Sun Java System Message Queue
4.3 Developer's Guide for JMX
Clients

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-6766
December, 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. AIl SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

081215@21808

Contents

PREFACE ...ttt ettt 11
Introduction to JMX Programming for Message Queue Clientsccccoovoerrnrnirinrerrennnnn. 23
JMX Architecture
Message QUEUE MBEANSccoeviirieiririenireeteietetee ettt sttt sttt sttt be e b es 24
ReESOUICE MBEAIS ..ottt ettt ettt nene 25
Manager MBEANScovuvueuiueiiiiiririririeeicictts ettt ettt ettt 26
ODJECE NAIMES ..everieieireietrieiets ettt sttt ettt s et eeae et et seasbesaeassenanans 27
USINGTh@IMX AP ...ttt ettt e s sesees 33
INLEIfACE PACKAZEScucviuieiiecieiici ittt ettt 33
LY CLASSES ovvuvueireairineietrencieecae ettt et teae sttt ettt bbbttt bbbt eeaesetneaes 34
Connecting to the MBEAN SEIVETccueuricuriniueiriiieireeieieie ettt seeeaes 36
Obtaining a JMX Connector from an Admin Connection Factorycccocoeeveeureneerenennne 36
Obtaining a JMX Connector Without Using an Admin Connection Factoryccec.... 38
USING MBEANS ...ttt ettt ettt se ettt ettt ettt et b et s et e bt ee 39
Accessing MBean AITIDULEScvvveereeirieiriiieeeeetetee st sesesses s ssssssssesssssnenes 39
INVOKing MBean OPErationsccevceureeueureucueinietseeieiseseesesese ettt sseae et sessesssssssesscasans 44
Receiving MBean NOtICATIONS ...o.vvurireeurierieiieirisieisssieissssesie s ssessessssssesssssssesssessssssssssans 51
Message Queue MBean REfEre@NCecooooeieiieeeieceeeccee et se s 55
BIOKEIS .ottt ekttt ettt R bbbttt b ettt e e 55
Broker CONAAGUIATIONcuiiueiiecieieieiricieieictetciet ettt bttt 55
Broker Monitor

Connection Services

Service Configuration

SEIVICE IMLONITOL .evvivvitieteetecte ettt eete ettt et e et et e se et eebeessesseesseaseessesseseessenseessensesssessentsensensens 64

Contents

Service Manager CONAGUIATIONccuvucueuriucueirieiricieiseeieeseie ettt seaeseeeaes 67
Service Manager MONILOLccoiiicieiriniriiieeieietercce ettt saseae 68
CONNECLIOTS .voviiiiiiiiiiiiit bbbttt 70
Connection CONTIGUIALIONoccueuieuriiieieecieireet ettt ettt seae et seaeaeseaas 70
COoNNECION IMONILOT ...ttt nen 71
Connection Manager CONfIGUIAIONc.c.occueureeuriceeuneeieireeeireeieisees sttt seesessesesesseaes 72

Connection Manager Monitor

Destinations ...,
Destination CONAGUIATIONoucueuieiuriiieirieieiect ettt sese ettt seaebseaeiesseaes
Destination MONIEOTc.ccuruiiriiiiniciniiieeereeete ettt ettt
Destination Manager CONfIGUIAtIONcccvovurueuriririrreeieesisireeseesseessseseesssssssssssssssssssssssenns 85
Destination Manager MONITOTc.cceivirirrierereeiirinieieieereettsesese e esestsesesaeseseseseseseseseesene 89
MESSAZE PTOAUCETS ..ottt ettt ettt ettt sae s ss b s sas s s eassesssanssnnns 91
Producer Manager CONfIGUIAtIONcvveeerrueiririirreeseseesesesesssesesesssssssssssssssessssssssssssssseses 91
Producer Manager MOMILOT «.......ccueueueurecueenecieieieiseeieeseae s sseseseessaess st sessesssesseasseens 92
MESSAZE CONSUITIETS ...oeeecererreiisiseieresesesesse it se s s s st se s sttt sesesesesesssstasasaesesesesensasases 94
Consumer Manager CONfIGUIAtIONc.oveveureerreeriurieereeieereneiereeneeseeensessesensesesessessessesensens 95
Consumer Manager MONITOT ..c..cvueueueeiririninieieieieetrerte ettt ettt seesene 96
TIANSACHIONS .ottt 99
Transaction Manager CONfIGUIATIONc.c.evueuriieiricieirieieirecireeieisee sttt seesesseseseneaes 99
Transaction Manager MONITOTovueveueueiirinininieieieettteteei ettt eseese s senen 100
BIOKET CIUSTETS ...eoveevreriernciieeeeeieieieeetseeenseeese s ese s sseas s sse s sse s sse s ssensessaensenanes 104
Cluster CONAIGUIATIONcvueueueiieeirieieiree ettt sttt ettt beeae st 104
CIUSEET MOTIEOT 1.eovoietiaieeeieeeieesieiscae sttt eas e sseas s s sseseesssessssssessssssesssessssssesnsasssans 107
LOGEING ittt ettt b ettt b et bt s et b s 112
LOZ CONAGUIATION ouvtvrieiircieiceciei ettt ettt sttt enaas 112
LOG MONILOT .ttt ettt ettt ettt et st 113
Java VIrtUal MACKINEc.oveiveeceeceeeeeeeeeetee ettt ettt ene st ae et en s s s s s sesnssennene 115
JVIM IMIONUIEOT .evietieeieeeieeeie et ete ettt e te et eeeteeetaeebeeebeeesaeeesseesseeseessseenseeessesnssessessssesaennseenns 115
Alphabetical RefErenCe ..ottt eae e 117
INAEX ..o s 129

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Tables

TABLE 1-1
TABLE 1-2
TABLE 1-3
TABLE 1-4
TABLE 1-5
TABLE 1-6
TABLE 1-7
TABLE 2-1
TABLE 2-2
TABLE 3-1
TABLE 3-2
TABLE 3-3
TABLE 3-4
TABLE 3-5
TABLE 3-6
TABLE 3-7
TABLE 3-8
TABLE 3-9
TABLE 3-10
TABLE 3-11
TABLE 3-12
TABLE 3-13
TABLE 3-14
TABLE 3-15
TABLE 3-16
TABLE 3-17
TABLE 3-18

TABLE 3-19

ODbject Name PIOPEItiescoveviieiitiiiieicicittc e 27
Message Queue MBean LYPES ...ttt 27
Message Queue MBean SUDLYDPES ... 28
Destination LTYPES ..ot 28
Connection SETVICe INAMIESc.cvviriiriniiriiiiiniintiiete e 29
Example Object NAMEScovoiiiniiiiiei e 29
Utility Constants and Methods tor Object Namesccccoveeieienieiininininiinieienns 30
I\ 0 O =T gl w31 T 0 Yo U o) o R SR 33
Message Queue JMX Uity CLaSSESovuvriviiviiieiniiiiiieicicceeice v 34
Broker Configuration Attributes ... 56
Broker Configuration Operationscceeevieieinininienienicineieceeeeenes 57
Broker Configuration NOtiICAtiONceveviveveeeiiiiieeccccc e 59
Broker Monitor Attributes ... 60
Broker Monitor NOtIICAtIONSooevieiiiiiiiiiiiiicc e 61
Data Retrieval Methods tor Broker Monitor Notificationscccceveeinieiennnns 61
Connection Service Names for Service Configuration MBeansc..coceenee 63
Service Conhiguration Attributes ... 63
Service Configuration OPerationscccweeriimeissueimsisniesissiessssssssessessses 64
Service Configuration NOtfICAtion ... 64

Connection Service Names tor Service Monitor MBeans

Service Monitor Attributes

Connection Service State Valuescovieeieiniiiiinieieine s 66
Service Monitor OPErationscoeeeieiiininiinieieiee e 66
Service Monitor NOtIICAtIONS ..o 67
Data Retrieval Method tor Service Monitor Notificationsc..ceeeereeeecereerenees 67
Service Manager Configuration Attributes ... 63
Service Manager Configuration Operationscccoceeeveveeeeneneererereccneeenenenens 68
Service Manager Monitor Atributes ... 68

Tables

TABLE 3-20
TABLE 3-21
TABLE 3-22
TABLE 3-23
TABLE 3-24
TABLE 3-25
TABLE 3-26
TABLE 3-27
TABLE 3-28
TABLE 3-29
TABLE 3-30
TABLE 3-31
TABLE 3-32
TABLE 3-33
TABLE 3-34
TABLE 3-35
TABLE 3-36
TABLE 3-37
TABLE 3-38
TABLE 3-39
TABLE 3-40
TABLE 3-41
TABLE 3-42
TABLE 3-43
TABLE 3-44
TABLE 3-45
TABLE 3-46
TABLE 3-47
TABLE 3-48
TABLE 3-49
TABLE 3-50
TABLE 3-51
TABLE 3-52
TABLE 3-53
TABLE 3-54

TABLE 3-55

Service Manager Monitor OPeration ... 69
Service Manager Monitor NOtfICAtIONSc.coieveviiiiiniiniiniiiiic 70
Data Retrieval Method tor Service Manager Monitor Notifications 70
Connection Configuration Attribute ... 71
Connection Monitor AtribULES ... 71
Connection Monitor Operationscccoveeeieieiinineieeeeee 72
Connection Manager Conhiguration Attribute ..o, 73
Connection Manager Configuration Operationsccoeeveveevenieninieniecenenenienne. 73
Connection Manager Monitor Atributes ... 74
Connection Manager Monitor Operationooceveeeenienienieenienineneeeeeesnee 74
Connection Manager Monitor NOtifICationsccoeeevievievinvinininienieineniei 74
Data Retrieval Methods tor Connection Manager Monitor Notifications 74
Destination Configuration Attributes ... 76
Destination Configuration 1'ype Values ... 78
Destination Limit BENAVIOLS ..o 78
Destination Configuration Operations ..o 78
Destination Pause LIYPEScouviiieieiiiiiiiiccie i

Destination Configuration Notification ..

Destination Monitor Atributes ...

Destination Monitor Type ValUes ... 83
Destination State Values ... 83
Destination Monitor OPerationscceceeeeeniinieieiiiininieicieeeeee e 84
Destination Monitor NOtHICAtIONSc.ccvereiuiereineineiereeeneieeseeseseenessenanens 85
Data Retrieval Methods tor Destination Monitor Notificationsc..cceveneee 85
Destination Manager Configuration Attributesccoooevvevieinininiininiiininnen 86
Destination Manager Configuration Operationsccceevevieeenieenieiecenicnnnne. 87
Destination Manager Configuration 1'ype Valuesocoovevieenininienieiinenienienn, 88
Destination Manager Pause L'YPESccovvevevieiiiinienieiiiniiicicciee e 88
Destination Manager Configuration Notification ... 89
Destination Manager Monitor Attributes ... 89
Destination Manager Monitor Operationceveeeenienienieienieninienieceeenennene 90
Destination Manager Monitor NOtifiCationsccevevievieiininincniciiinienn 90
Data Retrieval Methods tor Destination Manager Monitor Notifications 90
Producer Manager Configuration Attribute ..., 92
Producer Manager Configuration Operationccoceeeevevievieveniininienieeeenennene 92
Producer Manager Monitor Atribute ..., 92

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Tables

TABLE 3-56
TABLE 3-57
TABLE 3-58
TABLE 3-59
TABLE 3-60
TABLE 3-61
TABLE 3-62
TABLE 3-63
TABLE 3-64
TABLE 3-65
TABLE 3-66
TABLE 3-67
TABLE 3-68
TABLE 3-69
TABLE 3-70
TABLE 3-71
TABLE 3-72
TABLE 3-73
TABLE 3-74
TABLE 3-75
TABLE 3-76
TABLE 3-77
TABLE 3-78
TABLE 3-79
TABLE 3-80
TABLE 3-81
TABLE 3-82
TABLE 3-83
TABLE 3-84
TABLE 3-85
TABLE 3-86
TABLE 3-87
TABLE 3-88
TABLE 3-89
TABLE A-1

TABLE A-2

Producer Manager Monitor Operationsc.oceveeevinienieieinineneeeeeeeeeenene 93
Lookup Keys tor Message Producer Information ..., 93
Message Producer Destination L'YPesc.cooevviieieiiiniiniiicicinieeeeeenereene 94
Consumer Manager Configuration Attribute ... 95
Consumer Manager Configuration Operationscccceeeneuoserneceseuenunenns 95
Consumer Manager Monitor AtribUte ..o 96
Consumer Manager Monitor OPerationsccoeeeeeeieininineinseieensissseienes 96
Lookup Keys tor Message Consumer Informationcoeeeeveeerernininesineenenns 97
Message Consumer Destination TyPesoveveieiiinenieiicinineieeeeene 98
AcKnowledgment MOAES ...t 99
‘I'ransaction Manager Configuration Attribute ..o, 100
‘I'ransaction Manager Configuration Operationsccceceveeenievieveevenienninienns 100
‘I'ransaction Manager Monitor Attributes ... 101
‘I'ransaction Manager Monitor Operationsccoceveevevieinininenieniceeenienenns 101
Lookup Keys for I'ransaction Information ..., 102
‘Iransaction State ValUues ... 103
‘I'ransaction Manager Monitor NOtif1Cationscceverieereininiiiicccene 103
Data Retrieval Method tor ‘I'ransaction Manager Monitor Notifications 103
Cluster Configuration Attributes ..., 104
Cluster Configuration Operationsccceovvnnnesniinninnesseee s 106
Lookup Keys for Cluster Configuration Informationceeeevveiiininiinins 107
Cluster Configuration NOtiHCation ... 107
Cluster Monitor AtrIDULEScveieiiiiiiic e 108
Cluster Monitor OPerationscoeceveeinisinininininiieeisse s 109
Lookup Keys tor Cluster Monitor Informationeceveeveininenieiieenienienene. 110
Broker State ValUes ... 110
Cluster Monitor NOtifICationsccceveviiiiiniiiic 111
Data Retrieval Methods tor Cluster Monitor Notificationsccceeeevenneee. 112
Log Configuration AtribDULESciviiiiiiiniiiii e 113
Log Configuration LOgZIng LeVeLScccoviininininiiiiiic 113
Log Configuration NOtICAtion ... 113
Log Monitor NOTICAIONSc.cviiiiiiiiiieieiiieieiet s 114
Data Retrieval Methods tor Log Monitor NOtificationsc.cceecueverereunennee 114
JVIM MONILOT ATTIDULES oo 115
Alphabetical List of MBean Attributes ..o 117
Alphabetical List of MBean Operationsccccoeivivienieiiinineniniceeeccenens 123

Tables

TABLE A-3 Alphabetical List of MBean NOtifIcations ..o,

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Examples

EXAMPLE 2-1
EXAMPLE 2-2
EXAMPLE 2-3
EXAMPLE 2-4
EXAMPLE 2-5
EXAMPLE 2-6
EXAMPLE 2-7
EXAMPLE 2-8
EXAMPLE 2-9
EXAMPLE 2-10
EXAMPLE 2-11
EXAMPLE 2-12

EXAMPLE 2-13

Obtaining a JMX Connector from an Admin Connection Factory 37
Configuring an Admin Connection Factory ... 37

Obtaining a JMX Connector Without Using an Admin Connection Factory ... 38

Getting an Attribute Value ... 39
Getting Multiple Attribute Values ... 40
Setting an Attribute Value ... 42
Setting Multiple Attribute Values ..ot 43
Invoking an OPeration ... s 44
Invoking an Operation with Parameters ..o 45
Combining Operations and AtribUtes ... 47

Using a Composite Data Object

INOTIICATION LISTEIIET iiiiiiiiiiiiiiiieiiiieeee ettt cerrte e e e e s seirae e e e e s ssararee e e sesesaaaaeeessanns

Registering a Notification LIStENercoooviiieiiniiniiiec 53

10

Preface

This Message Queue Developer’s Guide for JMX Clients describes the application programming
interface provided in Sun Java™ System Message Queue for programmatically configuring and
monitoring Message Queue resources in conformance with the Java Management Extensions
(JMX). These functions are also available to system administrators by way of the Message
Queue Administration Console and command line utilities, as described in the Message Queue
Administration Guide; the API described here makes the same administrative functionality
available programmatically from within a running client application. Broker properties and
command-line options that support the JMX API are described in the Message Queue
Administration Guide.

This preface consists of the following sections:

“Who Should Use This Book” on page 11

“Before You Read This Book” on page 11

“How This Book Is Organized” on page 12
“Documentation Conventions” on page 12

“Related Documentation” on page 16

“Searching Sun Product Documentation” on page 21
“Sun Welcomes Your Comments” on page 21

Who Should Use This Book

This guide is intended for Java application developers wishing to use the Message Queue JMX
API to perform Message Queue administrative tasks programmatically from within a client
application.

Before You Read This Book

This guide assumes that you are already familiar with general Message Queue concepts,
administrative operations, and Java client programming, as described in the following manuals:

= Message Queue Technical Overview
= Message Queue Administration Guide
= Message Queue Developer’s Guide for Java Clients

Preface

How This Book Is Organized

Documentation Conventions

12

You should also be familiar with the general principles of the Java Management Extensions, as
described in the following publications:

= Java Management Extensions Instrumentation and Agent Specification
® Java Management Extensions (JMX) Remote API Specification

Together, these two publications are referred to hereafter as the JMX Specification.

Table P-1 describes the contents of this manual.

TABLEP-1 Contents of This Manual

Chapter/Appendix

Description

Chapter 1, “Introduction to JMX
Programming for Message Queue
Clients”

Introduces the basic concepts and principles of the Message Queue
JMX interface.

Chapter 2, “Using the JMX API”

Provides code examples showing how to use the JMX application
programming interface from within your Message Queue client
applications.

Chapter 3, “Message Queue MBean
Reference”

Provides detailed information on the attributes, operations, and
notifications provided by Message Queue managed beans (MBeans).

Appendix A, “Alphabetical
Reference”

Lists the MBean attributes, operations, and notifications
alphabetically, with references back to their descriptions in the body of
the manual.

This section describes the following conventions used in Message Queue documentation:

= “Typographic Conventions” on page 12

= “Symbol Conventions” on page 13

= “Shell Prompt Conventions” on page 14

= “Directory Variable Conventions” on page 14

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Preface

TABLEP-2 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and directories, | Edit your .login file.
and onscreen computer output
P P Use s -a to list all files.
machine name% you have mail.
AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output
Password:
aabbccl23 Placeholder: replace with a real name or value The command to remove a file is rm
filename.
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.
emphasized
P A cacheis a copy that is stored
locally.
Do not save the file.
Note: Some emphasized items
appear bold online.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-3 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{113 Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${ } Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun. javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and

keystrokes.

then press the subsequent keys.

Preface

14

TABLEP-3 Symbol Conventions (Continued)
Symbol Description Example Meaning
- Indicates menu item File — New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

Shell Prompt Conventions

The following table shows the conventions used in Message Queue documentation for the
default UNIX® system prompt and superuser prompt for the C shell, Bourne shell, Korn shell,
and for the Windows operating system.

TABLEP-4 Shell PromptConventions

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name
C shell superuser on UNIX, Linux, or AIX machine-name#
Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Directory Variable Conventions

Message Queue documentation makes use of three directory variables; two of which represent
environment variables needed by Message Queue. (How you set the environment variables
varies from platform to platform.)

The following table describes the directory variables that might be found in this book and how
they are used on the Solaris, Linux, AIX, and Windows platforms. On AIX and Windows,
Message Queue is installed in a directory referred to as mqlnstallHome, and some of the
directory variables in Table P-5 reference this mqlInstallHome directory.

Note - In this book, directory variables are shown without platform-specific environment
variable notation or syntax (such as $IMQ_HOME on UNIX). Non-platform-specific path names
use UNIX directory separator (/) notation.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Preface

TABLEP-5 Directory Variable Conventions

Variable

Description

IMQ_HOME

Message Queue home directory, if any:

B Unused on Solaris and Linux; because there is no mglnstallHome
directory on these platforms, there is no corresponding Message
Queue home directory.

® On AIX, IMQ_HOME denotes the directory mgqlnstallHome/mq, where
mqlInstallHome is specified when you install the product (by default,
home-directory/MessageQueue).

® On Windows, IMQ_HOME denotes the directory mqlnstallHome\mq,
where mglnstallHome is specified when you install the product (by
default, C:\Program Files\Sun\MessageQueue).

Note - The information above applies only to the standalone installation
of Message Queue. When Message Queue is installed and run as part of a
Sun Java System Application Server installation, IMQ_HOME is set to
appServerInstallDir/ imq, where appServerInstallDir is the Application
Server installation directory.

IMQ_VARHOME

Directory in which Message Queue temporary or dynamically created
configuration and data files are stored; IMQ_VARHOME can be explicitly set
as an environment variable to point to any directory or will default as
described below:

B On Solaris, IMQ VARHOME defaults to /var/img.

B On Linux, IMQ_ VARHOME defaults to /var/opt/sun/mq.

= On AIX, IMQ_VARHOME defaults to mglnstallHome/var/mq.

= On Windows, IMQ_VARHOME defaults to mglnstallHome\var\mq.

Note - The information above applies only to the standalone installation
of Message Queue. When Message Queue is installed and run as part of a
Sun Java System Application Server installation, IMQ_VARHOME is set to
appServerDomainDir/imq, where appServerDomainDir is the domain
directory for the domain starting the Message Queue broker.

Preface

TABLEP-5 Directory Variable Conventions (Continued)
Variable Description
IMQ_JAVAHOME An environment variable that points to the location of the Java runtime

environment (JRE) required by Message Queue executable files:

® On Solaris, Message Queue looks for the latest JDK, but you can
optionally set the value of IMQ_JAVAHOME to wherever the preferred
JRE resides.

B On Linux, Message Queue looks for the latest JDK, but you can
optionally set the value of IMQ_JAVAHOME to wherever the preferred
JRE resides.

= On AIX, IMQ_JAVAHOME is set to point to an existing Java runtime
when you perform Message Queue installation.

B On Windows, IMQ_JAVAHOME is set to point to an existing Java
runtime if a supported version is found on the system when you
perform Message Queue installation. If a supported version is not
found, one will be installed.

Related Documentation

16

The information resources listed in this section provide further information about Message
Queue in addition to that contained in this manual. The section covers the following resources:

= “Message Queue Documentation Set” on page 16

= “Java Message Service (JMS) Specification” on page 17
= “JavaDoc” on page 18

= “Example Client Applications” on page 18

= “Online Help” on page 20

= “Documentation, Support, and Training” on page 20
= “Third-Party Web Site References” on page 20

Message Queue Documentation Set

The documents that comprise the Message Queue documentation set are listed in the following
table in the order in which you might normally use them. These documents are available
through the Sun documentation Web site at

http://www.sun.com/documentation/
Click “Software,” followed by “Application & Integration Services,” and then “Message Queue.”
For a content reference to topics with the Message Queue documentation set, see the Message

Queue Documentation Center at the above location.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

http://www.sun.com/documentation/

Preface

TABLEP-6 Message Queue Documentation Set

Document Audience Description

Sun Java System Message Developers and administrators ~ Describes Message Queue concepts,

Queue 4.3 Technical features, and components.

Overview

Sun Java System Message Developers and administrators ~ Includes descriptions of new features,

Queue 4.3 Release Notes limitations, and known bugs, as well as
technical notes.

Sun Java System Message Developers and administrators ~ Explains how to install Message Queue

Queue 4.3 Installation Guide software on Solaris, Linux, AIX, and
Windows platforms.

Sun Java System Message Developers Provides a quick-start tutorial and

Queue 4.3 Developer’s Guide programming information for developers of

for Java Clients Java client programs using the Message
Queue implementation of the JMS or
SOAP/JAXM APIs.

Sun Java System Message Administrators, also Provides background and information

Queue 4.3 Administration ~ recommended for developers needed to perform administration tasks

Guide using Message Queue administration tools.

Sun Java System Message Developers Provides programming and reference

Queue 4.3 Developer’s Guide documentation for developers of C client

for C Clients programs using the Message Queue C
implementation of the JMS API (C-API).

Sun Java System Message Administrators Provides programming and reference

Queue 4.3 Developer’s Guide documentation for developers of JMX client

for IMX Clients programs using the Message Queue JMX
APL

Java Message Service (JMS) Specification

The Message Queue message service conforms to the Java Message Service (JMS) application
programming interface, described in the Java Message Service Specification. This document can
be found at the URL

http://java.sun.com/products/jms/docs.html

http://docs.sun.com/doc/820-6424
http://docs.sun.com/doc/820-6424
http://docs.sun.com/doc/820-6424
http://docs.sun.com/doc/820-6360
http://docs.sun.com/doc/820-6360
http://docs.sun.com/doc/820-6361
http://docs.sun.com/doc/820-6361
http://docs.sun.com/doc/820-6767
http://docs.sun.com/doc/820-6767
http://docs.sun.com/doc/820-6767
http://docs.sun.com/doc/820-6740
http://docs.sun.com/doc/820-6740
http://docs.sun.com/doc/820-6740
http://docs.sun.com/doc/820-6661
http://docs.sun.com/doc/820-6661
http://docs.sun.com/doc/820-6661
http://docs.sun.com/doc/820-6766
http://docs.sun.com/doc/820-6766
http://docs.sun.com/doc/820-6766
http://java.sun.com/products/jms/docs.html

Preface

18

Java Management Extensions (JMX) Documentation

The Message Queue JMX API conforms to the Java Management Extensions (JMX) standard,
described in the Java Management Extensions Instrumentation and Agent Specification and the
Java Management Extensions (JMX) Remote API Specification. These documents can be
downloaded from the URLs

http://jcp.org/aboutJava/communityprocess/final/jsro03
and
http://jcp.org/aboutJava/communityprocess/final/jsrl60
respectively.

For a general conceptual introduction to JMX principles and architecture, see the Java
Management Extensions (JMX) Technology Overview at

http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/IMXoverviewTOC.html
and the Java Management Extensions (JMX) Technology Tutorial at

http://java.sun.com/j2se/1.5.0/docs/guide/jmx/tutorial/tutorialTOC.html

JavaDoc

JMS and Message Queue API documentation in JavaDoc format is included in your Message
Queue installation at the locations shown in Table P-7, depending on your platform. This
documentation can be viewed in any HTML browser. It includes standard JMS API
documentation as well as Message Queue-specific APIs.

TABLEP-7 JavaDoc Locations

Platform Location

Solaris /usr/share/javadoc/img/index.html
Linux /opt/sun/mq/javadoc/index.html
AIX IMQfHOME/javadoc/index.html1
Windows IMQ HOME\javadoc\index.html'

! IMQ_HOME is the Message Queue home directory.

Example Client Applications

Message Queue provides a number of example client applications to assist developers.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

http://jcp.org/aboutJava/communityprocess/final/jsr003
http://jcp.org/aboutJava/communityprocess/final/jsr160
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/tutorial/tutorialTOC.html

Preface

Example Java Client Applications

Example Java client applications are located in the following directories, depending on
platform. See the README files located in these directories and their subdirectories for descriptive
information about the example applications.

Platform Location

Solaris /usr/demo/imq/

Linux /opt/sun/mg/examples
AIX IMQ_HOME/demo/’
Windows IMQ_HOME\demo\'

! IMQ_HOME is the Message Queue home directory.

Example C Client Programs

Example C client applications are located in the following directories, depending on platform.
See the README files located in these directories and their subdirectories for descriptive
information about the example applications.

Platform Location

Solaris /opt/SUNWimg/demo/C/
Linux /opt/sun/mq/examples/C/
AIX IMQ_HOME/demo/C/’
Windows IMQ HOME\demo\C\'

! IMQ_HOME is the Message Queue home directory.

Example JMX Client Programs

Example Java Management Extensions (JMX) client applications are located in the following
directories, depending on platform. See the README files located in these directories and their
subdirectories for descriptive information about the example applications.

Platform Location

Solaris /opt/SUNWimg/demo/imq/jmx
Linux /opt/sun/mq/examples/jmx
AIX IMQ_HOME/demo/jmx’

! IMQ_HOME is the Message Queue home directory.

Preface

20

Platform Location

Windows IMQ_HOME\demo\jmx'

! IMQ_HOME is the Message Queue home directory.

Online Help

Online help is available for the Message Queue command line utilities; for details, see Chapter
15, “Command Line Reference,” in Sun Java System Message Queue 4.3 Administration Guide
for details. The Message Queue graphical user interface (GUI) administration tool, the
Administration Console, also includes a context-sensitive help facility; see the section
“Administration Console Online Help” in Chapter 2, “Quick-Start Tutorial,” in Sun Java System
Message Queue 4.3 Administration Guide.

Documentation, Support, and Training

The Sun Web site provides information about the following additional resources:

» Documentation (http://www.sun.com/documentation/)
m Support (http://www.sun.com/support/)
® Training (http://www.sun.com/training/)

Third-Party Web Site References

Where relevant, this manual refers to third-party URLs that provide additional, related
information.

Note - Sun is not responsible for the availability of third-party Web sites mentioned in this
manual. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with the use of or reliance on any such content, goods, or services available on or
through such sites or resources.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

http://docs.sun.com/doc/820-6740/aeonc?a=view
http://docs.sun.com/doc/820-6740/aeonc?a=view
http://docs.sun.com/doc/820-6740/aeoay?a=view
http://docs.sun.com/doc/820-6740/aeoay?a=view
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Preface

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun. com” in place of “docs. sun.com” in the search field.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-7758.

21

http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

22

CHAPTER 1

Introduction to JMX Programming for Message
Queue Clients

While Sun Java™ System Message Queue’s Administration Console and command line
administration utilities allow an administrator to interactively configure and monitor Message
Queue resources (such as brokers, connections, and destinations), these tools are not accessible
from within a running client application.

To provide programmatic access to such administrative functions, Message Queue also
incorporates an application programming interface based on the Java Management Extensions
(JMX). Client applications can use this JMX API to programmatically perform the
configuration and monitoring operations that are available interactively through the
Administration Console and command line utilities.

You can use Message Queue’s JMX API in your client applications for a variety of purposes:

= To optimize performance by monitoring the usage of brokers and other Message Queue
resources and reconfiguring their parameters based on the results

= To automate regular maintenance tasks, rolling upgrades, and so forth
= To write your own utility applications to replace or enhance standard Message Queue tools

such as the Broker utility (imgbrokerd) and Command utility (imgcmd)

In addition, since JMX is the Java standard for building management applications and is widely
used for managing J2EE infrastructure, you can use it to incorporate your Message Queue client
as part of a larger J2EE deployment using a standard management framework throughout.

JMX Architecture

The JMX Specification defines an architecture for the instrumentation and programmatic
management of distributed resources. This architecture is based on the notion of a managed
bean, or MBean: a Java object, similar to a JavaBean, representing a resource to be managed.
Message Queue MBeans may be associated with individual resources such as brokers,
connections, or destinations, or with whole categories of resources, such as the set of all

23

Message Queue MBeans

destinations on a broker. There are separate configuration MBeans and monitor MBeans for
setting a resource’s configuration properties and monitoring its runtime state.

Each MBean is identified by an object name, an instance of the JMX class ObjectName
conforming to the syntax and conventions defined in the JMX Specification. Object names for
Message Queue MBeans are either defined as static constants or returned by static methods in
the Message Queue utility class MQObjectName; see “Object Names” on page 27 for further
information.

An MBean provides access to its underlying resource through a management interface
consisting of the following:

= Attributes holding data values representing static or dynamic properties of the resource
= Operations that can be invoked to perform actions on the resource

= Notifications informing the client application of state changes or other significant events
affecting the resource

Client applications obtain MBeans through an MBean server, which serves as a container and
registry for MBeans. Each Message Queue broker process contains an MBean server, accessed
by means of a JMX connector. The JMX connector is used to obtain an MBean server connection,
which in turn provides access to individual MBeans on the server. Configuring or monitoring a
Message Queue resource with JMX requires the following steps:

1. Obtain a JMX connector.

2. Getan MBean server connection from the JMX connector.

3. Construct an object name identifying the particular MBean you wish to operate on.
4

Pass the object name to the appropriate methods of the MBean server connection to access
the MBean’s attributes, operations, and notifications.

5. Close the MBean server connection.

See Chapter 2, “Using the JMX API” for code examples illustrating the technique for various
MBean operations.

Message Queue MBeans

24

Message Queue's JMX functionality is exposed through MBeans associated with various
Message Queue resources. These MBeans are of two kinds: resource MBeans and manager
MBeans. The attributes, operations, and notifications available for each type of MBean are
described in detail in Chapter 3, “Message Queue MBean Reference”

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Queue MBeans

Resource MBeans

Resource MBeans are associated with individual Message Queue resources of the following
types:

= Message brokers

= Connection services

= Connections

= Destinations

Broker clusters

Logging

The Java Virtual Machine (JVM)

Configuration and monitoring functions are implemented by separate MBeans. Each managed
resource is associated with a configuration MBean for setting the resource's configuration and a
monitor MBean for gathering (typically transient) information about its runtime state. For
instance, there is a destination configuration MBean for configuring a destination and a
destination monitor MBean for obtaining runtime information about it. In general, each
instance of a managed resource has its own pair of MBeans: thus there is a separate destination
configuration MBean and destination monitor MBean for each individual destination. (In the
case of the Java Virtual Machine, there is only a JVM monitor MBean with no corresponding
configuration MBean.)

Configuration MBeans are used to perform such tasks as the following:

= Setabroker's port number

= Setabroker's maximum message size

Pause a connection service

Set the maximum number of threads for a connection service

Purge all messages from a destination

= Set the level of logging information to be written to an output channel

Monitor MBeans are used to obtain runtime information such as the following:

= The current number of connections on a service

= The cumulative number of messages received by a destination since the broker was started
= The current state (running or paused) of a queue destination

= The current number of message producers for a topic destination

= The host name and port number of a cluster's master broker

= The current JVM heap size

Chapter 1 « Introduction to JMX Programming for Message Queue Clients 25

Message Queue MBeans

26

Manager MBeans

In addition to the resource MBeans associated with individual resources, there are also manager
MBeans for managing some whole categories of resources. These manager MBeans also come
in pairs—one for configuration and one for monitoring—for the following resource categories:

= Connection services
= Connections

= Destinations

= Message producers
= Message consumers
= Transactions

Unlike individual resource MBeans, a broker has only one pair of manager MBeans for each
whole category of resources: for instance, a single destination manager configuration MBean
and a single destination manager monitor MBean. For some categories (connection services,
connections, destinations), the manager MBeans exist in addition to the ones for individual
resources, and are used to manage the collection of resource MBeans within the category or to
perform global tasks that are beyond the scope of individual resource MBeans. Thus, for
instance, there is a connection manager configuration MBean and a connection manager
monitor MBean in addition to the connection configuration and connection monitor MBeans
associated with individual connections. Manager MBeans of this type are used to perform tasks
such as the following:

= Get the object names of the connection service monitor MBeans for all available connection
services

= Get the total number of current connections

= Destroy a connection

= Create or destroy a destination

= Enable or disable auto-creation of destinations

= Pause message delivery for all destinations

In other cases (message producers, message consumers, transactions), there are no MBeans
associated with individual resources and all of the resources in the category are managed
through the manager MBeans themselves. The manager MBeans for these categories can be
used for such tasks as the following:

= Get the destination name associated with a message producer
= Purge all messages from a durable subscriber
= Commit or roll back a transaction

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Queue MBeans

Object Names

Each individual MBean is designated by an object name belonging to the JMX class ObjectName,
which encapsulates a string identifying the MBean. For Message Queue MBeans, the
encapsulated name string has the following syntax:

com.sun.messaging.jms.server:property=value[, property=value] *

Table 1-1 shows the possible properties.

TABLE1-1 Object Name Properties
Property Description Values
type MBean type See Table 1-2.
subtype MBean subtype See Table 1-3.
desttype Destination type See Table 1-4.
Applies only to MBeans of the
following types:
® Destination configuration
B Destination monitor
name Resource name For service configuration and service monitor MBeans, see Table 1-5.
Applies only to MBeans of the For destination configuration and destination monitor MBeans, the
following types: destination name.
- . .
Service configuration Examples:
® Service monitor)
o 6 . myTopic
| |
Destination configuration temporary destination://queue/129.145.180.99/63008/1
B Destination monitor
id Resource identifier Example:
. 7853717387765338368
Applies only to MBeans of the
following types:
® Connection configuration
® Connection monitor

Table 1-2 shows the possible values for the object name's type property.

TABLE1-2 Message Queue MBean Types

Value Description

Broker Broker resource MBean

Chapter 1 « Introduction to JMX Programming for Message Queue Clients 27

Message Queue MBeans

TABLE1-2 Message Queue MBean Types (Continued)

Value Description

Service Connection service resource MBean
ServiceManager Connection service manager MBean
Connection Connection resource MBean
ConnectionManager Connection manager MBean
Destination Destination resource MBean
DestinationManager Destination manager MBean
ProducerManager Message producer manager MBean
ConsumerManager Message consumer manager MBean
TransactionManager Transaction manager MBean
Cluster Broker cluster resource MBean

Log Logging resource MBean

JVM JVM resource MBean

Table 1-3 shows the possible values for the object name's subtype property.

TABLE1-3 Message Queue MBean Subtypes

Value Description
Config Configuration MBean
Monitor Monitor MBean

For destination configuration and destination monitor MBeans, the object name's desttype
property specifies whether the destination is a point-to-point queue or a publish/subscribe
topic. Table 1-4 shows the possible values, which are defined for convenience as static constants
in the utility class DestinationType.

TABLE1-4 Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

28 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Queue MBeans

For service configuration and service monitor MBeans, the object name's name property
identifies the connection service with which the MBean is associated. Table 1-5 shows the
possible values.

TABLE 1-5 Connection Service Names

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)
httpjms Normal HTTP

httpsjms Normal HTTPS (SSL-based security)
admin Admin TCP

ssladmin Admin TLS (SSL-based security)

Table 1-6 shows some example object names.

TABLE1-6 Example Object Names

MBean type Object Name

Broker com.sun.messaging.jms.server:type=Broker, subtype=Config

configuration

Service manager com.sun.messaging.jms.server:type=ServiceManager, subtype=Monitor

monitor

Connection com.sun.messaging.jms.server:type=Connection, subtype=Config,1d=7853717387765338368
configuration

Destination com.sun.messaging.jms.server:type=Destination, subtype=Monitor,desttype=t, name="MyQueue"
monitor

The object names for each type of Message Queue MBean are given in the relevant sections of
Chapter 3, “Message Queue MBean Reference.” All such names are either defined as static
constants or returned by static methods in the utility class MQObjectName (see Table 1-7). For
instance, the constant

MQObjectName.BROKER CONFIG MBEAN NAME

is defined as a string representing the object name for a broker configuration MBean, and the
method call

MQObjectName.createDestinationMonitor(DestinationType.TOPIC, "MyQueue");

Chapter 1 « Introduction to JMX Programming for Message Queue Clients 29

Message Queue MBeans

30

returns the destination monitor MBean object name shown in Table 1-6. Note that, whereas
methods such as createDestinationMonitor return an actual object name (that is, an object of
class ObjectName) that can be assigned directly to a variable of that type

ObjectName

destMonitorName

= MQObjectName.createDestinationMonitor(DestinationType.TOPIC, "Dest");

constants like BROKER_CONFIG_MBEAN_NAME instead represent an ordinary string (class String)
that must then be converted into the corresponding object name itself:

ObjectName

brokerConfigName

= new ObjectName (MQObjectName.BROKER CONFIG MBEAN NAME);

TABLE 1-7 Utility Constants and Methods for Object Names

MBean Type Utility Constant or Method
Broker configuration MQObjectName.BROKER CONFIG MBEAN NAME
Broker monitor MQObjectName.BROKER MONITOR MBEAN NAME
Service configuration MQObjectName.createServiceConfig
Service monitor MQObjectName.createServiceMonitor
Service manager configuration MQObjectName.SERVICE MANAGER CONFIG_MBEAN NAME
Service manager monitor MQObjectName.SERVICE MANAGER MONITOR MBEAN_ NAME
Connection configuration MQObjectName.createConnectionConfig
Connection monitor MQObjectName.createConnectionMonitor
Connection manager configuration MQObjectName.CONNECTION MANAGER CONFIG MBEAN NAME
Connection manager monitor MQObjectName.CONNECTION MANAGER MONITOR MBEAN_ NAME
Destination configuration MQObjectName.createDestinationConfig
Destination monitor MQObjectName.createDestinationMonitor
Destination manager configuration MQObjectName.DESTINATION MANAGER CONFIG MBEAN NAME
Destination manager monitor .

MQObjectName .DESTINATION MANAGER MONITOR MBEAN_ NAME
Producer manager configuration)

MQObjectName.PRODUCER MANAGER CONFIG MBEAN_ NAME
Producer manager monitor)

MQObjectName.PRODUCER MANAGER MONITOR MBEAN NAME
Consumer manager conﬁguration MQObjectName.CONSUMER MANAGER CONFIG MBEAN NAME
Consumer manager monitor MQObjectName.CONSUMER _MANAGER_MONITOR_MBEAN_NAME

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Queue MBeans

TABLE 1-7 Utility Constants and Methods for Object Names (Continued)

MBean Type Utility Constant or Method
Transaction manager configuration MQObjectName.TRANSACTION MANAGER CONFIG_MBEAN_ NAME
Transaction manager monitor MQObjectName.TRANSACTION MANAGER MONITOR MBEAN NAME

Cluster configuration MQObjectName.CLUSTER CONFIG MBEAN NAME
Cluster monitor MQObjectName.CLUSTER MONITOR MBEAN NAME
Log configuration MQObjectName.LOG CONFIG MBEAN NAME

Log monitor MQObjectName.LOG MONITOR MBEAN NAME
JVM monitor MQObjectName.JVM_MONITOR_ MBEAN_NAME

Chapter 1 « Introduction to JMX Programming for Message Queue Clients 31

32

L K R 4 CHAPTER 2

Using the JMX API

This chapter provides code examples showing how to use the JMX application programming
interface to connect to a broker’s MBean server, obtain MBeans for Message Queue resources,
and access their attributes, operations, and notifications. The chapter consists of the following

sections:

= “Interface Packages” on page 33

= “Utility Classes” on page 34

= “Connecting to the MBean Server” on page 36

= “Using MBeans” on page 39

Interface Packages

The Message Queue 4.3 installation includes two Java packages related to the JMX interface:

® com.sun.messaging contains the class AdminConnectionFactory (discussed in
“Connecting to the MBean Server” on page 36), along with a utility class
AdminConnectionConfiguration defining static constants for use in configuring it.

= com.sun.messaging.jms.management.server contains a collection of utility classes (listed
in “Utility Classes” on page 34) defining useful static constants and methods used in the
JMX interface.

These packages are contained in a Java archive file, imqjmx. jar, included in your Message
Queue installation at the locations shown in Table 2-1, depending on your platform.

TABLE2-1 JMX. jar File Locations

Platform File Location

Solaris /usr/share/lib/imgjmx.jar

33

Utility Classes

TABLE2-1 JMX. jar File Locations (Continued)
Platform File Location
Linux /opt/sun/mg/share/lib/imgjmx.jar
Solaris C:\sun\lib\imgjmx.jar

To do application development for the Message Queue JMX API, you must include this . jar
file in your CLASSPATH environment variable.

Note - Message Queue’s JMX interface requires version 1.5 of the Java Development Kit (JDK).
The functionality described here is not available under earlier versions of the JDK.

Utility Classes

34

The package com. sun.messaging. jms.management.server in the Message Queue JMX
interface contains a collection of utility classes defining useful static constants and methods for
use with Message Queue MBeans. Table 2-2 lists these utility classes; see the relevant sections of
Chapter 3, “Message Queue MBean Reference,” and the Message Queue JMX JavaDoc

documentation for further details.

TABLE2-2 Message Queue JMX Utility Classes

Class Description

MQObjectName Constants and methods for Message Queue MBean object names
MQNotification Superclass for all Message Queue JMX notifications
BrokerAttributes Names of broker attributes

BrokerOperations Names of broker operations

BrokerNotification Constants and methods related to broker notifications
BrokerState Constants related to broker state

ServiceAttributes Names of connection service attributes

ServiceOperations Names of connection service operations

ServiceNotification Constants and methods related to connection service notifications
ServiceState Constants related to connection service state
ConnectionAttributes Names of connection attributes

ConnectionOperations Names of connection operations

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Utility Classes

TABLE2-2 Message Queue JMX Utility Classes

(Continued)

Class

Description

ConnectionNotification

Constants and methods related to connection notifications

DestinationAttributes

Names of destination attributes

DestinationOperations

Names of destination operations

DestinationNotification

Constants and methods related to destination notifications

DestinationType

Names of destination types

DestinationState

Constants related to destination state

DestinationLimitBehavior

Names of destination limit behaviors

DestinationPauseType Constants related to destination pause type
ProducerAttributes Names of message producer attributes

ProducerOperations Names of message producer operations

ProducerInfo Field names in composite data object for message producers
ConsumerAttributes Names of message consumer attributes
ConsumerOperations Names of message consumer operations

ConsumerInfo Field names in composite data object for message consumers

TransactionAttributes

Names of transaction attributes

TransactionOperations

Names of transaction operations

TransactionNotification

Constants and methods related to transaction notifications

TransactionInfo Field names in composite data object for transactions
TransactionState Constants related to transaction state

ClusterAttributes Names of broker cluster attributes

ClusterOperations Names of broker cluster operations

ClusterNotification Constants and methods related to broker cluster notifications
BrokerClusterInfo Field names in composite data object for broker clusters
LogAttributes Names of logging attributes

LogNotification Constants and methods related to logging notifications
LogLevel Names of logging levels

JVMAttributes Names of Java Virtual Machine (JVM) attributes

Chapter2 « Using the JMX API

35

Connecting to the MBean Server

Connecting to the MBean Server

As defined in the JMX Specification, client applications obtain MBeans through an MBean
server connection, accessed by means of a JMX connector. Message Queue brokers use the
standard JMX infrastructure provided with the Java Development Kit (JDK) 1.5, which uses
remote method invocation (RMI) for communicating between client and server. Once you
obtain a JMX connector, you can use it to obtain an MBean server connection with which to
access the attributes, operations, and notifications of individual MBeans. This infrastructure is
describe in “JMX Connection Infrastructure” in Sun Java System Message Queue 4.3
Administration Guide.

For convenience, Message Queue provides an admin connection factory (class
AdminConnectionFactory), similar in spirit to the familiar Message Queue connection factory,
for creating JMX connectors with a minimum of effort. It is also possible to dispense with this
convenience class and obtain a JMX connector using standard JMX classes instead. The
following sections illustrate these two techniques. While Message Queue client applications are
free to use either method, the first is simpler and is recommended.

Obtaining a JMX Connector from an Admin
Connection Factory

The Message Queue convenience class AdninConnectionFactory (defined in package
com.sun.messaging) encapsulates a predefined set of configuration properties and hides
details, such as the JMX Service URL, involved in obtaining a JMX connector. Example 2-1
shows the most straightforward use, obtaining a JMX connector at the default broker Port
Mapper port 7676 on host Localhost, with the user name and password both set to the default
value of admin. After obtaining the connector, its getMBeanServerConnection method is called
to obtain an MBean server connection for interacting with Message Queue MBeans.

36 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

http://docs.sun.com/doc/820-6740/ggvry?a=view
http://docs.sun.com/doc/820-6740/ggvry?a=view

Connecting to the MBean Server

EXAMPLE2-1 Obtaininga JMX Connector from an Admin Connection Factory

import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;

// Create admin connection factory for default host and port (localhost:7676)

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector using default user name (admin) and password (admin)
JMXConnector jmxc = acf.createConnection();

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Example 2-2 shows how to reconfigure an admin connection factory's properties to nondefault
values. Instead of using the default broker address (Localhost:7676), the code shown here uses
the connection factory's setProperty method to reconfigure it to connect to a broker at port
9898 on host otherhost. (The names of the connection factory's configuration properties are
defined as static constants in the Message Queue utility class AdminConnectionConfiguration,
defined in package com. sun.messaging.) The arguments to the factory's createConnection
method are then used to supply a user name and password other than the defaults.

EXAMPLE2-2 Configuring an Admin Connection Factory

import javax.management.remote.*;
import com.sun.messaging.AdminConnectionFactory;

// Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

// Configure for specific broker address
acf.setProperty(AdminConnectionConfiguration.imgAddress, "otherhost:9898");

// Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Chapter2 « Using the JMX API 37

Connecting to the MBean Server

Obtaining a JMX Connector Without Using an Admin
Connection Factory

The generic (non-Message Queue) way of obtaining a JMX connector, as described in the JMX
Specification, is by invoking the static connect method of the standard JMX class
JMXConnectorFactory (see Example 2-3). Client applications may choose to use this method
instead of an admin connection factory in order to avoid dependency on Message
Queue-specific classes.

EXAMPLE2-3 Obtaining a JMX Connector Without Using an Admin Connection Factory

import java.util.HashMap;
import javax.management.remote.*;

// Provide credentials required by server for user authentication
HashMap environment = new HashMap();
String[] credentials = new String[] {"AliBaba", "sesame"};
environment.put (JMXConnector.CREDENTIALS, credentials);

// Get IMXServiceURL of IMX Connector (must be known in advance)
JMXServiceURL url
= new JMXServiceURL("service:jmx:rmi:///jndi/rmi://localhost:9999/server")

// Get JMX connector
JMXConnector jmxc = JMXConnectorFactory.connect(url, environment);

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

The JMXConnectorFactory.connect method accepts two parameters:

m A JMX service URL.

The JMX service URL is an address used for obtaining the JMX connector. It can either
specify the location of a JMX connector stub in an RMI registry or contain a connector stub
as a serialized object. These options, and the format of the address, are described in “The
JMX Service URL” in Sun Java System Message Queue 4.3 Administration Guide

= Anoptional environment parameter.

The environment parameter is a hash map mapping attribute names to their corresponding
values. In particular, the CREDENTIALS attribute specifies the authentication credentials (user
name and password) to be used in establishing a connection. The hash-map key for this
attribute is defined as a static constant, CREDENTIALS, in the JMXConnector interface; the
corresponding value is a 2-element string array containing the user name at index @ and the
password at index 1.

38 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

http://docs.sun.com/doc/820-6740/ghbrs?a=view
http://docs.sun.com/doc/820-6740/ghbrs?a=view

Using MBeans

Using MBeans

Once you have obtained an MBean server connection, you can use it to communicate with
Message Queue (and other) MBeans and to access their attributes, operations, and
notifications. The following sections describe how this is done.

Accessing MBean Attributes

The MBean server connection's getAttribute method accepts the object name of an MBean
along with a string representing the name of one of its attributes, and returns the value of the
designated attribute. Example 2-4 shows an example, obtaining and printing the value of a
destination's MaxNumProducers attribute from its configuration MBean (described in
“Destination Configuration” on page 75).

EXAMPLE 2-4 Gettingan Attribute Value

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class GetAttrValue
{
public static void main (String[] args)
{
try
{ // Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name
ObjectName destConfigName
= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue")

// Get and print attribute value
Integer attrValue
= (Integer)mbsc.getAttribute(destConfigName,
DestinationAttributes.MAX NUM_PRODUCERS);
System.out.println("Maximum number of producers: " + attrValue);

Chapter2 « Using the JMX API 39

Using MBeans

40

EXAMPLE2-4 Getting an Attribute Value (Continued)

// Close JMX connector
jmxc.close();

}

catch (Exception e)
{ System.out.println("Exception occurred:
e.printStackTrace();
}

+ e.toString());

There is also an MBeanServerConnection method named getAttributes, which accepts an
MBean object name and an array of attribute name strings, and returns a result of class
AttributeList. Thisisan array of Attribute objects, each of which provides methods
(getName and getValue) for retrieving the name and value of one of the requested attributes.
Example 2-5 shows a modified version of Example 2-4 that uses getAttributes to retrieve the
values of a destination's MaxNumProducers and maxNumActiveConsumers attributes from its
configuration MBean (see “Destination Configuration” on page 75).

EXAMPLE 2-5 Getting Multiple Attribute Values

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class GetAttrValues
{
public static void main (String[] args)
{
try
{ // Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name
ObjectName destConfigName
= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue");

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

EXAMPLE2-5 Getting Multiple Attribute Values (Continued)

// Create array of attribute names
String attrNames[] =
{ DestinationAttributes.MAX_NUM_PRODUCERS,
DestinationAttributes.MAX NUM ACTIVE CONSUMERS
+i

// Get attributes
AttributelList attrList = mbsc.getAttributes(destConfigName, attrNames);

// Extract and print attribute values
Object attrValue;

attrValue = attrList.get(0).getValue();
System.out.println("Maximum number of producers:

+ attrValue.toString());

attrValue = attrList.get(1).getValue();
System.out.println("Maximum number of active consumers:

" + attrValue.toString());
// Close JMX connector
jmxc.close();

}

catch (Exception e)
{ System.out.println("Exception occurred:
e.printStackTrace();

}

+ e.toString());

To set the value of an attribute, use the MBeanServerConnection method setAttribute. This
takes an MBean object name and an Attribute object specifying the name and value of the
attribute to be set. Example 2-6 uses this method to set a destination's MaxNumProducers
attribute to 25.

Chapter2 « Using the JMX API 41

Using MBeans

42

EXAMPLE2-6 Setting an Attribute Value

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class

{

SetAttrValue

public static void main (String[] args)

{
try
{77

//

//

//

//

//

//

}

Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

Get JIMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Create object name
ObjectName destConfigName
= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue")

Create attribute object
Attribute attr = new Attribute(DestinationAttributes.MAX NUM PRODUCERS, 25);

Set attribute value
mbsc.setAttribute(destConfigName, attr);

Close JMX connector
jmxc.close();

catch (Exception e)

{ System.out.println("Exception occurred:

+ e.toString());

e.printStackTrace();

}

Just as for getting attribute values, there is an MBeanServerConnection method named
setAttributes for setting the values of multiple attributes at once. You supply an MBean
object name and an attribute list giving the names and values of the attributes to be set.
Example 2-7 illustrates the use of this method to set a destination's MaxNumProducers and
MaxNumActiveConsumers attributes to 25 and 50, respectively.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

EXAMPLE2-7 Setting Multiple Attribute Values

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class SetAttrValues
{

public static void main (String[] args)
{
try
{ // Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name
ObjectName destConfigName
= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue")

// Create and populate attribute list

AttributelList attrList = new AttributelList();
Attribute attr;

attr = new Attribute(DestinationAttributes.MAX NUM PRODUCERS, 25);
attrlList.add(attr);

attr = new Attribute(DestinationAttributes.MAX NUM ACTIVE CONSUMERS, 50);
attrList.add(attr);

// Set attribute values
mbsc.setAttributes(destConfigName, attrList);

// Close JMX connector
jmxc.close();

Chapter2 « Using the JMX API 43

Using MBeans

EXAMPLE2-7 Setting Multiple Attribute Values (Continued)

catch (Exception e)
{ System.out.println("Exception occurred:
e.printStackTrace();

}

+ e.toString());

Invoking MBean Operations

To invoke an MBean operation, use the MBeanServerConnection method invoke. The first two
parameters to this method are an MBean object name and a string specifying the name of the
operation to be invoked. (The two remaining parameters are used for supplying parameters to
the invoked operation, and are discussed in the next example.) The method returns an object
that is the operation's return value (if any). Example 2-8 shows the use of this method to pause
the jms connection service by invoking the pause operation of its service configuration MBean
(see “Service Configuration” on page 62).

EXAMPLE2-8 Invokingan Operation

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class InvokeOp
{
public static void main (String[] args)
{
try
{ // Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name
ObjectName serviceConfigName = MQObjectName.createServiceConfig("jms");

44 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

EXAMPLE 2-8 Invokingan Operation (Continued)

//

/7

}

catch

{ sy
e.

Invoke operation
mbsc.invoke(serviceConfigName, ServiceOperations.PAUSE, null, null);

Close JMX connector
jmxc.close();

(Exception e)
stem.out.println("Exception occurred:
printStackTrace();

+ e.toString());

When the operation being invoked requires parameters, you supply them in an array as the
third parameter to the MBeanServerConnection. invoke method. The method's fourth
parameter is a signature array giving the class or interface names of the invoked operation's
parameters. Example 2-9 shows an illustration, invoking the destination manager
configuration MBean's create operation to create a new queue destination named MyQueue
with the same attributes that were set in Example 2-7. The create operation (see “Destination
Manager Configuration” on page 85) takes three parameters: the type (QUEUE or TOPIC) and
name of the new destination and an attribute list specifying any initial attribute values to be set.
The example shows how to set up a parameter array (opParams) containing these values, along
with a signature array (opSig) giving their classes, and pass them to the invoke method.

EXAMPLE2-9 Invokingan Operation with Parameters

import
import
import
import

public
{

javax.m
javax.m
com.sun
com.sun

class

anagement.*;

anagement.remote.*;
.messaging.AdminConnectionFactory;
.messaging.jms.management.server.*;

InvokeOpWithParams

public static void main (String[] args)

{
try
{7/

/7

Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

Chapter2 « Using the JMX API 45

Using MBeans

EXAMPLE2-9 Invokingan Operation with Parameters (Continued)

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name
ObjectName destMgrConfigName
= new ObjectName(MQObjectName.DESTINATION MANAGER CONFIG MBEAN NAME);

// Create and populate attribute list

AttributelList attrList = new AttributelList();
Attribute attr;

attr = new Attribute(DestinationAttributes.MAX NUM PRODUCERS, 25);
attrList.add(attr);

attr = new Attribute(DestinationAttributes.MAX_NUM_ACTIVE_CONSUMERS, 50);
attrList.add(attr);

// Create operation’s parameter and signature arrays

Object opParams[] = { DestinationType.QUEUE,
"MyQueue"
attrList
+i

String opSig[] = { String.class.getName(),
String.class.getName(),
attrList.getClass().getName()

+i

// Invoke operation
mbsc.invoke(destMgrConfigName, DestinationOperations.CREATE, opParams, opSig);

// Close JMX connector
jmxc.close();

}

catch (Exception e)
{ System.out.println("Exception occurred: " + e.toString());
e.printStackTrace();
}

Example 2-10 shows a more elaborate example combining the use of MBean operations and
attributes. The destination manager monitor MBean operation getDestinations (see
“Destination Manager Monitor” on page 89) returns an array of object names of the

46 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

destination monitor MBeans for all current destinations. The example then iterates through the
array, printing the name, destination type (QUEUE or TOPIC), and current state (such as RUNNING
or PAUSED) for each destination.

EXAMPLE2-10 Combining Operations and Attributes

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class

{

OpsAndAttrs

public static void main (String[] args)

{
try
{7/

//

/7

//

//

Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Create object name for destination manager monitor MBean
ObjectName destMgrMonitorName
= new ObjectName(MQObjectName.DESTINATION MANAGER MONITOR MBEAN NAME) ;

Get destination object names

ObjectName destNames[] = mbsc.invoke(destMgrMonitorName,
DestinationOperations.GET_DESTINATIONS,
null,
null);

Chapter2 « Using the JMX API 47

Using MBeans

EXAMPLE 2-10 Combining Operations and Attributes (Continued)

// Step through array of object names, printing information for each destination
System.out.println("Listing destinations: ");

ObjectName eachDestName;
Object attrvalue;

for (int i = 0; i < destNames.length; ++i)
{ eachDestName = destNames[il];

attrValue = mbsc.getAttribute(eachDestName, DestinationAttributes.NAME);
System.out.println("\tName: " + attrValue);

attrValue = mbsc.getAttribute(eachDestName, DestinationAttributes.TYPE);
System.out.println("\tTypeYPE: " + attrValue);

attrValue = mbsc.getAttribute(eachDestName, DestinationAttributes.STATE LABEL);
System.out.println("\tState: " + attrValue);

System.out.println(");
}

// Close JMX connector
jmxc.close();

}

catch (Exception e)
{ System.out.println("Exception occurred:
e.printStackTrace();
}

+ e.toString());

Some of the Message Queue MBeans’ operations and attributes return a composite data object
(implementing the JMX CompositeData interface). This type of object consists of a collection of
data values accessed by means of associative lookup keys. The specific keys vary from one
MBean to another, and are described in the relevant sections of Chapter 3, “Message Queue
MBean Reference” Example 2-11 shows an illustration, invoking the consumer manager
MBean's GetConsumerInfo operation (see “Consumer Manager Monitor” on page 96 to obtain
an array of composite data objects describing all current message consumers. It then steps
through the array, using the lookup keys listed in Table 3-63 to retrieve and print the
characteristics of each consumer.

48 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

EXAMPLE2-11 Using a Composite Data Object

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;
import com.sun.messaging.jms.management.server.*;

public class CompData
{
public static void main (String[] args)
{
try
{ // Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

// Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name
ObjectName consumerMgrMonitorName
= new ObjectName(MQObjectName.CONSUMER MANAGER _MONITOR MBEAN_ NAME) ;

// Invoke operation
Object result
= mbsc.invoke(consumerMgrMonitorName,
ConsumerOperations.GET CONSUMER INFO,
null,
null);

// Typecast result to an array of composite data objects
CompositeData cdArray[] = (CompositeDatal]l)result;

Chapter2 « Using the JMX API 49

Using MBeans

EXAMPLE2-11 Using a Composite Data Object (Continued)

// Step through array, printing information for each consumer

if (cdArray == null)
{ System.out.println("No message consumers found");

}
else
{ for (int i = 0; i < cdArray.length; ++i)
{ CompositeData cd = cdArray[i];
System.out.println("Consumer ID: "
+ cd.get(ConsumerInfo.
System.out.println("User: "
+ cd.get(ConsumerInfo
System.out.println("Host: "
+ cd.get(ConsumerInfo
System.out.println("Connection service: "
+ cd.get(ConsumerInfo.
System.out.println("Acknowledgment mode: "
+ cd.get(ConsumerInfo
System.out.println("Destination name: "
+ cd.get(ConsumerInfo.
System.out.println("Destination type: "
+ cd.get(ConsumerInfo.
}
}

}

catch (Exception e)
{ System.out.println("Exception occurred: "
e.printStackTrace();

}
finally
{ if (jmxc != null)
{ try
{ jmxc.close();
}
catch (IOException ioe)
{ System.out.println("I/O exception occurred: "
ioe.printStackTrace();
}
}
}

.USER)

.HOST)

CONSUMER_ID));

)

)

SERVICE_NAME));

.ACKNOWLEDGE_MODE_LABEL));

DESTINATION NAME));

DESTINATION_TYPE));

+ e.toString());

+ ioe.toString());

50 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

Receiving MBean Notifications

To receive notifications from an MBean, you must register a notification listener with the
MBean server. This is an object implementing the JMX interface NotificationListener,
which consists of the single method handleNotification. In registering the listener with the
MBean server (using the MBeanServerConnection method addNotificationListener), you
supply the object name of the MBean from which you wish to receive notifications, along with a
notification filter specifying which types of notification you wish to receive. (You can also
provide an optional handback object to be passed to your listener whenever it is invoked, and
which you can use for any purpose convenient to your application.) The MBean server will then
call your listener's handleNotification method whenever the designated MBean broadcasts a
notification satisfying the filter you specified.

The notification listener's handleNotification method receives two parameters: a notification
object (belonging to the JMX class Notification) describing the notification being raised,
along with the handback object, if any, that you supplied when you registered the listener. The
notification object provides methods for retrieving various pieces of information about the
notification, such as its type, the MBean raising it, its time stamp, and an MBean-dependent
user data object and message string further describing the notification. The notifications raised
by Message Queue MBeans belong to Message Queue-specific subclasses of Notification,
such asBrokerNotification, ServiceNotification,and DestinationNotification, which
add further information retrieval methods specific to each particular type of notification; see the
relevant sections of Chapter 3, “Message Queue MBean Reference,” for details.

Example 2-12 shows a notification listener for responding to Message Queue service
notifications, issued by a service manager monitor MBean. On receiving a notification
belonging to the Message Queue class ServiceNotification, the listener simply prints an
informational message containing the notification's type and the name of the connection
service affected.

Chapter2 « Using the JMX API 51

Using MBeans

52

EXAMPLE2-12 Notification Listener

import javax.management.*;
import javax.management.remote.*;
import com.sun.messaging.jms.management.server.*;

public class ServiceNotificationListener implements NotificationListener
{
public void handleNotification (Notification notification,
Object handback)

if (notification instanceOf ServiceNotification)
{ ServiceNotification n = (ServiceNotification)notification;

}
else
{ System.err.println("Wrong type of notification for listener");
return;
}
System.out.println("\nReceived service notification: ");

System.out.println("\tNotification type: " + n.getType());
System.out.println("\tService name: " + n.getServiceName());

System.out.println(");

Example 2-13 shows how to register the notification listener from Example 2-12, using the
MBeanServerConnection method addNotificationListener. The notification filter is an
object of the standard JMX class NotificationFilterSupport; the calls to this object's
enableType method specify that the listener should be invoked whenever a connection service
is paused or resumed. The listener itself is an instance of class ServiceNotificationListener,
as defined in Example 2-12.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Using MBeans

EXAMPLE2-13 Registering a Notification Listener

import
import
import
import
import

public
{

javax.m
javax.m.
com.sun
com.sun
java.io

class

anagement.*;

anagement. remote.*;
.messaging.AdminConnectionFactory;
.messaging.jms.management.server.*;
.IOException

NotificationService

public static void main (String[] args)

{
try
{7/

/7

//

//

//

//

}

catch

{ Sy
e.

Create admin connection factory
AdminConnectionFactory acf = new AdminConnectionFactory();

Get JMX connector, supplying user name and password
JMXConnector jmxc = acf.createConnection("AliBaba", "sesame")

Get MBean server connection
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Create object name for service manager monitor MBean
ObjectName svcMgrMonitorName
= new ObjectName(MQObjectName.SERVICE MANAGER MONITOR MBEAN NAME);

Create notification filter

NotificationFilterSupport myFilter = new NotificationFilterSupport();
myFilter.enableType(ServiceNotification.SERVICE PAUSE);
myFilter.enableType(ServiceNotification.SERVICE RESUME);

Create notification listener
ServiceNotificationListener myListener = new ServiceNotificationListener();
mbsc.addNotificationListener(svcMgrMonitorName, myListener, myFilter, null);

(Exception e)
stem.out.println("Exception occurred:
printStackTrace();

+ e.toString());

Chapter2 « Using the JMX API 53

Using MBeans

EXAMPLE 2-13 Registering a Notification Listener (Continued)

finally
{ if (jmxc != null)

{ try
{ jmxc.close();
}

catch (IOException ioe)
{ System.out.println("I/O exception occurred:
ioe.printStackTrace();

}

+ ioe.toString());

54 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

L K R 4 CHAPTER 3

Message Queue MBean Reference

This chapter describes the JMX MBeans that allow you to configure and monitor a Message
Queue broker. It consists of the following sections:

= “Brokers” on page 55

= “Connection Services” on page 62
“Connections” on page 70
“Destinations” on page 75
“Message Producers” on page 91
“Message Consumers” on page 94
“Transactions” on page 99

“Broker Clusters” on page 104
“Logging” on page 112

“Java Virtual Machine” on page 115

Brokers

This section describes the MBeans used for managing brokers:

= The broker configuration MBean configures a broker.
= The broker monitor MBean monitors a broker.

The following subsections describe each of these MBeans in detail.

Broker Configuration

The broker configuration MBean is used for configuring a broker. There is one such MBean for
each broker.

55

Brokers

Object Name

The broker configuration MBean has the following object name:
com.sun.messaging.jms.server:type=Broker, subtype=Config

A string representing this object name is defined as a static constant
BROKER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes

The broker configuration MBean has the attributes shown in Table 3-1. The names of these
attributes are defined as static constants in the utility class BrokerAttributes.

TABLE3-1 Broker Configuration Attributes

Name Type Settable? Description
BrokerID String No Broker identifier
Must be a unique alphanumeric string of no more than n — 13 characters,
where 7 is the maximum table name length allowed by the database. No two
running brokers may have the same broker identifier.
For brokers using a JDBC-based persistent data store, this string is appended
to the names of all database tables to make them unique in the case where
more than one broker instance is using the same database. If a database is not
used as the persistent data store, the value of this attribute is null.
Note - For high-availability brokers, database table names use the ClusterID
attribute (see Table 3-74) instead.
Version String No Broker version
InstanceName String No Broker instance name
Example:
imgbroker
Port Integer Yes Port number of Port Mapper
Operations
The broker configuration MBean supports the operations shown in Table 3-2. The names of
these operations are defined as static constants in the utility class BrokerOperations.
56 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Brokers

TABLE3-2 Broker Configuration Operations

Name Parameters ResultType Description
shutdown nofailover None Shut down broker
(Bootean) If nofailover is false or null, another broker will attempt to take over for this
time (Long) broker when it shuts down; this applies only to brokers in a high-availability
(HA) cluster. If nofailover is true, no such takeover attempt will occur.
The time parameter specifies the interval, in seconds, before the broker
actually shuts down; for immediate shutdown, specify @ or null.
shutdown None None Shut down broker immediately
If the broker is part of a high-availability (HA) cluster, another broker will
attempt to take over for it.
Equivalent to shutdown (Boolean.FALSE, new Long(@)).
restart None None Restart broker
quiesce None None Quiesce broker
The broker will refuse any new connections; existing connections will
continue to be served.
unquiesce None None Ungquiesce broker
The broker will again accept new connections.
takeover! brokerID (String) | None Initiate takeover from specified broker
The desired broker is designated by its broker identifier (brokerID).
getProperty propertyName String Get value of configuration property
(String) The desired property is designated by its name (propertyName)
resetMetrics None None Reset metrics

Resets to zero all metrics in monitor MBeans that track cumulative, peak, or
average counts. The following attributes are affected:

! HA clusters only

Chapter3 « Message Queue MBean Reference 57

Brokers

TABLE3-2 Broker Configuration Operations (Continued)
Name Parameters ResultType Description
Service monitor
NumConnectionsOpened

NumConnectionsRejected
NumMsgsIn

NumMsgsOut

MsgBytesIn

MsgBytesOut

NumPktsIn

NumPktsOut

PktBytesIn

PktBytesOut

Service manager monitor
NumMsgsIn
NumMsgsOut
MsgBytesIn
MsgBytesOut
NumPktsIn
NumPktsOut
PktBytesIn
PktBytesOut

Connection manager monitor
NumConnectionsOpened
NumConnectionsRejected

Destination monitor
PeakNumConsumers
AvgNumConsumers
PeakNumActiveConsumers
AvgNumActiveConsumers
PeakNumBackupConsumers
AvgNumBackupConsumers
PeakNumMsgs
AvgNumMsgs
NumMsgsIn
NumMsgsOut
MsgBytesIn
MsgBytesOut
PeakMsgBytes
PeakTotalMsgBytes
AvgTotalMsgBytes

58 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Brokers

TABLE3-2 Broker Configuration Operations (Continued)

Name

Parameters Result Type Description

Transaction manager monitor
NumTransactionsCommitted
NumTransactionsRollback

Notification

The broker configuration MBean supports the notification shown in Table 3-3.

TABLE3-3 Broker Configuration Notification

Name

Description

jmx.attribute.change Attribute value changed

Broker Monitor

The broker monitor MBean is used for monitoring a broker. There is one such MBean for each
broker.

Object Name

The broker monitor MBean has the following object name:
com.sun.messaging.jms.server:type=Broker, subtype=Monitor

A string representing this object name is defined as a static constant
BROKER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes

The broker monitor MBean has the attributes shown in Table 3-4. The names of these
attributes are defined as static constants in the utility class BrokerAttributes.

Chapter3 « Message Queue MBean Reference 59

Brokers

TABLE3-4 Broker Monitor Attributes

Name Type Settable? Description
BrokerID String No Broker identifier
Must be a unique alphanumeric string of no more than n — 13 characters,
where 7 is the maximum table name length allowed by the database. No two
running brokers may have the same broker identifier.
For brokers using a JDBC-based persistent data store, this string is appended
to the names of all database tables to make them unique in the case where
more than one broker instance is using the same database. If a database is not
used as the persistent data store, the value of this attribute is nul1l.
Note - For high-availability brokers, database table names use the ClusterID
attribute (see Table 3-78) instead.
Version String No Broker version
InstanceName String No Broker instance name
Port Integer No Port number of Port Mapper
ResourceState String No Current broker resource state:
green: < 80% memory utilization
yellow: 80-90% memory utilization
orange: 90-98% memory utilization
red: > 98% memory utilization
Note - The threshold values shown are the default thresholds for triggering
the various states; these can be changed by setting the broker configuration
properties
img.green.threshold
imqg.yellow.threshold
img.orange.threshold
img.red.threshold
Embedded Boolean No Is broker embedded (started from within another process)?
Notifications
The broker monitor MBean supports the notifications shown in Table 3-5. These notifications
are instances of the Message Queue JMX classes BrokerNotification and
ClusterNotification, and their names are defined as static constants in those classes.
60 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Brokers

TABLE3-5 Broker Monitor Notifications

Name

Utility Constant

Description

mqg.broker.shutdown.start

BrokerNotification.

BROKER _SHUTDOWN_START

Broker has begun shutting
down

mqg.broker.quiesce.start

BrokerNotification.

BROKER QUIESCE_START

Broker has begun quiescing

mqg.broker.quiesce.complete

BrokerNotification

.BROKER _QUIESCE_COMPLETE

Broker has finished quiescing

mq.broker.takeover.start1

BrokerNotification.

BROKER_TAKEOVER_START

Broker has begun taking over
persistent data store from
another broker

mq.broker.takeover.complete'

BrokerNotification.

BROKER_TAKEOVER_COMPLETE

Broker has finished taking over
persistent data store from
another broker

mq.broker.takeover.fail'

BrokerNotification

.BROKER TAKEOVER_FAIL

Attempted takeover has failed

mqg.broker.resource.state.change

BrokerNotification.

BROKER _RESOURCE_STATE_CHANGE

Broker’s resource state has
changed

mqg.cluster.broker.join

ClusterNotification.CLUSTER BROKER_JOIN

Broker has joined a cluster

! HA clusters only

Table 3-6 shows the methods defined in class BrokerNotification for obtaining details about
a broker monitor notification. See Table 3-83 for the corresponding methods of class
ClusterNotification.

TABLE3-6 Data Retrieval Methods for Broker Monitor Notifications

Method ResultType Description
getBrokerID String Broker identifier
getBrokerAddress String Broker address, in the form hostName: portNumber
Example:
host1:3000
getFailedBrokerID! String Broker identifier of broker being taken over
! HA clusters only

Chapter3 - Message Queue MBean Reference

Connection Services

TABLE3-6 Data Retrieval Methods for Broker Monitor Notifications (Continued)
Method Result Type Description
getOldResourceState String Broker’s previous resource state:

green: < 80% memory utilization
yellow: 80-90% memory utilization
orange: 90-98% memory utilization
red: > 98% memory utilization

Note - The threshold values shown are the default thresholds for triggering the
various states; these can be changed by setting the broker configuration
properties

img.green.threshold

img.yellow.threshold

img.orange.threshold

img.red.threshold

getNewResourceState String Broker’s new resource state (see getOldResourceState, above, for possible
values)
getHeapMemoryUsage MemoryUsage Broker’s current heap memory usage

The value returned is an object of class MemoryUsage (defined in the package
java.lang.management).

Connection Services

This section describes the MBeans used for managing connection services:

= The service configuration MBean configures a connection service.

= The service monitor MBean monitors a connection service.

= The service manager configuration MBean manages service configuration MBeans.
= The service manager monitor MBean manages service monitor MBeans.

The following subsections describe each of these MBeans in detail.

Service Configuration

The service configuration MBean is used for configuring a connection service. There is one such
MBean for each service.

Object Name

The service configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Service, subtype=Config, name=serviceName

62 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Connection Services

where serviceName is the name of the connection service (see Table 3-7). The utility class
MQObjectName provides a static method, createServiceConfig, for constructing object names
of this form.

TABLE3-7 Connection Service Names for Service Configuration MBeans

Service Name Service Type Protocol Type
jms Normal TCP

ssljms Normal TLS (SSL-based security)
httpjms Normal HTTP

httpsjms Normal HTTPS (SSL-based security)
admin Admin TCP

ssladmin Admin TLS (SSL-based security)
Attributes

The service configuration MBean has the attributes shown in Table 3-8. The names of these
attributes are defined as static constants in the utility class ServiceAttributes.

TABLE3-8 Service Configuration Attributes

Name Type Settable? Description

Name String No Service name

See Table 3-7 for possible values.

Port Integer Yes Port number (jms, ss1jms, admin, and ssladmin services only)

A value of @ specifies that the port is to be dynamically allocated by the Port
Mapper; to learn the actual port currently used by the service, use the Port
attribute of the service monitor MBean.

MinThreads Integer Yes Minimum number of threads assigned to service
Must be greater than 0.
MaxThreads Integer Yes Maximum number of threads assigned to service

Must be greater than or equal to MinThreads.

ThreadPoolModel String No Threading model for thread pool management:
dedicated: Two dedicated threads per connection, one for incoming and
one for outgoing messages

shared: Connections processed by shared thread when sending or
receiving messages (jms and admin services only)

Chapter3 « Message Queue MBean Reference 63

Connection Services

Operations

The service configuration MBean supports the operations shown in Table 3-9. The names of
these operations are defined as static constants in the utility class ServiceOperations.

TABLE3-9 Service Configuration Operations

Name Parameters Result Type Description

pause None None Pause service (jms, ssljms, httpjms, and httpsjms services only)

resume None None Resume service (jms, ssljms, httpjms, and httpsjms services only)
Notification

The service configuration MBean supports the notification shown in Table 3-10.

TABLE3-10 Service Configuration Notification

Name Description
jmx.attribute.change Attribute value changed
Service Monitor
The service monitor MBean is used for monitoring a connection service. There is one such
MBean for each service.
Object Name

The service monitor MBean has an object name of the following form:
com.sun.messaging.jms.server:type=Service, subtype=Monitor, name=serviceName

where serviceName is the name of the connection service (see Table 3-11). The utility class
MQObjectName provides a static method, createServiceMonitor, for constructing object
names of this form.

TABLE 3-11 Connection Service Names for Service Monitor MBeans

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)
httpjms Normal HTTP

64 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Connection Services

TABLE 3-11 Connection Service Names for Service Monitor MBeans (Continued)
Service Name Service Type Protocol Type
httpsjms Normal HTTPS (SSL-based security)
admin Admin TCP
ssladmin Admin TLS (SSL-based security)
Attributes

The service monitor MBean has the attributes shown in Table 3-12. The names of these
attributes are defined as static constants in the utility class ServiceAttributes.

TABLE3-12 Service Monitor Attributes

Name Type Settable? | Description

Name String No Service name

See Table 3-11 for possible values.

Port Integer No Port number currently used by service

State Integer No Current state

See Table 3-13 for possible values.

StatelLabel String No String representation of current state:

Useful for displaying the state in human-readable form, such as in the Java
Monitoring and Management Console (jconsole).

See Table 3-13 for possible values.

NumConnections Integer No Current number of connections

NumConnectionsOpened Long No Cumulative number of connections opened since broker started
NumConnectionsRejected |Long No Cumulative number of connections rejected since broker started
NumActiveThreads Integer No Current number of threads actively handling connections
NumProducers Integer No Current number of message producers

NumConsumers Integer No Current number of message consumers

NumMsgsIn Long No Cumulative number of messages received since broker started
NumMsgsOut Long No Cumulative number of messages sent since broker started
MsgBytesIn Long No Cumulative size in bytes of messages received since broker started
MsgBytesOut Long No Cumulative size in bytes of messages sent since broker started

Chapter3 « Message Queue MBean Reference 65

Connection Services

TABLE3-12 Service Monitor Attributes (Continued)
Name Type Settable? | Description
NumPktsIn Long No Cumulative number of packets received since broker started
NumPktsOut Long No Cumulative number of packets sent since broker started
PktBytesIn Long No Cumulative size in bytes of packets received since broker started
PktBytesOut Long No Cumulative size in bytes of packets sent since broker started

Table 3-13 shows the possible values for the State and StateLabel attributes. These values are
defined as static constants in the utility class ServiceState.

TABLE3-13 Connection Service State Values

Value Utility Constant String Representation Meaning

0 ServiceState.RUNNING RUNNING Service running

1 ServiceState.PAUSED PAUSED Service paused

2 ServiceState.QUIESCED QUIESCED Service quiesced

-1 ServiceState.UNKNOWN UNKNOWN Service state unknown
Operations

The service monitor MBean supports the operations shown in Table 3—-14. The names of these
operations are defined as static constants in the utility class ServiceOperations.

TABLE3-14 Service Monitor Operations

Name Parameters Result Type Description
getConnections None ObjectName[] Object names of connection monitor MBeans for
all current connections
getProducerIDs None String[] Producer identifiers of all current message
producers
etConsumerlIDs None String[]
9 g Consumer identifiers of all current message
consumers
Notifications
The service monitor MBean supports the notifications shown in Table 3-15. These notifications
are instances of the Message Queue JMX classes ServiceNotification and
ConnectionNotification, and their names are defined as static constants in those classes.
66 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Connection Services

TABLE3-15 Service Monitor Notifications

Name

Utility Constant

Description

mg.service.pause

ServiceNotification.SERVICE_PAUSE

Service paused

mqg.service.resume

ServiceNotification.SERVICE_RESUME

Service resumed

mg.connection.open

ConnectionNotification.CONNECTION_ OPEN

Connection opened

mg.connection.reject

ConnectionNotification.CONNECTION REJECT

Connection rejected

mg.connection.close

ConnectionNotification.CONNECTION CLOSE

Connection closed

Table 3-16 shows the method defined in class ServiceNotification for obtaining details
about a service monitor notification. See Table 3-31 for the corresponding methods of class
ConnectionNotification.

TABLE3-16 Data Retrieval Method for Service Monitor Notifications

Method

Result Type

Description

getServiceName

String

Service name

See Table 3-11 for possible values.

Service Manager Configuration

Each broker has a single service manager configuration MBean, used for managing all of the
broker's service configuration MBeans.

Object Name

The service manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ServiceManager, subtype=Config

A string representing this object name is defined as a static constant
SERVICE_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes

The service manager configuration MBean has the attributes shown in Table 3-17. The names
of these attributes are defined as static constants in the utility class ServiceAttributes.

Chapter3 - Message Queue MBean Reference

67

Connection Services

TABLE3-17 Service Manager Configuration Attributes

Name Type Settable? Description

MinThreads Integer No Total minimum number of threads for all active services

MaxThreads Integer No Total maximum number of threads for all active services
Operations

The service manager configuration MBean supports the operations shown in Table 3-18. The
names of these operations are defined as static constants in the utility class ServiceOperations.

TABLE3-18 Service Manager Configuration Operations

Name Parameters ResultType Description

getServices None ObjectName[] Object names of service configuration MBeans for all services
pause None None Pause all services except admin and ssladmin

resume None None Resume all services

Service Manager Monitor

Each broker has a single service manager monitor MBean, used for managing all of the broker's
service monitor MBeans.

Object Name

The service manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ServiceManager, subtype=Monitor

A string representing this object name is defined as a static constant
SERVICE_MANAGER MONITOR MBEAN_NAME in the utility class MQObjectName.

Attributes

The service manager monitor MBean has the attributes shown in Table 3-19. The names of
these attributes are defined as static constants in the utility class ServiceAttributes.

TABLE3-19 Service Manager Monitor Attributes

Name Type Settable? Description
NumServices Integer No Number of connection services
68 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Connection Services

TABLE3-19 Service Manager Monitor Attributes (Continued)

Name Type Settable? Description

NumActiveThreads Integer No Total current number of threads actively handling connections
for all services

NumMsgsIn Long No Total cumulative number of messages received by all services
since broker started

NumMsgsOut Long No Total cumulative number of messages sent by all services since
broker started

MsgBytesIn Long No Total cumulative size in bytes of messages received by all services
since broker started

MsgBytesOut Long No Total cumulative size in bytes of messages sent by all services
since broker started

NumPktsIn Long No Total cumulative number of packets received by all services since
broker started

NumPktsOut Long No Total cumulative number of packets sent by all services since
broker started

PktBytesIn Long No Total cumulative size in bytes of packets received by all services
since broker started

PktBytesOut Long No Total cumulative size in bytes of packets sent by all services since
broker started

Operation

The service manager monitor MBean supports the operation shown in Table 3-20. The name of
this operation is defined as a static constant in the utility class ServiceOperations.

TABLE3-20 Service Manager Monitor Operation

Name Parameters Result Type Description
getServices None ObjectName[] Object names of all service monitor MBeans
Notifications

The service manager monitor MBean supports the notifications shown in Table 3-21. These
notifications are instances of the Message Queue JMX class ServiceNotification, and their
names are defined as static constants in that class.

Chapter3 « Message Queue MBean Reference 69

Connections

TABLE3-21 Service Manager Monitor Notifications

Name Utility Constant Description
mq.service.pause ServiceNotification.SERVICE PAUSE Service paused
mq.service.resume ServiceNotification.SERVICE RESUME Service resumed

Table 3-22 shows the method defined in class ServiceNotification for obtaining details
about a service manager monitor notification.

TABLE3-22 Data Retrieval Method for Service Manager Monitor Notifications

Method

ResultType Description

getServiceName

String Service name

See Table 3-11 for possible values.

Connections

70

This section describes the MBeans used for managing connections:

= The connection configuration MBean configures a connection.

® The connection monitor MBean monitors a connection.

= The connection manager configuration MBean manages connection configuration MBeans.

= The connection manager monitor MBean manages connection monitor MBeans.

The following subsections describe each of these MBeans in detail.

Connection Configuration

The connection configuration MBean is used for configuring a connection. There is one such
MBean for each connection.

Object Name

The connection configuration MBean has an object name of the following form:
com.sun.messaging.jms.server:type=Connection, subtype=Config, id=connectionID
where connectionID is the connection identifier. For example:
com.sun.messaging.jms.server:type=Connection, subtype=Config,

1d=7853717387765338368

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Connections

The utility class MQObjectName provides a static method, createConnectionConfig, for
constructing object names of this form.

Attribute

The connection configuration MBean has the attribute shown in Table 3-23. The name of this
attribute is defined as a static constant in the utility class ConnectionAttributes.

TABLE3-23 Connection Configuration Attribute

Name

Type Settable? Description

ConnectionID

String No Connection identifier

Connection Monitor

The connection monitor MBean is used for monitoring a connection. There is one such MBean
for each connection.

Object Name

The connection monitor MBean has an object name of the following form:
com.sun.messaging.jms.server:type=Connection, subtype=Monitor, id=connectionID
where connectionID is the connection identifier. For example:

com.sun.messaging.jms.server:type=Connection, subtype=Monitor,
1d=7853717387765338368

The utility class MQObjectName provides a static method, createConnectionMonitor, for
constructing object names of this form.

Attributes

The connection monitor MBean has the attributes shown in Table 3-24. The names of these
attributes are defined as static constants in the utility class ConnectionAttributes.

TABLE3-24 Connection Monitor Attributes

Name Type Settable? Description
ConnectionID String No Connection identifier
Host String No Host from which connection was made

Chapter 3 « Message Queue MBean Reference 71

Connections

TABLE3-24 Connection Monitor Attributes (Continued)
Name Type Settable? Description
Port Integer No Port number
ServiceName String No Connection service name
User String No User name
ClientID String No Client identifier
ClientPlatform String No String describing client platform
NumProducers Integer No Current number of associated message producers
NumConsumers Integer No Current number of associated message consumers
Operations

The connection monitor MBean supports the operations shown in Table 3-25. The names of
these operations are defined as static constants in the utility class ConnectionOperations.

TABLE3-25 Connection Monitor Operations

Name Parameters ResultType Description

getService None ObjectName Object name of service monitor MBean for associated
connection service

getTemporaryDestinations None ObjectName[] Object names of destination monitor MBeans for all associated
temporary destinations

getProducerIDs None String[] Producer identifiers of all associated message producers

getConsumerIDs None String[] Consumer identifiers of all associated message consumers

Connection Manager Configuration

Each broker has a single connection manager configuration MBean, used for managing all of the
broker's connection configuration MBeans.

Object Name

The connection manager configuration MBean has the following object name:
com.sun.messaging.jms.server:type=ConnectionManager, subtype=Config

A string representing this object name is defined as a static constant
CONNECTION_MANAGER CONFIG_MBEAN_NAME in the utility class MQObjectName.

72 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Connections

Attribute

The connection manager configuration MBean has the attribute shown in Table 3-26. The
name of this attribute is defined as a static constant in the utility class ConnectionAttributes.

TABLE3-26 Connection Manager Configuration Attribute

Name Type Settable? Description
NumConnections Integer No Number of current connections
Operations

The connection manager configuration MBean supports the operations shown in Table 3-27.
The names of these operations are defined as static constants in the utility class
ConnectionOperations.

TABLE3-27 Connection Manager Configuration Operations

Name Parameters Result Type Description

getConnections None ObjectName[] Object names of connection conﬁguration MBeans
for all current connections

destroy connectionID (Long) None Destroy connection

The desired connection is designated by its
connection identifier (connectionID).

Connection Manager Monitor
Each broker has a single connection manager monitor MBean, used for managing all of the

broker's connection monitor MBeans.

Object Name

The connection manager monitor MBean has the following object name:
com.sun.messaging.jms.server:type=ConnectionManager, subtype=Monitor
A string representing this object name is defined as a static constant

CONNECTION MANAGER MONITOR MBEAN_ NAME in the utility class MQObjectName.

Attributes

The connection manager monitor MBean has the attributes shown in Table 3-28. The names of
these attributes are defined as static constants in the utility class ConnectionAttributes.

Chapter 3 « Message Queue MBean Reference 73

Connections

TABLE3-28 Connection Manager Monitor Attributes

Name Type Settable? | Description

NumConnections Integer |No Current number of connections

NumConnectionsOpened Long No Cumulative number of connections opened since broker started

NumConnectionsRejected Long No Cumulative number of connections rejected since broker started
Operation

The connection manager monitor MBean supports the operation shown in Table 3-29. The
name of this operation is defined as a static constant in the utility class ConnectionOperations.

TABLE3-29 Connection Manager Monitor Operation

Name Parameters

ResultType Description

getConnections None

ObjectName[]

Object names of connection monitor MBeans for all current connections

Notifications

The connection manager monitor MBean supports the notifications shown in Table 3-30.
These notifications are instances of the Message Queue JMX class ConnectionNotification,

and their names are defined as static constants in that class.

TABLE3-30 Connection Manager Monitor Notifications

Name

Utility Constant

Description

mg.connection.open

ConnectionNotification.CONNECTION_ OPEN

Connection opened

mq.connection.reject

ConnectionNotification.CONNECTION REJECT

Connection rejected

mg.connection.close

ConnectionNotification.CONNECTION CLOSE

Connection closed

Table 3-31 shows the methods defined in class ConnectionNotification for obtaining details
about a connection manager monitor notification.

TABLE3-31 Data Retrieval Methods for Connection Manager Monitor Notifications

Method Result Type Description

getConnectionID String Connection identifier

getRemoteHost String Host from which connection was made
getServiceName String Connection service name

74 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE3-31 Data Retrieval Methods for Connection Manager Monitor Notifications (Continued)
Method Result Type Description

getUserName String User name

Destinations

This section describes the MBeans used for managing destinations:

= The destination configuration MBean configures a destination.
= The destination monitor MBean monitors a destination.
= The destination manager configuration MBean manages destination configuration MBeans.

= The destination manager monitor MBean manages destination monitor MBeans.

The following subsections describe each of these MBeans in detail.

Destination Configuration

The destination configuration MBean is used for configuring a destination. There is one such
MBean for each destination.

Object Name

The destination configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Destination, subtype=Config,
desttype=destinationType, name=destinationName

where destinationType is one of the destination types shown in Table 3-33 and
destinationName is the name of the destination. For example:

com.sun.messaging.jms.server:type=Destination, subtype=Config,desttype=t,
name="Dest"

The utility class MQObjectName provides a static method, createDestinationConfig, for
constructing object names of this form.

Attributes

The destination configuration MBean has the attributes shown in Table 3-32. The names of
these attributes are defined as static constants in the utility class DestinationAttributes.

Chapter 3 « Message Queue MBean Reference 75

Destinations

TABLE3-32 Destination Configuration Attributes

Name

Type

Settable?

Description

Name

String

Destination name

Type

String

Destination type

See Table 3-33 for possible values.

MaxNumMsgs

Long

Yes

Maximum number of unconsumed messages

A value of —1 denotes an unlimited number of messages.

MaxBytesPerMsg

Long

Yes

Maximum size, in bytes, of any single message

Rejection of a persistent message is reported to the producing
client with an exception; no notice is sent for nonpersistent
messages.

A value of —1 denotes an unlimited message size.

MaxTotalMsgBytes

Long

Yes

Maximum total memory, in bytes, for unconsumed messages

LimitBehavior

String

Yes

Broker behavior when memory-limit threshold reached
See Table 3-34 for possible values.

If the value is REMOVE OLDEST or REMOVE LOW PRIORITY and the
UseDMQ attribute is true, excess messages are moved to the dead
message queue.

MaxNumProducers

Integer

Yes

Maximum number of associated message producers

When this limit is reached, no new producers can be created. A
value of —1 denotes an unlimited number of producers.

MaxNumActiveConsumers®

Integer

Yes

Maximum number of associated active message consumers in
load-balanced delivery

A value of —1 denotes an unlimited number of consumers.

MaxNumBackupConsumers1

Integer

Yes

Maximum number of associated backup message consumers in
load-balanced delivery

A value of —1 denotes an unlimited number of consumers.

ConsumerFlowLimit

Long

Yes

Maximum number of messages delivered to consumer in a
single batch

Inload-balanced queue delivery, this is the initial number of
queued messages routed to active consumers before load
balancing begins. A destination consumer can override this
limit by specifying a lower value on a connection.

A value of —1 denotes an unlimited number of consumers.

! Queue destinations only

76 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE3-32 Destination Configuration Attributes

(Continued)

Name

Type

Settable?

Description

LocalOnly

Boolean

No

Local delivery only?

This property applies only to destinations in broker clusters,
and cannot be changed once the destination has been created. If
true, the destination is not replicated on other brokers and is
limited to delivering messages only to local consumers (those
connected to the broker on which the destination is created).

LocalDeliveryPreferred!

Boolean

Local delivery preferred?

This property applies only to load-balanced delivery in broker
clusters. If true, messages will be delivered to remote
consumers only if there are no associated consumers on the
local broker. The destination must not be restricted to
local-only delivery (LocalOnly must be false).

UseDMQ

Boolean

Send dead messages to dead message queue?

If false, dead messages will simply be discarded.

ValidateXMLSchemaEnabled

Boolean

Yes

XML schema validation is enabled?

If set to false or not set, then XML schema validation is not
enabled for the destination.

XMLSchemaURIList

String

Yes

Space separated list of XML schema document (XSD) URI
strings

The URIs point to the location of one or more XSDs to use for
XML schema validation, if enabled.

Use double quotes around this value if multiple URIs are
specified.

Example:
“http://foo/flap.xsd http://test.com/test.xsd”

If this property is not set or null and XML validation is enabled,
XML validation is performed using a DTD specified in the XML
document.

ReloadXMLSchemaOnFailure

Boolean

Reload XML schema on failure enabled?

If set to false or not set, then the schema is not reloaded if
validation fails.

! Queue destinations only

Table 3-33 shows the possible values for the Type attribute. These values are defined as static
constants in the utility class DestinationType.

Chapter3 - Message Queue MBean Reference

77

Destinations

TABLE3-33 Destination Configuration Type Values

Value Utility Constant Meaning
q DestinationType.QUEUE Queue (point-to-point) destination
t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3-34 shows the possible values for the LimitBehavior attribute. These values are defined
as static constants in the utility class DestinationLimitBehavior.

TABLE 3-34 Destination Limit Behaviors

Value Utility Constant

Meaning

FLOW_CONTROL

DestinationLimitBehavior.FLOW CONTROL

Slow down producers

REMOVE_OLDEST

DestinationLimitBehavior.REMOVE_OLDEST

Throw out oldest messages

REMOVE_LOW_PRIORITY

DestinationLimitBehavior.REMOVE LOW_PRIORITY

Throw out lowest-priority

messages according to age; no
notice to producing client

REJECT_NEWEST

DestinationLimitBehavior.REJECT_NEWEST

Reject newest messages; notify
producing client with an
exception only if message is
persistent

Operations

The destination configuration MBean supports the operations shown in Table 3-35. The names
of these operations are defined as static constants in the utility class DestinationOperations.

TABLE3-35 Destination Configuration Operations

Name Parameters Result Type Description
pause pauseType (String) None Pause message delivery
See Table 3-36 for possible values of pauseType.
pause None None Pause all message delivery
Equivalent to
pause(DestinationPauseType.ALL).
resume None None Resume message delivery
purge None None Purge all messages

78 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE3-35 Destination Configuration Operations (Continued)
Name Parameters Result Type Description
compact’ None None Compact persistent data store

Note - Only a paused destination can be compacted.

! File-based persistence only

Table 3-36 shows the possible values for the pause operation's pauseType parameter. These
values are defined as static constants in the utility class DestinationPauseType.

TABLE3-36 Destination Pause Types

Value Utility Constant Meaning
PRODUCERS DestinationPauseType.PRODUCERS Pause delivery from associated message producers
CONSUMERS DestinationPauseType.CONSUMERS Pause delivery to associated message consumers
ALL DestinationPauseType.ALL Pause all message delivery

Notification

The destination configuration MBean supports the notification shown in Table 3-37.

TABLE3-37 Destination Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Destination Monitor

The destination monitor MBean is used for monitoring a destination. There is one such MBean
for each destination.

Object Name

The destination monitor MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Destination, subtype=Monitor,
desttype=destinationType, name=destinationName

where destinationType is one of the destination types shown in Table 3-39 and
destinationName is the name of the destination. For example:

com.sun.messaging.jms.server:type=Destination, subtype=Monitor,desttype=t,
name="Dest"

Chapter 3 « Message Queue MBean Reference 79

Destinations

The utility class MQObjectName provides a static method, createDestinationMonitor, for
constructing object names of this form.

Attributes

The destination monitor MBean has the attributes shown in Table 3-38. The names of these
attributes are defined as static constants in the utility class DestinationAttributes.

TABLE3-38 Destination Monitor Attributes

Name Type Settable? | Description

Name String No Destination name

Type String No Destination type
See Table 3-39 for possible values.

) Boolean No Administrator-created destination?
CreatedByAdmin
Boolean No Temporary destination?

Temporary

ConnectionID! String No Connection identifier

State Integer No Current state
See Table 3-40 for possible values.

StateLabel String No String representation of current state:
Useful for displaying the state in human-readable form, such as
in the Java Monitoring and Management Console (jconsole).
See Table 3-40 for possible values.

NumProducers Integer No Current number of associated message producers

NumConsumers Integer No Current number of associated message consumers
For queue destinations, this attribute includes both active and
backup consumers. For topic destinations, it includes both
nondurable and (active and inactive) durable subscribers and is
equivalent to NumActiveConsumers.

NumWildcardProducers Integer No Current number of wildcard message producers associated with
the destination
For topic destinations only.

NumWildcardConsumers Integer No Current number of wildcard message consumers associated with
the destination
For topic destinations only.

! Temporary destinations only

80 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE 3-38 Destination Monitor Attributes (Continued)

Name Type Settable?

Description

NumWildcards Integer No

Current number of wildcard message producers and wildcard
message consumers associated with the destination

For topic destinations only.

PeakNumConsumers Integer No

Peak number of associated message consumers since broker
started

For queue destinations, this attribute includes both active and
backup consumers. For topic destinations, it includes both
nondurable and (active and inactive) durable subscribers and is
equivalent to PeakNumActiveConsumers.

AvgNumConsumers Integer No

Average number of associated message consumers since broker
started

For queue destinations, this attribute includes both active and
backup consumers. For topic destinations, it includes both
nondurable and (active and inactive) durable subscribers and is
equivalent to AvgNumActiveConsumers.

NumActiveConsumers Integer No

Current number of associated active message consumers

For topic destinations, this attribute includes both nondurable
and (active and inactive) durable subscribers and is equivalent to
NumConsumers.

PeakNumActiveConsumers Integer No

Peak number of associated active message consumers since
broker started

For topic destinations, this attribute includes both nondurable
and (active and inactive) durable subscribers and is equivalent to
PeakNumConsumers.

AvgNumActiveConsumers Integer No

Average number of associated active message consumers since
broker started

For topic destinations, this attribute includes both nondurable
and (active and inactive) durable subscribers and is equivalent to
AvgNumConsumers.

NumBackupConsumers? Integer No

Current number of associated backup message consumers

PeakNumBackupConsumers2 Integer No

Peak number of associated backup message consumers since
broker started

AvgNumBackupConsumers2 Integer No

Average number of associated backup message consumers since
broker started

2 Queue destinations only

Chapter3 - Message Queue MBean Reference

81

Destinations

TABLE 3-38 Destination Monitor Attributes (Continued)

Name Type Settable? | Description

NumMsgs Long No Current number of messages stored in memory and persistent
store
Does not include messages held in transactions.

NumMsgsRemote Long No Current number of messages stored in memory and persistent
store that were produced to a remote broker in a cluster. This
number does not include messages included in transactions.

NumMsgsPendingAcks Long No Current number of messages being held in memory and
persistent store pending acknowledgment

NumMsgsHeldInTransaction Long No Current number of messages being held in memory and
persistent store in uncommitted transactions

NextMessageID String No JMS Message ID of the next message to be delivered to any
consumer

PeakNumMsgs Long No Peak number of messages stored in memory and persistent store
since broker started

AvgNumMsgs Long No Average number of messages stored in memory and persistent
store since broker started

NumMsgsIn Long No Cumulative number of messages received since broker started

NumMsgsOut Long No Cumulative number of messages sent since broker started

MsgBytesIn Long No Cumulative size in bytes of messages received since broker
started

MsgBytesOut Long No Cumulative size in bytes of messages sent since broker started

PeakMsgBytes Long No Size in bytes of largest single message received since broker
started

TotalMsgBytes Long No Current total size in bytes of messages stored in memory and
persistent store
Does not include messages held in transactions.

TotalMsgBytesRemote Long No Current total size in bytes of messages stored in memory and
persistent store that were produced to a remote broker in a
cluster. This value does not include messages included in
transactions.

TotalMsgBytesHeldInTransaction | Long No Current total size in bytes of messages being held in memory and
persistent store in uncommitted transactions

PeakTotalMsgBytes Long No Peak total size in bytes of messages stored in memory and
persistent store since broker started

82 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE 3-38 Destination Monitor Attributes (Continued)

Name Type Settable? | Description

AvgTotalMsgBytes Long No Average total size in bytes of messages stored in memory and
persistent store since broker started

DiskReserved? Long No Amount of disk space, in bytes, reserved for destination

DiskUsed® Long No Amount of disk space, in bytes, currently in use by destination

DiskUtilizationRatio® Integer No Ratio of disk space currently in use to disk space reserved for
destination

> File-based persistence only

Table 3-39 shows the possible values for the Type attribute. These values are defined as static
constants in the utility class DestinationType.

TABLE3-39 Destination Monitor Type Values

Value Utility Constant Meaning
q DestinationType.QUEUE Queue (point-to-point) destination
t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3-40 shows the possible values for the State and StatelLabel attributes. These values are
defined as static constants in the utility class DestinationState.

TABLE3-40 Destination State Values

Value Utility Constant String Representation Meaning

0 DestinationState.RUNNING RUNNING Destination running

1 DestinationState.CONSUMERS_PAUSED CONSUMERS_PAUSED Message consumers paused

2 DestinationState.PRODUCERS_PAUSED PRODUCERS_PAUSED Message producers paused

3 DestinationState.PAUSED PAUSED Destination paused

-1 DestinationState.UNKNOWN UNKNOWN Destination state unknown
Operations

The destination monitor MBean supports the operations shown in Table 3-41. The names of
these operations are defined as static constants in the utility class DestinationOperations.

Chapter3 - Message Queue MBean Reference

83

Destinations

TABLE3-41 Destination Monitor Operations

Name

Parameters

ResultType

Description

getConnection!

None

ObjectName

Object name of connection monitor MBean for
connection

getProducerIDs

None

String[]

Producer identifiers of all current associated
message producers

getConsumerIDs

None

String[]

Consumer identifiers of all current associated
message consumers

For queue destinations, this operation returns both
active and backup consumers. For topic
destinations, it returns both nondurable and
(active and inactive) durable subscribers.

getActiveConsumerIDs

None

String[]

Consumer identifiers of all current associated
active message consumers

For topic destinations, this operation returns both
nondurable and (active and inactive) durable
subscribers.

getBackupConsumerIDs2

None

String[]

Consumer identifiers of all current associated
backup message consumers

getConsumerWildcards

none

String[]

Wildcard strings used by current consumers
associated with the destination

For topic destinations only.

getProducerWildcards

none

String[]

Wildcard strings used by current producers
associated with the destination

For topic destinations only.

getWildcards

none

String[]

Wildcard strings used by current consumers and
producers associated with the destination

For topic destinations only.

getNumWildcardConsumers

wildcard-String

Integer

Number of current consumers associated with the
destination that are using the specified wildcard
string

For topic destinations only.

! Temporary destinations only

% Queue destinations only

84 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE3-41 Destination Monitor Operations (Continued)
Name Parameters Result Type Description
getNumWildcardProducers wildcard-String Integer Number of current producers associated with the
destination that are using the specified wildcard
string
For topic destinations only.
Notifications

The destination monitor MBean supports the notifications shown in Table 3-42. These
notifications are instances of the Message Queue JMX class DestinationNotification, and
their names are defined as static constants in that class.

TABLE3-42 Destination Monitor Notifications

Name Utility Constant Description
mq.destination.pause DestinationNotification.DESTINATION PAUSE Destination paused
mq.destination.resume DestinationNotification.DESTINATION RESUME Destination resumed
mg.destination.compact DestinationNotification.DESTINATION COMPACT Destination compacted
mq.destination.purge DestinationNotification.DESTINATION PURGE Destination purged

Table 3-43 shows the methods defined in class DestinationNotification for obtaining details
about a destination monitor notification.

TABLE 3-43 Data Retrieval Methods for Destination Monitor Notifications

Method ResultType Description
getDestinationName String Destination name
getDestinationType String Destination type

See Table 3-39 for possible values.

getCreatedByAdmin Boolean Administrator-created destination?

getPauseType String Pause type

See Table 3-36 for possible values.

Destination Manager Configuration

Each broker has a single destination manager configuration MBean, used for managing all of the
broker's destination configuration MBeans.

Chapter3 « Message Queue MBean Reference 85

Destinations

Object Name

The destination manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=DestinationManager, subtype=Config

A string representing this object name is defined as a static constant
DESTINATION MANAGER CONFIG_MBEAN NAME in the utility class MQObjectName.

Attributes

The destination manager configuration MBean has the attributes shown in Table 3-44. The
names of these attributes are defined as static constants in the utility class
DestinationAttributes.

TABLE3-44 Destination Manager Configuration Attributes

Name Type Settable? | Description
AutoCreateQueues Boolean Yes Allow auto-creation of queue destinations?
AutoCreateTopics Boolean Yes Allow auto-creation of topic destinations?
NumDestinations Integer No Current total number of destinations
MaxNumMsgs Long Yes Maximum total number of unconsumed messages

A value of -1 denotes an unlimited number of messages.
MaxBytesPerMsg Long Yes Maximum size, in bytes, of any single message

A value of —1 denotes an unlimited message size.
MaxTotalMsgBytes Long Yes Maximum total memory, in bytes, for unconsumed

messages

A value of -1 denotes an unlimited number of bytes.
AutoCreateQueueMaxNumActiveConsumers' Integer Yes Maximum total number of active message consumers in

load-balanced delivery

A value of —1 denotes an unlimited number of consumers.
AutoCreateQueueMaxNumBackupConsumers' Integer Yes Maximum total number of backup message consumers in

load-balanced delivery

A value of —1 denotes an unlimited number of consumers.
DMQTruncateBody Boolean Yes Remove message body before storing in dead message

queue?

If true, only the message header and property data will be
saved.

! Auto-created queue destinations only

86 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE3-44 Destination Manager Configuration Attributes (Continued)
Name Type Settable? | Description
LogDeadMsgs Boolean Yes Log information about dead messages?

If true, the following events will be logged:
® A destination is full, having reached its maximum size

or message count.

B The broker discards a message for a reason other than
an administrative command or delivery
acknowledgment.

B The broker moves a message to the dead message
queue.

Operations

The destination manager configuration MBean supports the operations shown in Table 3-45.
The names of these operations are defined as static constants in the utility class
DestinationOperations.

TABLE3-45 Destination Manager Configuration Operations

Name Parameters ResultType Description
getDestinations None ObjectName[] Object names of destination configuration MBeans
for all current destinations
create destinationType (String) | None Create destination with specified type, name, and
o attributes
destinationName
(String) The destinationType and destinationName
o . parameters are required, but destinationAttributes
destinationAttributes
; ; may be null.
(Attributelist)
See Table 3-46 for possible values of
destinationType.
The destinationAttributes list may include any of
the attributes listed in Table 3-32 except Name and
Type. The names of these attributes are defined as
static constants in the utility class
DestinationAttributes.
create destinationType (String) | None Create destination with specified type and name
destinationName Equivalent to create (destinationType,
(String) destinationName, null).

See Table 3-46 for possible values of
destinationType.

Chapter3 « Message Queue MBean Reference 87

Destinations

TABLE3-45 Destination Manager Configuration Operations (Continued)
Name Parameters Result Type Description
destroy destinationType (String) | None Destroy destination
destinationName See Table 3-46 for possible values of
(String) destinationType.
pause pauseType (String) None Pause message delivery for all destinations

See Table 3-47 for possible values of pauseType.

pause None None Pause all message delivery for all destinations

Equivalent to
pause(DestinationPauseType.ALL).

resume None None Resume message delivery for all destinations

compact’ None None Compact all destinations

Note - Only paused destinations can be compacted.

! File-based persistence only

Table 3-46 shows the possible values for the create and destroy operations' destinationType
parameters. These values are defined as static constants in the utility class DestinationType.

TABLE3-46 Destination Manager Configuration Type Values

Value Utility Constant Meaning
q DestinationType.QUEUE Queue (point-to-point) destination
t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3-47 shows the possible values for the pause operation's pauseType parameter. These
values are defined as static constants in the utility class DestinationPauseType.

TABLE3-47 Destination Manager Pause Types

Value Utility Constant Meaning
PRODUCERS DestinationPauseType.PRODUCERS Pause delivery from associated message producers
CONSUMERS DestinationPauseType.CONSUMERS Pause delivery to associated message consumers
ALL DestinationPauseType.ALL Pause all delivery

Notification

The destination manager configuration MBean supports the notification shown in Table 3-48.

88 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Destinations

TABLE3-48 Destination Manager Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Destination Manager Monitor

Each broker has a single destination manager monitor MBean, used for managing all of the
broker's destination monitor MBeans.

Object Name

The destination manager monitor MBean has the following object name:
com.sun.messaging.jms.server:type=DestinationManager, subtype=Monitor

A string representing this object name is defined as a static constant
DESTINATION MANAGER MONITOR MBEAN NAME in the utility class MQObjectName.

Attributes

The destination manager monitor MBean has the attributes shown in Table 3-49. The names of
these attributes are defined as static constants in the utility class DestinationAttributes.

TABLE3-49 Destination Manager Monitor Attributes

Name Type Settable? Description

NumDestinations Integer No Current total number of destinations

NumMsgs Long No Current total number of messages stored in memory and persistent store for
all destinations

Does not include messages held in transactions.

TotalMsgBytes Long No Current total size in bytes of messages stored in memory and persistent store
for all destinations

Does not include messages held in transactions.

NumMsgsInDMQ Long No Current number of messages stored in memory and persistent store for dead
message queue

TotalMsgBytesInDMQ Long No Current total size in bytes of messages stored in memory and persistent store
for dead message queue

Chapter3 « Message Queue MBean Reference 89

Destinations

Operation

The destination manager monitor MBean supports the operation shown in Table 3-50. The

name of this operation is defined as a static constant in the utility class

DestinationOperations.

TABLE3-50 Destination Manager Monitor Operation

Name Parameters Result Type Description
getDestinations None ObjectName[] Object names of destination monitor MBeans for
all current destinations
Notifications
The destination manager monitor MBean supports the notifications shown in Table 3-51.
These notifications are instances of the Message Queue JMX class DestinationNotification,
and their names are defined as static constants in that class.
TABLE3-51 Destination Manager Monitor Notifications
Name Utility Constant Description
mq.destination.create DestinationNotification.DESTINATION CREATE Destination created
mq.destination.destroy DestinationNotification.DESTINATION DESTROY Destination destroyed
mq.destination.pause DestinationNotification.DESTINATION PAUSE Destination paused
mq.destination.resume DestinationNotification.DESTINATION RESUME Destination resumed
mq.destination.compact DestinationNotification.DESTINATION COMPACT Destination compacted
mq.destination.purge DestinationNotification.DESTINATION PURGE Destination purged

Table 3-52 shows the methods defined in class DestinationNotification for obtaining details
about a destination manager monitor notification.

TABLE3-52 Data Retrieval Methods for Destination Manager Monitor Notifications

Method ResultType Description
getDestinationName String Destination name
getDestinationType String Destination type
See Table 3-46 for possible values.
getCreatedByAdmin Boolean Administrator-created destination?
90 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Producers

TABLE3-52 Data Retrieval Methods for Destination Manager Monitor Notifications (Continued)
Method Result Type Description
getPauseType String Pause type

See Table 3-47 for possible values.

Message Producers

This section describes the MBeans used for managing message producers:

= The producer manager configuration MBean configures message producers.
= The producer manager monitor MBean monitors message producers.

The following subsections describe each of these MBeans in detail.

Note - Notice that there are no resource MBeans associated with individual message producers;
rather, all producers are managed through the broker's global producer manager configuration
and producer manager monitor MBeans.

Producer Manager Configuration

Each broker has a single producer manager configuration MBean, used for configuring all of the
broker's message producers.

Object Name

The producer manager configuration MBean has the following object name:
com.sun.messaging.jms.server:type=ProducerManager, subtype=Config

A string representing this object name is defined as a static constant
PRODUCER_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute

The producer manager configuration MBean has the attribute shown in Table 3-53. The name
of this attribute is defined as a static constant in the utility class ProducerAttributes.

Chapter3 « Message Queue MBean Reference 91

Message Producers

TABLE3-53 Producer Manager Configuration Attribute

Name Type Settable? Description
NumProducers Integer No Current total number of message producers
Operation

The producer manager configuration MBean supports the operation shown in Table 3-54. The

name of this operation is defined as a static constant in the utility class ProducerOperations.

TABLE3-54 Producer Manager Configuration Operation

Name

Parameters

Result Type

Description

getProducerIDs

None

String[]

Producer identifiers of all current message
producers

Producer Manager Monitor

Each broker has a single producer manager monitor MBean, used for monitoring all of the
broker's message producers.

Object Name

The producer manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ProducerManager, subtype=Monitor

A string representing this object name is defined as a static constant
PRODUCER_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attribute

The producer manager monitor MBean has the attribute shown in Table 3-55. The name of this

attribute is defined as a static constant in the utility class ProducerAttributes.

TABLE3-55 Producer Manager Monitor Attribute

Name Type Settable? Description
NumProducers Integer No Current total number of message producers
NumWildcardProducers |Integer No Number of wildcard message producers associated with the
broker
92 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Producers

Operations

The producer manager monitor MBean supports the operations shown in Table 3-56. The
names of these operations are defined as static constants in the utility class
ProducerOperations.

TABLE3-56 Producer Manager Monitor Operations

Name

Parameters

ResultType

Description

getProducerIDs

None

String[]

Producer identifiers of all current message
producers

getProducerInfoByID

producerID (String)

CompositeData

Descriptive information about message producer

The desired producer is designated by its producer
identifier (producerID). The value returned is a
JMX CompositeData object describing the
producer; see Table 3-57 for lookup keys used with
this object.

getProducerInfo

None

CompositeDatal]

Descriptive information about all current message
producers

The value returned is an array of JMX
CompositeData objects describing the producers;
see Table 3-57 for lookup keys used with these
objects.

getProducerWildcards

none

String[]

Wildcard strings used by current producers
associated with the broker

getNumWildcardProducer|

swildcard-String

Integer

Number of current producers associated with the
broker that are using the specified wildcard string

The getProducerInfoByID and getProducerInfo operations return objects implementing the
JMX interface CompositeData, which maps lookup keys to associated data values. The keys
shown in Table 3-57 are defined as static constants in the utility class ProducerInfo for use
with these objects.

TABLE3-57 Lookup Keys for Message Producer Information

Name Value Type Description

ProducerID String Producer identifier

ServiceName String Name of associated connection service
ConnectionId String Connection identifier of associated connection

Chapter3 - Message Queue MBean Reference

93

Message Consumers

TABLE 3-57 Lookup Keys for Message Producer Information (Continued)
Name Value Type Description
Host String Connection's host name
User String Connection's user name
DestinationName String Name of associated destination
DestinationNames String[] Destination names that match wildcards used by wildcard
producers

For topic destinations only.

Wildcard Boolean Wildcard producer?

For topic destinations only.

DestinationType String Type of associated destination

See Table 3-58 for possible values.

FlowPaused Boolean Message delivery paused?

NumMsgs Long Number of messages sent

Table 3-58 shows the possible values returned for the lookup key DestinationType. These
values are defined as static constants in the utility class DestinationType.

TABLE3-58 Message Producer Destination Types

Value Utility Constant Meaning
q DestinationType.QUEUE Queue (point-to-point) destination
t DestinationType.TOPIC Topic (publish/subscribe) destination

Message Consumers

This section describes the MBeans used for managing message consumers:

= The consumer manager configuration MBean configures message consumers.
= The consumer manager monitor MBean monitors message consumers.

The following subsections describe each of these MBeans in detail.

Note - Notice that there are no resource MBeans associated with individual message consumers;
rather, all consumers are managed through the broker's global consumer manager
configuration and consumer manager monitor MBeans.

94 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Consumers

Consumer Manager Configuration
Each broker has a single consumer manager configuration MBean, used for configuring all of the

broker's message consumers.

Object Name

The consumer manager configuration MBean has the following object name:
com.sun.messaging.jms.server:type=ConsumerManager, subtype=Config

A string representing this object name is defined as a static constant
CONSUMER MANAGER CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute

The consumer manager configuration MBean has the attribute shown in Table 3-59. The name
of this attribute is defined as a static constant in the utility class ConsumerAttributes.

TABLE3-59 Consumer Manager Configuration Attribute

Name Type Settable? Description
NumConsumers Integer No Current total number of message consumers
Operations

The consumer manager configuration MBean supports the operations shown in Table 3-60.
The names of these operations are defined as static constants in the utility class
ConsumerOperations.

TABLE3-60 Consumer Manager Configuration Operations

Name Parameters ResultType Description

getConsumerIDs None String[] Consumer identifiers of all current message
consumers

purge! consumerID (String) None Purge all messages

The desired subscriber is designated by its
consumer identifier (consumerID).

The subscriber itself is not destroyed.

! Durable topic subscribers only

Chapter3 « Message Queue MBean Reference 95

Message Consumers

Consumer Manager Monitor

Each broker has a single consumer manager monitor MBean, used for monitoring all of the
broker's message consumers.

Object Name

The consumer manager monitor MBean has the following object name:
com.sun.messaging.jms.server:type=ConsumerManager, subtype=Monitor

A string representing this object name is defined as a static constant
CONSUMER _MANAGER_MONITOR MBEAN_NAME in the utility class MQObjectName.

Attribute

The consumer manager monitor MBean has the attribute shown in Table 3-61. The name of
this attribute is defined as a static constant in the utility class ConsumerAttributes.

TABLE3-61 Consumer Manager Monitor Attribute

Name Type Settable? Description
NumConsumers Integer No Current total number of message consumers
NumWildcardConsumers |Integer No Number of wildcard message consumers associated with the
broker
Operations

The consumer manager monitor MBean supports the operations shown in Table 3-62. The
names of these operations are defined as static constants in the utility class
ConsumerOperations.

TABLE3-62 Consumer Manager Monitor Operations

Name

Parameters Result Type Description

getConsumerIDs

None String[] Consumer identifiers of all current message
consumers

getConsumerInfoByID consumerID (String) CompositeData Descriptive information about message consumer

The desired consumer is designated by its
consumer identifier (consumerID). The value
returned is a JMX CompositeData object
describing the consumer; see Table 3-63 for
lookup keys used with this object.

96

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Message Consumers

TABLE3-62 Consumer Manager Monitor Operations (Continued)

Name Parameters Result Type Description

getConsumerInfo None CompositeDatall Descriptive information about all current message
consumers
The value returned is an array of JMX
CompositeData objects describing the consumers;
see Table 3-63 for lookup keys used with these
objects.

getConsumerWildcards |none String[] Wildcard strings used by current consumers
associated with the broker

getNumWildcardConsumerjswildcard-String Integer Number of current consumers associated with the
broker that are using the specified wildcard string

The getConsumerInfoByID and getConsumerInfo operations return objects implementing the
JMX interface CompositeData, which maps lookup keys to associated data values. The keys
shown in Table 3-63 are defined as static constants in the utility class ConsumerInfo for use

with these objects.

TABLE3-63 Lookup Keys for Message Consumer Information

Name Value Type Description
ConsumerID String Consumer identifier
Selector String Message selector
ServiceName String Name of associated connection service
ConnectionID String Connection identifier of associated connection
Host String Connection's host name
User String Connection's user name
DestinationName String Name of associated destination
DestinationNames String[] Destination names that match wildcards used by wildcard
consumers
For topic destinations only.
Wildcard Boolean Wildcard consumer?
For topic destinations only.
DestinationType String Type of associated destination
See Table 3-64 for possible values.

Chapter3 - Message Queue MBean Reference

97

Message Consumers

TABLE3-63 Lookup Keys for Message Consumer Information (Continued)

Name Value Type Description

AcknowledgeMode Integer Acknowledgment mode of associated session
See Table 3-65 for possible values.

AcknowledgeModeLabel String String representation of acknowledgment mode
Useful for displaying the acknowledgment mode in
human-readable form, such as in the Java Monitoring and
Management Console (jconsole).

See Table 3-65 for possible values.

Durable Boolean Durable topic subscriber?

DurableName' String Subscription name

ClientID? String Client identifier

DurableActive' Boolean Subscriber active?

FlowPaused Boolean Message delivery paused?

NumMsgs Long Cumulative number of messages that have been dispatched to
consumer (includes messages that have been delivered and those
waiting to be delivered)

NumMsgsPending Long Current number of messages that have been dispatched to
consumer and are being held in broker memory and persistent
store (includes messages that have been delivered and those
waiting to be delivered)

NumMsgsPendingAcks Long Current number of messages that have been delivered to
consumer and are being held in broker memory and persistent
store pending acknowledgment

NextMessageID Long JMS Message ID of the next message to be delivered to consumer

LastAckTime Long Time of last acknowledgment, in standard Java format
(milliseconds since January 1, 1970, 00:00:00 UTC)

! Durable topic subscribers only

Table 3-64 shows the possible values returned for the lookup key DestinationType. These
values are defined as static constants in the utility class DestinationType.

TABLE3-64 Message Consumer Destination Types

Value Utility Constant

Meaning

q DestinationType.QUEUE

Queue (point-to-point) destination

98 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Transactions

TABLE3-64 Message Consumer Destination Types (Continued)
Value Utility Constant Meaning
t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3-65 shows the possible values returned for the lookup keys AcknowledgeMode and
AcknowledgeModeLabel. Four of these values are defined as static constants in the standard JMS
interface javax.jms.Session; the fifth (NO_ACKNOWLEDGE) is defined in the extended Message
Queue version of the interface, com.sun.messaging.jms.Session.

TABLE3-65 Acknowledgment Modes

Value Utility Constant String Representation Meaning

1 javax.jms.Session.AUTO ACKNOWLEDGE AUTO ACKNOWLEDGE Auto-acknowledge mode

2 javax.jms.Session.CLIENT ACKNOWLEDGE CLIENT ACKNOWLEDGE Client-acknowledge mode

3 javax.jms.Session.DUPS OK ACKNOWLEDGE DUPS_OK_ACKNOWLEDGE | Dups-OK-acknowledge mode

32768 com.sun.messaging.jms.Session.NO ACKNOWLEDGE NO_ACKNOWLEDGE No-acknowledge mode

0 javax.jms.Session.SESSION TRANSACTED SESSION TRANSACTED Session is transacted
(acknowledgment mode
ignored)

Transactions

This section describes the MBeans used for managing transactions:

= The transaction manager configuration MBean configures transactions.
= The transaction manager monitor MBean monitors transactions.

The following subsections describe each of these MBeans in detail.

Note - Notice that there are no resource MBeans associated with individual transactions; rather,
all transactions are managed through the broker's global transaction manager configuration
and transaction manager monitor MBeans.

Transaction Manager Configuration

Each broker has a single transaction manager configuration MBean, used for configuring all of
the broker's transactions.

Chapter3 « Message Queue MBean Reference 99

Transactions

Object Name

The transaction manager configuration MBean has the following object name:
com.sun.messaging.jms.server:type=TransactionManager, subtype=Config

A string representing this object name is defined as a static constant
TRANSACTION_MANAGER CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute

The transaction manager configuration MBean has the attribute shown in Table 3-66. The
name of this attribute is defined as a static constant in the utility class TransactionAttributes.

TABLE3-66 Transaction Manager Configuration Attribute

Name Type Settable? Description
NumTransactions Integer No Current number of open transactions
Operations

The transaction manager configuration MBean supports the operations shown in Table 3-67.
The names of these operations are defined as static constants in the utility class
TransactionOperations.

TABLE3-67 Transaction Manager Configuration Operations

Name Parameters ResultType Description

getTransactionIDs None String[] Transaction identifiers of all current open
transactions

commit transactionID (String) None Commit transaction

The desired transaction is designated by its
transaction identifier (transactionID).

rollback transactionID (String) None Roll back transaction

The desired transaction is designated by its
transaction identifier (transactionID).

Transaction Manager Monitor

Each broker has a single transaction manager monitor MBean, used for monitoring all of the
broker's transactions.

100 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Transactions

Object Name

The transaction manager monitor MBean has the following object name:
com.sun.messaging.jms.server:type=TransactionManager, subtype=Monitor

A string representing this object name is defined as a static constant
TRANSACTION_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes

The transaction manager monitor MBean has the attributes shown in Table 3-68. The names of
these attributes are defined as static constants in the utility class TransactionAttributes.

TABLE3-68 Transaction Manager Monitor Attributes

Name Type Settable? Description
NumTransactions Integer No Current number of open transactions
NumTransactionsCommitted Long No Cumulative number of transactions committed since broker
started
NumTransactionsRollback Long No Cumulative number of transactions rolled back since broker
started
Operations

The transaction manager monitor MBean supports the operations shown in Table 3-69. The
names of these operations are defined as static constants in the utility class
TransactionOperations.

TABLE3-69 Transaction Manager Monitor Operations

Name Parameters ResultType Description

getTransactionIDs None String[] Transaction identifiers of all current open
transactions

getTransactionInfoByID transactionID (String) CompositeData Descriptive information about transaction

The desired transaction is designated by its
transaction identifier (transactionID). The value
returned is a JMX CompositeData object
describing the transaction; see Table 3-70 for
lookup keys used with this object.

Chapter 3 « Message Queue MBean Reference 101

Transactions

TABLE3-69 Transaction Manager Monitor Operations (Continued)
Name Parameters Result Type Description
getTransactionInfo None CompositeData[] | Descriptive information about all current open

transactions

The value returned is an array of JMX
CompositeData objects describing the transactions;
see Table 3-70 for lookup keys used with these
objects.

The getTransactionInfoByID and getTransactionInfo operations return objects
implementing the JMX interface CompositeData, which maps lookup keys to associated data
values. The keys shown in Table 3-70 are defined as static constants in the utility class
TransactionInfo for use with these objects.

TABLE3-70 Lookup Keys for Transaction Information

Name Value Type Description

TransactionID String Transaction identifier

XID! String Distributed transaction identifier (XID)

User String User name

ClientID String Client identifier

ConnectionString String Connection string

CreationTime Long Time created, in standard Java format (milliseconds since January 1, 1970,
00:00:00 UTC)

State Integer Current state

See Table 3-71 for possible values.

Statelabel String String representation of current state

Useful for displaying the state in human-readable form, such as in the Java
Monitoring and Management Console (jconsole).

See Table 3-71 for possible values.

NumMsgs Long Number ofmessages

NumAcks Long Number of acknowledgments

! Distributed transactions only

Table 3-71 shows the possible values returned for the lookup keys State and StateLabel.
These values are defined as static constants in the utility class TransactionState.

102 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Transactions

TABLE3-71 Transaction State Values

Value Utility Constant String Representation Meaning

0 TransactionState.CREATED CREATED Transaction created

1 TransactionState.STARTED STARTED Transaction started

2 TransactionState. FAILED FAILED Transaction has failed

3 TransactionState.INCOMPLETE INCOMPLETE Transaction incomplete

4 TransactionState.COMPLETE COMPLETE Transaction complete

5 TransactionState.PREPARED PREPARED Transaction in prepared state'
6 TransactionState.COMMITTED COMMITTED Transaction committed

7 TransactionState.ROLLEDBACK ROLLEDBACK Transaction rolled back

8 TransactionState.TIMED OUT TIMED OUT Transaction has timed out
-1 TransactionState.UNKNOWN UNKNOWN Transaction state unknown

! Distributed transactions only

Notifications

The transaction manager monitor MBean supports the notifications shown in Table 3-72.
These notifications are instances of the Message Queue JMX class TransactionNotification,
and their names are defined as static constants in that class.

TABLE3-72 Transaction Manager Monitor Notifications

Name

Utility Constant

Description

mq.transaction.prepare’

TransactionNotification.TRANSACTION PREPARE

Transaction has entered prepared state

mqg.transaction.commit

TransactionNotification.TRANSACTION COMMIT

Transaction committed

mqg.transaction.rollback

TransactionNotification.TRANSACTION_ROLLBACK

Transaction rolled back

! Distributed transactions only

Table 3-73 shows the method defined in class TransactionNotification for obtaining details
about a transaction manager monitor notification.

TABLE3-73 Data Retrieval Method for Transaction Manager Monitor Notifications

Method

ResultType Description

getTransactionID

String Transaction identifier

Chapter3 - Message Queue MBean Reference

103

Broker Clusters

Broker Clusters

This section describes the MBeans used for managing broker clusters:

= The cluster configuration MBean configures a broker's cluster-related properties.

® The cluster monitor MBean monitors the brokers in a cluster.

The following subsections describe each of these MBeans in detail.

Cluster Configuration

The cluster configuration MBean is used for configuring a broker's cluster-related properties.
There is one such MBean for each broker.

Object Name

The cluster configuration MBean has the following object name:
com.sun.messaging.jms.server:type=Cluster,subtype=Config

A string representing this object name is defined as a static constant
CLUSTER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes

The cluster configuration MBean has the attributes shown in Table 3-74. The names of these
attributes are defined as static constants in the utility class ClusterAttributes.

TABLE3-74 Cluster Configuration Attributes

Name Type Settable? Description
HighlyAvailable Boolean No High-availability (HA) cluster?
104 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Broker Clusters

TABLE3-74 Cluster Configuration Attributes (Continued)
Name Type Settable? Description
ClusterIp! String No Cluster identifier
Must be a unique alphanumeric string of no more than n—13
characters, where 7 is the maximum table name length allowed
by the database. No two running clusters may have the same
cluster identifier.
This string is appended to the names of all database tables in the
cluster’s shared persistent store.
Note - For brokers belonging to an HA cluster, this attribute is
used in database table names in place of BrokerID (see
Table 3-1).
ConfigFileURL? String Yes URL of cluster configuration file
LocalBrokerInfo CompositeData No Descriptive information about local broker
The value returned is a JMX CompositeData object describing
the broker; see Table 3-76 for lookup keys used with this object.
MasterBrokerInfo® CompositeData No Descriptive information about master broker
The value returned is a JMX CompositeData object describing
the master broker; see Table 3-76 for lookup keys used with this
object.
! HA clusters only
2 Conventional clusters only
Operations

The cluster configuration MBean supports the operations shown in Table 3-75. The names of
these operations are defined as static constants in the utility class ClusterOperations.

Chapter3 - Message Queue MBean Reference

105

Broker Clusters

TABLE3-75 Cluster Configuration Operations

Name

Parameters

ResultType

Description

getBrokerAddresses

None

String[]

Addresses of brokers in cluster

Each address specifies the host name and Port
Mapper port number of a broker in the cluster, in
the form hostName: portNumber.

Example:
host1:3000

For conventional clusters, the list includes all
brokers specified by the broker property
img.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

getBrokerIDs'

None

String[]

Broker identifiers of brokers in cluster

The list includes all active and inactive brokers in
the cluster table stored in the HA database.

getBrokerInfoByAddress

brokerAddress (String)

CompositeData

Descriptive information about broker

The desired broker is designated by its host name
and Port Mapper port number (brokerAddress), in
the form hostName: portNumber. The value
returned is a JMX CompositeData object describing
the broker; see Table 3-76 for lookup keys used
with this object.

getBrokerInfoByID'

brokerID (String)

CompositeData

Descriptive information about broker

The desired broker is designated by its broker
identifier (brokerID). The value returned is a J]MX
CompositeData object describing the broker; see
Table 3-76 for lookup keys used with this object.
For conventional clusters, the operation returns
null.

getBrokerInfo

None

CompositeDatal]

Descriptive information about all brokers in cluster

The value returned is an array of JMX
CompositeData objects describing the brokers; see
Table 3-76 for lookup keys used with these objects.

For conventional clusters, the array includes all
brokers specified by the broker property
img.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

! HA clusters only

106 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Broker Clusters

TABLE3-75 Cluster Configuration Operations (Continued)
Name Parameters Result Type Description
reload? None None Reload cluster configuration file

? Conventional clusters only

The LocalBrokerInfoand MasterBrokerInfo attributes and the getBrokerInfoByAddress,
getBrokerInfoByID, and getBrokerInfo operations return objects implementing the JMX
interface CompositeData, which maps lookup keys to associated data values. The keys shown in
Table 3-76 are defined as static constants in the utility class BrokerClusterInfo for use with
these objects.

TABLE3-76 Lookup Keys for Cluster Configuration Information

Key Value Type Description
Address String Broker address, in the form hostName: portNumber
Example:
host1:3000
D’ String Broker identifier
! HA clusters only
Notification

The cluster configuration MBean supports the notification shown in Table 3-77.

TABLE3-77 Cluster Configuration Notification

Name Description
jmx.attribute.change Attribute value changed
Cluster Monitor

The cluster monitor MBean is used for monitoring the brokers in a cluster. There is one such
MBean for each broker.

Object Name

The cluster monitor MBean has the following object name:
com.sun.messaging.jms.server:type=Cluster, subtype=Monitor
A string representing this object name is defined as a static constant

CLUSTER_MONITOR MBEAN_NAME in the utility class MQObjectName.

Chapter 3 « Message Queue MBean Reference 107

Broker Clusters

Attributes

The cluster monitor MBean has the attributes shown in Table 3-78. The names of these
attributes are defined as static constants in the utility class ClusterAttributes.

TABLE3-78 Cluster Monitor Attributes

Name

Type

Settable?

Description

HighlyAvailable

Boolean

No

High-availability (HA) cluster?

ClusterID!

String

Cluster identifier

Must be a unique alphanumeric string of no more than n—13
characters, where 7 is the maximum table name length allowed
by the database. No two running clusters may have the same
cluster identifier.

This string is appended to the names of all database tables in the
cluster’s shared persistent store.

Note - For brokers belonging to an HA cluster, this attribute is
used in database table names in place of BrokerID (see
Table 3-4).

ConfigFileURL?

String

Yes

URL of cluster configuration file

LocalBrokerInfo

CompositeData

Descriptive information about local broker

The value returned is a JMX CompositeData object describing
the broker; see Table 3-80 for lookup keys used with this object.

MasterBrokerInfo®

CompositeData

Descriptive information about master broker

The value returned is a JMX CompositeData object describing
the master broker; see Table 3-80 for lookup keys used with this
object.

! HA clusters only

2 Conventional clusters only

Operations

The cluster monitor MBean supports the operations shown in Table 3-79. The names of these
operations are defined as static constants in the utility class ClusterOperations.

108 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Broker Clusters

TABLE3-79 Cluster Monitor Operations

Name

Parameters

ResultType

Description

getBrokerAddresses

None

String[]

Addresses of brokers in cluster

Each address specifies the host name and Port
Mapper port number of a broker in the cluster, in
the form hostName: portNumber.

Example:
host1:3000

For conventional clusters, the list includes all
brokers specified by the broker property
img.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

getBrokerIDs'

None

String[]

Broker identifiers of brokers in cluster

The list includes all active and inactive brokers in
the cluster table stored in the HA database.

getBrokerInfoByAddress

brokerAddress (String)

CompositeData

Descriptive information about broker

The desired broker is designated by its host name
and Port Mapper port number (brokerAddress), in
the form hostName: portNumber. The value
returned is a JMX CompositeData object describing
the broker; seeTable 3-80 for lookup keys used with
this object.

getBrokerInfoByID1

brokerID (String)

CompositeData

Descriptive information about broker

The desired broker is designated by its broker
identifier (brokerID). The value returned is a JMX
CompositeData object describing the broker;
seeTable 3-80 for lookup keys used with this object.
For conventional clusters, the operation returns
null.

getBrokerInfo

None

CompositeDatal]

Descriptive information about all brokers in cluster

The value returned is an array of JMX
CompositeData objects describing the brokers; see
Table 3-80 for lookup keys used with these objects.

For conventional clusters, the array includes all
brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

! HA clusters only

Chapter3 - Message Queue MBean Reference

109

Broker Clusters

The LocalBrokerInfo and MasterBrokerInfo attributes and the getBrokerInfoByAddress,
getBrokerInfoByID, and getBrokerInfo operations return objects implementing the JMX
interface CompositeData, which maps lookup keys to associated data values. The keys shown in
Table 3-80 are defined as static constants in the utility class BrokerClusterInfo for use with
these objects.

TABLE3-80 Lookup Keys for Cluster Monitor Information

Key Value Type Description
Address String Broker address, in the form hostName: portNumber
Example:
host1:3000
i’ String Broker identifier
State Integer Current state of broker

See Table 3-81 for possible values.

Statelabel String String representation of current broker state

Useful for displaying the state in human-readable form, such as
in the Java Monitoring and Management Console (jconsole).

See Table 3-81 for possible values.

TakeoverBrokerID! String Broker identifier of broker that has taken over this broker's
persistent data store

NumMsgs' Long Current number of messages stored in memory and persistent
store

StatusTimestamp' Long Time of last status update, in standard Java format (milliseconds

since January 1, 1970, 00:00:00 UTC)
Used to determine whether a broker is running.

The interval at which a broker updates its status can be
configured with the broker property
img.cluster.monitor.interval.

! HA clusters only

Table 3-81 shows the possible values returned for the lookup keys State and StateLabel.
These values are defined as static constants in the utility class BrokerState.

TABLE 3-81 Broker State Values

Value Utility Constant String Representation Meaning

0 BrokerState.OPERATING OPERATING Broker is operating

110 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Broker Clusters

TABLE 3-81 Broker State Values (Continued)

Value Utility Constant String Representation Meaning

1 BrokerState.TAKEOVER STARTED TAKEOVER_STARTED Broker has begun taking over persistent data
store from another broker

2 BrokerState.TAKEOVER COMPLETE TAKEOVER COMPLETE Broker has finished taking over persistent
data store from another broker

3 BrokerState.TAKEOVER FAILED TAKEOVER FAILED Attempted takeover has failed

4 BrokerState.QUIESCE_STARTED QUIESCE_STARTED Broker has begun quiescing

5 BrokerState.QUIESCE COMPLETE QUIESCE COMPLETE Broker has finished quiescing

6 BrokerState.SHUTDOWN_STARTED SHUTDOWN_STARTED Broker has begun shutting down

7 BrokerState.BROKER DOWN BROKER_DOWN Broker is down

-1 BrokerState.UNKNOWN UNKNOWN Broker state unknown

Notifications

The cluster monitor MBean supports the notifications shown in Table 3-82. These notifications
are instances of the Message Queue JMX classes ClusterNotification and
BrokerNotification, and their names are defined as static constants in those classes.

TABLE3-82 Cluster Monitor Notifications

Name

Utility Constant

Description

mq.cluster.broker.join

ClusterNotification.CLUSTER BROKER_JOIN

A broker has joined the cluster

mqg.cluster.broker.down

ClusterNotification.CLUSTER BROKER_ DOWN

A broker in the cluster has shut down or
crashed

mqg.broker.takeover. start!

BrokerNotification.BROKER_TAKEOVER_START

A broker has begun taking over persistent
data store from another broker

mq.broker.takeover.complete!

BrokerNotification.BROKER_TAKEOVER COMPLETE | A broker has finished taking over

persistent data store from another broker

mq.broker.takeover.fail1

BrokerNotification.BROKER TAKEOVER_FAIL

An attempted takeover has failed

! HA clusters only

Table 3-83 shows the methods defined in class ClusterNotification for obtaining details
about a cluster monitor notification. See Table 3-6 for the corresponding methods of class
BrokerNotification.

Chapter3 - Message Queue MBean Reference

11

Logging

TABLE 3-83 Data Retrieval Methods for Cluster Monitor Notifications

Method ResultType Description
isHighlyAvailable Boolean High-availability (HA) cluster?
getClusterID String Cluster identifier
getBrokerID String Broker identifier of affected broker
getBrokerAddress String Address of affected broker, in the form hostName: portNumber
Example:
host1:3000
isMasterBroker! Boolean Master broker affected?

! Conventional clusters only

Logging

112

This section describes the MBeans used for logging Message Queue operations:

= Thelog configuration MBean configures Message Queue logging.
= Thelog monitor MBean monitors Message Queue logging.

The following subsections describe each of these MBeans in detail.

Log Configuration

Each broker has a single log configuration MBean, used for configuring Message Queue logging.

Object Name

The log configuration MBean has the following object name:
com.sun.messaging.jms.server:type=Log, subtype=Config

A string representing this object name is defined as a static constant LOG_CONFIG_MBEAN_NAME
in the utility class MQObjectName.

Attributes

The log configuration MBean has the attributes shown in Table 3-84. The names of these
attributes are defined as static constants in the utility class LogAttributes.

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Logging

TABLE3-84 Log Configuration Attributes

Name

Type

Settable?

Description

Level

String

Yes

Logging level

Specifies the categories of logging information that can be
written to an output channel. See Table 3-85 for possible values.

RolloverBytes

Long

File length, in bytes, at which output rolls over to a new log file

A value of —1 denotes an unlimited number of bytes (no rollover
based on file length).

RolloverSecs

Long

Age of file, in seconds, at which output rolls over to a new log file

A value of —1 denotes an unlimited number of seconds (no
rollover based on file age).

Table 3-85 shows the possible values for the Level attribute. Each level includes those above it
(for example, WARNING includes ERROR). These values are defined as static constants in the utility
class LogLevel.

TABLE3-85 Log Configuration Logging Levels

Name Utility Constant Meaning

NONE LogLevel.NONE No logging

ERROR LogLevel.ERROR Log error messages
WARNING LogLevel.WARNING Log warning messages

INFO LogLevel.INFO Log informational messages
UNKNOWN LogLevel.UNKNOWN Logging level unknown

Notification
The log configuration MBean supports the notification shown in Table 3-86.

TABLE3-86 Log Configuration Notification

Name

Description

jmx.attribute.change

Attribute value changed

Log Monitor

Each broker has a single log monitor MBean, used for monitoring Message Queue logging.

Chapter3 - Message Queue MBean Reference

113

Logging

Object Name

The log monitor MBean has the following object name:
com.sun.messaging.jms.server:type=Log, subtype=Monitor

A string representing this object name is defined as a static constant LOG_MONITOR_MBEAN_NAME
in the utility class MQObjectName.

Notifications

The log monitor MBean supports the notifications shown in Table 3-87. These notifications are
instances of the Message Queue JMX class LogNotification, and their names are defined as
static utility constants in that class.

Note - A notification listener registered for a particular logging level will receive notifications
only for that level and not for those above or below it: for example, a listener registered for the
notification mq. log. level.WARNING will be notified only of WARNING messages and not ERROR or
INFO. To receive notifications for more than one logging level, the listener must be explicitly
registered for each level separately.

TABLE3-87 Log Monitor Notifications

Name Utility Constant Description
mq.log.level.ERROR LogNotification.LOG_LEVEL_ERROR Error message logged
mq.log. level.WARNING LogNotification.LOG_LEVEL_WARNING Warning message logged
mq.log. level.INFO LogNotification.LOG_LEVEL_INFO Informational message logged

Table 3-88 shows the methods defined in class LogNotification for obtaining details about a
log monitor notification.

TABLE3-88 Data Retrieval Methods for Log Monitor Notifications

Method ResultType Description
getLevel String Logging level of logged message
See Table 3-85 for possible values.
getMessage String Body of logged message
114 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Java Virtual Machine

Java Virtual Machine

This section describes the MBean used for monitoring the Java Virtual Machine (JVM):

= The JVM monitor MBean monitors the Java Virtual Machine.

The following subsection describes this MBean in detail.

JVM Monitor

Each broker has a single JVM monitor MBean, used for monitoring the Java Virtual Machine
(JVM).

Note - This MBean is useful only with the Java Development Kit (JDK) version 1.4 or lower. JDK
version 1.5 includes built-in MBeans that provide more detailed information on the state of the
JVM.

Object Name
The JVM monitor MBean has the following object name:

com.sun.messaging.jms.server:type=JVM, subtype=Monitor
A string representing this object name is defined as a static constant JVM_MONITOR_MBEAN_NAME

in the utility class MQObjectName.

Attributes

The JVM monitor MBean has the attributes shown in Table 3-89. The names of these attributes
are defined as static constants in the utility class JVMAttributes.

TABLE3-89 JVM Monitor Attributes

Name Type Settable? Description
TotalMemory Long No Current total memory, in bytes
InitMemory Long No Initial heap size at JVM startup, in bytes
FreeMemory Long No Amount of memory currently available for use, in bytes
MaxMemory Long No Maximum allowable heap size, in bytes
Any memory allocation attempt that would exceed this limit
will cause an OutOfMemoryError exception to be thrown.

Chapter 3 « Message Queue MBean Reference 115

116

APPENDIX A

Alphabetical Reference

Table A-1 is an alphabetical list of Message Queue JMX MBean attributes, with cross-references

to the relevant tables in this manual.

TABLEA-1 Alphabetical List of MBean Attributes

Attribute MBean Reference
AutoCreateQueueMaxNumActiveConsumers | Destination Manager Configuration Table 3-44
AutoCreateQueueMaxNumBackupConsumers | Destination Manager Configuration Table 3-44
AutoCreateQueues Destination Manager Configuration Table 3-44
AutoCreateTopics Destination Manager Configuration Table 3-44
AvgNumActiveConsumers Destination Monitor Table 3-38
AvgNumBackupConsumers Destination Monitor Table 3-38
AvgNumConsumers Destination Monitor Table 3-38
AvgNumMsgs Destination Monitor Table 3-38
AvgTotalMsgBytes Destination Monitor Table 3-38
BrokerID Broker Configuration Table 3-1
Broker Monitor Table 3-4
ClientID Connection Monitor Table 3-24
ClientPlatform Connection Monitor Table 3-24
ClusterID Cluster Configuration Table 3-74
Cluster Monitor Table 3-78

117

Alphabetical Reference

TABLEA-1 Alphabetical List of MBean Attributes (Continued)

Attribute MBean Reference
ConfigFileURL Cluster Configuration Table 3-74
Cluster Monitor Table 3-78
ConnectionID Connection Configuration Table 3-23
Connection Monitor Table 3-24
Destination Monitor Table 3-38
ConsumerFlowLimit Destination Configuration Table 3-32
CreatedByAdmin Destination Monitor Table 3-38
DiskReserved Destination Monitor Table 3-38
DiskUsed Destination Monitor Table 3-38
DiskUtilizationRatio Destination Monitor Table 3-38
DMQTruncateBody Destination Manager Configuration Table 3-44
Embedded Broker Monitor Table 3-4
FreeMemory JVM Monitor Table 3-89
HighlyAvailable Cluster Configuration Table 3-74
Cluster Monitor Table 3-78
Host Connection Monitor Table 3-24
InitMemory JVM Monitor Table 3-89
InstanceName Broker Configuration Table 3-1
Broker Monitor Table 3-4
Level Log Configuration Table 3-84
LimitBehavior Destination Configuration Table 3-32
LocalBrokerInfo Cluster Configuration Table 3-74
Cluster Monitor Table 3-78
LocalDeliveryPreferred Destination Configuration Table 3-32
LocalOnly Destination Configuration Table 3-32
LogDeadMsgs Destination Manager Configuration Table 3-44
MasterBrokerInfo Cluster Configuration Table 3-74
Cluster Monitor Table 3-78

118 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Alphabetical Reference

TABLEA-1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference
MaxBytesPerMsg Destination Configuration Table 3-32
Destination Manager Configuration Table 3-44
MaxMemory JVM Monitor Table 3-89
MaxNumActiveConsumers Destination Configuration Table 3-32
MaxNumBackupConsumers Destination Configuration Table 3-32
MaxNumMsgs Destination Configuration Table 3-32
Destination Manager Configuration Table 3-44
MaxNumProducers Destination Configuration Table 3-32
MaxThreads Service Configuration Table 3-8
Service Manager Configuration Table 3-17
MaxTotalMsgBytes Destination Configuration Table 3-32
Destination Manager Configuration Table 3-44
MinThreads Service Configuration Table 3-8
Service Manager Configuration Table 3-17
MsgBytesIn Destination Monitor Table 3-38
Service Manager Monitor Table 3-19
Service Monitor Table 3-12
MsgBytesOut Destination Monitor Table 3-38
Service Manager Monitor Table 3-19
Service Monitor Table 3-12
Name Destination Configuration Table 3-32
Destination Monitor Table 3-38
Service Configuration Table 3-8
Service Monitor Table 3-12
NextMessageID Destination Monitor Table 3-38
NumActiveConsumers Destination Monitor Table 3-38
NumActiveThreads Service Manager Monitor Table 3-19
Service Monitor Table 3-12

Appendix A - Alphabetical Reference

119

Alphabetical Reference

TABLEA-1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference
NumBackupConsumers Destination Monitor Table 3-38
NumConnections Connection Manager Configuration Table 3-26
Connection Manager Monitor Table 3-28
Service Monitor Table 3-12
NumConnectionsOpened Connection Manager Monitor Table 3-28
Service Monitor Table 3-12
NumConnectionsRejected Connection Manager Monitor Table 3-28
Service Monitor Table 3-12
NumConsumers Connection Monitor Table 3-24
Consumer Manager Configuration Table 3-59
Consumer Manager Monitor Table 3-61
Destination Monitor Table 3-38
Service Monitor Table 3-12
NumDestinations Destination Manager Configuration Table 3-44
Destination Manager Monitor Table 3-49
NumMsgs Destination Manager Monitor Table 3-49
Destination Monitor Table 3-38
NumMsgsHeldInTransaction Destination Monitor Table 3-38
NumMsgsIn Destination Monitor Table 3-38
Service Manager Monitor Table 3-19
Service Monitor Table 3-12
NumMsgsInDMQ Destination Manager Monitor Table 3-49
NumMsgsOut Destination Monitor Table 3-38
Service Manager Monitor Table 3-19
Service Monitor Table 3-12
NumMsgsPendingAcks Destination Monitor Table 3-38
NumMsgsRemote Destination Monitor Table 3-38
NumPktsIn Service Manager Monitor Table 3-19
Service Monitor Table 3-12

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Alphabetical Reference

TABLEA-1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference
NumPktsOut Service Manager Monitor Table 3-19
Service Monitor Table 3-12
NumProducers Connection Monitor Table 3-24
Destination Monitor Table 3-38
Producer Manager Configuration Table 3-53
Producer Manager Monitor Table 3-55
Service Monitor Table 3-12
NumServices Service Manager Monitor Table 3-19
NumTransactions Transaction Manager Configuration Table 3-66
Transaction Manager Monitor Table 3-68
NumTransactionsCommitted Transaction Manager Monitor Table 3-68
NumTransactionsRollback Transaction Manager Monitor Table 3-68
NumWildcards Destination Monitor Table 3-38
NumWildcardConsumers Consumer Manager Monitor Table 3-61
Destination Monitor Table 3-38
NumwildcardProducers Producer Manager Monitor Table 3-55
Destination Monitor Table 3-38
PeakMsgBytes Destination Monitor Table 3-38
PeakNumActiveConsumers Destination Monitor Table 3-38
PeakNumBackupConsumers Destination Monitor Table 3-38
PeakNumConsumers Destination Monitor Table 3-38
PeakNumMsgs Destination Monitor Table 3-38
PeakTotalMsgBytes Destination Monitor Table 3-38
PktBytesIn Service Manager Monitor Table 3-19
Service Monitor Table 3-12
PktBytesOut Service Manager Monitor Table 3-19
Service Monitor Table 3-12

Appendix A - Alphabetical Reference

121

Alphabetical Reference

122

TABLEA-1 Alphabetical List of MBean Attributes (Continued)

Attribute MBean Reference
Port Broker Configuration Table 3-1
Broker Monitor Table 3-4
Connection Monitor Table 3-24
Service Configuration Table 3-8
Service Monitor Table 3-12
ResourceState Broker Monitor Table 3-4
ReloadXMLSchemaOn Failure Destination Configuration Table 3-32
ResourceState Broker Monitor Table 3-4
RolloverBytes Log Configuration Table 3-84
RolloverSecs Log Configuration Table 3-84
ServiceName Connection Monitor Table 3-24
State Destination Monitor Table 3-38
Service Monitor Table 3-12
StateLabel Destination Monitor Table 3-38
Service Monitor Table 3-12
Temporary Destination Monitor Table 3-38
ThreadPoolModel Service Configuration Table 3-8
TotalMemory JVM Monitor Table 3-89
TotalMsgBytes Destination Manager Monitor Table 3-49
Destination Monitor Table 3-38
TotalMsgBytesRemote Destination Monitor Table 3-38
TotalMsgBytesHeldInTransaction Destination Monitor Table 3-38
TotalMsgBytesInDMQ Destination Manager Monitor Table 3-49
Type Destination Configuration Table 3-32
Destination Monitor Table 3-38
UseDMQ Destination Configuration Table 3-32
User Connection Monitor Table 3-24
ValidateXMLSchemaEnabled Destination Configuration Table 3-32

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Alphabetical Reference

TABLEA-1 Alphabetical List of MBean Attributes (Continued)

Attribute MBean Reference

Version Broker Configuration Table 3-1
Broker Monitor Table 3-4

XMLSchemaURIList Destination Configuration Table 3-32

Table A-2 is an alphabetical list of Message Queue JMX MBean operations, with
cross-references to the relevant tables in this manual.

TABLEA-2 Alphabetical List of MBean Operations

Operation MBean Reference
commit Transaction Manager Configuration Table 3-67
compact Destination Configuration Table 3-35
Destination Manager Configuration Table 3-45
create Destination Manager Configuration Table 3-45
destroy Connection Manager Configuration Table 3-27
Destination Manager Configuration Table 3-45
getActiveConsumerIDs Destination Monitor Table 3-41
getBackupConsumerIDs Destination Monitor Table 3-41
getBrokerAddresses Cluster Configuration Table 3-75
Cluster Monitor Table 3-79
getBrokerIDs Cluster Configuration Table 3-75
Cluster Monitor Table 3-79
getBrokerInfo Cluster Configuration Table 3-75
Cluster Monitor Table 3-79
getBrokerInfoByAddress Cluster Configuration Table 3-75
Cluster Monitor Table 3-79
getBrokerInfoByID Cluster Configuration Table 3-75
Cluster Monitor Table 3-79
getConnection Destination Monitor Table 3-41

Appendix A - Alphabetical Reference

123

Alphabetical Reference

124

TABLEA-2 Alphabetical List of MBean Operations (Continued)

Operation MBean Reference
getConnections Connection Manager Configuration Table 3-27
Connection Manager Monitor Table 3-29
Service Monitor Table 3-14
getConsumerIDs Connection Monitor Table 3-25
Consumer Manager Configuration Table 3-60
Consumer Manager Monitor Table 3-62
Destination Monitor Table 3-41
Service Monitor Table 3-14
getConsumerInfo Consumer Manager Monitor Table 3-62
getConsumerInfoByID Consumer Manager Monitor Table 3-62
getConsumerWildcards Consumer Manager Monitor Table 3-62
Destination Monitor Table 3-41
getDestinations Destination Manager Configuration Table 3-45
Destination Manager Monitor Table 3-50
getNumWildcardConsumers Consumer Manager Monitor Table 3-62
Destination Monitor Table 3-41
getNumWildcardProducers Producer Manager Monitor Table 3-56
Destination Monitor Table 3-41
getProducerIDs Connection Monitor Table 3-25
Destination Monitor Table 3-41
Producer Manager Configuration Table 3-54
Producer Manager Monitor Table 3-56
Service Monitor Table 3-14
getProducerInfo Producer Manager Monitor Table 3-56
getProducerInfoByID Producer Manager Monitor Table 3-56
getProducerWildcards Destination Monitor Table 3-41
Producer Manager Table 3-56
getProperty Broker Configuration Table 3-2
getService Connection Monitor Table 3-25

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Alphabetical Reference

TABLEA-2 Alphabetical List of MBean Operations (Continued)
Operation MBean Reference
getServices Service Manager Configuration Table 3-18
Service Manager Monitor Table 3-20
getTemporaryDestinations Connection Monitor Table 3-25
getTransactionIDs Transaction Manager Configuration Table 3-67
Transaction Manager Monitor Table 3-69
getTransactionInfo Transaction Manager Monitor Table 3-69
getTransactionInfoByID Transaction Manager Monitor Table 3-69
getWildcards Destination Monitor Table 3-41
pause Destination Configuration Table 3-35
Destination Manager Configuration Table 3-45
Service Configuration Table 3-9
Service Manager Configuration Table 3-18
purge Consumer Manager Configuration Table 3-60
Destination Configuration Table 3-35
quiesce Broker Configuration Table 3-2
reload Cluster Configuration Table 3-75
resetMetrics Broker Configuration Table 3-2
restart Broker Configuration Table 3-2
resume Destination Configuration Table 3-35
Destination Manager Configuration Table 3-45
Service Configuration Table 3-9
Service Manager Configuration Table 3-18
rollback Transaction Manager Configuration Table 3-67
shutdown Broker Configuration Table 3-2
takeover Broker Configuration Table 3-2
unquiesce Broker Configuration Table 3-2

Appendix A - Alphabetical Reference

125

Alphabetical Reference

126

Table A-3 is an alphabetical list of Message Queue JMX MBean notifications, with
cross-references to the relevant tables in this manual.

TABLEA-3 Alphabetical List of MBean Notifications

Notification MBean Reference
jmx.attribute.change Broker Configuration Table 3-3
Cluster Configuration Table 3-77
Destination Configuration Table 3-37
Destination Manager Configuration Table 3-48
Log Configuration Table 3-86
Service Configuration Table 3-10
mg.broker.quiesce.complete Broker Monitor Table 3-5
mq.broker.quiesce.start Broker Monitor Table 3-5
mq.broker.resource.state.change Broker Monitor Table 3-5
mq.broker.shutdown.start Broker Monitor Table 3-5
mq.broker.takeover.complete Broker Monitor Table 3-5
Cluster Monitor Table 3-82
mq.broker.takeover.fail Broker Monitor Table 3-5
Cluster Monitor Table 3-82
mg.broker.takeover.start Broker Monitor Table 3-5
Cluster Monitor Table 3-82
mq.cluster.broker.down Cluster Monitor Table 3-82
mg.cluster.broker.join Broker Monitor Table 3-5
Cluster Monitor Table 3-82
mq.connection.close Connection Manager Monitor Table 3-30
Service Monitor Table 3-15
mq.connection.open Connection Manager Monitor Table 3-30
Service Monitor Table 3-15
mq.connection.reject Connection Manager Monitor Table 3-30
Service Monitor Table 3-15

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Alphabetical Reference

TABLEA-3 Alphabetical List of MBean Notifications (Continued)

Notification MBean Reference
mq.destination.compact Destination Manager Monitor Table 3-51
Destination Monitor Table 3-42
mq.destination.create Destination Manager Monitor Table 3-51
mq.destination.destroy Destination Manager Monitor Table 3-51
mq.destination.pause Destination Manager Monitor Table 3-51
Destination Monitor Table 3-42
mq.destination.purge Destination Manager Monitor Table 3-51
Destination Monitor Table 3-42
mq.destination.resume Destination Manager Monitor Table 3-51
Destination Monitor Table 3-42
mq.log.level.ERROR Log Monitor Table 3-87
mg.log.level.INFO Log Monitor Table 3-87
mg.log.level.WARNING Log Monitor Table 3-87
mq.service.pause Service Manager Monitor Table 3-21
Service Monitor Table 3-15
mq.service.resume Service Manager Monitor Table 3-21
Service Monitor Table 3-15
mq.transaction.commit Transaction Manager Monitor Table 3-72
mq.transaction.prepare Transaction Manager Monitor Table 3-72
mq.transaction.rollback Transaction Manager Monitor Table 3-72

Appendix A - Alphabetical Reference

127

128

Index

A attributes, MBean (Continued)
AcknowledgeMode lookup key connection configuration MBean, 71
message consumer, 98,99 connection manager configuration MBean, 73
AcknowledgeModelLabel lookup key connection manager monitor MBean, 73-74
message consumer, 98,99 connection monitor MBean, 71-72
acknowledgment modes, 98 consumer manager configuration MBean, 95
table, 99 consumer manager monitor MBean, 96
addNotificationListener method, interface defined, 24
MBeanServerConnection, 51 destination configuration MBean, 75-78
Address lookup key destination manager configuration MBean, 86-87

broker cluster, 107,110

)) destination manager monitor MBean, 89-90
admin connection factory

) destination monitor MBean, 80-83
configuring, 37 JVM monitor MBean, 115
defined, 36 1 .
. og configuration MBean, 112-113
obtaining JMX connector from, 36-38 .
o . producer manager conﬁguratlon MBean, 91-92
obtaining JMX connector without, 38 ;

. . . producer manager monitor MBean, 92-93
admin connection service name, 29 . .

. . . . 1 service configuration MBean, 63-64
AdminConnectionConfiguration utility class, 33,37 . f tion MB 67-68
AdminConnectionFactory class, 33,36 serv%ce manager con .gura ron Mibean, 67
ALL utili service manager monitor MBean, 68-69

utility constant . .

service monitor MBean, 65-66

classDestinationPauseType, 79,88 3)
Attribute class, 40 transaction manager configuration MBean, 100

attribute lists, defined, 40 transaction manager monitor MBean, 101

AttributelList class, 40 authentication credentials, 38

attributes, MBean AUTO_ACKNOWLEDGE utility constant, interface
accessing, 39-44 Session, 99
alphabetical list (table), 117-123 AutoCreateQueueMaxNumActiveConsumers attribute,
broker configuration MBean, 56 destination manager configuration MBean, 86
broker monitor MBean, 59-60 AutoCreateQueueMaxNumBackupConsumers attribute,
cluster configuration MBean, 104-105 destination manager configuration MBean, 86
cluster monitor MBean, 108 AutoCreateQueues attribute, destination manager
combining with operations, 46 configuration MBean, 86

129

Index

AutoCreateTopics attribute, destination manager
configuration MBean, 86
AvgNumActiveConsumers attribute
destination monitor MBean, 58, 81
AvgNumBackupConsumers attribute
destination monitor MBean, 58,81
AvgNumConsumers attribute
destination monitor MBean, 58, 81
AvgNumMsgs attribute
destination monitor MBean, 58, 82
AvgTotalMsgBytes attribute
destination monitor MBean, 58,83

B
Broker MBean type, 27
broker clusters, 104-112
cluster identifier, 105,108,112
composite data object, lookup keys for (table), 107
configuration MBean, 104-107
high-availability (HA), 57,104,105, 106, 107, 108,
109,110, 111,112
monitor MBean, 107-112
BROKER CONFIG MBEAN NAME utility constant
classMQObjectName, 30,56
broker configuration MBean, 55-59
attributes, 56
notification, 59
object name, 56
operations, 56-59
BROKER_DOWN utility constant, class BrokerState, 111
broker monitor MBean, 59-62
attributes, 59-60
notification objects, 61
notifications, 60-62
object name, 59
BROKER MONITOR MBEAN NAME utility constant
class MQObjectName, 30,59
BROKER_QUIESCE_COMPLETE utility constant, class
BrokerNotification, 61
BROKER_QUIESCE_START utility constant, class
BrokerNotification, 61
BROKER_SHUTDOWN_START utility constant, class
BrokerNotification, 61

130 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients «

BROKER TAKEOVER COMPLETE utility constant

class BrokerNotification, 61,111
BROKER_STATE_CHANGE utility constant, class

BrokerNotification, 61
BROKER_TAKEOVER_FAIL utility constant

class BrokerNotification, 61,111
BROKER TAKEOVER START utility constant

class BrokerNotification, 61,111
BrokerAttributes utility class, 34, 56,59
BrokerClusterInfo utility class, 35,107,110
BrokerlID attribute

broker configuration MBean, 56

broker monitor MBean, 60
BrokerNotification class, 34

BROKER QUIESCE COMPLETE constant, 61

BROKER QUIESCE START constant, 61

BROKER SHUTDOWN START constant, 61

BROKER TAKEOVER COMPLETE constant, 61,111

BROKER STATE_CHANGE constant, 61

BROKER TAKEOVER FAIL constant, 61,111

BROKER TAKEOVER START constant, 61,111

data retrieval methods, 61

utility constants, 60,111
BrokerOperations utility class, 34,56
brokers, 55-62

See brokers

broker identifier, 56,57, 60,61, 106,107,109, 110,

112

configuration MBean, 55-59

monitor MBean, 59-62

state values (table), 110-111
BrokerState utility class, 34,110

BROKER DOWN constant, 111

OPERATING constant, 110

QUIESCE COMPLETE constant, 111

QUIESCE STARTED constant, 111

SHUTDOWN STARTED constant, 111

TAKEOVER COMPLETE constant, 111

TAKEOVER FAILED constant, 111

TAKEOVER STARTED constant, 111

UNKNOWN constant, 111

December, 2008

Index

C

classes
AdminConnectionConfiguration, 33,37
AdminConnectionFactory, 33,36
Attribute, 40
Attributelist, 40
BrokerAttributes, 34,56,59
BrokerClusterInfo, 35,107,110
BrokerNotification, 34,60,61,111
BrokerOperations, 34,56
BrokerState, 34,110
ClusterAttributes, 35,104,108
ClusterNotification, 35,60,111
ClusterOperations, 35,105,108
ConnectionAttributes, 34,71,73
ConnectionNotification, 35, 66,74
ConnectionOperations, 34,72,73,74
ConsumerAttributes, 35,95,96
ConsumerInfo, 35,97
ConsumerOperations, 35,95,96

DestinationAttributes, 35,75, 80, 86,87, 89

DestinationLimitBehavior, 35,78
DestinationNotification, 35,85,90

DestinationOperations, 35,78,83,87,90

DestinationPauseType, 35,79, 88
DestinationState, 35,83

DestinationType, 28,35,77,83,88,94,98

JMXConnectorFactory, 38
JVMAttributes, 35,115
LogAttributes, 35,112

LogLevel, 35,113

LogNotification, 35,114
MQNotification, 34

MQObjectName, 24,29, 34
Notification, 51
NotificationFilterSupport, 52
ObjectName, 24,27
ProducerAttributes, 35,91,92
ProducerInfo, 35,93
ProducerOperations, 35,92,93
ServiceAttributes, 34,63,65,67,68
ServiceNotification, 34,66, 67,69,70
ServiceOperations, 34,64, 66,68, 69
ServiceState, 34,66

classes (Continued)
TransactionAttributes, 35,100,101
TransactionInfo, 35,102
TransactionNotification, 35,103
TransactionOperations, 35,100,101
TransactionState, 35,102
utility, 34-36
CLASSPATH environment variable, 34
CLIENT_ACKNOWLEDGE utility constant, interface
Session, 99
ClientID attribute, connection monitor MBean, 72
ClientID lookup key
message consumer, 98
transaction, 102
ClientPlatform attribute, connection monitor
MBean, 72
Cluster MBean type, 28
CLUSTER BROKER DOWN utility constant, class
ClusterNotification, 111
CLUSTER_BROKER_JOIN utility constant
class ClusterNotification, 61,111
CLUSTERﬁCONFIGiMBEANiNAMElﬂﬂﬁyconﬂant
classMQObjectName, 31,104
cluster configuration MBean, 104-107
attributes, 104-105
notification, 107
object name, 104
operations, 105-107
cluster monitor MBean, 107-112
attributes, 108
notification objects, 111
notifications, 111-112
object name, 107
operations, 108-111
CLUSTER_MONITOR_MBEAN_NAMEuiﬂﬁyconﬂnnt
class MQObjectName, 31,107
ClusterAttributes utility class, 35,104,108
ClusterID attribute
cluster configuration MBean, 105
cluster monitor MBean, 108
ClusterNotification class, 35
CLUSTER _BROKER DOWN constant, 111
CLUSTER BROKER JOIN constant, 61,111
data retrieval methods, 111

131

Index

ClusterNotification class (Continued)
utility constants, 60,111
ClusterOperations utility class, 35,105,108
clusters, See broker clusters
com.sun.messaging package, 33,36
com.sun.messaging.jms.management.server
package, 33,34
commit operation, transaction manager configuration
MBean, 100
COMMITTED utility constant, class
TransactionState, 103
compact operation
destination configuration MBean, 79
destination manager configuration MBean, 88
COMPLETE utility constant, class
TransactionState, 103
composite data objects
See also lookup keys
for broker clusters, 106,107,109
defined, 48
for brokers, 105,108
for message consumers, 96,97
for message producers, 93
for transactions, 101,102
CompositeData interface, 48,93,96,97,101,102,105,
106, 107, 108,109, 110
Config MBean subtype, 28
ConfigFileURL attribute
cluster configuration MBean, 105
cluster monitor MBean, 108
configuration MBeans, 25
connect method
class JMXConnectorFactory, 38
Connection MBean type, 28
CONNECTION_CLOSE utility constant
class ConnectionNotification, 67,74
connection configuration MBean, 70-71
attribute, 71
object name, 70-71
CONNECTION_MANAGER CONFIG_MBEAN_NAME utility
constant
class MQObjectName, 30,72
connection manager configuration MBean, 72-73
attribute, 73

132 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients «

connection manager configuration MBean (Continued)
object name, 72
operations, 73
connection manager monitor MBean, 73-75
attributes, 73-74
notification objects, 74
notifications, 74-75
object name, 73
operation, 74
CONNECTION MANAGER MONITOR MBEAN NAME utility
constant
class MQObjectName, 30,73
connection monitor MBean, 71-72
attributes, 71-72
object name, 71
operations, 72
CONNECTION_OPEN utility constant
class ConnectionNotification, 67,74
CONNECTION_REJECT utility constant
class ConnectionNotification, 67,74
connection services, 62-70
configuration MBean, 62-64
manager configuration MBean, 67-68
manager monitor MBean, 68-70
monitor MBean, 64-67
names (table), 29
state values (table), 66
ConnectionAttributes utility class, 34,71,73
ConnectionID attribute
connection configuration MBean, 71
connection monitor MBean, 71
destination monitor MBean, 80
ConnectionID lookup key
message consumer, 97
message producer, 93
ConnectionManager MBean type, 28
ConnectionNotification class, 35
CONNECTION CLOSE constant, 67,74
CONNECTION OPEN constant, 67,74
CONNECTION REJECT constant, 67,74
data retrieval methods, 74
utility constants, 66,74
ConnectionOperations utility class, 34,72,73,74
connections, 70-75

December, 2008

Index

connections (Continued)
configuration MBean, 70-71
connection identifier, 70,71, 73,80, 93,97
manager configuration MBean, 72-73
manager monitor MBean, 73-75
monitor MBean, 71-72
ConnectionString lookup key, transaction, 102
connectors, JMX, See JMX connectors
CONSUMER _MANAGER CONFIG_MBEAN_NAME utility
constant
class MQObjectName, 30,95
consumer manager configuration MBean, 95-96
attribute, 95
object name, 95
operations, 95-96
consumer manager monitor MBean, 96-99
attribute, 96
object name, 96
operations, 96-99
CONSUMER_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 30,96
ConsumerAttributes utility class, 35, 95,96
ConsumerFlowLimit attribute, destination
configuration MBean, 76
ConsumerID lookup key, message consumer, 97
ConsumerInfo utility class, 35,97
ConsumerManager MBean type, 28
ConsumerOperations utility class, 35, 95,96
consumers, See message cConsumers
CONSUMERS utility constant
class DestinationPauseType, 79,88
CONSUMERS_PAUSED utility constant, class
DestinationState, 83
create operation

destination manager configuration MBean, 87, 88

createConnection method, class
AdminConnectionFactory, 37

createConnectionConfig utility method
class MQObjectName, 30,71

createConnectionMonitor utility method
class MQObjectName, 30,71

CREATED utility constant, class TransactionState, 103

CreatedByAdmin attribute, destination monitor
MBean, 80
createDestinationConfig utility method
class MQObjectName, 30,75
createDestinationMonitor utility method
class MQObjectName, 30, 80
createServiceConfig utility method
class MQObjectName, 30,63
createServiceMonitor utility method
class MQObjectName, 30, 64
CreationTime lookup key, transaction, 102
CREDENTIALS attribute

(JMXConnectorFactory.connect environment), 38

D
dead message queue, 76,77, 86,87, 89
Destination MBean type, 28
DESTINATION_COMPACT utility constant
classDestinationNotification, 85,90
destination configuration MBean, 75-79
attributes, 75-78
notification, 79
objectname, 75
operations, 78-79
DESTINATION_CREATE utility constant, class
DestinationNotification, 90
DESTINATION_DESTROY utility constant, class
DestinationNotification, 90

DESTINATION_MANAGER_ CONFIG_MBEAN_NAME utility

constant
class MQObjectName, 30,86
destination manager configuration MBean, 85-89
attributes, 86-87
notification, 88-89
object name, 86
operations, 87-88
destination manager monitor MBean, 89-91
attributes, 89-90
notification objects, 90
notifications, 90-91
object name, 89
operation, 90

133

Index

DESTINATION MANAGER MONITOR MBEAN NAME utility destinations, 75-91
constant configuration MBean, 75-79
classMQObjectName, 30,89 limit behavior (table), 78
destination monitor MBean, 79-85 manager configuration MBean, 85-89
attributes, 80-83 manager monitor MBean, 89-91
notification objects, 85 monitor MBean, 79-85
notifications, 85 pause types (table), 79
object name, 79-80 types (table), 28-29
operations, 83-85 DestinationState utility class, 35,83
DESTINATION_PAUSE utility constant CONSUMERS_ PAUSED constant, 83
classDestinationNotification, 85,90 PAUSED constant, 83
DESTINATION PURGE utﬂity constant PRODUCERS PAUSED constant, 83
classDestinationNotification, 85,90 RUNNING constant, 83
DESTINATION RESUME utﬂity constant UNKNOWN constant, 83
classDestinationNotification, 85,90 DestinationType lookup key
destination types (table), 28-29 message consumer, 98
DestinationAttributes utility class, 35,75, 80, 86,87, message producer, 94
89 DestinationType utility class, 28,35,77,83,88,94,98
DestinationLimitBehavior utility class, 35,78 destroy operation
FLOW_CONTROL constant, 78 connection manager configuration MBean, 73
REJECT_NEWEST constant, 78 destination manager configuration MBean, 88
REMOVE_LOW_PRIORITY constant, 78 desttype property (object name), 27
REMOVE_OLDEST constant, 78 values (table), 28-29
DestinationManager MBean type, 28 DiskReserved attribute, destination monitor
DestinationName lookup key MBean, 83
message consumer, 97 DiskUsed attribute, destination monitor MBean, 83
message producer, 94 DiskUtilizationRatio attribute, destination monitor
DestinationNames lookup key MBean, 83
message consumer, 97 distributed transaction identifier (XID), 102
message producer, 94 DMQTruncateBody attribute, destination manager
DestinationNotification class, 35 configuration MBean, 86
data retrieval methods, 85,90 DUPS_OK_ACKNOWLEDGE utility constant, interface
DESTINATION COMPACT constant, 85,90 Session, 99
DESTINATION_ CREATE constant, 90 Durable lookup key, message consumer, 98
DESTINATION_DESTROY constant, 90 DurableActive lookup key, message consumer, 98
DESTINATION PAUSE constant, 85,90 DurableName lookup key, message consumer, 98

DESTINATION_PURGE constant, 85,90
DESTINATION RESUME constant, 85,90
utility constants, 85,90

DestinationOperations utility class, 35,78,83,87,90 E

DestinationPauseType utility class, 35,79, 88 Embedded attribute, broker monitor MBean, 60
ALL constant, 79, 88 enableType method, class
CONSUMERS constant, 79, 88 NotificationFilterSupport, 52
PRODUCERS constant, 79, 88 ERROR utility constant, class LogLevel, 113

134 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Index

F
FAILED utility constant, class TransactionState, 103
FLOW_CONTROL utility constant, class
DestinationLimitBehavior, 78
FlowPaused lookup key
message consumer, 98
message producer, 94
FreeMemory attribute, JVM monitor MBean, 115

G
getActiveConsumerIDs operation, destination monitor
MBean, 84
getAttribute method, interface
MBeanServerConnection, 39
getAttributes method, interface
MBeanServerConnection, 40
getBackupConsumerIDs operation, destination monitor
MBean, 84
getBrokerAddress method
class BrokerNotification, 61
class ClusterNotification, 112
getBrokerAddresses operation
cluster configuration MBean, 106
cluster monitor MBean, 109
getBrokerID method
class BrokerNotification, 61
class ClusterNotification, 112
getBrokerIDs operation
cluster configuration MBean, 106
cluster monitor MBean, 109
getBrokerInfo operation
cluster configuration MBean, 106, 107
cluster monitor MBean, 109,110
getBrokerInfoByAddress operation
cluster configuration MBean, 106, 107
cluster monitor MBean, 109,110
getBrokerInfoByID operation
cluster configuration MBean, 106, 107
cluster monitor MBean, 109,110
getClusterID method, class
ClusterNotification, 112
getConnection operation, destination monitor
MBean, 84

getConnectionID method, class

ConnectionNotification, 74
getConnections operation

connection manager configuration MBean, 73

connection manager monitor MBean, 74

service monitor MBean, 66
getConsumerIDs operation

connection monitor MBean, 72

consumer manager configuration MBean, 95

consumer manager monitor MBean, 96

destination monitor MBean, 84

service monitor MBean, 66
getConsumerInfo operation

consumer manager monitor MBean, 97
getConsumerInfoByID operation

consumer manager monitor MBean, 96,97
getConsumerWildcards operation

consumer manager monitor MBean, 97

destination monitor MBean, 84
getCreatedByAdmin method

classDestinationNotification, 85,90
getDestinationName method

classDestinationNotification, 85,90
getDestinations operation

destination manager configuration MBean, 87

destination manager monitor MBean, 90
getDestinationType method

classDestinationNotification, 85,90
getFailedBrokerID method, class

BrokerNotification, 61
getHeapMemoryUsage method, class

BrokerNotification, 62
getLevel method, class LogNotification, 114
getMBeanServerConnection method, class

JMXConnector, 36
getMessage method, class LogNotification, 114
getName method, class Attribute, 40
getNewResourceState method, class

BrokerNotification, 62
getNumWildcardConsumers operation

consumer manager monitor MBean, 97

destination monitor MBean, 84
getNumWildcardProducers operation

destination monitor MBean, 85

135

Index

getNumwWildcardProducers operation (Continued)
producer manager monitor MBean, 93
getOldResourceState method, class
BrokerNotification, 62
getPauseType method
class DestinationNotification, 85,91
getProducerIDs operation
connection monitor MBean, 72
destination monitor MBean, 84
producer manager configuration MBean, 92
producer manager monitor MBean, 93
service monitor MBean, 66
getProducerInfo operation
producer manager monitor MBean, 93
getProducerInfoByID operation
producer manager monitor MBean, 93
getProducerWildcards operation
destination monitor MBean, 84
producer manager monitor MBean, 93
getRemoteHost method, class
ConnectionNotification, 74

getService operation, connection monitor MBean, 72

getServiceName method
class ConnectionNotification, 74
class ServiceNotification, 67,70
getServices operation
service manager configuration MBean, 68
service manager monitor MBean, 69
getTemporaryDestinations operation, connection
monitor MBean, 72
getTransactionID method, class
TransactionNotification, 103
getTransactionIDs operation
transaction manager configuration MBean, 100
transaction manager monitor MBean, 101
getTransactionInfo operation
transaction manager monitor MBean, 102
getTransactionInfoByID operation
transaction manager monitor MBean, 101, 102
getUserName method, class
ConnectionNotification, 75
getValue method, class Attribute, 40
getWildcards operation, destination monitor
MBean, 84

H
HA, See high-availability broker clusters
handback objects, 51
handleNotification method, interface
NotificationListener, 51
high-availability (HA) broker clusters
ClusterID attribute, cluster configuration
MBean, 105
ClusterID attribute, cluster monitor MBean, 108
getBrokerAddresses operation, cluster
configuration MBean, 106
getBrokerAddresses operation, cluster monitor

MBean, 109

getBrokerIDs operation, cluster monitor
MBean, 109

getBrokerInfo operation, cluster configuration
MBean, 106

getBrokerInfo operation, cluster monitor
MBean, 109

HighlyAvailable attribute, cluster configuration
MBean, 104

HighlyAvailable attribute, cluster monitor
MBean, 108

ID lookup key, composite data object, 107,110

isHighlyAvailable method, class
ClusterNotification, 112

mg.broker.takeover.complete notification, cluster
monitor MBean, 111

mq.broker.takeover. fail notification, cluster
monitor MBean, 111

mq.broker.takeover.start notification, cluster
monitor MBean, 111

NumMsgs lookup key, composite data object, 110

shutdown operation, broker configuration
MBean, 57

StatusTimestamp lookup key, composite data
object, 110

TAKEOVER COMPLETE state, 111

TAKEOVER FAILED state, 111

TAKEOVER STARTED state, 111

TakeoverBrokerID lookup key, composite data
object, 110

HighlyAvailable attribute
cluster configuration MBean, 104

136 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Index

HighlyAvailable attribute (Continued)

cluster monitor MBean, 108
Host attribute, connection monitor MBean, 71
Host lookup key

message consumer, 97

message producer, 94
HTTP, See Hypertext Transfer Protocol
httpjms connection service name, 29
HTTPS, See Hypertext Transfer Protocol, Secure
httpsjms connection service name, 29
Hypertext Transfer Protocol (HTTP), 29
Hypertext Transfer Protocol, Secure (HTTPS), 29

I
ID lookup key
broker cluster, 107,110
id property (object name), 27
imgjmx.jar file, 33
INCOMPLETE utility constant, class
TransactionState, 103
INFO utility constant, class LogLevel, 113
InitMemory attribute, JVM monitor MBean, 115
InstanceName attribute
broker configuration MBean, 56
broker monitor MBean, 60
interfaces
CompositeData, 48,93,96,97,101,102, 105,106,
107,108, 109,110
NotificationListener, 51
Session, 99
invoke method
interface MBeanServerConnection, 44,45
isHighlyAvailable method, class
ClusterNotification, 112
isMasterBroker method, class
ClusterNotification, 112

J
Java Management Extensions (JMX) Specification, 12,
18

Java Management Extensions (JMX) Technology
Overview, 18

Java Management Extensions (JMX) Technology
Tutorial, 18

Java Monitoring and Management Console
(jconsole), 65,80,98,102,110

jconsole, See Java Monitoring and Management
Console

jms connection service name, 29

jmx.attribute.change notification
broker configuration MBean, 59
cluster configuration MBean, 107
destination configuration MBean, 79
destination manager configuration MBean, 89
log configuration MBean, 113
service conﬁguration MBean, 64

JMX connectors
defined, 24
obtaining from admin connection factory, 36-38
obtaining without admin connection factory, 38

JMX service URLs, parameter to
JMXConnectorFactory.connect method, 38

JMXConnectorFactory class, 38

JVM, See Java Virtual Machine

JVM (Java Virtual Machine), 115
monitor MBean, 115

JVM MBean type, 28

JVM monitor MBean, 25,115
attributes, 115
objectname, 115

JVM_MONITOR MBEAN NAME utility constant
classMQObjectName, 31,115

JVMAttributes utility class, 35,115

L
LastAckTime lookup key, message consumer, 98
Level attribute

log configuration MBean, 113
limit behavior, destinations, 78
LimitBehavior attribute

destination configuration MBean, 76,78
LocalBrokerInfo attribute

cluster configuration MBean, 105, 107

137

Index

LocalBrokerInfo attribute (Continued)
cluster monitor MBean, 108,110
LocalDeliveryPreferred attribute, destination
configuration MBean, 77
LocalOnly attribute, destination configuration
MBean, 77
Log MBean type, 28
LOG CONFIG MBEAN NAME utility constant
class MQObjectName, 31,112
log configuration MBean, 112-113
attributes, 112-113
notification, 113
object name, 112
LOG LEVEL ERROR utility constant, class
LogNotification, 114
LOG_LEVEL_INFO utility constant, class
LogNotification, 114
LOG LEVEL WARNING utility constant, class
LogNotification, 114
log monitor MBean, 113-114
notification objects, 114
notifications, 114
object name, 114
LOG_MONITOR_MBEAN_NAME utility constant
classMQObjectName, 31,114
LogAttributes utility class, 35,112
LogDeadMsgs attribute, destination manager
configuration MBean, 87
logging, 112-114
configuration MBean, 112-113
monitor MBean, 113-114
LogLevel utility class, 35,113
ERROR constant, 113
INFO constant, 113
NONE constant, 113
UNKNOWN constant, 113
WARNING constant, 113
LogNotification class, 35
data retrieval methods, 114
LOG LEVEL ERROR constant, 114
LOG LEVEL INFO constant, 114
LOG LEVEL WARNING constant, 114
utility constants, 114

lookup keys
for broker clusters, 107
defined, 48
for message consumers, 97-98
for message producers, 93-94
for transactions, 102

M
managed beans, See MBeans
manager MBeans, 26
MasterBrokerInfo attribute
cluster configuration MBean, 105, 107
cluster monitor MBean, 108,110
MaxBytesPerMsg attribute
destination configuration MBean, 76
destination manager configuration MBean, 86
MaxMemory attribute, JVM monitor MBean, 115
MaxNumActiveConsumers attribute, destination
configuration MBean, 76
MaxNumBackupConsumers attribute, destination
configuration MBean, 76
MaxNumMsgs attribute
destination configuration MBean, 76
destination manager configuration MBean, 86

MaxNumProducers attribute, destination configuration

MBean, 76
MaxThreads attribute

service configuration MBean, 63

service manager configuration MBean, 68
MaxTotalMsgBytes attribute

destination configuration MBean, 76

destination manager configuration MBean, 86
MBean server

connecting to, 36-38

connection, defined, 36

defined, 24
MBeans

attributes, accessing, 39-44

broker configuration, 55-59

broker monitor, 59-62

cluster configuration, 104-107

cluster monitor, 107-112

combining operations and attributes, 46

138 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Index

MBeans (Continued)

configuration, defined, 25
connection conﬁguration, 70-71
connection manager configuration, 72-73
connection manager monitor, 73-75
connection monitor, 71-72
consumer manager configuration, 95-96
consumer manager monitor, 96-99
defined, 23
destination configuration, 75-79
destination manager configuration, 85-89
destination manager monitor, 89-91
destination monitor, 79-85
JVM monitor, 25,115
log configuration, 112-113
log monitor, 113-114
manager, defined, 26
monitor, defined, 25
notifications, receiving, 51-54
operations, invoking, 44-51
producer manager configuration, 91-92
producer manager monitor, 92-94
resource, defined, 25
server

See MBean server
service conﬁguration, 62-64
service manager configuration, 67-68
service manager monitor, 68-70
service monitor, 64-67
subtypes (table), 28
transaction manager configuration, 99-100
transaction manager monitor, 100-104
types (table), 27-28
using, 39-54

message consumers, 94-99

acknowledgment mode, 98,99

composite data object, lookup keys for
(table), 97-98

consumer identifier, 66,72, 84,95, 96,97

manager configuration MBean, 95-96

manager monitor MBean, 96-99

message producers, 91-94

composite data object, lookup keys for
(table), 93-94

message producers (Continued)

manager configuration MBean, 91-92
manager monitor MBean, 92-94
producer identifier, 66,72,84,92,93

message string (notifications), 51
methods

addNotificationListener (interface
MBeanServerConnection), 51
connect (class JMXConnectorFactory), 38
createConnection (class
AdminConnectionFactory), 37
createConnectionConfig (class
MQObjectName), 30,71
createConnectionMonitor (class
MQObjectName), 30,71
createDestinationConfig (class
MQObjectName), 30,75
createDestinationMonitor (class
MQObjectName), 30,80
createServiceConfig (class MQObjectName), 30,63
createServiceMonitor (class MQObjectName), 30,
64
enableType (class
NotificationFilterSupport), 52
getAttribute (interface
MBeanServerConnection), 39
getAttributes (interface
MBeanServerConnection), 40
getBrokerAddress (class
BrokerNotification), 61
getBrokerAddress (class
ClusterNotification), 112
getBrokerID (class BrokerNotification), 61
getBrokerID (class ClusterNotification), 112
getClusterID (class ClusterNotification), 112
getConnectionID (class
ConnectionNotification), 74
getCreatedByAdmin (class
DestinationNotification), 85,90
getDestinationName (class
DestinationNotification), 85,90
getDestinationType (class
DestinationNotification), 85,90

139

Index

methods (Continued)
getFailedBrokerlID (class
BrokerNotification), 61
getHeapMemoryUsage (class
BrokerNotification), 62
getLevel (class LogNotification), 114
getMBeanServerConnection (class
JMXConnector), 36
getMessage (class LogNotification), 114
getName (class Attribute), 40
getNewResourceState (class
BrokerNotification), 62
getOldResourceState (class
BrokerNotification), 62
getPauseType (class
DestinationNotification), 85,91
getRemoteHost (class
ConnectionNotification), 74
getServiceName (class
ConnectionNotification), 74
getServiceName (class ServiceNotification), 67,
70
getTransactionID (class
TransactionNotification), 103
getUserName (class ConnectionNotification), 75
getValue (class Attribute), 40
handleNotification (interface
NotificationListener), 51
invoke (interface MBeanServerConnection), 44,45
isHighlyAvailable (class
ClusterNotification), 112
isMasterBroker (class
ClusterNotification), 112
setAttribute (interface
MBeanServerConnection), 41
setAttributes (interface
MBeanServerConnection), 42
setProperty (class AdminConnectionFactory), 37
MinThreads attribute
service configuration MBean, 63
service manager configuration MBean, 68
Monitor MBean subtype, 28
monitor MBeans, 25

140 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients «

mg.broker.quiesce. complete notification, broker

monitor MBean, 61
mq.broker.quiesce.start notification, broker

monitor MBean, 61
mg.broker.resource.state.change notification,

broker monitor MBean, 61
mq.broker.shutdown.start notification, broker

monitor MBean, 61
mq.broker.takeover.complete notification

broker monitor MBean, 61

cluster monitor MBean, 111
mq.broker.takeover. fail notification

broker monitor MBean, 61

cluster monitor MBean, 111
mq.broker.takeover.start notification

broker monitor MBean, 61

cluster monitor MBean, 111
mq.cluster.broker.down notification, cluster monitor

MBean, 111
mq.cluster.broker.join notification

broker monitor MBean, 61

cluster monitor MBean, 111
mg.connection.close notification

connection manager monitor MBean, 74

service monitor MBean, 67
mq.connection.open notification

connection manager monitor MBean, 74

service monitor MBean, 67
mg.connection.reject notification

connection manager monitor MBean, 74

service monitor MBean, 67
mg.destination.compact notification

destination manager monitor MBean, 90

destination monitor MBean, 85
mq.destination.create notification, destination

manager monitor MBean, 90
mq.destination.destroy notification, destination

manager monitor MBean, 90
mg.destination.pause notification

destination manager monitor MBean, 90

destination monitor MBean, 85
mq.destination.purge notification

destination manager monitor MBean, 90

destination monitor MBean, 85

December, 2008

Index

mg.destination. resume notification
destination manager monitor MBean, 90
destination monitor MBean, 85
mq. log. level.ERROR notification, log monitor
MBean, 114
mq. log. level. INFO notification, log monitor
MBean, 114
mq. log. level.WARNING notification, log monitor
MBean, 114
mq.service.pause notification
service manager monitor MBean, 70
service monitor MBean, 67
mq.service. resume notification
service manager monitor MBean, 70
service monitor MBean, 67
mq.transaction.commit notification, transaction
manager monitor MBean, 103
mq.transaction.prepare notification, transaction
manager monitor MBean, 103
mq.transaction. rollback notification, transaction
manager monitor MBean, 103
MQNotification class, 34
MQObjectName utility class, 24,29, 34
BROKER CONFIG MBEAN NAME constant, 30,56
BROKER MONITOR MBEAN NAME constant, 30,59
CLUSTER CONFIG MBEAN NAME constant, 31,104
CLUSTER MONITOR MBEAN NAME constant, 31,107
CONNECTION MANAGER CONFIG MBEAN NAME
constant, 30,72
CONNECTION MANAGER MONITOR MBEAN NAME
constant, 30,73
CONSUMER MANAGER CONFIG MBEAN NAME
constant, 30,95
CONSUMER_MANAGER MONITOR MBEAN NAME
constant, 30,96
createConnectionConfig method, 30,71
createConnectionMonitor method, 30,71
createDestinationConfig method, 30,75
createDestinationMonitor method, 30,80
createServiceConfig method, 30,63
createServiceMonitor method, 30,64
DESTINATION MANAGER CONFIG MBEAN_ NAME
constant, 30, 86

MQObjectName utility class (Continued)
DESTINATION MANAGER MONITOR MBEAN NAME
constant, 30, 89
JVM_MONITOR MBEAN_ NAME constant, 31,115
LOG_CONFIG_MBEAN_NAME constant, 31,112
LOG_MONITOR MBEAN NAME constant, 31,114
PRODUCER MANAGER CONFIG MBEAN NAME
constant, 30,91

PRODUCER MANAGER MONITOR MBEAN NAME
constant, 30,92

SERVICE MANAGER CONFIG MBEAN NAME
constant, 30,67

SERVICE MANAGER MONITOR MBEAN NAME
constant, 30,68

TRANSACTION MANAGER CONFIG MBEAN NAME
constant, 31,100

TRANSACTION MANAGER MONITOR MBEAN NAME
constant, 31,101

MsgBytesIn attribute
destination monitor MBean, 58, 82
service manager monitor MBean, 58, 69
service monitor MBean, 58,65

MsgBytesOut attribute
destination monitor MBean, 58, 82
service manager monitor MBean, 58, 69
service monitor MBean, 58,65

N

Name attribute
destination conﬁguration MBean, 76,87
destination monitor MBean, 80
service configuration MBean, 63
service monitor MBean, 65
name property (object name), 27
values (table), 29
NextMessagelD attribute, destination monitor
MBean, 82
NextMessagelD lookup key, message consumer, 98
NO_ACKNOWLEDGE utility constant, interface Session, 99
NONE utility constant, class LogLevel, 113
Notification class, 51
notification filters, 51

141

Index

notification listeners

defined, 51

example, 52

for log notifications, 114

registering, 53-54
notification objects

for broker notifications, 61

for cluster notifications, 111

for connection notifications, 74

for connection service notifications, 70

defined, 51

for destination notifications, 85,90

for log notifications, 114

for service notifications, 67

for transaction notifications, 103
NotificationFilterSupport class, 52
NotificationListener interface, 51
notifications, MBean

alphabetical list (table), 126-127

broker configuration MBean, 59

broker monitor MBean, 60-62

cluster configuration MBean, 107

cluster monitor MBean, 111-112

connection manager monitor MBean, 74-75

defined, 24

destination configuration MBean, 79

destination manager configuration MBean, 88-89

destination manager monitor MBean, 90-91

destination monitor MBean, 85

log configuration MBean, 113

log monitor MBean, 114

receiving, 51-54

service configuration MBean, 64

service manager monitor MBean, 69-70

service monitor MBean, 66-67

transaction manager monitor MBean, 103-104
NumAcks lookup key, transaction, 102
NumActiveConsumers attribute, destination monitor

MBean, 81
NumActiveThreads attribute

service manager monitor MBean, 69

service monitor MBean, 65
NumBackupConsumers attribute, destination monitor

MBean, 81

NumConnections attribute
connection manager configuration MBean, 73
connection manager monitor MBean, 74
service monitor MBean, 65
NumConnectionsOpened attribute
connection manager monitor MBean, 58,74
service monitor MBean, 58, 65
NumConnectionsRejected attribute
connection manager monitor MBean, 58,74
service monitor MBean, 58, 65
NumConsumers attribute
connection monitor MBean, 72
consumer manager configuration MBean, 95
consumer manager monitor MBean, 96
destination monitor MBean, 80
service monitor MBean, 65
NumDestinations attribute
destination manager configuration MBean, 86
destination manager monitor MBean, 89
NumMsgs attribute
destination manager monitor MBean, 89
destination monitor MBean, 82
NumMsgs lookup key
broker cluster, 110
message consumer, 98
message producer, 94
transaction, 102
NumMsgsHeldInTransaction attribute, destination
monitor MBean, 82
NumMsgsIn attribute
destination monitor MBean, 58, 82
service manager monitor MBean, 58,69
service monitor MBean, 58,65
NumMsgsInDMQ attribute, destination manager monitor
MBean, 89
NumMsgsOut attribute
destination monitor MBean, 58, 82
service manager monitor MBean, 58, 69
service monitor MBean, 58,65
NumMsgsPending lookup key, message consumer, 98
NumMsgsPendingAcks attribute, destination monitor
MBean, 82
NumMsgsPendingAcks lookup key, message
consumer, 98

142 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Index

NumMsgsRemote attribute, destination monitor
MBean, 82
NumPktsIn attribute
service manager monitor MBean, 58,69
service monitor MBean, 58, 66
NumPktsOut attribute
service manager monitor MBean, 58,69
service monitor MBean, 58, 66
NumProducers attribute
connection monitor MBean, 72
destination monitor MBean, 80
producer manager configuration MBean, 92
producer manager monitor MBean, 92
service monitor MBean, 65
NumServices attribute, service manager monitor
MBean, 68
NumTransactions attribute
transaction manager configuration MBean, 100
transaction manager monitor MBean, 101
NumTransactionsCommitted attribute
transaction manager monitor MBean, 59,101
NumTransactionsRollback attribute
transaction manager monitor MBean, 59,101
NumWildcardConsumers attribute
consumer manager monitor MBean, 96
destination monitor MBean, 80
NumWildcardProducers attribute
destination monitor MBean, 80
producer manager configuration MBean, 92
NumWildcards attribute, destination monitor
MBean, 81

o

object names, 27-31
broker configuration MBean, 56
broker monitor MBean, 59
cluster configuration MBean, 104
cluster monitor MBean, 107
connection configuration MBean, 70-71
connection manager configuration MBean, 72
connection manager monitor MBean, 73
connection monitor MBean, 71
consumer manager configuration MBean, 95

object names (Continued)
consumer manager monitor MBean, 96
defined, 24
destination configuration MBean, 75
destination manager configuration MBean, 86
destination manager monitor MBean, 89
destination monitor MBean, 79-80
desttype values (table), 28-29
examples, 29
JVM monitor MBean, 115
log configuration MBean, 112
log monitor MBean, 114
name values (table), 29
producer manager configuration MBean, 91
producer manager monitor MBean, 92
properties (table), 27
service configuration MBean, 62-63
service manager configuration MBean, 67
service manager monitor MBean, 68
service monitor MBean, 64-65
subtype values (table), 28
syntax, 27
transaction manager configuration MBean, 100
transaction manager monitor MBean, 101
type values (table), 27-28
utility constants and methods (table), 30-31
ObjectName class, 24,27
OPERATING utility constant, class BrokerState, 110
operations, MBean
alphabetical list (table), 123-125
broker configuration MBean, 56-59
cluster configuration MBean, 105-107
cluster monitor MBean, 108-111
combining with attributes, 46
connection manager configuration MBean, 73
connection manager monitor MBean, 74
connection monitor MBean, 72
consumer manager configuration MBean, 95-96
consumer manager monitor MBean, 96-99
defined, 24
destination configuration MBean, 78-79
destination manager configuration MBean, 87-88
destination manager monitor MBean, 90
destination monitor MBean, 83-85

143

Index

operations, MBean (Continued) Port attribute
invoking, 44-51 broker configuration MBean, 56
producer manager configuration MBean, 92 broker monitor MBean, 60
producer manager monitor MBean, 93-94 connection monitor MBean, 72
service configuration MBean, 64 service configuration MBean, 63
service manager configuration MBean, 68 service monitor MBean, 63,65
service manager monitor MBean, 69 PREPARED utility constant, class
service monitor MBean, 66 TransactionState, 103
transaction manager configuration MBean, 100 PRODUCER MANAGER CONFIG MBEAN NAME utility
transaction manager monitor MBean, 101-103 constant

class MQObjectName, 30,91
producer manager configuration MBean, 91-92
attribute, 91-92
object name, 91
operation, 92
producer manager monitor MBean, 92-94
attribute, 92-93
object name, 92
operations, 93-94
PRODUCER_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 30,92
ProducerAttributes utility class, 35,91,92

P
packages
com.sun.messaging, 33,36
com.sun.messaging.jms.management.server, 33,
34
pause operation
destination configuration MBean, 78,79
destination manager configuration MBean, 88
service configuration MBean, 64
service manager configuration MBean, 68
pause types, destination, 79

PAUSED utility constant ProducerID lookup key, message producer, 93
class DestinationState, 83 ProducerInfo utility class, 35,93
class ServiceState, 66 ProducerManager MBean type, 28
PeakMsgBytes attribute ProducerOperations utility class, 35,92,93
destination monitor MBean, 58, 82 producers, See message producers
PeakNumActiveConsumers attribute PRODUCERS utility constant
destination monitor MBean, 58,81 classDestinationPauseType, 79,88
PeakNumBackupConsumers attribute PRODUCERS_PAUSED utility constant, class
destination monitor MBean, 58, 81 DestinationState, 83
PeakNumConsumers attribute protocol types, 29
destination monitor MBean, 58, 81 purge operation
PeakNumMsgs attribute consumer manager configuration MBean, 95
destination monitor MBean, 58, 82 destination configuration MBean, 78

PeakTotalMsgBytes attribute
destination monitor MBean, 58, 82

PktBytesIn attribute
service manager monitor MBean, 58,69 Q
service monitor MBean, 58, 66 q destination type, 28,78, 83,88, 94,98
PktBytesOut attribute QUEUE utility constant
service manager monitor MBean, 58, 69 classDestinationType, 28,78,83,88,94,98
service monitor MBean, 58, 66 quiesce operation, broker configuration MBean, 57

144 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Index

QUIESCE_COMPLETE utility constant, class
BrokerState, 111

QUIESCE_STARTED utility constant, class
BrokerState, 111

QUIESCED utility constant, class ServiceState, 66

R
REJECT_NEWEST utility constant, class
DestinationLimitBehavior, 78
reload operation, cluster configuration MBean, 107
ReloadXMLSchemaOnFailure attribute, destination
configuration MBean, 77
remote method invocation (RMI), 36
REMOVE_LOW_PRIORITY utility constant, class
DestinationLimitBehavior, 78
REMOVE_OLDEST utility constant, class
DestinationLimitBehavior, 78
resetMetrics operation, broker configuration
MBean, 57
resource MBeans, 25
ResourceState attribute, broker monitor MBean, 60
restart operation, broker configuration MBean, 57
resume operation
destination configuration MBean, 78
destination manager configuration MBean, 88
service configuration MBean, 64
service manager configuration MBean, 68
RMI, See remote method invocation
rollback operation, transaction manager configuration
MBean, 100
ROLLEDBACK utility constant, class
TransactionState, 103
RolloverBytes attribute, log configuration
MBean, 113
RolloversSecs attribute, log configuration MBean, 113
RUNNING utility constant
classDestinationState, 83
class ServiceState, 66

S
Secure Hypertext Transfer Protocol (HTTPS), 29

Secure Socket Layer (SSL), 29
Selector lookup key, message consumer, 97
server, MBean, See MBean server
Service MBean type, 28
service configuration MBean, 62-64
attributes, 63-64
notification, 64
object name, 62-63
operations, 64
SERVICE_MANAGER_CONFIG_MBEAN_NAME utility constant
class MQObjectName, 30,67
service manager configuration MBean, 67-68
attributes, 67-68
object name, 67
operations, 68
service manager monitor MBean, 68-70
attributes, 68-69
notification objects, 70
notifications, 69-70
object name, 68
operation, 69
SERVICEiMANAGERiMONITORﬁMBEANiNAMEulﬂﬁy
constant
class MQObjectName, 30,68
service monitor MBean, 64-67
attributes, 65-66
notification objects, 67
notifications, 66-67
object name, 64-65
operations, 66
SERVICE_PAUSE utility constant
class ServiceNotification, 67,70
SERVICE_RESUME utility constant
class ServiceNotification, 67,70
service URLs, JMX, parameter to
JMXConnectorFactory.connect method, 38
ServiceAttributes utility class, 34,63, 65,67, 68
ServiceManager MBean type, 28
ServiceName attribute, connection monitor
MBean, 72
ServiceName lookup key
message consumer, 97
message producer, 93
ServiceNotification class, 34

145

Index

ServiceNotification class (Continued)
data retrieval method, 67,70
SERVICE PAUSE constant, 67,70
SERVICE_RESUME constant, 67,70
utility constants, 66,69

ServiceOperations utility class, 34, 64, 66, 68, 69

services, See connection services

ServiceState utility class, 34,66
PAUSED constant, 66
QUIESCED constant, 66
RUNNING constant, 66
UNKNOWN constant, 66

Session interface, 99
AUTO_ACKNOWLEDGE constant, 99
CLIENT ACKNOWLEDGE constant, 99
DUPS_OK_ACKNOWLEDGE constant, 99
NO_ ACKNOWLEDGE constant, 99
SESSION TRANSACTED constant, 99

SESSION_TRANSACTED utility constant, interface
Session, 99

setAttribute method, interface
MBeanServerConnection, 41

setAttributes method, interface
MBeanServerConnection, 42

setProperty method, class
AdminConnectionFactory, 37
shutdown operation
broker configuration MBean, 57

SHUTDOWN_STARTED utility constant, class
BrokerState, 111

SSL, See Secure Socket Layer

ssladmin connection service name, 29

ss1jms connection service name, 29

STARTED utility constant, class TransactionState, 103

State attribute
destination monitor MBean, 80, 83
service monitor MBean, 65, 66

State lookup key
broker cluster, 110
transaction, 102

StatelLabel attribute
destination monitor MBean, 80, 83
service monitor MBean, 65, 66

146 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients «

StatelLabel lookup key

broker cluster, 110

transaction, 102
StatusTimestamp lookup key, broker cluster, 110
subtype property (object name), 27

values (table), 28

T

t destination type, 28,78, 83,88,94,99

takeover operation, broker configuration MBean, 57

TAKEOVER_COMPLETE utility constant, class
BrokerState, 111

TAKEOVER_FAILED utility constant, class
BrokerState, 111

TAKEOVER_STARTED utility constant, class
BrokerState, 111

TakeoverBrokerID lookup key, broker cluster, 110

TCP, See Transmission Control Protocol

Temporary attribute, destination monitor MBean, 80

ThreadPoolModel attribute, service configuration
MBean, 63

TIMED_OUT utility constant, class
TransactionState, 103

TLS, See Transport Layer Security

TOPIC utility constant
classDestinationType, 28,78, 83,88,94,99

TotalMemory attribute, JVM monitor MBean, 115

TotalMsgBytes attribute
destination manager monitor MBean, 89
destination monitor MBean, 82

TotalMsgBytesHeldInTransaction attribute,
destination monitor MBean, 82

TotalMsgBytesInDMQ attribute, destination manager
monitor MBean, 89

TotalMsgBytesRemote attribute, destination monitor
MBean, 82

TRANSACTION_COMMIT utility constant, class
TransactionNotification, 103

TRANSACTION MANAGER CONFIG MBEAN NAME uti]ity
constant
classMQObjectName, 31,100

transaction manager configuration MBean, 99-100
attribute, 100

December, 2008

Index

transaction manager configuration MBean (Continued)

object name, 100

operations, 100
transaction manager monitor MBean, 100-104

attributes, 101

notification objects, 103

notifications, 103-104

object name, 101

operations, 101-103
TRANSACTION_MANAGER_MONITOR_MBEAN_NAMELnﬂﬁy

constant

classMQObjectName, 31,101
TRANSACTION_PREPARE utility constant, class

TransactionNotification, 103
TRANSACTION_ROLLBACK utility constant, class

TransactionNotification, 103
TransactionAttributes utility class, 35,100, 101
TransactionID lookup key, transaction, 102
TransactionInfo utility class, 35,102
TransactionManager MBean type, 28
TransactionNotification class, 35

data retrieval method, 103

TRANSACTION_ COMMIT constant, 103

TRANSACTION PREPARE constant, 103

TRANSACTION ROLLBACK constant, 103

utility constants, 103
TransactionOperations utility class, 35,100, 101
transactions, 99-104

composite data object, lookup keys for (table), 102

distributed transaction identifier, 102

manager configuration MBean, 99-100

manager monitor MBean, 100-104

state values (table), 103

transaction identifier, 100, 101, 102, 103
TransactionState utility class, 35,102

COMMITTED constant, 103

COMPLETE constant, 103

CREATED constant, 103

FAILED constant, 103

INCOMPLETE constant, 103

PREPARED constant, 103

ROLLEDBACK constant, 103

STARTED constant, 103

TIMED OUT constant, 103

TransactionState utility class (Continued)
UNKNOWN constant, 103
Transmission Control Protocol (TCP), 29
Transport Layer Security (TLS) protocol, 29
Type attribute
destination configuration MBean, 76,77, 87
destination monitor MBean, 80, 83
type property (object name), 27
values (table), 27-28

U
UNKNOWN utility constant
classBrokerState, 111
classDestinationState, 83
class LogLevel, 113
class ServiceState, 66
class TransactionState, 103
getProperty operation, broker configuration
MBean, 57
unquiesce operation, broker configuration MBean, 57
UseDMQ attribute
destination configuration MBean, 76,77
User attribute, connection monitor MBean, 72
user data object (notifications), 51
User lookup key
message consumer, 97
message producer, 94
transaction, 102
utility classes, 34-36
AdminConnectionConfiguration, 33,37
BrokerAttributes, 34,56,59
BrokerClusterInfo, 35,107,110
BrokerOperations, 34,56
BrokerState, 34,110
ClusterAttributes, 35,104,108
ClusterOperations, 35,105,108
ConnectionAttributes, 34,71,73
ConnectionOperations, 34,72,73,74
ConsumerAttributes, 35,95,96
ConsumerInfo, 35,97
ConsumerOperations, 35,95,96
DestinationAttributes, 35,75, 80, 86, 87, 89
DestinationLimitBehavior, 35,78

147

Index

utility classes (Continued)

DestinationOperations, 35,78, 83,87,90
DestinationPauseType, 35,79, 88
DestinationState, 35,83
DestinationType, 28,35,77,83,88,94,98
JVMAttributes, 35,115

LogAttributes, 35,112

LogLevel, 35,113

MQObjectName, 24,29,34
ProducerAttributes, 35,91,92
ProducerInfo, 35,93
ProducerOperations, 35,92,93
ServiceAttributes, 34,63,65,67,68
ServiceOperations, 34,64, 66,68, 69
ServiceState, 34,66
TransactionAttributes, 35,100,101
TransactionInfo, 35,102
TransactionOperations, 35,100,101
TransactionState, 35,102

utility constants

ALL (class DestinationPauseType), 79, 88

AUTO ACKNOWLEDGE (interface Session), 99

BROKER CONFIG MBEAN NAME (class
MQObjectName), 30,56

BROKER DOWN (class BrokerState), 111

BROKER MONITOR MBEAN NAME (class
MQObjectName), 30,59

BROKER QUIESCE_COMPLETE (class
BrokerNotification), 61

BROKER QUIESCE START (class
BrokerNotification), 61

BROKER SHUTDOWN START (class
BrokerNotification), 61

BROKER TAKEOVER COMPLETE (class
BrokerNotification), 61,111

BROKER STATE_ CHANGE (class
BrokerNotification), 61

BROKER TAKEOVER FAIL (class
BrokerNotification), 61,111

BROKER_TAKEOVER_START (class
BrokerNotification), 61,111

CLIENT ACKNOWLEDGE (interface Session), 99

CLUSTER_BROKER_DOWN (class
ClusterNotification), 111

utility constants (Continued)

CLUSTER BROKER JOIN (class

ClusterNotification), 61,111

CLUSTER CONFIG_MBEAN NAME (class
MQObjectName), 31,104

CLUSTER MONITOR MBEAN NAME (class
MQObjectName), 31,107

COMMITTED (class TransactionState), 103

COMPLETE (class TransactionState), 103

CONNECTION CLOSE (class
ConnectionNotification), 67,74

CONNECTION MANAGER CONFIG MBEAN NAME (class
MQObjectName), 30,72

CONNECTION MANAGER MONITOR MBEAN NAME (class
MQObjectName), 30,73

CONNECTION_OPEN (class
ConnectionNotification), 67,74

CONNECTION REJECT (class
ConnectionNotification), 67,74

CONSUMER_MANAGER CONFIG_MBEAN NAME (class
MQObjectName), 30,95

CONSUMER MANAGER MONITOR MBEAN NAME (class
MQObjectName), 30,96

CONSUMERS (class DestinationPauseType), 79,88

CONSUMERS_PAUSED (class DestinationState), 83

CREATED (class TransactionState), 103

DESTINATION COMPACT (class
DestinationNotification), 85,90

DESTINATION CREATE (class
DestinationNotification), 90

DESTINATION DESTROY (class
DestinationNotification), 90

DESTINATION MANAGER CONFIG MBEAN NAME (class
MQObjectName), 30,86

DESTINATION MANAGER MONITOR MBEAN NAME (class
MQObjectName), 30,89

DESTINATION PAUSE (class
DestinationNotification), 85,90

DESTINATION PURGE (class
DestinationNotification), 85,90

DESTINATION RESUME (class
DestinationNotification), 85,90

DUPS_OK_ACKNOWLEDGE (interface Session), 99

ERROR (class LogLevel), 113

Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients - December, 2008

Index

utility constants (Continued)

FAILED (class TransactionState), 103

FLOW CONTROL (class
DestinationLimitBehavior), 78

INCOMPLETE (class TransactionState), 103

INFO (class LogLevel), 113

JVM_MONITOR MBEAN_ NAME (class
MQObjectName), 31,115

LOG_CONFIG_MBEAN_ NAME (class MQObjectName), 31,
112

LOG_LEVEL_ ERROR (class LogNotification), 114

LOG_LEVEL_ INFO (classLogNotification), 114

LOG_LEVEL_WARNING (class LogNotification), 114

LOG_MONITOR MBEAN NAME (class
MQObjectName), 31,114

NO_ACKNOWLEDGE (interface Session), 99

NONE (class LogLevel), 113

OPERATING (class BrokerState), 110

PAUSED (class DestinationState), 83

PAUSED (class ServiceState), 66

PREPARED (class TransactionState), 103

PRODUCER MANAGER CONFIG MBEAN_ NAME (class
MQObjectName), 30,91

PRODUCER MANAGER MONITOR MBEAN NAME (class
MQObjectName), 30,92

PRODUCERS (class DestinationPauseType), 79, 88

PRODUCERS PAUSED (class DestinationState), 83

QUEUE (class DestinationType), 28,78, 83, 88,94,
98

QUIESCE COMPLETE (class BrokerState), 111

QUIESCE_STARTED (class BrokerState), 111

QUIESCED (class ServiceState), 66

REJECT NEWEST (class
DestinationLimitBehavior), 78

REMOVE_LOW_PRIORITY (class
DestinationLimitBehavior), 78

REMOVE_OLDEST (class
DestinationLimitBehavior), 78

ROLLEDBACK (class TransactionState), 103

RUNNING (class DestinationState), 83

RUNNING (class ServiceState), 66

SERVICE MANAGER CONFIG MBEAN_ NAME (class
MQObjectName), 30,67

utility constants (Continued)

SERVICE MANAGER MONITOR MBEAN NAME (class

MQObjectName), 30,68

SERVICE_ PAUSE (class ServiceNotification), 67,
70

SERVICE RESUME (class ServiceNotification), 67,
70

SESSION TRANSACTED (interface Session), 99

SHUTDOWN_STARTED (class BrokerState), 111

STARTED (class TransactionState), 103

TAKEOVER COMPLETE (class BrokerState), 111

TAKEOVER FAILED (class BrokerState), 111

TAKEOVER STARTED (class BrokerState), 111

TIMED OUT (class TransactionState), 103

TOPIC (class DestinationType), 28,78, 83, 88,94,
99

TRANSACTION COMMIT (class
TransactionNotification), 103

TRANSACTION MANAGER CONFIG MBEAN_NAME (class
MQObjectName), 31,100

TRANSACTION MANAGER MONITOR MBEAN NAME (class
MQObjectName), 31,101

TRANSACTION PREPARE (class
TransactionNotification), 103

TRANSACTION ROLLBACK (class
TransactionNotification), 103

UNKNOWN (class BrokerState), 111

UNKNOWN (class DestinationState), 83

UNKNOWN (class LogLevel), 113

UNKNOWN (class ServiceState), 66

UNKNOWN (class TransactionState), 103

WARNING (class LogLevel), 113

utility methods

createConnectionConfig (class
MQObjectName), 30,71
createConnectionMonitor (class
MQObjectName), 30,71
createDestinationConfig (class
MQObjectName), 30,75
createDestinationMonitor (class
MQObjectName), 30,80
createServiceConfig (classMQObjectName), 30,63
createServiceMonitor (class MQObjectName), 30,
64

149

Index

\'}

ValidateXMLSchemaEnabled attribute, destination
configuration MBean, 77

Version attribute
broker configuration MBean, 56
broker monitor MBean, 60

w
WARNING utility constant, class LogLevel, 113
Wildcard lookup key

message consumer, 97

message producer, 94

X

XID, See distributed transaction identifier

XID lookup key, transaction, 102

XMLSchemaURIList attribute, destination configuration
MBean, 77

150 Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients «

December, 2008

	Sun Java System Message Queue 4.3 Developer's Guide for JMX Clients
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompt Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Java Message Service (JMS) Specification
	Java Management Extensions (JMX) Documentation
	JavaDoc
	Example Client Applications
	Example Java Client Applications
	Example C Client Programs
	Example JMX Client Programs

	Online Help
	Documentation, Support, and Training
	Third-Party Web Site References

	Searching Sun Product Documentation
	Sun Welcomes Your Comments

	Introduction to JMX Programming for Message Queue Clients
	JMX Architecture
	Message Queue MBeans
	Resource MBeans
	Manager MBeans
	Object Names

	Using the JMX API
	Interface Packages
	Utility Classes
	Connecting to the MBean Server
	Obtaining a JMX Connector from an Admin Connection Factory
	Obtaining a JMX Connector Without Using an Admin Connection Factory

	Using MBeans
	Accessing MBean Attributes
	Invoking MBean Operations
	Receiving MBean Notifications

	Message Queue MBean Reference
	Brokers
	Broker Configuration
	Object Name
	Attributes
	Operations
	Notification

	Broker Monitor
	Object Name
	Attributes
	Notifications

	Connection Services
	Service Configuration
	Object Name
	Attributes
	Operations
	Notification

	Service Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Service Manager Configuration
	Object Name
	Attributes
	Operations

	Service Manager Monitor
	Object Name
	Attributes
	Operation
	Notifications

	Connections
	Connection Configuration
	Object Name
	Attribute

	Connection Monitor
	Object Name
	Attributes
	Operations

	Connection Manager Configuration
	Object Name
	Attribute
	Operations

	Connection Manager Monitor
	Object Name
	Attributes
	Operation
	Notifications

	Destinations
	Destination Configuration
	Object Name
	Attributes
	Operations
	Notification

	Destination Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Destination Manager Configuration
	Object Name
	Attributes
	Operations
	Notification

	Destination Manager Monitor
	Object Name
	Attributes
	Operation
	Notifications

	Message Producers
	Producer Manager Configuration
	Object Name
	Attribute
	Operation

	Producer Manager Monitor
	Object Name
	Attribute
	Operations

	Message Consumers
	Consumer Manager Configuration
	Object Name
	Attribute
	Operations

	Consumer Manager Monitor
	Object Name
	Attribute
	Operations

	Transactions
	Transaction Manager Configuration
	Object Name
	Attribute
	Operations

	Transaction Manager Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Broker Clusters
	Cluster Configuration
	Object Name
	Attributes
	Operations
	Notification

	Cluster Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Logging
	Log Configuration
	Object Name
	Attributes
	Notification

	Log Monitor
	Object Name
	Notifications

	Java Virtual Machine
	JVM Monitor
	Object Name
	Attributes

	Alphabetical Reference
	Index

