
SUN SEEBEYOND

eINDEX™ SINGLE PATIENT VIEW
REFERENCE GUIDE

Release 5.1.1

eIndex Single Patient View Reference Guide 2 Sun Microsystems, Inc.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun
Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents
listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in
other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms. This
distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo, Java, Sun Java Composite
Application Platform Suite, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex, eBAM, eWay, and JMS are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. This product is covered and
controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited.
Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but
not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est
décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuels peuvent inclure un ou plus
des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les
applications de brevet en attente aux Etats - Unis et dans les autres pays. L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties. Sun, Sun Microsystems, le logo Sun,
Java, Sun Java Composite Application Platform Suite, Sun, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex,
eBAM et eWay sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et
licenciée exclusivement par X/Open Company, Ltd. Ce produit est couvert à la législation américaine en matière de contrôle
des exportations et peut être soumis à la règlementation en vigueur dans d'autres pays dans le domaine des exportations et
importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer,
d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en
matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Version 20060612225308

Contents
Contents

List of Tables 8

Chapter 1

Introduction 9
About eIndex Single Patient View 9

Overview 9
Features 10

What’s New in This Release 10

About This Document 10
What’s in This Document 11
Scope 11
Intended Audience 11
Text Conventions 12
Screenshots 12
Related Documents 12

Sun Microsystems, Inc. Web Site 13

Documentation Feedback 13

Chapter 2

Understanding Operational Processes 14
Learning About Message Processing 14

Inbound Message Processing 15
About Inbound Messages 16
The Default Inbound OTD 17

Formatting Guidelines 17
Transaction Details 17

Outbound Message Processing 23
About Outbound Messages 23

Outbound OTD Structure 24
Outbound Message Trigger Events 25
Sample Outbound Message 25

Inbound Message Processing Logic 26

Primary Function Processing Logic 32
activateEnterpriseObject 33
eIndex Single Patient View Reference Guide 3 Sun Microsystems, Inc.

Contents
activateSystemObject 33
addSystemObject 34
createEnterpriseObject 34
deactivateEnterpriseObject 34
deactivateSystemObject 34
deleteSystemObject 35
mergeEnterpriseObject 36
mergeSystemObject 37
transferSystemObject 39
undoAssumedMatch 40
unmergeEnterpriseObject 40
unmergeSystemObject 41
updateEnterpriseDupRecalc 43
updateEnterpriseObject 44
updateSystemObject 45

Chapter 3

The Database Structure 47
About the Database 47

Overview 47
Database Table Overview 47

Database Table Details 49
SBYN_<OBJECT_NAME> 50
SBYN_<OBJECT_NAME>SBR 50
SBYN_<CHILD_OBJECT> 50
SBYN_<CHILD_OBJECT>SBR 50
SBYN_APPL 51
SBYN_ASSUMEDMATCH 51
SBYN_AUDIT 52
SBYN_COMMON_DETAIL 53
SBYN_COMMON_HEADER 53
SBYN_ENTERPRISE 54
SBYN_MERGE 55
SBYN_OVERWRITE 55
SBYN_POTENTIALDUPLICATES 56
SBYN_SEQ_TABLE 57
SBYN_SYSTEMOBJECT 58
SBYN_SYSTEMS 59
SBYN_SYSTEMSBR 61
SBYN_TRANSACTION 62
SBYN_USER_CODE 62

Sample Database Model 64

Chapter 4

Working with the Java API 69
Overview 69
eIndex Single Patient View Reference Guide 4 Sun Microsystems, Inc.

Contents
Java Class Types 69
Static Classes 70
Dynamic Object Classes 70
Dynamic OTD Methods 70
Dynamic Business Process Methods 70

Dynamic Object Classes 70
Parent Object Classes 70

<ObjectName>Object 71
add<Child> 72
addSecondaryObject 72
copy 73
dropSecondaryObject 73
get<ObjectName>Id 74
get<Child> 74
get<Field> 74
getChildTags 75
getMetaData 75
getSecondaryObject 76
isAdded 76
isRemoved 76
isUpdated 77
set<ObjectName>Id 77
set<Field> 78
setAddFlag 78
setRemoveFlag 79
setUpdateFlag 79
structCopy 80

Child Object Classes 80
<Child>Object 81
copy 81
get<Child>Id 81
get<Field> 82
getMetaData 82
getParentTag 83
set<Child>Id 83
set<Field> 84
structCopy 84

Dynamic OTD Methods 84
activateEnterpriseRecord 85
activateSystemRecord 86
addSystemRecord 86
deactivateEnterpriseRecord 87
deactivateSystemRecord 87
executeMatch 88
executeMatchUpdate 89
findMasterController 90
getEnterpriseRecordByEUID 90
getEnterpriseRecordByLID 91
getEUID 91
getLIDs 92
getLIDsByStatus 92
getSBR 93
eIndex Single Patient View Reference Guide 5 Sun Microsystems, Inc.

Contents
getSystemRecord 94
getSystemRecordsByEUID 94
getSystemRecordsByEUIDStatus 95
lookupLIDs 95
mergeEnterpriseRecord 96
mergeSystemRecord 97
searchBlock 97
searchExact 98
searchPhonetic 99
transferSystemRecord 99
updateEnterpriseRecord 100
updateSystemRecord 100

Dynamic Business Process Methods 101

Helper Classes 102
System<ObjectName> 102

ClearFieldIndicator Field 103
System<ObjectName> 103
getClearFieldIndicator 103
get<Field> 104
get<ObjectName> 104
setClearFieldIndicator 105
set<Field> 105
set<ObjectName> 106

Parent Beans 106
<ObjectName>Bean 107
count<Child> 107
countChildren 108
countChildren 108
delete<Child> 109
get<Child> 109
get<Child> 110
get<Field> 110
get<ObjectName>Id 111
set<Child> 111
set<Child> 112
set<Field> 112
set<ObjectName>Id 113

Child Beans 113
<Child>Bean 114
delete 114
get<Field> 115
get<Child>Id 115
set<Field> 116
set<Child>Id 116

DestinationEO 117
getEnterprise<ObjectName> 117

Search<ObjectName>Result 117
getEUID 118
getComparisonScore 118
get<ObjectName> 118

SourceEO 119
getEnterprise<ObjectName> 119

System<ObjectName>PK 119
eIndex Single Patient View Reference Guide 6 Sun Microsystems, Inc.

Contents
System<ObjectName>PK 120
getLocalId 120
getSystemCode 121

Appendix A

Inbound Message Processing with Custom Logic 122
Custom Decision Point Logic 122

Glossary 125

Index 131
eIndex Single Patient View Reference Guide 7 Sun Microsystems, Inc.

List of Tables

eIndex Single Patient View Reference Guide 8 Sun Microsystems, Inc.

List of Tables

Table 1 Text Conventions 12

Table 2 Default Inbound Message Structure - Transaction Information 17

Table 3 Default Inbound Message Structure - Record Information 18

Table 4 Outbound OTD SBR Nodes 24

Table 5 Master Index Database Tables 48

Table 6 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description50

Table 7 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description51

Table 8 SBYN_APPL Table Description 51

Table 9 SBYN_ASSUMEDMATCH Table Description 51

Table 10 SBYN_AUDIT Table Description 52

Table 11 SBYN_COMMON_DETAIL Table Description 53

Table 12 SBYN_COMMON_HEADER Table Description 54

Table 13 SBYN_ENTERPRISE Table Description 54

Table 14 SBYN_MERGE Table Description 55

Table 15 SBYN_OVERWRITE Table Description 55

Table 16 SBYN_POTENTIALDUPLICATES Table Description 56

Table 17 SBYN_SEQ_TABLE Table Description 57

Table 18 Default Sequence Numbers 57

Table 19 SBYN_SYSTEMOBJECT Table Description 58

Table 20 SBYN_SYSTEMS Table Description 59

Table 21 SBYN_SYSTEMSBR Table Description 61

Table 22 SBYN_TRANSACTION Table Description 62

Table 23 SBYN_USER_CODE Table Description 63

Chapter 1

Introduction

This chapter provides an overview of this guide and the conventions used throughout,
as well as a list of supporting documents and information about using this guide.

What’s in This Chapter

About eIndex Single Patient View on page 9

What’s New in This Release on page 10

About This Document on page 10

Related Documents on page 12

Sun Microsystems, Inc. Web Site on page 12

Documentation Feedback on page 13

1.1 About eIndex Single Patient View

Overview

The Sun SeeBeyond eIndex™ Single Patient View (eIndex SPV) provides a flexible
framework to design and configure an enterprise-wide person master index that creates
a single view of person information. eIndex SPV maintains the most current
information about the people who participate throughout your organization and links
information from different locations and computer systems. eIndex SPV provides
accurate identification of patients throughout your healthcare enterprise, and cross-
references a patient's local IDs using an enterprise-wide unique identification number
(EUID). eIndex SPV also ensures accurate patient data by identifying potential
duplicate records and providing the ability to merge or resolve duplicate records. All
patient information is centralized in one shared index, enabling eIndex SPV to integrate
data throughout the enterprise while allowing local systems to continue operating
independently.

In eIndex SPV, you define the data structure of the information to be stored and cross-
referenced. In addition, you define the logic that determines how data is updated,
standardized, weighted, and matched. The structure and logic you define is stored in a
group of XML configuration files, which are predefined but can be customized to meet
your processing requirements. These files are defined within the context of an eGate
Project and can be modified using the XML editor provided in the Enterprise Designer.
eIndex Single Patient View Reference Guide 9 Sun Microsystems, Inc.

Chapter 1 Section 1.2
Introduction What’s New in This Release
Features

eIndex SPV provides features and functions that allow you to customize the data
structure, database, and logic of the master person index. eIndex SPV provides the
following features:

Rapid Development - eIndex SPV allows for rapid and intuitive development of a
master person index, providing a predefined template that can easily be configured
for your use.

Automated Component Generation - eIndex SPV can regenerate scripts that
create the appropriate database schemas and an eGate Object Type Definition
(OTD) based on the changes you make to the object structure.

Configurable Survivor Calculator - eIndex SPV provides predefined strategies for
determining which field values to populate in the single best record (SBR). You can
define different survivor rules for each field and you can create custom survivor
strategies for the master index.

Flexible Architecture - eIndex SPV provides a flexible platform that allows you
customize the object structure, allowing you to design an application that
specifically meets your data processing needs.

Configurable Matching Algorithm - eIndex SPV provides standard support for
the Sun SeeBeyond Match Engine (SBME). In addition, you can plug in a custom
matching algorithm to the master index.

Custom Java API - eIndex SPV generates a Java API that is customized to the
object structure you define. You can call the methods in this API in the
Collaborations that define the transformation rules for data processed by the master
index.

1.2 What’s New in This Release
This release provides added support for the Oracle 10g database platform as well as
performance enhancements, standardization enhancements, and general maintenance
fixes. For complete information about the changes included in this release, see the
eIndex Single Patient View Release Notes.

1.3 About This Document
This guide provides comprehensive information about the database structure, the Java
API, and message processing for eIndex SPV. As a component of the Java Composite
Application Platform Suite, eIndex SPV helps you integrate information from disparate
systems throughout your organization. This guide describes how messages are
processed through the master index, provides a reference for the dynamic Java API,
and describes the database structure. The master index is highly customizable, so your
implementation might differ from some of the descriptions contained in this guide.
eIndex Single Patient View Reference Guide 10 Sun Microsystems, Inc.

Chapter 1 Section 1.3
Introduction About This Document
This guide is intended to be used with the Sun SeeBeyond eIndex Single Patient View
Configuration Guide and the Sun SeeBeyond eIndex Single Patient View User’s Guide, which
provides information about basic components and features of eIndex SPV.

1.3.1 What’s in This Document
This guide is divided into the chapters and appendix that cover the topics shown
below.

Chapter 1 “Introduction” gives a general preview of this document—its purpose,
scope, and organization—and provides sources of additional information.

Chapter 2 “Understanding Operational Processes” gives an overview of how
inbound and outbound messages are processed, and includes information about
how certain configuration attributes affect processing.

Chapter 3 “The Database Structure” describes the database structure and how the
structure is defined based on the object structure definition. It also provides a
sample database diagram.

Chapter 4 “Working with the Java API” gives implementation information about
the eIndex SPV Java API, and provides a reference of the dynamic methods created
for the method OTD and eInsight integration.

Appendix A “Inbound Message Processing with Custom Logic” describes where
the execute match functions check for custom logic and how that logic affects match
processing.

1.3.2 Scope
This guide provides information about message processing in an eIndex SPV master
index system and about the eIndex SPV Java API. The API is designed to help you
transform data and transfer the information into and out of the master index database
using eGate Collaborations, Services, and eWays. This guide also provides an overview
of the data processing flow, based on the sample Project, and describes the database
structure.

This guide provides information about the Java API Library, but does not serve as a
complete reference (a complete reference is provided in the Javadocs for eIndex SPV).
This guide compliments the Sun SeeBeyond eIndex Single Patient View User’s Guide, the
Sun SeeBeyond eIndex Single Patient View Configuration Guide, and the eIndex SPV
Javadocs. Once you understand the default processing, you can configure eIndex SPV
for your custom data and processing requirements.

This guide does not explain how to install eIndex SPV, or how to implement an eIndex
SPV Project. For a list of publications that contain this information, see “Related
Documents” on page 12.

1.3.3 Intended Audience
Any user who works with the connectivity components or uses the Java API should
read this guide. A thorough knowledge of eIndex SPV is not needed to understand this
eIndex Single Patient View Reference Guide 11 Sun Microsystems, Inc.

Chapter 1 Section 1.3
Introduction About This Document
guide. It is presumed that the reader of this guide is familiar with the eGate
environment and GUIs, eGate Projects, Oracle database administration, and the Java
programming language. The reader should also be familiar with the data formats used
by the systems linked to the master index, the operating system(s) on which eGate and
the master index database run, and current business processes and information system
(IS) setup.

1.3.4 Text Conventions
The following conventions are observed throughout this document.

1.3.5 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.3.6 Related Documents
Sun has developed a suite of user's guides and related publications that are distributed
in an electronic library. The following documents might provide information useful in
creating your customized index. In addition, complete documentation of the eIndex
SPV Java API is provided in Javadoc format.

Sun SeeBeyond eIndex Single Patient View User’s Guide

Sun SeeBeyond eIndex Single Patient View Configuration Guide

Implementing the Sun SeeBeyond Match Engine with eIndex SPV

Sun SeeBeyond eGate Integrator User’s Guide

Sun SeeBeyond eGate Integrator System Administration Guide

Table 1 Text Conventions

Text Convention Used For Examples

Bold Names of buttons, files, icons,
parameters, variables, methods,
menus, and objects

Click OK.
On the File menu, click Exit.
Select the eGate.sar file.

Monospaced Command line arguments, code
samples; variables are shown in
bold italic

java -jar filename.jar

Blue bold Hypertext links within
document

See Text Conventions on page 12

Blue underlined Hypertext links for Web
addresses (URLs) or email
addresses

http://www.sun.com
eIndex Single Patient View Reference Guide 12 Sun Microsystems, Inc.

http://www.sun.com

Chapter 1 Section 1.4
Introduction Sun Microsystems, Inc. Web Site
1.4 Sun Microsystems, Inc. Web Site
The Sun Microsystems web site is your best source for up-to-the-minute product news
and technical support information. The site’s URL is:

http://www.sun.com

1.5 Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

CAPS_docsfeedback@sun.com
eIndex Single Patient View Reference Guide 13 Sun Microsystems, Inc.

http://www.sun.com
mailto:CAPS_docsfeedback@sun.com

Chapter 2

Understanding Operational Processes

eIndex SPV uses a custom Java API library and the eGate Integrator to transform and
route data into and out of the master index database. In order to customize the way the
Java methods transform the data, it is helpful to understand the logic of the primary
processing functions and how messages are typically processed through the master
index system.

This chapter describes and illustrates the processing flow of messages to and from the
master index, providing background information to help design and create custom
processing rules for your implementation.

What’s in This Chapter

Learning About Message Processing on page 14

Inbound Message Processing on page 15

Outbound Message Processing on page 22

Inbound Message Processing Logic on page 26

2.1 Learning About Message Processing
This section of the chapter provides a summary of how inbound and outbound
messages can be processed in an eIndex SPV environment. eIndex SPV cross-references
records stored in various computer systems of an organization and identifies records
that might represent or do represent the same patient. eIndex SPV uses the eGate
Integrator, along with the connectivity components available through eGate, to connect
to and share data with these external systems.

Figure 1 on page 15 illustrates the flow of information through a master index that
includes a JMS Topic to which updates to the index are published.
eIndex Single Patient View Reference Guide 14 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
Figure 1 Master Index Processing Flow

2.2 Inbound Message Processing
An inbound message refers to the transmission of data from external systems to the
eGate Integrator and then to the master index database. These messages may be sent
into the database via a number of Services. Inbound messages can be stored in journal
files and tracked in the eGate log files. The steps below describe how inbound messages
are processed.

1 Messages are created in an external system, and the enveloped message is
transmitted to eGate via that system's eWay.

Master Index
Database

If the master index is configured to
publish updates, the message is sent
back out through the JMS Topic with
the EUID attached.

Manual queries and
updates to the database

Entering new
address

information

Enterprise
Data

Manager

original
Event

translated
Event

outbound
Event

outbound
Event

Source eWay Destination
eWay

eGate
Integrator

Inbound
Service

Outbound
Service

Accessing
new address

information
eIndex Single Patient View Reference Guide 15 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
2 eGate identifies the message and the appropriate Service to which the message
should be sent. The message is then routed to the appropriate Service for
processing.

3 The message is modified into the appropriate format for the master index database,
and validations are performed against the data elements of the message to ensure
accurate delivery. The message is validated using the Java code in the Service’s
Collaboration and other information stored in the eIndex SPV configuration files.

4 If the message was successfully transmitted to the database, the appropriate
changes to the database are processed.

5 After the master index processes the message, an enterprise-wide universal
identifier (EUID) is returned (for either a new or updated record). That EUID can be
sent back out through a different Service to the external system. Alternatively, the
entire updated message can be published using the outbound OTD (see “Outbound
Message Processing” on page 22).

Figure 2 below illustrates the flow of a message inbound to eIndex SPV.

Figure 2 Inbound Message Processing Data Flow

2.2.1 About Inbound Messages
The format of inbound messages is defined by the inbound OTD, located in the client
Project for each external system. The inbound messages can either conform to the
required format for eIndex SPV, or they can be mapped to the correct format in the
Collaboration. The required format depends on how the object structure of the master
index is defined (in the Object Definition file of the eIndex SPV Project).

In addition to the objects and fields defined in the Object Definition file, you can
include standard eIndex SPV fields. For example, you must include the system and
local ID fields, and you can also include transaction information, such as the date and
time of the transaction, the transaction type, user ID, and so on. The inbound OTD in
the eIndex SPV sample client Project includes system and local ID fields as well as
transactional information fields. If incoming messages do not contain transactional
information, eIndex SPV applies default values to certain fields (for example, the user
ID defaults to “eGate” and the date and time fields default to the date and time that
eIndex SPV processes the transaction).

Master Index
Database

External
System Service

eGate

eGate

Message In

EUID Out
eIndex Single Patient View Reference Guide 16 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
2.2.2 The Default Inbound OTD
This section describes the default format of the data to be inserted into the eIndex SPV
database. This format follows the format of the default object structure defined in the
Object Definition file of the eIndex SPV Project. You can translate the data from external
systems into this format using the Collaborations of the external systems. You can also
modify the default OTD (in the eIndexClient Project) to use a different format if needed.

Formatting Guidelines

The default OTD contains two primary nodes: EVENT and REC. The EVENT node
contains transactional information, and the REC node contains information about the
person. The REC node structure should be based on the object structure defined in the
Object Definition file. In order to comply with the sample OTD, the format of the data
being transmitted into the eIndex SPV database needs to be reformatted as follows:

Each record consists of two types of information: Transaction details and record
details. These are delimited by a pair of angled brackets (<>).

The records must be delimited. Each segment is separated by an ampersand (&),
each field is separated by a pipe (|), and each sub-field is separated by a caret (^).
When a field can repeat, each repetition is separated by a tilde (~). There are four
segments, which appear as follows:

EVNT segment <> ID segment & DEMO Segment & AUX segment <>

For information about each field, see Tables 2 and 3. Note that most fields in eIndex
SPV are configurable, so you are not restricted to the fields listed in the table.

Note: The OTD should be reviewed for each site to simplify where applicable. For example,
fields for which the sending systems do not collect data can be removed.

Transaction Details

The following table describes the transaction details portion of the inbound OTD
structure. When a field is required, that means the field must exist in the inbound
message but it can be empty. Fields that cannot be null are determined by the object
structure in the Object Definition file of the eIndex SPV Project.

Table 2 Default Inbound Message Structure - Transaction Information

Field Description Repeating? Required?

SegmentId “EVNT” No Yes

MessageId Always leave this field blank. eIndex SPV
determines the message ID.

No Yes

EventTypeCode Always leave this field blank. eIndex SPV
automatically determines the transaction
type.

No Yes

UserId The user ID of the user who performed the
transaction.

No Yes
eIndex Single Patient View Reference Guide 17 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
Record Details

The following table describes the main message portion of the inbound OTD structure.

AssigningSystem The system code for the system on which
the transaction was performed.

No Yes

Source The source code of the application on which
the transaction was performed.

No Yes

Department The department code for the transaction. No Yes

TerminalId The ID of the terminal on which the
transaction was performed.

No Yes

DateOfEvent The date the transaction occurred in the
format YYYY-MM-DD.

No Yes

TimeOfEvent The time the transaction occurred in the
format HH:MM:SS using a 24-hour clock
(for example, 23:59:59).

No Yes

Table 3 Default Inbound Message Structure - Record Information

Field Description Repeating? Required?

SegmentId “ID” No Yes

EUID Leave this field blank. eIndex SPV
determines the EUID after it processes the
message.

No Yes

LocalId The patient's local identifier in a specified
system. This field has two sub-fields:

Lid: The local ID assigned to the person
in the system of origin.
System: The processing code of the

system of origin.
For example, if the local ID 12345 was
assigned within the system SeeBeyond (with
a processing code of SBYN), this field should
appear as follows:
|12345^SBYN|

No Yes (both
sub-fields
are
required)

NonUniqueId The person's auxiliary identifiers. This node
contains a repeating field, “NUI”, that
contains two sub-fields:

Id: An auxiliary ID of the specified type.
Type: The type of auxiliary ID specified.

For example, if a person's account number is
003487 and the type code for account is
ACCT, this field should appear as follows:
|003487^ACCT|
Note: If auxiliary ID information is included,
then both an ID and an ID type must be
included.

Yes (the
NUI field is
repeating)

Yes (the NUI
field is
required,
but the sub-
fields are
not)

Table 2 Default Inbound Message Structure - Transaction Information

Field Description Repeating? Required?
eIndex Single Patient View Reference Guide 18 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
SegmentId “DEMO” No Yes

PersonCategory The code for the person category to which
the person is assigned.

No Yes

PersonName The name of the person. This field consists
of five sub-fields.

LastName: The person's last name.
FirstName: The person's first name.
MiddleName: The person's middle

name.
Title: The processing code of the

person's title.
Suffix: The processing code of the

person's suffix to their name.
Note: The last, first, and middle names are
required, but the title and suffix are not.

No Yes

PersonAlias The alias names for the person. This nodes
consists of a repeating field, “PA”, that
includes three sub-fields:

LastName: The alias last name.
FirstName: The alias first name.
MiddleName: The middle name of the

alias.

Yes (the PA
field is
repeating)

Yes (the PA
field is
required,
but the sub-
fields are
not)

AltName Alternative names associated with this
person. This field consists of five sub-fields:

MaidenName: The person's maiden
name.
SpouseName: The name of the person's

spouse.
MotherName: The name of the

person's mother.
FatherName: The name of the person's

father.
MotherMaiden: The maiden name of

the person's mother.

No Yes (the field
is required,
but the sub-
fields are
not)

DateOfBirth The person's date of birth, in YYYY-MM-DD
format.

No Yes

TimeOfBirth The time the person was born, in
HH:MM:SS format on a 24-hour clock.

No Yes

Sex The table code of the person's gender. No Yes

MaritalStatus The table code of the person's marital status. No Yes

SSN The person's social security number, with no
punctuation.

No Yes

Table 3 Default Inbound Message Structure - Record Information

Field Description Repeating? Required?
eIndex Single Patient View Reference Guide 19 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
DriverLicense The driver license details for the person.
This has two sub-fields:

StateCountry: The state or country that
issued the drivers license.
LicenseNumber: The driver license

number.

No Yes (the field
is required,
but the sub-
fields are
not)

Race The table code of the person's race. No Yes

EthnicGroup The table code of the person's ethnic group. No Yes

Nationality The table code of the person's nationality. No Yes

Religion The table code of the person's religion. No Yes

Language The table code of the language spoken by
the person.

No Yes

Death Death information about the person. This
field consists of three sub-fields:

DeathFlag: An indicator of whether the
person is deceased. Should be Y if
deceased.
DateOfDeath: If deceased, the date of

death in YYYY-MM-DD format.
DeathCertificateNumber: The ID

number on the death certificate.

No Yes (the field
is required,
but the sub-
fields are
not)

BirthPlace The location in which the person was born.
This field consists of three sub-fields:

BirthCity: The city in which the person
was born.
BirthState: The state in which the

person was born.
BirthCountry: The country code where

the person was born.

No Yes (the field
is required,
but the sub-
fields are
not)

VIP The table code of the person's VIP status. No Yes

VeteranStatus The table code of the person's veteran
status.

No Yes

Military The military details for the person. This field
consists of three sub-fields:

MilitaryStatus: The code of the person's
military status.
RankGrade: The person's military rank

or grade.
MilitaryBranch: The military branch in

which the person has served.

No Yes (the field
is required,
but the sub-
fields are
not)

Citizenship The citizenship for the person. No Yes

Table 3 Default Inbound Message Structure - Record Information

Field Description Repeating? Required?
eIndex Single Patient View Reference Guide 20 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
Pension The pension details for the person. This
field consists of two sub-fields:

PensionNumber: The person's pension
card number.
ExpirationDate: The expiration date of

the pension card in YYYY-MM-DD
format.

No Yes (the field
is required,
but the sub-
fields are
not)

RepatriationNumber The person's repatriation number. No Yes

DistrictOfResidence The code of the district of residence in
which the person resides.

No Yes

LgaCode The LGA code for the person. No Yes

Address Address information for the person. This
node consists of one field, “ADDR”, that
includes ten sub-fields:

AddressType: The table code for the
type of address.
Street1: The first line of the street

address.
Street2: The second line of the street

address.
Street3: The third line of the street

address.
Street4: The fourth line of the street

address.
City: The city or suburb of the address.
state_or_province: State or province
Zip: The zip code of the address.
ZipExt: The zip code extension of the

address.
County: The table code of the county in

which the address is located.
Country: The table code of the

address's country.
Note: If address information is included in a
message, by default the AddressType and
Street1 fields are required. Any other
required fields are determined by the Object
Definition file.

Yes (the
ADDR field
is
repeating)

Yes (the field
is required,
but the sub-
fields are
not)

Table 3 Default Inbound Message Structure - Record Information

Field Description Repeating? Required?
eIndex Single Patient View Reference Guide 21 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Understanding Operational Processes Inbound Message Processing
Sample Inbound Message

Below is a sample data record that follows the default format described in the previous
tables.

EVNT|||JJONES|CBMC|CBMC|||2003-06-15|10:20:24<>
ID||239487209^CBMC|23438742^ACCT&DEMO|P|WARREN^ELIZABETH^JUNE
^PHD^|MILLER^ELIZABETH^J|MILLER^ANDREW^JULIE^MARK^MARTIN|19
60-05-14|15:01:08|F|M|555-44-4555|^|W|28||AG|ENGL|^^|^^|N|N|^^|USA|
^||||H^2347 SHORELINE DRIVE^UNIT 3^^^SHEFFIELD^CT^09877^^ CAPE
BURR^UNST~O^1490 WAYFIELD ROAD^FLOOR 5^SUITE 519^^CAPE
BURR^CT^09877^^^UNST|CH^9895557811^~CB^9895553214^1212&AUX|~~~~|
STANDARD MEMBERSHIP~~~~~~~~~|1999-09-12~2000-12-15~~~<>

Phone Telephone information for the person. This
node consists of one field, “PH”, that
includes three sub-fields:

PhoneType: The table code of the
telephone type.
PhoneNumber: The telephone

number, with no punctuation
characters.
PhoneExt: The extension to the

telephone number.
Note: If telephone information is included
in a message, the Type and PhoneNumber
fields must be present for each telephone
number.

Yes (the PH
field is
repeating)

Yes (the field
is required,
but the sub-
fields are
not)

SegmentId “AUX” No No

Class (CL) This field includes five miscellaneous sub-
fields that can contain strings up to 20-
characters.

Yes
(maximum
of five)

Yes (the field
is required if
there is an
AUX
segment, but
the sub-
fields are
not)

String (STR) Additional strings for site-specific purposes.
This field contains 10 sub-fields. The first six
are a maximum of 40 characters. Sub-fields
seven to nine are a maximum of 100
characters. The tenth sub-field is a
maximum of 255 characters.

Yes
(maximum
of ten)

Yes (see
above)

Date (DT) This field includes five miscellaneous date
sub-fields in YYYY-MM-DD format.

Yes
(maximum
of five)

Yes (see
above)

Table 3 Default Inbound Message Structure - Record Information

Field Description Repeating? Required?
eIndex Single Patient View Reference Guide 22 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Understanding Operational Processes Outbound Message Processing
2.3 Outbound Message Processing
An outbound message refers to the transmission of data from the master index
database to any external system. Messages can be transmitted from the master index in
two ways. The first way is by transmitting the output of executeMatch (an EUID). This
is described earlier in “Inbound Message Processing” on page 15, and is only used for
messages received from external systems.

The second way is by publishing updates from the master index to a JMS Topic, which
allows you to publish complete, updated single best records (SBRs) to any system
subscribing to that topic. When updates are made to the database from either external
systems or the Enterprise Data Manager, the master index generates outbound
messages in the format of the outbound OTD.

This section describes how the second type of outbound message is processed. A JMS
Topic must be defined in the Connectivity Maps for the eIndex SPV server Project and
the appropriate client Projects for this type of processing to occur.

1 When a message is received from an external system or data is entered through the
EDM, the master index processes the information and generates an XML message,
which is sent to the JMS Topic that is configured to publish messages from the
master index.

2 Messages published by the JMS Topic are processed through a Service whose
Collaboration uses the eIndex SPV outbound OTD. This Service modifies the
message into the appropriate format.

3 eGate identifies the message and the external systems to which it should be sent,
and then routes the message for processing via an external system eWay.

Note: Outbound messages are stored and tracked in the eGate journal and log files.

Figure 3 below illustrates the flow of data for a message outbound from the master
index.

Figure 3 Outbound Message Processing Data Flow

2.3.1 About Outbound Messages
When you customize the object definition and generate the eIndex SPV application, an
outbound OTD is created, the structure of which is based on the object definition. This
OTD is used to publish changes in the master index database to external systems via a
JMS Topic. The output of the executeMatch process described earlier is an EUID of the
new or updated record. You can use this EUID to obtain additional information and

eGateJMS TopicMaster Index
Database

External
SystemService
eIndex Single Patient View Reference Guide 23 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Understanding Operational Processes Outbound Message Processing
configure a Collaboration and Service to output the data, or you can process all updates
in the master index through a JMS Topic using the outbound OTD.

Outbound OTD Structure

 The outbound OTD for eIndex SPV is named “OUTPerson”. This OTD contains eight
primary nodes: Event, ID, SBR, and the standard Java methods marshal, unmarshal,
marshalToString, unmarshalFromString, marshalToBytes, unmarshalFromBytes, and
reset. The “Event” field is populated with the type of transaction that created the
outbound message, and the “ID” field is populated with the unique identification code
of that transaction. The SBR node is the portion of the OTD created from the Object
Definition file. By default, the outbound OTD publishes messages in XML format. Table
4 describes the components of the SBR portion of the outbound OTD.

Table 4 Outbound OTD SBR Nodes

Node Description

EUID The EUID of the record that was inserted or
modified.

Status The status of the record.

CreateFunction The date the record was first created.

CreateUser The logon ID of the user who created the record.

UpdateSystem The processing code of the external system from
which the updates to an existing record originated.

ChildType The name of the parent object.

CreateSystem The processing code of the external system from
which the record originated.

UpdateDateTime The date and time the record was last updated.

CreateDateTime The date and time the record was created.

UpdateFunction The type of function that caused the record to be
modified.

RevisionNumber The revision number of the record.

UpdateUser The logon ID of the user who last updated the
record.

SystemObject The patient's local identifier in a specified system.
This field has three sub-fields:

LID: The local ID assigned to the person in the
system of origin.
System: The processing code of the system of

origin.
Status: The status of the local ID in the

enterprise record.
eIndex Single Patient View Reference Guide 24 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Understanding Operational Processes Outbound Message Processing
Outbound Message Trigger Events

When outbound messaging is enabled, the following transactions automatically
generate an outbound message that is sent to the JMS Topic (if a JMS Topic has been
incorporated into the eIndex SPV Project).

Activating a system record

Activating an enterprise record

Adding a system record

Creating an enterprise record

Deactivating a system record

Deactivating an enterprise record

Merging an enterprise record

Merging a system record

Transferring a system record

Unmerging an enterprise record

Unmerging a system record

Updating an enterprise record

Updating a system record

Sample Outbound Message

The following text is a sample outbound message for eIndex SPV based on the default
configuration. Your outbound messages might appear differently depending on how
you configure the client Project connectivity components.

<?xml version="1.0" encoding="UTF-8"?>
<OutMsg Event="UPD" ID="00000000000000044005">
<SBR EUID="1000008001" Status="active" CreateFunction="Add"
ChildType="Person" CreateSystem="System" UpdateFunction="Update"
RevisionNumber="5" CreateUser="eview" UpdateSystem="System"
UpdateDateTime="12/16/2003 17:40:44" CreateDateTime="12/16/2003
17:36:58" UpdateUser="eview">
<SystemObject SystemCode="CBMC" LID="434900094" Status="active">
</SystemObject>
<Person PersonId="00000000000000017000" PersonCatCode="PT"
LastName="WRAND" FirstName="ELIZABETH" MiddleName="SU" Suffix=""
Title="PHD" DOB="12/12/1972 00:00:00" Death="" Gender="F" MStatus="M"

Person The fields in this node are defined by the object
structure (as defined in the Object Definition file). It
is named by the parent object (Person) and contains
all fields and child objects defined in the structure.
This section varies depending on the customizations
made to the object structure.

Table 4 Outbound OTD SBR Nodes

Node Description
eIndex Single Patient View Reference Guide 25 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Understanding Operational Processes Inbound Message Processing Logic
SSN="555665555" Race="B" Ethnic="23" Religion="AG" Language="ENGL"
SpouseName="MARCUS" MotherName="TONIA" MotherMN="FLEMING"
FatherName="JOSHUA" Maiden="TERI" PobCity="KINGSTON" PobState=""
PobCountry="JAMAICA" VIPFlag="N" VetStatus="N"
FnamePhoneticCode="E421" LnamePhoneticCode="RAN"
MnamePhoneticCode="S250" MotherMNPhoneticCode="FLANANG"
MaidenPhoneticCode="TAR" SpousePhoneticCode="M622"
MotherPhoneticCode="T500" FatherPhoneticCode="J200"
DriversLicense="CT111333111" DriversLicenseSt="CT" Dod=""
DeathCertificate="" Nationality="USA" Citizenship="USA" PensionNo=""
PensionExpDate="" RepatriationNo="" DistrictOfResidence="" LgaCode=""
MilitaryBranch="NONE" MilitaryRank="NONE" MilitaryStatus="NONE"
DummyDate="" Class1="" Class2="" Class3="" Class4="" Class5=""
String1="ADMINISTRATION" String2="LEVEL 5" String3="EWRAY@HERE.MED"
String4="" String5="" String6="" String7="" String8="" String9=""
String10="" Date1="12/15/1995 00:00:00" Date2="12/31/2005 00:00:00"
Date3="" Date4="" Date5="" StdFirstName="ELIZABETH"
StdLastName="WRAND" StdMiddleName="SUSAN">
<Phone PhoneId="00000000000000011001" PhoneType="CC"
Phone="9895558768" PhoneExt="">
</Phone>
<Phone PhoneId="00000000000000011000" PhoneType="CH"
Phone="9895554687" PhoneExt="">
</Phone>
<Alias AliasId="00000000000000016001" LastName="TERI"
FirstName="ELIZABETH" MiddleName="SU" LnamePhoneticCode="TAR"
FnamePhoneticCode="E421" MnamePhoneticCode="S250"
StdFirstName="ELIZABETH" StdLastName="TERI" StdMiddleName="SUSAN">
</Alias>
<Address AddressId="00000000000000011001" AddressType="H"
AddressLine1="1220 BLOSSOM STREET" AddressLine2="UNIT 12"
AddressLine3="" AddressLine4="" City="SHEFFIELD" StateCode="CT"
PostalCode="09877" PostalCodeExt="" County="CAPEBURR"
CountryCode="UNST" HouseNumber="1220" StreetDir=""
StreetName="BLOSSOM" StreetNamePhoneticCode="BLASAN" StreetType="St">
</Address>
<AuxId AuxIdId="00000000000000010000" AuxIdDef="ACCT" Id="1155447">
</AuxId>
<AuxId AuxIdId="00000000000000010001" AuxIdDef="INS" Id="55488877">
</AuxId>
<Comment CommentId="00000000000000009000" CommentCode="1A"
EnterDate="12/12/2003 00:00:00" CommentText="UPDATED CLEARANCE TO
LEVEL 5">
</Comment>
</Person>
</SBR>
</OutMsg>

2.4 Inbound Message Processing Logic
When records are transmitted to the master index, one of the “execute match” methods
is usually called and a series of processes are performed to ensure that accurate and
current data is maintained in the database. The execute match methods include
executeMatch, executeMatchUpdate, executeMatchDupRecalc, and
executeMatchUpdateDupRecalc. The EDM uses executeMatchGui. For more
information about how these methods differ, refer to the Javadocs provided with
eIndex SPV.
eIndex Single Patient View Reference Guide 26 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Understanding Operational Processes Inbound Message Processing Logic
In the sample Project configuration, these processes are defined in the Collaboration
using the functions defined in the customized method OTD. The steps performed by
that standard executeMatch method are outlined below, and the diagrams on the
following pages illustrate the message processing flow. The processing steps performed
in your environment might vary from this depending on how you customize the
Collaboration and Connectivity Map.

The steps outlined below refer to the following parameters and element in the eIndex
SPV Threshold file (these are described in the Sun SeeBeyond eIndex Single Patient View
Configuration Guide).

OneExactMatch parameter

SameSystemMatch parameter

MatchThreshold parameter

DuplicateThreshold parameter

update-mode element

Important: There are several decision points in the match process that can be defined by custom
logic using custom plug-ins (for more information, see “Customizing Match
Processing Logic” in the Sun SeeBeyond eIndex Single Patient View User’s Guide).
The decision points are not listed in the below steps, which instead define the default
processing logic. Appendix A “Inbound Message Processing with Custom
Logic” provides the same steps as below with the decision points included.

1 When a message is received by the master index, a search is performed for any
existing records with the same local ID and system as those contained in the
message. This search only includes records with a status of A, meaning only active
records are included. If a matching record is found, an existing EUID is returned.

2 If an existing record is found with the same system and local ID as the incoming
message, it is assumed that the two records represent the same patient. Using the
EUID of the existing record, the master index performs an update of the record’s
information in the database.

If the update does not make any changes to the patient’s information, no
further processing is required and the existing EUID is returned.

If there are changes to the patient’s information, the updated record is inserted
into database, and the changes are recorded in the sbyn_transaction table.

If there are changes to key fields (that is, fields used for matching or for the
blocking query) and the update mode is set to pessimistic, potential duplicates
are re-evaluated for the updated record.

3 If no records are found that match the record’s system and local identifier, a second
search is performed using the blocking query. A search is performed on each of the
defined query blocks to retrieve a candidate pool of potential matches.

Each record returned from the search is weighted using the fields defined for
matching in the inbound message.

4 After the search is performed, the number of resulting records is calculated.
eIndex Single Patient View Reference Guide 27 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Understanding Operational Processes Inbound Message Processing Logic
If a record or records are returned from the search with a matching probability
weight above the match threshold, the master index performs exact match
processing (see Step 5).

If no matching records are found, the inbound message is treated as a new
record. A new EUID is generated and a new record is inserted into the database.

5 If records were found within the high match probability range, exact match
processing is performed as follows:

If only one record is returned from this search with a matching probability that
is equal to or greater than the match threshold, additional checking is
performed to verify whether the records originated from the same system (see
Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is set to false, then the
record with the highest matching probability is checked against the incoming
message to see if they originated from the same system (see Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is true, a new EUID is
generated and a new record is inserted into the database.

If no record is returned from the database search, or if none of the matching
records have a weight in the exact match range, a new EUID is generated and a
new record is inserted into the database.

Note: Exact matching is determined by the OneExactMatch parameter, and the match
threshold is defined by the MatchThreshold parameter. For more information about
these parameters, see the Sun SeeBeyond eIndex Single Patient View Configuration
Guide.

6 When records are checked for same system entries, the master index tries to retrieve
an existing local ID using the system of the new record and the EUID of the record
that has the highest match weight.

If a local ID is found and same system matching is set to true, a new record is
inserted, and the two records are considered to be potential duplicates. These
records are marked as same system potential duplicates.

If a local ID is found and same system matching is set to false, it is assumed that
the two records represent the same patient. Using the EUID of the existing
record, the master index performs an update, following the process described in
Step 2 earlier.

If no local ID is found, it is assumed that the two records represent the same
patient and an assumed match occurs. Using the EUID of the existing record,
the master index performs an update, following the process described in Step 2
earlier.

7 If a new record is inserted, all records that were returned from the blocking query
are weighed against the new record using the matching algorithm. If a record is
updated and the update mode is pessimistic, the same occurs for the updated
record. If the matching probability weight of a record is greater than or equal to the
eIndex Single Patient View Reference Guide 28 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Understanding Operational Processes Inbound Message Processing Logic
potential duplicate threshold, the record is flagged as a potential duplicate (for
more information about thresholds, see the Sun SeeBeyond eIndex Single Patient View
Configuration Guide).

The flow charts on the following pages provide a visual representation of the processes
performed in the default configuration. Figures 4 and 5 represent the primary flow of
information. Figure 6 expands on update procedures illustrated in Figures 4 and 5.
eIndex Single Patient View Reference Guide 29 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Understanding Operational Processes Inbound Message Processing Logic
Figure 4 Inbound Message Processing in the Sample Project

Message
containing a

system and local
ID, plus relevant
data, is received

Lookup system and
local ID in the

sbyn_enterprise
table

Perform update on
the existing record
(see Record Update

Expansion)

Yes

No

Are records
found with

matching weights equal to or
greater than the duplicate

threshold?

No Perform a new
record insert

Go to A

Yes

Perform
matching

algorithm search

Processing
complete

Are the
system and local ID

pair found?
eIndex Single Patient View Reference Guide 30 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Understanding Operational Processes Inbound Message Processing Logic
Figure 5 Inbound Message Processing (cont'd)

1 record found

A

Perform new
record insert

0 records found

More than 1
record found

Is exact
matching set

to true?

Yes

No

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

Processing
complete

Perform update
on matching
record (see

Record Update
Expansion)

No

Yes

Perform update
on matching
record (see

Record Update
Expansion)

No

Yes

Perform new
record insert

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

Processing
complete

Is same
system matching

set to true?

 Did highest
matching record

originate from the
same system?

No

 Did matching
 records originate

from the same
system?

Yes

 Were records
 found with matching

weights above or equal
to the match
threshold?
eIndex Single Patient View Reference Guide 31 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
Figure 6 Record Update Expansion

2.5 Primary Function Processing Logic
The primary functions of eIndex SPV can be performed from the Enterprise Data
Manager or can be called from the Collaborations in the eIndex SPV Project. Whether
potential duplicates are evaluated after a call to any of these functions is dependent on
the update mode settings. Potential duplicates are only processed against the single
best record (SBR) and not the system records. These functions are all located in the
Master Controller class, and are fully described in the eIndex SPV Javadocs provided
with eIndex SPV. In the following diagrams, significant fields for potential duplicate
processing include fields defined for matching and fields included in the blocking

Find the existing
record using the

EUID

Are there
changes

 to the entity's
data?

Update
existing recordYes

Insert changes
into the

sbyn_transaction
table

Is update
mode

pessimistic?

Yes

Perform
potential
duplicate

processing

No

Were
changes made
to significant*

fields?

Yes

No

* Significant fields for potential duplicate processing include those defined for
matching and those included in the blocking query used for matching

No

Processing
complete
eIndex Single Patient View Reference Guide 32 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
query used for matching. In all of the methods described below, an entry is made in the
transaction history table (sbyn_transaction).

2.5.1 activateEnterpriseObject
This method reactivates an enterprise record. The EDM calls this method when you
select an EUID and then click Activate EUID=<EUID_number>, (where
<EUID_number> is the EUID of the enterprise record to reactivate). Since all potential
duplicates were deleted when the EUID was originally deactivated, potential
duplicates are always recalculated, regardless of the update mode. Figure 7 illustrates
the processing steps.

Figure 7 activateEnterpriseObject Processing

2.5.2 activateSystemObject
This method reactivates a system record. The EDM calls this method when you select a
system from the enterprise record tree and then click Activate <system-ID> (where
system is the system code and ID is the local ID number for the system record to
reactivate). If the update mode is set to “pessimistic”, the application checks whether
any key fields were updated in the SBR. If key fields were updated, potential duplicates
are recalculated for the enterprise record. Figure 8 illustrates the processing steps.

Figure 8 activateSystemObject Processing

Processing
complete

Collaboration or EDM
calls

activateEnterpriseObject
Yes

No

Perform
potential
duplicate

processing

Reactivate
enterprise

record

Is at
least one

system record
active?

Yes Yes Yes

Perform
potential
duplicate

processing

Processing
complete

No

Activate
system
object

Collaboration or EDM
calls

activateSystemObject

Is
enterprise

object
active?

No No

Is update
mode

pessimistic?

Were
changes made
to significant

fields?
eIndex Single Patient View Reference Guide 33 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
2.5.3 addSystemObject
This method adds a system record to an enterprise record. The EDM calls this method
when you add a system record to an existing enterprise record. If the update mode is
set to “pessimistic”, the application checks whether any key fields were updated in the
SBR. If key fields were updated and the update mode is set to pessimistic, potential
duplicates are recalculated for the enterprise record. Figure 9 illustrates the processing
steps.

Figure 9 addSystemObject Processing

2.5.4 createEnterpriseObject
There are two createEnterpriseObject methods, both of which add a new enterprise
record to the database and bypass any potential duplicate processing. One method
takes only one system record as a parameter and the other takes an array of system
records. These methods cannot be called from the EDM and are designed for use in
Collaborations.

2.5.5 deactivateEnterpriseObject
This method deactivates an enterprise record specified by its EUID. The EDM calls this
method when you select an enterprise record and then click Deactivate
EUID=<EUID_number> (where <EUID_number> is the EUID of the enterprise record
to deactivate). When an enterprise record is deactivated, all potential duplicate listings
for that record are deleted.

2.5.6 deactivateSystemObject
This method deactivates a system record in an enterprise record. The EDM calls this
method when you select a system from the enterprise record tree and then click
Deactivate <system-ID> (where system is the system code and ID is the local ID
number for the system record to deactivate). If the enterprise record containing this
system record has no active system records remaining, the enterprise record is
deactivated and all potential duplicate listings are deleted. (Note that if the system
record is reactivated, then the enterprise record is recreated.) If the enterprise record has
active system records after the transaction and the update mode is set to “pessimistic”,
the application checks whether any key fields were updated in the SBR. If key fields

Yes Yes
Collaboration or

EDM calls
addSystemObject

Is update
mode

pessimistc?

No

Perform
potential
duplicate

processing

Processing
complete

Add system
object to
enterprise

record

No

Were
changes made
to significant

fields?
eIndex Single Patient View Reference Guide 34 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
were updated, potential duplicates are recalculated for the enterprise record. Figure 10
illustrates the processing steps.

Figure 10 deactivateSystemObject Processing

2.5.7 deleteSystemObject
Unlike deactivateSystemObject, this method permanently removes a system record
from an enterprise record. This method cannot be called from the EDM. If the enterprise
record containing the deleted system record has no active system records remaining
(but does have deactivated system records), the enterprise record is deactivated. If the
enterprise record has no remaining system records after the system object is deleted, the
enterprise record is also deleted. In both cases, any potential duplicate listings for that
enterprise record are removed. If the enterprise record has active system records after
the transaction and the update mode is set to “pessimistic”, the application checks
whether any key fields were updated in the SBR. If key fields were updated, potential
duplicates are recalculated for the enterprise record. Figure 11 illustrates the processing
steps.

No

Yes

No Yes

Yes
Is update

mode
pessimistic?

Perform
potential
duplicate

processing

Were
changes made
to significant

fields?

Processing
complete

Collaboration or EDM
calls

deactivateSystemObject

Does
the

enterprise record
have any active

system
records?

Deactivate enterprise
record and delete

associated potential
duplicates

No

Deactivate
system
record
eIndex Single Patient View Reference Guide 35 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
Figure 11 deleteSystemObject Processing

2.5.8 mergeEnterpriseObject
There are four mergeEnterpriseObject methods that merge two enterprise records (see
the Javadocs provided with eIndex SPV for more information about each). The EDM
calls a merge method twice during a merge transaction. When you first click the EUID
Merge arrow, the method is called with the calculateOnly parameter set to “true” in
order to display the merge result record for you to view. When you confirm the merge,
the EDM calls this method with the calculateOnly parameter set to “false” in order to
commit the changes to the database and recalculate potential duplicates if needed. The
method called by the EDM checks the SBRs of the records involved in the merge against
their corresponding SBRs in the database. If the SBRs differ, the merge is not performed
since that means the records were changed by someone else during the merge process.

When this method is called with calculateOnly set to “false”, the application changes
the status of the merged enterprise record to “merged” and deletes all potential
duplicate listings for the merged enterprise record. If the update mode is set to
“pessimistic”, the application checks whether any key fields were updated in the SBR
of the surviving enterprise record. If key fields were updated, potential duplicates are
recalculated for the enterprise record. Figure 12 illustrates the processing steps, and
includes the check for SBR differences, which only occurs in two of the merge methods.

No

Yes Yes

No

No

Yes

Is update
mode

pessimistic?

Perform
potential
duplicate

processing

Processing
complete

Delete enterprise
record and
associated
potential

duplicates

Does the
enterprise

record still have
active system

records?

Were
changes made
to significant

fields?

Does the
enterprise

record still have
inactive system

records?

YesNo

Remove the
system record

Collaboration calls
deleteSystemObject

Deactivate
enterprise record

and remove
associated

potential duplicates
eIndex Single Patient View Reference Guide 36 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
Figure 12 mergeEnterpriseObject Processing

2.5.9 mergeSystemObject
There are four methods that merge two system records, either from the same enterprise
record or from two different enterprise records (for more information about each
method, see the Javadocs provided with eIndex SPV). The system records must
originate from the same external system. The EDM calls this method twice during a
system record merge transaction. When you first click the LID Merge arrow, the
method is called with the calculateOnly parameter set to “true” in order to display the
merge result record for you to view. When you confirm the merge, the EDM calls this
method with the calculateOnly parameter set to “false” in order to commit the changes
to the database and recalculate potential duplicates if needed. Two of the merge
methods compare the SBRs of the records with their corresponding SBRs in the
database to ensure that no updates were made to the records before finalizing the
merge.

When this method is called with calculateOnly set to “false”, the application changes
the status of the merged system record to “merged”. If the system records were merged
within the same enterprise record and the update mode is set to “pessimistic”, the
application checks whether any key fields were updated in the SBR. If key fields were
updated, potential duplicates are recalculated for the enterprise record.

If the system records originated from two different enterprise records and the
enterprise record that contained the unkept the system record no longer has any active
system records but does contain inactive system records, that enterprise record is
deactivated and all associated potential duplicate listings are deleted. (Note that if the
system records are unmerged, the enterprise record is reactivated.) If the enterprise

No

Yes

True

YesFalse

Is update
mode

pessimistic?

Perform potential
duplicate

processing on
surviving record

Were
changes made
to significant

fields of surviving
enterprise

record?

Processing
complete

Collaboration or EDM
calls

mergeEnterpriseObject

What is
the value of

calculateOnly?

Compute merge
result record,

but do not save
to database

No

Change status
of unkept
record to
“merged”

Compute merge
result record

and save
changes to
database

No

Have SBRs
changed?

Yes
eIndex Single Patient View Reference Guide 37 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
record that contained the unkept system record no longer has any system records, that
enterprise record is deleted along with any potential duplicate listings.

If both enterprise records are still active and the update mode is set to “pessimistic”, the
application checks whether any key fields were updated in the SBR for each enterprise
record. If key fields were updated, potential duplicates are recalculated for each
enterprise record. Figure 13 on page 37 illustrates the processing steps, and includes
the check for SBR differences, which only occurs in two of the merge methods.

Figure 13 mergeSystemObject Processing

No

No

No

Yes

Yes

No

Yes

Yes

No

True

Yes

False

Perform potential
duplicate processing

on the source
enterprise record

Were
changes made

to significant fields
of the source

enterprise
record?

Processing
complete

Collaboration or EDM
calls

mergeSystemObject

What is
the value of

calculateOnly?

Compute merge
result record,

but do not save
to database

Compute merge
and change

status of unkept
system record
to “merged”

Were the
system records
from different

enterprise
records?

Is update
mode

pessimistic?

Perform
potential
duplicate

processing

Deactivate
enterprise record

and delete its
potential

duplicate listings

Yes

Is update
mode

pessimistic?

Were
changes made
to significant
fields in the
enterprise

record?

No

Yes

Perform potential
duplicate processing
on the destination
enterprise record

Were
changes made

to significant fields
of the destination

enterprise
record?

Delete enterprise
record and its

potential
duplicate listings

Yes

Does the
source enterprise
record still have
inactive system

records?

No

Does the
source enterprise
record still have
active system

records?

No

Yes

Have SBRs
changed?
eIndex Single Patient View Reference Guide 38 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
2.5.10 transferSystemObject
This transfers a system record from one enterprise record to another. This method is not
called from the EDM. If the enterprise record from which the system record was
transferred no longer has any active system records (but still contains deactivated
system records), that enterprise record is deactivated and any associated potential
duplicate listings are removed. If the enterprise record from which the system record
was transferred no longer has any system records, that enterprise record is deleted
along with all associated potential duplicate listings. If both enterprise records are still
active and the update mode is set to “pessimistic”, the application checks whether any
key fields were updated in the SBR for each enterprise record. If key fields were
updated, potential duplicates are recalculated for each enterprise record. Figure 14
illustrates the processing steps.

Figure 14 transferSystemObject Processing

Yes

No

Yes

No

Yes

Does the
source enterprise
record still have
active system

records?

Perform potential
duplicate

processing on the
source record

Were
changes made

to significant fields
of the source

enterprise
record?

Processing
complete

Collaboration calls
transferSystemObject

Delete source
enterprise object
and associated

potential duplicates

No

Yes

Perform potential
duplicate

processing on the
destination record

Were
changes made

to significant fields
of the destination

enterprise
record?

No Yes

Does the
source enterprise
record still have
inactive system

records?

No

No

Is update
mode

pessimistic?

Deactivate source
enterprise object and

delete associated
potential duplicates

Transfer
system record
eIndex Single Patient View Reference Guide 39 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
2.5.11 undoAssumedMatch
This method reverses an assumed match made by the master index application, using
the information from the system record that created the assumed match to create a new
enterprise record. The EDM calls this method when you confirm the transaction after
selecting Undo Assumed Match. Potential duplicates are calculated for the new record
regardless of the update mode. If the update mode is set to “pessimistic”, the
application checks whether any key fields were updated in the SBR of the original
enterprise record. If key fields were updated, potential duplicates are recalculated for
the enterprise record. Figure 15 illustrates the processing steps.

Figure 15 undoAssumedMatch Processing

2.5.12 unmergeEnterpriseObject
There are two methods that unmerge two enterprise records that were previously
merged. One method unmerges the record without checking to make sure the SBR of
the active record was not changed by another process before finalizing the merge and
one method performs the SBR check (see the Javadocs provided with eIndex SPV for

No

Yes

No

Yes

Is update
mode

pessimistic?

Perform potential
duplicate processing

on the original
enterprise record

Were
changes made

to significant fields
in the original

enterprise
record?

Processing
complete

Collaboration or EDM
calls

undoAssumedMatch

Create a new
enterprise

object with that
system record

Remove the system
record that caused
the assumed match

from the original
enterprise record

Perform potential
duplicate

processing on new
enterprise record
eIndex Single Patient View Reference Guide 40 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
more information). The EDM calls this method twice during an unmerge transaction.
When you first click Unmerge, the method is called with the calculateOnly parameter
set to “true” in order to display the unmerge result records for you to view. When you
confirm the unmerge, the EDM calls this method with the calculateOnly parameter set
to “false” in order to commit the changes to the database and recalculate potential
duplicates.

When this method is called with calculateOnly set to “false”, the application changes
the status of the merged enterprise record back to “active” and recalculates potential
duplicate listings for the record. If the update mode is set to “pessimistic”, the
application checks whether any key fields were updated in the SBR of the enterprise
record that was still active after the merge. If key fields were updated, potential
duplicates are recalculated for that enterprise record. Figure 16 illustrates the
processing steps and includes the check for SBR updates.

Figure 16 unmergeEnterpriseObject Processing

2.5.13 unmergeSystemObject
There are two methods that unmerge two system records that had previously been
merged. One method unmerges the record without checking to make sure the SBR of
the active record was not changed by another process before finalizing the merge and
one method performs the SBR check (see the Javadocs provided with eIndex SPV for
more information). The EDM calls this method twice during a system record unmerge
transaction. When you first click Unmerge, the method is called with the calculateOnly
parameter set to “true” in order to display the unmerge result record for you to view.

No

Yes

True

Yes
False

Is update
mode

pessimistic?

Perform potential
duplicate

processing on
surviving

enterprise record

Were
changes
made to

significant fields
of surviving
enterprise

record?

Processing
complete

Collaboration or EDM
calls

unmergeEnterpriseObject

What is
the value of

calculateOnly?

Compute
unmerge result
records, but do

not save to
database

No

Compute the
unmerge result

and change
status of merged
record to “active”

Perform
potential
duplicate

processing on
newly active

record

Yes

No

Has the
SBR of the

active record
been

updated?
eIndex Single Patient View Reference Guide 41 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
When you confirm the unmerge, the EDM calls this method with the calculateOnly
parameter set to “false” in order to commit the changes to the database and recalculate
potential duplicates if needed.

When this method is called with calculateOnly set to “false”, the application changes
the status of the “merged” system record back to “active”. If the source enterprise
record (the record that contained the merge result system record after the merge) has
more than one active system record after the unmerge and the update mode is set to
“pessimistic”, the application checks whether any key fields were updated in that
record. If key fields were updated, potential duplicates are recalculated for the source
enterprise record.

If the source enterprise record has only one active system, potential duplicate
processing is performed regardless of the update mode and of whether there were any
changes to key fields. If the update mode is set to “pessimistic”, the application checks
whether any key fields were updated in the SBR for destination enterprise record. If key
fields were updated, potential duplicates are recalculated for each enterprise record.
Figure 17 illustrates the processing steps, assuming the system record unmerge
involves two enterprise records and including the check for SBR updates.
eIndex Single Patient View Reference Guide 42 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
Figure 17 unmergeSystemObject Processing

2.5.14 updateEnterpriseDupRecalc
This method updates the database to reflect new values for an enterprise record. It
processes records in the same manner as updateEnterpriseObject, but provides an
override flag for the update mode that allows you to defer potential duplicate
processing. The EDM does not call this method. If the enterprise record is deactivated
during the update, potential duplicates are deleted for that record. If the enterprise
record was changed during the transaction but is still active and the
performPessimistic parameter is set to “true”, the application checks whether any key

No

Yes

No

Yes

No

True

Yes

False

Perform potential
duplicate

processing on
source enterprise

record

Were
changes made

to significant fields
of the source

enterprise
record?

Processing
complete

Collaboration or EDM
calls

unmergeSystemObject

What is
the value of

calculateOnly?

Compute
unmerge result
record, but do

not save to
database

Compute unmerge
result and change
status of merged

system record
back to “active”

Does the
source enterprise
record have more
than one active

system
record?

Perform potential
duplicate

processing on
source enterprise

record

Yes

No

Yes

Were
changes made

to significant fields
of the destination

enterprise
record?

Is update
mode

pessimistic?

Is update
mode

pessimistic?

Perform potential
duplicate

processing on
destination

enterprise record

Yes

No

Has the
SBR of either

enterprise
record been

updated?
eIndex Single Patient View Reference Guide 43 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
fields were updated in the SBR of the enterprise record. If key fields were updated,
potential duplicates are recalculated. Figure 18 illustrates the processing steps.

Figure 18 updateEnterpriseDupRecalc Processing

2.5.15 updateEnterpriseObject
This method updates the database to reflect new values for an enterprise record, and is
called from the EDM when you commit changes to an existing record. If the enterprise
record is deactivated during the update, potential duplicates are deleted for that record.
If the enterprise record is still active, was changed during the transaction, and the
update mode is set to “pessimistic”, the application checks whether any key fields were
updated in the SBR of the enterprise record. If key fields were updated, potential
duplicates are recalculated. Figure 19 illustrates the processing steps.

No

YesYes

No
No

Yes

Is the
performPessimistic

flag set
to true?

Perform
potential
duplicate

processing

Processing
complete

No

Delete potential
duplicate listing for
enterprise record

Is the
enterprise

record
changed?

Yes

Were
changes made
to significant

fields?

Update
enterprise

object

Is the
enterprise
record still

active?

Collaboration calls
updateEnterpriseDupRecalc
eIndex Single Patient View Reference Guide 44 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
Figure 19 updateEnterpriseObject Processing

2.5.16 updateSystemObject
There are two methods that update the database to reflect new values for a system
record. One method updates the record without checking that there were no concurrent
changes to the record, and the other method compares the SBR of the associated
enterprise object in the transaction with that in the database to be sure there were no
concurrent changes (see the Javadocs provided with eIndex SPV for more information).
The EDM calls the method that checks for SBR changes when you commit changes to
an existing system record.

If the enterprise record is deactivated during the update, potential duplicates are
deleted for that record. If the enterprise record was changed during the transaction and
is still active, and the update mode is set to “pessimistic”, the application checks
whether any key fields were updated in the SBR of the enterprise record. If key fields
were updated, potential duplicates are recalculated. Figure 20 illustrates the processing
steps and includes the check for SBR changes though it only occurs with one of the
methods.

No

YesYes

No
No

Yes

Is update
mode

pessimistic?

Perform
potential
duplicate

processing

Processing
complete

Is the
enterprise
record still

active?

No

Delete potential
duplicate listing for
enterprise record

Is the
enterprise

record
changed?

Yes

Were
changes made
to significant

fields?

Update
enterprise

record

Collaboration or EDM
calls

updateEnterpriseObject
eIndex Single Patient View Reference Guide 45 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Understanding Operational Processes Primary Function Processing Logic
Figure 20 updateSystemObject Processing

Yes

No

No

YesYes

No
No

Yes

Is update
mode

pessimistic?

Perform
potential
duplicate

processing

Processing
complete

Collaboration or
EDM calls

updateSystemObject

Does the
enterprise

record still have
active system

records?

Delete enterprise
record and
associated

potential duplicates

Is the
enterprise

record
changed?

Yes

Were
changes made
to significant

fields?

Update
system
record

No

Has the
SBR of the
enterprise

record been
updated?
eIndex Single Patient View Reference Guide 46 Sun Microsystems, Inc.

Chapter 3

The Database Structure

This chapter provides information about the master index database, including
descriptions of each table and a sample entity relationship diagram. All information in
this chapter pertains to the default version of the database. Your implementation might
vary depending on the customizations made to the Object Definition and to the scripts
used to create the master index database.

What’s in This Chapter

About the Database on page 47

Database Table Details on page 49

Sample Database Model on page 63

3.1 About the Database

3.1.1 Overview
The master index database stores information about the patients being indexed. The
database stores records from local systems in their original form and also stores a
record for each patient that is considered to be the single best record (SBR).

The structure of the database tables that store patient information is dependent on the
information specified in the Object Definition file. eIndex SPV includes a script to create
the tables and fields in the database based on the information in the Object Definition
file If you update the Object Definition file, generating the application updates the
database scripts accordingly. This allows you to define the database as you define the
object structure.

3.1.2 Database Table Overview
While most of the structures created in the database are based on information in the
Object Definition file, some of the tables, such as sbyn_seq_table and
sbyn_common_detail, are standard for all implementations. The database includes
tables that store information about the patients defined for the eIndex SPV application
as well as tables that store common maintenance information, transactional
eIndex Single Patient View Reference Guide 47 Sun Microsystems, Inc.

Chapter 3 Section 3.1
The Database Structure About the Database
information, and external system information. The database includes the tables listed in
Table 5.

Table 5 Master Index Database Tables

Table Name Description

SBYN_<OBJECT_NAME> Stores information for the parent objects
associated with local system records (by
default, Person objects). This database table is
named by the parent object name. Only one
table stores parent object information for
system records.

SBYN_<OBJECT_NAME>SBR Stores information for the parent objects
associated with single best records (by default,
Person objects). This database table is named
by the parent object name followed by “SBR”.
Only one table stores parent object
information for SBRs.

SBYN_<CHILD_OBJECT> Stores information for child objects associated
with local system records. These database
tables are named by their object name. For
example, a table storing address objects is
named sbyn_address; a table storing comment
objects is named sbyn_comment. One
database table is created for each child object
defined in the object structure.

SBYN_<CHILD_OBJECT>SBR Stores information for child objects associated
with a single best record. These database
tables are named by their object name
followed by “SBR”. For example, a table storing
address objects is named sbyn_addresssbr; a
table storing comment objects is named
sbyn_commentsbr. One SBR database table is
created for each child object defined in the
object structure.

SBYN_APPL Lists the applications with which each item in
stc_common_header is associated. Currently
the only item in this table is eView.

SBYN_ASSUMEDMATCH Stores information about records that were
automatically matched by the master index.

SBYN_AUDIT Stores audit information about each time
patient information is accessed from the EDM.
Note: If audit logging is enabled, this table can
grow very large and might require periodic
archiving.

SBYN_COMMON_DETAIL Contains all of the processing codes associated
with the items listed in sbyn_common_header.
eIndex Single Patient View Reference Guide 48 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2 Database Table Details
The tables on the following pages describe each column in the default database tables.

SBYN_COMMON_HEADER Contains a list of the different types of
processing codes used by the master index.
These types are also associated with the drop-
down lists you can specify for the EDM.

SBYN_ENTERPRISE Stores the local ID and system pairs, along with
their associated EUID.

SBYN_MERGE Stores information about all merge and
unmerge transactions processed from either
external systems or the EDM.

SBYN_OVERWRITE Stores information about fields that are locked
for updates in an SBR.

SBYN_POTENTIALDUPLICATES Stores a list of potential duplicate records and
flags potential duplicate pairs that have been
resolved.

SBYN_SEQ_TABLE Stores the sequential codes that are used in
other tables in the database, such as EUIDs,
transaction numbers, and so on.

SBYN_SYSTEMOBJECT Stores information about the system objects in
the database, including the local ID and
system, create date and user, status, and so on.

SBYN_SYSTEMS Stores a list of systems in your organization,
along with defining information.

SBYN_SYSTEMSBR Stores transaction information about an SBR,
such as the create or update date, status, and
so on.

SBYN_TRANSACTION Stores a history of changes to each record
stored in the database.

SBYN_USER_CODE Like the sbyn_common_detail table, this table
stores processing codes and drop-down list
values. This table contains additional validation
information that allows you to validate
information in a dependent field (for example,
to validate cities against the entered postal
code).

Table 5 Master Index Database Tables

Table Name Description
eIndex Single Patient View Reference Guide 49 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.1 SBYN_<OBJECT_NAME>
This table stores the parent object in each system record received by the master index.
By default, the table is named SBYN_PERSON. It is linked to the tables that store each
child object in the system record by the <object_name>id column (where
<object_name> is the name of the parent object). This table contains the columns listed
below regardless of the design of the object structure, and also contains a column for
each field you defined for the parent object in the Object Definition file.

3.2.2 SBYN_<OBJECT_NAME>SBR
This table stores the parent object of the SBR for each enterprise object in the master
index database. By default, the table is named SBYN_PERSONSBR. It is linked to the
tables that store each child object in the SBR by the <object_name>id column (where
<object_name> is the name of the parent object). This table contains the columns listed
below regardless of the design of the object structure, and also contains a column for
each field defined for the parent object in the Object Definition file.

3.2.3 SBYN_<CHILD_OBJECT>
The sbyn_<child_object> tables (where <child_object> is the name of a child object in
the object structure) store information about the child objects associated with a system
record in the master index. All tables storing child object information for system
records contain the columns listed below. The remaining columns are defined by the
fields you specify for each child object in the object structure definition file, including
any standardized or phonetic fields.

3.2.4 SBYN_<CHILD_OBJECT>SBR
The sbyn_<child_object> sbr tables (where <child_object> is the name of a child object
in the object structure) store information about the child objects associated with an SBR
in the master index. All tables storing child object information for SBRs contain the
columns listed below. The remaining columns are defined by the fields you specify for

Table 6 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description

Column Name Data Type Column Description

<OBJECT_NAME>ID VARCHAR2(20) The unique ID for the parent object
associated with the child object in the
system record.

<CHILD_OBJECT>ID VARCHAR2(20) The unique ID for each record in the
table. This column cannot be null.
eIndex Single Patient View Reference Guide 50 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
each child object in the object structure definition file, including any standardized or
phonetic fields.

3.2.5 SBYN_APPL
This table stores information about the applications used in the eIndex SPV system.
Currently, there is only one entry, “eView”.

3.2.6 SBYN_ASSUMEDMATCH
This table maintains a record of each assumed match transaction that occurs in the
master index, allowing you to review these transactions and, if necessary, reverse an
assumed match. This table can grow quite large over time; it is recommended that the
table be archived periodically.

Table 7 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description

Column Name Data Type Column Description

<OBJECT_NAME>ID VARCHAR2(20) The unique ID for the parent object
associated with the child object in the
SBR.

<CHILD_OBJECT>ID VARCHAR2(20) The unique ID for each record in the
table. This column cannot be null.

Table 8 SBYN_APPL Table Description

Column Name Data Type Description

APPL_ID NUMBER(10) The unique sequence number code
for the listed application.

CODE VARCHAR2(8) A unique code for the application.

DESCR VARCHAR2(30) A brief description of the
application.

READ_ONLY CHAR(1) An indicator of whether the current
entry can be modified. If the value of
this column is “Y”, the entry cannot
be modified.

CREATE_DATE DATE The date the application entry was
created.

CREATE_USERID VARCHAR2(20) The logon ID of the user who
created the application entry.

Table 9 SBYN_ASSUMEDMATCH Table Description

Column Name Data Type Description

ASSUMEDMATCHID VARCHAR2(20) The unique ID for the assumed
match transaction.

EUID VARCHAR2(20) The EUID into which the incoming
record was merged.
eIndex Single Patient View Reference Guide 51 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.7 SBYN_AUDIT
This table maintains a log of each instance in which any of the eIndex SPV tables are
accessed in the database through the EDM. This includes each time a record appears on
a search results page, a comparison page, the View/Edit page, and so on. This log is
only maintained if the EDM is configured for it. This table can grow very large over
time and might require periodic archiving.

SYSTEMCODE VARCHAR2(20) The system code for the source
system (that is, the system from
which the incoming record
originated).

LID VARCHAR2(25) The local ID of the record in the
source system.

WEIGHT VARCHAR2(20) The matching weight between the
incoming record and the EUID
record into which it was merged.

TRANSACTION NUMBER VARCHAR2(20) The transaction number associated
with the assumed match.

Table 10 SBYN_AUDIT Table Description

Column Name Data Type Description

AUDIT_ID VARCHAR2(20) The unique identification code for
the audit record. This column
cannot be null.

PRIMARY_OBJECT_TYPE VARCHAR2(20) The name of the parent object as
defined in the Object Definition file.

EUID VARCHAR2(15) The EUID whose information was
accessed during an EDM transaction.

EUID_AUX VARCHAR2(15) The second EUID whose information
was accessed during an EDM
transaction. A second EUID appears
when viewing information about
merge and unmerge transactions,
comparisons, and so on.

FUNCTION VARCHAR2(32) The type of transaction that caused
the audit record to be written. This
column cannot be null.

DETAIL VARCHAR2(120) A brief description of the transaction
that caused the audit record to be
written.

CREATE_DATE DATE The date the transaction that created
the audit record was performed.
This column cannot be null.

Table 9 SBYN_ASSUMEDMATCH Table Description

Column Name Data Type Description
eIndex Single Patient View Reference Guide 52 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.8 SBYN_COMMON_DETAIL
This table stores the processing codes and description for all of the common
maintenance data elements. This is the detail table for sbyn_common_header. Each data
element in sbyn_common_detail is associated with a data type in
sbyn_common_header by the common_header_id column. None of the columns in this
table can be null.

3.2.9 SBYN_COMMON_HEADER
This table stores a description of each type of common maintenance data and is the
header table for sbyn_common_detail. Together, these tables store the processing codes
and drop-down menu descriptions for each common table data type. Common table

CREATE_BY VARCHAR2(20) The user ID of the person who
performed the transaction that
caused the audit log. This column
cannot be null.

Table 11 SBYN_COMMON_DETAIL Table Description

Column Name Data Type Description

COMMON_DETAIL_ID NUMBER(10) The unique identification code of
the common table data element.

COMMON_HEADER_ID NUMBER(10) The unique identification code of
the common table data type
associated with the data element (as
stored in the common_header_id
column of the
sbyn_common_header table).

CODE VARCHAR2(20) The processing code for the
common table data element.

DESCR VARCHAR2(50) A description of the common table
data element.

READ_ONLY CHAR(1) An indicator of whether the
common table data element can be
modified.

CREATE_DATE DATE The date the data element record
was created.

CREATE_USERID VARCHAR2(20) The user ID of the person who
created the data element record.

Table 10 SBYN_AUDIT Table Description

Column Name Data Type Description
eIndex Single Patient View Reference Guide 53 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
data types might include Religion, Language, Marital Status, and so on. None of the
columns in this table can be null.

3.2.10 SBYN_ENTERPRISE
This table stores a list of all the system and local ID pairs assigned to the person records
in the database, along with the associated EUID for each pair. This table is linked to
sbyn_systemobject by the systemcode and lid columns, and is linked to
sbyn_systemsbr by the euid column. This table maintains links between the SBR and its
associated system objects. None of the columns in this table can be null.

Table 12 SBYN_COMMON_HEADER Table Description

Column Name Data Type Description

COMMON_HEADER_ID VARCHAR2(10) The unique identification code of
the common table data type.

APPL_ID VARCHAR2(10) The application ID from sbyn_appl
that corresponds to the application
for which the common table data
type is used.

CODE VARCHAR2(8) A unique processing code for the
common table data type.

DESCR VARCHAR2(50) A description of the common table
data type.

READ_ONLY CHAR(1) An indicator of whether an entry in
the table is read-only (if this column
is set to “Y”, the entry is read-only).

MAX_INPUT_LEN NUMBER(10) The maximum number of characters
allowed in the code column for the
common table data type.

TYP_TABLE_CODE VARCHAR2(3) This column is not currently used.

CREATE_DATE DATE The date the common table data
type record was created.

CREATE_USERID VARCHAR2(20) The user ID of the person who
created the common table data type
record.

Table 13 SBYN_ENTERPRISE Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The processing code of the system
associated with the local ID.

LID VARCHAR2(25) The local ID associated with the
system and EUID.

EUID VARCHAR2(20) The EUID associated with the local
ID and system.
eIndex Single Patient View Reference Guide 54 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.11 SBYN_MERGE
This table maintains a record of each merge transaction that occurs in the master index,
both through the EDM and the eGate Project. It also records any unmerges that occur.

3.2.12 SBYN_OVERWRITE
This table stores information about the fields that are locked for updates in the SBRs. It
stores the EUID of the SBR, the ePath to the field, and the current locked value of the
field.

Table 14 SBYN_MERGE Table Description

Column Name Data Type Description

MERGE_ID VARCHAR2(20) The unique, sequential
identification code of merge record.
This column cannot be null.

KEPT_EUID VARCHAR2(20) The EUID of the record that was
retained after the merge transaction.
This column cannot be null.

MERGED_EUID VARCHAR2(20) The EUID of the record that was not
retained after the merge transaction.

MERGE_TRANSACTIONNUM VARCHAR2(20) The transaction number associated
with the merge transaction. This
column cannot be null.

UNMERGE_TRANSACTIONNUM VARCHAR2(20) The transaction number associated
with the unmerge transaction.

Table 15 SBYN_OVERWRITE Table Description

Column Name Data Type Description

EUID VARCHAR2(20) The EUID of an SBR containing fields
for which the overwrite lock is set.

PATH VARCHAR2(200) The ePath to a field that is locked in
an SBR from the EDM.

TYPE VARCHAR2(20) The data type of a field that is locked
in an SBR.

INTEGERDATA NUMBER(38) The data that is locked for overwrite
in an integer field.

BOOLEANDATA NUMBER(38) The data that is locked for overwrite
in a boolean field.

STRINGDATA VARCHAR2(200) The data that is locked for overwrite
in a string field.

BYTEDATA CHAR(2) The data that is locked for overwrite
in a byte field.

LONGDATA LONG The data that is locked for overwrite
in a long integer field.
eIndex Single Patient View Reference Guide 55 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.13 SBYN_POTENTIALDUPLICATES
This table maintains a list of all records that are potential duplicates of one another. It
also maintains a record of whether a potential duplicate pair has been resolved or
permanently resolved.

DATEDATA DATE The data that is locked for overwrite
in a date field.

FLOATDATA NUMBER(38,4) The data that is locked for overwrite
in a floating decimal field.

TIMESTAMPDATA DATE The data that is locked for overwrite
in a timestamp field.

Table 16 SBYN_POTENTIALDUPLICATES Table Description

Column Name Data Type Description

POTENTIALDUPLICATEID VARCHAR2(20) The unique identification number of
the potential duplicate transaction.

WEIGHT VARCHAR2(20) The matching weight of the potential
duplicate pair.

TYPE VARCHAR2(15) This column is reserved for future
use.

DESCRIPTION VARCHAR2(120) A description of what caused the
potential duplicate flag.

STATUS VARCHAR2(15) The status of the potential duplicate
pair. The possible values are:

U—Unresolved
R—Resolved
A—Resolved permanently

HIGHMATCHFLAG VARCHAR2(15) This column is reserved for future
use.

RESOLVEDUSER VARCHAR2(30) The user ID of the person who
resolved the potential duplicate
status.

RESOLVEDDATE DATE The date the potential duplicate
status was resolved.

RESOLVEDCOMMENT VARCHAR2(120) Comments regarding the resolution
of the duplicate status. This is not
currently used.

EUID2 VARCHAR2(20) The EUID of the second record in
the potential duplicate pair.

TRANSACTIONNUMBER VARCHAR2(20) The transaction number associated
with the transaction that produced
the potential duplicate flag.

Table 15 SBYN_OVERWRITE Table Description

Column Name Data Type Description
eIndex Single Patient View Reference Guide 56 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.14 SBYN_SEQ_TABLE
This table controls and maintains a record of the sequential identification numbers used
in various tables in the database, ensuring that each number is unique and assigned in
order. Several of the ID numbers maintained in this table are determined by the object
structure. The numbers are assigned sequentially, but are cached in chunks of 1000
numbers for optimization (so the index does not need to query the sbyn_seq_table table
for each transaction). The chunk size for the EUID sequence is configurable. If the
Repository server is reset before all allocated numbers are used, the unused numbers
are discarded and never used, and numbering is restarted at the beginning of the next
1000-number chunk.

The default sequence numbers are listed in Table 18.

EUID1 VARCHAR2(20) The EUID of the first record in the
potential duplicate pair.

Table 17 SBYN_SEQ_TABLE Table Description

Column Name Data Type Description

SEQ_NAME VARCHAR2(20) The name of the object for which the
sequential ID is stored.

SEQ_COUNT NUMBER(38) The current value of the sequence.
The next record will be assigned the
current value plus one.

Table 18 Default Sequence Numbers

Sequence Name Description

EUID The sequence number that determines how EUIDs are
assigned to new records. The chunk size for the EUID
sequence number is configurable in the eIndex SPV
Project Threshold file.

POTENTIALDUPLICATE The sequence number assigned each potential duplicate
transaction record in sbyn_potentialduplicates (column
name “potentialduplicateid”).

TRANSACTIONNUMBER The sequence number assigned to each transaction in
the master index. This number is stored in
sbyn_transaction (column name “transactionnumber”).

ASSUMEDMATCH The sequence number assigned to each assumed match
transaction record in sbyn_assumedmatch (column
name “assumedmatchid”).

AUDIT The sequence number assigned to each audit log record
in sbyn_audit (column name “audit_id”).

MERGE The sequence number assigned to each merge
transaction in sbyn_merge (column name “merge_id”).

Table 16 SBYN_POTENTIALDUPLICATES Table Description

Column Name Data Type Description
eIndex Single Patient View Reference Guide 57 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.15 SBYN_SYSTEMOBJECT
This table stores information about the system records in the database, including their
local ID and source system pairs. It also stores transactional information, such as the
create or update date and function.

SBYN_APPL The sequence number assigned to each application
listed in sbyn_appl (column name “appl_id”)

SBYN_COMMON_HEADER The sequence number assigned to each common table
data type listed in sbyn_common_header (column name
“common_header_id”).

SBYN_COMMON_DETAIL The sequence number assigned to each common table
data element listed in sbyn_common_detail (column
name “common_detail_id”).

<OBJECT_NAME> Each parent and child object system record table is
assigned a sequential ID. The column names are named
after the object (for example, sbyn_address has a
sequential column named “addressid”). The parent
object ID is included in each child object table.

<OBJECT_NAME>SBR Each parent and child object SBR table is assigned a
sequential ID. The column names are named after the
object (for example, sbyn_addresssbr has a sequential
column named “addressid”). The parent object ID is
included in each child object SBR table.

Table 19 SBYN_SYSTEMOBJECT Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The processing code of the system
associated with the local ID. This
column cannot be null.

LID VARCHAR2(25) The local ID associated with the
system and EUID (the associated
EUID is found in sbyn_enterprise).
This column cannot be null.

CHILDTYPE VARCHAR2(20) The type of object being processed
(currently only the name of the
parent object). This column is
reserved for future use.

CREATEUSER VARCHAR2(30) The user ID of the person who
created the system record.

CREATEFUNCTION VARCHAR2(20) The type of transaction that created
the system record.

CREATEDATE DATE The date the system record was
created.

Table 18 Default Sequence Numbers

Sequence Name Description
eIndex Single Patient View Reference Guide 58 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.16 SBYN_SYSTEMS
This table stores information about each system integrated into the eIndex SPV
environment, including the system’s processing code and name, a brief description, the
format of the local IDs, and whether any of the system information should be masked.

UPDATEUSER VARCHAR2(30) The user ID of the person who last
updated the system record.

UPDATEFUNCTION VARCHAR2(20) The type of transaction that last
updated the system record.

UPDATEDATE DATE The date the system record was last
updated.

STATUS VARCHAR2(15) The status of the system record. The
status can be one of these values:

active
inactive
merged

Table 20 SBYN_SYSTEMS Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The unique processing code of the
system.

DESCRIPTION VARCHAR2(120) A brief description of the system, or
the system name. This is the value
that appears in the tree view panes
of the EDM for each system and local
ID pair.

STATUS CHAR(1) The status of the system in the
master index. “A” indicates active
and “D” indicates deactivated.

ID_LENGTH NUMBER The length of the local identifiers
assigned by the system. This length
does not include any additional
characters added by the input mask.

Table 19 SBYN_SYSTEMOBJECT Table Description

Column Name Data Type Description
eIndex Single Patient View Reference Guide 59 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
FORMAT VARCHAR2(60) The required data pattern for the
local IDs assigned by the system. For
more information about possible
values and using Java patterns, see
“Patterns” in the class list for
java.util.regex in the Javadocs
provided with the Java™ 2 Platform,
Standard Edition (J2SE™ platform).
Note that the data pattern is also
limited by the input mask described
below. All regex patterns are
supported if there is no input mask.

INPUT_MASK VARCHAR2(60) A mask used by the EDM to add
punctuation to the local ID. For
example, the input mask DD-DDD-
DDD inserts a hyphen after the
second and fifth characters in an 8-
digit ID. These character types can
be used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character

VALUE_MASK VARCHAR2(60) A mask used to strip any extra
characters that were added by the
input mask for database storage. The
value mask is the same as the input
mask, but with an “x” in place of
each punctuation mark. Using the
input mask described above, the
value mask is DDxDDDxDDD. This
strips the hyphens before storing
the ID.

CREATE_DATE DATE The date the system information was
inserted into the database.

CREATE_USERID VARCHAR2(20) The logon ID of the user who
inserted the system information into
the database.

UPDATE_DATE DATE The most recent date the system’s
information was updated.

UPDATE_USERID VARCHAR2(20) The logon ID of the user who last
updated the system’s information.

Table 20 SBYN_SYSTEMS Table Description

Column Name Data Type Description
eIndex Single Patient View Reference Guide 60 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.17 SBYN_SYSTEMSBR
This table stores transactional information about the system records for the SBR, such as
the create or update date and function. The sbyn_systemsbr table is indirectly linked to
the sbyn_systemobjects table through sbyn_enterprise.

Table 21 SBYN_SYSTEMSBR Table Description

Column Name Data Type Description

EUID VARCHAR2(20) The EUID associated with system
record (the associated system and
local ID are found in
sbyn_enterprise). This column
cannot be null.

CHILDTYPE VARCHAR2(20) The type of object being processed
(currently only the name of the
parent object). This column is
reserved for future use.

CREATESYSTEM VARCHAR2(20) The system in which the system
record was created.

CREATEUSER VARCHAR2(30) The user ID of the person who
created the system record.

CREATEFUNCTION VARCHAR2(20) The type of transaction that created
the system record.

CREATEDATE DATE The date the system object was
created.

UPDATEUSER VARCHAR2(30) The user ID of the person who last
updated the system record.

UPDATEFUNCTION VARCHAR2(20) The type of transaction that last
updated the system record.

UPDATEDATE DATE The date the system object was last
updated.

STATUS VARCHAR2(15) The status of the enterprise record.
The status can be one of these
values:

active
inactive
merged

REVISIONNUMBER NUMBER(38) The revision number of the SBR. This
is used for version control.
eIndex Single Patient View Reference Guide 61 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
3.2.18 SBYN_TRANSACTION
This table stores a history of changes made to each record in the master index, allowing
you to view a transaction history and to undo certain actions, such as merging two
patient profiles.

3.2.19 SBYN_USER_CODE
This table is similar to the sbyn_common_header and sbyn_common_detail tables in
that it stores processing codes and drop-down list values. This table is used when the
value of one field is dependent on the value of another. For example, if you store credit
card information, you could list each credit card type and specify a required format for

Table 22 SBYN_TRANSACTION Table Description

Column Name Data Type Description

TRANSACTIONNUMBER VARCHAR2(20) The unique number of the
transaction.

LID1 VARCHAR2(25) This column is reserved for future
use.

LID2 VARCHAR2(25) The local ID of the second system
record involved in the transaction.

EUID1 VARCHAR2(20) This column is reserved for future
use.

EUID2 VARCHAR2(20) The EUID of the second patient
profile involved in the transaction.

FUNCTION VARCHAR2(20) The type of transaction that
occurred, such as update, add,
merge, and so on.

SYSTEMUSER VARCHAR2(30) The logon ID of the user who
performed the transaction.

TIMESTAMP TIMESTAMP The date and time the transaction
occurred.

DELTA BLOB A list of the changes that occurred to
system records as a result of the
transaction.

SYSTEMCODE VARCHAR2(20) The processing code of the source
system in which the transaction
originated.

LID VARCHAR2(25) The local ID of the system record
involved in the transaction.

EUID VARCHAR2(20) The EUID of the enterprise record
involved in the transaction.
eIndex Single Patient View Reference Guide 62 Sun Microsystems, Inc.

Chapter 3 Section 3.2
The Database Structure Database Table Details
the credit card number field. The data stored in this table includes the processing code,
a brief description, and the format of the dependent fields.

Table 23 SBYN_USER_CODE Table Description

Column Name Data Type Description

CODE_LIST VARCHAR2(20) The code list name of the user code
type (using the credit card example
above, this might be similar to
“CREDCARD”). This column links
the values for each list.

CODE VARCHAR2(20) The processing code of each user
code element.

DESCRIPTION VARCHAR2(50) A brief description or name for the
user code. This is the value that
appears in the drop-down list.

FORMAT VARCHAR2(60) The required data pattern for the
field that is constrained by the user
code. For more information about
possible values and using Java
patterns, see “Patterns” in the class
list for java.util.regex in the Javadocs
provided with the J2SE platform.
Note that the data pattern is also
limited by the input mask described
below. All regex patterns are
supported if there is no input mask.

INPUT_MASK VARCHAR2(60) A mask used by the EDM to add
punctuation to the constrained field.
For example, the input mask DD-
DDD-DDD inserts a hyphen after
the second and fifth characters in an
8-digit ID. These character types can
be used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character

VALUE_MASK VARCHAR2(60) A mask used to strip any extra
characters that were added by the
input mask for database storage. The
value mask is the same as the input
mask, but with an “x” in place of
each punctuation mark. Using the
input mask described above, the
value mask is DDxDDDxDDD. This
strips the hyphens before storing
the ID.
eIndex Single Patient View Reference Guide 63 Sun Microsystems, Inc.

Chapter 3 Section 3.3
The Database Structure Sample Database Model
3.3 Sample Database Model
The diagrams on the following pages illustrate the table structure and relationships for
a sample eIndex SPV master index database designed for storing information about
companies. The diagrams display attributes for each database column, such as the field
name, data type, whether the field can be null, and primary keys. They also show
directional relationships between tables and the keys by which the tables are related.
eIndex Single Patient View Reference Guide 64 Sun Microsystems, Inc.

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_ADDRESS_PERSONID

FK_ALIAS_PERSONID

FK_AUXID_PERSONID

FK_COMMENT_PERSONID

FK_PERSON_SYSTEMCODE_LID

FK_PHONE_PERSONID

SBYN_ADDRESS

PERSONID
ADDRESSID
ADDRESSTYPE
ADDRESSLINE1
ADDRESSLINE2
ADDRESSLINE3
ADDRESSLINE4
CITY
STATECODE
POSTALCODE
POSTALCODEEXT
COUNTY
COUNTRYCODE
HOUSENUMBER
STREETDIR
STREETNAME
STREETNAMEPHONETICCODE
STREETTYPE

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(5)

<ak,fk>
<pk>
<ak>

SBYN_ALIAS

PERSONID
ALIASID
LASTNAME
FIRSTNAME
MIDDLENAME
LNAMEPHONETICCODE
FNAMEPHONETICCODE
MNAMEPHONETICCODE
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<pk>
<ak>
<ak>
<ak>

SBYN_AUXID

PERSONID
AUXIDID
AUXIDDEF
ID

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(40)

<ak,fk>
<pk>
<ak>
<ak>

SBYN_COMMENT

PERSONID
COMMENTID
COMMENTCODE
ENTERDATE
COMMENTTEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
DATE
VARCHAR2(1000)

<ak,fk>
<pk>
<ak>

SBYN_PERSON

SYSTEMCODE
LID
PERSONID
PERSONCATCODE
LASTNAME
FIRSTNAME
MIDDLENAME
SUFFIX
TITLE
DOB
DEATH
GENDER
MSTATUS
SSN
RACE
ETHNIC
RELIGION
LANGUAGE
SPOUSENAME
MOTHERNAME
MOTHERMN
FATHERNAME
MAIDEN
POBCITY
POBSTATE
POBCOUNTRY
VIPFLAG
VETSTATUS
FNAMEPHONETICCODE
LNAMEPHONETICCODE
MNAMEPHONETICCODE
MOTHERMNPHONETICCODE
MAIDENPHONETICCODE
SPOUSEPHONETICCODE
MOTHERPHONETICCODE
FATHERPHONETICCODE
DRIVERSLICENSE
DRIVERSLICENSEST
DOD
DEATHCERTIFICATE
NATIONALITY
CITIZENSHIP
PENSIONNO
PENSIONEXPDATE
REPATRIATIONNO
DISTRICTOFRESIDENCE
LGACODE
MILITARYBRANCH
MILITARYRANK
MILITARYSTATUS
DUMMYDATE
CLASS1
CLASS2
CLASS3
CLASS4
CLASS5
STRING1
STRING2
STRING3
STRING4
STRING5
STRING6
STRING7
STRING8
STRING9
STRING10
DATE1
DATE2
DATE3
DATE4
DATE5
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
DATE
VARCHAR2(1)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(10)
DATE
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(15)
DATE
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
DATE
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(255)
DATE
DATE
DATE
DATE
DATE
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<ak,fk>
<pk>

SBYN_PHONE

PERSONID
PHONEID
PHONETYPE
PHONE
PHONEEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(6)

<ak,fk>
<pk>
<ak>

SBYN_SYSTEMOBJECT

SYSTEMCODE
LID
CHILDTYPE
CREATEUSER
CREATEFUNCTION
CREATEDATE
UPDATEUSER
UPDATEFUNCTION
UPDATEDATE
STATUS

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(15)

<pk,fk>
<pk>

From SBYN_ENTERPRISE
by FK_ENTERPRISE
_SYSTEMCODE_LID

To SBYN_SYSTEMS by
FK_SYSTEMOBJECT_SYSTEMCODE
eIndex Single Patient View Reference Guide 65 Sun Microsystems, Inc.

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_ENTERPRISE_EUID

To SBYN_SYSTEMOBJECT by
FK_ENTERPRISE_SYSTEMCODE_LID

FK_SYSTEMSBR_EUID

FK_PERSONSBR_EUID

From SBYN_SYSTEMOBJECT by
FK_SYSTEMOBJECT_SYSTEMCODE

SBYN_APPL

APPL_ID
CODE
DESCR
READ_ONLY
CREATE_DATE
CREATE_USERID

NUMBER(10)
VARCHAR2(8)
VARCHAR2(30)
CHAR
DATE
VARCHAR2(20)

<pk>

SBYN_ENTERPRISE

SYSTEMCODE
LID
EUID

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)

<pk,fk2>
<pk,fk2>
<pk,fk1>

SBYN_OVERWRITE

EUID
PATH
TYPE
INTEGERDATA
BOOLEANDATA
STRINGDATA
BYTEDATA
LONGDATA
DATEDATA
FLOATDATA
TIMESTAMPDATA

VARCHAR2(20)
VARCHAR2(200)
VARCHAR2(20)
NUMBER(38)
NUMBER(38)
VARCHAR2(200)
CHAR(2)
LONG
DATE
NUMBER(38,4)
DATE

<pk,fk>
<pk>

SBYN_POTENTIALDUPLICATES

POTENTIALDUPLICATEID
WEIGHT
TYPE
DESCRIPTION
STATUS
HIGHMATCHFLAG
RESOLVEDUSER
RESOLVEDDATE
RESOLVEDCOMMENT
EUID2
TRANSACTIONNUMBER
EUID1

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(15)
VARCHAR2(120)
VARCHAR2(15)
VARCHAR2(15)
VARCHAR2(30)
DATE
VARCHAR2(120)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)

<pk>

SBYN_SEQ_TABLE

SEQ_NAME
SEQ_COUNT

VARCHAR2(20)
NUMBER(38)

<ak>

SBYN_SYSTEMS

SYSTEMCODE
DESCRIPTION
STATUS
ID_LENGTH
FORMAT
INPUT_MASK
VALUE_MASK
CREATE_DATE
CREATE_USERID
UPDATE_DATE
UPDATE_USERID

VARCHAR2(20)
VARCHAR2(50)
CHAR
NUMBER
VARCHAR2(60)
VARCHAR2(60)
VARCHAR2(60)
DATE
VARCHAR2(20)
DATE
VARCHAR2(20)

<pk>

SBYN_SYSTEMSBR

EUID
CHILDTYPE
CREATESYSTEM
CREATEUSER
CREATEFUNCTION
CREATEDATE
UPDATESYSTEM
UPDATEUSER
UPDATEFUNCTION
UPDATEDATE
STATUS
REVISIONNUMBER

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(15)
NUMBER(38)

<pk>
eIndex Single Patient View Reference Guide 66 Sun Microsystems, Inc.

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_ADDRESSSBR_PERSONID

FK_ALIASSBR_PERSONID

FK_AUXIDSBR_PERSONID

FK_COMMENTSBR_PERSONID

FK_PHONESBR_PERSONID

SBYN_ADDRESSSBR

PERSONID
ADDRESSID
ADDRESSTYPE
ADDRESSLINE1
ADDRESSLINE2
ADDRESSLINE3
ADDRESSLINE4
CITY
STATECODE
POSTALCODE
POSTALCODEEXT
COUNTY
COUNTRYCODE
HOUSENUMBER
STREETDIR
STREETNAME
STREETNAMEPHONETICCODE
STREETTYPE

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(5)

<ak,fk>
<pk>
<ak>

SBYN_ALIASSBR

PERSONID
ALIASID
LASTNAME
FIRSTNAME
MIDDLENAME
LNAMEPHONETICCODE
FNAMEPHONETICCODE
MNAMEPHONETICCODE
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<pk>
<ak>
<ak>
<ak>

SBYN_AUXIDSBR

PERSONID
AUXIDID
AUXIDDEF
ID

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(40)

<ak,fk>
<pk>
<ak>
<ak>

SBYN_COMMENTSBR

PERSONID
COMMENTID
COMMENTCODE
ENTERDATE
COMMENTTEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
DATE
VARCHAR2(1000)

<ak,fk>
<pk>
<ak>

SBYN_PERSONSBR

EUID
PERSONID
PERSONCATCODE
LASTNAME
FIRSTNAME
MIDDLENAME
SUFFIX
TITLE
DOB
DEATH
GENDER
MSTATUS
SSN
RACE
ETHNIC
RELIGION
LANGUAGE
SPOUSENAME
MOTHERNAME
MOTHERMN
FATHERNAME
MAIDEN
POBCITY
POBSTATE
POBCOUNTRY
VIPFLAG
VETSTATUS
FNAMEPHONETICCODE
LNAMEPHONETICCODE
MNAMEPHONETICCODE
MOTHERMNPHONETICCODE
MAIDENPHONETICCODE
SPOUSEPHONETICCODE
MOTHERPHONETICCODE
FATHERPHONETICCODE
DRIVERSLICENSE
DRIVERSLICENSEST
DOD
DEATHCERTIFICATE
NATIONALITY
CITIZENSHIP
PENSIONNO
PENSIONEXPDATE
REPATRIATIONNO
DISTRICTOFRESIDENCE
LGACODE
MILITARYBRANCH
MILITARYRANK
MILITARYSTATUS
DUMMYDATE
CLASS1
CLASS2
CLASS3
CLASS4
CLASS5
STRING1
STRING2
STRING3
STRING4
STRING5
STRING6
STRING7
STRING8
STRING9
STRING10
DATE1
DATE2
DATE3
DATE4
DATE5
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
DATE
VARCHAR2(1)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(10)
DATE
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(15)
DATE
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
DATE
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(255)
DATE
DATE
DATE
DATE
DATE
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<pk>

SBYN_PHONESBR

PERSONID
PHONEID
PHONETYPE
PHONE
PHONEEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(6)

<ak,fk>
<pk>
<ak>

To SBYN_SYSTEMSBR
by

FK_PERSONSBR_EUID
eIndex Single Patient View Reference Guide 67 Sun Microsystems, Inc.

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_AM_TRANSACTIONNUMBER

FK_COMM_DET_COMM_HEAD

FK_SBYN_MERGE

SBYN_ASSUMEDMATCH

ASSUMEDMATCHID
EUID
SYSTEMCODE
LID
WEIGHT
TRANSACTIONNUMBER

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(20) <fk>

SBYN_AUDIT

AUDIT_ID
PRIMARY_OBJECT_TYPE
EUID
EUID_AUX
FUNCTION
DETAIL
CREATE_DATE
CREATE_BY

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(15)
VARCHAR2(15)
VARCHAR2(32)
VARCHAR2(120)
DATE
VARCHAR2(20)

<pk>

SBYN_COMMON_DETAIL

COMMON_DETAIL_ID
COMMON_HEADER_ID
CODE
DESCR
READ_ONLY
CREATE_DATE
CREATE_USERID

NUMBER(10)
NUMBER(10)
VARCHAR2(20)
VARCHAR2(50)
CHAR
DATE
VARCHAR2(20)

<pk>
<fk>

SBYN_COMMON_HEADER

COMMON_HEADER_ID
APPL_ID
CODE
DESCR
READ_ONLY
MAX_INPUT_LEN
TYP_TABLE_CODE
CREATE_DATE
CREATE_USERID

NUMBER(10)
NUMBER(10)
VARCHAR2(8)
VARCHAR2(50)
CHAR
NUMBER(10)
VARCHAR2(3)
DATE
VARCHAR2(20)

<pk>

SBYN_MERGE

MERGE_ID
KEPT_EUID
MERGED_EUID
MERGE_TRANSACTIONNUM
UNMERGE_TRANSACTIONNUM

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)

<pk>
<fk>
<fk>
<fk>

SBYN_TRANSACTION

TRANSACTIONNUMBER
LID1
LID2
EUID1
EUID2
FUNCTION
SYSTEMUSER
TIMESTAMP
DELTA
SYSTEMCODE
LID
EUID

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(30)
TIMESTAMP
BLOB
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)

<pk,ak>

<ak>

<ak>

SBYN_USER_CODE

CODE_LIST
CODE
DESCR
FORMAT
INPUT_MASK
VALUE_MASK

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(50)
VARCHAR2(60)
VARCHAR2(60)
VARCHAR2(60)

<pk>
<pk>
eIndex Single Patient View Reference Guide 68 Sun Microsystems, Inc.

Chapter 4

Working with the Java API

eIndex SPV provides several Java classes and methods to use in the Collaborations for
an eIndex SPV Project. The eIndex SPV API is specifically designed to help you
maintain the integrity of the data in the database by providing specific methods for
updating, adding, and merging records in the database.

What’s in This Chapter

Overview on page 69

Java Class Types on page 69

Dynamic Object Classes on page 70

Dynamic OTD Methods on page 84

Dynamic Business Process Methods on page 101

Helper Classes on page 102

4.1 Overview
This chapter provides an overview of the Java API for eIndex SPV, and describes the
dynamic classes and methods that are generated based on the object structure of the
master index. For detailed information about the static classes and methods, refer to the
eIndex SPV Javadocs, provided as a download through the Enterprise Manager. Unless
otherwise noted, all classes and methods described in this chapter are public. Methods
inherited from classes other than those described in this chapter are listed, but not
described.

4.2 Java Class Types
eIndex SPV provides a set of static API classes that can be used with any object
structure. eIndex SPV also generates several dynamic API classes that are specific to the
object structure. The dynamic classes contain similar methods, but the number and
names of methods change depending on the object structure. In addition, several
methods are generated in an OTD for use in external system Collaborations and
another set of methods is generated for use within an eInsight Business Process.
eIndex Single Patient View Reference Guide 69 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Static Classes

Static classes provide the methods you need to perform basic data cleansing functions
against incoming data, such as performing searches, reviewing potential duplicates,
adding and updating records, and merging and unmerging records. The primary class
containing these functions is the MasterController class, which includes the
executeMatch method. Several classes support the MasterController class by defining
additional objects and functions. Documentation for the static methods is provided in
Javadoc format. The static classes are listed and described in the Javadocs provided
with eIndex SPV.

Dynamic Object Classes

The eIndex SPV Project provides several dynamic methods that are specific to the
default object structure. If the object structure is modified, regenerating the Project
updates the dynamic methods for the new structure. This includes classes that define
each object in the object structure and that allow you to work with the data in each
object.

Dynamic OTD Methods

The eIndex SPV Project provides a method OTD that contains Java methods to help you
define how records will be processed into the database from external systems. Like the
dynamic classes, these methods are based on the object structure. Regenerating a
Project updates these methods to reflect any changes to the object structure. These
methods rely on the dynamic object classes to create objects in eIndex SPV and to define
and retrieve field values for those objects.

Dynamic Business Process Methods

The eIndex SPV Project includes several methods under the method OTD folder that
are designed for use within an eInsight Business Process. These methods are a subset of
the eIndex SPV API and can be used to query eIndex SPV using a web-based interface.
These methods are also based on the defined object structure. Regenerating a Project
updates these methods to reflect any changes to the object structure.

4.3 Dynamic Object Classes
Several dynamic classes are included in each eIndex SPV Project for use in
Collaborations. One class is created for each parent and child object defined in the
Object Structure.

4.3.1 Parent Object Classes
A Java class is created to represent the parent object defined in the object definition of
the master index. The methods in these classes provide the ability to create a parent
object and to set or retrieve the field values for that object.
eIndex Single Patient View Reference Guide 70 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
The name of the parent object class is the same as the name of each parent object, with
the word “Object” appended (by default, PersonObject). The methods in this class
include a constructor method for the parent object, and get and set methods for each
field defined for the parent object. Most methods have dynamic names based on the
name of the parent object and the fields and child objects defined for that object. In the
following methods described for the parent object, <ObjectName> indicates the name
of the parent object, <Child> indicates the name of a child object, and <Field> indicates
the name of a field defined for the parent object.

Definition

class <ObjectName>Object

Methods

<ObjectName>Object

Description

<ObjectName>Object is the user-defined object name class. You can instantiate this
class to create a new instance of the parent object class.

Syntax

new <ObjectName>Object()

Parameters

None.

Returns

An instance of the parent object.

Throws

ObjectException

<ObjectName>Object on page 71 getSecondaryObject on page 76

add<Child> on page 72 isAdded on page 76

addSecondaryObject on page 72 isRemoved on page 76

copy on page 73 isUpdated on page 77

dropSecondaryObject on page 73 set<ObjectName>Id on page 77

get<ObjectName>Id on page 74 set<Field> on page 78

get<Child> on page 74 setAddFlag on page 78

get<Field> on page 74 setRemoveFlag on page 79

getChildTags on page 75 setUpdateFlag on page 79

getMetaData on page 75 structCopy on page 80
eIndex Single Patient View Reference Guide 71 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
add<Child>

Description

add<Child> associates a new child object with the parent object. The new child object is
of the type specified in the method name. For example, to associate a new address
object with a parent object, call “addAddress”.

Syntax

void add<Child>(<Child>Object <child>)

Note: The type of object passed as a parameter depends on the child object to associate with
the parent object. For example, the syntax for associating an address object is as
follows: void addAddress(AddressObject address).

Parameters

Returns

None.

Throws

ObjectException

addSecondaryObject

Description

addSecondaryObject associates a new child object with the parent object. The object
node passed as the parameter defines the child object type.

Syntax

void addSecondaryObject(ObjectNode obj)

Parameters

Returns

None.

Name Type Description

<child> <Child>Object A child object to associate with the
parent object. The name and type of
the parameter is specified by the child
object name.

Name Type Description

obj ObjectNode An ObjectNode representing the child
object to associate with the parent
object.
eIndex Single Patient View Reference Guide 72 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Throws

SystemObjectException

copy

Description

copy copies the structure and field values of the specified object node.

Syntax

ObjectNode copy()

Parameters

None.

Returns

A copy of the object node.

Throws

ObjectException

dropSecondaryObject

Description

dropSecondaryObject removes a child object associated with the parent object (in the
memory copy of the object). The object node passed in as the parameter defines the
child object type. Use this method to remove a child object before it has been committed
to the database. This method is similar to ObjectNode.removeChild. Use
ObjectNode.deleteChild to remove the child object permanently from the database.

Syntax

void dropSecondaryObject(ObjectNode obj)

Parameters

Returns

None.

Throws

SystemObjectException

Name Type Description

obj ObjectNode An ObjectNode representing the child
object to drop from the parent object.
eIndex Single Patient View Reference Guide 73 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
get<ObjectName>Id

Description

get<ObjectName>Id retrieves the unique identification code (primary key) of the
object, as assigned by the master index.

Syntax

String get<ObjectName>Id()

Parameters

None.

Returns

A string containing the unique ID of the parent object.

Throws

ObjectException

get<Child>

Description

get<Child> retrieves all child objects associated with the parent object that are of the
type specified in the method name. For example, to retrieve all address objects
associated with a parent object, call “getAddress”.

Syntax

Collection get<Child>()

Parameters

None.

Returns

A collection of child objects of the type specified in the method name.

Throws

None.

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the parent object. For example, if
the parent object contains a field named “FirstName”, the getter method for this field is
named “getFirstName”.

Syntax

String get<Field>()
eIndex Single Patient View Reference Guide 74 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

getChildTags

Description

getChildTags retrieves a list of the names of all child object types defined for the object
structure.

Syntax

ArrayList getChildTags()

Parameters

None.

Returns

An array of child object names.

Throws

None

getMetaData

Description

getMetaData retrieves the metadata for the parent object.

Syntax

AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the parent object’s metadata.

Throws

None.
eIndex Single Patient View Reference Guide 75 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
getSecondaryObject

Description

getSecondaryObject retrieves all child objects that are associated with the parent object
and are of the specified type.

Syntax

Collection getSecondaryObject(String type)

Parameters

Returns

A collection of child objects of the specified type.

Throws

SystemObjectException

isAdded

Description

isAdded retrieves the value of the “add flag” for the parent object. The add flag
indicates whether the object will be added.

Syntax

String isAdded()

Parameters

None.

Returns

A Boolean value indicating whether the add flag is set to true or false.

Throws

ObjectException

isRemoved

Description

isRemoved retrieves the value of the “remove flag” for the parent object. The remove
flag indicates whether the object will be removed.

Name Type Description

type String The child type of the objects to
retrieve.
eIndex Single Patient View Reference Guide 76 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Syntax

String isRemoved()

Parameters

None.

Returns

A Boolean value indicating whether the remove flag is set to true or false.

Throws

ObjectException

isUpdated

Description

isUpdated retrieves the value of the “update flag” for the parent object. The updated
flag indicates whether the object will be updated.

Syntax

String isUpdated()

Parameters

None.

Returns

A Boolean value indicating whether the update flag is set to true or false.

Throws

ObjectException

set<ObjectName>Id

Description

set<ObjectName>Id sets the value of the <ObjectName>Id field in the parent object.

Syntax

void set<ObjectName>Id(Object value)

Parameters

Returns

None.

Name Type Description

value Object An object containing the value of the
<ObjectName>Id field.
eIndex Single Patient View Reference Guide 77 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Throws

ObjectException

set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “DateOfBirth”, the setter method for this field is named
“setDateOfBirth”. A setter method is created for each field in the parent object,
including any fields containing standardized or phonetic data.

Syntax

void set<Field>(Object value)

Parameters

Returns

None.

Throws

ObjectException

setAddFlag

Description

setAddFlag sets the “add flag” of the parent object. The add flag indicates whether the
object will be added.

Syntax

void setAddFlag(boolean flag)

Parameters

Returns

None.

Name Type Description

value Object An object containing the value of the
field specified by the method name.

Name Type Description

flag Boolean An indicator of whether the add flag is
set to true or false.
eIndex Single Patient View Reference Guide 78 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Throws

None.

setRemoveFlag

Description

setRemoveFlag sets the “remove flag” of the parent object. The remove flag indicates
whether the object will be removed.

Syntax

void setRemoveFlag(boolean e)

Parameters

Returns

None.

Throws

None.

setUpdateFlag

Description

setUpdateFlag sets the “update flag” of the parent object. The update flag indicates
whether the object will be updated.

Syntax

void setUpdateFlag(boolean flag)

Parameters

Returns

None.

Throws

None.

Name Type Description

e Boolean An indicator of whether the remove
flag is set to true or false.

Name Type Description

flag Boolean An indicator of whether the update
flag is set to true or false.
eIndex Single Patient View Reference Guide 79 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
structCopy

Description

structCopy copies the structure of the specified object node.

Syntax

ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

4.3.2 Child Object Classes
One Java class is created for each child object defined in the object definition of the
master index. If the object definition contains three child objects, three child object
classes are created. The methods in these classes provide the ability to create the child
objects and to set or retrieve the field values for those objects.

The name of each child object class is the same as the name of the child object, with the
word “Object” appended. For example, if a child object in your object structure is
named “Address”, the name of the corresponding child class is “AddressObject”. The
methods in these classes include a constructor method for the child object, and get and
set methods for each field defined for the child object. Most methods have dynamic
names based on the name of the child object and the fields defined for that object. In the
methods listed below, <Child> indicates the name of the child object and <Field>
indicates the name of each field defined for that object.

Definition

class <Child>Object

Methods

<Child>Object on page 81 getParentTag on page 83

copy on page 81 set<Child>Id on page 83

get<Child>Id on page 81 set<Field> on page 84

get<Field> on page 82 structCopy on page 84

getMetaData on page 82
eIndex Single Patient View Reference Guide 80 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
<Child>Object

Description

<Child>Object is the child object class. This class can be instantiated to create a new
instance of a child object class.

Syntax

new <Child>Object()

Parameters

None.

Returns

An instance of the child object.

Throws

ObjectException

copy

Description

copy copies the structure and field values of the specified object node.

Syntax

ObjectNode copy()

Parameters

None.

Returns

A copy of the object node.

Throws

ObjectException

get<Child>Id

Description

get<Child>Id retrieves the unique identification code (primary key) of the object, as
assigned by the master index.

Syntax

String get<Child>Id()

Parameters

None.
eIndex Single Patient View Reference Guide 81 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Returns

A string containing the unique ID of the child object.

Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the child object. For example, if the
child object contains a field named “TelephoneNumber”, the getter method for this
field is named “getTelephoneNumber”. A getter method is created for each field in the
object, including fields that store standardized or phonetic data.

Syntax

String get<Field>()

Note: The syntax for the getter methods depends on the type of data specified for the field
in the object structure. For example, the getter method for a date field would have the
following syntax: Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

getMetaData

Description

getMetaData retrieves the metadata for the child object.

Syntax

AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the child object’s metadata.
eIndex Single Patient View Reference Guide 82 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Dynamic Object Classes
Throws

None.

getParentTag

Description

getParentTag retrieves the name of the parent object of the child object.

Syntax

String getParentTag()

Parameters

None.

Returns

A string containing the name of the parent object.

Throws

None.

set<Child>Id

Description

set<Child>Id sets the value of the <Child>Id field in the child object.

Syntax

void set<Child>Id(Object value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value Object An object containing the value of the
<Child>Id field.
eIndex Single Patient View Reference Guide 83 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “DateOfBirth”, the setter method for this field is named
“setDateOfBirth”.

Syntax

void set<Field>(Object value)

Parameters

Returns

None.

Throws

ObjectException

structCopy

Description

structCopy copies the structure of the specified object node.

Syntax

ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

4.4 Dynamic OTD Methods
A set of Java methods are created in an OTD for use in the eIndex SPV Collaborations.
These methods wrap static Java API methods, allowing them to work with the dynamic
object classes. Many OTD methods return objects of the dynamic object type, or they

Name Type Description

value Object An object containing the value of the
field specified by the method name.
eIndex Single Patient View Reference Guide 84 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
use these objects as parameters. In the following methods described for the OTD
methods, <ObjectName> indicates the name of the parent object.

activateEnterpriseRecord

Description

activateEnterpriseRecord changes the status of a deactivated enterprise object back to
active.

Syntax

void activateEnterpriseRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

activateEnterpriseRecord on page 85 getSBR on page 93

activateSystemRecord on page 86 getSystemRecord on page 94

addSystemRecord on page 86 getSystemRecordsByEUID on page 94

deactivateEnterpriseRecord on page 87 getSystemRecordsByEUIDStatus on page 95

deactivateSystemRecord on page 87 lookupLIDs on page 95

executeMatch on page 88 mergeEnterpriseRecord on page 96

executeMatchUpdate on page 89 mergeSystemRecord on page 97

findMasterController on page 90 searchBlock on page 97

getEnterpriseRecordByEUID on page 90 searchExact on page 98

getEnterpriseRecordByLID on page 91 searchPhonetic on page 99

getEUID on page 91 transferSystemRecord on page 99

getLIDs on page 92 updateEnterpriseRecord on page 100

getLIDsByStatus on page 92 updateSystemRecord on page 100

Name Type Description

euid String The EUID of the enterprise object to
activate.
eIndex Single Patient View Reference Guide 85 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
activateSystemRecord

Description

activateSystemRecord changes the status of a deactivated system object back to active.

Syntax

void activateSystemRecord(String systemCode, String localId)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

addSystemRecord

Description

addSystemRecord adds the system object to the enterprise object associated with the
specified EUID.

Syntax

void addSystemRecord(String euid, SystemObjectBean systemObject)

Parameters

Returns

None.

Name Type Description

systemCode String The processing code of the system
associated with the system record to
be activated.

localID String The local identifier associated with the
system record to be activated.

Name Type Description

euid String The EUID of the enterprise object to
which you want to add the system
object.

systemObject SystemObjectBean The Bean for the system object to be
added to the enterprise object.
eIndex Single Patient View Reference Guide 86 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Throws

RemoteException

ProcessingException

UserException

deactivateEnterpriseRecord

Description

deactivateEnterpriseRecord changes the status of an active enterprise object to
inactive.

Syntax

void deactivateEnterpriseRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

deactivateSystemRecord

Description

deactivateSystemRecord changes the status of an active system object to inactive.

Syntax

void deactivateSystemRecord(String systemCode, String localId)

Parameters

Name Type Description

euid String The EUID of the enterprise object to
deactivate.

Name Type Description

systemCode String The system code of the system object
to deactivate.

localid String The local ID of the system object to
deactivate.
eIndex Single Patient View Reference Guide 87 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Returns

None.

Throws

RemoteException

ProcessingException

UserException

executeMatch

executeMatch is one of two methods you can call to process an incoming system object
based on the configuration defined for the eIndex SPV Manager Service and associated
runtime components (the second method is executeMatchUpdate on page 89). This
process searches for possible matches in the database and contains the logic to add a
new record or update existing records in the database. One of the two execute match
methods should be used for inserting or updating a record in the database.

The following runtime components configure executeMatch.

The Query Builder defines the blocking queries used for matching.

The Threshold file specifies which blocking query to use and specifies matching
parameters, including duplicate and match thresholds.

The pass controller and block picker classes specify how the blocking query is
executed.

Important: If executeMatch determines that an existing system record will be updated by the
incoming record, it replaces the entire existing record with the information in the
new record. This could result in loss of data; for example, if the incoming record does
not include all address information, existing address information could be lost. To
avoid this, use the executeMatchUpdate method instead.

Syntax

MatchColResult executeMatch(SystemObjectBean systemObject)

Parameters

Returns

A match result object containing the results of the matching process.

Throws

RemoteException

Name Type Description

systemObject SystemObjectBean The Bean for the system object to be
added to or updated in the enterprise
object.
eIndex Single Patient View Reference Guide 88 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
ProcessingException

UserException

executeMatchUpdate

Like executeMatch on page 88, executeMatchUpdate processes the system object based
on the configuration defined for the eIndex SPV Manager Service and associated
runtime components. It is configured by the same runtime components as
executeMatch. One of the two execute match methods should be used for inserting or
updating a record in the database.

The primary difference between these two methods is that when executeMatchUpdate
finds that an incoming record matches an existing record, only the changed data is
updated. With executeMatch, the entire existing record would be replaced by the
incoming record. The executeMatchUpdate method differs from executeMatch in the
following ways:

If a partial record is received, executeMatchUpdate only updates fields whose
values are different in the incoming record. Unless the clearFieldIndicator field is
used, empty or null fields in the incoming record do not update existing values.

The clearFieldIndicator field can be used to null out specific fields.

Child objects in the existing record are not deleted if they are not present in the
incoming record.

Child objects in the existing record are updated if the same key field value is found
in both the incoming and existing records.

To allow a child object to be removed from the parent object when using
executeMatchUpdate, a new “delete” method is added to each child object bean .

Syntax

MatchColResult executeMatchUpdate(SystemObjectbean systemObject)

Parameters

Returns

A match result object containing the results of the matching process.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

systemObject SystemObjectBean The Bean for the system object to be
added to or updated in the enterprise
object.
eIndex Single Patient View Reference Guide 89 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
findMasterController

findMasterController obtains a handle to the MasterController class, providing access
to all of the methods of that class. For more information about the available methods in
this class, see the Javadoc provided with eIndex SPV.

Syntax

MasterController findMasterController()

Parameters

None.

Returns

A handle to the com.stc.eindex.ejb.master.MasterController class.

Throws

None.

getEnterpriseRecordByEUID

Description

getEnterpriseRecordByEUID returns the enterprise object associated with the specified
EUID.

Syntax

Enterprise<ObjectName> getEnterpriseRecordByEUID(String euid)

Parameters

Returns

An enterprise object associated with the specified EUID or null if the enterprise object is
not found.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

euid String The EUID of the enterprise object you
want to retrieve.
eIndex Single Patient View Reference Guide 90 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
getEnterpriseRecordByLID

Description

getEnterpriseRecordByLID returns the enterprise object associated with the specified
system code and local ID pair.

Syntax

Enterprise<ObjectName> getEnterpriseRecordByLID(String system, String
localid)

Parameters

Returns

An enterprise object or null if the enterprise object is not found.

Throws

RemoteException

ProcessingException

UserException

getEUID

Description

getEUID returns the EUID of the enterprise object associated with the specified system
code and local ID.

Syntax

String getEUID(String system, String localid)

Parameters

Returns

A string containing an EUID or null if the EUID is not found.

Name Type Description

system String The system code of a system
associated with the enterprise object
to find.

localid String A local ID associated with the
specified system.

Name Type Description

system String A known system code for the
enterprise object.

localid String The local ID corresponding with the
given system.
eIndex Single Patient View Reference Guide 91 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Throws

RemoteException

ProcessingException

UserException

getLIDs

Description

getLIDs retrieves the local ID and system pairs associated with the given EUID.

Syntax

System<ObjectName>PK[] getLIDs(String euid)

Parameters

Returns

An array of system object keys (System<ObjectName>PK objects) or null if no results
are found.

Throws

RemoteException

ProcessingException

UserException

getLIDsByStatus

Description

getLIDsByStatus retrieves the local ID and system pairs that are of the specified status
and that are associated with the given EUID.

Syntax

System<ObjectName>PK[] getLIDsByStatus(String euid, String status)

Name Type Description

euid String The EUID of the enterprise object
whose local ID and system pairs you
want to retrieve.
eIndex Single Patient View Reference Guide 92 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Parameters

Returns

An array of system object keys (System<ObjectName>PK objects) or null if no system
object keys are found.

Throws

RemoteException

ProcessingException

UserException

getSBR

Description

getSBR retrieves the single best record (SBR) associated with the specified EUID.

Syntax

SBR<ObjectName> getSBR(String euid)

Parameters

Returns

An SBR object or null if no SBR associated with the specified EUID is found.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

euid String The EUID of the enterprise object
whose local ID and system pairs to
retrieve.

status String The status of the local ID and system
pairs to retrieve.

Name Type Description

euid String The EUID of the enterprise object
whose SBR you want to retrieve.
eIndex Single Patient View Reference Guide 93 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
getSystemRecord

Description

getSystemRecord retrieves the system object associated with the given system code
and local ID pair.

Syntax

System<ObjectName> getSystemRecord(String system, String localid)

Parameters

Returns

A system object containing the results of the search or null if no system objects are
found.

Throws

RemoteException

ProcessingException

UserException

getSystemRecordsByEUID

Description

getSystemRecordsByEUID returns the active system objects associated with the
specified EUID.

Syntax

System<ObjectName>[] getSystemRecordsByEUID(String euid)

Parameters

Returns

An array of system objects associated with the specified EUID.

Name Type Description

system String The system code of the system object
to retrieve.

localid String The local ID of the system object to
retrieve.

Name Type Description

euid String The EUID of the enterprise object
whose system objects you want to
retrieve.
eIndex Single Patient View Reference Guide 94 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Throws

RemoteException

ProcessingException

UserException

getSystemRecordsByEUIDStatus

Description

getSystemRecordsByEUIDStatus returns the system objects of the specified status that
are associated with the given EUID.

Syntax

System<ObjectName>[] getSystemRecordsByEUIDStatus(String euid, String
status)

Parameters

Returns

An array of system objects associated with the specified EUID and status, or null if no
system objects are found.

Throws

RemoteException

ProcessingException

UserException

lookupLIDs

Description

lookupLIDs first looks up the EUID associated with the specified source system and
source local ID. It then retrieves the local ID and system pairs of the specified status that
are associated with that EUID and are from the specified destination system. Note that
both systems must be of the specified status or an error will occur.

Syntax

System<ObjectName>PK[] lookupLIDs(String sourceSystem, String
sourceLID, String destSystem, String status)

Name Type Description

euid String The EUID of the enterprise object
whose system objects you want to
retrieve.

status String The status of the system objects you
want to retrieve.
eIndex Single Patient View Reference Guide 95 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Parameters

Returns

An array of system object keys (System<ObjectName>PK objects).

Throws

RemoteException

ProcessingException

UserException

mergeEnterpriseRecord

Description

mergeEnterpriseRecord merges two enterprise objects, specified by their EUIDs.

Syntax

Merge<ObjectName>Result mergeEnterpriseRecord(String fromEUID, String
toEUID, boolean calculateOnly)

Parameters

Returns

A merge result object containing the results of the merge.

Name Type Description

sourceSystem String The system code of the known system
and local ID pair.

sourceLID String The local ID of the known system and
local ID pair.

destSystem String The system from which the local ID
and system pairs to retrieve originated.

status String The status of the local ID and system
pairs to retrieve.

Name Type Description

fromEUID String The EUID of the enterprise object that
will not survive the merge.

toEUID String The EUID of the enterprise object that
will survive the merge.

calculateOnly boolean An indicator of whether to commit
changes to the database or to simply
compute the merge results. Specify
false to commit the changes.
eIndex Single Patient View Reference Guide 96 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Throws

RemoteException

ProcessingException

UserException

mergeSystemRecord

Description

mergeSystemRecord merges two system objects, specified by their local IDs, from the
specified system. The system objects can belong to a single enterprise object or to two
different enterprise objects.

Syntax

Merge<ObjectName>Result mergeSystemRecord(String sourceSystem, String
sourceLID, String destLID, boolean calculateOnly)

Parameters

Returns

A merge result object containing the results of the merge.

Throws

RemoteException

ProcessingException

UserException

searchBlock

Description

searchBlock performs a blocking query against the database using the blocking query
specified in the Threshold file and the criteria contained in the specified object bean.

Name Type Description

sourceSystem String The processing code of the system to
which the two system objects belong.

sourceLID String The local ID of the system object that
will not survive the merge.

destLID String The local ID of the system object that
will survive the merge.

calculateOnly boolean An indicator of whether to commit
changes to the database or to simply
compute the merge results. Specify
false to commit the changes.
eIndex Single Patient View Reference Guide 97 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Syntax

Search<ObjectName>Result searchBlock(<ObjectName>Bean searchCriteria)

Parameters

Returns

The results of the search.

Throws

RemoteException

ProcessingException

UserException

searchExact

Description

searchExact performs an exact match search using the criteria specified in the object
bean. Only records that exactly match the search criteria are returned in the search
results object.

Syntax

Search<ObjectName>Result searchExact(<ObjectName>Bean searchCriteria)

Parameters

Returns

The results of the search stored in a Search<ObjectName>Result object.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the blocking
query.

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the exact match
search.
eIndex Single Patient View Reference Guide 98 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
searchPhonetic

Description

searchPhonetic performs search using phonetic values for some of the criteria specified
in the object bean. This type of search allows for typographical errors and misspellings.

Syntax

Search<ObjectName>Result searchPhonetic(<ObjectName>Bean
searchCriteria)

Parameters

Returns

The results of the search.

Throws

RemoteException

ProcessingException

UserException

transferSystemRecord

Description

transferSystemRecord transfers a system record from one enterprise record to another
enterprise record.

Syntax

void transferSystemRecord(String toEUID, String systemCode, String
localID)

Parameters

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the phonetic
search.

Name Type Description

toEUID String The EUID of the enterprise record to
which the system record will be
transferred.

systemCode String The processing code of the system
record to transfer.

localID String The local ID of the system record to
transfer.
eIndex Single Patient View Reference Guide 99 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Dynamic OTD Methods
Returns

None.

Throws

RemoteException

ProcessingException

UserException

updateEnterpriseRecord

Description

updateEnterpriseRecord updates the fields in an existing enterprise object with the
values specified in the fields the enterprise object passed in as a parameter. When
updating an enterprise object, attempting to change a field that is not updateable will
cause an exception. This method does not update the SBR; the survivor calculator
updates the SBR once the changes are made to the associated system records.

Syntax

void updateEnterpriseRecord(Enterprise<ObjectName> enterpriseObject)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

updateSystemRecord

Description

updateSystemRecord updates the existing system object in the database with the given
system object.

Syntax

void updateSystemRecord(System<ObjectName> systemObject)

Name Type Description

enterpriseObject Enterprise<ObjectName> The enterprise object containing the
values that will update the existing
enterprise object.
eIndex Single Patient View Reference Guide 100 Sun Microsystems, Inc.

Chapter 4 Section 4.5
Working with the Java API Dynamic Business Process Methods
Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

4.5 Dynamic Business Process Methods
A set of Java methods are included in the eIndex SPV Project for use in eInsight
Business Processes. These methods include a subset of the dynamic OTD methods,
which are documented above. Many of these methods return objects of the dynamic
object type, or they use these objects as parameters. In the descriptions for these
methods, <ObjectName> indicates the name of the parent object.

The following methods are available for Business Processes. They are described in the
previous section, “Dynamic OTD Methods”.

Name Type Description

systemObject System<ObjectName> The system object to be updated to
the enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.

executeMatch on page 88 getSBR on page 93

executeMatchUpdate on page 89 getSystemRecordsByEUID on page 94

getEnterpriseRecordByEUID on page 90 getSystemRecordsByEUIDStatus on
page 95

getEnterpriseRecordByLID on page 91 lookupLIDs on page 95

getEUID on page 91 searchBlock on page 97

getLIDs on page 92 searchExact on page 98

getLIDsByStatus on page 92 searchPhonetic on page 99
eIndex Single Patient View Reference Guide 101 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
4.6 Helper Classes
Helper classes include objects that can be passed as parameters to an OTD method or a
Business Process method. They also include the methods that you can access through
the system<ObjectName> variable in the eIndex SPV Collaboration (where
<ObjectName> is the name of a parent object. The helper classes include:

System<ObjectName> on page 102

Parent Beans on page 106

Child Beans on page 113

DestinationEO on page 117

Search<ObjectName>Result on page 117

SourceEO on page 119

System<ObjectName>PK on page 119

4.6.1 System<ObjectName>
In order to run executeMatch in a Java Collaboration, you must define a variable of the
class type System<ObjectName>, where <ObjectName> is the name of a parent object.
This class is passed as a parameter to executeMatch. The class contains a constructor
method and several get and set methods for system fields. It also includes one field that
specifies the value of the “clear field character” (for more information, see
“ClearFieldIndicator Field” on page 103). In the methods described in this section,
<ObjectName> indicates the name of the parent object, <Child> indicates the name of a
child object, and <Field> indicates the name of a field defined for the parent object.

Definition

class System<ObjectName>

Fields

ClearFieldIndicator Field on page 103

Methods

Inherited Methods

The following methods are inherited from java.lang.Object.

equals

hashcode

notify

System<ObjectName> on page 103 setClearFieldIndicator on page 105

getClearFieldIndicator on page 103 set<Field> on page 105

get<Field> on page 104 set<ObjectName> on page 106

get<ObjectName> on page 104
eIndex Single Patient View Reference Guide 102 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
notifyAll

toString

wait()

wait(long arg)

wait(long timeout, int nanos)

ClearFieldIndicator Field

The ClearFieldIndicator field allows you to specify whether to treat a field in the
parent object as null when performing an update from an external system. When an
update is performed in the master index, empty fields typically do not overwrite the
value of an existing field. You can specify to nullify a field that already has an existing
value in the master index by entering an indicator in that field. This indicator is
specified by the ClearFieldIndicator field. By default, the ClearFieldIndicator field is
set to double-quotes (““), so if a field is set to double-quotes, that field will be blanked
out. If you do not want to use this feature, set the clear field indicator to null.

System<ObjectName>

Description

System<ObjectName> is the user-defined system class for the parent object. You can
instantiate this class to create a new instance of the system class.

Syntax

new System<ObjectName>()

Parameters

None.

Returns

An instance of the System<ObjectName> class.

Throws

ObjectException

getClearFieldIndicator

Description

getClearFieldIndicator retrieves the value of the ClearFieldIndicator field.

Syntax

Object getClearFieldIndicator()

Parameters

None.
eIndex Single Patient View Reference Guide 103 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Returns

An object containing the value of the ClearFieldIndicator field.

Throws

None.

get<Field>

Description

get<Field> retrieves the value of the specified system field. There are getter methods
for the following fields: LocalId, SystemCode, Status, CreateDateTime, CreateFunction,
and CreateUser.

Syntax

String get<Field>()

or

Date get<Field>()

Parameters

None.

Returns

The value of the specified field. The type of value returned depends on the field from
which the value was retrieved.

Throws

ObjectException

get<ObjectName>

Description

get<ObjectName> retrieves the parent object Java Bean for the system record (where
<ObjectName> is the name of the parent object).

Syntax

<ObjectName>Bean get<ObjectName>()

Parameters

None.

Returns

A Java Bean containing the parent object.

Throws

None.
eIndex Single Patient View Reference Guide 104 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
setClearFieldIndicator

Description

setClearFieldIndicator sets the value of the clear field character (in the
ClearFieldIndicator field). By default, this is set to double quotes (““).

Syntax

void setClearFieldIndicator(String value)

Parameters

Returns

None.

Throws

None.

set<Field>

Description

set<Field> sets the value of the specified system field. There are setter methods for the
following fields: LocalId, SystemCode, Status, CreateDateTime, CreateFunction, and
CreateUser.

Syntax

void set<Field>(value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value String The value that should be entered into
a field to indicate that any existing
values should be replaced with null.

Name Type Description

value varies The value to set in the specified field.
The type of value depends on the field
into which the value is being set.
eIndex Single Patient View Reference Guide 105 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
set<ObjectName>

Description

set<ObjectName> sets the parent object Java Bean for the system record (where
<ObjectName> is the name of the parent object).

Syntax

void set<ObjectName>(<ObjectName>Bean object)

Parameters

Returns

None.

Throws

ObjectException

4.6.2 Parent Beans
A Java Bean is created to represent each parent object defined in the object definition of
the master index. The methods in these classes provide the ability to create a parent
object Bean and to set or retrieve the field values for that object Bean.

The name of each parent object Bean class is the same as the name of each parent object,
with the word “Bean” appended (by default, PersonBean). The methods in this class
include a constructor method for the parent object Bean, and get and set methods for
each field defined for the parent object. Most methods have dynamic names based on
the name of the parent object and the fields and child objects defined for that object. In
the methods described in this section, <ObjectName> indicates the name of the parent
object, <Child> indicates the name of a child object, and <Field> indicates the name of a
field defined for the parent object.

Definition

final class <ObjectName>Bean

Methods

Name Type Description

object <ObjectName>Bean The Java Bean for the parent object.

<ObjectName>Bean on page 107 get<Field> on page 110

count<Child> on page 107 get<ObjectName>Id on page 111

countChildren on page 108 set<Child> on page 111

countChildren on page 108 set<Child> on page 112

delete<Child> on page 109 set<Field> on page 112

get<Child> on page 109 set<ObjectName>Id on page 113

get<Child> on page 110
eIndex Single Patient View Reference Guide 106 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Inherited Methods

The following methods are inherited from java.lang.Object.

equals

hashcode

notify

notifyAll

toString

wait()

wait(long arg)

wait(long timeout, int nanos)

<ObjectName>Bean

Description

<ObjectName>Bean is the user-defined object Bean class. You can instantiate this class
to create a new instance of the parent object Bean class.

Syntax

new <ObjectName>Bean()

Parameters

None.

Returns

An instance of the parent object Bean.

Throws

ObjectException

count<Child>

Description

count<Child> returns the total number of child objects contained in a system object.
The type of child object is specified by the method name (such as Phone or Address).

Syntax

int count<Child>()

Parameters

None.

Returns

An integer indicating the number of child objects in a collection.
eIndex Single Patient View Reference Guide 107 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Throws

None.

countChildren

Description

countChildren returns a count of the total number of child objects belonging to a
system object.

Syntax

int countChildren()

Parameters

None.

Returns

An integer representing the total number of child objects.

Throws

None.

countChildren

Description

countChildren returns a count of the total number of child objects of a specific type that
belong to a system object.

Syntax

int countChildren(String type)

Parameters

Returns

An integer representing the total number of child objects of the specified type.

Throws

None.

Name Type Description

type String The type of child object to count, such
as Phone or Address.
eIndex Single Patient View Reference Guide 108 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
delete<Child>

Description

delete<Child> removes the specified child object from the system object. The type of
child object to remove is specified by the name of the method, and the specific child
object to remove is specified by its unique identification code assigned by the master
index.

Syntax

void delete<Child>(String <Child>Id)

Parameters

Returns

None.

Throws

ObjectException

get<Child>

Description

get<Child> retrieves an array of child object Beans. Each getter method is named
according to the child objects defined for the parent object. For example, if the parent
object contains a child object named “Address”, the getter method for this field is
named “getAddress”. A getter method is created for each child object in the parent
object.

Syntax

<Child>Bean[] get<Child>()

Parameters

None.

Returns

An array of Java Beans containing the type of child objects specified by the method
name.

Throws

None.

Name Type Description

<Child>Id String The unique identification code of the
child object to delete.
eIndex Single Patient View Reference Guide 109 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
get<Child>

Description

get<Child> retrieves a child object Bean based on its index in a list of child objects.
Each getter method is named according to the child objects defined for the parent
object. For example, if the parent object contains a child object named “Address”, the
getter method for this field is named “getAddress”. A getter method is created for each
child object in the parent object.

Syntax

<Child>Bean get<Child>(int i)

Parameters

Returns

A Java Bean containing the child object specified by the index value. The method name
indicates the type of child object returned.

Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the parent object. For example, if
the parent object contains a field named “FirstName”, the getter method for this field is
named “getFirstName”.

Syntax

String get<Field>()

Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Name Type Description

i int The index of the child object to
retrieve from a list of child objects.
eIndex Single Patient View Reference Guide 110 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Throws

ObjectException

get<ObjectName>Id

Description

get<ObjectName>Id retrieves the unique identification code (primary key) of the
object, as assigned by the master index.

Syntax

String get<ObjectName>Id()

Parameters

None.

Returns

A string containing the unique ID of the parent object.

Throws

ObjectException

set<Child>

Description

set<Child> adds a child object to the system object.

Syntax

void set<Child>(int index, <Child>Bean child)

Parameters

Returns

None.

Throws

None.

Name Type Description

index integer The index number for the new child
object.

child <Child>Bean The Java Bean containing the child
object to add.
eIndex Single Patient View Reference Guide 111 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
set<Child>

Description

set<Child> adds an array of child objects of one type to the system object.

Syntax

void set<Child>(<Child>Bean[] children)

Parameters

Returns

None.

Throws

None.

set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “DateOfBirth”, the setter method for this field is named
“setDateOfBirth”. A setter method is created for each field in the parent object,
including any fields containing standardized or phonetic data.

Syntax

void set<Field>(value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

children <Child>Bean[] The array of child objects to add.

Name Type Description

value varies The value of the field specified by the
method name. The type of value
depends on the field being populated.
eIndex Single Patient View Reference Guide 112 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
set<ObjectName>Id

Description

set<ObjectName>Id sets the value of the <ObjectName>Id field in the parent object.

Note: This ID is set internally by the master index. Do not set this field manually.

Syntax

void set<ObjectName>Id(String value)

Parameters

Returns

None.

Throws

ObjectException

4.6.3 Child Beans
A Java Bean is created to represent each child object defined in the object definition of
the master index. The methods in these classes provide the ability to create a child
object Bean and to set or retrieve the field values for that object Bean.

The name of each child object Bean class is the same as the name of each child object,
with the word “Bean” appended.For example, if a child object in your object structure is
named “Address”, the name of the corresponding child class is “AddressBean”. The
methods in this class include a constructor method for the child object Bean, and get
and set methods for each field defined for the child object. Most methods have dynamic
names based on the name of the child object and the fields defined for that object. In the
following methods, <Child> indicates the name of a child object and <Field> indicates
the name of a field defined for the child object.

Definition

final class <Child>Bean

Methods

Name Type Description

value String The value of the <ObjectName>Id
field.

<Child>Bean on page 114 get<Child>Id on page 115

delete on page 114 set<Field> on page 116

get<Field> on page 115 set<Child>Id on page 116
eIndex Single Patient View Reference Guide 113 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Inherited Methods

The following methods are inherited from java.lang.Object.

equals

hashcode

notify

notifyAll

toString

wait()

wait(long arg)

wait(long timeout, int nanos)

<Child>Bean

Description

<Child>Bean is the user-defined object Bean class. You can instantiate this class to
create a new instance of the child object Bean class.

Syntax

new <Child>Bean()

Parameters

None.

Returns

An instance of the child object Bean.

Throws

ObjectException

delete

Description

delete removes the child object from the eIndex SPV object. This is used with the
executeMatchUpdate function to update a system object by deleting one of the child
objects from the eIndex SPV object.

Syntax

void delete()

Parameters

None.

Returns

None.
eIndex Single Patient View Reference Guide 114 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the child object. For example, if the
child object contains a field named “ZipCode”, the getter method for this field is named
“getZipCode”.

Syntax

String get<Field>()

Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

get<Child>Id

Description

get<Child>Id retrieves the unique identification code (primary key) of the object, as
assigned by the master index.

Syntax

String get<Child>Id()

Parameters

None.

Returns

A string containing the unique ID of the child object.

Throws

ObjectException
eIndex Single Patient View Reference Guide 115 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the child object. For example, if the child
object contains a field named “Address”, the setter method for this field is named
“setAddress”. A setter method is created for each field in the child object, including any
fields containing standardized or phonetic data.

Syntax

void set<Field>(value)

Parameters

Returns

None.

Throws

ObjectException

set<Child>Id

Description

set<Child>Id sets the value of the <Child>Id field in the child object.

Note: This ID is set internally by the master index. Do not set this field manually.

Syntax

void set<Child>Id(String value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value varies The value of the field specified by the
method name. The type of value
depends on the data type of the field
being populated.

Name Type Description

value String The value of the <Child>Id field.
eIndex Single Patient View Reference Guide 116 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
4.6.4 DestinationEO
This class represents an enterprise object involved in a merge. This is the enterprise
object whose EUID was kept in the final merge result record. A DestinationEO object is
used when unmerging two enterprise objects.

Definition

class DestinationEO

Methods

getEnterprise<ObjectName>

Description

getEnterprise<ObjectName> (where <ObjectName> is the name of the parent object)
retrieves the surviving enterprise object from a merge transaction in order to allow the
records to be unmerged.

Syntax

Enterprise<ObjectName> getEnterprise<ObjectName>()

where <ObjectName> is the name of the parent object.

Parameters

None.

Returns

The surviving enterprise object from a merge transaction.

Throws

ObjectException

4.6.5 Search<ObjectName>Result
This class represents the results of a search. A Search<ObjectName>Result object
(where <ObjectName> is the name of the parent object) is returned as a result of a call to
“searchBlock”, “searchExact”, or “searchPhonetic”.

Definition

class Search<ObjectName>Result

Methods

getEnterprise<ObjectName> on page 117

getEUID on page 118

getComparisonScore on page 118

get<ObjectName> on page 118
eIndex Single Patient View Reference Guide 117 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
getEUID

Description

getEUID retrieves the EUID of a search result record.

Syntax

String getEUID()

Parameters

None.

Returns

A string containing an EUID.

Throws

None.

getComparisonScore

Description

getComparisonScore retrieves the weight that indicates how closely a search result
record matched the search criteria.

Syntax

Float getComparisonScore()

Parameters

None.

Returns

A comparison weight.

Throws

None.

get<ObjectName>

Description

get<ObjectName> retrieves an object bean for a search result record.

Syntax

<ObjectName>Bean get<ObjectName>()

where <ObjectName> is the name of the parent object.

Parameters

None.
eIndex Single Patient View Reference Guide 118 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Returns

An object bean.

Throws

None.

4.6.6 SourceEO
This class represents an enterprise object involved in a merge. This is the enterprise
object whose EUID was not kept in the final merge result record. A SourceEO object is
used when unmerging two enterprise objects.

Definition

class SourceEO

Methods

getEnterprise<ObjectName>

Description

getEnterprise<ObjectName> (where <ObjectName> is the name of the parent object)
retrieves the non-surviving enterprise object from a merge transaction in order to allow
the records to be unmerged.

Syntax

Enterprise<ObjectName> getEnterprise<ObjectName>()

where <ObjectName> is the name of the parent object.

Parameters

None.

Returns

The non-surviving enterprise object from a merge transaction.

Throws

None.

4.6.7 System<ObjectName>PK
This class represents the primary keys in a system object, which include the processing
code for the originating system and the local ID of the object in that system. The class is
named for the primary object. For example, if the primary object is named “Person”,
this class is named “SystemPersonPK”. If the primary object is named “Company”, this
class is named “SystemCompanyPK”. The methods in these classes provide the ability
to create an instance of the class and to retrieve the system processing code and the
local ID.

getEnterprise<ObjectName> on page 119
eIndex Single Patient View Reference Guide 119 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
Definition

class System<ObjectName>PK

where <ObjectName> is the name of the parent object.

Methods

System<ObjectName>PK

Description

System<ObjectName>PK is the user-defined system primary key object. This object
contains a system code and a local ID. Use this constructor method to create a new
instance of a system primary key object.

Syntax

new System<ObjectName>PK()

where <ObjectName> is the name of the parent object.

Parameters

None.

Returns

An instance of the system primary key object.

Throws

None.

getLocalId

Description

getLocalID retrieves the local identifier from a system primary key object.

Syntax

String getLocalId()

Parameters

None.

Returns

A string containing a local identifier.

Throws

None.

System<ObjectName>PK on page 120

getLocalId on page 120

getSystemCode on page 121
eIndex Single Patient View Reference Guide 120 Sun Microsystems, Inc.

Chapter 4 Section 4.6
Working with the Java API Helper Classes
getSystemCode

Description

getSystemCode retrieves the system’s processing code from a system primary key
object.

Syntax

String getSystemCode()

Parameters

None.

Returns

A string containing the processing code for a system.

Throws

None.
eIndex Single Patient View Reference Guide 121 Sun Microsystems, Inc.

Appendix A

Inbound Message Processing with Custom
Logic

You can customize the way the execute match methods process inbound messages by
defining custom plug-ins that include decision-point methods. This appendix describes
the standard inbound processing logic as described in “Inbound Message Processing
Logic” on page 26, but also includes how the decision-point methods alter the process.

What’s in This Chapter

Custom Decision Point Logic on page 122

A.1 Custom Decision Point Logic
There are several decision points in the match process that can be defined by custom
logic using custom plug-ins. The steps below are identical to those outlined in
“Inbound Message Processing Logic” on page 26, but include descriptions of the
decision points, which are listed in italic font. If no custom logic is defined, the decision
points default to “false”, and processing is identical to that described in “Inbound
Message Processing Logic”.

For more information about the methods and plug-ins, see “Customizing Match
Processing Logic” in the Sun SeeBeyond eIndex Single Patient View User’s Guide. For
detailed information about the methods, see the Javadocs provided with eIndex SPV.
The methods are contained in the ExecuteMatchLogics class in the package
com.stc.eindex.master.

1 When a message is received by the master index, a search is performed for any
existing records with the same local ID and system as those contained in the
message. This search only includes records with a status of A, meaning only active
records are included. If a matching record is found, an existing EUID is returned.

2 If an existing record is found with the same system and local ID as the incoming
message, it is assumed that the two records represent the same patient. Using the
EUID of the existing record, the master index performs an update of the record’s
information in the database.

Custom plug-in decision point: If disallowUpdate is set to true, the update is not allowed
and a MatchResult object is returned with a result code of 12.
eIndex Single Patient View Reference Guide 122 Sun Microsystems, Inc.

Appendix A Section A.1
Inbound Message Processing with Custom Logic Custom Decision Point Logic
If the update does not make any changes to the patient’s information, no
further processing is required and the existing EUID is returned.

If there are changes to the patient’s information, the updated record is inserted
into database, and the changes are recorded in the sbyn_transaction table.

If there are changes to key fields (that is, fields used for matching or for the
blocking query) and the update mode is set to pessimistic, potential duplicates
are re-evaluated for the updated record.

3 If no records are found that match the record’s system and local identifier, a second
search is performed using the blocking query. A search is performed on each of the
defined query blocks to retrieve a candidate pool of potential matches.

Custom plug-in decision point: If bypassMatching is set to true, the search steps are
bypassed and, if disallowAdd is set to false, a new record is added. If disallowAdd is set to
true, the record is not added and a MatchResult object is returned with a result code of 11.

Each record returned from the search is weighted using the fields defined for
matching in the inbound message.

4 After the search is performed, the number of resulting records is calculated.

If a record or records are returned from the search with a matching probability
weight above the match threshold, the master index performs exact match
processing (see Step 5).

If no matching records are found, the inbound message is treated as a new
record. A new EUID is generated and a new record is inserted into the database.

5 If records were found within the high match probability range, exact match
processing is performed as follows:

If only one record is returned from this search with a matching probability that
is equal to or greater than the match threshold, additional checking is
performed to verify whether the records originated from the same system (see
Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is set to false, then the
record with the highest matching probability is checked against the incoming
message to see if they originated from the same system (see Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is true, a new EUID is
generated and a new record is inserted into the database.

Custom plug-in decision point: If disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11.

If no record is returned from the database search, or if none of the matching
records have a weight in the exact match range, a new EUID is generated and a
new record is inserted into the database.

Custom plug-in decision point: If disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11.
eIndex Single Patient View Reference Guide 123 Sun Microsystems, Inc.

Appendix A Section A.1
Inbound Message Processing with Custom Logic Custom Decision Point Logic
6 When records are checked for same system entries, the master index tries to retrieve
an existing local ID using the system of the new record and the EUID of the record
that has the highest match weight.

If a local ID is found and same system matching is set to true, a new record is
inserted, and the two records are considered to be potential duplicates. These
records are marked as same system potential duplicates.

Custom plug-in decision point: If disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11.

If a local ID is found and same system matching is set to false, it is assumed that
the two records represent the same patient. Using the EUID of the existing
record, the master index performs an update, following the process described in
Step 2 earlier.

Custom plug-in decision point: If rejectAssumedMatch is set to true and disallowAdd is
set to false, a new record is added; if disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11. If
rejectAssumedMatch and disallowUpdate are set to false, the existing record is updated;
if disallowUpdate is set to true, the update is not performed and a MatchResult object is
returned with a result code of 13.

If no local ID is found, it is assumed that the two records represent the same
patient and an assumed match occurs. Using the EUID of the existing record,
the master index performs an update, following the process described in Step 2
earlier.

Custom plug-in decision point: If rejectAssumedMatch is set to true and disallowAdd is
set to false, a new record is added; if disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11. If
rejectAssumedMatch and disallowUpdate are set to false, the existing record is updated;
if disallowUpdate is set to true, the update is not performed and a MatchResult object is
returned with a result code of 13.

7 If a new record is inserted, all records that were returned from the blocking query
are weighed against the new record using the matching algorithm. If a record is
updated and the update mode is pessimistic, the same occurs for the updated
record. If the matching probability weight of a record is greater than or equal to the
potential duplicate threshold, the record is flagged as a potential duplicate (for
more information about thresholds, see the Sun SeeBeyond eIndex Single Patient View
Configuration Guide).
eIndex Single Patient View Reference Guide 124 Sun Microsystems, Inc.

Glossary
Glossary

alphanumeric search
A type of search that looks for records that precisely match the specified criteria. This
type of search does not allow for misspellings or data entry errors, but does allow the
use of wildcard characters.

assumed match
When the matching weight between two records is at or above a weight you specify
and the records are from two different systems, (depending on the configuration of
matching parameters) the objects are considered an assumed match and are
automatically combined.

Blocking Query
Also known as a blocker query, this is the query used during matching to search the
database for possible matches to a new or updated record. This query makes multiple
passes against the database using different combinations of criteria, which are defined
in the Candidate Select file. This query can also be used for searches performed from
the Enterprise Data Manager.

Candidate Select file
The eIndex SPV configuration file that defines the queries you can perform from the
Enterprise Data Manager (EDM) and the queries that are performed for matching.

candidate selection
The process of performing the blocking query for match processing. See Blocking Query.

candidate selection pool
The group of possible matching records that are returned by the blocking query. These
records are weighed against the new or updated record to determine the probability of
a match.

checksum
A value added to the end of an EUID for validation purposes. The checksum for each
EUID is derived from a specific mathematical formula.

code list
A list of values in the sbyn_common_detail database table that is used to populate
values in the drop-down lists of the EDM.

code list type
A category of code list values, such as states or country codes. These are defined in the
sbyn_common_header database table.
eIndex Single Patient View Reference Guide 125 Sun Microsystems, Inc.

Glossary
duplicate threshold
The matching probability weight at or above which two records are considered to
potentially represent the same person. See also matching threshold.

EDM
See Enterprise Data Manager.

Enterprise Data Manager
Also known as the EDM, this is the web-based interface that allows monitoring and
manual control of the master index database. The configuration of the EDM is stored in
the Enterprise Data Manager file in the eIndex Project.

enterprise object
A complete object representing a specific entity, including the SBR and all associated
system objects.

ePath
A definition of the location of a field in an eIndex SPV object. Also known as the element
path.

EUID
The enterprise-wide unique identification number assigned to each member profile in
the master index. This number is used to cross-reference member profiles and to
uniquely identify each member throughout your organization.

eIndex SPV Manager Service
An eIndex SPV component that provides an interface to all eIndex SPV components
and includes the primary functions of eIndex. This component is configured by the
Threshold file.

field IDs
An identifier for each field that is defined in the standardization engine and referenced
from the Match Field file.

Field Validator
An eIndex SPV component that specifies the Java classes containing field validation
logic for incoming data. This component is configured by the Field Validation file.

Field Validation file
The eIndex SPV configuration file that specifies any default or custom Java classes that
perform field validations when data is processed.

LID
See local ID.

local ID
A unique identification code assigned to an member in a specific local system. A
member profile may have several local IDs in different systems. The combination of a
local ID and system constitutes a unique identifier for a system record. The name of the
eIndex Single Patient View Reference Guide 126 Sun Microsystems, Inc.

Glossary
local ID field is configurable on the EDM, and might have been modified for your
implementation.

master person index
A database application that stores and cross-references information about the members
in a business organization, regardless of the computer system from which the
information originates.

Match Field File
An eIndex SPV configuration file that defines normalization, parsing, phonetic
encoding, and the match string for an instance of eIndex SPV. The information in this
file is dependent on the type of data being standardized and matched.

match pass
During matching several queries are performed in turn against the database to retrieve
a set of possible matches to an incoming record. Each query execution is called a match
pass.

match string
The data string that is sent to the match engine for probabilistic weighting. This string is
defined by the match system object defined in the Match Field file and must match the
string defined in the match engine configuration files.

match type
An indicator specified in the MatchingConfig section of the Match Field file that tells
the match engine which rules in the match configuration file to use for determine
matching weights between records.

matching probability weight
An indicator of how closely two records match one another. The weight is generated
using matching algorithm logic, and is used to determine whether two records
represent the same member. See also duplicate threshold and matching threshold.

Matching Service
An eIndex SPV component that defines the matching process. This component is
configured by the Match Field file.

matching threshold
The lowest matching probability weight at which two records can be considered a
match of one another. See also duplicate threshold and matching probability weight.

matching weight or match weight
See matching probability weight.

member
Any person who participates within your business enterprise. A member could be a
customer, employee, patient, and so on.
eIndex Single Patient View Reference Guide 127 Sun Microsystems, Inc.

Glossary
member profile
A set of information that describes characteristics of one member. A profile includes
demographic and identification information about a member and contains a single best
record and one or more system records.

merge
To join two member profiles or system records that represent the same person into one
member profile.

merged profile
See non-surviving profile.

non-surviving profile
A member profile that is no longer active because it has been merged into another
member profile. Also called a merged profile.

normalization
A component of the standardization process by which the value of a field is converted
to a standard version, such as changing a nickname to a common name.

object
A component of a member profile, such as a person object, which contains all of the
demographic data about a person, or an address object, which contains information
about a specific address type for a person.

parsing
A component of the standardization process by which a freeform text field is separated
into its individual components, such as separating a street address field into house
number, street name, and street type fields.

phonetic encoding
A standardization process by which the value of a field is converted to its phonetic
version.

phonetic search
A search that returns phonetic variations of the entered search criteria, allowing room
for misspellings and typographic errors.

potential duplicates
Two different enterprise objects that have a high probability of representing the same
entity. The probability is determined using matching algorithm logic.

probabilistic weighting
A process during which two records are compared for similarities and differences, and
a matching probability weight is assigned based on the fields in the match string. The
higher the weight, the higher the likelihood that two records match.

probability weight
See matching probability weight.
eIndex Single Patient View Reference Guide 128 Sun Microsystems, Inc.

Glossary
Query Builder
An eIndex SPV component that defines how queries are processed. The user-
configured logic for this component is contained in the Candidate Select file.

SBR
See single best record.

single best record
Also known as the SBR, this is the best representation of a member’s information. The
SBR is populated with information from all source systems based on the survivor
strategies defined for each field and child object. It is a part of a member’s enterprise
object and is recalculated each time a system record is updated.

standardization
The process of parsing, normalizing, or phonetically encoding data in an incoming or
updated record. Also see normalization, parsing, and phonetic encoding.

survivor calculator
The logic that determines which field values or child objects from the available source
systems are used to populate the SBR. This logic is a combination of Java classes and
user-configured logic contained in the Best Record file.

survivorship
Refers to the logic that determines which field values are used to populate the SBR. The
survivor calculator defines survivorship.

system
A computer application within your company where information is entered about the
members in eIndex and that shares this information with eIndex (such as a registration
system). Also known as a source system, local system, or external system.

system object
A record received from a local system. The fields contained in system objects are used
in combination to populate the SBR. The system objects for one person are part of that
person’s enterprise object.

tab
A heading on an application window that, when clicked, displays a different type of
information. For example, click the Create System Record tab to display the Create
System Record page.

Threshold file
An eIndex SPV configuration file that specifies duplicate and match thresholds, EUID
generator parameters, and which blocking query defined in the Candidate Select file to
use for matching.

transaction history
A stored history of an enterprise object. This history displays changes made to the
object’s information as well as merges, unmerges, and so on.
eIndex Single Patient View Reference Guide 129 Sun Microsystems, Inc.

Glossary
Update Manager
The component of the master index that contains the Java classes and logic that
determines how records are updated and how the SBR is populated. The user-
configured logic for this component is contained in the Best Record file.
eIndex Single Patient View Reference Guide 130 Sun Microsystems, Inc.

Index
Index

A
activateEnterpriseObject 33
activateSystemObject 33
addSystemObject 34
API classes 69
appl_id column 51, 54
assumedmatch sequence number 57
assumedmatchid column 51
audience 11
audit sequence number 57
audit_id column 52

B
blocking query 27, 123
booleandata column 55
Business Process

methods 101
bypassMatching 123
bytedata column 55

C
calculateOnly 36, 37, 41
candidate pool 27, 123
child Bean methods 114–116
child class methods 81–84
child objects 48
childtype column 58, 61
code column 51, 53, 54, 63
Collaboration 16
common_detail_id column 53
common_header_id column 53, 54
creatdate column 58
create_by column 53
create_date column 51, 52, 53, 54, 60
create_userid column 51, 53, 54, 60
createdate column 61
createEnterpriseObject 34
createfunction column 58, 61
createsystem column 61
createuser column 58, 61
custom match logic 122

D
data structure 9
database

diagram 64
tables 47–49

datedata column 56
deactivate 34
deactivateEnterpriseObject 34
deactivateSystemObject 34
decision points 122
deleteSystemObject 35
delta column 62
descr column 51, 53, 54
description column 56, 59, 63
DestinationEO methods 117
detail column 52
disallowAdd 123, 124
disallowUpdate 122, 124
documents, related 12
DuplicateThreshold 27

E
eGate Integrator 15
eInsight integration 70
EUID column 51, 52, 54, 55, 61, 62
EUID sequence number 57
euid_aux column 52
EUID1 column 57, 62
EUID2 column 56, 62
EVENT OTD node 17
exact match processing 28, 123
executeMatch 26, 70
ExecuteMatchLogics 122

F
floatdata column 56
format column 60, 63
function column 52, 62

H
highmatchflag column 56

I
id_length column 59
inbound messages 15
input_mask column 60, 63
integerdata column 55
eIndex Single Patient View Reference Guide 131 Sun Microsystems, Inc.

Index
J
Java API 10, 69
Java reference 69
JMS Topic 25

K
kept_euid column 55

L
lid column 52, 54, 58, 62
lid1 column 62
lid2 column 62
longdata column 55

M
marshal 24
marshalToBytes 24
marshalToString 24
Master Controller 32
MasterController 70
match logic, custom 122
match threshold 28, 123
matching algorithm 10
MatchThreshold 27, 28
max_input_len column 54
merge 36, 37, 49
merge sequence number 57
merge_euid column 55
merge_id column 55
merge_transactionnum column 55
mergeEnterpriseObject 36
mergeSystemObject 37
message processing 28, 123

blocking query 27, 123
candidate pool 27, 123
exact match 28, 123
match threshold 28, 123
potential duplicates 27, 123
same system 28, 123–124

messages
inbound 15
inbound processing 26
origin 15
outbound 23
processing 14
routing 16
transformation 16

method OTD 27, 70, 84–101
classes

child classes 80

parent class 70
helper classes

child bean class 113
parent bean class 106
Search(Object)Result class 117
System(Object) class 117, 119

O
Object Definition 47
Object Definition file 16, 17
object structure 10
OneExactMatch 27, 28
OTD

delimiters 17
Inbound 16, 17
outbound 23

outbound messages 23
outbound messaging 25
OUTPerson 24

P
parent Bean methods 107–113
parent class methods 71–80
parent objects 48
path column 55
potential duplicates 27, 49, 123
potentialduplicate sequence number 57
potentialduplicateid column 56
primary_object_type column 52
processing logic 26

Q
queries 28, 123

R
reactivate 33
read_only column 51, 53, 54
REC OTD node 17
rejectAssumedMatch 124
related publications 12
reset 24
resolvedcomment column 56
resolveddate column 56
resolveduser 56
revisionnumber column 61

S
same system processing 28, 123–124
eIndex Single Patient View Reference Guide 132 Sun Microsystems, Inc.

Index
SameSystemMatch 27
SBR

see single best record
sbyn_(child_object) 48, 50
sbyn_(child_object)sbr 48, 50
sbyn_(object_name) 48, 50
sbyn_(object_name)sbr 48, 50
sbyn_appl 48, 51
sbyn_appl sequence number 58
sbyn_assumedmatch 48, 51
sbyn_audit 48, 52
sbyn_common_detail 48, 53
sbyn_common_detail sequence number 58
sbyn_common_header 48, 53
sbyn_common_header sequence number 58
sbyn_enterprise 49, 54
sbyn_merge 49, 55
sbyn_overwrite 49, 55
sbyn_potentialduplicates 49, 56
sbyn_seq_table 49, 57
sbyn_system 49
sbyn_systemobject 49, 58
sbyn_systems 59
sbyn_systemsbr 49, 61
sbyn_transaction 49, 62
sbyn_user_code 62
sbyn_user_table 49
screenshots 12
search object result methods 118
seq_count column 57
seq_name column 57
sequence numbers

(object_name) 58
(object_name)sbr 58
assumedmatch 57
audit 57
EUID 57
merge 57
potentialduplicate 57
sbyn_appl 58
sbyn_common_detail 58
sbyn_common_header 58
transactionnumber 57

Services 15
single best record 10, 47, 48
SourceEO methods 119
STATUS column 59
status column 56, 59, 61
stringdata column 55
Sun SeeBeyond Match Engine 10
survivor calculator 10
system object primary key methods 120–121
system record 48
systemcode column 52, 54, 58, 59, 62, 63

systemuser column 62

T
timestamp column 62
timestampdata column 56
transaction history 49
transactionnumber column 52, 56, 62
transactionnumber sequence number 57
transfer 39
transferSystemObject 39
trigger events 25
typ_table_code column 54
type column 55, 56

U
undoAssumedMatch 40
unmarshal 24
unmarshalFromBytes 24
unmarshalFromString 24
unmerge 40, 41
unmerge_transactionnum column 55
unmergeEnterpriseObject 40
unmergeSystemObject 41
update 27, 122
update_date column 60
update_userid column 60
UPDATEDATE column 59
updatedate column 61
updateEnterpriseDupRecalc 43
updatefunction column 59, 61
update-mode 27
updateuser column 59, 61

V
value_mask column 60, 63

W
weight column 52, 56
eIndex Single Patient View Reference Guide 133 Sun Microsystems, Inc.

	eINDEX™ SINGLE PATIENT VIEW REFERENCE GUIDE
	Contents
	List of Tables
	Introduction
	1.1 About eIndex Single Patient View
	Overview
	Features

	1.2 What’s New in This Release
	1.3 About This Document
	1.3.1 What’s in This Document
	1.3.2 Scope
	1.3.3 Intended Audience
	1.3.4 Text Conventions
	1.3.5 Screenshots
	1.3.6 Related Documents

	1.4 Sun Microsystems, Inc. Web Site
	1.5 Documentation Feedback

	Understanding Operational Processes
	2.1 Learning About Message Processing
	2.2 Inbound Message Processing
	2.2.1 About Inbound Messages
	2.2.2 The Default Inbound OTD
	Formatting Guidelines
	Transaction Details

	2.3 Outbound Message Processing
	2.3.1 About Outbound Messages
	Outbound OTD Structure
	Outbound Message Trigger Events
	Sample Outbound Message

	2.4 Inbound Message Processing Logic
	2.5 Primary Function Processing Logic
	2.5.1 activateEnterpriseObject
	2.5.2 activateSystemObject
	2.5.3 addSystemObject
	2.5.4 createEnterpriseObject
	2.5.5 deactivateEnterpriseObject
	2.5.6 deactivateSystemObject
	2.5.7 deleteSystemObject
	2.5.8 mergeEnterpriseObject
	2.5.9 mergeSystemObject
	2.5.10 transferSystemObject
	2.5.11 undoAssumedMatch
	2.5.12 unmergeEnterpriseObject
	2.5.13 unmergeSystemObject
	2.5.14 updateEnterpriseDupRecalc
	2.5.15 updateEnterpriseObject
	2.5.16 updateSystemObject

	The Database Structure
	3.1 About the Database
	3.1.1 Overview
	3.1.2 Database Table Overview

	3.2 Database Table Details
	3.2.1 SBYN_<OBJECT_NAME>
	3.2.2 SBYN_<OBJECT_NAME>SBR
	3.2.3 SBYN_<CHILD_OBJECT>
	3.2.4 SBYN_<CHILD_OBJECT>SBR
	3.2.5 SBYN_APPL
	3.2.6 SBYN_ASSUMEDMATCH
	3.2.7 SBYN_AUDIT
	3.2.8 SBYN_COMMON_DETAIL
	3.2.9 SBYN_COMMON_HEADER
	3.2.10 SBYN_ENTERPRISE
	3.2.11 SBYN_MERGE
	3.2.12 SBYN_OVERWRITE
	3.2.13 SBYN_POTENTIALDUPLICATES
	3.2.14 SBYN_SEQ_TABLE
	3.2.15 SBYN_SYSTEMOBJECT
	3.2.16 SBYN_SYSTEMS
	3.2.17 SBYN_SYSTEMSBR
	3.2.18 SBYN_TRANSACTION
	3.2.19 SBYN_USER_CODE

	3.3 Sample Database Model

	Working with the Java API
	4.1 Overview
	4.2 Java Class Types
	Static Classes
	Dynamic Object Classes
	Dynamic OTD Methods
	Dynamic Business Process Methods

	4.3 Dynamic Object Classes
	4.3.1 Parent Object Classes
	<ObjectName>Object
	add<Child>
	addSecondaryObject
	copy
	dropSecondaryObject
	get<ObjectName>Id
	get<Child>
	get<Field>
	getChildTags
	getMetaData
	getSecondaryObject
	isAdded
	isRemoved
	isUpdated
	set<ObjectName>Id
	set<Field>
	setAddFlag
	setRemoveFlag
	setUpdateFlag
	structCopy

	4.3.2 Child Object Classes
	<Child>Object
	copy
	get<Child>Id
	get<Field>
	getMetaData
	getParentTag
	set<Child>Id
	set<Field>
	structCopy

	4.4 Dynamic OTD Methods
	activateEnterpriseRecord
	activateSystemRecord
	addSystemRecord
	deactivateEnterpriseRecord
	deactivateSystemRecord
	executeMatch
	executeMatchUpdate
	findMasterController
	getEnterpriseRecordByEUID
	getEnterpriseRecordByLID
	getEUID
	getLIDs
	getLIDsByStatus
	getSBR
	getSystemRecord
	getSystemRecordsByEUID
	getSystemRecordsByEUIDStatus
	lookupLIDs
	mergeEnterpriseRecord
	mergeSystemRecord
	searchBlock
	searchExact
	searchPhonetic
	transferSystemRecord
	updateEnterpriseRecord
	updateSystemRecord

	4.5 Dynamic Business Process Methods
	4.6 Helper Classes
	4.6.1 System<ObjectName>
	ClearFieldIndicator Field
	System<ObjectName>
	getClearFieldIndicator
	get<Field>
	get<ObjectName>
	setClearFieldIndicator
	set<Field>
	set<ObjectName>

	4.6.2 Parent Beans
	<ObjectName>Bean
	count<Child>
	countChildren
	countChildren
	delete<Child>
	get<Child>
	get<Child>
	get<Field>
	get<ObjectName>Id
	set<Child>
	set<Child>
	set<Field>
	set<ObjectName>Id

	4.6.3 Child Beans
	<Child>Bean
	delete
	get<Field>
	get<Child>Id
	set<Field>
	set<Child>Id

	4.6.4 DestinationEO
	getEnterprise<ObjectName>

	4.6.5 Search<ObjectName>Result
	getEUID
	getComparisonScore
	get<ObjectName>

	4.6.6 SourceEO
	getEnterprise<ObjectName>

	4.6.7 System<ObjectName>PK
	System<ObjectName>PK
	getLocalId
	getSystemCode

	Inbound Message Processing with Custom Logic
	A.1 Custom Decision Point Logic

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

