可能遇到的一个常见问题是哪些 CPU 在运行线程,将运行多久。此问题可以通过使用 on-cpu 和 off-cpu 探测器在系统范围内轻松回答,如下例所示:
sched:::on-cpu { self->ts = timestamp; } sched:::off-cpu /self->ts/ { @[cpu] = quantize(timestamp - self->ts); self->ts = 0; }
运行上面的脚本将会生成与以下示例类似的输出:
# dtrace -s ./where.d dtrace: script './where.d' matched 5 probes ^C 0 value ------------- Distribution ------------- count 2048 | 0 4096 |@@ 37 8192 |@@@@@@@@@@@@@ 212 16384 |@ 30 32768 | 10 65536 |@ 17 131072 | 12 262144 | 9 524288 | 6 1048576 | 5 2097152 | 1 4194304 | 3 8388608 |@@@@ 75 16777216 |@@@@@@@@@@@@ 201 33554432 | 6 67108864 | 0 1 value ------------- Distribution ------------- count 2048 | 0 4096 |@ 6 8192 |@@@@ 23 16384 |@@@ 18 32768 |@@@@ 22 65536 |@@@@ 22 131072 |@ 7 262144 | 5 524288 | 2 1048576 | 3 2097152 |@ 9 4194304 | 4 8388608 |@@@ 18 16777216 |@@@ 19 33554432 |@@@ 16 67108864 |@@@@ 21 134217728 |@@ 14 268435456 | 0 |
以上输出显示,在 CPU 1 中,线程运行的时间小于 100 微秒,或者约 10 毫秒。两组数据之间的显著差异显示在直方图中。或许您还想了解哪些 CPU 在运行某个特定进程。同样可以使用 on-cpu 和 off-cpu 探测器来回答此问题。以下脚本显示哪些 CPU 运行指定的应用程序超过 10 秒:
#pragma D option quiet dtrace:::BEGIN { start = timestamp; } sched:::on-cpu /execname == $$1/ { self->ts = timestamp; } sched:::off-cpu /self->ts/ { @[cpu] = sum(timestamp - self->ts); self->ts = 0; } profile:::tick-1sec /++x == 10/ { exit(0); } dtrace:::END { printf("CPU distribution of imapd over %d seconds:\n\n", (timestamp - start) / 1000000000); printf("CPU microseconds\n--- ------------\n"); normalize(@, 1000); printa("%3d %@d\n", @); }
在大型邮件服务器上运行以上脚本并指定 IMAP(Internet Message Access Protocol,Internet 消息访问协议)守护进程将生成与以下示例类似的输出:
# dtrace -s ./whererun.d imapd CPU distribution of imapd over 10 seconds: CPU microseconds --- ------------ 15 10102 12 16377 21 25317 19 25504 17 35653 13 41539 14 46669 20 57753 22 70088 16 115860 23 127775 18 160517 |
Solaris 在选择要运行线程的 CPU 时会考虑线程已休眠的时间:休眠时间不足的线程往往不会迁移。可使用 off-cpu 和 on-cpu 探测器来观察此行为:
sched:::off-cpu /curlwpsinfo->pr_state == SSLEEP/ { self->cpu = cpu; self->ts = timestamp; } sched:::on-cpu /self->ts/ { @[self->cpu == cpu ? "sleep time, no CPU migration" : "sleep time, CPU migration"] = lquantize((timestamp - self->ts) / 1000000, 0, 500, 25); self->ts = 0; self->cpu = 0; }
运行以上脚本约 30 秒将会生成与以下示例类似的输出:
# dtrace -s ./howlong.d dtrace: script './howlong.d' matched 5 probes ^C sleep time, CPU migration value -------------- Distribution ------------ count < 0 | 0 0 |@@@@@@@ 6838 25 |@@@@@ 4714 50 |@@@ 3108 75 |@ 1304 100 |@ 1557 125 |@ 1425 150 | 894 175 |@ 1526 200 |@@ 2010 225 |@@ 1933 250 |@@ 1982 275 |@@ 2051 300 |@@ 2021 325 |@ 1708 350 |@ 1113 375 | 502 400 | 220 425 | 106 450 | 54 475 | 40 >= 500 |@ 1716 sleep time, no CPU migration value -------------- Distribution ------------ count < 0 | 0 0 |@@@@@@@@@@@@ 58413 25 |@@@ 14793 50 |@@ 10050 75 | 3858 100 |@ 6242 125 |@ 6555 150 | 3980 175 |@ 5987 200 |@ 9024 225 |@ 9070 250 |@@ 10745 275 |@@ 11898 300 |@@ 11704 325 |@@ 10846 350 |@ 6962 375 | 3292 400 | 1713 425 | 585 450 | 201 475 | 96 >= 500 | 3946 |
示例输出显示非迁移的出现次数大大超过迁移的出现次数。而且,休眠时间越长,发生迁移的可能性越大。100 毫秒子范围中的分布明显不同,但因为休眠时间变长,所以看起来很相似。此结果指示,一但超出特定阈值,在做出调度决策时就不会考虑休眠时间。
使用 off-cpu 和 on-cpu 的最后示例说明如何使用这些探测器和 pr_stype 字段来确定线程休眠的原因和时间:
sched:::off-cpu /curlwpsinfo->pr_state == SSLEEP/ { /* * We're sleeping. Track our sobj type. */ self->sobj = curlwpsinfo->pr_stype; self->bedtime = timestamp; } sched:::off-cpu /curlwpsinfo->pr_state == SRUN/ { self->bedtime = timestamp; } sched:::on-cpu /self->bedtime && !self->sobj/ { @["preempted"] = quantize(timestamp - self->bedtime); self->bedtime = 0; } sched:::on-cpu /self->sobj/ { @[self->sobj == SOBJ_MUTEX ? "kernel-level lock" : self->sobj == SOBJ_RWLOCK ? "rwlock" : self->sobj == SOBJ_CV ? "condition variable" : self->sobj == SOBJ_SEMA ? "semaphore" : self->sobj == SOBJ_USER ? "user-level lock" : self->sobj == SOBJ_USER_PI ? "user-level prio-inheriting lock" : self->sobj == SOBJ_SHUTTLE ? "shuttle" : "unknown"] = quantize(timestamp - self->bedtime); self->sobj = 0; self->bedtime = 0; }
运行以上脚本若干秒将会生成与以下示例类似的输出:
# dtrace -s ./whatfor.d dtrace: script './whatfor.d' matched 12 probes ^C kernel-level lock value -------------- Distribution ------------ count 16384 | 0 32768 |@@@@@@@@ 3 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 11 131072 |@@ 1 262144 | 0 preempted value -------------- Distribution ------------ count 16384 | 0 32768 | 4 65536 |@@@@@@@@ 408 131072 |@@@@@@@@@@@@@@@@@@@@@@ 1031 262144 |@@@ 156 524288 |@@ 116 1048576 |@ 51 2097152 | 42 4194304 | 16 8388608 | 15 16777216 | 4 33554432 | 8 67108864 | 0 semaphore value -------------- Distribution ------------ count 32768 | 0 65536 |@@ 61 131072 |@@@@@@@@@@@@@@@@@@@@@@@@ 553 262144 |@@ 63 524288 |@ 36 1048576 | 7 2097152 | 22 4194304 |@ 44 8388608 |@@@ 84 16777216 |@ 36 33554432 | 3 67108864 | 6 134217728 | 0 268435456 | 0 536870912 | 0 1073741824 | 0 2147483648 | 0 4294967296 | 0 8589934592 | 0 17179869184 | 1 34359738368 | 0 shuttle value -------------- Distribution ------------ count 32768 | 0 65536 |@@@@@ 2 131072 |@@@@@@@@@@@@@@@@ 6 262144 |@@@@@ 2 524288 | 0 1048576 | 0 2097152 | 0 4194304 |@@@@@ 2 8388608 | 0 16777216 | 0 33554432 | 0 67108864 | 0 134217728 | 0 268435456 | 0 536870912 | 0 1073741824 | 0 2147483648 | 0 4294967296 |@@@@@ 2 8589934592 | 0 17179869184 |@@ 1 34359738368 | 0 condition variable value -------------- Distribution ------------ count 32768 | 0 65536 | 122 131072 |@@@@@ 1579 262144 |@ 340 524288 | 268 1048576 |@@@ 1028 2097152 |@@@ 1007 4194304 |@@@ 1176 8388608 |@@@@ 1257 16777216 |@@@@@@@@@@@@@@ 4385 33554432 | 295 67108864 | 157 134217728 | 96 268435456 | 48 536870912 | 144 1073741824 | 10 2147483648 | 22 4294967296 | 18 8589934592 | 5 17179869184 | 6 34359738368 | 4 68719476736 | 0 |