本节包含以下示例:
此示例使用 PKCS #11 函数通过输入文件创建摘要。该示例执行以下步骤:
指定摘要机制。
此示例中使用的是 CKM_MD5 摘要机制。
此示例使用 Sun 的便利函数 SUNW_C_GetMechSession()。SUNW_C_GetMechSession() 用于打开 cryptoki 库,该库用于存放 Solaris 加密框架中所使用的全部 PKCS #11 函数。SUNW_C_GetMechSession() 随后使用所需的机制来查找插槽。然后,将会启动会话。这个便利函数可有效地替换 C_Initialize() 调用、C_OpenSession() 调用以及查找支持指定机制的插槽所需的任何代码。
获取 cryptoki 信息。
本部分实际上不是创建消息摘要所必需的,之所以将其包括在内是为了说明 C_GetInfo() 函数的用法。此示例中将获取制造商 ID。其他信息选项用于检索版本和库数据。
针对插槽执行摘要操作。
此任务中的消息摘要可通过以下三个步骤创建:
打开输入文件。
通过调用 C_DigestInit() 来初始化摘要操作。
使用 C_DigestUpdate() 逐段处理数据。
使用 C_DigestFinal() 获取完整的摘要,从而结束摘要操作过程。
结束会话。
以下示例中显示了消息摘要示例的源代码。
此示例的源代码也可以通过 Sun 下载中心获取。请访问 http://www.sun.com/download/products.xml?id=41912db5
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>
#define BUFFERSIZ 8192
#define MAXDIGEST 64
/* Calculate the digest of a user supplied file. */
void
main(int argc, char **argv)
{
CK_BYTE digest[MAXDIGEST];
CK_INFO info;
CK_MECHANISM mechanism;
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO Info;
CK_ULONG ulDatalen = BUFFERSIZ;
CK_ULONG ulDigestLen = MAXDIGEST;
CK_RV rv;
CK_SLOT_ID SlotID;
int i, bytes_read = 0;
char inbuf[BUFFERSIZ];
FILE *fs;
int error = 0;
/* Specify the CKM_MD5 digest mechanism as the target */
mechanism.mechanism = CKM_MD5;
mechanism.pParameter = NULL_PTR;
mechanism.ulParameterLen = 0;
/* Use SUNW convenience function to initialize the cryptoki
* library, and open a session with a slot that supports
* the mechanism we plan on using. */
rv = SUNW_C_GetMechSession(mechanism.mechanism, &hSession);
if (rv != CKR_OK) {
fprintf(stderr, "SUNW_C_GetMechSession: rv = 0x%.8X\n", rv);
exit(1);
}
/* Get cryptoki information, the manufacturer ID */
rv = C_GetInfo(&info);
if (rv != CKR_OK) {
fprintf(stderr, "WARNING: C_GetInfo: rv = 0x%.8X\n", rv);
}
fprintf(stdout, "Manufacturer ID = %s\n", info.manufacturerID);
/* Open the input file */
if ((fs = fopen(argv[1], "r")) == NULL) {
perror("fopen");
fprintf(stderr, "\n\tusage: %s filename>\n", argv[0]);
error = 1;
goto exit_session;
}
/* Initialize the digest session */
if ((rv = C_DigestInit(hSession, &mechanism)) != CKR_OK) {
fprintf(stderr, "C_DigestInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_digest;
}
/* Read in the data and create digest of this portion */
while (!feof(fs) && (ulDatalen = fread(inbuf, 1, BUFFERSIZ, fs)) > 0) {
if ((rv = C_DigestUpdate(hSession, (CK_BYTE_PTR)inbuf,
ulDatalen)) != CKR_OK) {
fprintf(stderr, "C_DigestUpdate: rv = 0x%.8X\n", rv);
error = 1;
goto exit_digest;
}
bytes_read += ulDatalen;
}
fprintf(stdout, "%d bytes read and digested!!!\n\n", bytes_read);
/* Get complete digest */
ulDigestLen = sizeof (digest);
if ((rv = C_DigestFinal(hSession, (CK_BYTE_PTR)digest,
&ulDigestLen)) != CKR_OK) {
fprintf(stderr, "C_DigestFinal: rv = 0x%.8X\n", rv);
error = 1;
goto exit_digest;
}
/* Print the results */
fprintf(stdout, "The value of the digest is: ");
for (i = 0; i < ulDigestLen; i++) {
fprintf(stdout, "%.2x", digest[i]);
}
fprintf(stdout, "\nDone!!!\n");
exit_digest:
fclose(fs);
exit_session:
(void) C_CloseSession(hSession);
exit_program:
(void) C_Finalize(NULL_PTR);
exit(error);
}
示例 9–2 在 CBC(密码块链接)模式下使用 DES 算法为加密创建了密钥对象。此源代码执行以下步骤:
声明密钥材料。
定义 DES 和初始化向量。以静态方式声明的初始化向量仅用于说明,初始化向量应始终以动态方式定义并且永远不会重用。
定义密钥对象。
对于此任务,必须为密钥设置模板。
查找适用于指定加密机制的插槽。
此示例使用 Sun 的便利函数 SUNW_C_GetMechSession()。SUNW_C_GetMechSession() 用于打开 cryptoki 库,该库用于存放 Solaris 加密框架中所使用的全部 PKCS #11 函数。SUNW_C_GetMechSession() 随后使用所需的机制来查找插槽。然后,将会启动会话。这个便利函数可有效地替换 C_Initialize() 调用、C_OpenSession() 调用以及查找支持指定机制的插槽所需的任何代码。
在插槽中执行加密操作。
此任务中的加密可通过以下几个步骤执行:
在插槽中执行解密操作。
此任务中的解密可通过以下两个步骤执行。提供解密的目的仅是为了进行测试。
结束会话。
程序使用 C_CloseSession() 关闭会话,使用 C_Finalize() 关闭库。
以下示例中显示了对称加密示例的源代码。
此示例的源代码也可以通过 Sun 下载中心获取。请访问 http://www.sun.com/download/products.xml?id=41912db5
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>
#define BUFFERSIZ 8192
/* Declare values for the key materials. DO NOT declare initialization
* vectors statically like this in real life!! */
uchar_t des_key[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef};
uchar_t des_cbc_iv[] = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef};
/* Key template related definitions. */
static CK_BBOOL truevalue = TRUE;
static CK_BBOOL falsevalue = FALSE;
static CK_OBJECT_CLASS class = CKO_SECRET_KEY;
static CK_KEY_TYPE keyType = CKK_DES;
/* Example encrypts and decrypts a file provided by the user. */
void
main(int argc, char **argv)
{
CK_RV rv;
CK_MECHANISM mechanism;
CK_OBJECT_HANDLE hKey;
CK_SESSION_HANDLE hSession;
CK_ULONG ciphertext_len = 64, lastpart_len = 64,
ciphertext_space = BUFFERSIZ;
CK_ULONG decrypttext_len;
CK_ULONG total_encrypted = 0;
CK_ULONG ulDatalen = BUFFERSIZ;
CK_SLOT_ID SlotID;
int *pi, i, bytes_read = 0;
int error = 0;
char inbuf[BUFFERSIZ];
FILE *fs;
uchar_t *ciphertext, *pciphertext, *decrypttext;
/* Set the key object */
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof (class) },
{CKA_KEY_TYPE, &keyType, sizeof (keyType) },
{CKA_TOKEN, &falsevalue, sizeof (falsevalue) },
{CKA_ENCRYPT, &truevalue, sizeof (truevalue) },
{CKA_VALUE, &des_key, sizeof (des_key) }
};
/* Set the encryption mechanism to CKM_DES_CBC_PAD */
mechanism.mechanism = CKM_DES_CBC_PAD;
mechanism.pParameter = des_cbc_iv;
mechanism.ulParameterLen = 8;
/* Use SUNW convenience function to initialize the cryptoki
* library, and open a session with a slot that supports
* the mechanism we plan on using. */
rv = SUNW_C_GetMechSession(mechanism.mechanism, &hSession);
if (rv != CKR_OK) {
fprintf(stderr, "SUNW_C_GetMechSession: rv = 0x%.8X\n", rv);
exit(1);
}
/* Open the input file */
if ((fs = fopen(argv[1], "r")) == NULL) {
perror("fopen");
fprintf(stderr, "\n\tusage: %s filename>\n", argv[0]);
error = 1;
goto exit_session;
}
/* Create an object handle for the key */
rv = C_CreateObject(hSession, template,
sizeof (template) / sizeof (CK_ATTRIBUTE),
&hKey);
if (rv != CKR_OK) {
fprintf(stderr, "C_CreateObject: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
/* Initialize the encryption operation in the session */
rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv != CKR_OK) {
fprintf(stderr, "C_EncryptInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
/* Read in the data and encrypt this portion */
pciphertext = &ciphertext[0];
while (!feof(fs) && (ciphertext_space > 0) &&
(ulDatalen = fread(inbuf, 1, ciphertext_space, fs)) > 0) {
ciphertext_len = ciphertext_space;
/* C_EncryptUpdate is only being sent one byte at a
* time, so we are not checking for CKR_BUFFER_TOO_SMALL.
* Also, we are checking to make sure we do not go
* over the alloted buffer size. A more robust program
* could incorporate realloc to enlarge the buffer
* dynamically. */
rv = C_EncryptUpdate(hSession, (CK_BYTE_PTR)inbuf, ulDatalen,
pciphertext, &ciphertext_len);
if (rv != CKR_OK) {
fprintf(stderr, "C_EncryptUpdate: rv = 0x%.8X\n", rv);
error = 1;
goto exit_encrypt;
}
pciphertext += ciphertext_len;
total_encrypted += ciphertext_len;
ciphertext_space -= ciphertext_len;
bytes_read += ulDatalen;
}
if (!feof(fs) || (ciphertext_space < 0)) {
fprintf(stderr, "Insufficient space for encrypting the file\n");
error = 1;
goto exit_encrypt;
}
/* Get the last portion of the encrypted data */
lastpart_len = ciphertext_space;
rv = C_EncryptFinal(hSession, pciphertext, &lastpart_len);
if (rv != CKR_OK) {
fprintf(stderr, "C_EncryptFinal: rv = 0x%.8X\n", rv);
error = 1;
goto exit_encrypt;
}
total_encrypted += lastpart_len;
fprintf(stdout, "%d bytes read and encrypted. Size of the "
"ciphertext: %d!\n\n", bytes_read, total_encrypted);
/* Print the encryption results */
fprintf(stdout, "The value of the encryption is:\n");
for (i = 0; i < ciphertext_len; i++) {
if (ciphertext[i] < 16)
fprintf(stdout, "0%x", ciphertext[i]);
else
fprintf(stdout, "%2x", ciphertext[i]);
}
/* Initialize the decryption operation in the session */
rv = C_DecryptInit(hSession, &mechanism, hKey);
/* Decrypt the entire ciphertext string */
decrypttext_len = sizeof (decrypttext);
rv = C_Decrypt(hSession, (CK_BYTE_PTR)ciphertext, total_encrypted,
decrypttext, &decrypttext_len);
if (rv != CKR_OK) {
fprintf(stderr, "C_Decrypt: rv = 0x%.8X\n", rv);
error = 1;
goto exit_encrypt;
}
fprintf(stdout, "\n\n%d bytes decrypted!!!\n\n", decrypttext_len);
/* Print the decryption results */
fprintf(stdout, "The value of the decryption is:\n%s", decrypttext);
fprintf(stdout, "\nDone!!!\n");
exit_encrypt:
fclose(fs);
exit_session:
(void) C_CloseSession(hSession);
exit_program:
(void) C_Finalize(NULL_PTR);
exit(error);
}
本节中的示例生成了一个用于对简单字符串进行签名和检验的 RSA 密钥对。此示例执行以下步骤:
定义密钥对象。
设置公钥模板。
设置私钥模板。
创建样例消息。
指定用于生成密钥对象的 genmech 机制。
指定用于对密钥对进行签名的 smech 机制。
初始化 cryptoki 库。
通过用于生成和检验密钥对并对其进行签名的机制来查找插槽。此任务将使用一个名为 getMySlot() 的函数来执行以下步骤:
调用 C_GetSlotList() 函数以获取可用插槽的列表。
与 PKCS #11 约定中所建议的一样,C_GetSlotList() 需要调用两次。第一次调用 C_GetSlotList() 用于获取进行内存分配的插槽数量,第二次调用 C_GetSlotList() 用于检索插槽。
查找可以提供所需机制的插槽。
对于每个插槽,该函数都会调用 GetMechanismInfo() 以查找可用于生成密钥对并对其进行签名的机制。如果插槽不支持这些机制,则 GetMechanismInfo() 将返回错误。如果 GetMechanismInfo() 成功返回,则将检查机制标志,以确保这些机制可以执行所需的操作。
调用 C_OpenSession() 来打开会话。
关闭会话。
下面是签名和检验示例的源代码。
此示例的源代码也可以通过 Sun 下载中心获取。请访问 http://www.sun.com/download/products.xml?id=41912db5
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>
#define BUFFERSIZ 8192
/* Define key template */
static CK_BBOOL truevalue = TRUE;
static CK_BBOOL falsevalue = FALSE;
static CK_ULONG modulusbits = 1024;
static CK_BYTE public_exponent[] = {3};
boolean_t GetMySlot(CK_MECHANISM_TYPE sv_mech, CK_MECHANISM_TYPE kpgen_mech,
CK_SLOT_ID_PTR pslot);
/* Example signs and verifies a simple string, using a public/private
* key pair. */
void
main(int argc, char **argv)
{
CK_RV rv;
CK_MECHANISM genmech, smech;
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO sessInfo;
CK_SLOT_ID slotID;
int error, i = 0;
CK_OBJECT_HANDLE privatekey, publickey;
/* Set public key. */
CK_ATTRIBUTE publickey_template[] = {
{CKA_VERIFY, &truevalue, sizeof (truevalue)},
{CKA_MODULUS_BITS, &modulusbits, sizeof (modulusbits)},
{CKA_PUBLIC_EXPONENT, &public_exponent,
sizeof (public_exponent)}
};
/* Set private key. */
CK_ATTRIBUTE privatekey_template[] = {
{CKA_SIGN, &truevalue, sizeof (truevalue)},
{CKA_TOKEN, &falsevalue, sizeof (falsevalue)},
{CKA_SENSITIVE, &truevalue, sizeof (truevalue)},
{CKA_EXTRACTABLE, &truevalue, sizeof (truevalue)}
};
/* Create sample message. */
CK_ATTRIBUTE getattributes[] = {
{CKA_MODULUS_BITS, NULL_PTR, 0},
{CKA_MODULUS, NULL_PTR, 0},
{CKA_PUBLIC_EXPONENT, NULL_PTR, 0}
};
CK_ULONG messagelen, slen, template_size;
boolean_t found_slot = B_FALSE;
uchar_t *message = (uchar_t *)"Simple message for signing & verifying.";
uchar_t *modulus, *pub_exponent;
char sign[BUFFERSIZ];
slen = BUFFERSIZ;
messagelen = strlen((char *)message);
/* Set up mechanism for generating key pair */
genmech.mechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
genmech.pParameter = NULL_PTR;
genmech.ulParameterLen = 0;
/* Set up the signing mechanism */
smech.mechanism = CKM_RSA_PKCS;
smech.pParameter = NULL_PTR;
smech.ulParameterLen = 0;
/* Initialize the CRYPTOKI library */
rv = C_Initialize(NULL_PTR);
if (rv != CKR_OK) {
fprintf(stderr, "C_Initialize: Error = 0x%.8X\n", rv);
exit(1);
}
found_slot = GetMySlot(smech.mechanism, genmech.mechanism, &slotID);
if (!found_slot) {
fprintf(stderr, "No usable slot was found.\n");
goto exit_program;
}
fprintf(stdout, "selected slot: %d\n", slotID);
/* Open a session on the slot found */
rv = C_OpenSession(slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR,
&hSession);
if (rv != CKR_OK) {
fprintf(stderr, "C_OpenSession: rv = 0x%.8X\n", rv);
error = 1;
goto exit_program;
}
fprintf(stdout, "Generating keypair....\n");
/* Generate Key pair for signing/verifying */
rv = C_GenerateKeyPair(hSession, &genmech, publickey_template,
(sizeof (publickey_template) / sizeof (CK_ATTRIBUTE)),
privatekey_template,
(sizeof (privatekey_template) / sizeof (CK_ATTRIBUTE)),
&publickey, &privatekey);
if (rv != CKR_OK) {
fprintf(stderr, "C_GenerateKeyPair: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
/* Display the publickey. */
template_size = sizeof (getattributes) / sizeof (CK_ATTRIBUTE);
rv = C_GetAttributeValue(hSession, publickey, getattributes,
template_size);
if (rv != CKR_OK) {
/* not fatal, we can still sign/verify if this failed */
fprintf(stderr, "C_GetAttributeValue: rv = 0x%.8X\n", rv);
error = 1;
} else {
/* Allocate memory to hold the data we want */
for (i = 0; i < template_size; i++) {
getattributes[i].pValue =
malloc (getattributes[i].ulValueLen *
sizeof(CK_VOID_PTR));
if (getattributes[i].pValue == NULL) {
int j;
for (j = 0; j < i; j++)
free(getattributes[j].pValue);
goto sign_cont;
}
}
/* Call again to get actual attributes */
rv = C_GetAttributeValue(hSession, publickey, getattributes,
template_size);
if (rv != CKR_OK) {
/* not fatal, we can still sign/verify if failed */
fprintf(stderr,
"C_GetAttributeValue: rv = 0x%.8X\n", rv);
error = 1;
} else {
/* Display public key values */
fprintf(stdout, "Public Key data:\n\tModulus bits: "
"%d\n",
*((CK_ULONG_PTR)(getattributes[0].pValue)));
fprintf(stdout, "\tModulus: ");
modulus = (uchar_t *)getattributes[1].pValue;
for (i = 0; i < getattributes[1].ulValueLen; i++) {
fprintf(stdout, "%.2x", modulus[i]);
}
fprintf(stdout, "\n\tPublic Exponent: ");
pub_exponent = (uchar_t *)getattributes[2].pValue;
for (i = 0; i< getattributes[2].ulValueLen; i++) {
fprintf(stdout, "%.2x", pub_exponent[i]);
}
fprintf(stdout, "\n");
}
}
sign_cont:
rv = C_SignInit(hSession, &smech, privatekey);
if (rv != CKR_OK) {
fprintf(stderr, "C_SignInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
rv = C_Sign(hSession, (CK_BYTE_PTR)message, messagelen,
(CK_BYTE_PTR)sign, &slen);
if (rv != CKR_OK) {
fprintf(stderr, "C_Sign: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
fprintf(stdout, "Message was successfully signed with private key!\n");
rv = C_VerifyInit(hSession, &smech, publickey);
if (rv != CKR_OK) {
fprintf(stderr, "C_VerifyInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
rv = C_Verify(hSession, (CK_BYTE_PTR)message, messagelen,
(CK_BYTE_PTR)sign, slen);
if (rv != CKR_OK) {
fprintf(stderr, "C_Verify: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;
}
fprintf(stdout, "Message was successfully verified with public key!\n");
exit_session:
(void) C_CloseSession(hSession);
exit_program:
(void) C_Finalize(NULL_PTR);
for (i = 0; i < template_size; i++) {
if (getattributes[i].pValue != NULL)
free(getattributes[i].pValue);
}
exit(error);
}
/* Find a slot capable of:
* . signing and verifying with sv_mech
* . generating a key pair with kpgen_mech
* Returns B_TRUE when successful. */
boolean_t GetMySlot(CK_MECHANISM_TYPE sv_mech, CK_MECHANISM_TYPE kpgen_mech,
CK_SLOT_ID_PTR pSlotID)
{
CK_SLOT_ID_PTR pSlotList = NULL_PTR;
CK_SLOT_ID SlotID;
CK_ULONG ulSlotCount = 0;
CK_MECHANISM_INFO mech_info;
int i;
boolean_t returnval = B_FALSE;
CK_RV rv;
/* Get slot list for memory alloction */
rv = C_GetSlotList(0, NULL_PTR, &ulSlotCount);
if ((rv == CKR_OK) && (ulSlotCount > 0)) {
fprintf(stdout, "slotCount = %d\n", ulSlotCount);
pSlotList = malloc(ulSlotCount * sizeof (CK_SLOT_ID));
if (pSlotList == NULL) {
fprintf(stderr, "System error: unable to allocate "
"memory\n");
return (returnval);
}
/* Get the slot list for processing */
rv = C_GetSlotList(0, pSlotList, &ulSlotCount);
if (rv != CKR_OK) {
fprintf(stderr, "GetSlotList failed: unable to get "
"slot count.\n");
goto cleanup;
}
} else {
fprintf(stderr, "GetSlotList failed: unable to get slot "
"list.\n");
return (returnval);
}
/* Find a slot capable of specified mechanism */
for (i = 0; i < ulSlotCount; i++) {
SlotID = pSlotList[i];
/* Check if this slot is capable of signing and
* verifying with sv_mech. */
rv = C_GetMechanismInfo(SlotID, sv_mech, &mech_info);
if (rv != CKR_OK) {
continue;
}
if (!(mech_info.flags & CKF_SIGN &&
mech_info.flags & CKF_VERIFY)) {
continue;
}
/* Check if the slot is capable of key pair generation
* with kpgen_mech. */
rv = C_GetMechanismInfo(SlotID, kpgen_mech, &mech_info);
if (rv != CKR_OK) {
continue;
}
if (!(mech_info.flags & CKF_GENERATE_KEY_PAIR)) {
continue;
}
/* If we get this far, this slot supports our mechanisms. */
returnval = B_TRUE;
*pSlotID = SlotID;
break;
}
cleanup:
if (pSlotList)
free(pSlotList);
return (returnval);
}
示例 9–4 说明了如何使用可以生成随机字节的机制来查找插槽。此示例执行以下步骤:
随机数生成样例的源代码如以下示例所示。
此示例的源代码也可以通过 Sun 下载中心获取。请访问 http://www.sun.com/download/products.xml?id=41912db5
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>
#define RANDSIZE 64
boolean_t GetRandSlot(CK_SLOT_ID_PTR pslot);
/* Example generates random bytes. */
void
main(int argc, char **argv)
{
CK_RV rv;
CK_MECHANISM mech;
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO sessInfo;
CK_SLOT_ID slotID;
CK_BYTE randBytes[RANDSIZE];
boolean_t found_slot = B_FALSE;
int error;
int i;
/* Initialize the CRYPTOKI library */
rv = C_Initialize(NULL_PTR);
if (rv != CKR_OK) {
fprintf(stderr, "C_Initialize: Error = 0x%.8X\n", rv);
exit(1);
}
found_slot = GetRandSlot(&slotID);
if (!found_slot) {
goto exit_program;
}
/* Open a session on the slot found */
rv = C_OpenSession(slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR,
&hSession);
if (rv != CKR_OK) {
fprintf(stderr, "C_OpenSession: rv = 0x%.8x\n", rv);
error = 1;
goto exit_program;
}
/* Generate random bytes */
rv = C_GenerateRandom(hSession, randBytes, RANDSIZE);
if (rv != CKR_OK) {
fprintf(stderr, "C_GenerateRandom: rv = 0x%.8x\n", rv);
error = 1;
goto exit_session;
}
fprintf(stdout, "Random value: ");
for (i = 0; i < RANDSIZE; i++) {
fprintf(stdout, "%.2x", randBytes[i]);
}
exit_session:
(void) C_CloseSession(hSession);
exit_program:
(void) C_Finalize(NULL_PTR);
exit(error);
}
boolean_t
GetRandSlot(CK_SLOT_ID_PTR pslot)
{
CK_SLOT_ID_PTR pSlotList;
CK_SLOT_ID SlotID;
CK_TOKEN_INFO tokenInfo;
CK_ULONG ulSlotCount;
CK_MECHANISM_TYPE_PTR pMechTypeList = NULL_PTR;
CK_ULONG ulMechTypecount;
boolean_t result = B_FALSE;
int i = 0;
CK_RV rv;
/* Get slot list for memory allocation */
rv = C_GetSlotList(0, NULL_PTR, &ulSlotCount);
if ((rv == CKR_OK) && (ulSlotCount > 0)) {
fprintf(stdout, "slotCount = %d\n", (int)ulSlotCount);
pSlotList = malloc(ulSlotCount * sizeof (CK_SLOT_ID));
if (pSlotList == NULL) {
fprintf(stderr,
"System error: unable to allocate memory\n");
return (result);
}
/* Get the slot list for processing */
rv = C_GetSlotList(0, pSlotList, &ulSlotCount);
if (rv != CKR_OK) {
fprintf(stderr, "GetSlotList failed: unable to get "
"slot list.\n");
free(pSlotList);
return (result);
}
} else {
fprintf(stderr, "GetSlotList failed: unable to get slot"
" count.\n");
return (result);
}
/* Find a slot capable of doing random number generation */
for (i = 0; i < ulSlotCount; i++) {
SlotID = pSlotList[i];
rv = C_GetTokenInfo(SlotID, &tokenInfo);
if (rv != CKR_OK) {
/* Check the next slot */
continue;
}
if (tokenInfo.flags & CKF_RNG) {
/* Found a random number generator */
*pslot = SlotID;
fprintf(stdout, "Slot # %d supports random number "
"generation!\n", SlotID);
result = B_TRUE;
break;
}
}
if (pSlotList)
free(pSlotList);
return (result);
}