
Sun Cluster Data Services
Developer's Guide for Solaris OS

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4680–10
January 2009, Revision A

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, NetBeans, Java, and Solaris are trademarks or registered trademarks
of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. ORACLE is a registered trademark of Oracle Corporation.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, NetBeans, Java et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. ORACLE est une marque déposée registre de Oracle Corporation.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

081111@21288

Contents

Preface ...13

1 Overview of Resource Management ..19
Sun Cluster Application Environment ... 19
Resource Group Manager Model .. 21

Description of a Resource Type .. 21
Description of a Resource ... 22
Description of a Resource Group ... 22

Resource Group Manager ... 23
Callback Methods .. 23
Programming Interfaces ... 24

Resource Management API .. 24
Data Service Development Library .. 25
Sun Cluster Agent Builder .. 25

Resource Group Manager Administrative Interface ... 26
Sun Cluster Manager ... 26
clsetup Utility ... 26
Administrative Commands .. 27

2 Developing a Data Service ...29
Analyzing the Application for Suitability ... 29
Determining the Interface to Use .. 31
Setting Up the Development Environment for Writing a Data Service 32

▼ How to Set Up the Development Environment ... 33
Transferring a Data Service to a Cluster .. 34

Setting Resource and Resource Type Properties ... 34
Declaring Resource Type Properties ... 34

3

Declaring Resource Properties ... 37
Declaring Extension Properties ... 42

Implementing Callback Methods .. 44
Accessing Resource and Resource Group Property Information .. 44
Idempotence of Methods .. 44
How Methods Are Invoked in Zones ... 45

Generic Data Service ... 45
Controlling an Application .. 45

Starting and Stopping a Resource .. 45
Using the Optional Init, Fini, and Boot Methods ... 48

Monitoring a Resource ... 50
Implementing Monitors and Methods That Execute Exclusively in the Global Zone 51

Adding Message Logging to a Resource .. 53
Providing Process Management .. 53
Providing Administrative Support for a Resource .. 54
Implementing a Failover Resource .. 55
Implementing a Scalable Resource .. 55

Validation Checks for Scalable Services .. 58
Writing and Testing Data Services .. 59

Using TCP Keep-Alives to Protect the Server .. 59
Testing HA Data Services .. 60
Coordinating Dependencies Between Resources .. 60

3 Resource Management API Reference ...63
RMAPI Access Methods ... 63

RMAPI Shell Commands .. 63
C Functions ... 65

RMAPI Callback Methods ... 68
Arguments That You Can Provide to Callback Methods .. 69
Callback Method Exit Codes .. 69
Control and Initialization Callback Methods ... 70
Administrative Support Methods .. 73
Net-Relative Callback Methods .. 73
Monitor Control Callback Methods .. 74

Contents

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A4

4 Modifying a Resource Type ..75
Overview of Modifying a Resource Type .. 75
Setting Up the Contents of the Resource Type Registration File ... 76

Resource Type Name ... 76
Specifying the #$upgrade and #$upgrade_from Directives ... 77
Changing the RT_version in an RTR File ... 78
Resource Type Names in Previous Versions of Sun Cluster ... 79

What Happens When a Cluster Administrator Upgrades ... 79
Implementing Resource Type Monitor Code .. 80
Determining Installation Requirements and Packaging .. 80

Before You Change the RTR File ... 81
Changing Monitor Code ... 81
Changing Method Code .. 82
Determining the Packaging Scheme to Use .. 82

Documentation to Provide for a Modified Resource Type ... 83
Information About What to Do Before Installing an Upgrade .. 84
Information About When to Upgrade Resources .. 84
Information About Changes to Resource Properties .. 85

5 Sample Data Service ...87
Overview of the Sample Data Service .. 87
Defining the Resource Type Registration File .. 88

Overview of the RTR File .. 88
Resource Type Properties in the Sample RTR File ... 89
Resource Properties in the Sample RTR File .. 90

Providing Common Functionality to All Methods ... 94
Identifying the Command Interpreter and Exporting the Path ... 94
Declaring the PMF_TAG and SYSLOG_TAG Variables .. 95
Parsing the Function Arguments ... 96
Generating Error Messages ... 97
Obtaining Property Information ... 98

Controlling the Data Service .. 99
How the Start Method Works .. 99
How the Stop Method Works ... 102

Defining a Fault Monitor .. 104

Contents

5

How the Probe Program Works ... 105
How the Monitor_start Method Works .. 110
How the Monitor_stop Method Works .. 111
How the Monitor_check Method Works .. 113

Handling Property Updates ... 114
How the Validate Method Works .. 114
How the Update Method Works .. 118

6 Data Service Development Library ..121
DSDL Overview ... 121
Managing Configuration Properties ... 122
Starting and Stopping a Data Service .. 123
Implementing a Fault Monitor .. 123
Accessing Network Address Information .. 124
Debugging the Resource Type Implementation .. 124
Enabling Highly Available Local File Systems .. 125

7 Designing Resource Types ...127
Resource Type Registration File .. 128
Validate Method .. 128
Start Method .. 130
Stop Method .. 131
Monitor_start Method ... 132
Monitor_stop Method ... 133
Monitor_check Method ... 133
Update Method .. 133
Description of Init, Fini, and Boot Methods ... 134
Designing the Fault Monitor Daemon .. 135

8 Sample DSDL Resource Type Implementation ... 139
X Font Server .. 139

X Font Server Configuration File ... 140
TCP Port Number .. 140

SUNW.xfnts RTR File .. 140

Contents

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A6

Naming Conventions for Functions and Callback Methods .. 141
scds_initialize() Function ... 141
xfnts_start Method .. 142

Validating the Service Before Starting the X Font Server .. 142
Starting the Service With svc_start() ... 142
Returning From svc_start() .. 144

xfnts_stop Method .. 146
xfnts_monitor_start Method ... 147
xfnts_monitor_stop Method ... 148
xfnts_monitor_check Method ... 149
SUNW.xfnts Fault Monitor ... 150

xfonts_probe Main Loop ... 151
svc_probe() Function .. 152
Determining the Fault Monitor Action ... 156

xfnts_validate Method ... 156
xfnts_update Method ... 159

9 Sun Cluster Agent Builder ..161
Agent Builder Overview ... 161
Before You Use Agent Builder ... 162
Using Agent Builder .. 163

Analyzing the Application .. 163
Installing and Configuring Agent Builder .. 164
Agent Builder Screens ... 164
Starting Agent Builder ... 165
Navigating Agent Builder .. 166
Using the Create Screen .. 169
Using the Configure Screen .. 171
Using the Agent Builder Korn Shell-Based $hostnames Variable 174
Using Property Variables .. 174
Reusing Code That You Create With Agent Builder ... 177

▼ How to Use the Command-Line Version of Agent Builder .. 178
Directory Structure That Agent Builder Creates ... 179
Agent Builder Output ... 180

Source and Binary Files ... 180

Contents

7

Utility Scripts and Man Pages That Sun Cluster Agent Builder Creates 181
Support Files That Agent Builder Creates ... 182
Package Directory That Agent Builder Creates .. 183
rtconfig File .. 183

Cluster Agent Module for Agent Builder .. 184
▼ How to Install and Set Up the Cluster Agent Module .. 184
▼ How to Start the Cluster Agent Module .. 185

Using the Cluster Agent Module .. 187
Differences Between the Cluster Agent Module and Agent Builder 188

10 Generic Data Services ...189
Generic Data Services Concepts .. 189

Precompiled Resource Type ... 190
Advantages and Disadvantages of Using the GDS ... 190
Ways to Create a Service That Uses the GDS .. 191
How the GDS Logs Events .. 191
Required GDS Properties .. 192
Optional GDS Properties .. 193

Using Agent Builder to Create a Service That Uses the GDS ... 196
Creating and Configuring GDS-Based Scripts ... 196
Output From Agent Builder ... 201

Using Sun Cluster Administration Commands to Create a Service That Uses the GDS 202
▼ How to Use Sun Cluster Administration Commands to Create a Highly Available Service

That Uses the GDS ... 202
▼ How to Use Sun Cluster Administration Commands to Create a Scalable Service That Uses

the GDS ... 203
Command-Line Interface for Agent Builder ... 204

▼ How to Use the Command-Line Version of Agent Builder to Create a Service That Uses
GDS .. 204

11 DSDL API Functions ...207
General-Purpose Functions ... 207

Initialization Functions ... 208
Retrieval Functions .. 208
Failover and Restart Functions ... 208

Contents

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A8

Execution Functions .. 209
Property Functions .. 209
Network Resource Access Functions .. 209

Host Name Functions .. 210
Port List Functions ... 210
Network Address Functions ... 210
Fault Monitoring Using TCP Connections Functions .. 210

PMF Functions .. 211
Fault Monitor Functions ... 212
Utility Functions .. 212

12 Cluster Reconfiguration Notification Protocol ...213
CRNP Concepts ... 213

How the CRNP Works .. 214
CRNP Semantics .. 215
CRNP Message Types .. 215

How a Client Registers With the Server .. 217
Assumptions About How Administrators Set Up the Server ... 217
How the Server Identifies a Client .. 217
How SC_CALLBACK_REG Messages Are Passed Between a Client and the Server 217

How the Server Replies to a Client ... 219
Contents of an SC_REPLY Message ... 219
How a Client Is to Handle Error Conditions .. 220

How the Server Delivers Events to a Client .. 221
How the Delivery of Events Is Guaranteed ... 221
Contents of an SC_EVENT Message ... 222

How the CRNP Authenticates Clients and the Server ... 223
Example of Creating a Java Application That Uses the CRNP ... 224

▼ How to Set Up Your Environment ... 224
▼ How to Start Developing Your Application .. 225
▼ How to Parse the Command-Line Arguments ... 227
▼ How to Define the Event Reception Thread ... 227
▼ How to Register and Unregister Callbacks ... 228
▼ How to Generate the XML .. 229
▼ How to Create the Registration and Unregistration Messages ... 233

Contents

9

▼ How to Set Up the XML Parser ... 236
▼ How to Parse the Registration Reply .. 236
▼ How to Parse the Callback Events .. 238
▼ How to Run the Application ... 242

A Standard Properties ..243
Resource Type Properties ... 243
Resource Properties .. 253
Resource Group Properties .. 273
Resource Property Attributes ... 287

B Sample Data Service Code Listings .. 291
Resource Type Registration File Listing ... 291
Start Method Code Listing ... 295
Stop Method Code Listing ... 298
gettime Utility Code Listing ... 300
PROBE Program Code Listing ... 301
Monitor_start Method Code Listing .. 307
Monitor_stop Method Code Listing .. 309
Monitor_check Method Code Listing .. 311
Validate Method Code Listing ... 313
Update Method Code Listing ... 317

C DSDL Sample Resource Type Code Listings .. 319
xfnts.c File Listing ... 319
xfnts_monitor_check Method Code Listing .. 333
xfnts_monitor_start Method Code Listing .. 334
xfnts_monitor_stop Method Code Listing .. 335
xfnts_probe Method Code Listing .. 336
xfnts_start Method Code Listing .. 339
xfnts_stop Method Code Listing ... 340
xfnts_update Method Code Listing .. 341
xfnts_validate Method Code Listing .. 343

Contents

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A10

D Legal RGM Names and Values ... 345
RGM Legal Names ... 345

Rules for Names Except Resource Type Names ... 345
Format of Resource Type Names ... 346

RGM Values ... 347

E Requirements for Non-Cluster Aware Applications .. 349
Multihosted Data ... 349

Using Symbolic Links for Multihosted Data Placement ... 350
Host Names .. 351
Multihomed Hosts ... 351
Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses 352
Client Retry .. 353

F Document Type Definitions for the CRNP ... 355
SC_CALLBACK_REG XML DTD .. 355
NVPAIR XML DTD ... 357
SC_REPLY XML DTD ... 358
SC_EVENT XML DTD ... 359

G CrnpClient.javaApplication ...361
Contents of CrnpClient.java ... 361

Index ... 387

Contents

11

12

Preface

The Sun Cluster Data Services Developer's Guide for Solaris OS contains information about
using the Resource Management API to develop SunTM Cluster data serviceson both SPARC®
and x86 based systems.

Note – This Sun Cluster release supports systems that use the SPARC and x86 families of
processor architectures: UltraSPARC, SPARC64, AMD64, and Intel 64. In this document, x86
refers to the larger family of 64-bit x86 compatible products. Information in this document
pertains to all platforms unless otherwise specified.

Who Should Use This Book
This document is intended for experienced developers with extensive knowledge of Sun
software and hardware. The information in this book assumes that you have knowledge of the
Solaris Operating System.

How This Book Is Organized
The Sun Cluster Data Services Developer's Guide for Solaris OS contains the following chapters
and appendixes:

Chapter 1, “Overview of Resource Management,” provides an overview of the concepts that you
need to develop a data service.

Chapter 2, “Developing a Data Service,” provides detailed information about developing a data
service.

Chapter 3, “Resource Management API Reference,” provides a reference to the access functions
and callback methods that make up the Resource Management API (RMAPI).

Chapter 4, “Modifying a Resource Type,” discusses the issues that you need to understand to
modify a resource type. Information about the means by which you enable a cluster
administrator to upgrade a resource is also included.

Chapter 5, “Sample Data Service,” provides a sample Sun Cluster data service for the in.named
application.

13

Chapter 6, “Data Service Development Library,” provides an overview of the application
programming interfaces that make up the Data Services Development Library (DSDL).

Chapter 7, “Designing Resource Types,” explains the typical use of the DSDL in designing and
implementing resource types.

Chapter 8, “Sample DSDL Resource Type Implementation,” describes a sample resource type
that is implemented with the DSDL.

Chapter 9, “Sun Cluster Agent Builder,” describes Sun Cluster Agent Builder.

Chapter 10, “Generic Data Services,” describes how to create a generic data service.

Chapter 11, “DSDL API Functions,” describes the DSDL API functions.

Chapter 12, “Cluster Reconfiguration Notification Protocol,” provides information about the
Cluster Reconfiguration Notification Protocol (CRNP). The CRNP enables failover and scalable
applications to be “cluster aware.”

Appendix A, “Standard Properties,” describes the standard resource type, resource, and
resource group properties.

Appendix B, “Sample Data Service Code Listings,” provides the complete code for each method
in the sample data service.

Appendix C, “DSDL Sample Resource Type Code Listings,” lists the complete code for each
method in the SUNW.xfnts resource type.

Appendix D, “Legal RGM Names and Values,” lists the requirements for legal characters for
Resource Group Manager (RGM) names and values.

Appendix E, “Requirements for Non-Cluster Aware Applications,” list the requirements for
ordinary, non-cluster aware applications to be candidates for high availability.

Appendix F, “Document Type Definitions for the CRNP,” lists the document type definitions for
the CRNP.

Appendix G, “CrnpClient.java Application,” shows the complete CrnpClient.java
application that is discussed in Chapter 12, “Cluster Reconfiguration Notification Protocol.”

Preface

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A14

Related Documentation
Information about related Sun Cluster topics is available in the documentation that is listed in
the following table. All Sun Cluster documentation is available at http://docs.sun.com.

Topic Documentation

Overview Sun Cluster Overview for Solaris OS

Sun Cluster 3.2 1/09 Documentation Center

Concepts Sun Cluster Concepts Guide for Solaris OS

Hardware installation and
administration

Sun Cluster 3.1 - 3.2 Hardware Administration Manual for Solaris OS

Individual hardware administration guides

Software installation Sun Cluster Software Installation Guide for Solaris OS

Sun Cluster Quick Start Guide for Solaris OS

Data service installation and
administration

Sun Cluster Data Services Planning and Administration Guide for Solaris
OS

Individual data service guides

Data service development Sun Cluster Data Services Developer’s Guide for Solaris OS

System administration Sun Cluster System Administration Guide for Solaris OS

Sun Cluster Quick Reference

Software upgrade Sun Cluster Upgrade Guide for Solaris OS

Error messages Sun Cluster Error Messages Guide for Solaris OS

Command and function references Sun Cluster Reference Manual for Solaris OS

Sun Cluster Data Services Reference Manual for Solaris OS

Sun Cluster Quorum Server Reference Manual for Solaris OS

For a complete list of Sun Cluster documentation, see the release notes for your release of Sun
Cluster software at http://wikis.sun.com/display/SunCluster/Home/.

Preface

15

http://docs.sun.com
http://docs.sun.com/doc/820-4675
http://docs.sun.com/doc/820-4683
http://docs.sun.com/doc/820-4676
http://docs.sun.com/doc/819-2993
http://docs.sun.com/doc/820-4677
http://docs.sun.com/doc/820-4989
http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4680
http://docs.sun.com/doc/820-4679
http://docs.sun.com/doc/819-6811
http://docs.sun.com/doc/820-4678
http://docs.sun.com/doc/820-4681
http://docs.sun.com/doc/820-4685
http://docs.sun.com/doc/820-4684
http://docs.sun.com/doc/820-4686
http://wikis.sun.com/display/SunCluster/Home/

Getting Help
If you have problems installing or using the Sun Cluster software, contact your service provider
and provide the following information:

■ Your name and email address
■ Your company name, address, and phone number
■ The model number and serial number of your systems
■ The release number of the operating system (for example, the Solaris 10 OS)
■ The release number of Sun Cluster software (for example, 3.2 1/09)

Use the following commands to gather information about your systems for your service
provider.

Command Function

prtconf -v Displays the size of the system memory and reports
information about peripheral devices

psrinfo -v Displays information about processors

showrev -p Reports which patches are installed

SPARC: prtdiag -v Displays system diagnostic information

/usr/cluster/bin/clnode show-rev Displays Sun Cluster release and package version
information

Also have available the contents of the /var/adm/messages file.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Preface

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A16

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

17

18

Overview of Resource Management

This book provides guidelines for creating a resource type for a software application, such as
Oracle®, Sun JavaTM System Web Server (formerly Sun ONE Web Server), or DNS. As such, this
book is intended for developers of resource types.

To understand the contents of this book, you must be thoroughly familiar with the concepts
that are presented in the Sun Cluster Concepts Guide for Solaris OS.

This chapter provides an overview of the concepts that you need to understand to develop a
data service. This chapter covers the following topics:

■ “Sun Cluster Application Environment” on page 19
■ “Resource Group Manager Model” on page 21
■ “Resource Group Manager” on page 23
■ “Callback Methods” on page 23
■ “Programming Interfaces” on page 24
■ “Resource Group Manager Administrative Interface” on page 26

Note – This book uses the terms resource type and data service interchangeably. The term agent,
though rarely used in this book, is equivalent to resource type and data service.

Sun Cluster Application Environment
The Sun Cluster system enables applications to be run and administered as highly available and
scalable resources. The Resource Group Manager (RGM) provides the mechanism for high
availability and scalability.

1C H A P T E R 1

19

http://docs.sun.com/doc/820-4676

The following elements form the programming interface to this facility:
■ A set of callback methods that you write that enable the RGM to control an application in

the cluster.
■ The Resource Management API (RMAPI), a set of low-level API commands and functions

that you can use to write the callback methods. These APIs are implemented in the
libscha.so library.

■ Process Monitor Facility (PMF) for monitoring and restarting processes in the cluster.
■ The Data Service Development Library (DSDL), a set of library functions that encapsulates

the low-level API and process-management functionality at a higher level. The DSDL adds
some additional functionality to ease the writing of callback methods. These functions are
implemented in the libdsdev.so library.

The following figure shows the interrelationship of these elements.

Sun Cluster Agent Builder, which is described in Chapter 9, “Sun Cluster Agent Builder,” is a
tool in the Sun Cluster package that automates the process of creating a data service. Agent
Builder generates data service code in either C (by using DSDL functions to write the callback
methods) or in the Korn (ksh) shell command language (by using low-level API commands to
write the callback methods).

The RGM runs as a daemon on each cluster node and automatically starts and stops resources
on selected Solaris host according to preconfigured policies. The RGM makes a resource highly
available in the event of a node failure or reboot. The RGM does so by stopping the resource on
the affected node and starting it on another node. The RGM also automatically starts and stops
resource-specific monitors. These monitors detect resource failures and relocate failing
resources onto other nodes or monitor other aspects of resource performance.

Resource Types

Callback
Methods

libscha (RMAPI) PMF

RGM

hatimerun (1M)

libdsdev (Data Service Development Library-DSDL)

FIGURE 1–1 Programming Architecture of the Sun Cluster Application Environment

Sun Cluster Application Environment

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A20

The RGM supports both failover resources and scalable resources. A failover resource can be
online on only one node at a time. A scalable resource can be online on multiple nodes
simultaneously. However, a scalable resource that uses a shared address to balance the service
load between nodes can be online in only one node per Solaris host.

Resource Group Manager Model
This section introduces some fundamental terminology and explains in more detail the RGM
and its associated interfaces.

The RGM handles three major kinds of interrelated objects: resource types, resources, and
resource groups. One way to introduce these objects is by means of an example, as follows.

You implement a resource type, ha-oracle, that makes an existing Oracle DBMS application
highly available. An end user defines separate databases for marketing, engineering, and
finance, each of which is a resource of type ha-oracle. The cluster administrator places these
resources in separate resource groups so that they can run on different nodes and fail over
independently. You create a second resource type, ha-calendar, to implement a highly
available calendar server that requires an Oracle database. The cluster administrator places the
resource for the finance calendar into the same resource group as the finance database resource.
The cluster administrator does so to ensure that both resources run on the same node and fail
over together.

Description of a Resource Type
A resource type consists of the following elements:

■ A software application to be run in the cluster
■ Control programs that are used as callback methods by the RGM to manage the application

as a cluster resource
■ A set of properties that form part of the static configuration of a cluster

The RGM uses resource type properties to manage resources of a particular type.

Note – In addition to a software application, a resource type can represent other system
resources, such as network addresses.

You specify the properties for the resource type and set property values in a resource type
registration (RTR) file. The RTR file follows the format that is described in “Setting Resource
and Resource Type Properties” on page 34 and in the rt_reg(4) man page. See also “Defining
the Resource Type Registration File” on page 88 for a description of a sample RTR file.

Resource Group Manager Model

Chapter 1 • Overview of Resource Management 21

http://docs.sun.com/doc/820-4685/rt-reg-4?a=view

“Resource Type Properties” on page 243 provides a list of the resource type properties.

The cluster administrator installs and registers the resource type implementation and
underlying application on a cluster. The registration procedure enters the information from the
RTR file into the cluster configuration. The Sun Cluster Data Services Planning and
Administration Guide for Solaris OS describes the procedure for registering a data service.

Description of a Resource
A resource inherits the properties and values of its resource type. In addition, you can declare
resource properties in the RTR file. “Resource Properties” on page 253 contains a list of resource
properties.

The cluster administrator can change the values of particular properties depending on how the
properties are specified in the RTR file. For example, property definitions can specify a range of
allowable values. Property definitions can also specify when the property is tunable: never, any
time, at creation (when the resource is added to the cluster), or when the resource is disabled.
Within these specifications, the cluster administrator can make changes to properties by using
administration commands.

The cluster administrator can create many resources of the same type, with each resource
having its own name and set of property values, so that more than one instance of the
underlying application can run in the cluster. Each instantiation requires a unique name within
the cluster.

Description of a Resource Group
Each resource must be configured in a resource group. The RGM brings all resources in a group
online and offline together on the same node. When the RGM brings a resource group online or
offline, it runs callback methods on the individual resources in the group.

The nodes where a resource group is currently online are called its primaries or primary nodes.
A resource group is mastered by each of its primaries. Each resource group has an associated
Nodelist property that identifies all potential primaries or masters of the resource group. The
cluster administrator sets the Nodelist property.

A resource group also has a set of properties. These properties include configuration properties
that can be set by the cluster administrator and dynamic properties, set by the RGM, that reflect
the active state of the resource group.

The RGM defines two types of resource groups: failover and scalable. A failover resource group
can be online on only one node at any time. A scalable resource group can be online on multiple
nodes simultaneously. The RGM provides a set of properties to support the creation of each
type of resource group. See “Transferring a Data Service to a Cluster” on page 34 and
“Implementing Callback Methods” on page 44 for details about these properties.

Resource Group Manager Model

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A22

http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4682

“Resource Group Properties” on page 273 contains a list of resource group properties.

Resource Group Manager
The Resource Group Manager (RGM) is implemented as a daemon, rgmd, that runs on the
global-cluster voting node in a cluster. All of the rgmd processes communicate with each other
and act as a single cluster-wide facility.

The RGM supports the following functions:

■ Whenever a node fails, the RGM attempts to maintain the availability of all managed
resource groups. The RGM does so by automatically bringing them online on correct
masters.

■ If a particular resource fails, its monitor program can request that the resource group be
restarted on the same master or switched to a new master.

■ The cluster administrator can issue an administrative command to request one of the
following actions:
■ Change mastery of a resource group.
■ Enable or disable a particular resource within a resource group.
■ Create, delete, or modify a resource type, a resource, or a resource group.

Whenever the RGM activates configuration changes, it coordinates its actions across all
member nodes of the cluster. This kind of activity is known as a reconfiguration. To effect a state
change on an individual resource, the RGM runs a resource type-specific callback method on
that resource.

Callback Methods
The Sun Cluster framework uses a callback mechanism to provide communication between a
data service and the RGM. The framework defines a set of callback methods, including their
arguments and return values, and the circumstances under which the RGM calls each method.

You create a data service by coding a set of individual callback methods and implementing each
method as a control program that the RGM can call. That is, the data service does not consist of
a single executable, but a number of executable scripts (ksh) or binaries (C), each of which the
RGM can call directly.

Callback methods are registered with the RGM through the RTR file. In the RTR file you
identify the program for each method that you have implemented for the data service. When a
cluster administrator registers the data service on a cluster, the RGM reads the RTR file, which
provides the identity of the callback programs and other information.

The only required callback methods for a resource type are a start method (Start or
Prenet_start) and a stop method (Stop or Postnet_stop).

Callback Methods

Chapter 1 • Overview of Resource Management 23

The callback methods can be grouped into the following categories:
■ Control and initialization methods

■ The Start and Stop methods start and stop resources in a group that is being brought
online or offline.

■ The Init, Fini, and Boot methods execute initialization and termination code on
resources.

■ Administrative support methods
■ The Validate method verifies properties that are set by administrative action.
■ The Update method updates the property settings of an online resource.

■ Net-relative methods
Prenet_start and Postnet_stop perform special startup or shutdown operations before
network addresses in the same resource group are configured to go up or after they are
configured to go down.

■ Monitor control methods
■ Monitor_start and Monitor_stop start or stop the monitor for a resource.
■ Monitor_check assesses the reliability of a node before a resource group is moved to the

node.

See Chapter 3, “Resource Management API Reference,” and the rt_callbacks(1HA) man page
for more information about the callback methods. Also see Chapter 5, “Sample Data Service,”
and Chapter 8, “Sample DSDL Resource Type Implementation,” for callback methods in sample
data services.

Programming Interfaces
For writing data service code, the resource management architecture provides a low-level or
base API, a higher-level library that is built on top of the base API, and Sun Cluster Agent
Builder, a tool that automatically generates a data service from basic input that you provide.

Resource Management API
The Resource Management API (RMAPI) provides a set of low-level functions that enable a
data service to access information about the resource types, resources, and resource groups in
the system, to request a local restart or failover, and to set the resource status. You access these
functions through the libscha.so library. The RMAPI provides these callback methods both in
the form of shell commands and in the form of C functions. See the scha_calls(3HA) man
page and Chapter 3, “Resource Management API Reference,” for more information about the
RMAPI functions. Also see Chapter 5, “Sample Data Service,” for examples of how to use these
functions in sample data service callback methods.

Programming Interfaces

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A24

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-calls-3ha?a=view

Data Service Development Library
Built on top of the RMAPI is the Data Service Development Library (DSDL), which provides a
higher-level integrated framework while retaining the underlying method-callback model of the
RGM. The libdsdev.so library contains the DSDL functions.

The DSDL brings together various facilities for data service development, including the
following:

■ libscha.so. The low-level resource management APIs.
■ PMF. The Process Monitor Facility (PMF), which provides a means of monitoring processes

and their descendants, and restarting them if they die. See the pmfadm(1M) and
rpc.pmfd(1M) man pages.

■ hatimerun. A facility for running programs under a timeout. See the hatimerun(1M) man
page.

For the majority of applications, the DSDL provides most or all of the functionality you need to
build a data service. Note, however, that the DSDL does not replace the low-level API but
encapsulates and extends it. In fact, many DSDL functions call the libscha.so functions.
Likewise, you can directly call libscha.so functions while using the DSDL to code the bulk of
your data service.

See Chapter 6, “Data Service Development Library,” and the scha_calls(3HA) man page for
more information about the DSDL.

Sun Cluster Agent Builder
Agent Builder is a tool that automates the creation of a data service. You input basic
information about the target application and the data service to be created. Agent Builder
generates a data service, which includes source and executable code (C or Korn shell), a
customized RTR file, and a Solaris package.

For most applications, you can use Agent Builder to generate a complete data service with only
minor manual changes on your part. Applications with more sophisticated requirements, such
as adding validation checks for additional properties, might require work that Agent Builder
cannot do. However, even in these cases, you might be able to use Agent Builder to generate the
bulk of the code and manually code the rest. At a minimum, you can use Agent Builder to
generate the Solaris package for you.

Programming Interfaces

Chapter 1 • Overview of Resource Management 25

http://docs.sun.com/doc/820-4685/pmfadm-1m?a=view
http://docs.sun.com/doc/820-4685/rpc.pmfd-1m?a=view
http://docs.sun.com/doc/820-4685/hatimerun-1m?a=view
http://docs.sun.com/doc/820-4685/scha-calls-3ha?a=view

Resource Group Manager Administrative Interface
Sun Cluster provides both a graphical user interface (GUI) and a set of commands for
administering a cluster.

Sun Cluster Manager
Sun Cluster Manager is a web-based tool that enables you to perform the following tasks:

■ Install a cluster.
■ Administer a cluster.
■ Create and configure resources and resource groups.
■ Configure data services with the Sun Cluster software.

See the Sun Cluster Software Installation Guide for Solaris OS for instructions on how to install
Sun Cluster Manager and how to use Sun Cluster Manager to install cluster software. Sun
Cluster Manager provides online help for most unique administrative tasks.

clsetupUtility
You can perform most Sun Cluster administration tasks interactively with the clsetup(1CL)
utility.

You can administer the following Sun Cluster elements with the clsetup utility:

■ Quorum
■ Resource groups
■ Data services
■ Cluster interconnect
■ Device groups and volumes
■ Private host names
■ New nodes
■ Other cluster tasks

You can also perform the following operations with the clsetup utility:

■ Create a resource group
■ Add a network resource to a resource group
■ Add a data service resource to a resource group
■ Register a resource type
■ Bring a resource group online or offline
■ Switchover a resource group
■ Suspend or resume the automatic recovery actions of a resource group
■ Enable or disable a resource

Resource Group Manager Administrative Interface

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A26

http://docs.sun.com/doc/820-4677
http://docs.sun.com/doc/820-4685/clsetup-1cl?a=view

■ Change resource group properties
■ Change resource properties
■ Remove a resource from a resource group
■ Remove a resource group
■ Clear the Stop_failed error flag from a resource

Administrative Commands
The Sun Cluster commands for administering RGM objects are clresourcetype,
clresourcegroup, clresource, clnode, and cluster.

The clresourcetype, clresourcegroup, and clresource commands enable you to view,
create, configure, and delete a resource type, a resource group, and the resource objects that are
used by the RGM. These commands are part of the administrative interface for the cluster, but
are not to be used in the same programming context as the application interface that is
described in the rest of this chapter. However, the clresourcetype, clresourcegroup, and
clresource commands are the tools for constructing the cluster configuration in which the
API operates. Understanding the administrative interface sets the context for understanding
the application interface. See the clresourcetype(1CL), clresourcegroup(1CL), and
clresource(1CL) man pages for details about the administrative tasks that you can perform
with these commands.

Resource Group Manager Administrative Interface

Chapter 1 • Overview of Resource Management 27

http://docs.sun.com/doc/820-4685/clresourcetype-1cl?a=view
http://docs.sun.com/doc/820-4685/clresourcegroup-1cl?a=view
http://docs.sun.com/doc/820-4685/clresource-1cl?a=view

28

Developing a Data Service

This chapter tells you how to make an application highly available or scalable, and provides
detailed information about developing a data service.

This chapter covers the following topics:

■ “Analyzing the Application for Suitability” on page 29
■ “Determining the Interface to Use” on page 31
■ “Setting Up the Development Environment for Writing a Data Service” on page 32
■ “Setting Resource and Resource Type Properties” on page 34
■ “Implementing Callback Methods” on page 44
■ “Generic Data Service” on page 45
■ “Controlling an Application” on page 45
■ “Monitoring a Resource” on page 50
■ “Adding Message Logging to a Resource” on page 53
■ “Providing Process Management” on page 53
■ “Providing Administrative Support for a Resource” on page 54
■ “Implementing a Failover Resource” on page 55
■ “Implementing a Scalable Resource” on page 55
■ “Writing and Testing Data Services” on page 59

Analyzing the Application for Suitability
The first step in creating a data service is to determine whether the target application satisfies
the requirements for being made highly available or scalable. If the application fails to meet all
requirements, you might be able to modify the application source code to make it highly
available or scalable.

The list that follows summarizes the requirements for an application to be made highly
available or scalable. If you need more detail or if you need to modify the application source
code, see Appendix B, “Sample Data Service Code Listings.”

2C H A P T E R 2

29

Note – A scalable service must meet all the following conditions for high availability as well as
some additional criteria, which follow the list.

■ Both network-aware (client-server model) and nonnetwork-aware (client-less) applications
are potential candidates for being made highly available or scalable in the Sun Cluster
environment. However, Sun Cluster cannot provide enhanced availability in timesharing
environments in which applications are run on a server that is accessed through telnet or
rlogin.

■ The application must be crash tolerant. That is, the application must recover disk data (if
necessary) when it is started after an unexpected failure of a node. Furthermore, the
recovery time after a crash must be bounded. Crash tolerance is a prerequisite for making an
application highly available because the ability to recover the disk and restart the application
is a data integrity issue. The data service is not required to be able to recover connections.

■ The application must not depend upon the physical host name of the node on which it is
running. See “Host Names” on page 351 for additional information.

■ The application must operate correctly in environments in which multiple IP addresses are
configured to go up. Examples include environments with multihomed hosts, in which the
node is located on more than one public network, and environments with nodes on which
multiple, logical interfaces are configured to go up on one hardware interface.

■ To be highly available, the application data must be located on a highly available local file
system. See “Multihosted Data” on page 349.
If the application uses a hardwired path name for the location of the data, you could change
that path to a symbolic link that points to a location in the cluster file system, without
changing application source code. See “Using Symbolic Links for Multihosted Data
Placement” on page 350 for additional information.

■ Application binaries and libraries can be located locally on each node or in the cluster file
system. The advantage of being located in the cluster file system is that a single installation is
sufficient.

■ The client should have some capacity to retry a query automatically if the first attempt times
out. If the application and the protocol already handle a single server's crashing and
rebooting, they also can handle the containing resource group's being failed over or
switched over. See “Client Retry” on page 353 for additional information.

■ The application must not have UNIX® domain sockets or named pipes in the cluster file
system.

Additionally, scalable services must meet the following requirements:

■ The application must have the ability to run multiple instances, all operating on the same
application data in the cluster file system.

■ The application must provide data consistency for simultaneous access from multiple
nodes.

Analyzing the Application for Suitability

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A30

■ The application must implement sufficient locking with a globally visible mechanism, such
as the cluster file system.

For a scalable service, application characteristics also determine the load-balancing policy. For
example, the load-balancing policy Lb_weighted, which allows any instance to respond to client
requests, does not work for an application that makes use of an in-memory cache on the server
for client connections. In this case, specify a load-balancing policy that restricts a given client's
traffic to one instance of the application. The load-balancing policies Lb_sticky and
Lb_sticky_wild repeatedly send all requests by a client to the same application instance, where
they can make use of an in-memory cache. Note that if multiple client requests come in from
different clients, the RGM distributes the requests among the instances of the service. See
“Implementing a Failover Resource” on page 55 for more information about setting the
load-balancing policy for scalable data services.

Determining the Interface to Use
The Sun Cluster developer support package (SUNWscdev) provides two sets of interfaces for
coding data service methods:

■ The Resource Management API (RMAPI), a set of low-level functions (in the libscha.so
library)

■ The Data Services Development Library (DSDL), a set of higher-level functions (in the
libdsdev.so library) that encapsulate the functionality of the RMAPI and provide some
additional functionality

Also included in the Sun Cluster developer support package is Sun Cluster Agent Builder, a tool
that automates the creation of a data service.

Here is the recommended approach to developing a data service:

1. Decide whether to code in C or the Korn shell. If you decide to use the Korn shell, you
cannot use the DSDL, which provides a C interface only.

2. Run Agent Builder, specify the requested information, and generate a data service, which
includes source and executable code, an RTR file, and a package.

3. If the generated data service requires customizing, you can add DSDL code to the generated
source files. Agent Builder indicates, with comments, specific places in the source files where
you can add your own code.

4. If the code requires further customizing to support the target application, you can add
RMAPI functions to the existing source code.

In practice, you can take numerous approaches to creating a data service. For example, rather
than add your own code to specific places in the code that is generated by Agent Builder, you
could entirely replace one of the generated methods or the generated monitor program with a
program that you write from scratch using DSDL or RMAPI functions.

Determining the Interface to Use

Chapter 2 • Developing a Data Service 31

However, regardless of how you proceed, in almost every case, starting with Agent Builder
makes sense, for the following reasons:

■ The code that is generated by Agent Builder, while generic in nature, has been tested in
numerous data services.

■ Agent Builder generates an RTR file, a makefile, a package for the resource, and other
support files for the data service. Even if you use none of the data service code, using these
other files can save you considerable work.

■ You can modify the generated code.

Note – Unlike the RMAPI, which provides a set of C functions and a set of commands for use in
scripts, the DSDL provides a C function interface only. Therefore, if you specify Korn shell
(ksh) output in Agent Builder, the generated source code makes calls to RMAPI because there
are no DSDL ksh commands.

Setting Up the Development Environment for Writing a Data
Service

Before you begin to develop your data service, you must install the Sun Cluster development
package (SUNWscdev) to have access to the Sun Cluster header and library files. Although this
package is already installed on all cluster nodes, you typically develop your data service on a
separate, non-cluster development machine, rather than on a cluster node. In this typical case,
you must use the pkgadd command to install the SUNWscdev package on your development
machine.

Note – On the development machine, ensure that you are using the Developer or Entire
Distribution software group of the Solaris 9 OS or the Solaris 10 OS.

When compiling and linking your code, you must set particular options to identify the header
and library files.

Note – You cannot mix compatibility-mode compiled C++ code and standard-mode compiled
C++ code in the Solaris Operating System and Sun Cluster products.

Consequently, if you intend to create a C++ based data service for use on Sun Cluster, you must
compile that data service, as follows:

■ For Sun Cluster 3.0 and prior versions, use the compatibility mode.
■ Starting with Sun Cluster 3.1, use the standard mode.

Setting Up the Development Environment for Writing a Data Service

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A32

When you have finished development (on a non-cluster node), you can transfer the completed
data service to a cluster for testing.

The procedures in this section describe how to complete the following tasks:

■ Install the Sun Cluster development package (SUNWscdev) and set the correct compiler and
linker options.

■ Transfer the data service to a cluster.

▼ How to Set Up the Development Environment
This procedure describes how to install the SUNWscdev package and set the compiler and linker
options for data service development.

Become superuser or assume a role that provides solaris.cluster.modify RBAC
authorization.

Change directory to the CD-ROM directory that you want.
cd cd-rom-directory

Install the SUNWscdevpackage in the current directory.
pkgadd -d . SUNWscdev

In the makefile, specify compiler and linker options that identify the include and library files for
your data service code.

Specify the -I option to identify the Sun Cluster header files, the -L option to specify the
compile-time library search path on the development system, and the -R option to specify the
library search path to the runtime linker in the cluster.
Makefile for sample data service

...

-I /usr/cluster/include

-L /usr/cluster/lib

-R /usr/cluster/lib

...

1

2

3

4

Setting Up the Development Environment for Writing a Data Service

Chapter 2 • Developing a Data Service 33

Transferring a Data Service to a Cluster
When you have completed the data service on a development machine, you must transfer the
data service to a cluster for testing. To reduce the chance of error during the transfer, combine
the data service code and the RTR file into a package. Then, install the package on the Solaris
hosts on which you want to run the service.

Note – Agent Builder creates this package automatically.

Setting Resource and Resource Type Properties
Sun Cluster provides a set of resource type properties and resource properties that you use to
define the static configuration of a data service. Resource type properties specify the type of the
resource, its version, the version of the API, as well as the paths to each of the callback methods.
“Resource Type Properties” on page 243 lists all the resource type properties.

Resource properties, such as Failover_mode, Thorough_probe_interval, and method
timeouts, also define the static configuration of the resource. Dynamic resource properties,
such as Resource_state and Status, reflect the active state of a managed resource. “Resource
Properties” on page 253 describes the resource properties.

You declare the resource type and resource properties in the resource type registration (RTR)
file, which is an essential component of a data service. The RTR file defines the initial
configuration of the data service at the time that the cluster administrator registers the data
service with the Sun Cluster software.

Use Agent Builder to generate the RTR file for your data service. Agent Builder declares the set
of properties that are both useful and required for any data service. For example, particular
properties, such as Resource_type, must be declared in the RTR file. Otherwise, registration of
the data service fails. Other properties, although not required, are not available to a cluster
administrator unless you declare them in the RTR file. Some properties are available whether
you declare them or not because the RGM defines them and provides default values. To avoid
this level of complexity, use Agent Builder to guarantee the generation of a correct RTR file.
Later, you can edit the RTR file to change specific values if necessary.

The rest of this section shows a sample RTR file, which was created by Agent Builder.

Declaring Resource Type Properties
The cluster administrator cannot configure the resource type properties that you declare in the
RTR file. They become part of the permanent configuration of the resource type.

Setting Resource and Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A34

Note – Only a cluster administrator can configure the resource type property Installed_nodes.
You cannot declare Installed_nodes in the RTR file.

The syntax of resource type declarations is as follows:

property-name = value;

Note – Property names for resource groups, resources, and resource types are not case sensitive.
You can use any combination of uppercase and lowercase letters when you specify property
names.

These are resource type declarations in the RTR file for a sample (smpl) data service:

Sun Cluster Data Services Builder template version 1.0

Registration information and resources for smpl

#

#NOTE: Keywords are case insensitive, i.e., you can use

#any capitalization style you prefer.

#

Resource_type = "smpl";
Vendor_id = SUNW;

RT_description = "Sample Service on Sun Cluster";

RT_version ="1.0";
API_version = 2;

Failover = TRUE;

Init_nodes = RG_PRIMARIES;

RT_basedir=/opt/SUNWsmpl/bin;

Start = smpl_svc_start;

Stop = smpl_svc_stop;

Validate = smpl_validate;

Update = smpl_update;

Monitor_start = smpl_monitor_start;

Monitor_stop = smpl_monitor_stop;

Monitor_check = smpl_monitor_check;

Setting Resource and Resource Type Properties

Chapter 2 • Developing a Data Service 35

Tip – You must declare the Resource_type property as the first entry in the RTR file. Otherwise,
registration of the resource type fails.

The first set of resource type declarations provide basic information about the resource type.

Resource_type and Vendor_id

Provide a name for the resource type. You can specify the resource type name with the
Resource_type property alone (smpl) or by using the Vendor_id property as a prefix with a
period (.) separating it from the resource type (SUNW.smpl), as shown in the sample. If you
use Vendor_id, make it the stock market symbol of the company that is defining the resource
type. The resource type name must be unique in the cluster.

Note – By convention, the resource type name (vendoridApplicationname) is used as the
package name. Starting with the Solaris 9 OS, the combination of vendor ID and application
name can exceed nine characters.

Agent Builder, on the other hand, in all cases explicitly generates the package name from the
resource type name, so it enforces the nine-character limit.

RT_description

Briefly describes the resource type.

RT_version

Identifies the version of the sample data service.

API_version

Identifies the version of the API. For example, API_version = 2 indicates that the data
service can be installed on any version of Sun Cluster starting with Sun Cluster 3.0.
API_version = 7 indicates that the data service can be installed on any version of Sun
Cluster starting with Sun Cluster 3.2. However, API_version = 7 also indicates that the data
service cannot be installed on any version of Sun Cluster that was released before Sun Cluster
3.2. This property is described in more detail under the entry for API_version in “Resource
Type Properties” on page 243.

Failover = TRUE

Indicates that the data service cannot run in a resource group that can be online on multiple
nodes at the same time. In other words, this declaration specifies a failover data service. This
property is described in more detail under the entry for Failover in “Resource Type
Properties” on page 243.

Start, Stop, and Validate

Provide the paths to the respective callback method programs that are called by the RGM.
These paths are relative to the directory that is specified by RT_basedir.

The remaining resource type declarations provide configuration information.

Setting Resource and Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A36

Init_nodes = RG_PRIMARIES

Specifies that the RGM call the Init, Boot, Fini, and Validate methods only on nodes that
can master the data service. The nodes that are specified by RG_PRIMARIES are a subset of all
nodes on which the data service is installed. Set the value to RT_INSTALLED_NODES to specify
that the RGM call these methods on all nodes on which the data service is installed.

RT_basedir

Points to /opt/SUNWsample/bin as the directory path to complete relative paths, such as
callback method paths.

Start, Stop, and Validate

Provide the paths to the respective callback method programs that are called by the RGM.
These paths are relative to the directory that is specified by RT_basedir.

Declaring Resource Type Properties for a Zone Cluster
You (and the cluster administrator) can register a resource type for use in a particular zone
cluster by creating an RTR file under the zone root path. To correctly configure this RTR file,
ensure that it meets the following conditions:

■ The Global_zone property is either set to FALSE or not set at all in the RTR file. If you do not
specify the Global_zone property, the property is set to FALSE by default.

■ The RTR file is not of the logical hostname or shared address type.

You can also register a resource type for a zone cluster by placing an RTR file in the
/usr/cluster/lib/rgm/rtreg/ directory. The cluster administrator cannot configure the
resource type properties that you declare in an RTR file in this directory.

Resource types that are defined in RTR files in the /opt/cluster/lib/rgm/rtreg/ directory
are for the exclusive use of the global cluster.

Declaring Resource Properties
As with resource type properties, you declare resource properties in the RTR file. By
convention, resource property declarations follow the resource type declarations in the RTR
file. The syntax for resource declarations is a set of attribute value pairs enclosed by braces ({}):

{

attribute = value;
attribute = value;

.

.

.

attribute = value;
}

Setting Resource and Resource Type Properties

Chapter 2 • Developing a Data Service 37

For resource properties that are provided by Sun Cluster, which are called system-defined
properties, you can change specific attributes in the RTR file. For example, Sun Cluster provides
default values for method timeout properties for each callback method. In the RTR file, you can
specify different default values.

If an RGM method callback times out, the method's process tree is killed by a SIGABRT signal
(not a SIGTERM signal). As a result, all members of the process group generate a core dump file in
the /var/cluster/core directory or in a subdirectory of the /var/cluster/core directory on
the node on which the method exceeded its timeout. This core dump file is generated to enable
you to determine why your method exceeded its timeout.

Note – Avoid writing data service methods that create a new process group. If your data service
method must create a new process group, write a signal handler for the SIGTERM and SIGABRT

signals. Also, ensure that your signal handler forwards the SIGTERM or SIGABRT signal to the
child process group or groups before the signal handler terminates the process. Writing a signal
handler for these signals increases the likelihood that all processes that are spawned by your
method are correctly terminated.

You can also define new resource properties in the RTR file, which are called extension
properties, by using a set of property attributes that are provided by Sun Cluster. “Resource
Property Attributes” on page 287 lists the attributes for changing and defining resource
properties. Extension property declarations follow the system-defined property declarations in
the RTR file.

The first set of system-defined resource properties specifies timeout values for the callback
methods.

...

Resource property declarations appear as a list of bracketed

entries after the resource type declarations. The property

name declaration must be the first attribute after the open

curly bracket of a resource property entry.

#

Set minimum and default for method timeouts.

{

PROPERTY = Start_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Stop_timeout;

MIN=60;

DEFAULT=300;

Setting Resource and Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A38

}

{

PROPERTY = Validate_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Update_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Monitor_Start_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Monitor_Stop_timeout;

MIN=60;

DEFAULT=300;

{

PROPERTY = Monitor_Check_timeout;

MIN=60;

DEFAULT=300;

}

The name of the property (PROPERTY = value) must be the first attribute for each
resource-property declaration. You can configure resource properties within limits that are
defined by the property attributes in the RTR file. For example, the default value for each
method timeout in the sample is 300 seconds. The cluster administrator can change this value.
However, the minimum allowable value, specified by the MIN attribute, is 60 seconds. “Resource
Property Attributes” on page 287 contains a list of resource property attributes.

The next set of resource properties defines properties that have specific uses in the data service.

{

PROPERTY = Failover_mode;

DEFAULT=SOFT;

TUNABLE = ANYTIME;

}

{

PROPERTY = Thorough_Probe_Interval;

MIN=1;

MAX=3600;

DEFAULT=60;

TUNABLE = ANYTIME;

}

Setting Resource and Resource Type Properties

Chapter 2 • Developing a Data Service 39

The number of retries to be done within a certain period before concluding

that the application cannot be successfully started on this node.

{

PROPERTY = Retry_count;

MAX=10;

DEFAULT=2;

TUNABLE = ANYTIME;

}

Set Retry_interval as a multiple of 60 since it is converted from seconds

to minutes, rounding up. For example, a value of 50 (seconds)

is converted to 1 minute. Use this property to time the number of

retries (Retry_count).

{

PROPERTY = Retry_interval;

MAX=3600;

DEFAULT=300;

TUNABLE = ANYTIME;

}

{

PROPERTY = Network_resources_used;

TUNABLE = WHEN_DISABLED;

DEFAULT = "";
}

{

PROPERTY = Scalable;

DEFAULT = FALSE;

TUNABLE = AT_CREATION;

}

{

PROPERTY = Load_balancing_policy;

DEFAULT = LB_WEIGHTED;

TUNABLE = AT_CREATION;

}

{

PROPERTY = Load_balancing_weights;

DEFAULT = "";
TUNABLE = ANYTIME;

}

{

PROPERTY = Port_list;

TUNABLE = ANYTIME;

DEFAULT = ;

}

These resource-property declarations include the TUNABLE attribute. This attribute limits the
occasions on which the cluster administrator can change the value of the property with which

Setting Resource and Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A40

this attribute is associated. For example, the value AT_CREATION means that the cluster
administrator can only specify the value when the resource is created and cannot change the
value later.

For most of these properties, you can accept the default values as generated by Agent Builder
unless you have a reason to change them. Information about these properties follows. For
additional information, see “Resource Properties” on page 253 or the r_properties(5) man
page.

Failover_mode

Indicates whether the RGM should relocate the resource group or abort the node in the case
of a failure of a Start or Stop method.

Thorough_probe_interval, Retry_count, and Retry_interval

Used in the fault monitor. Tunable equals ANYTIME, so a cluster administrator can adjust
them if the fault monitor is not functioning optimally.

Network_resources_used

A list of logical-hostname or shared-address resources on which this resource has a
dependency. This list contains all network-address resources that appear in the properties
Resource_dependencies, Resource_dependencies_weak,
Resource_dependencies_restart, or Resource_dependencies_offline_restart.

The RGM automatically creates this property if the Scalable property is declared in the
RTR file. If the Scalable property is not declared in the RTR file, Network_resources_used
is unavailable unless it is explicitly declared in the RTR file.

If you do not assign a value to the Network_resources_used property, its value is updated
automatically by the RGM, based on the setting of the resource-dependencies properties.
You do not need to set this property directly. Instead, set the Resource_dependencies,
Resource_dependencies_offline_restart, Resource_dependencies_restart, or
Resource_dependencies_weak property.

To maintain compatibility with earlier releases of Sun Cluster software, you can still set the
value of the Network_resources_used property directly. If you set the value of the
Network_resources_used property directly, the value of the Network_resources_used
property is no longer derived from the settings of the resource-dependencies properties. If
you add a resource name to the Network_resources_used property, the resource name is
automatically added to the Resource_dependencies property as well. The only way to
remove that dependency is to remove it from the Network_resources_used property. If you
are not sure whether a network-resource dependency was originally added to the
Resource_dependencies property or to the Network_resources_used property, remove the
dependency from both properties.

Scalable

Set to FALSE to indicate that this resource does not use the cluster networking (shared
address) facility. If you set this property to FALSE, the resource type property Failover must

Setting Resource and Resource Type Properties

Chapter 2 • Developing a Data Service 41

http://docs.sun.com/doc/820-4685/r-properties-5?a=view

be set to TRUE to indicate a failover service. See “Transferring a Data Service to a Cluster” on
page 34 and “Implementing Callback Methods” on page 44 for additional information
about how to use this property.

Load_balancing_policy and Load_balancing_weights

Automatically declares these properties. However, these properties have no use in a failover
resource type.

Port_list

Identifies the list of ports on which the application is listening. Agent Builder declares this
property so that a cluster administrator can specify a list of ports when the cluster
administrator configures the data service.

Declaring Extension Properties
Extension properties appear at the end of the sample RTR file.

Extension Properties

#

The cluster administrator must set the value of this property to point to the

directory that contains the configuration files used by the application.

For this application, smpl, specify the path of the configuration file on

PXFS (typically named.conf).

{

PROPERTY = Confdir_list;

EXTENSION;

STRINGARRAY;

TUNABLE = AT_CREATION;

DESCRIPTION = "The Configuration Directory Path(s)";
}

The following two properties control restart of the fault monitor.

{

PROPERTY = Monitor_retry_count;

EXTENSION;

INT;

DEFAULT = 4;

TUNABLE = ANYTIME;

DESCRIPTION = "Number of PMF restarts allowed for fault monitor.";
}

{

PROPERTY = Monitor_retry_interval;

EXTENSION;

INT;

DEFAULT = 2;

TUNABLE = ANYTIME;

Setting Resource and Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A42

DESCRIPTION = "Time window (minutes) for fault monitor restarts.";
}

Time out value in seconds for the probe.

{

PROPERTY = Probe_timeout;

EXTENSION;

INT;

DEFAULT = 120;

TUNABLE = ANYTIME;

DESCRIPTION = "Time out value for the probe (seconds)";
}

Child process monitoring level for PMF (-C option of pmfadm).

Default of -1 means to not use the -C option of pmfadm.

A value of 0 or greater indicates the desired level of child-process.

monitoring.

{

PROPERTY = Child_mon_level;

EXTENSION;

INT;

DEFAULT = -1;

TUNABLE = ANYTIME;

DESCRIPTION = “Child monitoring level for PMF";
}

User added code -- BEGIN VVVVVVVVVVVV

User added code -- END ^^^^^^^^^^^^

Agent Builder creates the following extension properties, which are useful for most data
services.

Confdir_list

Specifies the path to the application configuration directory, which is useful information for
many applications. The cluster administrator can provide the location of this directory when
the cluster administrator configures the data service.

Monitor_retry_count, Monitor_retry_interval, and Probe_timeout

Controls the restarts of the fault monitor itself, not the server daemon.

Child_mon_level

Sets the level of monitoring to be carried out by the PMF. See the pmfadm(1M) man page for
more information.

You can create additional extension properties in the area that is delimited by the User added
code comments.

Setting Resource and Resource Type Properties

Chapter 2 • Developing a Data Service 43

http://docs.sun.com/doc/820-4685/pmfadm-1m?a=view

Implementing Callback Methods
This section provides general information that pertains to implementing the callback methods.

Accessing Resource and Resource Group Property
Information
Generally, callback methods require access to the properties of the resource. The RMAPI
provides both shell commands and C functions that you can use in callback methods to access
the system-defined and extension properties of resources. See the scha_resource_get(1HA)
and scha_resource_get(3HA) man pages.

The DSDL provides a set of C functions (one function for each property) to access
system-defined properties, and a function to access extension properties. See the
scds_property_functions(3HA) and scds_get_ext_property(3HA) man pages.

You cannot use the property mechanism to store dynamic state information for a data service
because no API functions are available for setting resource properties other than Status and
Status_msg. Rather, you should store dynamic state information in global files.

Note – The cluster administrator can set particular resource properties by using the clresource
command or through a graphical administrative command or interface. However, do not call
clresource from any callback method because clresource fails during cluster
reconfiguration, that is, when the RGM calls the method.

Idempotence of Methods
In general, the RGM does not call a method more than once in succession on the same resource
with the same arguments. However, if a Start method fails, the RGM can call a Stop method on
a resource even though the resource was never started. Likewise, a resource daemon could die
of its own accord and the RGM might still run its Stop method on it. The same scenarios apply
to the Monitor_start and Monitor_stop methods.

For these reasons, you must build idempotence into your Stop and Monitor_stop methods. In
other words, repeated calls to Stop or Monitor_stop on the same resource with the same
arguments must achieve the same results as a single call.

One implication of idempotence is that Stop and Monitor_stop must return 0 (success) even if
the resource or monitor is already stopped and no work is to be done.

Implementing Callback Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A44

http://docs.sun.com/doc/820-4685/scha-resource-get-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-resource-get-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-property-functions-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-ext-property-3ha?a=view

Note – The Init, Fini, Boot, and Update methods must also be idempotent. A Start method
need not be idempotent.

How Methods Are Invoked in Zones
If declared in the RTR file, the Global_zone resource type property indicates whether the
methods of a resource type execute in the global zone. If the Global_zone property equals TRUE,
methods execute in the global zone even if the resource group that contains the resource is
configured to run in a non-global zone.

If the resource for which Global_zone equals TRUE is configured in a non-global zone, methods
that are invoked in the global zone are invoked with the -Z zonename option. The zonename
operand specifies the Solaris zone name of the non-global zone in which the resource is actually
configured. The value of this operand is passed to the method.

If the resource is configured in the global zone, the -Z zonename option is not invoked and the
non-global zone name is not passed to the method.

The Global_zone resource type property is described in more detail in “Resource Type
Properties” on page 243 and in the rt_properties(5) man page.

Generic Data Service
A generic data service (GDS) is a mechanism for making simple applications highly available or
scalable by plugging them into the Sun Cluster Resource Group Manager (RGM) framework.
This mechanism does not require the coding of a data service, which is the typical approach for
making an application highly available or scalable.

The GDS model relies on a precompiled resource type, SUNW.gds, to interact with the RGM
framework. See Chapter 10, “Generic Data Services,” for additional information.

Controlling an Application
Callback methods enable the RGM to take control of the underlying resource (that is, the
application). For example, callback methods enable the RGM to take control of the underlying
resource when a node joins or leaves the cluster.

Starting and Stopping a Resource
A resource type implementation requires, at a minimum, a Start method and a Stop method.

Controlling an Application

Chapter 2 • Developing a Data Service 45

http://docs.sun.com/doc/820-4685/rt-properties-5?a=view

Using Start and StopMethods
The RGM calls a resource type's method programs at correct times and on the correct nodes for
bringing resource groups offline and online. For example, after the crash of a cluster node, the
RGM moves any resource groups that are mastered by that node onto a new node. In this case,
you must implement a Start method to provide the RGM with, among other things, a way of
restarting each resource on the surviving host node.

A Start method must not return until the resource has been started and is available on the local
node. Be certain that resource types that require a long initialization period have sufficiently
long timeouts set on their Start methods. To ensure sufficient timeouts, set the default and
minimum values for the Start_timeout property in the RTR file.

You must implement a Stop method for situations in which the RGM takes a resource group
offline. For example, suppose a resource group is taken offline in ZoneA on Host1 and brought
back online in ZoneB on Host2. While taking the resource group offline, the RGM calls the Stop
method on resources in the resource group to stop all activity in ZoneA on Host1. After the
Stop methods for all resources have completed in ZoneA on Host1, the RGM brings the
resource group back online in ZoneB on Host2.

A Stop method must not return until the resource has completely stopped all its activity on the
local node and has completely shut down. The safest implementation of a Stop method
terminates all processes on the local node that are related to the resource. Resource types that
require a long time to shut down need sufficiently long timeouts set on their Stop methods. Set
the Stop_timeout property in the RTR file.

If an RGM method callback times out, the method's process tree is killed by a SIGABRT signal
(not a SIGTERM signal). As a result, all members of the process group generate a core dump file in
the /var/cluster/core directory or in a subdirectory of the /var/cluster/core directory on
the node on which the method exceeded its timeout. This core dump file is generated to enable
you to determine why your method exceeded its timeout.

Note – Avoid writing data service methods that create a new process group. If your data service
method must create a new process group, write a signal handler for the SIGTERM and SIGABRT

signals. Also, ensure that your signal handler forwards the SIGTERM or SIGABRT signal to the
child process group or groups before the signal handler terminates the process. Writing a signal
handler for these signals increases the likelihood that all processes that are spawned by your
method are correctly terminated.

Failure or timeout of a Stop method causes the resource group to enter an error state that
requires the cluster administrator to intervene. To avoid this state, the Stop and Monitor_stop

method implementations must attempt to recover from all possible error conditions. Ideally,
these methods must exit with 0 (success) error status, having successfully stopped all activity of
the resource and its monitor on the local node.

Controlling an Application

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A46

Deciding Which Start and StopMethods to Use
This section provides some tips about when to use the Start and Stop methods as opposed to
using the Prenet_start and Postnet_stop methods. You must have in-depth knowledge of
both the client and the data service's client-server networking protocol to decide the correct
methods to use.

Services that use network address resources might require that start or stop steps be done in a
particular order. This order must be relative to the logical host name address configuration. The
optional callback methods Prenet_start and Postnet_stop enable a resource type
implementation to perform special startup and shutdown operations before and after network
addresses in the same resource group are configured to go up or configured to go down.

The RGM calls methods that plumb the network addresses (but do not configure network
addresses to go up) before calling the data service's Prenet_start method. The RGM calls
methods that unplumb the network addresses after calling the data service's Postnet_stop
methods.

The sequence is as follows when the RGM takes a resource group online:

1. Plumb network addresses.
2. Call the data service's Prenet_start method (if any).
3. Configure network addresses to go up.
4. Call the data service's Start method (if any).

The reverse happens when the RGM takes a resource group offline:

1. Call the data service's Stop method (if any).
2. Configure network addresses to go down.
3. Call the data service's Postnet_stop method (if any).
4. Unplumb network addresses.

When deciding whether to use the Start, Stop, Prenet_start, or Postnet_stop methods, first
consider the server side. When bringing online a resource group that contains both data service
application resources and network address resources, the RGM calls methods to configure the
network addresses to go up before it calls the data service resource Start methods. Therefore, if
a data service requires network addresses to be configured to go up at the time it starts, use the
Start method to start the data service.

Likewise, when bringing offline a resource group that contains both data service resources and
network address resources, the RGM calls methods to configure the network addresses to go
down after it calls the data service resource Stop methods. Therefore, if a data service requires
network addresses to be configured to go up at the time it stops, use the Stop method to stop the
data service.

For example, to start or stop a data service, you might have to run the data service's
administrative utilities or libraries. Sometimes, the data service has administrative utilities or
libraries that use a client-server networking interface to perform the administration. That is, an

Controlling an Application

Chapter 2 • Developing a Data Service 47

administrative utility makes a call to the server daemon, so the network address might need to
be up to use the administrative utility or library. Use the Start and Stop methods in this
scenario.

If the data service requires that the network addresses be configured to go down at the time it
starts and stops, use the Prenet_start and Postnet_stop methods to start and stop the data
service. Consider whether your client software is to respond differently, depending on whether
the network address or the data service comes online first after a cluster reconfiguration (either
scha_control() with the SCHA_GIVEOVER argument or a switchover with the clnode evacuate
command). For example, the client implementation might perform the fewest retries, giving up
soon after determining that the data service port is not available.

If the data service does not require the network address to be configured to go up when it starts,
start the data service before the network interface is configured to go up. Starting the data
service in this way ensures that the data service is able to respond immediately to client requests
as soon as the network address has been configured to go up. As a result, clients are less likely to
stop retrying. In this scenario, use the Prenet_start method rather than the Start method to
start the data service.

If you use the Postnet_stop method, the data service resource is still up at the point the
network address is configured to be down. Only after the network address is configured to go
down is the Postnet_stop method run. As a result, the data service's TCP or UDP service port,
or its RPC program number, always appears to be available to clients on the network, except
when the network address is also not responding.

Note – If you install an RPC service in the cluster, the service must not use the following program
numbers: 100141, 100142, and 100248. These numbers are reserved for the Sun Cluster
daemons rgmd_receptionist, fed, and pmfd, respectively. If the RPC service that you install
uses one of these program numbers, change the program number of that RPC service.

The decision to use the Start and Stop methods as opposed to the Prenet_start and
Postnet_stop methods, or to use both, must take into account the requirements and behavior
of both the server and client.

Using the Optional Init, Fini, and BootMethods
Three optional methods, Init, Fini, and Boot, enable the RGM to execute initialization and
termination code on a resource.

Controlling an Application

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A48

Using the InitMethod
The RGM executes the Init method to perform a one-time initialization of the resource when
the resource becomes managed as a result of one of the following conditions:
■ The resource group in which the resource is located is switched from an unmanaged to a

managed state.
■ The resource is created in a resource group that is already managed.

Using the FiniMethod
The RGM executes the Fini method to clean up after a resource when that resource is no longer
managed by the RGM. The Fini method usually undoes any initializations that were performed
by the Init method.

The RGM executes Fini on the node where the resource becomes unmanaged when the
following situations arise:
■ The resource group that contains the resource is switched to an unmanaged state. In this

case, the RGM executes the Fini method on all nodes in the node list.
■ The resource is deleted from a managed resource group. In this case, the RGM executes the

Fini method on all nodes in the node list.
■ A node is deleted from the node list of the resource group that contains the resource. In this

case, the RGM executes the Fini method on only the deleted node.

A “node list” is either the resource group's Nodelist or the resource type's Installed_nodes
list. Whether “node list” refers to the resource group's Nodelist or the resource type's
Installed_nodes list depends on the setting of the resource type's Init_nodes property. You
can set the Init_nodes property to RG_PRIMARIES or RT_INSTALLED_NODE. For most resource
types, Init_nodes is set to RG_PRIMARIES, the default. In this case, both the Init and Fini

methods are executed on the nodes that are specified in the resource group's Nodelist.

The type of initialization that the Init method performs defines the type of cleanup that the
Fini method that you implement needs to perform, as follows:
■ Cleanup of node-specific configuration.
■ Cleanup of cluster-wide configuration.

Guidelines for Implementing a FiniMethod

The Fini method that you implement needs to determine whether to perform only cleanup of
node-specific configuration or cleanup of both node-specific and cluster-wide configuration.

When a resource becomes unmanaged on only a particular node, the Fini method can clean up
local, node-specific configuration. However, the Fini method must not clean up global,
cluster-wide configuration, because the resource remains managed on other nodes. If the
resource becomes unmanaged cluster-wide, the Fini method can perform cleanup of both

Controlling an Application

Chapter 2 • Developing a Data Service 49

node-specific and global configuration. Your Fini method code can distinguish these two cases
by determining whether the resource group's node list contains the local node on which your
Fini method is executing.

If the local node appears in the resource group's node list, the resource is being deleted or is
moving to an unmanaged state. The resource is no longer active on any node. In this case, your
Fini method needs to clean up any node-specific configuration on the local node as well as
cluster-wide configuration.

If the local node does not appear in the resource group's node list, your Fini method can clean
up node-specific configuration on the local node. However, your Fini method must not clean
up cluster-wide configuration. In this case, the resource remains active on other nodes.

You must also code the Fini method so that it is idempotent. In other words, even if the Fini
method has cleaned up a resource during a previous execution, subsequent calls to the Fini
method exit successfully.

Using the BootMethod
The RGM executes the Boot method on nodes that join the cluster, that is, that have just been
booted or rebooted.

The Boot method normally performs the same initialization as Init. You must code the Boot
method so that it is idempotent. In other words, even if the Boot method has initialized the
resource during a previous execution, subsequent calls to the Boot method exit successfully.

Monitoring a Resource
Typically, you implement monitors to run periodic fault probes on resources to detect whether
the probed resources are working correctly. If a fault probe fails, the monitor can attempt to
restart locally or request failover of the affected resource group. The monitor requests the
failover by calling the scha_control() or scha_control_zone() RMAPI function or the
scds_fm_action() DSDL function.

You can also monitor the performance of a resource and tune or report performance. Writing a
resource type-specific fault monitor is optional. Even if you choose not to write such a fault
monitor, the resource type benefits from the basic monitoring of the cluster that Sun Cluster
itself does. Sun Cluster detects failures of the host hardware, gross failures of the host's
operating system, and failures of a host to be able to communicate on its public networks.

Although the RGM does not call a resource monitor directly, the RGM does provide for
automatically starting monitors for resources. When bringing a resource offline, the RGM calls
the Monitor_stop method to stop the resource's monitor on the local nodes before stopping the
resource itself. When bringing a resource online, the RGM calls the Monitor_start method
after the resource itself has been started.

Monitoring a Resource

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A50

The scha_control() or scha_control_zone() RMAPI function and the scds_fm_action()
DSDL function (which calls scha_control()) enable resource monitors to request the failover
of a resource group to a different node. As one of its sanity checks, scha_control() and
scha_control_zone() call Monitor_check (if defined) to determine whether the requested
node is reliable enough to master the resource group that contains the resource. If
Monitor_check reports back that the node is not reliable, or the method times out, the RGM
looks for a different node to honor the failover request. If Monitor_check fails on all nodes, the
failover is canceled.

The resource monitor can set the Status and Status_msg properties to reflect the monitor's
view of the resource state. Use the scha_resource_setstatus() or
scha_resource_setstatus_zone() RMAPI function, the scha_resource_setstatus
command, or the scds_fm_action() DSDL function to set these properties.

Note – Although the Status and Status_msg properties are of particular use to a resource
monitor, any program can set these properties.

See “Defining a Fault Monitor” on page 104 for an example of a fault monitor that is
implemented with the RMAPI. See “SUNW.xfnts Fault Monitor” on page 150 for an example of a
fault monitor that is implemented with the DSDL. See the Sun Cluster Data Services Planning
and Administration Guide for Solaris OS for information about fault monitors that are built into
data services that are supplied by Sun.

Implementing Monitors and Methods That Execute
Exclusively in the Global Zone
Most resource types execute their methods in whatever node appears in the resource group's
node list. A few resource types must execute all of their methods in the global zone, even when
the resource group is configured in a non-global zone, that is, either a zone-cluster node or a
global-cluster non-voting node. This is necessary for resource types that manage system
resources, such as network addresses or disks, which can only be managed from the global zone.
These resource types are identified by setting the Global_zone property to TRUE in the resource
type registration (RTR) file.

Caution – Do not register a resource type for which the Global_zone property is set to TRUE

unless the resource type comes from a known and trusted source. Resource types for which this
property is set to TRUE circumvent zone isolation and present a risk.

A resource type that declares Global_zone=TRUE might also declare the
Global_zone_override resource property. In this case, the value of the

Monitoring a Resource

Chapter 2 • Developing a Data Service 51

http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4682

Global_zone_override property supersedes the value of the Global_zone property for that
resource. The Global_zone_override property is described in more detail in “Resource
Properties” on page 253 and the r_properties(5) man page.

If the Global_zone resource type property is not set to TRUE, monitors and methods execute in
whatever nodes are listed in the resource group's node list.

The scha_control() and scha_resource_setstatus() functions and the scha_control and
scha_resource_setstatus commands operate implicitly on the node from which the function
or command is run. If the Global_zone resource type property equals TRUE, these functions and
commands need to be invoked differently when the resource is configured in a non-global zone.

When the resource is configured in a non-global zone, the value of the zonename operand is
passed to the resource type method by the -Z option. If your method or monitor invokes one of
these functions or commands without the correct handling, it incorrectly operates on the global
zone. Your method or monitor should operate on the non-global zone in which the resource
that is included in the resource group's node list is configured.

To ensure that your method or monitor code handles these conditions correctly, check that it
does the following:

■ Specifies the -Z zonename option in calls to the scha_control and
scha_resource_setstatus commands. Use the same value for zonename that the RGM
passes to the data service method with the -Z option.

■ Includes calls to the scha_control_zone() function rather than to the scha_control()
function. Ensure that your call passes the zonename operand that was passed by the -Z
option.

■ Includes calls to the scha_resource_setstatus_zone() function rather than to the
scha_resource_setstatus() function. Ensure that your call passes the zonename operand
that was passed by the -Z option.

If a resource for which the Global_zone resource type property equals TRUE invokes
scha_cluster_get() with the ZONE_LOCAL query optag value, it returns the name of the global
zone. In this case, the calling code must concatenate the string :zonename to the local node
name to obtain the zone in which the resource is actually configured. The zonename is the same
zone name that is passed down to the method in the -Z zonename command-line option. If
there is no -Z option in the command line, the resource group is configured in the global zone
and you do not need to concatenate a zone name to the node name.

Similarly, if the calling code queries, for example, the state of a resource in the non-global zone,
it must invoke scha_resource_get() with the RESOURCE_STATE_NODE optag value rather than
the RESOURCE_STATE optag value. In this case, the RESOURCE_STATE optag value queries in the
global zone rather than in the non-global zone in which the resource is actually configured.

Monitoring a Resource

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A52

http://docs.sun.com/doc/820-4685/r-properties-5?a=view

The DSDL functions inherently handle the -Z zonename option. Therefore, the
scds_initialize() function obtains the relevant resource and resource group properties for
the non-global zone in which a resource is actually configured. Other DSDL queries operate
implicitly on that node.

You can use the DSDL function scds_get_zone_name() to query the name of the zone that is
passed to the method in the -Z zonename command-line option. If no -Z zonename is passed,
the scds_get_zone_name() function returns NULL.

Multiple Boot methods might run simultaneously in the global zone if both of the following
conditions occur:

■ The Nodelist for a resource group contains two or more nodes on the same Solaris host.

Note – You can configure two or more nodes on a global-cluster node only. You can
configure only one node in a zone cluster on each Solaris host.

■ That same resource group contains one or more resources for which the Global_zone
property is set to TRUE.

Adding Message Logging to a Resource
If you want to record status messages in the same log file as other cluster messages, use the
convenience function scha_cluster_getlogfacility() to retrieve the facility number that is
being used to log cluster messages.

Use this facility number with the regular Solaris syslog() function to write messages to the
cluster log. You can also access the cluster log facility information through the generic
scha_cluster_get() interface.

Providing Process Management
The RMAPI and the DSDL provide process management facilities to implement resource
monitors and resource control callbacks. The RMAPI defines the following facilities:

Process Monitor Facility (PMF): pmfadm and rpc.pmfd

Provides a means of monitoring processes and their descendants, and restarting processes if
they die. The facility consists of the pmfadm command for starting and controlling monitored
processes, and the rpc.pmfd daemon.

The DSDL provides a set of functions (preceded by the name scds_pmf_) to implement the
PMF functionality. See “PMF Functions” on page 211 for an overview of the DSDL PMF
functionality and for a list of the individual functions.

Providing Process Management

Chapter 2 • Developing a Data Service 53

The pmfadm(1M) and rpc.pmfd(1M) man pages describe this command and daemon in
more detail.

halockrun

A program for running a child program while holding a file lock. This command is
convenient to use in shell scripts.

The halockrun(1M) man page describes this command in more detail.

hatimerun

A program for running a child program under timeout control. This command is
convenient to use in shell scripts.

The DSDL provides the scds_hatimerun() function to implement the features of the
hatimerun command.

The hatimerun(1M) man page describes this command in more detail.

Providing Administrative Support for a Resource
Actions that cluster administrators perform on resources include setting and changing resource
properties. The API defines the Validate and Update callback methods so that you can create
code that hooks into these administrative actions.

The RGM calls the optional Validate method when a resource is created. The RGM also calls
the Validate method when a cluster administrator updates the properties of the resource or its
containing group. The RGM passes the property values for the resource and its resource group
to the Validate method. The RGM calls Validate on the set of cluster nodes that is indicated
by the Init_nodes property of the resource's type. See “Resource Type Properties” on page 243
or the rt_properties(5) man page for information about Init_nodes. The RGM calls
Validate before the creation or the update is applied. A failure exit code from the method on
any node causes the creation or the update to fail.

The RGM calls Validate only when the cluster administrator changes resource or resource
group properties, not when the RGM sets properties, or when a monitor sets the Status and
Status_msg resource properties.

The RGM calls the optional Update method to notify a running resource that properties have
been changed. The RGM runs Update after the cluster administrator succeeds in setting
properties of a resource or its group. The RGM calls this method on nodes where the resource is
online. This method can use the API access functions to read property values that might affect
an active resource and adjust the running resource accordingly.

Providing Administrative Support for a Resource

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A54

http://docs.sun.com/doc/820-4685/pmfadm-1m?a=view
http://docs.sun.com/doc/820-4685/rpc.pmfd-1m?a=view
http://docs.sun.com/doc/820-4685/halockrun-1m?a=view
http://docs.sun.com/doc/820-4685/hatimerun-1m?a=view
http://docs.sun.com/doc/820-4685/rt-properties-5?a=view

Implementing a Failover Resource
A failover resource group contains network addresses, such as the built-in resource types
LogicalHostname and SharedAddress, and failover resources, such as the data service
application resources for a failover data service. The network address resources, along with
their dependent data service resources, move between cluster nodes when data services fail over
or are switched over. The RGM provides a number of properties that support implementation
of a failover resource.

In a global cluster, a failover resource group can fail over to a node on another Solaris host or on
the same Solaris host. A failover resource group cannot fail over in this way in a zone cluster.
However, if the host fails, the failing over of this resource group to a node on the same host does
not provide high availability. Nonetheless, you might find this failing over of a resource group
to a node on the same host useful in testing or prototyping.

Set the Boolean Failover resource type property to TRUE to restrict the resource from being
configured in a resource group that can be online on more than one node at a time. The default
for this property is FALSE, so you must declare it as TRUE in the RTR file for a failover resource.

The Scalable resource property determines if the resource uses the cluster shared address
facility. For a failover resource, set Scalable to FALSE because a failover resource does not use
shared addresses.

The RG_mode resource group property enables the cluster administrator to identify a resource
group as failover or scalable. If RG_mode is FAILOVER, the RGM sets the Maximum_primaries
property of the group to 1. The RGM also restricts the resource group to being mastered by a
single node. The RGM does not allow a resource whose Failover property is TRUE to be created
in a resource group whose RG_mode is SCALABLE.

The Implicit_network_dependencies resource group property specifies that the RGM should
enforce implicit strong dependencies of nonnetwork address resources on all network address
resources (LogicalHostname and SharedAddress) within the group. As a result, the Start
methods of the nonnetwork address (data service) resources in the group are not called until the
network addresses in the group are configured to go up. The Implicit_network_dependencies
property defaults to TRUE.

Implementing a Scalable Resource
A scalable resource can be online on more than one node simultaneously. You can configure a
scalable resource (which uses network load-balancing) to run on a global-cluster non-voting
node as well. However, you can run such a scalable resource in only one node per Solaris host.
Scalable resources include data services such as Sun Cluster HA for Sun Java System Web Server
(formerly Sun Cluster HA for Sun ONE Web Server) and Sun Cluster HA for Apache.

The RGM provides a number of properties that support the implementation of a scalable
resource.

Implementing a Scalable Resource

Chapter 2 • Developing a Data Service 55

Set the Boolean Failover resource type property to FALSE, to allow the resource to be
configured in a resource group that can be online on more than one node at a time.

The Scalable resource property determines if the resource uses the cluster shared address
facility. Set this property to TRUE because a scalable service uses a shared address resource to
make the multiple instances of the scalable service appear as a single service to the client.

The RG_mode property enables the cluster administrator to identify a resource group as failover
or scalable. If RG_mode is SCALABLE, the RGM allows Maximum_primaries to be assigned a value
greater than 1. The resource group can be mastered by multiple nodes simultaneously. The
RGM allows a resource whose Failover property is FALSE to be instantiated in a resource group
whose RG_mode is SCALABLE.

The cluster administrator creates a scalable resource group to contain scalable service resources
and a separate failover resource group to contain the shared address resources upon which the
scalable resource depends.

The cluster administrator uses the RG_dependencies resource group property to specify the
order in which resource groups are brought online and offline on a node. This ordering is
important for a scalable service because the scalable resources and the shared address resources
upon which they depend are located in different resource groups. A scalable data service
requires that its network address (shared address) resources be configured to go up before the
scalable data service is started. Therefore, the cluster administrator must set the
RG_dependencies property (of the resource group that contains the scalable service) to include
the resource group that contains the shared address resources.

When you declare the Scalable property in the RTR file for a resource, the RGM automatically
creates the following set of scalable properties for the resource.

Network_resources_used

Identifies the shared-address resources on which this resource has a dependency. This list
contains all network-address resources that appear in the properties
Resource_dependencies, Resource_dependencies_weak,
Resource_dependencies_restart, or Resource_dependencies_offline_restart.

The RGM automatically creates this property if the Scalable property is declared in the
RTR file. If the Scalable property is not declared in the RTR file, Network_resources_used
is unavailable unless it is explicitly declared in the RTR file.

If you do not assign a value to the Network_resources_used property, its value is updated
automatically by the RGM, based on the setting of the resource-dependencies properties.
You do not need to set this property directly. Instead, set the Resource_dependencies,
Resource_dependencies_offline_restart, Resource_dependencies_restart, or
Resource_dependencies_weak property.

Implementing a Scalable Resource

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A56

Load_balancing_policy

Specifies the load-balancing policy for the resource. You can explicitly set the policy in the
RTR file (or allow the default LB_WEIGHTED). In either case, the cluster administrator can
change the value when he or she creates the resource (unless you set Tunable for
Load_balancing_policy to NONE or FALSE in the RTR file). These are the legal values that
you can use:

LB_WEIGHTED

The load is distributed among various nodes according to the weights that are set in the
Load_balancing_weights property.

LB_STICKY

A given client (identified by the client IP address) of the scalable service is always sent to
the same node of the cluster.

LB_STICKY_WILD

A given client (identified by the client's IP address) that connects to an IP address of a
wildcard sticky service is always sent to the same cluster node regardless of the port
number to which it is coming.

For a scalable service with a Load_balancing_policy of LB_STICKY or LB_STICKY_WILD,
changing Load_balancing_weights while the service is online can cause existing client
affinities to be reset. In this case, a different node might service a subsequent client request,
even if the client had been previously serviced by another node in the cluster.

Similarly, starting a new instance of the service on a cluster might reset existing client
affinities.

Load_balancing_weights

Specifies the load to be sent to each node. The format is weight@node,weight@node. weight is
an integer that reflects the relative portion of load that is distributed to the specified node.
The fraction of load that is distributed to a node is the weight for this node divided by the
sum of all weights of active instances. For example, 1@1,3@2 specifies that node 1 receives ¼
of the load and node 2 receives ¾ of the load.

Port_list

Identifies the ports on which the application is listening. This property defaults to the empty
string. You can provide a list of ports in the RTR file. Otherwise, the cluster administrator
must provide the actual list of ports when creating the resource.

You can create a data service that the cluster administrator can configure to be either scalable or
failover. To do so, declare both the Failover resource type property and the Scalable resource
property as FALSE in the data service's RTR file. Specify the Scalable property to be tunable at
creation.

The Failover property value FALSE allows the resource to be configured in a scalable resource
group. The cluster administrator can enable shared addresses by changing the value of
Scalable to TRUE when he or she creates the resource, to create a scalable service.

Implementing a Scalable Resource

Chapter 2 • Developing a Data Service 57

On the other hand, even though Failover is set to FALSE, the cluster administrator can
configure the resource in a failover resource group to implement a failover service. The cluster
administrator does not change the value of Scalable, which is FALSE. To support this scenario,
you should provide a check in the Validate method on the Scalable property. If Scalable is
FALSE, verify that the resource is configured into a failover resource group.

The Sun Cluster Concepts Guide for Solaris OS contains additional information about scalable
resources.

Validation Checks for Scalable Services
Whenever you create or update a resource with the scalable property set to TRUE, the RGM
validates various resource properties. If you do not configure the properties correctly, the RGM
rejects the attempted update or creation.

The RGM performs the following checks:

■ The scalable resource must declare a resource dependency on one or more existing shared
address resources.

Every node in the Nodelist for the resource group that contains the scalable resource must
appear in the NetIfList property of the SharedAddress resource.

The Nodelist of the scalable resource group must be a subset of, or the same as, the
combination, or union, of the following two node lists:
■ The Nodelist for the resource group that contains the SharedAddress resource.
■ The Nodelist that is listed in the AuxNodeList property for the SharedAddress

resource.

Note – If you include all nodes in the node list for the scalable resource's resource group in
the node list for the shared address' resource group, you do not need to set the AuxNodeList
property.

■ The RG_dependencies property of the resource group that contains the scalable resource
must include the resource groups of all shared address resources that are listed in the
scalable resource's Network_resources_used property.

■ The Port_list property must not be empty and must contain a list of port-protocol pairs.
You must append a slash (/) to each port number, followed by the protocol that is being
used by that port. For example:

Port_list=80/tcp6,40/udp6

Implementing a Scalable Resource

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A58

http://docs.sun.com/doc/820-4676

You can specify the following protocol values:
■ tcp, for TCP IPv4
■ tcp6, for TCP IPv6
■ udp, for UDP IPv4
■ udp6, for UDP IPv6

Writing and Testing Data Services
This section describes how to write and test a data service. Topics that are covered include using
TCP keep-alives to protect the server, testing highly available data services, and coordinating
dependencies between resources.

Using TCP Keep-Alives to Protect the Server
On the server side, using TCP keep-alives protects the server from wasting system resources for
a down (or network-partitioned) client. If these resources are not cleaned up in a server that
stays up long enough, the wasted resources eventually grow without bound as clients crash and
reboot.

If the client-server communication uses a TCP stream, both the client and the server should
enable the TCP keep-alive mechanism. This provision applies even in the non-HA,
single-server case.

Other connection-oriented protocols might also have a keep-alive mechanism.

On the client side, using TCP keep-alives enables the client to be notified when a network
address resource has failed over or switched over from one physical host to another physical
host. That transfer of the network address resource breaks the TCP connection. However,
unless the client has enabled the keep-alive, it does not necessarily learn of the connection break
if the connection happens to be quiescent at the time.

For example, suppose the client is waiting for a response from the server to a long-running
request, and the client's request message has already arrived at the server and has been
acknowledged at the TCP layer. In this situation, the client's TCP module has no need to keep
retransmitting the request. Also, the client application is blocked, waiting for a response to the
request.

Where possible, in addition to using the TCP keep-alive mechanism, the client application also
must perform its own periodic keep-alive at its level. The TCP keep-alive mechanism is not
perfect in all possible boundary cases. Using an application-level keep-alive typically requires
that the client-server protocol support a null operation or at least an efficient read-only
operation, such as a status operation.

Writing and Testing Data Services

Chapter 2 • Developing a Data Service 59

Testing HA Data Services
This section provides suggestions about how to test a data service implementation in a
highly-available environment. The test cases are suggestions and are not exhaustive. You need
access to a test-bed Sun Cluster configuration so that the testing work does not affect
production machines.

Test your HA data service on global-cluster non-voting nodes on a single Solaris host rather
than on all Solaris hosts in the cluster. Once you determine that your data service works as
expected in the global-cluster non-voting nodes, you can then test it on the entire cluster. Even
if it's ill-behaved, a HA data service that runs in a global-cluster non-voting node on a host
probably will not perturb the operation of data services that are running in other nodes or on
other hosts.

Test that your HA data service behaves correctly in all cases where a resource group is moved
between physical hosts. These cases include system crashes and the use of the clnode
command. Test that client machines continue to get service after these events.

Test the idempotence of the methods. For example, replace each method temporarily with a
short shell script that calls the original method two or more times.

Coordinating Dependencies Between Resources
Sometimes one client-server data service makes requests on another client-server data service
while fulfilling a request for a client. For example, data service A depends on data service B if, for
A to provide its service, B must provide its service. Sun Cluster provides for this requirement by
permitting resource dependencies to be configured within a resource group. The dependencies
affect the order in which Sun Cluster starts and stops data services. See the r_properties(5)
man page.

If resources of your resource type depend on resources of another type, you need to instruct the
cluster administrator to configure the resources and resource groups correctly. As an
alternative, provide scripts or tools to correctly configure them.

Decide whether to use explicit resource dependencies, or omit them and poll for the availability
of other data services in your HA data service's code. If the dependent and depended-on
resource can run on different nodes, configure them in separate resource groups. In this case,
polling is required because configuring resource dependencies across groups is not possible.

Some data services store no data directly themselves. Instead, they depend on another back-end
data service to store all their data. Such a data service translates all read and update requests into
calls on the back-end data service. For example, consider a hypothetical client-server
appointment calendar service that keeps all of its data in an SQL database, such as Oracle. The
appointment calendar service uses its own client-server network protocol. For example, it
might have defined its protocol using an RPC specification language, such as ONC RPC.

Writing and Testing Data Services

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A60

http://docs.sun.com/doc/820-4685/r-properties-5?a=view

In the Sun Cluster environment, you can use HA-ORACLE to make the back-end Oracle
database highly available. Then, you can write simple methods for starting and stopping the
appointment calendar daemon. The cluster administrator registers the appointment calendar
resource type with Sun Cluster.

If the HA-ORACLE resource is to run on a different node than the appointment calendar
resource, the cluster administrator configures them into two separate resource groups. The
cluster administrator consequently makes the appointment calendar resource dependent on the
HA-ORACLE resource.

The cluster administrator makes the resources dependent by doing either of the following:

■ Configuring the appointment calendar resource in the same resource group as the
HA-ORACLE resource.

■ Specifying a strong positive affinity between the two resource groups in which each resource
is located.
You specify this affinity by using the RG_affinities property with the clresource
command.

The calendar data service daemon, after it has been started, might poll while waiting for the
Oracle database to become available. The calendar resource type's Start method usually
returns success in this case. If the Start method blocks indefinitely, however, this method
moves its resource group into a busy state. This busy state prevents any further state changes,
such as edits, failovers, or switchovers on the resource group. If the calendar resource's Start
method times out or exits with a nonzero status, its timing out or nonzero exit status might
cause the resource group to ping-pong between two or more nodes while the Oracle database
remains unavailable.

Writing and Testing Data Services

Chapter 2 • Developing a Data Service 61

62

Resource Management API Reference

This chapter lists and briefly describes the access functions and callback methods that make up
the Resource Management API (RMAPI). However, the definitive reference for these functions
and methods is the RMAPI man pages.

This chapter covers the following topics:

■ “RMAPI Access Methods” on page 63 – In the form of shell script commands and C
functions

■ “RMAPI Callback Methods” on page 68 – Described in the rt_callbacks(1HA) man page

RMAPI Access Methods
The API provides functions to access resource type, resource, and resource group properties,
and other cluster information. These functions are provided both in the form of shell
commands and C functions, which enable you to implement control programs as shell scripts
or as C programs.

RMAPI Shell Commands
Shell commands are used in shell script implementations of the callback methods for resource
types that represent services that are controlled by the cluster's RGM.

You can use these commands to complete the following tasks:

■ Access information about resource types, resources, resource groups, and clusters.
■ With a monitor, set the Status and Status_msg properties of a resource.
■ Request the restart or relocation of a resource group.

3C H A P T E R 3

63

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view

Note – Although this section provides brief descriptions of the shell commands, the 1HA man
pages provide the definitive reference for the shell commands. A man page of the same name is
associated with each command, unless otherwise noted.

RMAPI Resource Commands
You can access information about a resource or set the Status and Status_msg properties of a
resource with these commands.

scha_resource_get

Accesses information about a resource or resource type that is under the control of the RGM.
This command provides the same information as the scha_resource_get() C function. For
details, see the scha_resource_get(1HA) man page.

scha_resource_setstatus

Sets the Status and Status_msg properties of a resource that is under the control of the
RGM. This command is used by the resource's monitor to indicate the state of the resource
as perceived by the monitor. This command provides the same functionality as the
scha_resource_setstatus() C function. This command is described in more detail in the
scha_resource_setstatus(1HA) man page.

Note – Although scha_resource_setstatus() is of particular use to a resource monitor, any
program can call it.

Resource Type Command
scha_resourcetype_get

Accesses information about a resource type that is registered with the RGM. This command
provides the same functionality as the scha_resourcetype_get() C function. This
command is described in more detail in the scha_resourcetype_get(1HA) man page.

Resource Group Commands
You can access information about or restart a resource group with these commands.

scha_resourcegroup_get

Accesses information about a resource group that is under the control of the RGM. This
command provides the same functionality as the scha_resourcetype_get() C function.
This command is described in more detail in the scha_resourcegroup_get(1HA) man
page.

scha_control

Requests the restart of a resource group that is under the control of the RGM or its relocation
to a different node. This command provides the same functionality as the scha_control()
and scha_control_zone() C functions. This command is described in more detail in the

RMAPI Access Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A64

http://docs.sun.com/doc/820-4685/scha-resource-get-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-resource-setstatus-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcetype-get-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcegroup-get-1ha?a=view

scha_control(1HA) man page.

Cluster Command
scha_cluster_get

Accesses information about a cluster, such as the cluster name, node name, zone name, IDs,
states, and resource groups. This command provides the same information as the
scha_cluster_get() C function. This command is described in more detail in the
scha_cluster_get(1HA) man page.

C Functions
C functions are used in C program implementations of the callback methods for resource types
that represent services that are controlled by the cluster's RGM.

You can use these functions to complete the following tasks:

■ Access information about resource types, resources, resource groups, and clusters.
■ Set the Status and Status_msg properties of a resource.
■ Request the restart or relocation of a resource group.
■ Convert an error code to a related error message.

Note – Although this section provides brief descriptions of the C functions, the 3HA man pages
provide the definitive reference for the C functions. A man page of the same name is associated
with each function, unless otherwise noted. See the scha_calls(3HA) man page for
information about the output arguments and return codes of the C functions.

Resource Functions
These functions access information about a resource that is managed by the RGM or indicate
the state of the resource as perceived by the monitor.

scha_resource_open(), scha_resource_get(), and scha_resource_close()

These functions access information about a resource that is managed by the RGM. The
scha_resource_open() function initializes access to a resource and returns a handle for
scha_resource_get(), which accesses the resource information. The
scha_resource_close() function invalidates the handle and frees memory that is allocated
for scha_resource_get() return values.

A resource can change, through cluster reconfiguration or administrative action, after
scha_resource_open() returns the resource's handle. As a result, the information that
scha_resource_get() obtains through the handle might be inaccurate. In cases of cluster
reconfiguration or administrative action on a resource, the RGM returns the

RMAPI Access Methods

Chapter 3 • Resource Management API Reference 65

http://docs.sun.com/doc/820-4685/scha-control-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-cluster-get-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-calls-3ha?a=view

scha_err_seqid error code to scha_resource_get() to indicate that information about the
resource might have changed. This error message is non-fatal. The function returns
successfully. You can choose to ignore the message and accept the returned information.
Alternatively, you can close the current handle and open a new handle to access information
about the resource.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_resource_open(3HA), scha_resource_get(3HA), or
scha_resource_close(3HA).

scha_resource_setstatus()

Sets the Status and Status_msg properties of a resource that is under the control of the
RGM. The resource's monitor uses this function to indicate the resource's state.

Note – Although scha_resource_setstatus() is of particular use to a resource monitor, any
program can call it.

scha_resource_setstatus_zone()

Like the scha_resource_setstatus() function, sets the Status and Status_msg properties
of a resource that is under the control of the RGM. The resource's monitor uses this function
to indicate the resource's state. However, this function also specifies the name of the zone in
which the method is configured to run.

Note – Although scha_resource_setstatus_zone() is of particular use to a resource
monitor, any program can call it.

Resource Type Functions
These functions access information about a resource type that is registered with the RGM.

scha_resourcetype_open(), scha_resourcetype_get(), and scha_resourcetype_close()

The scha_resourcetype_open() function initializes access to a resource and returns a
handle for scha_resourcetype_get(), which accesses the resource type information. The
scha_resourcetype_close() function invalidates the handle and frees memory that is
allocated for scha_resourcetype_get() return values.

A resource type can change, through cluster reconfiguration or administrative action, after
scha_resourcetype_open() returns the resource type's handle. As a result, the information
that scha_resourcetype_get() obtains through the handle might be inaccurate. In cases of
cluster reconfiguration or administrative action on a resource type, the RGM returns the
scha_err_seqid error code to scha_resourcetype_get() to indicate that information
about the resource type might have changed. This error message is non-fatal. The function

RMAPI Access Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A66

http://docs.sun.com/doc/820-4685/scha-resource-open-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resource-get-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resource-close-3ha?a=view

returns successfully. You can choose to ignore the message and accept the returned
information. Alternatively, you can close the current handle and open a new handle to access
information about the resource type.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_resourcetype_open(3HA), scha_resourcetype_get(3HA),
or scha_resourcetype_close(3HA).

Resource Group Functions
You can access information about a resource group or restart a resource group with these
functions.

scha_resourcegroup_open(), scha_resourcegroup_get(), and
scha_resourcegroup_close()

These functions access information about a resource group that is managed by the RGM.
The scha_resourcegroup_open() function initializes access to a resource group and
returns a handle for scha_resourcegroup_get(), which accesses the resource group
information. The scha_resourcegroup_close() function invalidates the handle and frees
memory that is allocated for scha_resourcegroup_get() return values.

A resource group can change, through cluster reconfiguration or administrative action, after
scha_resourcegroup_open() returns the resource group's handle. As a result, the
information that scha_resourcegroup_get() obtains through the handle might be
inaccurate. In cases of cluster reconfiguration or administrative action on a resource group,
the RGM returns the scha_err_seqid error code to scha_resourcegroup_get() to indicate
that information about the resource group might have changed. This error message is
non-fatal. The function returns successfully. You can choose to ignore the message and
accept the returned information. Alternatively, you can close the current handle and open a
new handle to access information about the resource group.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_resourcegroup_open(3HA),
scha_resourcegroup_get(3HA), and scha_resourcegroup_close(3HA).

scha_control() and scha_control_zone()

Requests the restart of a resource group that is under the control of the RGM or its relocation
to a different node. These functions are described in more detail in the scha_control(3HA)
and scha_control_zone(3HA) man pages.

Cluster Functions
These functions access or return information about a cluster.

scha_cluster_open(), scha_cluster_get(), and scha_cluster_close()

These functions access information about a cluster, such as the cluster name, node name,
zone name, IDs, states, and resource groups.

RMAPI Access Methods

Chapter 3 • Resource Management API Reference 67

http://docs.sun.com/doc/820-4685/scha-resourcetype-open-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcetype-get-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcetype-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcegroup-open-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcegroup-get-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-resourcegroup-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-zone-3ha?a=view

A cluster can change, through reconfiguration or administrative action, after
scha_cluster_open() returns the cluster's handle. As a result, the information that
scha_cluster_get() obtains through the handle might be inaccurate. In cases of
reconfiguration or administrative action on a cluster, the RGM returns the scha_err_seqid
error code to scha_cluster_get() to indicate that information about the cluster might have
changed. This error message is non-fatal. The function returns successfully. You can choose
to ignore the message and accept the returned information. Alternatively, you can close the
current handle and open a new handle to access information about the cluster.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_cluster_open(3HA), scha_cluster_get(3HA), and
scha_cluster_close(3HA).

scha_cluster_getlogfacility()

Returns the number of the system log facility that is being used as the cluster log. Uses the
returned value with the syslog() Solaris function to record events and status messages to
the cluster log. This function is described in more detail in the
scha_cluster_getlogfacility(3HA) man page.

scha_cluster_getnodename()

Returns the name of the cluster node on which the function is called. This function is
described in more detail in the scha_cluster_getnodename(3HA) man page.

Utility Function
This function converts an error code to an error message.

scha_strerror()

Translates an error code that is returned by one of the scha_ functions to a corresponding
error message. Use this function with the logger command to log messages in the Solaris
system log (syslog). This function is described in more detail in the scha_strerror(3HA)
man page.

RMAPI Callback Methods
Callback methods are the key elements that are provided by the API for implementing a
resource type. Callback methods enable the RGM to control resources in the cluster in the event
of a change in cluster membership, such as the failure of a node.

Note – The callback methods are executed by the RGM with superuser or the greatest RBAC role
permissions because the client programs control HA services in the cluster system. Install and
administer these methods with restrictive file ownership and permissions. Specifically, give
these methods a privileged owner, such as bin or root, and do not make them writable.

This section describes callback method arguments and exit codes.

RMAPI Callback Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A68

http://docs.sun.com/doc/820-4685/scha-cluster-open-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-cluster-get-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-cluster-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-cluster-getlogfacility-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-cluster-getnodename-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-strerror-3ha?a=view

Callback methods in the following categories are described:

■ Control and initialization methods
■ Administrative support methods
■ Net-relative methods
■ Monitor control methods

Note – This section provides brief descriptions of the callback methods, including the point at
which the method is run and the expected effect on the resource. However, the
rt_callbacks(1HA) man page is the definitive reference for the callback methods.

Arguments That You Can Provide to Callback Methods
The RGM runs callback methods, as follows:

method -R resource-name -T type-name -G group-name

The method is the path name of the program that is registered as the Start, Stop, or other
callback. The callback methods of a resource type are declared in its registration file.

All callback method arguments are passed as flagged values, as follows:

■ -R indicates the name of the resource instance
■ -T indicates the type of the resource
■ -G indicates the group into which the resource is configured

Use the arguments with access functions to retrieve information about the resource.

The Validate method is called with additional arguments that include the property values of
the resource and resource group on which it is called.

The scha_calls(3HA) man page contains more information.

Callback Method Exit Codes
All callback methods have the same exit codes. These exit codes are defined to specify the effect
of the method invocation on the resource state. The scha_calls(3HA) man page describes
these exit codes in more detail.

The two major categories of exit codes are as follows:

■ 0 – The method succeeded
■ Any nonzero value – The method failed

The RGM also handles abnormal failures of callback method execution, such as timeouts and
core dumps.

RMAPI Callback Methods

Chapter 3 • Resource Management API Reference 69

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-calls-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-calls-3ha?a=view

Method implementations must output failure information by using syslog() on each node.
Output written to stdout or stderr is not guaranteed to be delivered to the user, although it is
currently displayed on the console of the local node.

Control and Initialization Callback Methods
The primary control and initialization callback methods start and stop a resource. Other
methods execute initialization and termination code on a resource.

Start

The RGM runs this method on a cluster node when the resource group that contains the
resource is brought online on that node. This method activates the resource on that node.

A Start method should not exit until the resource that it activates has been started and is
available on the local node. Therefore, before exiting, the Start method should poll the
resource to determine that it has started. In addition, you should set a sufficiently long
timeout value for this method. For example, particular resources, such as database daemons,
take more time to start, and thus require that the method have a longer timeout value.

The way in which the RGM responds to failure of the Start method depends on the setting
of the Failover_mode property.

The Start_timeout property in the resource type registration (RTR) file sets the timeout
value for a resource's Start method.

Stop

The RGM runs this required method on a cluster node when the resource group that
contains the resource is brought offline on that node. This method deactivates the resource if
it is active.

A Stop method should not exit until the resource that it controls has completely stopped all
its activity on the local node and has closed all file descriptors. Otherwise, because the RGM
assumes the resource has stopped when, in fact, it is still active, data corruption can result.
The safest way to avoid data corruption is to terminate all processes on the local node that is
related to the resource.

Before exiting, the Stop method should poll the resource to determine that it has stopped. In
addition, you should set a sufficiently long timeout value for this method. For example,
particular resources, such as database daemons, take more time to stop, and thus require that
the method have a longer timeout value.

If an RGM method callback times out, the method's process tree is killed by a SIGABRT signal
(not a SIGTERM signal). As a result, all members of the process group generate a core dump
file in the /var/cluster/core directory or in a subdirectory of the /var/cluster/core
directory on the node on which the method exceeded its timeout. This core dump file is
generated to enable you to determine why your method exceeded its timeout.

RMAPI Callback Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A70

Note – Avoid writing data service methods that create a new process group. If your data
service method must create a new process group, write a signal handler for the SIGTERM and
SIGABRT signals. Also, ensure that your signal handler forwards the SIGTERM or SIGABRT
signal to the child process group or groups before the signal handler terminates the process.
Writing a signal handler for these signals increases the likelihood that all processes that are
spawned by your method are correctly terminated.

The way in which the RGM responds to failure of the Stop method depends on the setting of
the Failover_mode property. See “Resource Properties” on page 253.

The Stop_timeout property in the RTR file sets the timeout value for a resource's Stop
method.

Init

The RGM runs this optional method to perform a one-time initialization of the resource
when the resource becomes managed. The RGM runs this method when its resource group is
switched from an unmanaged to a managed state or when the resource is created in a
resource group that is already managed. The method is called on nodes that are identified by
the Init_nodes resource property.

Fini

The RGM executes the Fini method to clean up after a resource when that resource is no
longer managed by the RGM. The Fini method usually undoes any initializations that were
performed by the Init method.

The RGM executes Fini on each node on which the resource becomes unmanaged when the
following situations arise:
■ The resource group that contains the resource is switched to an unmanaged state. In this

case, the RGM executes the Fini method on all nodes in the node list.
■ The resource is deleted from a managed resource group. In this case, the RGM executes

the Fini method on all nodes in the node list.
■ A node is deleted from the node list of the resource group that contains the resource. In

this case, the RGM executes the Fini method on only the deleted node.

A “node list” is either the resource group's Nodelist or the resource type's Installed_nodes
list. Whether “node list” refers to the resource group's Nodelist or the resource type's
Installed_nodes list depends on the setting of the resource type's Init_nodes property.
The Init_nodes property can be set to RG_PRIMARIES or RT_INSTALLED_NODES. For most
resource types, Init_nodes is set to RG_PRIMARIES, the default. In this case, both the Init
and Fini methods are executed on the nodes that are specified in the resource group's
Nodelist.

RMAPI Callback Methods

Chapter 3 • Resource Management API Reference 71

The type of initialization that the Init method performs defines the type of cleanup that the
Fini method that you implement needs to perform, as follows:
■ Cleanup of node-specific configuration.
■ Cleanup of cluster-wide configuration.

The Fini method that you implement needs to determine whether to perform only cleanup
of node-specific configuration or cleanup of both node-specific and cluster-wide
configuration.

When a resource becomes unmanaged on only a particular node, the Fini method can clean
up local, node-specific configuration. However, the Fini method must not clean up global,
cluster-wide configuration, because the resource remains managed on other nodes. If the
resource becomes unmanaged cluster-wide, the Fini method can perform cleanup of both
node-specific and global configuration. Your Fini method code can distinguish these two
cases by determining whether the resource group's node list contains the local node on
which your Fini method is executing.

If the local node appears in the resource group's node list, the resource is being deleted or is
moving to an unmanaged state. The resource is no longer active on any node. In this case,
your Fini method needs to clean up any node-specific configuration on the local node as
well as cluster-wide configuration.

If the local node does not appear in the resource group's node list, your Fini method can
clean up node-specific configuration on the local node. However, your Fini method must
not clean up cluster-wide configuration. In this case, the resource remains active on other
nodes.

You must also code the Fini method so that it is idempotent. In other words, even if the Fini
method has cleaned up a resource during a previous execution, subsequent calls to the Fini
method exit successfully.

Boot

The RGM runs this optional method, which is similar to Init, to initialize the resource on
nodes that join the cluster after the resource group that contains the resource has already
been put under the management of the RGM. The RGM runs this method on nodes that are
identified by the Init_nodes resource property. The Boot method is called when the node
joins or rejoins the cluster as a result of being booted or rebooted.

If the Global_zone resource type property equals TRUE, methods execute in the
global-cluster voting node even if the resource group that contains the resource is configured
to run in a global-cluster non-voting node.

Note – Failure of the Init, Fini, or Boot methods causes an error message to be written to the
system log. However, management of the resource by the RGM is not otherwise affected.

RMAPI Callback Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A72

Administrative Support Methods
Administrative actions on resources include setting and changing resource properties. The
Validate and Update callback methods enable a resource type implementation to carry out
these administrative actions.

Validate

The RGM calls this optional method when a resource is created and when the cluster
administrator updates the properties of the resource or its containing resource group. This
method is called on the set of cluster nodes that are identified by the Init_nodes property of
the resource's type. The Validate method is called before the creation or the update is
applied. A failure exit code from the method on any node causes the creation or the update
to be canceled.

Validate is called only when resource or resource group properties are changed by the
cluster administrator. This method is not called when the RGM sets properties, nor when a
monitor sets the Status and Status_msg resource properties.

Update

The RGM runs this optional method to notify a running resource that properties have been
changed. The RGM runs Update after an administrative action succeeds in setting properties
of a resource or its group. This method is called on nodes where the resource is online. The
method uses the API access functions to read property values that might affect an active
resource and to adjust the running resource accordingly.

Note – Failure of the Update method causes an error message to be written to the system log.
However, management of the resource by the RGM is not otherwise affected.

Net-Relative Callback Methods
Services that use network address resources might require that start or stop steps be carried out
in a particular order relative to the network address configuration. The following optional
callback methods, Prenet_start and Postnet_stop, enable a resource type implementation to
carry out special startup and shutdown actions before and after a related network address is
configured or unconfigured.

Prenet_start

This optional method is called to carry out special startup actions before network addresses
in the same resource group are configured.

Postnet_stop

This optional method is called to carry out special shutdown actions after network addresses
in the same resource group are configured down.

RMAPI Callback Methods

Chapter 3 • Resource Management API Reference 73

Monitor Control Callback Methods
A resource type implementation optionally can include a program to monitor the performance
of a resource, report on its status, or take action when a resource fails. The Monitor_start,
Monitor_stop, and Monitor_check methods support the implementation of a resource
monitor in a resource type implementation.

Monitor_start

This optional method is called to start a monitor for the resource after the resource is started.

Monitor_stop

This optional method is called to stop a resource's monitor before the resource is stopped.

Monitor_check

This optional method is called to assess the reliability of a node before a resource group is
relocated to that node. You must implement the Monitor_check method so that it does not
conflict with the concurrent running of another method.

RMAPI Callback Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A74

Modifying a Resource Type

This chapter discusses the issues that you need to understand to modify a resource type.
Information about the means by which you enable a cluster administrator to upgrade a resource
is also included.

This chapter covers the following topics:
■ “Overview of Modifying a Resource Type” on page 75
■ “Setting Up the Contents of the Resource Type Registration File” on page 76
■ “What Happens When a Cluster Administrator Upgrades” on page 79
■ “Implementing Resource Type Monitor Code” on page 80
■ “Determining Installation Requirements and Packaging” on page 80
■ “Documentation to Provide for a Modified Resource Type” on page 83

Overview of Modifying a Resource Type
Cluster administrators must be able to carry out the following tasks:
■ Install and register a new version of an existing resource type
■ Allow the registration of multiple versions of a given resource type
■ Upgrade an existing resource to a new version of the resource type without having to delete

and re-create the resource

A resource type that you intend to upgrade is called an upgrade-aware resource type.

Elements of an existing resource type that you might change are as follows:
■ Attributes of resource type properties
■ The set of declared resource properties, including standard and extension properties
■ Attributes of resource properties, such as default, min, max, arraymin, arraymax, or

tunability

■ The set of declared methods

4C H A P T E R 4

75

■ The implementation of methods or monitors

Note – You do not necessarily have to modify a resource type when you modify application code.

You need to understand the requirements for providing the tools that will enable a cluster
administrator to upgrade a resource type. This chapter tells you what you need to know to set
up these tools.

Setting Up the Contents of the Resource Type Registration File
This section describes how to set up a resource type registration file.

This section covers the following topics:

■ “Resource Type Name” on page 76
■ “Specifying the #$upgrade and #$upgrade_from Directives” on page 77
■ “Changing the RT_version in an RTR File” on page 78
■ “Resource Type Names in Previous Versions of Sun Cluster” on page 79

Resource Type Name
The three components of a resource type name are properties that are specified in the RTR file
as vendor-id, resource-type, and rt-version. The clresourcetype(1CL) command inserts the
period and the colon delimiters to create the name of the resource type:

vendor-id.resource-type:rt-version

The vendor-id prefix serves to distinguish between two registration files of the same name that
different companies provide. To ensure that the vendor-id is unique, use the stock symbol of the
company when creating the resource type. The rt-version distinguishes between multiple
registered versions (upgrades) of the same base resource type.

You can obtain the fully qualified resource type name by typing the following command:

scha_resource_get -O Type -R resource-name -G resource-group-name

Resource type names that you registered prior to Sun Cluster 3.1 continue to use this syntax:

vendor-id.resource-type

The format of resource type names is described in “Format of Resource Type Names” on
page 346.

Setting Up the Contents of the Resource Type Registration File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A76

http://docs.sun.com/doc/820-4685/clresourcetype-1cl?a=view

Specifying the #$upgrade and #$upgrade_from

Directives
To ensure that the resource type that you are modifying is upgrade-aware, include the
#$upgrade directive in the resource type's RTR file. After the #$upgrade directive, add zero or
more #$upgrade_from directives for each earlier version of the resource type that you want to
support.

The #$upgrade and #$upgrade_from directives must appear between the resource type
property declarations and the resource declarations sections in the RTR file. See the rt_reg(4)
man page.

EXAMPLE 4–1 #$upgrade_fromDirective in an RTR File

#$upgrade_from "1.1" WHEN_OFFLINE

#$upgrade_from "1.2" WHEN_OFFLINE

#$upgrade_from "1.3" WHEN_OFFLINE

#$upgrade_from "2.0" WHEN_UNMONITORED

#$upgrade_from "2.1" ANYTIME

#$upgrade_from "" WHEN_UNMANAGED

The format of the #$upgrade_from directive is as follows:

#$upgrade_from version tunability

version
The RT_version. If any resource type does not have a version, or for versions other than
what you defined previously in the RTR file, specify the empty string (“”).

tunability
The conditions under which, or when, the cluster administrator can upgrade the specified
RT_version.

Use the following tunability values in the #$upgrade_from directives:

ANYTIME

Use when there are no restrictions on when the cluster administrator can upgrade the
resource. The resource can be completely online during the upgrade.

WHEN_UNMONITORED

Use when the new resource type version's methods are as follows:
■ The Update, Stop, Monitor_check, and Postnet_stop methods are compatible with

the older resource type version's starting methods (Prenet_stop and Start)
■ The Fini method is compatible with the Init method of older versions

Setting Up the Contents of the Resource Type Registration File

Chapter 4 • Modifying a Resource Type 77

http://docs.sun.com/doc/820-4685/rt-reg-4?a=view

The cluster administrator must only stop the resource monitor program before
upgrading.

WHEN_OFFLINE

Use when the new resource type version's Update, Stop, Monitor_check, or
Postnet_stop method is as follows:
■ Compatible with the Init method of an older version
■ Incompatible with an older resource type version's starting methods (Prenet_stop

and Start)

The cluster administrator must take the resource offline before upgrading.

WHEN_DISABLED

Similar to WHEN_OFFLINE. However, the cluster administrator must disable the resource
before upgrading.

WHEN_UNMANAGED

Use when the new resource type version's Fini method is incompatible with the Init
method of an older version. The cluster administrator must switch the existing resource
group to the unmanaged state before upgrading.

If a version of the resource type does not appear in the list of #$upgrade_from directives,
the RGM imposes the tunability of WHEN_UNMANAGED to that version by default.

AT_CREATION

Use to prevent existing resources from being upgraded to the new version of the resource
type. The cluster administrator must delete and re-create a resource.

Changing the RT_version in an RTR File
You only need to change the RT_version property in an RTR file whenever the contents of the
RTR file change. Choose a value for this property that clearly indicates that this version of the
resource type is the latest version.

Do not include the following characters in the RT_version string in the RTR file or registration
of the resource type fails:

■ Space
■ Tab
■ Slash (/)
■ Backslash (\)
■ Asterisk (*)
■ Question mark (?)
■ Comma (,)
■ Semicolon (;)

Setting Up the Contents of the Resource Type Registration File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A78

■ Left square bracket ([)
■ Right square bracket (])

The RT_version property, which is optional in Sun Cluster 3.0, is mandatory starting with the
Sun Cluster 3.1 release.

Resource Type Names in Previous Versions of Sun
Cluster
Resource type names in Sun Cluster 3.0 do not contain the version suffix, as shown here:

vendor-id.resource-type

The name of a resource type that you registered in Sun Cluster 3.0 retains this syntax in Sun
Cluster 3.1 and Sun Cluster 3.2. If you register an RTR file in Sun Cluster 3.1 or Sun Cluster 3.2
that omits the #$upgrade directive, the resource type name also follows this syntax.

The cluster administrator can register RTR files by using the #$upgrade directive or the
#$upgrade_from directive in Sun Cluster 3.0. However, upgrading existing resources to new
resource types in Sun Cluster 3.0 is not supported.

What Happens When a Cluster Administrator Upgrades
Here is what the cluster administrator must do or what happens when he or she upgrades a
resource type:

■ If the existing resource property attributes do not satisfy the validation conditions of the
new version of the resource type, the cluster administrator must provide valid values.

The cluster administrator must provide valid values under the following conditions:
■ When the new version of the resource type does not have a default value and uses a

property that is not declared in the earlier version.
■ When the existing resource uses a property whose value is undeclared or invalid in the

new version. Declared properties that are undeclared in a new version of a resource type
are deleted from the resource.

■ Any attempt to upgrade from an unsupported version of a resource type fails.
■ After an upgrade, resources inherit the resource property attributes for all properties from

the new version of the resource type.
■ If you change the default value of a resource type in the RTR file, the new default value is

inherited by existing resources. The new default value is inherited even if the property is
declared tunable only AT_CREATION or WHEN_DISABLED. A property of the same type that the

What Happens When a Cluster Administrator Upgrades

Chapter 4 • Modifying a Resource Type 79

cluster administrator creates also inherits this default value. However, if the cluster
administrator specifies a new default value for the property, the new default value overrides
the default value that is specified in the RTR file.

Note – Resources that were created in Sun Cluster 3.0 do not inherit new default resource
property attributes from the resource type when they are upgraded to a later version of Sun
Cluster. This limitation applies only to Sun Cluster 3.1 clusters that are upgraded from Sun
Cluster 3.0 clusters. The cluster administrator can overcome this limitation by specifying values
for the properties and thus overriding the defaults.

Implementing Resource Type Monitor Code
The cluster administrator can register an upgrade-aware resource type in Sun Cluster 3.0.
However, Sun Cluster records the resource type name without the version suffix. To run
correctly in Sun Cluster 3.0 and Sun Cluster 3.1, the monitor code for this resource type must be
able to handle both naming conventions:

vendor-id.resource-type:rt-version
vendor-id.resource-type

The format of resource type names is described in “Format of Resource Type Names” on
page 346.

The cluster administrator cannot register the same version of the resource type twice under two
different names. To enable the monitor code to determine the correct name, call these
commands in the monitor code:

scha_resourcetype_get -O RT_VERSION -T VEND.myrt

scha_resourcetype_get -O RT_VERSION -T VEND.myrt:vers

Then, compare the output values with vers. Only one of these commands succeeds for a
particular value of vers.

Determining Installation Requirements and Packaging
Keep the following two requirements in mind when determining installation requirements and
packaging for resource type packages:

■ When a new resource type is registered, its RTR file must be accessible on disk.
■ When a resource of the new type is created, all declared method path names and the

monitor program for the new type must be on disk and be executable. The old method and
monitor programs must remain in place as long as the resource is in use.

Implementing Resource Type Monitor Code

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A80

To determine the correct packaging to use, consider the following questions:

■ Does the RTR file change?
■ Does the default value or tunability of a property change?
■ Does the min or max value of a property change?
■ Does the upgrade add or delete properties?
■ Does the monitor code change?
■ Does the method code change?
■ Are the new methods, the monitor code, or both compatible with the previous versions?

The answers to these questions will help you determine the correct packaging to use for your
new resource type.

Before You Change the RTR File
You do not necessarily need to create new method or monitor code when you modify a resource
type. For example, you might only change the default value or tunability of a resource property.
In this instance, because you do not change the method code, you only require a new valid path
name to a readable RTR file.

If you do not need to reregister the old resource type, the new RTR file can overwrite the
previous version. Otherwise, place the new RTR file in a new path.

If the upgrade changes the default value or tunability of a property, use the Validate method
for the new version of the resource type to verify that the existing property attributes are valid
for the new resource type. If they are not, the cluster administrator can change the properties of
an existing resource to the correct values. If the upgrade changes the min, max, or type attributes
of a property, the clresourcetype(1CL) command automatically validates these constraints
when the cluster administrator upgrades the resource type.

If the upgrade adds a new property or deletes an old property, you probably need to change
callback methods or monitor code.

Changing Monitor Code
If you change only the monitor code for a resource type, the package installation can overwrite
the monitor binaries.

Determining Installation Requirements and Packaging

Chapter 4 • Modifying a Resource Type 81

http://docs.sun.com/doc/820-4685/clresourcetype-1cl?a=view

Changing Method Code
If you change only the method code in a resource type, you must determine whether the new
method code is compatible with the old method code. The answer to this question determines
whether the new method code must be stored in a new path or whether the old methods can be
overwritten.

If you can apply the new Stop, Postnet_stop, and Fini methods (if declared) to resources that
were initialized or started by the old versions of the Start, Prenet_stop, or Init methods, the
old methods can be overwritten with the new methods.

If applying a new default value to a property causes a method such as Stop, Postnet_stop, or
Fini to fail, the cluster administrator must accordingly restrict the state of the resource when
the resource type is upgraded.

You enable the cluster administrator to restrict the state of the resource when it is upgraded by
limiting the tunability of the Type_version property.

One approach to packaging is to include all earlier versions of a resource type that are still
supported in the package. This approach permits the new version of a package to replace the old
version of the package, without overwriting or deleting the old paths to the methods. You must
decide the number of previous versions to support.

Determining the Packaging Scheme to Use
The following table summarizes the packaging schemes to use for your new resource types.

TABLE 4–1 Determining the Packaging Scheme to Use

Type of Change Tunability Value Packaging Scheme

Make property changes in only the RTR file. ANYTIME Deliver only new RTR file.

Update the methods. ANYTIME Place the updated methods in a different path
than the old methods.

Install the new monitor program. WHEN_UNMONITORED Overwrite only the previous version of the
monitor.

Update the methods.

The new Update and Stop methods are
incompatible with the old Start methods.

WHEN_OFFLINE Place the updated methods in a different path
than the old methods.

Determining Installation Requirements and Packaging

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A82

TABLE 4–1 Determining the Packaging Scheme to Use (Continued)
Type of Change Tunability Value Packaging Scheme

Update the methods and add new properties
to the RTR file. The new methods require
new properties.

The goal is to allow the containing resource
group to remain online but prevent the
resource from coming online if the resource
group moves from the offline state to the
online state on a node.

WHEN_DISABLED Overwrite the previous versions of the methods.

Update the methods and add new properties
to the RTR file. New methods do not require
new properties.

ANYTIME Overwrite the previous versions of the methods.

Update the methods. The new Fini method
is incompatible with the old Init method.

WHEN_UNMANAGED Place the updated methods in a different path
than the old methods.

Update the methods. No changes are made
to the RTR file.

Not applicable. No changes are
made to the RTR file.

Overwrite the previous versions of the methods.
Because you made no changes to the RTR file,
the resource does not need to be registered or
upgraded.

Documentation to Provide for a Modified Resource Type
Instructions that tell the cluster administrator how to upgrade a resource type are provided in
“Upgrading a Resource Type” in Sun Cluster Data Services Planning and Administration Guide
for Solaris OS. To enable the cluster administrator to upgrade a resource type that you modify,
supplement these instructions with additional information, as described in this section.

Generally, when you create a new resource type, you need to provide documentation that does
the following:

■ Describes the properties that you add, change, or delete
■ Describes how to make the properties conform to the new requirements
■ States the tunability constraints on resources
■ Calls out any new default property attributes
■ Informs the cluster administrator that he or she can set existing resource properties to their

correct values if necessary

Documentation to Provide for a Modified Resource Type

Chapter 4 • Modifying a Resource Type 83

http://docs.sun.com/doc/820-4682/ch14_resources_admin-1046?a=view
http://docs.sun.com/doc/820-4682/ch14_resources_admin-1046?a=view

Information About What to Do Before Installing an
Upgrade
Explain to the cluster administrator what he or she must do before installing the upgrade
package on a node, as follows:

■ If the upgrade package overwrites existing methods, instruct the cluster administrator to
reboot the node in noncluster mode.

■ If the upgrade package updates only the monitor code and leaves the method code
unchanged, tell the cluster administrator to keep the node running in cluster mode. Also tell
the cluster administrator to turn off monitoring of all resource types.

■ If the upgrade package updates only the RTR file, leaving the method and monitor code
unchanged, tell the cluster administrator to keep the node running in cluster mode. Also tell
the cluster administrator to keep monitoring turned on for all resource types.

Information About When to Upgrade Resources
Explain to the cluster administrator when he or she can upgrade resources to a new version of
the resource type.

The conditions under which the cluster administrator can upgrade the resource type depend on
the tunability of the #$upgrade_from directive for each version of the resource in the RTR file,
as follows:

■ Any time (ANYTIME)
■ Only when the resource is unmonitored (WHEN_UNMONITORED)
■ Only when the resource is offline (WHEN_OFFLINE)
■ Only when the resource is disabled (WHEN_DISABLED)
■ Only when the resource group is unmanaged (WHEN_UNMANAGED)

EXAMPLE 4–2 How #$upgrade_fromDefines When a Cluster Administrator Can Upgrade

This example shows how the tunability of the #$upgrade_from directive affects the conditions
under which the cluster administrator can upgrade a resource to a new version of a resource
type.

#$upgrade_from "1.1" WHEN_OFFLINE

#$upgrade_from "1.2" WHEN_OFFLINE

#$upgrade_from "1.3" WHEN_OFFLINE

#$upgrade_from "2.0" WHEN_UNMONITORED

#$upgrade_from "2.1" ANYTIME

#$upgrade_from "" WHEN_UNMANAGED

Documentation to Provide for a Modified Resource Type

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A84

EXAMPLE 4–2 How #$upgrade_from Defines When a Cluster Administrator Can Upgrade (Continued)

Version When the Cluster Administrator Can Upgrade a Resource

1.1, 1.2, or 1.3 Only when the resource is offline

2.0 Only when the resource is unmonitored

2.1 Any time

All other versions Only when the resource group is unmanaged

Information About Changes to Resource Properties
Describe any changes that you have made to the resource type that require the cluster
administrator to modify properties of existing resources when he or she upgrades.

Possible changes that you can make include the following:

■ Default settings of existing resource type properties that you have changed
■ New extension properties of the resource type that you have introduced
■ Existing properties of the resource type that you have withdrawn
■ Changes to the set of standard properties that you have declared for the resource type
■ Attributes of resource properties such as min, max, arraymin, arraymax, default, and

tunability that you have changed
■ Changes to the set of methods that you have declared
■ Implementation of methods or the fault monitor that you have changed

Documentation to Provide for a Modified Resource Type

Chapter 4 • Modifying a Resource Type 85

86

Sample Data Service

This chapter describes a sample Sun Cluster data service, HA-DNS, for the in.named
application. The in.named daemon is the Solaris implementation of the Domain Name Service
(DNS). The sample data service demonstrates how to make an application highly available,
using the Resource Management API.

The Resource Management API supports a shell script interface and a C program interface. The
sample application in this chapter is written using the shell script interface.

This chapter covers the following topics:

■ “Overview of the Sample Data Service” on page 87
■ “Defining the Resource Type Registration File” on page 88
■ “Providing Common Functionality to All Methods” on page 94
■ “Controlling the Data Service” on page 99
■ “Defining a Fault Monitor” on page 104
■ “Handling Property Updates” on page 114

Overview of the Sample Data Service
The sample data service starts, stops, restarts, and switches the DNS application among the
nodes of the cluster in response to cluster events, such as administrative action, application
failure, or node failure.

Application restart is managed by the Process Monitor Facility (PMF). If the number of
applications that die exceeds the failure count within the failure time window, the fault monitor
fails over the resource group that contains the application resource to another node.

The sample data service provides fault monitoring in the form of a PROBE method that uses the
nslookup command to ensure that the application is healthy. If the probe detects a hung DNS
service, the probe tries to correct the situation by restarting the DNS application locally. If

5C H A P T E R 5

87

restarting the DNS application locally does not improve the situation and the probe repeatedly
detects problems with the service, the probe attempts to fail over the service to another node in
the cluster.

Specifically, the sample data service includes the following elements:

■ A resource type registration file that defines the static properties of the data service.
■ A Start callback method that is run by the RGM to start the in.named daemon when the

resource group that contains the HA-DNS data service is brought online.
■ A Stop callback method that is run by the RGM to stop the in.named daemon when the

resource group that contains HA-DNS goes offline.
■ A fault monitor to check the availability of the service by verifying that the DNS server is

running. The fault monitor is implemented by a user-defined PROBE method, and is started
and stopped by the Monitor_start and Monitor_stop callback methods.

■ A Validate callback method that is run by the RGM to validate that the configuration
directory for the service is accessible.

■ An Update callback method that is run by the RGM to restart the fault monitor when the
cluster administrator changes the value of a resource property.

Defining the Resource Type Registration File
The resource type registration (RTR) file in this example defines the static configuration of the
DNS resource type. Resources of this type inherit the properties that are defined in the RTR file.

The information in the RTR file is read by the Resource Group Manager (RGM) when the
cluster administrator registers the HA-DNS data service. By convention, you place the RTR file
in the /opt/cluster/lib/rgm/rtreg/ directory. Note that the package installer places the RTR
file that Agent Builder creates in this directory as well.

Overview of the RTR File
The RTR file follows a well-defined format. Resource type properties are defined first in the file,
system-defined resource properties are defined next, and extension properties are defined last.
See the rt_reg(4) man page and “Setting Resource and Resource Type Properties” on page 34
for more information.

The following sections describe the specific properties in the sample RTR file. These sections
provide listings of different parts of the file. For a complete listing of the contents of the sample
RTR file, see “Resource Type Registration File Listing” on page 291.

Defining the Resource Type Registration File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A88

http://docs.sun.com/doc/820-4685/rt-reg-4?a=view

Resource Type Properties in the Sample RTR File
The sample RTR file begins with comments followed by resource type properties that define the
HA-DNS configuration, as shown in the following listing.

Note – Property names for resource groups, resources, and resource types are not case sensitive.
You can use any combination of uppercase and lowercase letters when you specify property
names.

#

Copyright (c) 1998-2006 by Sun Microsystems, Inc.

All rights reserved.

#

Registration information for Domain Name Service (DNS)

#

#pragma ident “@(#)SUNW.sample 1.1 00/05/24 SMI”

Resource_type = “sample”;

Vendor_id = SUNW;

RT_description = “Domain Name Service on Sun Cluster”;

RT_version =”1.0”;

API_version = 2;

Failover = TRUE;

RT_basedir=/opt/SUNWsample/bin;

Pkglist = SUNWsample;

Start = dns_svc_start;

Stop = dns_svc_stop;

Validate = dns_validate;

Update = dns_update;

Monitor_start = dns_monitor_start;

Monitor_stop = dns_monitor_stop;

Monitor_check = dns_monitor_check;

Tip – You must declare the Resource_type property as the first entry in the RTR file. Otherwise,
registration of the resource type fails.

Defining the Resource Type Registration File

Chapter 5 • Sample Data Service 89

The following information describes these properties:

■ You can specify the resource type name by the Resource_type property alone (sample) or
by using the vendor-id as a prefix, followed by a period (.), followed by the resource type
property (SUNW.sample).
If you specify vendor-id, use the stock exchange symbol of the company that is defining the
resource type. The resource type name must be unique in the cluster.

■ The RT_version property identifies the version of the sample data service as specified by the
vendor.

■ The API_version property identifies the Sun Cluster version. For example, API_version =
2 indicates that the data service can run on any version of Sun Cluster starting with Sun
Cluster 3.0. API_version = 7 indicates that the data service can be installed on any version
of Sun Cluster starting with 3.2. However, API_version = 7 also indicates that the data
service cannot be installed on any version of Sun Cluster that was released before 3.2. This
property is described in more detail under the entry for API_version in “Resource Type
Properties” on page 243.

■ Failover = TRUE indicates that the data service cannot run in a resource group that can be
online on multiple nodes at the same time.

■ RT_basedir points to /opt/SUNWsample/bin as the directory path to complete relative
paths, such as callback method paths.

■ Start, Stop, and Validate provide the paths to the respective callback method programs
that are run by the RGM. These paths are relative to the directory that is specified by
RT_basedir.

■ Pkglist identifies SUNWsample as the package that contains the sample data service
installation.

Resource type properties that are not specified in this RTR file, such as Single_instance,
Init_nodes, and Installed_nodes, are set to their default values. “Resource Type Properties”
on page 243 contains a complete list of the resource type properties, including their default
values.

The cluster administrator cannot change the values for resource type properties in the RTR file.

Resource Properties in the Sample RTR File
By convention, you declare resource properties after the resource type properties in the RTR
file. Resource properties include system-defined properties that are provided by the Sun Cluster
software and extension properties that you define. For either type, you can specify a number of
property attributes that are supplied by the Sun Cluster software, such as minimum, maximum,
and default values.

Defining the Resource Type Registration File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A90

System-Defined Properties in the RTR File
The following listing shows the system-defined properties in a sample RTR file.

A list of bracketed resource property declarations follows the

resource type declarations. The property-name declaration must be

the first attribute after the open curly bracket of each entry.

The <method>_timeout properties set the value in seconds after which

the RGM concludes invocation of the method has failed.

The MIN value for all method timeouts is set to 60 seconds. This

prevents administrators from setting shorter timeouts, which do not

improve switchover/failover performance, and can lead to undesired

RGM actions (false failovers, node reboot, or moving the resource group

to ERROR_STOP_FAILED state, requiring operator intervention). Setting

too-short method timeouts leads to a *decrease* in overall availability

of the data service.

{

PROPERTY = Start_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Stop_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Validate_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Update_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Monitor_Start_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Monitor_Stop_timeout;

MIN=60;

DEFAULT=300;

}

Defining the Resource Type Registration File

Chapter 5 • Sample Data Service 91

{

PROPERTY = Thorough_Probe_Interval;

MIN=1;

MAX=3600;

DEFAULT=60;

TUNABLE = ANYTIME;

}

The number of retries to be done within a certain period before concluding

that the application cannot be successfully started on this node.

{

PROPERTY = Retry_count;

MIN=0;

MAX=10;

DEFAULT=2;

TUNABLE = ANYTIME;

}

Set Retry_interval as a multiple of 60 since it is converted from seconds

to minutes, rounding up. For example, a value of 50 (seconds)

is converted to 1 minute. Use this property to time the number of

retries (Retry_count).

{

PROPERTY = Retry_interval;

MIN=60;

MAX=3600;

DEFAULT=300;

TUNABLE = ANYTIME;

}

{

PROPERTY = Network_resources_used;

TUNABLE = AT_CREATION;

DEFAULT = ““;

}

Although the Sun Cluster software provides the system-defined properties, you can set different
default values by using resource property attributes. See “Resource Property Attributes” on
page 287 for a complete list of attributes that are available to you to apply to resource properties.

Defining the Resource Type Registration File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A92

Note the following points about the system-defined resource properties in the sample RTR file:
■ Sun Cluster provides a minimum value (1 second) and a default value (3600 seconds, or one

hour) for all timeouts. The sample RTR file changes the minimum timeout to 60 seconds
and the default value to 300 seconds. A cluster administrator can accept this default value or
change the value of the timeout to another value, 60 or greater. Sun Cluster has no
maximum allowed value.

■ The TUNABLE attribute for the properties Thorough_probe_interval, Retry_count, and
Retry_interval, are set to ANYTIME. These settings indicate that the cluster administrator
can change the value of these properties, even when the data service is running. These
properties are used by the fault monitor implemented by the sample data service. The
sample data service implements an Update method to stop and restart the fault monitor
when these or other resource properties are changed by administrative action. See “How the
Update Method Works” on page 118.

■ Resource properties are classified as follows:
■ Required. The cluster administrator must specify a value when creating a resource.
■ Optional. If the cluster administrator does not specify a value, the system supplies a

default value.
■ Conditional. The RGM creates the property only if it is declared in the RTR file.

The fault monitor of the sample data service makes use of the Thorough_probe_interval,
Retry_count, Retry_interval, and Network_resources_used conditional properties, so
you need to declare them in the RTR file. See the r_properties(5) man page or “Resource
Properties” on page 253 for information about how properties are classified.

Extension Properties in the RTR File
At the end of the sample RTR file are extension properties, as shown in this listing.

Extension Properties

The cluster administrator must set the value of this property to point to the

directory that contains the configuration files used by the application.

For this application, DNS, specify the path of the DNS configuration file on

PXFS (typically named.conf).

{

PROPERTY = Confdir;

EXTENSION;

STRING;

TUNABLE = AT_CREATION;

DESCRIPTION = “The Configuration Directory Path”;

}

Time out value in seconds before declaring the probe as failed.

{

Defining the Resource Type Registration File

Chapter 5 • Sample Data Service 93

http://docs.sun.com/doc/820-4685/r-properties-5?a=view

PROPERTY = Probe_timeout;

EXTENSION;

INT;

DEFAULT = 120;

TUNABLE = ANYTIME;

DESCRIPTION = “Time out value for the probe (seconds)”;

}

The sample RTR file defines two extension properties, Confdir and Probe_timeout. The
Confdir property specifies the path to the DNS configuration directory. This directory contains
the in.named file, which DNS requires to operate successfully. The sample data service's Start
and Validate methods use this property to verify that the configuration directory and the
in.named file are accessible before starting DNS.

When the data service is configured, the Validate method verifies that the new directory is
accessible.

The sample data service's PROBE method is not a Sun Cluster callback method but a user-defined
method. Therefore, Sun Cluster does not provide a Probe_timeout property for it. You need to
define an extension property in the RTR file to enable a cluster administrator to configure a
Probe_timeout value.

Providing Common Functionality to All Methods
This section describes the following functionality that is used in all callback methods of the
sample data service:

■ “Identifying the Command Interpreter and Exporting the Path” on page 94
■ “Declaring the PMF_TAG and SYSLOG_TAG Variables” on page 95
■ “Parsing the Function Arguments” on page 96
■ “Generating Error Messages” on page 97
■ “Obtaining Property Information” on page 98

Identifying the Command Interpreter and Exporting
the Path
The first line of a shell script must identify the command interpreter. Each method script in the
sample data service identifies the command interpreter, as follows:

#!/bin/ksh

All method scripts in the sample application export the path to the Sun Cluster binaries and
libraries rather than relying on the user's PATH settings.

Providing Common Functionality to All Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A94

###

MAIN

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Declaring the PMF_TAG and SYSLOG_TAGVariables
All the method scripts, except Validate, use the pmfadm command to start or to stop either the
data service or the monitor, and to pass the name of the resource. Each script defines a variable,
PMF_TAG, that can be passed to the pmfadm command to identify either the data service or the
monitor.

Likewise, each method script uses the logger command to log messages in the system log. Each
script defines a variable, SYSLOG_TAG, that can be passed to logger with the -t option to identify
the resource type, resource name, and resource group of the resource for which the message is
being logged.

All methods define SYSLOG_TAG in the same way, as shown in the following sample code. The
dns_probe, dns_svc_start, dns_svc_stop, and dns_monitor_check methods define PMF_TAG
as follows (the use of pmfadm and logger is from the dns_svc_stop method).

###

MAIN

###

PMF_TAG=$RESOURCE_NAME.named

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Send a SIGTERM signal to the data service and wait for 80% of the

total timeout value.

pmfadm -s $PMF_TAG.named -w $SMOOTH_TIMEOUT TERM

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.info \

-t [$SYSLOG_TAG] \

“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \

SIGKILL”

The dns_monitor_start, dns_monitor_stop, and dns_update methods define PMF_TAG as
follows (the use of pmfadm is from the dns_monitor_stop method):

###

MAIN

###

Providing Common Functionality to All Methods

Chapter 5 • Sample Data Service 95

PMF_TAG=$RESOURCE_NAME.monitor

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

...

See if the monitor is running, and if so, kill it.

if pmfadm -q $PMF_TAG.monitor; then

pmfadm -s $PMF_TAG.monitor KILL

Parsing the Function Arguments
The RGM runs all of the callback methods, except Validate, as follows:

method-name -R resource-name -T resource-type-name -G resource-group-name

The method name is the path name of the program that implements the callback method. A
data service specifies the path name for each method in the RTR file. These path names are
relative to the directory that is specified by the RT_basedir property, also in the RTR file. For
example, in the sample data service's RTR file, the base directory and method names are
specified as follows:

RT_basedir=/opt/SUNWsample/bin;

Start = dns_svc_start;

Stop = dns_svc_stop;

...

All callback method arguments are passed as flagged values. The -R argument indicates the
name of the resource instance. The -T argument indicates the type of the resource. The -G
argument indicates the group into which the resource is configured. See the
rt_callbacks(1HA) man page for more information about callback methods.

Note – The Validate method is called with additional arguments, that is, the property values of
the resource and resource group on which it is called. See “Handling Property Updates” on
page 114 for more information.

Each callback method needs a function to parse the arguments that the function is passed.
Because the callbacks are all passed the same arguments, the data service provides a single parse
function that is used in all the callbacks in the application.

The following sample shows the parse_args() function that is used for the callback methods in
the sample application.

###

Parse program arguments.

#

function parse_args # [args ...]

Providing Common Functionality to All Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A96

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view

{

typeset opt

while getopts ’R:G:T:’ opt

do

case "$opt" in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

"ERROR: Option $OPTARG unknown"
exit 1

;;

esac

done

}

Note – Although the PROBE method in the sample application is user defined (not a Sun Cluster
callback method), it is called with the same arguments as the callback methods. Therefore, this
method contains a parse function that is identical to the one that is used by the other callback
methods.

The parse function is called in MAIN as:

parse_args “$@”

Generating Error Messages
Callback methods should use the syslog() function to output error messages to end users. All
callback methods in the sample data service use the scha_cluster_get command to retrieve
the number of the syslog() function that is used for the cluster log, as follows:

SYSLOG_FACILITY=‘scha_cluster_get -O SYSLOG_FACILITY‘

Providing Common Functionality to All Methods

Chapter 5 • Sample Data Service 97

The value is stored in a shell variable, SYSLOG_FACILITY, and can be used as the facility of the
logger command to log messages in the cluster log. For example, the Start method in the
sample data service retrieves the syslog() function and logs a message that the data service has
been started, as follows:

SYSLOG_FACILITY=‘scha_cluster_get -O SYSLOG_FACILITY‘
...

if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} HA-DNS successfully started"
fi

See the scha_cluster_get(1HA) man page for more information.

Obtaining Property Information
Most callback methods need to obtain information about resource and resource type properties
of the data service. The API provides the scha_resource_get() function for this purpose.

Both system-defined properties and extension properties are available. System-defined
properties are predefined. You define extension properties in the RTR file.

When you use scha_resource_get() to obtain the value of a system-defined property, you
specify the name of the property with the -O option. The command returns only the value of the
property. For example, in the sample data service, the Monitor_start method needs to locate
the probe program so it can start it. The probe program is located in the base directory for the
data service, which is pointed to by the RT_basedir property. The Monitor_start method
retrieves the value of RT_basedir and places it in the RT_BASEDIR variable, as follows:

RT_BASEDIR=‘scha_resource_get -O RT_basedir -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAME‘

For extension properties, you must use the -O option to specify that the property is an extension
property. You must also supply the name of the property as the last argument. For extension
properties, the command returns both the type and value of the property. For example, in the
sample data service, the probe program retrieves the type and value of the Probe_timeout
extension property, and uses the awk command to put the value only in the PROBE_TIMEOUT shell
variable, as follows:

probe_timeout_info=‘scha_resource_get -O Extension \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME Probe_timeout‘
PROBE_TIMEOUT=‘echo $probe_timeout_info | awk ’{print $2}’‘

Providing Common Functionality to All Methods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A98

http://docs.sun.com/doc/820-4685/scha-cluster-get-1ha?a=view

Controlling the Data Service
A data service must provide a Start or Prenet_start method to activate the application
daemon in the cluster, and a Stop or Postnet_stop method to stop the application daemon in
the cluster. The sample data service implements a Start and a Stop method. See “Deciding
Which Start and Stop Methods to Use” on page 47 for information about when to use
Prenet_start and Postnet_stop instead.

How the StartMethod Works
The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node or when the resource group is already
online and the resource is enabled. In the sample application, the Start method activates the
in.named DNS daemon on the global-cluster voting node on that host.

This section describes the major pieces of the Start method for the sample application. This
section does not describe functionality that is common to all callback methods, such as the
parse_args() function. This section also does not describe using the syslog() function.
Common functionality is described in “Providing Common Functionality to All Methods” on
page 94.

For the complete listing of the Start method, see “Start Method Code Listing” on page 295.

What the StartMethod Does
Before attempting to start DNS, the Start method in the sample data service verifies that the
configuration directory and configuration file (named.conf) are accessible and available.
Information in named.conf is essential to the successful operation of DNS.

This callback method uses the PMF (pmfadm) to start the DNS daemon (in.named). If DNS
crashes or fails to start, the PMF attempts to start the DNS daemon a prescribed number of
times during a specified interval. The number of retries and the interval are specified by
properties in the data service's RTR file.

Verifying the Configuration
In order to operate, DNS requires information from the named.conf file in the configuration
directory. Therefore, the Start method performs some sanity checks to verify that the directory
and file are accessible before attempting to start DNS.

The Confdir extension property provides the path to the configuration directory. The property
itself is defined in the RTR file. However, the cluster administrator specifies the actual location
when the cluster administrator configures the data service.

In the sample data service, the Start method retrieves the location of the configuration
directory by using the scha_resource_get() function.

Controlling the Data Service

Chapter 5 • Sample Data Service 99

Note – Because Confdir is an extension property, scha_resource_get() returns both the type
and value. The awk command retrieves just the value and places that value in a shell variable,
CONFIG_DIR.

find the value of Confdir set by the cluster administrator at the time of

adding the resource.

config_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir‘

scha_resource_get returns the "type" as well as the "value" for the

extension properties. Get only the value of the extension property

CONFIG_DIR=‘echo $config_info | awk ’{print $2}’‘

The Start method uses the value of CONFIG_DIR to verify that the directory is accessible. If it is
not accessible, Start logs an error message and exits with an error status. See “Start Exit
Status” on page 101.

Check if $CONFIG_DIR is accessible.

if [! -d $CONFIG_DIR]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} Directory $CONFIG_DIR is missing or not mounted"
exit 1

fi

Before starting the application daemon, this method performs a final check to verify that the
named.conf file is present. If the file is not present, Start logs an error message and exits with
an error status.

Change to the $CONFIG_DIR directory in case there are relative

pathnames in the data files.

cd $CONFIG_DIR

Check that the named.conf file is present in the $CONFIG_DIR directory

if [! -s named.conf]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} File $CONFIG_DIR/named.conf is missing or empty"
exit 1

fi

Starting the Application
This method uses the process manager facility (pmfadm) to start the application. The pmfadm
command enables you to set the number of times to try to restart the application during a

Controlling the Data Service

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A100

specified time frame. The RTR file contains two properties: Retry_count specifies the number
of times to attempt restarting an application, and Retry_interval specifies the time period
over which to do so.

The Start method retrieves the values of Retry_count and Retry_interval by using the
scha_resource_get() function and stores their values in shell variables. The Start method
passes these values to pmfadm by using the -n and -t options.

Get the value for retry count from the RTR file.

RETRY_CNT=‘scha_resource_get -O Retry_count -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME‘
Get the value for retry interval from the RTR file. This value is in seconds

and must be converted to minutes for passing to pmfadm. Note that the

conversion rounds up; for example, 50 seconds rounds up to 1 minute.

((RETRY_INTRVAL=‘scha_resource_get -O Retry_interval -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME‘ / 60))

Start the in.named daemon under the control of PMF. Let it crash and restart

up to $RETRY_COUNT times in a period of $RETRY_INTERVAL; if it crashes

more often than that, PMF will cease trying to restart it.

If there is a process already registered under the tag

<$PMF_TAG>, then PMF sends out an alert message that the

process is already running.

pmfadm -c $PMF_TAAG -n $RETRY_CNT -t $RETRY_INTRVAL \

/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.

if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} HA-DNS successfully started"
fi

exit 0

Start Exit Status
A Start method should not exit with success until the underlying application is actually
running and is available, particularly if other data services depend on it. One way to verify
success is to probe the application to make sure that it is running before exiting the Start
method. For a complex application, such as a database, be certain to set the value for the
Start_timeout property in the RTR file sufficiently high to allow time for the application to
initialize and recover from a crash.

Note – Because the application resource (DNS) in the sample data service starts quickly, the
sample data service does not poll to verify that it is running before exiting with success.

Controlling the Data Service

Chapter 5 • Sample Data Service 101

If this method fails to start DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service does not
explicitly set the Failover_mode property, so this property has the default value NONE (unless
the cluster administrator overrides the default value and specifies a different value). In this case,
the RGM takes no action other than to set the state of the data service. The cluster administrator
needs to initiate a restart on the same node or a fail over to a different node.

How the StopMethod Works
The RGM runs the Stop method on a cluster node when the resource group that contains the
HA-DNS resource is brought offline on that node or if the resource group is online and the
resource is disabled. This method stops the in.named (DNS) daemon on that node.

This section describes the major pieces of the Stop method for the sample application. This
section does not describe functionality that is common to all callback methods, such as the
parse_args() function. This section also does not describe using the syslog() function.
Common functionality is described in “Providing Common Functionality to All Methods” on
page 94.

For the complete listing of the Stop method, see “Stop Method Code Listing” on page 298.

What the StopMethod Does
There are two primary considerations when attempting to stop the data service. The first is to
provide an orderly shutdown. Sending a SIGTERM signal through pmfadm is the best way to
accomplish an orderly shutdown.

The second consideration is to ensure that the data service is actually stopped to avoid putting it
in Stop_failed state. The best way to accomplish putting the data service in this state is to send
a SIGKILL signal through pmfadm.

The Stop method in the sample data service takes both of these considerations into account. It
first sends a SIGTERM signal. If this signal fails to stop the data service, the method sends a
SIGKILL signal.

Before attempting to stop DNS, this Stop method verifies that the process is actually running. If
the process is running, Stop uses the PMF (pmfadm) to stop the process.

This Stop method is guaranteed to be idempotent. Although the RGM should not call a Stop
method twice without first starting the data service with a call to its Start method, the RGM
could call a Stop method on a resource even though the resource was never started or the
resource died of its own accord. Therefore, this Stop method exits with success even if DNS is
not running.

Controlling the Data Service

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A102

Stopping the Application
The Stop method provides a two-tiered approach to stopping the data service: an orderly or
smooth approach using a SIGTERM signal through pmfadm and an abrupt or hard approach using
a SIGKILL signal. The Stop method obtains the Stop_timeout value (the amount of time in
which the Stop method must return). Stop allocates 80 percent of this time to stopping
smoothly and 15 percent to stopping abruptly (5 percent is reserved), as shown in the following
sample code.

STOP_TIMEOUT=’scha_resource_get -O STOP_TIMEOUT -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME’

((SMOOTH_TIMEOUT=$STOP_TIMEOUT * 80/100))

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

The Stop method uses pmfadm -q to verify that the DNS daemon is running. If the DNS
daemon is running, Stop first uses pmfadm -s to send a TERM signal to terminate the DNS
process. If this signal fails to terminate the process after 80 percent of the timeout value has
expired, Stop sends a SIGKILL signal. If this signal also fails to terminate the process within 15
percent of the timeout value, the method logs an error message and exits with an error status.

If pmfadm terminates the process, the method logs a message that the process has stopped and
exits with success.

If the DNS process is not running, the method logs a message that it is not running and exits
with success anyway. The following code sample shows how Stop uses pmfadm to stop the DNS
process.

See if in.named is running, and if so, kill it.

if pmfadm -q $PMF_TAG; then

Send a SIGTERM signal to the data service and wait for 80% of the

total timeout value.

pmfadm -s $RESOURCE_NAME.named -w $SMOOTH_TIMEOUT TERM

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \

SIGKILL”

Since the data service did not stop with a SIGTERM signal, use

SIGKILL now and wait for another 15% of the total timeout value.

pmfadm -s $PMF_TAG -w $HARD_TIMEOUT KILL

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

“${ARGV0} Failed to stop HA-DNS; Exiting UNSUCCESSFUL”

exit 1

fi

fi

Controlling the Data Service

Chapter 5 • Sample Data Service 103

else

The data service is not running as of now. Log a message and

exit success.

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

“HA-DNS is not started”

Even if HA-DNS is not running, exit success to avoid putting

the data service resource in STOP_FAILED State.

exit 0

fi

Could successfully stop DNS. Log a message and exit success.

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“HA-DNS successfully stopped”

exit 0

Stop Exit Status
A Stop method should not exit with success until the underlying application is actually stopped,
particularly if other data services depend on it. Failure to do so can result in data corruption.

For a complex application, such as a database, be certain to set the value for the Stop_timeout
property in the RTR file sufficiently high to allow time for the application to clean up while
stopping.

If this method fails to stop DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service does not
explicitly set the Failover_mode property, so this property has the default value NONE (unless
the cluster administrator overrides the default value and specifies a different value). In this case,
the RGM takes no action other than to set the state of the data service to Stop_failed. The
cluster administrator needs to stop the application forcibly and clear the Stop_failed state.

Defining a Fault Monitor
The sample application implements a basic fault monitor to monitor the reliability of the DNS
resource (in.named).

Defining a Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A104

The fault monitor consists of the following elements:
■ dns_probe, a user-defined program that uses nslookup to verify that the DNS resource that

is controlled by the sample data service is running. If DNS is not running, this method
attempts to restart it locally, or depending on the number of restart attempts, requests that
the RGM relocate the data service to a different node.

■ dns_monitor_start, a callback method that starts dns_probe. The RGM automatically calls
dns_monitor_start after the sample data service is brought online if monitoring is enabled.

■ dns_monitor_stop, a callback method that stops dns_probe. The RGM automatically calls
dns_monitor_stop before bringing the sample data service offline.

■ dns_monitor_check, a callback method that calls the Validate method to verify that the
configuration directory is available when the PROBE program fails over the data service to a
new node.

How the Probe Program Works
The dns_probe program implements a continuously running process that verifies that the DNS
resource that is controlled by the sample data service is running. The dns_probe is started by
the dns_monitor_start method, which is automatically run by the RGM after the sample data
service is brought online. The data service is stopped by the dns_monitor_stop method, which
the RGM runs before the RGM brings the sample data service offline.

This section describes the major pieces of the PROBE method for the sample application. It does
not describe functionality that is common to all callback methods, such as the parse_args()
function. This section also does not describe using the syslog() function. Common
functionality is described in “Providing Common Functionality to All Methods” on page 94.

For the complete listing of the PROBE method, see “PROBE Program Code Listing” on page 301.

What the Probe Program Does
The probe runs in an infinite loop. It uses nslookup to verify that the correct DNS resource is
running. If DNS is running, the probe sleeps for a prescribed interval (set by the
Thorough_probe_interval system-defined property) and checks again. If DNS is not running,
this program attempts to restart it locally, or depending on the number of restart attempts,
requests that the RGM relocate the data service to a different node.

Obtaining Property Values
This program requires the values of the following properties:
■ Thorough_probe_interval – To set the period during which the probe sleeps
■ Probe_timeout – To enforce the timeout value of the probe on the nslookup command that

does the probing

Defining a Fault Monitor

Chapter 5 • Sample Data Service 105

■ Network_resources_used – To obtain the IP address on which DNS is running
■ Retry_count and Retry_interval – To determine the number of restart attempts and the

period over which to count them
■ RT_basedir – To obtain the directory that contains the PROBE program and the gettime

utility

The scha_resource_get() function obtains the values of these properties and stores them in
shell variables, as follows:

PROBE_INTERVAL=‘scha_resource_get -O Thorough_probe_interval \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME‘

PROBE_TIMEOUT_INFO=‘scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Probe_timeout‘
Probe_timeout=‘echo $probe_timeout_info | awk ’{print $2}’‘

DNS_HOST=‘scha_resource_get -O Network_resources_used -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME‘

RETRY_COUNT=‘scha_resource_get -O Retry_count -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAME‘

RETRY_INTERVAL=‘scha_resource_get -O Retry_interval -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAME‘

RT_BASEDIR=‘scha_resource_get -O RT_basedir -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAME‘

Note – For system-defined properties, such as Thorough_probe_interval, the
scha_resource_get() function returns the value only. For extension properties, such as
Probe_timeout, the scha_resource_get() function returns the type and value. Use the awk
command to obtain the value only.

Checking the Reliability of the Service
The probe itself is an infinite while loop of nslookup commands. Before the while loop, a
temporary file is set up to hold the nslookup replies. The probefail and retries variables are
initialized to 0.

Set up a temporary file for the nslookup replies.

DNSPROBEFILE=/tmp/.$RESOURCE_NAME.probe

probefail=0

retries=0

Defining a Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A106

The while loop carries out the following tasks:
■ Sets the sleep interval for the probe
■ Uses hatimerun to start nslookup, passes the Probe_timeout value, and identifies the target

host
■ Sets the probefail variable based on the success or failure of the nslookup return code
■ If probefail is set to 1 (failure), verifies that the reply to nslookup came from the sample

data service and not some other DNS server

Here is the while loop code.

while :

do

The interval at which the probe needs to run is specified in the

property THOROUGH_PROBE_INTERVAL. Therefore, set the probe to sleep

for a duration of THOROUGH_PROBE_INTERVAL.

sleep $PROBE_INTERVAL

Run an nslookup command of the IP address on which DNS is serving.

hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS_HOST $DNS_HOST \

> $DNSPROBEFILE 2>&1

retcode=$?

if [$retcode -ne 0]; then

probefail=1

fi

Make sure that the reply to nslookup comes from the HA-DNS

server and not from another nameserver mentioned in the

/etc/resolv.conf file.

if [$probefail -eq 0]; then

Get the name of the server that replied to the nslookup query.

SERVER=‘ awk ’ $1=="Server:" { print $2 }’ \

$DNSPROBEFILE | awk -F. ’ { print $1 } ’ ‘
if [-z "$SERVER"]; then

probefail=1

else

if [$SERVER != $DNS_HOST]; then

probefail=1

fi

fi

fi

Comparing Restart With Failover
If the probefail variable is something other than 0 (success), the nslookup command timed
out or the reply came from a server other than the sample service's DNS. In either case, the DNS

Defining a Fault Monitor

Chapter 5 • Sample Data Service 107

server is not functioning as expected and the fault monitor calls the
decide_restart_or_failover() function to determine whether to restart the data service
locally or request that the RGM relocate the data service to a different node. If the probefail
variable is 0, a message is generated that the probe was successful.

if [$probefail -ne 0]; then

decide_restart_or_failover

else

logger -p ${SYSLOG_FACILITY}.err\

-t [$SYSLOG_TAG]\

"${ARGV0} Probe for resource HA-DNS successful"
fi

The decide_restart_or_failover() function uses a time window (Retry_interval) and a
failure count (Retry_count) to determine whether to restart DNS locally or request that the
RGM relocate the data service to a different node. This function implements the following
conditional logic. The code listing for decide_restart_or_failover() in “PROBE Program
Code Listing” on page 301 contains the code.
■ If this is the first failure, restart the data service. Log an error message and bump the counter

in the retries variable.
■ If this is not the first failure, but the window has been exceeded, restart the data service. Log

an error message, reset the counter, and slide the window.
■ If the time is still within the window and the retry counter has been exceeded, fail over to

another node. If the failover does not succeed, log an error and exit the probe program with
status 1 (failure).

■ If time is still within the window but the retry counter has not been exceeded, restart the data
service. Log an error message and bump the counter in the retries variable.

If the number of restarts reaches the limit during the time interval, the function requests that
the RGM relocate the data service to a different node. If the number of restarts is under the
limit, or the interval has been exceeded so the count begins again, the function attempts to
restart DNS on the same node.

Note the following points about this function:

■ The gettime utility is used to track the time between restarts. This is a C program that is
located in the (RT_basedir) directory.

■ The Retry_count and Retry_interval system-defined resource properties determine the
number of restart attempts and the time interval over which to count. These properties
default to two attempts in a period of 5 minutes (300 seconds) in the RTR file, although the
cluster administrator can change these values.

■ The restart_service() function is called to attempt to restart the data service on the same
node. See the next section, “Restarting the Data Service” on page 109, for information about
this function.

Defining a Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A108

■ The scha_control() API function, with the SCHA_GIVEOVER argument, brings the resource
group that contains the sample data service offline and back online on a different node.

Restarting the Data Service
The restart_service() function is called by decide_restart_or_failover() to attempt to
restart the data service on the same node.

This function executes the following logic:
■ Determines if the data service is still registered under the PMF.

If the service is still registered, the function carries out the following actions:
■ Obtains the Stop method name and the Stop_timeout value for the data service
■ Uses hatimerun to start the Stop method for the data service, passing the Stop_timeout

value
■ If the data service is successfully stopped, obtains the Start method name and the

Start_timeout value for the data service
■ Uses hatimerun to start the Start method for the data service, passing the

Start_timeout value
■ If the data service is no longer registered under the PMF, the implication is that the data

service has exceeded the maximum number of allowable retries under the PMF. The
scha_control command is run with the GIVEOVER argument to fail over the data service to a
different node.

function restart_service

{

To restart the data service, first verify that the

data service itself is still registered under PMF.

pmfadm -q $PMF_TAG

if [[$? -eq 0]]; then

Since the TAG for the data service is still registered under

PMF, first stop the data service and start it back up again.

Obtain the Stop method name and the STOP_TIMEOUT value for

this resource.

STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

STOP_METHOD=`scha_resource_get -O STOP \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

hatimerun -t $STOP_TIMEOUT $RT_BASEDIR/$STOP_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then

Defining a Fault Monitor

Chapter 5 • Sample Data Service 109

logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Stop method failed.”

return 1

fi

Obtain the START method name and the START_TIMEOUT value for

this resource.

START_TIMEOUT=`scha_resource_get -O START_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

START_METHOD=`scha_resource_get -O START \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then

logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Start method failed.”

return 1

fi

else

The absence of the TAG for the dataservice

implies that the data service has already

exceeded the maximum retries allowed under PMF.

Therefore, do not attempt to restart the

data service again, but try to failover

to another node in the cluster.

scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME

fi

return 0

}

Probe Exit Status
The sample data service's PROBE program exits with failure if attempts to restart locally fail and
the attempt to fail over to a different node fails as well. This program logs the message Failover
attempt failed.

How the Monitor_startMethod Works
The RGM calls the Monitor_start method to start the dns_probe method after the sample data
service is brought online.

Defining a Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A110

This section describes the major pieces of the Monitor_start method for the sample
application. This section does not describe functionality that is common to all callback
methods, such as the parse_args() function. This section also does not describe using the
syslog() function. Common functionality is described in “Providing Common Functionality
to All Methods” on page 94.

For the complete listing of the Monitor_start method, see “Monitor_start Method Code
Listing” on page 307.

What the Monitor_startMethod Does
This method uses the PMF (pmfadm) to start the probe.

Starting the Probe
The Monitor_start method obtains the value of the RT_basedir property to construct the full
path name for the PROBE program. This method starts the probe by using the infinite retries
option of pmfadm (-n -1, -t -1), which means that if the probe fails to start, the PMF tries to
start it an infinite number of times over an infinite period of time.

Find where the probe program resides by obtaining the value of the

RT_basedir property of the resource.

RT_BASEDIR=‘scha_resource_get -O RT_basedir -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAME‘

Start the probe for the data service under PMF. Use the infinite retries

option to start the probe. Pass the resource name, type, and group to the

probe program.

pmfadm -c $RESOURCE_NAME.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

How the Monitor_stopMethod Works
The RGM calls the Monitor_stop method to stop execution of dns_probe when the sample data
service is brought offline.

This section describes the major pieces of the Monitor_stop method for the sample application.
This section does not describe functionality that is common to all callback methods, such as the
parse_args() function. This section also does not describe using the syslog() function.
Common functionality is described in “Providing Common Functionality to All Methods” on
page 94.

For the complete listing of the Monitor_stop method, see “Monitor_stop Method Code
Listing” on page 309.

Defining a Fault Monitor

Chapter 5 • Sample Data Service 111

What the Monitor_stopMethod Does
This method uses the PMF (pmfadm) to check whether the probe is running, and if so, to stop it.

Stopping the Monitor
The Monitor_stop method uses pmfadm -q to see if the probe is running, and if so, uses pmfadm
-s to stop it. If the probe is already stopped, the method exits successfully anyway, which
guarantees the idempotence of the method.

Caution – Be certain to use the KILL signal with pmfadm to stop the probe and not a signal that can
be masked, such as TERM. Otherwise, the Monitor_stop method can hang indefinitely and
eventually time out. The reason is that the PROBE method calls scha_control() when it is
necessary to restart or fail over the data service. When scha_control() calls Monitor_stop as
part of the process of bringing the data service offline, if Monitor_stop uses a signal that can be
masked, Monitor_stop hangs waiting for scha_control() to complete, and scha_control()

hangs waiting for Monitor_stop to complete.

See if the monitor is running, and if so, kill it.

if pmfadm -q $PMF_TAG; then

pmfadm -s $PMF_TAG KILL

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} Could not stop monitor for resource " \

$RESOURCE_NAME

exit 1

else

could successfully stop the monitor. Log a message.

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} Monitor for resource " $RESOURCE_NAME \

" successfully stopped"
fi

fi

exit 0

Monitor_stop Exit Status
The Monitor_stop method logs an error message if it cannot stop the PROBE method. The RGM
puts the sample data service into MONITOR_FAILED state on the primary node, which can panic
the node.

Monitor_stop should not exit before the probe has been stopped.

Defining a Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A112

How the Monitor_checkMethod Works
The RGM calls the Monitor_check method whenever the PROBE method attempts to fail over
the resource group that contains the data service to a new node.

This section describes the major pieces of the Monitor_check method for the sample
application. This section does not describe functionality that is common to all callback
methods, such as the parse_args() function. This section also does not describe using the
syslog() function. Common functionality is described in “Providing Common Functionality
to All Methods” on page 94.

For the complete listing of the Monitor_check method, see “Monitor_check Method Code
Listing” on page 311.

The Monitor_check method must be implemented so that it does not conflict with other
methods that are running concurrently.

The Monitor_check method calls the Validate method to verify that the DNS configuration
directory is available on the new node. The Confdir extension property points to the DNS
configuration directory. Therefore, Monitor_check obtains the path and name for the
Validate method and the value of Confdir. It passes this value to Validate, as shown in the
following listing.

Obtain the full path for the Validate method from

the RT_basedir property of the resource type.

RT_BASEDIR=`scha_resource_get -O RT_basedir -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Obtain the name of the Validate method for this resource.

VALIDATE_METHOD=`scha_resource_get -O Validate \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the value of the Confdir property in order to start the

data service. Use the resource name and the resource group entered to

obtain the Confdir value set at the time of adding the resource.

config_info=`scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the type as well as the value for extension

properties. Use awk to get only the value of the extension property.

CONFIG_DIR=`echo $config_info | awk ‘{print $2}’`

Call the validate method so that the dataservice can be failed over

successfully to the new node.

$RT_BASEDIR/$VALIDATE_METHOD -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME -x Confdir=$CONFIG_DIR

Defining a Fault Monitor

Chapter 5 • Sample Data Service 113

See “How the Validate Method Works” on page 114 to see how the sample application verifies
the suitability of a node for hosting the data service.

Handling Property Updates
The sample data service implements Validate and Update methods to handle the updating of
properties by a cluster administrator.

How the ValidateMethod Works
The RGM calls the Validate method when a resource is created and when administrative
action updates the properties of the resource or its containing group. The RGM calls Validate
before the creation or update is applied, and a failure exit code from the method on any node
causes the creation or update to be canceled.

The RGM calls Validate only when resource or resource group properties are changed by the
cluster administrator, not when the RGM sets properties or when a monitor sets the resource
properties Status and Status_msg.

Note – The Monitor_check method also explicitly calls the Validate method whenever the
PROBE method attempts to fail over the data service to a new node.

What the ValidateMethod Does
The RGM calls Validate with additional arguments to those that are passed to other methods,
including the properties and values that are being updated. Therefore, this method in the
sample data service must implement a different parse_args() function to handle the
additional arguments.

The Validate method in the sample data service verifies a single property, the Confdir
extension property. This property points to the DNS configuration directory, which is critical to
the successful operation of DNS.

Note – Because the configuration directory cannot be changed while DNS is running, the
Confdir property is declared in the RTR file as TUNABLE = AT_CREATION. Therefore, the
Validate method is never called to verify the Confdir property as the result of an update, but
only when the data service resource is being created.

If Confdir is one of the properties that the RGM passes to Validate, the parse_args()
function retrieves and saves its value. Validate verifies that the directory pointed to by the new
value of Confdir is accessible and that the named.conf file exists in that directory and contains
data.

Handling Property Updates

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A114

If the parse_args() function cannot retrieve the value of Confdir from the command-line
arguments that are passed by the RGM, Validate still attempts to validate the Confdir
property. Validate uses scha_resource_get() to obtain the value of Confdir from the static
configuration. Validate performs the same checks to verify that the configuration directory is
accessible and contains a named.conf file that is not empty.

If Validate exits with failure, the update or creation of all properties, not just Confdir, fails.

ValidateMethod Parsing Function
Because the RGM passes the Validate method a different set of arguments than the other
callback methods, Validate requires a different function for parsing arguments than the other
methods. See the rt_callbacks(1HA) man page for more information about the arguments
that are passed to Validate and the other callback methods. The following code sample shows
the Validate parse_args() function.

###

Parse Validate arguments.

#

function parse_args # [args...]

{

typeset opt

while getopts ’cur:x:g:R:T:G:’ opt

do

case "$opt" in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

r)

The method is not accessing any system defined

properties so this is a no-op

;;

g)

The method is not accessing any resource group

properties, so this is a no-op

;;

Handling Property Updates

Chapter 5 • Sample Data Service 115

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view

c)

Indicates the Validate method is being called while

creating the resource, so this flag is a no-op.

;;

u)

Indicates the updating of a property when the

resource already exists. If the update is to the

Confdir property then Confdir should appear in the

command-line arguments. If it does not, the method must

look for it specifically using scha_resource_get.

UPDATE_PROPERTY=1

;;

x)

Extension property list. Separate the property and

value pairs using "=" as the separator.

PROPERTY=‘echo $OPTARG | awk -F= ’{print $1}’‘
VAL=‘echo $OPTARG | awk -F= ’{print $2}’‘
If the Confdir extension property is found on the

command line, note its value.

if [$PROPERTY == "Confdir"]; then

CONFDIR=$VAL

CONFDIR_FOUND=1

fi

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"ERROR: Option $OPTARG unknown"
exit 1

;;

esac

done

}

As with the parse_args() function for other methods, this function provides a flag (R) to
capture the resource name, (G) to capture the resource group name, and (T) to capture the
resource type that is passed by the RGM.

The r flag (which indicates a system-defined property), g flag (which indicates a resource group
property), and the c flag (which indicates that the validation is occurring during creation of the
resource) are ignored. They are ignored because this method is being called to validate an
extension property when the resource is being updated.

The u flag sets the value of the UPDATE_PROPERTY shell variable to 1 (TRUE). The x flag captures
the names and values of the properties that are being updated. If Confdir is one of the
properties being updated, its value is placed in the CONFDIR shell variable, and the variable
CONFDIR_FOUND is set to 1 (TRUE).

Handling Property Updates

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A116

Validating Confdir

In its MAIN function, Validate first sets the CONFDIR variable to the empty string and
UPDATE_PROPERTY and CONFDIR_FOUND to 0.

CONFDIR=""
UPDATE_PROPERTY=0

CONFDIR_FOUND=0

Validate calls parse_args() to parse the arguments that are passed by the RGM.

parse_args “$@”

Validate checks if Validate is being called as the result of an update of properties. Validate
also checks if the Confdir extension property was on the command line. Validate verifies that
the Confdir property has a value, and if not, exits with failure status and an error message.

if ((($UPDATE_PROPERTY == 1)) && ((CONFDIR_FOUND == 0))); then

config_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir‘
CONFDIR=‘echo $config_info | awk ’{print $2}’‘

fi

Verify that the Confdir property has a value. If not there is a failure

and exit with status 1

if [[-z $CONFDIR]]; then

logger -p ${SYSLOG_FACILITY}.err \

"${ARGV0} Validate method for resource "$RESOURCE_NAME " failed"
exit 1

fi

Note – Specifically, the preceding code checks if Validate is being called as the result of an
update ($UPDATE_PROPERTY == 1) and if the property was not found on the command line
(CONFDIR_FOUND == 0). In this case, the code retrieves the existing value of Confdir by using
scha_resource_get(). If Confdir was found on the command line (CONFDIR_FOUND == 1), the
value of CONFDIR comes from the parse_args() function, not from scha_resource_get().

The Validate method uses the value of CONFDIR to verify that the directory is accessible. If the
directory is not accessible, Validate logs an error message and exits with error status.

Check if $CONFDIR is accessible.

if [! -d $CONFDIR]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} Directory $CONFDIR missing or not mounted"
exit 1

fi

Handling Property Updates

Chapter 5 • Sample Data Service 117

Before validating the update of the Confdir property, Validate performs a final check to verify
that the named.conf file is present. If the file is not present, the method logs an error message
and exits with error status.

Check that the named.conf file is present in the Confdir directory

if [! -s $CONFDIR/named.conf]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} File $CONFDIR/named.conf is missing or empty"
exit 1

fi

If the final check is passed, Validate logs a message that indicates success and exits with success
status.

Log a message indicating that the Validate method was successful.

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} Validate method for resource "$RESOURCE_NAME \

" completed successfully"

exit 0

Validate Exit Status
If Validate exits with success (0), Confdir is created with the new value. If Validate exits with
failure (1), Confdir and any other properties are not created and a message that indicates the
reason is generated.

How the UpdateMethod Works
The RGM runs the Update method to notify a running resource that its properties have been
changed. The RGM runs Update after the cluster administrator succeeds in setting properties of
a resource or its group. This method is called on nodes where the resource is online.

What the UpdateMethod Does
The Update method does not update properties. The RGM updates properties. The Update
method notifies running processes that an update has occurred. The only process in the sample
data service that is affected by a property update is the fault monitor. Consequently, the fault
monitor process is the process that the Update method stops and restarts.

The Update method must verify that the fault monitor is running and then kill it by using the
pmfadm command. The method obtains the location of the probe program that implements the
fault monitor, and restarts it by using the pmfadm command.

Handling Property Updates

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A118

Stopping the Monitor With Update

The Update method uses pmfadm -q to verify that the monitor is running, and if so, kills it with
pmfadm -s TERM. If the monitor is successfully terminated, a message to that effect is sent to the
cluster administrator. If the monitor cannot be stopped, Update exits with failure status and
sends an error message to the cluster administrator.

if pmfadm -q $RESOURCE_NAME.monitor; then

Kill the monitor that is running already

pmfadm -s $PMF_TAG TERM

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGV0} Could not stop the monitor"
exit 1

else

could successfully stop DNS. Log a message.

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

"Monitor for HA-DNS successfully stopped"
fi

Restarting the Monitor
To restart the monitor, the Update method must locate the script that implements the probe
program. The probe program is located in the base directory for the data service, which is
pointed to by the RT_basedir property. Update retrieves the value of RT_basedir and stores it
in the RT_BASEDIR variable, as follows.

RT_BASEDIR=‘scha_resource_get -O RT_basedir -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAME‘

Update uses the value of RT_BASEDIR with pmfadm to restart the dns_probe program. If
successful, Update exits with success and sends a message to that effect to the cluster
administrator. If pmfadm cannot start the probe program, Update exits with failure status and
logs an error message.

Update Exit Status
Update method failure causes the resource to be put into an “update failed” state. This state has
no effect on RGM management of the resource, but indicates the failure of the update action to
administration tools through the syslog() function.

Handling Property Updates

Chapter 5 • Sample Data Service 119

120

Data Service Development Library

This chapter provides an overview of the application programming interfaces that constitute
the Data Service Development Library (DSDL). The DSDL is implemented in the libdsdev.so
library and is included in the Sun Cluster package.

This chapter covers the following topics:

■ “DSDL Overview” on page 121
■ “Managing Configuration Properties” on page 122
■ “Starting and Stopping a Data Service” on page 123
■ “Implementing a Fault Monitor” on page 123
■ “Accessing Network Address Information” on page 124
■ “Debugging the Resource Type Implementation” on page 124
■ “Enabling Highly Available Local File Systems” on page 125

DSDL Overview
The DSDL API is layered on top of the Resource Management Application Programming
Interface (RMAPI). As such, the DSDL API does not supersede the RMAPI but rather
encapsulates and extends the RMAPI functionality. The DSDL simplifies data service
development by providing predetermined solutions to specific Sun Cluster integration issues.
Consequently, you can devote the majority of development time to the high availability and
scalability issues that are intrinsic to your application. You spend less time integrating the
application startup, shutdown, and monitor procedures with Sun Cluster.

6C H A P T E R 6

121

Managing Configuration Properties
All callback methods require access to the configuration properties.

The DSDL supports access to properties in these ways:

■ Initializing the environment
■ Providing a set of convenience functions to retrieve property values

The scds_initialize() function, which must be called at the beginning of each callback
method, does the following:

■ Checks and processes the command-line arguments (argc and argv[]) that the RGM
passes to the callback method, obviating the need for you to write a command-line parsing
function.

■ Sets up internal data structures for use by other DSDL functions. For example, the
convenience functions that retrieve property values from the RGM store the values in these
structures. Likewise, values from the command line, which take precedence over values
retrieved from the RGM, are stored in these data structures.

■ Initializes the logging environment and validates fault monitor probe settings.

Note – For the Validate method, scds_initialize() parses the property values that are passed
on the command line, obviating the need to write a parse function for Validate.

The DSDL provides sets of functions to retrieve resource type, resource, and resource group
properties as well as commonly used extension properties.

These functions standardize access to properties by using the following conventions:

■ Each function takes only a handle argument (returned by scds_initialize()).
■ Each function corresponds to a particular property. The return value type of the function

matches the type of the property value that it retrieves.
■ Functions do not return errors as the values have been precomputed by

scds_initialize(). Functions retrieve values from the RGM unless a new value is passed
on the command line.

Managing Configuration Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A122

Starting and Stopping a Data Service
A Start method performs the actions that are required to start a data service on a cluster node.
Typically, these actions include retrieving the resource properties, locating application-specific
executable and configuration files, and starting the application with the correct command-line
arguments.

The scds_initialize() function retrieves the resource configuration. The Start method can
use property convenience functions to retrieve values for specific properties, such as
Confdir_list, that identify the configuration directories and files for the application to start.

A Start method can call scds_pmf_start() to start an application under control of the Process
Monitor Facility (PMF). The PMF enables you to specify the level of monitoring to apply to the
process and provides the ability to restart the process in case of failure. See “xfnts_start
Method” on page 142 for an example of a Start method that is implemented with the DSDL.

A Stop method must be idempotent so that the Stop method exits with success even if it is
called on a node when the application is not running. If the Stop method fails, the resource that
is being stopped is set to the STOP_FAILED state, which can cause the cluster to perform a hard
reboot.

To avoid putting the resource in the STOP_FAILED state, the Stop method must make every
effort to stop the resource. The scds_pmf_stop() function provides a phased attempt to stop
the resource. This function first attempts to stop the resource by using a SIGTERM signal, and if
this fails, uses a SIGKILL signal. See the scds_pmf_stop(3HA) man page for more information.

Implementing a Fault Monitor
The DSDL absorbs much of the complexity of implementing a fault monitor by providing a
predetermined model. A Monitor_start method starts the fault monitor, under the control of
the PMF, when the resource starts on a node. The fault monitor runs in a loop as long as the
resource is running on the node.

The high-level logic of a DSDL fault monitor is as follows:
■ The scds_fm_sleep() function uses the Thorough_probe_interval property to determine

the amount of time between probes. Any application process failures that are detected by the
PMF during this interval lead to a restart of the resource.

■ The probe itself returns a value that indicates the severity of failures, from 0, no failure, to
100 complete failure.

■ The probe return value is sent to the scds_action() function, which maintains a
cumulative failure history within the interval of the Retry_interval property.

■ The scds_action() function determines what to do in the event of a failure, as follows:
■ If the cumulative failure is below 100, do nothing.

Implementing a Fault Monitor

Chapter 6 • Data Service Development Library 123

http://docs.sun.com/doc/820-4685/scds-pmf-stop-3ha?a=view

■ If the cumulative failure reaches 100 (complete failure), restart the data service. If
Retry_interval is exceeded, reset the history.

■ If the number of restarts exceeds the value of the Retry_count property, within the time
specified by Retry_interval, fail over the data service.

Accessing Network Address Information
The DSDL provides convenience functions to return network address information for
resources and resource groups. For example, the scds_get_netaddr_list() retrieves the
network address resources that are used by a resource, enabling a fault monitor to probe the
application.

The DSDL also provides a set of functions for TCP-based monitoring. Typically, these functions
establish a simple socket connect to a service, read and write data to the service, and disconnect
from the service. The result of the probe can be sent to the DSDL scds_fm_action() function
to determine the action to take.

See “xfnts_validate Method” on page 156 for an example of TCP-based fault monitoring.

Debugging the Resource Type Implementation
The DSDL has built-in features to help you debug your data service.

The DSDL utility scds_syslog_debug() provides a basic framework for adding debugging
statements to the resource type implementation. The debugging level (a number between 1-9)
can be dynamically set for each resource type implementation on each cluster node. A file
named /var/cluster/rgm/rt/rtname/loglevel, which contains only an integer between 1
and 9, is read by all resource type callback methods. The DSDL function scds_initialize()

reads this file and sets the debug level internally to the specified level. The default debug level 0
specifies that the data service is not to log debugging messages.

The scds_syslog_debug() function uses the facility that is returned by the
scha_cluster_getlogfacility() function at a priority of LOG_DEBUG. You can configure these
debug messages in the /etc/syslog.conf file.

You can turn some debugging messages into information messages for regular operation of the
resource type (perhaps at LOG_INFO priority) by using the scds_syslog() function. Note that
the sample DSDL application in Chapter 8, “Sample DSDL Resource Type Implementation,”
includes calls to the scds_syslog_debug() and scds_syslog() functions.

Accessing Network Address Information

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A124

Enabling Highly Available Local File Systems
You can use the HAStoragePlus resource type to make a local file system highly available within
a Sun Cluster environment.

Note – Local file systems include the UNIX File System (UFS), Quick File System (QFS), Veritas
File System (VxFS), and Solaris ZFS (Zettabyte File System).

The local file system partitions must be located on global disk groups. Affinity switchovers must
be enabled, and the Sun Cluster environment must be configured for failover. This setup
enables the cluster administrator to make any file system that is located on multihost disks
accessible from any host that is directly connected to those multihost disks. You use a highly
available local file system for selected I/O intensive data services. “Enabling Highly Available
Local File Systems” in Sun Cluster Data Services Planning and Administration Guide for Solaris
OS contains information about configuring the HAStoragePlus resource type.

Enabling Highly Available Local File Systems

Chapter 6 • Data Service Development Library 125

http://docs.sun.com/doc/820-4682/cdcegbeg?a=view
http://docs.sun.com/doc/820-4682/cdcegbeg?a=view
http://docs.sun.com/doc/820-4682/cdcegbeg?a=view

126

Designing Resource Types

This chapter explains the typical use of the Data Service Development Library (DSDL) in
designing and implementing resource types. This chapter also focuses on designing the
resource type to validate the resource configuration, and to start, stop, and monitor the
resource. In addition, this chapter describes how to use the DSDL to implement the resource
type callback methods.

See the rt_callbacks(1HA) man page for additional information.

You need access to the resource's property settings to complete these tasks. The DSDL utility
scds_initialize() provides a uniform way to access these resource properties. This function
is designed to be called at the beginning of each callback method. This utility function retrieves
all the properties for a resource from the cluster framework and makes it available to the family
of scds_getname() functions.

This chapter covers the following topics:

■ “Resource Type Registration File” on page 128
■ “Validate Method” on page 128
■ “Start Method” on page 130
■ “Stop Method” on page 131
■ “Monitor_start Method” on page 132
■ “Monitor_stop Method” on page 133
■ “Monitor_check Method” on page 133
■ “Update Method” on page 133
■ “Description of Init, Fini, and Boot Methods” on page 134
■ “Designing the Fault Monitor Daemon” on page 135

7C H A P T E R 7

127

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view

Resource Type Registration File
The Resource Type Registration (RTR) file specifies the details about the resource type to the
Sun Cluster software.

Details include information as follows:

■ Properties that are needed by the implementation
■ The data types and default values of those properties
■ The file system path for the callback methods for the resource type implementation
■ Various settings for the system-defined properties

The sample RTR file that is shipped with the DSDL is sufficient for most resource type
implementations. You need only edit some basic elements, such as the resource type name and
the path name of the resource type callback methods. If a new property is needed to implement
the resource type, you can declare it as an extension property in the RTR file of the resource type
implementation, and access the new property by using the DSDL scds_get_ext_property()

utility.

ValidateMethod
The purpose of the Validate callback method of a resource type implementation is to check
that the proposed resource settings (as specified by the proposed property settings on the
resource) are acceptable to the resource type.

The Validate method of a resource type implementation is called by the Resource Group
Manager (RGM) under one of the following two conditions:

■ A new resource of the resource type is being created
■ A property of the resource or resource group is being updated

These two scenarios can be distinguished by the presence of the command-line option -c

(create) or -u (update) that is passed to the Validate method of the resource.

The Validate method is called on each node of a set of nodes, where the set of nodes is defined
by the value of the resource type property Init_nodes. If Init_nodes is set to RG_PRIMARIES,
Validate is called on each node that can host (be a primary of) the resource group that contains
the resource. If Init_nodes is set to RT_INSTALLED_NODES, Validate is called on each node
where the resource type software is installed, typically all nodes in the cluster.

The default value of Init_nodes is RG_PRIMARIES (see the rt_reg(4) man page). At the point
the Validate method is called, the RGM has not yet created the resource (in the case of creation
callback) or has not yet applied the updated values of the properties that are being updated (in
the case of update callback).

Resource Type Registration File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A128

http://docs.sun.com/doc/820-4685/rt-reg-4?a=view

Note – If you are using local file systems that are managed by the HAStoragePlus resource type,
you use the scds_hasp_check() function to check the state of that resource type. This
information is obtained from the state (online or otherwise) of all SUNW.HAStoragePlus
resources on which the resource depends by using the Resource_dependencies or
Resource_dependencies_weak system properties that are defined for the resource. See the
scds_hasp_check(3HA) man page for a complete list of status codes that are returned by the
scds_hasp_check() function.

The DSDL function scds_initialize() handles these situations in the following manner:
■ If the resource is being created, scds_initialize() parses the proposed resource

properties, as they are passed on the command line. The proposed values of resource
properties are therefore available to you as though the resource was already created in the
system.

■ If the resource or resource group is being updated, the proposed values of the properties that
are being updated by the cluster administrator are read in from the command line. The
remaining properties (whose values are not being updated) are read in from Sun Cluster by
using the Resource Management API. If you are using the DSDL, you do not need to
concern yourself with these tasks. You can validate a resource as if all the properties of the
resource were available.

Suppose the function that implements the validation of a resource's properties is called
svc_validate(), which uses the scds_get_name() family of functions to look at the property
to be validated. Assuming that an acceptable resource setting is represented by a 0 return code
from this function, the Validate method of the resource type can thus be represented by the
following code fragment:

int

main(int argc, char *argv[])

{

scds_handle_t handle;

int rc;

if (scds_initialize(&handle, argc, argv)!= SCHA_ERR_NOERR) {

return (1); /* Initialization Error */

}

rc = svc_validate(handle);

scds_close(&handle);

return (rc);

}

The validation function should also log the reason why the validation of the resource failed.
However, by leaving out that detail (Chapter 8, “Sample DSDL Resource Type
Implementation,” contains a more realistic treatment of a validation function), you can
implement a simpler example svc_validate() function, as follows:

ValidateMethod

Chapter 7 • Designing Resource Types 129

http://docs.sun.com/doc/820-4685/scds-hasp-check-3ha?a=view

int

svc_validate(scds_handle_t handle)

{

scha_str_array_t *confdirs;

struct stat statbuf;

confdirs = scds_get_confdir_list(handle);

if (stat(confdirs->str_array[0], &statbuf) == -1) {

return (1); /* Invalid resource property setting */

}

return (0); /* Acceptable setting */

}

Thus, you must concern yourself with only the implementation of the svc_validate()
function.

StartMethod
The Start callback method of a resource type implementation is called by the RGM on a chosen
cluster node to start the resource. The resource group name, the resource name, and resource
type name are passed on the command line. The Start method performs the actions that are
needed to start a data service resource in the cluster node. Typically this involves retrieving the
resource properties, locating the application specific executable file, configuration files, or both,
and starting the application with the correct command-line arguments.

With the DSDL, the resource configuration is already retrieved by the scds_initialize()
utility. The startup action for the application can be contained in a function svc_start().
Another function, svc_wait(), can be called to verify that the application actually starts. The
simplified code for the Start method is as follows:

int

main(int argc, char *argv[])

{

scds_handle_t handle;

if (scds_initialize(&handle, argc, argv)!= SCHA_ERR_NOERR) {

return (1); /* Initialization Error */

}

if (svc_validate(handle) != 0) {

return (1); /* Invalid settings */

}

if (svc_start(handle) != 0) {

return (1); /* Start failed */

}

return (svc_wait(handle));

}

StartMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A130

This start method implementation calls svc_validate() to validate the resource configuration.
If it fails, either the resource configuration and application configuration do not match or there
is currently a problem on this cluster node with regard to the system. For example, a cluster file
system that is needed by the resource might currently not be available on this cluster node. In
this case, it is futile to attempt to start the resource on this cluster node. It is better to let the
RGM attempt to start the resource on a different node.

Note, however, that the preceding statement assumes that svc_validate() is sufficiently
conservative, checking only for resources on the cluster node that are required by the
application. Otherwise, the resource might fail to start on all cluster nodes and thus enter a
START_FAILED state. See the Sun Cluster Data Services Planning and Administration Guide for
Solaris OS for an explanation of this state.

The svc_start() function must return 0 for a successful startup of the resource on the node. If
the startup function encounters a problem, it must return nonzero. Upon failure of this
function, the RGM attempts to start the resource on a different cluster node.

To take advantage of the DSDL as much as possible, the svc_start() function can call the
scds_pmf_start() utility to start the application under the Process Monitor Facility (PMF).
This utility also uses the failure callback action feature of the PMF to detect process failure. See
the description of the -a action argument in the pmfadm(1M) man page for more information.

StopMethod
The Stop callback method of a resource type implementation is called by the RGM on a cluster
node to stop the application.

The callback semantics for the Stop method demand the following factors:

■ The Stop method must be idempotent because the Stop method can be called by the RGM
even if the Start method did not complete successfully on the node. Thus, the Stop method
must succeed (exit zero) even if the application is not currently running on the cluster node
and there is no work for it to do.

■ If the Stop method of the resource type fails (exits nonzero) on a cluster node, the resource
that is being stopped enters the STOP_FAILED state. Depending on the Failover_mode
setting on the resource, this condition might lead the RGM to perform a hard reboot of the
cluster node.
Thus, you must design the Stop method so that this method definitely stops the application.
You might even need to resort to using SIGKILL to kill the application abruptly if the
application otherwise fails to terminate.
You must also ensure that this method stops the application in a timely fashion because the
framework treats expiry of the Stop_timeout property as a stop failure, and consequently
puts the resource in a STOP_FAILED state.

StopMethod

Chapter 7 • Designing Resource Types 131

http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4685/pmfadm-1m?a=view

The DSDL utility scds_pmf_stop() should suffice for most applications as it first attempts to
softly stop the application with SIGTERM. This function then delivers a SIGKILL to the process.
This function assumes that the application was started under the PMF with scds_pmf_start().
See “PMF Functions” on page 211 for details about this utility.

Assuming that the application-specific function that stops the application is called svc_stop(),
implement the Stop method as follows:

if (scds_initialize(&handle, argc, argv)!= SCHA_ERR_NOERR)

{

return (1); /* Initialization Error */

}

return (svc_stop(handle));

Whether or not the implementation of the preceding svc_stop() function includes the
scds_pmf_stop() function is irrelevant. Your decision to include the scds_pmf_stop()
function depends on whether or not the application was started under the PMF through the
Start method.

The svc_validate() method is not used in the implementation of the Stop method because,
even if the system is currently experiencing a problem, the Stop method should attempt to stop
the application on this node.

Monitor_startMethod
The RGM calls the Monitor_start method to start a fault monitor for the resource. Fault
monitors monitor the health of the application that is being managed by the resource. Resource
type implementations typically implement a fault monitor as a separate daemon that runs in the
background. The Monitor_start callback method is used to start this daemon with the correct
arguments.

Because the monitor daemon itself is prone to failures (for example, it could die, leaving the
application unmonitored), you should use the PMF to start the monitor daemon. The DSDL
utility scds_pmf_start() has built-in support for starting fault monitors. This utility uses the
path name that is relative to the RT_basedir for the location of the resource type callback
method implementations of the monitor daemon program. This utility uses the
Monitor_retry_interval and Monitor_retry_count extension properties that are managed
by the DSDL to prevent unlimited restarts of the daemon.

This utility also imposes the same command-line syntax as defined for all callback methods
(that is, -R resource -G resource-group -T resource-type) onto the monitor daemon, although the
monitor daemon is never called directly by the RGM. Finally, this utility also allows the monitor
daemon implementation itself to enable the scds_initialize() utility to set up its own
environment. The main effort is in designing the monitor daemon itself.

Monitor_startMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A132

Monitor_stopMethod
The RGM calls the Monitor_stop method to stop the fault monitor daemon that was started
with the Monitor_start method. Failure of this callback method is treated in exactly the same
fashion as failure of the Stop method. Therefore, the Monitor_stop method must be
idempotent and just as robust as the Stop method.

If you use the scds_pmf_start() utility to start the fault monitor daemon, use the
scds_pmf_stop() utility to stop it.

Monitor_checkMethod
The RGM runs the Monitor_check callback method on a resource on a node for the specified
resource to ascertain whether the cluster node is capable of mastering the resource. In other
words, the RGM runs this method to determine whether the application that is being managed
by the resource can run successfully on the node.

Typically, this situation involves ensuring that all the system resources that are required by the
application are indeed available on the cluster node. As discussed in “Validate Method” on
page 128, the function svc_validate() that you implement is intended to ascertain at least
that.

Depending on the specific application that is being managed by the resource type
implementation, the Monitor_check method can be written to carry out additional tasks. The
Monitor_check method must be implemented so that it does not conflict with other methods
that are running concurrently. If you are using the DSDL, the Monitor_check method should
call the svc_validate() function, which implements application-specific validation of
resource properties.

UpdateMethod
The RGM calls the Update method of a resource type implementation to apply any changes that
were made by the cluster administrator to the configuration of the active resource. The Update
method is only called on nodes (if any) where the resource is currently online.

The changes that have just been made to the resource configuration are guaranteed to be
acceptable to the resource type implementation because the RGM runs the Validate method of
the resource type before it runs the Update method. The Validate method is called before the
resource or resource group properties are changed, and the Validate method can veto the
proposed changes. The Update method is called after the changes have been applied to give the
active (online) resource the opportunity to take notice of the new settings.

You must carefully determine the properties that you want to be able to update dynamically,
and mark those with the TUNABLE = ANYTIME setting in the RTR file. Typically, you can specify

UpdateMethod

Chapter 7 • Designing Resource Types 133

that you want to be able to dynamically update any property of a resource type implementation
that the fault monitor daemon uses. However, the implementation of the Update method must
at least restart the monitor daemon.

Possible properties that you can use are as follows:

■ Thorough_probe_interval

■ Retry_count

■ Retry_interval

■ Monitor_retry_count

■ Monitor_retry_interval

■ Probe_timeout

These properties affect the way a fault monitor daemon checks the health of the service, how
often the daemon performs checks, the history interval that the daemon uses to keep track of
the errors, and the restart thresholds that are set by the PMF. To implement updates of these
properties, the utility scds_pmf_restart() is provided in the DSDL.

If you need to be able to dynamically update a resource property, but the modification of that
property might affect the running application, you need to implement the correct actions. You
must ensure that the updates to that property are correctly applied to any running instances of
the application. Currently, you cannot use the DSDL to dynamically update a resource property
in this way. You cannot pass the modified properties to Update on the command line (as you
can with Validate).

Description of Init, Fini, and BootMethods
These methods are one-time action methods as defined by the Resource Management API
specifications. The sample implementation that is included with the DSDL does not illustrate
the use of these methods. However, all the facilities in the DSDL are available to these methods
as well, should you need these methods. Typically, the Init and the Boot methods would be
exactly the same for a resource type implementation to implement a one-time action. The Fini
method typically would perform an action that undoes the action of the Init or Boot methods.

Description of Init, Fini, and BootMethods

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A134

Designing the Fault Monitor Daemon
Resource type implementations that use the DSDL typically have a fault monitor daemon that
carries out the following responsibilities:

■ Periodically monitors the health of the application that is being managed. This particular
responsibility of a monitor daemon largely depends on the particular application and can
vary widely from resource type to resource type. The DSDL contains some built-in utility
functions that perform health checks for simple TCP-based services. You can use these
utilities to implement applications that use ASCII-based protocols, such as HTTP, NNTP,
IMAP, and POP3.

■ Keeps track of the problems that are encountered by the application by using the resource
properties Retry_interval and Retry_count. When the application fails completely, the
fault monitor needs to determine whether the PMF action script should restart the service or
whether the application failures have accumulated so rapidly that a failover needs to be
carried out. The DSDL utilities scds_fm_action() and scds_fm_sleep() are intended to
aid you in implementing this mechanism.

■ Takes action, typically either restarting the application or attempting a failover of the
containing resource group. The DSDL utility scds_fm_action() implements this
algorithm. This utility computes the current accumulation of probe failures in the past
number of Retry_interval seconds for this purpose.

■ Updates the resource state so that the state of the application's health is available to the Sun
Cluster administrative commands, as well as to the cluster management GUI.

The DSDL utilities are designed so that the main loop of the fault monitor daemon can be
represented by the pseudo code at the end of this section.

Keep the following factors in mind when you implement a fault monitor with the DSDL:

■ scds_fm_sleep() detects the death of an application process rapidly because notification of
the application process's death through the PMF is asynchronous. Thus, the fault detection
time is reduced significantly, thereby increasing the availability of the service. A fault
monitor might otherwise wake up every so often to check on a service's health and find that
the application process has died.

■ If the RGM rejects the attempt to fail over the service with the scha_control API,
scds_fm_action() resets, or forgets, its current failure history. This function resets its
current failure history because its history already exceeds Retry_count. If the monitor
daemon wakes up in the next iteration and is unable to successfully complete its health
check of the daemon, the monitor daemon again attempts to call the scha_control()
function. That call is probably rejected once again, as the situation that led to its rejection in
the last iteration is still valid. Resetting the history ensures that the fault monitor at least
attempts to correct the situation locally (for example, through restarting the application) in
the next iteration.

Designing the Fault Monitor Daemon

Chapter 7 • Designing Resource Types 135

■ scds_fm_action() does not reset application failure history in case of restart failures, as you
would typically like to issue scha_control() quickly thereafter if the situation does not
correct itself.

■ The utility scds_fm_action() updates the resource status to SCHA_RSSTATUS_OK,
SCHA_RSSTATUS_DEGRADED, or SCHA_RSSTATUS_FAULTED depending on the failure history.
This status is consequently available to cluster system management.

In most cases, you can implement the application-specific health check action in a separate
stand-alone utility (svc_probe(), for example). You can integrate it with the following generic
main loop.

for (;;) {

/* sleep for a duration of thorough_probe_interval between

* successive probes.

*/

(void) scds_fm_sleep(scds_handle,

scds_get_rs_thorough_probe_interval(scds_handle));

/* Now probe all ipaddress we use. Loop over

* 1. All net resources we use.

* 2. All ipaddresses in a given resource.

* For each of the ipaddress that is probed,

* compute the failure history.

*/

probe_result = 0;

/* Iterate through the all resources to get each

* IP address to use for calling svc_probe()

*/

for (ip = 0; ip < netaddr->num_netaddrs; ip++) {

/* Grab the hostname and port on which the

* health has to be monitored.

*/

hostname = netaddr->netaddrs[ip].hostname;

port = netaddr->netaddrs[ip].port_proto.port;

/*

* HA-XFS supports only one port and

* hence obtaint the port value from the

* first entry in the array of ports.

*/

ht1 = gethrtime();

/* Latch probe start time */

probe_result = svc_probe(scds_handle, hostname, port, timeout);

/*

* Update service probe history,

* take action if necessary.

* Latch probe end time.

*/

ht2 = gethrtime();

Designing the Fault Monitor Daemon

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A136

/* Convert to milliseconds */

dt = (ulong_t)((ht2 - ht1) / 1e6);

/*

* Compute failure history and take

* action if needed

*/

(void) scds_fm_action(scds_handle,

probe_result, (long)dt);

} /* Each net resource */

} /* Keep probing forever */

Designing the Fault Monitor Daemon

Chapter 7 • Designing Resource Types 137

138

Sample DSDL Resource Type Implementation

This chapter describes a sample resource type, SUNW.xfnts, which is implemented with the
Data Service Development Library (DSDL). This data service is written in C. The underlying
application is the X Font Server, a TCP/IP-based service. Appendix C, “DSDL Sample Resource
Type Code Listings,” contains the complete code for each method in the SUNW.xfnts resource
type.

This chapter covers the following topics:

■ “X Font Server” on page 139
■ “SUNW.xfnts RTR File” on page 140
■ “Naming Conventions for Functions and Callback Methods” on page 141
■ “scds_initialize() Function” on page 141
■ “xfnts_start Method” on page 142
■ “xfnts_stop Method” on page 146
■ “xfnts_monitor_start Method” on page 147
■ “xfnts_monitor_stop Method” on page 148
■ “xfnts_monitor_check Method” on page 149
■ “SUNW.xfnts Fault Monitor” on page 150
■ “xfnts_validate Method” on page 156
■ “xfnts_update Method” on page 159

X Font Server
The X Font Server is a TCP/IP-based service that serves font files to its clients. Clients connect
to the server to request a font set, and the server reads the font files off the disk and serves them
to the clients. The X Font Server daemon consists of a server binary at /usr/openwin/bin/xfs.
The daemon is normally started from inetd. However, for the current sample, assume that the
correct entry in the /etc/inetd.conf file has been disabled (for example, by using the fsadmin
-d command) so that the daemon is under sole control of the Sun Cluster software.

8C H A P T E R 8

139

X Font Server Configuration File
By default, the X Font Server reads its configuration information from the file
/usr/openwin/lib/X11/fontserver.cfg. The catalog entry in this file contains a list of font
directories that are available to the daemon for serving. The cluster administrator can locate the
font directories in the cluster file system. This location optimizes the use of the X Font Server on
Sun Cluster by maintaining a single copy of the font's database on the system. If the cluster
administrator wants to change the location, the cluster administrator must edit
fontserver.cfg to reflect the new paths for the font directories.

For ease of configuration, the cluster administrator can also place the configuration file itself in
the cluster file system. The xfs daemon provides command-line arguments that override the
default, built-in location of this file. The SUNW.xfnts resource type uses the following command
to start the daemon under the control of the Sun Cluster software.

/usr/openwin/bin/xfs -config location-of-configuration-file/fontserver.cfg \

-port port-number

In the SUNW.xfnts resource type implementation, you can use the Confdir_list property to
manage the location of the fontserver.cfg configuration file.

TCP Port Number
The TCP port number on which the xfs server daemon listens is normally the “fs” port,
typically defined as 7100 in the /etc/services file. However, the -port option that the cluster
administrator includes with the xfs command enables the cluster administrator to override the
default setting.

You can use the Port_list property in the SUNW.xfnts resource type to set the default value
and to enable the cluster administrator to use the -port option with the xfs command. You
define the default value of this property as 7100/tcp in the RTR file. In the SUNW.xfnts Start
method, you pass Port_list to the -port option on the xfs command line. Consequently, a
user of this resource type is not required to specify a port number (the port defaults to
7100/tcp). The cluster administrator can specify a different value for the Port_list property
when the cluster administrator configures the resource type.

SUNW.xfntsRTR File
This section describes several key properties in the SUNW.xfnts RTR file. It does not describe
the purpose of each property in the file. For such a description, see “Setting Resource and
Resource Type Properties” on page 34.

The Confdir_list extension property identifies the configuration directory (or a list of
directories), as follows:

SUNW.xfnts RTR File

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A140

{

PROPERTY = Confdir_list;

EXTENSION;

STRINGARRAY;

TUNABLE = AT_CREATION;

DESCRIPTION = "The Configuration Directory Path(s)";
}

The Confdir_list property does not specify a default value. The cluster administrator must
specify a directory name when the resource is created. This value cannot be changed later
because tunability is limited to AT_CREATION.

The Port_list property identifies the port on which the application listens, as follows:

{

PROPERTY = Port_list;

DEFAULT = 7100/tcp;

TUNABLE = ANYTIME;

}

Because the property declares a default value, the cluster administrator can specify a new value
or accept the default value when the resource is created. No one can change this value later
because tunability is limited to AT_CREATION.

Naming Conventions for Functions and Callback Methods
You can identify the various pieces of the sample code by knowing these conventions:

■ RMAPI functions begin with scha_.
■ DSDL functions begin with scds_.
■ Callback methods begin with xfnts_.
■ User-written functions begin with svc_.

scds_initialize() Function
The DSDL requires that each callback method call the scds_initialize() function at the
beginning of the method.

This function performs the following operations:

■ Checks and processes the command-line arguments (argc and argv) that the framework
passes to the data service method. The method does not have to process any additional
command-line arguments.

■ Sets up internal data structures for use by the other functions in the DSDL.

scds_initialize() Function

Chapter 8 • Sample DSDL Resource Type Implementation 141

■ Initializes the logging environment.
■ Validates fault monitor probe settings.

Use the scds_close() function to reclaim the resources that are allocated by
scds_initialize().

xfnts_startMethod
The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node or when the resource is enabled. In the
SUNW.xfnts sample resource type, the xfnts_start method activates the xfs daemon on that
node.

The xfnts_start method calls scds_pmf_start() to start the daemon under the PMF. The
PMF provides automatic failure notification and restart features, as well as integration with the
fault monitor.

Note – The first call in xfnts_start is to scds_initialize(), which performs some necessary
housekeeping functions. “scds_initialize() Function” on page 141 and the
scds_initialize(3HA) man page contain more information.

Validating the Service Before Starting the X Font
Server
Before the xfnts_start method attempts to start the X Font Server, it calls svc_validate() to
verify that a correct configuration is in place to support the xfs daemon.

rc = svc_validate(scds_handle);

if (rc != 0) {

scds_syslog(LOG_ERR,

"Failed to validate configuration.");
return (rc);

}

See “xfnts_validate Method” on page 156 for details.

Starting the Service With svc_start()

The xfnts_start method calls the svc_start() method, which is defined in the xfnts.c file,
to start the xfs daemon. This section describes svc_start().

The command to start the xfs daemon is as follows:

xfnts_startMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A142

http://docs.sun.com/doc/820-4685/scds-initialize-3ha?a=view

xfs -config config-directory/fontserver.cfg -port port-number

The Confdir_list extension property identifies the config-directory while the Port_list
system property identifies the port-number. The cluster administrator provides specific values
for these properties when he or she configures the data service.

The xfnts_start method declares these properties as string arrays. The xfnts_start method
obtains the values that the cluster administrator sets by using the
scds_get_ext_confdir_list() and scds_get_port_list() functions. These functions are
described in the scds_property_functions(3HA) man page.

scha_str_array_t *confdirs;

scds_port_list_t *portlist;

scha_err_t err;

/* get the configuration directory from the confdir_list property */

confdirs = scds_get_ext_confdir_list(scds_handle);

(void) sprintf(xfnts_conf, "%s/fontserver.cfg", confdirs->str_array[0]);

/* obtain the port to be used by XFS from the Port_list property */

err = scds_get_port_list(scds_handle, &portlist);

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Could not access property Port_list.");
return (1);

}

Note that the confdirs variable points to the first element (0) of the array.

The xfnts_start method uses sprintf() to form the command line for xfs.

/* Construct the command to start the xfs daemon. */

(void) sprintf(cmd,

"/usr/openwin/bin/xfs -config %s -port %d 2>/dev/null",
xfnts_conf, portlist->ports[0].port);

Note that the output is redirected to /dev/null to suppress messages that are generated by the
daemon.

The xfnts_start method passes the xfs command line to scds_pmf_start() to start the data
service under the control of the PMF.

scds_syslog(LOG_INFO, "Issuing a start request.");
err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_SVC,

SCDS_PMF_SINGLE_INSTANCE, cmd, -1);

if (err == SCHA_ERR_NOERR) {

xfnts_startMethod

Chapter 8 • Sample DSDL Resource Type Implementation 143

http://docs.sun.com/doc/820-4685/scds-property-functions-3ha?a=view

scds_syslog(LOG_INFO,

"Start command completed successfully.");
} else {

scds_syslog(LOG_ERR,

"Failed to start HA-XFS ");
}

Note the following points about the call to scds_pmf_start():

■ The SCDS_PMF_TYPE_SVC argument identifies the program to start as a data service
application. This method can also start a fault monitor or some other type of application.

■ The SCDS_PMF_SINGLE_INSTANCE argument identifies this as a single-instance resource.
■ The cmd argument is the command line that was generated previously.
■ The final argument, -1, specifies the child monitoring level. The -1 value specifies that the

PMF monitor all children as well as the original process.

Before returning, svc_pmf_start() frees the memory that is allocated for the portlist
structure.

scds_free_port_list(portlist);

return (err);

Returning From svc_start()

Even when svc_start() returns successfully, the underlying application might have failed to
start. Therefore, svc_start() must probe the application to verify that it is running before
returning a success message. The probe must also take into account that the application might
not be immediately available because it takes some time to start. The svc_start() method calls
svc_wait(), which is defined in the xfnts.c file, to verify that the application is running.

/* Wait for the service to start up fully */

scds_syslog_debug(DBG_LEVEL_HIGH,

"Calling svc_wait to verify that service has started.");

rc = svc_wait(scds_handle);

scds_syslog_debug(DBG_LEVEL_HIGH,

"Returned from svc_wait");

if (rc == 0) {

scds_syslog(LOG_INFO, "Successfully started the service.");
} else {

scds_syslog(LOG_ERR, "Failed to start the service.");
}

xfnts_startMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A144

The svc_wait() function calls scds_get_netaddr_list() to obtain the network address
resources that are needed to probe the application.

/* obtain the network resource to use for probing */

if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,

"No network address resources found in resource group.");
return (1);

}

/* Return an error if there are no network resources */

if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,

"No network address resource in resource group.");
return (1);

}

The svc_wait() function obtains the Start_timeout and Stop_timeout values.

svc_start_timeout = scds_get_rs_start_timeout(scds_handle)

probe_timeout = scds_get_ext_probe_timeout(scds_handle)

To account for the time the server might take to start, svc_wait() calls scds_svc_wait() and
passes a timeout value equivalent to three percent of the Start_timeout value. The svc_wait()
function calls the svc_probe() function to verify that the application has started. The
svc_probe() method makes a simple socket connection to the server on the specified port. If it
fails to connect to the port, svc_probe() returns a value of 100, which indicates a total failure. If
the connect goes through but the disconnect to the port fails, svc_probe() returns a value of 50.

On failure or partial failure of svc_probe(), svc_wait() calls scds_svc_wait() with a timeout
value of 5. The scds_svc_wait() method limits the frequency of the probes to every five
seconds. This method also counts the number of attempts to start the service. If the number of
attempts exceeds the value of the Retry_count property of the resource within the period that is
specified by the Retry_interval property of the resource, the scds_svc_wait() function
returns failure. In this case, the svc_start() function also returns failure.

#define SVC_CONNECT_TIMEOUT_PCT 95

#define SVC_WAIT_PCT 3

if (scds_svc_wait(scds_handle, (svc_start_timeout * SVC_WAIT_PCT)/100)

!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR, "Service failed to start.");
return (1);

}

do {

/*

xfnts_startMethod

Chapter 8 • Sample DSDL Resource Type Implementation 145

* probe the data service on the IP address of the

* network resource and the portname

*/

rc = svc_probe(scds_handle,

netaddr->netaddrs[0].hostname,

netaddr->netaddrs[0].port_proto.port, probe_timeout);

if (rc == SCHA_ERR_NOERR) {

/* Success. Free up resources and return */

scds_free_netaddr_list(netaddr);

return (0);

}

/* Call scds_svc_wait() so that if service fails too

if (scds_svc_wait(scds_handle, SVC_WAIT_TIME)

!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR, "Service failed to start.");
return (1);

}

/* Rely on RGM to timeout and terminate the program */

} while (1);

Note – Before it exits, the xfnts_start method calls scds_close() to reclaim resources that are
allocated by scds_initialize(). “scds_initialize() Function” on page 141 and the
scds_close(3HA) man page contain more information.

xfnts_stopMethod
Because the xfnts_start method uses scds_pmf_start() to start the service under the PMF,
xfnts_stop uses scds_pmf_stop() to stop the service.

Note – The first call in xfnts_stop is to scds_initialize(), which performs some necessary
housekeeping functions. “scds_initialize() Function” on page 141 and the
scds_initialize(3HA) man page contain more information.

The xfnts_stop method calls the svc_stop() method, which is defined in the xfnts.c file, as
follows:

scds_syslog(LOG_ERR, "Issuing a stop request.");
err = scds_pmf_stop(scds_handle,

SCDS_PMF_TYPE_SVC, SCDS_PMF_SINGLE_INSTANCE, SIGTERM,

scds_get_rs_stop_timeout(scds_handle));

xfnts_stopMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A146

http://docs.sun.com/doc/820-4685/scds-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-initialize-3ha?a=view

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Failed to stop HA-XFS.");
return (1);

}

scds_syslog(LOG_INFO,

"Successfully stopped HA-XFS.");
return (SCHA_ERR_NOERR); /* Successfully stopped */

Note the following points about the call in svc_stop() to the scds_pmf_stop() function:

■ The SCDS_PMF_TYPE_SVC argument identifies the program to stop as a data service
application. This method can also stop a fault monitor or some other type of application.

■ The SCDS_PMF_SINGLE_INSTANCE argument identifies the signal.
■ The SIGTERM argument identifies the signal to use to stop the resource instance. If this signal

fails to stop the instance, scds_pmf_stop() sends SIGKILL to stop the instance, and if that
fails, returns with a timeout error. See the scds_pmf_stop(3HA) man page for details.

■ The timeout value is that of the Stop_timeout property of the resource.

Note – Before it exits, the xfnts_stop method calls scds_close() to reclaim resources that are
allocated by scds_initialize(). “scds_initialize() Function” on page 141 and the
scds_close(3HA) man page contain more information.

xfnts_monitor_startMethod
The RGM calls the Monitor_start method on a node to start the fault monitor after a resource
is started on the node. The xfnts_monitor_start method uses scds_pmf_start() to start the
monitor daemon under the PMF.

Note – The first call in xfnts_monitor_start is to scds_initialize(), which performs some
necessary housekeeping functions. “scds_initialize() Function” on page 141 and the
scds_initialize(3HA) man page contain more information.

The xfnts_monitor_start method calls the mon_start method, which is defined in the
xfnts.c file, as follows:

scds_syslog_debug(DBG_LEVEL_HIGH,

"Calling Monitor_start method for resource <%s>.",
scds_get_resource_name(scds_handle));

/* Call scds_pmf_start and pass the name of the probe. */

xfnts_monitor_startMethod

Chapter 8 • Sample DSDL Resource Type Implementation 147

http://docs.sun.com/doc/820-4685/scds-pmf-stop-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-initialize-3ha?a=view

err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_MON,

SCDS_PMF_SINGLE_INSTANCE, "xfnts_probe", 0);

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Failed to start fault monitor.");
return (1);

}

scds_syslog(LOG_INFO,

"Started the fault monitor.");

return (SCHA_ERR_NOERR); /* Successfully started Monitor */

}

Note the following points about the call in svc_mon_start() to the scds_pmf_start()
function:

■ The SCDS_PMF_TYPE_MON argument identifies the program to start as a fault monitor. This
method can also start a data service or some other type of application.

■ The SCDS_PMF_SINGLE_INSTANCE argument identifies this as a single-instance resource.
■ The xfnts_probe argument identifies the monitor daemon to start. The monitor daemon is

assumed to be located in the same directory as the other callback programs.
■ The final argument, 0, specifies the child monitoring level. In this case, this value specifies

that the PMF monitor the monitor daemon only.

Note – Before it exits, the xfnts_monitor_start method calls scds_close() to reclaim
resources that were allocated by scds_initialize(). “scds_initialize() Function” on
page 141 and the scds_close(3HA) man page contain more information.

xfnts_monitor_stopMethod
Because the xfnts_monitor_start method uses scds_pmf_start() to start the monitor
daemon under the PMF, xfnts_monitor_stop uses scds_pmf_stop()to stop the monitor
daemon.

Note – The first call in xfnts_monitor_stop is to scds_initialize(), which performs some
necessary housekeeping functions. “scds_initialize() Function” on page 141 and the
scds_initialize(3HA) man page contain more information.

The xfnts_monitor_stop() method calls the mon_stop method, which is defined in the
xfnts.c file, as follows:

xfnts_monitor_stopMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A148

http://docs.sun.com/doc/820-4685/scds-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-initialize-3ha?a=view

scds_syslog_debug(DBG_LEVEL_HIGH,

"Calling scds_pmf_stop method");

err = scds_pmf_stop(scds_handle, SCDS_PMF_TYPE_MON,

SCDS_PMF_SINGLE_INSTANCE, SIGKILL,

scds_get_rs_monitor_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Failed to stop fault monitor.");
return (1);

}

scds_syslog(LOG_INFO,

"Stopped the fault monitor.");

return (SCHA_ERR_NOERR); /* Successfully stopped monitor */

}

Note the following points about the call in svc_mon_stop() to the scds_pmf_stop() function:

■ The SCDS_PMF_TYPE_MON argument identifies the program to stop as a fault monitor. This
method can also stop a data service or some other type of application.

■ The SCDS_PMF_SINGLE_INSTANCE argument identifies this as a single-instance resource.
■ The SIGKILL argument identifies the signal to use to stop the resource instance. If this signal

fails to stop the instance, scds_pmf_stop() returns with a timeout error. See the
scds_pmf_stop(3HA) man page for details.

■ The timeout value is that of the Monitor_stop_timeout property of the resource.

Note – Before it exits, the xfnts_monitor_stop method calls scds_close() to reclaim resources
that were allocated by scds_initialize(). “scds_initialize() Function” on page 141 and
the scds_close(3HA) man page contain more information.

xfnts_monitor_checkMethod
The RGM calls the Monitor_check method whenever the fault monitor attempts to fail over the
resource group that contains the resource to another node. The xfnts_monitor_check method
calls the svc_validate() method to verify that a correct configuration is in place to support the
xfs daemon. See “xfnts_validate Method” on page 156 for details. The code for
xfnts_monitor_check is as follows:

/* Process the arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

xfnts_monitor_checkMethod

Chapter 8 • Sample DSDL Resource Type Implementation 149

http://docs.sun.com/doc/820-4685/scds-pmf-stop-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-close-3ha?a=view

scds_syslog(LOG_ERR, "Failed to initialize the handle.");
return (1);

}

rc = svc_validate(scds_handle);

scds_syslog_debug(DBG_LEVEL_HIGH,

"monitor_check method "
"was called and returned <%d>.", rc);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

/* Return the result of validate method run as part of monitor check */

return (rc);

}

SUNW.xfnts Fault Monitor
The RGM does not directly call the PROBE method, but rather calls the Monitor_start method
to start the monitor after a resource is started on a node. The xfnts_monitor_start method
starts the fault monitor under the control of the PMF. The xfnts_monitor_stop method stops
the fault monitor.

The SUNW.xfnts fault monitor performs the following operations:

■ Periodically monitors the health of the xfs server daemon by using utilities that are
specifically designed to check simple TCP-based services, such as xfs.

■ Tracks problems that the application encounters within a time window (using the
Retry_count and Retry_interval properties) and decides whether to restart or fail over
the data service if the application fails completely. The scds_fm_action() and
scds_fm_sleep() functions provide built-in support for this tracking and decision
mechanism.

■ Implements the failover or restart decision by using scds_fm_action().
■ Updates the resource state and makes the resource state available to administrative tools and

GUIs.

SUNW.xfnts Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A150

xfonts_probeMain Loop
The xfonts_probe method implements a loop.

Before implementing the loop, xfonts_probe performs the following operations:
■ Retrieves the network address resources for the xfnts resource, as follows:

/* Get the ip addresses available for this resource */

if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,

"No network address resource in resource group.");
scds_close(&scds_handle);

return (1);

}

/* Return an error if there are no network resources */

if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,

"No network address resource in resource group.");
return (1);

}

■ Calls scds_fm_sleep() and passes the value of Thorough_probe_interval as the timeout
value. The probe sleeps for the value of Thorough_probe_interval between probes, as
follows:

timeout = scds_get_ext_probe_timeout(scds_handle);

for (;;) {

/*

* sleep for a duration of thorough_probe_interval between

* successive probes.

*/

(void) scds_fm_sleep(scds_handle,

scds_get_rs_thorough_probe_interval(scds_handle));

The xfnts_probe method implements the following loop:

for (ip = 0; ip < netaddr->num_netaddrs; ip++) {

/*

* Grab the hostname and port on which the

* health has to be monitored.

*/

hostname = netaddr->netaddrs[ip].hostname;

port = netaddr->netaddrs[ip].port_proto.port;

/*

* HA-XFS supports only one port and

* hence obtain the port value from the

SUNW.xfnts Fault Monitor

Chapter 8 • Sample DSDL Resource Type Implementation 151

* first entry in the array of ports.

*/

ht1 = gethrtime(); /* Latch probe start time */

scds_syslog(LOG_INFO, "Probing the service on port: %d.", port);

probe_result =

svc_probe(scds_handle, hostname, port, timeout);

/*

* Update service probe history,

* take action if necessary.

* Latch probe end time.

*/

ht2 = gethrtime();

/* Convert to milliseconds */

dt = (ulong_t)((ht2 - ht1) / 1e6);

/*

* Compute failure history and take

* action if needed

*/

(void) scds_fm_action(scds_handle,

probe_result, (long)dt);

} /* Each net resource */

} /* Keep probing forever */

The svc_probe() function implements the probe logic. The return value from svc_probe() is
passed to scds_fm_action(), which determines whether to restart the application, fail over the
resource group, or do nothing.

svc_probe() Function
The svc_probe() function makes a simple socket connection to the specified port by calling
scds_fm_tcp_connect(). If the connect fails, svc_probe() returns a value of 100, which
indicates a complete failure. If the connect succeeds, but the disconnect fails, svc_probe()
returns a value of 50, which indicates a partial failure. If the connect and disconnect both
succeed, svc_probe() returns a value of 0, which indicates success.

The code for svc_probe() is as follows:

int svc_probe(scds_handle_t scds_handle,

char *hostname, int port, int timeout)

{

int rc;

hrtime_t t1, t2;

SUNW.xfnts Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A152

int sock;

char testcmd[2048];

int time_used, time_remaining;

time_t connect_timeout;

/*

* probe the data service by doing a socket connection to the port

* specified in the port_list property to the host that is

* serving the XFS data service. If the XFS service which is configured

* to listen on the specified port, replies to the connection, then

* the probe is successful. Else we will wait for a time period set

* in probe_timeout property before concluding that the probe failed.

*/

/*

* Use the SVC_CONNECT_TIMEOUT_PCT percentage of timeout

* to connect to the port

*/

connect_timeout = (SVC_CONNECT_TIMEOUT_PCT * timeout)/100;

t1 = (hrtime_t)(gethrtime()/1E9);

/*

* the probe makes a connection to the specified hostname and port.

* The connection is timed for 95% of the actual probe_timeout.

*/

rc = scds_fm_tcp_connect(scds_handle, &sock, hostname, port,

connect_timeout);

if (rc) {

scds_syslog(LOG_ERR,

"Failed to connect to port <%d> of resource <%s>.",
port, scds_get_resource_name(scds_handle));

/* this is a complete failure */

return (SCDS_PROBE_COMPLETE_FAILURE);

}

t2 = (hrtime_t)(gethrtime()/1E9);

/*

* Compute the actual time it took to connect. This should be less than

* or equal to connect_timeout, the time allocated to connect.

* If the connect uses all the time that is allocated for it,

* then the remaining value from the probe_timeout that is passed to

* this function will be used as disconnect timeout. Otherwise, the

* the remaining time from the connect call will also be added to

* the disconnect timeout.

*

*/

SUNW.xfnts Fault Monitor

Chapter 8 • Sample DSDL Resource Type Implementation 153

time_used = (int)(t2 - t1);

/*

* Use the remaining time(timeout - time_took_to_connect) to disconnect

*/

time_remaining = timeout - (int)time_used;

/*

* If all the time is used up, use a small hardcoded timeout

* to still try to disconnect. This will avoid the fd leak.

*/

if (time_remaining <= 0) {

scds_syslog_debug(DBG_LEVEL_LOW,

"svc_probe used entire timeout of "
"%d seconds during connect operation and exceeded the "
"timeout by %d seconds. Attempting disconnect with timeout"
" %d ",
connect_timeout,

abs(time_used),

SVC_DISCONNECT_TIMEOUT_SECONDS);

time_remaining = SVC_DISCONNECT_TIMEOUT_SECONDS;

}

/*

* Return partial failure in case of disconnection failure.

* Reason: The connect call is successful, which means

* the application is alive. A disconnection failure

* could happen due to a hung application or heavy load.

* If it is the later case, don’t declare the application

* as dead by returning complete failure. Instead, declare

* it as partial failure. If this situation persists, the

* disconnect call will fail again and the application will be

* restarted.

*/

rc = scds_fm_tcp_disconnect(scds_handle, sock, time_remaining);

if (rc != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Failed to disconnect to port %d of resource %s.",
port, scds_get_resource_name(scds_handle));

/* this is a partial failure */

return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

t2 = (hrtime_t)(gethrtime()/1E9);

time_used = (int)(t2 - t1);

SUNW.xfnts Fault Monitor

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A154

time_remaining = timeout - time_used;

/*

* If there is no time left, don’t do the full test with

* fsinfo. Return SCDS_PROBE_COMPLETE_FAILURE/2

* instead. This will make sure that if this timeout

* persists, server will be restarted.

*/

if (time_remaining <= 0) {

scds_syslog(LOG_ERR, "Probe timed out.");
return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

/*

* The connection and disconnection to port is successful,

* Run the fsinfo command to perform a full check of

* server health.

* Redirect stdout, otherwise the output from fsinfo

* ends up on the console.

*/

(void) sprintf(testcmd,

"/usr/openwin/bin/fsinfo -server %s:%d > /dev/null",
hostname, port);

scds_syslog_debug(DBG_LEVEL_HIGH,

"Checking the server status with %s.", testcmd);

if (scds_timerun(scds_handle, testcmd, time_remaining,

SIGKILL, &rc) != SCHA_ERR_NOERR || rc != 0) {

scds_syslog(LOG_ERR,

"Failed to check server status with command <%s>",
testcmd);

return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

return (0);

}

When finished, svc_probe() returns a value that indicates success (0), partial failure (50), or
complete failure (100). The xfnts_probe method passes this value to scds_fm_action().

SUNW.xfnts Fault Monitor

Chapter 8 • Sample DSDL Resource Type Implementation 155

Determining the Fault Monitor Action
The xfnts_probe method calls scds_fm_action() to determine the action to take.

The logic in scds_fm_action() is as follows:

■ Maintain a cumulative failure history within the value of the Retry_interval property.
■ If the cumulative failure reaches 100 (complete failure), restart the data service. If

Retry_interval is exceeded, reset the history.
■ If the number of restarts exceeds the value of the Retry_count property, within the time

specified by Retry_interval, fail over the data service.

For example, suppose the probe makes a connection to the xfs server, but fails to disconnect.
This indicates that the server is running, but could be hung or just under a temporary load. The
failure to disconnect sends a partial (50) failure to scds_fm_action(). This value is below the
threshold for restarting the data service, but the value is maintained in the failure history.

If during the next probe the server again fails to disconnect, a value of 50 is added to the failure
history maintained by scds_fm_action(). The cumulative failure value is now 100, so
scds_fm_action() restarts the data service.

xfnts_validateMethod
The RGM calls the Validate method when a resource is created and when a cluster
administrator updates the properties of the resource or its containing group. The RGM calls the
Validate method before the creation or update is applied. A failure exit code from the method
on any node causes the creation or update to be canceled.

The RGM calls Validate only when a cluster administrator changes resource or resource group
properties or when a monitor sets the Status and Status_msg resource properties. The RGM
does not call Validate when the RGM sets properties.

Note – The Monitor_check method also explicitly calls the Validate method whenever the
PROBE method attempts to fail over the data service to a new node.

The RGM calls Validate with additional arguments to those that are passed to other methods,
including the properties and values that are being updated. The call to scds_initialize() at
the beginning of xfnts_validate parses all the arguments that the RGM passes to
xfnts_validate and stores the information in the scds_handle argument. The subroutines
that xfnts_validate calls make use of this information.

xfnts_validateMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A156

The xfnts_validate method calls svc_validate(), which verifies the following conditions:
■ The Confdir_list property has been set for the resource and defines a single directory.

scha_str_array_t *confdirs;

confdirs = scds_get_ext_confdir_list(scds_handle);

/* Return error if there is no confdir_list extension property */

if (confdirs == NULL || confdirs->array_cnt != 1) {

scds_syslog(LOG_ERR,

"Property Confdir_list is not set properly.");
return (1); /* Validation failure */

}

■ The directory that is specified by Confdir_list contains the fontserver.cfg file.

(void) sprintf(xfnts_conf, "%s/fontserver.cfg", confdirs->str_array[0]);

if (stat(xfnts_conf, &statbuf) != 0) {

/*

* suppress lint error because errno.h prototype

* is missing void arg

*/

scds_syslog(LOG_ERR,

"Failed to access file <%s> : <%s>",
xfnts_conf, strerror(errno)); /*lint !e746 */

return (1);

}

■ The server daemon binary is accessible on the cluster node.

if (stat("/usr/openwin/bin/xfs", &statbuf) != 0) {

scds_syslog(LOG_ERR,

"Cannot access XFS binary : <%s> ", strerror(errno));

return (1);

}

■ The Port_list property specifies a single port.

scds_port_list_t *portlist;

err = scds_get_port_list(scds_handle, &portlist);

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Could not access property Port_list: %s.",
scds_error_string(err));

return (1); /* Validation Failure */

}

#ifdef TEST

if (portlist->num_ports != 1) {

xfnts_validateMethod

Chapter 8 • Sample DSDL Resource Type Implementation 157

scds_syslog(LOG_ERR,

"Property Port_list must have only one value.");
scds_free_port_list(portlist);

return (1); /* Validation Failure */

}

#endif

■ The resource group that contains the data service also contains at least one network address
resource.

scds_net_resource_list_t *snrlp;

if ((err = scds_get_rs_hostnames(scds_handle, &snrlp))

!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"No network address resource in resource group: %s.",
scds_error_string(err));

return (1); /* Validation Failure */

}

/* Return an error if there are no network address resources */

if (snrlp == NULL || snrlp->num_netresources == 0) {

scds_syslog(LOG_ERR,

"No network address resource in resource group.");
rc = 1;

goto finished;

}

Before it returns, svc_validate() frees all allocated resources.

finished:

scds_free_net_list(snrlp);

scds_free_port_list(portlist);

return (rc); /* return result of validation */

Note – Before it exits, the xfnts_validate method calls scds_close() to reclaim resources that
were allocated by scds_initialize(). “scds_initialize() Function” on page 141 and the
scds_close(3HA) man page contain more information.

xfnts_validateMethod

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A158

http://docs.sun.com/doc/820-4685/scds-close-3ha?a=view

xfnts_updateMethod
The RGM calls the Update method to notify a running resource that its properties have
changed. The only properties that can be changed for the xfnts data service pertain to the fault
monitor. Therefore, whenever a property is updated, the xfnts_update method calls
scds_pmf_restart_fm() to restart the fault monitor.

/* check if the Fault monitor is already running and if so stop

* and restart it. The second parameter to scds_pmf_restart_fm()

* uniquely identifies the instance of the fault monitor that needs

* to be restarted.

*/

scds_syslog(LOG_INFO, "Restarting the fault monitor.");
result = scds_pmf_restart_fm(scds_handle, 0);

if (result != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

"Failed to restart fault monitor.");
/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

return (1);

}

scds_syslog(LOG_INFO,

"Completed successfully.");

Note – The second argument to scds_pmf_restart_fm() uniquely identifies the instance of the
fault monitor to be restarted if there are multiple instances. The value 0 in the example indicates
that there is only one instance of the fault monitor.

xfnts_updateMethod

Chapter 8 • Sample DSDL Resource Type Implementation 159

160

Sun Cluster Agent Builder

This chapter describes Sun Cluster Agent Builder and the Cluster Agent module for Agent
Builder. Both tools automate the creation of resource types, or data services, to be run under the
control of the Resource Group Manager (RGM). A resource type is a wrapper around an
application that enables that application to run in a clustered environment, under control of the
RGM.

This chapter covers the following topics:

■ “Agent Builder Overview” on page 161
■ “Before You Use Agent Builder” on page 162
■ “Using Agent Builder” on page 163
■ “Directory Structure That Agent Builder Creates” on page 179
■ “Agent Builder Output” on page 180
■ “Cluster Agent Module for Agent Builder” on page 184

Agent Builder Overview
Agent Builder provides a graphical user interface (GUI) for specifying information about your
application and the kind of resource type that you want to create. Agent Builder supports
network-aware applications and nonnetwork-aware applications. Network-aware applications
use the network to communicate with clients. Nonnetwork-aware applications are standalone
applications.

Note – If the GUI version of Agent Builder is not accessible, you can access Agent Builder
through a command-line interface. See “How to Use the Command-Line Version of Agent
Builder” on page 178.

9C H A P T E R 9

161

Based on the information you specify, Agent Builder generates the following software:

■ A set of C, Korn shell (ksh), or generic data service (GDS) source files for a failover or
scalable resource type that corresponds to the resource type's method callbacks. These files
are intended for both network-aware (client-server model) and nonnetwork-aware
(clientless) applications.

■ A customized Resource Type Registration (RTR) file (if you generate C or Korn shell source
code).

■ Customized utility scripts for starting, stopping, and removing an instance (resource) of the
resource type, as well as customized man pages that document how to use each one of these
files.

■ A Solaris package that includes the binaries (if you generate C source code), an RTR file (if
you generate C or Korn shell source code), and the utility scripts.

Agent Builder also enables you to generate a resource type for an application that has multiple
independent process trees that the Process Monitor Facility (PMF) must monitor and restart
individually.

Before You Use Agent Builder
Before you use Agent Builder, you need to know how to create resource types with multiple
independent process trees.

Agent Builder can create resource types for applications that have more than one independent
process tree. These process trees are independent in the sense that the PMF monitors and starts
them individually. The PMF starts each process tree with its own tag.

Note – Agent Builder enables you to create resource types with multiple independent process
trees only if the generated source code that you specify is C or GDS. You cannot use Agent
Builder to create these resource types for the Korn shell. To create these resource types for the
Korn shell, you must manually write the code.

In the case of a base application with multiple independent process trees, you cannot specify a
single command line to start the application. Rather, you must create a text file, with each line
specifying the full path to a command to start one of the application's process trees. This file
must not contain any empty lines. You specify this text file in the Start Command text field on
the Agent Builder Configure screen.

Ensuring that this file does not have execute permissions enables Agent Builder to distinguish
this file. The purpose of this file is to start multiple process trees from a simple executable script
that contains multiple commands. If this text file is given execute permissions, the resources

Before You Use Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A162

come up with no problems or errors on a cluster. However, all the commands are started under
one PMF tag. As a result, the PMF is unable to monitor and restart the process trees
individually.

Using Agent Builder
This section describes how to use Agent Builder. In addition, this section includes tasks that you
must complete before you can use Agent Builder. This section also explains ways that you can
take advantage of Agent Builder after you generate your resource type code.

This section covers the following topics:

■ “Analyzing the Application” on page 163
■ “Installing and Configuring Agent Builder” on page 164
■ “Agent Builder Screens” on page 164
■ “Starting Agent Builder” on page 165
■ “Navigating Agent Builder” on page 166
■ “Using the Create Screen” on page 169
■ “Using the Configure Screen” on page 171
■ “Using the Agent Builder Korn Shell-Based $hostnames Variable” on page 174
■ “Using Property Variables” on page 174
■ “Reusing Code That You Create With Agent Builder” on page 177
■ “How to Use the Command-Line Version of Agent Builder” on page 178

Analyzing the Application
Before using Agent Builder, you must determine whether the application that you intend to
make highly available or scalable meets the required criteria. Agent Builder cannot perform this
analysis, which is based solely on the runtime characteristics of the application. “Analyzing the
Application for Suitability” on page 29 provides more information about this topic.

Agent Builder might not always be able to create a complete resource type for your application.
However, in most cases, Agent Builder provides at least a partial solution. For example, more
sophisticated applications might require additional code that Agent Builder does not generate
by default. Examples of additional code include code that adds validation checks for additional
properties or that tunes parameters that Agent Builder does not expose. In these cases, you must
make changes to the generated source code or to the RTR file. Agent Builder is designed to
provide just this kind of flexibility.

Agent Builder places comments at particular points in the generated source code where you can
add your own resource type code. After making changes to the source code, you can use the
makefile that Agent Builder generates to recompile the source code and regenerate the resource
type package.

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 163

Even if you write your entire resource type code without using any code that is generated by
Agent Builder, you can use the makefile and structure that Agent Builder provides to create the
Solaris package for your resource type.

Installing and Configuring Agent Builder
Agent Builder requires no special installation. Agent Builder is included in the SUNWscdev
package, which is installed by default when you install the Sun Cluster software. The Sun Cluster
Software Installation Guide for Solaris OS contains more information.

Before you use Agent Builder, verify the following requirements:

■ The Java runtime environment is included in your $PATH variable. Agent Builder depends
on the Java Development Kit, at least Version 1.3.1. If the Java Development Kit is not
included in your $PATH variable, the Agent Builder command (scdsbuilder) returns and
displays an error message.

■ You have installed the Developer System Support software group of the Solaris 9 OS or the
Solaris 10 OS.

■ The cc compiler is included in your $PATH variable. Agent Builder uses the first occurrence
of cc in your $PATH variable to identify the compiler with which to generate C binary code
for the resource type. If cc is not included in $PATH, Agent Builder disables the option to
generate C code. See “Using the Create Screen” on page 169.

Note – You can use a different compiler with Agent Builder than the standard cc compiler. To
use a different compiler, create a symbolic link in $PATH from cc to a different compiler, such as
gcc. Or, change the compiler specification in the makefile (currently, CC=cc) to the complete
path for a different compiler. For example, in the makefile that is generated by Agent Builder,
change CC=cc to CC=pathname/gcc. In this case, you cannot run Agent Builder directly. Instead,
you must use the make and make pkg commands to generate data service code and the package.

Agent Builder Screens
Agent Builder is a two-step wizard with a corresponding screen for each step.

Agent Builder provides the following two screens to guide you through the process of creating a
new resource type:

1. Create screen. On this screen, you provide basic information about the resource type to
create, such as its name and the working directory for the generated files. The working
directory is where you create and configure the resource type template.

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A164

http://docs.sun.com/doc/820-4677
http://docs.sun.com/doc/820-4677

You also specify the following information:
■ The kind of resource to create (scalable or failover)
■ Whether the base application is network aware (that is, if it uses the network to

communicate with its clients)
■ The type of code to generate (C, Korn shell (ksh), or GDS)

For information about GDS, see Chapter 10, “Generic Data Services.” You must provide all
the information on this screen and select Create to generate the corresponding output.
Then, you can display the Configure screen.

2. Configure screen. On this screen, you must specify the full command line that can be
passed to any UNIX shell to start your base application. Optionally, you can provide
commands to stop and to probe your application. If you do not specify these two
commands, the generated output uses signals to stop the application and provides a default
probe mechanism. See the description of the probe command in “Using the Configure
Screen” on page 171. The Configure screen also enables you to change the timeout values for
each of these three commands: start, stop, probe.

Starting Agent Builder

Note – If the GUI version of Agent Builder is not accessible, you can access Agent Builder
through a command-line interface. See “How to Use the Command-Line Version of Agent
Builder” on page 178.

If you start Agent Builder from the working directory for an existing resource type, Agent
Builder initializes the Create and Configure screens to the values of the existing resource type.

Start Agent Builder by typing the following command:

% /usr/cluster/bin/scdsbuilder

The Create screen appears.

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 165

Navigating Agent Builder
You enter information on the Create and Configure screens by performing the following
operations:

■ Typing information in a field
■ Browsing your directory structure and selecting a file or directory
■ Selecting one of a set of mutually exclusive radio buttons, for example, selecting Scalable or

Failover
■ Selecting the Network Aware check box to identify the base application as network aware, or

leaving this box empty to identify a nonnetwork-aware application

The buttons at the bottom of each screen enable you to complete the task, move to the next or
previous screen, or exit Agent Builder. Agent Builder emphasizes or grays out these buttons, as
necessary.

For example, when you have filled in the fields and selected the preferred options on the Create
screen, click Create at the bottom of the screen. Previous and Next are grayed out because no
previous screen exists and you cannot go to the next step before you complete this step.

FIGURE 9–1 Create Screen for Agent Builder

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A166

Agent Builder displays progress messages in the Output Log area at the bottom of the screen.
When Agent Builder finishes, it displays a success message or a warning message. Next is
highlighted, or if this is the last screen, only Cancel is highlighted.

You can click Cancel at any time to exit Agent Builder.

Browse Command
Some Agent Builder fields enable you to type information in them. Other fields enable you to
click Browse to browse a directory structure and select a file or a directory.

When you click Browse, a screen similar to this screen appears.

Double-click a folder to open it. When you move the cursor to a file, the file's name appears in
the File Name field. Click Select when you have located and moved the cursor to the file that you
want.

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 167

Note – If you are browsing for a directory, move the cursor to the directory that you want and
click Open. If the directory contains no subdirectories, Agent Builder closes the browse window
and places the name of the directory to which you moved the cursor in the appropriate field. If
this directory has subdirectories, click Close to close the browse window and redisplay the
previous screen. Agent Builder places the name of the directory to which you moved the cursor
in the appropriate field.

The icons in the upper right corner of the Browse screen do the following:

Icon Purpose

This icon moves you up one level in the directory tree.

This icon returns you to the home folder.

This icon creates a new folder under the currently selected folder.

This icon, for toggling between different views, is reserved for future use.

Agent Builder Menus
Agent Builder provides File and Edit drop-down menus.

Agent Builder File Menu

The File menu contains two options:

■ Load Resource Type. Loads an existing resource type. Agent Builder provides a browse
screen from which you select the working directory for an existing resource type. If a
resource type exists in the directory from which you start Agent Builder, Agent Builder
automatically loads the resource type. Load Resource Type enables you to start Agent
Builder from any directory and select an existing resource type to use as a template for
creating a new resource type. See “Reusing Code That You Create With Agent Builder” on
page 177.

■ Exit. Exits Agent Builder. You can also exit by clicking Cancel on the Create or the
Configure screen.

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A168

Agent Builder Edit Menu

The Edit menu contains two options:

■ Clear Output Log. Clears the information from the output log. Each time you select Create
or Configure, Agent Builder appends status messages to the output log. If you are iteratively
making changes to your source code and regenerating output in Agent Builder and want to
segregate the status messages, you can save and clear the log file before each use.

■ Save Log File. Saves the log output to a file. Agent Builder provides a browse screen that
enables you to select the directory and specify a file name.

Using the Create Screen
The first step in creating a resource type is to complete the Create screen, which appears when
you start Agent Builder. The following figure shows the Create screen after you type
information in the fields.

FIGURE 9–2 Agent Builder Create Screen, After You Type Information

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 169

The Create screen contains the following fields, radio buttons, and check box:

■ Vendor Name. A name that identifies the vendor of the resource type. Typically, you specify
the stock symbol of the vendor. However, any name that uniquely identifies the vendor is
valid. Use alphanumeric characters only.

■ Application Name. The name of the resource type. Use alphanumeric characters only.

Note – Together, the vendor name and application name make up the full name of the
resource type. Starting with the Solaris 9 OS, the combination of Vendor Name and
Application Name can exceed nine characters.

■ RT Version. The version of the generated resource's type. The RT Version distinguishes
between multiple registered versions, or upgrades, of the same base resource type.

You cannot use the following characters in the RT Version field:
■ Space
■ Tab
■ Slash (/)
■ Backslash (\)
■ Asterisk (*)
■ Question mark (?)
■ Comma (,)
■ Semicolon (;)
■ Left square bracket ([)
■ Right square bracket (])

■ Working Directory. The directory under which Agent Builder creates a directory structure
to contain all the files that are created for the target resource type. You can create only one
resource type in any one working directory. Agent Builder initializes this field to the path of
the directory from which you started Agent Builder. However, you can type a different name
or use Browse to locate a different directory.

Under the working directory, Agent Builder creates a subdirectory with the resource type
name. For example, if SUNW is the vendor name and ftp is the application name, Agent
Builder names this subdirectory SUNWftp.

Agent Builder places all the directories and files for the target resource type under this
subdirectory. See “Directory Structure That Agent Builder Creates” on page 179.

■ Scalable or Failover. Specify whether the target resource type is failover or scalable.
■ Network Aware. Specify whether the base application is network aware, that is, if it uses the

network to communicate with its clients. Select the Network Aware check box to specify
network aware, or do not select the check box to specify nonnetwork aware.

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A170

■ C, ksh. Specify the language of the generated source code. Although these options are
mutually exclusive, with Agent Builder you can create a resource type with Korn
shell-generated code and reuse the same information to create C generated code. See
“Reusing Code That You Create With Agent Builder” on page 177.

■ GDS. Specify that this service is a generic data service. Chapter 10, “Generic Data Services,”
contains more detailed information about creating and configuring a generic data service.

Note – If the cc compiler is not in your $PATH variable, Agent Builder grays out the C radio
button and allows you to select the ksh radio button. To specify a different compiler, see the
note at the end of “Installing and Configuring Agent Builder” on page 164.

After you have specified the required information, click Create. The Output Log area at the
bottom of the screen shows the actions that Agent Builder performs. You can choose Save
Output Log from the Edit menu to save the information in the output log.

When finished, Agent Builder displays either a success message or a warning message.

■ If Agent Builder was unable to complete this step, examine the output log for details.
■ If Agent Builder completes successfully, click Next to display the Configure screen. The

Configure screen enables you to finish generating the resource type.

Note – Although generation of a complete resource type is a two-step process, you can exit Agent
Builder after completing the first step (create) without losing the information that you have
specified or the work that Agent Builder has completed. See “Reusing Code That You Create
With Agent Builder” on page 177.

Using the Configure Screen
The Configure screen, shown in the following figure, appears after Agent Builder finishes
creating the resource type and you click Next on the Create screen. You cannot access the
Configure screen before the resource type has been created.

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 171

The Configure screen contains the following fields:

■ Start Command. The complete command line that can be passed to any UNIX shell to start
the base application. You must specify a start command. You can type the command in the
field provided, or use Browse to locate a file that contains the command to start the
application.

The complete command line must include everything necessary to start the application,
such as host names, port numbers, a path to configuration files. You can also specify
property variables, which are described in “Using Property Variables” on page 174. If your
Korn shell-based application requires a host name to be specified on the command line, you
can use the $hostnames variable that Agent Builder defines. See “Using the Agent Builder
Korn Shell-Based $hostnames Variable” on page 174.

Do not enclose the command in double quotation marks (””).

FIGURE 9–3 Configure Screen for Agent Builder

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A172

Note – If the base application has multiple independent process trees, each of which is started
with its own tag under Process Monitor Facility (PMF) control, you cannot specify a single
command. Rather, you must create a text file that contains individual commands to start
each process tree, and specify the path to this file in the Start Command text field. See
“Before You Use Agent Builder” on page 162. This section lists some special characteristics
that this file requires to work correctly.

■ Stop Command. The complete command line that can be passed to any UNIX shell to stop
the base application. You can type the command in the field provided, or use Browse to
locate a file that contains the command to stop the application. You can also specify
property variables, which are described in “Using Property Variables” on page 174. If your
Korn shell-based application requires a host name to be specified on the command line, you
can use the $hostnames variable that Agent Builder defines. See “Using the Agent Builder
Korn Shell-Based $hostnames Variable” on page 174.
This command is optional.

If you do not specify a stop command, the generated code uses signals (in the Stop method)
to stop the application, as follows:
■ The Stop method sends SIGTERM to stop the application and waits for 80 percent of the

timeout value for the application to exit.
■ If the SIGTERM signal is unsuccessful, the Stop method sends SIGKILL to stop the

application and waits for 15 percent of the timeout value for the application to exit.
■ If SIGKILL is unsuccessful, the Stop method exits unsuccessfully. The remaining 5

percent of the timeout value is considered overhead.

Caution – Be certain the stop command does not return before the application has stopped
completely.

■ Probe Command. A command that can be run periodically to check the health of the
application and return an exit status between 0 (success) and 100 (complete failure). This
command is optional. You can type the complete path to the command, or use Browse to
locate a file that contains the commands to probe the application.
Typically, you specify a simple client of the base application. If you do not specify a probe
command, the generated code simply connects to and disconnects from the port that is used
by the resource. If the connect and disconnect succeed, the generated code declares the
application healthy. You can also specify property variables, which are described in “Using
Property Variables” on page 174. If your Korn shell-based application requires that you
specify a host name on the probe command line, you can use the $hostnames variable that
Agent Builder defines. See “Using the Agent Builder Korn Shell-Based $hostnames

Variable” on page 174.

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 173

Do not enclose the command in double quotation marks (””).
■ Timeout. A timeout value, in seconds, for each command. You can specify a new value, or

accept the default value that Agent Builder provides. The default value is 300 seconds for
start and stop and 30 seconds for probe.

Using the Agent Builder Korn Shell-Based $hostnames

Variable
For many applications, specifically network-aware applications, the host name on which the
application listens and services customer requests must be passed to the application on the
command line. In many cases, the host name is an argument that you must specify for start,
stop, and probe commands for the target resource type on the Configure screen. However, the
host name on which an application listens is cluster specific. The host name is determined when
the resource is run on a cluster. The host name cannot be determined when Agent Builder
generates your resource type code.

To solve this problem, Agent Builder provides the $hostnames variable that you can specify on
the command line for the start, stop, and probe commands.

Note – The $hostnames variable is supported for use with Korn shell-based services only. The
$hostnames variable is not supported for use with C-based and GDS-based services.

You specify the $hostnames variable exactly as you would an actual host name, for example:

% /opt/network_aware/echo_server -p port-no -l $hostnames

When a resource of the target resource type is run on a cluster, the LogicalHostname or
SharedAddress host name that is configured for that resource is substituted for the value of the
$hostnames variable. The host name is configured for that resource in the
Network_resources_used resource property of the resource.

If you configure the Network_resources_used property with multiple host names, the
$hostnames variable contains all host names, each host name separated by a comma.

Using Property Variables
You can also retrieve the values of selected Sun Cluster resource type, resource, and resource
group properties from the RGM framework by using property variables. Agent Builder scans
your start, probe, or stop command strings for property variables and substitutes these variables
with their values before Agent Builder executes the command.

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A174

Note – Property variables are not supported for use with Korn shell-based services.

List of Property Variables
This section lists the property variables that you can use. The Sun Cluster resource type,
resource, and resource group properties are described in Appendix A, “Standard Properties.”

Resource Property Variables
■ HOSTNAMES

■ RS_CHEAP_PROBE_INTERVAL

■ RS_MONITOR_START_TIMEOUT

■ RS_MONITOR_STOP_TIMEOUT

■ RS_NAME

■ RS_NUM_RESTARTS

■ RS_RESOURCE_DEPENDENCIES

■ RS_RESOURCE_DEPENDENCIES_WEAK

■ RS_RETRY_COUNT

■ RS_RETRY_INTERVAL

■ RS_SCALABLE

■ RS_START_TIMEOUT

■ RS_STOP_TIMEOUT

■ RS_THOROUGH_PROBE_INTERVAL

■ SCHA_STATUS

Resource Type Property Variables
■ RT_API_VERSION

■ RT_BASEDIR

■ RT_FAILOVER

■ RT_INSTALLED_NODES

■ RT_NAME

■ RT_RT_VERSION

■ RT_SINGLE_INSTANCE

Resource Group Property Variables
■ RG_DESIRED_PRIMARIES

■ RG_GLOBAL_RESOURCES_USED

■ RG_IMPLICIT_NETWORK_DEPENDENCIES

■ RG_MAXIMUM_PRIMARIES

■ RG_NAME

■ RG_NODELIST

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 175

■ RG_NUM_RESTARTS

■ RG_PATHPREFIX

■ RG_PINGPONG_INTERVAL

■ RG_RESOURCE_LIST

Syntax of Property Variables
You include a percent sign (%) before a property name to indicate a property variable, as shown
in this example:

/opt/network_aware/echo_server -t %RS_STOP_TIMEOUT -n %RG_NODELIST

Given the preceding example, Agent Builder might interpret these property variables and start
the echo_server script with the following values:

/opt/network_aware/echo_server -t 300 -n phys-node-1,phys-node-2,phys-node-3

How Agent Builder Substitutes Property Variables
Agent Builder interprets the types of property variables, as follows:

■ An integer is substituted with its actual value (300, for example).
■ A Boolean value is substituted with the string TRUE or FALSE.
■ A string is substituted with the actual string (phys-node-1, for example).
■ A list of strings is substituted with all members in the list, each string separated by a comma

(phys-node-1,phys-node-2,phys-node-3, for example).
■ A list of integers is substituted with all members in the list, each integer separated by a

comma (1,2,3, for example).
■ An enumerated type is substituted with its value, in string form.

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A176

Reusing Code That You Create With Agent Builder
Agent Builder enables you to reuse completed work in the following ways:

■ You can clone an existing resource type that you created with Agent Builder.
■ You can edit the source code that Agent Builder generates and recompile the code to create a

new package.

▼ How to Clone an Existing Resource Type
Follow this procedure to clone an existing resource type that is generated by Agent Builder.

Load an existing resource type into Agent Builder.

Use one of the following methods:

■ Start Agent Builder from the working directory for an existing resource type that you
created with Agent Builder. Ensure that the working directory contains the rtconfig file.
Agent Builder loads the values for that resource type in the Create and Configure screens.

■ Use the Load Resource Type option from the File drop-down menu.

Change the working directory on the Create screen.

You must use Browse to select a directory. Typing a new directory name is not sufficient. After
you select a directory, Agent Builder re-enables the Create button.

Make the changes that you want to the existing resource type.

You might change the type of code that is generated for the resource type.

For example, if you initially create a Korn shell version of a resource type but find over time that
you require a C version, you can do the following:

■ Load the existing Korn shell resource type.
■ Change the language for the output to C.
■ Click Create to have Agent Builder build a C version of the resource type.

Create the cloned resource type.

a. Click Create to create the resource type.

b. Click Next to display the Configure screen.

c. Click Configure to configure the resource type, and click Cancel to finish.

1

2

3

4

Using Agent Builder

Chapter 9 • Sun Cluster Agent Builder 177

Editing the Generated Source Code
To simplify the process of creating a resource type, Agent Builder limits the amount of
information that you can specify, which necessarily limits the scope of the generated resource
type. Therefore, to add more sophisticated features, you need to modify the generated source
code or the RTR file. Examples of additional features include code that adds validation checks
for additional properties or that tunes parameters that Agent Builder does not expose.

The source files are in the install-directory/rt-name/src directory. Agent Builder embeds
comments in the source code where you can add code. These comments are of the form (for C
code):

/* User added code -- BEGIN vvvvvvvvvvvvvvv */

/* User added code -- END ^^^^^^^^^^^^^^^ */

Note – These comments are identical in Korn shell source code, except the comment mark (#)
indicates the beginning of a comment.

For example, rt-name.h declares all the utility functions that the different programs use. At the
end of the list of declarations are comments that enable you to declare additional functions that
you might have added to your code.

Agent Builder also generates the makefile in the install-directory/rt-name/src directory with
corresponding targets. Use the make command to recompile the source code. Use the make pkg
command to regenerate the resource type package.

The RTR file is in the install-directory/rt-name/etc directory. You can edit the RTR file with a
standard text editor. See “Setting Resource and Resource Type Properties” on page 34 for more
information about the RTR file. See Appendix A, “Standard Properties,” for information about
properties.

▼ How to Use the Command-Line Version of Agent
Builder
The command-line version of Agent Builder follows the same basic process as the GUI.
However, instead of typing information in the GUI, you pass arguments to the scdscreate and
scdsconfig commands. See the scdscreate(1HA) and scdsconfig(1HA) man pages for more
information.

Follow these steps to use the command-line version of Agent Builder.

Use scdscreate to create a Sun Cluster resource type template for making an application highly
available or scalable.

1

Using Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A178

http://docs.sun.com/doc/820-4685/scdscreate-1ha?a=view
http://docs.sun.com/doc/820-4685/scdsconfig-1ha?a=view

Use scdsconfig to configure the resource type template that you created with scdscreate.
You can specify property variables. Property variables are described in “Using Property
Variables” on page 174.

Change directories to the pkg subdirectory in the working directory.

Use the pkgadd command to install the packages that you created with scdscreate.
pkgadd -d . package-name

(Optional) Edit the generated source code.

Run the start script.

Directory Structure That Agent Builder Creates
Agent Builder creates a directory structure to hold all the files that it generates for the target
resource type. You specify the working directory on the Create screen. You must specify
separate install directories for any additional resource types that you develop. Under the
working directory, Agent Builder creates a subdirectory whose name is a concatenation of the
vendor name and the resource type name. For example, if you specify SUNW as the vendor name
and create a resource type called ftp, Agent Builder creates a directory called SUNWftp under the
working directory.

Under this subdirectory, Agent Builder creates and populates the directories that are listed in
the following table.

Directory
Name Contents

bin For C output, contains the binary files that are compiled from the source files. For Korn shell
output, contains the same files as the src directory.

etc Contains the RTR file. Agent Builder concatenates the vendor name and application name,
separated by a period (.), to form the RTR file name. For example, if the vendor name is SUNW and
the name of the resource type is ftp, the name of the RTR file is SUNW.ftp.

man Contains customized man pages for the start, stop, and remove utility scripts, for example,
startftp(1M), stopftp(1M), and removeftp(1M).

To view these man pages, specify the path with the man -M option. For example:

% man -M install-directory/SUNWftp/man removeftp

pkg Contains the final Solaris package that includes the created data service.

src Contains the source files that Agent Builder generates.

2

3

4

5

6

Directory Structure That Agent Builder Creates

Chapter 9 • Sun Cluster Agent Builder 179

Directory
Name Contents

util Contains the start, stop, and remove utility scripts that Agent Builder generates. See “Utility
Scripts and Man Pages That Sun Cluster Agent Builder Creates” on page 181. Agent Builder
appends the application name to each of these script names, for example, startftp, stopftp,
and removeftp.

Agent Builder Output
This section describes the output that Agent Builder generates.

This section covers the following topics:

■ “Source and Binary Files” on page 180
■ “Utility Scripts and Man Pages That Sun Cluster Agent Builder Creates” on page 181
■ “Support Files That Agent Builder Creates” on page 182
■ “Package Directory That Agent Builder Creates” on page 183
■ “rtconfig File” on page 183

Source and Binary Files
The Resource Group Manager (RGM) manages resource groups and ultimately resources on a
cluster. The RGM works on a callback model. When specific events happen, such as a node
failure, the RGM calls the resource type's methods for each of the resources that are running on
the affected node. For example, the RGM calls the Stop method to stop a resource that is
running on the affected node, and calls the resource's Start method to start the resource on a
different node. See “Resource Group Manager Model” on page 21, “Callback Methods” on
page 23, and the rt_callbacks(1HA) man page for more information about this model.

To support this model, Agent Builder generates eight executable C programs or Korn shell
scripts in the install-directory/rt-name/bin directory. These programs or shell scripts serve as
callback methods.

Note – Strictly speaking, the rt-name_probe program, which implements a fault monitor, is not
a callback program. The RGM does not directly call rt-name_probe. Instead, the RGM calls
rt-name_monitor_start and rt-name_monitor_stop. These methods start and stop the fault
monitor by calling rt-name _probe.

Here are the eight methods that Agent Builder generates:

■ rt-name_monitor_check
■ rt-name_monitor_start

Agent Builder Output

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A180

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view

■ rt-name_monitor_stop
■ rt-name_probe
■ rt-name_svc_start
■ rt-name_svc_stop
■ rt-name_update
■ rt-name_validate

See the rt_callbacks(1HA) man page for specific information about each method.

In the install-directory/rt-name/src directory (C output), Agent Builder generates the
following files:

■ A header file (rt-name.h)
■ A source file (rt-name.c) that contains code that is common to all methods
■ An object file (rt-name.o) for the common code
■ Source files (*.c) for each method
■ Object files (*.o) for each method

Agent Builder links the rt-name.o file to each of the method .o files to create the executable files
in the install-directory/rt-name/bin directory.

For Korn shell output, the install-directory/rt-name/bin and install-directory/rt-name/src
directories are identical. Each directory contains the eight executable scripts that correspond to
the seven callback methods and the Probe method.

Note – The Korn shell output includes two compiled utility programs, gettime and
gethostnames. Particular callback methods require these methods for getting the time and for
probing.

You can edit the source code, run the make command to recompile the code, and when you are
finished, run the make pkg command to generate a new package. To support making changes to
the source code, Agent Builder embeds comments in the source code at correct locations where
you can add code. See “Editing the Generated Source Code” on page 178.

Utility Scripts and Man Pages That Sun Cluster Agent
Builder Creates
Once you have generated a resource type and installed its package on a cluster, you must still get
an instance (resource) of the resource type that is running on a cluster. Generally, to get an
instance, you use administrative commands or Sun Cluster Manager. However, as a
convenience, Agent Builder generates a customized utility script for this purpose as well as
scripts for stopping and removing a resource of the target resource type.

Agent Builder Output

Chapter 9 • Sun Cluster Agent Builder 181

http://docs.sun.com/doc/820-4685/rt-callbacks-1ha?a=view

These three scripts, which are located in the install-directory/rt-name/util directory, do the
following:

■ Start script. Registers the resource type, and creates the necessary resource groups and
resources. This script also creates the network address resource (LogicalHostname or
SharedAddress) that enables the application to communicate with the clients on the
network.

■ Stop script. Stops the resource.
■ Remove script. Undoes the work of the start script. That is, this script stops and removes

the resources, resource groups, and the target resource type from the system.

Note – You can only use the remove script with a resource that was started by the corresponding
start script because these scripts use internal conventions to name resources and resource
groups.

Agent Builder names these scripts by appending the application name to the script names. For
example, if the application name is ftp, the scripts are called startftp, stopftp, and
removeftp.

Agent Builder provides man pages in the install-directory/rt-name/man/man1m directory for
each utility script. You should read these man pages before you start these scripts because they
document the arguments that you need to pass to the script.

To view these man pages, specify the path to this man directory by using the -M option with the
man command. For example, if SUNW is the vendor and ftp is the application name, type the
following command to view the startftp(1M) man page:

% man -M install-directory/SUNWftp/man startftp

The man page utility scripts are also available to the cluster administrator. When an Agent
Builder-generated package is installed on a cluster, the man pages for the utility scripts are
placed in the /opt/rt-name/man directory. For example, type the following command to view
the startftp(1M) man page:

% man -M /opt/SUNWftp/man startftp

Support Files That Agent Builder Creates
Agent Builder places support files, such as pkginfo, postinstall, postremove, and preremove,
in the install-directory/rt-name/etc directory. This directory also contains the resource type
registration (RTR) file. The RTR file declares resource and resource type properties that are
available for the target resource type and initializes property values at the time a resource is

Agent Builder Output

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A182

registered with a cluster. See “Setting Resource and Resource Type Properties” on page 34 for
more information. The RTR file is named as vendor-name.resource-type-name, for example,
SUNW.ftp.

You can edit this file with a standard text editor and make changes without recompiling your
source code. However, you must rebuild the package with the make pkg command.

Package Directory That Agent Builder Creates
The install-directory/rt-name/pkg directory contains a Solaris package. The name of the
package is a concatenation of the vendor name and the application name, for example, SUNWftp.
The makefile in the install-directory/rt-name/src directory supports the creation of a new
package. For example, if you make changes to the source files and recompile the code, or you
make changes to the package utility scripts, use the make pkg command to create a new package.

When you remove a package from a cluster, the pkgrm command can fail if you attempt to run
the command simultaneously from more than one node.

You can solve this problem in one of two ways:

■ Run the remove rt-name script from one node of the cluster before running the pkgrm
command from any node.

■ Run the pkgrm command from one node of the cluster, which takes care of all necessary
cleanup operations. Then, run the pkgrm command from the remaining nodes,
simultaneously if necessary.

If pkgrm fails because you attempt to run it simultaneously from multiple nodes, run the
command again from one node. Then, run the command from the remaining nodes.

rtconfig File
If you generate C or Korn shell source code in the working directory, Agent Builder generates a
configuration file called rtconfig. This file contains the information that you specified on the
Create and Configure screens. If you start Agent Builder from the working directory for an
existing resource type, Agent Builder reads the rtconfig file. Agent Builder fills in the Create
and Configure screens with the information that you provided for the existing resource type.
Agent Builder works similarly if you load an existing resource type by choosing Load Resource
Type from the File drop-down menu. This feature is useful if you want to clone an existing
resource type. See “Reusing Code That You Create With Agent Builder” on page 177.

Agent Builder Output

Chapter 9 • Sun Cluster Agent Builder 183

Cluster Agent Module for Agent Builder
The Cluster Agent module for Agent Builder is a NetBeansTM module. This module enables you
to create resource types for the Sun Cluster software through the Sun Java Studio product.

Note – The Sun Java Studio documentation contains information about how to set up, install,
and use the Sun Java Studio product. You can find this documentation at the
http://wwws.sun.com/software/sundev/jde/documentation/index.html web site.

▼ How to Install and Set Up the Cluster Agent Module
The Cluster Agent module is installed when you install the Sun Cluster software. The Sun
Cluster installation tool places the Cluster Agent module file scdsbuilder.jar in
/usr/cluster/lib/scdsbuilder. To use the Cluster Agent module with the Sun Java Studio
software, you need to create a symbolic link to this file.

Note – The Sun Cluster and Sun Java Studio products and Java 1.4 must be installed and
available to the system on which you intend to run the Cluster Agent module.

Enable all users or only yourself to use the Cluster Agent module.

■ To enable all users, become superuser or assume a role that provides
solaris.cluster.modify RBAC authorization, and create the symbolic link in the global
module directory.

cd /opt/s1studio/ee/modules

ln -s /usr/cluster/lib/scdsbuilder/scdsbuilder.jar

Note – If you installed the Sun Java Studio software in a directory other than
/opt/s1studio/ee, substitute this directory path with the path that you used.

■ To enable only yourself, create the symbolic link in your modules subdirectory.

% cd ~your-home-dir/ffjuser40ee/modules
% ln -s /usr/cluster/lib/scdsbuilder/scdsbuilder.jar

Stop and restart the Sun Java Studio software.

1

2

Cluster Agent Module for Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A184

http://wwws.sun.com/software/sundev/jde/documentation/index.html

▼ How to Start the Cluster Agent Module
The following steps describe how to start the Cluster Agent module from the Sun Java Studio
software.

Note – The Sun Java Studio documentation contains information about how to set up, install,
and use the Sun Java Studio product. You can find this documentation at the
http://wwws.sun.com/software/sundev/jde/documentation/index.html web site.

From the Sun Java Studio File menu, choose New, or click this icon on the toolbar:

The New Wizard screen appears.

In the Select a Template pane, scroll down (if necessary) and click the key next to the Other
folder.

1

2

Cluster Agent Module for Agent Builder

Chapter 9 • Sun Cluster Agent Builder 185

http://wwws.sun.com/software/sundev/jde/documentation/index.html

The Other folder opens.

From the Other folder, select Sun Cluster Agent Builder and click Next.

The Cluster Agent module for Sun Java Studio starts. The first New Wizard - Sun Cluster Agent
Builder screen appears.

3

Cluster Agent Module for Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A186

Using the Cluster Agent Module
Use the Cluster Agent module as you would the Agent Builder software. The interfaces are
identical. For example, the following figures show that the Create screen in the Agent Builder
software and the first New Wizard - Sun Cluster Agent Builder screen in the Cluster Agent
module contain the same fields and selections.

FIGURE 9–4 Create Screen in the Agent Builder Software

Cluster Agent Module for Agent Builder

Chapter 9 • Sun Cluster Agent Builder 187

Differences Between the Cluster Agent Module and
Agent Builder
Despite the similarities between the Cluster Agent module and Agent Builder, minor
differences exist:

■ In the Cluster Agent module, the resource type is created and configured only after you click
Finish on the second New Wizard - Sun Cluster Agent Builder screen. The resource type is
not created when you click Next on the first New Wizard - Sun Cluster Agent Builder screen.
In Agent Builder, the resource type is immediately created when you click Create on the
Create screen. In addition, the resource type is immediately configured when you click
Configure on the Configure screen.

■ The information that appears in the Output Log area in Agent Builder appears in a separate
window in the Sun Java Studio product.

FIGURE 9–5 New Wizard - Sun Cluster Agent Builder Screen in the Cluster Agent Module

Cluster Agent Module for Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A188

Generic Data Services

This chapter provides information about the generic data service (GDS) and shows you how to
create a service that uses the GDS. You create this service by using either Sun Cluster Agent
Builder or Sun Cluster administration commands.

This chapter covers the following topics:
■ “Generic Data Services Concepts” on page 189
■ “Using Agent Builder to Create a Service That Uses the GDS” on page 196
■ “Using Sun Cluster Administration Commands to Create a Service That Uses the GDS” on

page 202
■ “Command-Line Interface for Agent Builder” on page 204

Generic Data Services Concepts
The GDS is a mechanism for making simple network-aware and nonnetwork-aware
applications highly available or scalable by plugging them into the Sun Cluster Resource Group
Management (RGM) framework. This mechanism does not require you to code a data service,
which you typically must do to make an application highly available or scalable.

You can configure a GDS-based data service to run in non-global zones provided that your
associated application is also configured to run in non-global zones.

The GDS is a single, precompiled data service. You cannot modify the precompiled data service
and its components, the callback method (rt_callbacks) implementations, and the resource
type registration file (rt_reg).

This section covers the following topics:
■ “Precompiled Resource Type” on page 190
■ “Advantages and Disadvantages of Using the GDS” on page 190
■ “Ways to Create a Service That Uses the GDS” on page 191
■ “How the GDS Logs Events” on page 191

10C H A P T E R 1 0

189

■ “Required GDS Properties” on page 192
■ “Optional GDS Properties” on page 193

Precompiled Resource Type
The generic data service resource type SUNW.gds is included in the SUNWscgds package. The
scinstall utility installs this package during cluster installation. See the scinstall(1M) man
page. The SUNWscgds package includes the following files:

pkgchk -v SUNWscgds

/opt/SUNWscgds

/opt/SUNWscgds/bin

/opt/SUNWscgds/bin/gds_monitor_check

/opt/SUNWscgds/bin/gds_monitor_start

/opt/SUNWscgds/bin/gds_monitor_stop

/opt/SUNWscgds/bin/gds_probe

/opt/SUNWscgds/bin/gds_svc_start

/opt/SUNWscgds/bin/gds_svc_stop

/opt/SUNWscgds/bin/gds_update

/opt/SUNWscgds/bin/gds_validate

/opt/SUNWscgds/etc

/opt/SUNWscgds/etc/SUNW.gds

Advantages and Disadvantages of Using the GDS
Using the GDS has the following advantages over using either the Agent Builder source code
(see the scdscreate(1HA) man page) or Sun Cluster administration commands:

■ The GDS is easy to use.
■ The GDS and its methods are precompiled and therefore cannot be modified.
■ You can use Agent Builder to generate scripts for your application. These scripts are put in a

Solaris package that can be reused across multiple clusters.

While using the GDS has many advantages, the GDS is not the mechanism to use in these
instances:

■ When more control is required than is available with the precompiled resource type, such as
when you need to add extension properties or change default values

■ When the source code needs to be modified to add special functions

Generic Data Services Concepts

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A190

http://docs.sun.com/doc/820-4685/scinstall-1m?a=view
http://docs.sun.com/doc/820-4685/scdscreate-1ha?a=view

Ways to Create a Service That Uses the GDS
There are two ways to create a service that uses the GDS:

■ Agent Builder
■ Sun Cluster administration commands

GDS and Agent Builder
Use Agent Builder and select GDS as the type of generated source code. The user input is used
to generate a set of scripts that configure resources for the given application.

GDS and Sun Cluster Administration Commands
This method uses the precompiled data service code in SUNWscgds. However, the cluster
administrator must use Sun Cluster administration commands to create and configure the
resource. See the clresource(1CL) man page.

Selecting the Method to Use to Create a GDS-Based Service
A significant amount of typing is required to issue Sun Cluster commands. For example, see
“How to Use Sun Cluster Administration Commands to Create a Highly Available Service That
Uses the GDS” on page 202 and “How to Use Sun Cluster Administration Commands to Create
a Scalable Service That Uses the GDS” on page 203.

Using the GDS with Agent Builder simplifies the process because the GDS generates the scripts
that issue the scrgadm and scswitch commands for you.

How the GDS Logs Events
The GDS enables you to log relevant information that is passed from the GDS to the scripts that
the GDS starts. This information includes the status of the start, probe, validate, and stop
methods as well as property variables. You can use this information to diagnose problems or
errors in your scripts, or apply it to other purposes.

You use the Log_level property that is described in “Log_level Property” on page 194 to
specify the level, or type, of messages that the GDS is to log. You can specify NONE, INFO, or ERR.

Generic Data Services Concepts

Chapter 10 • Generic Data Services 191

http://docs.sun.com/doc/820-4685/clresource-1cl?a=view

GDS Log Files
The following two GDS log files are placed in the directory
/var/cluster/logs/DS/resource-group-name/resource-name:

■ start_stop_log.txt, which contains messages that are generated by resource start and
stop methods

■ probe_log.txt, which contains messages that are generated by the resource monitor

The following example shows the types of information that start_stop_log.txt contains:

06/12/2006 12:38:05 phys-node-1 START-INFO> Start succeeded. [/home/brianx/sc/start_cmd]

06/12/2006 12:42:11 phys-node-1 STOP-INFO> Successfully stopped the application

The following example shows the types of information that probe_log.txt contains:

06/12/2006 12:38:15 phys-node-1 PROBE-INFO> The GDS monitor (gds_probe) has been started

06/12/2006 12:39:15 phys-node-1 PROBE-INFO> The probe result is 0

06/12/2006 12:40:15 phys-node-1 PROBE-INFO> The probe result is 0

06/12/2006 12:41:15 phys-node-1 PROBE-INFO> The probe result is 0

Required GDS Properties
This section describes the required GDS properties.

Port_listProperty
The Port_list property identifies the list of ports on which the application listens. You must
specify the Port_list property in the start script that Agent Builder creates or with the
clresource command.

Whether you must specify this property depends on whether your application is network aware
or not. If you specify that your application is network aware (you set the Network_aware
property to TRUE, the default), you must provide both the Start_command extension property
and the Port_list property. If you specify that your application is nonnetwork aware (you set
the Network_aware property to FALSE), you must provide only the Start_command extension
property. The Port_list property is optional.

Start_commandProperty
The start command, which you specify with the Start_command extension property, starts the
application. This command must be a UNIX command with arguments that can be passed
directly to a shell to start the application.

If your application is network aware, you must provide both the Start_command extension
property and the Port_list property. If your application is nonnetwork aware, you must
provide only the Start_command extension property.

Generic Data Services Concepts

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A192

Optional GDS Properties
Optional GDS properties include both system-defined properties and extension properties.
System-defined properties are a standard set of properties that are provided by Sun Cluster.
Properties that are defined in the RTR file are called extension properties.

Here are optional GDS properties:
■ Child_mon_level extension property (used only with administration commands)
■ Failover_enabled extension property
■ Log_level extension property
■ Network_aware extension property
■ Network_resources_used property
■ Probe_command extension property
■ Probe_timeout extension property
■ Start_timeout property
■ Stop_command extension property
■ Stop_signal extension property
■ Stop_timeout property
■ Validate_command extension property
■ Validate_timeout property

Child_mon_levelProperty

Note – If you use Sun Cluster administration commands, you can use the Child_mon_level
property. If you use Agent Builder, you cannot use this property.

This property provides control over the processes that are monitored through the Process
Monitor Facility (PMF). This property denotes the level up to which the forked children
processes are monitored. This property works like the -C argument to the pmfadm command.
See the pmfadm(1M) man page.

Omitting this property, or setting it to the default value of -1, has the same effect as omitting the
-C option on the pmfadm command. That is, all children and their descendents are monitored.

Failover_enabledProperty
This property controls the failover behavior of the resource. If this extension property is set to
TRUE, the application fails over when the number of restarts exceeds the Retry_count within the
Retry_interval number of seconds.

If this property is set to FALSE, the application does not restart or fail over to another node when
the number of restarts exceeds the Retry_count within the Retry_interval number of
seconds.

Generic Data Services Concepts

Chapter 10 • Generic Data Services 193

http://docs.sun.com/doc/820-4685/pmfadm-1m?a=view

You can use this property to prevent the application resource from initiating a failover of the
resource group. The default value for this property is TRUE.

Note – In future, use the Failover_mode property in place of the Failover_enabled extension
property as Failover_mode better controls failover behavior. For more information, see the
descriptions of the LOG_ONLY and RESTART_ONLY values for Failover_mode in the
r_properties(5) man page.

Log_levelProperty
This property specifies the level, or type, of diagnostic messages that are logged by the GDS. You
can specify NONE, INFO, or ERR for this property. When you specify NONE, diagnostic messages
are not logged by the GDS. When you specify INFO, only informational messages are logged.
When you specify ERR, only error messages are logged. By default, the GDS does not log
diagnostic messages (NONE).

Network_awareProperty
This property specifies whether your application uses the network. By default, the GDS assumes
that your application is network aware, that is, uses the network (Network_aware is set to TRUE).

If your application is network aware, you must provide both the Start_command extension
property and the Port_list property. If your application is nonnetwork aware, you must
provide only the Start_command extension property.

Network_resources_usedProperty
This property specifies a list of logical host name or shared address network resources that are
used by a resource. The default value for this property is the empty list. You must specify this
property if the application needs to bind to one or more specific addresses. If you omit this
property or you specify Null, the application listens on all addresses.

Before you create the GDS resource, a LogicalHostname or SharedAddress resource must
already be configured. See the Sun Cluster Data Services Planning and Administration Guide for
Solaris OS for information about how to configure a LogicalHostname or SharedAddress
resource.

To specify a value, specify one or more resource names. Each resource name can contain one or
more LogicalHostname resources or one or more SharedAddress resources. See the
r_properties(5) man page for details.

Probe_commandProperty
This property specifies the probe command that periodically checks the health of a given
application. This command must be a UNIX command with arguments that can be passed
directly to a shell to probe the application. The probe command returns with an exit status of 0
if the application is running correctly.

Generic Data Services Concepts

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A194

http://docs.sun.com/doc/820-4685/r-properties-5?a=view
http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4682
http://docs.sun.com/doc/820-4685/r-properties-5?a=view

The exit status of the probe command is used to determine the severity of the application's
failure. This exit status, called the probe status, must be an integer between 0 (for success) and
100 (for complete failure). The probe status can also be a special value of 201, which causes the
application to immediately fail over unless Failover_enabled is set to FALSE. The GDS probing
algorithm uses the probe status to determine whether to restart the application locally or fail it
over. See the scds_fm_action(3HA) man page for more information. If the exit status is 201,
the application is immediately failed over.

If the probe command is omitted, the GDS provides its own simple probe. This probe connects
to the application on the set of IP addresses that is derived from the Network_resources_used
property or from the output of the scds_get_netaddr_list() function. See the
scds_get_netaddr_list(3HA) man page for more information. If the connect succeeds, the
connect disconnects immediately. If both the connect and disconnect succeed, the application
is deemed to be running well.

Note – The probe that is provided with the GDS is only intended to be a simple substitute for the
fully functioning application-specific probe.

Probe_timeoutProperty
This property specifies the timeout value for the probe command. See “Probe_command
Property” on page 194 for additional information. The default for Probe_timeout is 30 seconds.

Start_timeoutProperty
This property specifies the start timeout for the start command. See “Start_command Property”
on page 192 for additional information. The default for Start_timeout is 300 seconds.

Stop_commandProperty
This property specifies the command that must stop an application and only return after the
application has been completely stopped. This command must be a complete UNIX command
that can be passed directly to a shell to stop the application.

If the Stop_command extension property is provided, the GDS stop method starts the stop
command with 80 percent of the stop timeout. Regardless of the outcome of starting the stop
command, the GDS stop method sends SIGKILL with 15 percent of the stop timeout. The
remaining 5 percent of the time is reserved for housekeeping overhead.

If the stop command is omitted, the GDS tries to stop the application by using the signal
specified in Stop_signal.

Stop_signalProperty
This property specifies a value that identifies the signal to stop an application through the PMF.
See the signal(3HEAD) man page for a list of the integer values that you can specify. The
default value is 15 (SIGTERM).

Generic Data Services Concepts

Chapter 10 • Generic Data Services 195

http://docs.sun.com/doc/820-4685/scds-fm-action-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-netaddr-list-3ha?a=view
http://docs.sun.com/doc/816-5173/signal-3head?a=view

Stop_timeoutProperty
This property specifies the timeout for the stop command. See “Stop_command Property” on
page 195 for additional information. The default for Stop_timeout is 300 seconds.

Validate_commandProperty
This property specifies the absolute path to a command to invoke to validate the application. If
you do not provide an absolute path, the application is not validated.

Validate_timeoutProperty
This property specifies the timeout for the validate command. See “Validate_command
Property” on page 196 for additional information. The default for Validate_timeout is 300
seconds.

Using Agent Builder to Create a Service That Uses the GDS
You can use Agent Builder to create the service that uses the GDS. Agent Builder is described in
more detail in Chapter 9, “Sun Cluster Agent Builder.”

Creating and Configuring GDS-Based Scripts

▼ How to Start Agent Builder and Create the Scripts

Become superuser or assume a role that provides solaris.cluster.modify RBAC
authorization.

Start Agent Builder.
/usr/cluster/bin/scdsbuilder

The Agent Builder Create screen appears.

1

2

3

Using Agent Builder to Create a Service That Uses the GDS

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A196

Type the vendor name.

Type the application name.

Note – Starting with the Solaris 9 OS, the combination of vendor name and application name can
exceed nine characters. This combination is used as the name of the package for the scripts.

Go to the working directory.

You can use the Browse drop-down menu to select the directory rather than typing the path.

Select whether the data service is scalable or failover.

You do not need to select Network Aware because that setting is the default when you create the
GDS.

Select GDS.

(Optional) Change the RT version from the default value that is shown.

4

5

6

7

8

9

Using Agent Builder to Create a Service That Uses the GDS

Chapter 10 • Generic Data Services 197

Note – You cannot use the following characters in the RT Version field: space, tab, slash (/),
backslash (\), asterisk (*), question mark (?), comma (,), semicolon (;), left square bracket ([),
or right square bracket (]).

Click Create.

Agent Builder creates the scripts. The results are displayed in the Output Log area.

Note that the Create button is grayed out. You can now configure the scripts.

Click Next.

The Configure screen appears.

10

11

Using Agent Builder to Create a Service That Uses the GDS

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A198

▼ How to Configure the Scripts
After creating the scripts, you need to configure the new service.

Type the location of the start command, or click Browse to locate the start command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 174.

(Optional) Type the location of the stop command, or click Browse to locate the stop command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 174.

(Optional) Type the location of the validate command, or click Browse to locate the validate
command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 174.

(Optional) Type the location of the probe command, or click Browse to locate the probe
command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 174.

1

2

3

4

Using Agent Builder to Create a Service That Uses the GDS

Chapter 10 • Generic Data Services 199

(Optional) Specify new timeout values for the start, stop, validate, and probe commands.

Click Configure.
Agent Builder configures the scripts.

Note – Agent Builder concatenates the vendor name and the application name to create the
package name.

A package for scripts is created and placed in the following directory:

working-dir/vendor-name-application/pkg

For example, /export/wdir/NETapp/pkg.

On each node of the cluster, become superuser or assume a role that provides
solaris.cluster.modify RBAC authorization.

On each node of the cluster, install the completed package.
cd /export/wdir/NETapp/pkg

pkgadd -d . NETapp

The following files are installed by pkgadd:

/opt/NETapp

/opt/NETapp/README.app

/opt/NETapp/man

/opt/NETapp/man/man1m

/opt/NETapp/man/man1m/removeapp.1m

/opt/NETapp/man/man1m/startapp.1m

/opt/NETapp/man/man1m/stopapp.1m

/opt/NETapp/man/man1m/app_config.1m

/opt/NETapp/util

/opt/NETapp/util/removeapp

/opt/NETapp/util/startapp

/opt/NETapp/util/stopapp

/opt/NETapp/util/app_config

Note – The man pages and script names correspond to the application name that you typed
previously on the Create screen, preceded by the script name (for example, startapp).

On one node of the cluster, configure the resources and start the application.
/opt/NETapp/util/startapp -h logicalhostname -p port-and-protocol-list

The arguments to the startapp script vary according to the type of resource: failover or
scalable.

5

6

7

8

9

Using Agent Builder to Create a Service That Uses the GDS

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A200

Note – To determine the command line that you need to type, check the customized man page,
or run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/NETapp/man startapp

To display a usage statement, type:

/opt/NETapp/util/startapp

The resource name of LogicalHostname or SharedAddress must be

specified. For failover services:

Usage: startapp -h logicalhostname
-p port-and-protocol-list
[-n ipmpgroup-adapter-list]

For scalable services:

Usage: startapp -h shared-address-name
-p port-and-protocol-list
[-l load-balancing-policy]
[-n ipmpgroup/adapter-list]
[-w load-balancing-weights]

Output From Agent Builder
Agent Builder generates three scripts and a configuration file based on input that you provide
when you create the package. The configuration file specifies the names of the resource group
and the resource type.

The scripts are as follows:

■ Start script. Configures the resources and starts the application that is under RGM control.
■ Stop script. Stops the application and takes down resources and resource groups.
■ Remove script. Removes the resources and resource groups that are created by the start

script.

These scripts have the same interface and behavior as the utility scripts that are generated by
Agent Builder for non-GDS-based data services. The scripts are put in a Solaris package that
you can reuse across multiple clusters.

You can customize the configuration file to provide your own names for resource groups or
other arguments that are normally given as arguments to the scrgadm and scswitch

commands. If you do not customize the scripts, Agent Builder provides default values for these
arguments.

Using Agent Builder to Create a Service That Uses the GDS

Chapter 10 • Generic Data Services 201

Using Sun Cluster Administration Commands to Create a
Service That Uses the GDS

This section describes how to input arguments to the GDS. You use the existing Sun Cluster
administration commands, such as clresourcetype, clresourcegroup, and clresource to
maintain and administer the GDS.

If the scripts provide adequate functionality, you do not need to use the lower-level
administration commands that are shown in this section. However, you can use the lower-level
administration commands if you need to have finer control over the GDS-based resource.
These commands are executed by the scripts.

▼ How to Use Sun Cluster Administration Commands to
Create a Highly Available Service That Uses the GDS
Become superuser or assume a role that provides solaris.cluster.modify RBAC
authorization.

Register the resource type SUNW.gds.
clresourcetype register SUNW.gds

Create the resource group that contains the LogicalHostname resource and the failover service
itself.
clresourcegroup create haapp_rg

Create the resource for the LogicalHostname resource.
clreslogicalhostname create -g haapp_rg hhead

Create the resource for the failover service itself.
clresource create -g haapp_rg -t SUNW.gds

-p Validate_command="/export/app/bin/configtest" \

-p Scalable=false -p Start_timeout=120 \

-p Stop_timeout=120 -p Probe_timeout=120 \

-p Port_list="2222/tcp" \

-p Start_command="/export/ha/appctl/start" \

-p Stop_command="/export/ha/appctl/stop" \

-p Probe_command="/export/app/bin/probe" \

-p Child_mon_level=0 -p Network_resources_used=hhead \

-p Failover_enabled=TRUE -p Stop_signal=9 haapp_rs

Bring the resource group haapp_rg online in a managed state.
clresourcegroup online -M haapp_rg

1

2

3

4

5

6

Using Sun Cluster Administration Commands to Create a Service That Uses the GDS

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A202

▼ How to Use Sun Cluster Administration Commands to
Create a Scalable Service That Uses the GDS

Become superuser or assume a role that provides solaris.cluster.modify RBAC
authorization.

Register the resource type SUNW.gds.
clresourcetype register SUNW.gds

Create the resource group for the SharedAddress resource.
clresourcegroup create sa_rg

Create the SharedAddress resource hhead in resource group sa_rg.
clressharedaddress create -g sa_rg hhead

Create the resource group for the scalable service.
clresourcegroup create -S -p RG_dependencies=sa_reg app_rg

Create the resource for the scalable service.
clresource create -g app_rg -t SUNW.gds

-p Validate_command="/export/app/bin/configtest" \

-p Scalable=TRUE -p Start_timeout=120 \

-p Stop_timeout=120 -p Probe_timeout=120 \

-p Port_list="2222/tcp" \

-p Start_command="/export/app/bin/start" \

-p Stop_command="/export/app/bin/stop" \

-p Probe_command="/export/app/bin/probe" \

-p Child_mon_level=0 -p Network_resource_used=hhead \

-p Failover_enabled=TRUE -p Stop_signal=9 app_rs

Bring the resource group that contains the network resources online.
clresourcegroup online sa_reg

Bring the resource group app_rg online in a managed state.
clresourcegroup online -M app_reg

1

2

3

4

5

6

7

8

Using Sun Cluster Administration Commands to Create a Service That Uses the GDS

Chapter 10 • Generic Data Services 203

Command-Line Interface for Agent Builder
Agent Builder incorporates a command-line interface that provides the same functionality that
the GUI provides. This interface consists of the commands scdscreate and scdsconfig. See
the scdscreate(1HA) and scdsconfig(1HA) man pages.

▼ How to Use the Command-Line Version of Agent
Builder to Create a Service That Uses GDS
This section describes how to use the command-line interface to perform the same set of steps
shown in “Using Agent Builder to Create a Service That Uses the GDS” on page 196.

Become superuser or assume a role that provides solaris.cluster.modify RBAC
authorization.

Create the service.

■ For a failover service, type:

scdscreate -g -V NET -T app -d /export/wdir
■ For a scalable service, type:

scdscreate -g -s -V NET -T app -d /export/wdir

Note – The -d argument is optional. If you do not specify this argument, the current directory
becomes the working directory.

Configure the service.
scdsconfig -s "/export/app/bin/start" \

-e "/export/app/bin/configtest" \

-t "/export/app/bin/stop" \

-m "/export/app/bin/probe" -d /export/wdir

You can specify property variables. Property variables are described in “Using Property
Variables” on page 174.

Note – Only the start command (scdsconfig -s) is required. All other options and arguments
are optional.

On each node of the cluster, install the completed package.
cd /export/wdir/NETapp/pkg

pkgadd -d . NETapp

1

2

3

4

Command-Line Interface for Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A204

http://docs.sun.com/doc/820-4685/scdscreate-1ha?a=view
http://docs.sun.com/doc/820-4685/scdsconfig-1ha?a=view

The following files are installed by pkgadd:

/opt/NETapp

/opt/NETapp/README.app

/opt/NETapp/man

/opt/NETapp/man/man1m

/opt/NETapp/man/man1m/removeapp.1m

/opt/NETapp/man/man1m/startapp.1m

/opt/NETapp/man/man1m/stopapp.1m

/opt/NETapp/man/man1m/app_config.1m

/opt/NETapp/util

/opt/NETapp/util/removeapp

/opt/NETapp/util/startapp

/opt/NETapp/util/stopapp

/opt/NETapp/util/app_config

Note – The man pages and script names correspond to the application name that you typed
previously on the Create screen, preceded by the script name (for example, startapp).

On one node of the cluster, configure the resources and start the application.
/opt/NETapp/util/startapp -h logicalhostname -p port-and-protocol-list

The arguments to the startapp script vary according to the type of resource: failover or
scalable.

5

Command-Line Interface for Agent Builder

Chapter 10 • Generic Data Services 205

Note – To determine the command line that you need to type, check the customized man page or
run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/NETapp/man startapp

To display a usage statement, type:

/opt/NETapp/util/startapp

The resource name of LogicalHostname or SharedAddress must be specified.

For failover services:

Usage: startapp -h logicalhostname
-p port-and-protocol-list
[-n ipmpgroup/adapter-list]

For scalable services:

Usage: startapp -h shared-address-name
-p port-and-protocol-list
[-l load-balancing-policy]
[-n ipmpgroup/adapter-list]
[-w load-balancing-weights]

Command-Line Interface for Agent Builder

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A206

DSDL API Functions

This chapter lists and briefly describes the Data Service Development Library (DSDL) API
functions. See the individual 3HA man pages for a complete description of each DSDL function.
The DSDL provides a C interface only. A script-based DSDL interface is not available.

This chapter covers the following topics:

■ “General-Purpose Functions” on page 207
■ “Property Functions” on page 209
■ “Network Resource Access Functions” on page 209
■ “PMF Functions” on page 211
■ “Fault Monitor Functions” on page 212
■ “Utility Functions” on page 212

General-Purpose Functions
The functions in this section provide a broad range of functionality.

These functions enable you to perform the following operations:

■ Initialize the DSDL environment
■ Retrieve resource type, resource, and resource group names, and extension property values
■ Fail over and restart a resource group, and restart a resource
■ Convert error strings to error messages
■ Execute a command under a timeout

11C H A P T E R 1 1

207

Initialization Functions
The following functions initialize the calling method:

■ scds_initialize(3HA) – Allocates resources and initializes the DSDL environment.
■ scds_close(3HA) – Frees resources that are allocated by scds_initialize().

Retrieval Functions
The following functions retrieve information about zones, resource types, resources, resource
groups, and extension properties:

■ scds_get_zone_name(3HA) – Retrieves the name of the zone on whose behalf a method is
running.

■ scds_get_resource_type_name(3HA) – Retrieves the name of the resource type for the
calling program.

■ scds_get_resource_name(3HA) – Retrieves the name of the resource for the calling
program.

■ scds_get_resource_group_name(3HA) – Retrieves the name of the resource group for the
calling program.

■ scds_get_ext_property(3HA) – Retrieves the value of the specified extension property.
■ scds_free_ext_property(3HA) – Frees the memory that is allocated by

scds_get_ext_property().

The following function retrieves status information about the SUNW.HAStoragePlus resources
that are used by a resource:

scds_hasp_check(3HA) – Retrieves status information about SUNW.HAStoragePlus resources
that are used by a resource. This information is obtained from the state (online or otherwise) of
all SUNW.HAStoragePlus resources on which the resource depends by using the
Resource_dependencies or Resource_dependencies_weak system properties that are defined
for the resource. See the SUNW.HAStoragePlus(5) man page for more information.

Failover and Restart Functions
The following functions fail over or restart a resource or resource group:

■ scds_failover_rg(3HA) – Fails over a resource group.
■ scds_restart_rg(3HA) – Restarts a resource group.
■ scds_restart_resource(3HA) – Restarts a resource.

General-Purpose Functions

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A208

http://docs.sun.com/doc/820-4685/scds-initialize-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-close-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-zone-name-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-resource-type-name-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-resource-name-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-resource-group-name-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-ext-property-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-free-ext-property-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-hasp-check-3ha?a=view
http://docs.sun.com/doc/820-4685/sunw.hastorageplus-5?a=view
http://docs.sun.com/doc/820-4685/scds-failover-rg-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-restart-rg-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-restart-resource-3ha?a=view

Execution Functions
The following functions execute a command under a timeout and convert an error code to an
error message:

■ scds_timerun(3HA) – Executes a command under a timeout value.
■ scds_error_string(3HA) and scds_error_string_i18n(3HA) – Translates an error code

to an error string. Strings that are returned by scds_error_string() are displayed in
English. Strings that are returned by scds_error_string_i18n() are displayed in the
native language that is specified by the LC_MESSAGES locale category.

■ scds_svc_wait(3HA) - Waits for the specified timeout period for a monitored process to
die.

Property Functions
These functions provide convenience APIs for accessing specific properties of the relevant
resource type, resource, and resource group, including some commonly used extension
properties. The DSDL provides the scds_initialize() function to parse the command-line
arguments. The library caches the various properties of the relevant resource type, resource, and
resource group.

The scds_property_functions(3HA) man page describes these functions, which include the
following:

■ scds_get_ext_property-name
■ scds_get_rg_property-name
■ scds_get_rs_property-name
■ scds_get_rt_property-name

Network Resource Access Functions
The functions listed in this section retrieve, print, and free the network resources that are used
by resources and resource groups. The scds_get_ functions in this section provide a
convenient way of retrieving network resources without using the RMAPI functions to query
specific properties, such as Network_resources_used and Port_list. The
scds_print_name() functions print values from the data structures that are returned by the
scds_get_name() functions. The scds_free_name() functions free the memory that is
allocated by the scds_get_name() functions.

Network Resource Access Functions

Chapter 11 • DSDL API Functions 209

http://docs.sun.com/doc/820-4685/scds-timerun-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-error-string-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-error-string-i18n-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-svc-wait-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-property-functions-3ha?a=view

Host Name Functions
The following functions handle host names:

■ scds_get_rs_hostnames(3HA) – Retrieves a list of host names that is used by the resource.
■ scds_get_rg_hostnames(3HA) – Retrieves a list of host names that is used by the network

resources in a resource group.
■ scds_print_net_list(3HA) – Writes the contents of the host name list to syslog(3C).

You typically use this function for debugging.
■ scds_free_net_list(3HA) – Frees the memory that is allocated by

scds_get_rs_hostnames() or scds_get_rg_hostnames().

Port List Functions
The following functions handle port lists:

■ scds_get_port_list(3HA) – Retrieves a list of port-protocol pairs that is used by a
resource.

■ scds_print_port_list(3HA) – Writes the contents of the port-protocol list to
syslog(3C). You typically use this function for debugging.

■ scds_free_port_list(3HA) – Frees the memory that is allocated by
scds_get_port_list().

Network Address Functions
The following functions handle network addresses:

■ scds_get_netaddr_list(3HA) – Retrieves a list of network addresses that is used by a
resource.

■ scds_print_netaddr_list(3HA) – Writes the contents of the network address list to
syslog(3C). You typically use this function for debugging.

■ scds_free_netaddr_list(3HA) – Frees the memory that is allocated by
scds_get_netaddr_list().

Fault Monitoring Using TCP Connections Functions
The functions in this section enable TCP-based monitoring. Typically, a fault monitor uses
these functions to establish a simple socket connection to a service, read and write data to the
service to ascertain its status, and disconnect from the service.

Network Resource Access Functions

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A210

http://docs.sun.com/doc/820-4685/scds-get-rs-hostnames-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-rg-hostnames-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-print-net-list-3ha?a=view
http://docs.sun.com/doc/816-5168/syslog-3c?a=view
http://docs.sun.com/doc/820-4685/scds-free-net-list-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-port-list-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-print-port-list-3ha?a=view
http://docs.sun.com/doc/816-5168/syslog-3c?a=view
http://docs.sun.com/doc/820-4685/scds-free-port-list-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-get-netaddr-list-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-print-netaddr-list-3ha?a=view
http://docs.sun.com/doc/816-5168/syslog-3c?a=view
http://docs.sun.com/doc/820-4685/scds-free-netaddr-list-3ha?a=view

These functions include the following:

■ scds_fm_tcp_connect(3HA) – Establishes a TCP connection to a process that uses IPv4
addressing only.

■ scds_fm_net_connect(3HA) – Establishes a TCP connection to a process that uses either
IPv4 or IPv6 addressing.

■ scds_fm_tcp_read(3HA) – Uses a TCP connection to read data from the process that is
being monitored.

■ scds_fm_tcp_write(3HA) – Uses a TCP connection to write data to a process that is being
monitored.

■ scds_simple_probe(3HA) – Probes a process by establishing and terminating a TCP
connection to the process. This function handles only IPv4 addresses.

■ scds_simple_net_probe(3HA) – Probes a process by establishing and terminating a TCP
connection to the process. This function handles either IPv4 or IPv6 addresses.

■ scds_fm_tcp_disconnect(3HA) – Terminates the connection to a process that is being
monitored. This function handles only IPv4 addresses.

■ scds_fm_net_disconnect(3HA) – Terminates the connection to a process that is being
monitored. This function handles either IPv4 or IPv6 addresses.

PMF Functions
These functions encapsulate the Process Monitor Facility (PMF) functionality. The DSDL
model for monitoring through the PMF creates and uses implicit tag values for pmfadm. See the
pmfadm(1M) man page for more information.

The PMF facility also uses implicit values for the Restart_interval, Retry_count, and
action_script (the -t, -n, and -a options to pmfadm). Most important, the DSDL ties the
process failure history, as determined by the PMF, into the application failure history as
detected by the fault monitor to compute the restart or failover decision.

The set includes the following functions:

■ scds_pmf_get_status(3HA) – Determines if the specified instance is being monitored
under the PMF's control.

■ scds_pmf_restart_fm(3HA) – Uses the PMF to restart the fault monitor.
■ scds_pmf_signal(3HA) – Sends the specified signal to a process tree that is running under

the PMF's control.
■ scds_pmf_start(3HA) and scds_pmf_start(3HA) – Executes a specified program

(including a fault monitor) under the PMF's control. In addition to performing the same
operations as the scds_pmf_start() function, the scds_pmf_start_env() function also
passes a provided environment to the executed program.

PMF Functions

Chapter 11 • DSDL API Functions 211

http://docs.sun.com/doc/820-4685/scds-fm-tcp-connect-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-net-connect-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-tcp-read-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-tcp-write-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-simple-probe-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-simple-net-probe-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-tcp-disconnect-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-net-disconnect-3ha?a=view
http://docs.sun.com/doc/820-4685/pmfadm-1m?a=view
http://docs.sun.com/doc/820-4685/scds-pmf-get-status-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-pmf-restart-fm-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-pmf-signal-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-pmf-start-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-pmf-start-3ha?a=view

■ scds_pmf_stop(3HA) – Terminates a process that is running under the PMF's control.
■ scds_pmf_stop_monitoring(3HA) – Stops monitoring a process that is running under the

PMF's control.

Fault Monitor Functions
The functions in this section provide a predetermined model of fault monitoring by keeping the
failure history and evaluating it in conjunction with the Retry_count and Retry_interval

properties.

This set includes the following functions:

■ scds_fm_sleep(3HA) – Waits for a message on a fault monitor control socket.
■ scds_fm_action(3HA) – Takes action after a probe completes.
■ scds_fm_print_probes(3HA) – Writes probe status information to the system log.

Utility Functions
The following functions enable you to write messages and debugging messages to the system
log:

■ scds_syslog(3HA) – Writes messages to the system log.
■ scds_syslog_debug(3HA) – Writes debugging messages to the system log.

Fault Monitor Functions

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A212

http://docs.sun.com/doc/820-4685/scds-pmf-stop-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-pmf-stop-monitoring-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-sleep-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-action-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-fm-print-probes-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-syslog-3ha?a=view
http://docs.sun.com/doc/820-4685/scds-syslog-debug-3ha?a=view

Cluster Reconfiguration Notification Protocol

This chapter provides information about the Cluster Reconfiguration Notification Protocol
(CRNP). The CRNP enables failover and scalable applications to be “cluster aware.” More
specifically, the CRNP provides a mechanism that enables applications to register for, and
receive subsequent asynchronous notification of, Sun Cluster reconfiguration events. Data
services that run within the cluster and applications that run outside the cluster can register for
notification of events. Events are generated when membership in a cluster changes and when
the state of a resource group or a resource changes.

Note – The SUNW.Event resource type implementation provides highly available CRNP services
on Sun Cluster. The implementation of this resource type is described in more detail in the
SUNW.Event(5) man page.

This chapter covers the following topics:

■ “CRNP Concepts” on page 213
■ “How a Client Registers With the Server” on page 217
■ “How the Server Replies to a Client” on page 219
■ “How the Server Delivers Events to a Client” on page 221
■ “How the CRNP Authenticates Clients and the Server” on page 223
■ “Example of Creating a Java Application That Uses the CRNP” on page 224

CRNP Concepts
The CRNP defines the Application, Presentation, and Session layers of the standard seven-layer
Open System Interconnect (OSI) protocol stack. The Transport layer must be TCP, and the
Network layer must be IP. The CRNP is independent of the Data Link and Physical layers. All
Application layer messages that are exchanged in the CRNP are based on XML 1.0.

12C H A P T E R 1 2

213

http://docs.sun.com/doc/820-4685/sunw.event-5?a=view

Note – You can run the CRNP only on a global-cluster voting node.

How the CRNP Works
The CRNP provides mechanisms and daemons that generate cluster reconfiguration events,
route the events through the cluster, and send them to interested clients.

The cl_apid daemon interacts with the clients. The Sun Cluster Resource Group Manager
(RGM) generates cluster reconfiguration events. This daemon uses syseventd to transmit
events on each local node. The cl_apid daemon uses Extensible Markup Language (XML) over
TCP/IP to communicate with interested clients.

The following diagram shows the flow of events between the CRNP components. In this
diagram, one client is running on cluster node 2, and the other client is running on a computer
that is not part of the cluster.

Host 2Host 1

XML over TCP

Resource Group
Manager (RGM)

President

Events

Client

Client

XML
over TCP

CRNP
server

Event
subsystem

Event
subsystem

FIGURE 12–1 Flow of Events Between CRNP Components

CRNP Concepts

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A214

CRNP Semantics
Clients initiate communication by sending a registration message (SC_CALLBACK_RG) to the
server. This registration message specifies the event types for which the clients want to receive
notification as well as a port to which the events can be delivered. The source IP of the
registration connection and the specified port, taken together, form the callback address.

Whenever an event of interest to a client is generated within the cluster, the server contacts the
client on its callback address (IP and port) and delivers the event (SC_EVENT) to the client. The
server is highly available, running within the cluster itself. The server stores client registrations
in storage that persists even after the cluster is rebooted.

Clients unregister by sending a registration message (SC_CALLBACK_RG, which contains a
REMOVE_CLIENT message) to the server. After the client receives an SC_REPLY message from the
server, the client closes the connection.

The following diagram shows the flow of communication between a client and a server.

CRNP Message Types
The CRNP uses three types of XML-based messages. Use of these messages is described in the
following table. These message types are described in more detail later in this chapter.

Client Server

Client unregistration

Client registration
(callback port and event types of interest)

Time

Event deliveries

FIGURE 12–2 Flow of Communication Between a Client and a Server

CRNP Concepts

Chapter 12 • Cluster Reconfiguration Notification Protocol 215

CRNP Message Type Description

SC_CALLBACK_REG This message takes four forms: ADD_CLIENT, REMOVE_CLIENT, ADD_EVENTS, and
REMOVE_EVENTS. Each of these forms contains the following information:
■ Protocol version
■ Callback port in ASCII format (not binary format)

ADD_CLIENT, ADD_EVENTS, and REMOVE_EVENTS also contain an unbounded list of
event types. Each of these forms includes the following information:
■ Event class
■ Event subclass (optional)
■ List of the name and value pairs (optional)

Together, the event class and event subclass define a unique “event type.” The
document type definition (DTD) from which the classes of SC_CALLBACK_REG are
generated is SC_CALLBACK_REG. This DTD is described in more detail in Appendix F,
“Document Type Definitions for the CRNP.”

SC_REPLY This message contains the following information:
■ Protocol version
■ Error code
■ Error message

The DTD from which the classes of SC_REPLY are generated is SC_REPLY. This DTD is
described in more detail in Appendix F, “Document Type Definitions for the CRNP.”

SC_EVENT This message contains the following information:
■ Protocol version

■ Event class

■ Event subclass

■ Vendor

■ Publisher

■ Name and value pairs list (0 or more name and value pair data structures)

■ Name (string)
■ Value (string or string array)

The values in an SC_EVENT are not typed. The DTD from which the classes of
SC_EVENT are generated is SC_EVENT. This DTD is described in more detail in
Appendix F, “Document Type Definitions for the CRNP.”

CRNP Concepts

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A216

How a Client Registers With the Server
This section describes how a cluster administrator sets up the server, how clients are identified,
how information is sent over the Application and Session layers, and error conditions.

Assumptions About How Administrators Set Up the
Server
The cluster administrator must configure the server with a highly available IP address (one that
is not tied to a particular machine in the cluster) and a port number. The cluster administrator
must publish this network address to prospective clients. The CRNP does not define how this
server name is made available to clients. The cluster administrator either uses a naming service,
which enables clients to find the network address of the server dynamically, or adds the network
name to a configuration file for the client to read. The server runs within the cluster as a failover
resource type.

How the Server Identifies a Client
Each client is uniquely identified by its callback address, that is, its IP address and port number.
The port is specified in the SC_CALLBACK_REG messages, and the IP address is obtained from the
TCP registration connection. The CRNP assumes that subsequent SC_CALLBACK_REG messages
with the same callback address come from the same client, even if the source port from which
the messages are sent is different.

How SC_CALLBACK_REGMessages Are Passed Between
a Client and the Server
A client initiates a registration by opening a TCP connection to the server's IP address and port
number. After the TCP connection is established and ready for writing, the client must send its
registration message. The registration message must be one correctly formatted
SC_CALLBACK_REG message that does not contain extra bytes either before or after the message.

After all the bytes have been written to the stream, the client must keep its connection open to
receive the reply from the server. If the client does not format the message correctly, the server
does not register the client, and sends an error reply to the client. However, if the client closes
the socket connection before the server sends a reply, the server registers the client as usual.

A client can contact the server at any time. Every time a client contacts the server, the client
must send an SC_CALLBACK_REG message. If the server receives a message that is malformed, out
of order, or invalid, the server sends an error reply to the client.

How a Client Registers With the Server

Chapter 12 • Cluster Reconfiguration Notification Protocol 217

A client cannot send an ADD_EVENTS, REMOVE_EVENTS, or REMOVE_CLIENT message before that
client sends an ADD_CLIENT message. A client cannot send a REMOVE_CLIENT message before
that client sends an ADD_CLIENT message.

If a client sends an ADD_CLIENT message and the client is already registered, the server might
tolerate this message. In this situation, the server silently replaces the old client registration with
the new client registration that is specified in the second ADD_CLIENT message.

In most situations, a client registers with the server once, when the client starts, by sending an
ADD_CLIENT message. A client unregisters once by sending a REMOVE_CLIENT message to the
server. However, the CRNP provides more flexibility for those clients that need to modify their
event type list dynamically.

Contents of an SC_CALLBACK_REGMessage
Each ADD_CLIENT, REMOVE_CLIENT, ADD_EVENTS, and REMOVE_EVENTS message contains a list of
events. The following table describes the event types that the CRNP accepts, including the
required name and value pairs.

If a client performs one of the following actions, the server silently ignores these messages:

■ Sends a REMOVE_EVENTS message that specifies one or more event types for which the client
has not previously registered

■ Registers for the same event type twice

Class and Subclass Name and Value Pairs Description

EC_Cluster

ESC_cluster_membership

Required: none

Optional: none

Registers for all cluster membership change events (node
death or join cluster)

EC_Cluster

ESC_cluster_rg_state

One required, as follows:

rg_name

Value type: string

Optional: none

Registers for all state change events for resource group
name

EC_Cluster

ESC_cluster_r_state

One required, as follows:

r_name

Value type: string

Optional: none

Registers for all state change events for resource name

EC_Cluster

None

Required: none

Optional: none

Registers for all Sun Cluster events

How a Client Registers With the Server

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A218

How the Server Replies to a Client
After processing the registration, the server that received the registration request sends the
SC_REPLY message on the TCP connection that the client opened. The server closes the
connection. The client must keep the TCP connection open until it receives the SC_REPLY
message from the server.

For example, the client carries out the following actions:

1. Opens a TCP connection to the server
2. Waits for a connection to be “writable”
3. Sends an SC_CALLBACK_REG message (which contains an ADD_CLIENT message)
4. Waits for an SC_REPLY message from the server
5. Receives an SC_REPLY message from the server
6. Receives an indicator that the server has closed the connection (reads 0 bytes from the

socket)
7. Closes the connection

At a later point in time, the client carries out the following actions:

1. Opens a TCP connection to the server
2. Waits for a connection to be “writable”
3. Sends an SC_CALLBACK_REG message (which contains a REMOVE_CLIENT message)
4. Waits for an SC_REPLY message from the server
5. Receives an SC_REPLY message from the server
6. Receives an indicator that the server has closed the connection (reads 0 bytes from the

socket)
7. Closes the connection

Each time that the server receives an SC_CALLBACK_REG message from a client, the server sends
an SC_REPLY message on the same open connection. This message specifies whether the
operation succeeded or failed. “SC_REPLY XML DTD” on page 358 contains the XML document
type definition of an SC_REPLY message, and the possible error messages that this message can
include.

Contents of an SC_REPLYMessage
An SC_REPLY message specifies whether an operation succeeded or failed. This message
contains the version of the CRNP message, a status code, and a status message, which describes
the status code in more detail. The following table describes the possible values for the status
code.

How the Server Replies to a Client

Chapter 12 • Cluster Reconfiguration Notification Protocol 219

Status Code Description

OK The message was processed successfully.

RETRY The registration of the client was rejected by the server due to a transient
error. The client should try to register again, with different arguments.

LOW_RESOURCE Cluster resources are low, and the client can only try again at a later time.
The cluster administrator for the cluster can also increase the resources in
the cluster.

SYSTEM_ERROR A serious problem occurred. Contact the cluster administrator for the
cluster.

FAIL Authorization failed or another problem caused the registration to fail.

MALFORMED The XML request was malformed and could not be parsed.

INVALID The XML request was invalid , that is, it does not meet the XML
specification.

VERSION_TOO_HIGH The version of the message was too high to process the message successfully.

VERSION_TOO_LOW The version of the message was too low to process the message successfully.

How a Client Is to Handle Error Conditions
Under normal conditions, a client that sends an SC_CALLBACK_REG message receives a reply that
indicates that the registration succeeded or failed.

However, the server can experience an error condition when a client is registering that prohibits
the server from sending an SC_REPLY message to the client. In this case, the registration could
either have succeeded before the error condition occurred, could have failed, or could not yet
have been processed.

Because the server must function as a failover, or highly available, server in the cluster, this error
condition does not mean an end to the service. In fact, the server could soon begin sending
events to the newly registered client.

To remedy these conditions, your client should perform the following actions:

■ Impose an application-level timeout on a registration connection that is waiting for an
SC_REPLY message, after which the client needs to retry registering.

■ Begin listening on its callback IP address and port number for event deliveries before it
registers for the event callbacks. The client should wait for a registration confirmation
message and for event deliveries in parallel. If the client begins to receive events before the
client receives a confirmation message, the client should silently close the registration
connection.

How the Server Replies to a Client

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A220

How the Server Delivers Events to a Client
As events are generated within the cluster, the CRNP server delivers them to each client that
requested events of those types. The delivery consists of sending an SC_EVENT message to the
client's callback address. The delivery of each event occurs on a new TCP connection.

Immediately after a client registers for an event type, through an SC_CALLBACK_REG message
that contains an ADD_CLIENT message or an ADD_EVENT message, the server sends the most
recent event of that type to the client. The client can determine the current state of the system
from which the subsequent events come.

When the server initiates a TCP connection to the client, the server sends exactly one SC_EVENT
message on the connection. The server issues a full-duplex close.

For example, the client carries out the following actions:

1. Waits for the server to initiate a TCP connection
2. Accepts the incoming connection from the server
3. Waits for an SC_EVENT message from the server
4. Reads an SC_EVENT message from the server
5. Receives an indicator that the server has closed the connection (reads 0 bytes from the

socket)
6. Closes the connection

When all clients have registered, they must listen at their callback address (the IP address and
port number) at all times for an incoming event delivery connection.

If the server fails to contact the client to deliver an event, the server tries again to deliver the
event the number of times and at the interval that you define. If all attempts fail, the client is
removed from the server's list of clients. The client also needs to reregister by sending another
SC_CALLBACK_REG message that contains an ADD_CLIENT message before the client can receive
more events.

How the Delivery of Events Is Guaranteed
There is a total ordering of event generation within the cluster that is preserved in the order of
delivery to each client. In other words, if event A is generated within the cluster before event B,
client X receives event A before that client receives event B. However, the total ordering of event
delivery to all clients is not preserved. That is, client Y could receive both events A and B before
client X receives event A. In this way, slow clients do not hold up delivery to all clients.

All events that the server delivers (except the first event for a subclass and events that follow
server errors) occur in response to the actual events that the cluster generates, except if the
server experiences an error that causes it to miss cluster-generated events. In this case, the

How the Server Delivers Events to a Client

Chapter 12 • Cluster Reconfiguration Notification Protocol 221

server generates an event for each event type that represents the current state of the system for
that type. Each event is sent to clients that registered interest in that event type.

Event delivery follows the “at least once” semantics. That is, the server can send the same event
to a client more than once. This allowance is necessary in cases in which the server goes down
temporarily, and when it comes back up, cannot determine whether the client has received the
latest information.

Contents of an SC_EVENTMessage
The SC_EVENT message contains the actual message that is generated within the cluster,
translated to fit into the SC_EVENT XML message format. The following table describes the event
types that the CRNP delivers, including the name and value pairs, publisher, and vendor.

Note – The positions of the array elements for state_list are synchronized with those of the
node_list. That is, the state for the node that is listed first in the node_list array is listed first
in the state_list array.

Additional names starting with ev_ and their associated values might be present, but are not
intended for client use.

Class and Subclass Publisher and Vendor Name and Value Pairs

EC_Cluster

ESC_cluster_membership

Publisher: rgm

Vendor: SUNW

Name: node_list

Value type: string array

Name: state_list

The state_list contains only numbers that are represented in
ASCII. Each number represents the current incarnation number
for that node in the cluster. If the number is the same as the
number that was received in a previous message, the node has
not changed its relationship to the cluster (departed, joined, or
rejoined). If the incarnation number is –1, the node is not a
member of the cluster. If the incarnation number is a number
other than a negative number, the node is a member of the
cluster.

Value type: string array

How the Server Delivers Events to a Client

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A222

Class and Subclass Publisher and Vendor Name and Value Pairs

EC_Cluster

ESC_cluster_rg_state

Publisher: rgm

Vendor: SUNW

Name: rg_name

Value type: string

Name: node_list

Value type: string array

Name: state_list

The state_list contains string representations of the state of
the resource group. Valid values are those values that you can
retrieve with the scha_cmds(1HA) commands.

Value type: string array

EC_Cluster

ESC_cluster_r_state

Publisher: rgm

Vendor: SUNW

Name: r_name

Value type: string

Name: node_list

Value type: string array

Name: state_list

The state_list contains string representations of the state of
the resource. Valid values are those values that you can retrieve
with the scha_cmds(1HA) commands.

Value type: string array

How the CRNP Authenticates Clients and the Server
The server authenticates a client by using a form of TCP wrappers. The source IP address of the
registration message, which is also used as the callback IP address on which events are
delivered, must be in the list of allowed clients on the server. The source IP address and
registration message cannot be in the denied clients list. If the source IP address and registration
are not in the list, the server rejects the request and issues an error reply to the client.

When the server receives an SC_CALLBACK_REG ADD_CLIENT message, subsequent
SC_CALLBACK_REG messages for that client must contain a source IP address that is the same as
the source IP address in the first message.

If the CRNP server receives an SC_CALLBACK_REG that does not meet this requirement, the
server performs one of the following actions:

■ Ignores the request and sends an error reply to the client
■ Assumes that the request comes from a new client, depending on the contents of the

SC_CALLBACK_REG message

How the CRNP Authenticates Clients and the Server

Chapter 12 • Cluster Reconfiguration Notification Protocol 223

http://docs.sun.com/doc/820-4685/scha-cmds-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-cmds-1ha?a=view

This security mechanism helps to prevent denial of service attacks, where someone attempts to
unregister a legitimate client.

Clients should also similarly authenticate the server. Clients need only accept event deliveries
from a server whose source IP address and port number are the same as the registration IP
address and port number that the client used.

Because clients of the CRNP service are supposed to be located inside a firewall that protects the
cluster, the CRNP does not include additional security mechanisms.

Example of Creating a Java Application That Uses the CRNP
The following example illustrates how to develop a simple Java application named CrnpClient

that uses the CRNP. The application registers for event callbacks with the CRNP server in the
cluster, listens for the event callbacks, and processes the events by printing their contents.
Before terminating, the application unregisters its request for event callbacks.

Note the following points when reviewing this example:

■ The sample application generates and parses XML with the JAXP (Java API for XML
Processing). This example does not show you how to use the JAXP. The JAXP is described in
more detail at http://java.sun.com/webservices/jaxp/.

■ This example presents pieces of an application, which can be found in its entirety in
Appendix G, “CrnpClient.java Application.” To illustrate particular concepts more
effectively, the example in this chapter differs slightly from the complete application that is
presented in Appendix G, “CrnpClient.java Application.”

■ For brevity, comments are excluded from the sample code in this chapter. The complete
application in Appendix G, “CrnpClient.java Application,” includes comments.

■ The application that is shown in this example handles most error conditions by simply
exiting the application. Your actual application needs to handle errors more robustly.

▼ How to Set Up Your Environment
Download and install JAXP and the correct version of the Java compiler and virtual machine.
You can find instructions at http://java.sun.com/webservices/jaxp/.

Note – This example requires at least Java 1.3.1.

From the directory in which your source file is located, type the following:
% javac -classpath jaxp-root/dom.jar:jaxp-rootjaxp-api. \

jar:jaxp-rootsax.jar:jaxp-rootxalan.jar:jaxp-root/xercesImpl \

.jar:jaxp-root/xsltc.jar -sourcepath . source-filename.java

1

2

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A224

http://java.sun.com/webservices/jaxp/
http://java.sun.com/webservices/jaxp/

where jaxp-root is the absolute or relative path to the directory in which the JAXP jar files are
located and source-filename is the name of your Java source file.

A classpath in your compilation command line ensures that the compiler can find the JAXP
classes.

When you run the application, specify the classpath so that the application can load the
correct JAXP class files (note that the first path in the classpath is the current directory):
% java -cp .:jaxp-root/dom.jar:jaxp-rootjaxp-api. \

jar:jaxp-rootsax.jar:jaxp-rootxalan.jar:jaxp-root/xercesImpl \

.jar:jaxp-root/xsltc.jar source-filename arguments

Now that your environment is configured, you can develop your application.

▼ How to Start Developing Your Application
In this part of the example, you create a basic class called CrnpClient, with a main method that
parses the command-line arguments and constructs a CrnpClient object. This object passes the
command-line arguments to the class, waits for the user to terminate the application, calls
shutdown on the CrnpClient, and exits.

The constructor of the CrnpClient class needs to execute the following tasks:
■ Set up the XML processing objects.
■ Create a thread that listens for event callbacks.
■ Contact the CRNP server and register for event callbacks.

Create the Java code that implements the preceding logic.
The following example shows the skeleton code for the CrnpClient class. The implementations
of the four helper methods that are referenced in the constructor and shutdown methods are
shown later in this chapter. Note that the code that imports all the packages that you need is
shown.
import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.w3c.dom.*;

import java.net.*;

import java.io.*;

import java.util.*;

class CrnpClient

{

public static void main(String []args)

3

●

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 225

{

InetAddress regIp = null;

int regPort = 0, localPort = 0;

try {

regIp = InetAddress.getByName(args[0]);

regPort = (new Integer(args[1])).intValue();

localPort = (new Integer(args[2])).intValue();

} catch (UnknownHostException e) {

System.out.println(e);

System.exit(1);

}

CrnpClient client = new CrnpClient(regIp, regPort,

localPort, args);

System.out.println("Hit return to terminate demo...");
try {

System.in.read();

} catch (IOException e) {

System.out.println(e.toString());

}

client.shutdown();

System.exit(0);

}

public CrnpClient(InetAddress regIpIn, int regPortIn,

int localPortIn, String []clArgs)

{

try {

regIp = regIpIn;

regPort = regPortIn;

localPort = localPortIn;

regs = clArgs;

setupXmlProcessing();

createEvtRecepThr();

registerCallbacks();

} catch (Exception e) {

System.out.println(e.toString());

System.exit(1);

}

}

public void shutdown()

{

try {

unregister();

} catch (Exception e) {

System.out.println(e);

System.exit(1);

}

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A226

}

private InetAddress regIp;

private int regPort;

private EventReceptionThread evtThr;

private String regs[];

public int localPort;

public DocumentBuilderFactory dbf;

}

Member variables are discussed in more detail later in this chapter.

▼ How to Parse the Command-Line Arguments
To parse the command-line arguments, see the code in Appendix G,“CrnpClient.java
Application.”

▼ How to Define the Event Reception Thread
In the code, you need to ensure that event reception is performed in a separate thread so that
your application can continue to do other work while the event thread blocks and waits for
event callbacks.

Note – Setting up the XML is discussed later in this chapter.

In your code, define a Thread subclass called EventReceptionThread that creates a
ServerSocket and waits for events to arrive on the socket.
In this part of the example code, events are neither read nor processed. Reading and processing
events are discussed later in this chapter. The EventReceptionThread creates a ServerSocket
on a wildcard internet-working protocol address. EventReceptionThread also keeps a
reference to the CrnpClient object so that EventReceptionThread can send events to the
CrnpClient object to process.
class EventReceptionThread extends Thread

{

public EventReceptionThread(CrnpClient clientIn) throws IOException

{

client = clientIn;

listeningSock = new ServerSocket(client.localPort, 50,

InetAddress.getLocalHost());

}

public void run()

●

1

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 227

{

try {

DocumentBuilder db = client.dbf.newDocumentBuilder();

db.setErrorHandler(new DefaultHandler());

while(true) {

Socket sock = listeningSock.accept();

// Construct event from the sock stream and process it

sock.close();

}

// UNREACHABLE

} catch (Exception e) {

System.out.println(e);

System.exit(1);

}

}

/* private member variables */

private ServerSocket listeningSock;

private CrnpClient client;

}

Construct a createEvtRecepThr object.
private void createEvtRecepThr() throws Exception

{

evtThr = new EventReceptionThread(this);

evtThr.start();

}

▼ How to Register and Unregister Callbacks
The registration task involves the following actions:
■ Opening a basic TCP socket to the registration internet-working protocol and port
■ Constructing the XML registration message
■ Sending the XML registration message on the socket
■ Reading the XML reply message off the socket
■ Closing the socket

Create the Java code that implements the preceding logic.
The following example code shows the implementation of the registerCallbacks method of
the CrnpClient class (which is called by the CrnpClient constructor). The calls to
createRegistrationString() and readRegistrationReply() are described in more detail
later in this chapter.

2

1

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A228

regIp and regPort are object members that are set up by the constructor.
private void registerCallbacks() throws Exception

{

Socket sock = new Socket(regIp, regPort);

String xmlStr = createRegistrationString();

PrintStream ps = new

PrintStream(sock.getOutputStream());

ps.print(xmlStr);

readRegistrationReply(sock.getInputStream();

sock.close();

}

Implement the unregistermethod.
This method is called by the shutdown method of CrnpClient. The implementation of
createUnregistrationString is described in more detail later in this chapter.
private void unregister() throws Exception

{

Socket sock = new Socket(regIp, regPort);

String xmlStr = createUnregistrationString();

PrintStream ps = new PrintStream(sock.getOutputStream());

ps.print(xmlStr);

readRegistrationReply(sock.getInputStream());

sock.close();

}

▼ How to Generate the XML
Now that you have set up the structure of the application and have written all the networking
code, you need to write the code that generates and parses the XML. Start by writing the code
that generates the SC_CALLBACK_REG XML registration message.

An SC_CALLBACK_REG message consists of a registration type (ADD_CLIENT, REMOVE_CLIENT,
ADD_EVENTS, or REMOVE_EVENTS), a callback port, and a list of events of interest. Each event
consists of a class and a subclass, followed by a list of name and value pairs.

In this part of the example, you write a CallbackReg class that stores the registration type,
callback port, and list of registration events. This class also can serialize itself to an
SC_CALLBACK_REG XML message.

An interesting method of this class is the convertToXml method, which creates an
SC_CALLBACK_REG XML message string from the class members. The JAXP documentation at
http://java.sun.com/webservices/jaxp/ describes the code in this method in more detail.

The implementation of the Event class is shown in the following example code. Note that the
CallbackReg class uses an Event class that stores one event and can convert that event to an
XML Element.

2

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 229

http://java.sun.com/webservices/jaxp/

Create the Java code that implements the preceding logic.
class CallbackReg

{

public static final int ADD_CLIENT = 0;

public static final int ADD_EVENTS = 1;

public static final int REMOVE_EVENTS = 2;

public static final int REMOVE_CLIENT = 3;

public CallbackReg()

{

port = null;

regType = null;

regEvents = new Vector();

}

public void setPort(String portIn)

{

port = portIn;

}

public void setRegType(int regTypeIn)

{

switch (regTypeIn) {

case ADD_CLIENT:

regType = "ADD_CLIENT";
break;

case ADD_EVENTS:

regType = "ADD_EVENTS";
break;

case REMOVE_CLIENT:

regType = "REMOVE_CLIENT";
break;

case REMOVE_EVENTS:

regType = "REMOVE_EVENTS";
break;

default:

System.out.println("Error, invalid regType " +

regTypeIn);

regType = "ADD_CLIENT";
break;

}

}

public void addRegEvent(Event regEvent)

{

regEvents.add(regEvent);

}

1

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A230

public String convertToXml()

{

Document document = null;

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

try {

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.newDocument();

} catch (ParserConfigurationException pce) {

// Parser with specified options can’t be built

pce.printStackTrace();

System.exit(1);

}

// Create the root element

Element root = (Element) document.createElement("SC_CALLBACK_REG");

// Add the attributes

root.setAttribute("VERSION", "1.0");
root.setAttribute("PORT", port);

root.setAttribute("regType", regType);

// Add the events

for (int i = 0; i < regEvents.size(); i++) {

Event tempEvent = (Event)

(regEvents.elementAt(i));

root.appendChild(tempEvent.createXmlElement(document));

}

document.appendChild(root);

// Convert the whole thing to a string

DOMSource domSource = new DOMSource(document);

StringWriter strWrite = new StringWriter();

StreamResult streamResult = new StreamResult(strWrite);

TransformerFactory tf = TransformerFactory.newInstance();

try {

Transformer transformer = tf.newTransformer();

transformer.transform(domSource, streamResult);

} catch (TransformerException e) {

System.out.println(e.toString());

return ("");
}

return (strWrite.toString());

}

private String port;

private String regType;

private Vector regEvents;

}

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 231

Implement the Event and NVPair classes.
Note that the CallbackReg class uses an Event class, which itself uses an NVPair class.
class Event

{

public Event()

{

regClass = regSubclass = null;

nvpairs = new Vector();

}

public void setClass(String classIn)

{

regClass = classIn;

}

public void setSubclass(String subclassIn)

{

regSubclass = subclassIn;

}

public void addNvpair(NVPair nvpair)

{

nvpairs.add(nvpair);

}

public Element createXmlElement(Document doc)

{

Element event = (Element)

doc.createElement("SC_EVENT_REG");
event.setAttribute("CLASS", regClass);

if (regSubclass != null) {

event.setAttribute("SUBCLASS", regSubclass);

}

for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

(nvpairs.elementAt(i));

event.appendChild(tempNv.createXmlElement(doc));

}

return (event);

}

private String regClass, regSubclass;

private Vector nvpairs;

}

class NVPair

{

2

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A232

public NVPair()

{

name = value = null;

}

public void setName(String nameIn)

{

name = nameIn;

}

public void setValue(String valueIn)

{

value = valueIn;

}

public Element createXmlElement(Document doc)

{

Element nvpair = (Element)

doc.createElement("NVPAIR");
Element eName = doc.createElement("NAME");
Node nameData = doc.createCDATASection(name);

eName.appendChild(nameData);

nvpair.appendChild(eName);

Element eValue = doc.createElement("VALUE");
Node valueData = doc.createCDATASection(value);

eValue.appendChild(valueData);

nvpair.appendChild(eValue);

return (nvpair);

}

private String name, value;

}

▼ How to Create the Registration and Unregistration
Messages
Now that you have created the helper classes that generate the XML messages, you can write the
implementation of the createRegistrationString method. This method is called by the
registerCallbacks method, which is described in “How to Register and Unregister Callbacks”
on page 228.

createRegistrationString constructs a CallbackReg object and sets its registration type and
port. Then, createRegistrationString constructs various events, by using the
createAllEvent, createMembershipEvent, createRgEvent, and createREvent helper

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 233

methods. Each event is added to the CallbackReg object after this object is created. Finally,
createRegistrationString calls the convertToXml method on the CallbackReg object to
retrieve the XML message in String form.

Note that the regs member variable stores the command-line arguments that a user provides to
the application. The fifth and subsequent arguments specify the events for which the
application should register. The fourth argument specifies the type of registration, but is
ignored in this example. The complete code in Appendix G, “CrnpClient.java Application,”
shows how to use this fourth argument.

Create the Java code that implements the preceding logic.
private String createRegistrationString() throws Exception

{

CallbackReg cbReg = new CallbackReg();

cbReg.setPort("" + localPort);

cbReg.setRegType(CallbackReg.ADD_CLIENT);

// add the events

for (int i = 4; i < regs.length; i++) {

if (regs[i].equals("M")) {

cbReg.addRegEvent(createMembershipEvent());

} else if (regs[i].equals("A")) {

cbReg.addRegEvent(createAllEvent());

} else if (regs[i].substring(0,2).equals("RG")) {

cbReg.addRegEvent(createRgEvent(regs[i].substring(3)));

} else if (regs[i].substring(0,1).equals("R")) {

cbReg.addRegEvent(createREvent(regs[i].substring(2)));

}

}

String xmlStr = cbReg.convertToXml();

return (xmlStr);

}

private Event createAllEvent()

{

Event allEvent = new Event();

allEvent.setClass("EC_Cluster");
return (allEvent);

}

private Event createMembershipEvent()

{

Event membershipEvent = new Event();

membershipEvent.setClass("EC_Cluster");
membershipEvent.setSubclass("ESC_cluster_membership");

1

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A234

return (membershipEvent);

}

private Event createRgEvent(String rgname)

{

Event rgStateEvent = new Event();

rgStateEvent.setClass("EC_Cluster");
rgStateEvent.setSubclass("ESC_cluster_rg_state");

NVPair rgNvpair = new NVPair();

rgNvpair.setName("rg_name");
rgNvpair.setValue(rgname);

rgStateEvent.addNvpair(rgNvpair);

return (rgStateEvent);

}

private Event createREvent(String rname)

{

Event rStateEvent = new Event();

rStateEvent.setClass("EC_Cluster");
rStateEvent.setSubclass("ESC_cluster_r_state");

NVPair rNvpair = new NVPair();

rNvpair.setName("r_name");
rNvpair.setValue(rname);

rStateEvent.addNvpair(rNvpair);

return (rStateEvent);

}

Create the unregistration string.

Creating the unregistration string is easier than creating the registration string because you do
not need to accommodate events.
private String createUnregistrationString() throws Exception

{

CallbackReg cbReg = new CallbackReg();

cbReg.setPort("" + localPort);

cbReg.setRegType(CallbackReg.REMOVE_CLIENT);

String xmlStr = cbReg.convertToXml();

return (xmlStr);

}

2

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 235

▼ How to Set Up the XML Parser
You have now created the networking and XML generation code for the application. The
CrnpClient constructor calls a setupXmlProcessing method. This method creates a
DocumentBuilderFactory object and sets various parsing properties on that object. The JAXP
documentation describes this method in more detail. See
http://java.sun.com/webservices/jaxp/.

Create the Java code that implements the preceding logic.
private void setupXmlProcessing() throws Exception

{

dbf = DocumentBuilderFactory.newInstance();

// We don’t need to bother validating

dbf.setValidating(false);

dbf.setExpandEntityReferences(false);

// We want to ignore comments and whitespace

dbf.setIgnoringComments(true);

dbf.setIgnoringElementContentWhitespace(true);

// Coalesce CDATA sections into TEXT nodes.

dbf.setCoalescing(true);

}

▼ How to Parse the Registration Reply
To parse the SC_REPLY XML message that the CRNP server sends in response to a registration
or unregistration message, you need a RegReply helper class. You can construct this class from
an XML document. This class provides accessors for the status code and status message. To
parse the XML stream from the server, you need to create a new XML document and use that
document's parse method. The JAXP documentation at
http://java.sun.com/webservices/jaxp/ describes this method in more detail.

Create the Java code that implements the preceding logic.
Note that the readRegistrationReply method uses the new RegReply class.
private void readRegistrationReply(InputStream stream) throws Exception

{

// Create the document builder

DocumentBuilder db = dbf.newDocumentBuilder();

db.setErrorHandler(new DefaultHandler());

//parse the input file

Document doc = db.parse(stream);

●

1

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A236

http://java.sun.com/webservices/jaxp/
http://java.sun.com/webservices/jaxp/

RegReply reply = new RegReply(doc);

reply.print(System.out);

}

Implement the RegReply class.
Note that the retrieveValues method walks the DOM tree in the XML document and pulls
out the status code and status message. The JAXP documentation at
http://java.sun.com/webservices/jaxp/ contains more detail.
class RegReply

{

public RegReply(Document doc)

{

retrieveValues(doc);

}

public String getStatusCode()

{

return (statusCode);

}

public String getStatusMsg()

{

return (statusMsg);

}

public void print(PrintStream out)

{

out.println(statusCode + ": " +

(statusMsg != null ? statusMsg : ""));
}

private void retrieveValues(Document doc)

{

Node n;

NodeList nl;

String nodeName;

// Find the SC_REPLY element.

nl = doc.getElementsByTagName("SC_REPLY");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_REPLY node.");

return;

}

n = nl.item(0);

2

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 237

http://java.sun.com/webservices/jaxp/

// Retrieve the value of the statusCode attribute

statusCode = ((Element)n).getAttribute("STATUS_CODE");

// Find the SC_STATUS_MSG element

nl = ((Element)n).getElementsByTagName("SC_STATUS_MSG");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_STATUS_MSG node.");

return;

}

// Get the TEXT section, if there is one.

n = nl.item(0).getFirstChild();

if (n == null || n.getNodeType() != Node.TEXT_NODE) {

// Not an error if there isn’t one, so we just silently return.

return;

}

// Retrieve the value

statusMsg = n.getNodeValue();

}

private String statusCode;

private String statusMsg;

}

▼ How to Parse the Callback Events
The final step is to parse and process the actual callback events. To aid in this task, you modify
the Event class that you created in “How to Generate the XML” on page 229 so that this class can
construct an Event from an XML document and create an XML Element. This change requires
an additional constructor (that takes an XML document), a retrieveValues method, the
addition of two member variables (vendor and publisher), accessor methods for all fields, and
finally, a print method.

Create the Java code that implements the preceding logic.
Note that this code is similar to the code for the RegReply class that is described in “How to
Parse the Registration Reply” on page 236.
public Event(Document doc)

{

nvpairs = new Vector();

retrieveValues(doc);

}

public void print(PrintStream out)

{

out.println("\tCLASS=" + regClass);

1

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A238

out.println("\tSUBCLASS=" + regSubclass);

out.println("\tVENDOR=" + vendor);

out.println("\tPUBLISHER=" + publisher);

for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

(nvpairs.elementAt(i));

out.print("\t\t");
tempNv.print(out);

}

}

private void retrieveValues(Document doc)

{

Node n;

NodeList nl;

String nodeName;

// Find the SC_EVENT element.

nl = doc.getElementsByTagName("SC_EVENT");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_EVENT node.");

return;

}

n = nl.item(0);

//

// Retrieve the values of the CLASS, SUBCLASS,

// VENDOR and PUBLISHER attributes.

//

regClass = ((Element)n).getAttribute("CLASS");
regSubclass = ((Element)n).getAttribute("SUBCLASS");
publisher = ((Element)n).getAttribute("PUBLISHER");
vendor = ((Element)n).getAttribute("VENDOR");

// Retrieve all the nv pairs

for (Node child = n.getFirstChild(); child != null;

child = child.getNextSibling())

{

nvpairs.add(new NVPair((Element)child));

}

}

public String getRegClass()

{

return (regClass);

}

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 239

public String getSubclass()

{

return (regSubclass);

}

public String getVendor()

{

return (vendor);

}

public String getPublisher()

{

return (publisher);

}

public Vector getNvpairs()

{

return (nvpairs);

}

private String vendor, publisher;

Implement the additional constructors and methods for the NVPair class that support the XML
parsing.
The changes to the Event class that are shown in Step 1 require similar changes to the NVPair
class.
public NVPair(Element elem)

{

retrieveValues(elem);

}

public void print(PrintStream out)

{

out.println("NAME=" + name + " VALUE=" + value);

}

private void retrieveValues(Element elem)

{

Node n;

NodeList nl;

String nodeName;

// Find the NAME element

nl = elem.getElementsByTagName("NAME");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "NAME node.");

return;

2

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A240

}

// Get the TEXT section

n = nl.item(0).getFirstChild();

if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;

}

// Retrieve the value

name = n.getNodeValue();

// Now get the value element

nl = elem.getElementsByTagName("VALUE");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "VALUE node.");

return;

}

// Get the TEXT section

n = nl.item(0).getFirstChild();

if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;

}

// Retrieve the value

value = n.getNodeValue();

}

public String getName()

{

return (name);

}

public String getValue()

{

return (value);

}

}

Implement the while loop in EventReceptionThread, which waits for event callbacks.
EventReceptionThread is described in “How to Define the Event Reception Thread” on
page 227.
while(true) {

Socket sock = listeningSock.accept();

Document doc = db.parse(sock.getInputStream());

3

Example of Creating a Java Application That Uses the CRNP

Chapter 12 • Cluster Reconfiguration Notification Protocol 241

Event event = new Event(doc);

client.processEvent(event);

sock.close();

}

▼ How to Run the Application
Become superuser or assume a role that provides solaris.cluster.modify RBAC
authorization.

Run your application.
java CrnpClient crnpHost crnpPort localPort ...

The complete code for the CrnpClient application is listed in Appendix G, “CrnpClient.java
Application.”

1

2

Example of Creating a Java Application That Uses the CRNP

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A242

Standard Properties

This appendix describes the standard resource type, resource, and resource group properties.
This appendix also describes the resource property attributes that are available for changing
system-defined properties and creating extension properties.

Note – Property names for resource types, resources, and resource groups are not case sensitive.
You can use any combination of uppercase and lowercase letters when you specify property
names.

This appendix covers the following topics:

■ “Resource Type Properties” on page 243
■ “Resource Properties” on page 253
■ “Resource Group Properties” on page 273
■ “Resource Property Attributes” on page 287

Resource Type Properties
The following information describes the resource type properties that are defined by the Sun
Cluster software.

The property values are categorized as follows:

■ Required. The property requires an explicit value in the Resource Type Registration (RTR)
file. Otherwise, the object to which the property belongs cannot be created. A space or the
empty string is not allowed as a value.

■ Conditional. To exist, the property must be declared in the RTR file. Otherwise, the RGM
does not create the property and the property is not available to administrative utilities. A
space or the empty string is allowed. If the property is declared in the RTR file but no value is
specified, the RGM supplies a default value.

AA P P E N D I X A

243

■ Conditional or Explicit. To exist, the property must be declared in the RTR file with an
explicit value. Otherwise, the RGM does not create the property and the property is not
available to administrative utilities. A space or the empty string is not allowed.

■ Optional. The property can be declared in the RTR file. If the property is not declared in the
RTR file, the RGM creates it and supplies a default value. If the property is declared in the
RTR file but no value is specified, the RGM supplies the same default value as if the property
was not declared in the RTR file.

■ Query-only – Cannot be set directly by an administrative tool.

Resource type properties cannot be updated by administrative utilities with the exception of
Installed_nodes and RT_system. Installed_nodes cannot be declared in the RTR file and
can only be set by the cluster administrator. RT_system can be assigned an initial value in the
RTR file, and can also be set by the cluster administrator.

Property names are shown first, followed by a description.

Note – Resource type property names, such as API_version and Boot, are not case sensitive. You
can use any combination of uppercase and lowercase letters when you specify property names.

API_version (integer)
The minimum version of the resource management API that is required to support this
resource type implementation.

The following information summarizes the maximum API_version that is supported by
each release of Sun Cluster.

Before and up to 3.1 2

3.1 10/03 3

3.1 4/04 4

3.1 9/04 5

3.1 8/05 6

3.2 7

3.2 2/08 8

3.2 1/09 9

Declaring a value for API_version that is greater than 2 in the RTR file prevents that
resource type from being installed on a version of Sun Cluster that supports a lower
maximum version. For example, if you declare API_version=7 for a resource type, that
resource type cannot be installed on any version of Sun Cluster that was released before 3.2.

Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A244

Note – If you do not declare this property or set this property to the default value (2), the data
service can be installed on any version of Sun Cluster starting with Sun Cluster 3.0.

Category: Optional

Default: 2

Tunable: NONE

Boot (string)
An optional callback method that specifies the path to the Boot method program. The RGM
runs the Boot method for each managed resource of this type, on a node that joins or rejoins
the cluster.

The set of nodes on which Boot, Init, Fini, or Validate methods are run is determined by
the setting of the resource types Init_nodes property. You can set the Init_nodes property
to RG_PRIMARIES, which indicates the nodes that are specified in the resource type's
Installed_nodes property.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Failover (boolean)
If you set this property to TRUE, resources of this type cannot be configured in any group that
can be online on multiple nodes at the same time.

You use this resource-type property in combination with the Scalable resource property, as
follows:

If the value of the Failover
resource type is

If the value of the Scalable
resource is Description

TRUE TRUE Do not specify this illogical combination.

TRUE FALSE Specify this combination for a failover service.

Resource Type Properties

Appendix A • Standard Properties 245

If the value of the Failover
resource type is

If the value of the Scalable
resource is Description

FALSE TRUE Specify this combination for a scalable service that
uses a SharedAddress resource for network load
balancing.

The Sun Cluster Concepts Guide for Solaris OS
describes SharedAddress in more detail.

You can configure a scalable resource to run in a
global-cluster non-voting node. But, do not
configure a scalable resource to run in multiple
global-cluster non-voting nodes on the same
Solaris host.

FALSE FALSE Use this combination to select a multi-master
service that does not use network load balancing.

You can use a scalable service of this type in zones.

The description of Scalable in the r_properties(5) man page and Chapter 3, “Key
Concepts for System Administrators and Application Developers,” in Sun Cluster Concepts
Guide for Solaris OS contain additional information.

Category: Optional

Default: FALSE

Tunable: NONE

Fini (string)
An optional callback method that specifies the path to the Fini method program. The RGM
runs the Fini method when a resource of this type is no longer managed by the RGM.

The Fini method usually undoes any initializations that were performed by the Init
method.

The set of nodes on which Boot, Init, Fini, or Validate methods are run is determined by
the setting of the resource types Init_nodes property. You can set the Init_nodes property
to RG_PRIMARIES, which indicates the nodes that are specified in the resource type's
Installed_nodes property.

The RGM executes Fini on each node on which the resource becomes unmanaged when the
following situations arise:
■ The resource group that contains the resource is switched to an unmanaged state. In this

case, the RGM executes the Fini method on all nodes in the node list.
■ The resource is deleted from a managed resource group. In this case, the RGM executes

the Fini method on all nodes in the node list.

Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A246

http://docs.sun.com/doc/820-4676
http://docs.sun.com/doc/820-4685/r-properties-5?a=view
http://docs.sun.com/doc/820-4676/x-17ega?a=view
http://docs.sun.com/doc/820-4676/x-17ega?a=view
http://docs.sun.com/doc/820-4676/x-17ega?a=view

■ A node is deleted from the node list of the resource group that contains the resource. In
this case, the RGM executes the Fini method on only the deleted node.

A “node list” is either the resource group's Nodelist or the resource type's Installed_nodes
list. Whether “node list” refers to the resource group's Nodelist or the resource type's
Installed_nodes list depends on the setting of the resource type's Init_nodes property.
The Init_nodes property can be set to RG_primaries or RT_installed_nodes. For most
resource types, Init_nodes is set to RG_primaries, the default. In this case, both the Init
and Fini methods are executed on the nodes that are specified in the resource group's
Nodelist.

The type of initialization that the Init method performs defines the type of cleanup that the
Fini method that you implement needs to perform, as follows:
■ Cleanup of node-specific configuration.
■ Cleanup of cluster-wide configuration.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Global_zone (boolean)
A Boolean value that, if declared in the RTR file, indicates whether the methods of this
resource type execute in the global zone, that is, either a zone-cluster node or a global-cluster
non-voting node. If this property is set to TRUE, methods execute in the global zone even if
the resource group that contains the resource runs in a non-global zone. Set this property to
TRUE only for services that can be managed only from the global zone, such as network
addresses and file systems.

Caution – Do not register a resource type for which the Global_zone property is set to TRUE

unless the resource type comes from a known and trusted source. Resource types for which
this property is set to TRUE circumvent zone isolation and present a risk.

Category: Optional

Default: FALSE

Tunable: ANYTIME

Init (string)
An optional callback method that specifies the path to the Init method program. The RGM
runs the Init method when a resource of this type becomes managed by the RGM.

Resource Type Properties

Appendix A • Standard Properties 247

The set of nodes on which Boot, Init, Fini, or Validate methods are run is determined by
the setting of the resource types Init_nodes property. You can set the Init_nodes property
to RG_PRIMARIES, which indicates the nodes that are specified in the resource type's
Installed_nodes property.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Init_nodes (enum)
Indicates the nodes on which the RGM is to call the Init, Fini, Boot, and Validate

methods. You can set this property to RG_PRIMARIES (just the nodes that can master the
resource) or RT_INSTALLED_NODES (all nodes on which the resource type is installed).

Category: Optional

Default: RG_PRIMARIES

Tunable: NONE

Installed_nodes (string_array)
A list of the cluster node names on which the resource type can be run. Specify an asterisk (*)
to explicitly include all cluster nodes, which is the default.

Category: The cluster administrator can configure this property

Default: All cluster nodes

Tunable: ANYTIME

Is_logical_hostname (boolean
TRUE indicates that this resource type is some version of the LogicalHostname resource type
that manages failover Internet Protocol (IP) addresses.

Category: Query-only

Default: No default

Tunable: NONE

Is_shared_address (boolean)
TRUE indicates that this resource type is some version of the SharedAddress resource type
that manages shared Internet Protocol (IP) addresses.

Category: Query-only

Default: No default

Tunable: NONE

Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A248

Monitor_check (string)
An optional callback method: the path to the program that the RGM runs before performing
a monitor-requested failover of a resource of this type. If the monitor-check program exits
with nonzero on a node, any attempt to fail over to that node as a result of calling
scha_control with the GIVEOVER tag is prevented.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Monitor_start (string)
An optional callback method: the path to the program that the RGM runs to start a fault
monitor for a resource of this type.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Monitor_stop (string)
A callback method that is required if Monitor_start is set: the path to the program that the
RGM runs to stop a fault monitor for a resource of this type.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Pkglist (string_array)
An optional list of packages that are included in the resource type installation.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Postnet_stop (string)
An optional callback method: the path to the program that the RGM runs after calling the
Stop method of any network-address resources on which a resource of this type depends.
After the network interfaces are configured down, this method must perform Stop actions.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Resource Type Properties

Appendix A • Standard Properties 249

Prenet_start (string)
An optional callback method: the path to the program that the RGM runs before the RGM
calls the Start method of any network-address resources on which a resource of this type
depends. This method performs Start actions that must be performed before network
interfaces are configured.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Proxy (boolean)
A Boolean value that indicates whether a resource of this type is a proxy resource.

A proxy resource is a Sun Cluster resource that imports the state of a resource from another
cluster framework such as Oracle Cluster Ready Services (CRS). Oracle CRS, which is now
known as Oracle clusterware CRS, is a platform-independent set of system services for
cluster environments.

A proxy resource type uses the Prenet_start method to start a daemon that monitors the
state of the external (proxied) resource. The Postnet_stop method stops the monitoring
daemon. The monitoring daemon issues the scha_control command with the
CHANGE_STATE_ONLINE or the CHANGE_STATE_OFFLINE tag to set the proxy resource's state to
Online or to Offline, respectively. The scha_control() function similarly uses the
SCHA_CHANGE_STATE_ONLINE and SCHA_CHANGE_STATE_OFFLINE tags. See the
scha_control(1HA) and scha_control(3HA) man pages for more information.

If set to TRUE, the resource is a proxy resource.

Category: Optional

Default: FALSE

Tunable: NEVER

Resource_list (string_array)
The list of all resources of the resource type. The cluster administrator does not set this
property directly. Rather, the RGM updates this property when the cluster administrator
adds or removes a resource of this type to or from any resource group.

Category: Query-only

Default: Empty list

Tunable: NONE

Resource_type (string)
The name of the resource type. To view the names of the currently registered resource types,
use:

resourcetype show +

Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A250

http://docs.sun.com/doc/820-4685/scha-control-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-3ha?a=view

In Sun Cluster 3.1 and Sun Cluster 3.2, a resource type name includes the version, which is
mandatory:

vendor-id.resource-type:rt-version

The three components of the resource type name are properties that are specified in the RTR
file as vendor-id, resource-type, and rt-version. The resourcetype command inserts the
period (.) and colon (:) delimiters. The rt-version suffix of the resource type name is the same
value as the RT_version property. To ensure that the vendor-id is unique, use the stock
symbol of the company that is creating the resource type. Resource type names that were
created before Sun Cluster 3.1 continue to use the syntax:

vendor-id.resource-type

Category: Required

Default: Empty string

Tunable: NONE

RT_basedir (string)
The directory path that is used to complete relative paths for callback methods. This path
must be set to the directory in which the resource type packages are installed. The path must
be a complete path, that is, it must start with a forward slash (/).

Category: Required unless all method path names are absolute

Default: No default

Tunable: NONE

RT_description (string)
A brief description of the resource type.

Category: Conditional

Default: Empty string

Tunable: NONE

RT_system (boolean)
If the RT_system property is TRUE for a resource type, you cannot delete the resource type
(resourcetype unregister resource-type-name) . This property prevents the accidental
deletion of resource types, such as LogicalHostname, that are used to support the cluster
infrastructure. However, you can apply the RT_system property to any resource type.

To delete a resource type whose RT_system property is set to TRUE, you must first set the
property to FALSE. Use care when you delete a resource type whose resources support cluster
services.

Category: Optional

Default: FALSE

Resource Type Properties

Appendix A • Standard Properties 251

Tunable: ANYTIME

RT_version (string)
Starting with the Sun Cluster 3.1 release, a mandatory version string that identifies this
resource type implementation. This property was optional in Sun Cluster 3.0. The
RT_version is the suffix component of the full resource type name.

Category: Conditional/Explicit or Required

Default: No default

Tunable: NONE

Single_instance (boolean)
If TRUE, indicates that only one resource of this type can exist in the cluster.

Category: Optional

Default: FALSE

Tunable: NONE

Start (string)
A callback method: the path to the program that the RGM runs to start a resource of this
type.

Category: Required unless the RTR file declares a Prenet_start method

Default: No default

Tunable: NONE

Stop (string)
A callback method: the path to the program that the RGM runs to stop a resource of this
type.

Category: Required unless the RTR file declares a Postnet_stop method

Default: No default

Tunable: NONE

Update (string)
An optional callback method: the path to the program that the RGM runs when properties of
a running resource of this type are changed.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Resource Type Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A252

Validate (string)
An optional callback method that specifies the path to the Validate method program. The
RGM runs the Validate method to check values for properties of resources of this type.

The set of nodes on which Boot, Init, Fini, or Validate methods are run is determined by
the setting of the resource types Init_nodes property. You can set the Init_nodes property
to RG_PRIMARIES, which indicates the nodes that are specified in the resource type's
Installed_nodes property.

Category: Conditional or Explicit

Default: No default

Tunable: NONE

Vendor_ID (string)
See the Resource_type property.

Category: Conditional

Default: No default

Tunable: NONE

Resource Properties
This section describes the resource properties that are defined by the Sun Cluster software.

The property values are categorized as follows:

■ Required. The cluster administrator must specify a value when he or she creates a resource
with an administrative utility.

■ Optional. If the cluster administrator does not specify a value when he or she creates a
resource group, the system supplies a default value.

■ Conditional. The RGM creates the property only if the property is declared in the RTR file.
Otherwise, the property does not exist and is not available to cluster administrators. A
conditional property that is declared in the RTR file is optional or required, depending on
whether a default value is specified in the RTR file. For details, see the description of each
conditional property.

■ Query-only. Cannot be set directly by an administrative tool.

The Tunable attribute, which is described in “Resource Property Attributes” on page 287, lists
whether and when you can update resource properties, as follows:

FALSE or NONE Never

TRUE or ANYTIME Any time

Resource Properties

Appendix A • Standard Properties 253

AT_CREATION When the resource is added to a cluster

WHEN_DISABLED When the resource is disabled

Property names are shown first, followed by a description.

Affinity_timeout (integer)
Length of time in seconds during which connections from a given client IP address for any
service in the resource are sent to the same server node.

This property is relevant only when Load_balancing_policy is either Lb_sticky or
Lb_sticky_wild. In addition, Weak_affinity must be set to FALSE.

This property is used only for scalable services.

Category: Optional

Default: No default

Tunable: ANYTIME

Boot_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Cheap_probe_interval (integer)
The number of seconds between invocations of a quick fault probe of the resource. This
property is created by the RGM and is available to the cluster administrator only if it is
declared in the RTR file. This property is optional if a default value is specified in the RTR
file.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the property is
WHEN_DISABLED.

Category: Conditional

Default: No default

Tunable: WHEN_DISABLED

Extension properties
Extension properties as declared in the RTR file of the resource's type. The implementation
of the resource type defines these properties. “Resource Property Attributes” on page 287
contains information about the individual attributes that you can set for extension
properties.

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A254

Category: Conditional

Default: No default

Tunable: Depends on the specific property

Failover_mode (enum)
Modifies the recovery actions that the RGM takes when a resource fails to start or to stop
successfully, or when a resource monitor finds a resource to be unhealthy and consequently
requests a restart or failover.

NONE, SOFT, or HARD (method failures)

These settings affect only failover behavior when a start or stop method (Prenet_start,
Start, Monitor_stop, Stop, Postnet_stop) fails. The RESTART_ONLY and LOG_ONLY settings
can also affect whether the resource monitor can initiate the execution of the scha_control
command or the scha_control() function. See the scha_control(1HA) and the
scha_control(3HA) man pages. NONE indicates that the RGM is not to take any recovery
action when one of the previously listed start or stop methods fails. SOFT or HARD indicates
that if a Start or Prenet_start method fails, the RGM is to relocate the resource's group to
a different node. For Start or Prenet_start failures, SOFT and HARD are the same.

For failure of a stop method (Monitor_stop, Stop, or Postnet_stop), SOFT is the same as
NONE. If Failover_mode is set to HARD when one of these stop methods fails, the RGM reboots
the node to force the resource group offline. The RGM might then attempt to start the group
on another node.

RESTART_ONLY or LOG_ONLY

Unlike NONE, SOFT, and HARD, which affect failover behavior when a start or stop method fails,
RESTART_ONLY and LOG_ONLY affect all failover behavior. Failover behavior includes
monitor-initiated (scha_control) restarts of resources and resource groups, and giveovers
that are initiated by the resource monitor (scha_control). RESTART_ONLY indicates that the
monitor can run scha_control to restart a resource or a resource group. The RGM allows
Retry_count restarts within Retry_interval. If Retry_count is exceeded, no further
restarts are permitted.

Note – A negative value of Retry_count, which is permitted by some but not all resource
types, specifies an unlimited number of resource restarts. A more dependable way to specify
unlimited restarts is to do the following:

■ Set Retry_interval to a small value such as 1 or 0.
■ Set Retry_count to a large value such as 1000.

If the resource type does not declare the Retry_count and Retry_interval properties, an
unlimited number of resource restarts is permitted.

Resource Properties

Appendix A • Standard Properties 255

http://docs.sun.com/doc/820-4685/scha-control-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-3ha?a=view

If Failover_mode is set to LOG_ONLY, no resource restarts or giveovers are permitted. Setting
Failover_mode to LOG_ONLY is the same as setting Failover_mode to RESTART_ONLY with
Retry_count set to zero.

RESTART_ONLY or LOG_ONLY (method failures)

If a Prenet_start, Start, Monitor_stop, Stop, or Postnet_stop method fails,
RESTART_ONLY and LOG_ONLY are the same as NONE. That is, the node is neither failed over nor
rebooted.

Effect of Failover_mode settings on a data service

The effect that each setting for Failover_mode has on a data service depends on whether the
data service is monitored or unmonitored and whether it is based on the Data Services
Development Library (DSDL).
■ A data service is monitored if it implements a Monitor_start method and monitoring of

the resource is enabled. The RGM starts a resource monitor by executing the
Monitor_start method after starting the resource itself. The resource monitor probes
the health of the resource. If the probes fail, the resource monitor might request a restart
or a failover by calling the scha_control() function. For DSDL-based resources, probes
might reveal partial failure (degradation) or a complete failure of the data service.
Repeated partial failures accumulate to a complete failure.

■ A data service is unmonitored if it does not provide a Monitor_start method or
monitoring of the resource has been disabled.

■ DSDL-based data services include those that are developed with Agent Builder, through
the GDS, or by using the DSDL directly. Some data services, HA Oracle for example, were
developed without using the DSDL.

NONE, SOFT, or HARD (probe failures)

If you set Failover_mode to NONE, SOFT, or HARD and the data service is a monitored
DSDL-based service, and if the probe fails completely, the monitor calls the scha_control()
function to request a restart of the resource. If probes continue to fail, the resource is
restarted up to a maximum of Retry_count number of times within Retry_interval. If the
probes fail again after the Retry_count number of restarts is reached, the monitor requests a
failover of the resource's group to another node.

If you set Failover_mode to NONE, SOFT, or HARD and the data service is an unmonitored
DSDL-based service, the only failure that is detected is the death of the resource's process
tree. If the resource's process tree dies, the resource is restarted.

If the data service is a not a DSDL-based service, the restart or failover behavior depends on
how the resource monitor is coded. For example, the Oracle resource monitor recovers by
restarting the resource or the resource group, or by failing over the resource group.

RESTART_ONLY (probe failures)

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A256

If you set Failover_mode to RESTART_ONLY and the data service is a monitored DSDL-based
service, and if the probe fails completely, the resource is restarted Retry_count times within
Retry_interval. However, if Retry_count is exceeded, the resource monitor exits, sets the
resource status to FAULTED, and generates the status message “Application faulted, but not
restarted. Probe quitting.” At this point, although monitoring is still enabled, the resource is
effectively unmonitored until it is repaired and restarted by the cluster administrator.

If you set Failover_mode to RESTART_ONLY and the data service is an unmonitored
DSDL-based service, and if the process tree dies, the resource is not restarted.

If a monitored data service is not DSDL-based, the recovery behavior depends on how the
resource monitor is coded. If you set Failover_mode to RESTART_ONLY, the resource or
resource group can be restarted by a call to the scha_control() function Retry_count times
within Retry_interval. If the resource monitor exceeds Retry_count, the attempt to restart
fails. If the monitor calls the scha_control() function to request a failover, that request fails
as well.

LOG_ONLY (probe failures)

If you set Failover_mode to LOG_ONLY for any data service, all scha_control() requests
either to restart the resource or resource group or to fail over the group are precluded. If the
data service is DSDL-based, a message is logged when a probe completely fails, but the
resource is not restarted. If a probe fails completely more than Retry_count times within
Retry_interval, the resource monitor exits, sets the resource status to FAULTED, and
generates the status message “Application faulted, but not restarted. Probe quitting.” At this
point, although monitoring is still enabled, the resource is effectively unmonitored until it is
repaired and restarted by the cluster administrator.

If you set Failover_mode to LOG_ONLY and the data service is an unmonitored DSDL-based
service, and if the process tree dies, a message is logged but the resource is not restarted.

If a monitored data service is not DSDL-based, the recovery behavior depends on how the
resource monitor is coded. If you set Failover_mode to LOG_ONLY, all scha_control()
requests either to restart the resource or resource group or to fail over the group fail.

Category: Optional

Default: NONE

Tunable: ANYTIME

Fini_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Resource Properties

Appendix A • Standard Properties 257

Tunable: ANYTIME

Global_zone_override (boolean)
This property is allowed only for resource types that set the Global_zone=TRUE property in
the RTR file. The setting of the Global_zone_override property overrides the value of the
resource type property Global_zone for the particular resource. See the rt_properties(5)
man page for more information.

When the Global_zone property is set to TRUE the resource methods always execute in the
global-cluster voting node.

Setting the Global_zone_override property to FALSE forces the resource methods to
execute on a non-global zone, that is, either a zone-cluster node or a global-cluster
non-voting node in which the resource group is configured, rather than always executing in
the global zone as they usually would when the Global_zone property is set to TRUE.

This property is optional if a default value is specified in the RTR file.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the property is
AT_CREATION. You can set the Tunable attribute in the RTR file to AT_CREATION,
WHEN_DISABLED, or ANYTIME.

Use caution when you set the Tunable attribute to Anytime in the RTR file. Changes to the
Global_zone_override property take effect immediately, even if the resource is online. For
example, suppose that the Global_zone_override tunability is set to ANYTIME and the
Global_zone_override property is currently set to FALSE on a resource that is configured in
a non-global zone. When the resource is switched online, the starting methods are executed
in the non-global zone. If the Global_zone_override property is then set to TRUE and the
resource is switched offline, the stopping methods are executed in the global zone. Your
method code must be able to handle this possibility. If it cannot, then you must set the
Tunable attribute to WHEN_DISABLED or AT_CREATION instead.

Category: Conditional or Optional

Default: TRUE

Tunable: AT_CREATION

Init_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A258

http://docs.sun.com/doc/820-4685/rt-properties-5?a=view

Load_balancing_policy (string)
A string that defines the load-balancing policy in use. This property is used only for scalable
services. The RGM automatically creates this property if the Scalable property is declared
in the RTR file. Load_balancing_policy can take the following values:

Lb_weighted (the default). The load is distributed among various nodes according to the
weights set in the Load_balancing_weights property.

Lb_sticky. A given client (identified by the client IP address) of the scalable service is always
sent to the same node of the cluster.

Lb_sticky_wild. A given client's IP address that connects to an IP address of a wildcard
sticky service is always sent to the same cluster node, regardless of the port number to which
the IP address is coming.

Category: Conditional or Optional

Default: Lb_weighted

Tunable: AT_CREATION

Load_balancing_weights (string_array)
For scalable resources only. The RGM automatically creates this property if the Scalable
property is declared in the RTR file. The format is weight@node,weight@node, where weight
is an integer that reflects the relative portion of load that is distributed to the specified node.
The fraction of load that is distributed to a node is the weight for this node, divided by the
sum of all weights. For example, 1@1,3@2 specifies that node 1 receives one-fourth of the load
and node 2 receives three-fourths of the load. The empty string (“”), the default, sets a
uniform distribution. Any node that is not assigned an explicit weight receives a default
weight of 1.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the property is
ANYTIME. Changing this property revises the distribution for new connections only.

Category: Conditional or Optional

Default: The empty string (“”)

Tunable: ANYTIME

Monitor_check_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Resource Properties

Appendix A • Standard Properties 259

Monitor_start_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Monitor_stop_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Monitored_switch (enum)
Set to Enabled or Disabled by the RGM if the cluster administrator enables or disables the
monitor with an administrative utility. If Disabled, monitoring on the resource is stopped,
although the resource itself remains online. The Monitor_start method is not called until
monitoring is re-enabled. If the resource does not have a monitor callback method, this
property does not exist.

Category: Query-only

Default: No default

Tunable: NONE

Network_resources_used (string_array)
A list of logical-hostname or shared-address network resources on which the resource has a
dependency. This list contains all network-address resources that appear in the properties
Resource_dependencies, Resource_dependencies_weak,
Resource_dependencies_restart, or Resource_dependencies_offline_restart.

The RGM automatically creates this property if the Scalable property is declared in the
RTR file. If Scalable is not declared in the RTR file, Network_resources_used is
unavailable unless it is explicitly declared in the RTR file.

This property is updated automatically by the RGM, based on the setting of the
resource-dependencies properties. You do not need to set this property directly. However, if
you add a resource name to this property, the resource name is automatically added to the
Resource_dependencies property. In addition, if you delete a resource name from this
property, the resource name is automatically deleted from any resource-dependencies
property in which the resource also appears.

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A260

Category: Conditional or Optional

Default: The empty list

Tunable: ANYTIME

Num_resource_restarts on each cluster node (integer)
The number of restart requests that have occurred on this resource within the past n seconds,
where n is the value of the Retry_interval property.

A restart request is any of the following calls:
■ The scha_control(1HA) command with the RESOURCE_RESTART argument.
■ The scha_control(3HA) function with the SCHA_RESOURCE_RESTART argument.
■ The scha_control command with the RESOURCE_IS_RESTARTED argument.
■ The scha_control() function with the SCHA_RESOURCE_IS_RESTARTED argument.

The RGM resets the restart counter to zero for a given resource on a given node whenever
that resource executes one of the following:
■ The scha_control command with the GIVEOVER argument.
■ The scha_control() function with the SCHA_GIVEOVER argument.

The counter is reset whether the giveover attempt succeeds or fails.

If a resource type does not declare the Retry_interval property, the
Num_resource_restarts property is not available for resources of that type.

Category: Query-only

Default: No default

Tunable: See description

Num_rg_restarts on each cluster node (integer)
The number of resource group restart requests that have occurred for this resource within
the past n seconds, where n is the value of the Retry_interval property.

A resource group restart request is either of the following calls:
■ The scha_control(1HA) command with the RESTART argument.
■ The scha_control(3HA) function with the SCHA_RESTART argument.

If a resource type does not declare the Retry_interval property, the Num_rg_restarts
property is not available for resources of that type.

Category: Query-only

Default: No default

Tunable: See description

Resource Properties

Appendix A • Standard Properties 261

http://docs.sun.com/doc/820-4685/scha-control-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-3ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-3ha?a=view

On_off_switch (enum)
Set to Enabled or Disabled by the RGM if the cluster administrator enables or disables the
resource with an administrative utility. If disabled, a resource is brought offline and has no
callbacks run until it is re-enabled.

Category: Query-only

Default: No default

Tunable: NONE

Port_list (string_array)
A list of port numbers on which the server is listening. Appended to each port number is a
slash (/) followed by the protocol that is being used by that port, for example,
Port_list=80/tcp or Port_list=80/tcp6,40/udp6.

You can specify the following protocol values:
■ tcp, for TCP IPv4
■ tcp6, for TCP IPv6
■ udp, for UDP IPv4
■ udp6, for UDP IPv6

If the Scalable property is declared in the RTR file, the RGM automatically creates
Port_list. Otherwise, this property is unavailable unless it is explicitly declared in the RTR
file.

Setting up this property for Apache is described in the Sun Cluster Data Service for Apache
Guide for Solaris OS.

Category: Conditional or Required

Default: No default

Tunable: ANYTIME

Postnet_stop_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Prenet_start_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A262

http://docs.sun.com/doc/819-2975
http://docs.sun.com/doc/819-2975

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

R_description (string)
A brief description of the resource.

Category: Optional

Default: The empty string

Tunable: ANYTIME

Resource_dependencies (string_array)
A list of resources on which the resource has a strong dependency. A strong dependency
determines the order of method calls.

A resource with resource dependencies, referred to as the dependent resource, cannot be
started if any resource in the list, referred to as the depended-on resource, is not online. If the
dependent resource and one of the depended-on resources in the list start at the same time,
the RGM waits to start the dependent resource until the depended-on resource in the list
starts. If the depended-on resource does not start, the dependent resource remains offline.
The depended-on resource might not start because the resource group for the depended-on
resource in the list remains offline or is in a Start_failed state. If the dependent resource
remains offline because of a dependency on a depended-on resource in a different resource
group that fails to start or is disabled or offline, the dependent resource's group enters a
Pending_online_blocked state. If the dependent resource has a dependency on a
depended-on resource in the same resource group that fails to start or is disabled or offline,
the resource group does not enter a Pending_online_blocked state.

By default in a resource group, application resources have an implicit strong resource
dependency on network address resources. Implicit_network_dependencies in “Resource
Group Properties” on page 273 contains more information.

Within a resource group, Prenet_start methods are run in dependency order before Start
methods. Postnet_stop methods are run in dependency order after Stop methods. In
different resource groups, the dependent resource waits for the depended-on resource to
finish Prenet_start and Start before it runs Prenet_start. The depended-on resource
waits for the dependent resource to finish Stop and Postnet_stop before it runs Stop.

To specify the scope of a dependency, append the following qualifiers, including the braces
({}), to the resource name when you specify this property.

{LOCAL_NODE} Limits the specified dependency to a per-host basis. The
behavior of the dependent is affected by the depended-on
resource only on the same host. The dependent resource waits
for the depended-on resource to start on the same host. The
situation is similar for stopping and restarting.

Resource Properties

Appendix A • Standard Properties 263

{ANY_NODE} Extends the specified dependency to any node. The behavior of
the dependent is affected by the depended-on resource on any
node. The dependent resource waits for the depended-on
resource to start on any primary node before it starts itself. The
situation is similar for stopping and restarting.

{FROM_RG_AFFINITIES} Specifies that the scope of the resource dependency is derived
from the RG_affinities relationship of the resource groups to
which the resources belong. If the dependent resource's group
has a positive affinity for the depended-on resource's resource
group, and they are starting or stopping on the same node, the
dependency is {LOCAL_NODE}. If no such positive affinity exists,
or if the groups are starting on different nodes, the dependency
is {ANY_NODE}.

Resource dependencies between two resources that are located in the same resource group
are always {LOCAL_NODE}.

If you do not specify a qualifier, FROM_RG_AFFINITIES is used by default.

Category: Optional

Default: The empty list

Tunable: ANYTIME

Resource_dependencies_offline_restart (string_array)
A list of resources in the same or in different groups on which the
Resource_dependencies_offline_restart resource has an offline-restart dependency.

This property works just as Resource_dependencies does, except that, if any resource in the
offline-restart dependency list is stopped, this resource is stopped. If that resource in the
offline-restart dependency list is subsequently restarted, this resource is restarted.

This resource cannot be started if the start of any resource in the list fails. If this resource and
one of the resources in the list start at the same time, the RGM waits until the resource in the
list starts before the RGM starts this resource. If the resource in this resource's
Resource_dependencies list does not start (for example, if the resource group for the
resource in the list remains offline or if the resource in the list is in a Start_failed state),
this resource also remains offline. If this resource remains offline because of a dependency on
a resource in a different resource group that fails to start, this resource's group enters a
Pending_online_blocked state.

If this resource is brought offline at the same time as those in the list, this resource stops
before those in the list. However, if this resource remains online or fails to stop, a resource in
the list stops anyway.

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A264

If a fault occurs on a “depended-on” resource on a node, and the resource cannot recover,
the RGM brings that resource on that node offline. The RGM also brings all of the
depended-on resource's offline-restart dependents offline by triggering a restart on them.
When the cluster administrator resolves the fault and reenables the depended-on resource,
the RGM brings the depended-on resource's offline-restart dependents back online as well.

To specify the scope of a dependency, append the following qualifiers, including the braces
({ }), to the resource name when you specify this property.

{LOCAL_NODE} Limits the specified dependency to a per-host basis. The
behavior of the dependent is affected by the depended-on
resource only on the same host. The dependent resource waits
for the depended-on resource to start on the same host. The
situation is similar for stopping and restarting.

{ANY_NODE} Extends the specified dependency to any node. The behavior of
the dependent is affected by the depended-on resource on any
node. The dependent resource waits for the depended-on
resource to start on any primary node before it starts itself. The
situation is similar for stopping and restarting.

{FROM_RG_AFFINITIES} Specifies that the scope of the resource dependency is derived
from the RG_affinities relationship of the resource groups to
which the resources belong. If the dependent resource's group
has a positive affinity for the depended-on resource's resource
group, and they are starting or stopping on the same node, the
dependency is {LOCAL_NODE}. If no such positive affinity exists,
or if the groups are starting on different nodes, the dependency
is {ANY_NODE}.

Resource dependencies between two resources that are located in the same resource group
are always {LOCAL_NODE}.

If you do not specify a qualifier, FROM_RG_AFFINITIES is used by default.

Category: Optional

Default: The empty list

Tunable: ANYTIME

Resource_dependencies_restart (string_array)
A list of resources on which the resource has a restart dependency. A restart dependency
determines the order of method calls.

This property works as Resource_dependencies does, with one addition. If any resource in
the restart dependency list, referred to as a depended-on resource, is restarted, the resource
with resource dependencies, referred to as the dependent resource, is restarted. After the

Resource Properties

Appendix A • Standard Properties 265

depended-on resource in the list comes back online, the RGM stops and restarts the
dependent resource. This restart behavior occurs when the resource groups that contain the
dependent and depended-on resources remain online.

A resource with resource dependencies, referred to as the dependent resource, cannot be
started if any resource in the list, referred to as the depended-on resource, is not online. If the
dependent resource and one of the depended-on resources in the list start at the same time,
the RGM waits to start the dependent resource until the depended-on resource in the list
starts. If the depended-on resource does not start, the dependent resource remains offline.
The depended-on resource might not start because the resource group for the depended-on
resource in the list remains offline or is in a Start_failed state. If the dependent resource
remains offline because of a dependency on a depended-on resource in a different resource
group that fails to start or is disabled or offline, the dependent resource's group enters a
Pending_online_blocked state. If the dependent resource has a dependency on a
depended-on resource in the same resource group that fails to start or is disabled or offline,
the resource group does not enter a Pending_online_blocked state.

To specify the scope of a dependency, append the following qualifiers, including the braces
({}), to the resource name when you specify this property.

{LOCAL_NODE} Limits the specified dependency to a per-host basis. The
behavior of the dependent is affected by the depended-on
resource only on the same host. The dependent resource waits
for the depended-on resource to start on the same host. The
situation is similar for stopping and restarting.

{ANY_NODE} Extends the specified dependency to any node. The behavior of
the dependent is affected by the depended-on resource on any
node. The dependent resource waits for the depended-on
resource to start on any primary node before it starts itself. The
situation is similar for stopping and restarting.

{FROM_RG_AFFINITIES} Specifies that the scope of the resource dependency is derived
from the RG_affinities relationship of the resource groups to
which the resources belong. If the dependent resource's group
has a positive affinity for the depended-on resource's resource
group, and they are starting or stopping on the same node, the
dependency is {LOCAL_NODE}. If no such positive affinity exists,
or if the groups are starting on different nodes, the dependency
is {ANY_NODE}.

Resource dependencies between two resources that are located in the same resource group
are always {LOCAL_NODE}.

If you do not specify a qualifier, FROM_RG_AFFINITIES is used by default.

Category: Optional

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A266

Default: The empty list

Tunable: ANYTIME

Resource_dependencies_weak (string_array)
A list of resources on which the resource has a weak dependency. A weak dependency
determines the order of method calls.

The RGM calls the Start methods of the resources in this list, referred to as the depended-on
resources, before the Start method of the resource with resource dependencies, referred to
as the dependent resource. The RGM calls the Stop methods of the dependent resource
before the Stop methods of the depended-on resources. The dependent resource can still
start if the depended-on resources fail to start or remain offline.

If the dependent resource and a depended-on resource in its Resource_dependencies_weak
list start concurrently, the RGM waits to start the dependent resource until the depended-on
resource in the list starts. If the depended-on resource in the list does not start, for example,
if the resource group for the depended-on resource in the list remains offline or the
depended-on resource in the list is in a Start_failed state, the dependent resource starts.
The dependent resource's resource group might enter a Pending_online_blocked state
temporarily as resources in the dependent resource's Resource_dependencies_weak list
start. When all depended-on resources in the list have started or failed to start, the dependent
resource starts and its group reenters the Pending_online state.

Within a resource group, Prenet_start methods are run in dependency order before Start
methods. Postnet_stop methods are run in dependency order after Stop methods. In
different resource groups, the dependent resource waits for the depended-on resource to
finish Prenet_start and Start before it runs Prenet_start. The depended-on resource
waits for the dependent resource to finish Stop and Postnet_stop before it runs Stop.

To specify the scope of a dependency, append the following qualifiers, including the braces
({}), to the resource name when you specify this property.

{LOCAL_NODE} Limits the specified dependency to a per-host basis. The
behavior of the dependent is affected by the depended-on
resource only on the same host. The dependent resource waits
for the depended-on resource to start on the same host. The
situation is similar for stopping and restarting.

{ANY_NODE} Extends the specified dependency to any node. The behavior of
the dependent is affected by the depended-on resource on any
node. The dependent resource waits for the depended-on
resource to start on any primary node before it starts itself. The
situation is similar for stopping and restarting.

{FROM_RG_AFFINITIES} Specifies that the scope of the resource dependency is derived
from the RG_affinities relationship of the resource groups to
which the resources belong. If the dependent resource's group

Resource Properties

Appendix A • Standard Properties 267

has a positive affinity for the depended-on resource's resource
group, and they are starting or stopping on the same node, the
dependency is {LOCAL_NODE}. If no such positive affinity exists,
or if the groups are starting on different nodes, the dependency
is {ANY_NODE}.

Resource dependencies between two resources that are located in the same resource group
are always LOCAL_NODE.

If you do not specify a qualifier, FROM_RG_AFFINITIES is used by default.

Category: Optional

Default: The empty list

Tunable: ANYTIME

Resource_name (string)
The name of the resource instance. This name must be unique within the cluster
configuration and cannot be changed after a resource has been created.

Category: Required

Default: No default

Tunable: NONE

Resource_project_name (string)
The Solaris project name that is associated with the resource. Use this property to apply
Solaris resource management features, such as CPU shares and resource pools, to cluster
data services. When the RGM brings resources online, it starts the related processes under
this project name. If this property is not specified, the project name is taken from the
RG_project_name property of the resource group that contains the resource (see the
rg_properties(5) man page). If neither property is specified, the RGM uses the predefined
project name default. The specified project name must exist in the projects database(see the
projects(1) man page and System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones).

This property is supported starting with the Solaris 9 OS.

Note – Changes to this property take effect the next time that the resource is started.

Category: Optional

Default: Null

Tunable: ANYTIME

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A268

http://docs.sun.com/doc/820-4685/rg-properties-5?a=view
http://docs.sun.com/doc/816-5165/projects-1?a=view
http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592

Resource_state on each cluster node (enum)
The RGM-determined state of the resource on each cluster node. Possible states are Online,
Offline, Start_failed, Stop_failed, Monitor_failed, Online_not_monitored,
Starting, and Stopping.

You cannot configure this property.

Category: Query-only

Default: No default

Tunable: NONE

Retry_count (integer)
The number of times that a monitor attempts to restart a resource if it fails.

If the Retry_count is exceeded, depending on the particular data service and the setting of
the Failover_mode property, the monitor might perform one of the following actions:
■ Allow the resource group to remain on the current primary primary node, even though

the resource is in a faulted state
■ Request a failover of the resource group onto a different node

This property is created by the RGM and is made available to the cluster administrator only
if this property is declared in the RTR file. This property is optional if a default value is
specified in the RTR file.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the property is
WHEN_DISABLED.

Note – If you specify a negative value for this property, the monitor attempts to restart the
resource an unlimited number of times.

However, some resource types do not allow you to set Retry_count to a negative value. A
more dependable way to specify unlimited restarts is to do the following:

■ Set Retry_interval to a small value such as 1 or 0.
■ Set Retry_count to a large value such as 1000.

Category: Conditional

Default: See above

Tunable: WHEN_DISABLED

Retry_interval (integer)
The number of seconds over which to count attempts to restart a failed resource. The
resource monitor uses this property in conjunction with Retry_count. This property is

Resource Properties

Appendix A • Standard Properties 269

created by the RGM and is available to the cluster administrator only if it is declared in the
RTR file. This property is optional if a default value is specified in the RTR file.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the property is
WHEN_DISABLED.

Category: Conditional

Default: No default (see above)

Tunable: WHEN_DISABLED

Scalable (boolean)
Indicates whether the resource is scalable, that is, whether the resource uses the networking
load-balancing features of the Sun Cluster software.

Note – You can configure a scalable resource group (which uses network load-balancing) to
run in a global-cluster non-voting node. However, you can run such a scalable resource
group in only one node per Solaris host.

If this property is declared in the RTR file, the RGM automatically creates the following
scalable service properties for resources of that type: Affinity_timeout,
Load_balancing_policy, Load_balancing_weights, Network_resources_used,
Port_list, UDP_affinity, and Weak_affinity. These properties have their default values
unless they are explicitly declared in the RTR file. The default for Scalable, when it is
declared in the RTR file, is TRUE.

If this property is declared in the RTR file, it cannot be assigned a Tunable attribute other
than AT_CREATION.

If this property is not declared in the RTR file, the resource is not scalable, you cannot tune
this property, and no scalable service properties are set by the RGM. However, you can
explicitly declare the Network_resources_used and Port_list properties in the RTR file.
These properties can be useful in a nonscalable service as well as in a scalable service.

Using this resource property in combination with the Failover resource type property is
described in more detail in the r_properties(5) man page.

Category: Optional

Default: No default

Tunable: AT_CREATION

Start_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A270

http://docs.sun.com/doc/820-4685/r-properties-5?a=view

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Status on each cluster node (enum)
Set by the resource monitor with the scha_resource_setstatus command or the
scha_resource_setstatus() or scha_resource_setstatus_zone() functions. Possible
values are OK, DEGRADED, FAULTED, UNKNOWN, and OFFLINE. When a resource is brought online
or offline, the RGM automatically sets the Status value if the Status value is not set by the
resource's monitor or methods.

Category: Query-only

Default: No default

Tunable: NONE

Status_msg on each cluster node (string)
Set by the resource monitor at the same time as the Status property. When a resource is
brought online or offline, the RGM automatically resets this property to the empty string if
this property is not set by the resource's methods.

Category: Query-only

Default: No default

Tunable: NONE

Stop_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Thorough_probe_interval (integer)
The number of seconds between invocations of a high-overhead fault probe of the resource.
This property is created by the RGM and is available to the cluster administrator only if it is
declared in the RTR file. This property is optional if a default value is specified in the RTR
file.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the property is
WHEN_DISABLED.

Category: Conditional

Default: No default

Resource Properties

Appendix A • Standard Properties 271

Tunable: WHEN_DISABLED

Type (string)
The resource type of which this resource is an instance.

Category: Required

Default: No default

Tunable: NONE

Type_version (string)
Specifies which version of the resource type is currently associated with this resource. The
RGM automatically creates this property, which cannot be declared in the RTR file. The
value of this property is equal to the RT_version property of the resource's type. When a
resource is created, the Type_version property is not specified explicitly, though it might
appear as a suffix of the resource type name. When a resource is edited, the Type_version
property can be changed to a new value.

The tunability of this property is derived from the following sources:
■ The current version of the resource type
■ The #$upgrade_from directive in the RTR file

Category: See description

Default: No default

Tunable: See description

UDP_affinity (boolean)
If this property is set to TRUE, sends all UDP traffic from a given client to the same server
node that currently handles all TCP traffic for the client.

This property is relevant only when Load_balancing_policy is either Lb_sticky or
Lb_sticky_wild. In addition, Weak_affinity must be set to FALSE.

This property is only used for scalable services.

Category: Optional

Default: No default

Tunable: WHEN_DISABLED

Update_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Resource Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A272

Tunable: ANYTIME

Validate_timeout for each callback method in the Type (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of this method
has failed. For a given resource type, timeout properties are defined only for those methods
that are declared in the RTR file.

Category: Conditional or Optional

Default: 3600 (one hour), if the method itself is declared in the RTR file

Tunable: ANYTIME

Weak_affinity (boolean)
If this property is set to TRUE, this property enables the weak form of the client affinity.

The weak form of the client affinity allows connections from a given client to be sent to the
same server node except when the following conditions occur:
■ A server listener starts in response to, for example, a fault monitor's restarting, a

resource's failing over or switching over, or a node's rejoining a cluster after failing
■ Load_balancing_weights for the scalable resource changes because the cluster

administrator performed an administrative action

Weak affinity provides a low-overhead alternative to the default form, both in terms of
memory consumption and processor cycles.

This property is relevant only when Load_balancing_policy is either Lb_sticky or
Lb_sticky_wild.

This property is only used for scalable services.

Category: Optional

Default: No default

Tunable: WHEN_DISABLED

Resource Group Properties
The following information describes the resource group properties that are defined by the Sun
Cluster software.

The property values are categorized as follows:

■ Required. The cluster administrator must specify a value when creating a resource group
with an administrative utility.

■ Optional. If the cluster administrator does not specify a value when creating a resource
group, the system supplies a default value.

Resource Group Properties

Appendix A • Standard Properties 273

■ Query-only. Cannot be set directly by an administrative tool.

Property names are shown first, followed by a description.

Auto_start_on_new_cluster (boolean)
This property controls whether the Resource Group Manager (RGM) starts the resource
group automatically when a new cluster is forming. The default is TRUE.

If set to TRUE, the RGM attempts to start the resource group automatically to achieve
Desired_primaries when all the nodes of the cluster are simultaneously rebooted.

If set to FALSE, the resource group does not start automatically when the cluster is rebooted.
The resource group remains offline until the first time that the resource group is manually
switched online by using the clresourcegroup online command or the equivalent GUI
instruction. After that, the resource group resumes normal failover behavior.

Category: Optional

Default: TRUE

Tunable: ANYTIME

Desired_primaries (integer)
The preferred number of nodes that the group can run on simultaneously.

The default is 1. The value of the Desired_primaries property must be less than or equal to
the value of the Maximum_primaries property.

Category: Optional

Default: 1

Tunable: ANYTIME

Failback (boolean)
A Boolean value that indicates whether to recalculate the set of nodes on which the group is
online when a node joins the cluster. A recalculation can cause the RGM to bring the group
offline on less preferred nodes and online on more preferred nodes.

Category: Optional

Default: FALSE

Tunable: ANYTIME

Global_resources_used (string_array)
Indicates whether cluster file systems are used by any resource in this resource group. Legal
values that the cluster administrator can specify are an asterisk (*) to indicate all global
resources, and the empty string (“”) to indicate no global resources.

Category: Optional

Default: All global resources

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A274

Tunable: ANYTIME

Implicit_network_dependencies (boolean)
A Boolean value that indicates, when TRUE, that the RGM should enforce implicit strong
dependencies of nonnetwork address resources on network address resources within the
group. This means that the RGM starts all network address resources before all other
resources and stops network address resources after all other resources within the group.
Network address resources include the logical host name and shared address resource types.

In a scalable resource group, this property has no effect because a scalable resource group
does not contain any network address resources.

Category: Optional

Default: TRUE

Tunable: ANYTIME

Maximum_primaries (integer)
The maximum number of nodes on which the group might be online at the same time.

If the RG_mode property is Failover, the value of this property must be no greater than 1. If
the RG_mode property is Scalable, a value greater than 1 is allowed.

Category: Optional

Default: 1

Tunable: ANYTIME

Nodelist (string_array)
A list of cluster nodes on which a resource group can be brought online in order of
preference. These nodes are known as the potential primaries or masters of the resource
group.

Category: Optional

Default: The list of all voting nodes in the cluster in arbitrary order

Tunable: ANYTIME

Pathprefix (string)
A directory in the cluster file system in which resources in the group can write essential
administrative files. Some resources might require this property. Make Pathprefix unique
for each resource group.

Category: Optional

Default: The empty string

Tunable: ANYTIME

Resource Group Properties

Appendix A • Standard Properties 275

Pingpong_interval (integer)

A nonnegative integer value (in seconds) that is used by the RGM to determine where to
bring the resource group online in these instances:
■ In the event of a reconfiguration.
■ As the result of the execution of a scha_control command with the GIVEOVER argument

or the scha_control() function with the SCHA_GIVEOVER argument.

In the event of a reconfiguration, the resource group might fail more than once to come
online within the past Pingpong_interval seconds on a particular node. This failure occurs
because the resource's Start or Prenet_start method exited with a nonzero status or timed
out. As a result, that node is considered ineligible to host the resource group, and the RGM
looks for another master.

If a scha_control command or scha_control -O GIVEOVER command is executed on a
given node by a resource, thereby causing its resource group to fail over to another node, the
first node (on which scha_control was run) cannot be the destination of another
scha_control -O GIVEOVER by the same resource until Pingpong_interval seconds have
elapsed.

Category: Optional

Default: 3600 (one hour)

Tunable: ANYTIME

Resource_list (string_array)
The list of resources that are contained in the group. The cluster administrator does not set
this property directly. Rather, the RGM updates this property as the cluster administrator
adds or removes resources from the resource group.

Category: Query-only

Default: No default

Tunable: NONE

RG_affinities (string)
The RGM is to try to locate a resource group on a host that is a current master of another
given resource group (positive affinity) or that is not a current master of a given resource
group (negative affinity).

You can set RG_affinities to the following strings:
■ ++, or strong positive affinity
■ +, or weak positive affinity
■ -, or weak negative affinity
■ --, or strong negative affinity
■ +++, or strong positive affinity with failover delegation

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A276

For example, RG_affinities=+RG2,--RG3 indicates that this resource group has a weak
positive affinity for RG2 and a strong negative affinity for RG3.

Using the RG_affinities property is described in Chapter 2, “Administering Data Service
Resources,” in Sun Cluster Data Services Planning and Administration Guide for Solaris OS.

Category: Optional

Default: The empty string

Tunable: ANYTIME

RG_dependencies (string_array)
Optional list of resource groups that indicates a preferred ordering for bringing other groups
online or offline on the same node. The graph of all strong RG_affinities (positive and
negative) together with RG_dependencies is not allowed to contain cycles.

For example, suppose that resource group RG2 is listed in the RG_dependencies list of
resource group RG1, that is, RG1 has a resource group dependency on RG2.

The following list summarizes the effects of this resource group dependency:
■ When a node joins the cluster, Boot methods on that node are not run on resources in

RG1 until all Boot methods on that node have completed on resources in RG2.
■ If RG1 and RG2 are both in the PENDING_ONLINE state on the same node at the same time,

the starting methods (Prenet_start or Start) are not run on any resources in RG1 until
all the resources in RG2 have completed their starting methods.

■ If RG1 and RG2 are both in the PENDING_OFFLINE state on the same node at the same
time, the stopping methods (Stop or Postnet_stop) are not run on any resources in RG2
until all the resources in RG1 have completed their stopping methods.

■ An attempt to switch the primaries of RG1 or RG2 fails if switching the primaries would
leave RG1 online on any node and RG2 offline on all nodes. The clresourcegroup(1CL)
and clsetup(1CL) man pages contain more information.

■ Setting the Desired_primaries property to a value that is greater than zero on RG1 is
not permitted if Desired_primaries is set to zero on RG2.

■ Setting the Auto_start_on_new_cluster property to TRUE on RG1 is not permitted if
Auto_start_on_new_cluster is set to FALSE on RG2.

Category: Optional

Default: The empty list

Tunable: ANYTIME

RG_description (string)
A brief description of the resource group.

Category: Optional

Resource Group Properties

Appendix A • Standard Properties 277

http://docs.sun.com/doc/820-4682/c40000082398?a=view
http://docs.sun.com/doc/820-4682/c40000082398?a=view
http://docs.sun.com/doc/820-4685/clresourcegroup-1cl?a=view
http://docs.sun.com/doc/820-4685/clsetup-1cl?a=view

Default: The empty string

Tunable: ANYTIME

RG_is_frozen (boolean)
Indicates whether a global device on which a resource group depends is being switched over.
If this property is set to TRUE, the global device is being switched over. If this property is set to
FALSE, no global device is being switched over. A resource group depends on global devices
as indicated by its Global_resources_used property.

You do not set the RG_is_frozen property directly. The RGM updates the RG_is_frozen
property when the status of the global devices changes.

Category: Optional

Default: No default

Tunable: NONE

RG_mode (enum)
Indicates whether the resource group is a failover or a scalable group. If the value is
Failover, the RGM sets the Maximum_primaries property of the group to 1 and restricts the
resource group to being mastered by a single node.

If the value of this property is Scalable, the RGM allows the Maximum_primaries property
to be set to a value that is greater than 1. As a result, the group can be mastered by multiple
nodes simultaneously. The RGM does not allow a resource whose Failover property is TRUE
to be added to a resource group whose RG_mode is Scalable.

If Maximum_primaries is 1, the default is Failover. If Maximum_primaries is greater than 1,
the default is Scalable.

Category: Optional

Default: Depends on the value of Maximum_primaries

Tunable: NONE

RG_name (string)
The name of the resource group. This property is required and must be unique within the
cluster.

Category: Required

Default: No default

Tunable: NONE

RG_project_name (string)
The Solaris project name (see the projects(1) man page) that is associated with the resource
group. Use this property to apply Solaris resource management features, such as CPU shares
and resource pools, to cluster data services. When the RGM brings resource groups online, it

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A278

http://docs.sun.com/doc/816-5165/projects-1?a=view

starts the related processes under this project name for resources that do not have the
Resource_project_name property set (see the r_properties(5) man page). The specified
project name must exist in the projects database (see the projects(1) man page and System
Administration Guide: Solaris Containers-Resource Management and Solaris Zones).

This property is supported starting with the Solaris 9 OS.

Note – Changes to this property take affect the next time that the resource is started.

Category: Optional

Default: The text string “default”

Tunable: ANYTIME

RG_slm_cpu (decimal number)
If the RG_slm_type property is set to AUTOMATED, this number is the basis for the calculation
of the number of CPU shares and the size of the processor set.

Note – You can only use the RG_slm_cpu property if RG_slm_type is set to AUTOMATED. For
more information, see the RG_slm_type property.

The maximum value for the RG_slm_cpu property is 655. You can include two digits after the
decimal point. Do not specify 0 for the RG_slm_cpu property. If you set a share value to 0, a
resource might not be scheduled by the Fair Share Scheduler (FFS) when the CPU is heavily
loaded.

Changes that you make to the RG_slm_cpu property while the resource group is online are
taken into account dynamically.

Because the RG_slm_type property is set to AUTOMATED, Sun Cluster creates a project named
SCSLM_resourcegroupname. resourcegroupname represents the actual name that you assign to
the resource group. Each method of a resource that belongs to the resource group is executed
in this project. Starting with Solaris 10 OS, these projects are created in the resource group's
node, whether it is a global-cluster voting node or a global-cluster non-voting node. See the
project(4) man page.

The project SCSLM_resourcegroupname has a project.cpu-shares value of 100 times the
RG_slm_cpu property value. If the RG_slm_cpu property is not set, this project is created with
a project.cpu-shares value of 1. The default value for the RG_slm_cpu property is 0.01.

Starting with the Solaris 10 OS, if the RG_slm_pset_type property is set to
DEDICATED_STRONG or to DEDICATED_WEAK, the RG_slm_cpu property is used to calculate the
size of processor sets. The RG_slm_cpu property is also used to calculate the value of
zone.cpu-shares.

Resource Group Properties

Appendix A • Standard Properties 279

http://docs.sun.com/doc/820-4685/r-properties-5?a=view
http://docs.sun.com/doc/816-5165/projects-1?a=view
http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/816-5174/project-4?a=view

For information about processor sets, see the System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

Note – You can use the RG_slm_cpu property only on a global cluster. You cannot use this
property on a zone cluster.

Category: Optional

Default: 0.01

Tunable: ANYTIME

RG_slm_cpu_min (decimal number)
Determines the minimum number of processors on which an application can run.

You can only use this property if all of the following factors are true:
■ The RG_slm_type property is set to AUTOMATED

■ The RG_slm_pset_type property is set to DEDICATED_STRONG or to DEDICATED_WEAK

■ The RG_slm_cpu property is set to a value that is greater than or equal to the value set for
the RG_slm_cpu_min property

■ You are using the Solaris 10 OS

The maximum value for the RG_slm_cpu_min property is 655. You can include two digits
after the decimal point. Do not specify 0 for the RG_slm_cpu_min property. The
RG_slm_cpu_min and RG_slm_cpu properties determine the values of pset.min and
pset.max, respectively, for the processor set that Sun Cluster generates.

Changes that you make to the RG_slm_cpu and the RG_slm_cpu_min properties while the
resource group is online are taken into account dynamically. If the RG_slm_pset_type
property is set to DEDICATED_STRONG, and not enough CPUs are available, the change that
you request for the RG_slm_cpu_min property is ignored. In this case, a warning message is
generated. On next switchover, if not enough CPUs are available for the RG_slm_cpu_min
property, errors due to the lack of CPUs can occur.

For information about processor sets, see the System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

Note – You can use the RG_slm_cpu_min property only on a global cluster. You cannot use
this property on a zone cluster.

Category: Optional

Default: 0.01

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A280

http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592

Tunable: ANYTIME

RG_slm_type (string)
Enables you to control system resource usage and automate some steps to configure the
Solaris operating system for system resource management. Possible values for RG_SLM_type
are AUTOMATED and MANUAL.

If you set the RG_slm_type property to AUTOMATED, the resource group is started with control
of the CPU usage.

As a result, Sun Cluster does the following:
■ Creates a project named SCSLM_resourcegroupname. All methods in the resources in this

resource group execute in this project. This project is created the first time a method of a
resource in this resource group is executed on the node.

■ Sets the value of project.cpu_shares that is associated with the project to the value of
the RG_slm_cpu property times 100. By default, the value for project.cpu_shares is 1.

■ Starting with the Solaris 10 OS, sets zone.cpu_shares to 100 times the sum of the
RG_slm_cpu property in all the online resource groups. This property also sets
RG_slm_type to AUTOMATED in this node. The node can be a global-cluster voting node or
a global-cluster non-voting node. The global-cluster non-voting node is bound to a Sun
Cluster generated pool. Optionally, if the RG_slm_pset_type property is set to
DEDICATED_WEAK or to DEDICATED_STRONG, this Sun Cluster generated pool is associated
with a Sun Cluster generated processor set. For information about dedicated processor
sets, see the description of the RG_slm_pset_type property. When you set the
RG_slm_type property to AUTOMATED, all operations that are performed are logged.

If you set the RG_slm_type property to MANUAL, the resource group executes in the project
that is specified by the RG_project_name property.

For information about resource pools and processor sets, see the System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones.

Note –

■ Do not specify resource group names that exceed 58 characters. If a resource group name
contains more than 58 characters, you cannot configure CPU control, that is, you cannot
set the RG_slm_type property to AUTOMATED.

■ Refrain from including dashes (-) in resource group names. The Sun Cluster software
replaces all dashes in resource group names with underscores (_) when it creates a
project. For example, Sun Cluster creates the project named SCSLM_rg_dev for a resource
group named rg-dev. If a resource group named rg_dev already exists, a conflict arises
when Sun Cluster attempts to create the project for the resource group rg-dev.

Resource Group Properties

Appendix A • Standard Properties 281

http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592

Note – You can use the RG_slm_type property only on a global cluster. You cannot use this
property on a zone cluster.

Category: Optional

Default: manual

Tunable: ANYTIME

RG_slm_pset_type (string)
Enables the creation of a dedicated processor set.

You can only use this property if all of the following factors are true:
■ The RG_slm_type property is set to AUTOMATED

■ You are using the Solaris 10 OS
■ The resource group executes in a global-cluster non-voting node

Possible values for RG_slm_pset_type are DEFAULT, DEDICATED_STRONG, and
DEDICATED_WEAK.

For a resource group to execute as DEDICATED_STRONG or DEDICATED_WEAK, the resource
group must be configured so there are only global-cluster non-voting nodes in its node list.

The global-cluster non-voting node must not be configured for a pool other than the default
pool (POOL_DEFAULT). For information about zone configuration, see the zonecfg(1M) man
page. This global-cluster non-voting node must not be dynamically bound to a pool other
than the default pool. For more information on pool binding, see the poolbind(1M) man
page. These two pool conditions are verified only when the methods of the resources in the
resource group are launched.

The values DEDICATED_STRONG and DEDICATED_WEAK are mutually exclusive for resource
groups that have the same node in their node list. You cannot configure resource groups in
the same node so that some have RG_slm_pset_type set to DEDICATED_STRONG and others set
to DEDICATED_WEAK.

If you set the RG_slm_pset_type property to DEDICATED_STRONG, Sun Cluster does the
following in addition to the actions performed by the RG_slm_type property when it is set to
AUTOMATED:
■ Creates and dynamically binds a pool to the global-cluster non-voting node in which the

resource group starts for either or both the PRENET_START and START methods.
■ Creates a processor set with a size between the following sums

■ The sum of the RG_slm_cpu_min property in all the resource groups that are online on
the node in which this resource group starts.

■ The sum of the RG_slm_cpu property in the resource groups that are running on that
node.

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A282

http://docs.sun.com/doc/816-5166/zonecfg-1m?a=view
http://docs.sun.com/doc/816-5166/poolbind-1m?a=view

When either the STOP or POSTNET_STOP methods execute, the Sun Cluster generated
processor set is destroyed. If resource groups are no longer online on the node, the pool is
destroyed, and the global-cluster non-voting node is bound to the default pool
(POOL_DEFAULT).

■ Associates the processor set to the pool.
■ Sets zone.cpu_shares to 100 times the sum of the RG_slm_cpu property in all the

resource groups that are running the node.

If you set the RG_slm_pset_type property to DEDICATED_WEAK, the resource group behaves
the same as if RG_slm_pset_type was set to DEDICATED_STRONG. However, if enough
processors are not available to create the processor set, the pool is associated to the default
processor set.

If you set the RG_slm_pset_typeproperty to DEDICATED_STRONG and not enough processors
are available to create the processor set, an error is generated. As a result, the resource group
is not started on that node.

When CPUs are allocated, the DEFAULTPSETMIN minimum size has priority over
DEDICATED_STRONG, which has priority over DEDICATED_WEAK. However, when you use the
clnode command to increase the size of the default processor, and not enough processors
are available, this priority is ignored. For information about the DEFAULTPSETMIN property,
see the clnode(1CL) man page.

The clnode command assigns a minimum of CPUs to the default processor set dynamically.
If the number of CPUs that you specify is not available, Sun Cluster periodically retries to
assign this number of CPUs. Failing that, Sun Cluster tries to assign smaller numbers of
CPUs to the default processor set until the minimum number of CPUs are assigned. This
action might destroy some DEDICATED_WEAK processor sets, but does not destroy
DEDICATED_STRONG processor sets.

When you start a resource group for which you've set the RG_slm_pset_type property to
DEDICATED_STRONG, it might destroy the processor sets that are associated with the
DEDICATED_WEAK processor sets. This resource group might do so if not enough CPUs are
available on the node for both processor sets. In this case, the processes of the resource group
that are running in the DEDICATED_WEAK processor sets are associated with the default
processor set.

To swap the value of the RG_slm_pset_type property between DEDICATED_STRONG or
DEDICATED_WEAK, you must first set it to the default.

If resource groups that are configured for CPU control are not online in a global-cluster
non-voting node, the CPU share value is set to zone.cpu-shares for that node. By default,
zone.cpu-shares is set to 1. For more information about zone configuration, see the
zonecfg(1M) man page.

Resource Group Properties

Appendix A • Standard Properties 283

http://docs.sun.com/doc/820-4685/clnode-1cl?a=view
http://docs.sun.com/doc/816-5166/zonecfg-1m?a=view

If you set the RG_slm_pset_type property to DEFAULT, Sun Cluster creates a pool named
SCSLM_pool_zonename, but does not create a processor set. In this case,
SCSLM_pool_zonename is associated with the default processor set. The shares that are
assigned to the node equal the sum of the values for RG_slm_cpu for all the resource groups
in the node.

For information about resource pools and processor sets, see the System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones.

Note – You can use the RG_slm_pset_type property only on a global cluster. You cannot use
this property on a zone cluster.

Category: Optional

Default: default

Tunable: ANYTIME

RG_state on each cluster node (enum)
Set by the RGM to UNMANAGED, ONLINE, OFFLINE, PENDING_ONLINE, PENDING_OFFLINE,
ERROR_STOP_FAILED, ONLINE_FAULTED, or PENDING_ONLINE_BLOCKED to describe the state of
the group on each cluster node.

You cannot configure this property. However, you can indirectly set this property by
running the clresourcegroup command or by using the equivalent clsetup or Sun Cluster
Manager commands. A group can exist in an UNMANAGED state when that group is not under
the control of the RGM.

The following descriptions summarize each state.

Note – States apply to individual nodes only, except the UNMANAGED state, which applies across
all nodes. For example, a resource group might be OFFLINE on node A, but PENDING_ONLINE
on node B.

UNMANAGED The initial state of a newly created resource
group, or the state of a previously managed
resource group. Either Init methods have not
yet been run on resources in the group, or Fini
methods have been run on resources in the
group.

The group is not managed by the RGM.

ONLINE The resource group has been started on the
node. In other words, the starting methods

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A284

http://docs.sun.com/doc/817-1592
http://docs.sun.com/doc/817-1592

Prenet_start, Start, and Monitor_start, as
applicable to each resource, have executed
successfully on all enabled resources in the
group.

OFFLINE The resource group has been stopped on the
node. In other words, the stopping methods
Monitor_stop, Stop, and Postnet_stop, as
applicable to each resource, have executed
successfully on all enabled resources in the
group. This state also applies before a resource
group has started for the first time on the node.

PENDING_ONLINE The resource group is starting on the node. The
starting methods Prenet_start, Start, and
Monitor_start, as applicable to each resource,
are being executed on enabled resources in the
group.

PENDING_OFFLINE The resource group is stopping on the node.
The stopping methods Monitor_stop, Stop,
and Postnet_stop, as applicable to each
resource, are being executed on enabled
resources in the group.

ERROR_STOP_FAILED One or more resources within the resource
group failed to stop successfully and are in the
Stop_failed state. Other resources in the
group might remain online or offline. This
resource group is not permitted to start on any
node until the ERROR_STOP_FAILED state is
cleared.

You must use an administrative command,
such as clresource clear, to manually kill the
Stop_failed resource and reset its state to
OFFLINE.

ONLINE_FAULTED The resource group was PENDING_ONLINE and
has finished starting on this node. However,
one or more resources ended up in the
START_FAILED state or with FAULTED status.

PENDING_ONLINE_BLOCKED The resource group failed to start fully because
one or more resources within that resource
group have an unsatisfied strong resource
dependency on a resource in a different

Resource Group Properties

Appendix A • Standard Properties 285

resource group. Such resources remain
OFFLINE. When the resource dependencies are
satisfied, the resource group automatically
moves back to the PENDING_ONLINE state.

Category: Query-only

Default: No default

Tunable: NONE

Suspend_automatic_recovery (boolean)
A Boolean value that indicates whether the automatic recovery of a resource group is
suspended. A suspended resource group is not automatically restarted or failed over until the
cluster administrator explicitly issues the command that resumes automatic recovery.
Whether online or offline, suspended data services remain in their current state. You can still
manually switch the resource group to a different state on specified nodes. You can also still
enable and disable individual resources in the resource group.

If the Suspend_automatic_recovery property is set to TRUE, automatic recovery of the
resource group is suspended. If this property is set to FALSE, automatic recovery of the
resource group is resumed and active.

You do not set this property directly. The RGM changes the value of the
Suspend_automatic_recovery property when the cluster administrator suspends or
resumes automatic recovery of the resource group. The cluster administrator suspends
automatic recovery with the clresourcegroup suspend command. The cluster
administrator resumes automatic recovery with the clresourcegroup resume command.
The resource group can be suspended or resumed regardless of the setting of its RG_system
property.

Category: Query-only

Default: FALSE

Tunable: NONE

RG_system (boolean)
If the RG_system property is TRUE for a resource group, particular operations are restricted
for the resource group and for the resources that the resource group contains. This
restriction is intended to help prevent accidental modification or deletion of critical resource
groups and resources. Only the clresourcegroupcommand is affected by this property.
Operations for scha_control(1HA) and scha_control(3HA) are not affected.

Before performing a restricted operation on a resource group (or a resource group's
resources), you must first set the RG_system property of the resource group to FALSE. Use
care when you modify or delete a resource group that supports cluster services, or when you
modify or delete the resources that such a resource group contains.

Resource Group Properties

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A286

http://docs.sun.com/doc/820-4685/scha-control-1ha?a=view
http://docs.sun.com/doc/820-4685/scha-control-3ha?a=view

Operation Example

Delete a resource group clresourcegroup delete RG1

Edit a resource group property (except for
RG_system)

clresourcegroup set -p RG_desription=... +

Add a resource to a resource group clresource create -g RG1 -t SUNW.nfs R1

The resource is created in the enabled state and with
resource monitoring turned on.

Delete a resource from a resource group clresource delete R1

Edit a property of a resource that belongs to a
resource group

clresource set -g RG1 -t SUNW.nfs -p

r_description="HA-NFS res" R1

Switch a resource group offline clresourcegroup offline RG1

Manage a resource group clresourcegroup manage RG1

Unmanage a resource group clresourcegroup unmanage RG1

Enable a resource in a resource group clresource enable R1

Enable monitoring for a resource in a resource
group

clresource monitor R1

Disable a resource in a resource group clresource disable R1

Disable monitoring for a resource clresource unmonitor R1

If the RG_system property is TRUE for a resource group, the only property of the resource
group that you can edit is the RG_system property itself. In other words, editing the
RG_system property is never restricted.

Category: Optional

Default: FALSE

Tunable: ANYTIME

Resource Property Attributes
This section describes the resource property attributes that you can use to change
system-defined properties or to create extension properties.

Caution – You cannot specify Null or the empty string (“”) as the default value for boolean, enum,
or int types.

Resource Property Attributes

Appendix A • Standard Properties 287

Property names are shown first, followed by a description.

Array_maxsize

For a stringarray type, the maximum number of array elements that are permitted.

Array_minsize

For a stringarray type, the minimum number of array elements that are permitted.

Default

Indicates a default value for the property.

Description

A string annotation that is intended to be a brief description of the property. The
Description attribute cannot be set in the RTR file for system-defined properties.

Enumlist

For an enum type, a set of string values that are permitted for the property.

Extension

If used, indicates that the RTR file entry declares an extension property that is defined by the
resource type implementation. Otherwise, the entry is a system-defined property.

Max

For an int type, the maximum value that is permitted for the property.

Maxlength

For string and stringarray types, the maximum string length that is permitted.

Min

For an int type, the minimal value that is permitted for the property.

Minlength

For string and stringarray types, the minimum string length that is permitted.

Per_node

If used, indicates that the extension property can be set on a per-node basis.

If you specify the Per_node property attribute in a type definition, you must specify a default
value with the Default property attribute as well. Specifying a default value ensures that a
value is returned when a user requests a per-node property value on a node to which an
explicit value has not been assigned.

You cannot specify the Per_node property attribute for a property of type stringarray.

Property

The name of the resource property.

Tunable

Indicates when the cluster administrator can set the value of this property in a resource. Set
to NONE or FALSE to prevent the cluster administrator from setting the property. Values that
enable a cluster administrator to tune a property are TRUE or ANYTIME (at any time),

Resource Property Attributes

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A288

AT_CREATION (only when the resource is created), or WHEN_DISABLED (when the resource is
disabled). To establish other conditions, such as “when monitoring is disabled” or “when
offline”, set this attribute to ANYTIME and validate the state of the resource in the Validate
method.

The default differs for each standard resource property, as shown in the following entry. The
default setting for tuning an extension property, if not otherwise specified in the RTR file, is
TRUE (ANYTIME).

Type of the property
Allowable types are string, boolean, integer, enum, and stringarray. You cannot set the
type attribute in an RTR file entry for system-defined properties. The type determines
acceptable property values and the type-specific attributes that are allowed in the RTR file
entry. An enum type is a set of string values.

Resource Property Attributes

Appendix A • Standard Properties 289

290

Sample Data Service Code Listings

This appendix provides the complete code for each method in the sample data service. It also
lists the contents of the resource type registration (RTR) file.

This appendix covers the following topics:

■ “Resource Type Registration File Listing” on page 291
■ “Start Method Code Listing” on page 295
■ “Stop Method Code Listing” on page 298
■ “gettime Utility Code Listing” on page 300
■ “PROBE Program Code Listing” on page 301
■ “Monitor_start Method Code Listing” on page 307
■ “Monitor_stop Method Code Listing” on page 309
■ “Monitor_check Method Code Listing” on page 311
■ “Validate Method Code Listing” on page 313
■ “Update Method Code Listing” on page 317

Resource Type Registration File Listing
The RTR file contains resource and resource type property declarations that define the initial
configuration of the data service at the time that the cluster administrator registers the data
service.

EXAMPLE B–1 SUNW.SampleRTR File

#

Copyright (c) 1998-2006 by Sun Microsystems, Inc.

All rights reserved.

#

Registration information for Domain Name Service (DNS)

#

BA P P E N D I X B

291

EXAMPLE B–1 SUNW.SampleRTR File (Continued)

#pragma ident “@(#)SUNW.sample 1.1 00/05/24 SMI”

Resource_type = “sample”;

Vendor_id = SUNW;

RT_description = “Domain Name Service on Sun Cluster”;

RT_version =”1.0”;

API_version = 2;

Failover = TRUE;

RT_basedir=/opt/SUNWsample/bin;

Pkglist = SUNWsample;

Start = dns_svc_start;

Stop = dns_svc_stop;

Validate = dns_validate;

Update = dns_update;

Monitor_start = dns_monitor_start;

Monitor_stop = dns_monitor_stop;

Monitor_check = dns_monitor_check;

A list of bracketed resource property declarations follows the

resource type declarations. The property-name declaration must be

the first attribute after the open curly bracket of each entry.

#

The <method>_timeout properties set the value in seconds after which

the RGM concludes invocation of the method has failed.

The MIN value for all method timeouts is set to 60 seconds. This

prevents administrators from setting shorter timeouts, which do not

improve switchover/failover performance, and can lead to undesired

RGM actions (false failovers, node reboot, or moving the resource group

to ERROR_STOP_FAILED state, requiring operator intervention). Setting

too-short method timeouts leads to a *decrease* in overall availability

of the data service.

{

PROPERTY = Start_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Stop_timeout;

MIN=60;

Resource Type Registration File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A292

EXAMPLE B–1 SUNW.SampleRTR File (Continued)

DEFAULT=300;

}

{

PROPERTY = Validate_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Update_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Monitor_Start_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Monitor_Stop_timeout;

MIN=60;

DEFAULT=300;

}

{

PROPERTY = Thorough_Probe_Interval;

MIN=1;

MAX=3600;

DEFAULT=60;

TUNABLE = ANYTIME;

}

The number of retries to be done within a certain period before concluding

that the application cannot be successfully started on this node.

{

PROPERTY = Retry_count;

MIN=0;

MAX=10;

DEFAULT=2;

TUNABLE = ANYTIME;

}

Set Retry_interval as a multiple of 60 since it is converted from seconds

to minutes, rounding up. For example, a value of 50 (seconds)

is converted to 1 minute. Use this property to time the number of

retries (Retry_count).

{

PROPERTY = Retry_interval;

Resource Type Registration File Listing

Appendix B • Sample Data Service Code Listings 293

EXAMPLE B–1 SUNW.SampleRTR File (Continued)

MIN=60;

MAX=3600;

DEFAULT=300;

TUNABLE = ANYTIME;

}

{

PROPERTY = Network_resources_used;

TUNABLE = AT_CREATION;

DEFAULT = ““;

}

#

Extension Properties

#

The cluster administrator must set the value of this property to point to the

directory that contains the configuration files used by the application.

For this application, DNS, specify the path of the DNS configuration file on

PXFS (typically named.conf).

{

PROPERTY = Confdir;

EXTENSION;

STRING;

TUNABLE = AT_CREATION;

DESCRIPTION = “The Configuration Directory Path”;

}

Time out value in seconds before declaring the probe as failed.

{

PROPERTY = Probe_timeout;

EXTENSION;

INT;

DEFAULT = 30;

TUNABLE = ANYTIME;

DESCRIPTION = “Time out value for the probe (seconds)”;

}

Resource Type Registration File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A294

StartMethod Code Listing
The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node. The RGM also does so when the resource
is enabled. In the sample application, the Start method activates the in.named (DNS) daemon
on that node.

EXAMPLE B–2 dns_svc_startMethod

#!/bin/ksh

#

Start Method for HA-DNS.

#

This method starts the data service under the control of PMF. Before starting

the in.named process for DNS, it performs some sanity checks. The PMF tag for

the data service is $RESOURCE_NAME.named. PMF tries to start the service a

specified number of times (Retry_count) and if the number of attempts exceeds

this value within a specified interval (Retry_interval) PMF reports a failure

to start the service. Retry_count and Retry_interval are both properties of the

resource set in the RTR file.

#pragma ident “@(#)dns_svc_start 1.1 00/05/24 SMI”

###

Parse program arguments.

#

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

StartMethod Code Listing

Appendix B • Sample Data Service Code Listings 295

EXAMPLE B–2 dns_svc_startMethod (Continued)

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

MAIN

#

##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Get the value of the Confdir property of the resource in order to start

DNS. Using the resource name and the resource group entered, find the value of

Confdir value set by the cluster administrator when adding theresource.

config_info=scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the “type” as well as the “value” for the extension

properties. Get only the value of the extension property.

CONFIG_DIR=`echo $config_info | awk ‘{print $2}’`

Check if $CONFIG_DIR is accessible.

if [! -d $CONFIG_DIR]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Directory $CONFIG_DIR missing or not mounted”

exit 1

fi

StartMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A296

EXAMPLE B–2 dns_svc_startMethod (Continued)

Change to the $CONFIG_DIR directory in case there are relative

path names in the data files.

cd $CONFIG_DIR

Check that the named.conf file is present in the $CONFIG_DIR directory.

if [! -s named.conf]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} File $CONFIG_DIR/named.conf is missing or empty”

exit 1

fi

Get the value for Retry_count from the RTR file.

RETRY_CNT=`scha_resource_get -O Retry_count -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Get the value for Retry_interval from the RTR file. Convert this value, which is in

seconds, to minutes for passing to pmfadm. Note that this is a conversion with

round-up, for example, 50 seconds rounds up to one minute.

((RETRY_INTRVAL = `scha_resource_get -O Retry_interval -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ 60))

Start the in.named daemon under the control of PMF. Let it crash and restart

up to $RETRY_COUNT times in a period of $RETRY_INTERVAL; if it crashes

more often than that, PMF will cease trying to restart it. If there is a

process already registered under the tag <$PMF_TAG>, then, PMF sends out

an alert message that the process is already running.

echo “Retry interval is “$RETRY_INTRVAL

pmfadm -c $PMF_TAG.named -n $RETRY_CNT -t $RETRY_INTRVAL \

/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.

if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} HA-DNS successfully started”

fi

exit 0

StartMethod Code Listing

Appendix B • Sample Data Service Code Listings 297

StopMethod Code Listing
The RGM runs the Stop method on a cluster node when the resource group that contains the
HA-DNS resource is brought offline on that node. The RGM also does so when the resource is
disabled. This method stops the in.named (DNS) daemon on that node.

EXAMPLE B–3 dns_svc_stopMethod

#!/bin/ksh

#

Stop method for HA-DNS

#

Stop the data service using PMF. If the service is not running the

method exits with status 0 as returning any other value puts the resource

in STOP_FAILED state.

#pragma ident “@(#)dns_svc_stop 1.1 00/05/24 SMI”

###

Parse program arguments.

#

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

StopMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A298

EXAMPLE B–3 dns_svc_stopMethod (Continued)

esac

done

}

###

MAIN

#

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Obtain the Stop_timeout value from the RTR file.

STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT -R $RESOURCE_NAME -G \

$RESOURCEGROUP_NAMÈ

Attempt to stop the data service in an orderly manner using a SIGTERM

signal through PMF. Wait for up to 80% of the Stop_timeout value to

see if SIGTERM is successful in stopping the data service. If not, send SIGKILL

to stop the data service. Use up to 15% of the Stop_timeout value to see

if SIGKILL is successful. If not, there is a failure and the method exits with

non-zero status. The remaining 5% of the Stop_timeout is for other uses.

((SMOOTH_TIMEOUT=$STOP_TIMEOUT * 80/100))

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

See if in.named is running, and if so, kill it.

if pmfadm -q $PMF_TAG.named; then

Send a SIGTERM signal to the data service and wait for 80% of the

total timeout value.

pmfadm -s $PMF_TAG.named -w $SMOOTH_TIMEOUT TERM

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \

“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \

SIGKILL”

Since the data service did not stop with a SIGTERM signal, use

StopMethod Code Listing

Appendix B • Sample Data Service Code Listings 299

EXAMPLE B–3 dns_svc_stopMethod (Continued)

SIGKILL now and wait for another 15% of the total timeout value.

pmfadm -s $PMF_TAG.named -w $HARD_TIMEOUT KILL

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [SYSLOG_TAG] \

“${ARGV0} Failed to stop HA-DNS; Exiting UNSUCCESSFUL”

exit 1

fi

fi

else

The data service is not running as of now. Log a message and

exit success.

logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \

“HA-DNS is not started”

Even if HA-DNS is not running, exit success to avoid putting

the data service in STOP_FAILED State.

exit 0

fi

Successfully stopped DNS. Log a message and exit success.

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“HA-DNS successfully stopped”

exit 0

gettimeUtility Code Listing
The gettime utility is a C program that is used by the PROBE program to track the elapsed time
between restarts of the probe. You must compile this program and place it in the same directory
as the callback methods, that is, the directory pointed to by the RT_basedir property.

EXAMPLE B–4 gettime.cUtility Program

This utility program, used by the probe method of the data service, tracks

the elapsed time in seconds from a known reference point (epoch point). It

must be compiled and placed in the same directory as the data service callback

methods (RT_basedir).

#pragma ident “@(#)gettime.c 1.1 00/05/24 SMI”

#include <stdio.h>

#include <sys/types.h>

#include <time.h>

gettimeUtility Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A300

EXAMPLE B–4 gettime.cUtility Program (Continued)

main()

{

printf(“%d\n”, time(0));

exit(0);

}

PROBEProgram Code Listing
The PROBE program checks the availability of the data service by using nslookup commands
(see the nslookup(1M) man page). The Monitor_start callback method starts this program,
and the Monitor_stop callback method stops it.

EXAMPLE B–5 dns_probeProgram

#!/bin/ksh

#pragma ident “@(#)dns_probe 1.1 00/04/19 SMI”

#

Probe method for HA-DNS.

#

This program checks the availability of the data service using nslookup, which

queries the DNS server to look for the DNS server itself. If the server

does not respond or if the query is replied to by some other server,

then the probe concludes that there is some problem with the data service

and fails the service over to another node in the cluster. Probing is done

at a specific interval set by THOROUGH_PROBE_INTERVAL in the RTR file.

#pragma ident “@(#)dns_probe 1.1 00/05/24 SMI”

###

Parse program arguments.

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

PROBE Program Code Listing

Appendix B • Sample Data Service Code Listings 301

http://docs.sun.com/doc/816-5166/nslookup-1m?a=view

EXAMPLE B–5 dns_probeProgram (Continued)

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

restart_service ()

#

This function tries to restart the data service by calling the Stop method

followed by the Start method of the dataservice. If the dataservice has

already died and no tag is registered for the dataservice under PMF,

then this function fails the service over to another node in the cluster.

#

function restart_service

{

To restart the dataservice, first, verify that the

dataservice itself is still registered under PMF.

pmfadm -q $PMF_TAG

if [[$? -eq 0]]; then

Since the TAG for the dataservice is still registered under

PMF, first stop the dataservice and start it back up again.

Obtain the Stop method name and the STOP_TIMEOUT value for

this resource.

STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

STOP_METHOD=`scha_resource_get -O STOP \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

hatimerun -t $STOP_TIMEOUT $RT_BASEDIR/$STOP_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then

logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Stop method failed.”

return 1

PROBE Program Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A302

EXAMPLE B–5 dns_probeProgram (Continued)

fi

Obtain the Start method name and the START_TIMEOUT value for

this resource.

START_TIMEOUT=`scha_resource_get -O START_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

START_METHOD=`scha_resource_get -O START \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then

logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Start method failed.”

return 1

fi

else

The absence of the TAG for the dataservice

implies that the dataservice has already

exceeded the maximum retries allowed under PMF.

Therefore, do not attempt to restart the

dataservice again, but try to failover

to another node in the cluster.

scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME

fi

return 0

}

###

decide_restart_or_failover ()

#

This function decides the action to be taken upon the failure of a probe:

restart the data service locally or fail over to another node in the cluster.

#

function decide_restart_or_failover

{

Check if this is the first restart attempt.

if [$retries -eq 0]; then

This is the first failure. Note the time of

this first attempt.

start_time=`$RT_BASEDIR/gettimè

PROBE Program Code Listing

Appendix B • Sample Data Service Code Listings 303

EXAMPLE B–5 dns_probeProgram (Continued)

retries=`expr $retries + 1`

Because this is the first failure, attempt to restart

the data service.

restart_service

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Failed to restart data service.”

exit 1

fi

else

This is not the first failure

current_time=`$RT_BASEDIR/gettimè

time_diff=`expr $current_time - $start_timè

if [$time_diff -ge $RETRY_INTERVAL]; then

This failure happened after the time window

elapsed, so reset the retries counter,

slide the window, and do a retry.

retries=1

start_time=$current_time

Because the previous failure occurred more than

Retry_interval ago, attempt to restart the data service.

restart_service

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG \

“${ARGV0} Failed to restart HA-DNS.”

exit 1

fi

elif [$retries -ge $RETRY_COUNT]; then

Still within the time window,

and the retry counter expired, so fail over.

retries=0

scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Failover attempt failed.”

exit 1

fi

else

Still within the time window,

and the retry counter has not expired,

so do another retry.

retries=`expr $retries + 1`

restart_service

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

PROBE Program Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A304

EXAMPLE B–5 dns_probeProgram (Continued)

“${ARGV0} Failed to restart HA-DNS.”

exit 1

fi

fi

fi

}

###

MAIN

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

The interval at which probing is to be done is set in the system defined

property THOROUGH_PROBE_INTERVAL. Obtain the value of this property with

scha_resource_get

PROBE_INTERVAL=scha_resource_get -O THOROUGH_PROBE_INTERVAL \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the timeout value allowed for the probe, which is set in the

PROBE_TIMEOUT extension property in the RTR file. The default timeout for

nslookup is 1.5 minutes.

probe_timeout_info=`scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Probe_timeout`

PROBE_TIMEOUT=`echo $probe_timeout_info | awk ‘{print $2}’`

Identify the server on which DNS is serving by obtaining the value

of the NETWORK_RESOURCES_USED property of the resource.

DNS_HOST=`scha_resource_get -O NETWORK_RESOURCES_USED -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Get the retry count value from the system defined property Retry_count

RETRY_COUNT =`scha_resource_get -O RETRY_COUNT -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Get the retry interval value from the system defined property

Retry_interval

PROBE Program Code Listing

Appendix B • Sample Data Service Code Listings 305

EXAMPLE B–5 dns_probeProgram (Continued)

RETRY_INTERVAL=scha_resource_get -O RETRY_INTERVAL -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Obtain the full path for the gettime utility from the

RT_basedir property of the resource type.

RT_BASEDIR=scha_resource_get -O RT_basedir -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

The probe runs in an infinite loop, trying nslookup commands.

Set up a temporary file for the nslookup replies.

DNSPROBEFILE=/tmp/.$RESOURCE_NAME.probe

probefail=0

retries=0

while :

do

The interval at which the probe needs to run is specified in the

property THOROUGH_PROBE_INTERVAL. Therefore, set the probe to sleep for a

duration of <THOROUGH_PROBE_INTERVAL>

sleep $PROBE_INTERVAL

Run the probe, which queries the IP address on

which DNS is serving.

hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS_HOST $DNS_HOST \

> $DNSPROBEFILE 2>&1

retcode=$?

if [retcode -ne 0]; then

probefail=1

fi

Make sure that the reply to nslookup command comes from the HA-DNS

server and not from another name server listed in the

/etc/resolv.conf file.

if [$probefail -eq 0]; then

Get the name of the server that replied to the nslookup query.

SERVER=` awk ‘ $1==”Server:” {print $2 }’ \

$DNSPROBEFILE | awk -F. ‘ { print $1 } ‘ `

if [-z “$SERVER”];

then

probefail=1

else

if [$SERVER != $DNS_HOST]; then

probefail=1

fi

fi

PROBE Program Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A306

EXAMPLE B–5 dns_probeProgram (Continued)

fi

If the probefail variable is not set to 0, either the nslookup command

timed out or the reply to the query was came from another server

(specified in the /etc/resolv.conf file). In either case, the DNS server is

not responding and the method calls decide_restart_or_failover,

which evaluates whether to restart the data service or to fail it over

to another node.

if [$probefail -ne 0]; then

decide_restart_or_failover

else

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Probe for resource HA-DNS successful”

fi

done

Monitor_startMethod Code Listing
This method starts the PROBE program for the data service.

EXAMPLE B–6 dns_monitor_startMethod

#!/bin/ksh

#

Monitor start Method for HA-DNS.

#

This method starts the monitor (probe) for the data service under the

control of PMF. The monitor is a process that probes the data service

at periodic intervals and if there is a problem restarts it on the same node

or fails it over to another node in the cluster. The PMF tag for the

monitor is $RESOURCE_NAME.monitor.

#pragma ident “@(#)dns_monitor_start 1.1 00/05/24 SMI”

###

Parse program arguments.

#

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

Monitor_startMethod Code Listing

Appendix B • Sample Data Service Code Listings 307

EXAMPLE B–6 dns_monitor_startMethod (Continued)

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

MAIN

#

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.monitor

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Find where the probe method resides by obtaining the value of the

RT_basedir property of the data service.

RT_BASEDIR=`scha_resource_get -O RT_basedir -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Monitor_startMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A308

EXAMPLE B–6 dns_monitor_startMethod (Continued)

Start the probe for the data service under PMF. Use the infinite retries

option to start the probe. Pass the resource name, group, and type to the

probe method.

pmfadm -c $PMF_TAG.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

Log a message indicating that the monitor for HA-DNS has been started.

if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Monitor for HA-DNS successfully started”

fi

exit 0

Monitor_stopMethod Code Listing
This method stops the PROBE program for the data service.

EXAMPLE B–7 dns_monitor_stopMethod

#!/bin/ksh

Monitor stop method for HA-DNS

Stops the monitor that is running using PMF.

#pragma ident “@(#)dns_monitor_stop 1.1 00/05/24 SMI”

###

Parse program arguments.

#

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

Monitor_stopMethod Code Listing

Appendix B • Sample Data Service Code Listings 309

EXAMPLE B–7 dns_monitor_stopMethod (Continued)

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

MAIN

#

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.monitor

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

See if the monitor is running, and if so, kill it.

if pmfadm -q $PMF_TAG.monitor; then

pmfadm -s $PMF_TAG.monitor KILL

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Could not stop monitor for resource “ \

$RESOURCE_NAME

exit 1

else

Could successfully stop the monitor. Log a message.

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Monitor for resource “ $RESOURCE_NAME \

“ successfully stopped”

fi

fi

Monitor_stopMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A310

EXAMPLE B–7 dns_monitor_stopMethod (Continued)

exit 0

Monitor_checkMethod Code Listing
This method verifies the existence of the directory that is pointed to by the Confdir property.
The RGM calls Monitor_check when the PROBE method fails over the data service to a new
node. The RGM also does so to check nodes that are potential masters.

EXAMPLE B–8 dns_monitor_checkMethod

#!/bin/ksh#

Monitor check Method for DNS.

#

The RGM calls this method whenever the fault monitor fails the data service

over to a new node. Monitor_check calls the Validate method to verify

that the configuration directory and files are available on the new node.

#pragma ident “@(#)dns_monitor_check 1.1 00/05/24 SMI”

###

Parse program arguments.

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

Monitor_checkMethod Code Listing

Appendix B • Sample Data Service Code Listings 311

EXAMPLE B–8 dns_monitor_checkMethod (Continued)

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

MAIN

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method.

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Obtain the full path for the Validate method from

the RT_basedir property of the resource type.

RT_BASEDIR=`scha_resource_get -O RT_basedir -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Obtain the name of the Validate method for this resource.

VALIDATE_METHOD=`scha_resource_get -O VALIDATE -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Obtain the value of the Confdir property in order to start the

data service. Use the resource name and the resource group entered to

obtain the Confdir value set at the time of adding the resource.

config_info=`scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the type as well as the value for extension

properties. Use awk to get only the value of the extension property.

CONFIG_DIR=`echo $config_info | awk ‘{print $2}’`

Monitor_checkMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A312

EXAMPLE B–8 dns_monitor_checkMethod (Continued)

Call the validate method so that the dataservice can be failed over

successfully to the new node.

$RT_BASEDIR/$VALIDATE_METHOD -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME -x Confdir=$CONFIG_DIR

Log a message indicating that monitor check was successful.

if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Monitor check for DNS successful.”

exit 0

else

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Monitor check for DNS not successful.”

exit 1

fi

ValidateMethod Code Listing
This method verifies the existence of the directory that is pointed to by the Confdir property.
The RGM calls this method when the data service is created. The RGM also calls this method
when the cluster administrator updates the data service properties. The Monitor_check method
calls this method whenever the fault monitor fails over the data service to a new node.

EXAMPLE B–9 dns_validateMethod

#!/bin/ksh

Validate method for HA-DNS.

This method validates the Confdir property of the resource. The Validate

method gets called in two scenarios. When the resource is being created and

when a resource property is getting updated. When the resource is being

created, this method gets called with the -c flag and all the system-defined

and extension properties are passed as command-line arguments. When a resource

property is being updated, the Validate method gets called with the -u flag,

and only the property/value pair of the property being updated is passed as a

command-line argument.

#

ex: When the resource is being created command args will be

#

dns_validate -c -R <..> -G <...> -T <..> -r <sysdef-prop=value>...

-x <extension-prop=value>.... -g <resourcegroup-prop=value>....

#

when the resource property is being updated

#

dns_validate -u -R <..> -G <...> -T <..> -r <sys-prop_being_updated=value>

ValidateMethod Code Listing

Appendix B • Sample Data Service Code Listings 313

EXAMPLE B–9 dns_validateMethod (Continued)

OR

dns_validate -u -R <..> -G <...> -T <..> -x <extn-prop_being_updated=value>

#pragma ident “@(#)dns_validate 1.1 00/05/24 SMI”

###

Parse program arguments.

#

function parse_args # [args ...]

{

typeset opt

while getopts ‘cur:x:g:R:T:G:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

r)

#The method is not accessing any system defined

#properties, so this is a no-op.

;;

g)

The method is not accessing any resource group

properties, so this is a no-op.

;;

c)

Indicates the Validate method is being called while

creating the resource, so this flag is a no-op.

;;

u)

Indicates the updating of a property when the

resource already exists. If the update is to the

Confdir property then Confdir should appear in the

command-line arguments. If it does not, the method must

look for it specifically using scha_resource_get.

ValidateMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A314

EXAMPLE B–9 dns_validateMethod (Continued)

UPDATE_PROPERTY=1

;;

x)

Extension property list. Separate the property and

value pairs using “=” as the separator.

PROPERTY=`echo $OPTARG | awk -F= ‘{print $1}’`

VAL=echo $OPTARG | awk -F= ‘{print $2}’`

If the Confdir extension property is found on the

command line, note its value.

if [$PROPERTY == “Confdir”];

then

CONFDIR=$VAL

CONFDIR_FOUND=1

fi

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

MAIN

#

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Set the Value of CONFDIR to null. Later, this method retrieves the value

of the Confdir property from the command line or using scha_resource_get.

CONFDIR=””

UPDATE_PROPERTY=0

CONFDIR_FOUND=0

Parse the arguments that have been passed to this method.

parse_args “$@”

If the validate method is being called due to the updating of properties

ValidateMethod Code Listing

Appendix B • Sample Data Service Code Listings 315

EXAMPLE B–9 dns_validateMethod (Continued)

try to retrieve the value of the Confdir extension property from the command

line. Otherwise, obtain the value of Confdir using scha_resource_get.

if ((($UPDATE_PROPERTY == 1)) && ((CONFDIR_FOUND == 0))); then

config_info=scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir`

CONFDIR=`echo $config_info | awk ‘{print $2}’`

fi

Verify that the Confdir property has a value. If not there is a failure

and exit with status 1.

if [[-z $CONFDIR]]; then

logger -p ${SYSLOG_FACILITY}.err \

“${ARGV0} Validate method for resource “$RESOURCE_NAME “ failed”

exit 1

fi

Now validate the actual Confdir property value.

Check if $CONFDIR is accessible.

if [! -d $CONFDIR]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Directory $CONFDIR missing or not mounted”

exit 1

fi

Check that the named.conf file is present in the Confdir directory.

if [! -s $CONFDIR/named.conf]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} File $CONFDIR/named.conf is missing or empty”

exit 1

fi

Log a message indicating that the Validate method was successful.

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Validate method for resource “$RESOURCE_NAME \

“ completed successfully”

exit 0

ValidateMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A316

UpdateMethod Code Listing
The RGM calls the Update method to notify a running resource that its properties have been
changed.

EXAMPLE B–10 dns_updateMethod

#!/bin/ksh

Update method for HA-DNS.

The actual updates to properties are done by the RGM. Updates affect only

the fault monitor so this method must restart the fault monitor.

#pragma ident “@(#)dns_update 1.1 00/05/24 SMI”

###

Parse program arguments.

#

function parse_args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)

Name of the DNS resource.

RESOURCE_NAME=$OPTARG

;;

G)

Name of the resource group in which the resource is

configured.

RESOURCEGROUP_NAME=$OPTARG

;;

T)

Name of the resource type.

RESOURCETYPE_NAME=$OPTARG

;;

*)

logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

“ERROR: Option $OPTARG unknown”

exit 1

;;

esac

done

}

###

MAIN

UpdateMethod Code Listing

Appendix B • Sample Data Service Code Listings 317

EXAMPLE B–10 dns_updateMethod (Continued)

###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.monitor

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Find where the probe method resides by obtaining the value of the

RT_basedir property of the resource.

RT_BASEDIR=`scha_resource_get -O RT_basedir -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

When the Update method is called, the RGM updates the value of the property

being updated. This method must check if the fault monitor (probe)

is running, and if so, kill it and then restart it.

if pmfadm -q $PMF_TAG.monitor; then

Kill the monitor that is running already

pmfadm -s $PMF_TAG.monitor TERM

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Could not stop the monitor”

exit 1

else

Could successfully stop DNS. Log a message.

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“Monitor for HA-DNS successfully stopped”

fi

Restart the monitor.

pmfadm -c $PMF_TAG.monitor -n -1 -t -1 $RT_BASEDIR/dns_probe \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME -T $RESOURCETYPE_NAME

if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Could not restart monitor for HA-DNS “

exit 1

else

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“Monitor for HA-DNS successfully restarted”

fi

fi

exit 0

UpdateMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A318

DSDL Sample Resource Type Code Listings

This appendix lists the complete code for each method in the SUNW.xfnts resource type. It
includes the listing for xfnts.c, which contains code for the subroutines that are called by the
callback methods. Chapter 8, “Sample DSDL Resource Type Implementation,” describes the
sample resource type SUNW.xfnts in more detail.

This appendix covers the following topics:

■ “xfnts.c File Listing” on page 319
■ “xfnts_monitor_check Method Code Listing” on page 333
■ “xfnts_monitor_start Method Code Listing” on page 334
■ “xfnts_monitor_stop Method Code Listing” on page 335
■ “xfnts_probe Method Code Listing” on page 336
■ “xfnts_start Method Code Listing” on page 339
■ “xfnts_stop Method Code Listing” on page 340
■ “xfnts_update Method Code Listing” on page 341
■ “xfnts_validate Method Code Listing” on page 343

xfnts.c File Listing
This file implements the subroutines that are called by the SUNW.xfnts methods.

EXAMPLE C–1 xfnts.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts.c - Common utilities for HA-XFS

*

* This utility has the methods for performing the validation, starting and

* stopping the data service and the fault monitor. It also contains the method

CA P P E N D I X C

319

EXAMPLE C–1 xfnts.c (Continued)

* to probe the health of the data service. The probe just returns either

* success or failure. Action is taken based on this returned value in the

* method found in the file xfnts_probe.c

*

*/

#pragma ident “@(#)xfnts.c 1.47 01/01/18 SMI”

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/socket.h>

#include <sys/wait.h>

#include <netinet/in.h>

#include <scha.h>

#include <rgm/libdsdev.h>

#include <errno.h>

#include “xfnts.h”

/*

* The initial timeout allowed for the HAXFS data service to

* be fully up and running. We will wait for 3 % (SVC_WAIT_PCT)

* of the start_timeout time before probing the service.

*/

#define SVC_WAIT_PCT 3

/*

* We need to use 95% of probe_timeout to connect to the port and the

* remaining time is used to disconnect from port in the svc_probe function.

*/

#define SVC_CONNECT_TIMEOUT_PCT 95

/*

* SVC_WAIT_TIME is used only during starting in svc_wait().

* In svc_wait() we need to be sure that the service is up

* before returning, thus we need to call svc_probe() to

* monitor the service. SVC_WAIT_TIME is the time between

* such probes.

*/

#define SVC_WAIT_TIME 5

/*

* This value will be used as disconnect timeout, if there is no

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A320

EXAMPLE C–1 xfnts.c (Continued)

* time left from the probe_timeout.

*/

#define SVC_DISCONNECT_TIMEOUT_SECONDS 2

/*

* svc_validate():

*

* Do HA-XFS specific validation of the resource configuration.

*

* svc_validate will check for the following

* 1. Confdir_list extension property

* 2. fontserver.cfg file

* 3. xfs binary

* 4. port_list property

* 5. network resources

* 6. other extension properties

*

* If any of the above validation fails then, Return > 0 otherwise return 0 for

* success

*/

int

svc_validate(scds_handle_t scds_handle)

{

char xfnts_conf[SCDS_ARRAY_SIZE];

scha_str_array_t *confdirs;

scds_net_resource_list_t *snrlp;

int rc;

struct stat statbuf;

scds_port_list_t *portlist;

scha_err_t err;

/*

* Get the configuration directory for the XFS dataservice from the

* confdir_list extension property.

*/

confdirs = scds_get_ext_confdir_list(scds_handle);

/* Return an error if there is no confdir_list extension property */

if (confdirs == NULL || confdirs->array_cnt != 1) {

scds_syslog(LOG_ERR,

“Property Confdir_list is not set properly.”);

return (1); /* Validation failure */

}

xfnts.c File Listing

Appendix C • DSDL Sample Resource Type Code Listings 321

EXAMPLE C–1 xfnts.c (Continued)

/*

* Construct the path to the configuration file from the extension

* property confdir_list. Since HA-XFS has only one configuration

* we will need to use the first entry of the confdir_list property.

*/

(void) sprintf(xfnts_conf, “%s/fontserver.cfg”, confdirs->str_array[0]);

/*

* Check to see if the HA-XFS configuration file is in the right place.

* Try to access the HA-XFS configuration file and make sure the

* permissions are set properly

*/

if (stat(xfnts_conf, &statbuf) != 0) {

/*

* suppress lint error because errno.h prototype

* is missing void arg

*/

scds_syslog(LOG_ERR,

“Failed to access file <%s> : <%s>”,

xfnts_conf, strerror(errno)); /*lint !e746 */

return (1);

}

/*

* Make sure that xfs binary exists and that the permissions

* are correct. The XFS binary are assumed to be on the local

* File system and not on the Global File System

*/

if (stat(“/usr/openwin/bin/xfs”, &statbuf) != 0) {

scds_syslog(LOG_ERR,

“Cannot access XFS binary : <%s> “, strerror(errno));

return (1);

}

/* HA-XFS will have only port */

err = scds_get_port_list(scds_handle, &portlist);

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Could not access property Port_list: %s.”,

scds_error_string(err));

return (1); /* Validation Failure */

}

#ifdef TEST

if (portlist->num_ports != 1) {

scds_syslog(LOG_ERR,

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A322

EXAMPLE C–1 xfnts.c (Continued)

“Property Port_list must have only one value.”);

scds_free_port_list(portlist);

return (1); /* Validation Failure */

}

#endif

/*

* Return an error if there is an error when trying to get the

* available network address resources for this resource

*/

if ((err = scds_get_rs_hostnames(scds_handle, &snrlp))

!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“No network address resource in resource group: %s.”,

scds_error_string(err));

return (1); /* Validation Failure */

}

/* Return an error if there are no network address resources */

if (snrlp == NULL || snrlp->num_netresources == 0) {

scds_syslog(LOG_ERR,

“No network address resource in resource group.”);

rc = 1;

goto finished;

}

/* Check to make sure other important extension props are set */

if (scds_get_ext_monitor_retry_count(scds_handle) <= 0)

{

scds_syslog(LOG_ERR,

“Property Monitor_retry_count is not set.”);

rc = 1; /* Validation Failure */

goto finished;

}

if (scds_get_ext_monitor_retry_interval(scds_handle) <= 0) {

scds_syslog(LOG_ERR,

“Property Monitor_retry_interval is not set.”);

rc = 1; /* Validation Failure */

goto finished;

}

/* All validation checks were successful */

scds_syslog(LOG_INFO, “Successful validation.”);

rc = 0;

finished:

xfnts.c File Listing

Appendix C • DSDL Sample Resource Type Code Listings 323

EXAMPLE C–1 xfnts.c (Continued)

scds_free_net_list(snrlp);

scds_free_port_list(portlist);

return (rc); /* return result of validation */

}

/*

* svc_start():

*

* Start up the X font server

* Return 0 on success, > 0 on failures.

*

* The XFS service will be started by running the command

* /usr/openwin/bin/xfs -config <fontserver.cfg file> -port <port to listen>

* XFS will be started under PMF. XFS will be started as a single instance

* service. The PMF tag for the data service will be of the form

* <resourcegroupname,resourcename,instance_number.svc>. In case of XFS, since

* there will be only one instance the instance_number in the tag will be 0.

*/

int

svc_start(scds_handle_t scds_handle)

{

char xfnts_conf[SCDS_ARRAY_SIZE];

char cmd[SCDS_ARRAY_SIZE];

scha_str_array_t *confdirs;

scds_port_list_t *portlist;

scha_err_t err;

/* get the configuration directory from the confdir_list property */

confdirs = scds_get_ext_confdir_list(scds_handle);

(void) sprintf(xfnts_conf, “%s/fontserver.cfg”, confdirs->str_array[0]);

/* obtain the port to be used by XFS from the Port_list property */

err = scds_get_port_list(scds_handle, &portlist);

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Could not access property Port_list.”);

return (1);

}

/*

* Construct the command to start HA-XFS.

* NOTE: XFS daemon prints the following message while stopping the XFS

* “/usr/openwin/bin/xfs notice: terminating”

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A324

EXAMPLE C–1 xfnts.c (Continued)

* In order to suppress the daemon message,

* the output is redirected to /dev/null.

*/

(void) sprintf(cmd,

“/usr/openwin/bin/xfs -config %s -port %d 2>/dev/null”,

xfnts_conf, portlist->ports[0].port);

/*

* Start HA-XFS under PMF. Note that HA-XFS is started as a single

* instance service. The last argument to the scds_pmf_start function

* denotes the level of children to be monitored. A value of -1 for

* this parameter means that all the children along with the original

* process are to be monitored.

*/

scds_syslog(LOG_INFO, “Issuing a start request.”);

err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_SVC,

SCDS_PMF_SINGLE_INSTANCE, cmd, -1);

if (err == SCHA_ERR_NOERR) {

scds_syslog(LOG_INFO,

“Start command completed successfully.”);

} else {

scds_syslog(LOG_ERR,

“Failed to start HA-XFS “);

}

scds_free_port_list(portlist);

return (err); /* return Success/failure status */

}

/*

* svc_stop():

*

* Stop the XFS server

* Return 0 on success, > 0 on failures.

*

* svc_stop will stop the server by calling the toolkit function:

* scds_pmf_stop.

*/

int

svc_stop(scds_handle_t scds_handle)

{

scha_err_t err;

/*

xfnts.c File Listing

Appendix C • DSDL Sample Resource Type Code Listings 325

EXAMPLE C–1 xfnts.c (Continued)

* The timeout value for the stop method to succeed is set in the

* Stop_Timeout (system defined) property

*/

scds_syslog(LOG_ERR, “Issuing a stop request.”);

err = scds_pmf_stop(scds_handle,

SCDS_PMF_TYPE_SVC, SCDS_PMF_SINGLE_INSTANCE, SIGTERM,

scds_get_rs_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Failed to stop HA-XFS.”);

return (1);

}

scds_syslog(LOG_INFO,

“Successfully stopped HA-XFS.”);

return (SCHA_ERR_NOERR); /* Successfully stopped */

}

/*

* svc_wait():

*

* wait for the data service to start up fully and make sure it is running

* healthy

*/

int

svc_wait(scds_handle_t scds_handle)

{

int rc, svc_start_timeout, probe_timeout;

scds_netaddr_list_t *netaddr;

/* obtain the network resource to use for probing */

if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,

“No network address resources found in resource group.”);

return (1);

}

/* Return an error if there are no network resources */

if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,

“No network address resource in resource group.”);

return (1);

}

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A326

EXAMPLE C–1 xfnts.c (Continued)

/*

* Get the Start method timeout, port number on which to probe,

* the Probe timeout value

*/

svc_start_timeout = scds_get_rs_start_timeout(scds_handle);

probe_timeout = scds_get_ext_probe_timeout(scds_handle);

/*

* sleep for SVC_WAIT_PCT percentage of start_timeout time

* before actually probing the dataservice. This is to allow

* the dataservice to be fully up in order to reply to the

* probe. NOTE: the value for SVC_WAIT_PCT could be different

* for different data services.

* Instead of calling sleep(),

* call scds_svc_wait() so that if service fails too

* many times, we give up and return early.

*/

if (scds_svc_wait(scds_handle, (svc_start_timeout * SVC_WAIT_PCT)/100)

!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR, “Service failed to start.”);

return (1);

}

do {

/*

* probe the data service on the IP address of the

* network resource and the portname

*/

rc = svc_probe(scds_handle,

netaddr->netaddrs[0].hostname,

netaddr->netaddrs[0].port_proto.port, probe_timeout);

if (rc == SCHA_ERR_NOERR) {

/* Success. Free up resources and return */

scds_free_netaddr_list(netaddr);

return (0);

}

/*

* Dataservice is still trying to come up. Sleep for a while

* before probing again. Instead of calling sleep(),

* call scds_svc_wait() so that if service fails too

* many times, we give up and return early.

*/

if (scds_svc_wait(scds_handle, SVC_WAIT_TIME)

!= SCHA_ERR_NOERR) {

xfnts.c File Listing

Appendix C • DSDL Sample Resource Type Code Listings 327

EXAMPLE C–1 xfnts.c (Continued)

scds_syslog(LOG_ERR, “Service failed to start.”);

return (1);

}

/* We rely on RGM to timeout and terminate the program */

} while (1);

}

/*

* This function starts the fault monitor for a HA-XFS resource.

* This is done by starting the probe under PMF. The PMF tag

* is derived as <RG-name,RS-name,instance_number.mon>. The restart option

* of PMF is used but not the “infinite restart”. Instead

* interval/retry_time is obtained from the RTR file.

*/

int

mon_start(scds_handle_t scds_handle)

{

scha_err_t err;

scds_syslog_debug(DBG_LEVEL_HIGH,

“Calling MONITOR_START method for resource <%s>.”,

scds_get_resource_name(scds_handle));

/*

* The probe xfnts_probe is assumed to be available in the same

* subdirectory where the other callback methods for the RT are

* installed. The last parameter to scds_pmf_start denotes the

* child monitor level. Since we are starting the probe under PMF

* we need to monitor the probe process only and hence we are using

* a value of 0.

*/

err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_MON,

SCDS_PMF_SINGLE_INSTANCE, “xfnts_probe”, 0);

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Failed to start fault monitor.”);

return (1);

}

scds_syslog(LOG_INFO,

“Started the fault monitor.”);

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A328

EXAMPLE C–1 xfnts.c (Continued)

return (SCHA_ERR_NOERR); /* Successfully started Monitor */

}

/*

* This function stops the fault monitor for a HA-XFS resource.

* This is done via PMF. The PMF tag for the fault monitor is

* constructed based on <RG-name_RS-name,instance_number.mon>.

*/

int

mon_stop(scds_handle_t scds_handle)

{

scha_err_t err;

scds_syslog_debug(DBG_LEVEL_HIGH,

“Calling scds_pmf_stop method”);

err = scds_pmf_stop(scds_handle, SCDS_PMF_TYPE_MON,

SCDS_PMF_SINGLE_INSTANCE, SIGKILL,

scds_get_rs_monitor_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Failed to stop fault monitor.”);

return (1);

}

scds_syslog(LOG_INFO,

“Stopped the fault monitor.”);

return (SCHA_ERR_NOERR); /* Successfully stopped monitor */

}

/*

* svc_probe(): Do data service specific probing. Return a float value

* between 0 (success) and 100(complete failure).

*

* The probe does a simple socket connection to the XFS server on the specified

* port which is configured as the resource extension property (Port_list) and

* pings the dataservice. If the probe fails to connect to the port, we return

* a value of 100 indicating that there is a total failure. If the connection

* goes through and the disconnect to the port fails, then a value of 50 is

* returned indicating a partial failure.

*/

xfnts.c File Listing

Appendix C • DSDL Sample Resource Type Code Listings 329

EXAMPLE C–1 xfnts.c (Continued)

int

svc_probe(scds_handle_t scds_handle, char *hostname, int port, int

timeout)

{

int rc;

hrtime_t t1, t2;

int sock;

char testcmd[2048];

int time_used, time_remaining;

time_t connect_timeout;

/*

* probe the dataservice by doing a socket connection to the port

* specified in the port_list property to the host that is

* serving the XFS dataservice. If the XFS service which is configured

* to listen on the specified port, replies to the connection, then

* the probe is successful. Else we will wait for a time period set

* in probe_timeout property before concluding that the probe failed.

*/

/*

* Use the SVC_CONNECT_TIMEOUT_PCT percentage of timeout

* to connect to the port

*/

connect_timeout = (SVC_CONNECT_TIMEOUT_PCT * timeout)/100;

t1 = (hrtime_t)(gethrtime()/1E9);

/*

* the probe makes a connection to the specified hostname and port.

* The connection is timed for 95% of the actual probe_timeout.

*/

rc = scds_fm_tcp_connect(scds_handle, &sock, hostname, port,

connect_timeout);

if (rc) {

scds_syslog(LOG_ERR,

“Failed to connect to port <%d> of resource <%s>.”,

port, scds_get_resource_name(scds_handle));

/* this is a complete failure */

return (SCDS_PROBE_COMPLETE_FAILURE);

}

t2 = (hrtime_t)(gethrtime()/1E9);

/*

* Compute the actual time it took to connect. This should be less than

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A330

EXAMPLE C–1 xfnts.c (Continued)

* or equal to connect_timeout, the time allocated to connect.

* If the connect uses all the time that is allocated for it,

* then the remaining value from the probe_timeout that is passed to

* this function will be used as disconnect timeout. Otherwise, the

* the remaining time from the connect call will also be added to

* the disconnect timeout.

*

*/

time_used = (int)(t2 - t1);

/*

* Use the remaining time(timeout - time_took_to_connect) to disconnect

*/

time_remaining = timeout - (int)time_used;

/*

* If all the time is used up, use a small hardcoded timeout

* to still try to disconnect. This will avoid the fd leak.

*/

if (time_remaining <= 0) {

scds_syslog_debug(DBG_LEVEL_LOW,

“svc_probe used entire timeout of “

“%d seconds during connect operation and exceeded the “

“timeout by %d seconds. Attempting disconnect with timeout”

“ %d “,

connect_timeout,

abs(time_used),

SVC_DISCONNECT_TIMEOUT_SECONDS);

time_remaining = SVC_DISCONNECT_TIMEOUT_SECONDS;

}

/*

* Return partial failure in case of disconnection failure.

* Reason: The connect call is successful, which means

* the application is alive. A disconnection failure

* could happen due to a hung application or heavy load.

* If it is the later case, don’t declare the application

* as dead by returning complete failure. Instead, declare

* it as partial failure. If this situation persists, the

* disconnect call will fail again and the application will be

* restarted.

*/

rc = scds_fm_tcp_disconnect(scds_handle, sock, time_remaining);

xfnts.c File Listing

Appendix C • DSDL Sample Resource Type Code Listings 331

EXAMPLE C–1 xfnts.c (Continued)

if (rc != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Failed to disconnect to port %d of resource %s.”,

port, scds_get_resource_name(scds_handle));

/* this is a partial failure */

return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

t2 = (hrtime_t)(gethrtime()/1E9);

time_used = (int)(t2 - t1);

time_remaining = timeout - time_used;

/*

* If there is no time left, don’t do the full test with

* fsinfo. Return SCDS_PROBE_COMPLETE_FAILURE/2

* instead. This will make sure that if this timeout

* persists, server will be restarted.

*/

if (time_remaining <= 0) {

scds_syslog(LOG_ERR, “Probe timed out.”);

return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

/*

* The connection and disconnection to port is successful,

* Run the fsinfo command to perform a full check of

* server health.

* Redirect stdout, otherwise the output from fsinfo

* ends up on the console.

*/

(void) sprintf(testcmd,

“/usr/openwin/bin/fsinfo -server %s:%d > /dev/null”,

hostname, port);

scds_syslog_debug(DBG_LEVEL_HIGH,

“Checking the server status with %s.”, testcmd);

if (scds_timerun(scds_handle, testcmd, time_remaining,

SIGKILL, &rc) != SCHA_ERR_NOERR || rc != 0) {

scds_syslog(LOG_ERR,

“Failed to check server status with command <%s>”,

testcmd);

return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

return (0);

}

xfnts.c File Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A332

xfnts_monitor_checkMethod Code Listing
This method verifies that the basic resource type configuration is valid.

EXAMPLE C–2 xfnts_monitor_check.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_monitor_check.c - Monitor Check method for HA-XFS

*/

#pragma ident “@(#)xfnts_monitor_check.c 1.11 01/01/18

SMI”

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* just make a simple validate check on the service

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

int rc;

/* Process the arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

rc = svc_validate(scds_handle);

scds_syslog_debug(DBG_LEVEL_HIGH,

“monitor_check method “

“was called and returned <%d>.”, rc);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

/* Return the result of validate method run as part of monitor check */

return (rc);

}

xfnts_monitor_checkMethod Code Listing

Appendix C • DSDL Sample Resource Type Code Listings 333

xfnts_monitor_startMethod Code Listing
This method starts the xfnts_probe method.

EXAMPLE C–3 xfnts_monitor_start.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_monitor_start.c - Monitor Start method for HA-XFS

*/

#pragma ident “@(#)xfnts_monitor_start.c 1.10 01/01/18

SMI”

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* This method starts the fault monitor for a HA-XFS resource.

* This is done by starting the probe under PMF. The PMF tag

* is derived as RG-name,RS-name.mon. The restart option of PMF

* is used but not the “infinite restart”. Instead

* interval/retry_time is obtained from the RTR file.

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

int rc;

/* Process arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

rc = mon_start(scds_handle);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

/* Return the result of monitor_start method */

return (rc);

}

xfnts_monitor_startMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A334

xfnts_monitor_stopMethod Code Listing
This method stops the xfnts_probe method.

EXAMPLE C–4 xfnts_monitor_stop.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_monitor_stop.c - Monitor Stop method for HA-XFS

*/

#pragma ident “@(#)xfnts_monitor_stop.c 1.9 01/01/18 SMI”

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* This method stops the fault monitor for a HA-XFS resource.

* This is done via PMF. The PMF tag for the fault monitor is

* constructed based on RG-name_RS-name.mon.

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

int rc;

/* Process arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

rc = mon_stop(scds_handle);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

/* Return the result of monitor stop method */

return (rc);

}

xfnts_monitor_stopMethod Code Listing

Appendix C • DSDL Sample Resource Type Code Listings 335

xfnts_probeMethod Code Listing
The xfnts_probe method checks the availability of the application and determines whether to
fail over or restart the data service. The xfnts_monitor_start callback method starts this
program, and the xfnts_monitor_stop callback method stops it.

EXAMPLE C–5 xfnts_probe.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_probe.c - Probe for HA-XFS

*/

#pragma ident “@(#)xfnts_probe.c 1.26 01/01/18 SMI”

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <unistd.h>

#include <signal.h>

#include <sys/time.h>

#include <sys/socket.h>

#include <strings.h>

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* main():

* Just an infinite loop which sleep()s for sometime, waiting for

* the PMF action script to interrupt the sleep(). When interrupted

* It calls the start method for HA-XFS to restart it.

*

*/

int

main(int argc, char *argv[])

{

int timeout;

int port, ip, probe_result;

scds_handle_t scds_handle;

hrtime_t ht1, ht2;

unsigned long dt;

scds_netaddr_list_t *netaddr;

xfnts_probeMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A336

EXAMPLE C–5 xfnts_probe.c (Continued)

char *hostname;

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

/* Get the ip addresses available for this resource */

if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,

“No network address resource in resource group.”);

scds_close(&scds_handle);

return (1);

}

/* Return an error if there are no network resources */

if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,

“No network address resource in resource group.”);

return (1);

}

/*

* Set the timeout from the X props. This means that each probe

* iteration will get a full timeout on each network resource

* without chopping up the timeout between all of the network

* resources configured for this resource.

*/

timeout = scds_get_ext_probe_timeout(scds_handle);

for (;;) {

/*

* sleep for a duration of thorough_probe_interval between

* successive probes.

*/

(void) scds_fm_sleep(scds_handle,

scds_get_rs_thorough_probe_interval(scds_handle));

/*

* Now probe all ipaddress we use. Loop over

* 1. All net resources we use.

* 2. All ipaddresses in a given resource.

* For each of the ipaddress that is probed,

* compute the failure history.

xfnts_probeMethod Code Listing

Appendix C • DSDL Sample Resource Type Code Listings 337

EXAMPLE C–5 xfnts_probe.c (Continued)

*/

probe_result = 0;

/*

* Iterate through the all resources to get each

* IP address to use for calling svc_probe()

*/

for (ip = 0; ip < netaddr->num_netaddrs; ip++) {

/*

* Grab the hostname and port on which the

* health has to be monitored.

*/

hostname = netaddr->netaddrs[ip].hostname;

port = netaddr->netaddrs[ip].port_proto.port;

/*

* HA-XFS supports only one port and

* hence obtain the port value from the

* first entry in the array of ports.

*/

ht1 = gethrtime(); /* Latch probe start time */

scds_syslog(LOG_INFO, “Probing the service on “

“port: %d.”, port);

probe_result =

svc_probe(scds_handle, hostname, port, timeout);

/*

* Update service probe history,

* take action if necessary.

* Latch probe end time.

*/

ht2 = gethrtime();

/* Convert to milliseconds */

dt = (ulong_t)((ht2 - ht1) / 1e6);

/*

* Compute failure history and take

* action if needed

*/

(void) scds_fm_action(scds_handle,

probe_result, (long)dt);

} /* Each net resource */

} /* Keep probing forever */

}

xfnts_probeMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A338

xfnts_startMethod Code Listing
The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node. The RGM also does so when the resource
is enabled. The xfnts_start method activates the xfs daemon on that node.

EXAMPLE C–6 xfnts_start.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_svc_start.c - Start method for HA-XFS

*/

#pragma ident “@(#)xfnts_svc_start.c 1.13 01/01/18 SMI”

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* The start method for HA-XFS. Does some sanity checks on

* the resource settings then starts the HA-XFS under PMF with

* an action script.

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

int rc;

/*

* Process all the arguments that have been passed to us from RGM

* and do some initialization for syslog

*/

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

/* Validate the configuration and if there is an error return back */

rc = svc_validate(scds_handle);

if (rc != 0) {

scds_syslog(LOG_ERR,

“Failed to validate configuration.”);

xfnts_startMethod Code Listing

Appendix C • DSDL Sample Resource Type Code Listings 339

EXAMPLE C–6 xfnts_start.c (Continued)

return (rc);

}

/* Start the data service, if it fails return with an error */

rc = svc_start(scds_handle);

if (rc != 0) {

goto finished;

}

/* Wait for the service to start up fully */

scds_syslog_debug(DBG_LEVEL_HIGH,

“Calling svc_wait to verify that service has started.”);

rc = svc_wait(scds_handle);

scds_syslog_debug(DBG_LEVEL_HIGH,

“Returned from svc_wait”);

if (rc == 0) {

scds_syslog(LOG_INFO, “Successfully started the service.”);

} else {

scds_syslog(LOG_ERR, “Failed to start the service.”);

}

finished:

/* Free up the Environment resources that were allocated */

scds_close(&scds_handle);

return (rc);

}

xfnts_stopMethod Code Listing
The RGM runs the Stop method on a cluster node when the resource group that contains the
HA-XFS resource is brought offline on that node. The RGM also does so when the resource is
disabled. This method stops the xfs daemon on that node.

EXAMPLE C–7 xfnts_stop.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

xfnts_stopMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A340

EXAMPLE C–7 xfnts_stop.c (Continued)

* xfnts_svc_stop.c - Stop method for HA-XFS

*/

#pragma ident “@(#)xfnts_svc_stop.c 1.10 01/01/18 SMI”

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* Stops the HA-XFS process using PMF

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

int rc;

/* Process the arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

rc = svc_stop(scds_handle);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

/* Return the result of svc_stop method */

return (rc);

}

xfnts_updateMethod Code Listing
The RGM calls the Update method to notify a running resource that its properties have been
changed. The RGM runs Update after an administrative action succeeds in setting properties of
a resource or its group.

EXAMPLE C–8 xfnts_update.c

#pragma ident "@(#)xfnts_update.c 1.10 01/01/18 SMI"

xfnts_updateMethod Code Listing

Appendix C • DSDL Sample Resource Type Code Listings 341

EXAMPLE C–8 xfnts_update.c (Continued)

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_update.c - Update method for HA-XFS

*/

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <rgm/libdsdev.h>

/*

* Some of the resource properties might have been updated. All such

* updatable properties are related to the fault monitor. Hence, just

* restarting the monitor should be enough.

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

scha_err_t result;

/* Process the arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

/*

* check if the Fault monitor is already running and if so stop and

* restart it. The second parameter to scds_pmf_restart_fm() uniquely

* identifies the instance of the fault monitor that needs to be

* restarted.

*/

scds_syslog(LOG_INFO, “Restarting the fault monitor.”);

result = scds_pmf_restart_fm(scds_handle, 0);

if (result != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,

“Failed to restart fault monitor.”);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

return (1);

xfnts_updateMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A342

EXAMPLE C–8 xfnts_update.c (Continued)

}

scds_syslog(LOG_INFO,

“Completed successfully.”);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

return (0);

}

xfnts_validateMethod Code Listing
This method verifies the existence of the directory that is pointed to by the Confdir_list
property. The RGM calls this method when the data service is created and when data service
properties are updated by the cluster administrator. The Monitor_check method calls this
method whenever the fault monitor fails over the data service to a new node.

EXAMPLE C–9 xfnts_validate.c

/*

* Copyright (c) 1998-2006 by Sun Microsystems, Inc.

* All rights reserved.

*

* xfnts_validate.c - validate method for HA-XFS

*/

#pragma ident “@(#)xfnts_validate.c 1.9 01/01/18 SMI”

#include <rgm/libdsdev.h>

#include “xfnts.h”

/*

* Check to make sure that the properties have been set properly.

*/

int

main(int argc, char *argv[])

{

scds_handle_t scds_handle;

int rc;

/* Process arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

xfnts_validateMethod Code Listing

Appendix C • DSDL Sample Resource Type Code Listings 343

EXAMPLE C–9 xfnts_validate.c (Continued)

{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

return (1);

}

rc = svc_validate(scds_handle);

/* Free up all the memory allocated by scds_initialize */

scds_close(&scds_handle);

/* Return the result of validate method */

return (rc);

}

xfnts_validateMethod Code Listing

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A344

Legal RGM Names and Values

This appendix lists the requirements for legal characters for Resource Group Manager (RGM)
names and values.

This appendix covers the following topics:

■ “RGM Legal Names” on page 345
■ “RGM Values” on page 347

RGM Legal Names
RGM names fall into the following categories:

■ Resource group names
■ Resource type names
■ Resource names
■ Property names
■ Enumeration literal names

Rules for Names Except Resource Type Names
Except for resource type names, all names must comply with these rules:

■ Names must be in ASCII.
■ Names must start with a letter.
■ Names can contain uppercase and lowercase letters, digits, dashes (-), and underscores (_).
■ The maximum number of characters that you can use in a name is 255.

DA P P E N D I X D

345

Format of Resource Type Names
The format of the complete name of a resource type depends on the resource type, as follows:

■ If the resource type's resource type registration (RTR) file contains the #$upgrade directive,
the format is as follows:

vendor-id.base-rt-name:rt-version

■ If the resource type's RTR file does not contain the #$upgrade directive, the format is as
follows:

vendor-id.base-rt-name

A period separates vendor-id and base-rt-name. A colon separates base-rt-name and rt-version.

The variable elements in this format are as follows:

vendor-id Specifies the vendor ID prefix, which is the value of the Vendor_id resource
type property in the RTR file. If you are developing a resource type, choose a
vendor ID prefix that uniquely identifies the vendor, such as your company's
stock ticker symbol. For example, the vendor ID prefix of resource types that
are developed by Sun Microsystems, Inc. is SUNW.

base-rt-name Specifies the base resource type name, which is the value of the
Resource_type resource type property in the RTR file.

rt-version Specifies the version suffix, which is the value of the RT_version resource type
property in the RTR file. The version suffix is only part of the complete
resource type name if the RTR file contains the #$upgrade directive. The
#$upgrade directive was introduced in Release 3.1 of the Sun Cluster product.

Note – If only one version of a base resource type name is registered, you do not have to use the
complete name in administrative commands. You can omit the vendor ID prefix, the version
number suffix, or both.

For more information, see “Resource Type Properties” on page 243.

EXAMPLE D–1 Complete Name of a Resource Type With the #$upgradeDirective

This example shows the complete name of a resource type for which properties in the RTR file
are set, as follows:

■ Vendor_id=SUNW

■ Resource_type=sample

■ RT_version=2.0

RGM Legal Names

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A346

EXAMPLE D–1 Complete Name of a Resource Type With the #$upgradeDirective (Continued)

The complete name of the resource type that is defined by this RTR file is as follows:

SUNW.sample:2.0

EXAMPLE D–2 Complete Name of a Resource Type Without the #$upgradeDirective

This example shows the complete name of a resource type for which properties in the RTR file
are set, as follows:

■ Vendor_id=SUNW

■ Resource_type=nfs

The complete name of the resource type that is defined by this RTR file is as follows:

SUNW.nfs

RGM Values
RGM values fall into two categories: property values and description values. Both categories
share the same rules:

■ Values must be in ASCII.
■ The maximum length of a value is 4 megabytes minus 1, that is, 4,194,303 bytes.
■ Values cannot contain the following characters:

■ Null
■ Newline
■ Semicolon (;)

RGM Values

Appendix D • Legal RGM Names and Values 347

348

Requirements for Non-Cluster Aware
Applications

An ordinary, non-cluster aware application must meet particular requirements to be a
candidate for high availability (HA). The section “Analyzing the Application for Suitability” on
page 29 lists these requirements. This appendix provides additional details about particular
items in that list.

An application is made highly available by configuring its resources into resource groups. The
application's data is placed on a highly available cluster file system, making the data accessible
by a surviving server in the event that one server fails. See information about cluster file systems
in the Sun Cluster Concepts Guide for Solaris OS.

For network access by clients on the network, a logical network IP address is configured in
logical host name resources that are contained in the same resource group as the data service
resource. The data service resource and the network address resources fail over together,
causing network clients of the data service to access the data service resource on its new host.

This appendix covers the following topics:

■ “Multihosted Data” on page 349
■ “Host Names” on page 351
■ “Multihomed Hosts” on page 351
■ “Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses” on page 352
■ “Client Retry” on page 353

Multihosted Data
The highly available cluster file systems' devices are multihosted so that when a physical host
crashes, one of the surviving hosts can access the device. For an application to be highly
available, its data must be highly available. Therefore, the application's data must be located in
file systems that can be accessed from multiple cluster nodes. Local file systems that you can
make highly available with Sun Cluster include the UNIX File System (UFS), Quick File System
(QFS), Veritas File System (VxFS), and Solaris ZFS (Zettabyte File System).

EA P P E N D I X E

349

http://docs.sun.com/doc/820-4676

The cluster file system is mounted on device groups that are created as independent entities.
You can choose to use some device groups as mounted cluster file systems and others as raw
devices for use with a data service, such as HA Oracle software.

An application might have command-line switches or configuration files that point to the
location of the data files. If the application uses hard-wired path names, you could change the
path names to symbolic links that point to a file in a cluster file system, without changing the
application code. See “Using Symbolic Links for Multihosted Data Placement” on page 350 for a
more detailed discussion about using symbolic links.

In the worst case, the application's source code must be modified to provide a mechanism for
pointing to the actual data location. You could implement this mechanism by creating
additional command-line arguments.

The Sun Cluster software supports the use of UNIX UFS file systems and HA raw devices that
are configured in a volume manager. When installing and configuring the Sun Cluster software,
the cluster administrator must specify which disk resources to use for UFS file systems and
which disk resources to use for raw devices. Typically, raw devices are used only by database
servers and multimedia servers.

Using Symbolic Links for Multihosted Data Placement
Occasionally, the path names of an application's data files are hard-wired, with no mechanism
for overriding the hard-wired path names. To avoid modifying the application code, you can
sometimes use symbolic links.

For example, suppose the application names its data file with the hard-wired path name
/etc/mydatafile. You can change that path from a file to a symbolic link that has its value
pointing to a file in one of the logical host's file systems. For example, you can make the path a
symbolic link to /global/phys-schost-2/mydatafile.

A problem can occur with this use of symbolic links if the application, or one of its
administrative procedures, modifies the data file name as well as its contents. For example,
suppose that the application performs an update by first creating a new temporary file
/etc/mydatafile.new. Then, the application renames the temporary file to have the real file
name by using the rename() system call (or the mv command). By creating the temporary file
and renaming it to the real file name, the data service is attempting to ensure that its data file
contents are always well formed.

Unfortunately, the rename() action destroys the symbolic link. The name /etc/mydatafile is
now a regular file and is in the same file system as the /etc directory, not in the cluster's cluster
file system. Because the /etc file system is private to each host, the data is not available after a
failover or switchover.

Multihosted Data

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A350

The underlying problem is that the existing application is not aware of the symbolic link and
was not written to handle symbolic links. To use symbolic links to redirect data access into the
logical host's file systems, the application implementation must behave in a way that does not
obliterate the symbolic links. So, symbolic links are not a complete remedy for the problem of
placing data in the cluster's file systems.

Host Names
You must determine whether the data service ever needs to know the host name of the server on
which it is running. If so, the data service might need to be modified to use a logical host name,
rather than the physical host name. In this sense, a logical host name is a host name that is
configured into a logical host name resource that is located in the same resource group as the
application resource.

Occasionally, in the client-server protocol for a data service, the server returns its own host
name to the client as part of the contents of a message to the client. For such protocols, the client
could be depending on this returned host name as the host name to use when contacting the
server. For the returned host name to be usable after a failover or switchover, the host name
should be a logical host name of the resource group, not the name of the physical host. In this
case, you must modify the data service code to return the logical host name to the client.

Multihomed Hosts
The term multihomed host describes a host that is located on more than one public network.
Such a host has multiple host names and IP addresses. It has one host name–IP address pair for
each network. Sun Cluster is designed to permit a host to appear on any number of networks,
including just one (the non-multihomed case). Just as the physical host name has multiple host
name–IP address pairs, each resource group can have multiple host name–IP address pairs, one
for each public network. When Sun Cluster moves a resource group from one physical host to
another physical host, the complete set of host name–IP address pairs for that resource group is
moved.

The set of host name–IP address pairs for a resource group is configured as logical host name
resources contained in the resource group. These network address resources are specified by the
cluster administrator when the resource group is created and configured. The Sun Cluster Data
Service API contains facilities for querying these host name–IP address pairs.

Most off-the-shelf data service daemons that have been written for the Solaris Operating System
already handle multihomed hosts correctly. Many data services do all their network
communication by binding to the Solaris wildcard address INADDR_ANY. This binding
automatically causes the data services to handle all the IP addresses for all the network
interfaces. INADDR_ANY effectively binds to all IP addresses that are currently configured on the
machine. A data service daemon that uses INADDR_ANY generally does not need to be changed to
handle the Sun Cluster logical network addresses.

Multihomed Hosts

Appendix E • Requirements for Non-Cluster Aware Applications 351

Binding to INADDR_ANY as Opposed to Binding to Specific IP
Addresses

Even when non-multihomed hosts are used, the Sun Cluster logical network address concept
enables the machine to have more than one IP address. The machine has one IP address for its
own physical host, and additional IP addresses for each network address (logical host name)
resource that it currently masters. When a machine becomes the master of a network address
resource, it dynamically acquires additional IP addresses. When it gives up mastery of a
network address resource, it dynamically relinquishes IP addresses.

Some data services cannot work correctly in a Sun Cluster environment if they bind to
INADDR_ANY. These data services must dynamically change the set of IP addresses to which they
are bound as the resource group is mastered or unmastered. One strategy for accomplishing the
rebinding is to have the starting and stopping methods for these data services kill and restart the
data service's daemons.

The Network_resources_used resource property permits the end user to configure a specific
set of network address resources to which the application resource should bind. For resource
types that require this feature, the Network_resources_used property must be declared in the
RTR file for the resource type.

When the RGM brings the resource group online or offline, the RGM follows a specific order
for plumbing, unplumbing, and configuring network addresses up or down in relation to when
the RGM calls call data service resource methods. See “Deciding Which Start and Stop

Methods to Use” on page 47.

By the time the data service's Stop method returns, the data service must have stopped by using
the resource group's network addresses. Similarly, by the time the Start method returns, the
data service must have started to use the network addresses.

If the data service binds to INADDR_ANY rather than to individual IP addresses, the order in
which data service resource methods are called and network address methods are called is not
relevant.

If the data service's stop and start methods accomplish their work by killing and restarting the
data service's daemons, the data service stops and starts using the network addresses at the
correct times.

Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A352

Client Retry
To a network client, a failover or switchover appears to be a crash of the logical host followed by
a fast reboot. Ideally, the client application and the client-server protocol are structured to do
some amount of retrying. If the application and protocol already handle the case of a single
server crashing and rebooting, they can also handle the case of the resource group being taken
over or switched over. Some applications might elect to retry endlessly. More sophisticated
applications notify the user that a long retry is in progress and enable the user to choose
whether to continue.

Client Retry

Appendix E • Requirements for Non-Cluster Aware Applications 353

354

Document Type Definitions for the CRNP

This appendix includes the following document type definitions (DTDs) for the Cluster
Reconfiguration Notification Protocol (CRNP):
■ “SC_CALLBACK_REG XML DTD” on page 355
■ “NVPAIR XML DTD” on page 357
■ “SC_REPLY XML DTD” on page 358
■ “SC_EVENT XML DTD” on page 359

SC_CALLBACK_REGXML DTD

Note – The NVPAIR data structure that is used by both SC_CALLBACK_REG and SC_EVENT is defined
only once.

<!— SC_CALLBACK_REG XML format specification

Copyright 2001-2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

Intended Use:

A client of the Cluster Reconfiguration Notification Protocol should use this xml format

to register initially with the service, to subsequently register for more events, to

subsequently remove registration of some events, or to remove itself from the service

entirely.

A client is uniquely identified by its callback IP and port. The port is defined in the

SC_CALLBACK_REG element, and the IP is taken as the source IP of the registration

connection. The final attribute of the root SC_CALLBACK_REG element is either an

ADD_CLIENT, ADD_EVENTS, REMOVE_CLIENT, or REMOVE_EVENTS, depending on which form of the

message the client is using.

FA P P E N D I X F

355

The SC_CALLBACK_REG contains 0 or more SC_EVENT_REG sub-elements.

One SC_EVENT_REG is the specification for one event type. A client may specify only the

CLASS (an attribute of the SC_EVENT_REG element), or may specify a SUBCLASS (an optional

attribute) for further granularity. Also, the SC_EVENT_REG has as subelements 0 or more

NVPAIRs, which can be used to further specify the event.

Thus, the client can specify events to whatever granularity it wants. Note that a client

cannot both register for and unregister for events in the same message. However a client

can subscribe to the service and sign up for events in the same message.

Note on versioning: the VERSION attribute of each root element is marked "fixed", which

means that all message adhering to these DTDs must have the version value specified. If a

new version of the protocol is created, the revised DTDs will have a new value for this

fixed" VERSION attribute, such that all message adhering to the new version must have the

new version number.

—>

<!— SC_CALLBACK_REG definition

The root element of the XML document is a registration message. A registration message

consists of the callback port and the protocol version as attributes, and either an

ADD_CLIENT, ADD_EVENTS, REMOVE_CLIENT, or REMOVE_EVENTS attribute, specifying the

registration type. The ADD_CLIENT, ADD_EVENTS, and REMOVE_EVENTS types should have one or

more SC_EVENT_REG subelements. The REMOVE_CLIENT should not specify an SC_EVENT_REG

subelement.

ATTRIBUTES:

VERSION The CRNP protocol version of the message.

PORT The callback port.

REG_TYPE The type of registration. One of:

ADD_CLIENT, ADD_EVENTS, REMOVE_CLIENT, REMOVE_EVENTS

CONTENTS:

SUBELEMENTS: SC_EVENT_REG (0 or more)

—>

<!ELEMENT SC_CALLBACK_REG (SC_EVENT_REG*)>

<!ATTLIST SC_CALLBACK_REG

VERSION NMTOKEN #FIXED

PORT NMTOKEN #REQUIRED

REG_TYPE (ADD_CLIENT|ADD_EVENTS|REMOVE_CLIENT|REMOVE_EVENTS) #REQUIRED

>

<!— SC_EVENT_REG definition

The SC_EVENT_REG defines an event for which the client is either registering or

unregistering interest in receiving event notifications. The registration can be for any

level of granularity, from only event class down to specific name/value pairs that must be

present. Thus, the only required attribute is the CLASS. The SUBCLASS attribute, and the

NVPAIRS sub-elements are optional, for higher granularity.

SC_CALLBACK_REG XML DTD

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A356

Registrations that specify name/value pairs are registering interest in notification of

messages from the class/subclass specified with ALL name/value pairs present.

Unregistrations that specify name/value pairs are unregistering interest in notifications

that have EXACTLY those name/value pairs in granularity previously specified.

Unregistrations that do not specify name/value pairs unregister interest in ALL event

notifications of the specified class/subclass.

ATTRIBUTES:

CLASS: The event class for which this element is registering

or unregistering interest.

SUBCLASS: The subclass of the event (optional).

CONTENTS:

SUBELEMENTS: 0 or more NVPAIRs.

—>

<!ELEMENT SC_EVENT_REG (NVPAIR*)>

<!ATTLIST SC_EVENT_REG

CLASS CDATA #REQUIRED

SUBCLASS CDATA #IMPLIED

>

NVPAIRXML DTD
<!— NVPAIR XML format specification

Copyright 2001-2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

Intended Use:

An nvpair element is meant to be used in an SC_EVENT or SC_CALLBACK_REG

element.

—>

<!— NVPAIR definition

The NVPAIR is a name/value pair to represent arbitrary name/value combinations.

It is intended to be a direct, generic, translation of the Solaris nvpair_t

structure used by the sysevent framework. However, there is no type information

associated with the name or the value (they are both arbitrary text) in this xml

element.

The NVPAIR consists simply of one NAME element and one or more VALUE elements.

One VALUE element represents a scalar value, while multiple represent an array

VALUE.

ATTRIBUTES:

NVPAIR XML DTD

Appendix F • Document Type Definitions for the CRNP 357

CONTENTS:

SUBELEMENTS: NAME(1), VALUE(1 or more)

—>

<!ELEMENT NVPAIR (NAME,VALUE+)>

<!— NAME definition

The NAME is simply an arbitrary length string.

ATTRIBUTES:

CONTENTS:

Arbitrary text data. Should be wrapped with <![CDATA[...]]> to prevent XML

parsing inside.

—>

<!ELEMENT NAME (#PCDATA)>

<!— VALUE definition

The VALUE is simply an arbitrary length string.

ATTRIBUTES:

CONTENTS:

Arbitrary text data. Should be wrapped with <![CDATA[...]]> to prevent XML

parsing inside.

—>

<!ELEMENT VALUE (#PCDATA)>

SC_REPLYXML DTD
<!— SC_REPLY XML format specification

Copyright 2001-2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

—>

<!— SC_REPLY definition

The root element of the XML document represents a reply to a message. The reply

contains a status code and a status message.

ATTRIBUTES:

VERSION: The CRNP protocol version of the message.

STATUS_CODE: The return code for the message. One of the

following: OK, RETRY, LOW_RESOURCES, SYSTEM_ERROR, FAIL,

MALFORMED, INVALID_XML, VERSION_TOO_HIGH, or

VERSION_TOO_LOW.

CONTENTS:

SC_REPLY XML DTD

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A358

SUBELEMENTS: SC_STATUS_MSG(1)

—>

<!ELEMENT SC_REPLY (SC_STATUS_MSG)>

<!ATTLIST SC_REPLY

VERSION NMTOKEN #FIXED "1.0"
STATUS_CODE OK|RETRY|LOW_RESOURCE|SYSTEM_ERROR|FAIL|MALFORMED|INVALID,\

VERSION_TOO_HIGH, VERSION_TOO_LOW) #REQUIRED

>

<!— SC_STATUS_MSG definition

The SC_STATUS_MSG is simply an arbitrary text string elaborating on the status

code. Should be wrapped with <![CDATA[...]]> to prevent XML parsing inside.

ATTRIBUTES:

CONTENTS:

Arbitrary string.

—>

<!ELEMENT SC_STATUS_MSG (#PCDATA)>

SC_EVENTXML DTD

Note – The NVPAIR data structure that is used by both SC_CALLBACK_REG and SC_EVENT is defined
only once.

<!— SC_EVENT XML format specification

Copyright 2001-2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

The root element of the XML document is intended to be a direct, generic,

translation of the Solaris syseventd message format. It has attributes to

represent the class, subclass, vendor, and publisher, and contains any number of

NVPAIR elements.

ATTRIBUTES:

VERSION: The CRNP protocol version of the message.

CLASS: The sysevent class of the event

SUBCLASS: The subclass of the event

VENDOR: The vendor associated with the event

PUBLISHER: The publisher of the event

CONTENTS:

SUBELEMENTS: NVPAIR (0 or more)

—>

<!ELEMENT SC_EVENT (NVPAIR*)>

SC_EVENT XML DTD

Appendix F • Document Type Definitions for the CRNP 359

<!ATTLIST SC_EVENT

VERSION NMTOKEN #FIXED "1.0"
CLASS CDATA #REQUIRED

SUBCLASS CDATA #REQUIRED

VENDOR CDATA #REQUIRED

PUBLISHER CDATA #REQUIRED

>

SC_EVENT XML DTD

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A360

CrnpClient.javaApplication

This appendix shows the complete CrnpClient.java application that is discussed in more
detail in Chapter 12, “Cluster Reconfiguration Notification Protocol.”

Contents of CrnpClient.java
/*

* CrnpClient.java

* ================

*

* Note regarding XML parsing:

*

* This program uses the Sun Java Architecture for XML Processing (JAXP) API.

* See http://java.sun.com/webservices/jaxp/ for API documentation and

* availability information.

*

* This program was written for Java 1.3.1 or higher.

*

* Program overview:

*

* The main thread of the program creates a CrnpClient object, waits for the

* user to terminate the demo, then calls shutdown on the CrnpClient object

* and exits the program.

*

* The CrnpClient constructor creates an EventReceptionThread object,

* opens a connection to the CRNP server (using the host and port specified

* on the command line), constructs a registration message (based on the

* command-line specifications), sends the registartion message, and reads

* and parses the reply.

*

* The EventReceptionThread creates a listening socket bound to

* the hostname of the machine on which this program runs, and the port

* specified on the command line. It waits for an incoming event callback,

GA P P E N D I X G

361

* at which point it constructs an XML Document from the incoming socket

* stream, which is then passed back to the CrnpClient object to process.

*

* The shutdown method in the CrnpClient just sends an unregistration

* (REMOVE_CLIENT) SC_CALLBACK_REG message to the crnp server.

*

* Note regarding error handling: for the sake of brevity, this program just

* exits on most errors. Obviously, a real application would attempt to handle

* some errors in various ways, such as retrying when appropriate.

*/

// JAXP packages

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.w3c.dom.*;

// standard packages

import java.net.*;

import java.io.*;

import java.util.*;

/*

* class CrnpClient

* -----------------

* See file header comments above.

*/

class CrnpClient

{

/*

* main

* ----

* The entry point of the execution, main simply verifies the

* number of command-line arguments, and constructs an instance

* of a CrnpClient to do all the work.

*/

public static void main(String []args)

{

InetAddress regIp = null;

int regPort = 0, localPort = 0;

/* Verify the number of command-line arguments */

if (args.length < 4) {

System.out.println(

"Usage: java CrnpClient crnpHost crnpPort "

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A362

+ "localPort (-ac | -ae | -re) "
+ "[(M | A | RG=name | R=name) [...]]");

System.exit(1);

}

/*

* We expect the command line to contain the ip/port of the

* crnp server, the local port on which we should listen, and

* arguments specifying the type of registration.

*/

try {

regIp = InetAddress.getByName(args[0]);

regPort = (new Integer(args[1])).intValue();

localPort = (new Integer(args[2])).intValue();

} catch (UnknownHostException e) {

System.out.println(e);

System.exit(1);

}

// Create the CrnpClient

CrnpClient client = new CrnpClient(regIp, regPort, localPort,

args);

// Now wait until the user wants to end the program

System.out.println("Hit return to terminate demo...");

// read will block until the user enters something

try {

System.in.read();

} catch (IOException e) {

System.out.println(e.toString());

}

// shutdown the client

client.shutdown();

System.exit(0);

}

/*

* ======================

* public methods

* ======================

*/

/*

* CrnpClient constructor

* -----------------------

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 363

* Parses the command line arguments so we know how to contact

* the crnp server, creates the event reception thread, and starts it

* running, creates the XML DocumentBuilderFactory obect, and, finally,

* registers for callbacks with the crnp server.

*/

public CrnpClient(InetAddress regIpIn, int regPortIn, int localPortIn,

String []clArgs)

{

try {

regIp = regIpIn;

regPort = regPortIn;

localPort = localPortIn;

regs = clArgs;

/*

* Setup the document builder factory for

* xml processing.

*/

setupXmlProcessing();

/*

* Create the EventReceptionThread, which creates a

* ServerSocket and binds it to a local ip and port.

*/

createEvtRecepThr();

/*

* Register with the crnp server.

*/

registerCallbacks();

} catch (Exception e) {

System.out.println(e.toString());

System.exit(1);

}

}

/*

* processEvent

* ---------------

* Callback into the CrnpClient, used by the EventReceptionThread

* when it receives event callbacks.

*/

public void processEvent(Event event)

{

/*

* For demonstration purposes, simply print the event

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A364

* to System.out. A real application would obviously make

* use of the event in some way.

*/

event.print(System.out);

}

/*

* shutdown

* -------------

* Unregister from the CRNP server.

*/

public void shutdown()

{

try {

/* send an unregistration message to the server */

unregister();

} catch (Exception e) {

System.out.println(e);

System.exit(1);

}

}

/*

* ======================

* private helper methods

* ======================

*/

/*

* setupXmlProcessing

* --------------------

* Create the document builder factory for

* parsing the xml replies and events.

*/

private void setupXmlProcessing() throws Exception

{

dbf = DocumentBuilderFactory.newInstance();

// We don’t need to bother validating

dbf.setValidating(false);

dbf.setExpandEntityReferences(false);

// We want to ignore comments and whitespace

dbf.setIgnoringComments(true);

dbf.setIgnoringElementContentWhitespace(true);

// Coalesce CDATA sections into TEXT nodes.

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 365

dbf.setCoalescing(true);

}

/*

* createEvtRecepThr

* -------------------

* Creates a new EventReceptionThread object, saves the ip

* and port to which its listening socket is bound, and

* starts the thread running.

*/

private void createEvtRecepThr() throws Exception

{

/* create the thread object */

evtThr = new EventReceptionThread(this);

/*

* Now start the thread running to begin listening

* for event delivery callbacks.

*/

evtThr.start();

}

/*

* registerCallbacks

* ------------------

* Creates a socket connection to the crnp server and sends

* an event registration message.

*/

private void registerCallbacks() throws Exception

{

System.out.println("About to register");

/*

* Create a socket connected to the registration ip/port

* of the crnp server and send the registration information.

*/

Socket sock = new Socket(regIp, regPort);

String xmlStr = createRegistrationString();

PrintStream ps = new PrintStream(sock.getOutputStream());

ps.print(xmlStr);

/*

* Read the reply

*/

readRegistrationReply(sock.getInputStream());

/*

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A366

* Close the socket connection.

*/

sock.close();

}

/*

* unregister

* ----------

* As in registerCallbacks, we create a socket connection to

* the crnp server, send the unregistration message, wait for

* the reply from the server, then close the socket.

*/

private void unregister() throws Exception

{

System.out.println("About to unregister");

/*

* Create a socket connected to the registration ip/port

* of the crnp server and send the unregistration information.

*/

Socket sock = new Socket(regIp, regPort);

String xmlStr = createUnregistrationString();

PrintStream ps = new PrintStream(sock.getOutputStream());

ps.print(xmlStr);

/*

* Read the reply

*/

readRegistrationReply(sock.getInputStream());

/*

* Close the socket connection.

*/

sock.close();

}

/*

* createRegistrationString

* ------------------

* Constructs a CallbackReg object based on the command line arguments

* to this program, then retrieves the XML string from the CallbackReg

* object.

*/

private String createRegistrationString() throws Exception

{

/*

* create the actual CallbackReg class and set the port.

*/

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 367

CallbackReg cbReg = new CallbackReg();

cbReg.setPort("" + localPort);

// set the registration type

if (regs[3].equals("-ac")) {

cbReg.setRegType(CallbackReg.ADD_CLIENT);

} else if (regs[3].equals("-ae")) {

cbReg.setRegType(CallbackReg.ADD_EVENTS);

} else if (regs[3].equals("-re")) {

cbReg.setRegType(CallbackReg.REMOVE_EVENTS);

} else {

System.out.println("Invalid reg type: " + regs[3]);

System.exit(1);

}

// add the events

for (int i = 4; i < regs.length; i++) {

if (regs[i].equals("M")) {

cbReg.addRegEvent(createMembershipEvent());

} else if (regs[i].equals("A")) {

cbReg.addRegEvent(createAllEvent());

} else if (regs[i].substring(0,2).equals("RG")) {

cbReg.addRegEvent(createRgEvent(regs[i].substring(3)));

} else if (regs[i].substring(0,1).equals("R")) {

cbReg.addRegEvent(createREvent(regs[i].substring(2)));

}

}

String xmlStr = cbReg.convertToXml();

System.out.println(xmlStr);

return (xmlStr);

}

/*

* createAllEvent

* ----------------

* Creates an XML registartion event with class EC_Cluster, and no

* subclass.

*/

private Event createAllEvent()

{

Event allEvent = new Event();

allEvent.setClass("EC_Cluster");
return (allEvent);

}

/*

* createMembershipEvent

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A368

* ----------------------

* Creates an XML registration event with class EC_Cluster, subclass

* ESC_cluster_memberhip.

*/

private Event createMembershipEvent()

{

Event membershipEvent = new Event();

membershipEvent.setClass("EC_Cluster");
membershipEvent.setSubclass("ESC_cluster_membership");
return (membershipEvent);

}

/*

* createRgEvent

* ----------------

* Creates an XML registration event with class EC_Cluster,

* subclass ESC_cluster_rg_state, and one "rg_name" nvpair (based

* on input parameter).

*/

private Event createRgEvent(String rgname)

{

/*

* Create a Resource Group state change event for the

* rgname Resource Group. Note that we supply

* a name/value pair (nvpair) for this event type, to

* specify in which Resource Group we are interested.

*/

/*

* Construct the event object and set the class and subclass.

*/

Event rgStateEvent = new Event();

rgStateEvent.setClass("EC_Cluster");
rgStateEvent.setSubclass("ESC_cluster_rg_state");

/*

* Create the nvpair object and add it to the Event.

*/

NVPair rgNvpair = new NVPair();

rgNvpair.setName("rg_name");
rgNvpair.setValue(rgname);

rgStateEvent.addNvpair(rgNvpair);

return (rgStateEvent);

}

/*

* createREvent

* ----------------

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 369

* Creates an XML registration event with class EC_Cluster,

* subclass ESC_cluster_r_state, and one "r_name" nvpair (based

* on input parameter).

*/

private Event createREvent(String rname)

{

/*

* Create a Resource state change event for the

* rgname Resource. Note that we supply

* a name/value pair (nvpair) for this event type, to

* specify in which Resource Group we are interested.

*/

Event rStateEvent = new Event();

rStateEvent.setClass("EC_Cluster");
rStateEvent.setSubclass("ESC_cluster_r_state");

NVPair rNvpair = new NVPair();

rNvpair.setName("r_name");
rNvpair.setValue(rname);

rStateEvent.addNvpair(rNvpair);

return (rStateEvent);

}

/*

* createUnregistrationString

* ------------------

* Constructs a REMOVE_CLIENT CallbackReg object, then retrieves

* the XML string from the CallbackReg object.

*/

private String createUnregistrationString() throws Exception

{

/*

* Crate the CallbackReg object.

*/

CallbackReg cbReg = new CallbackReg();

cbReg.setPort("" + localPort);

cbReg.setRegType(CallbackReg.REMOVE_CLIENT);

/*

* we marshall the registration to the OutputStream

*/

String xmlStr = cbReg.convertToXml();

// Print the string for debugging purposes

System.out.println(xmlStr);

return (xmlStr);

}

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A370

/*

* readRegistrationReply

* ------------------------

* Parse the xml into a Document, construct a RegReply object

* from the document, and print the RegReply object. Note that

* a real application would take action based on the status_code

* of the RegReply object.

*/

private void readRegistrationReply(InputStream stream)

throws Exception

{

// Create the document builder

DocumentBuilder db = dbf.newDocumentBuilder();

//

// Set an ErrorHandler before parsing

// Use the default handler.

//

db.setErrorHandler(new DefaultHandler());

//parse the input file

Document doc = db.parse(stream);

RegReply reply = new RegReply(doc);

reply.print(System.out);

}

/* private member variables */

private InetAddress regIp;

private int regPort;

private EventReceptionThread evtThr;

private String regs[];

/* public member variables */

public int localPort;

public DocumentBuilderFactory dbf;

}

/*

* class EventReceptionThread

* ----------------------------

* See file header comments above.

*/

class EventReceptionThread extends Thread

{

/*

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 371

* EventReceptionThread constructor

* ----------------------------------

* Creates a new ServerSocket, bound to the local hostname and

* a wildcard port.

*/

public EventReceptionThread(CrnpClient clientIn) throws IOException

{

/*

* keep a reference to the client so we can call it back

* when we get an event.

*/

client = clientIn;

/*

* Specify the IP to which we should bind. It’s

* simply the local host ip. If there is more

* than one public interface configured on this

* machine, we’ll go with whichever one

* InetAddress.getLocalHost comes up with.

*

*/

listeningSock = new ServerSocket(client.localPort, 50,

InetAddress.getLocalHost());

System.out.println(listeningSock);

}

/*

* run

* ---

* Called by the Thread.Start method.

*

* Loops forever, waiting for incoming connections on the ServerSocket.

*

* As each incoming connection is accepted, an Event object

* is created from the xml stream, which is then passed back to

* the CrnpClient object for processing.

*/

public void run()

{

/*

* Loop forever.

*/

try {

//

// Create the document builder using the document

// builder factory in the CrnpClient.

//

DocumentBuilder db = client.dbf.newDocumentBuilder();

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A372

//

// Set an ErrorHandler before parsing

// Use the default handler.

//

db.setErrorHandler(new DefaultHandler());

while(true) {

/* wait for a callback from the server */

Socket sock = listeningSock.accept();

// parse the input file

Document doc = db.parse(sock.getInputStream());

Event event = new Event(doc);

client.processEvent(event);

/* close the socket */

sock.close();

}

// UNREACHABLE

} catch (Exception e) {

System.out.println(e);

System.exit(1);

}

}

/* private member variables */

private ServerSocket listeningSock;

private CrnpClient client;

}

/*

* class NVPair

* -----------

* This class stores a name/value pair (both Strings). It knows how to

* construct an NVPAIR XML message from its members, and how to parse

* an NVPAIR XML Element into its members.

*

* Note that the formal specification of an NVPAIR allows for multiple values.

* We make the simplifying assumption of only one value.

*/

class NVPair

{

/*

* Two constructors: the first creates an empty NVPair, the second

* creates an NVPair from an NVPAIR XML Element.

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 373

*/

public NVPair()

{

name = value = null;

}

public NVPair(Element elem)

{

retrieveValues(elem);

}

/*

* Public setters.

*/

public void setName(String nameIn)

{

name = nameIn;

}

public void setValue(String valueIn)

{

value = valueIn;

}

/*

* Prints the name and value on a single line.

*/

public void print(PrintStream out)

{

out.println("NAME=" + name + " VALUE=" + value);

}

/*

* createXmlElement

* ------------------

* Constructs an NVPAIR XML Element from the member variables.

* Takes the Document as a parameter so that it can create the

* Element.

*/

public Element createXmlElement(Document doc)

{

// Create the element.

Element nvpair = (Element)

doc.createElement("NVPAIR");
//

// Add the name. Note that the actual name is

// a separate CDATA section.

//

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A374

Element eName = doc.createElement("NAME");
Node nameData = doc.createCDATASection(name);

eName.appendChild(nameData);

nvpair.appendChild(eName);

//

// Add the value. Note that the actual value is

// a separate CDATA section.

//

Element eValue = doc.createElement("VALUE");
Node valueData = doc.createCDATASection(value);

eValue.appendChild(valueData);

nvpair.appendChild(eValue);

return (nvpair);

}

/*

* retrieveValues

* ----------------

* Parse the XML Element to retrieve the name and value.

*/

private void retrieveValues(Element elem)

{

Node n;

NodeList nl;

//

// Find the NAME element

//

nl = elem.getElementsByTagName("NAME");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "NAME node.");

return;

}

//

// Get the TEXT section

//

n = nl.item(0).getFirstChild();

if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;

}

// Retrieve the value

name = n.getNodeValue();

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 375

//

// Now get the value element

//

nl = elem.getElementsByTagName("VALUE");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "VALUE node.");

return;

}

//

// Get the TEXT section

//

n = nl.item(0).getFirstChild();

if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;

}

// Retrieve the value

value = n.getNodeValue();

}

/*

* Public accessors

*/

public String getName()

{

return (name);

}

public String getValue()

{

return (value);

}

// Private member vars

private String name, value;

}

/*

* class Event

* -----------

* This class stores an event, which consists of a class, subclass, vendor,

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A376

* publisher, and list of name/value pairs. It knows how to

* construct an SC_EVENT_REG XML Element from its members, and how to parse

* an SC_EVENT XML Element into its members. Note that there is an assymetry

* here: we parse SC_EVENT elements, but construct SC_EVENT_REG elements.

* That is because SC_EVENT_REG elements are used in registration messages

* (which we must construct), while SC_EVENT elements are used in event

* deliveries (which we must parse). The only difference is that SC_EVENT_REG

* elements don’t have a vendor or publisher.

*/

class Event

{

/*

* Two constructors: the first creates an empty Event; the second

* creates an Event from an SC_EVENT XML Document.

*/

public Event()

{

regClass = regSubclass = null;

nvpairs = new Vector();

}

public Event(Document doc)

{

nvpairs = new Vector();

//

// Convert the document to a string to print for debugging

// purposes.

//

DOMSource domSource = new DOMSource(doc);

StringWriter strWrite = new StringWriter();

StreamResult streamResult = new StreamResult(strWrite);

TransformerFactory tf = TransformerFactory.newInstance();

try {

Transformer transformer = tf.newTransformer();

transformer.transform(domSource, streamResult);

} catch (TransformerException e) {

System.out.println(e.toString());

return;

}

System.out.println(strWrite.toString());

// Do the actual parsing.

retrieveValues(doc);

}

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 377

/*

* Public setters.

*/

public void setClass(String classIn)

{

regClass = classIn;

}

public void setSubclass(String subclassIn)

{

regSubclass = subclassIn;

}

public void addNvpair(NVPair nvpair)

{

nvpairs.add(nvpair);

}

/*

* createXmlElement

* ------------------

* Constructs an SC_EVENT_REG XML Element from the member variables.

* Takes the Document as a parameter so that it can create the

* Element. Relies on the NVPair createXmlElement ability.

*/

public Element createXmlElement(Document doc)

{

Element event = (Element)

doc.createElement("SC_EVENT_REG");
event.setAttribute("CLASS", regClass);

if (regSubclass != null) {

event.setAttribute("SUBCLASS", regSubclass);

}

for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

(nvpairs.elementAt(i));

event.appendChild(tempNv.createXmlElement(doc));

}

return (event);

}

/*

* Prints the member vars on multiple lines.

*/

public void print(PrintStream out)

{

out.println("\tCLASS=" + regClass);

out.println("\tSUBCLASS=" + regSubclass);

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A378

out.println("\tVENDOR=" + vendor);

out.println("\tPUBLISHER=" + publisher);

for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

(nvpairs.elementAt(i));

out.print("\t\t");
tempNv.print(out);

}

}

/*

* retrieveValues

* ----------------

* Parse the XML Document to retrieve the class, subclass, vendor,

* publisher, and nvpairs.

*/

private void retrieveValues(Document doc)

{

Node n;

NodeList nl;

//

// Find the SC_EVENT element.

//

nl = doc.getElementsByTagName("SC_EVENT");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_EVENT node.");

return;

}

n = nl.item(0);

//

// Retrieve the values of the CLASS, SUBCLASS,

// VENDOR and PUBLISHER attributes.

//

regClass = ((Element)n).getAttribute("CLASS");
regSubclass = ((Element)n).getAttribute("SUBCLASS");
publisher = ((Element)n).getAttribute("PUBLISHER");
vendor = ((Element)n).getAttribute("VENDOR");

//

// Retrieve all the nv pairs

//

for (Node child = n.getFirstChild(); child != null;

child = child.getNextSibling())

{

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 379

nvpairs.add(new NVPair((Element)child));

}

}

/*

* Public accessor methods.

*/

public String getRegClass()

{

return (regClass);

}

public String getSubclass()

{

return (regSubclass);

}

public String getVendor()

{

return (vendor);

}

public String getPublisher()

{

return (publisher);

}

public Vector getNvpairs()

{

return (nvpairs);

}

// Private member vars.

private String regClass, regSubclass;

private Vector nvpairs;

private String vendor, publisher;

}

/*

* class CallbackReg

* -----------

* This class stores a port and regType (both Strings), and a list of Events.

* It knows how to construct an SC_CALLBACK_REG XML message from its members.

*

* Note that this class does not need to be able to parse SC_CALLBACK_REG

* messages, because only the CRNP server must parse SC_CALLBACK_REG

* messages.

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A380

*/

class CallbackReg

{

// Useful defines for the setRegType method

public static final int ADD_CLIENT = 0;

public static final int ADD_EVENTS = 1;

public static final int REMOVE_EVENTS = 2;

public static final int REMOVE_CLIENT = 3;

public CallbackReg()

{

port = null;

regType = null;

regEvents = new Vector();

}

/*

* Public setters.

*/

public void setPort(String portIn)

{

port = portIn;

}

public void setRegType(int regTypeIn)

{

switch (regTypeIn) {

case ADD_CLIENT:

regType = "ADD_CLIENT";
break;

case ADD_EVENTS:

regType = "ADD_EVENTS";
break;

case REMOVE_CLIENT:

regType = "REMOVE_CLIENT";
break;

case REMOVE_EVENTS:

regType = "REMOVE_EVENTS";
break;

default:

System.out.println("Error, invalid regType " +

regTypeIn);

regType = "ADD_CLIENT";
break;

}

}

public void addRegEvent(Event regEvent)

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 381

{

regEvents.add(regEvent);

}

/*

* convertToXml

* ------------------

* Constructs an SC_CALLBACK_REG XML Document from the member

* variables. Relies on the Event createXmlElement ability.

*/

public String convertToXml()

{

Document document = null;

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

try {

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.newDocument();

} catch (ParserConfigurationException pce) {

// Parser with specified options can’t be built

pce.printStackTrace();

System.exit(1);

}

Element root = (Element) document.createElement("SC_CALLBACK_REG");
root.setAttribute("VERSION", "1.0");
root.setAttribute("PORT", port);

root.setAttribute("REG_TYPE", regType);

for (int i = 0; i < regEvents.size(); i++) {

Event tempEvent = (Event)

(regEvents.elementAt(i));

root.appendChild(tempEvent.createXmlElement(document));

}

document.appendChild(root);

//

// Now convert the document to a string.

//

DOMSource domSource = new DOMSource(document);

StringWriter strWrite = new StringWriter();

StreamResult streamResult = new StreamResult(strWrite);

TransformerFactory tf = TransformerFactory.newInstance();

try {

Transformer transformer = tf.newTransformer();

transformer.transform(domSource, streamResult);

} catch (TransformerException e) {

System.out.println(e.toString());

return ("");

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A382

}

return (strWrite.toString());

}

// private member vars

private String port;

private String regType;

private Vector regEvents;

}

/*

* class RegReply

* -----------

* This class stores a status_code and status_msg (both Strings).

* It knows how to parse an SC_REPLY XML Element into its members.

*/

class RegReply

{

/*

* The only constructor takes an XML Document and parses it.

*/

public RegReply(Document doc)

{

//

// Now convert the document to a string.

//

DOMSource domSource = new DOMSource(doc);

StringWriter strWrite = new StringWriter();

StreamResult streamResult = new StreamResult(strWrite);

TransformerFactory tf = TransformerFactory.newInstance();

try {

Transformer transformer = tf.newTransformer();

transformer.transform(domSource, streamResult);

} catch (TransformerException e) {

System.out.println(e.toString());

return;

}

System.out.println(strWrite.toString());

retrieveValues(doc);

}

/*

* Public accessors

*/

public String getStatusCode()

{

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 383

return (statusCode);

}

public String getStatusMsg()

{

return (statusMsg);

}

/*

* Prints the info on a single line.

*/

public void print(PrintStream out)

{

out.println(statusCode + ": " +

(statusMsg != null ? statusMsg : ""));
}

/*

* retrieveValues

* ----------------

* Parse the XML Document to retrieve the statusCode and statusMsg.

*/

private void retrieveValues(Document doc)

{

Node n;

NodeList nl;

//

// Find the SC_REPLY element.

//

nl = doc.getElementsByTagName("SC_REPLY");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_REPLY node.");

return;

}

n = nl.item(0);

// Retrieve the value of the STATUS_CODE attribute

statusCode = ((Element)n).getAttribute("STATUS_CODE");

//

// Find the SC_STATUS_MSG element

//

nl = ((Element)n).getElementsByTagName("SC_STATUS_MSG");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "

Contents of CrnpClient.java

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A384

+ "SC_STATUS_MSG node.");
return;

}

//

// Get the TEXT section, if there is one.

//

n = nl.item(0).getFirstChild();

if (n == null || n.getNodeType() != Node.TEXT_NODE) {

// Not an error if there isn’t one, so we

// just silently return.

return;

}

// Retrieve the value

statusMsg = n.getNodeValue();

}

// private member vars

private String statusCode;

private String statusMsg;

}

Contents of CrnpClient.java

Appendix G • CrnpClient.javaApplication 385

386

Index

Numbers and Symbols
#$upgrade directive, 77
#$upgrade_from directive, 77, 79

ANYTIME, 77
AT_CREATION, 78
tunability values, 77
WHEN_DISABLED, 78
WHEN_OFFLINE, 78
WHEN_UNMANAGED, 78
WHEN_UNMONITORED, 77

(Resource Type Registration)
file

upgrading, 76

A
accessing network address, with DSDL, 124
administration commands, using to create a service that

uses GDS, 202
administrative interface, RGM (Resource Group

Manager), 26
Affinity_timeout, resource property, 254
Agent Builder

analyzing the application, 163
binary files, 180
cloning existing resource type, 177
Cluster Agent module, 184

differences, 188
command-line version, 178
Configure screen, 171
configuring, 164

Agent Builder (Continued)
Create screen, 169
creating a service that uses GDS with command-line

version of, 204
description, 20, 25
directory structure, 179
editing generated source code, 178
installing, 164
man pages, 181
navigating in, 166

Browse, 167
Edit menu, 169
File menu, 168
menus, 168

output, 201
package directory, 183
reusing code, 177
rtconfig file, 183
scripts, 181
source files, 180
starting, 165, 196
support files, 182
using, 163
using to create a service that uses GDS, 196
using to create GDS, 191

ANYTIME, #$upgrade_from directive, 77
API, Resource Management, See RMAPI
API_version, resource type property, 244
application environment, Sun Cluster, 19
arguments, RMAPI method, 69
Array_maxsize, resource property attribute, 288
Array_minsize, resource property attribute, 288

387

arraymax, resource type upgrade, 75
arraymin, resource type upgrade, 75
AT_CREATION, #$upgrade_from directive, 78
attributes, resource property, 287
Auto_start_on_new_cluster, resource group

property, 274

B
binary files, Agent Builder, 180
Boot, resource type property, 245
Boot method, using, 50, 72
Boot_timeout, resource property, 254
Browse, Agent Builder, 167

C
C program functions, RMAPI, 65
callback method, overview, 20
callback methods

control, 70
description, 23
initialization, 70
Monitor_check, 74
Monitor_start, 74
Monitor_stop, 74
naming conventions, 141
Postnet_start, 73
Prenet_start, 73
RMAPI, 68
Update, 73
using, 54
Validate, 73

Cheap_probe_interval, resource property, 254
checks, validating for scalable services, 58
client, CRNP, 217
cloning existing resource type, Agent Builder, 177
clsetup, description, 26
Cluster Agent module

Agent Builder differences, 188
description, 184
installing, 184
setting up, 184

Cluster Agent module (Continued)
starting, 185
using, 187

cluster commands, RMAPI, 65
cluster functions, RMAPI, 67
Cluster Reconfiguration Notification Protocol, See

CRNP
code

changing method, 82
changing monitor, 81

codes, RMAPI exit, 69
command line

Agent Builder, 178
commands on, 27

commands
clsetup, 26
halockrun, 54
hatimerun, 54
RMAPI resource type, 64
Sun Cluster, 27
using to create a service that uses GDS, 202
using to create GDS, 191

components, RMAPI, 24
concepts, CRNP, 213
Configure screen, Agent Builder, 171
configuring, Agent Builder, 164
conventions

callback method names, 141
function names, 141

Create screen, Agent Builder, 169
CRNP (Cluster Reconfiguration Notification Protocol)

authentication, 223
client, 217
client identification process, 217
communication, 215
concepts, 213
description, 214
error conditions, 220
example Java application, 224
function of, 214
message types, 215
registration of client and server, 217
SC_CALLBACK_REG messages, 217
SC_EVENT, 221, 222

Index

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A388

CRNP (Cluster Reconfiguration Notification Protocol)
(Continued)

SC_REPLY, 219
semantics of protocol, 215
server, 217
server event delivery, 221
server reply, 219

D
daemon, designing the fault monitor, 135
data service

creating
analyzing suitability, 29
determining the interface, 31

sample, 87
common functionality, 94-98
controlling the data service, 99
defining a fault monitor, 104
extension properties in RTR file, 93
generating error messages, 97
handling property updates, 114
Monitor_check method, 113
Monitor_start method, 110
Monitor_stop method, 111
obtaining property information, 98
probe program, 105
resource properties in RTR file, 90
RTR file, 89
Start method, 99
Stop method, 102
Update method, 118
Validate method, 114

setting up development environment, 32
transferring to cluster for testing, 34

Data Service Development Library, See DSDL
data services

testing, 59
testing HA, 60
writing, 59

debugging resource types with DSDL, 124
Default, resource property attribute, 288
default property values

new value for upgrade, 79

default property values (Continued)
Sun Cluster 3.0, 80
when inherited, 79

dependencies, coordinating between resources, 60
Description, resource property attribute, 288
description values, rules, 347
Desired_primaries, resource group property, 274
directive

#$upgrade, 77, 346
#$upgrade_from, 77, 79
default tunability, 78
placement in RTR file, 77
RT_version, 77
tunability constraints, 77

directories, Agent Builder, 183
directory structure, Agent Builder, 179
distinguishing between multiple registered versions,

rt-version, 76
distinguishing between vendors, vendor-id, 76
documentation requirements

for upgrade, 83-85
tunability constraints, 83

DSDL (Data Service Development Library)
accessing network address, 124
components, 25
debugging resource types, 124
description, 121, 122
enabling HA local file systems, 125
fault monitor functions, 212
fault monitoring, 210
general purpose functions, 207
implementing a fault monitor, 123
libdsdev.so, 20
network resource access functions, 209
overview, 20
Process Monitor Facility (PMF) functions, 211
property functions, 209
sample resource type implementation

determining the fault monitor action, 156
returning from svc_start(), 144
scds_initialize() function, 141
starting the service, 142
SUNW.xfnts fault monitor, 150
SUNW.xfnts RTR file, 140

Index

389

DSDL (Data Service Development Library), sample
resource type implementation (Continued)

svc_probe() function, 152
TCP port number, 140
validating the service, 142
X font server, 139
X font server configuration file, 140
xfnts_monitor_check method, 149
xfnts_monitor_start method, 147
xfnts_monitor_stop method, 148
xfnts_probe main loop, 151
xfnts_start method, 142
xfnts_stop method, 146
xfnts_update method, 159
xfnts_validate method, 156

starting a data service, 123
stopping a data service, 123
utility functions, 212
where implemented, 20

E
editing generated Agent Builder source code, 178
enabling HA local file systems with DSDL, 125
enumeration literal names, rules, 345
Enumlist, resource property attribute, 288
error conditions, CRNP, 220
events, guaranteed delivery, 221
examples

data service, 87
Java application that uses CRNP, 224

exit codes, RMAPI, 69
extension properties

declaring, 42
resource property attribute, 288
resource type, 254

F
Failback, resource group property, 274
Failover, resource type property, 245
Failover_mode, resource property, 255
failover resource, implementing, 55

fault monitor
daemon

designing the, 135
functions, DSDL, 212
SUNW.xfnts, 150

files
binary in Agent Builder, 180
rtconfig, 183
source in Agent Builder, 180
support in Agent Builder, 182

Fini, resource type property, 246
Fini method, guidelines for implementing, 49
Fini method, using, 49-50, 71
Fini_timeout, resource property, 257
format, resource type names, 346
fully qualified resource type name, how obtained, 76
functions

DSDL fault monitor, 212
DSDL network resource access, 209
DSDL Process Monitor Facility (PMF), 211
DSDL property, 209
DSDL utility, 212
general purpose DSDL, 207
naming conventions, 141
RMAPI C program, 65
RMAPI cluster, 67
RMAPI resource, 65
RMAPI resource group, 67
RMAPI resource type, 66
RMAPI utility, 68
scds_initialize(), 141
svc_probe(), 152

G
GDS (generic data service)

Child_mon_level property, 193
creating a service with command-line version of

Agent Builder, 204
definition, 45
description, 189
Failover_enabled property, 193
Log_level property, 194
Network_aware property, 194

Index

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A390

GDS (generic data service) (Continued)
Network_resources_used property, 194
Port_list property, 192
Probe_command property, 194
Probe_timeout property, 195
required properties, 192
Start_command extension property, 192
Start_timeout property, 195
Stop_command property, 195
Stop_signal property, 195
Stop_timeout property, 196
SUNW.gds resource type, 190
using commands to create service that uses, 202
using Sun Cluster Agent Builder to create service

that uses, 196
using with Sun Cluster administration

commands, 191
using with Sun Cluster Agent Builder, 191
Validate_command property, 196
Validate_timeout property, 196
ways to use, 191
when to use, 190
why use, 190

generic data service
See GDS

Global_resources_used, resource group
property, 274

Global_zone, resource type property, 247
Global_zone_override, resource property, 258

H
HA data services, testing, 60
halockrun, description, 54
hatimerun, description, 54

I
idempotence, methods, 44
implementing

fault monitor with DSDL, 123
resource type monitor, 80
resource type names, 80

implementing (Continued)
RMAPI, 20

Implicit_network_dependencies, resource group
property, 275

Init, resource type property, 247
Init method, using, 49, 71
Init_nodes, resource type property, 248
Init_timeout, resource property, 258
installation requirements, resource type packages, 80
Installed_nodes, resource type property, 248
installing Agent Builder, 164
interface, RGM (Resource Group Manager), 26
interfaces

command-line, 27
programming, 24

Is_logical_hostname, resource type property, 248
Is_shared_address, resource type property, 248

J
Java, sample application that uses CRNP, 224

K
keep-alives, using, 59

L
legal names, Resource Group Manager (RGM), 345
libdsdev.so, DSDL, 20
libscha.so, RMAPI, 20
Load_balancing_policy, resource property, 258
Load_balancing_weights, resource property, 259
logging, adding to a resource, 53

M
man pages, Agent Builder, 181
master, description, 22
Max, resource property attribute, 288
max, resource type upgrade, 75

Index

391

Maximum_primaries, resource group property, 275
Maxlength, resource property attribute, 288
menus

Agent Builder, 168
Agent Builder Edit, 169
Agent Builder File, 168

message logging, adding to a resource, 53
messages

SC_CALLBACK_REG CRNP, 217, 218-219
SC_EVENT CRNP, 221, 222
SC_REPLY CRNP, 219

method arguments, RMAPI, 69
method code, changing, 82
methods

Boot, 50, 72, 134
callback, 54

control, 70
initialization, 70

Fini, 49-50, 71, 134
Fini, guidelines for implementing, 49
idempotence, 44
Init, 49, 71, 134
Monitor_check, 74, 133
Monitor_check callback, 74
Monitor_start, 74, 132
Monitor_start callback, 74
Monitor_stop, 74, 133
Monitor_stop callback, 74
Postnet_start, 73
Postnet_start callback, 73
Prenet_start, 73
Prenet_start callback, 73
Start, 47, 70, 130
Stop, 47, 70, 131
Update, 54, 73, 133
Update callback, 73
Validate, 54, 73, 128
Validate callback, 73
xfnts_monitor_check, 149
xfnts_monitor_start, 147
xfnts_monitor_stop, 148
xfnts_start, 142
xfnts_stop, 146
xfnts_update, 159

methods (Continued)
xfnts_validate, 156

Min, resource property attribute, 288
min, resource type upgrade, 75
Minlength, resource property attribute, 288
modifying resource types, 75
Monitor_check, resource type property, 248
Monitor_check method

compatibility, 78
using, 74

Monitor_check_timeout, resource property, 259
monitor code, changing, 81
Monitor_start, resource type property, 249
Monitor_start method, using, 74
Monitor_start_timeout, resource property, 259
Monitor_stop, resource type property, 249
Monitor_stop method, using, 74
Monitor_stop_timeout, resource property, 260
Monitored_switch, resource property, 260

N
naming conventions

callback methods, 141
functions, 141

navigating Agent Builder, 166
network resource access functions, DSDL, 209
Network_resources_used, resource property, 260
Nodelist, resource group property, 275
Num_resource_restarts, resource property, 261
Num_rg_restarts, resource property, 261

O
On_off_switch, resource property, 261
options, tunability, 77

P
package directory, Agent Builder, 183
Pathprefix, resource group property, 275
Per_node, resource property attributes, 288

Index

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A392

Pingpong_interval, resource group property, 275
Pkglist, resource type property, 249
PMF (Process Monitor Facility)

functions, DSDL, 211
overview, 20
purpose, 53

Port_list, resource property, 262
Postnet_start method, using, 73
Postnet_stop

compatibility, 78
resource type property, 249

Postnet_stop_timeout, resource property, 262
Prenet_start, resource type property, 249
Prenet_start method, using, 73
Prenet_start_timeout, resource property, 262
primary nodes, 22
process management, 53
Process Monitor Facility, See PMF
programming architecture, 20
programming interfaces, 24
properties

changing resource, 54
Child_mon_level, 193
declaring extension, 42
declaring resource, 37
declaring resource type, 34
Failover_enabled, 193
GDS, required, 193
Log_level, 194
Network_aware, 194
Network_resources_used, 194
Port_list, 192
Probe_command, 194
Probe_timeout, 195
resource, 253
resource group, 273
setting resource, 34, 54
setting resource type, 34
Start_command extension, 192
Start_timeout, 195
Stop_command, 195
Stop_signal, 195
Stop_timeout, 196
Validate_command, 196

properties (Continued)
Validate_timeout, 196

Property, resource property attribute, 288
property attributes, resource, 287
property functions, DSDL, 20
property names, rules, 345
property values

default, 79
rules, 347

property variables, 174
how Agent Builder substitutes types of, 176
list of, 175
list of resource, 175
list of resource group, 175
list of resource type, 175
syntax of, 176

Proxy, resource type property, 250

R
R_description, resource property, 263
registering CRNP clients and servers, 217
resource

adding message logging to a, 53
implementing a failover, 55
implementing a scalable, 55
monitoring, 50
starting, 45
stopping, 45

resource commands, RMAPI, 64
resource dependencies, coordinating, 60
Resource_dependencies, resource property, 263
Resource_dependencies_offline_restart, resource

property, 264
Resource_dependencies_restart, resource

property, 265
Resource_dependencies_weak, resource

property, 267
resource functions, RMAPI, 65
resource group commands, RMAPI, 64
resource group functions, RMAPI, 67
Resource Group Manager, See RGM
Resource Group Manager (RGM)

legal names, 345

Index

393

Resource Group Manager (RGM) (Continued)
values, 347

resource group names, rules, 345
resource group properties, 273

accessing information about, 44
Auto_start_on_new_cluster, 274
Desired_primaries, 274
Failback, 274
Global_resources_used, 274
Implicit_network_dependencies, 275
Maximum_primaries, 275
Nodelist, 275
Pathprefix, 275
Pingpong_interval, 275
Resource_list, 276
RG_affinities, 276
RG_dependencies, 277
RG_description, 277
RG_is_frozen, 278
RG_mode, 278
RG_name, 278
RG_project_name, 278
RG_slm_cpu, 279
RG_slm_cpu_min, 280
RG_slm_pset_type, 282
RG_slm_type, 281
RG_state, 284
RG_system, 286
Suspend_automatic_recovery, 286

resource groups
description, 22
failover, 22
properties, 22
scalable, 22

Resource_list

resource group property, 276
resource type property, 250

Resource Management API, See RMAPI
Resource_name, resource property, 268
resource names, rules, 345
Resource_project_name, resource property, 268
resource properties, 253

accessing information about, 44
Affinity_timeout, 254

resource properties (Continued)
Boot_timeout, 254
changing, 54
Cheap_probe_interval, 254
declaring, 37
extension, 254
Failover_mode, 255
Fini_timeout, 257
Global_zone_override, 258
Init_timeout, 258
Load_balancing_policy, 258
Load_balancing_weights, 259
Monitor_check_timeout, 259
Monitor_start_timeout, 259
Monitor_stop_timeout, 260
Monitored_switch, 260
Network_resources_used, 260
Num_resource_restarts, 261
Num_rg_restarts, 261
On_off_switch, 261
Port_list, 262
Postnet_stop_timeout, 262
Prenet_start_timeout, 262
R_description, 263
Resource_dependencies, 263
Resource_dependencies_offline_restart, 264
Resource_dependencies_restart, 265
Resource_dependencies_weak, 267
Resource_name, 268
Resource_project_name, 268
Resource_state, 268
Retry_count, 269
Retry_interval, 269
Scalable, 270
setting, 34, 54
Start_timeout, 270
Status, 271
Status_msg, 271
Stop_timeout, 271
Thorough_probe_interval, 271
Type, 272
Type_version, 272
UDP_affinity, 272
Update_timeout, 272

Index

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A394

resource properties (Continued)
Validate_timeout, 273
Weak_affinity, 273

resource property attributes, 287
Array_maxsize, 288
Array_minsize, 288
Default, 288
Description, 288
Enumlist, 288
Extension, 288
Max, 288
Maxlength, 288
Min, 288
Minlength, 288
Per_node, 288
Property, 288
Tunable, 288
type, 289

Resource_state, resource property, 268
Resource_type, resource type property, 250
resource-type, upgrading, 76
resource type, what happens when upgrading, 79
resource type monitor, implementing, 80
resource type names

implementing, 80
obtaining fully qualified, 76
restrictions, 78, 170
rules, 346
Sun Cluster 3.0, 79
version suffix, 76
without version suffix, 79

resource type packages, installation requirements, 80
resource type properties

API_version, 244
Boot, 245
declaring, 34
Failover, 245
Fini, 246
Global_zone, 247
Init, 247
Init_nodes, 248
Installed_nodes, 248
Is_logical_hostname, 248
Is_shared_address, 248

resource type properties (Continued)
Monitor_check, 248
Monitor_start, 249
Monitor_stop, 249
Pkglist, 249
Postnet_stop, 249
Prenet_start, 249
Proxy, 250
Resource_list, 250
Resource_type, 250
RT_basedir, 251
RT_description, 251
RT_system, 251
RT_version, 252
setting, 34
Single_instance, 252
Start, 252
Stop, 252
Update, 252
Validate, 252
Vendor_ID, 253

resource type registration, See RTR
resource types

commands
RMAPI, 64

debugging with DSDL, 124
description, 21
functions

RMAPI, 66
modifying, 75
multiple versions, 75
upgrading requirements, 75

resources
coordinating dependencies between, 60
description, 22

Retry_count, resource property, 269
Retry_interval, resource property, 269
reusing code, Agent Builder, 177
RG_affinities, resource group property, 276
RG_dependencies, resource group property, 277
RG_description, resource group property, 277
RG_is_frozen, resource group property, 278
RG_mode, resource group property, 278
RG_name, resource group property, 278

Index

395

RG_project_name, resource group property, 278
RG_slm_cpu, resource group property, 279
RG_slm_cpu_min, resource group property, 280
RG_slm_pset_type, resource group property, 282
RG_slm_type, resource group property, 281
RG_state, resource group property, 284
RG_system, resource group property, 286
RGM (Resource Group Manager)

administrative interface, 26
description, 23
handling of resource groups, 21
handling of resource types, 21
handling of resources, 21
purpose, 20

RMAPI (Resource Management API), 20
C program functions, 65
callback methods, 68
cluster commands, 65
cluster functions, 67
components, 24
exit codes, 69
libscha.so, 20
method arguments, 69
resource commands, 64
resource functions, 65
resource group commands, 64
resource group functions, 67
resource type commands, 64
resource type functions, 66
shell commands, 63
utility functions, 68
where implemented, 20

rt-version, upgrading, 76
RT_basedir, resource type property, 251
RT_description, resource type property, 251
RT_system, resource type property, 251
RT_version

purpose, 78
resource type property, 252
when to change, 78

rtconfig file, 183
RTR (Resource Type Registration)

description, 23

RTR (Resource Type Registration) (Continued)
file

changing, 81
description, 128
SUNW.xfnts, 140

rules
description values, 347
enumeration literal names, 345
property names, 345
property values, 347
resource group names, 345
resource names, 345

S
sample data service

common functionality, 94-98
controlling the data service, 99
defining a fault monitor, 104
extension properties in RTR file, 93
generating error messages, 97
handling property updates, 114
Monitor_check method, 113
Monitor_start method, 110
Monitor_stop method, 111
obtaining property information, 98
probe program, 105
RTR file, 89
sample properties in RTR file, 90
Start method, 99
Stop method, 102
Update method, 118
Validate method, 114

sample DSDL code
determining the fault monitor action, 156
returning from svc_start(), 144
scds_initialize() function, 141
starting the service, 142
SUNW.xfnts fault monitor, 150
SUNW.xfnts RTR file, 140
svc_probe() function, 152
TCP port number, 140
validating the service, 142
X font server, 139

Index

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A396

sample DSDL code (Continued)
X font server configuration file, 140
xfnts_monitor_check method, 149
xfnts_monitor_start method, 147
xfnts_monitor_stop method, 148
xfnts_probe main loop, 151
xfnts_start method, 142
xfnts_stop method, 146
xfnts_update method, 159
xfnts_validate method, 156

SC_CALLBACK_REG, contents, 218-219
SC_EVENT, contents, 222
SC_REPLY, contents, 219
Scalable, resource property, 270
scalable resource, implementing, 55
scalable services, validating, 58
scds_initialize() function, 141
screens

Configure, 171
Create, 169

scripts
Agent Builder, 181
configuring, 199
creating, 196

server
CRNP, 217
X font

configuration file, 140
definition, 139

xfs

port number, 140
shell commands, RMAPI, 63
Single_instance, resource type property, 252
source code, editing generated Agent Builder, 177
source files, Agent Builder, 180
Start, resource type property, 252
Start method, using, 47, 70
Start_timeout, resource property, 270
starting a data service with DSDL, 123
Status, resource property, 271
Status_msg, resource property, 271
Stop, resource type property, 252
Stop method

compatibility, 78

Stop method (Continued)
using, 47, 70

Stop_timeout, resource property, 271
stopping a data service with DSDL, 123
Sun Cluster

application environment, 19
commands, 27
using with GDS, 190

Sun Cluster Agent Builder, See Agent Builder
Sun Cluster Manager, description, 26
SUNW.xfnts

fault monitor, 150
RTR file, 140

support files, Agent Builder, 182
Suspend_automatic_recovery, resource group

property, 286
svc_probe() function, 152
syntax

description values, 347
enumeration literal names, 345
property names, 345
property values, 347
resource group names, 345
resource names, 345
resource type names, 346

T
TCP connections, using DSDL fault monitoring, 210
testing

data services, 59
HA data services, 60

Thorough_probe_interval, resource property, 271
tunability constraints, documentation

requirements, 83
tunability options, 77

ANYTIME, 77
AT_CREATION, 78
WHEN_DISABLED, 78
WHEN_OFFLINE, 78
WHEN_UNMANAGED, 78
WHEN_UNMONITORED, 77

Tunable, resource property attribute, 288
Type, resource property, 272

Index

397

type, resource property attributes, 289
Type_version, resource property, 272

U
UDP_affinity, resource property, 272
Update, resource type property, 252
Update method

compatibility, 78
using, 54, 73

Update_timeout, resource property, 272
upgrade aware, defined, 76
upgrade directive, 346
upgrades, documentation requirements, 83-85
upgrading resource types, 75
utility functions

DSDL, 212
RMAPI, 68

V
Validate, resource type property, 252
Validate method

using, 54, 73
Validate_timeout, resource property, 273
validation checks, scalable services, 58
values

default property, 79
Resource Group Manager (RGM), 347

variables
how Agent Builder substitutes types of

property, 176
list of property, 175
list of resource group property, 175
list of resource property, 175
list of resource type property, 175
property, 174
syntax of property, 176

vendor-id
distinguishing between, 76
upgrading, 76

Vendor_ID, resource type property, 253

W
Weak_affinity, resource property, 273
WHEN_DISABLED, #$upgrade_from directive, 78
WHEN_OFFLINE, #$upgrade_from directive, 78
WHEN_UNMANAGED, #$upgrade_from directive, 78
WHEN_UNMONITORED, #$upgrade_from directive, 77
writing data services, 59

X
X font server

configuration file, 140
definition, 139

xfnts_monitor_check, 149
xfnts_monitor_start, 147
xfnts_monitor_stop, 148
xfnts_start, 142
xfnts_stop, 146
xfnts_update, 159
xfnts_validate, 156
xfs server, port number, 140

Index

Sun Cluster Data Services Developer's Guide for Solaris OS • January 2009, Revision A398

	Sun Cluster Data Services Developer's Guide for Solaris OS
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Documentation
	Getting Help
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of Resource Management
	Sun Cluster Application Environment
	Resource Group Manager Model
	Description of a Resource Type
	Description of a Resource
	Description of a Resource Group

	Resource Group Manager
	Callback Methods
	Programming Interfaces
	Resource Management API
	Data Service Development Library
	Sun Cluster Agent Builder

	Resource Group Manager Administrative Interface
	Sun Cluster Manager
	clsetup Utility
	Administrative Commands

	Developing a Data Service
	Analyzing the Application for Suitability
	Determining the Interface to Use
	Setting Up the Development Environment for Writing a Data Service
	How to Set Up the Development Environment
	Transferring a Data Service to a Cluster

	Setting Resource and Resource Type Properties
	Declaring Resource Type Properties
	Declaring Resource Type Properties for a Zone Cluster

	Declaring Resource Properties
	Declaring Extension Properties

	Implementing Callback Methods
	Accessing Resource and Resource Group Property Information
	Idempotence of Methods
	How Methods Are Invoked in Zones

	Generic Data Service
	Controlling an Application
	Starting and Stopping a Resource
	Using Start and Stop Methods
	Deciding Which Start and Stop Methods to Use

	Using the Optional Init, Fini, and Boot Methods
	Using the Init Method
	Using the Fini Method
	Guidelines for Implementing a Fini Method

	Using the Boot Method

	Monitoring a Resource
	Implementing Monitors and Methods That Execute Exclusively in the Global Zone

	Adding Message Logging to a Resource
	Providing Process Management
	Providing Administrative Support for a Resource
	Implementing a Failover Resource
	Implementing a Scalable Resource
	Validation Checks for Scalable Services

	Writing and Testing Data Services
	Using TCP Keep-Alives to Protect the Server
	Testing HA Data Services
	Coordinating Dependencies Between Resources

	Resource Management API Reference
	RMAPI Access Methods
	RMAPI Shell Commands
	RMAPI Resource Commands
	Resource Type Command
	Resource Group Commands
	Cluster Command

	C Functions
	Resource Functions
	Resource Type Functions
	Resource Group Functions
	Cluster Functions
	Utility Function

	RMAPI Callback Methods
	Arguments That You Can Provide to Callback Methods
	Callback Method Exit Codes
	Control and Initialization Callback Methods
	Administrative Support Methods
	Net-Relative Callback Methods
	Monitor Control Callback Methods

	Modifying a Resource Type
	Overview of Modifying a Resource Type
	Setting Up the Contents of the Resource Type Registration File
	Resource Type Name
	Specifying the #$upgrade and #$upgrade_from Directives
	Changing the RT_version in an RTR File
	Resource Type Names in Previous Versions of Sun Cluster

	What Happens When a Cluster Administrator Upgrades
	Implementing Resource Type Monitor Code
	Determining Installation Requirements and Packaging
	Before You Change the RTR File
	Changing Monitor Code
	Changing Method Code
	Determining the Packaging Scheme to Use

	Documentation to Provide for a Modified Resource Type
	Information About What to Do Before Installing an Upgrade
	Information About When to Upgrade Resources
	Information About Changes to Resource Properties

	Sample Data Service
	Overview of the Sample Data Service
	Defining the Resource Type Registration File
	Overview of the RTR File
	Resource Type Properties in the Sample RTR File
	Resource Properties in the Sample RTR File
	System-Defined Properties in the RTR File
	Extension Properties in the RTR File

	Providing Common Functionality to All Methods
	Identifying the Command Interpreter and Exporting the Path
	Declaring the PMF_TAG and SYSLOG_TAG Variables
	Parsing the Function Arguments
	Generating Error Messages
	Obtaining Property Information

	Controlling the Data Service
	How the Start Method Works
	What the Start Method Does
	Verifying the Configuration
	Starting the Application
	Start Exit Status

	How the Stop Method Works
	What the Stop Method Does
	Stopping the Application
	Stop Exit Status

	Defining a Fault Monitor
	How the Probe Program Works
	What the Probe Program Does
	Obtaining Property Values
	Checking the Reliability of the Service
	Comparing Restart With Failover
	Restarting the Data Service
	Probe Exit Status

	How the Monitor_start Method Works
	What the Monitor_start Method Does
	Starting the Probe

	How the Monitor_stop Method Works
	What the Monitor_stop Method Does
	Stopping the Monitor
	Monitor_stop Exit Status

	How the Monitor_check Method Works

	Handling Property Updates
	How the Validate Method Works
	What the Validate Method Does
	Validate Method Parsing Function
	Validating Confdir
	Validate Exit Status

	How the Update Method Works
	What the Update Method Does
	Stopping the Monitor With Update
	Restarting the Monitor
	Update Exit Status

	Data Service Development Library
	DSDL Overview
	Managing Configuration Properties
	Starting and Stopping a Data Service
	Implementing a Fault Monitor
	Accessing Network Address Information
	Debugging the Resource Type Implementation
	Enabling Highly Available Local File Systems

	Designing Resource Types
	Resource Type Registration File
	Validate Method
	Start Method
	Stop Method
	Monitor_start Method
	Monitor_stop Method
	Monitor_check Method
	Update Method
	Description of Init, Fini, and Boot Methods
	Designing the Fault Monitor Daemon

	Sample DSDL Resource Type Implementation
	X Font Server
	X Font Server Configuration File
	TCP Port Number

	SUNW.xfnts RTR File
	Naming Conventions for Functions and Callback Methods
	scds_initialize() Function
	xfnts_start Method
	Validating the Service Before Starting the X Font Server
	Starting the Service With svc_start()
	Returning From svc_start()

	xfnts_stop Method
	xfnts_monitor_start Method
	xfnts_monitor_stop Method
	xfnts_monitor_check Method
	SUNW.xfnts Fault Monitor
	xfonts_probe Main Loop
	svc_probe() Function
	Determining the Fault Monitor Action

	xfnts_validate Method
	xfnts_update Method

	Sun Cluster Agent Builder
	Agent Builder Overview
	Before You Use Agent Builder
	Using Agent Builder
	Analyzing the Application
	Installing and Configuring Agent Builder
	Agent Builder Screens
	Starting Agent Builder
	Navigating Agent Builder
	Browse Command
	Agent Builder Menus
	Agent Builder File Menu
	Agent Builder Edit Menu

	Using the Create Screen
	Using the Configure Screen
	Using the Agent Builder Korn Shell-Based $hostnames Variable
	Using Property Variables
	List of Property Variables
	Resource Property Variables
	Resource Type Property Variables
	Resource Group Property Variables

	Syntax of Property Variables
	How Agent Builder Substitutes Property Variables

	Reusing Code That You Create With Agent Builder
	How to Clone an Existing Resource Type
	Editing the Generated Source Code

	How to Use the Command-Line Version of Agent Builder

	Directory Structure That Agent Builder Creates
	Agent Builder Output
	Source and Binary Files
	Utility Scripts and Man Pages That Sun Cluster Agent Builder Creates
	Support Files That Agent Builder Creates
	Package Directory That Agent Builder Creates
	rtconfig File

	Cluster Agent Module for Agent Builder
	How to Install and Set Up the Cluster Agent Module
	How to Start the Cluster Agent Module
	Using the Cluster Agent Module
	Differences Between the Cluster Agent Module and Agent Builder

	Generic Data Services
	Generic Data Services Concepts
	Precompiled Resource Type
	Advantages and Disadvantages of Using the GDS
	Ways to Create a Service That Uses the GDS
	GDS and Agent Builder
	GDS and Sun Cluster Administration Commands
	Selecting the Method to Use to Create a GDS-Based Service

	How the GDS Logs Events
	GDS Log Files

	Required GDS Properties
	Port_list Property
	Start_command Property

	Optional GDS Properties
	Child_mon_level Property
	Failover_enabled Property
	Log_level Property
	Network_aware Property
	Network_resources_used Property
	Probe_command Property
	Probe_timeout Property
	Start_timeout Property
	Stop_command Property
	Stop_signal Property
	Stop_timeout Property
	Validate_command Property
	Validate_timeout Property

	Using Agent Builder to Create a Service That Uses the GDS
	Creating and Configuring GDS-Based Scripts
	How to Start Agent Builder and Create the Scripts
	How to Configure the Scripts

	Output From Agent Builder

	Using Sun Cluster Administration Commands to Create a Service That Uses the GDS
	How to Use Sun Cluster Administration Commands to Create a Highly Available Service That Uses the GDS
	How to Use Sun Cluster Administration Commands to Create a Scalable Service That Uses the GDS

	Command-Line Interface for Agent Builder
	How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS

	DSDL API Functions
	General-Purpose Functions
	Initialization Functions
	Retrieval Functions
	Failover and Restart Functions
	Execution Functions

	Property Functions
	Network Resource Access Functions
	Host Name Functions
	Port List Functions
	Network Address Functions
	Fault Monitoring Using TCP Connections Functions

	PMF Functions
	Fault Monitor Functions
	Utility Functions

	Cluster Reconfiguration Notification Protocol
	CRNP Concepts
	How the CRNP Works
	CRNP Semantics
	CRNP Message Types

	How a Client Registers With the Server
	Assumptions About How Administrators Set Up the Server
	How the Server Identifies a Client
	How SC_CALLBACK_REG Messages Are Passed Between a Client and the Server
	Contents of an SC_CALLBACK_REG Message

	How the Server Replies to a Client
	Contents of an SC_REPLY Message
	How a Client Is to Handle Error Conditions

	How the Server Delivers Events to a Client
	How the Delivery of Events Is Guaranteed
	Contents of an SC_EVENT Message

	How the CRNP Authenticates Clients and the Server
	Example of Creating a Java Application That Uses the CRNP
	How to Set Up Your Environment
	How to Start Developing Your Application
	How to Parse the Command-Line Arguments
	How to Define the Event Reception Thread
	How to Register and Unregister Callbacks
	How to Generate the XML
	How to Create the Registration and Unregistration Messages
	How to Set Up the XML Parser
	How to Parse the Registration Reply
	How to Parse the Callback Events
	How to Run the Application

	Standard Properties
	Resource Type Properties
	Resource Properties
	Resource Group Properties
	Resource Property Attributes

	Sample Data Service Code Listings
	Resource Type Registration File Listing
	Start Method Code Listing
	Stop Method Code Listing
	gettime Utility Code Listing
	PROBE Program Code Listing
	Monitor_start Method Code Listing
	Monitor_stop Method Code Listing
	Monitor_check Method Code Listing
	Validate Method Code Listing
	Update Method Code Listing

	DSDL Sample Resource Type Code Listings
	xfnts.c File Listing
	xfnts_monitor_check Method Code Listing
	xfnts_monitor_start Method Code Listing
	xfnts_monitor_stop Method Code Listing
	xfnts_probe Method Code Listing
	xfnts_start Method Code Listing
	xfnts_stop Method Code Listing
	xfnts_update Method Code Listing
	xfnts_validate Method Code Listing

	Legal RGM Names and Values
	RGM Legal Names
	Rules for Names Except Resource Type Names
	Format of Resource Type Names

	RGM Values

	Requirements for Non-Cluster Aware Applications
	Multihosted Data
	Using Symbolic Links for Multihosted Data Placement

	Host Names
	Multihomed Hosts
	Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses
	Client Retry

	Document Type Definitions for the CRNP
	SC_CALLBACK_REG XML DTD
	NVPAIR XML DTD
	SC_REPLY XML DTD
	SC_EVENT XML DTD

	CrnpClient.java Application
	Contents of CrnpClient.java

	Index

