Solaris 10 10/09 Installation Guide: Planning for Installation and Upgrade
Contents

Preface ... 7

Part I Overall Planning of Any Solaris Installation or Upgrade .. 11

1 Where to Find Solaris Installation Planning Information .. 13
 Where to Find Planning and System Requirement Information .. 13

2 What’s New in Solaris Installation .. 15
 What’s New in the Solaris 10 10/09 Release for Installation .. 15
 ZFS and Flash Installation Support ... 15
 Two-Terabyte Disk Support for Installing and Booting the Solaris OS 16
 Faster Installations ... 16
 Zones Parallel Patching Reduces Patching Time .. 16
 What’s New in the Solaris 10 10/08 Release for Installation .. 17
 Installing a ZFS Root File System .. 17
 Structure Change for Installation Media ... 18
 What’s New in the Solaris 10 8/07 Release for Installation .. 18
 Upgrading the Solaris OS When Non-Global Zones Are Installed .. 18
 New sysidkdb Tool Prevents Having to Configure Your Keyboard .. 20
 NFSv4 Domain Name Configurable During Installation .. 21
 What’s New in the Solaris 10 11/06 Release for Installation .. 22
 Enhanced Security Using the Restricted Networking Profile .. 22
 Installing Solaris Trusted Extensions ... 23
 Solaris Flash Can Create an Archive That Includes Large Files .. 23
 What’s New in the Solaris 10 1/06 Release for Solaris Installation .. 23
 Upgrading the Solaris OS When Non-Global Zones Are Installed .. 24
 x86: GRUB Based Booting .. 24
Preface

This book describes planning your installation or upgrade with the Solaris™ Operating System (OS) on both networked and nonnetworked SPARC® and x86 architecture based systems. This book also provides overviews of several technologies that relate to installation such as Solaris ZFS™ installations, Solaris Zones™ partitioning technology, booting, and the creation of RAID-1 volumes during installation.

This book does not include instructions about how to set up system hardware or other peripherals.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems appear in the Solaris OS: Hardware Compatibility Lists at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 related terms mean the following:

- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” points out specific 64-bit information about AMD64 or EM64T systems.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is intended for system administrators responsible for installing the Solaris OS. This book provides both of the following types of information.

- Advanced Solaris installation planning information for enterprise system administrators who manage multiple Solaris machines in a networked environment
- Basic Solaris installation planning information for system administrators who perform infrequent Solaris installations or upgrades
Related Books

Table P–1 lists documentation for system administrators.

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you need to install a single system from DVD or CD media? The Solaris installation program steps you through an installation.</td>
<td>Solaris 10 10/09 Installation Guide: Basic Installations</td>
</tr>
<tr>
<td>Do you need to upgrade or patch your system with almost no downtime? Save system downtime when upgrading by using Solaris Live Upgrade.</td>
<td>Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning</td>
</tr>
<tr>
<td>Do you need to install a secure installation over the network or Internet? Use WAN boot to install a remote client. Or, do you need to install over the network from a network installation image? The Solaris installation program steps you through an installation.</td>
<td>Solaris 10 10/09 Installation Guide: Network-Based Installations</td>
</tr>
<tr>
<td>Do you need to install Solaris on multiple machines? Use JumpStart™ to automate your installation.</td>
<td>Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations</td>
</tr>
<tr>
<td>Do you need to install or patch multiple systems quickly? Use Solaris Flash software to create a Solaris Flash™ archive and install a copy of the OS on clone systems.</td>
<td>Solaris 10 10/09 Installation Guide: Solaris Flash Archives (Creation and Installation)</td>
</tr>
<tr>
<td>Do you need troubleshooting information, a list of known problems, or a list of patches for this release?</td>
<td>Solaris Release Notes</td>
</tr>
<tr>
<td>Do you need to verify that your system works on Solaris?</td>
<td>SPARC: Solaris Sun Hardware Platform Guide</td>
</tr>
<tr>
<td>Do you need to check on which packages have been added, removed, or changed in this release?</td>
<td>Solaris Package List</td>
</tr>
<tr>
<td>Do you need to verify that your system and devices work with Solaris SPARC and x86 based systems and other third-party vendors.</td>
<td>Solaris Hardware Compatibility List for x86 Platforms</td>
</tr>
</tbody>
</table>

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

- Documentation (http://www.sun.com/documentation/)
- Support (http://www.sun.com/support/)
- Training (http://www.sun.com/training/)
Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and suggestions. To share your comments, go to http://docs.sun.com and click Feedback.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>The command to remove a file is rm filename.</td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows the default UNIX® system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Shell</td>
<td>Prompt</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell for superuser</td>
<td>#</td>
</tr>
</tbody>
</table>
PART I

Overall Planning of Any Solaris Installation or Upgrade

This part guides you through planning the installation or upgrade of the Solaris Operating System when using any installation program.
Where to Find Solaris Installation Planning Information

This book contains two parts: the high-level planning of your installation or upgrade and overviews of several technologies that relate to installation. This chapter provides a roadmap through this book.

Where to Find Planning and System Requirement Information

The Solaris 10 10/09 Installation Guide: Planning for Installation and Upgrade provides system requirements and high-level planning information, such as planning guidelines for file systems, and upgrade planning and much more. The following list describes the chapters in the planning book and provides links to those chapters.

<table>
<thead>
<tr>
<th>Chapter Descriptions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter describes new features in the Solaris installation programs.</td>
<td>Chapter 2, “What’s New in Solaris Installation”</td>
</tr>
<tr>
<td>This chapter provides you with information about decisions you need to make before you install or upgrade the Solaris OS. Examples are deciding when to use a network installation image or DVD media and descriptions of all the Solaris installation programs.</td>
<td>Chapter 3, “Solaris Installation and Upgrade (Roadmap)”</td>
</tr>
<tr>
<td>This chapter describes system requirements to install or upgrade to the Solaris OS. General guidelines for planning the disk space and default swap space allocation are also provided. Upgrade limitations are also described.</td>
<td>Chapter 4, “System Requirements, Guidelines, and Upgrade (Planning)”</td>
</tr>
<tr>
<td>This chapter contains checklists to help you gather all of the information that you need to install or upgrade your system. This information is useful, for example, if you are performing an interactive installation. You’ll have all the information in the checklist that you’ll need to do an interactive installation.</td>
<td>Chapter 5, “Gathering Information Before Installation or Upgrade (Planning)”</td>
</tr>
</tbody>
</table>
Where to Find Planning and System Requirement Information

<table>
<thead>
<tr>
<th>Chapter Descriptions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>These chapters provide overviews of several technologies that relate to a Solaris OS installation or upgrade. Guidelines and requirements related to these technologies are also included. These chapters include information about ZFS installations, GRUB based booting, Solaris Zones partitioning technology, and RAID-1 volumes that can be created at installation.</td>
<td>Part II</td>
</tr>
</tbody>
</table>
What's New in Solaris Installation

This chapter describes new features in the Solaris installation programs. To view features for all of the Solaris OS, see Solaris 10 10/09 What's New. This chapter describes the following sections:

■ “What's New in the Solaris 10 10/09 Release for Installation” on page 15
■ “What's New in the Solaris 10 10/08 Release for Installation” on page 17
■ “What's New in the Solaris 10 8/07 Release for Installation” on page 18
■ “What's New in the Solaris 10 11/06 Release for Installation” on page 22
■ “What's New in the Solaris 10 1/06 Release for Solaris Installation” on page 23
■ “What's New in the Solaris 10 3/05 Release for Solaris Installation” on page 26

What's New in the Solaris 10 10/09 Release for Installation

ZFS and Flash Installation Support

Starting with the Solaris 10 10/09 release, you can set up a JumpStart profile to identify a flash archive of a ZFS root pool.

A Flash archive can be created on a system that is running a UFS root file system or a ZFS root file system. A Flash archive of a ZFS root pool contains the entire pool hierarchy, except for the swap and dump volumes, and any excluded datasets. The swap and dump volumes are created when the Flash archive is installed.

You can use the Flash archive installation method as follows:

■ Generate a Flash archive that can be used to install and boot a system with a ZFS root file system.
■ Perform a JumpStart installation of a system by using a ZFS Flash archive.
Note – Creating a ZFS Flash archive backs up an entire root pool, not individual boot environments. Individual datasets within the pool can be excluded by using the `flarc` command's `-D` option.

For detailed instructions and limitations, see “Installing a ZFS Root File System (Flash Archive Installation)” in Solaris ZFS Administration Guide.

Two-Terabyte Disk Support for Installing and Booting the Solaris OS

In previous Solaris releases, you could not install and boot the Solaris OS from a disk that was greater than 1 terabyte in size. Starting with the Solaris 10 10/09 release, you can install and boot the Solaris OS from a disk that is up to 2 TB in size.

Starting with the Solaris 10 10/09 release, you can use the VTOC label on a disk of any size, but the addressable space by the VTOC is limited to 2 TB. This feature allows disks that are larger than 2 TB to be used as boot drives, but the usable space from the label is limited to 2 TB.

Note – This feature is only available on systems that run a 64-bit kernel. A minimum of 1 GB of memory is required for x86 based systems.

For detailed information, see “Two-Terabyte Disk Support for Installing and Booting the Solaris OS” in System Administration Guide: Devices and File Systems.

Faster Installations

Starting with the Solaris 10 10/09 release, SVR4 package commands run faster. This enhancement means that the Solaris installation technologies, such as initial installations, upgrades, Live Upgrades, and zone installations, perform significantly faster.

Zones Parallel Patching Reduces Patching Time

Starting with the Solaris 10 10/09 release, zones parallel patching enhances the standard Solaris 10 patch utilities. This feature improves zones patching performance by patching non-global zones in parallel.
For releases prior to the Solaris 10 10/09 release, this feature is delivered in the following patch utilities patches:

- SPARC: patch 119254-66 or later revision
- x86: patch 119255-66 or later revision

Note – The global zone is still patched before the non-global zones are patched.

For more information, see the following documentation:

What's New in the Solaris 10 10/08 Release for Installation

Installing a ZFS Root File System

Starting with the Solaris 10 10/08 release, you can install and boot a ZFS root file system.

The following installation programs perform an initial installation of a ZFS root pool.

- The Solaris text installer performs an initial installation for a ZFS root pool. During the installation, you can choose to install either a UFS file system or a ZFS root pool. You can set up a mirrored ZFS root pool by selecting two disks during the installation. Or, you can attach or add additional disks after the installation to create a mirrored ZFS root pool. Swap and dump devices on ZFS volumes are automatically created in the ZFS root pool. For step-by-step instructions, see Chapter 3, “Installing With the Solaris Interactive Text Installer for ZFS Root Pools (Planning and Tasks),” in Solaris 10 10/09 Installation Guide: Basic Installations.
- With custom JumpStart, you can create a profile to create a ZFS storage pool and designate a bootable ZFS file system. New ZFS profile keywords install a ZFS root pool for an initial installation. A ZFS profile contains a limited set of keywords.

For more information about JumpStart and ZFS, see Chapter 9, "Installing a ZFS Root Pool With JumpStart," in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations
You can use Solaris Live Upgrade to perform the following tasks:

- Migrate a UFS root (/) file system to a ZFS root pool
- Create a new boot environment in the following ways:
 - Within an existing ZFS root pool
 - Within another ZFS root pool
 - From a source other than the currently running system
 - On a system with non-global zones installed

After you have used the `lucreate` command to create a ZFS boot environment, you can use other Solaris Live Upgrade commands on the boot environment, such as the `luupgrade` and `luate` commands. For more information on using Solaris Live Upgrade for ZFS, see Chapter 11, “Solaris Live Upgrade and ZFS (Overview),” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.

Structure Change for Installation Media

Starting with the Solaris 10 10/08 release, the structure of the Solaris Operating System DVD and Solaris Software - 1 CD have changed for the SPARC platform. Slice 0 is no longer at the top of the directory structure. Therefore, the structure of the x86 and SPARC DVD and Solaris Software - 1 CD are the same. This change in structure makes setting up an install server easier if you have a mix of platforms, such as a SPARC install server and x86 media. For procedures for setting up an install server, see the following:

- Chapter 5, “Installing From the Network With DVD Media (Tasks),” in Solaris 10 10/09 Installation Guide: Network-Based Installations
- Chapter 6, “Installing From the Network With CD Media (Tasks),” in Solaris 10 10/09 Installation Guide: Network-Based Installations

What's New in the Solaris 10 8/07 Release for Installation

Upgrading the Solaris OS When Non-Global Zones Are Installed

Starting with the Solaris 10 8/07 release, you can upgrade the Solaris OS when non-global zones are installed without most of the limitations found in previous releases.
Note – The only limitation to upgrading involves a Solaris Flash archive. When you use a Solaris Flash archive to install, an archive that contains non-global zones is not properly installed on your system.

Changes to accommodate systems that have non-global zones installed are summarized below.

■ For the Solaris interactive installation program, you can upgrade or patch a system when non-global zones are installed with CDs, as well as DVDs. Or you can use a network installation image for either the DVD or CDs. Previously, you were limited to upgrading with a DVD. The time to upgrade or patch might be extensive, depending on the number of non-global zones that are installed.

■ For an automated JumpStart installation, you can upgrade or patch with any keyword that applies to an upgrade or patching. In previous releases, a limited number of keywords could be used. The time to upgrade or patch might be extensive, depending on the number of non-global zones that are installed.

■ For Solaris Live Upgrade, you can upgrade or patch a system that contains non-global zones. If you have a system that contains non-global zones, Solaris Live Upgrade is the recommended upgrade program or program to add patches. Other upgrade programs might require extensive upgrade time, because the time required to complete the upgrade increases linearly with the number of installed non-global zones. If you are patching a system with Solaris Live Upgrade, you do not have to take the system to single-user mode and you can maximize your system’s uptime.

Solaris Live Upgrade creates a copy of the OS on the inactive boot environment. The inactive boot environment can be upgraded or patched when non-global zones are installed. The inactive boot environment can then be booted to become the new boot environment. Changes to accommodate systems that have non-global zones installed are the following:

■ A new package, SUNWlucfg, is required to be installed with the other Solaris Live Upgrade packages, SUNWlur and SUNWluu. This package is required for any system, not just a system with non-global zones installed.

These three packages comprise the software needed to upgrade by using Solaris Live Upgrade. These packages include existing software, new features, and bug fixes. If you do not install these packages on your system before using Solaris Live Upgrade, upgrading to the target release fails.

■ Creating a new boot environment from the currently running boot environment remains the same as in previous releases with one exception. You can specify a destination disk slice for a shared file system within a non-global zone.

The argument to the -m option has a new optional field, zonename. This new field enables creating the new boot environment and specifying zones that contain separate file systems. This argument places the zone’s file system on a separate slice in the new boot environment.
The `lumount` command now provides non-global zones with access to their corresponding file systems that exist on inactive boot environments. When the global zone administrator uses the `lumount` command to mount an inactive boot environment, the boot environment is mounted for non-global zones as well.

Comparing boot environments is enhanced. The `lucompare` command now generates a comparison of boot environments that includes the contents of any non-global zone.

Listing file systems with the `lufslist` command is enhanced to display a list of file systems for both the global zone and the non-global zones.

For step-by-step procedures for upgrading a system with non-global zones installed or for information on the Solaris Zones partitioning technology, see the following references.

<table>
<thead>
<tr>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating and using non-global zones</td>
<td>System Administration Guide: Solaris Containers-Resource Management and Solaris Zones</td>
</tr>
<tr>
<td>Upgrading with JumpStart</td>
<td>Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations</td>
</tr>
<tr>
<td>Upgrading with the Solaris installation interactive GUI</td>
<td>Solaris 10 10/09 Installation Guide: Basic Installations</td>
</tr>
</tbody>
</table>

New `sysidkdb` Tool Prevents Having to Configure Your Keyboard

This feature is new in the following releases:

- For SPARC, starting with the Solaris 10 10/06 release
- For x86, starting with the Solaris 10 8/07 release

The `sysidkdb` tool configures your USB language and its corresponding keyboard layout.

The following procedure occurs:

- If the keyboard is self-identifying, the keyboard language and layout automatically configures during installation.
- If the keyboard is not self-identifying, the `sysidkdb` tool provides you, during the installation, a list of supported keyboard layouts during installation, so that you can select a layout for keyboard configuration.
SPARC: Previously, the USB keyboard assumed a self-identifying value of 1 during the installation. Therefore, all of the keyboards that were not self-identifying always configured for a U.S. English keyboard layout during installation.

Note – PS/2 keyboards are not self-identifying. You are asked to select the keyboard layout during the installation.

Prevent Prompting When You Use the JumpStart Program

If the keyboard is not self-identifying and you want to prevent being prompted during your JumpStart installation, select the keyboard language in your `sysidcfg` file. For JumpStart installations, the default is for the U.S. English language. To select another language and its corresponding keyboard layout, set the keyboard keyword in your `sysidcfg` file.

For more information, see one of the following:

- “Preconfiguring With the `sysidcfg` File” in *Solaris 10 10/09 Installation Guide: Network-Based Installations*
- `sysidtool(1M)` man page
- `sysidcfg(4)` man page

NFSv4 Domain Name Configurable During Installation

Starting with the Solaris 10 8/07 release, the NFS version 4 domain can now be defined during the installation of the Solaris OS. Previously, the NFS domain name was defined during the first system reboot after installation.

This new feature affects installation as follows:

- The `sysidtool` command includes an enhanced `sysidnfs4` program. The `sysidnfs4` program now runs during the installation process to determine whether an NFSv4 domain has been configured for the network.

 For further information, see the `sysidtool(1M)` and `sysidnfs4(1M)` man pages.

 During an interactive installation, the user is provided with the default NFSv4 domain name that is automatically derived from the OS. The user can accept this default. Or, the user can specify a different NFSv4 domain.

- As part of a Solaris JumpStart installation, a new keyword is available in the `sysidcfg` file. The user can now assign a value for the NFSv4 domain by using the new keyword, `nfs4_domain`.

 For further information about this new keyword, see the `sysidnfs4(1M)` man page. This man page also provides an example of how to use this new keyword.

For further information about the NFSv4 domain name configuration, see the *System Administration Guide: Network Services*
What's New in the Solaris 10 11/06 Release for Installation

Enhanced Security Using the Restricted Networking Profile

Starting with the Solaris 10 11/06 release, you can, during installation, set the default behavior for network services to run in a much more secured manner. During an interactive installation (hands on), this new security option is provided in the installation configuration selection screens. For automated JumpStart installations (hands off), you can select a restricted network profile by using a new service_profile keyword in the sysidcfg file. This security option is only available for initial installations. An upgrade maintains all previously set services. If necessary, you can restrict network services after an upgrade by using the netservices command.

If you choose to restrict network security, numerous services are fully disabled. Other services are still enabled, but these services are restricted to local connections only. Secure Shell remains available for remote administrative access to the system.

With this restricted networking profile, you reduce your risk of exposure on the Internet or LAN. The system retains full graphical desktop use and outbound network access. For example, you can still access your graphical interface, use browsers or email clients, and mount NFSv4 file shares.

The network services can be enabled after installation by using the netservices open command or by enabling individual services by using SMF commands. See “Revising Security Settings After Installation” on page 53.

For additional information about this security option, see the following references.

<table>
<thead>
<tr>
<th>TABLE 2–1 Additional Information About the Limited Network Profile</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>For More Information</td>
</tr>
<tr>
<td>Administer security for network services</td>
<td>“How to Create an SMF Profile” in System Administration Guide: Basic Administration</td>
</tr>
<tr>
<td>Reopen network services after installation</td>
<td>“Revising Security Settings After Installation” on page 53</td>
</tr>
<tr>
<td>Plan installation configuration</td>
<td>"Planning Network Security” on page 52</td>
</tr>
</tbody>
</table>
TABLE 2–1 Additional Information About the Limited Network Profile (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up restricted network security for a JumpStart installation</td>
<td>“service_keyword” in Solaris 10 10/09 Installation Guide: Network-Based Installations</td>
</tr>
</tbody>
</table>

Installing Solaris Trusted Extensions

Starting with the Solaris 10 11/06 release, Solaris Trusted Extensions provides multilevel security for the Solaris OS. This feature enables you to control information in a flexible but highly secure manner. You can now enforce strict access controls to your data based on data sensitivity, not just data ownership.

An installation that accesses Solaris Trusted Extensions differs from a standard installation. For a list of these installation differences and further information about Solaris Trusted Extensions, see “Installing or Upgrading the Solaris OS for Trusted Extensions” in Solaris Trusted Extensions Installation and Configuration for Solaris 10 11/06 and Solaris 10 8/07 Releases.

Solaris Flash Can Create an Archive That Includes Large Files

The `flar create` command no longer has size limitations on individual files. You can create a Solaris Flash archive that contains individual files that are greater than 4 Gbytes. The following two archive utilities are available for use:

- The `cpio` archive utility is the default. Individual files cannot be greater than 2 or 4 Gbytes. The size limitation depends on the version of `cpio` used.
- The portable archive interchange utility, `pax`, is invoked with the `-L pax` option. If the `-L pax` option is specified, the archive can be created without size limitations on individual files.

For more information, see “Creating an Archive That Contains Large Files” in Solaris 10 10/09 Installation Guide: Solaris Flash Archives (Creation and Installation).

What's New in the Solaris 10 1/06 Release for Solaris Installation

This section describes the following new installation features in the Solaris 10 1/06 release.
Upgrading the Solaris OS When Non-Global Zones Are Installed

Solaris Zones partitioning technology provides the ability to configure non-global zones in a single instance of Solaris, the global zone. A non-global zone is an application execution environment in which processes are isolated from all other zones. **Starting with the Solaris 10 1/06 release** and if you are running a system with non-global zones installed, you can use standard Solaris upgrade programs to upgrade. You can use either the Solaris interactive installation program or custom JumpStart to upgrade. There are some limitations to upgrading with non-global zones installed.

- A limited number of custom JumpStart keywords are supported. For a list of supported custom JumpStart keywords, see *Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations*.
- You must use the Solaris Operating System DVD or a network installation image created from a DVD. You cannot use the Solaris Software CDs to upgrade a system. For more information about installing with this program, see Chapter 2, “Installing With the Solaris Installation Program For UFS File Systems (Tasks),” in *Solaris 10 10/09 Installation Guide: Basic Installations*.
- On a system with non-global zones installed, do not use Solaris Live Upgrade to upgrade your system. While you can create a boot environment with the `lucreate` command, the `luupgrade` command cannot upgrade a boot environment that has non-global zones installed. In that case, the upgrade fails and an error message is displayed.

For details on using the Solaris interactive installation program, see *Solaris 10 10/09 Installation Guide: Basic Installations*

x86: GRUB Based Booting

Starting with the Solaris 10 1/06 release, the open source GNU GRand Unified Boot Loader (GRUB) has been adopted in the Solaris OS for x86 based systems. GRUB is responsible for loading a boot archive into the system’s memory. A boot archive is a collection of critical files that is needed during system startup before the root (/) file system is mounted. The boot archive is used to boot the Solaris OS.

The most notable change is the replacement of the Solaris Device Configuration Assistant with the GRUB menu. The GRUB menu facilitates booting the different operating systems that are installed on your system. The GRUB menu is displayed when you boot an x86 based system. From the GRUB menu, you can select an OS instance to install by using the arrow keys. If you do not make a selection, the default OS instance is booted.

The GRUB based boot feature provides the following improvements:

- Faster boot times
Installation from USB CD or DVD drives
- Ability to boot from USB storage devices
- Simplified DHCP setup for PXE boot (no vendor-specific options)
- Elimination of all realmode drivers
- Ability to use Solaris Live Upgrade and the GRUB menu to quickly activate and fall back to boot environments

For more information about GRUB refer to the following sections.

<table>
<thead>
<tr>
<th>Task</th>
<th>GRUB Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>Overview information about GRUB based booting</td>
<td>“x86: GRUB Based Booting (Overview)” on page 85</td>
</tr>
<tr>
<td></td>
<td>Installation planning for GRUB based booting</td>
<td>“x86: GRUB Based Booting (Planning)” on page 85</td>
</tr>
<tr>
<td></td>
<td>How to boot and install over the network with the GRUB menu</td>
<td>“Installing the System From the Network With a DVD Image” in Solaris 10 10/09 Installation Guide: Network-Based Installations</td>
</tr>
<tr>
<td></td>
<td>How to boot and install with the GRUB menu and the Custom JumpStart installation method</td>
<td>“Performing a Custom JumpStart Installation” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations</td>
</tr>
<tr>
<td></td>
<td>How to use the GRUB menu and Solaris Live Upgrade to activate and fall back to boot environments</td>
<td>“Activating a Boot Environment” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning</td>
</tr>
<tr>
<td></td>
<td>Locating the GRUB menu's menu.lst file</td>
<td>Chapter 14, “Managing the Solaris Boot Archives (Tasks),” in System Administration Guide: Basic Administration</td>
</tr>
<tr>
<td>System Administration</td>
<td>How to perform system administration tasks with the GRUB menu</td>
<td>System Administration Guide: Basic Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Administration Guide: Devices and File Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bootadm(1M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>installgrub(1M)</td>
</tr>
</tbody>
</table>
Note – GNU is a recursive acronym for “GNU’s Not UNIX.” For more information, go to http://www.gnu.org.

Upgrade Support Changes for Solaris Releases

Starting with the Solaris 10 1/06 release, you can upgrade the Solaris OS from the Solaris 8, 9, or 10 releases. Upgrades from the Solaris 7 release are not supported.

What’s New in the Solaris 10 3/05 Release for Solaris Installation

This section describes the following new installation features in the Solaris 10 3/05 release.

Solaris Installation Changes Including Installation Unification

Starting with the Solaris 10 3/05 release, several changes in the installation of the Solaris OS provide a more simplified and unified installation experience.

The changes include the following:

- This release has one installation DVD and several installation CDs. The Solaris Operating System DVD includes the content of all the installation CDs.
 - Solaris Software 1 – This CD is the only bootable CD. From this CD, you can access both the Solaris installation graphical user interface (GUI) and the console-based installation. This CD also enables you to install selected software products from both the GUI and the console-based installation.
 - Other Solaris Operating System CDs – These CDs contain the following:
 - Solaris packages that the software prompts you to install if necessary
 - ExtraValue software that includes supported and unsupported software
 - Installers
 - Localized interface software and documentation
- The Solaris Installation CD no longer exists.
- For both CD and DVD media, the GUI installation is the default (if your system has enough memory). However, you can specify a console-based installation with the text boot option.
- The installation process has been simplified, enabling you to select the language support at boot time, but select locales later.
Note – The (noninteractive) Solaris custom JumpStart installation method has not changed.

To install the OS, simply insert the Solaris Software - 1 CD or the Solaris Operating System DVD and type one of the following commands.

- For the default GUI installation (if system memory permits), type `boot cdrom`.
- For the console-based installation, type `boot cdrom - text`.

For instructions about how to install the Solaris OS by using CD or DVD media with the new text boot option, see Solaris 10 10/09 Installation Guide: Basic Installations.

For changes to setting up an installation server with CD media, see Solaris 10 10/09 Installation Guide: Network-Based Installations.

Accessing the GUI or Console-based Installations

Starting with the Solaris 10 3/05 release, you can choose to install the software with a GUI or with or without a windowing environment. If the memory is sufficient, the GUI is displayed by default. If the memory is insufficient for the GUI, other environments are displayed by default. You can override defaults with the `nowin` or `text` boot options. However, you are limited by the amount of memory in your system or by installing remotely. Also, if the Solaris installation program does not detect a video adapter, the program is automatically displayed in a console-based environment.

For specific memory requirements, see “System Requirements and Recommendations” on page 40.
Custom JumpStart Installation Package and Patch Enhancements

Starting with the Solaris 10 3/05 release, when you install and upgrade the Solaris OS by using the custom JumpStart installation method, new customizations enable the following:

- A Solaris Flash installation with additional packages
 - The custom JumpStart profile package keyword has been enhanced to enable installing a Solaris Flash archive with additional packages. For example, you can install the same base archive on two machines, but add a different set of packages to each machine. These packages do not have to be a part of the Solaris OS distribution.

- An installation with additional packages that might not be part of the Solaris distribution
 - The package keyword has also been enhanced to enable an installation with a package that is not part of the Solaris distribution. You no longer need to write a postinstallation script to add extra packages.

- An installation with the ability to install Solaris OS patches
 - The new custom JumpStart profile patch keyword enables the installation of Solaris OS patches. This feature allows the installation of a list of patches that are specified in a patch file.

For further information, see Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.

Configuring Multiple Network Interfaces During Installation

Starting with the Solaris 10 3/05 release, the Solaris installation programs enable you to configure multiple interfaces during your installation. You can preconfigure these interfaces in the sysidcfg file for your system. Or you can configure multiple interfaces during the installation. For more information, see the following documents:

- Solaris 10 10/09 Installation Guide: Network-Based Installations
- sysidtool(1M)
- sysidcFg(4)

SPARC: 64-bit Package Changes

In previous Solaris releases, the Solaris software was delivered in separate packages for 32-bit components and 64-bit components. Starting with the Solaris 10 3/05 release, packaging has been simplified with the delivery of most 32-bit components and 64-bit components in a single package. The combined packages retain the names of the original 32-bit packages, and the 64-bit packages are no longer delivered.
The removal of the 64-bit packages simplifies installation and increases performance:

- Reduces the number of packages, which simplifies Custom JumpStart scripts that contain lists of packages
- Simplifies the packaging system with only one package that groups software functions
- Reduces installation time because fewer packages are installed

The 64-bit packages are renamed with the following conventions:

- If a 64-bit package has a 32-bit counterpart, the 64-bit package is named with the 32-bit package name. For example, a 64-bit library such as `/usr/lib/sparcv9/libc.so.1` previously would have been delivered in `SUNWcslx`, but now is delivered in `SUNWcs1`. The 64-bit `SUNWcslx` package is no longer delivered.
- If a package does not have a 32-bit counterpart, the "x" suffix is removed from the name. For example, `SUNW1394x` becomes `SUNW1394`.

This change means that you might need to modify your custom JumpStart script or other package installation scripts to remove references to the 64-bit packages.

Custom JumpStart Installation Method Creates New Boot Environment

Starting with the Solaris 10 3/05 release, you can now use the JumpStart installation method to create an empty boot environment when you install the Solaris Operating System. The empty boot environment can then be populated with a Solaris Flash archive for later use.

For further information, see Chapter 8, "Custom JumpStart (Reference)," in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.

Reduced Networking Software Group

Starting with the Solaris 10 3/05 release, you can now create a more secure system with fewer enabled network services by selecting or specifying the Reduced Networking software group (SUNWCrnet) during your installation. The Reduced Networking software group provides system administration utilities and a multiuser text-based console. SUNWCrnet enables the system to recognize network interfaces. During the installation, you can customize your system’s configuration by adding software packages and by activating network services as needed.

For further information, see Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.
Modifying Disk Partition Tables by Using a Virtual Table of Contents

Starting with the Solaris 10 3/05 release, the Solaris installation program now enables you to load existing slices from the virtual table of contents (VTOC.) You can now preserve and use the system’s existing disk slice tables during your installation, rather than use the installer’s default disk layout.

x86: Change in Default Boot-Disk Partition Layout

Starting with the Solaris 10 3/05 release, a new feature in the Solaris installation program is a boot-disk partition layout. This layout, by default, accommodates the Service partition on Sun x86 based systems. This installation program enables you to preserve an existing Service partition.

The new default includes the following partitions.

- First partition – Service partition (existing size on system)
- Second partition – x86 boot partition (approximately 11 Mbytes)
- Third partition – Solaris Operating System partition (remaining space on the boot disk)

If you want to use this default layout, select Default when the Solaris installation program asks you to choose a boot-disk layout.

Note – If you install the Solaris OS for x86 based systems on a system that does not currently include a Service partition, the Solaris installation program does not create a new Service partition. If you want to create a Service partition on your system, first use your system’s diagnostic CD to create the Service partition. After the Service partition is created, then install the Solaris Operating System.

For information about how to create the Service partition, see your hardware documentation.

For more information, see Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.
This chapter provides you with information about decisions you need to make before you install or upgrade the Solaris Operating System (Solaris OS). This chapter contains the following sections:

- “Task Map: Installing or Upgrading the Solaris Software” on page 31
- “Installing From the Network or From DVD or CDs?” on page 34
- “Initial Installation, or Upgrade?” on page 35
- “Choosing a Solaris Installation Method” on page 35
- “Planning Network Security” on page 52

Note – This book uses the term slice, but some Solaris documentation and programs might refer to a slice as a partition.

x86: To avoid confusion, this book distinguishes between x86 fdisk partitions and the divisions within the Solaris fdisk partition. The x86 fdisk divisions are called partitions. The divisions within the Solaris fdisk partition are called slices.

Task Map: Installing or Upgrading the Solaris Software

The following task map is an overview of the steps necessary to install or upgrade the Solaris OS when using any installation program. Use this task map to identify all of the decisions that you need to make to complete the most efficient installation for your environment.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose initial installation or upgrade.</td>
<td>Decide if you want to perform an initial installation or an upgrade.</td>
<td>“Initial Installation, or Upgrade?” on page 35.</td>
</tr>
</tbody>
</table>
TABLE 3-1 Task Map: Installing or Upgrading the Solaris Software
(Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decide if you want to install a UFS file system or ZFS root pool.</td>
<td>You can install a UFS root (/) file system or a ZFS root pool.</td>
<td>Most of this book relates to installing a UFS file system. To install a ZFS root pool, see Chapter 6, “ZFS Root File System Installation (Planning)”</td>
</tr>
<tr>
<td>Choose an installation program.</td>
<td>The Solaris OS provides several programs for installation or upgrade. Choose the installation method that is most appropriate for your environment.</td>
<td>“Choosing a Solaris Installation Method” on page 35</td>
</tr>
</tbody>
</table>
| (Solaris interactive installation program) Choose a default or custom installation. | Decide which type installation is suitable for your environment:
 - If you are using a graphical user interface (GUI) you can choose a default or a custom installation:
 - A default installation formats the hard disk and installs a preselected set of software.
 - A custom installation enables you to modify the hard disk layout and select the software that you want to install.
 - If you use a text installer (non-graphical interface), you can select the default values or edit the values to select the software you want to install. | For information on the Solaris installation program’s choices, see Chapter 5, “Gathering Information Before Installation or Upgrade (Planning)” |
<p>| For initial installations only, choose open network security or restricted network security. | For an initial installation, determine whether to disable or constrain network services to respond to local requests only during the installation. The default is to select open network security during installation. | “Planning Network Security” on page 52 |
| Review system requirements. Also, plan and allocate disk space and swap space. | Determine if your system meets the minimum requirements to install or upgrade. Allocate disk space on your system for the components of the Solaris OS that you want to install. Determine the appropriate swap-space layout for your system. | Chapter 4, “System Requirements, Guidelines, and Upgrade (Planning)” |
| Choose to install a system from local media or from the network. | Decide on the most appropriate installation media for your environment. | “Installing From the Network or From DVD or CDs?” on page 34 |</p>
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
</table>
| Gather information about your system. | ■ For the Solaris installation program, complete the worksheet to collect all of the information that you need to install or upgrade.
■ For the custom JumpStart installation method, decide which profile keywords to use in your profile. Then review the keyword descriptions to find the information about your system that you need. | ■ For the Solaris installation program, see either of the following documents:
■ For an initial installation: “Checklist for Installation” on page 57
■ For an upgrade: Chapter 5, “Gathering Information Before Installation or Upgrade (Planning)”
■ For the custom JumpStart installation method, see Chapter 8, “Custom JumpStart (Reference),” in Solaris 10/09 Installation Guide: Custom JumpStart and Advanced Installations |
| (Optional) Set system parameters. | You can preconfigure system information to avoid being prompted for the information during the installation or upgrade. | Chapter 2, “Preconfiguring System Configuration Information (Tasks),” in Solaris 10/09 Installation Guide: Network-Based Installations. |
| (Optional) Prepare to install the Solaris software from the network. | If you chose to install the Solaris software from the network, complete the following tasks.
■ (x86 based systems) Verify that your system supports PXE
■ Create an installation server
■ Create a boot server (if necessary)
■ Configure a DHCP server (if necessary)
■ Set up systems to be installed from the network | To install over a local area network, see Chapter 6, “Installing From the Network With CD Media (Tasks),” in Solaris 10/09 Installation Guide: Network-Based Installations.
To install over a wide area network, see Chapter 12, “Installing With WAN Boot (Tasks),” in Solaris 10/09 Installation Guide: Network-Based Installations. |
| (Upgrade only) Perform tasks prior to upgrade. | Back up your system and determine if you can upgrade with disk space reallocation. | “Upgrade Planning” on page 46 |
| Perform an installation or upgrade. | Use the Solaris installation method that you chose to install or upgrade the Solaris software. | The chapter or chapters that provide detailed instructions for the installation programs. |
Installing From the Network or From DVD or CDs?

The Solaris software is distributed on DVD or CD media so that you can install or upgrade systems that have access to a DVD-ROM or CD-ROM drive.

You can set up the systems to install from the network with remote DVD or CD images. You might want to set up systems this way for the following reasons:

- If you have systems that do not have local DVD-ROM or CD-ROM drives
- If you are installing several systems and do not want to insert the discs into every local drive to install the Solaris software

You can use all of the Solaris installation methods to install a system from the network. However, by installing systems from the network with the Solaris Flash installation feature or with a custom JumpStart installation, you can centralize and automate the installation process in a large enterprise. For more details about the different installation methods, refer to “Choosing a Solaris Installation Method” on page 35.

Installing the Solaris software from the network requires initial setup. For information about preparing to install from the network, choose one of the following options:

- **For detailed instructions about preparing to install from a local area network**: Chapter 6, "Installing From the Network With CD Media (Tasks),” in Solaris 10 10/09 Installation Guide: Network-Based Installations

- **For instructions about preparing to install over a wide area network**: Chapter 12, “Installing With WAN Boot (Tasks),” in Solaris 10 10/09 Installation Guide: Network-Based Installations

- **For instructions about how to install x86 based clients over the network by using PXE**: “Overview of Booting and Installing Over the Network With PXE” in Solaris 10 10/09 Installation Guide: Network-Based Installations
Initial Installation, or Upgrade?

You can choose to perform an initial installation or, if your system is already running the Solaris OS, you can upgrade your system.

Initial Installation

An initial installation overwrites the system’s disk with the new version of the Solaris OS. If your system is not running the Solaris OS, you must perform an initial installation.

If the system is already running the Solaris OS, you can choose to perform an initial installation. If you want to preserve any local modifications, before you install, you must back up the local modifications. After you complete the installation, you can restore the local modifications.

You can use any of the Solaris installation methods to perform an initial installation. For detailed information about the different Solaris installation methods, refer to “Choosing a Solaris Installation Method” on page 35.

Upgrade

You can upgrade the Solaris OS by using two upgrade methods: standard and Solaris Live Upgrade. A standard upgrade maintains as many existing configuration parameters as possible of the current Solaris OS. Solaris Live Upgrade creates a copy of the current system. This copy can be upgraded with a standard upgrade. The upgraded Solaris OS can then be switched to become the current system by a simple reboot. If a failure occurs, you can switch back to the original Solaris OS with a reboot. Solaris Live Upgrade enables you to keep your system running while you upgrade and enables you to switch back and forth between Solaris OS releases.

For more information about upgrading and the list of upgrade methods, see “Upgrade Planning” on page 46.

Choosing a Solaris Installation Method

The Solaris OS provides several programs for installation or upgrade. Each installation technology offers different features that are designed for specific installation requirements and environments. Use the following table to help you decide which installation method to use.
TABLE 3-2 Choosing Your Installation Method

<table>
<thead>
<tr>
<th>Task</th>
<th>Installation Method</th>
<th>Reasons for Choosing This Program</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install one system from CD-ROM or DVD-ROM media with an interactive program.</td>
<td>Solaris installation program</td>
<td>- This program divides tasks into panels, prompts you for information, and offers default values.</td>
<td>Solaris 10/09 Installation Guide: Basic Installations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This program is not an efficient method when you have to install or upgrade multiple systems. For batch installations of multiple systems, use custom JumpStart or the Solaris Flash installation feature.</td>
<td>Part II, "Installing Over a Local Area Network," in Solaris 10/09 Installation Guide: Network-Based Installations</td>
</tr>
<tr>
<td>Install one system over a local area network.</td>
<td>Solaris installation program over the network</td>
<td>This program enables you to set up an image of the software you want to install on a server and install this image on a remote system. If you need to install multiple systems, you can use the network installation image with the custom JumpStart and Solaris Flash installation methods to efficiently install or upgrade systems on your network.</td>
<td></td>
</tr>
<tr>
<td>Automate the installation or upgrade of multiple systems based on profiles you create.</td>
<td>Custom JumpStart</td>
<td>This program efficiently installs multiple systems. But if you only have a few systems, the creation of a custom JumpStart environment might be time consuming. For a few systems, use the Solaris interactive installation program.</td>
<td>Chapter 3, "Preparing Custom JumpStart Installations (Tasks)," in Solaris 10/09 Installation Guide: Custom JumpStart and Advanced Installations</td>
</tr>
</tbody>
</table>
TABLE 3-2 Choosing Your Installation Method (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Installation Method</th>
<th>Reasons for Choosing This Program</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| Replicate the same software and configuration on multiple systems. | Solaris Flash archives | ■ This program saves installation time by installing all Solaris packages at once on your system. Other programs install each individual Solaris package and update the package map for each package.
■ Solaris Flash archives are large files and require a significant amount of disk space. To manage different installation configurations or to change your installation configuration, you might consider using the custom JumpStart installation method. Alternatively, you can accomplish system-specific customizations by using a JumpStart finish script or an embedded Solaris Flash postdeployment script. | Chapter 1, “Solaris Flash (Overview);” in Solaris 10 10/09 Installation Guide: Solaris Flash Archives (Creation and Installation) |
| Install systems over a wide area network (WAN) or the Internet. | WAN boot | If you want to install a Solaris Flash archive over the network, this program enables a secure installation. | Chapter 10, “WAN Boot (Overview);” in Solaris 10 10/09 Installation Guide: Network-Based Installations |
| Upgrade a system while it is running. | Solaris Live Upgrade | ■ This program enables you to upgrade or add patches to avoid the system downtime related to a standard upgrade. | Chapter 2, “Solaris Live Upgrade (Overview);” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning |
| After installing the Solaris OS, create an isolated application environment. | Solaris Zones partitioning technology | This program creates isolated non-global zones that provide a secure application environment. This isolation prevents processes that are running in one zone from monitoring or affecting processes that are running in any other zones. | Chapter 16, “Introduction to Solaris Zones,” in System Administration Guide: Solaris Containers-Resource Management and Solaris Zones |
This chapter describes system requirements to install or upgrade to the Solaris OS. General guidelines for planning the disk space and default swap space allocation are also provided. This chapter contains the following sections:

- “System Requirements and Recommendations” on page 40
- “Allocating Disk and Swap Space” on page 41
- “Upgrade Planning” on page 46
- “Locale Values” on page 54
- “Platform Names and Groups” on page 54
- “x86: Partitioning Recommendations” on page 55
- “How to Find the Version of the Solaris OS That Your System Is Running” on page 56
System Requirements and Recommendations

TABLE 4-1 Memory, Swap, and Processor Recommendations

<table>
<thead>
<tr>
<th>Requirement Type</th>
<th>Size</th>
<th>Note</th>
</tr>
</thead>
</table>
| Memory to install or upgrade | - For UFS file systems: 768 MB is the recommended size. 256 MB is the minimum size.
- Some optional installation features are enabled only when sufficient memory is present. For example, if your system has insufficient memory and you install from a DVD, you install through the Solaris installation program's text installer, not through the GUI. For more information about these memory requirements, see Table 4–2.
- In previous Solaris releases, you could not install and boot the Solaris OS from a disk that was greater than 1 terabyte in size. **Starting with the Solaris 10 10/09 release**, you can install and boot the Solaris OS from a disk that is up to 2 TB in size.
Starting with the Solaris 10 10/09 release, you can use the VTOC label on a disk of any size, but the addressable space by the VTOC is limited to 2 TB. This feature allows disks that are larger than 2 TB to be used as boot drives, but the usable space from the label is limited to 2 TB.
- This feature is only available on systems that run a 64-bit kernel. A minimum of 1 GB of memory is required for x86 based systems.
For detailed information, see "Two-Terabyte Disk Support for Installing and Booting the Solaris OS" in System Administration Guide: Devices and File Systems.
- For ZFS root pools:
 - 786 MB is the minimum memory.
 - 1 GB of memory is recommended for overall ZFS performance |
| Swap area | - For UFS file systems, 512 MB is the default size
- For ZFS root pools, see "Disk Space Requirements for a ZFS Installation" on page 79
Note – You might need to customize the swap space. Swap space is based on the size of the system's hard disk. |
| Processor requirements | - **SPARC**: 200–MHz or faster processor is required.
- **x86**: 120–MHz or faster processor is recommended. Hardware floating-point support is required. |

You can choose to install the software with a GUI or with or without a windowing environment. If there is sufficient memory, the GUI is displayed by default. Other environments are displayed by default if memory is insufficient for the GUI. You can override defaults with the `nowin` or `text` boot options. But, you are limited by the amount of memory in your system or by installing remotely. Also if the Solaris installation program does not detect a video adapter, it
automatically displays in a console-based environment. Table 4–2 describes these environments and lists minimal memory requirements for displaying them.

TABLE 4–2 Memory Requirements for Display Options

<table>
<thead>
<tr>
<th>Memory</th>
<th>Type of Installation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>256-767 MB</td>
<td>Text-based</td>
<td>Contains no graphics, but provides a window and the ability to open other windows. If you install by using the text boot option and the system has enough memory, you are installing in a windowing environment. If you are installing remotely through a tip line or using the nowin boot option, you are limited to the console-based installation.</td>
</tr>
<tr>
<td>768 MB or greater</td>
<td>GUI-based</td>
<td>Provides windows, pull-down menus, buttons, scrollbars, and iconic images.</td>
</tr>
</tbody>
</table>

Allocating Disk and Swap Space

Before you install the Solaris software, you can determine if your system has enough disk space by doing some high-level planning.

General Disk Space Planning and Recommendations

Planning disk space is different for everyone. Consider allocating space for the following conditions, depending on your needs.

Note – For information about disk space for a ZFS root pool installation, see “Disk Space Requirements for a ZFS Installation” on page 79
Allocating Disk and Swap Space

TABLE 4–3 General Disk Space and Swap Space Planning

<table>
<thead>
<tr>
<th>Conditions for Space Allocations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For UFS file systems</td>
<td>For each file system that you create, allocate an additional 30 percent more disk space than you need to enable you to upgrade to future Solaris versions. By default, the Solaris installation methods create only root (/) and /swap. When space is allocated for OS services, the /export directory is also created. If you are upgrading to a major Solaris release, you might need to reslice your system or allocate double the space that you need at installation time. If you are upgrading to an update, you could prevent having to reslice your system by allocating extra disk space for future upgrades. A Solaris update release needs approximately 10 percent more disk space than the previous release. You can allocate an additional 30 percent of disk space for each file system to allow space for several Solaris updates. Note – In previous Solaris releases, you could not install and boot the Solaris OS from a disk that was greater than 1 terabyte in size. Starting with the Solaris 10 10/09 release, you can install and boot the Solaris OS from a disk that is up to 2 TB in size. Starting with the Solaris 10 10/09 release, you can use the VTOC label on a disk of any size, but the addressable space by the VTOC is limited to 2 TB. This feature allows disks that are larger than 2 TB to be used as boot drives, but the usable space from the label is limited to 2 TB. This feature is only available on systems that run a 64-bit kernel. A minimum of 1 GB of memory is required for x86 based systems. For detailed information, see "Two-Terabyte Disk Support for Installing and Booting the Solaris OS" in System Administration Guide: Devices and File Systems.</td>
</tr>
<tr>
<td>The /var file system for UFS file systems</td>
<td>If you intend to use the crash dump feature <code>savecore(1M)</code>, allocate double the amount of your physical memory in the /var file system.</td>
</tr>
</tbody>
</table>

For detailed information, see "Two-Terabyte Disk Support for Installing and Booting the Solaris OS" in System Administration Guide: Devices and File Systems.
TABLE 4–3 General Disk Space and Swap Space Planning (Continued)

<table>
<thead>
<tr>
<th>Conditions for Space Allocations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swap Note – For swap allocations for a ZFS root pool, see “Disk Space Requirements for a ZFS Installation” on page 79. For UFS file systems, the Solaris installation program allocates a default swap area of 512 MB under the following conditions: ■ If you use the installation program’s automatic layout of disk slices ■ If you avoid manually changing the size of the swap slice By default, the Solaris installation program allocates swap space by placing swap so that it starts at the first available disk cylinder (typically cylinder 0 on SPARC based systems). This placement provides maximum space for the root (/) file system during the default disk layout and enables the growth of the root (/) file system during an upgrade. If you think you might need to expand the swap area in the future, you can place the swap slice so that it starts at another disk cylinder by using one of the following methods. ■ For the Solaris installation program, you can customize the disk layout in cylinder mode and manually assign the swap slice to the desired location. ■ For the custom JumpStart installation program, you can assign the swap slice in the profile file. For more information about the JumpStart profile file, see “Creating a Profile” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations. For an overview of the swap space, see Chapter 20, “Configuring Additional Swap Space (Tasks),” in System Administration Guide: Devices and File Systems.</td>
<td>A server that is providing home directory file systems By default, home directories are usually located in the /export file system.</td>
</tr>
</tbody>
</table>
Disk Space Recommendations for Software Groups

The Solaris software groups are collections of Solaris packages. Each software group includes support for different functions and hardware drivers.

- For an initial installation, you select the software group to install, based on the functions that you want to perform on the system.
- For an upgrade, you must upgrade to a software group that is installed on the system. For example, if you previously installed the End User Solaris Software Group on your system, you cannot use the upgrade option to upgrade to the Developer Solaris Software Group. However, during the upgrade you can add software to the system that is not part of the currently installed software group.

When you are installing the Solaris software, you can choose to add or remove packages from the Solaris software group that you selected. When you are selecting which packages to add or remove, you need to know about software dependencies and how the Solaris software is packaged.

The following figure shows the grouping of software packages. Reduced Network Support contains the minimal number of packages and Entire Solaris Software Group Plus OEM Support contains all the packages.
Table 4–4 lists the Solaris software groups and the recommended amount of disk space that you need to install each group.

Note – The disk space recommendations in Table 4–4 include space for the following items.

- Swap space
- Patches
- Additional software packages

You might find that the software groups require less disk space than the amount that is listed in this table.

<table>
<thead>
<tr>
<th>Software Group</th>
<th>Description</th>
<th>Recommended Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Solaris Software Group Plus OEM Support</td>
<td>Contains the packages for the Entire Solaris Software Group plus additional hardware drivers, including drivers for hardware that is not on the system at the time of installation.</td>
<td>6.8 GB</td>
</tr>
</tbody>
</table>
Upgrade Planning

For a UFS file system, you can upgrade a system by using one of three different upgrade methods: Solaris Live Upgrade, the Solaris installation program, and custom JumpStart.

TABLE 4–5 Solaris Upgrade Methods

<table>
<thead>
<tr>
<th>Current Solaris OS</th>
<th>Solaris Upgrade Methods</th>
</tr>
</thead>
</table>
| Solaris 8, Solaris 9, Solaris 10 | - Solaris Live Upgrade – Upgrades a system by creating and upgrading a copy of the running system
 | - The Solaris installation program – Provides an interactive upgrade with a graphical user interface or command-line interface
 | - Custom JumpStart method – Provides an automated upgrade |
Upgrading and Patching Limitations

The following table lists limitations when you upgrade a system under some conditions.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>For ZFS root pools, there are other upgrade limitations</td>
<td>You can only use Solaris Live Upgrade to upgrade ZFS root pools.</td>
<td>For requirements and limitations, see Chapter 12, “Solaris Live Upgrade for ZFS (Planning),” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.</td>
</tr>
<tr>
<td>Upgrading to a different software group</td>
<td>You cannot upgrade your system to a software group that is not installed on the system. For example, if you previously installed the End User Solaris Software Group on your system, you cannot use the upgrade option to upgrade to the Developer Solaris Software Group. During the upgrade you can add software to the system that is not part of the currently installed software group.</td>
<td>For more information on software groups, see “Disk Space Recommendations for Software Groups” on page 44.</td>
</tr>
</tbody>
</table>
| Upgrading when non-global zones are installed | You can upgrade a system that has non-global zones installed with the Solaris installation program, Solaris Live Upgrade or JumpStart. The following limitations apply:
 - Solaris Live Upgrade is the recommend program to upgrade or patch a system. Other upgrade programs might require extensive upgrade time, because the time required to complete the upgrade increases linearly with the number of installed non-global zones. If you are patching a system with Solaris Live Upgrade, you do not have to take the system to single-user mode and you can maximize your system’s uptime.
 - When you use a Solaris Flash archive to install, an archive that contains non-global zones is not properly installed on your system. | For requirements and limitations, see “Upgrading With Non-Global Zones” on page 88. |
| Patching with Solaris Live Upgrade from the Solaris 8 or 9 OS | You cannot use Solaris Live Upgrade to patch a Solaris 10 inactive boot environment when the active boot environment is running the Solaris 8 or 9 OS. Solaris Live Upgrade will invoke the patch utilities on the active boot partition to patch the inactive boot partition. The Solaris 8 and Solaris 9 patch utilities are unaware of Solaris Zone, Service Management Facility (SMF), and other enhancements in the Solaris 10 OS. Therefore the patch utilities fail to correctly patch an inactive Solaris 10 boot environment. Therefore, if you are using Solaris Live Upgrade to upgrade a system from the Solaris 8 or Solaris 9 OS to the Solaris 10 OS, you must first activate the Solaris 10 boot environment before patching. After the Solaris 10 boot environment is activated, you can either patch the active boot environment directly or set up another inactive boot environment and patch that one by using Solaris Live Upgrade. | For more information on patching with Solaris Live Upgrade, see “To Add Patches to a Network Installation Image on a Boot Environment” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning. |
Upgrade Planning

<table>
<thead>
<tr>
<th>Issue Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrading with Veritas file systems</td>
<td>To upgrade when Veritas VxVM is configured, use one of the following methods:</td>
</tr>
<tr>
<td>The Solaris interactive installation and custom JumpStart programs do not present you with the opportunity to upgrade a system when you are using Veritas VxVM file systems under these conditions:</td>
<td></td>
</tr>
<tr>
<td>■ If the root file system to be upgraded is under Veritas control. For example, if the root (/) file system is mounted on a /dev/vx/... device.</td>
<td></td>
</tr>
<tr>
<td>■ If any Solaris software is installed on any file system that is under Veritas control. For example, if the /usr file system is mounted on a /dev/vx/... device.</td>
<td></td>
</tr>
</tbody>
</table>

Upgrade Programs

You can perform a standard interactive upgrade with the Solaris installation program or an unattended upgrade with the custom JumpStart installation method. Solaris Live Upgrade enables you to upgrade a running system.

<table>
<thead>
<tr>
<th>Upgrade Program</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Live Upgrade</td>
<td>Enables you to create a copy of the currently running system. The copy can be upgraded and then a reboot switches the upgraded copy to become the currently running system. Using Solaris Live Upgrade reduces the downtime that is required to upgrade the Solaris OS. Also, Solaris Live Upgrade can prevent problems with upgrading. An example is the ability to recover from an upgrade if the power fails, because the copy being upgraded is not the currently running system.</td>
<td>To plan for disk space allocation when using Solaris Live Upgrade, see “Solaris Live Upgrade Requirements” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.</td>
</tr>
</tbody>
</table>
Upgrade Program Description

For More Information

Custom JumpStart program
Provides an automated upgrade. A profile file and optional preinstallation and postinstallation scripts provide the information required. When creating a custom JumpStart profile for an upgrade, specify install_type upgrade. You must test the custom JumpStart profile against the system’s disk configuration and currently installed software before you upgrade. Use the pfinstall -D command on the system that you are upgrading to test the profile. You cannot test an upgrade profile by using a disk configuration file.

■ For more information about testing the upgrade option, refer to “Testing a Profile” in Solaris 10/09 Installation Guide: Custom JumpStart and Advanced Installations

■ For more information about creating a upgrade profile, see “Profile Examples” in Solaris 10/09 Installation Guide: Custom JumpStart and Advanced Installations

■ For more information about performing an upgrade, see “Performing a Custom JumpStart Installation” in Solaris 10/09 Installation Guide: Custom JumpStart and Advanced Installations

Installing a Solaris Flash Archive Instead of Upgrading

The Solaris Flash installation feature provides a method of creating a copy of the whole installation from a master system that can be replicated on many clone systems. This copy is called a Solaris Flash archive. You can install an archive by using any installation program.

Caution – A Solaris Flash archive cannot be properly created when a non-global zone is installed. The Solaris Flash feature is not compatible with Solaris Zones partitioning technology. If you create a Solaris Flash archive, the resulting archive is not installed properly when the archive is deployed under these conditions:

■ The archive is created in a non-global zone
■ The archive is created in a global zone that has non-global zones installed

Creating an Archive That Contains Large Files

The default copy method that is used when you create a Solaris Flash archive is the cpio utility. Individual file sizes cannot be greater than 4 Gbytes. If you have large individual files, the flar create command with the -L pax option uses the pax utility to create an archive without limitations on individual file sizes. Individual file sizes can be greater than 4 Gbytes.

For information about installing an archive, see the following table.
Upgrading With Disk Space Reallocation

The upgrade option in the Solaris installation program and the upgrade keyword in the custom JumpStart program provide the ability to reallocate disk space. This reallocation automatically changes the sizes of the disk slices. You can reallocate disk space if the current file systems do not have enough space for the upgrade. For example, file systems might need more space for the upgrade for the following reasons:

- The Solaris software group that is currently installed on the system contains new software in the new release. Any new software that is included in a software group is automatically selected to be installed during the upgrade.
- The size of the existing software on the system has increased in the new release.

The auto-layout feature attempts to reallocate the disk space to accommodate the new size requirements of the file system. Initially, auto-layout attempts to reallocate space, based on a set of default constraints. If auto-layout cannot reallocate space, you must change the constraints on the file systems.

Note – Auto-layout does not have the ability to “grow” file systems. Auto-layout reallocates space by the following process:

1. Backing up required files on the file systems that need to change.
2. Repartitioning the disks on the basis of the file system changes.
3. Restoring the backup files before the upgrade happens.

- If you are using the Solaris installation program, and auto-layout cannot determine how to reallocate the disk space, you must use the custom JumpStart program to upgrade.
If you are using the custom JumpStart method to upgrade and you create an upgrade profile, disk space might be a concern. If the current file systems do not contain enough disk space for the upgrade, you can use the `backup_media` and `layout_constraint` keywords to reallocate disk space. For an example of how to use the `backup_media` and `layout_constraint` keywords in a profile, refer to “Profile Examples” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.

Using the Patch Analyzer When Upgrading

The Patch Analyzer performs an analysis on your system if you want to upgrade to one of these releases that follow the initial Solaris 10 3/05 release.

- Solaris 10 1/06 release
- Solaris 10 6/06 release

If you are already running the Solaris OS and have installed individual patches, upgrading to a subsequent Solaris 10 release causes the following:

- Any patches that were supplied as part of one of the releases noted above are reapplied to your system. You cannot back out these patches.
- Any patches that were previously installed on your system and are not included in one of the releases noted above are removed.

You can use the Patch Analyzer to determine which patches, if any, will be removed. For detailed instructions about using the Patch Analyzer, refer to Appendix C, “Using the Patch Analyzer When Upgrading (Tasks),” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.

Backing Up And Restarting Systems For an Upgrade

Backing up your existing file systems before you upgrade to the Solaris OS is highly recommended. If you copy file systems to removable media, such as tape, you can safeguard against data loss, damage, or corruption.

- To backup your system when non-global zones are installed, see Chapter 26, “Solaris Zones Administration (Overview),” in System Administration Guide: Solaris Containers-Resource Management and Solaris Zones.

In previous releases, the restart mechanism enabled you to continue an upgrade after a loss of power or other similar problem. Starting with the Solaris 10 10/08 release, the restart mechanism is unreliable. If you have a problem, your upgrade might not restart.
Planning Network Security

Starting with the Solaris 10 11/06 release, you have the option during an initial installation to change the network security settings so that all network services, except Secure Shell, are disabled or restricted to respond to local requests only. This option minimizes the potential vulnerabilities a remote attacker might try to exploit. In addition, this option provides a base for customers to enable only the services they require. This security option is only available during an initial installation, not during an upgrade. An upgrade maintains any set services that were previously set. If necessary, you can restrict network services after an upgrade by using the `netservices` command.

Depending on the installation program you are using, you can select to restrict network services or keep the services enabled by default:

- For the Solaris interactive installation, you can select the option of enabling network services by default as in previous Solaris releases. Or, you can select the option to restrict network services. For a detailed description of hands-on installations, see Chapter 2, “Installing With the Solaris Installation Program For UFS File Systems (Tasks),” in Solaris 10 10/09 Installation Guide: Basic Installations.

- For an automated JumpStart installation, you can set this security restriction by using a new keyword, `service_profile` in the `sysidcfg` file. For further information about this keyword, see “service_profile Keyword” in Solaris 10 10/09 Installation Guide: Network-Based Installations.

Restricted Security Specifics

If you choose to restrict network security, numerous services are fully disabled. Other services are still enabled, but these services are restricted to local connections only. The Secure Shell remains fully enabled.

For example, the following table lists network services that, for the Solaris 10 11/06 release, are restricted to local connections.

<table>
<thead>
<tr>
<th>Service</th>
<th>FMRI</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpcbind</td>
<td>svc:/network/rpc/bind</td>
<td>config/local_only</td>
</tr>
<tr>
<td>syslogd</td>
<td>svc:/system/system-log</td>
<td>config/log_from_remote</td>
</tr>
<tr>
<td>sendmail</td>
<td>svc:/network/smtp:sendmail</td>
<td>config/local_only</td>
</tr>
<tr>
<td>smcwebserver</td>
<td>svc:/system/webconsole:console</td>
<td>options/tcp_listen</td>
</tr>
</tbody>
</table>
TABLE 4–6 Solaris 10 11/06 SMF Restricted Services (Continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>FMRI</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBEM</td>
<td>svc:/application/management/wbem</td>
<td>options/tcp_listen</td>
</tr>
<tr>
<td>X server</td>
<td>svc:/application/x11/x11-server</td>
<td>options/tcp_listen</td>
</tr>
<tr>
<td>dtlogin</td>
<td>svc:/application/graphical-login/cde-login</td>
<td>dtlogin/args</td>
</tr>
<tr>
<td>ToolTalk</td>
<td>svc:/network/rpc cde-ttdbserver:tcp</td>
<td>proto=ticotsord</td>
</tr>
<tr>
<td>dtcm</td>
<td>svc:/network/rpc cde-calendar-manager</td>
<td>proto=ticits</td>
</tr>
<tr>
<td>BSD print</td>
<td>svc:/application/print/rfc1179:default</td>
<td>bind_addr=localhost</td>
</tr>
</tbody>
</table>

Revising Security Settings After Installation

With the restricted network security feature, all of the affected services are controlled by the Service Management Framework (SMF). Any individual network service can be enabled after an initial installation by using the svcadm and svccfg commands.

The restricted network access is achieved by invoking the netservices command from the SMF upgrade file found in /var/svc/profile. The netservices command can be used to switch the service startup behavior.

To disable network services manually, run the following command:

```
# netservices limited
```

This command can be used on upgraded systems, where no changes are made by default. This command can also be used to re-establish the restricted state after enabling individual services.

Similarly, default services can be enabled as they were in previous Solaris releases by running the following command:

```
# netservices open
```

For further information about revising security settings, see “How to Create an SMF Profile” in System Administration Guide: Basic Administration. See also the following man pages:

- netservices(1M)
- svcadm(1M)
- svccfg(1M) commands.
Locale Values

As a part of your installation, you can preconfigure the locale that you want the system to use. A locale determines how online information is displayed in a specific language and specific region. A language might also include more than one locale to accommodate regional differences, such as differences in the format of date and time, numeric and monetary conventions, and spelling.

You can preconfigure the system locale in a custom JumpStart profile or in the `sysidcfg` file.

<table>
<thead>
<tr>
<th>Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting the locale in a profile</td>
<td>“Creating a Profile” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations</td>
</tr>
<tr>
<td>Setting the locale in the <code>sysidcfg</code> file</td>
<td>“Preconfiguring With the sysidcfg File” in Solaris 10 10/09 Installation Guide: Network-Based Installations</td>
</tr>
<tr>
<td>List of locale values</td>
<td>International Language Environments Guide</td>
</tr>
</tbody>
</table>

Platform Names and Groups

When you are adding clients for a network installation, you must know your system architecture (platform group). If you are writing a custom JumpStart installation rules file, you need to know the platform name.

Some examples of platform names and groups follow. For a full list of SPARC based systems, see Solaris Sun Hardware Platform Guide at http://docs.sun.com/.

<table>
<thead>
<tr>
<th>System</th>
<th>Platform Name</th>
<th>Platform Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Fire</td>
<td>T2000</td>
<td>sun4v</td>
</tr>
<tr>
<td>Sun Blade™</td>
<td>SUNW.Sun-Blade-100</td>
<td>sun4u</td>
</tr>
<tr>
<td>x86 based</td>
<td>i86pc</td>
<td>i86pc</td>
</tr>
</tbody>
</table>

Note – On a running system, you can also use the `uname -i` command to determine a system’s platform name or the `uname -m` command to determine a system’s platform group.
x86: Partitioning Recommendations

When using the Solaris OS on x86 based systems, follow these guidelines for partitioning your system.

The Solaris installation program uses a default boot-disk partition layout. These partitions are called fdisk partitions. An fdisk partition is a logical partition of a disk drive that is dedicated to a particular operating system on x86 based systems. To install the Solaris software, you must set up at least one Solaris fdisk partition on an x86 based system. x86 based systems allow up to four different fdisk partitions on a disk. These partitions can be used to hold individual operating systems. Each operating system must be located on a unique fdisk partition. A system can only have one Solaris fdisk partition per disk.

<table>
<thead>
<tr>
<th>Partitions</th>
<th>Partition Name</th>
<th>Partition Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>First partition (on some systems)</td>
<td>Diagnostic or Service partition</td>
<td>Existing size on system.</td>
</tr>
<tr>
<td>Second partition (on some systems)</td>
<td>x86 boot partition</td>
<td>▪ If you are performing an initial installation, this partition is not created.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ If you upgrade and your system does not have an existing x86 boot partition, this partition is not created.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ If you upgrade and your system has an x86 boot partition:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ If the partition is required to bootstrap from one boot device to another, the x86 boot partition is preserved on the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ If the partition is not required to boot additional boot devices, the x86 boot partition is removed. The contents of the partition are moved to the root partition.</td>
</tr>
<tr>
<td>Third partition</td>
<td>Solaris OS partition</td>
<td>Remaining space on the boot disk.</td>
</tr>
</tbody>
</table>

Default Boot-Disk Partition Layout Preserves the Service Partition

The Solaris installation program uses a default boot-disk partition layout to accommodate the diagnostic or Service partition. If your system currently includes a diagnostic or Service partition, the default boot-disk partition layout enables you to preserve this partition.
How to Find the Version of the Solaris OS That Your System Is Running

To see the version of Solaris software that is running on your system, type either of the following commands.

$ uname -a

The `cat` command provides more detailed information.

$ cat /etc/release

Note – If you install the Solaris OS on an x86 based system that does not currently include a diagnostic or Service partition, the installation program does not create a new diagnostic or Service partition by default. If you want to create a diagnostic or Service partition on your system, see your hardware documentation.
Gathering Information Before Installation or Upgrade (Planning)

This chapter contains checklists to help you gather all of the information that you need to install or upgrade your system.

- “Checklist for Installation” on page 57
- “Checklist for Upgrading” on page 65

Checklist for Installation

Use the following checklist to gather the information that you need to install the Solaris OS. You do not need to gather all of the information that is requested on the worksheet. You need to collect only the information that applies to your system.

TABLE 5–1 Installation Checklist

<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network connection</td>
<td>Is the system connected to a network?</td>
<td>Networked/Nonnetworked</td>
</tr>
</tbody>
</table>
TABLE 5–1 Installation Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network security</td>
<td>Starting with the Solaris 10 11/06 release, you have the option during an initial installation to change the network security settings so that all network services, except Secure Shell, are disabled or restricted to respond to local requests only. This security option is only available during an initial installation, not during an upgrade. An upgrade maintains any previously set services. If necessary, you can restrict network services after an upgrade by using the <code>netservices</code> command. During the installation, you can select restricted network security. Or, you can enable a larger set of services as in previous Solaris releases. If in doubt, you can safely select the restricted network security option, because any services can be individually enabled after installation. For further information about these options, see "Planning Network Security" on page 52. The network services can be enabled after installation by using the <code>netservices open</code> command or by enabling individual services by using SMF commands. See "Revising Security Settings After Installation" on page 53.</td>
<td>Restricted/Open network security</td>
</tr>
</tbody>
</table>

| **DHCP** | Can the system use Dynamic Host Configuration Protocol (DHCP) to configure its network interfaces? DHCP provides the network parameters that are necessary for installation. | Yes/No* |

| **If you are not using DHCP, note the network address.** | If you are not using DHCP, supply the IP address for the system. Example: 172.31.255.255 To find this information on a running system, type the following command. `# ympmatch host-name hosts` | |

| **Subnet** | If you are not using DHCP is the system part of a subnet? If yes, what is the netmask of the subnet? Example: 255.255.255.0 To find this information on a running system, type the following command. `# more /etc/netmasks` | |

<p>| IPv6 | Do you want to enable IPv6 on this machine? IPv6 is a part of the TCP/IP Internet protocol that facilitates IP addressing by adding better security and increasing Internet addresses. | Yes/No* |</p>
<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| **Host name** | Host name that you choose for the system. To find this information on a running system, type the following command.
 # `uname -n` | |
| **Kerberos** | Do you want to configure Kerberos security on this machine? If yes, gather this information:
 Default Realm:
 Administration Server:
 First KDC:
 (Optional) Additional KDCs:
 The Kerberos service is a client-server architecture that provides secure transactions over networks. | Yes/No* |
| **Naming Service** | Which naming service should this system use? To find this information on a running system, type the following command.
 # `cat /etc/nsswitch.conf`
 A naming service stores information in a central place, which enables users, machines, and applications to communicate across the network. Examples of information that is stored are host names and addresses or user names and passwords. | NIS+/NIS/DNS/ LDAP/None |
| **Domain Name** | Provide the name of the domain in which the system resides. During installation, you can choose the default NFSv4 domain name. Or, you can specify a custom NFSv4 domain name.
 ■ For instructions about how to find the domain name on a running system, see "Checking for the NFS Version 4 Domain" in System Administration Guide: Network Services
 ■ To preconfigure the NFSv4 domain name in the `sysidcfg` file, see "nfs4_domain Keyword" in Solaris 10 10/09 Installation Guide: Network-Based Installations | }
TABLE 5–1 Installation Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS+ and NIS</td>
<td>Do you want to specify a name server or let the installation program find one? If you want to specify a name server, provide the following information.</td>
<td>Specify one/Find one*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server’s host name:</td>
</tr>
<tr>
<td></td>
<td>■ For NIS clients, type the following command to display the server’s host name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># ypwhich</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS+ clients, type the following command to display the server’s host name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># nisping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Server’s IP Address:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS clients, type the following command to display the server’s IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># ypmatch nameserver-name hosts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS+ clients, type the following command to display the server’s IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># nismatch nameserver-name hosts.org_dir</td>
<td></td>
</tr>
</tbody>
</table>

Network Information Service (NIS) makes network administration more manageable by providing centralized control over a variety of network information, such as machine names and addresses.
<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| DNS | Provide IP addresses for the DNS server. You must enter at least one IP address, but you can enter up to three addresses.

 Server’s IP Address:

 To display the server’s IP address, type the following command.

 `# getent hosts dns`

 You can enter a list of domains to search when a DNS query is made.

 List of domains to be searched:

 The domain name system (DNS) is the naming service that the Internet provides for TCP/IP networks. DNS provides host names to the IP address service. DNS simplifies communication by using machine names instead of numerical IP addresses. DNS also serves as a database for mail administration. | |
| LDAP | Provide the following information about your LDAP profile.

 Profile Name:

 Profile Server:

 If you specify a proxy credential level in your LDAP profile, gather this information.

 Proxy-bind distinguished name:

 Proxy-bind password:

 Lightweight Directory Access Protocol (LDAP) defines a relatively simple protocol for updating and searching directories that are running over TCP/IP. | |
Default route

Do you want to specify a default route IP address or let the Solaris installation program find one?

The default route provides a bridge that forwards traffic between two physical networks. An IP address is a unique number that identifies each host on a network.

You have the following choices:

- You can specify the IP address. An `/etc/default-router` file is created with the specified IP address. When the system is rebooted, the specified IP address becomes the default route.
- You can let the Solaris installation program detect an IP address. However, the system must be on a subnet that has a router that advertises itself by using the ICMP router discovery protocol. If you are using the command-line interface, the software detects an IP address when the system is booted.
- You can choose None if you do not have a router or do not want the software to detect an IP address at this time. The software automatically tries to detect an IP address on reboot.

<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default route</td>
<td></td>
<td>Detect one*/Specify one/None</td>
</tr>
</tbody>
</table>

Time zone

How do you want to specify your default time zone?

Geographic region

- Offset from GMT
- Time zone file

Root password

Provide the root password for the system.
<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| **Keyboard** | This feature is new in the following releases:
 - For SPARC, **starting with the Solaris 10 10/06 release**
 - For x86, **starting with the Solaris 10 8/07 release**
 If the keyboard is self-identifying, the keyboard language and layout automatically configures during installation. If the keyboard is not self-identifying, the `sysidkdb` tool provides you, during the installation, a list of supported keyboard layouts during installation, so that you can select a layout for keyboard configuration.
 SPARC: Previously, the USB keyboard assumed a self-identifying value of 1 during the installation. Therefore, all of the keyboards that were not self-identifying always configured for a U.S. English keyboard layout during installation.
 For further information, see “Preconfiguring With the sysidcfg File” in *Solaris 10 10/09 Installation Guide: Network-Based Installations.* |
| **Locales** | For which geographic regions do you want to install support?
 Note – The locale can be preconfigured by NIS or NIS+. For more information, see “sysidcfg File Keywords” in *Solaris 10 10/09 Installation Guide: Network-Based Installations.* |
| **SPARC: Power Management**| Do you want to use Power Management?
 Note – If your system has Energy Star version 3 or later, you are not prompted for this information. |
| **Automatic reboot or CD/DVD ejection** | Reboot automatically after software installation?
 Eject CD/DVD automatically after software installation? |
| **Default or custom installation** | Do you want to perform a default installation, or customize the installation?
 - Select Default installation to format the entire hard disk and install a preselected set of software.
 - Select Custom installation to modify the hard disk layout and select the software that you want to install.
 Note – The text installer does not prompt you to select a Default or Custom Installation. To perform a default installation, accept the default values that are provided in the text installer. To perform a custom installation, edit the values in the text installer screens. |

TABLE 5–1 Installation Checklist *(Continued)*
Table 5-1: Installation Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software group</td>
<td>Which Solaris Software Group do you want to install?</td>
<td>Entire Plus OEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entire*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced Networking</td>
</tr>
<tr>
<td>Custom package selection</td>
<td>Do you want to add or remove software packages from the Solaris Software Group that you install?</td>
<td>Note – When you select which packages to add or remove, you need to know about software dependencies and how Solaris software is packaged.</td>
</tr>
<tr>
<td>Select disks</td>
<td>On which disks do you want to install the Solaris software?</td>
<td>Example: c0t0d0</td>
</tr>
<tr>
<td>x86: fdisk partitioning</td>
<td>Do you want to create, delete, or modify a Solaris fdisk partition?</td>
<td>Each disk that is selected for file system layout must have a Solaris fdisk partition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If your system currently has a Service partition, the Solaris installation program preserves the Service partition by default. If you do not want to preserve the Service partition, you must customize the fdisk partitions. For more information about preserving a Service partition, see "Default Boot-Disk Partition Layout Preserves the Service Partition" on page 55.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select Disks for fdisk Partition Customization?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customize fdisk partitions?</td>
</tr>
<tr>
<td>Preserve Data</td>
<td>Do you want to preserve any data that exists on the disks where you are installing the Solaris software?</td>
<td>Yes/No*</td>
</tr>
<tr>
<td>Auto-layout file systems</td>
<td>Do you want the installation program to automatically lay out file systems on your disks?</td>
<td>If yes, which file systems should be used for auto-layout? Example: /, /opt, /var</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If no, you must provide file system configuration information. Note – The Solaris installation GUI lays out file systems automatically by default.</td>
</tr>
</tbody>
</table>

Checklist for Installation
Checklist for Upgrading

Use the following checklist to gather the information that you need to upgrade the Solaris OS. You do not need to gather all of the information that is requested on the checklist. You only need to collect the information that applies to your system. If you are performing the upgrade over the network, the installation program provides the information for you, based on the current system configuration.

Checklist for Upgrading

TABLE 5–1 Installation Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Installation</th>
<th>Description or Example</th>
<th>Answer — Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount remote file systems</td>
<td>Does this system need to access software on another file system? If yes, provide the following information about the remote file system.</td>
<td>Yes/No*</td>
</tr>
<tr>
<td></td>
<td>Server:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP Address:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote File System:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Mount Point:</td>
<td></td>
</tr>
</tbody>
</table>
| If you are installing through a `tip` line, follow these instructions. | Ensure that your window display is at least 80 columns wide and 24 rows long. For more information, see `tip(1)`. To determine the current dimensions of your `tip` window, use the `stty` command. For more information, see the man page, `stty(1)`.
| Check your Ethernet connection. | If the system is part of a network, verify that an Ethernet connector or similar network adapter is connected to your system. | |
| Review the planning chapter and other relevant documentation. | ■ Review the entire planning chapter or specific sections in Chapter 4, "System Requirements, Guidelines, and Upgrade (Planning)." ■ Review the Solaris 10 10/09 Release Notes on http://docs.sun.com and vendor release notes to ensure that the software you use is supported in the new Solaris release. ■ Review the following to ensure that your hardware is supported: ■ Solaris Hardware Compatibility List ■ SPARC: Solaris Sun Hardware Platform Guide at http://docs.sun.com ■ Review the documentation that accompanied your system to ensure that your system and devices are supported by the Solaris release. | |
You cannot change basic system identification, such as host name or IP address. The installation program might prompt you for basic system identification, but you must enter the original values. If you use the Solaris installation program to upgrade, the upgrade fails if you attempt to change any of the values.

TABLE 5-2 Upgrade Checklist

<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network connection</td>
<td>Is the system connected to a network?</td>
<td>Networked/Nonnetworked</td>
</tr>
<tr>
<td>DHCP</td>
<td>Can the system use Dynamic Host Configuration Protocol (DHCP) to configure its network interfaces? DHCP provides the network parameters that are necessary for installation.</td>
<td>Yes/No*</td>
</tr>
<tr>
<td>If you are not using DHCP, note the network address.</td>
<td>IP Address</td>
<td>If you are not using DHCP, supply the IP address for the system. Example: 172.31.255.255 To find this information on a running system, type the following command. <code># ypmatch host-name hosts</code></td>
</tr>
<tr>
<td>Subnet</td>
<td>If you are not using DHCP, is the system part of a subnet? If yes, what is the netmask of the subnet? Example: 255.255.255.0 To find this information on a running system, type the following command. <code># more /etc/netmasks</code></td>
<td></td>
</tr>
<tr>
<td>IPv6</td>
<td>Do you want to enable IPv6 on this machine? IPv6 is a part of the TCP/IP Internet protocol that facilitates IP addressing by adding better security and increasing Internet addresses.</td>
<td>Yes/No*</td>
</tr>
<tr>
<td>Host name</td>
<td></td>
<td>Host name that you choose for the system. To find this information on a running system, type the following command. <code># uname -n</code></td>
</tr>
<tr>
<td>Information for Upgrade</td>
<td>Description or Example</td>
<td>Answer – Defaults are noted with an asterisk (*)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kerberos</td>
<td>Do you want to configure Kerberos security on this machine? If yes, gather this information: Default Realm: Administration Server: First KDC: (Optional) Additional KDCs: The Kerberos service is a client-server architecture that provides secure transactions over networks.</td>
<td>Yes/No*</td>
</tr>
</tbody>
</table>
| If the system uses a naming service, provide the following information. | Naming service | Which naming service should this system use? To find this information on a running system, type the following command.
```bash
# cat /etc/nsswitch.conf
```
A naming service stores information in a central place, which enables users, machines, and applications to communicate across the network. Examples of information that is stored are host names and addresses or user names and passwords. | NIS+/NIS/DNS/ LDAP/None |
| Domain name | Provide the name of the domain in which the system resides. During installation, you can choose the default NFSv4 domain name. Or, you can specify a custom NFSv4 domain name. ● For instructions about how to find the domain name on a running system, see “Checking for the NFS Version 4 Domain” in System Administration Guide: Network Services ● To preconfigure the NFSv4 domain name in the `sysidcf` file, see “nfs4_domain Keyword” in Solaris 10 10/09 Installation Guide: Network-Based Installations |
Checklist for Upgrading

TABLE 5–2 Upgrade Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS+ and NIS</td>
<td>Do you want to specify a name server or let the installation program find one?</td>
<td>Specify one/Find one*</td>
</tr>
<tr>
<td></td>
<td>If you want to specify a name server, provide the following information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Server’s host name:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS clients, type the following command to display the server’s host name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># ypwhich</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS+ clients, type the following command to display the server’s host name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># nisping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Server’s IP Address:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS clients, type the following command to display the server’s IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># ypmatch nameserver-name hosts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ For NIS+ clients, type the following command to display the server’s IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td># nismatch nameserver-name hosts.org_dir</td>
<td></td>
</tr>
</tbody>
</table>

Network Information Service (NIS) makes network administration more manageable by providing centralized control over a variety of network information, such as machine names and addresses.
<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| **DNS** | Provide IP addresses for the DNS server. You must enter at least one IP address, but you can enter up to three addresses.
 | Server’s IP Address:
 | To display the server’s IP address, type the following command.
 | # getent hosts dns
 | You can enter a list of domains to search when a DNS query is made.
 | List of domains to be searched:
 | The domain name system (DNS) is the naming service that the Internet provides for TCP/IP networks. DNS provides host names to the IP address service. DNS simplifies communication by using machine names instead of numerical IP addresses. DNS also serves as a database for mail administration. | |
| **LDAP** | Provide the following information about your LDAP profile.
 | Profile Name:
 | Profile Server:
 | If you specify a proxy credential level in your LDAP profile, gather this information.
 | Proxy-bind distinguished name:
 | Proxy-bind password:
 | Lightweight Directory Access Protocol (LDAP) defines a relatively simple protocol for updating and searching directories that are running over TCP/IP. | |
TABLE 5–2 Upgrade Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| Default route | Do you want to specify a default route IP address or let the Solaris installation program find one? The default route provides a bridge that forwards traffic between two physical networks. An IP address is a unique number that identifies each host on a network. You have the following choices:
 ■ You can specify the IP address. An /etc/default/router file is created with the specified IP address. When the system is rebooted, the specified IP address becomes the default route.
 ■ You can let the Solaris installation program detect an IP address. However, the system must be on a subnet that has a router that advertises itself by using the ICMProuter discovery protocol. If you are using the command-line interface, the software detects an IP address when the system is booted.
 ■ You can choose None if you do not have a router or do not want the software to detect an IP address at this time. The software automatically tries to detect an IP address on reboot. | Detect one*/Specify one/None |
| Time zone | How do you want to specify your default time zone? | Geographic region*
 Offset from GMT
 Time zone file |
<p>| Root password | Provide the root password for the system. |</p>
<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| Default or custom installation | Do you want to perform a default installation, or customize the installation?
 ■ Select Default installation to format the entire hard disk and install a preselected set of software.
 ■ Select Custom installation to modify the hard disk layout and select the software that you want to install.
 Note – The text installer does not prompt you to select a Default or Custom Installation. To perform a default installation, accept the default values that are provided in the text installer. To perform a custom installation, edit the values in the text installer screens. | Default installation*/Custom installation |
| Keyboard | This feature is new in the following releases:
 ■ For SPARC, starting with the Solaris 10 10/06 release
 ■ For x86, starting with the Solaris 10 8/07 release
 If the keyboard is self-identifying, the keyboard language and layout automatically configures during installation. If the keyboard is not self-identifying, the sysidkdb tool provides you, during the installation, a list of supported keyboard layouts during installation, so that you can select a layout for keyboard configuration.
 SPARC: Previously, the USB keyboard assumed a self-identifying value of 1 during the installation. Therefore, all of the keyboards that were not self-identifying always configured for a U.S. English keyboard layout during installation.
 For further information, see “Preconfiguring With the sysidcfg File” in Solaris 10 10/09 Installation Guide: Network-Based Installations. |
Table 5-2: Upgrade Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| Locales | For which geographic regions do you want to install support?
 Note – The locale can be preconfigured by NIS or NIS+. For more information, see "sysidclg File Keywords" in *Solaris 10 10/09 Installation Guide: Network-Based Installations*. | |
| SPARC: Power Management (only available on SPARC systems that support Power Management) | Do you want to use Power Management?
 Note – If your system has Energy Star version 3 or later, you are not prompted for this information. | Yes/No |
| Automatic reboot or CD/DVD ejection | Reboot automatically after software installation?
 Eject CD/DVD automatically after software installation? | Yes*/No
 Yes*/No |
| Disk space reallocation | Do you want the installation program to automatically re-layout the systems on your disks?
 If yes, which file system should be used for auto-layout?
 Example: /, /opt, /var
 If no, you must provide information for the system configuration. | Yes/No* |
| If you are installing through a **tip** line, follow these instructions. | Ensure that your window display is at least 80 columns wide and 24 rows long. For more information, see **tip**(1).
 To determine the current dimensions of your **tip** window, use the **stty** command. For more information, see the man page, **stty**(1). | |
| Check your Ethernet connection. | If the system is part of a network, verify that an Ethernet connector or similar network adapter is connected to your system. | |
TABLE 5–2 Upgrade Checklist (Continued)

<table>
<thead>
<tr>
<th>Information for Upgrade</th>
<th>Description or Example</th>
<th>Answer – Defaults are noted with an asterisk (*)</th>
</tr>
</thead>
</table>
| Solaris Live Upgrade use | ■ Determine your resource requirements for creating a new boot environment and upgrading it. For detailed information, refer to Chapter 3, "Solaris Live Upgrade (Planning)," in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.
■ Determine the requirements if you are using RAID-1 volumes. For detailed information, refer to "Guidelines for Selecting Slices for File Systems" in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning. | |
| Check the system for the existence of Prestoserve software. | If you begin the upgrade process by shutting down the system with the init 0 command and you’re using Prestoserve software, you might lose data. Refer to the Prestoserve documentation for shutdown instructions. | |
| Check for patches needed. | The most recent patch list is provided at http://sunsolve.sun.com. | |
| Review the planning chapter and other relevant documentation. | ■ Review the entire planning chapter or specific sections in Chapter 4, "System Requirements, Guidelines, and Upgrade (Planning)."
■ Review the Solaris 10 10/09 Release Notes on http://docs.sun.com and vendor release notes to ensure that the software you use is supported in the new Solaris release.
■ Review the 10 10/09 Sun Hardware Platform Guide to ensure that your hardware is supported.
■ Review the documentation that accompanied your system to ensure that your system and devices are supported by the Solaris release. | |
PART II

Understanding Installations That Relate to ZFS, Booting, Solaris Zones, and RAID-1 Volumes

This part provides an overview of several technologies that relate to a Solaris OS installation or upgrade. Guidelines and requirements are also included.

- Installation for the ZFS root (/) file system
- Booting on x86 or SPARC based systems
- Solaris Zones partitioning technology
- Solaris Volume Manager components such as RAID-1 volumes
ZFS Root File System Installation (Planning)

This chapter provides system requirements and limitations to assist you when you install a ZFS root pool. Also provided is an overview of the installation programs that can install a ZFS root pool.

- “Requirements for Installing a ZFS Root Pool” on page 78
- “Solaris Installation Programs for Installing ZFS Root Pools” on page 80

If you have multiple boot environments on your system see Chapter 7, “SPARC and x86 Based Booting (Overview and Planning),” for information on booting.

What's New in the Solaris 10 10/09 Release

Starting with the Solaris 10 10/09 release, you can set up a JumpStart profile to identify a flash archive of a ZFS root pool.

A Flash archive can be created on a system that is running a UFS root file system or a ZFS root file system. A Flash archive of a ZFS root pool contains the entire pool hierarchy, except for the swap and dump volumes, and any excluded datasets. The swap and dump volumes are created when the Flash archive is installed.

You can use the Flash archive installation method as follows:

- Generate a Flash archive that can be used to install and boot a system with a ZFS root file system.
- Perform a JumpStart installation of a system by using a ZFS Flash archive.

Note – Creating a ZFS Flash archive backs up an entire root pool, not individual boot environments. Individual datasets within the pool can be excluded by using the flar create and flar command’s -D option.
For detailed instructions and limitations, see "Installing a ZFS Root File System (Flash Archive Installation)” in Solaris ZFS Administration Guide.

Requirements for Installing a ZFS Root Pool

TABLE 6–1 System Requirements and Limitations

<table>
<thead>
<tr>
<th>Requirement or Limitation</th>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>786 MB is the minimum memory. 1 GB is recommended for overall performance.</td>
<td>"ZFS Administration Guide."</td>
</tr>
<tr>
<td>Disk space</td>
<td>The minimum amount of available pool space for a bootable ZFS root file system depends on the amount of physical memory, the disk space available, and the number of boot environments to be created.</td>
<td>For an explanation, see "Disk Space Requirements for a ZFS Installation” on page 79.</td>
</tr>
<tr>
<td></td>
<td>The pool created with slices can be mirrored but not a RAID-Z or non-redundant configuration of multiple disks. The SVM device information must be already available in the /dev/md/[r]disk directory.</td>
<td>■ For information about SVM, see "Overview of Solaris Volume Manager Components” on page 98.</td>
</tr>
<tr>
<td></td>
<td>The pool must have an SMI label. An EFI-labeled disk cannot be booted.</td>
<td>■ For information about other restrictions for an EFI-labeled disk, see "Overview of Disk Management” in System Administration Guide: Devices and File Systems.</td>
</tr>
<tr>
<td></td>
<td>x86 only: The ZFS pool must be in a slice with an fdisk partition.</td>
<td>■ To create an fdisk partition with an SMI label, see "How to Create a Solaris fdisk Partition” in System Administration Guide: Devices and File Systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ For information about fdisk partitions, see “x86: Partitioning Recommendations” on page 55.</td>
</tr>
</tbody>
</table>
When you migrate from a UFS root (/) file system to a ZFS root pool with Solaris Live Upgrade, consider these requirements.

- Migrating from a UFS file system to a ZFS root pool with Solaris Live Upgrade or creating a new boot environment in a root pool is new starting with the Solaris 10 10/08 release. This release contains the software needed to use Solaris Live Upgrade with ZFS. You must have at least this release installed to use ZFS with Solaris Live Upgrade.
- Migration is possible only from a UFS file system to a ZFS file system.
- File systems other than a UFS file system cannot be migrated to a ZFS root pool.
- A UFS file system cannot be created from a ZFS root pool.
- Before migrating, a ZFS storage pool must exist.

Disk Space Requirements for a ZFS Installation

Normally, on a system with a UFS root file system, swap and dump are on the same slice. Therefore, UFS shares the swap space with the dump device. In a ZFS root pool, swap and dump are separate zvols, so they do not share the same physical space. When a system is installed or upgraded with a ZFS root file system, the size of the swap area and the dump device are dependent on the amount of physical memory. The minimum amount of available pool space for a bootable ZFS root file system depends on the amount of physical memory, the disk space available, and the number of boot environments to be created. Approximately 1 Gbyte of memory and at least 2 Gbytes of disk space are recommended. The space is consumed as follows:

- **Swap area and dump device** - The default size of swap is 1/2 the size of physical memory, but no less than 512 Mbytes and no greater than 2 Gbytes. The dump device is calculated based on the size of the memory and the contents of the dumpadm.conf file. This file defines what goes into a crash dump. You can adjust the sizes of your swap and device volumes before or after installation. For more information, see “Introducing ZFS Properties” in Solaris ZFS Administration Guide.

- **Boot environments** - In addition to either new swap and dump space requirements or adjusted swap and dump device sizes, a ZFS boot environment that is migrated from a UFS boot environment needs approximately 6 Gbytes. Each ZFS boot environment that is cloned from another ZFS boot environment does not need additional disk space. However, the boot environment size might increase when patches are applied. All ZFS boot environments in the same root pool use the same swap and dump devices.
Solaris Installation Programs for Installing ZFS Root Pools

The following installation programs perform an initial installation of a ZFS root pool.

- Solaris installation program text installer
- Custom JumpStart with an installation profile

Solaris Live Upgrade can migrate a UFS file system to a ZFS root pool. Also, Solaris Live Upgrade can create ZFS boot environments that can be upgraded.

<table>
<thead>
<tr>
<th>ZFS Installation Program</th>
<th>Description</th>
<th>Limitations</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Installation program text installer</td>
<td>The Solaris text installer performs an initial installation for a ZFS root pool. During the installation, you can choose to install either a UFS file system or a ZFS root pool. You can set up a mirrored ZFS root pool by selecting two or more slices during the installation. Or, you can attach or add additional disks after the installation to create a mirrored ZFS root pool. Swap and dump devices on ZFS volumes are automatically created in the ZFS root pool.</td>
<td>The installation GUI is not available to install a ZFS root pool. You cannot use the standard upgrade program to upgrade. You must use Solaris Live Upgrade to upgrade a ZFS root pool.</td>
<td>Chapter 3, “Installing With the Solaris Interactive Text Installer for ZFS Root Pools (Planning and Tasks),” in Solaris 10 10/09 Installation Guide: Basic Installations</td>
</tr>
</tbody>
</table>
| Solaris Live Upgrade | You can use the Solaris Live Upgrade feature to perform the following tasks:
 - Migrate a UFS root (/) file system to a ZFS root pool
 - Create a new boot environment in the following ways:
 - Within an existing ZFS root pool
 - Within another ZFS root pool
 - From a source other than the currently running system
 - On a system with non-global zones installed
 After you have used the `lucreate` command to create a ZFS boot environment, you can use the other Solaris Live Upgrade commands on the boot environment. | A storage pool must be created before you use the `lucreate` command. | Chapter 11, “Solaris Live Upgrade and ZFS (Overview),” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning |
TABLE 6–2 ZFS Installation Programs and Limitations (Continued)

<table>
<thead>
<tr>
<th>ZFS Installation Program</th>
<th>Description</th>
<th>Limitations</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>JumpStart</td>
<td>Starting with the Solaris 10 10/09 release, you can set up a JumpStart profile to identify a flash archive of a ZFS root pool. See "What’s New in the Solaris 10 10/09 Release" on page 77. You can create a profile to create a ZFS storage pool and designate a bootable ZFS file system. New ZFS keywords provide an initial installation.</td>
<td>■ You cannot use the install_type upgrade keyword to upgrade a ZFS root pool. Nor can you use the Solaris Flash keywords. ■ Some keywords that are allowed in a UFS specific profile are not allowed in a ZFS specific profile.</td>
<td>■ For a quick reference about keywords that can be used in a ZFS installation, see "Profile Keywords Quick Reference" in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations. ■ For descriptions of ZFS keywords and profile examples, see Chapter 9, "Installing a ZFS Root Pool With JumpStart," in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.</td>
</tr>
</tbody>
</table>
Starting with the Solaris 10 10/08 release, changes in Solaris boot architecture provides many new features, including booting from different file system types, such as ZFS file systems. This chapter describes some of these changes and provides references to more information about booting. Also, this chapter provides an overview of GRUB based booting for x86 systems.

This chapter contains the following sections:
- “Booting for Solaris (Overview)” on page 83
- “x86: GRUB Based Booting (Overview)” on page 85
- “x86: GRUB Based Booting (Planning)” on page 85

Booting for Solaris (Overview)

Starting with the Solaris 10 10/08 release, the Solaris SPARC bootstrap process has been redesigned to increase commonality with the Solaris x86 boot architecture. The improved Solaris boot architecture brings direct boot, ramdisk-based booting, and the ramdisk miniroot to the SPARC platform. These enabling technologies support the following functions:
- Booting a system from additional file system types, such as a ZFS file system.
- Booting a single miniroot for software installation from DVD, NFS, or HTTP

Additional improvements include significantly faster boot times, increased flexibility, and reduced maintenance requirements.

As part of this architecture redesign, the Solaris boot archives and the bootadm command, previously only available on the Solaris x86 platform, are now an integral part of the Solaris SPARC boot architecture.

Although the implementation of the Solaris SPARC boot has changed, no administrative procedures for booting a SPARC-based system have been impacted. Solaris installations have changed to include installing from a ZFS file system, but otherwise have not changed for the new boot architecture.
Booting ZFS Boot Environments (Overview)

If your system has more than one OS installed on the system or more than one root boot environment in a ZFS root pool, you can boot from these boot environments for both SPARC and x86 platforms. The boot environments available for booting include boot environments created by Solaris Live Upgrade.

- **Starting with the Solaris 10 10/08 release** for a SPARC based system, you can boot a ZFS root file system in a ZFS pool. For ZFS root pools, you can list the available boot environments with the boot command with the -L option. You can then choose a boot environment and use the OBP boot command with the -Z option to boot that boot environment. The -Z option is an alternative for the `luactivate` command that is also used to boot a new boot environment for a ZFS root pool. The `luactivate` command is the preferred method of switching boot environments. For a UFS file system, you continue to use the OpenBoot™ PROM OBP as the primary administrative interface, with boot options selected by using OBP commands.

- **Starting with the Solaris 10 1/06 release** for x86 based systems, a GRUB boot menu provides the interface for booting between different boot environments. **Starting with the Solaris 10 10/08 release**, this menu lists ZFS boot environments that are available for booting. If the default boot environment is a ZFS file system and the GRUB menu is displayed, you can let the default boot environment boot or choose another boot environment to boot. The GRUB menu is an alternative to using the `luactivate` command that is also used to boot a new boot environment for a ZFS root pool. The `luactivate` is the preferred method of switching boot environments.

On both SPARC and x86 based systems, each ZFS root pool has a dataset designated as the default root file system. If for SPARC, you type the boot command or for x86, you take the default from the GRUB menu, then this default root file system is booted.

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a high-level overview of booting features</td>
<td>Chapter 8, "Introduction to Shutting Down and Booting a System," in System Administration Guide: Basic Administration</td>
</tr>
<tr>
<td>For more detailed overview of booting features</td>
<td>Chapter 9, "Shutting Down and Booting a System (Overview)," in System Administration Guide: Basic Administration</td>
</tr>
<tr>
<td>x86: For information about modifying boot behavior such as editing the <code>menu.lst</code> file and locating the <code>menu.lst</code> file</td>
<td>"Modifying Solaris Boot Behavior on x86 Based Systems (Task Map)" in System Administration Guide: Basic Administration</td>
</tr>
</tbody>
</table>
x86: GRUB Based Booting (Overview)

GRUB, the open source boot loader, is the default boot loader in the Solaris OS.

The boot loader is the first software program that runs after you power on a system. After you power on an x86 based system, the Basic Input/Output System (BIOS) initializes the CPU, the memory, and the platform hardware. When the initialization phase has completed, the BIOS loads the boot loader from the configured boot device, and then transfers control of the system to the boot loader.

GRUB is an open source boot loader with a simple menu interface that includes boot options that are predefined in a configuration file. GRUB also has a command-line interface that is accessible from the menu interface for performing various boot commands. In the Solaris OS, the GRUB implementation is compliant with the Multiboot Specification. The specification is described in detail at http://www.gnu.org/software/grub/grub.html.

Because the Solaris kernel is fully compliant with the Multiboot Specification, you can boot a Solaris x86 based system by using GRUB. With GRUB, you can more easily boot and install various operating systems.

A key benefit of GRUB is that it is intuitive about file systems and kernel executable formats, which enables you to load an operating system without recording the physical position of the kernel on the disk. With GRUB based booting, the kernel is loaded by specifying its file name, and the drive, and the partition where the kernel resides. GRUB based booting replaces the Solaris Device Configuration Assistant and simplifies the booting process with a GRUB menu.

x86: GRUB Based Booting (Planning)

This section describes the basics of GRUB based booting and describes the GRUB menu.

When you install the Solaris OS, two GRUB menu entries are installed on the system by default. The first entry is the Solaris OS entry. The second entry is the failsafe boot archive, which is to be used for system recovery. The Solaris GRUB menu entries are installed and updated automatically as part of the Solaris software installation and upgrade process. These entries are directly managed by the OS and should not be manually edited.
During a standard Solaris OS installation, GRUB is installed on the Solaris fdisk partition without modifying the system BIOS setting. If the OS is not on the BIOS boot disk, you need to do one of the following:

- Modify the BIOS setting.
- Use a boot manager to bootstrap to the Solaris partition. For more details, see your boot manager.

The preferred method is to install the Solaris OS on the boot disk. If multiple operating systems are installed on the machine, you can add entries to the menu.lst file. These entries are then displayed in the GRUB menu the next time you boot the system.

For additional information on multiple operating systems, see “How Multiple Operating Systems Are Supported by GRUB” in System Administration Guide: Basic Administration.

x86: Performing a GRUB Based Installation From the Network

Performing a GRUB based network boot requires a DHCP server that is configured for PXE clients and an install server that provides tftp service. The DHCP server must be able to respond to the DHCP classes, PXEClient and GRUBClient. The DHCP response must contain the following information:

- IP address of the file server
- Name of the boot file (pxegrub)

Note – rpc.bootparamd, which is usually a requirement on the server side for performing a network boot, is not required for a GRUB based network boot.

If no PXE or DHCP server is available, you can load GRUB from CD-ROM or local disk. You can then manually configure the network in GRUB and download the multiboot program and the boot archive from the file server.

For more information, see “Overview of Booting and Installing Over the Network With PXE” in Solaris 10 10/09 Installation Guide: Network-Based Installations.
Upgrading When Solaris Zones Are Installed on a System (Planning)

This chapter provides an overview of how Solaris Zones partitioning technology relates to upgrading the Solaris OS when non-global zones are configured.

This chapter contains the following sections:

- “Solaris Zones (Overview)” on page 87
- “Upgrading With Non-Global Zones” on page 88
- “Disk Space Requirements for Non-Global Zones” on page 93

Solaris Zones (Overview)

The Solaris Zones partitioning technology is used to virtualize operating system services and provide an isolated and secure environment for running applications. A non-global zone is a virtualized operating system environment created within a single instance of the Solaris OS. When you create a non-global zone, you produce an application execution environment in which processes are isolated from the rest of the system. This isolation prevents processes that are running in one non-global zone from monitoring or affecting processes that are running in other non-global zones. Even a process running with superuser credentials cannot view or affect activity in other zones. A non-global zone also provides an abstract layer that separates applications from the physical attributes of the machine on which they are deployed. Examples of these attributes include physical device paths.

Every Solaris system contains a global zone. The global zone has a dual function. The global zone is both the default zone for the system and the zone used for system-wide administrative control. All processes run in the global zone if no non-global zones are created by the global administrator. The global zone is the only zone from which a non-global zone can be configured, installed, managed, or uninstalled. Only the global zone is bootable from the system hardware. Administration of the system infrastructure, such as physical devices, routing, or dynamic reconfiguration (DR), is only possible in the global zone. Appropriately privileged processes running in the global zone can access objects associated with the non-global zones.
Upgrading With Non-Global Zones

The following sections describe how you can upgrade a system that contains non-global zones.

For More Information

"Upgrading With Non-Global Zones" on page 88

Note – Starting with the Solaris 10 10/09 release, zones parallel patching enhances the standard Solaris 10 patch utilities. This feature improves zones patching performance by patching non-global zones in parallel.

The global zone is still patched before the non-global zones are patched.

For releases prior to the Solaris 10 10/09 release, this feature is delivered in the following patch utilities patches:

- SPARC: patch 119254-66 or later revision
- x86: patch 119255-66 or later revision

For more information, see the following documentation:

TABLE 8–1 Choosing an Installation Program to Upgrade With Non-Global Zones

<table>
<thead>
<tr>
<th>Upgrade Program</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
</table>
| Solaris Live Upgrade | You can upgrade or patch a system that contains non-global zones. If you have a system that contains non-global zones, Solaris Live Upgrade is the recommended upgrade program or program to add patches. Other upgrade programs might require extensive upgrade time, because the time required to complete the upgrade increases linearly with the number of installed non-global zones. If you are patching a system with Solaris Live Upgrade, you do not have to take the system to single-user mode and you can maximize your system's uptime. Starting with the Solaris 10 8/07 release, changes to accommodate systems that have non-global zones installed are the following:
 ■ A new package, SUNWlucfg, is required to be installed with the other Solaris Live Upgrade packages, SUNWlur and SUNWluu.
 ■ Creating a new boot environment from the currently running boot environment remains the same with one exception. You can specify a destination slice for a shared file system within a non-global zone. This exception occurs under the following circumstances:
 ■ If on the current boot environment the zonecfg add fs command was used that created a separate file system for a non-global zone
 ■ If this separate file system resides on a shared file system, such as /zone/root/export
To prevent this separate file system from being shared in the new boot environment, the luscreate command has changed to enable specifying a destination slice for a separate file system for a non-global zone. The argument to the -n option has a new optional field, zonename. This new field places the non-global zone's separate file system on a separate slice in the new boot environment. For more information on setting up a non-global zone with a separate file system, see zonecfg(1M). | For UFS file systems, for step-by-step instructions on using Solaris Live Upgrade when non-global zones are installed, see Chapter 8, “Upgrading the Solaris OS on a System With Non-Global Zones Installed,” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.
TABLE 8–1 Choosing an Installation Program to Upgrade With Non-Global Zones (Continued)

<table>
<thead>
<tr>
<th>Upgrade Program</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Live Upgrade continued</td>
<td>Note – By default, any file system other than the critical file systems (root (/), /usr, and /opt file systems) is shared between the current and new boot environments. Updating shared files in the active boot environment also updates data in the inactive boot environment. The /export file system is an example of a shared file system. If you use the -n option and the zonename option, the non-global zone’s shared file system is copied to a separate slice and data is not shared. This option prevents non-global zone file systems that were created with the zonecfg add fs command from being shared between the boot environments. Additional changes, starting with the Solaris 10/8/07 release, that accommodate systems with non-global zones installed include the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Comparing boot environments is enhanced. The lucompared command now generates a comparison of boot environments that includes the contents of any non-global zone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ The lumount command now provides non-global zones with access to their corresponding separate file systems that exist on inactive boot environments. When the global zone administrator uses the lumount command to mount an inactive boot environment, the boot environment is mounted for non-global zones as well.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Listing file systems with the lufslist command is enhanced to display a list of file systems for both the global zone and the non-global zones.</td>
<td></td>
</tr>
<tr>
<td>Solaris interactive installation program GUI</td>
<td>You can upgrade or patch a system when non-global zones are installed. The time to upgrade or patch might be extensive, depending on the number of non-global zones that are installed.</td>
<td>For more information about installing with this program, see Chapter 2, “Installing With the Solaris Installation Program For UFS File Systems (Tasks),” in Solaris 10 10/09 Installation Guide: Basic Installations.</td>
</tr>
</tbody>
</table>
TABLE 8–1 Choosing an Installation Program to Upgrade With Non-Global Zones

<table>
<thead>
<tr>
<th>Upgrade Program</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated JumpStart installation</td>
<td>You can upgrade or patch with any keyword that applies to an upgrade or patching. The time to upgrade or patch might be extensive, depending on the number of non-global zones that are installed.</td>
<td>For more information about installing with this program, see Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations.</td>
</tr>
</tbody>
</table>

Limitations when upgrading with non-global zones are listed in the following table.

TABLE 8–2 Limitations When Upgrading With Non-Global Zones

<table>
<thead>
<tr>
<th>Program or Condition</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you use the <code>lucreate</code> command to create an inactive boot environment, if a given non-global zone is not running, then the zone cannot be booted until the <code>lucreate</code> operation has completed.</td>
<td>For UFS file systems, for step-by-step instructions on using Solaris Live Upgrade when non-global zones are installed, see Chapter 8, “Upgrading the Solaris OS on a System With Non-Global Zones Installed,” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.</td>
</tr>
<tr>
<td></td>
<td>When you use the <code>lucreate</code> command to create an inactive boot environment if a given non-global zone is running, the zone should not be halted or rebooted until the <code>lucreate</code> operation has completed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When an inactive boot environment is mounted with the <code>lumount</code> command, you cannot boot non-global zones or reboot them, although zones that were running before the <code>lumount</code> operation can continue to run.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Because a non-global zone can be controlled by a non-global zone administrator as well as by the global zone administrator, to prevent any interaction, halt all zones during <code>lucreate</code> or <code>lumount</code> operations.</td>
<td>For ZFS root pools, for an overview and step-by-step instructions, see Chapter 14, “Solaris Live Upgrade For ZFS With Non-Global Zones Installed,” in Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning.</td>
</tr>
</tbody>
</table>
TABLE 8–2 Limitations When Upgrading With Non-Global Zones (Continued)

<table>
<thead>
<tr>
<th>Program or Condition Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems can occur when the global zone administrator does not notify the non-global zone administrator of an upgrade with Solaris Live Upgrade.</td>
<td>For more information about using Solaris Flash archives, see Solaris 10 10/09 Installation Guide: Solaris Flash Archives (Creation and Installation).</td>
</tr>
<tr>
<td>Solaris Flash archives cannot be used with non-global zones.</td>
<td>For a list of utilities that accept an alternate root (/) file system and more information about zones, see “Restriction on Accessing A Non-Global Zone From the Global Zone” in System Administration Guide: Solaris Containers-Resource Management and Solaris Zones.</td>
</tr>
<tr>
<td>Using a command that uses the -R option or equivalent must not be used in some situations.</td>
<td></td>
</tr>
<tr>
<td>A Solaris Flash archive cannot be properly created when a non-global zone is installed. The Solaris Flash feature is not compatible with Solaris Zones partitioning technology. If you create a Solaris Flash archive, the resulting archive is not installed properly when the archive is deployed under these conditions:</td>
<td></td>
</tr>
<tr>
<td>■ The archive is created in a non-global zone.</td>
<td></td>
</tr>
<tr>
<td>■ The archive is created in a global zone that has non-global zones installed.</td>
<td></td>
</tr>
</tbody>
</table>
Disk Space Requirements for Non-Global Zones

When installing the global zone, be sure to reserve enough disk space for all of the zones you might create. Each non-global zone might have unique disk space requirements.

No limits are placed on how much disk space can be consumed by a zone. The global zone administrator is responsible for space restriction. Even a small uniprocessor system can support a number of zones running simultaneously. The characteristics of the packages installed in the global zone affect the space requirements of the non-global zones that are created. The number of packages and space requirements are factors.

For complete planning requirements and recommendations, see Chapter 18, "Planning and Configuring Non-Global Zones (Tasks),” in System Administration Guide: Solaris Containers-Resource Management and Solaris Zones.
Creating RAID-1 Volumes (Mirrors) During Installation (Overview)

This chapter discusses the advantages of creating RAID-1 volumes (mirrors) for the root (/) file system. This chapter also describes the Solaris Volume Manager components that are required to create mirrors for file systems. This chapter describes the following topics.

- “Why Use RAID-1 Volumes?” on page 95
- “How Do RAID-1 Volumes Work?” on page 96
- “Overview of Solaris Volume Manager Components” on page 98
- “Example of RAID-1 Volume Disk Layout” on page 100

For additional information specific to Solaris Live Upgrade or JumpStart, see the following references:

- For JumpStart:
 - “filesys Profile Keyword (Creating RAID-1 Volumes)” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations
 - “metadb Profile Keyword (Creating State Database Replicas)” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations

Why Use RAID-1 Volumes?

During the installation or upgrade, you can create RAID-1 volumes to duplicate your system data over multiple physical disks. By duplicating your data over separate disks, you can protect your data from disk corruption or a disk failure.

The Solaris custom JumpStart and Solaris Live Upgrade installation methods use the Solaris Volume Manager technology to create RAID-1 volumes that mirror a file system. Solaris Volume Manager provides a powerful way to reliably manage your disks and data by using
volumes. Solaris Volume Manager enables concatenations, stripes, and other complex configurations. The custom JumpStart and Solaris Live Upgrade installation methods enable a subset of these tasks, such as creating a RAID-1 volume for the root (/) file system. You can create RAID-1 volumes during your installation or upgrade, eliminating the need to create them after the installation.

- For guidelines, see “Custom JumpStart and Solaris Live Upgrade Guidelines” on page 105.
- For detailed information about complex Solaris Volume Manager software and components, see Solaris Volume Manager Administration Guide.

How Do RAID-1 Volumes Work?

Solaris Volume Manager uses virtual disks to manage physical disks and their associated data. In Solaris Volume Manager, a virtual disk is called a volume. A volume is a name for a group of physical slices that appear to the system as a single, logical device. Volumes are actually pseudo, or virtual, devices in standard UNIX® terms.

A volume is functionally identical to a physical disk in the view of an application or a file system (such as UFS). Solaris Volume Manager converts I/O requests that are directed at a volume into I/O requests to the underlying member disks. Solaris Volume Manager volumes are built from slices (disk partitions) or from other Solaris Volume Manager volumes.

You use volumes to increase performance and data availability. In some instances, volumes can also increase I/O performance. Functionally, volumes behave the same way as slices. Because volumes look like slices, they are transparent to end users, applications, and file systems. Like physical devices, you can use Solaris Volume Manager software to access volumes through block or raw device names. The volume name changes, depending on whether the block or raw device is used. The custom JumpStart installation method and Solaris Live Upgrade support the use of block devices to create mirrored file systems. See “RAID Volume Name Requirements and Guidelines for Custom JumpStart and Solaris Live Upgrade” on page 107 for details about volume names.

When you create RAID-1 volumes with RAID-0 volumes (single-slice concatenations), Solaris Volume Manager duplicates data on the RAID-0 submirrors and treats the submirrors as one volume.

Figure 9–1 shows a mirror that duplicates the root (/) file system over two physical disks.
Figure 9–1 shows a system with the following configuration.

- The mirror that is named d30 consists of the submirrors that are named d31 and d32. The mirror, d30, duplicates the data in the root (/) file system on both submirrors.
- The root (/) file system on hdisk0 is included in the single-slice concatenation that is named d31.
The root (/) file system is copied to the hard disk named hdisk1. This copy is the single-slice concatenation that is named d32.

Overview of Solaris Volume Manager Components

The custom JumpStart installation method and Solaris Live Upgrade enable you to create the following components that are required to replicate data.

- State database and state database replicas (metadbs)
- RAID-1 volumes (mirrors) with single-slice concatenations (submirrors)

This section briefly describes each of these components. For complete information about these components, see Solaris Volume Manager Administration Guide.

State Database and State Database Replicas

The state database is a database that stores information on a physical disk. The state database records and tracks changes that are made to your configuration. Solaris Volume Manager automatically updates the state database when a configuration or state change occurs. Creating a new volume is an example of a configuration change. A submirror failure is an example of a state change.

The state database is actually a collection of multiple, replicated database copies. Each copy, referred to as a state database replica, ensures that the data in the database is always valid. Having copies of the state database protects against data loss from single points of failure. The state database tracks the location and status of all known state database replicas.

Solaris Volume Manager cannot operate until you have created the state database and its state database replicas. A Solaris Volume Manager configuration must have an operating state database.

The state database replicas ensure that the data in the state database is always valid. When the state database is updated, each state database replica is also updated. The updates occur one at a time to protect against corruption of all updates if the system crashes.

If your system loses a state database replica, Solaris Volume Manager must identify which state database replicas still contain valid data. Solaris Volume Manager determines this information by using a majority consensus algorithm. This algorithm requires that a majority (half + 1) of the state database replicas be available and in agreement before any of them are considered valid. Because of this majority consensus algorithm, you must create at least three state database replicas when you set up your disk configuration. A consensus can be reached if at least two of the three state database replicas are available.

Each state database replica occupies 4 Mbytes (8192 disk sectors) of disk storage by default. Replicas can be stored on the following devices:
- A dedicated local disk slice
- **Solaris Live Upgrade only:**
 - A local slice that will be part of a volume
 - A local slice that will be part of a UFS logging device

Replicas cannot be stored on the root (/), swap, or /usr slices, or on slices that contain existing file systems or data. After the replicas have been stored, volumes or file systems can be placed on the same slice.

You can keep more than one copy of a state database on one slice. However, you might make the system more vulnerable to a single point of failure by placing state database replicas on a single slice.

<table>
<thead>
<tr>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>When using custom JumpStart or Solaris Live Upgrade to install RAID-1 volumes, review these guidelines and requirements.</td>
<td>“State Database Replicas Guidelines and Requirements” on page 104</td>
</tr>
<tr>
<td>Obtain more detailed information about the state database and state database replicas.</td>
<td>Solaris Volume Manager Administration Guide</td>
</tr>
</tbody>
</table>

RAID-1 Volumes (Mirrors)

A RAID-1 volume, or *mirror*, is a volume that maintains identical copies of the data in RAID-0 volumes (single-slice concatenations). After you configure a RAID-1 volume, the volume can be used just as if it were a physical slice. You can duplicate any file system, including existing file systems. You can also use a RAID-1 volume for any application, such as a database.

Using RAID-1 volumes to mirror file systems has advantages and disadvantages:

- With RAID-1 volumes, data can be read from both RAID-0 volumes simultaneously (either volume can service any request), providing improved performance. If one physical disk fails, you can continue to use the mirror with no loss in performance or loss of data.
- Using RAID-1 volumes requires an investment in disks. You need at least twice as much disk space as the amount of data.
- Because Solaris Volume Manager software must write to all RAID-0 volumes, duplicating the data can also increase the time that is required for write requests to be written to disk.

RAID-0 Volumes (Concatenations)

A RAID-0 volume is a single-slice concatenation. The concatenation is a volume whose data is organized serially and adjacently across components, forming one logical storage unit. The custom JumpStart installation method and Solaris Live Upgrade do not enable you to create stripes or other complex Solaris Volume Manager volumes.

During the installation or upgrade, you can create RAID-1 volumes (mirrors) and attach RAID-0 volumes to these mirrors. The RAID-0 volumes that are mirrored are called submirrors. A mirror is made of one or more RAID-0 volumes. After the installation, you can manage the data on separate RAID-0 submirror volumes by administering the RAID-1 mirror volume through the Solaris Volume Manager software.

The custom JumpStart installation method enables you to create a mirror that consists of up to two submirrors. Solaris Live Upgrade enables you to create a mirror that consists of up to three submirrors. Practically, a two-way mirror is usually sufficient. A third submirror enables you to make online backups without losing data redundancy while one submirror is offline for the backup.

Example of RAID-1 Volume Disk Layout

The following figure shows a RAID-1 volume that duplicates the root file system (/) over two physical disks. State database replicas (metadbs) are placed on both disks.
Figure 9–2 shows a system with the following configuration.

- The mirror that is named \(d_{30} \) consists of the submirrors that are named \(d_{31} \) and \(d_{32} \). The mirror, \(d_{30} \), duplicates the data in the root (/) file system on both submirrors.
- The root (/) file system on \(\text{hdisk0} \) is included in the single-slice concatenation that is named \(d_{31} \).
- The root (/) file system is copied to the hard disk named hdisk1. This copy is the single-slice concatenation that is named d32.
- State database replicas are created on both slices: hdisk0 and hdisk1.

<table>
<thead>
<tr>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>JumpStart profile example</td>
<td>“Profile Examples” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations</td>
</tr>
</tbody>
</table>
Creating RAID-1 Volumes (Mirrors) During Installation (Planning)

This chapter describes the requirements and guidelines that are necessary to create RAID-1 volumes with the custom JumpStart or Solaris Live Upgrade installation methods.

This chapter describes the following topics.

- “System Requirement” on page 103
- “State Database Replicas Guidelines and Requirements” on page 104
- “RAID-1 and RAID-0 Volume Requirements and Guidelines” on page 105
- “Booting Into Single-User Mode Causes Mirror to Appear to Need Maintenance” on page 110

For additional information specific to Solaris Live Upgrade or JumpStart, see the following references:

- For JumpStart:
 - “filesys Profile Keyword (Creating RAID-1 Volumes)” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations
 - “metadb Profile Keyword (Creating State Database Replicas)” in Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations

System Requirement

To create RAID-1 volumes to duplicate data on specific slices, the disks that you plan to use must be directly attached and available to the system during the installation.
State Database Replicas Guidelines and Requirements

You should distribute state database replicas across slices, drives, and controllers, to avoid single points of failure. You want a majority of replicas to survive a single component failure. If you lose a replica, when a device fails, for example, the failure might cause problems with running Solaris Volume Manager software or when rebooting the system. Solaris Volume Manager software requires at least half of the replicas to be available to run, but a majority (half plus one) to reboot into multiuser mode.

For detailed instructions about creating and administering state database replicas, see Solaris Volume Manager Administration Guide.

Selecting Slices for State Database Replicas

Before selecting slices for state database replicas, consider the following guidelines and recommendations.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose a dedicated slice</td>
<td>You should create state database replicas on a dedicated slice of at least 4 MB per replica. If necessary, you could create state database replicas on a slice that is to be used as part of a RAID-0 or RAID-1 volume. You must create the replicas before you add the slice to the volume.</td>
</tr>
<tr>
<td>Resize a slice</td>
<td>By default, the size of a state database replica is 4 MB or 8192 disk blocks. Because your disk slices might not be that small, you can resize a slice to hold the state database replica. For information about resizing a slice, see Chapter 11, “Administering Disks (Tasks),” in System Administration Guide: Devices and File Systems.</td>
</tr>
<tr>
<td>Choose a slice that is not in use</td>
<td>You can create state database replicas on slices that are not in use. The part of a slice that is reserved for the state database replica should not be used for any other purpose. You cannot create state database replicas on existing file systems, or the root (/), /usr, and swap file systems. If necessary, you can create a new slice (provided a slice name is available) by allocating space from swap and then put state database replicas on that new slice.</td>
</tr>
<tr>
<td>Choosing a slice that becomes a volume</td>
<td>When a state database replica is placed on a slice that becomes part of a volume, the capacity of the volume is reduced by the space that is occupied by the replica or replicas. The space that is used by a replica is rounded up to the next cylinder boundary and this space is skipped by the volume.</td>
</tr>
</tbody>
</table>

Choosing the Number of State Database Replicas

Before choosing the number of state database replicas, consider the following guidelines.
A minimum of 3 state database replicas are recommended, up to a maximum of 50 replicas per Solaris Volume Manager disk set. The following guidelines are recommended:

- For a system with only a single drive: put all three replicas in one slice.
- For a system with two to four drives: put two replicas on each drive.
- For a system with five or more drives: put one replica on each drive.

Additional state database replicas can improve the mirror’s performance. Generally, you need to add two replicas for each mirror you add to the system.

- If you have a RAID-1 volume that is to be used for small-sized random I/O (for example, for a database), consider your number of replicas. For best performance, ensure that you have at least two extra replicas per RAID-1 volume on slices (and preferably on disks and controllers) that are unconnected to the RAID-1 volume.

Distributing State Database Replicas Across Controllers

If multiple controllers exist, replicas should be distributed as evenly as possible across all controllers. This strategy provides redundancy if a controller fails and also helps balance the load. If multiple disks exist on a controller, at least two of the disks on each controller should store a replica.

RAID-1 and RAID-0 Volume Requirements and Guidelines

When you are working with RAID-1 volumes (mirrors) and RAID-0 volumes (single-slice concatenations), consider the following guidelines.

Custom JumpStart and Solaris Live Upgrade Guidelines

The custom JumpStart installation method and Solaris Live Upgrade support a subset of the features that are available in the Solaris Volume Manager software. When you create mirrored file systems with these installation programs, consider the following guidelines.
RAID-1 and RAID-0 Volume Requirements and Guidelines

<table>
<thead>
<tr>
<th>Installation Program</th>
<th>Supported Feature</th>
<th>Unsupported Feature</th>
</tr>
</thead>
</table>
| **Custom JumpStart and Solaris Live Upgrade** | ■ Supports RAID-0 and RAID-1 volumes, but does not support other Solaris Volume Manager components, such as RAID-5 volumes.
■ RAID-0 volume is supported, but only as a single-slice concatenation. | In Solaris Volume manager a RAID-0 volume can refer to disk stripes or disk concatenations. You cannot create RAID-0 stripe volumes during the installation or upgrade. |
| **Custom JumpStart** | ■ Supports the creation of RAID-1 volumes during an initial installation only.
■ You can create up to two RAID-0 volumes (submirrors) for each RAID-1 volume. Two submirrors usually provide sufficient data redundancy for most applications, and the disk drive costs are less expensive. | ■ Does not support an upgrade when RAID-1 volumes are configured.
■ More than two RAID-0 volumes are not supported. |
| **Solaris Live Upgrade** | ■ You can create up to three RAID-0 volumes (submirrors) for each RAID-1 volume. Three submirrors enable you to take a submirror offline and perform a backup while maintaining the two remaining submirrors for continued data redundancy.
■ Supports the creation of RAID-1 volumes during an upgrade. | More than three RAID-0 volumes are not supported. |
| **Creating and Installing a Solaris Flash with RAID-1 volumes** | You can create a Solaris Flash archive created from a master system that has Solaris Volume Manager RAID-1 volumes configured. The Solaris Flash creation software removes all RAID-1 volume information from the archive to keep the integrity of the clone system. With custom JumpStart you can rebuild the RAID-1 volumes by using a JumpStart profile. With Solaris Live Upgrade, you create a boot environment with RAID-1 volumes configured and install the archive. The Solaris installation program cannot be used to install RAID-1 volumes with a Solaris Flash archive. | Veritas VxVM stores configuration information in areas not available to Solaris Flash. If Veritas VxVM file systems have been configured, you should not create a Solaris Flash archive. Also, Solaris install, including JumpStart and Solaris Live Upgrade do not support rebuilding VxVM volumes at installation time. Therefore, if you are planning to deploy Veritas VxVM software using a Solaris Flash archive, the archive must be created prior to configuring the VxVM file systems. The clone systems must be then configured individually after the archive has been applied and the system rebooted. |

For examples, see "To Create a Boot Environment With RAID-1 Volumes (Mirrors)" in *Solaris 10 10/09 Installation Guide: Solaris Live Upgrade and Upgrade Planning*.
For examples of RAID-1 volumes in JumpStart profiles, see "Profile Examples" in *Solaris 10 10/09 Installation Guide: Custom JumpStart and Advanced Installations*.

Veritas VxVM stores configuration information in areas not available to Solaris Flash. If Veritas VxVM file systems have been configured, you should not create a Solaris Flash archive. Also, Solaris install, including JumpStart and Solaris Live Upgrade do not support rebuilding VxVM volumes at installation time. Therefore, if you are planning to deploy Veritas VxVM software using a Solaris Flash archive, the archive must be created prior to configuring the VxVM file systems. The clone systems must be then configured individually after the archive has been applied and the system rebooted.
RAID Volume Name Requirements and Guidelines for Custom JumpStart and Solaris Live Upgrade

Observe the following rules when assigning names for volumes.

- Use a naming method that maps the slice number and disk number to volume numbers.
- Volume names must begin with the letter d followed by a number, for example, d0.
- Solaris Volume Manager has 128 default volume names from 0–127. The following list shows some example volume names.
 - Device /dev/md/dsk/d0 – block volume d0
 - Device /dev/md/dsk/d1 – block volume d1
- Use ranges for each particular type of volume. For example, assign numbers 0–20 for RAID-1 volumes, and 21–40 for RAID-0 volumes.

RAID Volume Naming Conventions for Solaris Live Upgrade

When you use the Solaris Live Upgrade to create RAID-1 volumes (mirrors) and RAID-0 volumes (submirrors), you can enable the software to detect and assign volume names, or you can assign the names. If you enable the software to detect the names, the software assigns the first mirror or submirror name that is available. If you assign mirror names, assign names ending in zero so that the installation can use the names ending in 1 and 2 for submirrors. If you assign submirror names, assign names ending in 1 or 2. If you assign numbers incorrectly, the mirror might not be created. For example, if you specify a mirror name with a number that ends in 1 or 2 (d1 or d2), Solaris Live Upgrade fails to create the mirror if the mirror name duplicates a submirror’s name.

Note – In previous releases, an abbreviated volume name could be entered. Starting with the Solaris 10 10/08 release, only the full volume name can be entered. For example, only the full volume name, such as /dev/md/dsk/d10, can be used to specify a mirror.

EXAMPLE 10–1 Solaris Live Upgrade: Enable the Software to Detect and Name the Mirror and Submirror

In this example, Solaris Live Upgrade assigns the volume names. The RAID-1 volumes d0 and d1 are the only volumes in use. For the mirror d10, Solaris Live Upgrade chooses d2 for the submirror for the device c0t0d0s0 and d3 for the submirror for the device c1t0d0s0.

lucreate -n newbe -m /dev/md/dsk/d10:mirror,ufs \
-m /dev/dsk/c0t0d0s0:attach -m /dev/dsk/c1t0d0s0:attach
EXAMPLE 10–2 Solaris Live Upgrade: Assign Mirror and Submirror Names

In this example, the volume names are assigned in the command. For the mirror d10, d11 is the name for the submirror for the device c0t0d0s0 and d12 is the name for the submirror for the device c1t0d0s0.

```
lucreate -n newbe -m /:/dev/md/dsk/d10:mirror,ufs \
   -m /:/dev/dsk/c0t0d0s0,/dev/md/dsk/d11:attach \ 
   -m /:/dev/dsk/c1t0d0s0,/dev/md/dsk/d12:attach
```

For detailed information about Solaris Volume Manager naming requirements, see *Solaris Volume Manager Administration Guide*.

RAID-Volume Naming Conventions for Custom JumpStart

When you use the custom JumpStart installation method to create RAID-1 volumes (mirrors) and RAID-0 volumes (submirrors), you can enable the software to detect and assign volume names to mirrors, or you can assign the names in the profile.

- If you enable the software to detect the names, the software assigns the first volume number that is available.
- If you assign names in the profile, assign mirror names ending in zeros so that the installation can use the names ending in 1 and 2 for submirrors.

Note – If you assign numbers incorrectly, the mirror might not be created. For example, if you specify a mirror name with a number that ends in 1 or 2 (d1 or d2), JumpStart fails to create the mirror if the mirror name duplicates a submirror’s name.

Note – You can abbreviate the names of physical disk slices and Solaris Volume Manager volumes. The abbreviation is the shortest name that uniquely identifies a device. Examples follow.

- A Solaris Volume Manager volume can be identified by its *dnum* designation, so that, for example, /dev/md/dsk/d10 becomes simply d10.
- If a system has a single controller and multiple disks, you might use t0d0s0, but with multiple controllers use c0t0d0s0.

EXAMPLE 10–3 Enable the Software to Detect the Mirror and Submirror Names

In the following profile example, the mirror is assigned the first volume numbers that are available. If the next available mirror ending in zero is d10, then the names d11 and d12 are assigned to the submirrors.
EXAMPLE 10–3 Enable the Software to Detect the Mirror and Submirror Names (Continued)

```
filesys            mirror c0t0d0s1 /
```

EXAMPLE 10–4 Assigning Mirror and Submirror Names

In the following profile example, the mirror number is assigned in the profile as d30. The submirror names are assigned by the software, based on the mirror number and the first available submirrors. The submirrors are named d31 and d32.

```
filesys            mirror:d30 c0t1d0s0 c0t0d0s0 /
```

For detailed information about Solaris Volume Manager naming requirements, see Solaris Volume Manager Administration Guide.

Guidelines for Selecting Disks and Controllers

When you choose the disks and controllers that you want to use to mirror a file system, consider the following guidelines.

- Use components that are on different controllers to increase the number of simultaneous reads and writes that can be performed.
- Keep the slices of different submirrors on different disks and controllers. Data protection is diminished considerably if slices of two or more submirrors of the same mirror are on the same disk.
- Organize submirrors across separate controllers, because controllers and associated cables tend to fail more often than disks. This practice also improves mirror performance.
- Use the same type of disks and controllers in a single mirror. Particularly in old SCSI storage devices, different models or brands of disk or controller can have widely varying performance. Mixing the different performance levels in a single mirror can cause performance to degrade significantly.

Guidelines for Selecting Slices

When you choose the slices that you want to use to mirror a file system, consider the following guidelines.

- Any file system, including root (/), swap, and /usr, can use a mirror. Any application, such as a database, also can use a mirror.
- Make sure that your submirror slices are of equal size. Submirrors of different sizes result in unused disk space.
If you have a mirrored file system in which the first submirror attached does not start on cylinder 0, all additional submirrors you attach must also not start on cylinder 0. If you attempt to attach a submirror starting on cylinder 0 to a mirror in which the original submirror does not start on cylinder 0, the following error message is displayed:

can't attach
labeled submirror to an unlabeled mirror

You must ensure that all submirrors you plan to attach to a mirror either all start on cylinder 0, or that none of them start on cylinder 0.

Starting cylinders do not have to be identical across all submirrors, but all submirrors must either include or not include cylinder 0.

Booting Into Single-User Mode Causes Mirror to Appear to Need Maintenance

If a system with mirrors for root (/), /usr, and swap is booted into single-user mode, the system indicates that these mirrors are in need of maintenance. When you view these mirrors with the `metastat` command, these mirrors, and possibly all mirrors on the system, appear in the “Needing Maintenance” state.

Though this situation appears to be potentially dangerous, do not be concerned. The `metasync -r` command, which normally occurs during boot to resynchronize mirrors, is interrupted when the system is booted into single-user mode. After the system is rebooted, the `metasync -r` command runs and resynchronizes all mirrors.

If this interruption is a concern, run the `metasync -r` command manually.

For more information about the `metasync`, see the `metasync(1M)` man page, and Solaris Volume Manager Administration Guide.
Glossary

3DES ([Triple DES] Triple-Data Encryption Standard). A symmetric-key encryption method that provides a key length of 168 bits.

archive A file that contains a collection of files that were copied from a master system. The file also contains identification information about the archive, such as a name and the date that you created the archive. After you install an archive on a system, the system contains the exact configuration of the master system.

An archive could be a differential archive, which is a Solaris Flash archive that contains only the differences between two system images, an unchanged master image and an updated master image. The differential archive contains files to be retained, modified, or deleted from the clone system. A differential update changes only the files specified and is restricted to systems that contain software consistent with the unchanged master image.

arrow keys One of the four directional keys on the numeric keypad.

begin script A user-defined Bourne shell script, specified within the rules file, that performs tasks before the Solaris software is installed on the system. You can use begin scripts only with custom JumpStart installations.

boot To load the system software into memory and start it.

boot archive x86 only: A boot archive is a collection of critical files that is used to boot the Solaris OS. These files are needed during system startup before the root (/) file system is mounted. Two boot archives are maintained on a system:

- The boot archive that is used to boot the Solaris OS on a system. This boot archive is sometimes called the primary boot archive.

- The boot archive that is used for recovery when the primary boot archive is damaged. This boot archive starts the system without mounting the root (/) file system. On the GRUB menu, this boot archive is called failsafe. The archive’s essential purpose is to regenerate the primary boot archive, which is usually used to boot the system.

boot environment A collection of mandatory file systems (disk slices and mount points) that are critical to the operation of the Solaris OS. These disk slices might be on the same disk or distributed across multiple disks.
The active boot environment is the one that is currently booted. Exactly one active boot environment can be booted. An inactive boot environment is not currently booted, but can be in a state of waiting for activation on the next reboot.

boot loader

x86 only: The boot loader is the first software program that runs after you turn on a system. This program begins the booting process.

boot server

A server system that provides client systems on the same network subnet with the programs and information that they need to start. A boot server is required to install over the network if the install server is on a different subnet than the systems on which Solaris software is to be installed.

bootlog-cgi program

The CGI program that enables a web server to collect and store remote client-booting and installation console messages during a WAN boot installation.

certificate authority

(CA) A trusted third-party organization or company that issues digital certificates that are used to create digital signatures and public-private key pairs. The CA guarantees that the individual who is granted the unique certificate is who she or he claims to be.

certstore file

A file that contains a digital certificate for a specific client system. During an SSL negotiation, the client might be asked to provide the certificate file to the server. The server uses this file to verify the identity of the client.

CGI

(Common Gateway Interface) An interface by which external programs communicate with the HTTP server. Programs that are written to use CGI are called CGI programs or CGI scripts. CGI programs handle forms or parse output the server does not normally handle or parse.

checksum

The result of adding a group of data items that are used for checking the group. The data items can be either numerals or other character strings that are treated as numerals during the checksum calculation. The checksum value verifies that communication between two devices is successful.

client

In the client-server model for communications, the client is a process that remotely accesses resources of a compute server, such as compute power and large memory capacity.

clone system

A system that you install by using a Solaris Flash archive. The clone system has the same installation configuration as the master system.

cluster

A logical collection of packages (software modules). The Solaris software is divided into software groups, which are each composed of clusters and packages.

command line

A string of characters that begins with a command, often followed by arguments, including options, file names, and other expressions, and terminated by the end-of-line character.

concatenation

A RAID-0 volume. If slices are concatenated, the data is written to the first available slice until that slice is full. When that slice is full, the data is written to the next slice, serially. A concatenation provides no data redundancy unless it is contained in a mirror. See also RAID-0 volume.

Core Software Group

A software group that contains the minimum software that is required to boot and run the Solaris OS on a system. Core includes some networking software and the drivers that are required to run the Common Desktop Environment (CDE) desktop. Core does not include the CDE software.
critical file systems File systems that are required by the Solaris OS. When you use Solaris Live Upgrade, these file systems are separate mount points in the /etc/vfstab file of the active and inactive boot environments. Example file systems are root (/), /usr, /var, and /opt. These file systems are always copied from the source to the inactive boot environment.

custom JumpStart A type of installation in which the Solaris software is automatically installed on a system that is based on a user-defined profile. You can create customized profiles for different types of users and systems. A custom JumpStart installation is a JumpStart installation you create.

custom probes file A file, which must be located in the same JumpStart directory as the rules file, that is a Bourne shell script that contains two types of functions: probe and comparison. Probe functions gather the information you want or do the actual work and set a corresponding SI_environment variable you define. Probe functions become probe keywords. Comparison functions call a corresponding probe function, compare the output of the probe function, and return 0 if the keyword matches or 1 if the keyword doesn’t match. Comparison functions become rule keywords. See also rules file.

dataset A generic name for the following ZFS entities: clones, file systems, snapshots, or volumes.

decryption The process of converting coded data to plain text. See also encryption.

derived profile A profile that is dynamically created by a begin script during a custom JumpStart installation.

DES (Data Encryption Standard) A symmetric-key encryption method that was developed in 1975 and standardized by ANSI in 1981 as ANSI X.3.92. DES uses a 56-bit key.

Developer Solaris Software Group A software group that contains the End User Solaris Software Group plus the libraries, include files, man pages, and programming tools for developing software.

DHCP (Dynamic Host Configuration Protocol) An application-layer protocol. Enables individual computers, or clients, on a TCP/IP network to extract an IP address and other network configuration information from a designated and centrally maintained DHCP server or servers. This facility reduces the overhead of maintaining and administering a large IP network.

differential archive A Solaris Flash archive that contains only the differences between two system images, an unchanged master image and an updated master image. The differential archive contains files to be retained, modified, or deleted from the clone system. A differential update changes only the files that are specified and is restricted to systems that contain software consistent with the unchanged master image.

digital certificate A nontransferable, nonforgeable, digital file issued from a third party that both communicating parties already trust.

disc An optical disc, as opposed to a magnetic disk, which recognizes the common spelling that is used in the compact disc (CD) market. For example, a CD-ROM or DVD-ROM is an optical disc.

disk A round platter, or set of platters, of a magnetized medium that is organized into concentric tracks and sectors for storing data such as files. See also disc.

disk configuration file A file that represents a structure of a disk (for example, bytes/sector, flags, slices). Disk configuration files enable you to use the pfinstall command from a single system to test profiles on different–size disks.

diskless client A client on a network that relies on a server for all of its disk storage.
document root directory

The root of a hierarchy on a web server machine that contains the files, images, and data you want to present to users who are accessing the web server.

domain

A part of the Internet naming hierarchy. A domain represents a group of systems on a local network that share administrative files.

domain name

The name that is assigned to a group of systems on a local network that share administrative files. The domain name is required for the Network Information Service (NIS) database to work properly. A domain name consists of a sequence of component names that are separated by periods (for example: `tundra.mpk.ca.us`). As you read a domain name from left to right, the component names identify more general (and usually remote) areas of administrative authority.

encryption

The process of protecting information from unauthorized use by making the information unintelligible. Encryption is based on a code, called a key, which is used to decrypt the information. See also decryption.

End User Solaris Software Group

A software group that contains the Core Software Group plus the recommended software for an end user, including the Common Desktop Environment (CDE) and DeskSet software.

Entire Solaris Software Group

A software group that contains the entire Solaris release.

Entire Solaris Software Group Plus OEM Support

A software group that contains the entire Solaris release plus additional hardware support for OEMs. This software group is recommended when installing Solaris software on SPARC based servers.

/etc directory

A directory that contains critical system configuration files and maintenance commands.

/etc/netboot directory

The directory on a WAN boot server that contains the client configuration information and security data that are required for a WAN boot installation.

/export file system

A file system on an OS server that is shared with other systems on a network. For example, the `/export` file system can contain the root (`/`) file system and swap space for diskless clients and the home directories for users on the network. Diskless clients rely on the `/export` file system on an OS server to boot and run.

failsafe boot archive

x86 only: A boot archive that is used for recovery when the primary boot archive is damaged. This boot archive starts the system without mounting the root (`/`) file system. This boot archive is called failsafe on the GRUB menu. The archive’s essential purpose is to regenerate the primary boot archive, which is usually used to boot the system. See boot archive.

fallback

A reversion to the environment that ran previously. Use fallback when you are activating an environment and the boot environment that is designated for booting fails or shows some undesirable behavior.

fdisk partition

A logical partition of a disk drive that is dedicated to a particular operating system on x86 based systems. To install the Solaris software, you must set up at least one Solaris fdisk partition on an x86 based system. x86 based systems allow up to four different fdisk partitions on a disk. These partitions can be used to hold individual operating systems. Each operating system must be located on a unique fdisk partition. A system can only have one Solaris fdisk partition per disk.

file server

A server that provides the software and file storage for systems on a network.

file system

In the SunOS™ operating system, a tree-structured network of files and directories that you can access.
finish script A user-defined Bourne shell script, specified within the rules file, that performs tasks after the Solaris software is installed on the system but before the system reboots. You use finish scripts with custom JumpStart installations.

format To put data into a structure or divide a disk into sectors for receiving data.

function key One of the 10 or more keyboard keys that are labeled F1, F2, F3, and so on that are mapped to particular tasks.

global zone In Solaris Zones, the global zone is both the default zone for the system and the zone used for system-wide administrative control. The global zone is the only zone from which a non-global zone can be configured, installed, managed, or uninstalled. Administration of the system infrastructure, such as physical devices, routing, or dynamic reconfiguration (DR), is only possible in the global zone. Appropriately privileged processes running in the global zone can access objects associated with other zones. See also Solaris Zones and non-global zone.

GRUB x86 only: GNU GRand Unified Bootloader (GRUB) is an open source boot loader with a simple menu interface. The menu displays a list of operating systems that are installed on a system. GRUB enables you to easily boot these various operating systems, such as the Solaris OS, Linux, or Microsoft Windows.

GRUB edit menu x86 only: A boot menu that is a submenu of the GRUB main menu. GRUB commands are displayed on this menu. These commands can be edited to change boot behavior.

GRUB main menu x86 only: A boot menu that lists the operating systems that are installed on a system. From this menu, you can easily boot an operating system without modifying the BIOS or fdisk partition settings.

hard link A directory entry that references a file on disk. More than one such directory entry can reference the same physical file.

hash A number that is produced by taking some input and generating a number that is significantly shorter than the input. The same output value is always generated for identical inputs. Hash functions can be used in table search algorithms, in error detection, and in tamper detection. When used for tamper detection, hash functions are chosen such that it is difficult to find two inputs that yield the same hash result. MD5 and SHA-1 are examples of one-way hash functions. For example, a message digest takes a variable-length input such as a disk file and reduces it to a small value.

hashing The process of changing a string of characters into a value or key that represents the original string.

HMAC Keyed hashing method for message authentication. HMAC is used with an iterative cryptographic hash function, such as MD5 or SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function.

host name The name by which a system is known to other systems on a network. This name must be unique among all the systems within a particular domain (usually, this means within any single organization). A host name can be any combination of letters, numbers, and minus signs (-), but it cannot begin or end with a minus sign.

HTTP (Hypertext Transfer Protocol) (n.) The Internet protocol that fetches hypertext objects from remote hosts. This protocol is based on TCP/IP.

HTTPS A secure version of HTTP, implemented by using the Secure Sockets Layer (SSL).
initial installation

An installation that overwrites the currently running software or initializes a blank disk.

An initial installation of the Solaris OS overwrites the system's disk or disks with the new version of the Solaris OS. If your system is not running the Solaris OS, you must perform an initial installation. If your system is running an upgradable version of the Solaris OS, an initial installation overwrites the disk and does not preserve the OS or local modifications.

install server

A server that provides the Solaris DVD or CD images from which other systems on a network can install Solaris (also called a media server). You can create an install server by copying the Solaris DVD or CD images to the server’s hard disk.

IPv6

IPv6 is a version (version 6) of Internet Protocol (IP) that is designed to be an evolutionary step from the current version, IPv4 (version 4). Deploying IPv6, by using defined transition mechanisms, does not disrupt current operations. In addition, IPv6 provides a platform for new Internet functionality.

job

A user-defined task to be completed by a computer system.

JumpStart directory

When you use a profile diskette for custom JumpStart installations, the JumpStart directory is the root directory on the diskette that contains all the essential custom JumpStart files. When you use a profile server for custom JumpStart installations, the JumpStart directory is a directory on the server that contains all the essential custom JumpStart files.

JumpStart installation

A type of installation in which the Solaris software is automatically installed on a system by using the factory-installed JumpStart software.

Kerberos

A network authentication protocol that uses strong, secret-key cryptography to enable a client and server to identify themselves to each other over an insecure network connection.

key

The code for encrypting or decrypting data. See also encryption.

keystore file

A file that contains keys shared by a client and server. During a WAN boot installation, the client system uses the keys to verify the integrity of, or decrypt the data and files transmitted from, the server.

LAN

(local area network) A group of computer systems in close proximity that can communicate by way of some connecting hardware and software.

LDAP

(Lightweight Directory Access Protocol) A standard, extensible directory access protocol that is used by LDAP naming service clients and servers to communicate with each other.

locale

A geographic or political region or community that shares the same language, customs, or cultural conventions (English for the U.S. is en_US, and English for the U.K. is en_UK).

logical device

A group of physical slices on one or more disks that appear to the system as a single device. A logical device is called a volume in Solaris Volume Manager. A volume is functionally identical to a physical disk for the purposes of an application or file system.

manifest section

A section of a Solaris Flash archive that is used to validate a clone system. The manifest section lists the files on a system to be retained, added to, or deleted from the clone system. This section is informational only. The section lists the files in an internal format and cannot be used for scripting.

master system

A system that you use to create a Solaris Flash archive. The system configuration is saved in the archive.
MD5

(Message Digest 5) An iterative cryptographic hash function that is used for message authentication, including digital signatures. The function was developed in 1991 by Rivest.

media server

See install server.

menu.lst file

x86 only: A file that lists all the operating systems that are installed on a system. The contents of this file dictate the list of operating systems that is displayed on the GRUB menu. From the GRUB menu, you can easily boot an operating system without modifying the BIOS or fdisk partition settings.

metadevice

See volume.

miniroot

A minimal, bootable root (/) file system that is included in Solaris installation media. A miniroot consists of the Solaris software that is required to install and upgrade systems. On x86 based systems, the miniroot is copied to the system to be used as the failsafe boot archive. See failsafe boot archive.

mirror

See RAID-1 volume.

mount

The process of accessing a directory from a disk that is attached to a machine that is making the mount request or a remote disk on a network. To mount a file system, you need a mount point on the local system and the name of the file system to be mounted (for example, /usr).

mount point

A workstation directory to which you mount a file system that exists on a remote machine.

name server

A server that provides a naming service to systems on a network.

naming service

A distributed network database that contains key system information about all the systems on a network so that the systems can communicate with each other. With a naming service, the system information can be maintained, managed, and accessed on a network-wide basis. Without a naming service, each system has to maintain its own copy of the system information in the local /etc files. Sun supports the following naming services: LDAP, NIS, and NIS+.

network installation

A way to install software over the network from a system with a CD-ROM or DVD-ROM drive to a system without a CD-ROM or DVD-ROM drive. Network installations require a name server and an install server.

networked systems

A group of systems (called hosts) that are connected through hardware and software so that they can communicate and share information. Referred to as a local area network (LAN). One or more servers are usually needed when systems are networked.

NIS

The SunOS 4.0 (minimum) Network Information Service. A distributed network database that contains key information about the systems and the users on the network. The NIS database is stored on the master server and all the slave servers.

NIS+

The SunOS 5.0 (minimum) Network Information Service. NIS+ replaces NIS, the SunOS 4.0 (minimum) Network Information Service.

non-global zone

A virtualized operating system environment created within a single instance of the Solaris Operating System. One or more applications can run in a non-global zone without interacting with the rest of the system. Non-global zones are also called zones. See also Solaris Zones and global zone.

nonnetworked systems

Systems that are not connected to a network or do not rely on other systems.

[opt file system] A file system that contains the mount points for third-party and unbundled software.

[OS server] A system that provides services to systems on a network. To serve diskless clients, an OS server must have disk space set aside for each diskless client’s root (/) file system and swap space (/export/root, /export/swap).

[package] A collection of software that is grouped into a single entity for modular installation. The Solaris software is divided into software groups, which are each composed of clusters and packages.

[panel] A container for organizing the contents of a window, a dialog box, or applet. The panel might collect and confirm user input. Panels might be used by wizards and follow an ordered sequence to fulfill a designated task.

[patch analyzer] A script that you can run manually or as part of the Solaris installation program. The patch analyzer performs an analysis on your system to determine which (if any) patches will be removed by upgrading to a Solaris update.

[platform group] A vendor-defined grouping of hardware platforms for the purpose of distributing specific software. Examples of valid platform groups are i86pc and sun4u.

[platform name] The output of the `uname -i` command. For example, the platform name for the Ultra 60 is SUNW, Ultra-60.

[pool] A logical group of devices describing the layout and physical characteristics of the available ZFS storage. Space for datasets is allocated from a pool.

[Power Management] Software that automatically saves the state of a system and turns it off after it is idle for 30 minutes. When you install the Solaris software on a system that complies with Version 2 of the U.S. Environmental Protection Agency’s Energy Star guidelines, the Power Management software is installed by default. A sun4u SPARC based system is an example of a system that has Power Management installed by default. After a subsequent reboot, you are prompted to enable or disable the Power Management software.

Energy Star guidelines require that systems or monitors automatically enter a “sleep state” (consume 30 watts or less) after the system or monitor becomes inactive.

[primary boot archive] A boot archive that is used to boot the Solaris OS on a system. This boot archive is sometimes called the primary boot archive. See boot archive.

[private key] The decryption key used in public-key encryption.

[probe keyword] A syntactical element that extracts attribute information about a system when using the custom JumpStart method to install. A probe keyword does not require you to set up a matching condition and run a profile as required for a rule. See also rule.

[profile] A text file that defines how to install the Solaris software when using the custom JumpStart method. For example, a profile defines which software group to install. Every rule specifies a profile that defines how a system is to be installed when the rule is matched. You usually create a different profile for every rule. However, the same profile can be used in more than one rule. See also rules file.

[profile diskette] A diskette that contains all the essential custom JumpStart files in its root directory (JumpStart directory).

[profile server] A server that contains all the essential custom JumpStart files in a JumpStart directory.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>public key</td>
<td>The encryption key used in public-key encryption.</td>
</tr>
<tr>
<td>public-key cryptography</td>
<td>A cryptographic system that uses two keys: a public key known to everyone, and a private key known only to the recipient of the message.</td>
</tr>
<tr>
<td>RAID-0 volume</td>
<td>A class of volume that can be a stripe or a concatenation. These components are also called submirrors. A stripe or concatenation is the basic building block for mirrors.</td>
</tr>
<tr>
<td>RAID-1 volume</td>
<td>A class of volume that replicates data by maintaining multiple copies. A RAID-1 volume is composed of one or more RAID-0 volumes called submirrors. A RAID-1 volume is sometimes called a mirror.</td>
</tr>
<tr>
<td>RAID-Z storage pool</td>
<td>A virtual device that stores data and parity on multiple disks that can be used as a ZFS storage pool. RAID-Z is similar to RAID-5.</td>
</tr>
<tr>
<td>Reduced Network Support Software Group</td>
<td>A software group that contains the minimum code that is required to boot and run a Solaris system with limited network service support. The Reduced Networking Software Group provides a multiuser text-based console and system administration utilities. This software group also enables the system to recognize network interfaces, but does not activate network services.</td>
</tr>
<tr>
<td>root</td>
<td>The top level of a hierarchy of items. Root is the one item from which all other items are descended. See root directory or root (/) file system.</td>
</tr>
<tr>
<td>root (/) file system</td>
<td>The top-level file system from which all other file systems stem. The root (/) file system is the base on which all other file systems are mounted, and is never unmounted. The root (/) file system contains the directories and files critical for system operation, such as the kernel, device drivers, and the programs that are used to start (boot) a system.</td>
</tr>
<tr>
<td>root directory</td>
<td>The top-level directory from which all other directories stem.</td>
</tr>
<tr>
<td>rule</td>
<td>A series of values that assigns one or more system attributes to a profile. A rule is used in a custom JumpStart installation.</td>
</tr>
<tr>
<td>rules file</td>
<td>A text file that contains a rule for each group of systems or single systems that you want to install automatically. Each rule distinguishes a group of systems, based on one or more system attributes. The rules file links each group to a profile, which is a text file that defines how the Solaris software is to be installed on each system in the group. A rules file is used in a custom JumpStart installation. See also profile.</td>
</tr>
<tr>
<td>rules.ok file</td>
<td>A generated version of the rules file. The rules . ok file is required by the custom JumpStart installation software to match a system to a profile. You must use the check script to create the rules . ok file.</td>
</tr>
<tr>
<td>Secure Sockets Layer</td>
<td>(SSL) A software library establishing a secure connection between two parties (client and server) used to implement HTTPS, the secure version of HTTP.</td>
</tr>
<tr>
<td>server</td>
<td>A network device that manages resources and supplies services to a client.</td>
</tr>
<tr>
<td>SHA1</td>
<td>(Secure Hashing Algorithm) The algorithm that operates on any input length less than 2^{64} to produce a message digest.</td>
</tr>
</tbody>
</table>
shareable file systems

File systems that are user-defined files such as /export/home and /swap. These file systems are shared between the active and inactive boot environment when you use Solaris Live Upgrade. Shareable file systems contain the same mount point in the /etc/fstab file in both the active and inactive boot environments. Updating shared files in the active boot environment also updates data in the inactive boot environment. Shareable file systems are shared by default, but you can specify a destination slice, and then the file systems are copied.

slice

The unit into which the disk space is divided by the software.

snapshot

A read-only image of a ZFS file system or volume at a given point in time.

software group

A logical grouping of the Solaris software (clusters and packages). During a Solaris installation, you can install one of the following software groups: Core, End User Solaris Software, Developer Solaris Software, or Entire Solaris Software, and for SPARC systems only, Entire Solaris Software Group Plus OEM Support.

Solaris DVD or CD images

The Solaris software that is installed on a system, which you can access on the Solaris DVDs or CDs or an install server’s hard disk to which you have copied the Solaris DVD or CD images.

Solaris Flash

A Solaris installation feature that enables you to create an archive of the files on a system, called the master system. You can then use the archive to install other systems, making the other systems identical in their configuration to the master system. See also archive.

Solaris installation program

A graphical user interface (GUI) or command-line interface (CLI) installation program that uses wizard panels to guide you step-by-step through installing the Solaris software and third-party software.

Solaris Live Upgrade

An upgrade method that enables a duplicate boot environment to be upgraded while the active boot environment is still running, thus eliminating downtime of the production environment.

Solaris Zones

A software partitioning technology used to virtualize operating system services and provide an isolated and secure environment for running applications. When you create a non-global zone, you produce an application execution environment in which processes are isolated from all other zones. This isolation prevents processes that are running in a zone from monitoring or affecting processes that are running in any other zones. See also global zone and non-global zone.

standalone

A computer that does not require support from any other machine.

state database

A database that stores information about the state of your Solaris Volume Manager configuration. The state database is a collection of multiple, replicated database copies. Each copy is referred to as a state database replica. The state database tracks the location and status of all known state database replicas.

state database replica

A copy of a state database. The replica ensures that the data in the database is valid.

submirror

See RAID-0 volume.

subnet

A working scheme that divides a single logical network into smaller physical networks to simplify routing.

subnet mask

A bit mask that is used to select bits from an Internet address for subnet addressing. The mask is 32 bits long and selects the network portion of the Internet address and 1 or more bits of the local portion.

superuser

A special user who has privileges to perform all administrative tasks on the system. The superuser has the ability to read and write to any file, run all programs, and send kill signals to any process.
swap space A slice or file that temporarily holds the contents of a memory area till it can be reloaded in memory. Also called the /swap or swap volume.

sysidcfg file A file in which you specify a set of special system configuration keywords that preconfigure a system.

system configuration file A text file in which you specify the locations of the sysidcfg file and the custom JumpStart files you want to use in a WAN boot installation.

time zone Any of the 24 longitudinal divisions of the earth’s surface for which a standard time is kept.

truststore file A file that contains one or more digital certificates. During a WAN boot installation, the client system verifies the identity of the server that is trying to perform the installation by consulting the data in the truststore file.

unmount The process of removing access to a directory on a disk that is attached to a machine or to a remote disk on a network.

update An installation, or to perform an installation, on a system that changes software that is of the same type. Unlike an upgrade, an update might downgrade the system. Unlike an initial installation, software of the same type that is being installed must be present before an update can occur.

upgrade An installation that merges files with existing files and preserves modifications where possible.

An upgrade of the Solaris OS merges the new version of the Solaris OS with the existing files on the system’s disk or disks. An upgrade saves as many modifications as possible that you have made to the previous version of the Solaris OS.

upgrade option An option that is presented by the Solaris installation program. The upgrade procedure merges the new version of Solaris with existing files on your disk or disks. An upgrade also saves as many local modifications as possible since the last time Solaris was installed.

URL (Uniform Resource Locator) The addressing system used by the server and the client to request documents. A URL is often called a location. The format of a URL is protocol://machine:port/document.

A sample URL is http://www.example.com/index.html.

/usr file system A file system on a standalone system or server that contains many of the standard UNIX programs. Sharing the large /usr file system with a server rather than maintaining a local copy minimizes the overall disk space that is required to install and run the Solaris software on a system.

utility A standard program, usually furnished at no charge with the purchase of a computer, that does the computer’s housekeeping.

/var file system A file system or directory (on standalone systems) that contains system files that are likely to change or grow over the life of the system. These files include system logs, vi files, mail files, and UUCP files.

virtual device A logical device in a ZFS pool, which can be a physical device, a file, or a collection of devices.

volume A group of physical slices or other volumes that appear to the system as a single logical device. A volume is functionally identical to a physical disk for the purposes of an application or file system.

In some command-line utilities, a volume is called a metadevice. Volume is also called pseudo device or virtual device in standard UNIX terms.
<table>
<thead>
<tr>
<th>Volume Manager</th>
<th>A program that provides a mechanism to administer and obtain access to the data on DVD-ROMs, CD-ROMs, and diskettes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN</td>
<td>(wide area network) A network that connects multiple local area networks (LANs) or systems at different geographical sites by using telephone, fiber-optic, or satellite links.</td>
</tr>
<tr>
<td>WAN boot installation</td>
<td>A type of installation that enables you to boot and install software over a wide area network (WAN) by using HTTP or HTTPS. The WAN boot installation method enables you to transmit an encrypted Solaris Flash archive over a public network and perform a custom JumpStart installation on a remote client.</td>
</tr>
<tr>
<td>WAN boot miniroot</td>
<td>A miniroot that has been modified to perform a WAN boot installation. The WAN boot miniroot contains a subset of the software in the Solaris miniroot. See also miniroot.</td>
</tr>
<tr>
<td>WAN boot server</td>
<td>A web server that provides the configuration and security files that are used during a WAN boot installation.</td>
</tr>
<tr>
<td>wanboot-cgi program</td>
<td>The CGI program that retrieves and transmits the data and files that are used in a WAN boot installation.</td>
</tr>
<tr>
<td>wanboot.conf file</td>
<td>A text file in which you specify the configuration information and security settings that are required to perform a WAN boot installation.</td>
</tr>
<tr>
<td>wanboot program</td>
<td>The second-level boot program that loads the WAN boot miniroot, client configuration files, and installation files that are required to perform a WAN boot installation. For WAN boot installations, the wanboot binary performs tasks similar to the ufsboot or inetboot second-level boot programs.</td>
</tr>
<tr>
<td>ZFS</td>
<td>A file system using storage pools to manage physical storage.</td>
</tr>
<tr>
<td>zone</td>
<td>See non-global zone</td>
</tr>
</tbody>
</table>
Index

A
archives
 choosing an installation program, 35
description, 37
installing, 49
installing with a Solaris Flash archive, 92
large file handling, 23

B
boot-disk partition layout, new default (x86 based systems), 55
boot loader
 GRUB, 83, 85
booting
 from the network with GRUB, requirements, 86
 RAID-1 volumes and single-user mode, 110
 with GRUB, overview, 83, 85
 with SPARC, overview, 83
 with ZFS, overview, 83
booting for x86 based systems, 24

C
concatenation
 conceptual overview, 100
definition, 100
 information for creating, 105
Core System Support Software Group
 description, 44-46
Core System Support Software Group (Continued)
 size, 45
custom JumpStart installation, choosing an installation program, 35

D
Developer Solaris Software Group
 description, 44-46
 size, 45
disk space
 planning, 41-46
 planning for non-global zones, 93
 planning for ZFS, 79
 requirements, for software groups, 45

E
End User Solaris Software Group
 description, 44-46
 size, 45
Entire Solaris Software Group
 description, 44-46
 size, 45
Entire Solaris Software Group Plus OEM Support
 description, 44-46
 size, 45
R
RAID-0 volume
 conceptual overview, 100
definition, 100
guidelines, 105-110
RAID-1 volume
 and disk geometries, 105
 conceptual overview, 99
 definition, 99
 guidelines, 105-110
 information for creating, 105
Reduced Network Support Software Group
 description, 44-46
 size, 45
 replica, 98
 requirements
 disk space, 41-46
 memory, 40

S
secure installation, 23
Service partition, preserving during installation (x86 based systems), 55
software groups
 descriptions, 45
 sizes, 45
 upgrading, 51
Solaris Flash, See archives
Solaris interactive installation program, choosing an installation program, 35
Solaris Live Upgrades, choosing an installation program, 35
Solaris Zones partitioning technology
 disk space requirements, 93
 installing with a Solaris Flash archive, 92
 upgrading, 88
SPARC based booting, overview, 83
state database
 conceptual overview, 98-99
definition, 98-99
state database replicas (Continued)
definition, 98
location, 104, 105
minimum number, 105
usage, 98
stty command, 65, 72
swap, planning for ZFS, 79
system requirements
 for UFS file systems, 40
 for ZFS installations, 78

T
trusted Solaris, what’s new, 23

U
upgrade
 compared to initial installation, 35
 disk space recommendations, 41-46
 non-global zones, what’s new, 18
 overview of tasks, 31
 with a Solaris Flash archive
 description, 49
 with non-global zones, 88

V
volume
 conceptual overview, 96
 naming conventions, 107
 uses, 96
 virtual disk, 96

W
what’s new in Solaris installation, 15