ```bash
   # ypcat -k aliases | grep jan.doe > aliases.jan
   # ypcat passwd | grep "Jan Doe" > passwd.jan
   # ypcat -k auto_home | grep jan.doe > auto_home_internal
   ```

- Then, the administrator reformat the entries for LDAP.
# sed ‘s/ /:/g’ aliases.jan > aliases
# awk -F: '{print $1":"$3":"$4":"$5":"$6":"$7}’ passwd.jan > passwd
# awk -F: '{print $1":"$2":6445::::::”}’ passwd.jan > shadow

Then, the administrator creates a user_attr entry for Trusted Extensions.

# awk -F: '{print $1":"lock_after_retries=no;profiles=Media User; labelview=internal,showsl;min_label=0x0002-08-08; clearance=0x0004-08-78;type=normal;roles=oper; auths=solaris.device.allocate}’ passwd.jan > user_attr

Then, the administrator copies the files to the /tmp/jan directory.

# cp aliases auto_home_internal passwd shadow user_attr /tmp/jan

Finally, the administrator populates the server with the files in the /tmp/jan directory.

# /usr/sbin/ldapaddent -D “cn=directory manager” -w a2b3c4d5e6 -a simple -f /tmp/jan/aliases aliases
# /usr/sbin/ldapaddent -D “cn=directory manager” -w a2b3c4d5e6 -a simple -f /tmp/jan/auto_home_internal auto_home_internal
# /usr/sbin/ldapaddent -D “cn=directory manager” -w a2b3c4d5e6 -a simple -f /tmp/jan/passwd passwd
# /usr/sbin/ldapaddent -D “cn=directory manager” -w a2b3c4d5e6 -a simple -f /tmp/jan/shadow shadow
# /usr/sbin/ldapaddent -D “cn=directory manager” -w a2b3c4d5e6 -a simple -f /tmp/jan/user_attr user_attr

---

**Troubleshooting Your Trusted Extensions Configuration**

In Trusted Extensions, the labeled zones communicate with the X server through the global zone. Therefore, the labeled zones must have usable routes to the global zone. Also, options that were selected during a Solaris installation can prevent Trusted Extensions from using interfaces to the global zone.

**netservices limited Was Run After Trusted Extensions Was Installed**

**Description:**
Instead of running the netservices limited command before you added the Trusted Extensions packages, you ran the command in the global zone after you added the packages. Therefore, your labeled zones are unable to connect to the X server in the global zone.

**Solution:**
Run the following commands to open the services that Trusted Extensions requires to communicate between zones:
# svccfg -s x11-server setprop options/tcp_listen = true
# svcadm enable svc:/network/rpc/rstat:default

## Cannot Open the Console Window in a Labeled Zone

**Description:**
When you attempt to open a console window in a labeled zone, the following error appears in a dialog box:

```
Action:DttermConsole,*,*,*,0 [Error]
Action not authorized.
```

**Solution:**
Verify that the following two lines are present in each of the zone entries in the `/etc/security/exec_attr` file:

```
All Actions:solaris:act::*;*;*;*;*:
All:solaris:act::*;*;*;*;*:
```

If these lines are not present, the Trusted Extensions package that adds these entries was not installed in the labeled zones. In this case, re-create the labeled zones. For the procedure, see “Creating Labeled Zones” on page 60.

## Labeled Zone Is Unable to Access the X Server

**Description:**
If a labeled zone cannot successfully access the X server, you might see messages such as the following:

- Action failed. Reconnect to Solaris Zone?
- No route available
- Cannot reach globalzone-<hostname>:0

**Cause:**

The labeled zones might not be able to access the X server for any of the following reasons:

- The zone is not initialized and is waiting for the `sysidcfg` process to complete.
- The labeled zone’s host name is not recognized by the naming service that runs in the global zone.
- No interface is specified as `all-zones`.
- The labeled zone’s network interface is down.
- LDAP name lookups fail.
NFS mounts do not work.

**Steps toward a solution:**

Do the following:

1. Log in to the zone.
   
   You can use the `zlogin` command or the Zone Terminal Console action.
   
   ```
   # zlogin -z zone-name
   ```
   
   If you cannot log in as superuser, use the `zlogin -S` command to bypass authentication.

2. Verify that the zone is running.
   
   ```
   # zoneadm list
   ```
   
   If a zone has a status of `running`, the zone is running at least one process.

3. Address any problems that prevent the labeled zones from accessing the X server.
   
   - Initialize the zone by completing the `sysidcfg` process.
     
     Run the `sysidcfg` program interactively. Answer the prompts in the Zone Terminal Console, or in the terminal window where you ran the `zlogin` command.
     
     To run the `sysidcfg` process noninteractively, you can do one of the following:
     
     - Specify the Initialize item for the `/usr/sbin/txzonemgr` script.
       
       The Initialize item enables you to supply default values to the `sysidcfg` questions.
     
     - Write your own `sysidcfg` script.
       
       For more information, see the `sysidcfg(4)` man page.
   
   - Verify that the X server is available to the zone.
     
     Log in to the labeled zone. Set the DISPLAY variable to point to the X server, and open a window.
     
     ```
     # DISPLAY=global-zone-hostname:n.n
     # export DISPLAY
     # /usr/openwin/bin/xclock
     ```
     
     If a labeled window does not appear, the zone networking has not been configured correctly for that labeled zone.
   
   - Configure the zone's host name with the naming service.
     
     The zone's local `/etc/hosts` file is not used. Instead, equivalent information must be specified in the global zone or on the LDAP server. The information must include the IP address of the host name that is assigned to the zone.
No interface is specified as all-zones.

Unless all your zones have IP addresses on the same subnet as the global zone, you might need to configure an all-zones (shared) interface. This configuration enables a labeled zone to connect to the X server of the global zone. If you want to restrict remote connections to the X server of the global zone, you can use vn10 as the all-zones address.

If you do not want an all-zones interface configured, you must provide a route to the global zone X server for each zone. These routes must be configured in the global zone.

The labeled zone’s network interface is down.

```
# ifconfig -a
```

Use the `ifconfig` command to verify that the labeled zone’s network interface is both UP and RUNNING.

LDAP name lookups fail.

Use the `ldaplist` command to verify that each zone can communicate with the LDAP server or the LDAP proxy server. On the LDAP server, verify that the zone is listed in the tnrhdb database.

NFS mounts do not work.

As superuser, restart `automount` in the zone. Or, add a `crontab` entry to run the `automount` command every five minutes.

### Additional Trusted Extensions Configuration Tasks

The following two tasks enable you to transfer exact copies of configuration files to every Trusted Extensions system at your site. The final task enables you to remove Trusted Extensions customizations from a Solaris system.

#### How to Copy Files to Portable Media in Trusted Extensions

When copying to portable media, label the media with the sensitivity label of the information.

**Note** – During installation, superuser or an equivalent role copies administrative files to and from portable media. Label the media with Trusted Path.

**Before You Begin**

To copy administrative files, you must be superuser or in a role in the global zone.
1 Allocate the appropriate device.
   Use the Device Allocation Manager, and insert clean media. For details, see “How to Allocate a Device in Trusted Extensions” in Solaris Trusted Extensions User’s Guide.
   - In Solaris Trusted Extensions (CDE), a File Manager displays the contents of the portable media.
   - In Solaris Trusted Extensions (JDS), a File Browser displays the contents.
   In this procedure, File Manager is used to refer to this GUI.

2 Open a second File Manager.

3 Navigate to the folder that contains the files to be copied
   For example, you might have copied files to an /export/clientfiles folder.

4 For each file, do the following:
   a. Highlight the icon for the file.
   b. Drag the file to the File Manager for the portable media.

5 Deallocate the device.
   For details, see “How to Deallocate a Device in Trusted Extensions” in Solaris Trusted Extensions User’s Guide.

6 On the File Manager for the portable media, choose Eject from the File menu.

   Note – Remember to physically affix a label to the media with the sensitivity label of the copied files.

---

Example 4–7 Keeping Configuration Files Identical on All Systems

The system administrator wants to ensure that every machine is configured with the same settings. So, on the first machine that is configured, she creates a directory that cannot be deleted between reboots. In that directory, the administrator places the files that should be identical or very similar on all systems.

For example, she copies the Trusted Extensions toolbox that the Solaris Management Console uses for the LDAP scope, /var/sadm/smc/toolboxes/tsol_ldap/tsol_ldap.tbx. She has customized remote host templates in the trnhttp file, has a list of DNS servers, and audit configuration files. She also modified the policy.conf file for her site. So, she copies the files to the permanent directory.
She uses the Device Allocation Manager to allocate a diskette in the global zone, and transfers the files to the diskette. On a separate diskette, labeled ADMIN_HIGH, she puts the label_encodings file for the site.

When she copies the files onto a system, she modifies the dir: entries in the /etc/security/audit_control file for that system.

▼ How to Copy Files From Portable Media in Trusted Extensions

It is safe practice to rename the original Trusted Extensions file before replacing the file. When configuring a system, the root role renames and copies administrative files.

**Before You Begin**

To copy administrative files, you must be superuser or in a role in the global zone.

1 **Allocate the appropriate device.**
   For details, see “How to Allocate a Device in Trusted Extensions” in Solaris Trusted Extensions User's Guide.
   - In Solaris Trusted Extensions (CDE), a File Manager displays the contents of the portable media.
   - In Solaris Trusted Extensions (JDS), a File Browser displays the contents.
   In this procedure, File Manager is used to refer to this GUI.

2 **Insert the media that contains the administrative files.**

3 **If the system has a file of the same name, copy the original file to a new name.**
   For example, add .orig to the end of the original file:
   ```
   # cp /etc/security/tsol/tnrhtp /etc/security/tsol/tnrhtp.orig
   ```

4 **Open a File Manager.**

5 **Navigate to the desired destination directory, such as /etc/security/tsol**

```
6 For each file that you want to copy, do the following:
   a. In the File Manager for the mounted media, highlight the icon for the file.
   b. Then, drag the file to the destination directory in the second File Manager.
7 Deallocate the device.
   For details, see "How to Deallocate a Device in Trusted Extensions" in Solaris Trusted
   Extensions User’s Guide.
8 When prompted, eject and remove the media.

Example 4–8 Loading Audit Configuration Files in Trusted Extensions

In this example, roles are not yet configured on the system. The root user needs to copy
configuration files to portable media. The contents of the media will then be copied to other
systems. These files are to be copied to each system that is configured with Trusted Extensions
software.

The root user allocates the floppy_0 device in the Device Allocation Manager and responds
yes to the mount query. Then, the root user inserts the diskette with the configuration files and
copies them to the disk. The diskette is labeled Trusted Path.

To read from the media, the root user allocates the device on the receiving host, then
downloads the contents.

If the configuration files are on a tape, the root user allocates the mag_0 device. If the
configuration files are on a CD-ROM, the root user allocates the cdrom_0 device.

How to Remove Trusted Extensions From the System

To remove Trusted Extensions from your Solaris system, you perform specific steps to remove
Trustex customizations to the Solaris system.

1 As in the Solaris OS, archive any data in the labeled zones that you want to keep.

2 Remove the labeled zones from the system.
   For details, see "How to Remove a Non-Global Zone" in System Administration Guide: Solaris
   Containers-Resource Management and Solaris Zones.
3 Remove the Trusted Extensions packages from the system.

- If you added the Trusted Extensions packages by using the install wizard, use the uninstall wizard.
  The wizard can be found in the /var/sadm/tx directory.
  
  ```
  # cd /var/sadm/tx
  # java uninstall_Solaris_Trusted_Extensions
  ```
  You can also use the prodreg command. For details, see `prodreg(1M)` command.

- If you added the Trusted Extensions packages by using the `pkgadd` command, use the `pkgrm` command.
  For details, see the `pkgrm(1M)` man page.

4 Run the `bsmunconv` command.
For the effect of this command, see the `bsmunconv(1M)` man page.

5 (Optional) Reboot the system.

6 Configure the system.
Various services might need to be configured for your Solaris system. Candidates include auditing, basic networking, naming services, and file system mounts.
This chapter covers how to configure the Sun Java™ System Directory Server and the Solaris Management Console for use with Solaris Trusted Extensions. The Directory Server provides LDAP services. LDAP is the supported naming service for Trusted Extensions. The Solaris Management Console is the administrative GUI for local and LDAP databases.

You have two options when configuring the Directory Server. You can configure an LDAP server on a Trusted Extensions system, or you can use an existing server and connect to it by using a Trusted Extensions proxy server. Follow the instructions in one of the following task maps:

- “Configuring an LDAP Server on a Trusted Extensions Host (Task Map)” on page 98
- “Configuring an LDAP Proxy Server on a Trusted Extensions Host (Task Map)” on page 98
## Configuring an LDAP Server on a Trusted Extensions Host (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
</table>
| Set up a Trusted Extensions LDAP server. | If you do not have an existing Sun Java System Directory Server, make your first Trusted Extensions system the Directory Server. The other Trusted Extensions systems are clients of this server. | “Collect Information for the Directory Server for LDAP” on page 99  
“Install the Sun Java System Directory Server” on page 100  
“Protect Access Logs for the Sun Java System Directory Server” on page 102  
“Protect Error Logs for the Sun Java System Directory Server” on page 103  
“Configure a Multilevel Port for the Sun Java System Directory Server” on page 105 |
| Add Trusted Extensions databases to the server. | Populate the LDAP server with data from the Trusted Extensions system files. | “Populate the Sun Java System Directory Server” on page 106 |
| Configure the Solaris Management Console to work with the Directory Server. | Manually set up an LDAP toolbox for the Solaris Management Console. The toolbox can be used to modify Trusted Extensions attributes on network objects. | “Configuring the Solaris Management Console for LDAP (Task Map)” on page 108 |
| Configure all other Trusted Extensions systems as clients of this server. | When you configure another system with Trusted Extensions, make the system a client of this LDAP server. | “Make the Global Zone an LDAP Client in Trusted Extensions” on page 58 |

## Configuring an LDAP Proxy Server on a Trusted Extensions Host (Task Map)

Use this task map if you have an existing Sun Java System Directory Server that is running on a Solaris system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Trusted Extensions databases to the server.</td>
<td>The Trusted Extensions network databases, tnrhdb and tnrhttp, need to be added to the LDAP server.</td>
<td>“Populate the Sun Java System Directory Server” on page 106</td>
</tr>
</tbody>
</table>
**Task Description**

**Instructions**

Set up an LDAP proxy server. Make one Trusted Extensions system the proxy server for the other Trusted Extensions systems. The other Trusted Extensions systems use this proxy server to reach the LDAP server.

Configure the proxy server to have a multilevel port for LDAP. Enable the Trusted Extensions proxy server to communicate with the LDAP server at specific labels.

Configure the Solaris Management Console to work with the LDAP proxy server. You manually set up an LDAP toolbox for the Solaris Management Console. The toolbox can be used to modify Trusted Extensions attributes on network objects.

Configure all other Trusted Extensions systems as clients of the LDAP proxy server. When you configure another system with Trusted Extensions, make the system a client of the LDAP proxy server.

---

### Configuring the Sun Java System Directory Server on a Trusted Extensions System

The LDAP naming service is the supported naming service for Trusted Extensions. If your site is not yet running the LDAP naming service, configure a Sun Java System Directory Server (Directory Server) on a system that is configured with Trusted Extensions. If your site is already running a Directory Server, then you need to add the Trusted Extensions databases to the server. To access the Directory Server, you then set up an LDAP proxy on a Trusted Extensions system.

**Note** – If you do not use this LDAP server as an NFS server or as a server for Sun Ray™ clients, then you do not need to install any labeled zones on this server.

---

### Collect Information for the Directory Server for LDAP

- **Determine the values for the following items.**
  
The items are listed in the order of their appearance in the Sun Java Enterprise System Install Wizard.
Install Wizard Prompt | Action or Information
--- | ---
Sun Java System Directory Server version | The default value is admin.
Administrator User ID | Create a password, such as admin123.
Administrator Password | The default value is cn=Directory Manager.
Directory Manager DN | Create a password, such as dirmgr89.
Directory Manager Password | The default value is /var/Sun/mps. This path is also used later if the proxy software is installed.
Server Identifier | The default value is the local system.
Server Port | If you plan to use the Directory Server to provide standard LDAP naming services to client systems, use the default value, 389.
If you plan to use the Directory Server to support a subsequent installation of a proxy server, enter a nonstandard port, such as 10389.
Suffix | Include your domain component, as in dc=example-domain,dc=com.
Administration Domain | Construct to correspond to the Suffix, as in, example-domain.com.
System User | The default value is root.
System Group | The default value is root.
Data Storage Location | The default value is Store configuration data on this server.
Data Storage Location | The default value is Store user data and group data on this server.
Administration Port | The default value is the Server Port. A suggested convention for changing the default is software-version TIMES 1000. For software version 5.2, this convention would result in port 5200.

▼ Install the Sun Java System Directory Server

The Directory Server packages are available from the Sun Software Gateway web site (http://www.sun.com/software/solaris).

1 Find the Sun Java System Directory Server packages on the Sun web site.


   b. Click the checkbox for the Sun Java Identity Management Suite.

   c. Click the Submit button.
d. If you are not registered, register.

e. Log in to download the software.

f. Click the Download Center at the upper left of the screen.

g. Under Identity Management, download the most recent software that is appropriate for your platform.

2 In the /etc/hosts file, add the FQDN to your system's hostname entry.

The FQDN is the Fully Qualified Domain Name. This name is a combination of the host name and the administration domain, as in:

```
192.168.5.5 myhost myhost.example-domain.com
```

3 Install the Directory Server packages.

Answer the questions by using the information from "Collect Information for the Directory Server for LDAP" on page 99.

4 Ensure that the Directory Server starts at every boot.

a. Add an init.d script.

In the following example, change the SERVER_ROOT and SERVER_INSTANCE variables to match your installation.

```
#!/sbin/sh

SERVER_ROOT=/var/Sun/mps
SERVER_INSTANCE=myhost

case "$1" in
    start)
        ${SERVER_ROOT}/slapd-${SERVER_INSTANCE}/start-slapd
        ;;
    stop)
        ${SERVER_ROOT}/slapd-${SERVER_INSTANCE}/stop-slapd
        ;;
    *)
        echo "Usage: $0 { start | stop }"
        exit 1
esac
exit 0
```

2 3 4 2 3 4

Configuring the Sun Java System Directory Server on a Trusted Extensions System
b. **Link the init.d script to the rc2.d directory.**

   /usr/bin/ln \
   /etc/init.d/ldap.directory-myhost \
   /etc/rc2.d/S70ldap.directory-myhost

5 **Verify your installation.**

   a. **Examine your installation directory.**

      A subdirectory that is named `slapd-server-hostname` must exist.

   b. **Start the Directory Server.**

      # `installation-directory`/slapd-server-hostname/restart-slapd

   c. **Verify that the slapd process exists.**

      # ps -ef | grep slapd
      ./ns-slapd -D `installation-directory`/slapd-server-instance -i
      `installation-directory`/slapd-server-instance/

**Troubleshooting**

For strategies to solve LDAP configuration problems, see Chapter 13, "LDAP Troubleshooting (Reference)," in *System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)*.

▼ **Protect Access Logs for the Sun Java System Directory Server**

The LDIF script that this procedure creates sets up the following rules for access logs:

- Log events at log level 256 and create buffered logs (default).
- Rotate logs daily.
- Keep a maximum of 100 log files, and each file is at most 500 MBytes.
- Expire log files that are older than 3 months.
- Delete oldest logs if less than 500 MBytes free disk space is available.
- All log files use a maximum of 20,000 MBytes of disk space.

1 **Create a script to manage access logs.**

Create a `/var/tmp/logs-access.ldif` file with the following content:

   dn: cn=config
   changetype: modify
   replace: nsslapd-accesslog-logging-enabled
   nsslapd-accesslog-logging-enabled: on
   -
   replace: nsslapd-accesslog-level
nsslapd-accesslog-level: 256
- replace: nsslapd-accesslog-logbuffering
  nsslapd-accesslog-logbuffering: on
- replace: nsslapd-accesslog-logrotationtime
  nsslapd-accesslog-logrotationtime: 1
- replace: nsslapd-accesslog-logrotationtimeunit
  nsslapd-accesslog-logrotationtimeunit: day
- replace: nsslapd-accesslog-maxlogsize
  nsslapd-accesslog-maxlogsize: 500
- replace: nsslapd-accesslog-maxlogsperdir
  nsslapd-accesslog-maxlogsperdir: 100
- replace: nsslapd-accesslog-logexpirationtime
  nsslapd-accesslog-logexpirationtime: 3
- replace: nsslapd-accesslog-logexpirationtimeunit
  nsslapd-accesslog-logexpirationtimeunit: month
- replace: nsslapd-accesslog-logmaxdiskspace
  nsslapd-accesslog-logmaxdiskspace: 20000
- replace: nsslapd-accesslog-logminfreediskspace
  nsslapd-accesslog-logminfreediskspace: 500

2 Run the script.
   # ldapmodify -h localhost -D 'cn=directory manager' \n   -f /var/tmp/logs-access.ldif

3 Type the password.
   Enter bind password: Type the appropriate password
   modifying entry cn=config

▼ Protect Error Logs for the Sun Java System Directory Server

The LDIF script that this procedure creates sets up the following rules for the error logs:

- Rotate logs weekly.
- Keep a maximum of 30 log files, and each file is at most 500 MBytes.
- Expire log files that are older than 3 months.
- Delete oldest logs if less than 500 MBytes free disk space is available.
- All log files use a maximum of 20,000 MBytes of disk space.

1 **Create a script to manage error logs.**

Create a `/var/tmp/logs-error.ldif` file with the following content:

```plaintext
dn: cn=config
changetype: modify
replace: nsslapd-errorlog-logging-enabled
nsslapd-errorlog-logging-enabled: on
-
replace: nsslapd-errorlog-logexpirationtime
nsslapd-errorlog-logexpirationtime: 3
-
replace: nsslapd-errorlog-logexpirationtimeunit
nsslapd-errorlog-logexpirationtimeunit: month
-
replace: nsslapd-errorlog-logrotationtime
nsslapd-errorlog-logrotationtime: 1
-
replace: nsslapd-errorlog-logrotationtimeunit
nsslapd-errorlog-logrotationtimeunit: week
-
replace: nsslapd-errorlog-maxlogsize
nsslapd-errorlog-maxlogsize: 500
-
replace: nsslapd-errorlog-maxlogsperdir
nsslapd-errorlog-maxlogsperdir: 30
-
replace: nsslapd-errorlog-logmaxdiskspace
nsslapd-errorlog-logmaxdiskspace: 20000
-
replace: nsslapd-errorlog-logminfreediskspace
nsslapd-errorlog-logminfreediskspace: 500
```

2 **Run the script.**

```bash
# ldapmodify -h localhost -D 'cn=directory manager' -f
/var/tmp/logs-error.ldif
```

3 **Answer the prompts.**

Enter bind password:  Type the appropriate password
modifying entry cn=config
Configure a Multilevel Port for the Sun Java System Directory Server

To work in Trusted Extensions, the server port of the Directory Server must be configured as a multilevel port (MLP) in the global zone.

1. Start the Solaris Management Console.
   
   ```bash
   # /usr/sbin/smc 
   ```

2. Select the This Computer (this-host: Scope=Files, Policy=TSOL) toolbox.

3. Click System Configuration, then click Computers and Networks.
   You are prompted for your password.

4. Type the appropriate password.

5. Double-click Trusted Network Zones.

6. Double-click the global zone.

7. Add a multilevel port for the TCP protocol:
   a. Click Add for the Multilevel Ports for Zone's IP Addresses.
   b. Type 389 for the port number, and click OK.

8. Add a multilevel port for the UDP protocol:
   a. Click Add for the Multilevel Ports for Zone's IP Addresses.
   b. Type 389 for the port number.
   c. Choose the udp protocol, and click OK.

9. Click OK to save the settings.

10. Update the kernel.
    ```bash
        # tnctl -fz /etc/security/tsol/tnzonecfg
    ```
Populate the Sun Java System Directory Server

Several LDAP databases have been created or modified to hold Trusted Extensions data about label configuration, users, and remote systems. In this procedure, you populate the Directory Server databases with Trusted Extensions information.

1. Create a staging area for files that you plan to use to populate the naming service databases.
   ```bash
   # mkdir -p /setup/files
   ```

2. Copy the sample /etc files into the staging area.
   ```bash
   # cd /etc
   # cp aliases group hosts networks netmasks protocols /setup/files
   # cp rpc services auto_master /setup/files

   # cd /etc/security
   # cp auth_attr prof_attr exec_attr /setup/files/
   #
   # cd /etc/security/tsol
   # cp tnhrdb tnhttp /setup/files
   ```

   If you are running the Solaris 10 11/06 release without patches, copy the ipnodes file.
   ```bash
   # cd /etc/inet
   # cp ipnodes /setup/files
   ```

3. Remove the +auto_master entry from the /setup/files/auto_master file.

4. Remove the ?::::: entry from the /setup/files/auth_attr file.

5. Remove the :::: entry from the /setup/files/prof_attr file.

6. Create the zone automaps in the staging area.

   In the following list of automaps, the first of each pair of lines shows the name of the file. The second line of each pair shows the file contents. The zone names identify labels from the default label_encodings file that is included with the Trusted Extensions software.

   - Substitute your zone names for the zone names in these lines.
   - myNFSserver identifies the NFS server for the home directories.

   ```bash
   /setup/files/auto_home_public
   * myNFSserver_FQDN:/zone/public/root/export/home/ &

   /setup/files/auto_home_internal
   * myNFSserver_FQDN:/zone/internal/root/export/home/ &

   /setup/files/auto_home_needtoknow
   ```
Add every system on the network to the /setup/files/tnrhdb file.
No wildcard mechanism can be used here. The IP address of every system to be contacted, including the IP addresses of labeled zones, must be in this file.

a. Open the trusted editor and edit /setup/files/tnrhdb.

b. Add every IP address on a labeled system in the Trusted Extensions domain.
   Labeled systems are of type cipso. Also, the name of the security template for labeled systems is cipso. Therefore, in the default configuration, a cipso entry is similar to the following:
   192.168.25.2:cipso

   Note – This list includes the IP addresses of global zones and labeled zones.

c. Add every unlabeled system with which the domain can communicate.
   Unlabeled systems are of type unlabeled. The name of the security template for unlabeled systems is admin_low. Therefore, in the default configuration, an entry for an unlabeled system is similar to the following:
   192.168.35.2:admin_low

d. Save the file, and exit the editor.

e. Check the syntax of the file.
   # tnchkdb -h /setup/files/tnrhdb

f. Fix any errors before continuing.

Copy the /setup/files/tnrhdb file to the /etc/security/tsol/tnrhdb file.

Use the ldapaddent command to populate every file in the staging area.
   # /usr/sbin/ldapaddent -D "cn=directory manager" \
   -w dirmgr123 -a simple -f /setup/files/hosts hosts
Creating a Trusted Extensions Proxy for an Existing Sun Java System Directory Server

First, you need to add the Trusted Extensions databases to the existing Directory Server on a Solaris system. Second, to enable Trusted Extensions systems to access the Directory Server, you then need to configure a Trusted Extensions system to be the LDAP proxy server.

▼ Create an LDAP Proxy Server

If an LDAP server already exists at your site, create a proxy server on a Trusted Extensions system.

Before You Begin

You have added the databases that contain Trusted Extensions information to the LDAP server. For details, see “Populate the Sun Java System Directory Server” on page 106.

1 On a system that is configured with Trusted Extensions, create a proxy server.
For details, see Chapter 12, “Setting Up LDAP Clients (Tasks),” in System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP).

2 Verify that the Trusted Extensions databases can be viewed by the proxy server.
   # ldaplist -l database

Troubleshooting
For strategies to solve LDAP configuration problems, see Chapter 13, “LDAP Troubleshooting (Reference),” in System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP).

Configuring the Solaris Management Console for LDAP (Task Map)

The Solaris Management Console is the GUI for administering the network of systems that are running Trusted Extensions.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize the Solaris Management Console.</td>
<td>Initialize the Solaris Management Console. This procedure is performed once per system in the global zone.</td>
<td>&quot;Initialize the Solaris Management Console Server in Trusted Extensions” on page 56</td>
</tr>
</tbody>
</table>
Register LDAP Credentials With the Solaris Management Console

Before You Begin
You must be the root user on an LDAP server that is running Trusted Extensions. The server can be a proxy server.

Your Sun Java System Directory Server must be configured. You have completed one of the following configurations:

- “Configuring an LDAP Server on a Trusted Extensions Host (Task Map)” on page 98
- “Configuring an LDAP Proxy Server on a Trusted Extensions Host (Task Map)” on page 98

1 Register the LDAP administrative credentials.

```bash
# /usr/sadm/bin/dtsetup storeCred
Administrator DN: Type the value for cn on your system
Password: Type the Directory Manager password
Password (confirm): Retype the password
```

2 Verify communications with the Directory Server.

```bash
# /usr/sadm/bin/dtsetup scopes
Getting list of manageable scopes...
Scope 1 file: Displays name of file scope
Scope 2 ldap: Displays name of ldap scope
```

Your LDAP server setup determines the LDAP scopes that are listed. After the server is registered, the LDAP toolbox can be edited, and then used.

Example 5–1 Registering LDAP Credentials

In this example, the name of the LDAP server is LDAP1, the name of the LDAP client is myhost, and the value for cn is the default, Directory Manager.
# /usr/sadm/bin/dtsetup storeCred
Administrator DN: cn=Directory Manager
Password: abcde1!
Password (confirm): abcde1!
# /usr/sadm/bin/dtsetup scopes
Getting list of manageable scopes...
Scope 1 file:/myhost/myhost
Scope 2 ldap:/myhost/cd=myhost,dc=example,dc=com

▼ Enable an LDAP Client to Administer LDAP

By default, systems are installed to not listen on ports that present security risks. Therefore, you must explicitly turn on network communications with the LDAP server. Perform this procedure only on systems from which you plan to administer your network of systems and users.

**Before You Begin**
You must be superuser or in the Security Administrator role in the global zone.

- **Enable the system to administer LDAP.**
  
  # svcfg -s wbem setprop options/tcp_listen=true

To view the LDAP toolbox, you must complete “Edit the LDAP Toolbox in the Solaris Management Console” on page 110.

▼ Edit the LDAP Toolbox in the Solaris Management Console

**Before You Begin**
You must be superuser. The LDAP credentials must be registered with the Solaris Management Console, and you must know the output of the /usr/sadm/bin/dtsetup scopes command. For details, see “Register LDAP Credentials With the Solaris Management Console” on page 109.

1. **Find the LDAP toolbox.**
   
   # cd /var/sadm/smc/toolboxes/tsol_ldap
   # ls *tbx
   tsol_ldap.tbx

2. **Provide the LDAP server name.**
   
   a. Open the trusted editor.
b. Copy and paste the full pathname of the tsol_ldap.tbx toolbox as the argument to the editor.

For example, the following path is the default location of the LDAP toolbox:
/var/sadm/smc/toolboxes/tsol_ldap/tsol_ldap.tbx

c. Replace the scope information.

Replace the server tags between the <Scope> and </Scope> tags with the output of the 
ldap://... line from the /usr/sadm/bin/dtsetup scopes command.

<Scope>ldap://<myhost>/<dc=domain,dc=suffix></Scope>

d. Replace every instance of <?server?> or <?server ?> with the LDAP server.

<Location>
ldap-server-name: Scope=ldap, Policy=TSOL</Location>

services and configuration of ldap-server-name.</Description>

and configuring ldap-server-name.</Description>

<ServerName>ldap-server-name</ServerName>
<ServerName>ldap-server-name</ServerName>

e. Save the file, and exit the editor.

3 Stop and start the wbem service.

The smc daemon is controlled by the wbem service.

# svcadm disable wbem
# svcadm enable wbem

Example 5–2 Configuring the LDAP Toolbox

In this example, the name of the LDAP server is LDAP1. To configure the toolbox, the administrator replaces the instances of server with LDAP1.

<Location>LDAP1: Scope=ldap, Policy=TSOL</Location>

services and configuration of LDAP1.</Description>

and configuring LDAP1.</Description>

<ServerName>LDAP1</ServerName>
<ServerName>LDAP1</ServerName>

▼ Verify That the Solaris Management Console Contains Trusted Extensions Information

Before You Begin You must be logged in to an LDAP client in an administrative role, or as superuser. To make a system an LDAP client, see “Make the Global Zone an LDAP Client in Trusted Extensions” on page 58.
To use the LDAP toolbox, you must have completed “Edit the LDAP Toolbox in the Solaris Management Console” on page 110 and “Initialize the Solaris Management Console Server in Trusted Extensions” on page 56.

1  Start the Solaris Management Console.
   
   `#/usr/sbin/smc &`

2  Open a Trusted Extensions toolbox.
   
   A Trusted Extensions toolbox has the value `Policy=TSOL`.

   - To check that local files can be accessed, open the This Computer (this-host: Scope=Files, Policy=TSOL) toolbox.

   - To check that databases on the LDAP server can be accessed, open the This Computer (this-host: Scope=LDAP, Policy=TSOL) toolbox.

3  Under System Configuration, navigate to Computers and Networks, then Security Templates.

4  Check that the correct templates and labels have been applied to the remote systems.

**Troubleshooting**  To troubleshoot LDAP configuration, see Chapter 13, “LDAP Troubleshooting (Reference),” in *System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP).*
Configuring and administering Solaris Trusted Extensions software on headless systems such as the Netra™ series require different procedures than the same tasks on systems that have monitors. Trusted Extensions software divides administrative responsibilities into roles, which cannot be assumed remotely. The software also provides an administrative GUI. The GUI does not display on a serial line.

**Note** – The configuration methods that headless systems require do not satisfy the criteria for an evaluated configuration. For more information, see "Understanding Your Site’s Security Policy" on page 20.

### Headless System Configuration in Trusted Extensions (Task Map)

On headless systems, a console is connected by means of a serial line to a terminal emulator window. The line is typically secured by the `tip` command. Depending on what type of second system is available, you can use one of the following methods to configure a headless system. The methods are listed from most preferred to least preferred in Task 3 in the following table.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the headless system as a <code>cipso</code> system.</td>
<td>If the desktop system where you are going to configure the headless system is configured with Trusted Extensions, make the headless system of host type <code>cipso</code>.</td>
<td>If you have not already made the headless system part of the trusted network, assign to the system the appropriate security template. See &quot;How to Assign a Security Template to a Host or a Group of Hosts&quot; in Solaris Trusted Extensions Administrator's Procedures.</td>
</tr>
<tr>
<td>2. Enable remote login.</td>
<td>As superuser, enable remote login to the headless system.</td>
<td>&quot;Enable Remote Login in Trusted Extensions&quot; on page 114</td>
</tr>
</tbody>
</table>
3. Choose a configuration and administration method to set up the headless system.

   The choice is based on available hardware and software on a second system that communicates with the headless system. The choices are listed in descending order of ease and security.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Choose a configuration and administration method to set up the headless system.</td>
<td>Use the rlogin command to administer the remote system in a role.</td>
<td>To assume a role to administer the remote system, go to “Use the rlogin Command to Log In to a Headless System in Trusted Extensions” on page 116.</td>
</tr>
<tr>
<td></td>
<td>Use the ssh command to administer the remote system as superuser.</td>
<td>To administer the remote system as superuser, go to “Use the ssh Command to Log In to a Headless System in Trusted Extensions” on page 118.</td>
</tr>
<tr>
<td></td>
<td>If you have no windowing system, you can use serial login. This procedure is insecure.</td>
<td>To use serial login to configure and administer the headless system, go to “Set Up Administration by Serial Login in Trusted Extensions” on page 119.</td>
</tr>
</tbody>
</table>

4. Configure Trusted Extensions on the headless system.

   Having logged in, continue configuration as you would on a system with a monitor.

   See Chapter 4, “Configuring Trusted Extensions (Tasks),” and use the methods that are possible given your chosen login method.

▼ Enable Remote Login in Trusted Extensions

Follow this procedure only if you must administer a headless system by using the rlogin or ssh command. This procedure is not secure.

Configuration errors can be debugged remotely.

Before You Begin

Consult your security policy to determine which methods of remote login are permissible at your site. The desktop system and the headless system must identify each other as using the identical security template.

1. Log in to the root account through the console device.

2. Choose to activate one or more of the following methods of remote login:

   ▪ Enable remote login by the root user.

   a. Comment out the CONSOLE= line in the /etc/default/login file.

   #CONSOLE=/dev/console

   b. Permit root user login for the ssh service.

      Modify the /etc/ssh/sshd_config file. By default, ssh is enabled on a Solaris system.

      PermitRootLogin yes
- Permit roles to log in by using the `rlogin` service.
  If `root` is a role, this modification is required for remote logins by the root role.

  a. In a text editor, open the `pam.conf` file.
     
     ```
     # vi /etc/pam.conf
     ```

  b. Find other account requisite toward the end of the file.

  c. Add `allow_remote` to the `roles` module.
     Use the Tab key between fields.
     ```
     other account requisite pam_roles.so.1 allow_remote
     ```
     After your edits, this section looks similar to the following:
     ```
     other account requisite pam_roles.so.1 allow_remote
     other account required pam_unix_account.so.1
     other account required pam_tsol_account.so.1
     ```

- Allow remote login to the global zone from an unlabeled host.

  a. In a text editor, open the `pam.conf` file.
     
     ```
     # vi /etc/pam.conf
     ```

  b. Find other account requisite toward the end of the file.

  c. Add `allow_unlabeled` to the `tsol_account` module.
     Use the Tab key between fields.
     ```
     other account required pam_tsol_account.so.1 allow_unlabeled
     ```
     After your edits, this section looks similar to the following:
     ```
     other account requisite pam_roles.so.1 allow_remote
     other account required pam_unix_account.so.1
     other account required pam_tsol_account.so.1 allow_unlabeled
     ```

- Enable specific users to log in to the global zone.
  Assign to these users an administrative label range. The username on the desktop must be the same as the username on the headless system.

  ```
  # usermod -R root -K min_label=ADMIN_LOW -K clearance=ADMIN_LOW username
  ```
3  On the headless system, define the host type of your desktop.

The host type of the desktop system and the host type of the headless system must match. To create this temporary definition, use the `tnctl` command. For more information, see the `tnctl(1M)` man page.

- For a labeled desktop system, define the host type as `cipso`.
  
  # tnctl -h desktop-IP-address:cipso

- For an unlabeled desktop system, define the host type as an unlabeled system that is running at `ADMIN_LOW`.
  
  # tnctl -h desktop-IP-address:admin_low

▼ Use the `rlogin` Command to Log In to a Headless System in Trusted Extensions

This procedure enables you to use the command line and Trusted Extensions GUIs to administer a headless system by assuming a role.

Before You Begin

The headless system must have enough memory to use the Solaris Management Console. The requirements are the same as for the Solaris OS. For details, see "System Requirements and Recommendations" in Solaris 10 11/06 Installation Guide: Basic Installations.

If the administrator’s desktop system is configured with Trusted Extensions, the headless system is identified as a CIPSO system on the desktop system. For details, see “How to Assign a Security Template to a Host or a Group of Hosts” in Solaris Trusted Extensions Administrator’s Procedures.

You have completed “Enable Remote Login in Trusted Extensions” on page 114.

You are a user who is enabled to log in to the headless system.

1  On the desktop system, enable processes from the headless system to display.

a. Enable the headless system to access the X server.

   desktop $ xhost + headless-host

b. Determine the value of the desktop’s DISPLAY variable.

   desktop $ echo $DISPLAY

   :n.n
2 On the Trusted Extensions desktop system, open a Trusted Path workspace.
   - If your user account has direct access to the global zone, create a Trusted Path workspace, then open a terminal window.
   - If your user account does not have direct access to the global zone, assume a role, then open a terminal window.

3 From this terminal window, remotely log in to the headless system.

   ```
   desktop # rlogin headless
   Password: Type the headless user's password
   ```

4 Assume a role.

   If you are logged in to the headless system as an unprivileged user, assume a role with administrative privileges. Use the same terminal window. For example, assume the root role.

   ```
   headless $ su - root
   Password: Type the root password
   ```

   You are now in the global zone.

5 Enable processes on the headless system to display on the desktop system.

   ```
   headless $ setenv DISPLAY desktop:n.n
   headless $ export DISPLAY=n::n
   ```

   You can now administer the headless system by using Trusted Extensions GUIs.

6 Administer the headless system.

   - Start the Solaris Management Console.
     ```
     headless $ /usr/sbin/smc &
     ```
     The Solaris Management Console displays on the desktop system. From the list of toolboxes, choose the Scope=Files, Policy=TSOL for the headless system.

   - Start the txzonemgr.
     ```
     headless $ /usr/sbin/txzonemgr
     ```

   - Access Trusted CDE actions.
     ```
     headless # /usr/dt/bin/dtappsession desktop
     Password: Type the remote password
     ```
Use the `ssh` Command to Log In to a Headless System in Trusted Extensions

This procedure enables you to use the command line to administer a headless system as superuser. To use Trusted Extensions GUIs, complete the steps for remote display in “Use the `rlogin` Command to Log In to a Headless System in Trusted Extensions” on page 116.

Before You Begin

The headless system must have enough memory to use the Solaris Management Console. The requirements are the same as for the Solaris OS. For details, see “System Requirements and Recommendations” in Solaris 10 11/06 Installation Guide: Basic Installations.

If the administrator’s desktop system is configured with Trusted Extensions, the headless system is identified as a CIPSO system on the desktop system. For details, see “How to Assign a Security Template to a Host or a Group of Hosts” in Solaris Trusted Extensions Administrator's Procedures.

You have completed “Enable Remote Login in Trusted Extensions” on page 114.

You are a user who is enabled to log in to the headless system.

1 On the Trusted Extensions desktop system, open a Trusted Path workspace.

   - If your user account has direct access to the global zone, create a Trusted Path workspace, then open a terminal window.

   - If your user account does not have direct access to the global zone, assume a role, then open a terminal window.

2 From this terminal window, remotely log in to the headless system.

   ```
   desktop $ ssh -l username-on-headless headless
   Password: Type the headless user's password
   ```

   The terminal window now displays actions on the headless system.

3 Become superuser.

   If you are not in the global zone on the headless system, switch user to `root` in the same terminal window:

   ```
   headless $ su - root
   Password: Type the root password
   ```

   You can now administer the headless system by using the command line.

   To administer the system by using the administrative GUIs, enable the headless system to display its processes on the desktop. For details, see “Use the `rlogin` Command to Log In to a Headless System in Trusted Extensions” on page 116.
Example 6–1 Setting Up Remote Administration of a Headless System

In this example, the administrator sets up a labeled headless system from a labeled desktop system. As in the Solaris OS, the administrator enables X server access to the desktop system and sets the DISPLAY variable on the headless system.

```
TXdesk1 $ xhost + TXnohead4
TXdesk1 $ whoami
config1
TXdesk1 $ uname -n ; echo $DISPLAY
TXdesk1 :1.0
TXdesk1 $ ssh -l install1 TXnohead4
Password: Ins1Pw01
TXnohead4 $
```

In the global zone, the administrator sets the DISPLAY variable.

```
TXnohead4 # su -
Password: abcd1EFG
TXnohead4 # setenv DISPLAY TXdesk1:1.0
TXnohead4 # export DISPLAY=TXdesk1:1.0
```

Then, the administrator starts the Solaris Management Console.

```
TXnohead4 # /usr/sbin/smc &
```

Finally, the administrator selects the This Computer (TXnohead:Scope=Files, Policy=TSOL) toolbox.

Set Up Administration by Serial Login in Trusted Extensions

Follow this procedure only if you do not have a desktop system with which to configure the headless system. This procedure is not secure.

Before You Begin

You must be superuser in single-user mode on the headless system. For a modicum of security, two people should be present while the system is being configured.

1 Allocate the serial port.

For details, see the serial login procedure in "Managing Devices in Trusted Extensions (Task Map)" in Solaris Trusted Extensions Administrator’s Procedures.

2 Administer the system as superuser.
This appendix discusses site security policy issues, and suggests reference books and web sites for further information:

- “Site Security Policy and Trusted Extensions” on page 122
- “Computer Security Recommendations” on page 123
- “Physical Security Recommendations” on page 124
- “Personnel Security Recommendations” on page 125
- “Common Security Violations” on page 125
- “Additional Security References” on page 126

Creating and Managing a Security Policy

Each Solaris Trusted Extensions site is unique and must determine its own security policy. Perform the following tasks when creating and managing a security policy:

- Establish a security team. The security team needs to have representation from top-level management, personnel management, computer system management and administrators, and facilities management. The team must review Trusted Extensions administrators' policies and procedures, and recommend general security policies that apply to all system users.

- Educate management and administration personnel about the site security policy. All personnel involved in the management and administration of the site must be educated about the security policy. Security policies must not be made available to regular users because this policy information has direct bearing on the security of the computer systems.
Educate users about Trusted Extensions software and the security policy. All users must be familiar with the Solaris Trusted Extensions User’s Guide. Because the users are usually the first to know when a system is not functioning normally, the user must become acquainted with the system and report any problems to a system administrator. A secure environment needs the users to notify the system administrators immediately if they notice any of the following:

- A discrepancy in the last login time that is reported at the beginning of each session
- An unusual change to file data
- A lost or stolen human-readable printout
- The inability to operate a user function

Enforce the security policy. If the security policy is not followed and enforced, the data contained in the system that is configured with Trusted Extensions is not secure. Procedures must be established to record any problems and the measures that were taken to resolve the incidents.

Periodically review the security policy. The security team must perform a periodic review of the security policy and all incidents that occurred since the last review. Adjustments to the policy can then lead to increased security.

Site Security Policy and Trusted Extensions

The security administrator must design the Trusted Extensions network based on the site’s security policy. The security policy dictates configuration decisions, such as the following:

- How much auditing is done for all users and for which classes of events
- How much auditing is done for users in roles and for which classes of events
- How audit data is managed, archived, and reviewed
- Which labels are used in the system and whether the ADMIN_LOW and ADMIN_HIGH labels will viewable by regular users
- Which user clearances are assigned to individuals
- Which devices (if any) can be allocated by which regular users
- Which label ranges are defined for systems, printers, and other devices
- Whether Trusted Extensions is used in an evaluated configuration or not
Computer Security Recommendations

Consider the following list of guidelines when you develop a security policy for your site.

- Assign the maximum label of a system that is configured with Trusted Extensions to not be greater than the maximum security level of work being done at the site.
- Manually record system reboots, power failures, and shutdowns in a site log.
- Document file system damage, and analyze all affected files for potential security policy violations.
- Restrict operating manuals and administrator documentation to individuals with a valid need for access to that information.
- Report and document unusual or unexpected behavior of any Trusted Extensions software, and determine the cause.
- If possible, assign at least two individuals to administer systems that are configured with Trusted Extensions. Assign one person the security administrator authorization for security-related decisions. Assign the other person the system administrator authorization for system management tasks.
- Establish a regular backup routine.
- Assign authorizations only to users who need them and who can be trusted to use them properly.
- Assign privileges to programs only they need the privileges to do their work, and only when the programs have been scrutinized and proven to be trustworthy in their use of privilege. Review the privileges on existing Trusted Extensions programs as a guide to setting privileges on new programs.
- Review and analyze audit information regularly. Investigate any irregular events to determine the cause of the event.
- Minimize the number of administration IDs.
- Minimize the number of setuid and setgid programs. Such programs must be employed only in protected subsystems.
- Ensure that an administrator regularly verifies that regular users have a valid login shell.
- Ensure that an administrator must regularly verifies that regular users have valid user ID values and not system administration ID values.
Physical Security Recommendations

Consider the following list of guidelines when you develop a security policy for your site.

- Restrict access to the systems that are configured with Trusted Extensions. The most secure locations are generally interior rooms that are not on the ground floor.
- Monitor and document access to systems that are configured with Trusted Extensions.
- Secure computer equipment to large objects such as tables and desks to prevent theft. When equipment is secured to a wooden object, increase the strength of the object by adding metal plates.
- Consider removable storage media for sensitive information. Lock up all removable media when the media are not in use.
- Store system backups and archives in a secure location that is separate from the location of the systems.
- Restrict physical access to the backup and archival media in the same manner as you restrict access to the systems.
- Install a high-temperature alarm in the computer facility to indicate when the temperature is outside the range of the manufacturer’s specifications. A suggested range is 10°C to 32°C (50°F to 90°F).
- Install a water alarm in the computer facility to indicate water on the floor, in the subfloor cavity, and in the ceiling.
- Install a smoke alarm to indicate fire, and install a fire-suppression system.
- Install a humidity alarm to indicate too much or too little humidity.
- Consider TEMPEST shielding if machines do not have it. TEMPEST shielding might be appropriate for facility walls, floors, and ceilings.
- Allow only certified technicians to open and close TEMPEST equipment to ensure its ability to shield electromagnetic radiation.
- Check for physical gaps that allow entrance to the facility or to the rooms that contain computer equipment. Look for openings under raised floors, in suspended ceilings, in roof ventilation equipment, and in adjoining walls between original and secondary additions.
- Prohibit eating, drinking, and smoking in computer facilities or near computer equipment. Establish areas where these activities can occur without threat to the computer equipment.
- Protect architectural drawings and diagrams of the computer facility.
- Restrict the use of building diagrams, floor maps, and photographs of the computer facility.
Personnel Security Recommendations

Consider the following list of guidelines when you develop a security policy for your site.

- Inspect packages, documents, and storage media when they arrive and before they leave a secure site.
- Require identification badges on all personnel and visitors at all times.
- Use identification badges that are difficult to copy or counterfeit.
- Establish areas that are prohibited for visitors, and clearly mark the areas.
- Escort visitors at all times.

Common Security Violations

Because no computer is completely secure, a computer facility is only as secure as the people who use it. Most actions that violate security are easily resolved by careful users or additional equipment. However, the following list gives examples of problems that can occur:

- Users give passwords to other individuals who should not have access to the system.
- Users write down passwords, and lose or leave the passwords in insecure locations.
- Users set their passwords to easily guessed words or easily guessed names.
- Users learn passwords by watching other users type a password.
- Unauthorized users remove, replace, or physically tamper with hardware.
- Users leave their systems unattended without locking the screen.
- Users change the permissions on a file to allow other users to read the file.
- Users change the labels on a file to allow other users to read the file.
- Users discard sensitive hardcopy documents without shredding them, or users leave sensitive hardcopy documents in insecure locations.
- Users leave access doors unlocked.
- Users lose their keys.
- Users do not lock up removable storage media.
- Computer screens are visible through exterior windows.
- Network cables are tapped.
- Electronic eavesdropping captures signals emitted from computer equipment.
- Power outages, surges, and spikes destroy data.
- Earthquakes, floods, tornadoes, hurricanes, and lightning destroy data.
- External electromagnetic radiation interference such as sun-spot activity scrambles files.
Additional Security References

Government publications describe in detail the standards, policies, methods, and terminology associated with computer security. Other publications listed here are guides for system administrators of UNIX® systems and are useful in gaining a thorough understanding of UNIX security problems and solutions.

The web also provides resources. In particular, the CERT (http://www.cert.org) web site alerts companies and users to security holes in the software. The SANS Institute (http://www.sans.org/index.php) offers training, an extensive glossary of terms, and an updated list of top threats from the Internet.

U.S. Government Publications

The U.S. government offers many of its publications on the web. The Computer Security Resource Center (CSRC) of the National Institute of Standards and Technology (NIST) publishes articles on computer security. The following are a sample of the publications that can be downloaded from the NIST site (http://csrc.nist.gov/index.html).


UNIX Security Publications


General Computer Security Publications


General UNIX Publications


Using CDE Actions to Install Zones in Trusted Extensions

This appendix covers how to configure labeled zones in Solaris Trusted Extensions by using Trusted CDE actions. If you are running the Solaris 10 11/06 release without patches, or if you are familiar with these actions, use the Trusted CDE actions. To use the txzonemgr script, see “Creating Labeled Zones” on page 60.

- “Associating Network Interfaces With Zones by Using CDE Actions (Task Map)” on page 129
- “Preparing to Create Zones by Using CDE Actions (Task Map)” on page 131
- “Creating Labeled Zones by Using CDE Actions (Task Map)” on page 134

## Associating Network Interfaces With Zones by Using CDE Actions (Task Map)

Do only one of the following tasks. For the trade-offs, see “Planning for Multilevel Access” on page 25.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share a logical interface.</td>
<td>Map the global zone to one IP address, and map the labeled zones to a different IP address.</td>
<td>“Specify Two IP Addresses for the System by Using a CDE Action” on page 129</td>
</tr>
<tr>
<td>Share a physical interface.</td>
<td>Map all zones to one IP address.</td>
<td>“Specify One IP Address for the System by Using a CDE Action” on page 131</td>
</tr>
</tbody>
</table>

### Specify Two IP Addresses for the System by Using a CDE Action

In this configuration, the host’s address applies only to the global zone. Labeled zones share a second IP address with the global zone.
Before You Begin

You are superuser in the global zone. The system has already been assigned two IP addresses. You are in a Trusted CDE workspace.

1 Navigate to the Trusted_Extensions folder.
   a. Click mouse button 3 on the background.
   b. From the Workspace menu, choose Applications → Application Manager.
   c. Double-click the Trusted_Extensions folder icon.
       This folder contains actions that set up interfaces, LDAP clients, and labeled zones.

2 Double-click the Share Logical Interface action and answer the prompts.

   Note – The system must already have been assigned two IP addresses. For this action, provide the second address and a host name for that address. The second address is the shared address.

   Hostname: Type the name for your labeled zones interface
   IP Address: Type the IP address for the interface

   This action configures a host with more than one IP address. The IP address for the global zone is the name of the host. The IP address for a labeled zone has a different host name. In addition, the IP address for the labeled zones is shared with the global zone. When this configuration is used, labeled zones are able to reach a network printer.

   Tip – Use a standard naming convention for labeled zones. For example, add -zones to the host name.

3 (Optional) In a terminal window, verify the results of the action.

   # ifconfig -a

   For example, the following output shows a shared logical interface, hme0:3 on network interface 192.168.0.12 for the labeled zones. The hme0 interface is the unique IP address of the global zone.

   lo0: flags=2001000049<UP,LOOPBACK, RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
       inet 127.0.0.1 netmask ff000000
       ether 0:0:0:0:0:0
   hme0: flags=1000843<BROADCAST, RUNNING, MULTICAST, IPv4> mtu 1500 index 2
       inet 192.168.0.11 netmask fffffe00 broadcast 192.168.0.255
   hme0:3 flags=1000843<BROADCAST, RUNNING, MULTICAST, IPv4> mtu 1500 index 2
       all-zones
       inet 192.168.0.12 netmask fffffe00 broadcast 192.168.0.255
Specify One IP Address for the System by Using a CDE Action

In this configuration, the host’s address applies to all the zones, including the labeled zones.

**Before You Begin**

You are superuser in the global zone. You are in a Trusted CDE workspace.

1. **Navigate to the Trusted_Extensions folder.**
   
a. Click mouse button 3 on the background.
   
b. From the Workspace menu, choose Applications → Application Manager.
   
c. Double-click the Trusted_Extensions folder icon.

   This folder contains actions that setup interfaces, LDAP clients, and labeled zones.

2. **Double-click the Share Physical Interface action.**

   This action configures a host with one IP address. The global zone does not have a unique address. This system cannot be used as a multilevel print server or NFS server.

3. **(Optional) In a terminal window, verify the results of the action.**

   ```bash
   # ifconfig -a
   
   lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
       inet 127.0.0.1 netmask ff000000
       ether 0:0:00:00:00:0
   hme0: flags=1000843<BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
       all-zones
       inet 192.168.0.11 netmask fffffffe00 broadcast 192.168.0.255
   ```

Preparing to Create Zones by Using CDE Actions (Task Map)

The following task map describes the tasks for preparing the system for zone creation. For a discussion of zone creation methods, see “Planning for Zones in Trusted Extensions” on page 23.
### Specifying Zone Names and Zone Labels by Using a CDE Action

You do not have to create a zone for every label in your `label_encodings` file, but you can. The `tnzonecfg` database enumerates the labels that can have zones created for them on this system.

1. **Navigate to the Trusted_Extensions folder.**
   
   a. Click mouse button 3 on the background.
   
   b. From the Workspace menu, choose Applications → Application Manager.
   
   c. Double-click the Trusted_Extensions folder icon.

2. **For every zone, name the zone.**
   
   a. Double-click the Configure Zone action.
   
   b. At the prompt, provide a name.

   **Tip** – Give the zone a similar name to the zone’s label. For example, the name of a zone whose label is `CONFIDENTIAL: INTERNAL USE ONLY` would be `internal`.

3. **Repeat the Configure Zone action for every zone.**

   For example, the default `label_encodings` file contains the following labels:

   ```
   PUBLIC
   CONFIDENTIAL: INTERNAL USE ONLY
   CONFIDENTIAL: NEED TO KNOW
   CONFIDENTIAL: RESTRICTED
   SANDBOX: PLAYGROUND
   MAX LABEL
   ```

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Name each zone, and link the zone name to the zone label.</td>
<td>Name each labeled zone with a version of its label, then associate the name with the label in the Solaris Management Console.</td>
</tr>
<tr>
<td>2.</td>
<td>Configure the network before creating the zones.</td>
<td>Assign a label to the network interface on every host, and do further configuration.</td>
</tr>
</tbody>
</table>
Although you could run the Configure Zone action six times to create one zone per label, consider creating the following zones:

- On a system for all users, create one zone for the PUBLIC label and three zones for the CONFIDENTIAL labels.
- On a system for developers, create a zone for the SANDBOX: PLAYGROUND label. Because SANDBOX: PLAYGROUND is defined as a disjoint label for developers, only systems that developers use need a zone for this label.
- Do not create a zone for the MAX LABEL label, which is defined to be a clearance.

4 Open the Trusted Network Zones tool.  
The tools in the Solaris Management Console are designed to prevent user error. These tools check for syntax errors and automatically run commands in the correct order to update databases.

a. Start the Solaris Management Console.  
   # /usr/sbin/smc &

b. Open the Trusted Extensions toolbox for the local system.
   i. Choose Console → Open Toolbox.
   ii. Select the toolbox that is named This Computer (this-host: Scope=Files, Policy=TSOL).
   iii. Click Open.

c. Under System Configuration, navigate to Computers and Networks.  
   Provide a password when prompted.

d. Double-click the Trusted Network Zones tool.

5 For each zone, associate the appropriate label with a zone name.

a. Choose Action → Add Zone Configuration.  
   The dialog box displays the name of a zone that does not have an assigned label.

b. Look at the zone name, then click Edit.

c. In the Label Builder, click the appropriate label for the zone name.  
   If you click the wrong label, click the label again to deselect it, then click the correct label.
d. **Save the assignment.**

   Click OK in the Label Builder, then click OK in the Trusted Network Zones Properties dialog box.

   You are finished when every zone that you want is listed in the panel, or the Add Zone Configuration menu item opens a dialog box that does not have a value for Zone Name.

**Troubleshooting**

If the Trusted Network Zones Properties dialog box does not prompt for a zone that you want to create, either the zone network configuration file does not exist, or you have already created the file.

- Check that the zone network configuration file does not already exist. Look in the panel for the name.
- If the file does not exist, run the Configure Zone action to supply the zone name. Then, repeat Step 5 to create the file.

---

**Creating Labeled Zones by Using CDE Actions (Task Map)**

One zone can be created for every entry in the Trusted Network Zone Configuration database. You made the entries in “Specify Zone Names and Zone Labels by Using a CDE Action” on page 132, by running the Configure Zone action.

The Trusted_Extensions folder in the Application Manager contains the following actions that create labeled zones:

- **Configure Zone** – Creates a zone configuration file for every zone name
- **Install Zone** – Adds the correct packages and file systems to the zone
- **Zone Terminal Console** – Provides a window for viewing events in a zone
- **Initialize Zone for LDAP** – Makes the zone an LDAP client and prepares the zone for booting
- **Start Zone** – Boots the zone, then starts all the service management framework (SMF) services
- **Shut Down Zone** – Changes the state of the zone from Started to Halted

The tasks are completed in the following order.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install and boot one zone.</td>
<td>Create the first labeled zone. Install the packages, make the zone an LDAP client, and start all services in the zone.</td>
<td>&quot;Install, Initialize, and Boot a Labeled Zone by Using CDE Actions&quot; on page 135</td>
</tr>
</tbody>
</table>
2. Customize the zone.

Remove unwanted services. If you plan to copy or clone the zone, remove zone-specific information.

“Customize a Booted Zone in Trusted Extensions” on page 138

3. Create the other zones.

Use one of the following methods to create the other zones. You chose the method in "Make System and Security Decisions Before Installing Trusted Extensions" on page 44.

Create each zone from scratch.

“Install, Initialize, and Boot a Labeled Zone by Using CDE Actions” on page 135
“Customize a Booted Zone in Trusted Extensions” on page 138

Copy the first labeled zone to another label. Repeat for all zones.

"Use the Copy Zone Method in Trusted Extensions" on page 139

Use a ZFS snapshot to clone the other zones from the first labeled zone.

"Use the Clone Zone Method in Trusted Extensions" on page 140

▼ Install, Initialize, and Boot a Labeled Zone by Using CDE Actions

Because zone creation involves copying an entire operating system, the process is time-consuming. A faster process is to create one zone, make the zone a template for other zones, and then copy or clone that zone template.

Before You Begin

You have completed “Specify Zone Names and Zone Labels by Using a CDE Action” on page 132.

If you are using LDAP as your naming service, you have completed “Make the Global Zone an LDAP Client in Trusted Extensions” on page 58.

If you are going to clone zones, you have completed “Create ZFS Pool for Cloning Zones” on page 53. In the following procedure, you install the zone that you prepared.

1. In the Trusted_Extensions folder, double-click the Install Zone action.

   a. Type the name of the zone that you are installing.

      This action creates a labeled virtual operating system. This step takes some time to finish. Do not do other tasks on the system while Install Zone is running.

      # zone-name: Install Zone
      Preparing to install zone <zone-name>
      Creating list of files to copy from the global zone
      Copying <total> files to the zone
      Initializing zone product registry
Determining zone package initialization order.
Preparing to initialize <subtotal> packages on the zone.
Initializing package <number> of <subtotal>: percent complete: percent

Initialized <subtotal> packages on zone.
Zone <zone-name> is initialized.
The file /zone/internal/root/var/sadm/system/logs/install_log contains a log of the zone installation.

*** Select Close or Exit from the window menu to close this window ***

b. Open a console to monitor events in the installed zone.
   i. Double-click the Zone Terminal Console action.
   ii. Type the name of the zone that was just installed.

2 Initialize the zone.
   ■ If you are using LDAP, double-click the Initialize Zone for LDAP action.
     Zone name: Type the name of the installed zone
     Host name for the zone: Type the host name for this zone
     For example, on a system with a shared logical interface, the values would be similar to the following:
     Zone name: public
     Host name for the zone: machinel-zones
     This action makes the labeled zone an LDAP client of the same LDAP server that serves the global zone. The action is complete when the following information appears:
     zone-name zone will be LDAP client of IP-address
     zone-name is ready for booting
     Zone label is LABEL
     *** Select Close or Exit from the window menu to close this window ***
   ■ If you are not using LDAP, initialize the zone manually by doing one of the following steps.
     The manual procedure in Trusted Extensions is identical to the procedure for the Solaris OS. If the system has at least one all-zones interface, then the hostname for all the zones must match the global zone’s hostname. In general, the answers to the questions during zone initialization are the same as the answers for the global zone.
Supply the host information by doing one of the following:

- After you start the zone in Step 3, answer the questions in the Zone Terminal Console about system characteristics. Your answers are used to populate the `sysidcfg` file in the zone.

- Place a custom `sysidcfg` file in the zone’s `/etc` directory before booting the zone in Step 3.

3 **Double-click the Start Zone action.**

Answer the prompt.

```
Zone name: Type the name of the zone that you are configuring
```

This action boots the zone, then starts all the services that run in the zone. For details about the services, see the `smf(5)` man page.

The Zone Terminal Console tracks the progress of booting the zone. Messages that are similar to the following appear in the console:

```
[Connected to zone ‘public’ console]

[NOTICE: Zone booting up]

... 

Hostname: zonename
Loading smf(5) service descriptions: number/total
Creating new rsa public/private host key pair
Creating new dsa public/private host key pair

rebooting system due to change(s) in /etc/default/init

[NOTICE: Zone rebooting]
```

4 **Monitor the console output.**

Before continuing with “Customize a Booted Zone in Trusted Extensions” on page 138, make sure that the zone has rebooted. The following console login prompt indicates that the zone has rebooted.

```
hostname console login:
```

**Troubleshooting** For Install Zone: If warnings that are similar to the following are displayed: Installation of these packages generated errors: SUNWpkgname, read the install log and finish installing the packages.
Customize a Booted Zone in Trusted Extensions

If you are going to clone zones, this procedure configures a zone to be a template for other zones. In addition, this procedure configures the zone for use.

1. Ensure that the zone has been completely started.
   a. In the zone-name: Zone Terminal Console, log in as root.
      
      hostname console login: root
      Password: Type root password
   
   b. Check that the zone is running.
      The status running indicates that at least one process is running in the zone.
      
      # zoneadm list -v
      ID NAME STATUS PATH
      2 public running /
   
   c. Check that the zone can communicate with the global zone.
      The X server runs in the global zone. Each labeled zone must be able to connect with the global zone to use this service. Therefore, zone networking must work before the zone can be used. For assistance, see “Labeled Zone Is Unable to Access the X Server” on page 89.

2. In the Zone Terminal Console, disable services that are unnecessary in a labeled zone.
   If you are copying or cloning this zone, the services that you disable are disabled in the new zones. The services that are online on your system depend on the service manifest for the zone. Use the netservices limited command to turn off services that labeled zones do not need.
   a. Remove many unnecessary services.
      
      # netservices limited
   
   b. List the remaining services.
      
      # svcs
      ...
      STATE STIME FMRI
      online 13:05:00 svc:/application/graphical-login/cde-login:default
      ...
   
   c. Disable graphical login.
      
      # svcadm disable svc:/application/graphical-login/cde-login
      # svcsc cde-login
      STATE STIME FMRI
      disabled 13:06:22 svc:/application/graphical-login/cde-login:default

   For information about the service management framework, see the smf(5) man page.
3 Shut down the zone.
   Choose one of the following ways:
   
   - **Run the Shut Down Zone action.**
     Provide the name of the zone.
   
   - **In a terminal window in the global zone, use the zlogin command.**
     
     ```
     # zlogin zone-name init 0
     ```
     For more information, see the `zlogin(1)` man page.

4 Verify that the zone is shut down.
   In the `zone-name`:Zone Terminal Console, the following message indicates that the zone is shut down:
   
   [ NOTICE: Zone halted]
   
   If you are not copying or cloning this zone, create the remaining zones in the way that you created this first zone.

5 If you are using this zone as a template for other zones, do the following:
   
   a. **Remove the auto_home_zone-name file.**
      In a terminal window in the global zone, remove this file from the `zone-name` zone.
      
      ```
      cd /zone.zone-name/root/etc
      # ls auto_home*
      auto_home  auto_home_zone-name
      # rm auto_home_zone-name
      ```
      For example, if the public zone were the basis for cloning other zones, remove its `auto_home` file:
      
      ```
      # cd /zone/public/root/etc
      # rm auto_home_public
      ```

Next Steps
   
   - If you are copying a zone, go to “Use the Copy Zone Method in Trusted Extensions” on page 139.
   - If you are cloning a zone, go to “Use the Clone Zone Method in Trusted Extensions” on page 140.

▼ Use the Copy Zone Method in Trusted Extensions

Before You Begin
   
   - You have completed "Specify Zone Names and Zone Labels by Using a CDE Action” on page 132.
You have customized a zone that is the template for cloning in “Creating Labeled Zones by Using CDE Actions (Task Map)” on page 134.

You are not currently running the zone that is your template for cloning.

The Trusted_Extensions folder is displayed.

1. **For every zone that you want to create, double-click the Copy Zone action.**

   Answer the prompts.

   *New Zone Name:* Type name of target zone
   *From Zone Name:* Type name of source zone

   **Caution** – Do not perform other tasks while this task is completing.

2. When the zones are created, check the status of every zone.

   a. Double-click the Zone Terminal Console action.

   b. Log in to each zone.

   c. Complete “Verify the Status of the Zone” on page 70.

---

### Use the Clone Zone Method in Trusted Extensions

#### Before You Begin

- You have completed “Specify Zone Names and Zone Labels by Using a CDE Action” on page 132.
- You have completed “Create ZFS Pool for Cloning Zones” on page 53.
- You have created the zone template by completing “Create ZFS Pool for Cloning Zones” on page 53.
- You have customized a zone that is your template for cloning in “Creating Labeled Zones by Using CDE Actions (Task Map)” on page 134.
- The zone that is your template for cloning is shut down.
- The Trusted_Extensions folder is displayed.

1. **Create a Solaris ZFS snapshot of the zone template.**

   ```bash
   # cd /
   # zfs snapshot zone/zone-name@snapshot
   ```

   You use this snapshot to clone the remaining zones. For a configured zone that is named public, the snapshot command is the following:

   ```bash
   # zfs snapshot zone/public@snapshot
   ```
2 For every zone that you want to create, double-click the Clone Zone action.
   Answer the prompts.
   New Zone Name: Type name of source zone
   ZFS Snapshot: Type name of snapshot

3 Read the information in the dialog box.
   Zone label is <LABEL>
   zone-name is ready for booting
   *** Select Close or Exit from the window menu to close this window ***

4 For each zone, run the Start Zone action.
   Start each zone before running the action for another zone.

5 After the zones are created, check the status of every zone.
   a. Double-click the Zone Terminal Console action.
   b. Complete "Verify the Status of the Zone" on page 70.
Configuration Checklist for Trusted Extensions

This checklist provides an overall view of the major configuration tasks for Solaris Trusted Extensions. The smaller tasks are outlined within the major tasks. The checklist does not replace following the steps in this guide.

Checklist for Configuring Trusted Extensions

The following list summarizes what is required to install and configure Trusted Extensions at your site. Tasks that are covered in other books are cross-referenced.

1. Read.
   - Read the first five chapters of Solaris Trusted Extensions Administrator’s Procedures.
   - Understand site security requirements.
   - Read “Site Security Policy and Trusted Extensions” on page 122.

2. Prepare.
   - Decide the root password.
   - Decide the PROM or BIOS security level.
   - Decide the PROM or BIOS password.
   - Decide if attached peripherals are permitted.
   - Decide if access to remote printers is permitted.
   - Decide if access to unlabeled networks is permitted.
   - Decide the zone creation method.

3. Install Trusted Extensions.
   a. Install the Solaris OS.
      - For remote administration, install the Developer Group or larger group of Solaris packages.
      - For the Clone Zone creation method, select Custom Install, then lay out a /zone partition.
b. Add Trusted Extensions packages.
4. If using IPv6, enable IPv6 for Trusted Extensions.
5. (Optional) Create ZFS pool for cloning zones.
6. Configure labels.
   a. Finalize your site's label encodings file.
   b. Check and install the file.
   c. Reboot.
7. Configure interfaces for the global zone and for labeled zones.
8. Configure the Solaris Management Console.
9. Configure the naming service.
   ■ Use the files naming service, which requires no configuration.
   ■ Or, configure LDAP
     a. Create either a Trusted Extensions proxy server or a Trusted Extensions LDAP server.
     b. Register the Solaris Management Console with LDAP.
     c. Create an LDAP toolbox for the Solaris Management Console.
10. Configure network connections for LDAP.
    ■ Assign an LDAP server or proxy server to the c1pso host type in a remote host template.
    ■ Assign the local system to the c1pso host type in a remote host template.
    ■ Make the local system a client of the LDAP server.
11. Create labeled zones.
    ■ OPTION 1: Use txzonemgr script.
    ■ OPTION 2: Use Trusted CDE actions.
      a. Configure labeled zones
         i. In the Solaris Management Console, associate zone names with particular labels.
         ii. Run the Configure Zone action.
      b. Run the Install Zone action.
      c. Run the Initialize for LDAP action.
      d. Run the Start Zone action.
      e. Customize the running zone.
      f. Run the Shut Down Zone action.
      g. Customize the zone while the zone is shut down.
      h. (Optional) Create a ZFS snapshot.
         i. Create the remaining zones from scratch, or by using the Copy Zone or the Clone Zone action.
12. Configure the network. See “Configuring Trusted Network Databases (Task Map)” in *Solaris Trusted Extensions Administrator’s Procedures*.
   - Identify single-label hosts and limited-range hosts.
   - Determine the labels to apply to incoming data from unlabeled hosts.
   - Customize the remote host templates.
   - Assign individual hosts to templates.
   - Assign subnets to templates.


14. Configure local users and local administrative roles.
   - Create the Security Administrator role.
   - Create a local user who can assume the Security Administrator role.
   - Create other roles, and possibly other local users to assume these roles.

15. Create home directories on the NFS server.
   - Create home directories for each user at every label that the user can access.
   - (Optional) Prevent users from reading their lower-level home directories.

16. Configure printing. See “Managing Printing in Trusted Extensions (Task Map)” in *Solaris Trusted Extensions Administrator’s Procedures*.

17. Configure devices. See “Handling Devices in Trusted Extensions (Task Map)” in *Solaris Trusted Extensions Administrator’s Procedures*.
   a. Assign the Device Management profile or the System Administrator profile to a role.
   b. To make devices usable, do one of the following:
      - Per system, make devices allocatable.
      - Assign the Allocate Device authorization to selected users and roles.

18. Configure Solaris features.
   - Configure auditing.
   - Configure security settings.
   - Enable particular LDAP clients to be LDAP administration systems.
   - Configure users in LDAP.
   - Configure network roles in LDAP.
   - Mount and share file systems. See Chapter 11, “Managing and Mounting Files in Trusted Extensions (Tasks),” in *Solaris Trusted Extensions Administrator’s Procedures*.
credit: A set of sensitivity labels that are approved for a class of users or resources. A set of valid labels. See also system accreditation range and user accreditation range.

administrative role: A role that gives required authorizations, privileged commands, privileged actions, and the Trusted Path security attribute to allow the role to perform administrative tasks. Roles perform a subset of Solaris superuser's capabilities, such as backup or auditing.

allocation: A mechanism by which access to a device is controlled. See device allocation.

application search path: In CDE, the search path is used by the system to find applications and certain configuration information. The application search path is controlled by a trusted role.

authorization: A right granted to a user or role to perform an action that would otherwise not be allowed by security policy. Authorizations are granted in rights profiles. Certain commands require the user to have certain authorizations to succeed. For example, to print a PostScript file requires the Print Postscript authorization.

CDE: See Common Desktop Environment.

CIPSO label: Common IP Security Option. CIPSO is the label standard that Trusted Extensions implements.

clearance: The upper limit of the set of labels at which a user can work. The lower limit is the minimum label that is assigned by the security administrator. A clearance can be one of two types, a session clearance or a user clearance.

client: A system connected to a network.

closed network: A network of systems that are configured with Trusted Extensions. The network is cut off from any non-Trusted Extensions host. The cutoff can be physical, where no wire extends past the Trusted Extensions network. The cutoff can be in the software, where the Trusted Extensions hosts recognize only Trusted Extensions hosts. Data entry from outside the network is restricted to peripherals attached to Trusted Extensions hosts. Contrast with open network.

Common Desktop Environment: The historical windowing environment for administering Trusted Extensions software. Trusted Extensions modifies the environment to create Trusted CDE. The Sun Java Desktop System is also modified to create a Trusted JDS.

.copy_files file: An optional setup file on a multilabel system. This file contains a list of startup files, such as .cshrc or .mozilla, that the user environment or user applications require in order for the system or application to behave well. The files that are listed in .copy_files are then copied to the user's home directory at higher labels, when those directories are created. See also .link_files file.
DAC

See discretionary access control.

device

Devices include printers, computers, tape drives, floppy drives, CD-ROM drives, DVD drives, audio devices, and internal pseudo terminal devices. Devices are subject to the read equal write equal MAC policy. Access to removable devices, such as DVD drives, are controlled by device allocation.

device allocation

A mechanism for protecting the information on an allocatable device from access by anybody except the user who allocates the device. Until a device is deallocated, no one but the user who allocated a device can access any information that is associated with the device. For a user to allocate a device, that user must have been granted the Device Allocation authorization by the security administrator.

discretionary access control

The type of access that is granted or that is denied by the owner of a file or directory at the discretion of the owner. Solaris Trusted Extensions provides two kinds of discretionary access controls (DAC), UNIX permission bits and ACLs.

domain

A part of the Internet naming hierarchy. It represents a group of systems on a local network that share administrative files.

domain name

The identification of a group of systems on a local network. A domain name consists of a sequence of component names separated by periods (for example: example1.town.state.country.org). As you read a domain name from left to right, the component names identify more general, and usually remote, areas of administrative authority.

evaluated configuration

One or more Trusted Extensions hosts that are running in a configuration that has been certified as meeting specific criteria by a certification authority. In the United States, those criteria are the TCSEC. The evaluating and certifying body is the NSA. Solaris Trusted Extensions software will be certified to the Common Criteria v2.1 [August 1999], an ISO standard, to Evaluation Assurance Level (EAL) 4, and against a number of protection profiles.

The Common Criteria v2 (CCv2) and protection profiles make the earlier TCSEC U.S. standard obsolete through level B1+. A mutual recognition agreement for CCv2 has been signed by the United States, the United Kingdom, Canada, Denmark, the Netherlands, Germany, and France.

The Trusted Extensions configuration target provides functionality that is similar to the TCSEC C2 and B1 levels, with some additional functionality.

filesystem

A collection of files and directories that, when set into a logical hierarchy, make up an organized, structured set of information. File systems can be mounted from your local system or a remote system.

GFI

Government Furnished Information. In this manual, it refers to a U.S. government-provided label_encodings file. In order to use a GFI with Trusted Extensions software, you must add the Sun-specific LOCAL DEFINITIONS section to the end of the GFI. For details, see Chapter 5, “Customizing LOCAL DEFINITIONS,” in Solaris Trusted Extensions Label Administration.

hostname

The name by which a system is known to other systems on a network. This name must be unique among all the systems within a given domain. Usually, a domain identifies a single organization. A host name can be any combination of letters, numbers, and minus sign (−), but it cannot begin or end with a minus sign.

initial label

The minimum label assigned to a user or role, and the label of the user's initial workspace. The initial label is the lowest label at which the user or role can work.
**install team**  A team of at least two people who together oversee the installation and configuration of Solaris Trusted Extensions software. One team member is responsible for security decisions, and the other for system administration decisions.

**IP address**  Internet protocol address. A unique number that identifies a networked system so it can communicate by means of Internet protocols. In IPv4, the address consists of four numbers separated by periods. Most often, each part of the IP address is a number between 0 and 225. However, the first number must be less than 224 and the last number cannot be 0.

IP addresses are logically divided into two parts: the network, and the system on the network. The network number is similar to a telephone area code. In relation to the network, the system number is similar to a phone number.

**label**  A security identifier that is assigned to an object. The label is based on the level at which the information in that object should be protected. Depending on how the security administrator has configured the user, a user can see the sensitivity label, or no labels at all. Labels are defined in the label_encodings file.

**label configuration**  A Trusted Extensions installation choice of single-label or multilabel sensitivity labels. In most circumstances, label configuration is identical on all systems at your site.

**label_encodings file**  The file where the complete sensitivity label is defined, as are accreditation ranges, label view, default label visibility, default user clearance, and other aspects of labels.

**label range**  A set of sensitivity labels that are assigned to commands, zones, and allocatable devices. The range is specified by designating a maximum label and a minimum label. For commands, the minimum and maximum labels limit the labels at which the command can be executed. Remote hosts that do not recognize labels are assigned a single sensitivity label, as are any other hosts that the security administrator wants to restrict to a single label. A label range limits the labels at which devices can be allocated and restrict the labels at which information can be stored or processed when using the device.

**label set**  See security label set.

**labeled host**  A labeled host sends network packets that are labeled with CIPSO labels. All Trusted Extensions hosts are labeled hosts.

**.link_files file**  An optional setup file on a multilabel system. This file contains a list of startup files, such as .cshrc or .mozilla, that the user environment or user applications require in order for the system or application to behave well. The files that are listed in .link_files are then linked to the user’s home directory at higher labels, when those directories are created. See also .copy_files file.

**MAC**  See mandatory access control.

**mandatory access control**  Access control that is based on comparing the sensitivity label of a file, directory, or device to the sensitivity label of the process that is trying to access it. The MAC rule, read equal–read down, applies when a process at one label attempts to read a file at a lower label. The MAC rule, write equal–read down, applies when a process at one label attempts to write to a directory at another label.
minimum label

The lower bound of a user’s sensitivity labels and the lower bound of the system’s sensitivity labels. The minimum label set by the security administrator when specifying a user’s security attributes is the sensitivity label of the user’s first workspace at first login. The sensitivity label that is specified in the minimum label field by the security administrator in the label_encodings file sets the lower bound for the system.

naming service

A distributed network database that contains key system information about all the systems on a network, so that the systems can communicate with each other. With a naming service, the system information can be maintained, managed, and accessed on a network-wide basis. Sun supports the LDAP naming service. Without such a service, each system has to maintain its own copy of the system information in the local /etc files.

networked systems

A group of systems that are connected through hardware and software, sometimes referred to as a local area network (LAN). One or more servers are usually needed when systems are networked.

non-networked systems

Computers that are not connected to a network or do not rely on other hosts.

open network

A network of Solaris Trusted Extensions hosts that is connected physically to other networks and that uses Trusted Extensions software to communicate with non-Trusted Extensions hosts. Contrast with closed network.

outside the evaluated configuration

When software that has been proved to be able to satisfy the criteria for an evaluated configuration, is configured with settings that do not satisfy security criteria, the software is described as being outside the evaluated configuration.

permission bits

A type of discretionary access control in which the owner specifies a set of bits to signify who can read, write, or execute a file or directory. Three different sets of permissions are assigned to each file or directory: one set for the owner, one set for the owner’s group, and one set for all others.

primary administrator

The person who is entrusted to create new rights profiles for the organization, and to fix machine difficulties that are beyond the power of the security administrator and system administrator combined. This role should be assumed rarely. After initial security configuration, more secure sites can choose not to create this role, and not to assign any role the Primary Administrator profile.

privilege

Powers that are granted to a process that is executing a command. The full set of privileges describes the full capabilities of the system, from basic capabilities to administrative capabilities. Privileges that bypass security policy, such as setting the clock on a system, can be granted by a site’s security administrator.

process

An action that executes a command on behalf of the user who invokes the command. A process receives a number of security attributes from the user, including the user ID (UID), the group ID (GID), the supplementary group list, and the user’s audit ID (AUID). Security attributes received by a process include any privileges that are available to the command being executed and the sensitivity label of the current workspace.

profile shell

A special shell that recognizes privileges. A profile shell typically limits users to fewer commands, but can allow these commands to run with privilege. The profile shell is the default shell of a trusted role.

remote host

A different system than the local system. A remote host can be an unlabeled host or a labeled host.
Abundling mechanism for commands and CDE actions and for the security attributes that are assigned to these executables. Rights profiles allow Solaris administrators to control who can execute which commands and to control the attributes these commands have when they are executed. When a user logs in, all rights assigned to that user are in effect, and the user has access to all the commands, CDE actions, and authorizations assigned in all of that user's rights profiles.

role
A role is like a user, except that a role cannot log in. Typically, a role is used to assign administrative capabilities. Roles are limited to a particular set of commands and CDE actions. See administrative role.

security administrator
In an organization where sensitive information must be protected, the person or persons who define and enforce the site's security policy. These persons are cleared to access all information that is being processed at the site. In software, the Security Administrator administrative role is assigned to one or more individuals who have the proper clearance. These administrators configure the security attributes of all users and hosts so that the software enforces the site's security policy. In contrast, see system administrator.

security attribute
An attribute that is used to enforce Trusted Extensions security policy. Various sets of security attributes are assigned to processes, users, zones, hosts, allocatable devices, and other objects.

security label set
Specifies a discrete set of security labels for a tnrhtp database entry. Hosts that are assigned to a template with a security label set can send and receive packets that match any one of the labels in the label set.

security policy
On a Trusted Extensions host, the set of DAC, MAC, and labeling rules that define how information can be accessed. At a customer site, the set of rules that define the sensitivity of the information being processed at that site and the measures that are used to protect the information from unauthorized access.

sensitivity label
A security label that is assigned to an object or a process. The label is used to limit access according to the security level of the data that is contained.

Solaris Management Console
A Java-based administrative GUI that contains toolboxes of administrative programs. In Trusted CDE, this GUI can be launched from the Application Manager. Most system, network, and user administration is done by using the Console toolboxes.

system
Generic name for a computer. After installation, a system on a network is often referred to as a host.

system accreditation range
The set of all valid labels that are created according to the rules that the security administrator defines in the label_encodings file, plus the two administrative labels that are used on every system that is configured with Trusted Extensions. The administrative labels are ADMIN_LOW and ADMIN_HIGH.

system administrator
In Trusted Extensions, the trusted role assigned to the user or users who are responsible for performing standard system management tasks such as setting up the non-security-relevant portions of user accounts. In contrast, see security administrator.

tnrdb database
The trusted network remote host database. This database assigns a set of label characteristics to a remote host. The database is accessible either as a file in /etc/security/tsol/tnrdb or from the LDAP server.

tnrhtp database
The trusted network remote host template. This database defines the set of label characteristics that a remote host can be assigned. The database is accessible either as a file in /etc/security/tsol/tnrhtp, or from the LDAP server.
toolbox

A collection of programs in the Solaris Management Console. On a Trusted Extensions host, administrators use Policy=TSOL toolboxes. Each toolbox has programs that are usable in the scope of the toolbox. For example, the Trusted Network Zones tool, which handles the system’s tnzonecfg database, exists only in the Files toolbox, because its scope is always local. The User Accounts program exists in all toolboxes. To create a local user, the administrator uses the Files toolbox, and to create a network user, the administrator uses the LDAP toolbox.

trusted role

See administrative role.

trusted stripe

A region that cannot be spoofed. In Trusted CDE, the trusted stripe is at the bottom of the screen, and in Trusted JDS the stripe can be at the top. The stripe provides visual feedback about the state of the window system: a trusted path indicator and window sensitivity label. When sensitivity labels are configured to not be viewable for a user, the trusted stripe is reduced to an icon that displays only the trusted path indicator.

txzonemgr script

The /usr/sbin/txzonemgr script provides a simple GUI for managing labeled zones. The script provides contextual menus with appropriate choices. txzonemgr is run by root in the global zone.

unlabeled host

A system that sends unlabeled network packets, such as a system that is running the Solaris OS.

user accreditation range

The set of all possible labels at which a regular user can work on the system. The site’s security administrator specifies the range in the label_encodings file. The rules for well-formed labels that define the system accreditation range are additionally restricted by the values in the ACCREDITATION RANGE section of the file: the upper bound, the lower bound, the combination constraints and other restrictions.

user clearance

The clearance assigned by the security administrator that sets the upper bound of the set of labels at which a user can work at any time. The user can decide to accept the default, or can further restrict that clearance during any particular login session.
Index

A
accessing the X server, 89-91
accounts
  creating, 77-83
  planning, 26
Action failed. Reconnect to Solaris Zone?, 89-91
actions, See administrative actions
  adding
    LDAP toolbox, 110-111
    local role with roleadd, 79
    local user with useradd, 81
    roles, 77-79
    Trusted Extensions packages, 46-47
    users by using lpaddent, 86-88
    users who can assume roles, 79-81
    zone-specific interface, 75-77
Additional Trusted Extensions Configuration Tasks, 91-95
addresses
  sharing between global and labeled zones, 129-130
  specifying one IP address per system, 65, 131
administrative actions
  Check Encodings, 50-53
  Clone Zone, 140-141
  Configure Zone, 132
  Copy Zone, 139-140
  Create LDAP Client, 58-60
  Initialize Zone for LDAP, 136
  Install Zone, 135
  Share Logical Interface, 130
  Share Physical Interface, 131
  administrative actions (Continued)
    Shut Down Zone, 139
    Start Zone, 137
    Zone Terminal Console, 73, 136, 137
  allocating devices, for copying data, 91-93
  allocating, tape drive, 94
  Associating Network Interfaces With Zones by Using
    CDE Actions (Task Map), 129-131
  audit planning, 26
  auditing, planning, 26

B
backing up, previous system before installation, 29-30
booting
  zones, 69-70, 137

C
Cannot reach global zone, 89-91
Check Encodings action, 50-53
checking
  label_encodings file, 50-53
  roles are working, 82-83
checklists for install team, 143-145
chk_encodings command, 52-53
Clone Zone action, 140-141
collecting information
  before installing Trusted Extensions, 43
  for LDAP service, 99-100
  planning Trusted Extensions installation, 29
configuration files, copying, 91-93
Configure Zone action, 132
Configuring an LDAP Proxy Server on a Trusted Extensions Host (Task Map), 98-99
Configuring an LDAP Server on a Trusted Extensions Host (Task Map), 98
Configuring the Solaris Management Console for LDAP (Task Map), 108-112
configuring Trusted Extensions checklist for install team, 143-145
initial procedures, 49-95
labeled zones, 60-77, 129-141
task maps, 33-37
configuring
as a role or as superuser?, 45
LDAP for Trusted Extensions, 99-107
LDAP proxy server for Trusted Extensions clients, 108
Solaris Management Console for LDAP, 108-112
Trusted Extensions labeled zones, 60-77, 129-141
Trusted Extensions software, 49-95
console window, troubleshooting not opening, 89
Copy Zone action, 139-140
Create a new zone menu item, 66, 73-74
Create LDAP Client action, 58-60
Creating Labeled Zones, 60-77
Creating the Labeled Zones by Using CDE Actions (Task Map), 134-141
creating
accounts, 77-83
accounts during or after configuration, 45
home directories, 83-86
home directory server, 83-84
LDAP client, 58-60
LDAP proxy server for Trusted Extensions clients, 108
LDAP toolbox, 110-111
local role with roleadd, 79
local user with useradd, 81
roles, 77-79
users who can assume roles, 79-81
zones, 135-137
credentials, registering LDAP with the Solaris Management Console, 109-110
D
deciding
to configure as a role or as superuser, 45
to use a Sun-supplied encodings file, 44
decisions to make
based on site security policy, 122
before installing Trusted Extensions, 44-45
deleting
labeled zones, 94
Trusted Extensions, 94-95
directories, for naming service setup, 106
E
enabling
IPv6 network, 53
LDAP administration from a client, 110
login to labeled zone, 83
encodings file, See label_encodings file
error messages, troubleshooting, 89-91
/etc/system file, modifying for IPv6 network, 53
F
files, copying from removable media, 93
H
hardware planning, 22-23
Headless System Configuration in Trusted Extensions (Task Map), 113-119
home directories
creating, 83-86
creating server for, 83-84
logging in and getting, 84-86
I
Initialize Zone for LDAP action, 136
initializing
Solaris Management Console, 56-58
initializing (Continued)
- zones, 136
- zones for LDAP, 135-137
install team, checklist for configuring Trusted Extensions, 143-145
Install Zone action, 135
- troubleshooting, 137
installation menu
- Create a new zone, 66, 73-74
- Zone Console, 69
installation, See Trusted Extensions installation installing
- See also Trusted Extensions installation
- label_encodings file, 50-53
- Solaris OS for Trusted Extensions, 39-47
- Sun Java System Directory Server, 99-107
- Trusted Extensions packages, 46-47
- zones, 68-69, 135-137
IPv6
- entry in /etc/system file, 53
- troubleshooting, 53

LDAP configuration
- creating client, 58-60
- for Trusted Extensions, 99-107
LDAP server
- collecting information for, 99-100
- configuring multilevel port, 105
- configuring naming service, 100-102
- configuring proxy for Trusted Extensions clients, 108
- creating proxy for Trusted Extensions clients, 108
- installing in Trusted Extensions, 100-102
- protecting access logs, 102-103
- protecting error logs, 103-104
- registering credentials with Solaris Management Console, 109-110
LDAP
- enabling administration from a client, 110
- planning, 26
logging in, to a home directory server, 84-86
\lpaddin command, 86-88

M
- media, copying files from removable, 93
- modifying, label_encodings file, 50-53
- multilevel server, planning, 25-26

N
- names
  - specifying for zones, 66-68, 132-134
- naming
  - zones, 66-68, 132-134
- network, See Trusted Extensions network
- No route available, 89-91

P
- planning
  - account creation, 26
  - administration strategy, 21
  - auditing, 26
planning (Continued)
  data migration, 29-30
  hardware, 22-23
  installation, 19
  labels, 21-22
  LDAP naming service, 26
  network, 23
  NFS server, 25-26
  printing, 25-26
  Trusted Extensions configuration strategy, 28
  Trusted Extensions installation, 19-30
  zones, 23-25
Preparing to Create Zones by Using CDE Actions (Task Map), 131-134
printing, planning, 25-26
publications, security and UNIX, 126-127

R
rebooting
  activating labels, 54-56
  enabling login to labeled zone, 83
registering, LDAP credentials with the Solaris Management Console, 109-110
removing Trusted Extensions, 94-95
requirements for Trusted Extensions
  Solaris installation options, 40-41
  Solaris installed systems, 41-42
roadmaps
  Task Map: Configuring Trusted Extensions, 34-37
  Task Map: Preparing a Solaris System for Trusted Extensions, 33
  Task Map: Preparing For and Installing Trusted Extensions, 33-34
roleadd command, 79
roles
  adding local role with roleadd, 79
  creating Security Administrator, 77-79
  determining when to create, 45
  verifying they work, 82-83
root passwords, required in Trusted Extensions, 41
S
screens, initial display, 56
Security Administrator role, creating, 77-79
security
  install team, 39
  publications, 126-127
  root password, 41
  site security policy, 121-127
Share Logical Interface action, 130
Share Physical Interface action, 131
Shut Down Zone action, 139
site security policy
  common violations, 125
  personnel recommendations, 125
  physical access recommendations, 124
  recommendations, 123
  tasks involved, 121-127
  Trusted Extensions configuration decisions, 122
  understanding, 20-21
Solaris installation options, requirements, 40-41
Solaris installed systems, requirements for Trusted Extensions, 41-42
Solaris Management Console
  configuring for LDAP, 108-112
  configuring LDAP toolbox, 110-111
  enabling LDAP toolbox to be used, 110
  initializing, 56-58
  loading a Trusted Extensions toolbox, 56-58
  registering LDAP credentials, 109-110
  troubleshooting, 56-58
  using Trusted Network Zone Configuration tool, 67, 133
  working with Sun Java System Directory Server, 108-112
Solaris OS installation, options that affect Trusted Extensions, 39-47
Solaris Trusted Extensions, See Trusted Extensions
Start Zone action, 137
starting
  zones, 69-70, 137
Sun Java System Directory Server, See LDAP server
Tape devices, allocating, 94
Task Map: Configuring Trusted Extensions, 34-37
Task Map: Preparing a Solaris System for Trusted Extensions, 33
Task Map: Preparing For and Installing Trusted Extensions, 33-34
tasks and task maps
  Additional Trusted Extensions Configuration Tasks, 91-95
  Associating Network Interfaces With Zones by Using CDE Actions (Task Map), 129-131
  Configuring an LDAP Proxy Server on a Trusted Extensions Host (Task Map), 98-99
  Configuring an LDAP Server on a Trusted Extensions Host (Task Map), 98
  Configuring the Solaris Management Console for LDAP (Task Map), 108-112
  Creating Labeled Zones, 60-77
  Creating the Labeled Zones by Using CDE Actions (Task Map), 134-141
  Headless System Configuration in Trusted Extensions (Task Map), 113-119
  Preparing to Create Zones by Using CDE Actions (Task Map), 131-134
  tcp_listen=true LDAP setting, 110
toolboxes
  adding LDAP server to tsol ldap.tbx, 110-111
  loading in Trusted Extensions, 56-58
  Scope=LDAP, 109-110
troubleshooting
  accessing X server, 89-91
  console window not opening, 89
  Exception in thread "main"
    java.lang.NoClassDefFoundError: wizard, 47
  Installation of these packages generated errors: SUNWpkgname, 69, 137
  IPv6 configuration, 53
  Solaris Management Console, 56-58
  Trusted Extensions configuration, 88-91
  Trusted Network Zones Properties, 134
  Trusted Extensions configuration (Continued)
    databases for LDAP, 99-107
    evaluated configuration, 20
    headless systems, 113-119
    initial procedures, 49-95
    labeled zones, 60-77, 129-141
    LDAP, 99-107
    troubleshooting, 88-91
  Trusted Extensions installation
    collecting information before, 43
    decisions to make before, 44-45
    division of tasks, 39
    headless systems, 113-119
    install team responsibilities, 39
    Java wizard, 46-47
    memory requirements, 22
    pkgadd commands, 46-47
    planning, 19-30
    planning hardware, 22-23
    planning installation and configuration strategy, 28
    planning network, 23
    reboot to activate labels, 54-56
    results before configuration, 30-31
    task maps, 33-37
    two-role configuration strategy, 28
    uninstalling, 94-95
  Trusted Extensions network
    adding zone-specific interface, 75-77
    enabling IPv6, 53
    planning, 23
  Trusted Extensions requirements
    root password, 41
    Solaris installation, 40-41
    Solaris installed systems, 41-42
  Trusted Extensions
    See also Trusted Extensions installation differences from Solaris administrator’s perspective, 30-31
    installing, 46-47
    preparing to install, 39-42, 43-45
    uninstalling, 94-95
  Trusted Network Zones tool
    assigning labels to named zones, 67, 133
    troubleshooting, 134

157
Index

tsol_ldap.tbx file, 110-111

txzonemgr script, 61-62, 90

U
uninstalling Trusted Extensions, 94-95
useradd command, 81
users
  adding from NIS server, 86-88
  adding local user with useradd, 81
  creating initial users, 79-81
/usr/sbin/txzonemgr script, 61-62, 90, 134

V
verifying
  roles are working, 82-83
  zone status, 70-71

W
workspaces, initial display, 56

Z
ZFS pools, creating for cloning zones, 53-54
ZFS, unsupported but fast zone creation method, 25
Zone Console, output, 69
Zone Terminal Console action
  output, 73, 137
  using, 136
zones
  adding network interface, 75-77
  associating zone names with labels, 67, 133
  booting, 69-70, 137
  creating, 135-137
  creating ZFS pool for cloning, 53-54
  customizing, 71-73
  deciding creation method, 23-25
  deleting, 94
  enabling login to, 83
  halting, 72
  initializing, 136
  initializing for LDAP, 135-137
  installing, 68-69, 135-137
  showing zone activity, 69, 73, 137
  shutting down, 139
  specifying a shared IP address, 129-130
  specifying labels, 66-68, 132-134
  specifying names, 66-68, 132-134
  specifying one IP address for all zones, 65, 131
  starting, 137
  troubleshooting access, 89-91
  troubleshooting installation, 69
  txzonemgr script, 90
  /usr/sbin/txzonemgr script, 61-62, 134
  verifying status, 70-71

zones (Continued)