Una pregunta común que probablemente querrá ver respondida es qué CPU están ejecutando subprocesos y durante cuánto tiempo. Puede utilizar los sondeos on-cpu y off-cpu para responder fácilmente a esta pregunta en base a todo un sistema, tal y como se muestra en el siguiente ejemplo:
sched:::on-cpu { self->ts = timestamp; } sched:::off-cpu /self->ts/ { @[cpu] = quantize(timestamp - self->ts); self->ts = 0; }
La ejecución de la secuencia de comandos anterior devuelve una salida similar al siguiente ejemplo:
# dtrace -s ./where.d dtrace: script './where.d' matched 5 probes ^C 0 value ------------- Distribution ------------- count 2048 | 0 4096 |@@ 37 8192 |@@@@@@@@@@@@@ 212 16384 |@ 30 32768 | 10 65536 |@ 17 131072 | 12 262144 | 9 524288 | 6 1048576 | 5 2097152 | 1 4194304 | 3 8388608 |@@@@ 75 16777216 |@@@@@@@@@@@@ 201 33554432 | 6 67108864 | 0 1 value ------------- Distribution ------------- count 2048 | 0 4096 |@ 6 8192 |@@@@ 23 16384 |@@@ 18 32768 |@@@@ 22 65536 |@@@@ 22 131072 |@ 7 262144 | 5 524288 | 2 1048576 | 3 2097152 |@ 9 4194304 | 4 8388608 |@@@ 18 16777216 |@@@ 19 33554432 |@@@ 16 67108864 |@@@@ 21 134217728 |@@ 14 268435456 | 0 |
La salida anterior muestra que los subprocesos de la CPU 1 tienden a ejecutarse por menos de 100 microsegundos seguidos, o durante aproximadamente 10 milisegundos. En el histograma se muestra una importante diferencia entre los dos clústeres de datos. Podría estar también interesado en saber qué CPU están ejecutando un proceso determinado. También puede utilizar los sondeos on-cpu y off-cpu para responder a esta cuestión. La siguiente secuencia de comandos muestra qué CPU ejecutan una aplicación determinada durante un periodo de 10 segundos:
#pragma D option quiet dtrace:::BEGIN { start = timestamp; } sched:::on-cpu /execname == $$1/ { self->ts = timestamp; } sched:::off-cpu /self->ts/ { @[cpu] = sum(timestamp - self->ts); self->ts = 0; } profile:::tick-1sec /++x == 10/ { exit(0); } dtrace:::END { printf("CPU distribution of imapd over %d seconds:\n\n", (timestamp - start) / 1000000000); printf("CPU microseconds\n--- ------------\n"); normalize(@, 1000); printa("%3d %@d\n", @); }
Ejecutando la secuencia de comandos anterior en un gran servidor de correo y especificando el daemon IMAP, devuelve una salida similar al ejemplo siguiente:
# dtrace -s ./whererun.d imapd CPU distribution of imapd over 10 seconds: CPU microseconds --- ------------ 15 10102 12 16377 21 25317 19 25504 17 35653 13 41539 14 46669 20 57753 22 70088 16 115860 23 127775 18 160517 |
Solaris tiene en cuenta el tiempo que ha estado un subproceso en inactividad a la hora de seleccionar la CPU en la que ejecutar el subproceso: un subproceso que ha estado en actividad durante menos tiempo tiende a no migrar. Puede utilizar los sondeos off-cpu y on-cpu para observar esta conducta:
sched:::off-cpu /curlwpsinfo->pr_state == SSLEEP/ { self->cpu = cpu; self->ts = timestamp; } sched:::on-cpu /self->ts/ { @[self->cpu == cpu ? "sleep time, no CPU migration" : "sleep time, CPU migration"] = lquantize((timestamp - self->ts) / 1000000, 0, 500, 25); self->ts = 0; self->cpu = 0; }
La ejecución de la secuencia de comandos anterior durante aproximadamente 30 segundos devuelve una salida similar al siguiente ejemplo:
# dtrace -s ./howlong.d dtrace: script './howlong.d' matched 5 probes ^C sleep time, CPU migration value -------------- Distribution ------------ count < 0 | 0 0 |@@@@@@@ 6838 25 |@@@@@ 4714 50 |@@@ 3108 75 |@ 1304 100 |@ 1557 125 |@ 1425 150 | 894 175 |@ 1526 200 |@@ 2010 225 |@@ 1933 250 |@@ 1982 275 |@@ 2051 300 |@@ 2021 325 |@ 1708 350 |@ 1113 375 | 502 400 | 220 425 | 106 450 | 54 475 | 40 >= 500 |@ 1716 sleep time, no CPU migration value -------------- Distribution ------------ count < 0 | 0 0 |@@@@@@@@@@@@ 58413 25 |@@@ 14793 50 |@@ 10050 75 | 3858 100 |@ 6242 125 |@ 6555 150 | 3980 175 |@ 5987 200 |@ 9024 225 |@ 9070 250 |@@ 10745 275 |@@ 11898 300 |@@ 11704 325 |@@ 10846 350 |@ 6962 375 | 3292 400 | 1713 425 | 585 450 | 201 475 | 96 >= 500 | 3946 |
La salida de ejemplo muestra que hay más ocurrencias de no migración que de migración. Asimismo, cuando los tiempos de inactividad son mayores, la posibilidad de migración es más alta. Las distribuciones son notablemente diferentes en el intervalo inferior a los 100 milisegundos, pero su apariencia es muy similar a medida que aumentan los tiempos de inactividad. Este resultado parecería indicar que el tiempo de inactividad no es un factor decisivo en la planificación una vez que se supera un umbral determinado.
El ejemplo final que utiliza off-cpu y on-cpu muestra cómo utilizar estos sondeos junto con el campo pr_stype para determinar por qué los subprocesos se encuentran en inactividad y durante cuánto tiempo:
sched:::off-cpu /curlwpsinfo->pr_state == SSLEEP/ { /* * We're sleeping. Track our sobj type. */ self->sobj = curlwpsinfo->pr_stype; self->bedtime = timestamp; } sched:::off-cpu /curlwpsinfo->pr_state == SRUN/ { self->bedtime = timestamp; } sched:::on-cpu /self->bedtime && !self->sobj/ { @["preempted"] = quantize(timestamp - self->bedtime); self->bedtime = 0; } sched:::on-cpu /self->sobj/ { @[self->sobj == SOBJ_MUTEX ? "kernel-level lock" : self->sobj == SOBJ_RWLOCK ? "rwlock" : self->sobj == SOBJ_CV ? "condition variable" : self->sobj == SOBJ_SEMA ? "semaphore" : self->sobj == SOBJ_USER ? "user-level lock" : self->sobj == SOBJ_USER_PI ? "user-level prio-inheriting lock" : self->sobj == SOBJ_SHUTTLE ? "shuttle" : "unknown"] = quantize(timestamp - self->bedtime); self->sobj = 0; self->bedtime = 0; }
La ejecución de la secuencia de comandos anterior durante varios segundos devuelve una salida similar al siguiente ejemplo:
# dtrace -s ./whatfor.d dtrace: script './whatfor.d' matched 12 probes ^C kernel-level lock value -------------- Distribution ------------ count 16384 | 0 32768 |@@@@@@@@ 3 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 11 131072 |@@ 1 262144 | 0 preempted value -------------- Distribution ------------ count 16384 | 0 32768 | 4 65536 |@@@@@@@@ 408 131072 |@@@@@@@@@@@@@@@@@@@@@@ 1031 262144 |@@@ 156 524288 |@@ 116 1048576 |@ 51 2097152 | 42 4194304 | 16 8388608 | 15 16777216 | 4 33554432 | 8 67108864 | 0 semaphore value -------------- Distribution ------------ count 32768 | 0 65536 |@@ 61 131072 |@@@@@@@@@@@@@@@@@@@@@@@@ 553 262144 |@@ 63 524288 |@ 36 1048576 | 7 2097152 | 22 4194304 |@ 44 8388608 |@@@ 84 16777216 |@ 36 33554432 | 3 67108864 | 6 134217728 | 0 268435456 | 0 536870912 | 0 1073741824 | 0 2147483648 | 0 4294967296 | 0 8589934592 | 0 17179869184 | 1 34359738368 | 0 shuttle value -------------- Distribution ------------ count 32768 | 0 65536 |@@@@@ 2 131072 |@@@@@@@@@@@@@@@@ 6 262144 |@@@@@ 2 524288 | 0 1048576 | 0 2097152 | 0 4194304 |@@@@@ 2 8388608 | 0 16777216 | 0 33554432 | 0 67108864 | 0 134217728 | 0 268435456 | 0 536870912 | 0 1073741824 | 0 2147483648 | 0 4294967296 |@@@@@ 2 8589934592 | 0 17179869184 |@@ 1 34359738368 | 0 condition variable value -------------- Distribution ------------ count 32768 | 0 65536 | 122 131072 |@@@@@ 1579 262144 |@ 340 524288 | 268 1048576 |@@@ 1028 2097152 |@@@ 1007 4194304 |@@@ 1176 8388608 |@@@@ 1257 16777216 |@@@@@@@@@@@@@@ 4385 33554432 | 295 67108864 | 157 134217728 | 96 268435456 | 48 536870912 | 144 1073741824 | 10 2147483648 | 22 4294967296 | 18 8589934592 | 5 17179869184 | 6 34359738368 | 4 68719476736 | 0 |