
SUN JAVA™ MESSAGE SERVICE GRID
USER’S GUIDE

Release 5.1.2

Sun JMS Grid User’s Guide 2 Sun Microsystems, Inc.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun
Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents
listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in
other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms. This
distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo, Java, Sun Java Composite
Application Platform Suite, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex, eBAM, eWay, and JMS are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. This product is covered and
controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited.
Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but
not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est
décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuels peuvent inclure un ou plus
des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les
applications de brevet en attente aux Etats - Unis et dans les autres pays. L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties. Sun, Sun Microsystems, le logo Sun,
Java, Sun Java Composite Application Platform Suite, Sun, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex,
eBAM et eWay sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et
licenciée exclusivement par X/Open Company, Ltd. Ce produit est couvert à la législation américaine en matière de contrôle
des exportations et peut être soumis à la règlementation en vigueur dans d'autres pays dans le domaine des exportations et
importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer,
d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en
matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Part Number: 819-7328-11

Version 20061010143801

Contents
Contents

List of Figures 14

List of Tables 17

Chapter 1

Sun Java Message Service Grid 19
Introducing Sun Java Message Service Grid 19

Architectural Features 19
Client Features 20
What’s in This Chapter 20
Intended Audience 20
Text Conventions 21
Screenshots Used in this Document 21

Related Documents 21

Hardware and Software Requirements 21
Java Runtime Environment 21
Platform Support 22
Application Server Support 22
Compatibility with SpiritWave Versions 22
Compatibility with Sun Java CAPS 22

Installing JMS Grid 23
Upload the JMS Grid Sar Files to the Sun Java CAPS Repository 23

Upload the JMS Grid Runtime for the Required Platform(s) 23
Upload the JMS Grid plug-in for Enterprise Designer 24

Obtain a JMS Grid Runtime Compressed Archive Suitable for your Machine 24
Unpack the JMS Grid Runtime Compressed Archive 25

Windows 25
Unix 25

Run the Installer 25
Set the JMSGRID Environment Variable 25
Configure the Management Console 26

Configuring a Standalone Servlet Container 26
Configuring the Embedded Servlet Container 26

Upgrading a SpiritWave 6 Installation to Work with JMS Grid 5.1.2 27
Upgrading the Product Installation 27
Upgrading the Message Store 27

What You Need To Do 27
Upgrading the Admin Store 28

Why the Format of a User has Changed 28
Sun JMS Grid User’s Guide 3 Sun Microsystems, Inc.

Section
Contents
Upgrading Users: What You Need to Do 28

Sun Microsystems, Inc. Web Site 29

Documentation Feedback 29

Chapter 2

Architecture Overview 30
System Components 30

JMS Grid clients 30
JMS Grid Server 31
Connections 32
Destinations 33
Message store 33

Distributed Topologies 34
Single Daemon 34
Cluster of Multiple Daemons 35
Multi Cluster Networks 37

Architecture 38
Destinations and Dynamic Subscription 38
Message Routing 39
Subscription Propagation 39
Network Filters 39
Message Persistence 40
Acknowledgement Model 42

Chapter 3

Administration 43
Introducing the Administration Tool 43

Starting the JMS Grid Admin Tool on Windows 43
Starting the JMS Grid Admin Tool on Unix 45
Using the JMS Grid Admin Tool 46
About the Toolbar 47
Navigating the Tree View 49

Selecting a node 50
Types of Configuration Nodes 50
Opening and Closing nodes 51
Buttons 51

Refreshing the Data that is Displayed 52
Toggling Between Detail and Graphical View 53

Managing Single Daemons 54
What Is a Daemon? 54
Configuring a Single Daemon 54
Starting a Daemon 57

Windows 57
Unix 58
 All Platforms 59
Sun JMS Grid User’s Guide 4 Sun Microsystems, Inc.

Section
Contents
Username and Password 59

Starting a Default Daemon 59
Starting a Daemon with an Embedded Servlet Container 59
Creating Multiple Copies of a Daemon Configuration 60
Deleting a Daemon’s Configuration 61
Stopping a Daemon 62
Editing a Daemon’s Configuration 62
Specifying a Daemon’s Name 63
Specifying a Daemon Network URL 64

Protocols 64
Configuring a Daemon’s Internal Queues 67

Internal Dispatch of Non-Persistent Messages to Queues and Topics 67
To Configure Internal Queues 67

Configuring Daemons to Actively Detect Network Outages 68
Configuring Daemons to Automatically Close Connections to Slow or Frozen Clients 68
Configuring the Daemon’s Message Store 69
Preventing JMS Grid From Failing 70
Starting a Daemon on a Computer that is Remote From its Configuration Data 71
Configuring JMS Grid from a Remote Machine 72

On the Configuration Data Computer 72
On the Remote Computer 73

How to tell that a Daemon is using its Daemon Configuration 73
Start the Daemon 74
Examine the Log File 74

Accessing a Daemon's Log File 75
Configuring a Daemon from a Properties Text File 76
Configuring a Daemon's Logging Properties 78

Changing a Daemons working directory 79

Networks of Clusters of Daemons 79
Network and Cluster Concepts 79
Creating a New Network 79
Deleting a Network 81
Creating a New Cluster 81
Creating a Configuration for a Cluster Daemon 83
Creating a Connection Between Clusters 84
Printing a Graphical View of a Network 86
Load Balancing Messages Across Cluster Daemons 86
Enabling Auto Discovery 87
Specifying the Autodiscovery Multicast Channel 88
Viewing Network and Cluster Daemon Connections 88

A Graphical View of a Network 89
A Graphical View of a Cluster 89

Configuring Daemon Reconnections 89
Configuring Message Filters on Inter-daemon Network Connections 90

JMS Grid Security 91
Introduction to Security 92

Messaging Clients Attempt to Communicate with the Message Server 92
Users try to Configure the Message Server 92
Users try to Manage the Runtime Operation of the Server 92

Security Concepts 92
Authentication 92
Authorization 93
Sun JMS Grid User’s Guide 5 Sun Microsystems, Inc.

Section
Contents
Encryption 93
What are Permissions? 93

Special Permissions 94
Anonymous Login Permission 94
Administrator Permission 95

What are Groups? 95
What are Users? 96
What are Secure Destinations? 97
Typical Usage of Permissions, Groups and Users 97
What is the Default Security Configuration? 99
Enabling JMS Grid Security 100

JMS Grid Server 100
JMS Grid JMS Clients 100
Enabling JMS Grid Security (Command Line) 101
Username and Password 102
Enabling JMS Grid Server Security (JMS Grid Admin Tool) 102
Enabling JMS Grid Client Security 103
Setting System-wide Security Parameters 104

Creating a New Permission 105
Editing a Permission 106

Another Way to open the Properties Dialog 107
Deleting a Permission 107
Creating a Group 107
Editing a Group 108

Another Way to open the Properties Dialog 109
Deleting a Group 109
Creating a User 110
Creating an Administrator 111
Editing a User's Access Rights 112

Another Way to open the Properties Dialog 112
Changing a User's Password 113
Re-enabling a User's Account 113
Deleting a User 114
Sending Encrypted Messages 114
Creating a Secure Destination Object 114
Making all Existing Destinations Secure 116
Editing a Secure Destination Object 116

Another Way to open the Properties Dialog 117
Deleting a Secure Destination Object 117
Tightening JMS Grid's Security 118
Changing the Admin User Password 118
Changing the Permissions of the Default User 118
File Security on the Administration Object Store 118
Performing Batch Updates of JMS Grid Security Objects 119

Batch Destination Creation 119
Batch Permission Creation 119
Batch Group Creation 120
Batch User Creation 120

Using Your Own Security Plug-in 120
Implementing a Security Plug-in 120
Enabling a client to use a plug-in 120
Enabling a Message Daemon to use a plug-in 121

Changing a Password Without being an Administrator 121
Sun JMS Grid User’s Guide 6 Sun Microsystems, Inc.

Section
Contents
SSL Configuration 122
What is SSL? 122

Some Concepts 122
Key and Trust Stores for JMS Grid 123
Special Note about Sample Key and Certificates 124
Special Note about SSL Provider Pluggability 124

Configuring the Daemon's use of SSL 124
Configure Daemon SSL using the Administration Tool 124
Configuring Daemon SSL using a Property File 126

Configuring the Client's use of SSL 126
Configuring the Client’s SSL using the Administration Tool 127
Configuring Client SSL using a Property File 128
Configuring Client SSL use with System Properties 128
Using SSL Clients from SpiritWave with JMS Grid 128

JMS Administration 129
Introduction 129
Creating a Connection Factory 130
Editing a Connection Factory's Properties 132

Another Way to open the Properties Dialog 133
Exporting a Connection Factory's Properties 133
Creating Multiple Copies of a Connection Factory 134
Deleting a Connection Factory 135
Editing Connection Factory Properties for a Normal JMS Grid Client Connection 135
Creating a JMS Destination 137
Editing a Destination's Properties 139

Another Way to open the Properties Dialog 139
Creating Multiple Copies of a Destination 140
Deleting a Destination 141

Managing Client Applications 141
Running a Simple Client Application with JMS Grid 141

Another Way to Specify CLASSPATH 142
Enabling a Client to Connect to a Daemon through a Firewall 142

Advanced Administration 143
Specifying how Configuration Data is Stored 143
Exporting Configuration Data to a File 146
Deciding which Type of Configuration Data Store to use 148

File storage 148
JNDI Storage using FSContext 148
JNDI Storage using some other JNDI Provider 149
JNDI Storage using JMS Grid JNDI Provider 149
LDAP Storage 149
XML Storage 150
Remote XML Storage 150

Reference 151
Detail View Tables 151

Chapter 4

JMS Programming 154
Sections Contained in this Chapter 154
Sun JMS Grid User’s Guide 7 Sun Microsystems, Inc.

Section
Contents
Overview of JMS 154
Message Types 155
Messaging Models 155

Point To Point Messaging 155
Publish and Subscribe 156
Generic Terms 157

Synchronous and Asynchronous Consumers 157
Persistent Messages 157
Message Acknowledgement and Redelivery 158
Message Expiry 158

Building A JMS Application 159
The Basic Structure Of A JMS Application 159
Obtaining A JMS Connection 160

Creating a Connection Factory and using it to Create a Connection 161
 Using JNDI for Obtaining a Connection Factory 162
Binding a Connection Factory to the JNDI Namespace 163
Obtaining an Initial JNDI Context 163
JMS Grid Directory Service 164
JMS Grid VM Directory Service 164
Other JNDI Providers 165
Specifying the JNDI Provider Using the File Jndi.properties 165
Predefined Connection Factories 166

Obtaining A JMS Session 166
Non-transacted Sessions 167
Transacted Sessions (Local Transactions) 167

Obtaining a JMS Destination 168
Obtaining a Destination from the Session 168
Creating the Destination Explicitly 169
Obtaining a Destination Using JNDI 169
Configuring a Destination 169
BInding a Destination to the JNDI Namespace 170
Automatic Queue and Topic Generation 170

User Security 171
JMS Messages 171

Message Types 171
Message Headers 171
Message Properties 171
Creating a Message 172

Publish and Subscribe Messaging Using Topics 172
Creating a TopicPublisher 172
Publishing Messages 173
Creating a TopicSubscriber 173
Receiving Messages Synchronously 174
Receiving Messages Asynchronously 174
Durable Subscriptions 175

Point-to-Point Messaging using Queues 176
Creating a QueueSender 176
Sending Messages 176
Creating a QueueReceiver 176
Receiving Messages Synchronously 177
Receiving Messages Asynchronously 177
Browsing Messages on a Queue 177

Local Transactions 178
Sun JMS Grid User’s Guide 8 Sun Microsystems, Inc.

Section
Contents
Starting a Local Transaction 178
Committing a Local Transaction 179
Rolling Back a Local Transaction 179
Sending Messages in a Local Transaction 179
Consuming Messages in a Local Transaction 180
Avoiding Redelivery Loops 182

Global Transactions 182
Message Selectors 182
Closing Down 183

Additional Programming Features 183
Wildcard Destinations 184

Wildcard Syntax 184
Creating a Wildcard Destination 184

Content Based Message Selectors 185
Message Selectors Based on Bean Properties 185
Message Selectors to Filter XML Documents using SQL-92 Syntax 187
Message Selectors to Filter XML Documents using Xpath Syntax 188

Subscription Listening 189
Topic Subscription Events 189
Queue Subscription Events 190
Subscription Events from Multiple Destinations 191

The Session Inbox 191
Producing messages to the Inbox 191
Publishing Messages to the Inbox for a TopicSession 191
Sending Messages to the inbox for a QueueSession 192
Consuming Messages from the Inbox 192

Detecting Slow Consumers 193
Listening for Slow Consumer Events 193

Programming Examples 194
How to Run the Examples 194

Before Running each Example 194
Running the Examples 194
Specifying the JNDI Provider 194
Specifying the Connection Factory 194
Specifying the JNDI Name of the Destination 195
Rebuilding the Examples 196

List of Examples 196
Simple Publish and Subscribe 197

About this Example 197
Running the Example 197
Expected Output 197
Variations 198

Simple Queues 198
About this Example 198
Running the Example 199
Expected Output 199
Variations 200

Durable Publish and Subscribe 200
About this Example 200
Running the Example 201
Expected Output 201

Transacted Sessions 202
About this Example 202
Sun JMS Grid User’s Guide 9 Sun Microsystems, Inc.

Section
Contents
Running the Examples 203
Expected Output 204

Message Selectors 207
About this Example 207
Running the Example 207
Expected Output 208

Subscription Events 210
About this Example 210
Running this Example 210
Expected Output 211

The Session Inbox 212
About this Example 212
Running the Example 213
Expected Output 213
Variation 213

The Interactive GUI 214
About this Example 214
Summary of Commands 214
Running the Example 217
Expected Output 219

References 224
Textbooks 224
Online Resources 224

Chapter 5

JMX Management 225
What is JMX? 225

JMX Concepts 225
Manageable Resource 225
Management Bean (MBean) 226
Management Server (MBean Server) 226
Management Agent 226
Management Application 227
Attributes 227
Operations 227
Domain 227
Notification Model 227

Additional JMS Grid Concepts 228
Advisory Messages 228
Management topics 228
Metrics 228

Management Architecture Overview 228
Uses of JMX in JMS Grid 228
Distributed Architecture 229

Running the JMS Grid Management Console 230
Using the Servlet Container in a JMS Grid Daemon 230
Installing the Management Console in a Web Server 230

Prerequisites 230
Installing and Configuring SSL 232
Sun JMS Grid User’s Guide 10 Sun Microsystems, Inc.

Section
Contents
Running without SSL 232
Special Note for Running The Management Console On Unix Variants 232
Running the Management Console 233

Using the JMS Grid Management Console 233
Navigation View 233
Information Views 234

Attributes View 234
Operations View 235
Metrics View 235
Logging View 237
View Logging screen 238

Management Commands 239
Notes on Command Syntax 239

Common Features 240
Connection Specification 240
Context Specification 241
Arguments 241
Note about Spaces and Shell Interpretation of 'Special' Characters 241
FileSpecification 242

Command Descriptions 242
Add a Topic Subscriber - atsub 242
See Values of Attributes - attr 242
Set Time Socket Blocked before Closing - btime 242
Create Connection - ccc 243
Close clients - clc 243
Set Network Connection Topic Filters - filter 244
Collect Garbage - gc 244
Shut Down a Daemon - killd 244
List Connected Clients - lcc 245
List all Queues - lq 245
List queue messages - lqm 245
List all Subscribers - lsub 245
List all Topics - lt 245
List Topic Messages - ltm 246
Display Values of a Metric - metric 246
Show Queue Size - qsize 246
Show Statistics about Queues - qstat 246
Reconnect Clients - rcc 247
Remove a Queue - rmq 247
Remove a Queue Message - rmqm 247
Remove a Topic Message - rmtm 248
Remove a Topic Subscriber - rmtsub 248
Display a Message from a Queue - showqm 248
Shutdown Message Server - sms 249
Show Statistics about Subscriptions - substat 249
Show Number of Unconsumed Messages on a Topic - tsize 249
Show Statistics about Topics - tstat 250
Update Configuration - uc 250

The Management Model 250
WaveMessageDaemon Resource 250

Operations 251
Metrics 251
Sun JMS Grid User’s Guide 11 Sun Microsystems, Inc.

Section
Contents
MessageCore Resource 251
Attributes 251
Operations 252
Metrics 253

MessageStore Resource 253
Operations 253

Metrics 255

Example JMX Program 255
A Note about Documentation 255
Making a Connection 255
Finding the Agent 256
Finding the Manageable Resource 256
Finding the Topic Size 257
Comparison: using MBean invoke() 257
Complete Example 257

Chapter 6

Configuration and Tuning 261
Configuration Overview 261

The Properties Directory 261
The Working Directory Structure 261
How Configuration Works 261
Locally Overriding the Configuration 262
Dynamically Changing the Configuration for a Running Daemon 262

Configuring JMS Grid for Fast Throughput 263
Message Delivery Overheads 263

Timestamp Computation 263
Checking for durable subscribers 263

Message Listeners 264
Asynchronous Message Dispatch From the Daemon 264
Asynchronous Client Message Dispatch 266
Thread Priorities 266
In-Memory Messaging using an Embedded Daemon 267
Flow Control 268

Resource Utilization on the Client 268
Resource Utilization on the Message Daemon 268
Flow Control Strategies 268
Slow Client Consumers of Persisted Messages 268
Slow Client Consumers of Transient Messages 269
Message Producer Throttling 269

Using Selectors and Destination Hierarchies 269
Compression 270

Fail-over and Fault Tolerance 270
Usage of Clusters 270
Client Load Balancing 271
Client Fail-Over 271
Fault Tolerance 272

Configuration Parameters for Daemons 272
Sun JMS Grid User’s Guide 12 Sun Microsystems, Inc.

Section
Contents
Configuration Parameters Common to Daemons and Clients 277

Configuration Parameters for Clients 278

Chapter 7

Integrating JMS Grid with Application Servers 280
Using JMS Grid with the JBoss Application Server 280

Step 1 – Add the Resource Adapter and Data Source Descriptor 281
Step 2 – The Source Code 282
Step 3 – Write the Deployment Descriptors 282
Step 4 - Building and Running the Application 285

Index 286
Sun JMS Grid User’s Guide 13 Sun Microsystems, Inc.

List of Figures
List of Figures

Figure 1 Two JMS Grid Clients Connected to a JMS Grid Server 31

Figure 2 Three Cluster - Three Daemon JMS Grid Server 32

Figure 3 Client Connection Failover 33

Figure 4 JMS Grid Message Store 34

Figure 5 Single Daemon 35

Figure 6 Cluster of Three Daemons 36

Figure 7 Simple Network of Two Clusters 38

Figure 8 Daemon Message Store - Replication and Synchronization 41

Figure 9 Acknowledgement Model 42

Figure 10 Logon Dialog 44

Figure 11 JMS Grid Tool 45

Figure 12 Logon Error 45

Figure 13 Admin Tool GUI 47

Figure 14 Toolbar 47

Figure 15 Action Button 47

Figure 16 View Button 47

Figure 17 Back Arrow 48

Figure 18 Forward Arrow 48

Figure 19 Up-level Button 48

Figure 20 Show-Hide Button 48

Figure 21 Refresh Button 48

Figure 22 Properties Button 48

Figure 23 Export Button 49

Figure 24 Help Button 49

Figure 25 Configuration Nodes in Tree View 50

Figure 26 No Node 50

Figure 27 Closed Node 51

Figure 28 Open Node 51

Figure 29 Tree View 51

Figure 30 Back Arrow 51

Figure 31 Forward Arrow 52

Figure 32 Up-level Button 52
Sun JMS Grid User’s Guide 14 Sun Microsystems, Inc.

List of Figures
Figure 33 Refresh Button 52

Figure 34 View Networks or Clusters 53

Figure 35 Detail and Graphic View 54

Figure 36 New Message Daemon 56

Figure 37 Replicate Object 61

Figure 38 Network URL 66

Figure 39 Create a Network 80

Figure 40 Network Name 81

Figure 41 New Cluster 82

Figure 42 Cluster Name 82

Figure 43 Daemon Clusters Communicating 84

Figure 44 Connect Cluster 85

Figure 45 Graphical View of Cluster 89

Figure 46 Message Daemon Properties 91

Figure 47 Groups 98

Figure 48 Super Group 100

Figure 49 Permission Properties 105

Figure 50 Group Properties 108

Figure 51 New User - Properties 111

Figure 52 Secure Destination Properties 115

Figure 53 Message Daemon Properties 125

Figure 54 Connection Factory Properties 127

Figure 55 Connection Factory Properties 131

Figure 56 Replicate Object 134

Figure 57 Destination Properties 138

Figure 58 Replicate Object 140

Figure 59 Warning Message 144

Figure 60 Admin Settings 144

Figure 61 Point to Point Model 156

Figure 62 Publish and Subscribe Model 157

Figure 63 Bean Properties 186

Figure 64 Tabs - What They Do 214

Figure 65 The Send Panel 215

Figure 66 The Send Operation Panel 215

Figure 67 The Receive Panel 216

Figure 68 The Receive Operation Panel 217

Figure 69 Receive Tab - Pub/Sub 218

Figure 70 Receive Operation Tab 218
Sun JMS Grid User’s Guide 15 Sun Microsystems, Inc.

List of Figures
Figure 71 Send Tab 219

Figure 72 Send Operation Tab 219

Figure 73 Receive Operation Messages Numbers 220

Figure 74 Synchronous Receive 221

Figure 75 Receive Operation Sync 221

Figure 76 Second Send 222

Figure 77 Second Send Operation 222

Figure 78 Send the Message 223

Figure 79 Receive the Message 223

Figure 80 Overview of the Management Console 233

Figure 81 Typical Operations View Screen 235

Figure 82 Typical Metric Selection Screen 236

Figure 83 Typical Metric Viewing Screen 237

Figure 84 Setting Logging levels in the Set Logging Parameters Screen 238

Figure 85 View Logging Screen for a Cluster with no Message Activity 239

Figure 86 Asynchronous Message - Default 265

Figure 87 Asynchronous Dispatch Queues 265

Figure 88 Threads Used Within a JMS Grid JMS Client 266
Sun JMS Grid User’s Guide 16 Sun Microsystems, Inc.

List of Tables
List of Tables

Table 1 Text Conventions 21

Table 2 JMS Grid Runtime Sar Files 23

Table 3 JMS Grid Plug-in for Enterprise Designer 24

Table 4 JMS Grid Runtime Compressed Archives 24

Table 5 Protocols Supported by JMS Grid 64

Table 6 Daemon Internal Queue Parameters 67

Table 7 Message Store Settings 69

Table 8 Configuration Data 73

Table 9 Properties Text File 76

Table 10 Load Balancing Options 86

Table 11 Permission Attributes 93

Table 12 Default Permissions 94

Table 13 Anonymous Login Permission 95

Table 14 Group Attributes 95

Table 15 Default Groups 95

Table 16 User Attributes 96

Table 17 Pre-installed Users 96

Table 18 Secure Destinations 97

Table 19 Group Name and Destination 99

Table 20 Summary of How Clients and Server Daemons React 101

Table 21 Enable Security is Editable 104

Table 22 Connection Factory Properties 131

Table 23 Message Server Tab 136

Table 24 Creating a New Destination 138

Table 25 Storage Type Properties 145

Table 26 Single Daemons 151

Table 27 Networks <aNetwork> <aCluster> 151

Table 28 Permissions 151

Table 29 Users 152

Table 30 Groups 152

Table 31 Destinations Security 152

Table 32 Connection Factory 152

Table 33 Destination 153

Table 34 Connection Factory Classes 161
Sun JMS Grid User’s Guide 17 Sun Microsystems, Inc.

List of Tables
Table 35 JMS Grid Directory Service - Property Settings 164

Table 36 JMS Grid VM Directory Service 165

Table 37 Predefined Connection Factories 166

Table 38 Acknowledgment Modes 167

Table 39 Wildcard Syntax 184

Table 40 JNDI Names Used for Examples 195

Table 41 Type of Object 195

Table 42 JNDI Names Used for Examples 196

Table 43 JNDI Names Used for Examples Showing Default 196

Table 44 Operations for WaveMessageDaemon Resource 251

Table 45 Metrics from WaveMessageDaemon Resource 251

Table 46 Boolean Attributes 251

Table 47 Message Core Resource Operations 252

Table 48 Metrics from the MessageCore Resource 253

Table 49 MessageStore Resource Operations 253

Table 50 Metrics from the MessageStore Resource 255

Table 51 Three Arguments 255

Table 52 Priority Defaults 267

Table 53 Throttle Timeouts 269

Table 54 Compression Parameters 270

Table 55 Parameters for Message Daemons 272

Table 56 Parameters for Message Daemons and Clients 277

Table 57 Parameters - Client Side 278
Sun JMS Grid User’s Guide 18 Sun Microsystems, Inc.

Chapter 1

Sun Java Message Service Grid

1.1 Introducing Sun Java Message Service Grid
This chapter introduces Sun Java™ Message Service Grid (JMS Grid) and introduces its
key features.

JMS Grid is a message oriented middleware product which provides a complete
implementation of the Java Message Service (JMS) API, offering full JMS1.1 compliance
for both publish/subscribe (via topics) and point to point (via queues) messaging.

JMS is a strategic element of the Java2 Enterprise Edition (J2EE) platform from Sun
Microsystems. JMS is used in conjunction with the other technologies of J2EE to
provide reliable asynchronous communication between components in a distributed
computing environment.

A JMS Grid system consists of one or more JMS Grid server processes (daemons) and
one or more JMS Grid client processes.

1.1.1 Architectural Features
Here are some of the key architectural features of JMS Grid:

JMS 1.1 Compliance

J2EE 1.4 Application Server support via a J2CA 1.5 resource adaptor (see release
notes for a list of supported application servers)

Dynamic subscription architecture for scalability

Automatic flow control including producer throttling

Dynamic queue and topic creation

Daemon (server) clusters for fault-tolerance and high availability

Networks of clusters for efficient and reliable message distribution across a WAN

Load balancing of clients across clusters

Load balancing of queue messages across multiple receivers

Automatic failover of client connections, cluster connections and network
connections in the event of failure

Automatic recovery of restarted daemons

Non-blocking input-output to support large numbers of clients
Sun JMS Grid User’s Guide 19 Sun Microsystems, Inc.

Chapter 1 Section 1.1
Sun Java Message Service Grid Introducing Sun Java Message Service Grid
JMX based management and performance monitoring

Destination and message encryption

Access control using users and groups

SSL support

HTTP and HTTPS tunneling through proxy servers and firewalls

These features are described in the remainder of this user’s guide.

1.1.2 Client Features
JMS Grid provides a full implementation of the JMS 1.1 API. In addition, it provides
additional client functionality:

Wildcard destinations: allows messages to be sent to, or consumed from, multiple
destinations using a hierarchical notation.

Content based message selectors which apply to the body as well as the message
header:

XPath message selectors on XML messages.

Bean message selectors on Object messages.

Subscription notification: allows a client to listen for subscription events on a
particular destination.

Session inbox: allows a message producer to send messages to a new queue receiver
or topic subscriber which will be received by that consumer and no others.

Slow consumer notification: allows the server to notify a client that it is not
processing messages quickly enough.

These features are all described in the section Additional Programming Features on
page 183.

1.1.3 What’s in This Chapter
Introducing Sun Java Message Service Grid on page 19.

Related Documents on page 21.

Hardware and Software Requirements on page 21.

Installing JMS Grid on page 23.

Upgrading a SpiritWave 6 Installation to Work with JMS Grid 5.1.2 on page 27.

Sun Microsystems, Inc. Web Site on page 29.

Documentation Feedback on page 29.

1.1.4 Intended Audience
This document is intended for Java programmers, Java CAPS developers, and
administrators who use distributed software systems.
Sun JMS Grid User’s Guide 20 Sun Microsystems, Inc.

Chapter 1 Section 1.2
Sun Java Message Service Grid Related Documents
1.1.5 Text Conventions
The following conventions are observed throughout this document.

1.1.6 Screenshots Used in this Document
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.2 Related Documents
The following Sun Microsystems documents provide additional information about
eGate Integrator and the Composite Application Platform Suite:

Composite Application Platform Suite Installation Guide

eGate Integrator System Administration Guide

eGate Integrator User’s Guide

Composite Application Platform Suite Primer

1.3 Hardware and Software Requirements

1.3.1 Java Runtime Environment
JMS Grid now contains a suitable Java Runtime Environment (JRE) as part of the
product installation. This JRE will be used to run JMS Grid daemons and all tools. This
is normally a Java 1.5 JRE except in certain cases where one is not available and a Java
1.4 JRE is provided instead.

Table 1 Text Conventions

Text Convention Used For Examples

Bold Names of buttons, files, icons,
parameters, variables, methods,
menus, and objects

Click OK.
On the File menu, click Exit.
Select the eGate.sar file.

Monospaced Command line arguments, code
samples; variables are shown in
bold italic

java -jar filename.jar

Blue bold Hypertext links within
document

See Text Conventions on page 21

Blue underlined Hypertext links for Web
addresses (URLs) or email
addresses

http://www.sun.com
Sun JMS Grid User’s Guide 21 Sun Microsystems, Inc.

http://www.sun.com

Chapter 1 Section 1.3
Sun Java Message Service Grid Hardware and Software Requirements
JMS Grid clients can use the bundled JRE or another JRE of your choice. JMS Grid
supports both Java 1.5 and Java 1.5 JREs for client applications though we recommend
use of the JRE supplied with JMS Grid. JMS Grid does not support JDKs earlier than
version 1.4.

1.3.2 Platform Support
JMS Grid 5.1.2 supports the following OS/processor platforms:

Microsoft Windows XP, 2003 on Intel x86 processor

Linux on Intel x86 processor

Red Hat AS3 Linux on AMD 64 processor

Solaris on Sparc processor

Solaris on AMD 64 processor

AIX (32-bit) on p-series 32-bit processor

AIX (64-bit) on p-series 64-bit processor

HPUX on Intel Itanium chip

HPUX on HP PA-RISC 64-bit processor

HP Tru64 on Alpha 64-bit processor

1.3.3 Application Server Support
JMS Grid can be used with the following application servers in conjunction with the
supplied J2CA resource adaptor:

Sun Java CAPS Integration Server 5.1.2 (by a Sun Java CAPS 5.1.2 application)

Sun Java System Application Server version Sun AS 8.1 EE (by a Sun Java CAPS
5.1.2 application)

JBoss version 4 (by a non-CAPS application)

Note: This release does not support BEA Weblogic or IBM Websphere.

1.3.4 Compatibility with SpiritWave Versions
This document describes how to upgrade a SpiritWave 6.1.3 daemon installation to
use JMS Grid 5.1.2.

A JMS Grid 5.1.2 server will support SpiritWave 6.1.3 clients.

It will not be possible to use JMS Grid 5.1.2 clients with a SpiritWave 6.1.3 server.

1.3.5 Compatibility with Sun Java CAPS
JMS Grid 5.1.2 can be used in conjunction with Sun Java Composite Application
Platform Suite 5.1.2. Previous versions of the Sun Java CAPS are not compatible.
Sun JMS Grid User’s Guide 22 Sun Microsystems, Inc.

Chapter 1 Section 1.4
Sun Java Message Service Grid Installing JMS Grid
1.4 Installing JMS Grid
After you have unpacked the compressed archive to a suitable directory you will need
to run a new installer tool to prepare your JMS Grid installation for use.

The installation tool invites you to accept the licence conditions and then asks you to
nominate the TCP and SSL ports to be used when a default daemon is started.

In addition to the instructions included in this section, also see the Java™ Composite
Application Platform Suite Installation Guide.

1.4.1 Upload the JMS Grid Sar Files to the Sun Java CAPS Repository
If you are using JMS Grid on its own without the Sun Java Composite Application
Platform Suite (CAPS) you can skip this step.

If you are using JMS Grid in conjunction with the Sun Java CAPS then the first step you
need to take is to upload the appropriate JMS Grid sar files to your CAPS repository if
this has not already been done.

For more information on the CAPS repository upload/download mechanism please see
the Sun Java CAPS Repository Users Guide.

Upload the JMS Grid Runtime for the Required Platform(s)

The JMS Grid distribution CDs contains a separate JMS Grid runtime sar file for each
supported platform. This contains the files necessary to run a JMS Grid daemon on that
platform together with tools, examples and client components. The following JMS Grid
runtime sar files are available in this release:

After you have uploaded the required JMS Grid runtime sar file you can then manually
download it as a compressed archive. The following section describes how to unpack
and install this archive.

Table 2 JMS Grid Runtime Sar Files

Microsoft Windows XP, 2003 on Intel x86
processor

JMS_Grid-win32.sar

Linux on Intel x86 processor JMS_Grid-Linux_x86.sar

Red Hat AS3 Linux on AMD 64 processor JMS_Grid-Linux-RedHat-AS3_AMD64.sar

Solaris on Sparc processor JMS_Grid-Solaris_SPARC.sar

Solaris on AMD 64 processor JMS_Grid-Solaris_AMD64.sar

AIX (32-bit) on p-series 32-bit processor JMS_Grid-AIX32.sar

AIX (64-bit) on p-series 64-bit processor JMS_Grid-AIX64.sar

HPUX on Intel Itanium chip JMS_Grid-HPUX_Itanium.sar

HPUX on HP PA-RISC 64-bit processor JMS_Grid-HPUX_PARISC.sar

HP Tru64 on Alpha 64-bit processor JMS_Grid-Tru64.sar
Sun JMS Grid User’s Guide 23 Sun Microsystems, Inc.

Chapter 1 Section 1.4
Sun Java Message Service Grid Installing JMS Grid
Upload the JMS Grid plug-in for Enterprise Designer

In addition you will need to upload the JMS Grid plug-in for Enterprise Designer. This
is available in the following sar file which can also be found in the JMS Grid
distribution CD:

The JMS Grid plug-in does not need to be manually downloaded. Instead it you need to
open Enterprise Designer and use its upload center tool to download and install the
plug-in.

1.4.2 Obtain a JMS Grid Runtime Compressed Archive Suitable for
your Machine

This section applies to all JMS Grid users whether you are using JMS Grid in
conjunction with the Sun Java Composite Application Platform Suite (CAPS) or
standalone.

You need to obtain a JMS Grid runtime compressed archive corresponding to the
platform(s) on which you wish to run a JMS Grid daemon. There is a separate JMS Grid
runtime compressed archive for each supported platform. This is because it contains a
JRE suitable for that platform.

If you are using JMS Grid in conjunction with the CAPS you should download the
compressed archive from your CAPS repository. If you are using JMS Grid on its own
without Sun Java CAPS, you can simply copy it from the appropriate JMS Grid product
CD.

The following distribution archives are available in this release:

Table 3 JMS Grid Plug-in for Enterprise Designer

All Platforms JMS_Grid.sar

Table 4 JMS Grid Runtime Compressed Archives

Microsoft Windows XP, 2003 on Intel x86
processor

JMS_Grid-win32.zip

Linux on Intel x86 processor JMS_Grid-Linux_x86.tar.gz

Red Hat AS3 Linux on AMD 64 processor JMS_Grid-Linux-RedHat-AS3_AMD64. tar.gz

Solaris on Sparc processor JMS_Grid-Solaris_SPARC.tar.gz

Solaris on AMD 64 processor JMS_Grid-Solaris_AMD64.tar.gz

AIX (32-bit) on p-series 32-bit processor JMS_Grid-AIX32.tar.gz

AIX (64-bit) on p-series 64-bit processor JMS_Grid-AIX64.tar.gz

HPUX on Intel Itanium chip JMS_Grid-HPUX_Itanium.tar.gz

HPUX on HP PA-RISC 64-bit processor JMS_Grid-HPUX_PARISC.tar.gz

HP Tru64 on Alpha 64-bit processor JMS_Grid-Tru64.tar.gz
Sun JMS Grid User’s Guide 24 Sun Microsystems, Inc.

Chapter 1 Section 1.4
Sun Java Message Service Grid Installing JMS Grid
1.4.3 Unpack the JMS Grid Runtime Compressed Archive
A JMS Grid installation consists of a directory JMS_Grid. You need one JMS Grid
installation on each computer on which you wish to run a JMS Grid daemon.

When deciding where to install JMS Grid, make sure not to choose a directory whose
path contains a space (such as C:\Program Files). If you do then the various scripts
and tools may not work.

The JMS Grid runtime is compressed using a format appropriate to the platform (i.e.
zip format for Windows and tarball format for Unix). This file should be unpacked into
your chosen installation directory using the standard tools for that archive format:

Windows

Use a zip management tool such as WinZip to unpack the archive to your chosen
directory. The installation will consist of a single directory JMS_Grid under the
directory you select.

Unix

Copy the compressed archive to where you would like the JMS_Grid directory to be
and type:

gunzip JMS_Grid-{platform}.tar.gz
tar xvf JMS_Grid-{platform}.tar

This will create a single directory JMS_Grid under the current directory. You can then
delete the compressed archive.

Note: On Solaris systems some versions of the tar command do not handle long
filenames correctly and may generate a checksum error. If this happens then you
should use either the GNU version of tar or the pax command:

pax -rvf JMS_Grid-{platform}.tar

1.4.4 Run the Installer
After you have unpacked the compressed archive to a suitable directory you then need
to run the installer program to make JMS Grid ready to use.

To run the installer script simply execute the script install.bat (Windows) or
install (UNIX) in the root directory of your JMS Grid installation and follow the
instructions.

You will be asked to accept the licence conditions and nominate the TCP and SSL ports
to be used when a default daemon is started. You will also be given the option of
starting a default daemon as part of the installation process.

1.4.5 Set the JMSGRID Environment Variable
Once you have installed JMS Grid it is recommended that you create an environment
variable JMSGRID and set it to the root directory if your JMS Grid installation. This
Sun JMS Grid User’s Guide 25 Sun Microsystems, Inc.

Chapter 1 Section 1.4
Sun Java Message Service Grid Installing JMS Grid
allows you to run any of the JMS Grid commands without the need to navigate to the
directory containing that command.

You don't have to set this variable, but if you don't you need to make sure that before
you run any of the JMS Grid tools you should navigate to the directory containing that
tool.

You should set the JMSGRID environment variable using the method appropriate for
the operation system being used.

1.4.6 Configure the Management Console
The JMS Grid management console is a Java web application (war file). This can be run
either in a standalone servlet container (web server) or a servlet container embedded in
a JMS Grid daemon.

Configuring a Standalone Servlet Container

If you wish to use a standalone servlet container simply install the servlet container of
your choice (e.g. a recent version of Apache Tomcat) and drop the war file
jmxConsole.war into its webapps directory. The war file can be found in your JMS
Grid installation in the directory catalina/webapps.

Configuring the Embedded Servlet Container

If you wish to use the embedded servlet container you need to perform the following
steps:

Install a Tomcat 4.0.2 servlet container and set the environment variable
CATALINA_HOME to the directory where this is installed. Note that the embedded
servlet container will only work if this specific version of Tomcat is installed.

Set the environment variable JMXCONSOLE_HOME to the location of the JMS Grid
management console support files. These can be found in your JMS Grid
installation in the directory catalina. By default the value
%JMSGRID%\catalina (Windows) or $JMSGRID/catalina (UNIX) will be used
so you only need to set this variable if you move these files to another location.

To start the embedded servlet container, simply supply the argument /c when
using the startserver command to start a daemon. By default this uses port
8080. You can specify which port will be by using the argument /c <port>. For
more details see the JMS Grid User's Guide.
Sun JMS Grid User’s Guide 26 Sun Microsystems, Inc.

Chapter 1 Section 1.5
Sun Java Message Service Grid Upgrading a SpiritWave 6 Installation to Work with JMS Grid 5.1.2
1.5 Upgrading a SpiritWave 6 Installation to Work with JMS
Grid 5.1.2

1.5.1 Upgrading the Product Installation
If you already have a SpiritWave installation and wish to upgrade it to use JMS Grid,
first backup your SpiritWave installation and then follow these steps:

Install JMS Grid into a suitable directory.

Move all property files (*.properties) from the old SpiritWave installation to the
new JMS Grid installation.

Move the wdir directory from the old installation to the new installation.

If you are using the default settings for the admin store, which is to use a local file-
based JNDI store, then you will need to move the jndi directory from the old
installation to the new installation.

Upgrade the message and admin stores as described below:

When you are happy the new installation is working, you can delete your old
SpiritWave installation.

1.5.2 Upgrading the Message Store
The way in which the subscriptions associated with network connections are named
has had to be changed in JMS Grid. This is because it causes problems with the latest
versions of the Java Management Extensions. If you have network connections in
SpiritWave you need to upgrade your message store to rename these subscriptions.

What You Need To Do

There is a tool, called storeupgrade (UNIX) or storeupgrade.bat (Windows), in the root
of your JMS Grid installation. You can use this tool to convert a SpiritWave message
store so that it works with JMS Grid or revert back from a JMS Grid format to
SpiritWave.

Usage:

storeupgrade [-S | [-J]] <data-directory>

-J: convert a SpiritWave store to a JMS Grid store. This is the default direction so this
flag is not obligatory.

-S: convert a JMS Grid store to a SpiritWave store

The <data-directory> value is the directory in which all the message store files reside,
so for a daemon named Daemon1 this would be $SPIRITWAVE/wdir/data/Daemon1.
Then, to run the update on this store you would issue the command, on Unix:

storeupgrade $SPIRITWAVE/wdir/data/Daemon1

and on Windows:
Sun JMS Grid User’s Guide 27 Sun Microsystems, Inc.

Chapter 1 Section 1.5
Sun Java Message Service Grid Upgrading a SpiritWave 6 Installation to Work with JMS Grid 5.1.2
storeupgrade %SPIRITWAVE%\wdir\data\Daemon1

As the default is to convert from SpiritWave to JMS Grid we do not need to specify a
flag.

1.5.3 Upgrading the Admin Store
The format in which users are stored in the admin store has changed. This means that if
you are using JMS Grid security and have used SpiritWave 6.1.3 or earlier to define
users in the admin store you need to upgrade the store as described here.

Why the Format of a User has Changed

Earlier versions of Sun JMS Grid, then known as SpiritWave, used serialization to store
the public key attributes of users. However, we have now changed this to use the
preferred key encoding method, which does not have any dependency on the concrete
class which a particular JRE might use to represent the public key. We have also
changed aspects of the key generation process.

When the user is updated as described in the next section it is important to note that the
password is reset at the same time, to be the same as the user name. We strongly
encourage you to ensure these are then changed to something more secure as soon as
possible.

These changes have come about because we no longer need to support JRE version 1.1,
which did not have key encoding, and also so that security would work on all
supported platforms. However, note that there are still some cross platform issues: the
Sun Java Message Service Grid Release Notes.

Upgrading Users: What You Need to Do

There is a key conversion tool, called keyconvert (Unix) or keyconvert.bat
(Windows) in the root of your JMS Grid installation. You can use this tool to convert a
SpiritWave admin store so that it works with JMS Grid.

Usage:

keyconvert [-S |[-E]]

-E: Convert users with serialized keys, from earlier versions, to encoded keys. Change
user’s password to the same as the user’s name.

-S: Convert users with encoded keys back to serialized keys. This preserves the
password to the same as it was in the upgraded store.

If no arguments are given, the script will assume key encoding, i.e. as if -E were
specified, is to be done.

Note: The script uses the JRE specified by the JAVA_HOME environment variable and not
the JRE which is distributed with JMS Grid. This is because you MUST use the
same JRE to do the conversion as was used to create the users in the first place. If
you see exceptions such as StreamCorruptedException being reported it is
likely that you are using the wrong JRE.
Sun JMS Grid User’s Guide 28 Sun Microsystems, Inc.

Chapter 1 Section 1.6
Sun Java Message Service Grid Sun Microsystems, Inc. Web Site
After running this tool to upgrade the admin store, you should use the cpass
command to change the password of each user to something more secure than their
user name.

1.6 Sun Microsystems, Inc. Web Site
The Sun Microsystems web site is your best source for up-to-the-minute product news
and technical support information. The site’s URL is:

http://www.sun.com

1.7 Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

CAPS_docsfeedback@sun.com
Sun JMS Grid User’s Guide 29 Sun Microsystems, Inc.

http://www.sun.com
mailto:CAPS_docsfeedback@sun.com

Chapter 2

Architecture Overview

2.1 System Components
Any message-based application that uses JMS Grid will be composed of a number of
fundamental components:

JMS Grid clients – the physical end points from which messages are sent and
received. A client could be a standalone Java application, or it could be an EJB,
servlet or JSP running in an application server.

JMS Grid server – a network of inter-connected daemon processes able to relay
messages between connected client processes.

Connections – these exist between clients and daemons, and between daemons.

Destinations – the logical destinations from which messages are sent and received
by client processes.

JMS Grid message store – a database of messages used to guarantee the delivery of
messages on failure.

These are described below.

JMS Grid clients

A JMS Grid client is simply a Java application process that creates a JMS client
connection to a JMS Grid server. This is a socket connection which enables the client
process to send and receive messages to/from the JMS Grid server remotely. Many
client processes can connect to the JMS Grid server, enabling the sending of messages
between clients via the server.
Sun JMS Grid User’s Guide 30 Sun Microsystems, Inc.

Chapter 2 Section 2.1
Architecture Overview System Components
Figure 1 Two JMS Grid Clients Connected to a JMS Grid Server

JMS Grid Server

At the center of any JMS Grid messaging system is the JMS Grid Server. This consists of
a network of one or more JMS Grid daemon processes. A JMS Grid daemon is the
fundamental building block of the JMS Grid server, responsible for managing client
connections and the delivery of messages between clients.

Each client is connected to a specific daemon with a socket connection. Messages are
routed from the sending client, via any number of daemon processes in the server, to
one or more receiving clients. Message routing is managed by JMS Grid server and is
automatic. A client does not know where a recipient is located.

Networked messaging daemons can be configured into clusters and networks.

A cluster is a tightly coupled collection of daemon processes where all daemons are
inter-connected. Client connections are spread across the available daemons and all
message data is shared to provide fault tolerance.

A network is a loosely coupled collection of clusters where specific daemons are
connected between clusters and only messages required for delivery to a client on a
secondary cluster are sent between clusters. Clusters and networks together provide
scalability and fault-tolerance.
Sun JMS Grid User’s Guide 31 Sun Microsystems, Inc.

Chapter 2 Section 2.1
Architecture Overview System Components
Figure 2 Three Cluster - Three Daemon JMS Grid Server

Connections

Messages are transmitted from the sending client to the receiving client via a series of
daemon processes and inter-process connections. There are three types of connection in
a JMS Grid system:

Client connection – connects client and demon processes

Cluster connection – connects daemons within a cluster

Network connection – connects daemons between clusters

All inter-process connections are socket based and support the following protocols:

TCP

HTTP

SSL

HTTP/S

Connections have support for load balancing and failover. Load balancing spreads the
client connections across the available daemon processes for performance and
scalability. Failover enables any connection to automatically reconnect to another
available resource when the connection is lost.

The following diagram shows a cluster of three daemons. If one of these daemons fails
then any clients connected to that daemon are automatically reconnected to another
daemon in the cluster. We call this client connection failover.
Sun JMS Grid User’s Guide 32 Sun Microsystems, Inc.

Chapter 2 Section 2.1
Architecture Overview System Components
Figure 3 Client Connection Failover

Destinations

A destination a logical concept defined by the JMS specification. Clients do not send
and receive messages to and from each other directly. Instead they send and receive
messages to and from destinations. This allows each client to operate without knowing
about the other clients.

The JMS specification defines two types of destination – queues and topics:

With queues, each message is delivered to one and only one recipient.

With topics, each message is delivered to every receiver subscribing to that topic.

The JMS Grid server is responsible for establishing the physical path between clients
and destinations.

Message store

To provide guaranteed delivery of messages in the event of a system failure, messages
may optionally be saved to persistent storage. JMS Grid uses a persistence mechanism
known as the JMS Grid message store. This is a proprietary file-based message store
optimized for use within a messaging system. It is highly scalable and can handle
millions of messages.
Sun JMS Grid User’s Guide 33 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Architecture Overview Distributed Topologies
Figure 4 JMS Grid Message Store

2.2 Distributed Topologies
JMS Grid supports a variety of server topologies:

A single daemon

A cluster of multiple daemons

A network of multiple clusters

Single Daemon

A single daemon configuration will have client connections only, with all messages
routed through the daemon, as illustrated below. This configuration will exhibit
minimal latency between sender and receiver, but will have limited scalability and
limited fault tolerance.
Sun JMS Grid User’s Guide 34 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Architecture Overview Distributed Topologies
Figure 5 Single Daemon

Cluster of Multiple Daemons

A cluster is a group of inter-connected JMS Grid daemons which collectively manage
client connections and the routing of messages from sender to recipient. Clients can
connect to any of the daemons within the cluster.

The connections between daemons are known as cluster connections. All daemons
within a cluster are connected to all other daemons within that cluster, and so are able
to route messages directly to any daemon within that cluster.
Sun JMS Grid User’s Guide 35 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Architecture Overview Distributed Topologies
Figure 6 Cluster of Three Daemons

Daemons within a cluster collaborate to optimize message routing across the cluster. In
order for the cluster to determine where messages should be routed, subscription
information is shared between daemons across the cluster connections. Complete
location transparency is maintained; applications need only know the logical
destinations. Physical routing is established by the daemons themselves. For non-
persistent messages, message routing across the cluster is optimized. A message will
only pass through a maximum of two daemons before arriving at its destination. If the
sending and receiving clients are connected to the same daemon, only one daemon will
be involved.

For fault tolerance and resilience message replication of persistent messages occurs
between daemons within a cluster. When a persistent message is received by a
particular daemon from a client, the message is replicated around the cluster. In the
event of failure of the receiving daemon, the remaining daemons in the cluster will
assume responsibility for delivery and the client connection will failover to another
daemon in the cluster. On reconnection the client will synchronize state with the cluster
and resume. On restarting the failed daemon, synchronization will take place between
the clustered daemon processes to establish the current state of the queues before they
resume normal operation.

Clusters can be configured across multiple machines for performance and fault
tolerance. A multiple machine cluster introduces greater levels of isolation into the
configuration. Such a configuration will have greater resilience to severe hardware
failures. As messages and subscription information are shared across the cluster, there
is no single point of dependency. A machine may fail completely and the cluster will
continue to function with no message loss and no interruption to service. Clients will
Sun JMS Grid User’s Guide 36 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Architecture Overview Distributed Topologies
failover their connections to the remaining daemons on the working machines which
will assume responsibility for message delivery as described above.

Clusters add resilience, fault tolerance, and scalability to the JMS Grid architecture:

Resilience and fault-tolerance are provided through process redundancy, message
and subscription replication, daemon and client synchronization and connection
failover, which prevent there being any single point of failure.

Scalability is provided by the ability to add as many message daemon processes as
is necessary.

Note: Some versions of JMS Grid may have limitations in the number of daemons that a
cluster may contain. Please see the product release note for details.

Multi Cluster Networks

Clusters can be connected to each other to form networks of clusters. These inter-
cluster connections are known as network connections. Clusters can be configured in
any topology, including hierarchical and full network topologies.

Networks differ from clusters in that they are loosely coupled. The daemons that form a
cluster are all inter-connected; there is a connection between every pair of daemons in
the cluster. All subscriptions are shared and all persistent messages are replicated
between the daemons in the cluster.

If two clusters are connected to form a network, however, a connection is only required
between one daemon in the first cluster and one daemon in the second cluster.

Messages are only routed between two clusters when a message sent by a client on one
cluster needs to be delivered to a client on the other cluster. Network connections,
therefore, typically carry less traffic than cluster connections, making them suitable
across slower infrastructure such as a WAN.

Furthermore network connections can withstand the connection going down for a
period of time, as is sometimes the case with a WAN. In such situations messages are
simply stored on the sending cluster, ready to be forwarded when the connection is
reestablished.

Finally network connections are fault tolerant: if one of the daemons at either end of a
network connection fails then the network connection will automatically failover to one
of the remaining daemons in its cluster.
Sun JMS Grid User’s Guide 37 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Architecture Overview Architecture
Figure 7 Simple Network of Two Clusters

Networks provide the means to deploy highly scalable and fault tolerant
configurations. Dynamic subscription manages the physical routing of messages,
preserving transparency, enabling dynamic routing and failure routing to occur while
optimizing message flows across any network topology.

2.3 Architecture

Destinations and Dynamic Subscription

When a client registers interest in receiving messages from a particular destination this
triggers a subscription event which is automatically propagated to the other daemons,
both those within the local cluster and those in remote clusters across the network. The
propagation of subscription events is known as dynamic subscription.

Similarly, when a client begins to send messages to a JMS destination (a topic or queue)
this message production event is automatically propagated to all daemons in a similar
way.
Sun JMS Grid User’s Guide 38 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Architecture Overview Architecture
Message Routing

Dynamic subscription enables a JMS Grid network to dynamically create message
paths across any daemon topology. As subscriptions change, so the daemon network
will propagate those changes and re-configure the message routing. New message
paths are established when new subscriptions are taken out.

If the topology of a network changes due to a daemon failure, the message paths will
automatically adapt and find alternate routes. The failure of daemons will be
transparent with no loss of service. Connection failures are also handled transparently.

When a connection breaks for any reason, the connection failover mechanism is
activated. This applies for all types of connection: client connections, cluster
connections and network connections. In all cases, when connection failure is detected,
the client or daemon automatically detects the failure and searches for an appropriate
alternative daemon to connect to. When the alternative connection has been
reestablished then new message paths are established and message delivery continues
as before. This occurs without any error or exception being thrown to the client.

The JMS Grid network is responsible for the delivery of messages and will determine
the optimal message route across the available network of daemons. Specific message
routing across networks can be configured via network filters as described below.

Subscription Propagation

When a daemon receives a subscription from a client it will be automatically forwarded
to the other daemon or daemons in the cluster. If the cluster is connected to another
cluster via a network connection, then the subscription will also be propagated to each
connecting cluster and to all daemons within those clusters. This propagation of
subscriptions enables JMS Grid to establish routing dynamically across any network
topology.

Each daemon thus knows about subscriptions for every daemon in the network:

All clients connected to it (client connections)

All daemons in its cluster (cluster connections)

All clusters connected to it via network connection daemons (network connections)

The only exception to this is if a network filter has been configured to control the
propagation of messages across a network connection.

Network Filters

The propagation of messages across a network can be controlled via network filters. By
default all messages are propagated to remote clusters. A network filter explicitly
controls the propagation of subscriptions and hence messages across a network
connection.

A network filter can either refer to a specific named destination, e.g. “Topic.SubTopic1”,
or use wildcards in a hierarchical destination name, e.g. “Topic.*”, to apply filtering to a
broader range of destinations.
Sun JMS Grid User’s Guide 39 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Architecture Overview Architecture
By placing a filter on a network connection, only messages for the destination declared
in the filter will be propagated between the clusters. Similarly filters with wildcards
will only allow messages through that are sent to a destination within the name range
specified by the wildcard. Many filters can be applied concurrently allowing explicit
control of the message flows between clusters.

The ability to control inter-cluster traffic provides the means to optimize message flows
across cluster networks providing greater scalability.

The ability to control the visibility of destinations across a network connection and
thereby control the associated message flows provides data partitioning, enabling
"Chinese walls" to be maintained between one part of a network and another.

Message Persistence

Each JMS Grid daemon has a message store which is used to store persistent messages
sent to queues and to topics on which there are durable subscriptions.

The message store is a file-based data store optimized for use within a messaging
system. This provides better performance than would be offered by a generalized
relational database. The message store is highly scalable and able to handle large
volumes of stored messages.

Each daemon has its own message store. Changes made to one message store are
automatically replicated across the cluster. This replication of data is what makes JMS
Grid able to withstand the failure of individual daemons without any loss of service or
messages.
Sun JMS Grid User’s Guide 40 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Architecture Overview Architecture
Figure 8 Daemon Message Store - Replication and Synchronization

When a persistent message is received into the cluster from a client, the receiving
daemon first persists the message in its local store. It then sends copies of the message
to the other daemon or daemons in the cluster. When these other daemons receive the
message they save it in their own message store and send an acknowledgement to the
first daemon. A two-phase commit protocol is used to ensure that each daemon is
updated consistently. When the first daemon has received acknowledgements from the
other daemon or daemons it finally sends an acknowledgement back to the client.

If a daemon fails, one of the remaining daemons assumes responsibility for delivery of
messages, using the messages in its local message store.

When the failed daemon re-starts and rejoins the cluster, a recovery process occurs
during which the recovering daemon synchronizes its state with the rest of the cluster.
Updates are sent to the recovering daemon from an up to date daemon in the cluster
and stored in its message store. After recovery is complete the recovering daemon will
contain exactly the same messages and subscription information as the other daemons
just as it did before it originally failed.
Sun JMS Grid User’s Guide 41 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Architecture Overview Architecture
Acknowledgement Model

JMS Grid provides guaranteed delivery of persistent messages between clients via a
distributed configuration of server daemons. This is achieved via a synchronous
acknowledgement mechanism between clients and daemons. When a message is sent
the sending client waits for an acknowledgement from the daemon. The
acknowledgement indicates the message has been persisted in the message store and is
safe from system failure. At this point the client discards the message from its in-
memory cache.

During the acknowledgement cycle the daemon persists the message in its recoverable
message store and sends replicas out to all other daemons in the cluster. It then waits
for all the other daemons to send back acknowledgements that they have received and
persisted each message replica. The daemon then sends an acknowledgement back to
the receiving client.

Figure 9 Acknowledgement Model
Sun JMS Grid User’s Guide 42 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Chapter 3

Administration

3.1 Introducing the Administration Tool
This chapter describes how to configure a JMS Grid installation. It covers:

How to use the administration tool to configure the particular system architecture
of daemons and clusters that you require

How to start and stop a JMS Grid daemon

How to use the administration tool to configure users, groups and encrypted
destinations

How to use SSL

How to use the administration tool to configure JMS connection factories and
destinations

This chapter does not cover run-time monitoring or management. This is covered in
Chapter 5, Using the JMS Grid Management Console on page 233.

This chapter does not cover how to fine-tune your system to achieve maximum
performance. This is covered inChapter 6, Configuring JMS Grid for Fast Throughput
on page 263.

3.1.1 Starting the JMS Grid Admin Tool on Windows
All configurations for JMS Grid are performed through a single interface, known as the
JMS Grid Admin Tool. Here we explain how to start the admin tool.

1 Open a command prompt and navigate to the root of your JMS Grid installation.

2 At the command prompt type: C:\JavaCAPS51\JMS_Grid > admin

Note: A Windows command prompt appear and shortly afterwards, the Application
Startup dialog box. After a few more seconds, the JMS Grid Admin Login dialog box
will appear. If no dialogue box is seen, check under any other windows that may be
open as it can easily be hidden under these.
Sun JMS Grid User’s Guide 43 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 10 Logon Dialog

3 Enter your userName and password into the relevant text fields in the Admin Login
dialog box. Click the Login button.

4 If this is the first time you have used the admin tool, or you are logging in as the
default User, then enter the following values into the Username and password
fields:

userName: admin

password: admin

We recommend that you change the default password at the earliest opportunity.
This is explained in Changing a User's Password on page 113. You must be
extremely careful not to forget the new password.

Note: It is vitally important that you don’t lose this password. All other passwords in the
system can be changed if the original is forgotten. If the admin User’s password is
forgotten – and you have not created any other Administrators – then your position
is irretrievable. You will have to re-create the admin store for your JMS Grid system
and start all over again!

The JMS Grid Admin Tool window appears.
Sun JMS Grid User’s Guide 44 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 11 JMS Grid Tool

If your userName was invalid, a valid userName’s password was incorrect or your
User did not have ‘Administrator’ permission, then the Error dialog shown below will
appear. Click the OK button to close this Error dialog. To start the admin tool again,
return to step 1 in this How To.

Figure 12 Logon Error

If you fail to Login three times using the same valid userName, then the admin tool will
lock that User out. That userName will not be allowed to login again until the
administrator has re-enabled the account.

3.1.2 Starting the JMS Grid Admin Tool on Unix
JMS Grid configuration tasks are performed using the JMS Grid Admin Tool. Here, we
explain how to start the admin tool from the Unix operating system.

1 Open a command shell and navigate to the root of your JMS Grid installation.

2 At the command line type:

C:\JavaCAPS51\JMS_Grid > admin

3 Login to the Admin Tool as described in steps 2 and 3 of Starting the JMS Grid
Admin Tool on Windows on page 43.
Sun JMS Grid User’s Guide 45 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
3.1.3 Using the JMS Grid Admin Tool
This section gives an overview of the JMS Grid Admin Tool’s Graphical User Interface.
It introduces the GUI’s main components and explains the principles you will need to
understand in order to use it.

Starting the JMS Grid Admin Tool in Windows

Starting the JMS Grid Admin Tool in Unix

The figure below shows the JMS Grid Admin Tool GUI. The tree view is on the left
hand side, the detail view on the right.

Menu Bar

The Admin Tool’s menu bar contains three high level options that enable you to exit
from the admin tool, specify various tool settings or obtain access to Help information.
The majority of the Admin Tool’s functionality is started from either the Action button
on the Toolbar or a context sensitive pop -up menu over the Detail View.

Toolbar

The Toolbar provides a general mechanism for navigating the views, selecting display
modes and providing shortcuts to the most common functions.

Tree View

The Tree View displays the hierarchy of configuration nodes and allows you to navigate
around them. The navigation and manipulation of configuration nodes is central to
administering JMS Grid. Detailed instructions on navigating around the Tree View are
given in Navigating the Tree View on page 49.

Configuration Node

JMS Grid’s configuration data is organized into a hierarchy of configuration nodes. JMS
Grid is configured by creating configuration nodes and by setting their properties.

Detail View

The Detail View gives detailed information about the configuration node that is
currently selected in the Tree View. The format of the information shown depends on
the type of configuration node selected. For some nodes, the only information
displayed in the Detail View is a list of that node’s sub-nodes. For other nodes, the
Detail View shows a table of the property values of that node’s sub-nodes. The Detail
Views allows you to query, modify, create and delete items using related context menus
triggered by a right mouse button click.

Detail View Pop Up Menu

The Detail View pop up menu gives the administrator access to the majority of the
Admin Tool’s functionality. This pop up menu is opened by right mouse clicking in the
Detail View. If an item in the Detail View is selected, then an Item Menu will pop up.
The Item menu contains actions that can be performed on the item that is selected. If
nothing is selected, in some cases, a Panel Menu will pop up. Panel menus allow you to
perform more general tasks or create new objects in that Detail View.
Sun JMS Grid User’s Guide 46 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 13 Admin Tool GUI

3.1.4 About the Toolbar
The Toolbar is located directly under the Menu bar.

Figure 14 Toolbar

The purpose of the Toolbar is to provide a general mechanism for navigating the views,
selecting display modes and to provide functional shortcuts.

Figure 15 Action Button

The Action button contains a context sensitive pull-down menu which is dependent on
the admin object currently selected in the Tree View. For example, when the ‘Single
Daemons’ node is selected, menu options include ‘New Daemon…’ and ‘Refresh’.

Figure 16 View Button

The View button contains a pull-down menu, which allows you to toggle between the
detail and graphic viewing modes of the Detail View, such as graphics and detail. A
graphic view is only available when certain nodes are selected – see How to switch
between detail and graphical view.
Sun JMS Grid User’s Guide 47 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 17 Back Arrow

The Back arrow button will take the administrator from the current view to the
previous view. This button will have an effect only if the administrator already clicked
at least one view prior to triggering this option.

Figure 18 Forward Arrow

The Forward arrow button will take the administrator from the current view to the next
view. This button will have an effect only if you already clicked at least one view prior
to triggering this option.

Figure 19 Up-level Button

The Up-Level button will take the administrator from the admin object that’s currently
selected in the Tree View to its parent object. This button will have an effect only if the
current node is not a root node in the Tree View.

Figure 20 Show-Hide Button

 The Show/Hide button will hide the Tree View if it is currently showing and show the
view if it is currently hidden.

Figure 21 Refresh Button

 The Refresh button will trigger a refresh of any current Detail View. This is useful if the
information that is being displayed was changed from the outside of this application,
for example if an administered JMS object such as Destination has been removed from
the JNDI directory by another User.

Figure 22 Properties Button

The Properties button will only work if there is an item selected in the Detail View. It
will have the same effect as if the administrator selected an item, right-clicked a mouse
and selected the Properties option from the Item Menu in the Detail View.
Sun JMS Grid User’s Guide 48 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 23 Export Button

 The Export button enables you to export Detail Views in Comma Separated Values
(CSV) File Format. These files may then be browsed or used for reporting in
spreadsheets such as Excel. Once triggered, a file dialog will appear prompting the
administrator for file name and location. For a more detailed explanation of this see
Exporting Configuration Data to a File on page 146.

Figure 24 Help Button

 Shows this help file.

3.1.5 Navigating the Tree View
To be able to use the JMS Grid Admin Tool, you must be able to navigate around the
configuration nodes in the Tree View.

The figure below shows a sample view of the configuration nodes in the Tree View.
Sun JMS Grid User’s Guide 49 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 25 Configuration Nodes in Tree View

Selecting a node

A node is selected with a left mouse click whilst the cursor is over either the node’s
icon, or the text to the right of that icon. The text of the currently selected node has a
light blue background.

Types of Configuration Nodes

The Tree View displays three types of node:

Figure 26 No Node

The no node type contains no navigable sub nodes. Nodes of this type have no + or –
symbol in their bottom left corner.
Sun JMS Grid User’s Guide 50 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 27 Closed Node

The closed node type has sub-nodes that are not currently displayed. Nodes of this type
have a + (plus) symbol in their bottom left corner.

Figure 28 Open Node

The open node type has sub-nodes that are currently displayed. Nodes of this type
have a - (minus) symbol in their bottom left corner.

Opening and Closing nodes

A closed sub-node can be opened so that its sub nodes are displayed when you
right or left-click it.

An open node is closed when you right or left-click it.

The right mouse button can be used for opening and closing a node without select.

A left mouse click will both toggle the node and select it.

Nodes with no navigable sub nodes cannot be opened or closed.

Buttons

Figure 29 Tree View

The Tree View maybe shown or hidden using the Show/Hide button, which is located
on the tool bar.

You can easily re-trace your steps through the Tree View by using the Back Arrow and
Forward Arrow buttons on the Toolbar.

Figure 30 Back Arrow

 The Back arrow button will take you from the current view to the previous view. This
button will have an effect only if you have already clicked at least one view prior to
triggering this option.
Sun JMS Grid User’s Guide 51 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
Figure 31 Forward Arrow

The Forward arrow button will take you from the current view to the next view. This
button will have an effect only if you have already clicked the back arrow button to take
you to at least one previous view.

Figure 32 Up-level Button

You can navigate to the current node’s parent by clicking on the Up-Level button. This
button will have an effect only if the current node is not a root node in the Tree View.

3.1.6 Refreshing the Data that is Displayed
It is possible that the stored administrative objects are out of step with your view of
them in the JMS Grid Admin Tool.

It is advisable to refresh the Admin Tool’s view in the following circumstances:

After editing network or cluster configurations.

A Connection Factory’s settings are modified from outside this tool

The JNDI Store settings are changed.

Note: Only the information for the admin object that is selected in the Tree View will be
refreshed.

To refresh the data

The Admin Tool provides two ways to manually refresh the view.

Figure 33 Refresh Button

Click the Refresh icon on the Toolbar.

Position your cursor over the Detail View, but not over any items in the view. Click
the right mouse button to bring up the Panel Menu. For most Detail Views, the
Panel Menu will contain a Refresh option. If the Detail View is full, right mouse
click the Detail View’s column headers to access the Panel Menu.
Sun JMS Grid User’s Guide 52 Sun Microsystems, Inc.

Chapter 3 Section 3.1
Administration Introducing the Administration Tool
3.1.7 Toggling Between Detail and Graphical View
The JMS Grid Admin Tool allows you to view Networks and Clusters graphically as
well as in tabular form.

Figure 34 View Networks or Clusters

Prerequisites

You should be familiar with Navigating the Tree View on page 49.

You should be familiar with creating a network. See Networks of Clusters of
Daemons on page 79.

To create a new cluster

1 Navigate to the network or cluster in the Tree View that you wish to view. All the
networks that have been created are located under Console Root > JMS Grid >
Networks. Cluster nodes are located under their network.
Sun JMS Grid User’s Guide 53 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Administration Managing Single Daemons
Figure 35 Detail and Graphic View

2 In the Toolbar left mouse click the View button. A pull down is displayed below the
button. The pull down shows two options: Detail and Graphic.

3 From this pull down, select the view type that you want. You can only switch to a
graphic view if you have a Network or Cluster admin object selected in the Tree
View. When other admin object types are selected, the Graphic option is disabled.

3.2 Managing Single Daemons

3.2.1 What Is a Daemon?
A daemon is a program that runs continuously and exists for the purpose of handling
periodic service requests that a computer system expects to receive.

JMS Grid messaging daemons are continually running programs that receive messages
from message producing clients and perform the necessary routing to ensure that the
messages are received by consuming clients. A JMS Grid server is made up of one or
more such daemons.

JMS Grid daemons can be executed as single programs or grouped into clusters. This
section covers the administration of single, stand-alone daemons. Single daemons offer
a simple messaging solution. In this case, the JMS Grid server consists of a single
process that only communicates with messaging clients and not with other daemons.

A single daemon JMS Grid server is often used for stand-alone application
development and for basic evaluation.

A JMS Grid server can also consist of a number of inter-connected cluster daemons.
Cluster daemons have many similarities with single daemons. Many of the How Tos in
this section apply to both single and cluster daemons. Cluster daemons are explained in
more detail in, Creating a Configuration for a Cluster Daemon on page 83.

3.2.2 Configuring a Single Daemon
This section describes the simplest way to use the JMS Grid Admin Tool to create a
configuration for a single daemon.
Sun JMS Grid User’s Guide 54 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Administration Managing Single Daemons
Note: This How To explains how you create a configuration for a single daemon. It does
not tell you how to run a daemon that uses that configuration. How to run a daemon
is explained in Starting a Daemon on page 57.

Single daemons cannot be added to a cluster. If you want to create a cluster of daemons,
you must create Cluster Daemons – see Creating a Configuration for a Cluster
Daemon on page 83.

There are no fundamental differences between single daemons and cluster daemons.
The only difference is that a cluster daemon has a Cluster ID. A cluster daemon then
connects up with all the other daemons with the same Cluster ID.

It is also possible to start up a default single daemon that needs no configuration. This
is explained in Starting a default daemon.

Prerequisite

You should be familiar with Navigating the Tree View on page 49.

If you want to configure where your configuration data is stored, see Specifying how
Configuration Data is Stored on page 143.

1 In the Tree View navigate to Console Root > JMS Grid > Single Daemons.

2 Right mouse click in the Detail View, ensuring that the cursor is not over any existing
daemons that are displayed in the Detail View. This will bring up the Panel Menu.
Alternatively, you can right mouse click over the Detail View column headings, or
use the drop down menu off the ‘Action’ button on the Toolbar.

Note: If the elements displayed in the Detail View fill the screen such that it is not possible
to position the cursor away from them, detail, then right click the table heading in
order to bring up the Panel Menu.

3 From the Panel Menu, select New Daemon. This will open the New Message dialog
box.
Sun JMS Grid User’s Guide 55 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Administration Managing Single Daemons
Figure 36 New Message Daemon

4 Enter a unique name for the daemon into the name field. You must only use
alphanumeric characters for the daemon name. Do not use spaces.

Note: The daemon name must be unique from the names of all other daemons within your
configuration data store. You cannot give a single daemon the same name as one of
your cluster daemons.

5 Click the OK button. When a new daemon has been created, it is displayed in a row
in the table in the Detail View.

Note: The system will automatically generate a default network URL that the daemon will
listen on. See Specifying a Daemon Network URL on page 64.

The Cluster ID field is not used for single daemons.
Sun JMS Grid User’s Guide 56 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Administration Managing Single Daemons
See also

Specifying a Daemon Network URL on page 64.

Creating a Configuration for a Cluster Daemon on page 83.

3.2.3 Starting a Daemon
The preferred way to start single daemons or cluster daemons is:

On Windows – as an NT service.

On Unix–If you want to start up the daemon’s when the machine is booted, add the
startup command to the appropriate script in the /etc/rc*.d directories. Details of this
will vary depending on the version of Unix/Linux that is being used.

The process described in this section explains how to start JMS Grid daemons from the
command line.

The daemon’s configuration can match

a specification defined using the Admin Tool

a specification in a property file

or can be a default daemon that uses the default configuration.

This process is used for starting both single and cluster daemons.

The process outlined below only covers how to start a daemon that is executed on the
same computer that stores the configuration data. If the daemon is being executed
remotely from the configuration data machine, please read Starting a Daemon on a
Computer that is Remote From its Configuration Data on page 71.

Prerequisites

If not starting a default daemon.

You should be familiar with Configuring a Single Daemon on page 54.

You should be familiar with how to Creating a Configuration for a Cluster
Daemon on page 83.

The command used to start a daemon depends on which operating system you are
using:

Windows

When starting up a daemon that follows a configuration specified in the JMS Grid
Admin Tool, it is important to remember the daemon’s unique name.

Note: Be careful to remember the capitalization of the daemon’s name.

1 Open a Command shell window and navigate to the root of your JMS Grid
installation: (C:\JAVACAPS51\JMS_GRID)

2 Use the startserver command to start the daemon using the following syntax:
Sun JMS Grid User’s Guide 57 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Administration Managing Single Daemons
startserver [/n daemonName] [/p propertiesFile] [/w workingDirectory]
[/s username password]

where

/n daemonName specifies the name of the daemon configuration to retrieve from
configuration store – as created by following the instructions in Configuring a
Single Daemon on page 54. Also see Creating a Configuration for a Cluster
Daemon on page 83.

/p if specified, use the properties file propertiesFile rather than using the
configuration in the Admin Store. Use of a property file is explained in more detail
in Configuring a Daemon from a Properties Text File on page 76.

/w specifies the working directory where the data and logs directories are created
and stored. The default is the wdir directory under your JMS Grid installation.
workingDirectory is the name of the working directory.

/s if specified, enables secure operation of the daemon.

A valid username and password must be supplied (as explained in "All
platforms".)

Unix

If you’re starting up a daemon that follows a configuration you specified in the JMS
Grid Admin Tool, you must remember the daemon’s name.

Note: Be careful to remember the capitalization of the daemon’s name.

1 Open a command shell and navigate to the root of your JMS Grid installation.

2 Use the startserver command to start the daemon using the following syntax:

startserver [-n daemonName] [-p propertiesFile] [-w
workingDirectory] [-s username password]

where

-n allows you to specify the name of the daemon.

daemonName is the name of the daemon configuration to retrieve from configuration
store – as created by following the instructions in Configuring a Single Daemon on
page 54. Also see Creating a Configuration for a Cluster Daemon on page 83.

-p if specified, use the properties file propertiesFile rather than using the
configuration in the Admin Store. Use of a property file is explained in more detail
in Configuring a Daemon from a Properties Text File on page 76.

-w allows you to specify the working directory, where the data and logs are created
and stored. The default is the wdir directory under your JMS Grid installation.

-s if specified, enables secure operation of the daemon. A valid username and
password must also be supplied (as explained in "All Platforms,” below).
Sun JMS Grid User’s Guide 58 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
 All Platforms

If the daemonName you provide does not match up to a daemon configuration then
coded default values will be used.

Only one daemon of a given daemon name can be started within the same JMS Grid
server installation.

If you specify the –s or /s security option on the command line, it will enable security
on the daemon, irrespective of the value of the ‘enable security globally’ property in the
JMS Grid Admin Tool – see Enabling JMS Grid Security on page 100.

Username and Password

This username and password are used for authorizing network connections (that is
connections between daemons in different clusters). In order that network connections
can be established between daemons you must specify a valid existing username (and
corresponding password). This username will have been previously set up in the
Admin Tool – as explained in Creating a User on page 110. User permissions set here
establish what is allowed to be done between the connected daemons. See How to tell
that a Daemon is using its Daemon Configuration on page 73.

3.3 Starting a Default Daemon
You can start a single daemon without having to do any configuration at all.

At the command line navigate to the root of your JMS Grid installation and enter:

startserver

If the –name option is omitted then a JMS Grid daemon is started with the default
configuration. The daemon gets the name <hostname>-50607, where hostname is the
name of the computer on which this daemon is being executed. The default daemon
always binds to port 50607 on the host computer. Thus, you can only start a single
default daemon per host.

3.3.1 Starting a Daemon with an Embedded Servlet Container
You can start a JMS Grid Message Daemon that includes an embedded instance of the
Tomcat servlet and JSP container.

Note: This does not work if you are using AJP or WARP connectors. This means that you
cannot use an embedded Tomcat if you also wish to use it as a servlet engine for the
Apache web server. In this case you must run it as a standalone server.

Prerequisites

You need to have a Tomcat 4.0.2 installation set up. The environment variable
CATALINA_HOME must be set to point to the root directory of that installation. The
environment variable JMSCONSOLE_HOME must be set to the location of the JMS
Sun JMS Grid User’s Guide 59 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Grid management console support files. These can be found in your JMS Grid
installation in the directory catalina. For more information see the JMS Grid installation
instructions. The actual configuration of Tomcat is beyond the scope of this document:
Tomcat comes with complete documentation describing the configuration process.

To start daemons with embedded servlet containers

You can start your daemon, whether configured or not, in the usual way. Only one extra
argument, /c or –c, is needed to the command line.

On Windows:

startserver [/n serverName][/w workingDirectory][/s username
password]/c

On Unix:

startserver [-n serverName][-w workingDirectory][-s username
password]-c

Once you have started the daemon, it will handle servlets and JSPs in the usual way. No
change is needed to the addresses used in the web browser.

3.3.2 Creating Multiple Copies of a Daemon Configuration
If you want to create many similar daemon configurations you could repeat the steps
explained in Configuring a Single Daemon on page 54, many times over. However,
this would be a laborious process.

The JMS Grid Admin Tool provides you with a much quicker way to do this – it allows
you to make multiple copies an existing daemon configuration.

Prerequisites for single daemons

You should be familiar with Configuring a Single Daemon on page 54.

Prerequisites for cluster daemons

You should be familiar with how to Creating a Configuration for a Cluster
Daemon on page 83.

To create multiple copies of daemon configurations

1 Create a single configuration for a single daemon or a cluster daemon. Ensure that
the configuration parameters of this configuration closely match the configurations
of your copies before deciding to replicate it.

2 Select the daemon to replicate. Click the right mouse button to bring up the Item
Menu. From the Item Menu select Replicate. This will open the Replicate Object
dialog, as shown below.
Sun JMS Grid User’s Guide 60 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Figure 37 Replicate Object

3 In the SequenceName field, enter the name to be used for the replicated objects.
The Admin Tool applies a simple numbering rule to the names of each of the
replicas. A sequential number, starting from 0, is appended to the end of the
SequenceName you give to create the replica’s name. For example, if you entered
MyDaemon as the sequence name, and asked for 3 copies to be made, then the
replicated daemons would be called MyDaemon0, MyDaemon1 and MyDaemon2.

4 In the NumberOfCopies field enter the number of copies to make.

5 Click the OK button. In the Detail View list the sequence-named of replicas will
appear, with incremented port numbers.

3.3.3 Deleting a Daemon’s Configuration
This section describes how to remove a daemon’s configuration from a JMS Grid
configuration.

Deleting a daemon’s configuration has no effect on a running daemon that is using that
configuration. However, once a daemon with a deleted configuration has been stopped,
it is not possible to start another daemon with that configuration.

Use the same procedure to delete both single and cluster daemons.

To delete daemon configurations

1 To delete a single daemon, in the Tree View, navigate to: Console Root > JMS
Grid >Single Daemons.

To delete a cluster daemon, navigate to:

Console Root >JMS Grid >Networks <Network containing daemon’s
cluster> <Cluster containing daemon>

2 In the Detail View, select the daemon whose configuration you want to delete.

Note: To delete multiple daemons at the same time, you can select multiple daemons by
holding down the Control key as you select each of the daemons you want to delete.
Sun JMS Grid User’s Guide 61 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
3 With the mouse still over that daemon right click, and from the pop up Item menu
that appears, select Delete.

4 Click Yes in the confirmation dialog that appears.

3.3.4 Stopping a Daemon
The recommended way to shutdown a daemon is to use either the stopserver or sms
command.

The stopserver command can be found in the root directory of your JMS Grid
installation:

C:\JavaCAPS51\JMS_Grid>stopserver
Running command: sms -connect tcp://localhost:50607,admin,admin -
context default.mymachine-50607
(logging messages omitted)
Shutdown operation complete
C:\JavaCAPS51\JMS_Grid>

The stopserver command can only be used to stop a daemon which is listening on
the TCP port that was specified to be the default when JMS Grid was installed. This will
be tcp://localhost:50607 unless you specified something different.

If you wish to stop a daemon which is not listening on this protocol and port (e.g. if you
are using a different port, a different protocol or if the daemon is on a remote machine)
then you must use the sms (stop message server) command in the mgmt directory. The
sms command allows you to specify the protocol and port to use to connect to the
daemon:

For example, if the daemon is listening only on port 444 using the SSL protocol, use the
following:

sms -connect ssl://mybox:444,admin,admin -context default.daemon1

For a full description of the sms command see Shutdown Message Server - sms on
page 249. The stopserver and sms commands will be merged in a future version of
JMS Grid.

You can also shutdown a daemon by typing Control-C in the console window or, on
UNIX, by using the command kill -TERM pid

Note: When a daemon is shutdown, non-persistent messages that are in transit will be
lost.

3.3.5 Editing a Daemon’s Configuration
This section describes how to retrieve a daemon’s configuration options for the
purposes of updating specific items and not how to actually perform a specific
configuration.

For a daemon to work you must give it at least a name and a network URL. See
Specifying a Daemon Network URL on page 64.

For other configuration settings the default values need not be changed in order to
configure a basic daemon.
Sun JMS Grid User’s Guide 62 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Note: Updating the configuration from the Admin Tool does not affect a running daemon;
you must stop and restart the daemon before property changes will take effect. If you
want to modify the behavior of a daemon while it is running, you must use the JMS
Grid Runtime Management Console – see The JMS Grid JMX Management Guide.

Prerequisites

You should be familiar with Configuring a Single Daemon on page 54.

You should be familiar with how to Creating a Configuration for a Cluster
Daemon on page 83.

1 In the Tree View, navigate to the daemon you want to configure.

Single daemons reside in Console Root > JMS Grid > Single Daemons

Cluster daemons reside in:

Console Root > JMS Grid >Networks > <Network containing daemon’s
cluster> > <Cluster containing daemon>

2 In the Detail View, right-click the daemon and click Properties. The Message
Daemon Properties dialog box appears.

3 Perform the configurations that are required. Details of specific configurations are
covered in individual sections. See the list below.

4 When finished and you want your configuration revisions accepted, click OK or
Apply buttons, then click OK in the warning dialog that follows.

See also

Configuring a Single Daemon on page 54

Specifying a Daemon Network URL on page 64

Configuring a Daemon’s Internal Queues on page 67

Configuring Daemons to Actively Detect Network Outages on page 68

Configuring Daemons to Automatically Close Connections to Slow or Frozen
Clients on page 68

Load Balancing Messages Across Cluster Daemons on page 86

Enabling Auto Discovery on page 87

Configuring Daemon Reconnections on page 89

Configuring Message Filters on Inter-daemon Network Connections on page 90

Note: You can open an item’s properties dialog by selecting it in the Tree View and then
clicking on the Properties button in the Toolbar.

3.3.6 Specifying a Daemon’s Name
A daemon’s name is used to match a JMS Grid daemon with:

1 A daemon configuration that was set up in the JMS Grid Admin Tool.

2 The name of the log file created when a given daemon is running.
Sun JMS Grid User’s Guide 63 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Note: The daemon name must be unique to the names of all other daemons your whole
JMS Grid installation. You cannot give a single daemon the same name as one of
your cluster daemons. Cluster daemon’s names must be unique from daemons in all
other networks and clusters in your installation.

To specify daemon names

1 Follow steps 1 to 4 of, Editing a Daemon’s Configuration on page 62.

2 In the Message Dialog Properties dialog, ensure that the General tab is on top.

3 Alter the name shown in the Name field. Although the input field will allow the
entry of any character, you must only use alphanumeric characters for the daemon’s
name. Do not use spaces in the daemon’s name.

4 Now complete step 4 of, Editing a Daemon’s Configuration on page 62.

3.3.7 Specifying a Daemon Network URL
A daemon’s network URL specifies the network location of a daemon and the protocol
it uses to send and receive messages. Those messages could have been transferred to/
from either a client or from another daemon.

A URL has the form:

<protocol>://<hostname>:<port>

It specifies the protocol to expect, the address to use (it must be an address local to the
machine the daemon is running on) and the port.

Protocols

JMS Grid supports the following protocols, TCP, HTTP and SSL.

Table 5 Protocols Supported by JMS Grid
TCP
Transmission Control Protocol

A set of rules used along with the internet protocol to send
data in the form of packets between computers over the
Internet. TCP takes care of keeping track of individual
packets of data. TCP is used on the sending side to split a
stream of data into packets, and on the receiving side to
rebuild the packets back into the data stream.

HTTP
Hypertext Transfer Protocol

A set of rules for exchanging files on the World Wide Web.
HTTP is an application protocol. If a daemon is configured to
use the HTTP protocol, them it will wait for HTTP requests
and handle them when they arrive.
Messages are given an http wrapper to enable http tunneling
through firewalls.

SSL
Secure Sockets Layer

A protocol for managing the security of a message
transmission on the internet. It uses the program layer which
is located between HTTP on the application layer and TCP on
the transport layer. It uses the public-and-private key
encryption system.
Sun JMS Grid User’s Guide 64 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
JMS Grid Message Daemons can support multiple network protocols concurrently. A
single daemon could listen to TCP, http and SSL at the same time. You must define a
Network URL for each protocol that daemon will understand. Thus, having more than
one network URL enables a single daemon to talk and listen in multiple protocols. Each
protocol must be associated with a unique hostname/port combination. Thus it would
be invalid to have the following Network URL's in the same system:

TCP://localhost:3456
SSL://localhost:3456

Which protocol should you select?

The key consideration when selecting the protocol (s) to be used by a daemon is 'Which
protocols do the messaging clients support?'. The protocols used by the daemon must
match the protocol used by its clients - otherwise the clients communications will
simply not be understood. If you have some flexibility over which protocols can be
used by both clients and daemons, then you should take the following into account...

If you require certificate-based daemon and/or client authentication, or if you require
on-the-wire encryption, then use SSL. (Note however that JMS Grid's security
mechanism supports data encryption and user/password authentication and access
control even across TCP and HTTP connections.)

If your firewall does not allow TCP or SSL traffic - use http.

If none of the above apply - use TCP. For point to point communication, TCP carries the
lowest overhead and hence is the fastest and most efficient protocol option.

Hostname

Hostname must be an address local to the machine on which the daemon is running. It
can either be the machine’s physical IP address, or its name.

Port

The port is a numerical value, and represents the port that a daemon listens on for client
connection requests. The port must not be in use by any other processes on that host.
On Solaris and Linux, port numbers below 1024 are restricted to processes that have
been started by the root User. Default values (should be in the same format as other
defaults). The default network URL used by the admin tool for a JMS Grid daemon is:

tcp://<localhost>:50607

Note: When daemons are replicated, port number of the original is incremented for each
copy.

Multihomed Machines

As mentioned above in the protocols section, a daemon can be configured to listen for
client connections on more than one Network URL. As well as enabling a daemon to
listen to multiple protocols, this also enables a single JMS Grid daemon to bridge more
than one network domain for multihomed machines. Thus on a multihomed machine
(a host that has more than one IP address) you can set up a single daemon to listen on
each of that machines IP addresses.

Network URL, Bind Address, and Resource Location

Each of these terms is used in JMS Grid. They are all pseudonyms for the same thing.
Sun JMS Grid User’s Guide 65 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Message Channels

This is the term used by a client when referring to the bind Address of a daemon
running on a server.

To set up daemon network URLs

1 Follow steps 1 to 4 of, Editing a Daemon’s Configuration on page 62.

2 Click Add by the list of resource locations.

To edit an existing network URL, select the location you want to edit, then click the
Edit button. The NetworkURL dialog box appears as shown below.

Figure 38 Network URL

Note: The NIO option is not supported and the checkbox should be left unchecked.

3 Fill in the desired protocol, host and port values before clicking the OK button. You
must enter a valid host name and a port number that is not already being used by
another daemon on that particular host.

4 To add multiple network URL's for a given daemon, repeat steps 2 and 3 above for
each new network URL.

Systems With Multiple Network Cards

Some machines may have more than one network card, if they are being used as a
bridge between two disparate network domains. By setting up more than one network
URL for a daemon, it is possible for that daemon to listen for client connections on both
network cards, e.g.

tcp://<Network1Name>:50607 and tcp://<Network2Name>:50607
Sun JMS Grid User’s Guide 66 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
3.3.8 Configuring a Daemon’s Internal Queues
The JMS Grid Message Server uses internal dispatch queues for distributing messages
to clients as efficiently as possible. In this section we explain how to customize the
daemon’s internal dispatch queues.

The following parameters are used to define the behavior of a daemon’s internal
queues:

Internal Dispatch of Non-Persistent Messages to Queues and Topics

Messages that are non-persistent are placed on internal message queues within the
daemon, awaiting dispatch to clients that have subscribed to the message’s destination.
When a message is received by the daemon, it is examined to determine which
subscribers can receive the message. Message selection for a subscriber is done by
destination name (where wild cards can be applied) and either message header or by
content, depending on the type of selector used by the subscriber. Once a message has
been tagged with the list of valid subscribers, it is placed to await dispatch, based on
the priority of the message.

For messages sent to a Queue destination, an internal dispatch queue exists for each
Queue name. For messages sent to a Topic, a dispatch queue per client is used up to the
maxTopicDispatchQueues limit. When the numbers of clients who can receive the
message on the Topic exceeds this, more than one client can share an internal dispatch
queue.

A message producer can sometimes send messages at a faster pace than they can be
consumed. This can result in messages having to be held by the daemon for a period of
time until they are dispatched. The maxInternalQueueSize parameter defines the
maximum amount of memory that can be allocated to all the internal dispatch queues.
If you are expecting a large internal queue to build up, you may wish to increase the
maxInternalQueueSize to make maximum use of the available physical memory on
your hardware.

To Configure Internal Queues

1 Follow steps 1 to 4 Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog box, click Optimization.

3 Set the values of the maxInternalQueueSize and maxTopicDispatchQueues to the
desired values.

Table 6 Daemon Internal Queue Parameters

Name Description Default Value

maxInternalQueueSize The maximum memory size in bytes that this
daemon’s internal dispatch queues can use

33554432
(32 MB)

maxTopicDispatchQueues The maximum number of dispatch queues used
for distributing messages to Topic(s)

100
Sun JMS Grid User’s Guide 67 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
3.3.9 Configuring Daemons to Actively Detect Network Outages
When using the HTTP, SSL and TCP protocols, the loss of a connection by network
outage does not become apparent for some time.

A ‘keep alive’ or ping protocol can be used to actively detect network disconnects. This
is controlled by a daemon’s pingEnabled property.

When the pingEnabled property is set for a daemon, that daemon will check all of its
connections for successful packet transmission.

If PingEnabled is checked and there has been no messaging traffic on a connection for
the time specified in the pingTimeout property (milliseconds), a ‘keep alive’ message is
passed between this daemon and its clients (a client could also be another daemon). If
the message is not returned within pingTimeout * 2 msecs then the connection is
deemed to have failed.

If the ping fails, the daemon assumes the client is dead and terminates the connection. If
the client has not died (the connection might have been lost due to a network fault),
then the client also determines that the daemon isn’t available and attempts to connect
to another daemon in the cluster before continuing to send messages.

Default values:

pingEnabled property: False

pingTimeout property: 5000

To configure daemons to actively detect network outages

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog box, click Clients.

3 To enable active network outage detection, make sure the Ping Enabled check box is
ticked.

4 In the Ping Timeout field, specify how many milliseconds the daemon waits until it
suspects that a connection has gone down, and send a ‘keep alive’ message.

Note: JMS Grid Connections can be individually configured to check for network outages
– see Editing Connection Factory Properties for a Normal JMS Grid Client
Connection on page 135.

3.3.10 Configuring Daemons to Automatically Close Connections to
Slow or Frozen Clients

Clients that are slow consumers or frozen are referred to as blocked clients. It is
important for the daemon to actively monitor blocked clients since they can have a
negative impact on the performance of the whole messaging server.

Every connection is monitored for blocking. If a connection is blocked for more than
timeSocketBlockedBeforeClosing milliseconds, the daemon will close the
connection to that client. A client can be perceived as frozen due to either a client
application error or a network error. If a client loses its connection to a daemon it will
seamlessly fail over to another daemon in the cluster.
Sun JMS Grid User’s Guide 68 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Default value:

timeSocketBlockedBeforeClosing property: 30000 milliseconds

To configure daemons to automatically close connections to slow or frozen clients

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog box, click Clients.

3 In the TimeBlockedBeforeClosing field, enter the time (in milliseconds) allowed
for a connection to be blocked before it is closed by the daemon.

3.3.11 Configuring the Daemon’s Message Store
Message persistence is an important part of any fault tolerant messaging system. JMS
clients can specify that messages be sent in either Persistent Delivery Mode or Non
Persistent Delivery Mode.

When messages are sent in Persistent Delivery Mode, the message server must ensure
that messages are not lost if the server fails. The server does this by storing undelivered
messages in a message store. Once a message is delivered to all intended durable
subscribers, it will be removed from the message store.

To Configure the Daemon Message Store:

1 Follow the steps in configuring daemons.

2 In the Message Daemon Properties dialog, bring the Message Store tab to the top.

3 See below on how to fill out properties for the message store.

Table 7 Message Store Settings

Name Description
Default
Value

marWindowSize Maximum number of unacknowledged messages
that can have been dispatched from a particular
queue or durable subscription before the daemon
will cease sending further messages. (Note: A MAR is
an internal "Mark As Read" message).

100

spiritDbDispatchThreads The maximum number of dispatch threads for the
message store

10

msgResendsBeforeDiscard The number of attempts to send a message to a client
within 1 minute before it is discarded to the Dead
Message Queue

2

SpiritDBMaxFileInMbytes Set the maximum size of the message store (in
Mbytes).

512
Sun JMS Grid User’s Guide 69 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
3.3.12 Preventing JMS Grid From Failing
Some of the things that can go wrong in a computer system are:

any piece of hardware

any piece of software

any communications link among hardware

That is, there is the possibility that anything in a computer system could go wrong at
some point.

This section does not itself tell you how to prevent JMS Grid from failing. Instead it
points you towards other sections in this user’s guide that explain the steps you can
take to avoid failure.

Hardware failure

Distribute daemons across hardware platforms. See Networks of Clusters of Daemons
on page 79.

Software failure

If a daemon fails, ensure that there are other daemons that can take over. See Creating a
New Cluster on page 81.

Ensure that if software fails, then messages are recoverable. See and Configuring the
Daemon’s Message Store on page 69.

Avoid delivering messages to slow or frozen clients.

spiritDBThrottleThreshol
dPercentage

When the message store reaches the Threshold
percentage of the Max Size the daemon will start
throttling publishers. The rate is determined at which
messages are consumed, not more than the
maximum (as a percentage).

80

maxThrottleTimeout This will be the maximum rate publishers will be
throttled (in milliseconds).

1000

dataBlockSizeInBytes size of message blocks in the message store. Can
improve performance on some platforms

10485760

indexBlockSizeInBytes size of message blocks in the message store. Can
improve performance on some platforms

1048576

useDataBackup If true, old data blocks will be moved to a backup
directory rather than be deleted

dataBackupDir Absolute path of backup directory for data blocks unset

useSync If set to true, daemon will Sync file after each
message write.

false

Table 7 Message Store Settings (Continued)

Name Description (Continued)
Default
Value
Sun JMS Grid User’s Guide 70 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Network failure

See Configuring Daemons to Actively Detect Network Outages on page 68.

3.3.13 Starting a Daemon on a Computer that is Remote From its
Configuration Data

JMS Grid allows you to start JMS Grid daemon on a system that is remote from the
system that is storing its configuration. Thus, for a widespread network of daemons,
you can choose where the configuration data for that system is stored.

This is dependent on the level of access your remote computer has to the computer
that’s storing the configuration data and the type of configuration storage that you
have told JMS Grid to use. It is very important that you choose a storage type that
matches your requirements before you begin to store your system configuration in it.

Prerequisites

You should be familiar with the JMS Grid Admin Tool.

You should know how configuration data is stored.

For these basic steps, we refer to the system on which the configuration data resides as
the 'Configuration Data computer' and the machine on which the remote daemon will
be running as the 'Daemon computer'.

On the Configuration Data Computer

1 JMS Grid provides links into many different mechanisms that you can use to store
the configuration data. Make sure the Admin Store mechanism that you are using
allows that configuration data to be accessed from the Daemon computer. This is
explained in more detail in Deciding which Type of Configuration Data Store to
use on page 148.

2 Create a configuration for the daemon that is to run on the Daemon computer.
Ensure that the Resource Location URL (also known as the daemon’s network URL)
is set to the name or IP address of the Daemon computer.

The following sections describe how to configure a daemon:

Configuring a Single Daemon on page 54

Creating a New Cluster on page 81

Specifying a Daemon Network URL on page 64

On the daemon computer

1 Install JMS Grid on the Daemon system.

2 Follow the instructions given in Configuring JMS Grid from a Remote Machine
on page 72 so that on the daemon system you can access the configuration data on
the configuration data computer. When you set up the JMS Grid Admin Tool to
access the configuration data on the configuration data computer some of the
configuration settings on the daemon computer are altered so that any daemons
that are run on the daemon computer can find the remote configuration.
Sun JMS Grid User’s Guide 71 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Note: If the daemon is using any JMS Administered Objects that are stored in JMS Grid’s
JMS Admin Object Store, then you must also set up the JMS Grid Admin Tool so
that it accesses the remote JMS Admin Object Store.

3 On the daemon computer, start the daemon using the procedure in Starting a
Daemon on page 57. Set the value of the /n option to that of the daemon
configuration you created in step 1 of this section.

4 Check to see that the daemon is using the correct configuration by following the
instructions given in How to tell that a Daemon is using its Daemon
Configuration on page 73.

3.3.14 Configuring JMS Grid from a Remote Machine
The JMS Grid Admin Tool can be run from a computer that is remote from the machine
that stores your JMS Grid configuration so long as that remote computer has access to
the place where the configuration data is stored.

If you require remote access to configuration data then the most common mechanisms
for storing configuration data are one of the JNDI implementations (such as WebLogic
or the Sun Java System Application Server) or LDAP. The pros and cons of using each
storage mechanisms is covered in Deciding which Type of Configuration Data Store
to use on page 148.

Prerequisite

Specifying how Configuration Data is Stored on page 143.

In this section we refer to the system on which the configuration data is stored as the
Configuration Data computer, and the system on which you are running the JMS Grid
Admin Tool as the Remote computer.

On the Configuration Data Computer

1 Start up the JMS Grid Admin Tool on the Configuration Data system. You need to
do this in order to complete steps 2 and 3.

2 Using the JMS Grid Admin Tool, find out which storage mechanism has been used
to store the Admin Store configuration data on the Configuration Data system.

This is done by opening the Admin Settings dialog and viewing the value of the
Storage Plugin widget.

Note: If a file based mechanism is being used, then the remote system will need file access
to the Configuration Data system before you can access the configuration data.

You cannot remotely edit the configuration of JMS Grid if you are using XML
Remote type configuration storage – unless your remote drive is mapped. With
XML remote storage you can read data from a URL, but changes are output to a
specified directory name. For that directory name to work a drive mapping in
needed.
Sun JMS Grid User’s Guide 72 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
3 Make a note of the Admin Store configuration data store properties and values.
Different properties are used by the different storage mechanisms. Details of the
properties are given in Specifying how Configuration Data is Stored on page 143.

4 Close the Admin Tool on the Configuration Data system.

On the Remote Computer

1 Ensure that JMS Grid is installed locally on the Remote computer. The Remote
system’s %JMS Grid% environment variable should point to the JMS Grid
installation on the Remote system.

2 Run the JMS Grid Admin Tool.

3 Open the Admin Settings dialog box by selecting Preferences > Admin Settings
from the pull down menus.

4 Select the same Storage Plugin type as used by the Configuration Data computer.
Set the store properties to match those that you noted in Step 2, above. You will
have to make the following substitutions:

Once accepted, you should be able to see the same configuration data within the JMS
Grid Admin Tool as you could see on the Configuration Data system. Depending on
which Storage Plugin type is being used and on the access permissions you have, then
you may or may not also be able to edit that data.

3.3.15 How to tell that a Daemon is using its Daemon Configuration
If the daemon configuration has not been found then JMS Grid will start up a daemon,
with the name you’ve provided – but that daemon will load its most recent locally
cached configuration.

When you start a JMS Grid daemon from a command prompt you are presented with
the same command line output if the daemon has found its correct configuration or if it
has not found it.

The command line output you will see will look something like this…

C:\JavaCAPS51\JMS_Grid>startserver /n myDaemon
JMS Grid Daemon: myDaemon
Initializing Daemon - logging to File: C:\JavaCAPS51\JMS_Grid\WMS-
localFileStorageDaemon.log

In order to find out which configuration a daemon is using, you must look in the
daemon’s log file.

Table 8 Configuration Data

Configuration Data System Remote System

Directory Path Drive letter – for example C: Mapped network drive letter

URL localhost Actual machine name or IP address.
Sun JMS Grid User’s Guide 73 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Start the Daemon

If the daemon is running on the computer that stores the configuration data see
Starting a Daemon on page 57.

If the daemon is running on a different computer than the one that stores the
configuration data see Starting a Daemon on a Computer that is Remote From its
Configuration Data on page 71.

Examine the Log File

1 Make a note of the name and the Resource Location of the daemon.

You can do this from the JMS Grid Admin Tool. Navigate to the daemon you are
interested in (under either the Single Daemons node or the Networks > Your
Network > Your Cluster node).

2 Open the daemon’s log file.

Use the name of the daemon to work out which is its log file. If you have access to
the Command Window from which the daemon was started, the daemon’s log file
location is output to that Window after the text ‘logging to File:’. For more details
see How To access a daemon’s log file.

3 Examine the log file. See Accessing a Daemon's Log File on page 75.

If the daemon has found its configuration then in the log file it will tell you that it
has bound to the Resource Location that was specified in its configuration:

The relevant part of log file would look something like the snippet shown below.
The line showing which resource location the daemon has bound to is shown in
bold type.

2002-08-08 12:43:25,083 INFO - Initializing Message Store
2002-08-08 12:43:25,313 INFO - Initializing Message Store complete.
2002-08-08 12:43:30,751 INFO - Initializing JMX Connector ...
2002-08-08 12:43:31,041 INFO - JMS Grid Daemon(myDaemon) now bound
to tcp://myHost:2352
2002-08-08 12:43:31,422 INFO - Management Agent initialized
2002-08-08 12:43:31,422 INFO - JMS Connector now ready to accept JMS
Clients at tcp://myHost:2352

If the daemon did not find its configuration then in the log file it will report an error,
as shown in the log file snippet below:

2002-08-08 12:40:56,449 INFO - Initializing Message Store
2002-08-08 12:40:56,559 INFO - Initializing Message Store complete.
2002-08-08 12:40:56,559 WARN - Failed to access admin store - trying
wave message store ...
2002-08-08 12:40:56,559 ERROR - Failed to load configuration from
store(//admin/DefaultConfiguration/daemons/localFileStorageDaemon not
found)
2002-08-08 12:40:56,559 WARN - Can't access configuration from
store
2002-08-08 12:41:01,867 INFO - Initializing JMX Connector ...
2002-08-08 12:41:02,087 ERROR - Failed to load configuration from
store(//admin/DefaultConfiguration/daemons/localFileStorageDaemon not
found)
2002-08-08 12:41:02,087 WARN - Can't access configuration from
store
Sun JMS Grid User’s Guide 74 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
The log file will then report that the daemon has bound to the next available default
resource location:

2002-08-08 12:41:02,087 INFO - JMS Grid
Daemon(localFileStorageDaemon) now bound to tcp://mikebpc:2345
2002-08-08 12:41:02,478 INFO - Management Agent initialized
2002-08-08 12:41:02,478 INFO - JMS Connector now ready to accept JMS
Clients at tcp://mikebpc:2345

3.3.16 Accessing a Daemon's Log File
Each running daemon creates a log file in which the daemon records important events
during its lifetime.

The important events that a daemon records include information:

The times you started and stopped the daemon

The version and build number of the daemon

The daemon and cluster name

The URL to which the daemon binds

Details of clients that attempt to log into it

In this section we explain how to find the log file for a given daemon.

A daemon’s log files are stored in the daemon’s working directory. By default the work
directory will be the directory </code>wdir</code> under your JMS Grid
installation. You can specify a different working directory using the /w (windows) or -
w (unix) argument of the <code>startserver</code> command.

The location of a working directory depends on whether or not you specified it in the /
w option (-w option on Unix) in the command line you used to start the daemon.

If you do not specify the /w option, then the default working directory is used. The
default working directory is called <courier>wdir</courier> and can be found
under the root of your JMS Grid installation (e.g. C:\JavaCAPS51\JMS_Grid\wdir)

Under the working directory you will find the daemon log files at:

log\WMS-<YourDaemonName>.log.<backupIndex>

where

YourDaemonName: is the name you gave to your daemon.

BackupIndex: the index number of a backup log file. The current log file does not have
a backup index.

Note: When you start a daemon from a command window, the command output tells you
the location of that daemon’s log file.

For example:

C:\JavaCAPS51\JMS_Grid>startserver /n myDaemon
JMS Grid Daemon: myDaemon
Initializing Daemon - logging to File:
C:\JavaCAPS51\JMS_Grid\wdir\logs\WMS-localDaemon-50607.log
Sun JMS Grid User’s Guide 75 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
See also

Configuring a Daemon's Logging Properties on page 78.

How to tell that a Daemon is using its Daemon Configuration on page 73.

3.3.17 Configuring a Daemon from a Properties Text File
If your system needs to configure JMS Grid using scripts rather than using the JMS Grid
Admin Tool, then you should consider using a text properties file to provide JMS Grid
daemons with their configuration.

Prerequisite

You should be familiar with Configuring a Single Daemon on page 54.

Create a text properties file. The table below gives details of the properties you are
allowed to set, that property’s description and its default value.

Table 9 Properties Text File

Property Name Description Default value

autoDiscoveryAllowed Determines whether the daemon
will register as a service for clients to
automatically discover, and whether
the daemon itself will use multicast
discovery to locate other daemons

false

bindAddresses urls the daemon will attach to tcp://localhost:50607

closeClientsOnNetworkConne
ctionFailure

close all connections on a network
connection failure

false

clusterID unique id for the cluster the daemon
belongs to

default

connectionLoadBalancing Either RandomLoading or
LeastUsedLoading

RandomLoading

daemonClusteredConnections URLS of daemons in the cluster to
connect with

daemonConnectionRetriesTim
eout

timeout in seconds before retrying
to establish connection to another
daemon

10000

daemonNetworkConnections URLS of daemons in the hierarchy to
connect with

exceptionOnNoQueueReceiver throw an exception on client of no
receiver for a Queue

false
Sun JMS Grid User’s Guide 76 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
marWindowSize Maximum number of unacknowledged
messages that can have been
dispatched from a particular queue or
durable subscription before the
daemon will cease sending further
messages. (Note: A MAR is an
internal "Mark As Read" message).

100

maxDaemonConnectionRetries number of retries attempting to
connect to another daemon

10

maxInternalQueueSize set the amount of VM memory
allowed to be used by the daemon's
message dispatch Queues (in bytes)

8388608

maxTopicDispatchQueues maximum number of separate
dispatch queues used for
distributing publish/subscribe
(Topic) messages

100

messageStoreType type of message store (must always
be set to SPIRITDB)

SPIRITDB

name unique name for the message server generated
automatically

networkConnectionQueueFilt
ers

filter used to restrict queue
propagation across cluster
boundaries

networkConnectionTopicFilt
ers

filter used to restrict topic
propagation across cluster
boundaries

password password for firewall proxy server null

pingEnabled use ping protocol to determine
network outage

false

pingTimeout time (ms) before next ping 10000

proxyHost Hostname or IP address of firewall
proxy server (only applicable if HTTP
protocol is being used)

null

proxyPort Port of firewall proxy server 0

serviceDiscoveryChannel Multicast channel used for automatic
discovery of daemons. Only used if
the allowAutoDiscovery parameter is
set

multicast://
224.0.0.4:3495

Table 9 Properties Text File (Continued)

Property Name Description Default value
Sun JMS Grid User’s Guide 77 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Administration Starting a Default Daemon
Note: If you want to add comments to your properties configuration file, put a # character
at the start of the line.

When you start the daemon using the startserver command, specify the name of the
properties file using the /p (windows) or -p (unix) argument. This is explained in more
detail in Starting a Daemon on page 57.

3.3.18 Configuring a Daemon's Logging Properties
Each JMS Grid daemon creates log files that record the daemon’s runtime activities.

The JMS Grid Admin Tool enables you to specify two log file properties:

maxLogFileSize–The maximum size for each of that daemon’s log files.

maxLogBackupIndex–The maximum number of backup log files that will be created
for a given daemon. A new backup log is created when the current log size grows
greater than its maxLogFileSize. The maximum number of actual log files will be 1
more than this number (counting the ‘live’ log file). After maxLogBackupIndex files
have been reached, the oldest log file is deleted.

Default values:

maxLogFileSize - 2000000 (2 MBytes)
maxLogBackupIndex -10

Prerequisites

You should be familiar with Editing a Daemon’s Configuration on page 62.

You should be familiar with Accessing a Daemon's Log File on page 75.

To configure log properties

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

spiritDbDispatchThreads Number of threads used to dispatch
messages from the message store.
There will be this number of threads
dispatching from queues and the
same number of threads dispatching
from topics.

2

storeName JNDI name (relative to parent
context) under which the
configuration of this object is stored.
Not normally changed except
through admin tool.

null

timeSocketBlockedBeforeClo
sing

max time in milliseconds that a client
is allowed to be blocked receiving
traffic before being closed

30000

username User name for proxy null

Table 9 Properties Text File (Continued)

Property Name Description Default value
Sun JMS Grid User’s Guide 78 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
2 In the Message Daemon Properties dialog, bring the General tab to the top.

3 Fill in the maxLogFileSize and/or maxLogBackupIndex fields with the values
you require.

Changing a Daemons working directory

You can change the daemon’s working directory using the /w option (-w on Unix) in the
startserver command when starting the daemon from the command line. See
Starting a Daemon on page 57.

3.4 Networks of Clusters of Daemons
A robust, fault tolerant, production-ready JMS Grid Message Server will consist of
many concurrently running daemons. These daemons may be running on many
different machines. If there is a hardware or software failure for some of these daemons,
then the Message Server will continue to function transparently.

Concurrently running daemons can be organized into clusters of daemons and
networks of clusters of daemons.

3.4.1 Network and Cluster Concepts
What is a Network?

A network is a grouping of inter-connected clusters. It is the highest order of grouping
for a JMS Grid Message Server. A network may be spread across multiple hardware
platforms and Wide Area Networks.

What is a Cluster?

A cluster is a group of cluster daemons. Each daemon in a cluster automatically
connects to every other daemon in that cluster. For this reason, clusters tend to span
Local Area Networks rather than Wide Area Networks. Each daemon in a cluster will
normally run on the same hardware platform.

What is a Cluster daemon?

A cluster daemon differs from a single daemon in that it is intended to run as part of a
community of inter-connected, communicating processes. A ClusterID specifies the
cluster to which the daemon belongs.

Fundamentally, single and cluster daemons are very similar. The only difference being
that a cluster daemon has a ClusterID. A cluster daemon will share its messages with all
other cluster daemons with the same ClusterID.

3.4.2 Creating a New Network
A network is a grouping of clusters. Before you can create clusters of daemons you
must create a network into which you will add cluster(s).
Sun JMS Grid User’s Guide 79 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
Prerequisites

You should be familiar with Navigating the Tree View on page 49.

You should be familiar with Networks of Clusters of Daemons on page 79.

To create a Network

1 In the Tree View, navigate to Console Root > JMS Grid > Networks.

2 Bring up the Detail View’s Panel menu by right mouse button clicking away from
any existing Networks in the Detail View.

3 From the pop-up menu, select New Network.

Figure 39 Create a Network

4 This opens the New Network Dialog. Enter the name of the new network into the
Name field.
Sun JMS Grid User’s Guide 80 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
Figure 40 Network Name

Note: The name of a network must be different from the names of all the other networks
stored in this directory.

5 Click the OK button.

Deleting a Network

When a Network configuration is no longer needed, it can be removed from the Admin
Tool configuration.

Prerequisite

You should be able create a network. See Networks of Clusters of Daemons on
page 79.

3.4.3 Deleting a Network
1 In the Tree View, navigate to: Console Root > JMS Grid > Networks

2 In the Detail View, select the Network you wish to delete.

3 Right mouse click with the mouse still over the Network and from the pop up Item
menu that appears, select Delete.

Note: If the Network contains any clusters then you will not be allowed to delete the
Network. Clusters must be deleted before the Network can be deleted.

4 Click Yes in the confirmation dialog that appears.

3.4.4 Creating a New Cluster
A cluster is a group of cluster daemons. Before you create any cluster daemons you
must create a cluster that will group those daemons together. Before you create a
cluster, you must create a network into which you will add your new cluster.

Prerequisite

You should be familiar with Navigating the Tree View on page 49.

You should be familiar with Networks of Clusters of Daemons on page 79.

You should be familiar with Creating a New Network on page 79.
Sun JMS Grid User’s Guide 81 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
To create a new cluster

1 In the Tree View, navigate to the network node to which you want to add a cluster.

2 Bring up the context sensitive pop-up menu by either right mouse button clicking
in any empty part of the Detail View or by right mouse button clicking on the Detail
View’s column heading.

3 From the pop-up menu, select New Cluster.

Figure 41 New Cluster

4 This opens the New Cluster Dialog. Enter the name of your new cluster into the
Name field.

Figure 42 Cluster Name
Sun JMS Grid User’s Guide 82 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
Note: The name of a cluster must be different from the names of all the other clusters
within your configuration data store. You cannot use the same cluster name even if
they are in different networks. If you try to duplicate a name, you will receive a
warning when you apply the new cluster and will not be allowed to create that new
cluster. You must only use alphanumeric characters for the cluster name. Do not use
spaces.

5 Click the OK button.

6 A Warning dialog appears asking ‘Apply changes?’ Click OK.

A new cluster node will now be displayed in the Detailed View.

3.4.5 Creating a Configuration for a Cluster Daemon
Cluster daemons are the type of daemons that are grouped together to form a
community of inter-connected, communicating processes called a cluster. Here we
explain how to create a cluster daemon’s configuration.

This does not actually create a running cluster daemon. It only creates a configuration
that will be used when a cluster daemon is started. To find out how to start a cluster
daemon see How To start a daemon.

Note: Daemons in a cluster work closely together. As such, you should configure each
daemon to be compatible with the other daemons in the cluster. The only property
that must be consistent across each daemon in a given cluster is the
MessageStoreType. It is recommended that cluster daemons that are in the same
cluster be configured so that all properties are consistent, except those that must be
unique.

Prerequisite

You should be familiar with Creating a New Network on page 79.

To create a new cluster

1 In the Tree View, navigate down to the cluster into which you want to add a new
cluster daemon.

2 In the Detail View, right mouse button click away from any of the existing daemons
in that cluster. If the Detail View is filled, right mouse button click the Detail View
column heading. From the panel menu that is brought up, select New Daemon.

3 The Message Daemon Properties dialog will appear. This dialog looks almost
identical to the dialog that is used to create a new single daemon. The only
difference is that the ClusterID field is populated with the value of the cluster into
which this new daemon is going.

4 Enter a unique name for the daemon into the name field. Only use alphanumeric
characters for the daemon name. Do not use spaces!

Note: The daemon name must be unique to the names of all other daemons your whole
JMS Grid installation. You cannot give cluster daemons the same name as any
single daemons or any other daemons in any other cluster that are stored in the same
Sun JMS Grid User’s Guide 83 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
configuration data store. The system will automatically generate a default Network
URL on which the daemon will listen. See How To set up a daemon network URL.
You can use the default Network URL or create your own.

5 Click the OK button.

When a new daemon has been created, it is displayed in a row in the table in the Detail
View.

Cluster daemons and single daemons are fundamentally very similar. Many of the How
Tos relating to cluster daemons are covered in the Managing Single Daemons section.

 See also

Specifying a Daemon Network URL on page 64

3.4.6 Creating a Connection Between Clusters
JMS Grid enables clusters to be connected together so that messages can be routed
between different clusters. In order to do this one or more daemons in one cluster must
be connected to one or more daemons in another cluster.

Note: A cluster must contain one or more daemons before it can be connected to another
cluster.

Figure 43 Daemon Clusters Communicating

When a connection starts and ends in more than one daemon, then the starting and
ending daemons will be tried in turn until a successful pair is found to send the
messages. For example, as shown above a connection has two daemons at either end of
the connection. When attempting to send a message across this connection from Cluster
1 to Cluster 2, Cluster 1 might initially try to send a message from Daemon1 to
Daemon3. If that failed, then might try sending from Daemon1 to Daemon4. If there
was another failure, it may then switch to trying to send from Daemon2, and so on.

Note: To create a more fail-safe connection between clusters, it is a good idea to create more
than one connection between different daemons in each of the clusters. Then the
connection is not reliant on single daemons in the clusters. A cluster must contain
one or more daemons before it can be connected to another cluster. Networks
cannot be connected together. A Network is the highest logical grouping.
Sun JMS Grid User’s Guide 84 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
Prerequisite

You should be familiar with Creating a Configuration for a Cluster Daemon on
page 83.

To connect clusters

1 In the Tree View, navigate to the network that contains the cluster you want to
connect.

2 In the Detail View, right mouse click over one of the clusters you want to connect.
From the Item menu, select Connect. If that cluster contains any daemons the
Connect Cluster dialog will be opened.

Figure 44 Connect Cluster

Note: If that cluster does not contain any daemons a warning dialog will appear telling
you that ‘Cluster <Your Cluster> is not connectable, reason: No daemons in
source cluster.’

3 From the ‘From Daemon’ list in the Connect cluster dialog, select the daemon you
want to connect to the daemon in the other cluster.

Note: It does not matter which way round clusters are connected, i.e. cluster 1 daemon 1
 cluster 2 daemon 1 exhibits the same runtime behavior as cluster 2 daemon 1

cluster 1 daemon 1

4 From the ‘To Cluster’ list, select the cluster that you want to connect to.

5 From the ‘To Daemon’ list select the daemons in the ‘To cluster’ that you want as the
other end of the connection.

6 If at least one item is selected from every visible pane, the OK button will enable.
Click the OK button to confirm the connection.

Note: If you are looking at the graphic view of the network, you will now see a line drawn
between the two connected clusters. This line represents the connection.
Sun JMS Grid User’s Guide 85 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
The Connect Cluster dialog can also be opened by:

1 Opening a Cluster’s properties dialog and then clicking the Add button in the
Network Connections section of that dialog.

2 From a network’s graphic view, position the mouse cursor over one of the cluster
ovals, right mouse click and select the Connect menu option from the pop-up.

3.4.7 Printing a Graphical View of a Network
This section explains how to obtain a printout of a graphical view of a network.

Prerequisites

You should be familiar with Toggling Between Detail and Graphical View on
page 53.

You should be familiar with Networks of Clusters of Daemons on page 79.

You should be familiar with Deleting a Network on page 81.

You should be familiar with Creating a New Cluster on page 81.

To print a graphical view of a network

1 If you want to print off a graphical view of a network, in the Tree View, navigate to:
Console Root > JMS Grid > Networks <Network you want to print>

2 Switch to the graphical view of that network or cluster. This is explained in How To
switch between detail and graphical view.

3 Right mouse click with the mouse over the Network and from the pop up Item
menu that appears, select Print.

4 The print dialog for your particular printer will appear. Fill this in and click the
Print button.

3.4.8 Load Balancing Messages Across Cluster Daemons
This section explains how to configure a cluster daemon so that a client that connects to
that cluster will use a certain type of load balancing to distribute messages across the
daemons in that cluster.

Table 10 Load Balancing Options

Options Description

RandomLoading (Default) Do not redirect newly-connected clients to other daemons. The
method for choosing which daemon a client connects to is left to
the client.

LeastUsedLoading Whenever a new client connects to this daemon, and another
daemon exists in this cluster with fewer client connections, then
the client connection will be relocated to that daemon. This
connection strategy ensures that clients are evenly-loaded
across the cluster.
Sun JMS Grid User’s Guide 86 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
Note: This option is available for single daemons even though load balancing is only
effective over a cluster of daemons. Setting this option on a single daemon will have
no effect.

Prerequisite

You should be familiar with Editing a Daemon’s Configuration on page 62.

To Load Balance Messages across cluster daemons

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog, bring the Clients tab to the top.

3 From the connectionLoadBalancing pull down at the top of the dialog box and
select the types of load balancing you require.

3.4.9 Enabling Auto Discovery
Auto discovery enables clients to use multicast to automatically detect running
daemons. The default load balancing mechanism is for the client to connect to the least
loaded daemon in that cluster. If a load balancing mechanism is specified, then that
mechanism will be used instead of ‘least used’.

If no daemons are discovered (for example, if they are on a different network segment
that the multicast cannot see), then the client’s messageChannels property will be used
instead.

The JMS Grid Connection Factory that is used by the messaging client must also be
configured so that its autoDiscoveryAllowed flag is set, see Editing Connection
Factory Properties for a Normal JMS Grid Client Connection on page 135.

Default value:

false

Prerequisites

You hold be familiar with how to Creating a Configuration for a Cluster Daemon
on page 83.

To enable or disable Auto Discovery

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog, bring the Clients tab to the top.

3 To enable auto discovery, ensure the AutoDiscoveryAllowed checkbox is ticked. To
disable, ensure it’s not ticked.

See also

Editing Connection Factory Properties for a Normal JMS Grid Client Connection
on page 135

Load Balancing Messages Across Cluster Daemons on page 86
Sun JMS Grid User’s Guide 87 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
3.4.10 Specifying the Autodiscovery Multicast Channel
JMS Grid’s auto discovery mechanism uses multicast to automatically detect running
daemons. There is, however, a small chance that the default multicast channel used by
JMS Grid clashes with the address used by another system running on the network. The
JMS Grid Admin Tool allows you to overcome this by changing the multicast channel.

The default setting for the multicast channel is: multicast://224.0.0.4:3495

Prerequisites

You should understand the principles of multicast.

You should be familiar with Enabling Auto Discovery on page 87.

To use multicast to autodiscover running daemons

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog, bring the Inter-Daemon tab to the top.

3 Enter the new multicast message channel into the field labeled
serviceDiscoveryChannel.

3.4.11 Viewing Network and Cluster Daemon Connections
One of the key features of JMS Grid is the ability to connect daemons together. Two
types of inter-daemon connections exist in JMS Grid:

Cluster connections – Connections between daemons that belong to the same cluster.
Within a cluster, every daemon is implicitly connected to every other daemon creating
an interconnected lattice.

Network connections – Explicit connections from daemons in one cluster to daemons
in another cluster.

A combination of these connections enables complex topologies of daemons to be
deployed.

The JMS Grid Admin Tool provides a number of ways to enable you to view the
daemons and their connections.

Prerequisite

You should be familiar with Editing a Daemon’s Configuration on page 62.

To display connection between daemons

The JMS Grid Admin Tool provides a number of ways to let you view the topology of
your networks of clusters of daemons.

From the Daemon Properties dialog

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog, bring the Inter-Daemon tab to the top.

3 Two lists are shown at the top of the dialog. The top list, Cluster Connections, gives
a list of all the other daemons in the cluster to which this daemon is connected. The
Sun JMS Grid User’s Guide 88 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
lower list, Network Connections, shows the connections between this daemon and
daemons in other clusters.

Note: For single daemons the Network Connections list and Cluster Connections list will
always be empty.

A Graphical View of a Network

The graphic view of a Network shows how clusters are connected together by
displaying a line between two clusters that are connected – as shown below.

To see the graphic view of a Network, do the following:

Using the JMS Grid Admin Tool’s Tree View, navigate down to the network you want to
view. Then switch the view type. This is described in more detail inToggling Between
Detail and Graphical View on page 53.

A Graphical View of a Cluster

Using the JMS Grid Admin Tools Tree View, navigate down to the cluster you want to
view. Then switch the view type. This is described in more detail in How to switch
between detail and graphical view.

Figure 45 Graphical View of Cluster

Note: The graphical view of a cluster does not show every connection between every
daemon in that cluster. This is because the view would soon become too cluttered.
Instead, only a single connection is shown between daemons. So if, in a graphic
view, you can trace a route between two daemons, then in reality there will be a
direct connection between those two daemons. The figure above shows the graphical
view you will see of a six-daemon cluster and the actual connections that will exist
between nodes.

3.4.12 Configuring Daemon Reconnections
If a daemon fails to establish an initial connection to a peer or the connection terminates
for any reason, the daemon will attempt to reconnect. In the case of network
connections, the daemon will iterate through the list of URLs associated with the
network connection until it is successful. After each unsuccessful attempt, the daemon
will wait daemonConnectionRetriesTimeout milliseconds before attempting to
Sun JMS Grid User’s Guide 89 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Administration Networks of Clusters of Daemons
reconnect to the next network URL in the sequence. This sequence will only be
attempted maxDaemonConnectionRetries times.

Default values:

maxDaemonConnectionRetries: 2147483647 (equivalent to Integer.MAX_VALUE)

daemonConnectionRetriesTimeout: 5000 (milliseconds)

Prerequisite

You should be familiar with Editing a Daemon’s Configuration on page 62.

To configure daemon reconnections

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.

2 In the Message Daemon Properties dialog, bring the Inter-Daemon tab to the top.

3 Into the field marked maxDaemonConnectionRetries, enter the number of times
you want the daemon to attempt to reconnect after it has lost a connection to a
remote daemon.

4 Into the field marked daemonConnectionRetriesTimeout, enter the time in
milliseconds before a daemon will attempt to reconnect to another daemon in its
cluster or network after a connection attempt has failed.

3.4.13 Configuring Message Filters on Inter-daemon Network
Connections

JMS Grid uses dynamic subscription routing throughout clusters and networks of
clusters. When a client subscribes to receive messages from either a Topic or a Queue,
this subscription information is propagated to every daemon in the message server
network. For large deployments, this can result in unnecessarily large amounts of
routing information being shared.

It is possible to prevent subscription routing information being passed between clusters
by using network connection filters. These filters only allow the forwarding of
subscription routing information that match the filter.

The JMS Grid Admin Tool enables you to set up separate filters on either destination
types (queues or topics).

If no filters are specified, then no filtering is applied, that is, messages are forwarded to
all destinations. However, if a filter is created to a single destination of one type, then
only messages to that single destination of that destination type are allowed to pass.
Unless empty, a filter specifies the names of destinations that are allowed to pass, not
the names of destinations that are blocked.

Prerequisite

Editing a Daemon’s Configuration on page 62.

To set message filters

1 Follow the basic steps in Editing a Daemon’s Configuration on page 62.
Sun JMS Grid User’s Guide 90 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
2 In the Message Daemon Properties dialog, bring the Network Subscription Filter
tab to the top – this dialog is shown below.

Figure 46 Message Daemon Properties

3 The dialog box shows two lists, one for filters on Topic destinations, the other for
filters on queue destinations.

4 To select all the topics you want to allow messages to, click the Add button to the
right of the Topic filter list. To select all the queues you want to allow messages to,
click the Add button to the right of the Queue Filter list. In both cases, a
Subscription Filter Properties dialog box is opened.

5 In the Subscription Filter Properties dialog, select the network within which you
want to create a subscription filter.

6 In the destinations part of the dialog, enter the names of the destination you want to
be passed across to other clusters on that network.

3.5 JMS Grid Security
JMS Grid’s security system enables administrators to define who has the right to do
what within the messaging system and to protect confidential information.
Sun JMS Grid User’s Guide 91 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3.5.1 Introduction to Security
In JMS Grid, security is applied when:

Messaging clients attempt to communicate with the message server.

Users try to configure the message server.

Users try to manage the runtime operation of the server.

Messaging Clients Attempt to Communicate with the Message Server

The JMS Grid Admin Tool provides administrators with fine-grained control over
which JMS messaging clients are allowed to connect to the server. Once a client is
connected, the administrator can then decide which destinations that client can send
messages to and which destinations that client is allowed to read messages from. The
administrator can also specify destinations to which encrypted messages are sent

Users try to Configure the Message Server

JMS Grid defines a special Administrator permission. Only Users with this permission
are allowed to log into the JMS Grid Admin Tool and are able to configure the message
server.

Users try to Manage the Runtime Operation of the Server

An administrator must supply a username and password before being allowed to
manage the runtime operation of the message server. Runtime management of JMS
Grid is described in the JMS Grid JMX Management Guide.

JMS Grid contains an extensive security package which makes it possible to provide all
of the common security functions. These include:

Authentication the ability to establish an identity

Authorization the ability to control access to resources

Encryption the ability to protect sensitive information

3.5.2 Security Concepts

Authentication

Authentication is the process of determining someone’s, or something’s, identity. The
most common means of establishing an identity, and the method used in JMS Grid, is to
associate a password with a username.

The JMS Grid Admin Tool is used to create Users and set their initial passwords. When
security is enabled, JMS clients must authenticate themselves to the JMS Grid Message
Server by supplying the correct username and password combination.
Sun JMS Grid User’s Guide 92 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Authorization

Authorization is the process of determining whether a known identity has the privilege
to perform a task or access a resource.

Authorization is performed in JMS Grid by defining Permissions, which can then be
allocated to different Users. Collections of Permissions, known as Groups, can also be
created. Groups make it easier to allocate a large collection of Permissions to a User.

Encryption

JMS messages can sometimes contain confidential information. JMS Grid provides the
facility to define Secure Destinations. When Secure Destinations are created any
messages sent to those Destinations are encrypted using a Destination specific
encryption key.

3.5.3 What are Permissions?
Permissions are the fundamental way to provide authorization in the JMS Grid.

Each Permission has the following attributes:

It is important to realize that creating a Permission does not in itself grant any access
privileges to any Users or Groups. Permissions are merely ways of defining access
control privileges in advance of allocating those privileges to Users or Groups.

Table 11 Permission Attributes

Attribute Description

Name/ Permission Name This is a unique name, chosen by the administrator, and is
intended to be meaningful to human operators. When
Permissions are allocated to Users and Groups, administrators
use the Permission Name to identify specific Permissions.

Resource Name/ Destination
Name

This is the queue or topic that the Permission is intended to
grant access to. This can be a simple string, or a string
terminated with an asterisk: '*'. For example, if you have a
range of queues, all beginning with the word "trades", then
you could define a Permission granting access to all of those
queues with a single Resource name of trades*.

Resource Type/ Destination
Type

This is the type of Resource being protected by a Permission.
Available types are: Queue, Topic, Temporary Queue,
Temporary Topic and Special Permissions.

Access Mode Controls whether Users granted this permission will be given
read, or read/write access to the Resource(s) specified.
Sun JMS Grid User’s Guide 93 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
The Management API Permissions are used by JMS Grid’s JMX-based runtime
Management system. This is described in JMX Management on page 225.

Special Permissions

In addition to the normal Permissions associated with granting access to JMS
destinations, JMS Grid defines various Special Permissions. Special Permissions cannot
be created, modified or removed by administrators. However you can choose whether
or not to assign Special Permissions to Users.

Special Permissions are associated with privileges, which are recognized by the JMS
Grid code. The Special Permissions are as follows:

Anonymous Login Permission

The Anonymous Login Permission is a Permission that can be granted to the Default
User account. When this Permission has been granted any JMS Grid Message Server
session that has not logged in, or has logged in under an unknown username, will
inherit the privileges granted to the Default User account.

This Permission only has any meaning when it is added to the Default User account.

Administrators may add this Permission to other User accounts, but this will have no
effect.

If the Default User account does not have this Permission, and security is enabled, then
anonymous logins and logins from unknown Users will both be prevented.

The table below can summarize this:

Table 12 Default Permissions

Name Resource Name Resource Type Access Mode

WriteAllQueues * Queue read/write

WriteAllTopics * Topic read/write

WriteAllTmpQueues * Temporary Queue read/write

WriteAllTmpTopics * Temporary Queue read/write

Administrator n/a Special n/a

AnonymousLogin n/a Special n/a

ManagementAPIQueues com.spirit.management.* Queue read/write

ManagementAPITopics com.spirit.management.* Topic read/write
Sun JMS Grid User’s Guide 94 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Administrator Permission

This Permission can be added to any User or Group account. Users that inherit this
Permission are allowed to login to the Admin Tool.

This Permission is granted to the Admin User account. You cannot remove this
Permission from the Admin User account.

3.5.4 What are Groups?
Groups are collections of Permissions and other Groups. They are used to enable
Administrators to define complex lists of Permissions that can then be easily added to
Users or Groups. Groups help to simplify the administration of security and access
items.

Table 13 Anonymous Login Permission

Security State Anonymous Login Permission

Granted Not Granted

Security enabled Anyone can log-on unknown Users prevented
from log-on

Security disabled Anyone can log-on Anyone can log-on

Table 14 Group Attributes

Attribute Description

Name The group's name should be meaningful to a human operator.

Permissions These are the named Permissions that the Group possesses. A
Group can have zero or more Permissions.

Groups Groups can themselves be members of other Groups. When a group
is a member of another group, it inherits all the permissions defined
in its parent group.

Table 15 Default Groups

Name Parent Permissions

Super none WriteAllQueues
WriteAllTopics
WriteAllTmpQueues
WriteAllTmpTopics

Default Super none
Sun JMS Grid User’s Guide 95 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Note: The Groups Detail View only shows Permissions that are mapped directly to each
Group. Permissions that are inherited from parent groups are not shown. To see all
the Permissions belonging to a Group, highlight the Group, right-click, and select
the properties menu.

3.5.5 What are Users?
Users are the security objects that ultimately determine whether all authentication and
authorization is successful or not.

Each User has the following attributes.

The pre-installed Users are shown in the table below.

Management none ManagementAPIQueues
ManagementAPITopics

Table 16 User Attributes

Attribute Description

Username This is the name by which the User is known.

Password Clients logging into JMS Grid must provide the correct
username and password combination in order to authenticate
themselves to JMS Grid. This password does not get stored in
the JMS Grid Admin Tool store, nor does it ever get passed
from one machine to another. Instead, it is used to derive a
public/private key pair. Only the public key gets stored. The
Private key is derived every time from the password in order to
sign a session specific token every time the User logs in.

Permissions Permissions can be added directly to a User. This way,
individual Users can be given customized access to particular
queues and topics.

Groups Users can have zero or more Groups. Users inherit all of the
Permissions allocated to all of the Groups to which they
belong. Since Groups also inherit all the Permissions from
Groups to which they belong, it is therefore possible to create
highly sophisticated combinations of Users and Permissions.

Table 17 Pre-installed Users

Name Group Permissions Account Enabled

admin Super Administrator true

Table 15 Default Groups (Continued)

Name Parent Permissions
Sun JMS Grid User’s Guide 96 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3.5.6 What are Secure Destinations?
A message from a client application is automatically encrypted if it is sent to a
destination that is secure. A JMS destination is made secure by creating a Destination
Security admin object with a name that matches the JMS destination.

A Secure Destination does not necessarily map to a physically existing Destination.
Queues and Topics can be created at run time. JMS Grid therefore allows administrators
to define the properties of Secure Destinations in advance of the creation of the
corresponding queue or topic.

 Each secure destination has the following attributes.

3.5.7 Typical Usage of Permissions, Groups and Users
The simplest way to use Groups is to create a “flat” set of Groups. This is done in the
following stages.

1 Create all of the desired Permissions.

2 Create a small set of Groups.

3 Add each Permission to one or more Groups. Each Group contains only
Permissions.

4 Groups do not contain other Groups.

5 Allocate one and only one Group to each User.

default Default AnonymousLogin true

demo Super none true

Table 18 Secure Destinations

Attribute Description

destinationType Whether the Destination is a Queue or a Topic.

destinationName The JMS Name of the Destination to make secure.

EncryptedDestination A Secure Destination can have its encryption temporarily
switched off. This may be required for debugging purposes, for
example.

EncryptionKey A sample of the encryption key. This is intended to give some
visual feedback when the "Generate" button is pressed in the
Secure Destination Properties dialog box. The Generate
button can be used to generate a new encryption key for the
Secure Destination.

Table 17 Pre-installed Users (Continued)

Name Group Permissions Account Enabled
Sun JMS Grid User’s Guide 97 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
For small, coarse-grain permission scenarios, a flat Group space is often sufficient and
presents a simple, easily managed set-up.

However, in addition to being able to include Permissions in a Group, Groups can be
made parents of other Groups. This allows Groups to be arranged into hierarchies,
where each Group inherits Permissions from its parent Groups as well as from its
directly allocated Permissions.

Note: The JMS Grid Admin Tool does not check whether or not a User has inherited a
Group multiple times from other groups. For example, in the default setup, the
Default User is part of the Default Group. The Default User inherits the Super
Group because the Default Group is a child of that Group. However the Admin Tool
will allow you to directly associate the Super Group with the Default User, even
though it already effectively has all of the privileges of that Group. This scenario is
shown below.

Figure 47 Groups

Note: It is also possible to add the Super Group to the Default Group, creating a cycle in
the above permissions setup. This could lead to runtime problems and should be
avoided wherever possible.

Users can also be associated with more than one Group. One possible way to use this
feature is to create a Group that gives read or write permission to a wild-carded section
of a single destination name. Individual Users can then be given access to one or more
destination sections simply by giving them the appropriate Group membership.

For example If you had the following Destinations:

myCompany.finance.public

myCompany.finance.private

myCompany.marketing.public

myCompany.marketing.private

Create the following Groups which give access to the following destinations.
Sun JMS Grid User’s Guide 98 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
So, for a User with a high level of authority who needed to read and write to all
company information, he or she would be added to the ‘writeMyCompany’ and
‘readMyCompany’ Groups. For some-one who needed to see all finance and marketing
information, they would be added to ‘readFinance’ and ‘readMarketing’.

3.5.8 What is the Default Security Configuration?
JMS Grid comes configured with a set of default Permissions, Groups and Users. The
net effect of these default security objects is to create a security plan which permits all
Users, even those logged in under an unknown name or logged in anonymously, to
access all topics and queues.

The Permissions hierarchy is illustrated below. At the top is a Super Group that holds
Permissions that collectively allow access to all queues and topics.

Two Users, admin (password admin) and demo (password demo), are members of the
Super Group. They are therefore able to access all queues and topics. The admin User
has the Administrator (special) Permission. The admin User is therefore permitted to
login to the JMS Grid Admin Tool.

The Default Group is also a member of the Super Group. It has one member, the default
User (password default). The default User inherits full queue and topic read /write
access from the Super Group through the Default group. The default User is also
assigned the Anonymous Login (special) Permission. This permits both anonymous
logins and logins from unknown Users.

Table 19 Group Name and Destination

Group name Permission Destination

writeMyCompany write myCompany*

readMyCompany read myCompany*

writeFinance write myCompany.finance*

readFinance read myCompany.finance*

writeMarketing write myCompany.marketing*

and so on…
Sun JMS Grid User’s Guide 99 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Figure 48 Super Group

Administrators can change the default security objects in any way that is required. For
example, the Default Group can have its membership of the Super Group removed and
replaced with separate, more restrictive, privileges.

3.5.9 Enabling JMS Grid Security
Security can be enabled separately for both the JMS Grid Message Server and for JMS
Grid JMS clients.

JMS Grid Server

By default, security is disabled in JMS Grid. This means that there is no specific
authentication and authorization of a client. All clients behave as if they are the default
User – i.e. they are authenticated as being the default User, that they have the
permissions of the default User and Secure Destination encryption is not available to
them.

If security is enabled on the JMS Grid Message Server, it performs authentication,
authorization of a client and allows encryption of Secure Destination messages.

JMS Grid JMS Clients

Any secure client will be able to send and receive encrypted Secure Destination
messages.
Sun JMS Grid User’s Guide 100 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Prerequisite

You should be familiar with JMS Grid security.

To enable security on a message server

The basic steps of how to enable security on a message server and on individual clients
is explained in the following sections:

Enabling JMS Grid Security on page 100

Enabling JMS Grid Security (Command Line) on page 101

Enabling JMS Grid Server Security (JMS Grid Admin Tool) on page 102

Enabling JMS Grid Security (Command Line)

By default, no security checking is performed by JMS Grid. In order to enable
encryption and to force authentication and authorization checks, a command line
option to enable security can be set.

Note: Security of the Message Server can also be enabled or disabled from within the JMS
Grid Admin Tool. Any Message Server Security option that is specified on the
command line will override the setting that is specified in the Admin Tool.

Table 20 Summary of How Clients and Server Daemons React

Server Security Client Security

Enabled Disabled

 Enabled Authentication
Client logs in as a specific User. If no
User is specified, client is logged on
as the default User

Authentication
No logging on for client. Server sees
client as default User

Authorization
Client has permissions of the specific
User they logged on as

Authorization
Client has permissions of the default
User

Encryption
Message encryption to secure
destinations is allowed

Encryption
Message encryption to secure
destinations is not allowed

Disabled Authentication
No logging on for client

Authentication
No logging on for client

Authorization
Client has full permissions

Authorization
Client has full permissions

Encryption
Message encryption to secure
destinations is allowed

Encryption
Message encryption to secure
destinations is not allowed
Sun JMS Grid User’s Guide 101 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Prerequisite

You should be familiar with Enabling JMS Grid Security on page 100.

A JMS Grid Message server daemon is started up using the startserver script. The use of
this script is also explained in Starting a Daemon on page 57. The command line syntax
of this script varies depending operating system being used.

Windows

Use the startserver batch script using the following syntax:

startserver [/n serverName] [/w workingDirectory] [/s userName
password]

Unix

On Unix, the syntax for the startserver script is:

startserver [-n serverName] [-w workingDirectory] [-s userName
password]

Server security is enabled by including the –s or /s option on the command line. A
username and password must also be provided when specifying the -s or /s option. See
the note below.

To disable the security of the daemon you must do two things:

1 Omit the –s or /s option from the command line.

2 Ensure that security is disabled from within the JMS Grid Admin Tool, as described
in How To enable or disable JMS Grid Message Server security from the JMS Grid
Admin Tool.

Username and Password

The username and password that must be provided with the –s or /s option are
currently only used by JMS Grid’s Runtime Management System and are not used by
your messaging clients applications.

Enabling JMS Grid Server Security (JMS Grid Admin Tool)

By default, no security checking is performed by the JMS Grid Message Server. In order
to enable encryption and to force authentication and authorization checks, a flag can be
set in the Admin Tool.

Note: Any change in this property will take effect when the JMS Grid Message Server is
restarted.

Security of the Message Server can also be enabled or disabled from the command line
when starting the Message Server.

Prerequisites

You should be familiar with how to use the JMS Grid Admin Tool GUI.

You should be able to enable JMS Grid security.
Sun JMS Grid User’s Guide 102 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
To enable or disable message server security

1 Open the Settings dialog. On the Admin Tool Menu bar, click Preferences followed
by Admin Settings.

Note: When you open the Admin Settings dialog, a warning may appear saying: “Admin
and JMS Admin Object Store are selected to use the same plugin. Plugin settings
will be shared!” Click the OK button.

2 On the Settings dialog, choose the Security Settings tab.

3 To enable security, check the EnableSecurity check box at the top of the dialog box.
To disable security, uncheck this checkbox.

4 Click the OK button.

5 A Warning dialog will appear asking if you want to apply the changes. Click the Yes
button.

See also

Enabling JMS Grid Security (Command Line) on page 101

Enabling JMS Grid Client Security

To make your messaging client application secure you must supply the name of a
security provider as a property on the command line when starting your client
messaging application.

Prerequisite

You should be familiar with Enabling JMS Grid Server Security (JMS Grid Admin
Tool) on page 102.

If you want your client to use the same security provider as is being used by the JMS
Grid daemon to which it will connect, then you do not need to explicitly enable security
or specify a security provider.

However, if you wish to configure a client to use a different security provider (if, for
example, you want to use other encryption technologies and authentication
techniques), then follow the steps outlined below:

To enable or disable client security

1 The client application must implement the
com.spirit.security.AuthenticationProvider interface.

2 Select the alternative Security Provider as a java command line property:

-Dspirit.security.provider=WMS

for example

java –Dspirit.security.provider=WMS myClientApp

You can provide your own security provider by implementing the
com.spirit.security.SecurityProvider interface and then set this
spirit.security.provider property to point to your own implementation. How
this is done is described in more detail in How To use your own Security Plug-in.
Sun JMS Grid User’s Guide 103 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Setting System-wide Security Parameters

Certain security settings can be applied on a system wide basis.

The Security Settings tab of the Admin Settings dialog displays a number general
security settings. The Admin Settings dialog is opened by selecting ‘Preferences >
Admin Settings’ from the Admin Tool's pull down menu. The meaning of each of the
dialog's settings is described below.

Note: In the latest release of JMS Grid, only the 'enable Security' property is editable.
Other properties may become editable in future releases.

Table 21 Enable Security is Editable

Setting Description

Enable Security By default, no security checking is performed by JMS Grid. In order to
enable encryption and to force authentication and authorization checks,
this flag must be set.

Encryption Algorithm This is the name of the encryption algorithm used both for secure
destination encryption and for key distribution. It is currently fixed as
Triple DES used in Cipher Block Chaining mode. Future versions of JMS
Grid will allow a choice of encryption algorithms.

Encryption Type This is currently fixed to allow only symmetric algorithms. Future version
of JMS Grid will allow both symmetric and public key cipher algorithms.
The choice will affect the list of available algorithms displayed in the
Encryption Algorithm field.

Encryption Provider This is the name of the Cryptographic Service Provider (CSP) providing
cryptographic services on behalf of JMS Grid. This is currently fixed as
Cryptix. Future versions of JMS Grid may allow a choice of several
supported CSPs.

Encryption Key Size The size of the encryption keys used. Some encryption algorithms allow
variable size keys with larger keys providing stronger encryption. As the
Encryption Algorithm is currently Triple DES, which has a fixed size key, it
is currently not possible to change the key size of 192 bits. Future versions
of JMS Grid may support encryption algorithms that permit variable size
encryption keys.

Key Caching JMS Grid can potentially support two key distribution mechanisms. In the
first, the JMS Grid Message Server always holds encryption keys centrally.
Encrypted messages are then transmitted and received using session
keys. The second method encrypts the destination keys using the session
key and caches them within the Client side of the JMS Grid Framework.
This is considerably faster than the central key storage method. Currently,
only this second method of key caching within the Client side is
supported. Future versions of JMS Grid will permit disabling of key
caching.
Sun JMS Grid User’s Guide 104 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3.5.10 Creating a New Permission
Permissions are the fundamental way to provide authorization in JMS Grid. When a
Permission is added to a User, then that User is granted the privileges that are defined
in that Permission.

JMS Grid provides a number of default Permissions that are useful for broad-based
privileges, such as, allowing a User to read and write to all Queue destinations.

However, your security requirements may need you to set up narrower privileges for
Users, such as, only allow messages to be read from Topics whose name begins with
‘trade’.

Prerequisites

You should be familiar with Navigating the Tree View on page 49.

You should understand Security Concepts on page 92.

To create a new permission

1 In the Tree View, navigate to the Permissions node at: Console Root > JMS Grid
> Security > Access > Permissions

2 In the Detail View, position the cursor away from the existing Permissions. Click the
right mouse to bring up the Panel Menu and select New. The Permission Properties
dialog will open, see below. If the Detail View is full, you can bring up the Panel
Menu by right mouse clicking on the Detail View’s column headings.

Figure 49 Permission Properties

Note: If the elements displayed in the Detail View fill the screen such that it is not possible
to position the cursor away from them, then right click the table heading in order to
bring up the Panel Menu.
Sun JMS Grid User’s Guide 105 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3 Enter the fields that define your new Permission. A full description of the meanings
of the fields is given in What are Permissions?

Note: By default the destinationName combo box has a * value - this means this
permission will apply to all destinations of the selected connection type.

The destinationName field is an editable Combo box that allows you to:

Select an existing, individual Destination from the pull down menu.

Type in the name of a wildcard Destination.

Type in the name of a temporary Destination that does not currently exist, but
which will exist at runtime.

Users may select different connection types from the destinationType combo box;
this selection will affect the destinationName combo box. For example if a Queue item
is selected as the destination type then destinationName will only contain the names
of Queues.

4 Click the OK button then confirm the changes at the ‘Apply Changes?’ warning
dialog.

5 The new Permission will appear in the table of permissions in the Detail View.

3.5.11 Editing a Permission
This section explains how to edit the properties of a Permission.

Prerequisite

You should be familiar with Creating a New Permission on page 105.

To edit a permission

1 In the Tree View, navigate to the Permissions admin object at: Console Root > JMS
Grid > Security > Access > Permissions

2 The Detail View will now show a table of all existing Permissions. Select the
Permission to edit.

Note: You are not allowed to edit the default Permissions. If you try, a warning dialog will
open telling you than the item’s properties cannot be altered.

3 From the Item Menu that appears, select Properties. The Permission Properties
dialog will appear.

4 Modify the required properties. The meanings of the property fields are explained
in What are Permissions?

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Permission.
Sun JMS Grid User’s Guide 106 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Another Way to open the Properties Dialog

You can open an item’s properties dialog by selecting it in the Tree View and then click
on the Properties button in the Toolbar.

3.5.12 Deleting a Permission
When messaging clients are no longer using a redundant permission, it is possible to
remove it from the JMS Admin Object Store.

Prerequisite

You should be familiar with Creating a New Permission on page 105.

To delete a permission

1 In the Tree View, navigate to: Console Root > JMS Grid > Security > Access
> Permissions

2 In the Detail View, select the Permission instance to delete.

Note: If you want to delete multiple Permissions at the same time, you can select multiple
Permissions by holding down the Control key as you select each of the Permissions
you want to delete.

You are not allowed to delete the default permissions.

3 Right mouse button click, and from the pop up Item menu that appears, select
Delete.

4 Click Yes in the confirmation dialog that appears. The Permission will now be
deleted from the chosen Admin Store.

Note: If a Group contains a Permission that you delete, then the Permission is not
removed from that Group.

3.5.13 Creating a Group
Groups are collections of Permissions that can also contain other Groups. They are used
to make it possible for administrators to define complex lists of Permissions that can
then be associated with Users or added to other Groups in a single administrative task.

Only experienced administrators should create Groups. Cyclic Permission inheritance
may lock the entire application.

Prerequisite

You should be familiar with Navigating the Tree View on page 49.

You should be familiar with Groups in Security Concepts on page 92.

Before creating a Group you will have created the Permissions that you want to add to
that Group, see Creating a New Permission on page 105, and What are Groups in
Security Concepts on page 92.
Sun JMS Grid User’s Guide 107 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
To create a group

1 In the Tree View, navigate to the Permissions node at: Console Root > JMS Grid
> Security > Access > Groups

2 In the Detail View, position the cursor away from the existing Groups. Click the
right mouse button to open the Panel Menu and select New. The Group Properties
dialog opens, see below.

Figure 50 Group Properties

Note: If the elements displayed in the Detail View fill the screen such that it is not possible
to position the cursor away from them, then right click the table heading in order to
bring up the Panel Menu.

3 Fill in the fields to define your new Group. The Group dialog has been divided into
three tabs. Into the Main tab, enter a unique name for your new group. On the
Permissions tab, select all of the Permissions to group together from the
Permissions pull down. From the Groups tab, select all the groups you want to be
parents of your new group. Your new Group will inherit all the permissions of these
parent groups. A full description of the meanings of the fields is given in What are
Groups?

4 Click the OK button then confirm the changes at the ‘Apply Changes?’ warning
dialog.

3.5.14 Editing a Group
Here, we explain how to edit the properties of a Group.
Sun JMS Grid User’s Guide 108 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Prerequisite

You should be familiar with Creating a Group on page 107.

To edit a group

1 In the Tree View, navigate to the Groups admin object at: Console Root > JMS
Grid > Security > Access > Groups

2 The Detail View will now show a table of all existing Groups. Select the Group you
wish to edit, then click the right mouse button.

Note: You are not allowed to edit the pre-defined ‘Super’ Group. If you try a warning
dialog will open telling you than that item’s properties cannot be altered. You can,
however, edit the other pre-defined groups.

3 From the Item Menu that appears, select Properties. The Group Properties dialog
will appear.

Note: The Groups Properties dialog has an Inherited Permissions tab if the Group you are
editing has a parent Group. The Inherited Permissions tab shows a read-only list of
which Permissions your Group has inherited from its parent Group.

4 Modify the required properties. The meanings of the property fields are explained
in What are Groups?

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Group.

Another Way to open the Properties Dialog

You can open an item’s properties dialog by selecting it in the Tree View and then
clicking on the Properties button in the Toolbar.

3.5.15 Deleting a Group
When Users are no longer using a Group, it is possible to remove it from the JMS
Admin Object Store.

Prerequisite

You should be familiar with Creating a Group on page 107.

To delete a group

1 In the Tree View, navigate to: Console Root > JMS Grid > Security > Access
> Groups

2 In the Detail View, select the Group instance you wish to delete

Note: If you want to delete multiple Groups at the same time, you can select multiple
Groups by holding down the Control key as you select each of the Groups you want
to delete.You are not allowed to delete the pre-defined Group called ‘Super’.
Sun JMS Grid User’s Guide 109 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3 With the mouse still over that Group, right mouse button click, and from the pop up
Item Menu that appears, select Delete.

4 Click Yes in the confirmation dialog that appears. The Group will now be deleted
from the chosen Admin Store.

Note: If the Group that is deleted is still associated with a User, or is a member of another
Group, then the User or owning Group will still refer to that deleted Group. If the
Group that is deleted is a parent of child Group, then the child Group’s parent
becomes ‘none’.

3.5.16 Creating a User
Users are the security objects that ultimately determine whether all authentication and
authorization is successful or not.

Note: Only experienced administrators should create User accounts. Cyclic permission
inheritance may lock the entire application.

Prerequisites

You should be familiar with Navigating the Tree View on page 49.

You should be familiar with What are Users in Security Concepts on page 92.

Before creating a User you will have created the Permissions and Groups of
Permissions that you will want to associate with that User, see How To create a new
Permission, and How To create a Group.

To create a User

1 In the Tree View, navigate to the Permissions node at: Console Root > JMS Grid
> Security > Access > Users

2 In the Detail View, position the cursor away from the existing Users. Click the right
mouse button to open the Panel Menu and select New. The User Properties dialog
opens, see below.
Sun JMS Grid User’s Guide 110 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Figure 51 New User - Properties

Note: If the elements displayed in the Detail View fill the screen such that it is not possible
to position the cursor away from them, then right click the table heading in order to
bring up the Panel Menu.

3 Fill in the fields to define your new User.

Note: The User Properties dialog has been divided into three tabs. In the Main tab, enter a
unique name for your new User and a password for that User. Retype the same
password in the VerifyPassword field,. If the VerifyPassword does not match the
password, you will not be allowed to create that User. The password must be at least
6 characters long. In the Permissions tab, select all of the Permissions that User will
inherit directly. From the Groups tab, select all the groups of permissions that User
will further inherit. A full description of the meanings of the fields is given in What
are Users?

4 Click the OK button then confirm the changes at the ‘Apply Changes’ warning
dialog.

3.5.17 Creating an Administrator
An Administrator is an especially powerful User that is allowed to log in to the JMS
Grid Admin Tool and hence is able to edit the configuration of a JMS Grid Message
Server Instance.

The JMS Gird default administrative User is called “admin.” We recommend that you
change this default password.
Sun JMS Grid User’s Guide 111 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Prerequisites

You should be familiar with Creating a User on page 110.

You should be familiar with Changing a User's Password on page 113.

To create an Administrator

1 Follow the instructions in Create a User.

2 With the User Properties dialog box open select the Permissions tab. From the
Permissions pull down menu, select the Administrator permission.

3 Complete the User Properties dialog as per Create a User.

3.5.18 Editing a User's Access Rights
This section explains how to edit the access rights of a User – that is, the destinations
that the User is allowed to read messages from and send messages to.

Prerequisite

You should be familiar with Creating a User on page 110.

To edit a User’s rights

1 In the Tree View, navigate to the Users admin object at Console Root > JMS Grid
> Security > Access > Users.

2 The Detail View will now show a table of all existing Users. Select the User to edit.
Click the right mouse button to bring up the Item Menu.

Note: You are not allowed to edit the access rights of the admin User. If you try, a warning
dialog will open telling you that item’s properties cannot be altered.

3 From the Item Menu that appears, select Properties. A modified User Properties
dialog will appear. The modified User Properties dialog displays the username, but
will not let you change it. This modified dialog does not have the password fields.
This is explained in How To change a User’s password.

4 Modify the access rights by changing the available Permissions and Groups that
User is associated using the lists on the Permissions and Groups tabs.

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Group.

Note: That User must log out of the system and log back into it again before the new access
rights will take effect.

Another Way to open the Properties Dialog

You can open an item’s properties dialog by selecting it in the Tree View and then
clicking on the Properties button in the Toolbar.
Sun JMS Grid User’s Guide 112 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3.5.19 Changing a User's Password
This section explains how to change a User’s password.

Prerequisite

You should be familiar with Creating a User on page 110.

To change a User’s password

1 In the Tree View, navigate to the Users admin object at: Console Root > JMS Grid
> Security > Access > Users.

2 The Detail View will now show a table of all existing Users. Select the User whose
password you want to edit. Click the right mouse button to bring up the Item Menu

3 From the Item Menu that appears, select Change Password. The User Password
dialog will open.

4 Into the Password field, enter the new password. Retype this password into the
VerifyPassword field so that it is exactly the same as per the password field.

Note: The capitalization of passwords is important. Passwords must be at least 6
characters long.

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Group.

Note: If there are any differences between the password and its verification, then you will
see a warning dialog telling you that the verification field did not match the
password.

See also

Changing a Password Without being an Administrator on page 121.

3.5.20 Re-enabling a User's Account
JMS Grid enforces a “three strikes and out” policy. If a messaging client makes more
than three attempts to log into a User account using the wrong password, then that
User account is disabled. This is intended to deter automated dictionary attacks.

Note: The three strikes rule does not apply to administrator logins to the JMS Grid Admin
Tool. These are performed manually. As such, they are less susceptible to dictionary
attacks and are therefore exempted.

Prerequisite

You should be familiar with Creating a User on page 110.

To enable a User’s account

1 In the Tree View, navigate to the Users node. In the Detail View you will see that for
the disabled account, the entry in the Account Enabled column is false.

2 In the Detail View, select the row of the disabled User.
Sun JMS Grid User’s Guide 113 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3 Right mouse click this row. In the Item menu, the Enable Account option will be
active. Select this option.

4 In the Detail View, the User’s account enabled status will revert to true.

3.5.21 Deleting a User
When a User is no longer allowed access to your system, you will want to clean that
User admin object out of the admin object store.

Prerequisite

You should be familiar with Creating a User on page 110.

To delete a User

1 In the Tree View, navigate to: Console Root > JMS Grid > Security > Access
> Users.

2 In the Detail View, select the User you wish to delete.

Note: If you want to delete multiple Users at the same time, you can select multiple Users
by holding down the Control key as you select each of the Users you want to delete.
You are not allowed to delete the admin User nor the default User.

3 With the mouse still over that User, right mouse click, and from the pop up Item
Menu that appears, select Delete.

4 Click Yes in the confirmation dialog that appears. The User will now be deleted
from your admin store.

Note: If a User is deleted while he or she is still logged into the system, then they will be
able to continue working as normal. However, once they have logged out, they will
be unable to log in again.

3.5.22 Sending Encrypted Messages
A message from a client application is automatically encrypted if it is sent to a
destination that is secure. A destination is made secure by creating a Destination
Security admin object that has a name matching the name of a JMS destination.

Prerequisite

You should be familiar with What are Secure Destinations? on page 97.

To send encrypted messages a Secure Destination must be created that has a name
which matches the Destination Name of a JMS destination (or temporary destination)
to which the encrypted messages are to be sent. See Create a Secure Destination object.

3.5.23 Creating a Secure Destination Object
A Secure Destination object is used to tell JMS Grid that messages sent to a JMS
destination that matches this name may be encrypted.
Sun JMS Grid User’s Guide 114 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Prerequisites

You should be familiar with Navigating the Tree View on page 49.

You should be familiar with What are Secure Destinations? on page 97.

To create a secure destination

1 In the Tree View, navigate to: Console Root > JMS Grid > Security >
Destinations Security.

2 In the Detail View, position the cursor away from any existing Destination Security
objects. Click the right mouse and select New from the Panel Menu that appears.
The Secure Destinations Properties dialog will open, see below.

Figure 52 Secure Destination Properties

Note: If the elements displayed in the Detail View fill the screen such that it is not possible
to position the cursor away from them, then right click the table heading in order to
bring up the Panel Menu.

3 Complete the fields to define your new Secure Destination object. A full description
of the meanings of the fields is given in What are Secure Destinations?

Note: Users may select different types of destination from the DestinationType combo
box; this selection will affect the behavior of the DestinationName combo box. For
example, if a Queue item is selected as a connection type then DestinationName
combo box will contain the names of Queues. The selection content of
DestinationName may be empty; this either means that there are no Destinations
stored in JNDI for the connection type selected, or all of the Destinations for the
selected type already have security profiles.
Sun JMS Grid User’s Guide 115 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
DestinationName is an editable combo box. This allows Users to create security
profiles for Destinations that may be created later.

The Encryption key is generated automatically using global Security Settings. This key
can be regenerated using Generate Key button.

4 Click the OK button then confirm the changes at the ‘Apply Changes’ warning
dialog.

3.5.24 Making all Existing Destinations Secure
A system may contain many Destinations. To make each Destination secure using the
procedure outlined in How To create a Secure Destination object, could be very
laborious. This How To describes a short cut that, in one step, creates a secure
destination for all existing destinations. This procedure will not automatically make
temporary Destinations secure since these are not known until runtime.

Prerequisite

You should be familiar with Creating a JMS Destination on page 137.

To secure all destinations

1 In the Tree View, navigate to: Console Root > JMS Grid > Security >
Destinations Security.

2 In the Detail View, position the cursor away from any existing Destination Security
objects. Click the right mouse button and select Secure All Destinations.

Note: If the elements displayed in the Detail View fill the screen such that it is not possible
to position the cursor away from them, then right click the table heading in order to
bring up the Panel Menu.

3 In the Detail View a Destination Security object will be created for each pre-defined
JMS Destination administered object.

3.5.25 Editing a Secure Destination Object
This section explains how to edit the properties of a Secure Destination object.

Once a Secure Destination object has been mapped to an existing JMS destination, it is
not possible re-allocate it to another JMS destination. However, encryption to this
destination can be turned on or off, and a new encryption key can be generated, if
required.

Important: With the latest version of JMS Grid it is recommended that Secure Destination
objects are not edited. This is because key versioning is not currently provided. If a
key changes then some clients will be unable to read messages.

Prerequisite

You should be familiar with Creating a Secure Destination Object on page 114.
Sun JMS Grid User’s Guide 116 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
To edit a destination object

1 In the Tree View, navigate to the Destinations Secure admin object at: Console Root
> JMS Grid > Security > Destinations Security.

2 The Detail View will now display a table of all existing Secure Destinations. Select
the Secure Destination you want to edit. Click the right mouse button to bring up
the Item Menu.

3 From the Item Menu that appears, select Properties. The Secure Destination
Properties dialog will appear.

4 Modify the required properties. The meanings of the property fields are explained
in What are Secure Destinations?

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Group.

Another Way to open the Properties Dialog

You can open an item’s properties dialog by selecting it in the Tree View and then
clicking on the Properties button in the Toolbar.

3.5.26 Deleting a Secure Destination Object
When a User is no longer required or allowed access to the system, it is possible to
remove that User admin object from the admin object store.

Note: Subject to caching on the daemon or client, a client will stop encrypting messages
destination immediately after that destination’s Secure Destination object is deleted
in the Admin Tool.

Prerequisite

You should be familiar with Creating a Secure Destination Object on page 114.

To delete a secure destination object

1 In the Tree View, navigate to: Console Root > JMS Grid > Security >
Destinations Security.

2 In the Detail View, select the Secure Destination instance to delete.

Note: If you want to delete multiple Secure Destinations at the same time, you can select
multiple Secure Destinations by holding down the Control key as you select each of
the Secure Destinations you want to delete.

3 With the mouse still over that Secure Destination, right mouse click, and from the
pop up Item Menu that appears, select Delete.

4 Click Yes in the confirmation dialog that appears. The Secure Destination will now
be deleted from the chosen admin store.
Sun JMS Grid User’s Guide 117 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3.5.27 Tightening JMS Grid's Security
JMS Grid’s security package gives administrators fine-grained control over who is
allowed to do what within a JMS Grid system. However, out of the box, JMS Grid is a
very open system. This enables new Users to quickly get started with it. However, for a
secure, commercial and sensitive system there are a number of steps it is important to
take so that your system is not left vulnerable to attack.

Prerequisites

You should be familiar with JMS Grid Security on page 91 and Security Concepts
on page 92.

3.5.28 Changing the Admin User Password
Anyone in your organization who has access to this guide will easily be able to find the
initial password to the all-powerful admin User. See How To change a User’s
password.

Important: It is vitally important that you don’t lose this password. All other passwords in the
system can be changed if the original is forgotten. If the admin User’s password is
forgotten – and you have not created any other Administrators – then your position
is irretrievable. You will have to re-create the admin store for your JMS Grid system
and start all over again!

3.5.29 Changing the Permissions of the Default User
When a messaging client’s security is disabled, or if a secure client attempts to log on
using a non-existent User, JMS Grid reverts to the default User. The default User has
been given a generous set of Permissions that allows anonymous log-in and the ability
to read and write messages from all permanent and temporary Destinations. So in its
out-of-the-box state, JMS Grid can give more access to non-existent Users and
unsecured clients than it gives to known, secure clients. See Editing a User's Access
Rights on page 112.

Alternatively, the default Group can be edited to remove Super as its parent Group –
see Editing a Group on page 108.

3.5.30 File Security on the Administration Object Store
Although only JMS Grid Users with Administrator Permission can log in to the JMS Grid
Admin Tool, unauthorized Users may be able to gain access to your configuration data
using other software. Depending on which storage mechanism is being used to store
configuration data, the unauthorized User could use a different JNDI browser, LDAP
browser or even just a simple file browser to access and alter your precious
configuration. If using a JNDI or LDAP admin store, refer to your implementation’s
documentation for ways to prevent this sensitive information being compromised.
Sun JMS Grid User’s Guide 118 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
3.5.31 Performing Batch Updates of JMS Grid Security Objects
Administrators may wish to populate JMS Grid security objects from existing Users
and Secure Destination names in existing databases. JMS Grid provides a command
line utility to populate security objects from Comma Separated Value files (CSV files).

Prerequisite

You should be familiar with Creating a User on page 110.

The batch update facility is run from the command line as follows:

java -DSPIRIT=<jmsgrid>
com.spirit.security.batch.BatchUpdate
<username> <password> <filename>

The <username> and <password> must be those of an Administrator (such as the
default admin User). <filename> is the name of the CSV file from which the security
object definitions will be read. <jmsgrid> should be the full path of your JMS Grid
installation.

You must ensure that lwmsClient.jar and wave.jar are in your classpath. These
jars can be found in the packages directory under your JMS Grid installation.

Each line in the CSV file must follow one of the following formats:

d, name, q|t, t|f
p, name, resource_name, q|t, r|w
g, name[, {g, group_name} | {p, permission_name}]...
u, name, password[, {g, group_name} | {p, permission_name}]...

These formats are discussed further in the sections that follow.

Batch Destination Creation

CSV lines beginning with the letter “d” are used to create JMS Grid Secure Destination
objects. This is followed by the destination name. Note that this is the JMS name of the
Destination, not its JNDI name.

The name is followed by either the letter “q” if the destination is a queue, or “t” if it is a
topic. This is then followed by “t” if the destination is to be initially encrypted, or “f” if
it is not.

For example, to define an encrypted queue called “Close_Prices”, the CSV file would
include the line:

d, Close_Prices, q, t

Batch Permission Creation

CSV lines beginning with the letter “p” are used to create JMS Grid Permission objects.
This is followed by the name of the Permission, the resource name expression of the
destinations being protected, whether it is a queue or a topic, and whether it provides
read only, or full write access.

For example, to define a Permission that provides read only access to all queues
beginning with the word ‘trade’, the CSV file would include the line:

p, allTrades, trade*, q, r
Sun JMS Grid User’s Guide 119 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
Batch Group Creation

CSV lines beginning with the letter “g” are used to create JMS Grid Group objects. This
is followed by the name of the group and a series of names of groups and permissions
to be added to the group. Group names are preceded by the letter “g” and Permission
names are preceded by the letter “p.“

For example, to create a group called tradesAndDefaults that holds both the Default
Group and the allTrades Permission, the CSV file would include the line:

g, tradesAndDefaults, g, Default, p, allTrades

Batch User Creation

CSV lines beginning with the letter “u” are used to create JMS Grid User objects. This is
followed by the name of the User and a series of names of Groups and Permissions to
be added to the User. Group names are preceded by the letter “g” and permission
names are preceded by the letter “p.“

For example, to create a User called admin2 that is to be a new administrator, the CSV
file would include the line:

g, admin2, g, Super, p, Administrator

3.5.32 Using Your Own Security Plug-in
JMS Grid security is “pluggable.” Authentication and authorization services can be
delegated to foreign providers. The JMS Grid Message Server also supports the Java
Authentication and Authorization Services (JAAS) version 1.0. By implementing the
appropriate Security interface it is possible to delegate security functions to alternative
sources of security information.

Implementing a Security Plug-in

The com.spirit.security.SecurityProvider interface defines the authorization
and encryption specification for a Security plug-in. The
com.spirit.security.AuthenticationProvider interface defines the
authentication specification. The security plug-ins can be created in order to perform
client or server based security. All Security plug-ins must provide a public constructor
with no arguments in order to be instantiated by JMS Grid. Nothing prevents the
implementer providing one implementation for both plug-in interfaces.

Note: It is highly recommended that you contact Sun SeeBeyond support before
implementing your own Security Plug-in.

Enabling a client to use a plug-in

Client plug-ins enable JMS Grid clients to interface to the security services of specific
Message Oriented Middleware providers. Client plug-ins are defined by setting the
property: spirit.security.provider, and adding the appropriate plug-in to the
classpath. The plug-in class name must be of the form:
Sun JMS Grid User’s Guide 120 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Administration JMS Grid Security
com.spirit.security.provider.<providerName>SecurityProvider

where <providerName> is the name of the security provider.

For example, if the following is added to the java command line used to start a JMS
Grid client: -Dspirit.security.provider=WMS, then JMS Grid will expect to find the
class in the classpath:

com.spirit.security.provider.WMSSecurityProvider

JMS Grid is currently supplied with a single implementation of the SecurityProvider
interface, WMSSecurityProvider. In order for server Security plug-ins to operate, JMS
Grid clients must use the WMS client Security plug-in. This is also explained in How To
enable or disable JMS Grid client security.

Enabling a Message Daemon to use a plug-in

Server plug-in’s are used with the JMS Grid Daemon. These allow the daemon to
integrate its security checking with those of the host platform. Normally the daemon
performs its own authentication and authorization checks based on information created
using the JMS Grid Admin Tool. By providing an appropriate security plug-in, these
security checks can be delegated to another source of User and permission information.
Typical sources might include an Application Server or a central JAAS implementation.

You specify which security plug-in that will be used by the Message Daemon by
specifying the <providerName> in the SecurityProvider field on the General tab of
the MessageDaemon Properties dialog box. The rule that links the <providerName>
with the class that implements the SecurityProvider interface is the same as is
described in the above section on clients. We explain how to create a configuration for a
daemon in How To create a configuration for a single daemon. The server plug-in is
then found in exactly the same way as client plug-ins. i.e. the class,
com.spirit.security.provider.<providerName>SecurityProvider, is loaded
from the classpath.

3.5.33 Changing a Password Without being an Administrator
If you have administrator security privileges, you can open the JMS Grid Admin Tool
and change any User’s password

However, if you don’t have administrator privileges you cannot open the JMS Grid
Admin Tool. How can you change your own password?

You can edit your own password using a command line utility program that is run
separately from the JMS Grid Admin Tool.

Prerequisite

You should be familiar with Creating a User on page 110.

To change a password

1 Ensure that JMS Grid security has already been enabled on a server – see Enabling
JMS Grid Security on page 100.

2 Ensure that one or more JMS Grid Message Daemon’s are running somewhere on
your system. You will need the URL of one of these daemons to feed into the
Sun JMS Grid User’s Guide 121 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
password utility. (The URL is also know as the Resource Location, Bind Address or
Message Channel).

3 Open a command shell (or Windows command prompt) and navigate to the root of
your JMS Grid installation.

4 At the command line type:

On Windows

cpass daemonURL

On Unix

cpass daemonURL

where daemonURL is the URL of one of the running daemons in your JMS Grid system.

Example

C:\JavaCAPS51\JMS_Grid>cpass tcp://localhost:50607

5 Follow the command line prompts to change your password. In the example below,
the sample User input is shown in bold type.

Example

Please enter User Name: myUserName
Please enter Old Password: myOldPassword
Please enter New Password: myNewPassword
2002-09-03 15:29:02,433 INFO - Connected to JMS Grid Message Daemon
(testDaemon@ tcp://mikebpc:50607) version 5.2
The password was successfully changed...

See also

Changing a User's Password on page 113.

3.6 SSL Configuration
Data sent over a network is vulnerable to interception and corruption. If the data is
important and includes sensitive information you might want to take steps to keep it
private and maintain its integrity in transit.

3.6.1 What is SSL?
The Secure Sockets Layer (SSL) and the Transport Layer Security (TLS) protocols are
designed for this purpose. JMS Grid allows you to send messages over an SSL
connection so that you can make your JMS communications more secure.

Some Concepts

The SSL protocol consists of several elements:

Encryption of communications for security

Optional authentication to verify the identity of the other party
Sun JMS Grid User’s Guide 122 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
Check sum facilities for data integrity

When an SSL connection is made, first of all client and server go through a process of
handshaking. If this is completed successfully then encrypted communications
commence. Very simply, the handshake consists of negotiating a cipher suite,
establishment of identity and agreeing encryption methods. The cipher suite is
negotiated transparently between client and server, where the server chooses to use the
best mutually acceptable suite. At the authentication phase both parties can optionally
authenticate themselves by presenting a digital certificate. It is common for the server
to do this, but much less so for the server to demand this of the client. Authentication
means that the party receiving the certificate checks that it corresponds to whom it
thinks the server is and is verified by a certificate authority it trusts. Finally, if
authentication is successful then an encryption key is established so secure
communication can occur.

Any SSL configuration you do mainly affects what happens during the handshaking
phase and concerns authentication. In JMS Grid the daemon must authenticate itself by
default, but client authentication is optional. In order to authenticate itself a party to an
SSL connection needs access to a certificate and it also needs a public/private key pair
for the early part of the handshake. These are to be found in a key store. The party in
receipt of the certificate also needs information about who to trust, which it will find in
a special type of key store called a trust store. Configuring SSL for JMS Grid means
ensuring the daemon and clients know where all these items are to be found, and
setting the client authentication policy.

For more information about SSL and TLS see:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html

Key and Trust Stores for JMS Grid

JMS Grid uses the following settings for key manager algorithm, trust manager
algorithm and key store type:

Key Manager algorithm: default, as defined by the
ssl.KeyManagerFactory.algorithm property in <java-home>/lib/
security/java.security

Trust Manager algorithm: default, as defined by the
ssl.TrustManagerFactory.algorithm property in

<java-home>/lib/security/java.security

KeyStore type: default, as defined by the keystore.type property in

<java-home>/lib/security/java.security

We do not describe here how to set up key and trust stores or obtain digital certificates.
Please see the system documentation with your jre to explain how to do this. For Sun
Microsystem jre's the keytool utility should be used. It is documented at http://
java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html for
Solaris and http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/
keytool.html for Windows. A useful example is given at http://java.sun.com/
j2se/1.4.2/docs/guide/security/jsse/
JSSERefGuide.html#CreateKeystore
Sun JMS Grid User’s Guide 123 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
Special Note about Sample Key and Certificates

We supply a sample key store for the daemon but this has only a test key entry, mainly
for use with the examples. This allows the daemon to authenticate itself to any client
which has the corresponding certificate in its trust store. There is also a sample
certificate for use by the daemon when it is acting as a client. The situations where this
applies are when SSL is used to make cluster and network connections. Additionally,
due to the placement of this certificate in the embedded jre's trust store it allows SSL to
be used for the JMX commands.

These keys and certificates are for testing only and should never be used in a deployed
system. Please consult system documentation, as mentioned above, and certification
authorities for assistance to do this.

Special Note about SSL Provider Pluggability

JMS Grid is supplied with an embedded jre, which is in most cases one from Sun
Microsystems, or otherwise from IBM. Early versions of the Sun Microsystems jre, i.e.
before 1.4, allowed different SSL implementations to be plugged in, at least in the jre
licensed for use in the United States. When the Java Secure Server Extension became a
standard part of the jre it was the non-pluggable version that was bundled with it. This
remained true until jre 5.0 update 6 was released in December 2005. It is therefore likely
that the jre provided with JMS Grid does not allow other SSL providers to be plugged
in. At the present time this would be an unsupported JMS Grid SSL configuration.

For further explanation of the pluggability restrictions of SSL see:

http://blogs.sun.com/roller/page/andreas/20051202

3.6.2 Configuring the Daemon's use of SSL
There are two ways in which you can configure the daemon's use of SSL. Which one
you use depends on your personal preferences. These methods are:

Via the administration tool

Via a property file

Configure Daemon SSL using the Administration Tool

The first thing you need to do is create a daemon which will listen for SSL connections.
This is explained in: Configuring a Single Daemon on page 54 and Specifying a
Daemon Network URL on page 64.

We start here assuming that you have the Message Daemon Properties dialog open
during the creation of a daemon. Click on the SSL tab and the dialog will look like this:
Sun JMS Grid User’s Guide 124 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
Figure 53 Message Daemon Properties

There are potentially five things you need to fill in here:

DoClientAuthentication check this box if you want clients to be required to
authenticate themselves. The default value is false.

SSLKeyStore and SSLKeyStorePassword. This is the file which contains the
daemon's own certificate with which it will authenticate itself and its key pair. You
need to specify its location and password, the location should be available on the
daemon's classpath. The easiest way to do this is to put the key store in the
properties directory. You must provide values here or the daemon will fail to bind
to the SSL port.

SSLTrustStore and SSLTrustStorePassword. This is the file which contains the
certificates of trusted parties. It is only relevant when using client authentication.
You need to specify its location and password, where the location is available on the
daemon's classpath. The easiest way to do that is to put it in the properties directory.
If you do not specify a value then the file <java-home>/lib/security/
jssecacerts or <java-home>/lib/security/cacerts will be used with the
default password, "changeit". If the first file does not exist then the second will be
used, if that does not exist then an empty trust store will be created. Don't forget
that the daemon has its own jre, in the jre directory. Also, don't forget when you are
doing this about the need for daemons to authenticate themselves to each other in
cluster and network connections: whatever file is used needs to have the daemon's
trusted certificate in it.
Sun JMS Grid User’s Guide 125 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
Configuring Daemon SSL using a Property File

Prerequisite

You should be familiar with Configuring a Daemon from a Properties Text File on
page 76.

We assume that you have added an SSL location to the list of bindAddresses. Then
there are five properties you may need to give values for to configure SSL use:

sslKeyStore and sslKeyStorePassword

The key store is the file which contains the daemon's own certificate with which it will
authenticate itself and its key pair. You need to specify its location and password, the
location should be available on the daemon's classpath. The easiest way to do this is to
put the key store in the properties directory. You must provide a value here or the
daemon will fail to bind to the SSL port.

sslTrustStore and sslTrustStorePassword

The trust store is the file which contains the certificates of trusted parties. It will only be
relevant when using client authentication. You need to specify its location and
password, where the location is available on the daemon's classpath. The easiest way to
do that is to put it in the properties directory. If you do not specify a value then the file
<java-home>/lib/security/jssecacerts or <java-home>/lib/security/
cacerts will be used with the default password, "changeit." If the first file does not
exist then the second will be used, if that does not exist then an empty trust store will be
created. Don't forget that the daemon has its own jre in the jre directory.

Also, don’t forget when you are doing this about the need for daemons to authenticate
themselves to each other in cluster and network connections. Whatever file is used
needs to have the daemon’s trusted certificate in it.

tunnelSSLdoClientAuthentication

Set to true if you want clients to be required to authenticate themselves. Defaults to
false.

3.6.3 Configuring the Client's use of SSL
There are three ways in which you can configure the daemon's use of SSL. Which one
you use depends on your personal preferences and to some extent how the daemon
will use SSL. These methods are:

Via the administration tool

Via a property file

Via system properties

System properties cannot be used where the daemon is demanding client
authentication.
Sun JMS Grid User’s Guide 126 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
Configuring the Client’s SSL using the Administration Tool

The first thing you need to do is create a connection factory which will use SSL to
connection to the daemon. This is explained in Creating a Connection Factory on
page 130 and Editing Connection Factory Properties for a Normal JMS Grid Client
Connection on page 135.

We start here assuming that you have the Connection Factory Properties dialog open
during the creation of a connection factory. Click on the JMS Grid tab and scroll down
to the bottom and the dialog will look like this:

Figure 54 Connection Factory Properties

There are potentially five things you need to fill in here:

DoClientAuthentication tick this box if you want clients to be required to
authenticate themselves. Defaults to false.

SSLKeyStore and SSLKeyStorePassword. This is the file which contains the
daemon's own certificate with which it will authenticate itself and its key pair. You
only need to specify these values if the daemon is using client authentication. You
need to specify its location and password. The location must be somewhere on the
client's classpath. You must provide a value here or the client will fail to bind to the
SSL port.

SSLTrustStore and SSLTrustStorePassword. This is the file which contains the
certificates of trusted parties. You need to specify its location and password, where
the location is on the client's classpath. If you do not specify a value then the file
<java-home>/lib/security/jssecacerts or <java-home>/lib/security/
cacerts will be used with the default password, "changeit." If the first file does not
Sun JMS Grid User’s Guide 127 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Administration SSL Configuration
exist then the second will be used, if that does not exist then an empty trust store
will be created. Also, don't forget when you are doing this about the need for
daemons to authenticate themselves to each other in cluster and network
connections: whatever file is used needs to have the daemon's trusted certificate in
it.

Configuring Client SSL using a Property File

Prerequisite

You should be familiar with how toConfiguring a Daemon from a Properties Text File
on page 76.

We assume that you have added an SSL location to the list of bindAddresses. Then
there are five properties you may need to give values for to configure SSL use:

privateKeyFilename and privateKeyPassword

The first property is the file which contains the client's own certificate, with which it
will authenticate itself, and its key pair and the second is its password. You only need to
specify these values if the daemon is using client authentication. You need to specify its
location and password. The location must be somewhere on the client's classpath. You
must provide a value here or the client will fail to bind to the SSL port

tunnelSSLTrustStore and tunnelSSLTrustStorePassword

The trust store is the file which contains the certificates of trusted parties. You need to
specify its location and password, where the location is somewhere on the client's
classpath. If you do not specify a value then the file <java-home>/lib/security/
jssecacerts or <java-home>/lib/security/cacerts will be used with the default
password, "changeit". If the first file does not exist then the second will be used, if that
does not exist then an empty trust store will be created.

tunnelSSLdoClientAuthentication

Set to true if you want clients to be required to authenticate themselves. Defaults to
false.

Configuring Client SSL use with System Properties

The JSSE specification defines four system properties which can be used to define the
locations and passwords for the key and trust store. These properties are:

javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.trustStore
javax.net.ssl.trustStorePassword

You can set the values of these system properties for your client programme and they
will work in the same way as setting them via a property file or using the
administration tool.

Using SSL Clients from SpiritWave with JMS Grid

If you are using client programs built with earlier versions of JMS Grid, which was then
known as SpiritWave, and you want to use them with a JMS Grid daemon then you
Sun JMS Grid User’s Guide 128 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
need to take some extra steps. As you will probably be aware, SpiritWave did not use
key and trust stores but relied on keys and certificates being available each in their own
individual file. These are the steps that you need to take:

Export the daemon's certificate from its trust store. As we have said, SpiritWave
expects keys and certificates to be present in individual files. You can export the
daemon's certificate by using the keytool utility. It is documented at http://
java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html for Solaris and http://
java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html for Windows. Here
is an example of how to do the export:

keytool -export
 -alias <daemon's certificate alias>
 -file <filename>.der
 -keystore <key store file name>

You need to know the daemon's certificate alias, which will be the one which was used
when the certificate was created or imported. You can list all the aliases of entries in a
key store using the -list option of keytool. Note that certificates are exported in binary
DER format by keytool, so we have chosen to use this as the file's suffix. The daemon's
certificate will be found in its key store, as defined by the sslKeyStore property.

Make the exported certificate available to the client. In SpiritWave the client
property clientRootCACertFilename should be set to the name of the der file we
created in the first step. You can do this either by using a property file or by setting
the property on a connection factory created using the Administration Tool. Client
programmes expect to find this file somewhere on the class path.

Check the SSL URL. When connecting from SpiritWave to a JMS Grid daemon you
can no longer use 'localhost' as the host name when using SSL. You must use the
hostname of the machine. So, for example, connecting to the URL ssl://
localhost:444, which works with SpiritWave client and daemons, you will need
to change this to ssl://<machine-name>:444 when connecting a SpiritWave
client to a JMS Grid daemon. If you forget to do this you will get a "Connection
refused" error.

3.7 JMS Administration

3.7.1 Introduction
This section explains how to use the JMS Grid Administration Tool to set up JMS
Administered Objects. There are two kinds of JMS Administered Objects:

1 Connection Factories

2 Destinations

The JMS Grid Administration Tool can be used to set up JMS Connection Factories
regardless of the underlying message infrastructure that is being used. It is only used to
create Destinations when the JMS Grid server is being used for the underlying
messaging infrastructure.
Sun JMS Grid User’s Guide 129 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
3.7.2 Creating a Connection Factory
As the name suggests, a Connection Factory is an object that is used to manufacture
new connections.

Each of these connections is used to provide a communications link between a JMS
messaging client and a JMS message server.

JMS Grid allows a client to either:

1 Retrieve a previously created Connection Factory from the Admin Tool JMS Admin
Object Store.

or

2 Programmatically create and configure a Connection Factory

Programmatic creation of connection factories is not part of the standard JMS
specification and is explained in detail in the JMS Grid Programmer’s Guide.

This section describes how an administrator can create and configure a Connection
Factory that will be subsequently looked up by a messaging client. This is the standard
mechanism specified by the JMS specification for a client to obtain a Connection
Factory.

A JMS messaging client uses JNDI to look up a Connection Factory that a JMS Grid
administrator has created, configured and stored. The Connection Factory will be
stored in the Admin Tool JMS Admin Object Store. See Specifying how Configuration
Data is Stored on page 143.

One of the key features of JMS Grid is the ability to allow developers to choose a
different vendor’s underlying messaging infrastructure. It is in the Connection Factory
that the administrator specifies which messaging provider is to be used. When the
provider has been chosen, the Admin Tool enables the administrator to set the
properties of the vendor specific Connection Factory.

Prerequisite

You should be familiar with Navigating the Tree View on page 49.

To create a connection factory

1 In the Tree View navigate to: Console Root > JMS Grid > Administered
Objects > Connection Factories.

2 In the Detail View, position the cursor so that it is not over any existing Connection
Factories. Right mouse click to display the Panel Menu. From the Panel Menu,
select New, to open the Connection Factory Properties dialog box, see below. If the
Detail View is full, you can right mouse click over the Detail View’s Column
headings to open the Panel Menu.
Sun JMS Grid User’s Guide 130 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
Figure 55 Connection Factory Properties

3 Fill in the following fields in the Connection Factory Properties dialog box - view
table below.

Table 22 Connection Factory Properties

Name Description
Default
Value

Required

storeName A unique JNDI store name for a Connection
Factory. JMS messaging clients will use this
JNDI name to lookup an instance of a
Connection Factory.

 Y

destinationType Destination type - Queue or Topic. If
message sending is to be involved in a
distributed transaction then either
XAQueue or XATopic must be selected.

Topic Y

driverName Set to "JMSGrid" (default) if the connection
should connect to a remote daemon. Set to
"JMSGridEmbedded" if the connection
should use an daemon embedded within
the same JVM.

JMSGrid N

clientID The clientID that a connection will be
assigned when created by this factory.

 N
Sun JMS Grid User’s Guide 131 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
Note: The Apply and OK buttons will be greyed out until all the required fields have been
specified. The fields available will depend on the value of driverName that is being
used.

Setting a Connection Factory’s clientID

Note: The Connection Factory clientID is a problematical part of the JMS specification.
Before setting a clientID for a Connection Factory, it is important to consider the
pros and cons of setting a clientID in the Connection Factory itself with your
development team. The client ID is only used in conjunction with clients that use
JMS Durable Subscriptions. Each durable subscriber client requires a client ID so
that if the client crashes, the message server can identify a new client as the
replacement (the replacement will have the same client ID as the original client).
Thus, undelivered messages can be sent to this replacement. The JMS spec states
that the preferred way to assign a client identifier is for it to be configured in a client
specific Connection Factory. This means you will need to set up an individual
Connection Factory for every durable messaging client. This is acceptable if only a
few, well-known durable clients are required, but in a large, flexible system with
thousands of durable clients, thousands of connection factories would potentially
need to be created - one for each client - each one with a different clientID. If the
clientID is left unset, on the other hand, individual messaging clients can
programmatically set their own clientID using the Connection.setClientID(string)
method call. Thus, all clients can potentially share the same Connection Factory,
reducing the administrative overhead and making for a more flexible and scalable
system.

4 You must now fill in the required driver specific properties of the Connection
Factory. These properties are entered on the other tab that is behind the Main tab on
the Connection Factory Properties dialog. The name of this tab, and the properties
available, will vary depending on which value is selected for the driverName
property.

5 Once all the required fields have been filled in click the OK button. A prompt to
save the changes appears. Click the OK button to apply the changes. A new
Connection Factory will appear in the Detailed View.

 See also

Editing Connection Factory Properties for a Normal JMS Grid Client Connection
on page 135

3.7.3 Editing a Connection Factory's Properties
This section explains how to edit the properties of a Connection Factory.

Prerequisite

You should be familiar with Creating a Connection Factory on page 130.

To edit a connection Factory’s properties

1 In the Tree View, navigate to the Connection Factories admin object at: Console
Root > JMS Grid > Administered Objects > Connection Factories.
Sun JMS Grid User’s Guide 132 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
2 The Detail View will now show a table of all existing Connection Factories. Right
mouse-click over the table row that contains the Connection Factory you wish to
edit.

3 From the Item Menu that appears, select Properties. The Connection Factories
dialog will be displayed.

4 Modify the required properties. The meanings of the property fields on the Main
tab are explained in Creating a Connection Factory on page 130. The properties on
the driver specific tabs are explained further in the topics listed below.

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Connection
Factory.

Another Way to open the Properties Dialog

You can open an item’s properties dialog by selecting it in the Tree View and then
clicking on the Properties button in the Toolbar.

See also

Editing Connection Factory Properties for a Normal JMS Grid Client Connection on
page 135

3.7.4 Exporting a Connection Factory's Properties
This action displays a File Dialog, which prompts for a new properties file into which
the Connection Factory’s properties are exported.

It is possible to export Connection Factory settings into a Java properties file for
debugging purposes.

Prerequisite

You should be familiar with Creating a Connection Factory on page 130.

To export a Connection Factory’s properties

1 In the Tree View, navigate to the Connection Factories admin object at: Console
Root > JMS Grid > Administered Objects > Connection Factories.

2 The Detail View will now show a table of all existing Connection Factories. Right
mouse-click over the table row that contains the Connection Factory you wish to
export.

3 From the Item Menu that appears, select Export properties… The File dialog will
appear.

4 Select a suitable location and file name and click OK. Selecting an existing file name
will overwrite the contents of that property file.
Sun JMS Grid User’s Guide 133 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
3.7.5 Creating Multiple Copies of a Connection Factory
If you want to create many similar Connection Factories you could repeat the steps
explained in How To create a Connection Factory, many times over. However this
would be a laborious process.

The JMS Grid Admin Tool provides you with a much quicker way to do this – it allows
you to make multiple copies of an existing Connection Factory.

Prerequisite

You should be familiar withCreating a Connection Factory on page 130.

To create multiple copies of a Connection Factory

1 Create a single configuration for a Connection Factory as explained in Creating
Connection Factory. Ensure that the configuration parameters of this configuration
closely match the configurations of your copies before deciding to replicate it.

2 In the Detail View, select the Connection Factory to replicate. Click the right mouse
button to bring up the Item Menu. From the Item Menu select Replicate. This will
open the Replicate Object dialog, as shown below.

Figure 56 Replicate Object

3 In the SequenceName field, enter the name to be used for the replicated objects.
The Admin Tool applies a simple numbering rule to the names of each of the
replicas. A sequential number, starting from 0, is appended to the end of the
SequenceName you give to create the replica’s name. For example, if you entered
MyConnectionFactory as the sequence name, and asked for 3 copies to be made,
then the replicated daemons’ store names would be MyConnectionFactory0,
MyConnectionFactory1 and MyConnectionfactory2.

4 In the NumberOfCopies field enter the number of copies to make.

5 Click the OK button.

6 In the Detail View list the sequence-named replicas will appear.

7 If a client ID had been set on your original Connection Factory, you will need to edit
the client ID's for each of your replica Connection Factories. More information on
Sun JMS Grid User’s Guide 134 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
Connection Factory client ID's is given in Creating a Connection Factory on
page 130.

3.7.6 Deleting a Connection Factory
When messaging clients no longer use a redundant Connection Factory, it is possible to
remove it from the JMS Grid Admin Tool (JMS Admin Object Store).

Prerequisite

You should be familiar withCreating a Connection Factory on page 130.

To delete a Connection Factory

1 In the Tree View, navigate to: Console Root > JMS Grid > Administered
Objects > Connection Factories.

2 In the Detail View, select the Connection Factory instance to delete.

Note: If you want to delete multiple Connection Factories at the same time, you can select
multiple Connection Factories by holding down the Control key as you select each of
the Connection Factories you want to delete.

3 With the mouse still over that Connection Factory, right mouse button click, and
from the pop up Item Menu that appears, select Delete.

4 Click Yes in the confirmation dialog that appears.

Note: Once a Connection Factory has been deleted, new messaging clients that attempt to
look it up will no longer be able to able to find it in the JMS Admin Object Store.

3.7.7 Editing Connection Factory Properties for a Normal JMS Grid
Client Connection

This section explains how to set up the Connection Factory properties that are specific
for a normal JMS Grid client connection.

If you are using a JMS Grid embedded connection then different properties will be
required.

The driverName property defines which type of connection is required.

Prerequisite

You should be familiar withCreating a Connection Factory on page 130.

To edit s server specific Connection Factory properties

1 Make sure the Connection Factory Properties dialog is open.

How to open this is explained in Editing a Connection Factory's Properties on
page 132.

2 Ensure the driverName is set to "JMSGrid" on the dialog's main tab. This is the
default.
Sun JMS Grid User’s Guide 135 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
3 The JMS Grid tab shows a number of fields - click the table icon below. Only the
messageChannels field must be filled in before the Connection Factory can be
created. All other fields are optional.

Table 23 Message Server Tab

Name Description
Default
Value

Required

Clusters Clusters available for connections N

messageChannels A list of URLs used to connect to a daemon Y

localClientAddress Force a client to open a socket on a
particular network interface with a specific
port. Required for firewalls. Should be
supplied in the form
networkAddress:portNumber

N

randomConnection If multiple connection URLs are specified
in the messageChannels property then if
randomConnection is set (which is the
default) then the client will randomly
choose a daemon to connect to.
Otherwise it will choose the first daemon
in the list.

true N

defaultConnectionRetries The number of times a client may retry
connection

N

defaultConnectionRetries
Timeout

Interval between connection retries in
seconds

N

pingEnabled Enable pinging between a client and a
demon

N

pingTimeout Interval between pings in milliseconds N

proxyHost Hostname or IP address of firewall proxy
server

N

proxyPort Port of firewall proxy server N

userName User name N

password User password N

waveCloseConnectionOnSlo
wConsumer

Close connection on slow consumer true N

waveCloseSessionOnSlowCo
nsumer

Close session on slow consumer true N

waveConsumerMessageQueue
MaxSize

Maximum number of messages stored by a
session

N

Sun JMS Grid User’s Guide 136 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
The JMS Grid tab will only show the messageChannels (a.k.a. Network URLs) for the
daemons that have configurations. To view these available messageChannels, a cluster
must be selected from the Clusters pull down. When a cluster is selected, the
messageChannels pull down will then show all the Network URLs of all the daemons
in that cluster. In order to see available Network URLs of the single daemons, select
‘None’ as the Clusters option in the Clusters pull down.

3.7.8 Creating a JMS Destination
A JMS destination is a named storage area within the message server for messages that
are in transit. A JMS messaging client sends messages to a particular named destination
in the message server. Other JMS clients receive messages up from a particular named
destination in the message server.

The administrator creates configurations for destinations that are stored as JNDI entries
in the JMS Admin Object Store. JMS compliant messaging client applications can then
lookup a destination’s configuration. When the client sends a message to a destination
with that configuration, the message server will create a physical destination.

Note: The administrator is not creating the physical destination that stores messages in
transit. The message server itself creates the physical destinations when clients first
send messages to them.

Prerequisite

You should be familiar with Navigating the Tree View on page 49.

To create a JMS destination

1 In the Tree View navigate to: Console Root > JMS Grid > Administered
Objects > Destinations.

autoDiscoveryAllowed Determines whether the daemon will
register as a service for clients to
automatically discover, and whether the
daemon itself will use multicast discovery
to locate other daemons.

false N

clientSideTransactions Enable transactions to be controlled on
the client - as opposed to the server

true N

consumeDispatchThread Use a separate thread to dispatch
messages from the connection to
individual sessions

false N

produceDispatchThread Enable a thread on the Connection to
manage dispatching to the daemon

false N

Table 23 Message Server Tab (Continued)

Name Description
Default
Value

Required
Sun JMS Grid User’s Guide 137 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
2 In the Detail View, position the cursor so that it is not over any existing destinations.
Right mouse button click to display the Panel Menu. From the Panel Menu, select
New, to open the Destination Properties dialog box, see below. If the Detail View is
filled with existing destinations, right mouse button click when the cursor is over
the Detail View column headings.

Figure 57 Destination Properties

3 Fill in the fields in the form to match the destination to create. See the table below
for explanations about each of the fields.

Table 24 Creating a New Destination

Name Description
Default
Value

Required

storeName A unique JNDI name for a Destination. The
client's application then uses this name to
lookup the destination in the JNDI tree.

 Y

destinationType The type of destination - a Queue or a Topic. Queue Y

destinationName The JMS name of the destination. Y

providerName This property is no longer used and should be
set to JMSGrid (default)

JMSGrid Y
Sun JMS Grid User’s Guide 138 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
Store Name and Destination Name

A destination appears to have two names – a store name and a destination name.
These names have different purposes.

The store name

The store name is simply the JNDI location of the destination. This is the place
where messaging clients will lookup that destination. If someone changes the place
in the JNDI hierarchy where a destination is stored, then its store name will change
to reflect the new location.

The destination name

The destination name is the identifier for that destination. This is the name that
other objects use to refer to a given destination. For example, a destination is made
secure by creating a separate Secure Destination object. The Secure Destination
object is told which destination it is securing using its destination name. Another
use of the destination name is when security Permissions are created – a Permission
defines read/write access permissions to particular destinations. The destination
name is used to specify the destination.

4 When the fields have been populated, click the OK button. A prompt for saving the
changes appears. Click the OK button to apply the changes. A new destination will
be displayed in the Detail View.

3.7.9 Editing a Destination's Properties
This section explains how to edit the properties of a destination.

Prerequisite

You should be familiar with Creating a JMS Destination on page 137.

To edit a destination’s properties

1 In the Tree View, navigate to the Destinations admin object at: Console Root > JMS
Grid > Administered Objects > Destinations.

2 The Detail View will now show a table of all existing Destinations. Select the
Destination you wish to edit, then click the right mouse button.

3 From the Item Menu that appears, select Properties. The Destination Properties
dialog will appear.

4 Modify the required properties.

5 When the edits are complete, click the OK or Apply buttons. A prompt for saving
the changes appears. Click the OK button to apply the changes to the Destination.

Another Way to open the Properties Dialog

You can open an item’s properties dialog by selecting it in the Tree View and then
clicking on the Properties button in the Toolbar.
Sun JMS Grid User’s Guide 139 Sun Microsystems, Inc.

Chapter 3 Section 3.7
Administration JMS Administration
3.7.10 Creating Multiple Copies of a Destination
If you want to create many similar Destinations you could repeat the steps explained in
How To create a destination, many times over. However this would be a laborious
process.

The JMS Grid Admin Tool provides you with a much quicker way to do this – it allows
you to make multiple copies of an existing Destination.

Prerequisite

You should be familiar with Creating a JMS Destination on page 137.

To create multiple copies of a destination

1 Create a single configuration for a Destination as explained in How To create a
destination. You should ensure that the configuration parameters of this
configuration closely match the configurations of your copies before deciding to
replicate it.

2 In the Detail View, select the Destination you want to replicate. Click the right
mouse button to bring up the Item Menu. From the Item Menu select Replicate.
This will open the Replicate Object dialog, as shown below.

Figure 58 Replicate Object

3 Into the SequenceName field, enter the JNDI store name to be used for the
replicated objects. The Admin Tool applies a simple numbering rule to the names of
each of the replicas. A sequential number, starting from 0, is appended to the end of
the SequenceName you give to create the replica’s name. For example, if you
entered myJNDIQueue as the sequence name, and asked for 3 copies to be made,
then the replicated daemons would be called myJNDIQueue0, myJNDIQueue1 and
myJNDIQueue2.

4 Into the NumberOfCopies field enter the number of copies to make.

5 Click the OK button.

6 In the Detail View list the sequence-named replicas will appear.

Note: If you now look at the properties of the replicated Destinations, you will see that both
the JNDI Store name and the Destination Names have been modified as a sequence
Sun JMS Grid User’s Guide 140 Sun Microsystems, Inc.

Chapter 3 Section 3.8
Administration Managing Client Applications
number has been appended to their original names. Thus, you do not need to modify
the destination name of your replica destinations, so long as you are happy with the
automatically generated destination names.

3.7.11 Deleting a Destination
When messaging clients no longer use a redundant destination, it is possible to remove
it from the JMS Admin Object Store

Prerequisite

You should be familiar with Creating a JMS Destination on page 137.

To delete a destination

1 In the Tree View, navigate to: Console Root > JMS Grid > Administered
Objects > Destination.

2 In the Detail View, select the Destination instance to delete.

Note: If you want to delete multiple Destinations at the same time, you can select multiple
Destinations by holding down the Control key as you select each of the Destinations
you want to delete.

3 With the mouse still over that Destination, right button mouse click, and from the
pop up Item Menu that appears, select Delete.

4 Click Yes in the confirmation dialog that appears.

Note: Once a Destination has been deleted, new messaging clients that attempt to look it
up will no longer be able to able to find it in the JMS Admin Object Store.

3.8 Managing Client Applications

3.8.1 Running a Simple Client Application with JMS Grid
In this section we cover the simplest way to run a client application with the JMS Grid
Message Server. Additional client configuration is covered in How To enable or disable
JMS Grid client security.

In this section we are assuming that your messaging client is either:

1 Looking up a fully configured Connection Factory from the JMS Admin Object
Store. The client will then use the properties specified in the Connection Factory to
connect up to the JMS Grid Message Server.

or

2 Programmatically defining its own Connection Factory
Sun JMS Grid User’s Guide 141 Sun Microsystems, Inc.

Chapter 3 Section 3.8
Administration Managing Client Applications
Note: In previous releases of JMS Grid, a number of configuration parameters were passed
to the message client application from the command line. Most of these are now set
up as properties of a Connection Factory using the JMS Grid Admin Tool. One
exception is the client’s security provider which must still be specified from the
client’s command line, see How To enable or disable JMS Grid client security.

Prerequisite

You should be familiar with Starting a Daemon on page 57.

To run a client application

1 Open the Windows Command Prompt from which you will execute the client
application.

2 You must now set up the command shell’s environment so that the client
application can find the JMS Grid java code libraries that it requires. To do this, run
the setenv script which can be found in the root of your JMS Grid installation. This
sets the environment variable JMSGRID_CPATH to contain all the classpath entries
needed to run a JMS Grid client.

3 To run your client application you must set the -CLASSPATH command line option
to the %JMSGRID_CPATH% environment variable

java –classpath .;%JMSGRID_CPATH% myClient

This client application doesn't specify any client security options. This is explained in
How To enable or disable JMS Grid client security.

Another Way to Specify CLASSPATH

Rather than specify the CLASSPATH on the java command line, you can set the
%CLASSPATH% environment variable to ‘.;%JMSGRID_CPATH%’

 See also

Enabling JMS Grid Client Security on page 103

Creating a Connection Factory on page 130

3.8.2 Enabling a Client to Connect to a Daemon through a Firewall
If a client does not specify the port number to which it wants its socket to connect, then
the Operating System will allocate it to a random port number.

One way that a firewall can be opened up to allow access through it is to specify a port
number through which network traffic can travel.

JMS clients connect to the JMS Grid Message Daemon through Connections that are
generated by Connection Factories. To enable a client to connect to a JMS Grid Message
Daemon through a firewall, you must configure the client’s Connection Factory to
manufacture Connections that will create sockets on a specified port.

Prerequisite

You should be familiar with Editing Connection Factory Properties for a Normal JMS
Grid Client Connection on page 135.
Sun JMS Grid User’s Guide 142 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
To enable clients to connect to Daemons through firewalls

1 Follow steps 1 and 2 of “Editing Connection Factory Properties for a Normal JMS
Grid Client Connection” before performing the instructions below.

2 In the JMS Grid tab of the Connection Factory Properties dialog, specify the
localClientAddress to be the network address and port number to which the
client should attach its socket.

The localClientAddress should be in the following format:

networkAddress:portNumber

Example

myComputer: 54321

3.9 Advanced Administration

3.9.1 Specifying how Configuration Data is Stored
The JMS Grid Admin Tool is used for creating and manipulating configuration
information that defines the behavior of a running JMS Grid Message Server
installation.

The configuration data is stored in the form of the administrative objects that you
navigate around in the Admin Tool Tree View. These administrative objects must be
stored somewhere so that the run-time server can read the configuration values as
shown in How the Admin Tool Works. Here, we explain how to specify where you
want to store your installation’s administrative objects.

The JMS Grid Admin Tool lets you store configuration data in two different stores:
Admin Store and JMS Admin Object Store:

JMS Admin Object Store - Stores the JMS Administered Objects, namely Connection
Factories and Destinations (Queues and Topics).

Admin Store - Stores all the other JMS Grid specific administered objects, such as
configuration data about daemons, networks, clusters and security.

The JMS Grid Admin Tool leaves the storage options as open as possible. Available
options are JNDI, LDAP, local or remote XML or basic file storage.

Note: Be careful about switching from one Admin Store to another. The core security
configurations, such as Users and Permission objects, will be copied from the old
Admin Store and recreated in the new Admin Store. However, other admin objects
such as daemon configurations and connection factories are not copied across. If
your old Admin Store is persistent, then these configurations will still be stored in
that old Admin Store and you can switch back to them. However, watch out if the
old Admin Store isn’t persistent – for example, WebLogic’s JNDI, as this
configuration data will be lost.
Sun JMS Grid User’s Guide 143 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
Prerequisite

You should be familiar with Using the JMS Grid Admin Tool on page 46.

You should be familiar with Deciding which Type of Configuration Data Store to use
on page 148.

To specify how configuration data is stored

1 Open the Settings dialog.

2 On the Menu Bar, click Preferences followed by Admin Settings.

When you open the Admin Settings dialog, a warning will appear:

Figure 59 Warning Message

Click the OK button.

3 The Settings dialog will appear, as shown below.

Figure 60 Admin Settings
Sun JMS Grid User’s Guide 144 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
4 Select the store you want to set up – either the Admin Store or the JMS Admin
Object Store. You select the store by clicking on the relevant tab at the top of the
setting dialog.

5 Select which storage mechanism you want to use from the Storage Plug-in pull
down. You are provided with the following options:

FileStoragePlugin - A file based mechanism. This is only useful for getting started.

JNDIStoragePlugin - An implementation of the Java Naming and Directory
Interface.

XMLStoragePlugin - Administrative objects are stored on your local computer as
XML

XMLRemoteStoragePlugin - Administrative objects are stored on a remote
computer as XML.

LDAPStoragePlugin - An implementation of the Lightweight Directory Access
Protocol.

6 Depending on which storage mechanism you chose, you will now have to set one or
more properties. The most important property to set is the one that specifies the
location of the store. Click the table icon below to see the mandatory properties that
must be set for each storage type.

The table below shows the mandatory properties that must be set for each storage
type.

Table 25 Storage Type Properties

Storage
Type

Property Description Default value

File initialContext Folder into which the
root node of the admin
object hierarchy is
stored.

<JMS Grid Installation folder>/file

JNDI java.naming.
provider.url

URL location of the root
node of the admin object
hierarchy.

file://localhost/<JMS Grid
Installation folder>/jndi/wave

java.naming.
factory.initial

The class name of the
initial context factory for
the JNDI provider.

com.sun.jndi.fscontext.RefFSConte
xtFactory

XML initialContext Folder into which the
root node of the admin
object hierarchy is
stored.

<JMS Grid Installation folder>/xml
Sun JMS Grid User’s Guide 145 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
Note: Programmers who are writing JMS messaging clients will need to know the
configuration of your JMS Admin Object Store so that they can direct their client
code can look up Connection Factories and Destinations.

7 To apply the alterations to the settings, click the Apply button. To apply the
alterations and dismiss the Settings dialog, click the OK button. To discard any
changes that have been entered, click the Cancel button.

3.9.2 Exporting Configuration Data to a File
There are times when you will want to export the configuration data that has been
entered. The JMS Grid Admin Tool enables you to export configuration data to a
Comma Separate Value file.

A Comma Separate Value (CSV) file is useful for storing table-like data structures. In a
CSV file, each table row of the original table is output as a line of the file and, as its
name suggests, a comma separates each value.

Which configuration data is exported depends on which item is currently selected in
the Tree View. The data that is exported is always the table data that is shown in the
Detail View when a given item is selected in the Tree View. For example, when the
Single Daemons node is selected, a CSV file is created that contains a line for each of the
single daemons that exist. For each single daemon, details are exported of its Name,
Host, Protocol and Port, as seen in the Detail View when the Single Daemons node is
selected.

Note: The export function does not export all the configuration data for the admin objects,
it only exports what is shown in the Detail View.

XML
Remote

inputURL URL location of the
remote XML store.

file://<JMS Grid Installation
folder>/xmlremote

outputPath The network location to
where data is written.

<JMS Grid Installation folder>/
xmlremote/

contextFile The file that represents
the entire xml store. A
single XML file contains
all the subcontexts and
objects.

Context.xml

LDAP java.naming.
provider.url

URL location of the root
node of the admin object
hierarchy.

ldap://localhost:389

java.naming.
factory.initial

The class name of the
initial context factory for
the LDAP provider.

com.sun.jndi.ldap.LdapCtxFactory

Table 25 Storage Type Properties (Continued)

Storage
Type

Property Description Default value
Sun JMS Grid User’s Guide 146 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
The format of the CSV is as follows:

The first line contains the column header names. For example, when the Single
Daemons node is selected in the Tree View, the first row will contain the text…

Name,Host,Protocol,Port

Each subsequent line contains the data for the corresponding row in the Detail View.
The lines are ordered in the same order as the rows shown in the Detail View. For
example, when the Single Daemons node is selected in the Tree View, the second line of
the CSV file will have the Detail View data for the single daemon that’s displayed in the
first row of the Detail View table – for example.

MyDaemonName,MyHost,tcp,2361

Details of exactly what will be exported for each selection in the Tree View is explained
in the tables in Reference on page 151.

Note: When exporting security admin objects such as Permissions, Users, Groups and
Secure Destinations, then the data is not exported in the input format expected by
the BatchUpdate utility (as explained in Performing Batch Updates of JMS
Grid Security Objects on page 119).

Prerequisite

The admin objects that you wish to export must have been created.

See also

Using the JMS Grid Admin Tool on page 46

Navigating the Tree View on page 49

Configuring a Single Daemon on page 54

Network and Cluster Concepts on page 79

Creating a New Cluster on page 81

Creating a Configuration for a Cluster Daemon on page 83

Creating a New Permission on page 105

Creating a Group on page 107

Creating a User on page 110

Creating a Secure Destination Object on page 114

Creating a Connection Factory on page 130

Creating a JMS Destination on page 137

To export configuration data to a file

1 In the tree view, navigate to the node whose subnode’s data you want to export.

2 From the Admin Tool’s Toolbar, click the Export icon.

3 In the Export View dialog that is opened, enter the name of the file you want the
Detail View data to be exported to.

4 Click the Save button.
Sun JMS Grid User’s Guide 147 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
5 The Detail View data will be saved as a CSV format file.

See also

Reference on page 151.s

3.9.3 Deciding which Type of Configuration Data Store to use

The JMS Grid admin tool leaves the storage options for configuration data as open as
possible. Available options are:

File storage

JNDI using FSContext

JNDI using some other JNDI provider

JNDI using JMS Grid JNDI provider

LDAP

local XML storage

remote XML storage

You should choose the correct storage mechanism before you start creating your
configuration data. If you later discover that you have selected a storage type that
doesn’t meet your requirements and that you will have to switch to another, then all
your configuration data will have to be re-created using the new storage type.

This section discusses the various storage options in turn.

File storage

This is a simple file-based mechanism.

Advantages:

Included with JMS Grid

Simple to use and understand.

Disadvantages:

Because it is file-based, where daemons will run on remote computers, those
computers need file access to see the configuration. This may have security
implications.

There is a single point of failure if the hardware storing the configuration data fails.

3.9.4 JNDI Storage using FSContext
JNDI is the Java Naming and Directory Interface, the standard Java API for accessing
configuration data. By default JMS Grid uses the FSContext JNDI provider from Sun
Microsystems. This stores data as directories and files in the file system.
Sun JMS Grid User’s Guide 148 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
Advantages:

Included with JMS Grid

Simple to use and understand.

Disadvantages:

Because it is file-based, where daemons will run on remote computers, those
computers need file access to see the configuration. This may have security
implications.

There is a single point of failure if the hardware storing the configuration data fails.

May not work with mapped network drives on Windows (bug)

3.9.5 JNDI Storage using some other JNDI Provider
You can use any other JNDI provider.

Advantages

Wide choice of JNDI providers

Can use a JNDI provider that is already in use within your organization

Can use the JNDI provider that is provided with your application server

Can use a JNDI provider that is fault-tolerant

Disadvantages

Not included with JMS Grid

3.9.6 JNDI Storage using JMS Grid JNDI Provider
JMS Grid contains its own JNDI provider in which a single JMS Grid daemon works as
the JNDI provider server.

Advantages:

Included with JMS Grid

URL-based; no need for remote file access

Disadvantages

There is a single point of failure if the single JMS Grid daemon fails

3.9.7 LDAP Storage
You can use any LDAP provider. LDAP is the Lightweight Directory Access Protocol, a
simplified version of the X500 directory access protocol. LDAP is a broader standard
than JNDI as it is not limited to Java clients. Many organizations use a corporate LDAP
provider as a corporate standard.

Advantages

Ability to conform to corporate standards for configuration data storage
Sun JMS Grid User’s Guide 149 Sun Microsystems, Inc.

Chapter 3 Section 3.9
Administration Advanced Administration
URL-based; no need for remote file access

Can use a LDAP provider that is fault-tolerant

Disadvantages

Not included with JMS Grid

Performance can sometimes be an issue

Complex to configure and administer

3.9.8 XML Storage
JMS Grid allows administrative objects to be stored on the local computer as an XML
document.

Advantages

Included with JMS Grid

The XML document is formatted in a way that is easy for people to read, which can
be convenient for debugging

Disadvantages:

Because it is file-based, where daemons will run on remote computers, those
computers need file access to see the configuration. This may have security
implications.

There is a single point of failure if the hardware storing the configuration data fails.

3.9.9 Remote XML Storage
JMS Grid allows access to a previously-created XML configuration document via a
URL.

Advantages

Included with JMS Grid

The XML document is formatted in a way that is easy for people to read, which can
be convenient for debugging

Allows a remote XML document to be accessed via a protocol such as HTTP instead
of via the file system

Disadvantages:

Access to the XML document is read-only
Sun JMS Grid User’s Guide 150 Sun Microsystems, Inc.

Chapter 3 Section 3.10
Administration Reference
3.10 Reference

3.10.1 Detail View Tables
This section describes each column of each of the Detail View Tables.

Console Root > JMS Grid > Single Daemons

Console Root > JMS Grid > Networks > <aNetwork> > <aCluster>

Console Root > JMS Grid > Security > Access > Permissions

Table 26 Single Daemons

Name Description

Name Shows the name of the daemon.

Host The host on which the daemon resides.

Protocol The primary protocol supported. For a list of the protocols and ports supported
view the general properties of the daemon.

Port The port to which clients and other daemon use for communicating with the
daemon.

Table 27 Networks <aNetwork> <aCluster>

Name Description

Name Shows the name of the daemon.

Host The host on which the daemon resides.

Protocol The primary protocol supported. For a list of the protocols and ports supported
view the general properties of the daemon.

Port The port to which clients and other daemon use for communicating with the
daemon.

Table 28 Permissions

Name Description

Name A unique Permission name.

Resource Name A name of a resource associated with this permission.

Resource Type Type of destination, for example, a Queue.

Access Mode Access mode granted by this permission, for example, read.
Sun JMS Grid User’s Guide 151 Sun Microsystems, Inc.

Chapter 3 Section 3.10
Administration Reference
Console Root > JMS Grid > Security > Access > Users

Console Root > JMS Grid > Security > Access > Groups

 Console Root > JMS Grid > Security > Destinations Security

Console Root > JMS Grid > Administered Objects > Connection Factory

Table 29 Users

Name Description

Name A unique User name.

Group A name of the Groups that this User is associated with.

Permission The permission rights assigned to this User. This does not show the inherited
permission rights.

Account Enabled Whether or not the User account is enabled.

Table 30 Groups

Groups Description

Name

Name A unique Group name.

Parent The name of any Groups that this group is a member of. The Group inherits all
Permissions of its parent Groups.

Permissions Permissions assigned to this group.

Table 31 Destinations Security

Name Description

Name JMS Destination name to which this Destination Security object is associated.

Encrypted Whether or not the JMS Destination is encrypted i.e. secure.

Table 32 Connection Factory

Name Description

Destination Type The type of Destinations the Connection Factory will manufacture e.g.
XAQueue

Store Name A unique JNDI name by which the factory can be looked up in a JNDI store.

Provider The provider (or driver name) used to create Destinations, e.g. JMS Grid.
Sun JMS Grid User’s Guide 152 Sun Microsystems, Inc.

Chapter 3 Section 3.10
Administration Reference
Console Root > JMS Grid > Administered Objects > Destinations

Status Indicates whether the Connection Factory has installed successfully. If not, the
entire row will be rendered red and the reason for the failure will be displayed
in this field.

Table 33 Destination

Name Description

Destination Type The type of Destination the Connection Factory will provide e.g. Queue

Store Name A unique JNDI name by which the destination can be looked up in the JNDI
store.

Destination Name The JMS name for the destination.

Table 32 Connection Factory (Continued)

Name Description (Continued)
Sun JMS Grid User’s Guide 153 Sun Microsystems, Inc.

Chapter 4

JMS Programming

This chapter is intended for Java programmers building a JMS client application that
uses JMS Grid. It describes the Java code needed to connect to JMS Grid and send and
receive messages.

Because JMS Grid is essentially an implementation of the JMS standard, much of the
code you need to write is entirely standard. We therefore recommend that you
supplement the information contained in this chapter with one of the various JMS client
programming textbooks that are available. A list of suggested books and online
resources is given on page 105.

It also gives some information on how to administer JMS Grid using Java code,
although if you use the JMS Grid administration tool Java programming is not
generally required. See the JMS Grid Administration chapter for more information.

Sections Contained in this Chapter

Overview of JMS – an introduction to the basic concepts of the Java Message
Service API

Building a JMS Application – describes the basics of JMS and how to write a JMS-
compliant client application

Additional Programming Features – describes a number of additional features of
JMS Grid which go beyond those defined in the JMS standard

Programming Examples – describes the example client programs provided with
JMS Grid. We recommend you run these examples and examine the code used to
produce them. You can also use these examples as the basis for your own client
programs, especially when learning to use JMS Grid.

4.1 Overview of JMS
The Java Message Service (JMS) API is an API for accessing enterprise messaging
systems from Java programs. It is defined in a specification from Sun Microsystems (see
References on page 105) and has been implemented by a number of independent
software vendors. It has quickly become the industry standard API for enterprise
messaging.
Sun JMS Grid User’s Guide 154 Sun Microsystems, Inc.

Chapter 4 Section 4.1
JMS Programming Overview of JMS
This section introduces the basic concepts on which the JMS API is based. This is only a
very brief summary of JMS. For full details the specification itself should be consulted.
The following concepts are covered:

Message Types

Messaging Models

Synchronous and Asynchronous Consumers

Persistent Messages

Message Acknowledgement & Redelivery

Message Expiry

4.1.1 Message Types
JMS defines five different message types, depending on the payload carried:

Object - for transporting any serializable Java object.

Bytes - for transporting a stream of uninterpreted bytes.

Stream - for transporting a self-defining stream of Java primitives.

Text - for transporting String objects, including XML documents.

Map - for transporting a self-defining set of name-value pairs where names are
Strings and values are Java primitive types.

4.1.2 Messaging Models
The basic purpose of JMS is to allow a client to create a message and dispatch it to the
JMS provider, which will then deliver it to one or more clients. JMS defines two
different ways in which this may be done. These are:

The point-to-point model

The publish-and-subscribe model

These two models (the term "paradigm" is sometimes used) correspond to the two
leading messaging models provided by existing messaging products.

Point To Point Messaging

With point-to-point (P2P) messaging, JMS clients send messages to and receive
messages from message queues.

Multiple clients may send messages to a particular queue, and multiple clients may
monitor a particular queue for messages. However each message will be only be
delivered to a single client. This is similar to a letter sent to a particular address; there
might be multiple potential recipients at the given address, but the letter will be opened
by only one of them. Point-to-point messaging is ultimately a one-to-one process.
Sun JMS Grid User’s Guide 155 Sun Microsystems, Inc.

Chapter 4 Section 4.1
JMS Programming Overview of JMS
When a message is sent to a queue, if there are no receivers waiting for messages from a
queue, the JMS provider will retain the messages until a receiver appears for it to send
the messages to.

Figure 61 Point to Point Model

Messages are by default persistent. When a persistent message is sent to a queue, and
there are no receivers waiting for messages from a queue, the JMS provider will retain
the messages until a receiver appears for it to send the messages to. Messages can also
be defined as being non-persistent. When a non-persistent message is sent to a queue,
and there are no receivers waiting for messages from a queue, the message may be
discarded.

Publish and Subscribe

With publish-and-subscribe (Pub-Sub) messaging, JMS clients publish messages to a
topic, and other JMS clients subscribe to messages from that topic.

Multiple clients may publish messages to a particular topic, and multiple clients may
subscribe to a particular topic for messages. When a message is published to a topic, the
JMS provider will deliver it to all the clients who are subscribing to that topic.
Publishing a message to a topic is therefore a bit like 'broadcasting' it to all its
subscribers.

Normally a subscriber only receives those messages that are published whilst it is
active, irrespective of whether those messages are persistent or non-persistent.
However a client may create a durable subscription to a topic and then terminate. The
JMS provider will then store all persistent messages to the topic. When the client
restarts and re-establishes the durable subscription, the stored messages will be
delivered to the client.
Sun JMS Grid User’s Guide 156 Sun Microsystems, Inc.

Chapter 4 Section 4.1
JMS Programming Overview of JMS
Figure 62 Publish and Subscribe Model

Generic Terms

As may be apparent from the previous two sections, the JMS specification defines
distinct terminology for the two messaging models. P2P is all about sending messages
to, and receiving messages from, queues. Pub-Sub is all about publishing messages to,
and subscribing to messages from, topics.

The term destination is used as a generic term for a queue or topic.

The term message producer is used as a generic term for a queue sender or topic
publisher.

The term message consumer is used as a generic term for a queue receiver or a topic
subscriber.

4.1.3 Synchronous and Asynchronous Consumers
A JMS client may consume messages either synchronously or asynchronously.

A client receives a message synchronously by calling one of the receive() methods. This
will block until a message is received or until a timeout expires.

A client may receive messages asynchronously by registering an object that implements
the JMS MessageListener interface. When a message arrives the listener's onMessage()
method is called.

4.1.4 Persistent Messages
Messages sent to a queue or topic may be either persistent or non-persistent. Messages
are persistent by default. Configuring a message to be persistent has three
consequences:
Sun JMS Grid User’s Guide 157 Sun Microsystems, Inc.

Chapter 4 Section 4.1
JMS Programming Overview of JMS
"With point-to point messaging, whether the message is persistent or not affects the
behavior of the JMS provider when there are no receivers on a queue. When a persistent
message is sent to a queue, and there are no receivers waiting for messages from a
queue, the JMS provider will retain the messages until a receiver appears for it to send
the messages to. If the message is not persistent, however, the message may be
discarded.

With publish-and-subscribe messaging, whether the message is persistent or not affects
how the JMS provider handles durable subscriptions which have no active subscriber.
If a client has created a durable subscription to a topic and then terminated, the JMS
provider will then store all persistent messages published to that topic. However any
non-persistent messages will not be stored. When the client restarts and re-establishes
the durable subscription, the stored messages will be delivered to the client.

"Making a message persistent also offers protection in case the JMS provider crashes.
Once a persistent message has been sent, the JMS provider will undertake not to lose
that message, even if the provider fails and has to be restarted. If a message is non-
persistent, and the JMS provider fails, then the message may be lost.

4.1.5 Message Acknowledgement and Redelivery
When a JMS provider delivers a message, it retains the message until the consumer has
acknowledged it. This means that if the client fails before it has acknowledged the
message then the provider can deliver it a second time.

In order to benefit from this, a message consumer normally does not acknowledge a
message until it has finished processing it.

There are four ways in which a consumer may acknowledge receipt of a message.

1 Messages may be received in a transaction. If the transaction is committed all the
messages consumed during that transaction are acknowledged. If the transaction is
rolled back then the messages are not acknowledged.

2 Messages may be explicitly acknowledged by the consumer. Acknowledging a
message automatically acknowledges all previous messages.

3 Messages may be automatically acknowledged. With this option, the client
automatically acknowledges receipt of a message when it has either successfully
returned from a call to receive() or the MessageListener it has called to process the
message successfully returns.

4 Messages may be automatically acknowledged, but lazily. The client automatically
acknowledges receipt of a message but the acknowledgement may not be sent until
a later time. This means that if the client fails after it has processed a message but
before the acknowledgement has been sent then the provider may deliver it a
second time even though it has already been processed.

4.1.6 Message Expiry
When a message is sent to a queue or published to a topic, the client can specify a 'time
to live' value.
Sun JMS Grid User’s Guide 158 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
The JMS provider will not deliver a message whose time to live has expired. Messages
stored in a queue or a durable subscription will be deleted when their time to live
expires.

4.2 Building A JMS Application
This section describes the basics of JMS and how to write a JMS compliant client
application. It will cover the following:

The Basic Structure of a JMS application

Obtaining a JMS Connection

Obtaining a JMS Session

Obtaining a JMS Destination

User Security page

JMS Messages page

Publish & Subscribe Messaging Using Topics

Point to Point Messaging Using Queues

Local Transactions

Global Transactions

Message Selectors

Closing Down

4.2.1 The Basic Structure Of A JMS Application
All JMS applications begin with the same basic steps:

1 Create a connection to the JMS provider and obtain a Connection object.

This establishes a communications channel to the JMS provider and authenticates
the client.

2 Obtain a Session object for this connection.

A session is a factory for creating message producer and consumer objects that will
all operate within the same thread. This means that if a client desires to have one
thread producing messages while others consume them, the client should use a
separate Session for its producing thread

3 Obtain a Queue or Topic object corresponding to the particular message destination
you wish to use.

Point-to-point messaging uses queues, whereas publish-and-subscribe messaging
uses topics.

After this, a message producing application will then:
Sun JMS Grid User’s Guide 159 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
4 Create a message producer object corresponding to the session and the particular
queue or topic to which it wishes to produce messages.

To send messages to a queue a QueueSender object is needed. See Creating a
QueueSender.

To publish messages to a topic a TopicPublisher object is needed. See Creating a
TopicPublisher.

Create a Message object with the required payload.

Use the message producer to send or publish the message.

A message consuming application will:

Create a message consumer object corresponding to the session and the particular
queue or topic from which it wishes to consumer messages:

To receive messages from a queue a QueueReceiver is needed. See Creating a
QueueReceiver.

To subscribe to messages on a topic a TopicSubscriber is needed. See Creating a
TopicSubscriber.

Call the start() method on the Connection object to start delivery of incoming
messages.

Wait for messages to arrive, either synchronously by calling the receive() method on
the message consumer or asynchronously by defining a MessageListener object
whose onMessage() method is invoked when a message is received.

When an application is finished, it should:

1 Close any message producer or message consumer objects

2 Close the session

3 Close the connection

4.2.2 Obtaining A JMS Connection
JMS Grid offers two alternative approaches to obtaining a JMS connection:

1 Create a JMS connection factory and use it to create the JMS connection

2 Use JNDI to obtain the JMS connection factory and then use it to obtain the JMS
connection. The connection factory must have been previously created and stored
in JNDI, probably by an administrator.

The JMS specification recommends that the second approach (JNDI) be used, because it
allows the configuration of the connection factories - which is vendor-specific and not
covered by JMS - to be kept separate from the client code.

Client programs may, however, create the connection factories themselves and use
them directly. This avoids the need to perform a JNDI lookup. However it means that
configuration information needs to be hard-wired into the client code, making it more
complex to administer and less portable between JMS providers.
Sun JMS Grid User’s Guide 160 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Creating a Connection Factory and using it to Create a Connection

The simplest way to obtain a JMS connection is to create a connection factory and use it
to create the connection. JMS Grid provides four connection factory classes, one for
each type of connection defined in the JMS standard.

The type of connection factory you need depends on the type of JMS destination (queue
or topic) you will be using and whether you will be using a global transaction.

This example shows how to obtain a JMS queue connection by first creating a
QueueConnectionFactory, and then using it to create a QueueConnection:

// assumes you have imported java.util.*, javax.jms.*
// and com.spirit.wave.jms.WaveQueueConnectionFactory;
Properties factProps = new Properties();
factProps.setProperty("driverName","JMSGrid");
factProps.setProperty("clientID","abc123")
WaveQueueConnectionFactory qcf =
 new WaveQueueConnectionFactory(factProps);
QueueConnection queueConnection =
qcf.createQueueConnection();

The property driverName specifies the JMS Grid driver to be used. In this example, this
property is set to "JMSGrid", which is the default and which specifies that an ordinary
JMS Grid connection should be created which connects to a remote daemon. The only
other valid value is "JMSGridEmbedded", which specifies that the connection should
use an embedded daemon that is running within the same JVM.

You may also set the property clientID. This allows you to specify the JMS client
identifier that will be used with all connections created from this connection factory.

Other driver-specific properties may need to be specified.

If the application used Topics instead of Queues it would need to create a
TopicConnectionFactory and then use that to create a TopicConnection:

// assumes you have imported java.util.*, javax.jms.* and
// com.spirit.wave.WaveTopicConnectionFactory;
TopicConnection topicConnection =
qcf.topicQueueConnection();
Properties factProps = new Properties();
factProps.setProperty("driverName","JMSGrid");
factProps.setProperty("clientID","abc123")
WaveTopicConnectionFactory tcf =
 new WaveTopicConnectionFactory(factProps);

Table 34 Connection Factory Classes

Connection Factory Classes

Connection Factory Class Used To Create Instances Of

com.spirit.wave.jms.WaveQueueConnectionFac tory javax.jms.QueueConnection

com.spirit.wave.jms.WaveTopicConnectionFac tory javax.jms.TopicConnection

com.spirit.wave.jms.WaveXAQueueConnectionFactory javax.jms.XAQueueConnection

com.spirit.wave.jms.WaveXATopicConnectionFactory javax.jms.XATopicConnection
Sun JMS Grid User’s Guide 161 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
TopicConnection topicConnection =
tcf.createTopicConnection();

It is also possible to set properties on an existing ConnectionFactory as shown below.

WaveQueueConnectionFactory qcf =
 new WaveQueueConnectionFactory(factProps);
Properties factProps = new Properties();
factProps.setProperty("driverName","JMSGrid");
qcf.setProperties(factProps);
QueueConnection queueConnection =
qcf.createQueueConnection();

The new set of properties will replace any existing properties defined on the
ConnectionFactory.

 Using JNDI for Obtaining a Connection Factory

If a connection factory has already been created and stored in a JNDI namespace, the
client program can simply lookup the connection factory by name and then use it to
create the JMS connection.

In the following example, a JNDI lookup is performed to obtain a
QueueConnectionFactory, which is then used to create a QueueConnection:

// assumes you have imported java.util.*, javax.naming.* and
javax.jms.*;
Properties factProps = new Properties();
factProps.put(
Context.INITIAL_CONTEXT_FACTORY,
 "com.spirit.directory.SpiritDirectoryContextfactory");
Context ctx = new InitialContext(factProps);
QueueConnectionFactory qcf;
Qcf = (QueueConnectionFactory)ctx.lookup("QueueConnectionFactory");
QueueConnection queueConnection = qcf.createQueueConnection();

If the application used Topics instead of Queues it would need to perform a JNDI
lookup to obtain a TopicConnectionFactory and then use it to create a TopicConnection:

// assumes you have imported java.util.*, javax.naming.* and
javax.jms.*;
Properties jndiProps = new Properties();
jndiProps.put(
Context.INITIAL_CONTEXT_FACTORY,
 "com.spirit.directory.SpiritDirectoryContextfactory");
Context ctx = new InitialContext(jndiProps);
TopicConnectionFactory tcf;
Tcf = (TopicConnectionFactory)ctx.lookup("TopicConnectionFactory");
TopicConnection topicConnection = tcf.createTopicConnection();

This is covered in more detail in Obtaining an Initial JNDI Context on page 22.

These examples use the JMS Grid Directory Service, which requires a JMS Grid
Message Server daemon to be running. You can, in fact, use any JNDI provider. For
details on how to specify another JNDI provider.

See Other JNDI providers.
Sun JMS Grid User’s Guide 162 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Binding a Connection Factory to the JNDI Namespace

Before you can use JNDI to obtain a connection factory you will normally need to create
a suitable connection factory instance and bind it to the JNDI namespace using a name
of your choice.

This is normally performed using the JMS Grid administration tool. For details, see the
JMS Grid Administration section.

Alternatively you can configure the connection factories using Java code. The
remainder of this section describes how to do this. There are three steps:

1 Obtain an initial JNDI context. An example of how to do this was given in
Obtaining an Initial JNDI Context on page 22. More details are given later in this
chapter.

2 Create a connection factory. This was described in Creating a Connection Factory
and using it to create a Connection on page 18.

3 Use the bind() method to bind the connection factory to the JNDI context using
whatever name you wish to use.

The following example shows how you might create a queue connection factory and
bind it to the JNDI namespace.

// assumes you have imported java.util.*, javax.naming.* and
javax.jms.*;

// obtain the initial JNDI context
Properties jndiProps = new Properties();
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.spirit.directory.SpiritDirectoryContextFactory");
Context ctx = new InitialContext(jndiProps);

// create the connection factory
Properties cfProps = new Properties();
cfProps.setProperty("driverNames","JMSGrid");
WaveQueueConnectionFactory factory = new
 WaveQueueConnectionFactory(cfProps);

// bind the connection factory to the JNDI context
String connectionFactoryName = "MyQueueConnectionFactory";
ctx.bind(connectionFactoryName, factory);

If you are using either the JMS Grid Directory Service or the JMS Grid VM Directory
Service a number of connection factories are automatically configured. See Predefined
Connection Factories.

Obtaining an Initial JNDI Context

The examples given above show how you can use a JNDI InitialContext to bind a
connection factory to a JNDI namespace or to lookup an existing connection factory.
Now let us look in more detail at how the initial JNDI context was obtained in those
examples.

The first step was to create a new Properties object:

Properties jndiProps = new Properties();
Sun JMS Grid User’s Guide 163 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
You then set the property Context.INITIAL_CONTEXT_FACTORY (which evaluates to
the string java.naming.factory.initial) to be the name of the factory class that will create
the InitialContext for us:

jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,"com.spirit.directory.S
piritDirectoryContextFactory");

You then created the InitialContext, supplying the properties object as an argument:

Context ctx = new InitialContext(jndiProps);

JMS Grid Directory Service

When creating an InitialContext, by specifying the property
Context.INITIAL_CONTEXT_FACTORY (which evaluates to the string
java.naming.factory.initial) you are specifying the JNDI provider you wish to
use.

In the above examples this property is set to
com.spirit.directory.SpiritDirectoryContextFactory. This specifies that the
JMS Grid Directory Service should be used. This is a distributed JNDI provider that
stores JNDI bindings in whatever persistent store JMS Grid Message Server is
configured to use. If you use this provider the JMS Grid Message Server daemon must
be running. A number of other properties may be supplied as well. These are listed in
the table below:

JMS Grid VM Directory Service

The JMS Grid VM Directory Service is an in-memory JNDI provider. To use it, use the
following property setting:

Table 35 JMS Grid Directory Service - Property Settings

Property Name Property Value

Context.INITIAL_CONTEXT_FACTORY
(java.naming.factory.initial)

com.spirit.directory.SpiritDirectoryContextFactory
Must be supplied

Context.PROVIDER_URL
(java.naming.provider.url)

A string of the form protocol://hostname:port
specifying how to connect to the JMS Grid Message
Server daemon
Optional: the default is stream://localhost:50607

Context.SECURITY_PRINCIPAL
(java.naming.security.principal)

A string specifying the identity of the principal (i.e. the
username). This is used to authenticate this client with
the JMS Grid Message Server daemon.
Optional: the default is anonymous

Context.SECURITY_CREDENTIALS
(java.naming.security.credential
s)

A string specifying the credentials of the principal (i.e.
the password). This is used to authenticate this client
with the JMS Grid Message Server daemon.
Optional: the default is anonymous.
Sun JMS Grid User’s Guide 164 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
The JMS Grid VM Directory Service is a non-distributed, non-persistent provider that
simply stores object bindings in memory. It does not require a JMS Grid Message Server
daemon to be running. Because the bindings are not persistent, the JMS Grid VM
Directory Service is only suitable for applications that do not require central
configuration.

Other JNDI Providers

You may, if you wish, use any third-party JNDI provider. To do so, you need to set the
properties Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL to
appropriate values. You may also need to supply additional properties. For full details,
consult the documentation for the JNDI provider you wish to use.

Here is an example of a client that uses the File System JNDI provider from Sun
Microsystems, which is redistributed with JMS Grid in the file fscontext.jar:

// assumes you have imported java.util.*, javax.naming.* and
javax.jms.*;

Properties jndiProps = new Properties();
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,"com.sun.jndi.fscontext
.RefFSContextFactory");
jndiProps.put(Context.PROVIDER_URL,"file://%JMS Grid%");
Context ctx = new InitialContext(jndiProps);
QueueConnectionFactory qcf;
qcf = (QueueConnectionFactory)ctx.lookup("QueueConnectionFactory");
QueueConnection queueConnection = qcf.createQueueConnection();

Some JNDI providers require a JNDI server daemon to be running. Any such daemon
must already be running before you can use it to create an initial context.

Specifying the JNDI Provider Using the File Jndi.properties

In each example above, the JNDI provider was chosen by creating a Properties object,
setting some properties, and supplying this object as an argument to the constructor for
InitialContext.

Alternatively, the no-argument constructor may be used. That is, the InitialContext
is created without specifying a properties object:

Context ctx = new InitialContext();

In this case, the constructor will look for a file jndi.properties in the classpath and
obtain the properties java.naming.factory.initial and java.naming.provider.url from
this. It is recommended that you store this file in the properties directory of your JMS
Grid installation.

Table 36 JMS Grid VM Directory Service

Property Name Property Value

Context.INITIAL_CONTEXT_FACTORY
(java.naming.factory.initial)

com.spirit.directory.Spirit
VMDirectoryContextFactory
Must be supplied
Sun JMS Grid User’s Guide 165 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Here is an example of a jndi.properties file that specifies the use of the File System JNDI
provider:

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContext
Factory
java.naming.provider.url=file://%JMS Grid%

Specifying the JNDI provider in the file jndi.properties rather than in the client code
means you can change to a different JNDI provider without having to change your
client code. It is therefore highly recommended.

Predefined Connection Factories

The JMS Grid Directory Service and the JMS Grid VM Directory Service have the
following connection factories automatically bound.

For each of these connection factories, the property driverName is set to JMSGrid. No
other properties are set.

This means that if you use one of these providers you can very quickly create client
applications that use JMS Grid Message Server without the need to initialize the JNDI
namespace to contain any connection factories.

The JMS Grid Directory Service and the JMS Grid VM Directory Service will also
generate Queues and Topics automatically. For details, See Automatic Queue and Topic
Generation.

4.2.3 Obtaining A JMS Session
Once a JMS connection has been obtained by the application, the next step is to create a
JMS session.

If you wish to use a point-to-point queue you need to create a QueueSession. If you
wish to use a publish-and-subscribe topic you need to create a TopicSession.

When creating the session, the application needs to specify whether the session should
be transacted and what type of message acknowledgement should be used.

The following code sample shows how to create a QueueSession:

boolean isTransacted = false;
int acknowledgeMode = Session.AUTO_ACKNOWLEDGE;
QueueSession queueSession
=queueConnection.createQueueSession(isTransacted,acknowledgeMode);

Table 37 Predefined Connection Factories

JNDI Name Type of Connection Factory

QueueConnectionFactory WaveQueueConnectionFactory

TopicConnectionFactory WaveTopicConnectionFactory

XAQueueConnectionFactory XAWaveQueueConnectionFactory

XATopicConnectionFactory XAWaveTopicConnectionFactory
Sun JMS Grid User’s Guide 166 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
The following code sample shows how to create a TopicSession:

boolean isTransacted = false;
int acknowledgeMode = Session.AUTO_ACKNOWLEDGE;
TopicSession topicSession
=topicConnection.createTopicSession(isTransacted,acknowledgeMode);
The argument isTransacted specifies whether the session should be
transacted or not.

Non-transacted Sessions

If isTransacted is set to false then the session is non-transacted and the argument
acknowledgeMode is used to specify how messages will be acknowledged. The
possible values are listed in the following table.

A session will retain a message until it has been acknowledged. If the
acknowledgement mode is Session.AUTO_ACKNOWLEDGE then the session will retain
the message until all consumers have received it.

If the acknowledgement mode is Session.CLIENT_ACKNOWLDEGE then a message must
be explicitly acknowledged using its acknowledge() method.

A third acknowledgement mode is Session.DUPS_OK_ACKNOWLEDGE. This mode is
intended to simplify the work performed by the session in filtering out duplicates, and
should only be used by a client that can tolerate duplicate messages.

Transacted Sessions (Local Transactions)

If isTransacted is set to true then the session is transacted and the argument
acknowledgeMode is ignored.

When a transacted session is used to produce messages, the messages will only be
really sent or published when the session is committed using the method
session.commit(). If the session is rolled back instead using the method

Table 38 Acknowledgment Modes

Acknowledgement mode Meaning

Session.AUTO_ACKNOWLEDGE The session will automatically acknowledge a client's
receipt of a message.

Session.CLIENT_ACKNOWLDEGE The client will acknowledge a message by calling its
acknowledge() method. Acknowledging a message
acknowledges all messages that have so far been
consumed in this session, up to and including the
message being acknowledged.

Session.DUPS_OK_ACKNOWLEDGE The session will lazily acknowledge the delivery of
messages. This is likely to result in the delivery of some
duplicate messages if the JMS provider fails. This mode
should therefore only be used by consumers that are
tolerant of duplicate messages.
Sun JMS Grid User’s Guide 167 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
session.rollback() then all messages sent or published within the transaction will
not be delivered and will instead be discarded.

When a transacted session is used to consume messages, then the client will only
acknowledge that it has consumed any messages when the session is committed. If the
session is rolled back instead then the messages will not be acknowledged.

A transacted session only involves messages produced and consumed within the
session and nothing else. It doesn't involve messages produced or consumed in other
JMS sessions, not does it involve other resources such as databases. In the terminology
of transactions, it uses a local transaction. For more information See Local Transactions.

There is another type of transaction, called a global transaction. This is described in
Global Transactions.

4.2.4 Obtaining a JMS Destination
A JMS destination is the generic term for both point-to-point queues and publish-and-
subscribe topics. Destination is the common supertype of Queue and Topic.

JMS Grid offers three alternative ways of obtaining a JMS destination:

1 Obtaining a destination from the session using the createQueue and createTopic
methods.

2 Creating a Queue or Topic object explicitly and using it directly.

3 Using JNDI to obtain the Queue or Topic object and then using it in your
application. The Queue or Topic object must have been previously created and
stored in JNDI, probably by an administrator.

The createQueue and createTopic methods provide the simplest way of obtaining a
Queue or Topic object. However, although this is consistent with the JMS standard,
such a simple API does not allow provider-specific parameters to be specified, and so
you will get the default values of any such parameters.

The JMS specification recommends that the third approach (JNDI) be used, because it
allows the configuration of the queues and topics - which is vendor-specific and not
covered by JMS - to be kept separate from the client code.

Client programs may, however, create the queue and topic objects themselves and use
them directly. This avoids the need to perform a JNDI lookup. However it may mean
that configuration information needs to be hard - wired into the client code, making it
more complex to administer and less portable between JMS providers.

Obtaining a Destination from the Session

The simplest way to obtain a JMS destination is to retrieve it from the Session object. To
obtain a Queue, use the method createQueue() of the QueueSession:

Queue queue = queueSession.createQueue (destName);

To obtain a Topic, use the method createTopic()of the TopicSession:

Topic topic = topicSession.createTopic(queueName);

In both cases, destName is the name of the queue or topic that you wish to use.
Sun JMS Grid User’s Guide 168 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Creating the Destination Explicitly

A Queue object may also be obtained by creating an instance of the class DefaultQueue.
This is a JMS Grid class that implements the Queue interface:

// assumes you have imported com.spirit.wave.message.DefaultQueue;

DefaultQueue queue = new DefaultQueue(destName);

Similarly, a Topic object may be obtained by creating an instance of the class
DefaultTopic. This is a JMS Grid class that implements the Topic interface:

// assumes you have imported com.spirit.wave.message.DefaultTopic;

DefaultTopic topic = new DefaultTopic(destName);

In both cases, destName is the name of the queue or topic that you wish to use.

Obtaining a Destination Using JNDI

If a Queue or Topic has already been created and stored in a JNDI namespace, the client
program can simply lookup the Queue or Topic by its JNDI name.

Queue queue = (Queue)ctx.lookup(destJNDIName);

or

Topic topic = (Topic)ctx.lookup(destJNDIName);

In this example, ctx is a JNDI Context; See Obtaining an Initial JNDI Context for a
discussion of how to obtain this.

destJNDIName is the JNDI name under which the Queue or Topic is bound to the JNDI
namespace. This need not be the same as the name of the queue or topic. You can think
of the JNDI name as a 'logical' name of the queue or topic. The 'actual' name of the
queue or topic can be configured separately by a central administrator and need not be
known by the client application.

Configuring a Destination

The JMS Grid classes DefaultTopic and DefaultQueue are configurable objects. It is
possible to get and set properties on them:

void DefaultTopic.setProperties(Properties props);
Properties DefaultTopic.getProperties();

void DefaultQueue.setProperties(Properties props);
Properties DefaultQueue.getProperties();

This allows destination-specific properties to be set. To set a property on a Queue or
Topic, it is necessary to first cast it to a DefaultQueue or a DefaultTopic as
appropriate.

Note: The setting properties on a Queue or Topic will replace any existing properties
defined for that destination.
Sun JMS Grid User’s Guide 169 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
BInding a Destination to the JNDI Namespace

Before you can use JNDI to obtain a queue or topic you will normally need to create a
suitable instance of Queue or Topic and bind it to the JNDI namespace using a suitable
JNDI name.

This is normally performed using the JMS Grid administration tool. See the JMS Grid
Administration chapter for details.

Alternatively you can configure these objects using Java code. The remainder of this
chapter describes how to do this. There are three steps:

1 Create an instance of DefaultQueue or DefaultTopic. This is described in Creating
the Destination Explicitly.

2 Obtain an initial JNDI context. This is described in Obtaining an Initial JNDI
Context.

3 Use the bind() method to bind the Queue or Topic to the JNDI context using
whatever JNDI name you wish to use.

The following example shows how you might use Java code to create a Queue and bind
it to the JNDI namespace:

DefaultQueue queue = new DefaultQueue(destName);
ctx.bind(destJNDIName,queue);

The following example shows how you might use Java code to create a Topic and bind
it to the JNDI namespace:

DefaultTopic topic = new DefaultTopic(destName);
ctx.bind(destJNDIName,topic);

Note the difference between destName and destJNDIName in the above examples:

destName is the name of the queue or topic.

destJNDIName is the JNDI name under which the Queue or Topic is bound to the
JNDI namespace

These two names need not be the same, and indeed it is generally considered desirable
for them to be different, as this allows the destination name to be changed without the
need to modify the name used in the client code. You can think of the JNDI name as a
'logical' name of the queue or topic. The 'actual' name of the queue or topic can be
configured separately by a central administrator and need not be known by the client
application.

Automatic Queue and Topic Generation

The JMS Grid Directory Service and the JMS Grid VM Directory Service will generate
queue and topics automatically, as follows:

If a lookup is performed using any name containing the case-insensitive string
"queue", and that name does not already exist, then a default instance of
DefaultQueue is returned.

If a lookup is performed using a name containing the case-insensitive string "topic",
and that name does not already exist, then a default instance of DefaultTopic is
returned.
Sun JMS Grid User’s Guide 170 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
4.2.5 User Security
If you wish to make use of JMS Grid's security facilities, you should specify a User
name and password when you create the connection:

QueueConnection queueConnection =

qcf.createQueueConnection(username,password)

or

TopicConnection topicConnection =
tcf.createTopicConnection(username,password)

Full details of JMS Grid's security features are described in JMS Grid Security on
page 91.

4.2.6 JMS Messages

Message Types

JMS defines five different types of message, depending on the payload carried:

1 ObjectMessage - for transporting any serializable Java object.

2 BytesMessage - for transporting a stream of uninterpreted bytes.

3 StreamMessage - for transporting a self-defining stream of Java primitives.

A StreamMessage differs from a BytesMessage in that it 'knows' the type of the
primitives stored in it, and will throw an exception of an attempt is made to read
bytes and convert them to the wrong primitive.

4 TextMessage - for transporting String objects, including XML documents.

5 MapMessage - for transporting a self-defining set of name-value pairs where names
are Strings and values are Java primitive types.

Message Headers

All JMS Messages contain a fixed set of header fields. These contain values used by
both clients and providers to identify and route messages. Some header fields are
automatically set by the JMS provider, whilst others may be set by the JMS client.

Message Properties

All JMS Messages also contain a set of property values. These contain additional
information about the message. Most properties are defined by the client application,
and are set by the client application before the message is delivered. The JMS standard
defines a number of properties that JMS providers may, or may not, set. JMS providers
may also define properties of their own.

A message consumer can define a MessageSelector that is used to filter incoming
messages on the basis of property values. For details see Message Selectors.
Sun JMS Grid User’s Guide 171 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Creating a Message

Message objects are created using a variety of methods on the Session object. For the
full list of methods, see the Javadocs for Session and the five different message types.

// Create an Object message in one step
ObjectMessage om = session.createObjectMessage(anObject);

// Create an Object message in two steps
ObjectMessage om = session.createObjectMessage();
om.setObject(anObject);

// Create a Bytes message
BytesMessage bm = session.createBytesMessage();
// then use various methods on BytesMessage to write bytes to
// the message

// Create a Text message in one step
TextMessage = session.createTextMessage(aString);

// Create a Text message in two steps
TextMessage tm = session.createTextMessage();
tm.setText(aString);
// Create a Stream message
StreamMessage sm = session.createStreamMessage();
// then use various methods on StreamMessage to write bytes to
// the message

// Create a Map message
MapMessage mm = session.createMapMessage
// then use various methods on MapMessage to write name-value
// pairs to the message

4.2.7 Publish and Subscribe Messaging Using Topics

Creating a TopicPublisher

A JMS client publishes messages to a topic using a TopicPublisher, which is created
from the TopicSession object using the method createPublisher(). This method has one
argument which is normally a Topic object but which may be null.

// topicSession is an instance of TopicSession

// topic is an instance of Topic

TopicPublisher publisher = topicSession.createPublisher(topic);

Having created a TopicPublisher you can then set default values for the
deliveryMode, priority and timeToLive parameters for messages published using this
TopicPublisher.

void setDeliveryMode(int deliveryMode)

deliveryMode defines whether the message is persistent or non-persistent. It may have
the values DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT. See
Error! Reference source not found. on page Error! Bookmark not defined. for more
information.

void setPriority(int defaultPriority)
Sun JMS Grid User’s Guide 172 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
priority is the message priority. JMS defines a 10 level priority value with 0 as the
lowest and 9 as the highest. Clients should consider 0-4 as gradients of normal priority
and 5-9 as gradients of expedited priority. Priority is set to 4, by default. Messages with
higher priority may be delivered before messages with lower priority, though this
depends on the JMS provider.

setTimeToLive(long timeToLive)

timeToLive is the length of time in milliseconds from its dispatch time that a produced
message should be retained by the message system.

Publishing Messages

Having obtained a TopicPublisher, you can then publish messages using one of the
publish() methods. The methods normally used are:

void publish(Message message)

void publish(Message message,int deliveryMode, int priority, long
timeToLive)

// publisher is an instance of TopicPublisher
// message is an instance of Message (or one of its subtypes)
publisher.publish(message);

If the TopicPublisher was created using a null topic it is known as an 'unidentified
producer' and the topic must be supplied on every message publish using one of the
following methods:

void publish(Topic topic, Message message)

void publish(Topic topic, Message message,int deliveryMode, int
priority, long timeToLive)

If you use the methods with the deliveryMode, priority and timeToLive parameters
then these override any defaults set on the TopicPublisher

Creating a TopicSubscriber

A JMS client subscribes to a topic using a TopicSubscriber, which is created from the
TopicSession object using one of a variety of methods. The choice of method depends
on whether the subscription is non-durable or durable and whether you wish to specify
a message selector.

The most common method for creating a non-durable subscription is:

TopicSubscriber createSubscriber(Topic topic)
// topicSession is an instance of TopicSession
// topic is an instance of Topic

TopicSubscriber subscriber = topicSession.createSubscriber(topic);

You can also specify a message selector. This is a text string that defines criteria used to
filter incoming messages.

TopicSubscriber createSubscriber(Topic topic, String messageSelector,
Boolean nolocal)

The use of JMS message selectors is described in Message Selectors.
Sun JMS Grid User’s Guide 173 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
If you wish to create a durable subscription the JMS specification defines two methods
for you to use:

TopicSubscriber createDurableSubscriber(Topic topic, String
subscriptionName)

TopicSubscriber createDurableSubscriber(Topic topic, String
subscriptionName,String messageSelector, Boolean nolocal)

Durable subscriptions are described in the section Durable Subscriptions.

JMS Grid also provides a number of additional methods to support JMS Grid's
extensions to the JMS message selector mechanism, for both non-durable and durable
subscriptions. These are described in Error! Reference source not found. on page Error!
Bookmark not defined.

Having created a TopicPublisher you can then receive messages either synchronously
or asynchronously.

Receiving Messages Synchronously

Messages may be received synchronously by calling one of the receive() methods on the
TopicSubscriber. These will block until a message is received or until a timeout expires:

Message receive() throws JMSException

Receive the next message. This call blocks indefinitely until a message is produced.

// subscriber is an instance of TopicSubscriber
Message message = subscriber.receive();

Message receive(long timeout) throws JMSException

Receive the next message that arrives within the specified timeout interval (given in
milliseconds). This call blocks until a message arrives or the timeout expires. A timeout
of zero never expires and the call blocks indefinitely.

Message receiveNoWait() throws JMSException

Receive the next message if one is immediately available. If a message is not
immediately available this call returns null.

Receiving Messages Asynchronously

Messages may be received asynchronously by creating an object that implements the
MessageListener interface and registering it with the TopicSubscriber using the method
setMessageListener():

void setMessageListener(MessageListener listener)

The MessageListener interface defines one method, onMessage(), which is called
whenever a message arrives.

// subscriber is an instance of TopicSubscriber
subscriber.setMessageListener(new MessageListener() {
 public void onMessage(javax.jms.Message message) {
 // process the message
 }
});
Sun JMS Grid User’s Guide 174 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Durable Subscriptions

If a client needs to receive all the messages published on a topic, including the ones
published while the subscriber is inactive, it should use a durable TopicSubscriber. The
JMS provider will retain a record of this durable subscription and will ensure that all
messages from the topic's publishers are retained until they are either acknowledged by
this durable subscriber or they have expired.

The idea is that whilst the subscriber is not running, the messages that it would
otherwise have received are stored by the JMS provider. When the subscriber is
restarted, the stored messages are delivered.

A durable subscription is defined by a subscription name and a client ID. When the
subscriber is restarted, the same subscription name and client ID must be used as when
the subscription was first created.

The subscription name is a string specified by the client. The client ID is an attribute of
the JMS connection, and can be specified using the setClientID() method of the JMS
Connection.

Only one session at a time can have a TopicSubscriber for a particular durable
subscription.

Note: If you wish to create durable subscriptions you may first need to configure the
underlying messaging product to use a durable message store. For more
information, see the JMS Grid driver manual for the messaging product (either JMS
Grid Message Server or a third-party product) you are using.

To create a durable subscription, use one of the createDurableSubscription() methods
on the session:

TopicSubscriber createDurableSubscriber(Topic topic, String
subscriptionName)

TopicSubscriber createDurableSubscriber(Topic topic, String
subscriptionName,String messageSelector, Boolean nolocal)

// topicSession is an instance of TopicSession
// Create a durable topic subscriber
String subscriptionName;TopicSubscriber subscriber =
session.createDurableSubscriber(topic,subscriptionName);

The TopicSubscriber can then be used to receive messages just like any other
TopicSubscriber.

When the client wishes to terminate it can close down the subscriber, session and
connection in the normal way. All messages subsequently published to the topic will be
stored by the JMS provider.

When the client restarts it should create a connection using the same clientID as before,
and create a durable TopicSubscriber using the same subscription name as before. The
JMS provider will then deliver all the messages that were published to the topic whilst
the client was inactive.

When the client no longer requires the durable subscription is should end it using the
unsubscribe() method:

// We've finished with the durable subscription for the last time
session.unsubscribe(subscriptionName);
Sun JMS Grid User’s Guide 175 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
This method uses the supplied subscriptionName and the clientID of the connection to
identify the subscription to be cancelled.

4.2.8 Point-to-Point Messaging using Queues

Creating a QueueSender

A JMS client sends messages to queue using a QueueSender, which is created from the
QueueSession object using the method createSender(). This method has one argument
which is normally a Queue object but which may be null.

// queueSession is an instance of QueueSession
// queue is an instance of Queue
QueueSender sender = queueSession.createSender(queue);

Having created a QueueSender you can then set default values for the deliveryMode,
priority and timeToLive parameters for messages published using this QueueSender.

Sending Messages

Having obtained a QueueSender, you can then send messages using one of the send()
methods. The methods normally used are:

void send(Message message)

void send(Message message,int deliveryMode, int priority, long
timeToLive)

// sender is an instance of QueueSender
// message is an instance of Message (or one of its subtypes)
sender.send(message);

If the QueueSender was created using a null topic it is known as an 'unidentified
producer' and the queue must be supplied on every message publish using one of the
following methods:

void publish(Queue queue, Message message)

void publish(Queue queue, Message message,int deliveryMode, int
priority, long timeToLive)

If you use the methods with the deliveryMode, priority and timeToLive parameters
then these override any defaults set on the QueueSender.

Creating a QueueReceiver

A JMS client receives messages from a queue using a QueueReceiver, which is created
from the QueueSession object.

The most common method for creating a QueueReceiver is

QueueReceiver createReceiver(Queue queue)
// queueSession is an instance of QueueSession
// queue is an instance of Queue
QueueReceiver receiver = queueSession.createReceiver(queue);
Sun JMS Grid User’s Guide 176 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
You can also specify a message selector:

QueueReceiver createReceiver(Queue queue, String messageSelector)

The use of JMS message selectors is described in Message Selectors.

Having created a QueueReceiver you can then receive messages either synchronously
or asynchronously.

Receiving Messages Synchronously

Messages may be received synchronously by calling one of the receive() methods on
the QueueReceiver. These will block until a message is received or until a timeout
expires:

Message receive() throws JMSException

Receive the next message. This call blocks indefinitely until a message is produced.

// receiver is an instance of QueueReceiver
Message message = receiver.receive();

Message receive(long timeout) throws JMSException

Receive the next message that arrives within the specified timeout interval (given in
milliseconds). This call blocks until a message arrives or the timeout expires. A timeout
of zero never expires and the call blocks indefinitely.

Message receiveNoWait() throws JMSException

Receive the next message if one is immediately available. If a message is not
immediately available this call returns null.

Receiving Messages Asynchronously

Messages may be received asynchronously by creating an object that implements the
MessageListener interface and registering it with the QueueReceiver using the
method setMessageListener():

void setMessageListener(MessageListener listener)

The MessageListener interface defines one method, onMessage(), which is called
whenever a message arrives.

// receiver is an instance of QueueReceiver
receiver.setMessageListener(new MessageListener() {
 public void onMessage(javax.jms.Message message) {
 // process the message
 }
});

Browsing Messages on a Queue

A client application may create a QueueBrowser to look at the messages on a queue
without actually removing them from it. The QueueBrowser has a method
getEnumeration() which returns an Enumeration of the queue's messages:

QueueBrowser browser=session.createBrowser(queue);
Enumeration enum=browser.getEnumeration();
while (enum.hasMoreElements()) {
Sun JMS Grid User’s Guide 177 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
System.out.println("Message on queue is: "+iter.nextElement());
}

It is also possible to specify a message selector. In this case the Enumeration will only
contain messages that satisfy some condition defined in the message selector:

String selector="price BETWEEN 10 and 100";
QueueBrowser browser=session.createBrowser(queue,selector);

The JMS specification does not define whether the QueueBrowser should represent a
snapshot of the queue or whether it is dynamically updated. However with JMS Grid a
snapshot is taken when the call is made to getEnumeration().

4.2.9 Local Transactions
A transaction allows you to send or consume a set of messages as a single operation, so
that either all the messages are processed or none of them are.

When messages are produced in a transaction, the messages will only be really sent or
published when the transaction is committed. If the transaction is rolled back then all
messages sent or published within the transaction will not be delivered and will instead
be discarded.

When messages are consumed in a transaction, then the client will only acknowledge
that it has consumed any messages when the transaction is committed. If the
transaction is rolled back instead then the messages will not be acknowledged.

This section describes local transactions. A local transaction is the simpler of the two
types of transaction supported by JMS Grid. A local transaction only involves messages
produced and consumed within the session and nothing else. A global transaction, on
the other hand, might involve multiple JMS sessions together with multiple databases.

Support for local transactions in JMS Grid is implemented using the native facilities of
the underlying messaging product or, for those products that do not support
transactions, in the JMS Grid framework itself.

Starting a Local Transaction

If you wish to send or consume messages within a local transaction you need to create a
transacted session. This is created in exactly the same way as a non-transacted session,
using QueueConnection.createQueueSession()or
TopicConnection.createTopicSession(), but with the isTransacted argument of
these methods set to true (See Transacted Sessions – Local Transactions.

The following code sample shows how to create a transacted QueueSession:

boolean isTransacted = true;
int acknowledgeMode = 0;
QueueSession queueSession =
queueConnection.createQueueSession(isTransacted,acknowledgeMode);

The following code sample shows how to create a transacted TopicSession:

boolean isTransacted = true;
int acknowledgeMode = 0;
TopicSession TopicSession =
topicConnection.createTopicSession(isTransacted,acknowledgeMode);
Sun JMS Grid User’s Guide 178 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
Note: When the isTransacted argument is set to true the acknowledgeMode argument is
ignored.

Creating a transacted session automatically starts a local transaction. There is no
separate method to start the transaction.

Committing a Local Transaction

A local transaction is committed by calling the commit() method on the Session object:

void commit() throws JMSException

If the session is not transacted then a javax.jms.IllegalStateException will be
thrown. Committing a local transaction automatically starts a new local transaction.

Rolling Back a Local Transaction

A local transaction is rolled back by calling the rollback() method on the Session
object:

void rollback() throws JMSException

If the session is not transacted then a javax.jms.IllegalStateException will be
thrown.

Rolling back a local transaction automatically starts a new local transaction.

Closing a transacted session (using Session.close()) automatically rolls back the
transaction.

Sending Messages in a Local Transaction

When you have started a local transaction by creating a transacted session you can
create a QueueSender or TopicPublisher and use it to send() or publish()
messages, just as you would with a non-transacted session.

However because the session is in a transaction, the call to QueueSender.send() or
TopicPublisher.publish() will not actually cause the message to be delivered. Only
when you commit the transaction by calling Session.commit() method will the
messages actually be sent to the topic or queue.

The commit is atomic. This means that if the commit fails for any reason then none of
the messages will be sent. You will never get some of the messages being sent and some
not being sent.

The following code sample shows two text messages being sent to a queue within a
single local transaction (an example using topics would be very similar). Only when the
commit() is performed are the two text messages actually sent.

// queueConnection is an instance of QueueConnection

// create a transacted QueueSession
boolean isTransacted = true;
int acknowledgeMode = 0;
QueueSession queueSession = queueConnection.createQueueSession
(isTransacted,acknowledgeMode);
Sun JMS Grid User’s Guide 179 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
// obtain a queue
// ctx is a javax.naming.Context
Queue queue = (Queue)ctx.lookup(queueName);

// create a QueueSender on the queue
QueueSender queueSender = queueSession.createSender(queue);

// start the JMS connection
queueConnection.start();

// create a TextMessage
TextMessage tm1 = queueSession.createTextMessage
 ("This is message 1");

// Send the message
queueSender.send(tm1);

// create a second TextMessage
TextMessage tm2 = queueSession.createTextMessage
 ("This is message 2");

// Send the message
queueSender.send(tm2);

// commit the transaction - this actually sends the messages
queueSession.commit()

If for some reason you don't want to commit the transaction (perhaps because an error
occurred) you can instead call rollback() to abandon all message sends that were
performed during the transaction. If your client crashes without committing then the
session will automatically be rolled back.

// roll back the transaction
queueSession.rollback()

Consuming Messages in a Local Transaction

You can also use a transacted session to consume messages within a local transaction.
Create a QueueReceiver or TopicSubscriber and then call either
setMessageListener() to register a message listener or receive() to receive an
individual message, just as you would with a non-transacted session.

Because the session is in a transaction, the client will only acknowledge that it has
consumed any messages when the session is committed.

The following code sample shows two text messages being received synchronously (i.e.
using receive()) from a queue within a single local transaction. Only when the
commit() is performed are the two text messages actually acknowledged.

// queueConnection is an instance of QueueConnection

// create a transacted QueueSession
boolean isTransacted = true;
int acknowledgeMode = 0;
QueueSession queueSession =
queueConnection.createQueueSession(isTransacted,acknowledgeMode);

// obtain a queue
// ctx is a javax.naming.Context
Queue queue = (Queue)ctx.lookup(queueName);
Sun JMS Grid User’s Guide 180 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
// create a QueueReceiver on the queue
QueueReceiver queueReceiver =
 queueSession.createReceiver(queue);

// start the JMS connection
queueConnection.start();

// receive a message (and block until it arrives)
Message m1 = queueReceiver.receive()

// receive a second message (and block until it arrives)
Message m2 = queueReceiver.receive()

// commit the transaction - this acknowledges the receipt of
// the messages
queueSession.commit()

If for some reason you don't want to commit the transaction (perhaps because an error
occurred) you can instead call rollback(). This means that none of the messages
received during the transaction will be acknowledged. The JMS provider will consider
them to have not been sent and will subsequently attempt to deliver them again. If your
client crashes without committing then the local transaction will automatically be
rolled back.

// roll back the transaction
queueSession.rollback()

You can receive messages asynchronously (i.e. using an event listener) within a local
transaction in just the same way. The following code sample shows two text messages
being received asynchronously from a queue within a single transaction. Only when
onMessage() is called a second time is commit() called. This acknowledges receipt of
this and the previous message.

// queueConnection is an instance of QueueConnection
// create a transacted QueueSession
boolean isTransacted = true;
int acknowledgeMode = 0;
queueSession QueueSession = queueConnection.createQueueSession
isTransacted,acknowledgeMode);
// obtain a queue
// ctx is a javax.naming.Context
Queue queue = (Queue)ctx.lookup(queueName);
// create a QueueReceiver on the queue
QueueReceiver queueReceiver =
 queueSession.createReceiver(queue);
// start the JMS connection
queueConnection.start();
// initialize the count of messages received
int messagesReceived=0;
// register a message listener to asynchronously receive messages
queueReceiver.setMessageListener(new MessageListener() {
 public void onMessage(javax.jms.Message message) {
 // increment the count of messages received
 messagesReceived++;
 // process the message
 . . .
 if (messagesReceived=2) {
 // acknowledge this and the previous message
 queueSession.commit()
 // re-initialize the count of messages received
 messagesReceived=0;
 }
 }
Sun JMS Grid User’s Guide 181 Sun Microsystems, Inc.

Chapter 4 Section 4.2
JMS Programming Building A JMS Application
});

Any attempt to explicitly acknowledge a message by calling Message.acknowledge()
within a local transaction will be ignored, even if the acknowledgeMode parameter was
set to Session.CLIENT_ACKNOWLEDGE.

Avoiding Redelivery Loops

If a number of messages are consumed within a local transaction and the transaction is
subsequently rolled back, the JMS provider will re deliver them immediately. If the
rollback occurred because the message was "bad" in some way then this is likely to
cause the message to be rolled back a second time. This can lead to an endless loop
where the same message is repeatedly rolled back and redelivered. Your application
should therefore avoid rolling back the transaction when an error occurs. It should
handle the error in some other way and commit the transaction as normal.

4.2.10 Global Transactions
A global transaction is one that involves multiple transactional resources participating
within the same transaction. When the global transaction is committed or rolled back,
all the transactional resources are committed or rolled back in a single atomic operation.
A global transaction typically involves a number of JMS sessions and a number of
databases.

Global transactions must be coordinated by a transaction manager, and are started,
committed or rolled back by the manager. They therefore tend to be used only in
conjunction with an application server that includes a transaction manager.

4.2.11 Message Selectors
Although some message consuming applications are interested in processing all the
messages they receive on a particular topic or queue, many applications need to be
more selective.

The simplest approach is for the message consuming application to receive all messages
and simply discard the ones it is not interested in.

An alternative approach is to use Message Selectors. This allows the selection of
messages to be performed by the JMS provider rather than by each client. The use of a
Message Selector reduces the complexity of the client and may significantly decrease
the amount of network traffic.

A client that uses Message Selectors defines a conditional expression based on message
headers and properties.

The following example shows a client subscribing to messages on a topic, which wishes
to filter incoming messages on the basis of an application-defined message property
called price:

Topic topic = session.createTopic("bank.alltrades");
String selector = "price BETWEEN 10 and 100";
boolean noLocal=false;
TopicSubscriber subscriber=session.createSubscriber(topic, selector,
noLocal);
Sun JMS Grid User’s Guide 182 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
The argument noLocal denotes whether messages produced by its own connection
should be delivered.

Conditional expressions can refer to any application-defined, JMS-defined or JMS Grid
specific property. They can also refer to any JMS header (with the exception of
JMSDestination and JMSReplyTo). The above example assumes that messages have a
user-defined property price.

The syntax that can be used is defined in the JMS specification. It is based on the
WHERE syntax of the SQL92 standard. A detailed definition of the syntax, with
examples, can be found in the Javadocs for the javax.jms.Message interface.

Message selectors may also be defined that filter certain types of message on the basis
of their payload, thereby avoiding the need to use user-defined message properties.
This is an additional feature of JMS Grid that goes beyond the JMS standard. For full
details See Content Based Message Selectors on page 185.

Support for JMS message selectors in JMS Grid is implemented using the native
facilities of the underlying messaging product or, for those products that do not
support JMS message selectors, in the JMS Grid framework itself.

4.2.12 Closing Down
When an application is finished, it should:

Close any message producer or message consumer objects

queueReceiver.close();
queueSender.close();
topicSubscriber.close();
topicPublisher.close();

Close any open sessions. This will also close any message producer or consumer
objects that are still open.

session.close();

Close the JMS connection. This will also close any open sessions.

connection.close();

4.3 Additional Programming Features
This section describes a number of additional features of JMS Grid that go beyond those
defined in the JMS standard. The features covered are as follows:

Wildcard Destinations

Content Based Message Selectors

Subscription Listening

The Session Inbox

Detecting Slow Consumers
Sun JMS Grid User’s Guide 183 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
4.3.1 Wildcard Destinations
JMS Grid allows you to create Queue and Topic objects whose names contain wildcard
characters. This allows a single Queue or Topic object to be used to send messages to, or
consume messages from all the destinations that match the wildcard.

Wildcard Syntax

The wildcard syntax assumes that a queue or topic name is made up of a series of
elements separated by dots. An asterisk (*) matches an entire element. A greater-than
symbol (>) matches any number of elements up to the end of the name.

For example

Trade.* matches Trade.settled and Trade.not_settled but not
Trade.fixed.apples

Trade.*.apples matches Trade.fixed.apples but not Trade.apples,
Trade.settled or Trade.not_settled

Trade.> matches Trade.settled, Trade.not_settled, Trade.apples and
Trade.variable.apples.

Note that you can't perform matches on part of an element. So

Tra> matches Tra> but nothing else

Tra* matches Tra* but nothing else

This means that the only wildcard destinations that will match a single-element
destination name (i.e. one that does not contain dots) are > and *

> matches all destinations
* matches all single-element destinations

Creating a Wildcard Destination

Wildcard destinations are created in exactly the same way as ordinary destinations,
except that the name of the destination (not its JNDI name) is the required wildcard
string.

Here is an example that uses the method Session.createQueue() to create a queue
object:

Queue queue = queueSession.createQueue ("Trade.*.apples");

Here is an example that creates an instance of the JMS Grid class DefaultTopic. This
can either be used directly or stored in a JNDI namespace.

// assumes you have imported com.spirit.wave.message.DefaultTopic;

Table 39 Wildcard Syntax

Wildcard Character Matches

* an entire element

> any number of trailing elements
Sun JMS Grid User’s Guide 184 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
DefaultTopic topic = new DefaultTopic("Trade.>");

For full details of how to create a destination object See Error! Reference source not found.
on page Error! Bookmark not defined.

4.3.2 Content Based Message Selectors
JMS Grid extends the Message Selector capabilities of JMS to allow message selectors to
be defined that filter certain types of message on the basis of their payload.

Object messages that contain a serialized JavaBean object may be filtered on the basis of
properties of the bean.

Text messages that contain XML documents may be filtered on the basis of the
document contents. Two alternative techniques are available. The simplest is an
extension of the JMS message selector syntax that allows selectors to refer to elements
and attributes in an XML document hierarchy. The alternative technique allows the
message selector to be defined using the powerful XPath syntax.

These additional features remove the JMS restriction that filtering criteria be placed in
the message header and reduces the complexity of client code.

If you wish to use one of these extended message selector syntaxes you need to tell JMS
Grid which syntax you wish to use. You do this by creating your TopicSubscriber or
QueueReceiver using additional JMS Grid versions of the methods
createSubscriber(), createDurableSubscriber() and createReceiver():

Message Selectors Based on Bean Properties

Object messages that contain a JavaBean object may be filtered on the basis of
properties of the bean.

To use this feature with a topic you need to cast your TopicSession to a
com.spirit.wave.jms.WaveTopicSession and then create the TopicSubscriber
using either the method createBeanSubscriber() or the method
createDurableBeanSubscriber(), depending on whether a non-durable or durable
subscription is required.

If you are using a queue you need to cast your QueueSession to a
com.spirit.wave.jms.WaveQueueSession and then create the QueueReceiver using
the method createBeanReceiver().
Sun JMS Grid User’s Guide 185 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
Figure 63 Bean Properties

In the following example, the message payload is a JavaBean of the class Trade. This
bean has a number of properties, including the integer property amount, the String
property currency and the property counterparty, which is another JavaBean of the
class Counterparty. The Counterparty bean has a number of properties, including the
String property code.

You will now define a message selector such that only those trades whose value is
greater than GBP 1000 and whose counterparty is ‘JPM’ are delivered.

If you are using a non-durable subscription to a topic, the code looks like the following:

// assumes you have imported com.spirit.wave.jms.WaveTopicSession;

Topic topic;
Class beanClass;
String selector;
Boolean noLocal;
TopicSubscriber subscriber;

topic = ctx.lookup("bank.alltrades");

// set the class of the bean to which the selector applies
beanClass = Trade.class;

selector = "amount > 1000 AND currency='GBP' AND
 counterparty.code='JPM'";
noLocal = false;

subscriber
 =(WaveTopicSession)topicSession.createBeanSubscriber
 (topic,beanClass,selector,noLocal)

The syntax of such message selectors is identical to that for ordinary JMS message
selectors except that the message selector refers to properties of the specified JavaBean
instead of properties defined in the message header. Furthermore, if a particular
property refers to another bean then a 'dot' notation may be used to refer to the other
bean's properties.

If you are using a durable subscription (See Error! Reference source not found. on page
Error! Bookmark not defined.) you should use the method
createDurableBeanSubscriber():
Sun JMS Grid User’s Guide 186 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
subscriber =
(WaveTopicSession)topicSession.createDurableBeanSubscriber(topic,subs
criptionName,beanClass,selector,noLocal);

If you are using a queue you need to cast your QueueSession to a
com.spirit.wave.jms.WaveQueueSession and then create the QueueReceiver using
the method createBeanReceiver():

// assumes you have imported com.spirit.wave.jms.WaveQueueSession;
Queue queue;
Class beanClass;
String selector;
QueueReceiver receiver;
queue = ctx.lookup("bank.alltrades");
// set the class of the bean to which the selector applies
beanClass = Trade.class;

selector = "amount > 1000 AND currency='GBP' AND
counterparty.code='JPM'";
receiver =
(WaveQueueSession)queueSession.createBeanReceiver(queue,beanClass,sel
ector);

Message Selectors to Filter XML Documents using SQL-92 Syntax

Text messages that contain an XML document may be filtered using an extension of the
JMS message selector syntax that allows selectors to refer to elements and attributes in
an XML document hierarchy.

Consider the following simple XML document representing a trade:

<?xml version="1.0" encoding="UTF-8"?>
<! -- comments --->
<trade>
 <instrument>SUNQ</instrument>
 <amount>1000</amount>
 <currency>GBP</currency>
 <date>2001-10-24</date>
 <counterparty>
 <code>JPM</code>
 <contract>10030<contract>
 </counterparty>
</trade>

The following example shows how a message selector can be defined so that only those
trades whose value is greater than GBP 1000 and whose counterparty is "JPM" are
delivered.

If you are using a non-durable subscription to a topic, the code looks like the following:

Topic topic;
String selector;
Boolean noLocal;
TopicSubscriber subscriber;
topic = ctx.lookup("bank.alltrades");
selector = "amount > 1000 AND currency="GBP" AND
counterparty.code='JPM'";
selector = "xml(c" + selector +")";
noLocal = false;
subscriber = topicSession.createSubscriber(topic,selector,noLocal)

The syntax of such message selectors is identical to that for ordinary JMS message
selectors except that the message selector can also refer to tag names in the XML
Sun JMS Grid User’s Guide 187 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
document hierarchy, with the topmost element ignored. Using a 'dot' notation it is
possible to refer to a node deep on the document hierarchy. The last element of the dot
notation can either refer to an attribute on the node, or simply refer to a node that has a
text child node.

The "xml()" wrapper in the selector string tells JMS Grid that this is an xml selector
string and not a standard JMS selector string.

If you are using a queue the code looks like the following:

Queue queue;
String selector;
queue = ctx.lookup("bank.alltrades");
selector = "amount > 1000 AND currency='GBP' AND
 counterparty.code='JPM'";
selector = "xml(c" + selector + ")";
QueueReceiver receiver;
receiver = queueSession.createReceiver(queue,selector);

Message Selectors to Filter XML Documents using Xpath Syntax

Text messages that contain an XML document may be filtered using the XPath syntax.
The XPath syntax allows more complex filtering rules to be defined than is possible
using the simple XML filtering described in the previous section. It does, however,
require a completely different syntax to the SQL-92-based JMS Grid message selector
syntax.

The following example is based on the same XML document structure as was used in
the previous section, and shows how a message selector can be defined so that only
those trades whose value is greater than GBP 1000 and whose counterparty is "JPM" are
delivered.

If you are using a non-durable subscription to a topic, the code looks like the following:

Topic topic;
String selector;
Boolean noLocal;
TopicSubscriber subscriber;

topic = ctx.lookup("bank.alltrades");
selector="//trade[amount>1000 and currency='GBP'] and //trade/
counterparty[code='JPM']";
selector = "xpath("+selector+")";
noLocal = false;

subscriber = topicSession.createSubscriber(topic,selector,noLocal)
The syntax of such message selectors is defined in the XPath
specification,
http://www.w3.org/TR/xpath#corelib.

The "xpath()" wrapper in the selector string tells JMS Grid that this is an xpath selector
string and not a standard JMS selector string.

If you are using a queue you need to cast your QueueSession to a WaveQueueSession
and then create the QueueReceiver using the method createXPathReceiver():

Queue queue;
String selector;
QueueReceiver receiver;

queue = ctx.lookup("bank.alltrades");
Sun JMS Grid User’s Guide 188 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
selector="/trade[amount > 1000 and currency='GBP'] and /trade/
counterparty[code='JPM']";
selector = "xpath(" + selector +")";
receiver = queueSession.createReceiver(queue,selector);

4.3.3 Subscription Listening
A JMS Grid client can listen for "subscription events" on a particular destination. A
subscription event occurs whenever a client creates or closes a subscription to a topic or
queue. Note that although the term "subscriber" is normally used only with topics, JMS
Grid subscription events occur with both topics and queues.

Subscription events have a number of uses:

They allow a message producer to determine whether or not any clients have
subscribed to a given destination before it produces any messages to it, thus
avoiding unnecessary network traffic.

They can be used to monitor subscription patterns in a distributed environment

When used in conjunction with a session inbox they can be used to send extra
information to new subscribers. For details see The Session Inbox on page 15.

Topic Subscription Events

A client that wishes to listen for subscription events on a particular topic must first
create an event listener for these events. This is an instance of a class that implements
the TopicSubscriptionEventListener interface. This interface defines just one
method, onEvent(), which will be called whenever a subscription event occurs:

// assumes you have imported
 // com.spirit.wave.TopicSubscriptionEventListener
 // and com.spirit.wave.TopicSubscriptionEvent

 TopicSubscriptionEventListener tsel =
 new TopicSubscriptionEventListener() {
 public void onEvent(TopicSubscriptionEvent tse) {
 if (tse.isStarted())
 // A subscribe event has occurred

 } else {
 // An unsubscribe event has occurred

 }
 }
 };

The client must then register this event listener with the connection:

 // waveTopicConnection is an instance of
 // com.spirit.wave.jms.WaveTopicConnection
 waveTopicConnection.addTopicSubscriptionEventListener
 (topic,tsel);

When a subscription event occurs, the method onEvent(arg) is called on the event
listener. A TopicSubscriptionEvent object is supplied as its argument.

A subscribe event occurs either when a client creates a TopicSubscriber on the specified
topic, or calls waveTopicConnection.start(), whichever occurs last.
Sun JMS Grid User’s Guide 189 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
An unsubscribe event occurs when a client calls topicSubscriber.close() to
terminate a subscription to the specified topic, or when this is done implicitly by
closing the session or connection.

The TopicSubscriptionEvent object has a method isStarted() which can be used to
determine whether the event is a subscribe event or an unsubscribe event. It returns
true for a subscribe event and false for an unsubscribe event.

The TopicSubscriptionEvent object also has a method getTopic(), which returns the
Topic on which the subscription event occurred. For a full list of the available methods,
see the JMS Grid javadocs.

Queue Subscription Events

A client that wishes to listen for subscription events on a particular queue must create
an event listener that implements the QueueSubscriptionEventListener interface.
This interface defines a just one method, onEvent(), which will be called whenever a
subscription event occurs:

// assumes you have imported
// com.spirit.wave.QueueSubscriptionEventListener
// and com.spirit.wave.QueueSubscriptionEvent

QueueSubscriptionEventListener qsel =
 new QueueSubscriptionEventListener() {
 public void onEvent(QueueSubscriptionEvent qse) {
 if (qse.isStarted())
 // A subscribe event has occurred

 } else {
 // An unsubscribe event has occurred

 }
 }
 };

The client must then register this event listener with the connection:

// waveQueueConnection is an instance of
// com.spirit.wave.jms.WaveQueueConnection
waveQueueConnection.addQueueSubscriptionEventListener
 (queue,tsel);

When a subscription event occurs, the method onEvent(arg) is called on the event
listener. A QueueSubscriptionEvent object is supplied as its argument.

A subscribe event occurs either when a client creates a QueueReceiver on the specified
queue, or calls queueConnection.start(), whichever occurs last.

An unsubscribe event occurs when a client calls queueReceiver.close() to terminate
a subscription to the specified queue, or when this is done implicitly by closing the
session or connection.

The QueueSubscriptionEvent object has a method isStarted() which can be used to
determine whether the event is a subscribe event or an unsubscribe event. It returns
true for a subscribe event and false for an unsubscribe event.
Sun JMS Grid User’s Guide 190 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
The QueueSubscriptionEvent object also has a method getQueue(), which returns the
Queue on which the subscription event occurred. For a full list of the available
methods, see the JMS Grid javadocs.

Subscription Events from Multiple Destinations

When registering an event listener, the topic or queue specified may use wildcards to
specify that the listener should receive subscription events from multiple destinations;
See Wildcard Destinations on page 7.

4.3.4 The Session Inbox
JMS Grid's session inbox facility allows a message producer to send messages to a new
queue receiver or topic subscriber that will be received by that consumer and no others.

The previous section described how a JMS client could listen for subscription events on
a given destination. For example, a message producer can listen for subscription events
on the destination it is producing messages to. When a new subscriber appears, the
message producer will receive an event. In some applications, the message producer
needs to be able to send a message to the new subscriber. However it can't simply send
the message to the destination as it would be received by existing consumers as well. It
needs a way of sending the message to the new subscriber and not to any others.

Imagine a JMS application in which a message producer publishes price updates to a
particular topic. Whenever the price of some commodity changes, a price update
message is published to the topic. When a new subscriber appears, the producer would
like to be able to initialize the new subscriber by sending it a complete set of prices. The
producer could simply publish this information to the topic. However all subscribers,
not just the new one, would then receive it. What it really needs is a direct one-to-one
communication link with a single subscriber. This is what the session inbox provides.

All JMS Grid sessions have a special destination that can be used by subscription event
listeners to communicate messages to that client session. This is known as the "session
inbox". There are two types of session inbox: the inbox for a TopicSession is a Topic
whilst the inbox for a QueueSession is a Queue.

Producing messages to the Inbox

Before a client can send or publish messages to another client's session inbox it must
first have received a subscription event from the other client.

Subscription events are described in Subscription Listening. When a subscription event
occurs, the listener's onEvent() method is executed, with the subscription event itself
passed as an argument. The inbox destination can then be obtained from the
subscription event.

Publishing Messages to the Inbox for a TopicSession

If the listener is listening for subscription events on a Topic then the session inbox will
also be a Topic, and may be obtained from the TopicSubscriptionEvent using the
method getTopicReplyTo():
Sun JMS Grid User’s Guide 191 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
// tse is an instance of TopicSubscriptionEvent
Topic inbox = tse.getTopicReplyTo();

Alternatively, a convenience method has been provided which allows a
TopicPublisher to be obtained directly from the TopicSubscriptionEvent using the
method getReplyToPublisher():

// tse is an instance of TopicSubscriptionEvent
TopicPublisher inboxPublisher = tse.getReplyToPublisher();

In the following example, a client creates a subscription event listener which listens for
subscription events on a particular topic. When a subscription event is received, the
listener obtains the TopicPublisher for the subscribing client's session inbox and
publishes a message to it.

// assumes you have imported
com.spirit.wave.TopicSubscriptionEventListener
// and com.spirit.wave.TopicSubscriptionEvent
TopicSubscriptionEventListener tsel = new
TopicSubscriptionEventListener() {
 public void onEvent(TopicSubscriptionEvent tse) {
 if (tse.isStarted())
 // A subscribe event has occurred
 // communicate a message to the new subscriber
 try {
 TopicPublisher pub=e.getReplyToPublisher();
 // TopicSession is an instance of TopicSession
 TextMessage tm = topicSession.createTextMessage();
 tm.setText("Hello from the publisher");
 pub.publish(m);
 } catch(Exception ex) {
 // error handling
 }
 }
 }
};

// waveTopicConnection is an instance of
com.spirit.wave.jms.WaveTopicConnection
waveTopicConnection.addTopicSubscriptionEventListener(topic,tse l);

Sending Messages to the inbox for a QueueSession

If the listener is listening for subscription events on a Queue then the session inbox will
also be a Queue, and may be obtained from the QueueSubscriptionEvent using the
method getQueueReplyTo():

// qse is an instance of QueueSubscriptionEvent
Queue inbox = qse.getQueueReplyTo();

Alternatively, a convenience method has been provided which allows a QueueSender
to be obtained directly from the QueueSubscriptionEvent using the method
getReplyToSender():

// qse is an instance of QueueSubscriptionEvent
QueueSender inboxSender = qse.getReplyToSender();

Consuming Messages from the Inbox

If the session is a WaveTopicSession, a client subscribes to the session inbox using the
method createInboxSubscriber. This returns a TopicSubscriber:
Sun JMS Grid User’s Guide 192 Sun Microsystems, Inc.

Chapter 4 Section 4.3
JMS Programming Additional Programming Features
// waveTopicSession is an instance of
com.spirit.wave.jms.WaveTopicSession
TopicSubscriber inbox = waveTopicSession.createInboxSubscriber();
// messageListener is an instance of MessageListener
inbox.setMessageListener(messageListener)
If the session is a WaveQueueSession, a client creates a receiver on
the session inbox using the method createInboxReceiver(). This
returns a QueueReceiver:
// waveQueueSession is an instance of
// com.spirit.wave.jms.WaveQueueSession
QueueReceiver inbox = waveQueueSession.createInboxReceiver();
// messageListener is an instance of MessageListener
inbox.setMessageListener(messageListener)

4.3.5 Detecting Slow Consumers
A slow consumer is a JMS client that is taking a long time to process incoming
messages, causing a backlog to build up in the JMS provider. It means that an
asynchronous consumer is not returning from onMessage()quickly enough, or that a
synchronous consumer is not calling receive() frequently enough.

When JMS Grid detects that a client is a slow consumer, a 'slow consumer' event is
raised. The client can detect this event and take appropriate action (which might be to
terminate).

Listening for Slow Consumer Events

A JMS Grid client may register to receive slow consumer events by creating an object
that implements the SlowConsumerEventListener interface and registering it with the
JMS connection using the method addSlowConsumerEventListener(). This is a
method of the four JMS Grid classes used to implement a JMS connection:
WaveQueueConnection, WaveTopicConnection, WaveXAQueueConnection or
WaveXATopicConnection (all in the package com.spirit.wave.jms), so if your
connection object is declared as one of the four JMS connection types you will need to
cast it to the appropriate JMS Grid class first:

void addSlowConsumerEventListener

(com.spirit.wave.SlowConsumerEventListener listener)

The SlowConsumerEventListener interface

The SlowConsumerEventListener interface defines one method, onEvent(), which is
called whenever JMS Grid detects that the client is consuming messages too slowly.
Here is the full definition:

package com.spirit.wave;
import java.util.EventListener;
public interface SlowConsumerEventListener extends EventListener {

public void onEvent (SlowConsumerEvent e);
}

The SlowConsumerEvent object

When a slow consumer event is raised, a SlowConsumerEvent object is supplied as an
argument. This is a subclass of java.util.EventObject, and has only one method of
interest:
Sun JMS Grid User’s Guide 193 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Object getSource()

This returns the JMS connection object on which the event occurred.

4.4 Programming Examples
This section describes the example client programs provided with JMS Grid. We
recommend you run these examples and examine the code used to produce them. You
can also use these examples as the basis for your own client programs, especially when
learning to use JMS Grid.

4.4.1 How to Run the Examples
JMS Grid includes a number of simple examples that demonstrate some of its features.
Each example involves running a pair of Java classes, one usually a message producing
JMS client and the other usually a message consuming JMS client.

Before Running each Example

Before running any example, ensure that any server processes are running that are
required by the underlying messaging product that you are using. For example, if you
are using JMS Grid Message Server you should ensure a JMS Grid Message Server
daemon is running. If you are using IBM MQSeries you should ensure the queue
manager is running.

Running the Examples

To run each example class, open a command window, navigate to the examples
directory of your JMS Grid installation, and execute the run command as follows:

run className

The run command can be found in the examples directory of your JMS Grid
installation. On Windows it is the batch file run.bat; on Unix it is the executable file run.

Specifying the JNDI Provider

The File System JNDI provider which ships with JMS Grid in the fscontext.jar is
used to run the examples.

For more information about specifying a JNDI provider See Other JNDI Providers on
page 165.

Specifying the Connection Factory

The exampleArguments.properties file is used to specify the JNDI name of the
connection factory (either a queue connection factory or a topic connection factory) to
be used by this particular example client.
Sun JMS Grid User’s Guide 194 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
The JNDI name specified must be relative to the context /User. That is, if you specify
queueConnectionFactoryName=MyQueueConnectionFactory then the examples will
look for a connection factory with the name /user/MyQueueConnectionFactory.

If you use any connection factory names other than the default (see the following) then
these names must already exist in the JNDI namespace.

The default JNDI names used by the examples to obtain connection factories are as
follows:

If these JNDI names do not already exist in the JNDI namespace then the first example
you run will automatically bind connection factories as follows:

If you wish to use an underlying messaging product other than JMS Grid Message
Server then you will need to configure the connection factories yourself, either
programmatically or using the JMS Grid administration tool.

Specifying the JNDI Name of the Destination

The JNDI name specified to be used by this particular example client must be relative to
the context /user. That is, if you specify queueName =MyQueue then the examples will
look for a connection factory with the name /user/MyQueue.

If you use any destination name other than the default (see the following) then these
names must already exist in the JNDI namespace.

If the queueName or topicName parameter is not specified then the examples will
obtain queues and topics using the following JNDI names:

Table 40 JNDI Names Used for Examples

Type of Example JNDI name used

Queue Examples /user/QueueConnectionFactory

Topic Examples /user/TopicConnectionFactory

Table 41 Type of Object

JNDI Name Type of Object

/user/QueueConnectionFactory A WaveQueueConnectionFactory
configured to use JMS Grid
Message Server

/user/TopicConnectionFactory A WaveTopicConnectionFactory
configured to use JMS Grid
Message Server
Sun JMS Grid User’s Guide 195 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
If these JNDI names do not already exist in the JNDI namespace then the first example
you run will automatically bind a queue and a topic as follows:

Rebuilding the Examples

To recompile and rebuild the examples, navigate to the examples directory and use the
build command.

The build command can be found in the examples directory of your JMS Grid
installation. On Windows it is the batch file build.bat; on Unix it is the executable file
build.

4.4.2 List of Examples
The following examples are provided:

Simple Publish and Subscribe

Simple Queues

Durable Publish & Subscribe

Transacted Sessions

Message Selectors

Subscription Events

The Session Inbox

The Interactive GUI

Table 42 JNDI Names Used for Examples

Type of Destination Required JNDI name used

queue /user/jmsqueue

topic /user/jmstopic

Table 43 JNDI Names Used for Examples Showing Default

JNDI Name Type of Object

/user/jmsqueue A DefaultQueue

/user/jmstopic A DefaultTopic
Sun JMS Grid User’s Guide 196 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
4.4.3 Simple Publish and Subscribe

About this Example

This example demonstrates how to perform publish-and-subscribe messaging using
JMS Topics.

Consumer subscribes to a topic.
Producer publishes five messages of different types to the topic.
Consumer receives the five messages.

In this example, it is important to start the subscriber before you start the publisher.
This is because in this example any messages that are published to the topic when there
are no subscribers are lost. (A later example "Durable Publish & Subscribe" shows how
this can be avoided by the use of durable subscriptions).

TestSubscriber receives messages using an asynchronous MessageListener that receives
a callback whenever a message is received. There is an alternative method of receiving
messages, which is to use the synchronous receive() method that blocks until a
message is received or a timeout occurs. This is not demonstrated in this example.

Running the Example

Start up two command windows and navigate in each to the examples directory of
your JMS Grid installation.

In the first window, start the subscriber using the following command:

run pubsub.Consumer

In the second window, start the publisher using the following command:

run pubsub.Producer

Expected Output

When the subscriber is started, it will display output similar to the following:

%JMS Grid%\examples>run pubsub.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
328 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x

Subscriber is ready to receive messages on destination jmstopic.

It will then wait for messages to arrive.

When the publisher is started, it will display output similar to the following:

%JMS Grid%\examples>run pubsub.Producer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x
Sending messages to destination jmstopic.
Sun JMS Grid User’s Guide 197 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Producer published TextMessage
Producer published ObjectMessage
Producer published MapMessage
Producer published StreamMessage
Producer published BytesMessage
All messages published.
Producer closed.
Session closed.
Connection closed.
%JMS Grid%\examples>

The subscriber will then receive the messages, with output similar to
the following:
Received:
Text is: First text message

Received:
Object is: Second message is an object

Received:
Map message, property 'testvalue' is: Map message value

Received:
String is: A string in a Stream message
Integer is: 5

Received:
String is: A string in a Bytes message
Double is: 5.6
Expected number of messages received.
Subscriber closed.
Session closed.
Connection closed.
%JMS Grid%\examples> >

Variations

You can extend this test by starting multiple subscriber applications before you start the
publisher. Each message published by the publisher will be received by every
subscriber.

You can also try running the publisher before the receiver. You will see that with any
messages published when there are no subscribers are lost. Compare this with the
"Simple Queues" example.

4.4.4 Simple Queues

About this Example

This example demonstrates how to perform point-to-point messaging using JMS
queues.

Producer publishes five messages of different types to the queue.

Consumer receives the five messages.

In this example, it does not matter whether the subscriber or the publisher is started
first. This is because any messages that are sent to a queue when there are no
Sun JMS Grid User’s Guide 198 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
subscribers are retained by the JMS provider until a receiver is started or a timeout
occurs.

Consumer receives messages using the synchronous receive() method, which blocks
until a message is received or a timeout occurs. There is an alternative method of
receiving messages, which is to define an asynchronous MessageListener that
receives a callback whenever a message is received. This is not demonstrated in this
example.

Amongst other things, this example demonstrates that even though the sender sends
messages to the queue at a time when there is no receiver, the messages are retained by
the JMS provider and delivered when a receiver is started.

Running the Example

Start up two command windows and navigate in each to the examples directory of
your JMS Grid installation.

In the first window, run the sender using the following command:

run queues.Producer

In the second window, start the receiver using the following command:

run queues.Consumer

Expected Output

When the sender is started, it will display output similar to the following:

%JMS Grid%\examples>run queues.Producer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6
Sending messages to destination jmsQueue.

Producer sent TextMessage
Producer sent ObjectMessage
Producer sent MapMessage
Producer sent StreamMessage
Producer sent BytesMessage

All messages sent.
Producer closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

When the receiver is started, it will display output similar to the following:

%JMS Grid%\examples>run queues.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
Sun JMS Grid User’s Guide 199 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
282 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x

Receiver ready to receive messages on destination jmsQueue.

Receiver -
Text is: First text message

Receiver -
Object is: Second message is an object

Receiver -
Map message, property 'testvalue' is: Map message value

Receiver -
String is: A string in a Stream message
Integer is: 5

Receiver -
String is: A string in a Bytes message
Double is: 5.6

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

Variations

You can try running the receiver before the publisher. The results will be the same.

You can also try starting more than one receiver before starting the publisher. You
should find that each message is received by one and only one receiver. However the
behavior you observe will vary depending on the messaging product being used.

4.4.5 Durable Publish and Subscribe

About this Example

This example demonstrates durable subscriptions to topics.

In this example, Consumer is started and creates a durable subscription on a topic. It is
then terminated by typing Ctrl-C.

Producer is then started and publishes five messages to the topic. Even though the
subscriber is no longer running, because that subscriber had created a durable
subscription on this topic, the messages are stored by the JMS provider.

Consumer is now re-started. This re-establishes the durable subscription and all the
messages that were published whilst it was not running are delivered.
Sun JMS Grid User’s Guide 200 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Consumer receives messages using an asynchronous MessageListener that receives a
callback whenever a message is received. There is an alternative method of receiving
messages, which is to use the synchronous receive() method that blocks until a message
is received or a timeout occurs. This is not demonstrated in this example.

Running the Example

Start up two command windows and navigate in each to the examples directory of
your JMS Grid installation.

In the first window, start the subscriber using the following command:

run durable.Consumer

This creates the durable subscription. After the subscriber has been running for a few
moments, stop it by typing Ctrl-C.

In the second window, start the publisher:

run durable.Producer

This publishes five messages to the topic.

Now return to the first window and restart the subscriber:

run durable.Consumer

This reconnects to the durable subscription. The messages that were published whilst
the subscriber was not running are then received.

Expected Output

When the subscriber is first started it will display output similar to the following:

%JMS Grid%\examples>run durable.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
282 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x
Durable subscriber is ready to receive messages on destination
jmstopic.

At this point the subscriber can be stopped by pressing Ctrl-C:

Terminate batch job (Y/N)? y

%JMS Grid%\examples>

Next the publisher is started:

%JMS Grid%\examples>run durable.Producer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
265 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x
Sending messages to destination jmstopic.
Producer published TextMessage
Producer published ObjectMessage
Producer published MapMessage
Sun JMS Grid User’s Guide 201 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Producer published StreamMessage
Producer published BytesMessage

All messages published.
Producer closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

Finally the subscriber is restarted.

%JMS Grid%\examples>run durable.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
282 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version x.x.x Build:bldxxx.x

Durable subscriber is ready to receive messages on destination
jmstopic.

Received:
Text is: First text message

Received:
Object is: Second message is an object

Received:
Map message, property 'testvalue' is: Map message value

Received:
String is: A string in a Stream message
Integer is: 5

Received:
String is: A string in a Bytes message
Double is: 5.6

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

4.4.6 Transacted Sessions

About this Example

There are in fact three separate examples:

Example 1: Transacted Send and Receive

This example demonstrates how to use a transacted session to send several messages to
a queue within a single transaction. It also demonstrates how to use a transacted
session to receive several messages within a single transaction.

Producer starts a transaction, sends five messages to a queue and
commits the transaction.
Sun JMS Grid User’s Guide 202 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Consumer starts a transaction, receives the five messages and commits the transaction.

Example 2: Rolling back the Sender

This example demonstrates how if a transaction is rolled back by the sender none of the
messages sent within that transaction are sent after all:

RollbackProducer starts a transaction, sends five messages to a queue and rolls back
the transaction.

When Consumer is run a second time it does not receive any messages, showing that
they were not actually sent.

Example 3: Rolling back the Receive

Finally this example demonstrates how if the transaction is rolled back by the receiver
none of the messages received during the transaction are acknowledged and they will
be redelivered:

Producer sends five messages to a queue as before.

RollbackConsumer starts a transaction, receives five messages and then rolls back the
transaction.

When Producer is run a second time it receives the same five messages, showing that
when the messages were rolled back they were returned to the queue so that they
would be redelivered.

Running the Examples

Example 1: Transacted Send and Receive

Start up two command windows and navigate in each to the examples directory of
your JMS Grid installation.

In the first window, start the transacted sender using the following command:

run transacted.Producer

In the second window, start the transacted receiver:

run transacted.Consumer

In the second window, start the transacted receiver a second time to prove that there are
no more messages on the queue. After a few moments, press Ctrl-C to terminate it.

Example 2: Rolling back the Sender

In the first window, start the transacted sender whose transaction is rolled back:

run transacted.RollbackProducer

In the second window, start the transacted receiver again:

run transacted.Consumer

After a few moments, press Ctrl-C to terminate the receiver.

Example 3: Rolling back the Receive

In the first window, run the original transacted sender:

run transacted.Producer
Sun JMS Grid User’s Guide 203 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
In the second window, start the transacted receiver whose transaction is rolled back:

run transacted.RollbackConsumer

Expected Output

Example 1: Transacted Send and Receive

When the sender is started, it will display output similar to the following:

%JMS Grid%\examples>run transacted.Producer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x
Sending transacted messages to destination jmsQueue.
Producer sent TextMessage
Producer sent ObjectMessage
Producer sent MapMessage
Producer sent StreamMessage
Producer sent BytesMessage
Committing transaction

All messages sent.
Producer closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

When the receiver is started, it will display output similar to the following:

%JMS Grid%\examples>run transacted.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version = x.x.x Build:bldxxx.x

Receiver is ready to receive messages on destination jmsQueue.

Receiver -
Text is: First text message

Receiver -
Object is: Second message is an object

Receiver -
Map message, property 'testvalue' is: Map message value

Receiver -
String is: A string in a Stream message
Integer is: 5

Receiver -
String is: A string in a Bytes message
Double is: 5.6
Sun JMS Grid User’s Guide 204 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples

Committing transaction

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

If you run the receiver a second time, it will display output similar to the following:

%JMS Grid%\examples>run transacted.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:5060
7) version = x.x.x Build:bldxxx.x
 Receiver is ready to receive messages on destination
jmsQueue.

You will then need to press Ctrl-C to terminate it.

Example 2: Rolling back the Sender

When the sender is started, it will display output similar to the following:

%JMS Grid%\examples>run transacted.RollbackProducer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
219 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Sending transacted messages to destination jmsQueue.

Producer sent TextMessage
Producer sent ObjectMessage
Producer sent MapMessage
Producer sent StreamMessage
Producer sent BytesMessage
Rolling back transaction

All messages published.
Producer closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

When the receiver is started, it will display output similar to the following:

%JMS Grid%\examples>run transacted.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Receiver is ready to receive messages on destination jmsQueue.
Sun JMS Grid User’s Guide 205 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
You will then need to press Ctrl-C to terminate it.

Example 3: Rolling back the Receiver

When the sender is started, it will display output similar to the following:

%JMS Grid%\examples>run transacted.Producer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6
Sending transacted messages to destination jmsQueue.
Producer sent TextMessage
Producer sent ObjectMessage
Producer sent MapMessage
Producer sent StreamMessage
Producer sent BytesMessage
Committing transaction

All messages sent.
Producer closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

When the receiver is started, it will display output similar to the following:

%JMS Grid%\examples>run transacted.RollbackConsumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Receiver is ready to receive messages on destination jmsQueue.

Receiver -
Text is: First text message

Receiver -
Object is: Second message is an object

Receiver -
Map message, property 'testvalue' is: Map message value

Receiver -
String is: A string in a Stream message
Integer is: 5

Receiver -
String is: A string in a Bytes message
Double is: 5.6

Rolling back transaction

Expected number of messages received.
Sun JMS Grid User’s Guide 206 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

If you run the receiver a second time, it will display exactly the same output as before.

4.4.7 Message Selectors

About this Example

This example demonstrates how message selectors can be used to filter incoming
messages. It demonstrates both standard JMS message selectors (which filter messages
on the basis of message properties and headers) and JMS Grid content-based selectors
(which filter certain types of message on the basic of message content).

Four subscribers are started on the same topic:

NoSelectorConsumer creates a TopicSubscriber with no message selector.

JMSSelectorConsumer creates a TopicSubscriber with a standard JMS message
selector that filters incoming messages on the basis of a user-defined property name.

XPathSelectorConsumer creates a TopicSubscriber with a XPath message selector that
filters incoming text messages which contain XML documents on the basis of the
contents of that document.

XMLSelectorConsumer creates a TopicSubscriber with a JMS Grid XML message
selector that filters incoming text messages which contain XML documents on the basis
of the contents of that document.

Producer is then started. This publishes a variety of messages to the topic, some of
which satisfy the filter criteria and some which do not.

The four receivers receive the messages that satisfy their defined criteria and do not
receive those that do not.

Running the Example

Start up five command windows and navigate in each to the examples directory of your
JMS Grid installation.

In the first window, run the subscriber with no message selector:

run selectors.NoSelectorConsumer

In the second window, run the subscriber which has a standard JMS message selector
that filters incoming messages on the basis of a user-defined property name:

run selectors.JMSSelectorConsumer

In the third window, run the subscriber with a JMS Grid XML message selector that
filters incoming text messages which contain XML documents on the basis of the
contents of that document:

run selectors.XPathSelectorConsumer
Sun JMS Grid User’s Guide 207 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
In the fourth window, run the subscriber with a JMS Grid XML message selector that
filters incoming text messages which contain XML documents on the basis of the
contents of that document:

run selectors.XMLSelectorConsumer

Finally, in the fifth window, start the publisher:

run selectors.Producer

After a few moments, press Ctrl-C to terminate the three subscribers that have not
already terminated.

Expected Output

When the five subscribers are first started, they all display output similar to the
following:

%JMS Grid%\examples>run selectors.NoSelectorConsumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
250 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

They will all then wait for messages to arrive. When the publisher is started, it will
display output similar to the following:

Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
296 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6
TextMessage sent, payload is: First text message
TextMessage sent, payload is: Hello world
TextMessage sent, payload is: <?xml version="1.0" encoding="UTF-8"
?><Top><Order customer="Fred" /></Top>
TextMessage sent, payload is: <?xml version="1.0" encoding="UTF-8"
?><Top><Order customer="Joe Bloggs" /></Top>
ObjectMessage sent, payload is: TestObject with value = testValue

All messages published.
Publisher closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

The first subscriber, selectors.NoSelectorConsumer, will then receive all the messages,
with output similar to the following:

Message received by standard subscriber with no selector:
 TextMessage received, payload is: First text message

Message received by standard subscriber with no selector:
 TextMessage received, payload is: Hello world

Message received by standard subscriber with no selector:
Sun JMS Grid User’s Guide 208 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
 TextMessage received, payload is: <?xml version="1.0"
 encoding="UTF-8" ?><Top><Order customer="Fred" /></Top>

Message received by standard subscriber with no selector:
 TextMessage received, payload is: <?xml version="1.0"
 encoding="UTF-8" ?><Top><Order customer="Joe Bloggs" /></ Top>

Message received by standard subscriber with no selector:
 ObjectMessage received, payload is:
 TestObject with value = testValue

Message received by standard subscriber with no selector:
 ObjectMessage received, payload is:
 TestObject with value = invalidValue
Terminating...
%JMS Grid%\examples>

The second subscriber, JMSSelectorConsumer, will receive the single message that has a
property name set to 'testvalue':

Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
250 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

Message Received by standard Subscriber with selector: name =
'testvalue'
Text is: First text message

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

The third subscriber, XPathSelectorConsumer, will receive the single text message that
contains an XML document with a node Order.customer with the value 'Fred':

Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
250 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

Message Received by XPathSubscriber with selector: xpath(//
Order[@customer="Fred"])
Text is: <?xml version="1.0" encoding="UTF-8" ?><Top><Order
customer="Fred" /></Top>

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>
Sun JMS Grid User’s Guide 209 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
The fourth subscriber, XMLSelectorConsumer, will receive the single text message that
contains an XML document with a node Order.customer with the value 'Fred'.

Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

Message Received by XMLSubscriber with selector: xml(Order.customer =
'Fred')
Text is: <?xml version="1.0" encoding="UTF-8" ?><Top><Order
customer="Fred" /></Top>

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

%JMS Grid%\examples>

4.4.8 Subscription Events

About this Example

This example demonstrates how subscription notification events can be used to notify a
message producer that a new subscriber has appeared.

In this particular example, a JMS client waits until two subscribers are listening for
messages on a topic before sending messages to it.

SubNotifyProducer listens for subscription events on a topic.

Consumer subscribes to this topic. This causes the SubNotifyProducer to receive a
subscription event.

A second Consumer subscribes to this topic. This causes the SubNotifyProducer to
receive a second subscription event.

The SubNotifyProducer, which has been keeping track of the number of subscribers to
the topic, detects that the number of subscribers has reached two, and publishes some
messages to the topic.

The two Consumers receive these messages and terminate.

Running this Example

Start up three command windows and navigate to the examples directory of your JMS
Grid installation.

In the first window, start the subscription event listener:

run subnotify.SubNotifyProducer

In the second window, start a subscriber:
Sun JMS Grid User’s Guide 210 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
run subnotify.Consumer

If you look in the first window you will see that the subscription event listener has been
notified about the new subscriber.

In the third window, start a second subscriber:

run subnotify.Consumer

If you look in the first window you will see that the subscription event listener has been
notified about the second new subscriber and has started publishing messages. The two
subscribers receive these messages.

At the end of the test the subscription event listener will still be waiting for events.
Press Ctrl- C to terminate it.

Expected Output

When the subscription event listener is started, it will display output similar to the
following:

%JMS Grid%\examples>run subnotify.SubNotifyProducer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
265 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6
Publisher awaiting 2 subscriptions...

When the first subscriber is started, it will display output similar to the following:

Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
235 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

This causes the subscription event listener in the first window to wake up and display
the following:

Received subscription event:
A subscription has started
Current number of subscribers is now 1
When the second subscription is started, it also displays output
similar to the following:
%JMS Grid%\examples>run subnotify.Consumer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
235 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

This causes the subscription event listener in the first window to wake up once again
and write five messages to the topic:

Received subscription event:
A subscription has started
Sun JMS Grid User’s Guide 211 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Current number of subscribers is now 2

All messages published.

The two subscribers then receive these messages and then terminate.

Received:
Text is: First text message

Received:
Object is: Second message is an object

Received:
Map message, property 'testvalue' is: Map message value

Received:
String is: A string in a Stream message
Integer is: 5

Received:
String is: A string in a Bytes message
Double is: 5.6

Expected number of messages received.

Subscriber closed.
Session closed.
Connection closed.

As each subscriber terminates, the subscription event listener is notified that a
subscription has ended:

Received subscription event:
A subscription has ended
Current number of subscribers is now 1
Received subscription event:
A subscription has ended
Current number of subscribers is now 0

Terminating...
Publisher closed.
Session closed.
Connection closed.

4.4.9 The Session Inbox

About this Example

This example demonstrates how JMS Grid's session inbox facility can be used to allow a
message producer to send messages to a new subscriber that will be received by that
subscriber and no others.

Producer listens for subscription events on a topic.

Consumer1 first subscribes to its session inbox. It then subscribes to the topic.

The Producer receives a subscription notification event and sends a message to the
session inbox of the new subscriber.

The Consumer1 receives this message.
Sun JMS Grid User’s Guide 212 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Running the Example

Start up two command windows and navigate to the examples directory of your JMS
Grid installation.

In the first window, start the subscription event listener:

run inbox.Producer

In the second window, start a subscriber:

run inbox.Consumer1

At the end of the test both clients will still be waiting for events. Press Ctrl-C to
terminate each client.

Expected Output

When the subscription event listener is started, it will display output similar to the
following:

%JMS Grid%\examples>run inbox.Producer
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
281 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6
Establishing topic subscription event listener...
Waiting indefinitely for messages ...

When the subscriber is started, it will display output similar to the following:

%JMS Grid%\examples>run inbox.Consumer1
Initializing JNDI Objects...
0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid Client
version = x.x.x Build:bldxxx.x
297 [main] INFO com.spirit.jmq.JMQConnection - Successfully
connected to JMS Grid Message Daemon (daemon=ln-dev-gx260-kd-50607 @
tcp://ln-dev-gx260-kd:50607) version 6.0.6 Build:bld606.6

Subscriber is ready to receive messages.

This causes the subscription event listener in the first window to wake up and display
the following:

Received a subscription event =
Sending a message to the subscriber's session inbox

The subscriber receives this message in its session inbox and displays:

A message has been received in the inbox
Text is: hello from the publisher

Variation

After you have started the InboxSubscriber, leave it running and start a second
Consumer2 in another window. When this subscribes to the topic the Producer will
again receive a subscription event and publish a message to its session inbox. Notice
that this message is received by the new subscriber but not by the original subscriber.
This demonstrates that the session inbox conveys messages to a single subscriber only.
Sun JMS Grid User’s Guide 213 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
4.4.10 The Interactive GUI

About this Example

This interactive example implements an easy to use GUI to enable the User to run
variations on many of the examples described above. The GUI allows the User to run
both publish/subscribe and send/receive JMS models specifying various different
configurations such as whether or not the messages are to be persistent or transacted,
whether or not the consumer should be durable or use selectors and whether or not it
should receive synchronously or asynchronously. Multiple producers and consumers
can also be configured at will.

Summary of Commands

Figure 64 Tabs - What They Do
Sun JMS Grid User’s Guide 214 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 65 The Send Panel

Figure 66 The Send Operation Panel
Sun JMS Grid User’s Guide 215 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 67 The Receive Panel
Sun JMS Grid User’s Guide 216 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 68 The Receive Operation Panel

Running the Example

There are many different configurations that can be run using the GUI. Here are 2
examples to get you started.

Example 1: Continuous publish/subscribe

Start up two command windows and navigate to the examples directory of your JMS
Grid installation.

In the first window, start a subscriber:

run gui.JMSGUI

This will fire up a GUI:
Sun JMS Grid User’s Guide 217 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 69 Receive Tab - Pub/Sub

Click on the "Receive" tab and select "Pub/Sub" from the "Receive Domain" drop-down.

Click on the "ReceiveOperation" tab and select start.

Figure 70 Receive Operation Tab

In the second window, start a publisher:

run gui.JMSGUI

This will fire up a second GUI:
Sun JMS Grid User’s Guide 218 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 71 Send Tab

Click on the "Send" tab and select "Pub/Sub" from the "Send Domain" drop-down and
select "Send continuously" from the "Send Operation Mode" drop-down.

Click on the "Send Operation" tab and select start.

Figure 72 Send Operation Tab

Expected Output

The GUI running the Producer will display the message number as each message is
sent.
Sun JMS Grid User’s Guide 219 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
The GUI running the Consumer will similarly display the message numbers of each
message received:

Figure 73 Receive Operation Messages Numbers

Example 2: Non-continuous Synchronous send/receive

Start up two command windows and navigate to the examples directory of your JMS
Grid installation.

In the first window, start a subscriber:

run gui.JMSGUI

This will fire up a GUI:
Sun JMS Grid User’s Guide 220 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 74 Synchronous Receive

Click on the "Receive" tab and select "P2P" from the "Receive Domain" drop-down and
"Synchronous" from the "Sync/Async" drop-down.

Click on the "ReceiveOperation" tab and select start.

Figure 75 Receive Operation Sync

In the second window, start a publisher:

run gui.JMSGUI

This will fire up a second GUI:
Sun JMS Grid User’s Guide 221 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 76 Second Send

Click on the "Send" tab and select "P2P" from the "Receive Domain" drop-down and
"Send on button click" from the "Send Operation Mode" drop-down.

Click on the "Send Operation" tab and select start.

Figure 77 Second Send Operation

Click on send to send a message:
Sun JMS Grid User’s Guide 222 Sun Microsystems, Inc.

Chapter 4 Section 4.4
JMS Programming Programming Examples
Figure 78 Send the Message

Click on receive to receive a message:

Figure 79 Receive the Message
Sun JMS Grid User’s Guide 223 Sun Microsystems, Inc.

Chapter 4 Section 4.5
JMS Programming References
4.5 References

Textbooks

Java Message Service by Richard Monson-Haefel and David A Chappell O'Reilly 2001.
ISBN 0-596-00068-5.

Professional JMS Programming by Paul Giotta and 6 others. Wrox Press 2000. ISBN 1-
961004-93-1

Online Resources

Java Message Service Specification http://java.sun.com/products/jms/docs.html

Java Message Service Tutorial http://java.sun.com/products/jms/tutorial/index.html
Sun JMS Grid User’s Guide 224 Sun Microsystems, Inc.

Chapter 5

JMX Management

This Chapter describes the JMX compliant management and monitoring capabilities of
JMS Grid. It contains the following sections:

What is JMX - a basic introduction to key JMX terminology

Management Architecture Overview - describing how the management
components interact

Running the JMS Grid Management Console

Using the JMS Grid Management Console

Using the JMS Grid Management Commands

The Management Object Model - a list of all the MBeans attributes and operations
implemented by JMS Grid Message Server and accessible via the jmxConsole.

5.1 What is JMX?
The Java Management eXtensions (also called the JMX specification) define an
Architecture, the design patterns, the API’s, and the services for application and
network management in the Java programming language. It provides the means to
instrument Java code, create smart Java agents, implement distributed management
middleware and managers, and integrate these solutions smoothly into existing
management systems using either HTML or industry standards such as SNMP and
WBEM. For more information see http://java.sun.com/products/JavaManagement/.

5.1.1 JMX Concepts
This section briefly defines the main JMX concepts and terminology used in this guide.

Manageable Resource

A JMX manageable resource can be an application, an implementation of a service, a
device, a user, and so forth. It is developed in Java, or at least offers a Java wrapper, and
has been instrumented so that it can be managed by JMX-compliant applications.

The JMS Grid Message Server includes the following manageable resources:

Wave Message Daemon MBean (general management - threads, memory etc.)
Sun JMS Grid User’s Guide 225 Sun Microsystems, Inc.

Chapter 5 Section 5.1
JMX Management What is JMX?
The Message resource (the message processing and routing engine)

The Store resource (the file or relational database for persistent messages)

Management Bean (MBean)

A Management Bean or MBean is the Java object through which management of
resources is effected. Its interface makes available all the information that is needed for
an application to manage it. JMX defines four types of MBean, and each type is defined
by, for instance, implementing certain interfaces, or following certain naming
conventions. The four types of MBeans are: standard, dynamic, open and model. Each
of these corresponds to different management needs and are appropriate for a
particular situation.

Standard MBeans are the simplest to design and implement; their management
interface is described by their method names and the fact that they implement an
interface whose name ends in “MBean“. These are suitable where the management
interface of a resource is stable.

Dynamic MBeans must implement the DynamicMBean interface and expose their
operations and attributes at run time by providing callers with metadata to describe
them. These are useful for wrapping non-conformant resources, or where the
management interface is changing.

Open MBeans are dynamic MBeans, which only use the primitive wrapper types
and a few others in their operations and attributes. These can be discovered and
used by any client at runtime and can be used without needing extra jar files.

Model MBeans are also dynamic MBeans that are fully configurable and self-
described at run-time; they provide a generic MBean class with default behavior for
dynamic instrumentation of resources.

All types of MBean expose Attributes and Operations to allow the resource represented
by the MBean to be controlled by management applications.

Management Server (MBean Server)

The Managed Bean server, or MBean server for short, is a registry for objects that are
exposed to management operations in an agent (see next section for description of an
agent). Any object registered with the MBean server becomes visible to management
applications - both in the same Java Virtual Machine (JVM), and externally. The MBean
Server only exposes an MBean’s management interface, never its direct object reference.

Management Agent

A JMX Management Agent is a management entity that runs in a JVM and acts as the
liaison between the MBeans and the management application. A JMX agent is
composed of an MBean server, a set of MBeans representing managed resources, a
minimum number of agent services implemented as MBeans, and typically at least one
protocol adaptor or connector. The agent services are usually MBeans themselves and
add manageability to the agent.
Sun JMS Grid User’s Guide 226 Sun Microsystems, Inc.

Chapter 5 Section 5.1
JMX Management What is JMX?
Management Application

A Management Application is a JMX client application that interacts with manageable
resources via JMX Management Agents in order to control or monitor the resources.
The JMS Grid Management Console is a browser based management application. The
JMS Grid Management commands are simple standalone programs which run one
MBean operation each.

Attributes

Attributes are the fields or properties of an MBean that are in its management interface.
Attributes are discrete, named characteristics of the MBean which define its appearance
or its behavior, or are characteristics of the managed resource that the MBean
instruments.

Attributes are always accessed via method calls on the object that owns them, and the
method calls are derived from the attribute names with get- and set- prefixes.

Suppose we have an MBean with an attribute myAttribute. If it is readable then there
will be a method called getMyAttribute, if writable then there will be a setter
method setMyAttribute to update it. Either or both of these may be present. If the
attribute is boolean then the getter may alternatively be called isMyAttribute.

Operations

Operations are methods that have been exposed in the MBean interface of a JMX
MBean. Any method that is not a “getter“ or “setter“ for an attribute is considered to be
an operation. They are used to control a manageable resource - to start, stop or pause it,
for example.

Domain

Each object managed by an MBean Server is allocated a namespace according to its
domain name. How the domain name is structured is application dependent. The JMS
Grid Management API uses domain names of the form:

WMS.<clusterid>.<daemonid>

The JMS Grid Management Console constructs the correct domain name from the name
and type of the resource being managed.

Notification Model

The notification model is a part of JMX which allows MBeans to broadcast management
events such as state changes or error conditions; these are called notifications.
Management applications and other objects register as listeners with the broadcaster
MBean. The MBean notification model of JMX enables a listener to register only once
and still receive all different events that may occur in the broadcaster. The JMX
notification model only covers the transmission of events between MBeans within the
same JMX agent - external communication to remote management applications is not
specified. Sun’s management tools use JMS as the external notification mechanism,
Sun JMS Grid User’s Guide 227 Sun Microsystems, Inc.

Chapter 5 Section 5.2
JMX Management Management Architecture Overview
publishing messages on well-known management topics. These are named
com.spirit.channel.management.

5.1.2 Additional JMS Grid Concepts
JMS Grid Message Server’s operational management facilities augment JMX with some
further capabilities which are described below.

Advisory Messages

When particular events take place, JMS Grid Message Server may publish advisory
messages on well-known management topics. Management tools can subscribe to these
topics perhaps using message selectors to filter out specific message types - and react to
the events.

Management topics

A management topic is a pre-defined topic reserved for use by Sun products such as the
JMS Grid Message Server. This topic acts as a channel for management information
messages, for example errors, alerts, notifications and metrics. These messages are
issued on well known topics using the topic hierarchy
“com.spirit.channel.management.*”

Metrics

The JMS Grid Message Server uses metric objects for collecting runtime performance
information about the running system. Each metric is an MBean, which uses JMS to
distribute change notification events to any active listeners. Examples of metrics
include:

Number of Active Clients

Message throughput

Memory utilization

Thread utilization

Queue depths

Topic depths

5.2 Management Architecture Overview

5.2.1 Uses of JMX in JMS Grid
The Management API is used to monitor and control single or clustered JMS Grid
Message daemons. Examples of the operations supported include:
Sun JMS Grid User’s Guide 228 Sun Microsystems, Inc.

Chapter 5 Section 5.2
JMX Management Management Architecture Overview
Retrieve a list of durable subscribers by subscription name

Add/remove durable subscribers to/from a daemon

Browse messages (a snapshot) by subscription name

Browse a message, by message Id

Remove a message, by message Id

List all current JMS clients, where they are, how long they have been running

Close down a daemon, or all daemons, now or in a specified time

Force the re-connect of a client to another daemon

Details of all supported operations can be found in the Javadocs, and in the tables in
Management Commands below.

5.2.2 Distributed Architecture
Each JMS Grid daemon contains a set of JMX MBeans that expose the basic operations
and attributes for each managed resource.

A remote MBeanServer resides on the client and allows remote access to the MBeans
used to manage a JMS Grid daemon instance. Utilizing the JMS-JMX infrastructure
available with JMS Grid, the remote MBean Server can be used to group multiple
daemon instances - i.e. a cluster of daemons. For convenience, the JMS Grid
management API uses concrete classes to manage remote MBeans in the JMS Grid
Message daemon, by using the same remote MBeanServer infrastructure. This enables a
client (i.e. the servlet based management console) to connect to a single point in the JMS
Grid network, and manage multiple cluster instances at the same time. The agent can
also be used to provide a gateway portal for integration with enterprise management
tools such as Tivoli, HP OpenView or CA Unicenter through Simple Network
Management Protocol (SNMP).

The agent and the daemons communicate with each other using JMS publish/subscribe
messaging over various management topics. The topic used depends on the scope of
the operation (here meant in its broader sense): operations directed at a single daemon
use one topic, whilst those directed at a cluster use a different one rooted at
“com.spirit.channel.management.*” Operations are dispatched to one or more
daemons, addressed using a JMX domain name of the form:

WMS.<clustername>.<daemonid>.

The daemons also automatically send metric data, and logging data when requested.
Any JMS client can subscribe to the appropriate topic, so it is possible for multiple
management consoles - or logging/alerting agents - to listen in to the data being
published. See Metrics for more details.
Sun JMS Grid User’s Guide 229 Sun Microsystems, Inc.

Chapter 5 Section 5.3
JMX Management Running the JMS Grid Management Console
5.3 Running the JMS Grid Management Console
This chapter describes the installation and running of the JMS Grid Management
Console. The management console is a Web based GUI that requires a servlet container
to be installed and running. We explain how to use the embedded Servlet container in
the JMS Grid Message Daemon. As an alternative we work through the installation of
the JMX management console in a standalone Tomcat Java Web Server.

5.3.1 Using the Servlet Container in a JMS Grid Daemon
This provides the quickest, simplest approach for accessing the jmxConsole. The
default behavior of the embedded jmxConsole is to deploy the jmxConsole on port
8080. For example the following will start the JMS Grid Message Daemon and deploy
the jmxConsole on the default port.

>> wmd /c

To configure the jmxConsole to run a non-standard port, pass the port value in as the
final argument to the wmd script. For example to configure the embedded Servlet
Container is use port 80 use:

>> wmd /c 80.

5.3.2 Installing the Management Console in a Web Server
This section describes how to set up the Management Console from its web archive
(WAR) file.

Prerequisites

Installation of a servlet engine, this document assumes you are using Tomcat version
4.0 or later. Application servers such as WebLogic have a servlet engine built into them,
but you need to consult the documentation for instructions on how to deploy in these
environments.

Secure Socket Layer (SSL) must be installed and a certificate made available for the web
or application server. If you have not installed this software the section Installing and
Configuring SSL will help you. Alternatively, the section Running without SSL explains
how to switch this off.

The management console web archive (WAR), jmxConsole.war. In order to run the
application you also need a running JMS Grid Message Daemon, wmd.

Note: It is a “feature“ of Tomcat that if a context is defined for a web application then
Tomcat does not unpack a war file with that context name. This applies even if the
application has not been deployed before, i.e. in the absence of a directory with the
context name in the webapp directory.
Sun JMS Grid User’s Guide 230 Sun Microsystems, Inc.

Chapter 5 Section 5.3
JMX Management Running the JMS Grid Management Console
This is justified as necessary to prevent inadvertent overwrites of existing contexts.
However, it means that an extra step is introduced into the installation, as unpacking
the WAR and creating a context have to be done separately.

1 Deploy the WAR File.

If Tomcat is running shut it down.

Copy the WAR file, jmxConsole.war, into Tomcat’s web application directory,
called webapp, which is a direct child of the Tomcat installation directory. If you
are reinstalling the management console delete the jmxConsole directory.

If you are reinstalling the management console delete the jmxConsole directory
and comment out the jmxConsole context from the server.xml file in the conf
directory. This directory is a direct child of the Tomcat installation directory. You
can comment out using the XML comment delimiters <!-and -->.

Restart Tomcat, which will then unpack the WAR file into a directory called
jmxConsole.

Stop Tomcat again.

2 Create or Restore a Context for the Web Application.

For this step you need to edit the server.xml file which resides in the conf directory, also
a direct child of the Tomcat installation directory. You need to add some lines into the
default virtual host’s configuration. Look for:

<Host name=“localhost“ debug=“0““ appBase=“webapps“ unpackWARs=“true“>

This occurs at the start of this section. A little further down you will see several tags for
contexts. Add these lines after the other Context tags, that is after the last

</Context> :
<!-- jmxConsole Context -->
<Context path=“/jmxConsole“ docBase=“jmxConsole“ debug=“0“
reloadable=“false“ >
<Logger className=“org.apache.catalina.logger.FileLogger“
prefix=“localhost_jmxConsole_log.“ suffix=“.txt“ timestamp=“true“/>
</Context>

This declares the existence of the jmxConsole context and arranges for all logging
output from the web application to go to localhost_jmxConsole_log.<date>.txt, a file in
the logs directory.

3 Restart Tomcat

Once started the web application will now write to its log file
localhost_jmxConsole_log.<data>.txt.

Some elements of the application are loaded when the server starts so there will be
some entries made in the file before you do anything.

If anything goes wrong during start up, for instance if you place the context declaration
lines in the wrong place in server.xml, Tomcat will fail to start up again. All the XML
files used by Tomcat are validated against a DTD and will be rejected if invalid. Tomcat
writes any errors in a file named “catalina_log.<date>.txt” in the logs directory.
Check here if there are any problems reported during Tomcat start up. Also, check the
console’s own log file for any error reports there.
Sun JMS Grid User’s Guide 231 Sun Microsystems, Inc.

Chapter 5 Section 5.3
JMX Management Running the JMS Grid Management Console
Installing and Configuring SSL

Complete instructions for installing the SSL extension are given in the Tomcat
documentation. Go to “Tomcat Documentation“ and then the “SSL Config How-to“
link. There are quick start instructions at the top of the page, but more extensive ones
about half way down under the banner “Configuration.”

We recommend you use the self-signed certificate as recommended in these
instructions. The documentation for the keytool utility will help you if you wish to
import a certificate you already have.

Running without SSL

If you are happy to run without using SSL all you need to do is comment out the
security section of the web application’s deployment descriptor. This file, web.xml, is
located in the webapp/jmxConsole/WEB-INF directory in the Tomcat installation
tree. The security section looks like this:

<security-constraint>
<web-resource-collection>

<web-resource-name>Login Screen</web-resource-name>
<url-pattern>/jsp/login</url-pattern>
<url-pattern>jsp/Login.jsp</url-pattern>

<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>

</web-resource-collection>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

Special Note for Running The Management Console On Unix Variants

The JFreeChart software we have used for drawing the metric graphs has a dependency
on the graphical capabilities of the operating system. In particular, it can depend on
there being an X server running in order to work. You might see an error such as:

Can't connect to X11 window server using ':0.0' as the value of the
DISPLAY variable.

Where machines have no graphics capabilities, or there is no X server running, there is a
straightforward work around for this. You need to set the system property
java.awt.headless to be true on the command line of the java virtual machine
where the console web application is running.

If you are running Tomcat, the startup scripts have a special variable provided to set
extra JVM arguments, JAVA_OPTS. To do this for C shell:

setenv JAVA_OPTS '-Djava.awt.headless=true'

or for Bourne/bash shells:

JAVA_OPTS='-Djava.awt.headless=true'
Sun JMS Grid User’s Guide 232 Sun Microsystems, Inc.

Chapter 5 Section 5.4
JMX Management Using the JMS Grid Management Console
Running the Management Console

The web application’s welcome page has been set to be the log in page for the
management console, so you only need point your browser at the web application root
to start it. If the application is running on the local host and on the standard Tomcat
port this will be http://localhost:8080/jmxConsole. Alternatively you can go to the log
in page explicitly, https://localhost:8443/jmxConsole/jsp/Login.jsp

In more general terms the URL for the management console is to be found at:

http://<hostname>:<port>/jmxConsole

The first screen you see is the Login screen, at which you must enter:

Username - Administrator User name (same as for the Admin tool)

Password - Administrator’s password

Daemon - URL of the daemon to be used as an entry point into the network

As the User name and password are passed across the network it is important that you
use SSL if the network in which you use the Management Console is unsecured as
otherwise these may be compromised. This URL assumes you are using SSL.

5.4 Using the JMS Grid Management Console
You can monitor and control the runtime behavior of a JMS Grid Message Daemon
using the JMS Grid Management Console.

Note: The Management Console allows you to observe the behavior of a JMS Grid
Message Daemon and its components, and it allows you to control that behavior 'on
the fly,’ by setting attribute values or invoking operations on individual MBeans.
The changes made directly to attributes or because of invoking an operation will be
persistent.

Figure 80 Overview of the Management Console

(PLACE HOLDER FOR FIGURE 1)

The JMS Grid Management Console is divided into two main views (frames) - the
Navigation Tree frame or view, which is on the left, and the information frame or view,
which appears on the right. The possible contents of the information frame are
discussed below.

5.4.1 Navigation View
The Navigation View allows you to select clusters and daemons within the message
network. The Navigation view represents the network topography as a tree. The root of
the hierarchy is always shown as “Management Console“. If you open this it shows a
node for each of its children, which are all the clusters in the network. Opening a cluster
Sun JMS Grid User’s Guide 233 Sun Microsystems, Inc.

Chapter 5 Section 5.4
JMX Management Using the JMS Grid Management Console
shows first its manageable resources, classified by the MBean type, which is used to
manage them.

Each cluster has a generic view, which can be used to manage every daemon in a JMS
Grid message cluster as one logical unit. Each cluster generic view has child nodes, one
for each daemon in the cluster.

Opening a node shows its manageable resources, again classified by the managing
MBean type, or agent, message or store.

You can refresh the Navigation View using the browser’s refresh button. The list of
managed daemons and clusters is then updated. The Navigation View has also a
“QuickSearch“ option that allows direct navigation to named components, it uses a
full-string match. For example if you wish to navigate to an existent daemon called
“ClusteredDaemon1“ input the name into the search text field and press “Go“, the
navigation tree will expand at the node representing “ClusteredDaemon1“.

The navigation tree will collapse if no item is found.

What Daemons and Clusters are Visible from the Console?

The Management Console shows all the connected clusters to the entry point (the
daemon you connect to). The Management Console can be used to stop message
daemons, but not start them.

5.4.2 Information Views
The Information views allow you to access runtime information and invoke
management bean operations. Selecting the MBean type, whether in the cluster or
daemon scope in the Navigation view, will change the current Information view.

The Information view has a standard layout. It shows a series of tabs, where each tab
corresponds to a particular type of management activity applicable to the target
(daemon or cluster) for the MBean type (agent, message or store). For instance, if you
select the Agent node under a cluster the information view will change to one with two
tabs, Operations and Logging. The Management Model section below discusses in
detail the management activities available in each target/MBean context.

Each tab in the Information view also has three standard buttons, “Previous“ to go back
to the previous page in the viewing history, “Next” to go to the next page in the
viewing history and “Help“ which launches context sensitive help in a separate
browser window. (Not included in this release). These buttons appear across the
bottom of the tab.

Attributes View

The Attributes view lists all the values for readable JMX attributes associated with the
selected MBean, and allows new values to be set for any writable attributes. You can
read more about the specific attributes for each MBean in the section The Management
Model.

Note: You can apply changes to multiple attribute values in a single operation, but there is
no guarantee as to the order in which those changes are made, and the changes are
Sun JMS Grid User’s Guide 234 Sun Microsystems, Inc.

Chapter 5 Section 5.4
JMX Management Using the JMS Grid Management Console
not batched into a single transaction. If a change to an attribute results in an
exception being raised, other changes already made are not rolled back, and
subsequent changes are not applied.

Operations View

The Operations View allows you to invoke operations on the selected MBean. The
initial view displays a list of all possible operations. If you select an operation this may
result in a more detailed view for the specific operation with buttons representing
further operations that are available in that context, or a simple page displaying the
status of execution of the operation. You can find out more about the operations
available for each resource in the section The Management Model.

Figure 81 Typical Operations View Screen

Metrics View

There are two screens in the metrics view: Select Metrics and View Metric.

Select Matrics Screen

This view allows you to select from a list those metrics should be displayed.
Sun JMS Grid User’s Guide 235 Sun Microsystems, Inc.

Chapter 5 Section 5.4
JMX Management Using the JMS Grid Management Console
Figure 82 Typical Metric Selection Screen

View Metrics screen

The Metrics view displays the information graphically for each of the metrics you
selected on the Select Metrics screen such as memory utilization.
Sun JMS Grid User’s Guide 236 Sun Microsystems, Inc.

Chapter 5 Section 5.4
JMX Management Using the JMS Grid Management Console
Figure 83 Typical Metric Viewing Screen

Logging View

The screens available in the logging view depend on whether you are logging a cluster
or a daemon. You can also set the logging parameters on the Set Logging Parameters
screen before starting to log. On this screen it is also possible to set your maximum
messages preference.

All daemons and clusters share a tree of logging category names, and each category has
an associated priority. This screen allows you to alter the priority, or log level,
associated with a particular category. The view also allows you to set the maximum
number of messages preference. This determines how many messages are visible at a
time in the view logging screen, in effect the number of rows in the table. This value is
saved in a cookie at the client and will persist from session to session. As shown in the
screen shot below this view presents you with a list of logging categories.

Selecting a category shows its current priority in the log level list. The value in the log
level list can be changed. There is also a field for setting the maximum number of
visible messages. The “Set“ button validates the parameters, and if valid makes these
changes to the daemon you selected and acknowledges the action. If your input is
Sun JMS Grid User’s Guide 237 Sun Microsystems, Inc.

Chapter 5 Section 5.4
JMX Management Using the JMS Grid Management Console
invalid you will be presented with some explanatory messages to help you resolve the
problem.

Figure 84 Setting Logging levels in the Set Logging Parameters Screen

View Logging screen

This view consists of a table, which is continuously updated, showing you the logging
messages from a particular daemon. Logging is not retrospective, i.e. this view only
displays log messages that arrive after the view is initiated. Messages are displayed in
reverse chronological order, and by priority. Ordering by priority means that if an event
generates several messages only the one(s) with the highest priority are presented. The
message list will accommodate up to your preferred maximum number of messages.
Sun JMS Grid User’s Guide 238 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
Figure 85 View Logging Screen for a Cluster with no Message Activity

5.5 Management Commands
This section of the Management Guide discusses the commands that can be run from
the command line rather than from the Management Console. Many of these operations
are available from within the console but you may find it more convenient to run them
this way.

5.5.1 Notes on Command Syntax

Note: We describe the syntax of the commands using a notation similar to Backus Naur
form. Here is a description of the symbols and what they mean:

::= is the usual BNF notation meaning 'is expressed as'

| separates alternatives

[] items in square brackets are optional
Sun JMS Grid User’s Guide 239 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
* after an element means it may appear not at all, once or many times

{ } curly brackets are used to group alternatives separated by |

anon any text in bold should be entered in the command line exactly as it appears.

Apart from the last items these symbols are part of the grammar and do not form part
of the command input.

Common Features

All commands when run standalone have the same template for the command line.

This is:

Command::= CmdOption CommandLine
CmdOption::= atsub | attr | btime | ccc | clc | filter | gc | killd |
lcc | lq | lqm |lqnm | lsub | lt | ltm | metric |qsize | qstat | rcc |
rmq | rmqm | rmtm | rmtsub | showqm | showtm | sms |substat | tsize |
tstat | uc
CommandLine::= CommandArgsOnLine | CommandArgsInFile
CommandArgsOnLine::= ConnectionSpecification ContextSpecification
[Arguments]
CommandArgsInFile::= FileSpecification

The following four sections discuss these command elements, giving a grammar for each. There
then follows a description for each command, describing what it does and what it expects for the
Arguments element if required.

Note: There should be no spaces between the values in the various command segments.The
examples will make this clearer.

Connection Specification

For standalone commands the connection parameters must be specified on the
command line. The connection specification is used to say which daemon you want to
connect to, though it need not be the one about which you are carrying out a query. A
grammar for the connection specification is:

ConnectionSpecification::= -connect Hotspot,UserSpecification
Hotspot::= hotspotURL | props
UserSpecification::= username,password | anon

The special values props and anon are:

props: specifies that the hotspot should be read from the system properties, specifically
messageChannels.

anon: instead of specifying username and password this indicates that anonymous log
in should be attempted.

If we want to connect to a daemon running on port 50609 on our local machine and use
anonymous log in then the connection specification would appear:

-connect tcp://localhost:50607,anon
Sun JMS Grid User’s Guide 240 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
In contrast if that daemon is running on a machine with IP address 129.167.100.4 and it
has security on so anonymous login won't work, a connection specification would look
like:

-connect tcp://129.167.100.4:50607,admin,admin

assuming that we have a user admin with password admin.

Context Specification

This allows the User to specify the cluster or daemon on which the command is to be
carried out. Where a daemon is specified its owning cluster forms the first part of the
context. The context appears:

ContextSpecification::= -context ClusterOnly | Daemon
ClusterOnly::= cluster
Daemon::= cluster.daemon

In most cases the context will require a Daemon-type specification. Where this is not the
case this will be pointed out.

If we have one default daemon, that is started just by running startserver with no
arguments, running on a machine called philip then the context specification for it
would look like:

-context default.philip-50607

The cluster for a default daemon is always 'default' and the default daemon's name is
derived from the machine name plus the port number on which it runs. However, if we
have a daemon named D1 forming part of a cluster C1 then its context specification
would be:

-context C1.D1

Arguments

This part varies from command to command and may for some be absent entirely. It
allows the user to specify arguments to a command in a comma separated list. It has the
form:

Arguments::= -args ArgList
ArgList::= ArgListItem* ArgItem
ArgListItem::= ArgItem,

The precise nature of ArgItem varies from command to command and is discussed with
each command in later sections.

Note about Spaces and Shell Interpretation of 'Special' Characters

In some cases you might need to specify a selector, and this will be an expression that may
include embedded spaces or characters which have a special meaning for the shell you are using.
Some commands use curly brackets which have a special meaning to Unix shells. In this case
you can either put the particular ArgItem in inverted commas, or the whole of ArgList. This
will prevent the shell and shell script used by the commands from interpreting wrongly. Here is
an example. Assume we want to list messages on a topic. The command says we must supply
topic name, client id, subscriber name and selector in the ArgList. The argument part can be
written as follows:
Sun JMS Grid User’s Guide 241 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
... ... -args jmstopic,MyClientId,MySubscriberName,”JMSPriority > 2”

or as follows:

... -args “jmstopic,MyClientId,MySubscriberName,JMSPriority > 2”

FileSpecification

It is possible to provide the arguments to the command as a file. This is done:

FileSpecification::= -file filename

The content of the file follows the CommandArgsOnLine format.

5.5.2 Command Descriptions
The following sections describe each of the available commands. For simplicity the
grammar for providing arguments in a file is not discussed. As mentioned above the
content of the file should follow the non-file format. In most cases the
ConnectionSpecification and ContextSpecification need no special
comment. The ContextSpecification will almost always include a cluster and
daemon name.

Add a Topic Subscriber - atsub

Adds a subscriber to a topic.

Grammar:

atsub ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args topicName,clientID,subscriberName,{selector|NONE}

See Values of Attributes - attr

Shows values of attributes of a daemon.

Grammar:

attr ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.

Set Time Socket Blocked before Closing - btime

Set time socket blocked before closing.

Grammar:

btime ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args timeInMilliseconds
Sun JMS Grid User’s Guide 242 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
Create Connection - ccc

Create a cluster or network connection: incorporate daemons into a cluster or clusters
into a network.

Grammar:

ccc ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args {ClusterSpec | NetworkSpec}
ClusterSpec ::= cluster,daemonURL
NetworkSpec ::= network,clusterName{daemonURL}

For a cluster connection let's assume we have two single daemons running on our local
machine called philip, one on port 50607 and one on 50608. We want to make these into
a cluster. We can do it like this:

ccc -connect tcp://localhost:50607,anon -context default.philip-50607
-args cluster, tcp://localhost:50608

or like this:

ccc -connect tcp://localhost:50608,anon -context default.philip-50608
-args cluster, tcp://localhost:50607

As cluster connections are bidirectional it does not matter which way around we issue
the command.

When we come to network connections we have to be more careful as a network
connection is unidirectional: topic messages flow only from the target cluster to the one
which originates the connection. Lets say we have two clusters, A and B, with A
running on a machine called preston and B on a machine called kendal. A has two
daemons D1 and D2 and B has D3 and D4 and these use ports 50607 through to 50610.
Let's assume we want A to receive topic messages from B: this means A has to subscribe
to messages from B by originating the network connection. A command to do this
might appear:

ccc -connect tcp://preston:50607,admin,admin -context A.D1 -args
network,B{tcp://kendal:50609}

Note: We connect to a daemon in A and give as arguments the cluster B and the URL of a
daemon in that cluster. If on the other hand we want B to receive topic messages
from A we swap things about:

ccc -connect tcp://kendal:50609,admin,admin -context B.D3 -args
network,A{tcp://preston:50608}

See also the filter command, which can be used to restrict the topics whose messages
are sent over a network connection. See also the note above about the interpretation of
'special' characters as curly brackets can cause problems on Unix.

Close clients - clc

Closes clients in various contexts.

Grammar:
Sun JMS Grid User’s Guide 243 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
clc ConnectionSpecification ContextSpecification [Arguments]

where

ContextSpecification ::= -context cluster[.daemon]
Arguments ::= -args clientURL

The following three variations of this command are available:

1 Close all clients on a cluster. For this specify only the cluster name.

2 Close all clients on a daemon. For this specify the cluster and daemon names for the daemon
whose clients are to be closed.

3 Close a particular client on a daemon. For this specify the cluster and daemon name where
the client is connected and the client’s URL. You can find client URLs using the lcc
command described below.

Set Network Connection Topic Filters - filter

Set network connection topic filter. When a network connection is created we specify
which topics' messages are to be forwarded to the remote cluster. This command allows
you to set this list.

Grammar:

filter ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args clusterName{commaSeparatedTopicList}

If we have a network connection to cluster C2 and we only want messages from topics
WidgetOrders and WidgetFaults to be forwarded then the Arguments would appear:

-args C2{WidgetOrders,WidgetFaults}

See also the ccc command which describes how to create a network connection. See also
the note above about the interpretation of 'special' characters as curly brackets can
cause problems on Unix.

Collect Garbage - gc

Causes the garbage collector to be invoked on a daemon’s virtual machine.

Grammar:

gc ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.

Shut Down a Daemon - killd

Causes the daemon to shut down immediately. Be aware that the immediate shut down
prevents all the daemon threads from terminating normally. It is better to use the sms
command to leave the daemon in a consistent state.
Sun JMS Grid User’s Guide 244 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
Grammar:

killd ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.

List Connected Clients - lcc

List clients connected to a daemon.

Grammar:

lcc ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.

List all Queues - lq

Lists all queues available on a daemon.

Grammar:

lq ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.

List queue messages - lqm

Lists undelivered messages on a queue.

Grammar:

lqm ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args queueName,{selector | NONE}

List all Subscribers - lsub

Lists all durable subscribers.

Grammar:

lsub ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.

List all Topics - lt

This command shows all topics which have at least one durable subscription.

Grammar:

lt ConnectionSpecification ContextSpecification

The Arguments element is not required for this command.
Sun JMS Grid User’s Guide 245 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
List Topic Messages - ltm

Lists the undelivered messages on a topic for a subscriber meeting criteria set in the
selector.

Grammar:

ltm ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args topicName,clientID,subscriberName,{selector|NONE}

Values for client ID and subscriber name can be obtained using the lsub command.

Display Values of a Metric - metric

Shows a continuously updating series of values for a metric. This terminates when the
user presses control-C.

Grammar:

metric ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args {resourceName,metricName | LIST}

All metrics are associated with a resource, whose possible values are
WaveMessageDaemon, MessageStore and MessageCore. The LIST option will give a
list of the resources and their associated metrics.

Show Queue Size - qsize

Shows how many undelivered messages there are on a queue, or on all known queues.

Grammar:

qsize ConnectionSpecification ContextSpecification [Arguments]

where

Arguments ::= -args queueName

If no Arguments are specified the output gives the number of messages unconsumed on all
queues, otherwise only on the queue named in Arguments.

Show Statistics about Queues - qstat

This command shows statistics about a queue or all queues. The statistics shown are
message count, timestamp of the newest and oldest unconsumed message on the
queue, and the number of receivers.

Grammar:

qstat ConnectionSpecification ContextSpecification [Arguments]

where

Arguments ::= -args queueName
Sun JMS Grid User’s Guide 246 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
Reconnect Clients - rcc

Reconnects clients in various contexts.

Grammar:

rcc ConnectionSpecification ContextSpecification [Arguments]

where

ContextSpecification ::= -context cluster[.daemon]
Arguments ::= -args [ClientSpecification,]destinationURL
ClientSpecification ::= clientID{clientURL}

The following three variations of this command are available:

1 Reconnect all clients on a cluster to one of its daemons. For this specify the cluster name in
the context and the destination URL in arguments. The destination URL is the URL of the
daemon in the cluster to which the clients should reconnect. An example might appear:

rcc -connect tcp://localhost:50607,admin,admin -context C1 -args
tcp://localhost:50609

2 Reconnect all clients from one daemon in a cluster to an alternative one in the same cluster.
For this specify the cluster and daemon names in the context and the destination URL in
arguments. The destination URL is the URL of the daemon in the cluster to which the clients
should reconnect. An example might appear:

rcc -connect tcp://localhost:50607,admin,admin -context C1.D1 -args
tcp://localhost:50609

3 Reconnect a particular client from one daemon to another. For this specify the cluster and
daemon names in the context the client’s ID and URL and the destination URL in
arguments. The destination URL is the URL of the daemon in the cluster to which the client
should reconnect. An example might appear:

rcc -connect tcp://localhost:50607,admin,admin -context C1.D1 -args
CID{tcp://localhost:3520},tcp://localhost:50609

See also the note above about the interpretation of 'special' characters as curly brackets
can cause problems on Unix.

Remove a Queue - rmq

Removes a queue.

Grammar:

rmq ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args queueName

Remove a Queue Message - rmqm

Removes a message from a queue.

Grammar:

rmqm ConnectionSpecification ContextSpecification Arguments
Sun JMS Grid User’s Guide 247 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
where

Arguments ::= -args queueName,messageID

Values for message ID can be obtained using the lqm command.

Remove a Topic Message - rmtm

Removes a message from a topic or subscription.

Grammar:

rmtm ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args {RemoveFromTopicArgs | RemoveFromSubArgs}
RemoveFromTopicArgs ::= topicName,messageID
RemoveFromSubArgs::=
topicName,clientID,subscriberName,{selector|NONE},messageID

If just a topic name and message identifier are supplied then that message is removed
from all subscriptions which might receive it. If all the arguments are supplied then it is
only removed from that subscription. Values for clientID, subscriberName, selector and
messageID can be obtained using the ltm and lsub commands.

Remove a Topic Subscriber - rmtsub

Removes a subscriber from a topic.

Grammar:

rmtsub ConnectionSpecification ContextSpecification Arguments

where

Arguments ::= -args topicName,clientID,subscriberName

Values for client ID and subscriber name can be obtained using the lsub command.

Display a Message from a Queue - showqm

This command shows some properties of a queue message and also its body. If the
message is encrypted, the body is not shown.

Grammar:

showqm ConnectionSpecification ContextSpecification Arguments

where

 Arguments ::= -args queueName,messageID

The values for messageID can be obtained using the lqm command.

Display a message from a topic - showtm
This command shows some properties of a topic message and also its body. If the
message is encrypted, the body is not shown.

Grammar:

showtm ConnectionSpecification ContextSpecification Arguments
Sun JMS Grid User’s Guide 248 Sun Microsystems, Inc.

Chapter 5 Section 5.5
JMX Management Management Commands
where

 Arguments ::= -args topicName,messageID

The values for messageID can be obtained using the ltm command.

Shutdown Message Server - sms

This command causes the daemon to shut down normally.

Grammar:

sms ConnectionSpecification ContextSpecification [Arguments]

where

 Arguments ::= -args timeBeforeShutdownInSeconds

Show Statistics about Subscriptions - substat

This command shows statistics about a subscription or all subscriptions. The statistics
shown are message count, and the timestamp of the newest and oldest unconsumed
message on the subscription.

Grammar:

substat ConnectionSpecification ContextSpecification [Arguments]

where

Arguments ::= -args topicName,clientID,subscriberName,{selector|NONE}

Show Number of Unconsumed Messages on a Topic - tsize

Shows how many unconsumed messages there are on topics. There are three variations
on this command as described below.

Grammar:

tsize ConnectionSpecification ContextSpecification [Arguments]

where

Arguments ::= -args {TopicSpecification | SubscriptionSpecification}
TopicSpecification ::= topicName
SubscriptionSpecification ::=
topicName,clientID,subscriberName,{selector|NONE}

The three variants on this command do the following:

1 No Arguments: returns the number of unconsumed messages on all topics. This value will
reflect the maximum number of unconsumed messages over all subscribers to each topic.

2 Named topic: returns the number of unconsumed messages on that topic. This value will
reflect the maximum number of unconsumed messages over all subscribers to the topic.

3 All arguments supplied: shows the number of unconsumed messages on a topic for a
particular subscriber. Values for client ID and subscriber name can be obtained using the
lsub command.
Sun JMS Grid User’s Guide 249 Sun Microsystems, Inc.

Chapter 5 Section 5.6
JMX Management The Management Model
Show Statistics about Topics - tstat

This command shows statistics about a topic or all topics. The statistics shown are
message count, timestamp of the newest and oldest unconsumed message on the topic
and the number of subscribers.

Grammar:

tstat ConnectionSpecification ContextSpecification [Arguments]

Where

Arguments ::= -args topicName

Update Configuration - uc

Reloads a cluster’s configuration from Admin Store.

Grammar:

uc ConnectionSpecification ContextSpecification

where

ContextSpecification ::= -context cluster

The Arguments element is not required for this command.

5.6 The Management Model
The operations and attributes (methods and properties) of the MBeans used to manage
the JMS Grid Message Daemon are described in the tables in the following sections.

There are two ways in which operations can be performed and attributes set. First of all,
one can use the various invoke() and setAttribute[s]() methods on the
MBeans.

These are completely generic and are mandated by the JMX specification. As an
example, if we want to invoke the retrieveQueueSize operation on a queue called
‘jmsqueue’ you can call invoke() on the Store bean passing the string argument
‘retrieveQueueSize(jmsqueue)’.

The JMS Grid JMX API has also added Java helper classes - representing the model
directly. These classes allow you to call a method in what might seem a more natural
way. If you want to call retrieveQueueSize then this is available as a method in its
own right on the helper class, in this case MessageStoreResource. These classes are
described in more detail in the browsable Javadocs for the JMS Grid Management API.

5.6.1 WaveMessageDaemon Resource
The WaveMessageDaemon resource provides access to agent services, some metrics
and to logging of a particular daemon.

N.B. The WaveMessageDaemon Resource is still labeled Agent in the Management
Console.
Sun JMS Grid User’s Guide 250 Sun Microsystems, Inc.

Chapter 5 Section 5.6
JMX Management The Management Model
Operations

The following operations are available for the WaveMessageDaemon resource.

Table 44 Operations for WaveMessageDaemon Resource

Metrics

The following metrics can be accessed from the WaveMessageDaemon resource.

Table 45 Metrics from WaveMessageDaemon Resource

5.6.2 MessageCore Resource
The MessageCore resource is the component of the JMS Grid daemon that handles
cluster formation, client and network connections, and message routing.

Attributes

The Boolean attributes shown, as Bool in the table, are Boolean primitives and can take
values of true or false. All Attributes are read/write.

Table 46 Boolean Attributes

Operations Parameter Description

collectGarbage None Request JVM collects garbage from
memory.

shutdownNow None Quick shutdown of the application.

getLogPriority String {CategoryName} Get the log priority of a single
Category.

setLogPriority String{Category},
String {priority}

Set log priority on a single category.

getLogPriorities None Get the log priorities of all categories.

retrieveActiveThreads None Get the active threads.

Metrics Description

ActiveThreads The number of threads currently running.

FreeMemory The current free memory available to the JVM.

UsedMemory The memory currently used in the JVM.

Attribute Type Description

autoDiscoveryAllowed Bool Determines whether the daemon will register as a
service for clients to automatically discover, and
whether the daemon itself will use multicast
discovery to locate other daemons.
Sun JMS Grid User’s Guide 251 Sun Microsystems, Inc.

Chapter 5 Section 5.6
JMX Management The Management Model
Operations

The MessageCore resource supports the following operations, which unless otherwise
stated have a void return type:

Table 47 Message Core Resource Operations

connectionLoadBalancing String The load balance strategy - either RandomLoading or
LeastUsedLoading.

daemonConnectionRetries
Timeout

int The time to wait before trying to reconnect to a peer
in a cluster/network.

maxDaemonConnectionRetr
ies

int The maximum attempts to connect to a peer in a
cluster/network.

maxInternalQueueSize int The maximum size of all transient queues in the
daemon (in bytes).

maxTopicDispatchQueues int The maximum number of dispatch queues for
transient Topic messages.

pingEnabled Bool Enable keep alive protocol for Sockets.

pingTimeout int Time between sending a keep alive packet down a
socket (in ms).

networkConnectionQueueF
ilters

String Queue filter between networked clusters.

networkConnectionTopicF
ilters

String Topic filter between networked clusters.

startTime long The time the daemon was started.

timeSocketBlockedBefore
Closing

int max time in milliseconds that a client is allowed to be
blocked receiving traffic before being closed.

Operations Parameter Description

createClusterConnection String {daemonURL} Create a Cluster Connection to
the specified URL.

createNetworkConnection String{networkURL}
networkURL :=
clusterName{daemonURL}

Create a Network Connection to
the specified cluster.

getConnectedClients None Return a java.util.Vector of
connected clients.

closeClient String{clientID} Close a client connected to the
message daemon by it's clientID.

closeAllClients None Close all clients attached to the
message daemon.

reconnectClient String {clientID}
String {daemonURL}

Reconnect a client to a another
message daemon.

Attribute Type Description (Continued)
Sun JMS Grid User’s Guide 252 Sun Microsystems, Inc.

Chapter 5 Section 5.7
JMX Management MessageStore Resource
Metrics

The following metrics can be accessed from the MessageCore resource.

Table 48 Metrics from the MessageCore Resource

5.7 MessageStore Resource
The MessageStore resource manages the SpiritDB persistence component for the JMS
Grid Message daemon.

Operations

The MessageStore resource supports the following operations, which unless otherwise
stated have a void return type:

Table 49 MessageStore Resource Operations

reconnectClientByDaemon
Name

String {clientID}
String {daemonName}

reconnect a client to a another
message daemon

reconnectAllClients String{daemonURL} Reconnect all clients to a another
message daemon.

reconnectAllClientsByDa
emonName

String{daemonURL} Reconnect all clients to another
message daemon.

shutdownMessageDaemon int{timeBeforeShutdown in
seconds}

Shutdown the message server.

updateConfiguration None Update the daemon's
configuration from the
configuration store.

Metrics Description

ActiveClients The number of clients connected to the daemon.

ActiveDaemonConnections The number of active daemon connections connected to
the daemon.

MessageBytesThroughput The number of Kbytes per second through the daemon.

MessageThroughput The number of messages per second through the
daemon.

Operations Parameter Description

retrieveAllQueues None Retrieve all durable Queues
from the Message Store -
returns a java.util.Vector of
Queue names.

Operations Parameter Description (Continued)
Sun JMS Grid User’s Guide 253 Sun Microsystems, Inc.

Chapter 5 Section 5.7
JMX Management MessageStore Resource
retrieveAllSubscribers None Retrieves a java.util.Vector of
durable Topic subscribers.

removeQueue String{queueName} Removes a Queue.

removeTopicSubscriber String{Topic Name},
String{clientID},
String{subscriberName}

Remove a durable Topic
Subscriber.

addTopicSubscriber String{Topic Name},
String{clientID},
String{subscriberName},
String{selector}

Add a durable Topic Subscriber.

retrieveAllTopicMessages String{Topic Name},
String{clientID},
String{subscriberName},
String{filter to apply to
returned messages}

Retrieve all Topic Messages from
a subscriber.

retrieveAllQueueMessages String{Queue Name},
String{filter to apply to
returned messages}

Retrieve all Messages for a
named queue.

retrieveSubscriberSize String{Topic Name},
String{clientID},
String{subscriberName},
String{filter to apply to
returned messages}

Return the number of
unconsumed messages for a
subscriber.

retrieveQueueSize String{queueName} Return the number of
unconsumed messages for a
Queue.

retrieveQueueHeadAge String (queueName) Return the age in milliseconds
of the oldest message in the
queue.

retrieveQueueTailAge String (queueName) Return the age in milliseconds
of the newest message in the
queue.

retrieveTopicSize String{Topic Name} Return the number of
unconsumed messages for a
Topic.

removeMessagesFromQueue String{Queue Name},
String{messageIDs}

Remove message(s) from a
Queue. A string comma
separated list can be passed as
messageIDs.

removeMessagesFromTopic String{Topic Name},
String{clientID},
String{selector},
String{messageIDs}

Remove message(s) from a Topic
Subscriber. A string comma
separated list can be passed as
messageIDs.

Operations Parameter Description (Continued)
Sun JMS Grid User’s Guide 254 Sun Microsystems, Inc.

Chapter 5 Section 5.8
JMX Management Example JMX Program
5.7.1 Metrics
The following metrics can be accessed from the MessageStore resource:

Table 50 Metrics from the MessageStore Resource

5.8 Example JMX Program
This section will develop a complete example using the JMS Grid JMX classes to
illustrate how you can make use of them in your own organization. We assume basic
familiarity with the concepts explained in the JMX Management Guide chapter 2 and
the JMX architecture described in Chapter 3.

The program we will develop monitors the depth of a topic and should it reach a pre-
defined limit will send an email to an administrator. You might want to do this for
example where the fact that a topic is becoming over long could indicate a problem
with consumers or the network.

5.8.1 A Note about Documentation
The javadocs for all the management classes, some of which are used in this example,
can be found in your wave installation in docs/javadoc. Management classes are in the
package tree starting at com.spirit.management.

5.8.2 Making a Connection
Before we can do anything with JMX we need to connect to the network of
management agents. We do this using the WaveManager class (from
com.spirit.management.wave):

WaveManager waveManager = new WaveManager();
waveManager.init(hotspot, username, password);

This code snippet creates a WaveManager instance and then uses it to connect to the
management infrastructure. The three arguments we have here are:

Table 51 Three Arguments

Metrics Description

MessageStore The current size of the message store in MBytes

SD_<clientID/SubscriberName> Subscriber depth for a durable Topic subscriber -
identified by clientID and subscriberName

QD_<QueueName> Queue depth for a named queue
Sun JMS Grid User’s Guide 255 Sun Microsystems, Inc.

Chapter 5 Section 5.8
JMX Management Example JMX Program
5.8.3 Finding the Agent
Once we have successfully completed the previous step we have logged in to the
management infrastructure. In order to do anything useful we need to interact with an
MBean which manages the resource we are interested in.

As explained in the JMX Management Guide each daemon has an MBeanServer which
holds the registry of MBeans. Each MBeanServer has an agent which allows
applications to contact it from “outside” and make use of its MBeans. The next step in
the process is therefore to make contact with the agent so we can find the right MBean.

In JMS Grid JMX we use proxies to communicate with the agents. There are
DaemonClusterProxies and DaemonAgentProxies. The latter provide access to the
MBeans on one daemon, the former are a sort of “directory” of proxies available in a
cluster. They can also provide some information about the cluster as a whole.

This is how we connect to the DaemonAgentProxy, with error handling omitted:

String clusterName = "cluster1";
String daemonName = "daemon1";
DaemonClusterProxy dcp =
waveManager.getDaemonClusterProxy(clusterName);
DaemonAgentProxy dap = dcp.getDaemonAgentProxy(daemonName);

As topics are replicated across all daemons in a cluster it does not really matter which
daemon agent we use to find the topic depth. We have just chosen an arbitrary daemon
in our cluster.

5.8.4 Finding the Manageable Resource
Now we have the DaemonAgentProxy we can interact with the MBean which can tell
us about topic depth. As explained in Chapter 7 of the JMX Management Guide there
are two ways to interact with MBeans: using the generic invoke() and
setAttributes() or by using JMS Grid JMX helper classes. We will use the helper
classes in this example.

There are three manageable resources in a daemon: store, core and the agent itself. The
store has information about topic depths. We therefore need to use the helper class
which wraps interactions with the store MBean and allows us to manage the store
resource:

MessageStoreResource resource = dap.getMessageStoreResource();

Arguments Description

hotspot The URL of any daemon in your JMS Grid network. It
will look something like:
tcp://localhost:50607

username The administrator’s username

password The administrator’s password
Sun JMS Grid User’s Guide 256 Sun Microsystems, Inc.

Chapter 5 Section 5.8
JMX Management Example JMX Program
5.8.5 Finding the Topic Size
The method on MessageStoreResource which tells you about topic depth is
retrieveSubscriberSize(). As its name suggests it actually tells you how many
messages remain unconsumed for a particular consumer. Therefore to use it you need
to supply information about the particular subscriber:

String topicName = “jmstopic”;
String clientID = “Durable”;
String subName = “Test”;
String selector = ““;
Integer noMessages = resource.retrieveSubscriberSize(
topicName, clientID, subName, selector);

5.8.6 Comparison: using MBean invoke()
In the interest of comparison the next code snippet shows how you would use the
MBean invoke() method without using the resource helper class:

// as before...
DaemonAgentProxy dap = dcp.getDaemonAgentProxy(daemonName);
Integer noMessages = (Integer)dap.invoke(
“retrieveSubscriberSize(jmstopic,Durable,Test,)”);

5.8.7 Complete Example
The following section shows the complete code for the topic depth monitor:

import java.util.*;
import java.text.*;
import java.io.IOException;
import javax.mail.*;
import javax.management.*;
import com.spirit.management.shell.*;
import com.spirit.management.wave.*;
/**
 * Example program showing how to monitor a topic and send an
 * email if it reaches a defined size.
 */
public class TopicMonitor extends TimerTask
{
 /**
 * these are all parameters needed for making a connection,
 * authentication and describing the subscription to be
 * monitored, etc. These could be given as command line
 * arguments or read from a property file
 */

 // connection
 private final String hotspot = “tcp://localhost:50607”;
 private final String username = “admin”;
 private final String password = “admin”;

 // context
 private final String clusterName = “cluster1”;
 private final String daemonName = “daemon1”;

 // subscription - in the case of the queue you would need
 // the queue name and selector instead
 private final String topicName = “jmstopic”;
Sun JMS Grid User’s Guide 257 Sun Microsystems, Inc.

Chapter 5 Section 5.8
JMX Management Example JMX Program
 private final String clientID = “Durable”;
 private final String subName = “Test”;
 private final String selector = ““;

 // limit of number of message
 private final int limit = 20;

 // mail properties
 private final String originator = “topicwatch@someorg.com”;
 private final String recipient[] = {“administrator@someorg.com”};

 // obviously, can make other parts of message configurable
private final String messageBase = “Topic jmstopic for subscriber
Test reached size limit \”{0}\” at \”{1}\””;

private final String messageTitle = “Subscriber \”{0}\” reached size
limit”;
private final DateFormat dateFormat = new
SimpleDateFormat(“HH:mm:ss dd/MM/yy”);

 // interval between monitoring requests - 10 s
 private final long interval = 10000;

 private Timer timer;
 private MessageStoreResource resource;

 /**
 * sets up connections etc. before the timer starts to do
 * periodic monitoring
 */
 public TopicMonitor() throws JMException
 {
 WaveManager waveManager = new WaveManager();
 waveManager.init(hotspot, username, password);

DaemonClusterProxy dcp =
waveManager.getDaemonClusterProxy(clusterName);
 if (dcp == null)
 {
System.out.println(“TopicMonitor: unrecognised cluster “ +
clusterName);
throw new JMException();
 }

DaemonAgentProxy dap = dcp.getDaemonAgentProxy(daemonName);
 if (dap == null)
 {
System.out.println(“TopicMonitor: unrecognised daemon “ +
daemonName);
throw new JMException();
 }

 resource = dap.getMessageStoreResource();
 }
 /**
 * creates the timer and sets self to be run periodically
 */
 public void start()
 {
 timer = new Timer();
 timer.schedule(this, 0, interval);
 }
 /**
 * does the work of the command - checks the topic size and
Sun JMS Grid User’s Guide 258 Sun Microsystems, Inc.

Chapter 5 Section 5.8
JMX Management Example JMX Program
 * emails if too large
 */
 public void run()
 {
 try
 {
Integer noMessages = resource.retrieveSubscriberSize(
topicName, clientID, subName, selector);
if (noMessages.intValue() > limit)
 {
Object[] args1 = {subName};
String title = MessageFormat.format(messageTitle,
args1);

 String msgDate = dateFormat.format(new Date());
 Object[] args2 = {new Integer(limit), msgDate};
String message = MessageFormat.format(messageBase,
args2);

 // com.spirit.management.shell.ShellUtil
 ShellUtil.sendEmail(originator,
 recipient,
 title,
 message);

 // comment out this line if you want monitoring to go
 // on and an email sent every time until the topic size
 // goes down.
 cancel();
 }
 }
 catch (JMException jme)
 {
System.out.println(
“TopicMonitor: Error with connection to JMX, exiting...”);
cancel();
 }
 catch (MessagingException me)
 {
System.out.println(
“TopicMonitor: Error with email connection, exiting...” + me);
cancel();
 }
 catch (IOException ioe)
 {
System.out.println(
“TopicMonitor: Error with input/output, exiting...” + ioe);
cancel();
 }
 }
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args)
 {
 try
 {
 Properties props = System.getProperties();
 props.setProperty(“mail.smtp.host”, “sean”);
 TopicMonitor tm = new TopicMonitor();
 tm.start();
 }
 catch (JMException jme)
 {
Sun JMS Grid User’s Guide 259 Sun Microsystems, Inc.

Chapter 5 Section 5.8
JMX Management Example JMX Program
System.out.println(
“TopicMonitor: unable to set up connection”);
 }
 }
Sun JMS Grid User’s Guide 260 Sun Microsystems, Inc.

Chapter 6

Configuration and Tuning

This chapter provides an overview of the configuration mechanism of JMS Grid and
how to update configurations of running daemons.

A brief overview of some of the internals of JMS Grid is presented and the use of
different configuration parameters to improve performance is explained.

6.1 Configuration Overview

6.1.1 The Properties Directory
The properties directory contains the override configuration file -
overrideprops.cfg - (see usage below), and example certificate and Log4J
properties files. If using the licensed product, then this is where the
licence.properties file should be placed. This directory will also contain a
jndi.properties file, which is created by the Administration tool, once the JNDI
repository has been selected.

6.1.2 The Working Directory Structure
A JMS Grid Message Daemon requires a directory structure for persistent message
stores; log files, configuration files and temporary data files. If the directory structure
does not exist, the Message Daemon will automatically try to create one.

The working directory structure looks this:

WDIR/

conf/- snapshots of running Message Daemon configurations

data/- persistent message store(s)

logs/ - running Message Daemon file logs

6.1.3 How Configuration Works
The JMS Grid Message Daemon uses an internal configuration bean for all its internal
configuration information. The configuration can be initialized either from a JNDI
Sun JMS Grid User’s Guide 261 Sun Microsystems, Inc.

Chapter 6 Section 6.1
Configuration and Tuning Configuration Overview
repository, such LDAP or the Directory Service that is part of the JMS Grid product or
from a properties file.

When the JMS Grid Message Daemon is started, one of the command line parameters it
can take is its name that must be unique. If the name is presented on the command line,
then it is assumed that the JMS Grid Message Daemon must retrieve its configuration
information from JNDI. The location of the JNDI repository is defined in the
jndi.properties file that is located in the properties directory in the JMS Grid
installation.

As an alternative, a configuration properties file can be used to initialize the Message
Daemon. If the name of the daemon is not set on the command line, then only the
properties file will be used. If the name property is not set in the configuration file, then
a unique one is automatically generated.

The Message Daemon saves its working configuration in the conf/ directory under the
working directory. If no configuration is supplied, or the configuration information
cannot be retrieved from JNDI at start-up, the last property values saved to this
configuration file are used.

6.1.4 Locally Overriding the Configuration
If a JMS Grid Message Daemon is initialized to use JNDI, and is supplied with a
properties configuration file on the command line, then the properties set in the latter
have precedence on the properties retrieved from JNDI. This can be useful for locally
changing the configuration of a daemon. By default, a Message Daemon is initialized to
retrieve override properties from the overrideprops.cfg file in the installation
properties directory. This file contains a subset of all the possible configuration
properties, which are commented out.

6.1.5 Dynamically Changing the Configuration for a Running
Daemon

You can dynamically change the configuration of a running daemon in a number of
ways:

By using the JMX Management Console (see the JMX Management chapter)

By the management command line scripts (see the JMX Management chapter)

By JMX directly using a 3rd party tool

Through changing the JNDI configuration store (e.g. by using the Administration
Console - see the JMS Grid Administration Chapter)

By changing the overrideprops.cfg

By changing the cached configuration in the conf/ directory

JMS Grid uses the open source JMX product MX4J, so any management tools
compatible with MX4J should be able to interact with running Message Daemons.

Apart from changes through JMX, all other dynamic updates rely on polling (i.e.
configuration files or JNDI).
Sun JMS Grid User’s Guide 262 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
The configuration property doConfigurationPolling should be set to false (the
default is true) to prevent polling. By default, the Message Daemon will poll its
configuration for updates every 30 seconds. This timeout is also configurable - the
property is called configurationPollingTimeoutInSeconds.

When a change occurs through JMX or locally through the cached configuration or
overrideprops.cfg file, then these changes will be reflected back into the JNDI
store, if it is being used. If you require keeping these changes local to the running
Message Daemon (for debugging applications, for example), then you need to set the
configuration property keepConfigurationUpdatesLocal to true.

Configuration updates are also propagated to clients where applicable (such as
compression levels, network timeouts, logging levels etc). You can prevent
configuration changes being propagated to clients by setting the property
overrideClientConfiguration to false.

6.2 Configuring JMS Grid for Fast Throughput
This chapter explains some of the configuration parameters that can be changed when
performance tuning JMS Grid for your applications.

6.2.1 Message Delivery Overheads

Timestamp Computation

There is a small overhead in computing the timestamp for a message and in the space
taken in the on-the-wire format for transporting this value. You can disable the
computation of message timestamps by calling the method
setDisableMessageTimestamp(false)on the javax.jms.MessageProducer

Checking for durable subscribers

If you are sending messages to a topic and are not using durable subscribers then JMS
Grid will not persist the message. However JMS Grid will nevertheless bear a small
overhead for every message because of the need to check whether there are any valid
durable subscribers. You can avoid this overhead by setting the message to be non-
persistent. This is done by calling the method
setDeliveryMode(DeliveryMode.NON_PERSISTENT) on the
javax.jms.MessageProducer.

Note: The method setDeliveryMode() on the javax.jms.Message is for internal
use only, and is overridden by the delivery mode of the
javax.jms.MessageProducer.
Sun JMS Grid User’s Guide 263 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
6.2.2 Message Listeners
JMS Grid uses a push-based model for message delivery. This can result in very fast
throughout, where messages are delivered ahead of time and cached on the client.
Internally a JMS Grid JMS client caches messages into a high-water queue, which is
limited by the amount of memory used to hold the messages. Calling using a
receive() on a javax.jms.MessageConsumer consumes messages from the
internal high-water queue.

The overhead of using the high-water queue inside the JMS Grid client is very small.
However, using a receive() is slower than using an asynchronous
javax.jms.MessageListener, because of the context switch involved between the
thread consuming messages from the Message Daemon and the thread calling the
receive(). Providing the application using the Message Consumer is fast enough, it
is recommended that for fast throughput a Message Listener be used.

6.2.3 Asynchronous Message Dispatch From the Daemon
By default, transient messages (i.e. non-persistent messages, or messages dispatched to
non-durable consumers) are dispatched as fast as possible to message consumers.
Messages received into the Message Daemon are routed and dispatched using the same
thread. There are pros and cons to this approach:

Pros:

Latency is extremely small

Low message overhead

Cons:

Message throughput is driven by the slowest consumer (not asynchronous)

Not scalable
Sun JMS Grid User’s Guide 264 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
Figure 86 Asynchronous Message - Default

In order to ensure asynchronous dispatch, the Message Daemon can be configured to
use internal dispatch queues for transient messages. Each dispatch queue has a
separate thread.

Figure 87 Asynchronous Dispatch Queues

To configure the Message Daemon with asynchronous dispatch queues for Publish/
Subscribe, set the configuration property maxTopicDispatchQueues to the number
of dispatch queues required. Consumers are load balanced internally across these
dispatch queues, so that a single dispatch queue can service more than one message
consumer.
Sun JMS Grid User’s Guide 265 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
6.2.4 Asynchronous Client Message Dispatch
When using a JMS Grid JMS Client to connect to the Message Daemon across a slow
network (such as a WAN), it can be beneficial to asynchronously dispatch published
messages from the client. The client-side property to enable this is:
produceDispatchThread (default value is false).

For a single JMS Client that is servicing many message consumers, an option is
available on the client-side to use a separate internal queue for dispatching into the
consuming sessions. This option is consumeDispatchThread (default value is false).

Both these options can increase latency and decrease throughput for normally
operating clients that are using the Message Daemon on the LAN, so should be used
with caution.

By default, on the client there is one thread per connection that services the TCP/IP
socket connection to the daemon to consume messages. Messages are then dispatched
to interested Sessions associated with the Connection. Each Session will have its own
internal dispatch queue and associated thread, as depicted in the following figure.

Figure 88 Threads Used Within a JMS Grid JMS Client

6.2.5 Thread Priorities
It is important to understand the threading priorities used by a JMS Grid. The running
priority of the internal threads used increases down stream of the publisher. The table
below describes the different priorities and their default values.
Sun JMS Grid User’s Guide 266 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
6.2.6 In-Memory Messaging using an Embedded Daemon
When you create a JMS Grid client connection, you can specify that instead of
connecting to a remote JMS Grid daemon it should create and use a daemon that is
embedded into the same JVM as the client. The embedded Message Daemon behaves in
the same way as a normal Message Daemon (allowing clustering, networks, fail-over
etc).

To use the embedded driver, the client-side parameter driverName should be set to
JMSGridEmbedded. The properties used to initialize the
javax.jms.ConnectionFactory (whether from JNDI or directly) are the same ones
expected to initialize a running Message Daemon.

When using more than one connection in the same JVM, providing the embedded
Message Daemon has the same bindAddresses property, then the same instance will
be shared.

There are pros and cons of using an embedded Message Daemon:

Pros:

Messages passed to/from the embedded daemon from the JMS Connection using it
are passed straight through without being transformed into an on-the-wire format
and do not incur the overhead of being sent via a TCP/IP Socket

Many JMS Connections in the same JVM can share the same embedded instance

The embedded daemon behaves in the same way as an off process Message
Daemon

Cons:

Table 52 Priority Defaults

Parameter Name Description
Default
Value

socketReceiverPriority The priority of the thread used to receive
messages for both the JMS Connection and
the Message Daemon

5

clientSessionThreadPriority The priority of the JMS Session thread 6

receiverThreadPriority The expected priority of application threads
calling receive() on MessageConsumers

N.B. JMS Grid will try and temporarily set
this priority on the application thread, if the
application thread is of a lower priority

7

daemonDispatchQueuePriority The priority of the threads in the daemon
for transient message dispatch

6

daemonPersistentDispatchPriority The priority of the threads used for
persistent message dispatch

6

Sun JMS Grid User’s Guide 267 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
Impact on an existing application of running a multi-threaded message-processing
engine should not be ignored

Could make application debugging harder

6.2.7 Flow Control
JMS Grid internally monitors the resource usage of message daemons and connected
JMS clients. On the clients the amount of memory consumed while queuing messages is
monitored, whilst on the message daemons memory usage and disk usage by the
message store is measured.

Resource Utilization on the Client

JMS Grid use of a push-based model for message delivery ensures that messages are
delivered as quickly as possible to the clients. Internally messages are queued into an
internal dispatch queue, using much the same mechanism that is used in the Message
Daemon. A single dispatch queue is associated with every JMS Session used on the
client. The client-side parameter that defines how much memory that can be used by
the internal queues is maxInternalQueueSize, which is the value in bytes. The
default value is 8388608 (8 MB).

This limit applies to a JMS Connection. This means that if you are using multiple JMS
Connections within the same JVM, the value of maxInternalQueueSize may need to
be decreased accordingly.

There are some additional parameters that can limit the number of messages pre-
fetched to the Client. For Queue messages, the maximum is determined by the
maxQueuePresend parameter (default = 10). For durable Topic messages, the
maximum is determined by marWindowSize (default = 100).

Resource Utilization on the Message Daemon

The maximum amount of memory that messages can consume when in transit is
determined by the configuration parameter maxInternalQueueSize. The default is
33554432 (32 MB). The configuration parameter that limits the amount of space utilized
by persisted messages in the message store is spiritDBMaxFileSizeInMbytes. The
default size is 512 MB.

Flow Control Strategies

The following paragraphs outline the different flow control strategies used by JMS
Grid. Flow control strategies affect single Message Daemons, clusters and networks of
clusters.

Slow Client Consumers of Persisted Messages

Messages that are persisted in the message store are dispatched independently of
transient (i.e. not persisted) messages. If a client reaches the pre-fetch limit, the
dispatcher will wait until the client is ready to consume some more messages. When
Sun JMS Grid User’s Guide 268 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Configuration and Tuning Configuring JMS Grid for Fast Throughput
messages are being produced faster than they are consumed, the size limit on the
message store can be reached. This will result in message producers controlling their
rate of message delivery to the daemon.

Slow Client Consumers of Transient Messages

When the Message Daemon detects that a client is reaching its internal memory limit
(as defined by the maxInternalQueueSize parameter) it will move messages to be
dispatched to the client to a separate slow dispatch queue. In this way, slow consumers
do not impact the delivery of messages to every other client. However, if the client is
consuming messages slowly for a long time, then it can impact the amount of memory
utilized for message processing by the Message Daemon. It is advisable for applications
that are known to consume messages slowly to use a persisted message delivery
strategy instead.

Message Producer Throttling

When a memory of disk space utilization on the Message Daemon reaches its limit,
Message Producers are throttled by pausing for a configurable amount of time. This is
determined by the configuration parameter throttleTimeouts, which is a string of
comma separated values. The default is: "10000,5000,1000,500,50,5,0,0,0,0" which
corresponds to the following table:

6.2.8 Using Selectors and Destination Hierarchies
JMS Grid supports hierarchies for destinations (both Topics and Queues) and wildcards
for selecting - see the JMS Grid Programming chapter for more information. This type
of message selection supplements the standard JMS message selectors, and the content
based selectors that JMS Grid provides.

Using destination hierarchies will in general always be quicker than selectors.
Although all routing and message selection occurs in the daemon, using message
selectors incurs the additional overhead of deserializing the message from the on-the-
wire format used between JMS Clients and Message Daemons.

A mixture of destination hierarchies and wildcards can also be a good combination,
where fine-grained routing of messages is required. The only disadvantage of using
destination hierarchies and wildcards is that they are non-standard.

Table 53 Throttle Timeouts

Daemon
Utilization %

100 90 80 70 60 50 40 30 20 10

Timeout (ms) 10000 5000 1000 500 50 5 0 0 0 0
Sun JMS Grid User’s Guide 269 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Configuration and Tuning Fail-over and Fault Tolerance
6.2.9 Compression
Message compression can improve performance for medium to large messages. There
are a number of parameters that are used to control compression, as outlined in the
table below:

Compression of messages occurs at the client, where they are published. Compression
strategies can be applied for the client (client-side configuration) or at the Message
Daemon. The only other place where a compression strategy is applied to message
payloads is when they leave a message cluster to pass over a network.

It is possible to have different compression strategies for clients and daemons (for
network connections) by ensuring daemon configuration changes are not propagated
to clients by setting the parameter overrideClientConfiguration to false.

6.3 Fail-over and Fault Tolerance
This section covers usage of clusters, client load balancing, client failover, and fault
tolerance.

6.3.1 Usage of Clusters
JMS Grid supports fully replicated clustering for Message Daemons, where every
persistent message is stored on every node in the cluster. Some of the features that JMS
Grid offers through its clustering are truly unique. They include the following:

Automatic Recovery of Message Daemons - Message Daemons can be removed
from a cluster (through hardware failure or by design), moved between clusters or

Table 54 Compression Parameters

Parameter Name Description
Default
Value

doCompression A flag which determines if compression is used at
all

true

doCompressLimit The size of message payload (in bytes) above
which compression is used, if doCompression is
enabled

4096

doCompressBufferSize The size of the internal write buffer used for
compression. For large messages, increasing this
size can boost performance of compression

1024

compressionLevel The level of compression to be used (0 - 9 where 0
is no compression and 9 is maximum
compression)

1

Sun JMS Grid User’s Guide 270 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Configuration and Tuning Fail-over and Fault Tolerance
joined to a cluster without affecting message integrity or involve management of
clients.

Extremely high availability

Complete automated fail-over for clients

Automated load balancing of clients

True location transparency for both Topics and Queues

Combined with non-blocking I/O - high scalability

To completely guarantee message integrity for full message replication between cluster
nodes, a two-phase commit protocol is used.

6.3.2 Client Load Balancing
JMS Grid supports two types of load balancing for Clients:

1 Random (the default)

2 Least Loaded

A JMS Grid client is initialized with a comma separated string of possible URLs it can
connect to by the messageChannels parameter. By default, this value is tcp://
localhost:50607. By default the JMS Grid client will choose one of the URLs
supplied by this parameter to connect to at random. This behavior is determined by the
client's randomConnection property, which is true by default. If it is set to false then the
client will connect to the first URL in the list.

On the daemon, if the daemon parameter connectionLoadBalancing is set to
LeastUsedLoading then whenever a new client connects to that daemon, and another
daemon exists in the cluster with fewer client connections, then the client connection
will be relocated to that daemon. This connection strategy ensures that clients are
evenly-loaded across the cluster.

If the daemon parameter connectionLoadBalancing is set to Random Connection
(which is the default) then the newly-connected client will not be redirected to other
daemons. Note that this value does not in itself cause random load balancing.

When a client connects to a Message Daemon, it is informed of the location of all the
Message Daemons of that cluster and is kept informed of changes in cluster
membership. This ensures that the client has an accurate list of possible Message
Daemons to fail-over too if its local Message Daemon should fail.

If a new or recovered Message Daemon joins an existing cluster, it can be useful to have
connected clients redistribute themselves evenly across all the Message Daemons. To
enable this feature, set the configuration flag reloadClientsOnNewClusterDaemon
to true.

6.3.3 Client Fail-Over
If a JMS Grid client loses connectivity with a Message Daemon, it will try and reconnect
to another Message Daemon in the cluster. The client will block all active threads
sending messages until after connectivity can be established.
Sun JMS Grid User’s Guide 271 Sun Microsystems, Inc.

Chapter 6 Section 6.4
Configuration and Tuning Configuration Parameters for Daemons
When connectivity is established, JMS Grid determines that current state of the client,
to ensure that all message integrity and order are maintained. For any application using
JMS Grid, fail-over is non-intrusive and seamless. To ensure that messages are not lost,
the last few sent are cached on clients that are publishing. These cached messages are
flushed to the Message Daemon on reconnection and the Message Daemon discards
duplicates.

The number of attempted retries is determined by the client-side parameter
defaultConnectionRetries which by default is 10. After an unsuccessful retry, the
client will sleep for defaultConnectionRetriesTimeout (default is 30secs) before
trying reconnect again.

It is only after defaultConnectionRetries all are exhausted that the client will
throw a JMSException.

6.3.4 Fault Tolerance
The default message store used by the Message Daemon writes messages to files locally
to disk. There is always a small risk that the integrity of the message store could be
compromised if there was a sudden catastrophic disk failure. The automatic recovery
algorithms used for JMS Grid clusters can usually recover these failures. To ensure that
every message store operation is written to disk and not lost in a file buffer, then the
parameter flag useSync should be set to true.

6.4 Configuration Parameters for Daemons

Table 55 Parameters for Message Daemons

Parameter Name Description Default Value

autoDiscoveryAllowed Determines whether the daemon
will register as a service for
clients to automatically discover,
and whether the daemon itself
will use multicast discovery to
locate other daemons.

false

bindAddresses urls the daemon will attach to tcp://
localhost:5060
7

closeClientsOnNetworkConnectionFail
ure

close all connections on a
network connection failure

false

clusterCompleteTimout timeout (seconds) awaiting for
the cluster to complete.

30

clusterID unique id for the cluster the
daemon belongs to
Sun JMS Grid User’s Guide 272 Sun Microsystems, Inc.

Chapter 6 Section 6.4
Configuration and Tuning Configuration Parameters for Daemons
configurationPollingTimeInSeconds The time in seconds before
polling for updates to the
configuration

30

connectionLoadBalancing Either RandomLoading (default)
or LeastUsedLoading

RandomLoadi
ng

daemonClusteredConnections URLS of daemons in the cluster to
connect with

daemonConnectionRetriesTimeout timeout in seconds before
retrying to establish connection
to another daemon

5000

daemonNetworkConnections URLS of daemons in the
hierarchy to connect with

dataBackupDir absolute path of backup directory
for data blocks

dataBlockSizeInBytes size of the SPIRITDB message
block extent. Can improve
performance on some platforms

10485760

doConfigurationPolling Allow for polling for changes to
the configuration

true

doDaemonRecovery daemons sync databases on
connection in a cluster

true

exceptionOnNoQueueReceiver throw an exception on client of
no receiver for a Queue

false

indexBlockSizeInBytes size of the SPIRITDB index
blocks. Can improve
performance on some platforms

1048576

initialPooledDBConnections initial number of JDBC
connections per daemon

1

isSecure is authentication and
authorization enabled on the JMS
Grid Message Server

false

keepConfigurationUpdatesLocal For changes made locally to
configuration or from JMX - do
not update JNDI

false

Table 55 Parameters for Message Daemons (Continued)

Parameter Name Description Default Value
Sun JMS Grid User’s Guide 273 Sun Microsystems, Inc.

Chapter 6 Section 6.4
Configuration and Tuning Configuration Parameters for Daemons
marWindowSize Maximum number of
unacknowledged messages that
can have been dispatched from a
particular queue or durable
subscription before the daemon
will cease sending further
messages. (Note: A MAR is an
internal "Mark As Read"
message).

100

maxDaemonConnectionRetries number of retires attempting to
connect to another daemon

2147483647

maxInternalQueueSize set the amount of VM memory
allowed to be used by the
daemon's message dispatch
Queues (in bytes)

33554432

maxLogBackupIndex max number of backup log files
that will be created

10

maxLogFileSize the maximum size of the log file
before it is archived - it's moved
to a <log file name>.<number>

2000000

maxQueuePresend The maximum present Queue
messages to a Queue Receiver

10

maxThrottleTimeout maximum time in milliseconds
before a client will attempt to
send another message to the JMS
Grid message server which has
reached capacity (either in
memory consumption or disk
space)

5000

maxTopicDispatchQueues maximum number of separate
dispatch queues used for
distributing publish/subscribe
(Topic) messages

0

name unique name for the message
server

netConnectPoolSessions The number of ServerSessions
used on a Network Connection
to a remote cluster

2

networkConnectionQueueFilters filter used to restrict queue
propagation across cluster
boundaries

null

Table 55 Parameters for Message Daemons (Continued)

Parameter Name Description Default Value
Sun JMS Grid User’s Guide 274 Sun Microsystems, Inc.

Chapter 6 Section 6.4
Configuration and Tuning Configuration Parameters for Daemons
networkConnectionTopicFilters filter used to restrict topic
propagation across cluster
boundaries

null

overrideClientConfiguration Override client configuration
from the daemon configuration

true

password password for firewall proxy server null

pingEnabled use ping protocol to determine
network outage

false

pingTimeout time (ms) before next ping 5000

producerHistorySize number of MessageProducers
the JMS Grid Message Server will
cache information for (like last
sent message)

2048

producerHistoryTimeout number of msg IDs to record for
each producer

0

proxyHost Hostname or IP address of
firewall proxy server

null

proxyPort port for firewall proxy 0

reloadClientsOnNewClusterDaemon Reload clients across the cluster if
a new daemon joins

false

restrictedNetworkTopology Restrict message flow to enable
hub/spoke topology for networks
of clusters

true

serviceDiscoveryChannel Multicast channel used for
automatic discovery of daemons.
Only used if the
allowAutoDiscovery parameter is
set

multicast://
224.0.0.4:3495

spiritDBInitialFileSizeInBytes size of the SPIRITDB message
block extent. Can improve
performance on some platforms

10485760

spiritDBMaxFileSizeInMbytes maximum size of the SPIRITDB. 512

spiritDBThrottleThresholdPercentage high water mark for publisher
throttling.

80

Table 55 Parameters for Message Daemons (Continued)

Parameter Name Description Default Value
Sun JMS Grid User’s Guide 275 Sun Microsystems, Inc.

Chapter 6 Section 6.4
Configuration and Tuning Configuration Parameters for Daemons
spiritDbDispatchThreads Number of threads used to
dispatch messages from the
message store. There will be this
number of threads dispatching
from queues and the same
number of threads dispatching
from topics.

storeName JNDI name (relative to parent
context) under which the
configuration of this object is
stored. Not normally changed
except through admin tool.

null

tcpNoDelay enable/disable Nagle's algorithm
for tcp sockets

false

tunnelSSLServerCertFilename SSL Server Certificate used to
authenticate
Server to
Client

tunnelSSLServerCipher Cipher used during crypto
session with an SSL Client

SSL_DH_anon
_WITH_DES_C
BC_SHA

tunnelSSLServerPrivateKeyFilename Encrypted Private Key

tunnelSSLServerPrivateKeyPassword Password for encrypted Private
Key

tunnelSSLServerRootCACertFilename Client Certificate must be signed
by this RootCA Certificate

tunnelSSLServerTrustedCAs Trusted CA Certificates

tunnelSSLdoClientAuthentication Request Client Authentication
using an SSL Certificate

false

useDataBackup If true, old data blocks will be
moved to a backup directory
rather than be deleted

false

useSync If set to true, daemon will sync
file after each message write

false

username User name for proxy null

Table 55 Parameters for Message Daemons (Continued)

Parameter Name Description Default Value
Sun JMS Grid User’s Guide 276 Sun Microsystems, Inc.

Chapter 6 Section 6.5
Configuration and Tuning Configuration Parameters Common to Daemons and Clients
6.5 Configuration Parameters Common to Daemons and
Clients

Table 56 Parameters for Message Daemons and Clients

Parameter Name Description
Default
Value

clientSessionThreadPriority The default priority of JMS
Session threads

6

compressionLevel set the compression level (0-9) -
the default is 1 (quickest
compression)

1

compressionStrategy the strategy used (default is
DEFAULT : value = 0)- other
strategies are:
"FILTERED value = 1 and
HUFFMAN_ONLY value = 2

0

daemonDispatchQueuePriority The priority of threads for
internal wave daemon message
dispatch queues

6

daemonPersistentDispatchPriority The priority of threads for
dispatching persistent messages
from the message store

6

defaultPooledThreadPriority The default priority of threads
used by the default thread pool

5

doCompressBufferSize size of buffer used when
compressing network messages

1024

doCompressLimit the size of a message (in bytes)
above which compression is
used

4096

doCompression flag to indicate compression
should be used for messages

true

flushMessageOnPublish when using TCP/IP as the
transport - enable flushing of
packets on to the underlying
TCP/IP Socket - This may
improve performance of
request/reply semantics on
some platforms (e.g. VMS).

false

networkStreamBufferSize size of the underlying socket
buffer (bytes)

131072
Sun JMS Grid User’s Guide 277 Sun Microsystems, Inc.

Chapter 6 Section 6.6
Configuration and Tuning Configuration Parameters for Clients
6.6 Configuration Parameters for Clients

networkTimeout The maximum time a
synchronous call will wait for a
response

120000

receiverThreadPriority The default priority of JMS client
receivers

7

serviceDiscoveryChannel Multicast channel used for
automatic discovery of
daemons. Only used if the
allowAutoDiscovery parameter
is set

multicast://
224.0.0.4:34
95

socketReceiverPriority The priority of threads used to
read data from sockets

5

socketSoTimeout default SoTimeout for Sockets 30000

throttleTimeouts sleep times (ms) for publisher
according to availability of
resource
values are for 0 to 100%
in 10% intervals

10000,5000,
1000,500,0,
..

waveCloseConnectionOnSlowConsumer determines if Wave should close
Connection of a slow consumer

false

waveCloseSessionOnSlowConsumer determines if Wave should close
the session for a slow consumer

false

waveConsumerMessageQueueMaxSize maximum internal cardinality of
session queue

200

Table 57 Parameters - Client Side

Parameter Name Description
Default
Value

autoDiscoveryAllowed Use multicast discovery to find a Message
Daemon to connect to (this parameter
needs to be enabled on Message Daemon
as well)

false

consumeDispatchThread Consume messages from the Socket
Thread in a separate dispatch thread

false

Table 56 Parameters for Message Daemons and Clients (Continued)

Parameter Name Description
Default
Value
Sun JMS Grid User’s Guide 278 Sun Microsystems, Inc.

Chapter 6 Section 6.6
Configuration and Tuning Configuration Parameters for Clients
defaultConnectionRetries Number of attempted retries to connect
to a cluster

10

defaultConnectionRetriesTimeout Time to pause (in seconds) before
retrying to connect to a cluster

30

initialConnectionTimeout Time in milliseconds to wait for initial
acknowledgement when a connection is
being set up. If the time expires with no
acknowledgement the connection fails
with a JMSException. The default is 30
minutes to allow time for recovery to take
place if necessary. This is because during
recovery no acknowledgement will be
received.

1800000 (30
minutes)

maxInternalQueueSize Maximum amount of memory to be used
by JVM consuming JMS Messages

8388608

messageChannels Connection URLs to the cluster tcp://
localhost:
50607

pingEnabled Keep connection alive protocol false

pingTimeout Timeout (ms) before ping sent on socket
if no traffic

5000

produceDispatchThread Use a separate thread to asynchronously
dispatch messages to a cluster

false

Table 57 Parameters - Client Side (Continued)

Parameter Name Description
Default
Value
Sun JMS Grid User’s Guide 279 Sun Microsystems, Inc.

Chapter 7

Integrating JMS Grid with Application
Servers

The J2EE (TM) Connector Architecture (JCA) specification sets out how application
servers can be connected to heterogeneous external systems. This fully specifies the
contract between an application server and an external system so that provided each
has fulfilled its side of the contract the application server can connect to any compliant
external system and vice versa. In concrete terms the external system vendor provides a
resource adapter, which is a special archive with suffix .rar. This has to be placed
somewhere in an application server's file system. In practice, other application server
specific files or file entries usually need to be made to create a fully functional
application.

The latest release of JMS Grid comes with a JCA 1.5 compliant resource adapter that
allows you to plug it into any compliant application server and run applications using
JMS Grid queues and topics. The following sections describe the additional things you
need to do for each application server.

7.1 Using JMS Grid with the JBoss Application Server
The following example consists of a Message Driven Bean (MDB) which listens for
messages on a queue and echoes them back on a second queue.

This example illustrates the files and file entries needed to get an application working.

Important: The examples described here have been tested with version 4.0.4-GA of JBoss, using
JDK versions 1.4.2 and release 5.1.2 of JMS Grid.

There are four files which are important for the integration:

The resource adapter archive. This can be found in the JMS Grid distribution in the
jmsjca directory and is called rawave.rar.

A JBoss specific file which defines a new data source: a JMS Grid data source. We
have provided an example of such a file in the JBoss example. It is called jmsgrid-
jms-ds.xml. Note that data source descriptor files must be named <something>-
ds.xml.

The applications deployment descriptors, ejb-jar.xml and jboss.xml need to
provide information specific to indicate the use of a 'foreign' JMS provider.
Sun JMS Grid User’s Guide 280 Sun Microsystems, Inc.

Chapter 7 Section 7.1
Integrating JMS Grid with Application Servers Using JMS Grid with the JBoss Application Server
There are interrelationships between these files which mean that names must match
or the application will not work. These interrelationships are indicated in detail in
the following sections.

You can find all the example code, descriptors and a build file for this integration in
the examples directory jboss-integration.

Step 1 – Add the Resource Adapter and Data Source Descriptor

The steps in this section deal with global configuration, to make JMS Grid available to
any application that wishes to use it.

The resource adapter file can be deployed without any change, but the data source
descriptor may need to be changed. This file leads to the creation of connection
factories whose attributes are described in the resource adapter. The precise meaning of
all the elements in this file are beyond the scope of this document.

See http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd for more details.

However, to take an example from the sample file:

 <tx-connection-factory>
 <jndi-name>jmsgrid/QueueConnectionFactory</jndi-name>
 <xa-transaction/>
 <track-connection-by-tx/>
 <rar-name>rawave.rar</rar-name>
 <connection-definition>javax.jms.QueueConnectionFactory</
connection-definition>
 </tx-connection-factory>

This sets up a connection factory which supports transactions (<tx-connection-
factory>) which will be bound at jmsgrid/QueueConnectionFactory, supports XA
transactions and will be an instance of javax.jms.QueueConnectionFactory. The
concrete class which implements the connection factory will be found in the resource
adapter named (<rar-name>). A connection will be dedicated to one transaction until it
concludes (<track-connection-by-tx>).

You also need to create any destinations which will not be created automatically when
the application is deployed. For your application this is the outbound queue and this is
created via a management bean (MBean):

 <mbean code="org.jboss.resource.deployment.AdminObject"
 name="jmsgrid.queue:name=mdb.outbound">
 <attribute name="JNDIName">jmsgrid/queue/outbound</attribute>
 <depends optional-attribute-name="RARName">
 jboss.jca:service=RARDeployment,name='rawave.rar'
 </depends>
 <attribute name="Type">javax.jms.Queue</attribute>
 <attribute name="Properties">Name=mdb.outbound</attribute>
 </mbean>

The MBean of type org.jboss.resource.deployment.AdminObject is responsible
for creating a queue called mdb.outbound. In the same way as for the connection
factory it finds the concrete class implementing javax.jms.Queue in the resource
adapter.

Once you have set up your data source descriptor you can deploy these files:
Sun JMS Grid User’s Guide 281 Sun Microsystems, Inc.

Chapter 7 Section 7.1
Integrating JMS Grid with Application Servers Using JMS Grid with the JBoss Application Server
Copy rawave.rar to the deploy directory of your JBoss server. If you are using the
default server type, that would be $JBOSS_HOME/server/default/deploy.

Copy the data source descriptor for JMS Grid to the deploy/jms directory of your
JBoss server. If you are using the default server type, this would be $JBOSS_HOME/
server/default/deploy/jms.

When you start up JBoss or add these files to a running system, you should see some
messages confirming that the deployments are successful:

13:53:58,859 INFO [ConnectionFactoryBindingService] Bound
ConnectionManager 'jboss.jca:name=jmsgrid/
QueueConnectionFactory,service=ConnectionFactoryBinding' to JNDI name
'java:jmsgrid/QueueConnectionFactory'
13:53:58,875 INFO [ConnectionFactoryBindingService] Bound
ConnectionManager 'jboss.jca:name=jmsgrid/
TopicConnectionFactory,service=ConnectionFactoryBinding' to JNDI name
'java:jmsgrid/TopicConnectionFactory'
13:53:58,953 INFO [AdminObject] Bound admin object
'com.spirit.wave.message.DefaultQueue' at 'jmsgrid/queue/outbound'

You can also use the JBoss management console to check the various MBeans which are
associated with the connection factories and destinations and to see what has been
bound into the JNDI name space.

The connection factories have MBeans in the jboss.jca domain, and the queue you
created shows up in the jmsgrid.queue domain, as you defined in your descriptor.
You can check the JNDI name space by using the list() operation on the JNDIView
MBean. This bean is in the jboss domain. This shows that your connection factories are
bound in the java: namespace and the queue is in the global name space.

Step 2 – The Source Code

The MDB for this example is in the file EchoingBean.java. This is a simple Message
Driven Bean implementation. The only things to take particular note of here are the
JNDI binding names of the connection factory and outbound destination that are used.
These names appear in the deployment descriptors discussed in the next section:

Connection Factory at java:comp/env/jms/MyQueueConnectionFactory

Outbound queue at java:comp/env/jms/mdbOut

A simple client which sends messages onto the inbound queue of the MDB and listens
for the echoes on its outbound queue is in SimpleClient.java.

Step 3 – Write the Deployment Descriptors

There are two deployment descriptors you need to provide:

1 ejb-jar.xml

This is the standard descriptor for describing the Enterprise Beans which exist in an
application. The first thing you will notice about this is the series of elements enclosed
by <activation-config>. The elements you need to put in here are determined by the
descriptor of the resource adapter. This is ra.xml, which is available in the jmsjca
directory of the JMS Grid distribution. The part of ra.xml which is important here is
that which starts with <inbound-resourceadapter> and in particular this part:
Sun JMS Grid User’s Guide 282 Sun Microsystems, Inc.

Chapter 7 Section 7.1
Integrating JMS Grid with Application Servers Using JMS Grid with the JBoss Application Server
<activationspec>
 <activationspec-class>
 com.stc.jmsjca.wave.RAWaveActivationSpec
 </activationspec-class>
 <required-config-property>
 <config-property-name>destination</config-property-name>
 </required-config-property>
 <required-config-property>
 <config-property-name>destinationType</config-property-name>
 </required-config-property>
 <!--

 The following settings are optional

 connectionURL : default: from ra.xml
 options : default: form ra.xml
 userName : default: form ra.xml
 password : default: form ra.xml
 subscriptionDurability : either Durable or NonDurable
 subscriptionName : required if Durable
 cliendId : default: none / auto-generated if
necessary
 messageSelector : default: none
 concurrencyMode : CC, Serial, ...; default: Serial
 endpointPoolMaxSize : default: 15 message driven beans
 contextName : default: none
 mBeanName : default: none
 -->
</activationspec>

You have to supply one <activation-config-property> name and value for each
<required-config-property> and the same for any of the optional ones given here.
Some have defaults, as indicated, and these appear at the start of ra.xml in the
<config-property> entries. For this example, you will use all the defaults, but just
add entries for the compulsory attributes destination and destination type.

Note: The value given for destination is the name of the physical destination, and is not a
JNDI name.

You add an entry for the connection factory which your MDB will use to send
outbound messages:

<resource-ref>
 <res-ref-name>jms/MyQueueConnectionFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

The JNDI name is the same as the one set in the MDB code. Finally you need an entry
for the outbound queue it will use:

<message-destination-ref>
 <message-destination-ref-name>jms/mdbOut</message-destination-ref-
name>
 <message-destination-type>javax.jms.Queue</message-destination-
type>
 <message-destination-usage>Produces</message-destination-usage>
 <message-destination-link>mdb.outbound</message-destination-link>
</message-destination-ref>
Sun JMS Grid User’s Guide 283 Sun Microsystems, Inc.

Chapter 7 Section 7.1
Integrating JMS Grid with Application Servers Using JMS Grid with the JBoss Application Server
There are two things to note here: the JNDI name matches the one used in the MDB
code and the destination named here is the same one you created in the data source
descriptor.

2 jboss.xml

This file maps everything you have created in ejb-jar.xml to objects bound in JNDI,
the resource adapter and configures a container in which all this will run. Taking each
item in turn:

<enterprise-beans>
 <message-driven>
 <ejb-name>EchoingEJB</ejb-name>
 <resource-adapter-name>rawave.rar</resource-adapter-name>
 <configuration-name>JMS Grid Message Driven Bean</configuration-
name>
 <resource-ref>
 <res-ref-name>jms/MyQueueConnectionFactory</res-ref-name>
 <resource-name>queuefactoryref</resource-name>
 </resource-ref>
 </message-driven>
</enterprise-beans>

This section is for you MDB, indicating its resource adapter file and indicating that you
need to reference a resource with the name jms/MyQueueConnectionFactory. The
next part but one indicates exactly what that is and where it is bound in JNDI.

<assembly-descriptor>
 <message-destination>
 <message-destination-name>mdb.outbound</message-destination-name>
 <jndi-name>jmsgrid/queue/outbound</jndi-name>
 </message-destination>
</assembly-descriptor>

This refers back to the outbound queue you referenced in ejb-jar.xml, and indicates
where it is to be found in JNDI. This is another reference to the destination you created
in the data source descriptor.

<resource-manager>
 <res-name>queuefactoryref</res-name>

 <res-jndi-name>java:/jmsgrid/QueueConnectionFactory</res-
jndi-name>
 </resource-manager>

This binds your resource reference to a JNDI name where your Connection Factory will
be bound.

Note: The JNDI name is the same as the one you set in the data source descriptor.

The <invoker-proxy-bindings> section relates to how messages are delivered from
the service provider to the MDBs that want to consume them. The JCA specification
defines a MessageEndpoint interface, to be implemented by the application server, as
the mechanism to do this. The application server supplies the resource adapter with a
MessageEndpointFactory which it uses to create MessageEndpoints to which it can
deliver messages when they are received.

The <container-configurations> part then defines a container in which the MDBs
will run. This will get its messages via the MessageEndpointFactory you defined in
<invoker-proxy-bindings>.
Sun JMS Grid User’s Guide 284 Sun Microsystems, Inc.

Chapter 7 Section 7.1
Integrating JMS Grid with Application Servers Using JMS Grid with the JBoss Application Server
Step 4 - Building and Running the Application

The example is provided with an ant build file which can be used to create the ear file
and deploy it to JBoss. Assuming that you have ant in your path and $JBOSS_HOME is
set then:

ant assemble-mdb

will build the ear file and

ant deploy-mdb

will deploy it to JBoss. Whether JBoss is already running or whether you start JBoss
after this step you will see some output:

09:37:19,468 INFO [EARDeployer] Init J2EE application: file:/C:/
jboss-4.0.4.GA/server/default/deploy/EchoingEJB.ear
09:37:19,765 INFO [EjbModule] Deploying EchoingEJB
09:37:19,921 INFO [EJBDeployer] Deployed: file:/C:/jboss-4.0.4.GA/
server/default/tmp/deploy/tmp41838EchoingEJB.ear-contents/
echoingejb.jar
09:37:20,156 INFO [EARDeployer] Started J2EE application: file:/C:/
jboss-4.0.4-GA/server/default/deploy/EchoingEJB.ear

Note: Once JBoss is running with the deployed MDB, you must also have a JMS Grid
daemon running to make a connection.

To run the client you need to have JMSGRID set and then simply type:

ant run-client

You will see the following output:

Buildfile: build.xml

run-client:

 [java] 0 [main] INFO com.spirit.jmq.JMQConnection - JMS Grid
client version = 7.0.0 Build:DEV-PHILIP-20060530-1500
 [java] 1500 [main] INFO com.spirit.jmq.JMQConnection -
Successfully connected to JMS Grid Message Daemon (daemon=philip-
50607 @ tcp://philip:50607) version 7.0.0 Build:DEV-PHILIP-20060530-
1500
 [java] Sending message: This is message 1
 [java] Sending message: This is message 2
 [java] Sending message: This is message 3
 [java] SimpleMessageClient: Message received: EchoingBean This is
message 1
 [java] SimpleMessageClient: Message received: EchoingBean This is
message 2
 [java] SimpleMessageClient: Message received: EchoingBean This is
message 3
 [java] All messages received
 [java] 8062 [Thread-0] WARN com.spirit.jmq.JMQConnection - JVM
calling sh
utdown on Connection
Sun JMS Grid User’s Guide 285 Sun Microsystems, Inc.

Index
Index

A
Advanced Administration 143
Authentication 92
Auto Discovery 87
Autodiscovery Multicast Channel 88
Automatic encription 97

B
Back arrow button 47

C
Client Applications 141
Closing 49
Cluster

concepts 79
configure 83
create 81

Cluster Daemon Connections 88
Clusters

connections 84
load balancing 86

Configuration nodes 49
Connection Factory 130

deleting 135
multiple copies 134
properties 132

conventions, text 21
Copies 60
Creating a Message 172

D
Daemon 59, 60

auto close connections 68
deleting configuration 61
editing configuration 62
log file 75
logging properties 78
message store 69
multiple copies 60
network of clusters 79
network outages 68
properties text file 76
specifying a name 63
specifying URL 64
stopping 62

Daemon Reconnections 89
Default Security Configuration 99
Detecting Slow Consumers 193
Durable Subscriptions 175

E
Embedded Servlet Container 59

G
Generate button 97
Graphic 47
Groups 97, 99

H
Hide 47

J
JBoss

Using JMS Grid with the JBoss Application
Server 280

JMS
asynchronous 174
Browsing Messages On a Queue 177
configuring a destination 169
Global Transactions 182
Local Transactions 178
local transactions 178
message selectors 207
message types 155
obtaining a connection 160
obtaining a destination 168
obtaining a session 166
overview 154
persistent messages 157
predefined connection factories 166
programming section examples 194
publish and subscribe 156
publish and subscribe using topics 172
queue and topic generation 170
QueueReceiver 176
QueueSender 176
subscription events 210
synchronous messages 174
transacted sessions 202
using JNDI 162
wildcard destinations 184

JMS Configuration
client load balancing 271
configuration parameters 272
Sun JMS Grid User’s Guide 286 Sun Microsystems, Inc.

Index
for fast throughput 263
how it works 261
non-blocking 263

JMS Configuration and Tuning 261
JMS Destination 137
JMS Grid

configure on remote machine 72
prevent failing 70
security, new permission 105

JMS Messages 171
JMX

Example JMX Program 255
Uses of JMX in JMS Grid Message Server 228

JSPs 59

M
Management Agent 226
Management Commands 239
Management Model 250
Menu options 47
Message Selectors based on Bean Properties 185
Message Selectors to filter XML documents 187
MessageStore Resource 253
Multihomed machines 65

N
Network 79

clusters 79
message filters 90
print graphical view 84, 86

Network of Clusters
creating 79

Networks of Clusters
concepts 79
deleting 79, 81

Nodes 49
NumberOfCopies 60

O
Open Node 49

P
Permission

granting 93
Permissions 93, 97

allocated permissions 97
anonymous logins 94
what are users 96

Private key 96

Properties button 47
public/private key pair 96
Publishing Messages 173

Q
Queue Subscription Events 190

R
Refresh button 47
Replicate 60
Replicated daemons 60
Root node 47

S
Secure Destination 97, 116
Security 91

access rights 112
Admin object store 118
anonymous 94
batch destination 119
changing a user’s password 113
concepts 92
creating a group 107
creating a user 110
creating an administrator 111
default configuration 99
deleting a group 109
deleting a permission 107
deleting a user 114
editing a group 108
editing a permission 106
enabling 100
encrypted messages 114
groups 95
groups and users 97
permissions 93
re-enabling an account 113
secure destination object 114
secure destinations 97
system-wide parameters 104
your own plug-in 120

Security State 94
Session Inbox 191
Show/Hide button 47
Single Daemon

Configuring 54
Starting 57

Single daemon
node 47

Single Deamon
Sun JMS Grid User’s Guide 287 Sun Microsystems, Inc.

Index
What is a daemon 54
Special Permissions 94
SSL

configuration 122
configuring client 126
configuring daemon’s use 124
provider pluggability 124

SSL Secure Sockets Layer 64
Start 59
Sub-node 49
Subscription Listening 189
Super Group 99
supporting documents 21

T
text conventions 21
To create multiple copies 60
Tomcat 59

installation 59
servlet 59

Toolbar 47
Tree View 49

U
Unix 59
Up-Level button 47
Users 94, 96, 97

assign Special Permissions 94

V
Views 47
Sun JMS Grid User’s Guide 288 Sun Microsystems, Inc.

	SUN JAVA™ MESSAGE SERVICE GRID USER’S GUIDE
	Contents
	List of Figures
	List of Tables
	Sun Java Message Service Grid
	1.1 Introducing Sun Java Message Service Grid
	1.1.1 Architectural Features
	1.1.2 Client Features
	1.1.3 What’s in This Chapter
	1.1.4 Intended Audience
	1.1.5 Text Conventions
	1.1.6 Screenshots Used in this Document

	1.2 Related Documents
	1.3 Hardware and Software Requirements
	1.3.1 Java Runtime Environment
	1.3.2 Platform Support
	1.3.3 Application Server Support
	1.3.4 Compatibility with SpiritWave Versions
	1.3.5 Compatibility with Sun Java CAPS

	1.4 Installing JMS Grid
	1.4.1 Upload the JMS Grid Sar Files to the Sun Java CAPS Repository
	Upload the JMS Grid Runtime for the Required Platform(s)
	Upload the JMS Grid plug-in for Enterprise Designer

	1.4.2 Obtain a JMS Grid Runtime Compressed Archive Suitable for your Machine
	1.4.3 Unpack the JMS Grid Runtime Compressed Archive
	Windows
	Unix

	1.4.4 Run the Installer
	1.4.5 Set the JMSGRID Environment Variable
	1.4.6 Configure the Management Console
	Configuring a Standalone Servlet Container
	Configuring the Embedded Servlet Container

	1.5 Upgrading a SpiritWave 6 Installation to Work with JMS Grid 5.1.2
	1.5.1 Upgrading the Product Installation
	1.5.2 Upgrading the Message Store
	What You Need To Do

	1.5.3 Upgrading the Admin Store
	Why the Format of a User has Changed
	Upgrading Users: What You Need to Do

	1.6 Sun Microsystems, Inc. Web Site
	1.7 Documentation Feedback

	Architecture Overview
	2.1 System Components
	JMS Grid clients
	JMS Grid Server
	Connections
	Destinations
	Message store

	2.2 Distributed Topologies
	Single Daemon
	Cluster of Multiple Daemons
	Multi Cluster Networks

	2.3 Architecture
	Destinations and Dynamic Subscription
	Message Routing
	Subscription Propagation
	Network Filters
	Message Persistence
	Acknowledgement Model

	Administration
	3.1 Introducing the Administration Tool
	3.1.1 Starting the JMS Grid Admin Tool on Windows
	3.1.2 Starting the JMS Grid Admin Tool on Unix
	3.1.3 Using the JMS Grid Admin Tool
	3.1.4 About the Toolbar
	3.1.5 Navigating the Tree View
	Selecting a node
	Types of Configuration Nodes
	Opening and Closing nodes
	Buttons

	3.1.6 Refreshing the Data that is Displayed
	3.1.7 Toggling Between Detail and Graphical View

	3.2 Managing Single Daemons
	3.2.1 What Is a Daemon?
	3.2.2 Configuring a Single Daemon
	3.2.3 Starting a Daemon
	Windows
	Unix
	All Platforms
	Username and Password

	3.3 Starting a Default Daemon
	3.3.1 Starting a Daemon with an Embedded Servlet Container
	3.3.2 Creating Multiple Copies of a Daemon Configuration
	3.3.3 Deleting a Daemon’s Configuration
	3.3.4 Stopping a Daemon
	3.3.5 Editing a Daemon’s Configuration
	3.3.6 Specifying a Daemon’s Name
	3.3.7 Specifying a Daemon Network URL
	Protocols

	3.3.8 Configuring a Daemon’s Internal Queues
	Internal Dispatch of Non-Persistent Messages to Queues and Topics
	To Configure Internal Queues

	3.3.9 Configuring Daemons to Actively Detect Network Outages
	3.3.10 Configuring Daemons to Automatically Close Connections to Slow or Frozen Clients
	3.3.11 Configuring the Daemon’s Message Store
	3.3.12 Preventing JMS Grid From Failing
	3.3.13 Starting a Daemon on a Computer that is Remote From its Configuration Data
	3.3.14 Configuring JMS Grid from a Remote Machine
	On the Configuration Data Computer
	On the Remote Computer

	3.3.15 How to tell that a Daemon is using its Daemon Configuration
	Start the Daemon
	Examine the Log File

	3.3.16 Accessing a Daemon's Log File
	3.3.17 Configuring a Daemon from a Properties Text File
	3.3.18 Configuring a Daemon's Logging Properties
	Changing a Daemons working directory

	3.4 Networks of Clusters of Daemons
	3.4.1 Network and Cluster Concepts
	3.4.2 Creating a New Network
	3.4.3 Deleting a Network
	3.4.4 Creating a New Cluster
	3.4.5 Creating a Configuration for a Cluster Daemon
	3.4.6 Creating a Connection Between Clusters
	3.4.7 Printing a Graphical View of a Network
	3.4.8 Load Balancing Messages Across Cluster Daemons
	3.4.9 Enabling Auto Discovery
	3.4.10 Specifying the Autodiscovery Multicast Channel
	3.4.11 Viewing Network and Cluster Daemon Connections
	A Graphical View of a Network
	A Graphical View of a Cluster

	3.4.12 Configuring Daemon Reconnections
	3.4.13 Configuring Message Filters on Inter-daemon Network Connections

	3.5 JMS Grid Security
	3.5.1 Introduction to Security
	Messaging Clients Attempt to Communicate with the Message Server
	Users try to Configure the Message Server
	Users try to Manage the Runtime Operation of the Server

	3.5.2 Security Concepts
	Authentication
	Authorization
	Encryption

	3.5.3 What are Permissions?
	Special Permissions
	Anonymous Login Permission
	Administrator Permission

	3.5.4 What are Groups?
	3.5.5 What are Users?
	3.5.6 What are Secure Destinations?
	3.5.7 Typical Usage of Permissions, Groups and Users
	3.5.8 What is the Default Security Configuration?
	3.5.9 Enabling JMS Grid Security
	JMS Grid Server
	JMS Grid JMS Clients
	Enabling JMS Grid Security (Command Line)
	Username and Password
	Enabling JMS Grid Server Security (JMS Grid Admin Tool)
	Enabling JMS Grid Client Security
	Setting System-wide Security Parameters

	3.5.10 Creating a New Permission
	3.5.11 Editing a Permission
	Another Way to open the Properties Dialog

	3.5.12 Deleting a Permission
	3.5.13 Creating a Group
	3.5.14 Editing a Group
	Another Way to open the Properties Dialog

	3.5.15 Deleting a Group
	3.5.16 Creating a User
	3.5.17 Creating an Administrator
	3.5.18 Editing a User's Access Rights
	Another Way to open the Properties Dialog

	3.5.19 Changing a User's Password
	3.5.20 Re-enabling a User's Account
	3.5.21 Deleting a User
	3.5.22 Sending Encrypted Messages
	3.5.23 Creating a Secure Destination Object
	3.5.24 Making all Existing Destinations Secure
	3.5.25 Editing a Secure Destination Object
	Another Way to open the Properties Dialog

	3.5.26 Deleting a Secure Destination Object
	3.5.27 Tightening JMS Grid's Security
	3.5.28 Changing the Admin User Password
	3.5.29 Changing the Permissions of the Default User
	3.5.30 File Security on the Administration Object Store
	3.5.31 Performing Batch Updates of JMS Grid Security Objects
	Batch Destination Creation
	Batch Permission Creation
	Batch Group Creation
	Batch User Creation

	3.5.32 Using Your Own Security Plug-in
	Implementing a Security Plug-in
	Enabling a client to use a plug-in
	Enabling a Message Daemon to use a plug-in

	3.5.33 Changing a Password Without being an Administrator

	3.6 SSL Configuration
	3.6.1 What is SSL?
	Some Concepts
	Key and Trust Stores for JMS Grid
	Special Note about Sample Key and Certificates
	Special Note about SSL Provider Pluggability

	3.6.2 Configuring the Daemon's use of SSL
	Configure Daemon SSL using the Administration Tool
	Configuring Daemon SSL using a Property File

	3.6.3 Configuring the Client's use of SSL
	Configuring the Client’s SSL using the Administration Tool
	Configuring Client SSL using a Property File
	Configuring Client SSL use with System Properties
	Using SSL Clients from SpiritWave with JMS Grid

	3.7 JMS Administration
	3.7.1 Introduction
	3.7.2 Creating a Connection Factory
	3.7.3 Editing a Connection Factory's Properties
	Another Way to open the Properties Dialog

	3.7.4 Exporting a Connection Factory's Properties
	3.7.5 Creating Multiple Copies of a Connection Factory
	3.7.6 Deleting a Connection Factory
	3.7.7 Editing Connection Factory Properties for a Normal JMS Grid Client Connection
	3.7.8 Creating a JMS Destination
	3.7.9 Editing a Destination's Properties
	Another Way to open the Properties Dialog

	3.7.10 Creating Multiple Copies of a Destination
	3.7.11 Deleting a Destination

	3.8 Managing Client Applications
	3.8.1 Running a Simple Client Application with JMS Grid
	Another Way to Specify CLASSPATH

	3.8.2 Enabling a Client to Connect to a Daemon through a Firewall

	3.9 Advanced Administration
	3.9.1 Specifying how Configuration Data is Stored
	3.9.2 Exporting Configuration Data to a File
	3.9.3 Deciding which Type of Configuration Data Store to use
	File storage

	3.9.4 JNDI Storage using FSContext
	3.9.5 JNDI Storage using some other JNDI Provider
	3.9.6 JNDI Storage using JMS Grid JNDI Provider
	3.9.7 LDAP Storage
	3.9.8 XML Storage
	3.9.9 Remote XML Storage

	3.10 Reference
	3.10.1 Detail View Tables

	JMS Programming
	Sections Contained in this Chapter
	4.1 Overview of JMS
	4.1.1 Message Types
	4.1.2 Messaging Models
	Point To Point Messaging
	Publish and Subscribe
	Generic Terms

	4.1.3 Synchronous and Asynchronous Consumers
	4.1.4 Persistent Messages
	4.1.5 Message Acknowledgement and Redelivery
	4.1.6 Message Expiry

	4.2 Building A JMS Application
	4.2.1 The Basic Structure Of A JMS Application
	4.2.2 Obtaining A JMS Connection
	Creating a Connection Factory and using it to Create a Connection
	Using JNDI for Obtaining a Connection Factory
	Binding a Connection Factory to the JNDI Namespace
	Obtaining an Initial JNDI Context
	JMS Grid Directory Service
	JMS Grid VM Directory Service
	Other JNDI Providers
	Specifying the JNDI Provider Using the File Jndi.properties
	Predefined Connection Factories

	4.2.3 Obtaining A JMS Session
	Non-transacted Sessions
	Transacted Sessions (Local Transactions)

	4.2.4 Obtaining a JMS Destination
	Obtaining a Destination from the Session
	Creating the Destination Explicitly
	Obtaining a Destination Using JNDI
	Configuring a Destination
	BInding a Destination to the JNDI Namespace
	Automatic Queue and Topic Generation

	4.2.5 User Security
	4.2.6 JMS Messages
	Message Types
	Message Headers
	Message Properties
	Creating a Message

	4.2.7 Publish and Subscribe Messaging Using Topics
	Creating a TopicPublisher
	Publishing Messages
	Creating a TopicSubscriber
	Receiving Messages Synchronously
	Receiving Messages Asynchronously
	Durable Subscriptions

	4.2.8 Point-to-Point Messaging using Queues
	Creating a QueueSender
	Sending Messages
	Creating a QueueReceiver
	Receiving Messages Synchronously
	Receiving Messages Asynchronously
	Browsing Messages on a Queue

	4.2.9 Local Transactions
	Starting a Local Transaction
	Committing a Local Transaction
	Rolling Back a Local Transaction
	Sending Messages in a Local Transaction
	Consuming Messages in a Local Transaction
	Avoiding Redelivery Loops

	4.2.10 Global Transactions
	4.2.11 Message Selectors
	4.2.12 Closing Down

	4.3 Additional Programming Features
	4.3.1 Wildcard Destinations
	Wildcard Syntax
	Creating a Wildcard Destination

	4.3.2 Content Based Message Selectors
	Message Selectors Based on Bean Properties
	Message Selectors to Filter XML Documents using SQL-92 Syntax
	Message Selectors to Filter XML Documents using Xpath Syntax

	4.3.3 Subscription Listening
	Topic Subscription Events
	Queue Subscription Events
	Subscription Events from Multiple Destinations

	4.3.4 The Session Inbox
	Producing messages to the Inbox
	Publishing Messages to the Inbox for a TopicSession
	Sending Messages to the inbox for a QueueSession
	Consuming Messages from the Inbox

	4.3.5 Detecting Slow Consumers
	Listening for Slow Consumer Events

	4.4 Programming Examples
	4.4.1 How to Run the Examples
	Before Running each Example
	Running the Examples
	Specifying the JNDI Provider
	Specifying the Connection Factory
	Specifying the JNDI Name of the Destination
	Rebuilding the Examples

	4.4.2 List of Examples
	4.4.3 Simple Publish and Subscribe
	About this Example
	Running the Example
	Expected Output
	Variations

	4.4.4 Simple Queues
	About this Example
	Running the Example
	Expected Output
	Variations

	4.4.5 Durable Publish and Subscribe
	About this Example
	Running the Example
	Expected Output

	4.4.6 Transacted Sessions
	About this Example
	Running the Examples
	Expected Output

	4.4.7 Message Selectors
	About this Example
	Running the Example
	Expected Output

	4.4.8 Subscription Events
	About this Example
	Running this Example
	Expected Output

	4.4.9 The Session Inbox
	About this Example
	Running the Example
	Expected Output
	Variation

	4.4.10 The Interactive GUI
	About this Example
	Summary of Commands
	Running the Example
	Expected Output

	4.5 References
	Textbooks
	Online Resources

	JMX Management
	5.1 What is JMX?
	5.1.1 JMX Concepts
	Manageable Resource
	Management Bean (MBean)
	Management Server (MBean Server)
	Management Agent
	Management Application
	Attributes
	Operations
	Domain
	Notification Model

	5.1.2 Additional JMS Grid Concepts
	Advisory Messages
	Management topics
	Metrics

	5.2 Management Architecture Overview
	5.2.1 Uses of JMX in JMS Grid
	5.2.2 Distributed Architecture

	5.3 Running the JMS Grid Management Console
	5.3.1 Using the Servlet Container in a JMS Grid Daemon
	5.3.2 Installing the Management Console in a Web Server
	Prerequisites
	Installing and Configuring SSL
	Running without SSL
	Special Note for Running The Management Console On Unix Variants
	Running the Management Console

	5.4 Using the JMS Grid Management Console
	5.4.1 Navigation View
	5.4.2 Information Views
	Attributes View
	Operations View
	Metrics View
	Logging View
	View Logging screen

	5.5 Management Commands
	5.5.1 Notes on Command Syntax
	Common Features
	Connection Specification
	Context Specification
	Arguments
	Note about Spaces and Shell Interpretation of 'Special' Characters
	FileSpecification

	5.5.2 Command Descriptions
	Add a Topic Subscriber - atsub
	See Values of Attributes - attr
	Set Time Socket Blocked before Closing - btime
	Create Connection - ccc
	Close clients - clc
	Set Network Connection Topic Filters - filter
	Collect Garbage - gc
	Shut Down a Daemon - killd
	List Connected Clients - lcc
	List all Queues - lq
	List queue messages - lqm
	List all Subscribers - lsub
	List all Topics - lt
	List Topic Messages - ltm
	Display Values of a Metric - metric
	Show Queue Size - qsize
	Show Statistics about Queues - qstat
	Reconnect Clients - rcc
	Remove a Queue - rmq
	Remove a Queue Message - rmqm
	Remove a Topic Message - rmtm
	Remove a Topic Subscriber - rmtsub
	Display a Message from a Queue - showqm
	Shutdown Message Server - sms
	Show Statistics about Subscriptions - substat
	Show Number of Unconsumed Messages on a Topic - tsize
	Show Statistics about Topics - tstat
	Update Configuration - uc

	5.6 The Management Model
	5.6.1 WaveMessageDaemon Resource
	Operations
	Metrics

	5.6.2 MessageCore Resource
	Attributes
	Operations
	Metrics

	5.7 MessageStore Resource
	Operations
	5.7.1 Metrics

	5.8 Example JMX Program
	5.8.1 A Note about Documentation
	5.8.2 Making a Connection
	5.8.3 Finding the Agent
	5.8.4 Finding the Manageable Resource
	5.8.5 Finding the Topic Size
	5.8.6 Comparison: using MBean invoke()
	5.8.7 Complete Example

	Configuration and Tuning
	6.1 Configuration Overview
	6.1.1 The Properties Directory
	6.1.2 The Working Directory Structure
	6.1.3 How Configuration Works
	6.1.4 Locally Overriding the Configuration
	6.1.5 Dynamically Changing the Configuration for a Running Daemon

	6.2 Configuring JMS Grid for Fast Throughput
	6.2.1 Message Delivery Overheads
	Timestamp Computation
	Checking for durable subscribers

	6.2.2 Message Listeners
	6.2.3 Asynchronous Message Dispatch From the Daemon
	6.2.4 Asynchronous Client Message Dispatch
	6.2.5 Thread Priorities
	6.2.6 In-Memory Messaging using an Embedded Daemon
	6.2.7 Flow Control
	Resource Utilization on the Client
	Resource Utilization on the Message Daemon
	Flow Control Strategies
	Slow Client Consumers of Persisted Messages
	Slow Client Consumers of Transient Messages
	Message Producer Throttling

	6.2.8 Using Selectors and Destination Hierarchies
	6.2.9 Compression

	6.3 Fail-over and Fault Tolerance
	6.3.1 Usage of Clusters
	6.3.2 Client Load Balancing
	6.3.3 Client Fail-Over
	6.3.4 Fault Tolerance

	6.4 Configuration Parameters for Daemons
	6.5 Configuration Parameters Common to Daemons and Clients
	6.6 Configuration Parameters for Clients

	Integrating JMS Grid with Application Servers
	7.1 Using JMS Grid with the JBoss Application Server
	Step 1 - Add the Resource Adapter and Data Source Descriptor
	Step 2 - The Source Code
	Step 3 - Write the Deployment Descriptors
	Step 4 - Building and Running the Application

	Index
	A
	B
	C
	D
	E
	G
	H
	J
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

