
SUN SEEBEYOND

eWAY™ SNA ADAPTER USER’S
GUIDE

Release 5.1.2

SNA eWay Adapter User’s Guide 2 Sun Microsystems, Inc.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun
Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents
listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in
other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms. This
distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo, Java, Sun Java Composite
Application Platform Suite, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex, eBAM, eWay, and JMS are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. This product is covered and
controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited.
Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but
not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est
décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuels peuvent inclure un ou plus
des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les
applications de brevet en attente aux Etats - Unis et dans les autres pays. L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties. Sun, Sun Microsystems, le logo Sun,
Java, Sun Java Composite Application Platform Suite, Sun, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex,
eBAM et eWay sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et
licenciée exclusivement par X/Open Company, Ltd. Ce produit est couvert à la législation américaine en matière de contrôle
des exportations et peut être soumis à la règlementation en vigueur dans d'autres pays dans le domaine des exportations et
importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer,
d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en
matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Part Number: 819-7385-10

Version 20061012141142

Contents
Contents

Chapter 1

Introducing the SNA eWay 6
About SNA 6

Supported Logical Unit Types 10
SNA LU6.2 10

About the SNA eWay 11

What’s New in This Release 12

About This Document 13
SNA eWay Javadoc 13

Scope 13
Intended Audience 13
Text Conventions 14

Related Documents 14

Sun Microsystems, Inc. Web Site 14

Documentation Feedback 14

Chapter 2

Installing the SNA eWay 15
SNA eWay System Requirements 15

Installing the SNA eWay 15
Installing the SNA eWay on an eGate supported system 16

Adding the eWay to an Existing Sun Java Composite Application Platform Suite Installation
16
After Installation 17

Extracting the Sample Projects and Javadocs 17

ICAN 5.0 Project Migration Procedures 17

Installing Enterprise Manager eWay Plug-Ins and Bridge Files 19
Viewing Alert Codes 21
SNA eWay Adapter User’s Guide 3 Sun Microsystems, Inc.

Contents
Chapter 3

Configuring the SNA eWay 23
Creating and Configuring a SNA eWay 23

Configuring the eWay Connectivity Map Properties 23

Configuring the eWay Environment Properties 25

eWay Connectivity Map Properties 27
Connectivity Map Inbound eWay General Settings 27
Connectivity Map Inbound eWay SNA Settings 28
Connectivity Map Inbound eWay Connection Establishment 29
Connectivity Map Inbound eWay Inbound Connection Management 29
Connectivity Map Inbound eWay Inbound Schedules 30

Listener Schedule 30
Service Schedule 31

Connectivity Map Outbound eWay General Settings 33
Connectivity Map Outbound eWay SNA Settings 34
Connectivity Map Outbound eWay Connection Establishment 35

eWay Environment Properties 37
SNALU62 Inbound eWay Properties 37

SNA Settings 38
General Settings 38
MDB Pool Settings 38

SNALU62 Outbound eWay Properties 39
SNA Settings 39
General Settings 40
Connection Pool Settings 40

Object Type Definitions (OTDs) 41

Chapter 4

Implementing the SNA eWay Sample Projects 43
About the SNA eWay Sample Project 43

Running the Sample Project 44

Importing a Sample Project 44

Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project 45
Creating a Project 45
Creating a Connectivity Map 45

Populating the Connectivity Map 46
Creating the Collaboration Definitions (Java) 47

jcdSNACPIC_Inbound Collaboration 47
jcdSNACPIC_Outbound Collaboration 47
jcdSNAHelper_Inbound Collaboration 48
jcdSNAHelper_Outbound Collaboration 48

Creating the Collaboration Business Rules 49
Binding the eWay Components 68
SNA eWay Adapter User’s Guide 4 Sun Microsystems, Inc.

Contents
Creating an Environment 69
Configuring the eWays 70

Configuring the eWay Properties 71
Configuring the Logical Host 71

SPARC64 logical host deployment 72
Configuring for Logical Host Platforms 72

Windows 2000/XP/Windows Server 2003 73
IBM AIX 5L versions 5.2 and 5.3 (32-bit) 73
IBM AIX 5L versions 5.2 and 5.3 (64-bit) 73
Sparc (32-bit) 73
Sparc (64-bit) 74
Configuring the Integration Server 74

Creating the Deployment Profile 75
Creating and Starting the Domain 75
Building and Deploying the Project 76
Running the Sample 76

Appendix A

Working with SNA Collaborations 78
Checking Conversation State 78

Using CPIC Calls 80

Appendix B

Implementing the SNA Custom Handshake Class 81
Importing a Custom Class 84

Index 90
SNA eWay Adapter User’s Guide 5 Sun Microsystems, Inc.

Chapter 1

Introducing the SNA eWay

Welcome to the Sun SeeBeyond eWay™ SNA Adapter User’s Guide. This document
includes information about installing, configuring, and using the Sun Java Composite
Application Platform Suite SNA eWay™ Adapter, referred to as the SNA eWay
throughout this guide.

This chapter provides an overview of System Network Architecture (SNA) data
communications and supported logical unit types.

About SNA on page 6

About the SNA eWay on page 10

What’s New in This Release on page 11

About This Document on page 12

Related Documents on page 13

Sun Microsystems, Inc. Web Site on page 13

Documentation Feedback on page 13

1.1 About SNA
SNA is a data communications architecture developed by IBM to specify common
conventions for communication between various IBM hardware and software products.
It is specifically designed to address issues of reliability and flexibility of sharing data
between components and their peripherals. Many vendors other than IBM also support
SNA, allowing their products to interact with SNA networks.

An addressable unit on an SNA network is called a node, and is made up of four
functional components forming a hierarchy as shown in Figure 1.
SNA eWay Adapter User’s Guide 6 Sun Microsystems, Inc.

Chapter 1 Section 1.1
Introducing the SNA eWay About SNA
Figure 1 SNA Node Architecture

To establish a communications session, SNA uses Logical Units (LUs) as entry points
into the network. There are several types of LUs, currently type 0 through type 6.2.
Most of the LU types are specific to IBM operating environments, but type 6 is intended
for use in a distributed data processing environment.

Generally, an LU can communicate only with another LU of the same type, but specific
exceptions to this rule exist with type 6.2. LU6.2 is the least-restrictive of the various LU
types, and also supports multiple concurrent sessions. As a result, it is the LU most
widely supported by other system vendors.

Like the OSI model, SNA functions are divided into seven hierarchical layers, but the
layers are not identical. Their relationships to each other, and to the SNA node
functionality, are shown in Figure 2. The Transport Network handles the lower three
layers, while the Network Accessible Units (NAU) implement the upper four layers by
using the services of the Transport Network to establish communication between
nodes.

SNA Node

End User Logical Unit
(LU)

Physical Unit
(PU) Data Link SNA

Network
SNA eWay Adapter User’s Guide 7 Sun Microsystems, Inc.

Chapter 1 Section 1.1
Introducing the SNA eWay About SNA
Figure 2 SNA Functional Layers

SNA defines formats and protocols between these layers that allow equivalent layers in
different nodes to communicate with each other. Also, each layer provides services to
the layer above, and requests services from the layer below. As an example, the
communication path between two Transmission Control layers would appear as shown
in Figure 3.

User Process

Logical Unit

Physical Unit

Data Link

SNA Functions

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Layers

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Layers
SNA eWay Adapter User’s Guide 8 Sun Microsystems, Inc.

Chapter 1 Section 1.1
Introducing the SNA eWay About SNA
Figure 3 Equivalent-Layer Communications Path

SNA uses a standard method for the exchange of data within a network. This standard
method defines how to establish a route between components, how to send and receive
data reliably, how to recover from errors, and how to prevent flow problems.

Originally designed for networks in which a mainframe computer controls the
communications relationships, SNA has since evolved to incorporate protocols and
implementations to allow two user processes to communicate with each other directly.
These two different networking models, or roles, are referred to as hierarchical and
peer-oriented, respectively. The peer-oriented model is designed to allow distributed
control of the communications process independent of the mainframe.

The peer-to-peer connection between two user processes is known as a conversation,
while the peer-to-peer connection between two LUs is known as a session. A session is

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Node A

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Node B
SNA eWay Adapter User’s Guide 9 Sun Microsystems, Inc.

Chapter 1 Section 1.1
Introducing the SNA eWay About SNA
generally a long-term connection between two LUs, while a conversation is generally of
shorter duration.

Figure 4 Sessions and Conversations

What is shown in Figure 2 and Figure 4 as a User Process is also known as a Transaction
Program (TP). Also, the interface between a User Process and an LU is known as
Presentation Services.

1.1.1 Supported Logical Unit Types

SNA LU6.2

LU 6.2, also known as APPC (Advanced Program-to-Program Communication), is used
for Transaction Programs communicating with each other in a distributed data
processing environment. In a CPIC (Common Programming Interface for
Communications) implementation, CPIC provides the API that contains the
commands, known as verbs, that are used by LU 6.2 to establish communication
sessions.

Two types of Presentation Service interfaces are possible with LU6.2: mapped
conversations and unmapped, or basic, conversations. Table 1 summarizes the set of
LU6.2 commands for basic conversations. Equivalent commands for mapped
conversations have the prefix <MC_> added to the command name. Note that “control
operator verbs” are not listed.

User Process

Logical Unit

Physical Unit

Data Link

SNA Node X

User Process

Logical Unit

Physical Unit

Data Link

SNA Node Y

Conversation

Session
SNA eWay Adapter User’s Guide 10 Sun Microsystems, Inc.

Chapter 1 Section 1.2
Introducing the SNA eWay About the SNA eWay
1.2 About the SNA eWay
The SNA eWay enables the eGate Integrator system to access an SNA network
environment to drive entire transactions, including conversational transactions.

The SNA eWay is an interface that makes calls to an SNA Server. The SNA Server acts
as a high-speed gateway between distributed SNA Clients and the SNA network
having a mainframe host system (see Figure 5).

In a typical data exchange using the SNA eWay, the eWay invokes the LU6.2 protocol--
through the invocation of CPI-C calls--to enable the SNA client to send requests to the
SNA server. For outbound eWays, the eWay can be triggered by any incoming message.
For inbound eWays, the eWay is triggered by established conversation activity.

Table 1 LU6.2 Commands

Name Description

ALLOCATE Allocates a conversation with another program.

CONFIRM Sends a confirmation request to the remote process
and waits for a reply.

CONFIRMED Sends a confirmation reply to the remote process.

DEALLOCATE De-allocates a conversation.

FLUSH Forces the transmission of the local SEND buffer to
the other LU.

GET_ATTRIBUTES Obtains information about a conversation.

PREPARE_TO_RECEIVE Changes the conversation state from SEND to
RECEIVE.

RECEIVE_AND_WAIT Waits for information (either data or confirmation
request) to be received from the partner process.

RECEIVE_IMMEDIATE Receives any information that is available in the local
LU’s buffer, but does not wait for information to
arrive.

REQUEST_TO_SEND Notifies the partner process that the local process
wants to send data. When a “send” indication is
received from the partner process, the conversation
state changes.

SEND_DATA Sends one data record to the partner process.

SEND_ERROR Informs the partner process that the local process
has detected an application error.
SNA eWay Adapter User’s Guide 11 Sun Microsystems, Inc.

Chapter 1 Section 1.3
Introducing the SNA eWay What’s New in This Release
Figure 5 SNA Data Exchange

1.3 What’s New in This Release
The Sun SeeBeyond eWay SNA Adapter includes the following changes and new
features:

New for Version 5.1.2

This is a maintenance release. No new features.

New for Version 5.1.1

This is a maintenance release. No new features.

New for Version 5.1.0

Version Control: An enhanced version control system allows you to effectively
manage changes to the eWay components.

Manual Connection Management: Establishing a connection can now be performed
automatically (configured as a property) or manually (using OTD methods from the
Java Collaboration).

Multiple Drag-and-Drop Component Mapping from the Deployment Editor: The
Deployment Editor now allows you to select multiple components from the
Editor’s component pane, and drop them into your Environment component.

Support for Runtime LDAP Configuration: eWay configuration properties now
support LDAP key values.

MDB Pool Size Support: Provides greater flow control (throttling) by specifying the
maximum and minimum MDB pool size.

Connectivity Map Generator: Generates and links your Project’s Connectivity Map
components using a Collaboration or Business Process.

Many of these features are documented further in the Sun SeeBeyond eGate™ Integrator
User’s Guide or the Sun SeeBeyond eGate™ Integrator System Administration Guide.

IDC

SNA
Protocol

Client
Mainframe

SNA
Protocol
Server

SNA Network

TP 1 TP 2

LAN
SNA eWay Adapter User’s Guide 12 Sun Microsystems, Inc.

Chapter 1 Section 1.4
Introducing the SNA eWay About This Document
1.4 About This Document
This document includes the following chapters:

Chapter 1 “Introducing the SNA eWay”: Provides an overview description of the
product as well as high-level information about this document.

Chapter 2 “Installing the SNA eWay”: Describes the system requirements and
provides instructions for installing the SNA eWay.

Chapter 3 “Configuring the SNA eWay”: Provides instructions for configuring the
eWay to communicate with your legacy systems.

Chapter 4 “Implementing the SNA eWay Sample Projects”: Provides instructions
for installing and running the sample Projects.

Appendix A “Working with SNA Collaborations”: Provides guidelines on
implementing SNA Java Collaborations.

Appendix B “Implementing the SNA Custom Handshake Class”: Provides
instructions on how to deploy a custom handshake class.

SNA eWay Javadoc

A SNA eWay Javadoc is also provided, that documents the Java methods available with
the SNA eWay. The Javadoc is uploaded with the eWay’s documentation file
(SNAeWayDocs.sar) and downloaded from the Documentation tab of the Sun Java
Composite Application Platform Suite Installer. To access the full Javadoc, extract the
Javadoc to an easily accessible folder, and double-click the index.html file.

1.4.1 Scope
This user’s guide provides a description of the SNA eWay Adapter. It includes
directions for installing the eWay, configuring the eWay properties, and implementing
the eWay’s sample Projects. This document is also intended as a reference guide, listing
available properties, functions, and considerations. For a reference of available SNA
eWay Java methods, see the associated Javadoc.

1.4.2 Intended Audience
This guide is intended for experienced computer users who have the responsibility of
helping to set up and maintain a fully functioning Java Composite Application
Platform Suite system. This person must also understand any operating systems on
which the Java Composite Application Platform Suite will be installed (Windows and
UNIX), and must be thoroughly familiar with Windows-style GUI operations.

Developers that choose to create projects with the exposed CPIC Java methods
provided by this eWay should be expert CPIC programmers that possess extensive
knowledge and understanding of CPIC. To use either the exposed CPIC Java methods
or the Helper Java methods to create your eWay Collaborations, you should have a
working knowledge and understanding of SNA LU6.2.
SNA eWay Adapter User’s Guide 13 Sun Microsystems, Inc.

Chapter 1 Section 1.5
Introducing the SNA eWay Related Documents
1.4.3 Text Conventions
The following conventions are observed throughout this document.

1.5 Related Documents
The following Sun documents provide additional information about the Sun Java
Composite Application Platform Suite product:

Sun SeeBeyond eGate™ Integrator User’s Guide

Sun Java Composite Application Platform Suite Installation Guide

1.6 Sun Microsystems, Inc. Web Site
The Sun Microsystems web site is your best source for up-to-the-minute product news
and technical support information. The site’s URL is:

http://www.sun.com

1.7 Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

CAPS_docsfeedback@sun.com

Table 2 Text Conventions

Text Convention Used For Examples

Bold Names of buttons, files, icons,
parameters, variables, methods,
menus, and objects

Click OK.
On the File menu, click Exit.
Select the eGate.sar file.

Monospaced Command line arguments, code
samples; variables are shown in
bold italic

java -jar filename.jar

Blue bold Hypertext links within
document

See Text Conventions on page 13

Blue underlined Hypertext links for Web
addresses (URLs) or email
addresses

http://www.sun.com
SNA eWay Adapter User’s Guide 14 Sun Microsystems, Inc.

http://www.sun.com
http://www.sun.com
mailto:CAPS_docsfeedback@sun.com

Chapter 2

Installing the SNA eWay

This chapter describes the requirements and procedures for installing the SNA eWay.

What’s In This Chapter:

SNA eWay System Requirements on page 15

Installing the SNA eWay on page 15

ICAN 5.0 Project Migration Procedures on page 17

Installing Enterprise Manager eWay Plug-Ins and Bridge Files on page 19

2.1 SNA eWay System Requirements
The SNA eWay Readme contains the latest information on:

Supported Operating Systems

System Requirements

External System Requirements

The SNA eWay Readme is uploaded with the eWay’s documentation file
(SNAeWayDocs.sar) and can be accessed from the Documentation tab of the Sun Java
Composite Application Platform Suite Installer. Refer to the SNA eWay Readme for the
latest requirements before installing the SNA eWay.

2.2 Installing the SNA eWay
The Sun Java Composite Application Platform Suite Installer, a web-based application,
is used to select and upload eWays and add-on files during the installation process. The
following section describes how to install the components required for this eWay.

Note: When the Repository is running on a UNIX operating system, the eWays are loaded
from the Sun Java Composite Application Platform Suite Installer running on a
Windows platform connected to the Repository server using Internet Explorer.
SNA eWay Adapter User’s Guide 15 Sun Microsystems, Inc.

Chapter 2 Section 2.2
Installing the SNA eWay Installing the SNA eWay
2.2.1 Installing the SNA eWay on an eGate supported system
Follow the directions for installing the Sun Java Composite Application Platform Suite
in the Sun Java Composite Application Platform Suite Installation Guide. After you have
installed Core Products, do the following:

1 From the Sun Java Composite Application Platform Suite Installer’s Select Sun
Java Composite Application Platform Suite Products to Install table
(Administration tab), click the Click to install additional products link.

2 Expand the eWay option.

3 Select the products for your Sun Java Composite Application Platform Suite and
include the following:

File eWay (the File eWay is used by most sample Projects)

SNAeWay

To upload the SNA eWay User’s Guide, Help file, Javadoc, Readme, and sample
Projects, expand the Documentation option and select SNAeWayDocs.

4 Once you have selected all of your products, click Next in the top-right or bottom-
right corner of the Select Sun Java Composite Application Platform Suite
Products to Install box.

5 From the Selecting Files to Install box, locate and select your first product’s SAR
file. Once you have selected the SAR file, click Next. Your next selected product
appears. Follow this procedure for each of your selected products. The Installation
Status window appears and installation begins after the last SAR file has been
selected.

6 Once your product’s installation is finished, continue installing the Sun Java
Composite Application Platform Suite as instructed in the Sun Java Composite
Application Platform Suite Installation Guide.

Adding the eWay to an Existing Sun Java Composite Application
Platform Suite Installation

If you are adding the eWay to an existing Sun Java Composite Application Platform
Suite installation, do the following:

1 Complete steps 1 through 4 above.

2 Once your product’s installation is complete, open the Enterprise Designer and
select Update Center from the Tools menu. The Update Center Wizard appears.

3 For Step 1 of the wizard, simply click Next.

4 For Step 2 of the wizard, click the Add All button to move all installable files to the
Include in Install field, then click Next.

5 For Step 3 of the wizard, wait for the modules to download, then click Next.

6 The wizard’s Step 4 window displays the installed modules. Review the installed
modules and click Finish.
SNA eWay Adapter User’s Guide 16 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Installing the SNA eWay ICAN 5.0 Project Migration Procedures
7 When prompted, restart the IDE (Integrated Development Environment) to
complete the installation.

After Installation

Once you install the eWay, it must then be incorporated into a Project before it can
perform its intended functions. See the eGate Integrator User’s Guide for more
information on incorporating the eWay into an eGate Project.

2.2.2 Extracting the Sample Projects and Javadocs
The SNA eWay includes sample Projects and Javadocs. The sample Projects are
designed to provide you with a basic understanding of how certain database
operations are performed using the eWay, while Javadocs provide a list of classes and
methods exposed in the eWay.

Steps to extract the Javadoc include:

1 Click the Documentation tab of the Sun Java Composite Application Platform Suite
Installer, then click the Add-ons tab.

2 Click the SNA eWay Adapter link. Documentation for the SNA eWay appears in
the right pane.

3 Click the icon next to Javadoc and extract the ZIP file.

4 Open the index.html file to view the Javadoc.

Steps to extract the Sample Projects include:

1 Click the Documentation tab of the Sun Java Composite Application Platform Suite
Installer, then click the Add-ons tab.

2 Click the SNA eWay Adapter link. Documentation for the SNA eWay appears in
the right pane.

3 Click the icon next to Sample Projects and extract the sample project file
SNA_eWay_Sample.zip.

Refer to “Importing a Sample Project” on page 44 for instructions on importing the
sample Project into your repository via the Enterprise Designer.

2.3 ICAN 5.0 Project Migration Procedures
This section describes how to transfer your current ICAN 5.0.x Projects to the Sun Java
Composite Application Platform Suite 5.1.2. To migrate your ICAN 5.0.x Projects to the
Sun Java Composite Application Platform Suite 5.1.2, do the following:

Export the Project

1 Before you export your Projects, save your current ICAN 5.0.x Projects to your
Repository.
SNA eWay Adapter User’s Guide 17 Sun Microsystems, Inc.

Chapter 2 Section 2.3
Installing the SNA eWay ICAN 5.0 Project Migration Procedures
2 From the Project Explorer, right-click your Project and select Export from the
shortcut menu. The Export Manager appears.

3 Select the Project that you want to export in the left pane of the Export Manager and
move it to the Selected Projects field by clicking the Add to Select Items (arrow)
button, or click All to include all of your Projects.

4 In the same manner, select the Environment that you want to export in the left pane
of the Export Manager and move it to the Selected Environments field by clicking
the Add to Select Items (arrow) button, or click All to include all of your
Environments.

5 Browse to select a destination for your Project ZIP file and enter a name for your
Project in the ZIP file field.

6 Click Export to create the Project ZIP file in the selected destination.

Install Java CAPS 5.1.2

1 Install the Java CAPS 5.1.2, including all eWays, libraries, and other components
used by your ICAN 5.0 Projects.

2 Start the Java CAPS 5.1.2 Enterprise Designer.

Import the Project

1 From the Java CAPS 5.1.2 Enterprise Designer’s Project Explorer tree, right-click the
Repository and select Import Project from the shortcut menu. The Import Manager
appears.

2 Browse to and select your exported Project file.

3 Click Import. A warning message, “Missing APIs from Target Repository,” may
appear at this time. This occurs because various product APIs were installed on the
ICAN 5.0 Repository when the Project was created that are not installed on the Java
CAPS 5.1.2 Repository. These APIs may or may not apply to your Projects. You can
ignore this message if you have already installed all of the components that
correspond to your Projects. Click Continue to resume the Project import.

4 Close the Import Manager after the Project is successfully imported.

Deploy the Project

1 A new Deployment Profile must be created for each of your imported Projects.
When a Project is exported, the Project’s components are automatically “checked in”
to Version Control to write-protected each component. These protected components
appear in the Explorer tree with a red padlock in the bottom-left corner of each icon.
Before you can deploy the imported Project, the Project’s components must first be
“checked out” of Version Control from both the Project Explorer and the
Environment Explorer. To “check out” all of the Project’s components, do the
following:

A From the Project Explorer, right-click the Project and select Version Control >
Check Out from the shortcut menu. The Version Control - Check Out dialog box
appears.

B Select Recurse Project to specify all components, and click OK.
SNA eWay Adapter User’s Guide 18 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Installing the SNA eWay Installing Enterprise Manager eWay Plug-Ins and Bridge Files
C Select the Environment Explorer tab, and from the Environment Explorer, right-
click the Project’s Environment and select Version Control > Check Out from
the shortcut menu.

D Select Recurse Environment to specify all components, and click OK.

2 If your imported Project includes File eWays, these must be reconfigured in your
Environment prior to deploying the Project.

To reconfigure your File eWays, do the following:

A From the Environment Explorer tree, right-click the File External System, and
select Properties from the shortcut menu. The Properties Editor appears.

B Set the inbound and outbound directory values, and click OK. The File External
System can now accommodate both inbound and outbound eWays.

3 Deploy your Projects.

Note: Only projects developed on ICAN 5.0.2 and later can be imported and migrated
successfully into the Sun Java Composite Application Platform Suite.

2.4 Installing Enterprise Manager eWay Plug-Ins and Bridge
Files

The Sun SeeBeyond Enterprise Manager is a Web-based interface you use to monitor
and manage your Sun Java Composite Application Platform Suite applications. The
Enterprise Manager requires an eWay specific “plug-in” for each eWay you install.
These plug-ins enable the Enterprise Manager to target specific alert codes for each
eWay type, as well as start and stop the inbound eWays.

The Sun Java Composite Application Platform Suite Installation Guide describes how to
install Enterprise Manager. The Sun SeeBeyond eGate Integrator System Administration
Guide describes how to monitor servers, Services, logs, and alerts using the Enterprise
Manager and the command-line client.

The eWay Enterprise Manager Plug-ins are available from the List of Components to
Download under the Sun Java Composite Application Platform Suite Installer’s
Downloads tab.
SNA eWay Adapter User’s Guide 19 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Installing the SNA eWay Installing Enterprise Manager eWay Plug-Ins and Bridge Files
Figure 6 Java CAPS Installer - SNA Plug-in and Bridge files

There are two ways to add eWay Enterprise Manager plug-ins:

From the Sun Java Composite Application Platform Suite Installer

From the Sun SeeBeyond Enterprise Manager

To add plug-ins from the Sun Java Composite Application Platform Suite Installer

1 Navigate to theSun Java Composite Application Platform Suite Installer’s
Downloads tab. The SNA eWay plug-ins that are available from your Repository
appear.

2 Select the plug-ins you require and save them to a temporary directory.

3 Copy the plug-in files to the Logical Host’s Integration Server library folder:

<JavaCAPS51>\logicalhost\is\lib\

where <JavaCAPS51> is the directory where the Sun Java Composite Application
Platform Suite is installed.

4 From the Enterprise Manager’s Explorer toolbar, click configuration.

5 Click the Web Applications Manager tab and go to the Manage Applications sub-
tab.

6 Browse for and select the WAR file for the application plug-in that you
downloaded, and click Deploy. The plug-ins are installed and deployed.

To add plug-ins from the Enterprise Manager

1 From the Enterprise Manager’s Explorer toolbar, click configuration.

2 Click the Web Applications Manager tab, go to the Auto-Install from Repository
sub-tab, and connect to your Repository.

3 Select the application plug-ins you require, and click Install. The application plug-
ins are installed and deployed.

To add bridge files from the Sun Java Composite Application Platform Suite Installer

1 Copy the Runtime JNI (snalu62jni.jar) file to the Integration Server classpath.

2 Copy the corresponding JNI bridge file for your operating system. Available bridge
files are displayed in Figure 6.
SNA eWay Adapter User’s Guide 20 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Installing the SNA eWay Installing Enterprise Manager eWay Plug-Ins and Bridge Files
For win32 JNI bridge files, save the file to a directory that is declared in the system
PATH statement (for example, <c:>\WINNT\system32\).

For Unix bridge files, follow these steps:

A Save the appropriate bridge file to your local system.

B Move the bridge file to your UNIX directory.

The target directory for AIX systems must be declared in LIBPATH.

The target directory for Solaris must be declared in LD_LIBRARY_PATH.

For further information on configuring the Logical Host’s Integration Server, see
“Configuring the Logical Host” on page 71.

2.4.1 Viewing Alert Codes
You can view and delete alerts using the Enterprise Manager. An alert is triggered
when a specified condition occurs in a Project component. The purpose of the alert is to
warn the administrator or user that a condition has occurred.

To View the eWay Alert Codes

1 Add the eWay Enterprise Manager plug-in for this eWay.

2 From the Enterprise Manager’s Explorer toolbar, click configuration.

3 Click the Web Applications Manager tab and go to the Manage Alert Codes sub-
tab. Your installed eWay alert codes display under the Results section. If your eWay
alert codes are not displayed under Results, do the following:

A From the Install New Alert Codes section, browse to and select the eWay alert
properties file for the application plug-in that you added. The alert properties
files are located in the alertcodes folder of your Sun Java Composite Application
Platform Suite installation directory.

B Click Deploy. The available alert codes for your application are displayed under
Results. A listing of the eWay’s available alert codes is displayed in Table 3.

Table 3 Alert Codes for the SNA eWay

Alert Code\Description Description Details User Actions

SNALU62-CONNECT-
FAILED000001=Failed to connect.

Occurs during the
initial system
connection
establishment.

System is down; start your system.
External configuration information
may be invalid. You may need to
verify the configured parameters.

Refer to the server log for further
information.

SNALU62-RECEIVE-
FAILED000003=Failed to receive
message.

Occurs when a
collaboration
attempts to receive a
message, and no
message is available to
be received.

Verify that a message is available to
be received.
External configuration information
may be invalid. You may need to
verify the configured parameters.
Verify the connection logic.
SNA eWay Adapter User’s Guide 21 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Installing the SNA eWay Installing Enterprise Manager eWay Plug-Ins and Bridge Files
For information on Managing and Monitoring alert codes and logs, as well as how to
view the alert generated by the project component during runtime, see the Sun
SeeBeyond eGate™ Integrator System Administration Guide.

Note: An alert code is a warning that an error has occurred. It is not a diagnostic. The user
actions noted above are just some possible corrective measures you may take. Refer
to the log files for more information. For information on Managing and Monitoring
alert codes and logs, see the Sun SeeBeyond eGate Integrator System
Administration Guide.

SNALU62-SEND-
FAILED000002=Failed to send
message.

Occurs when a
destination is not
ready to receive a
message.

There is a collaboration error.
Verify the collaboration design is
valid.
External configuration information
may be invalid. You may need to
verify the configured parameters.

Alert Code\Description Description Details User Actions
SNA eWay Adapter User’s Guide 22 Sun Microsystems, Inc.

Chapter 3

Configuring the SNA eWay

This chapter describes how to set the properties of the SNA eWay.

What’s In This Chapter:

Creating and Configuring a SNA eWay on page 23

Configuring the eWay Connectivity Map Properties on page 23

Configuring the eWay Environment Properties on page 25

eWay Connectivity Map Properties on page 27

eWay Environment Properties on page 37

3.1 Creating and Configuring a SNA eWay
All eWays contain a unique set of default configuration parameters. After the eWays are
established and a SNA External System is created in the Project’s Environment, the
eWay parameters are modified for your specific system. The SNA eWay configuration
parameters are modified from two locations:

Connectivity Map: These parameters most commonly apply to a specific
component eWay, and may vary from other eWays (of the same type) in the Project.

Environment Explorer : These parameters are commonly global, applying to all
eWays (of the same type) in the Project. The saved properties are shared by all
eWays in the SNA External System window.

Collaboration or Business Process: SNA eWay properties may also be set from
your Collaboration or Business Process, in which case the settings will override the
corresponding properties in the eWay’s Connectivity Map configuration. Any
properties that are not overridden retain their configured default settings.

3.2 Configuring the eWay Connectivity Map Properties
When you connect an External Application to a Collaboration, Enterprise Designer
automatically assigns the appropriate eWay to the link. Each eWay is supplied with a
template containing default configuration properties that are accessible on the
Connectivity Map.
SNA eWay Adapter User’s Guide 23 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Configuring the SNA eWay Configuring the eWay Connectivity Map Properties
The SNA eWay can be configured for both inbound and outbound modes in a
Connectivity Map.

To Configure the Inbound eWay Properties:

1 On the Enterprise Designer’s Connectivity Map, double-click the SNA eWay icon.

Figure 7 Connectivity Map with Components - Inbound

The eWay Properties window appears, displaying the default properties for the
Inbound eWay.

Figure 8 Inbound eWay Properties

To Configure the Outbound eWay Properties:

1 On the Enterprise Designer’s Connectivity Map, double-click the SNA eWay icon.

SNA eWay
SNA eWay Adapter User’s Guide 24 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Configuring the SNA eWay Configuring the eWay Environment Properties
Figure 9 Connectivity Map with Components - Outbound

The eWay Properties window appears, displaying the default properties for the
Oubound eWay.

Figure 10 Outbound eWay Properties

3.3 Configuring the eWay Environment Properties
The eWay Environment Configuration properties contain parameters that define how
the eWay connects to and interacts with other eGate components within the
Environment. When you create a new SNA External System, you may configure the
type of External System required.

SNA eWay
SNA eWay Adapter User’s Guide 25 Sun Microsystems, Inc.

Chapter 3 Section 3.3
Configuring the SNA eWay Configuring the eWay Environment Properties
Available External System properties include:

SNALU62 Inbound eWay

SNALU62 Outbound eWay

To Configure the Environment Properties:

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Expand the Environment created for the SNA Project and locate the SNA External
System.

Note: For more information on creating an Environment, see the “Sun SeeBeyond eGate
Integrator Tutorial.”

3 Right-click the External System created for the SNA Project and select Properties
from the list box. The Environment Configuration Properties window appears.

Figure 11 SNA eWay Environment Configuration

4 Click on any folder to display the default configuration properties for that section.

5 Click on any property field to make it editable.

After modifying the configuration properties, click OK to save the changes.
SNA eWay Adapter User’s Guide 26 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4 eWay Connectivity Map Properties
The eWay Connectivity Map consists of the following properties categories.

SNA Inbound eWay Configuration Sections Include:

Connectivity Map Inbound eWay General Settings on page 27

Connectivity Map Inbound eWay SNA Settings on page 28

Connectivity Map Inbound eWay Connection Establishment on page 29

Connectivity Map Inbound eWay Inbound Connection Management on page 29

Connectivity Map Inbound eWay Inbound Schedules on page 30

SNA Outbound eWay Configuration Sections Include:

Connectivity Map Outbound eWay General Settings on page 33

Connectivity Map Outbound eWay SNA Settings on page 34

Connectivity Map Outbound eWay Connection Establishment on page 35

3.4.1 Connectivity Map Inbound eWay General Settings
The Inbound eWay General Settings are included in Table 4.

Table 4 Inbound eWay—General Settings

Name Description Required Value

Scope of State Defines the scope of the State object,
which is an OTD sub-node.

The valid options for this
parameter are:

Connection Level: The State
has the same life cycle as
the connection.
Resource Adapter Level:
The State has the same life
cycle as the resource
adapter. The life terminates
when the resource adapter
is recycled.
OTD Level: The State has
the same life cycle as the
OTD object. This scope
represents the life cycle of
the State. The life
terminates when the
collaboration finishes.

The default is Connection
Level.
SNA eWay Adapter User’s Guide 27 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4.2 Connectivity Map Inbound eWay SNA Settings
The Inbound eWay SNA Settings are included in Table 5.

Table 5 Inbound eWay—SNA Settings

Name Description Required Value

Packet Size The number of bytes per packet of data.
This number also determines the size of
the buffers.

A valid numeric value. The
default is 1024.

Timeout Specifies the milliseconds of pause
before receiving a response from a server
following a sent request.

A valid numeric value. The
default is 1000.

Initialize
Conversation

Specifies how the eWay will establish a
SNA conversation. Options are:

TRUE: The eWay will initialize SNA
conversations as an invoking TP.
FALSE: The eWay will accept SNA
conversations as an invokable TP.

Select TRUE or FALSE. The
default is FALSE.

Deallocation Type Specifies the type of deallocation
required at the end of a conversation
when a shutdown is issued. Please refer
to your SNA documentation for more
information.

Select one of the following
four options:

0 - SYNC_LEVEL.
1 - FLUSH.
2 - CONFIRM.
3 - ABEND.

The default is 0 - SYNC_LEVEL.

Synchronization
Level

Specifies the synchronization level
parameter (CM_SYNC_LEVEL). Please
refer to your SNA manual for more
information.
0 - None (Default)
1 - Confirm

Select 0 - None or 1 - Confirm.
The default is 0 - None.

Custom Handshake
Class Name

Defines your SNA handshake logic (see
Appendix B to deploy a custom
handshake class).

A fully qualified class name
such as com.abc.MyClass.
The class must implement the
interface
com.stc.connector.snalu62.ap
i.snaCustomerHandshake. No
value (leaving the property
blank) indicates that no SNA
conversation handshake logic
is defined. Instead, a built-in
standard handshake logic is
used.
SNA eWay Adapter User’s Guide 28 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4.3 Connectivity Map Inbound eWay Connection Establishment
The Inbound eWay Connection Establishment properties are included in Table 6.

3.4.4 Connectivity Map Inbound eWay Inbound Connection
Management

The Inbound eWay Inbound Connection Management properties are included in Table
7.

Table 6 Inbound eWay—Connection Establishment

Name Description Required Value

Max Connection
Retry

Specifies the maximum number of retries
to establish a connection upon failure to
acquire one.

A valid numeric value. The
default is 3.

Retry Connection
Interval

Specifies the milliseconds of pause
before each attempt to reaccess the SNA
LU62 destination. This setting is used in
conjunction with the Max Connection
Retry setting.

For example: In the event that the eWay
cannot connect to the SNA destination,
the eWay will try to reconnect three times
in 30 second intervals when the
Connection Retries value is 3 and the
Connection Retry Interval is 30000.

A valid numeric value. The
default is 30000.

Table 7 Inbound eWay—Inbound Connection Management

Name Description Required Value

Max Connection
Pool Size

Defines the maximum number of
concurrent connections for the particular
listener/monitor over the specified
SNALU62 destination. 0 (zero) indicates
that there is no maximum.

A valid numeric value. The
default is 50.
SNA eWay Adapter User’s Guide 29 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4.5 Connectivity Map Inbound eWay Inbound Schedules

Listener Schedule

Listner Schedule properties specify the schedule that the server must wait for the new
client connection establishment request. This schdeule is for the listener/monitor. The
Listener Schedule properties are included in Table 8.

Scope of
Connection

Defines the scope of the accepted
connection used by the eWay. Options
are:

Collaboration Level: The connection
will be closed once the execution of the
Collaboration is completed. The
connection has the same life cycle as
the Collaboration.
Resource Adaptor Level: The resource
adapter will close the connection upon
closure request. The connection may
remain live across multiple executions
of the Collaboration.

Select Collaboration Level or
Resource Adapter Level. The
default is Resource Adapter
Level.

Table 8 Inbound Schedules—Listener Schedule

Name Description Required Value

Scheduler Specifies the scheduler type for this
inbound communication. Options are:

Timer Service: The task is scheduled
according to the Schedule Type, Delay,
Period, and At Fixed Rate values.
Work Manager: The work is scheduled
according to the Schedule Type, Delay,
and Period values.

If your container does not support JCA
Work Management (prior to JCA1.5),
select Timer Service.

Select Timer Service or Work
Manager. The default is Work
Manager.

Schedule Type Defines the type of schedule for inbound
communication. Repeated indicates a task
is scheduled for repeated execution at
regular intervals defined by the
parameter Period (see below).

The configured default is
Repeated.

Note: This value
cannot be changed.

Delay Specifies the delay in milliseconds before
a task is executed. For further details,
refer to the SNA eWay Javadoc.

A valid numeric value. The
default is 0.

Table 7 Inbound eWay—Inbound Connection Management (Continued)

Name Description Required Value
SNA eWay Adapter User’s Guide 30 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
Service Schedule

The Inbound eWay Service Schedule properties are included in Table 9.

Period Specifies the regular interval in
milliseconds between successive task
executions. This parameter is used in
conjunction with the Schedule Type
parameter when set to Repeated.

A valid numeric value. The
default is 100.

At Fixed Rate Used in conjunction with the Repeated
setting for the Schedule Type parameter
and the Timer Service type of Scheduler.
Options are:

TRUE: Denotes a fixed rate. Each
execution is scheduled relative to the
scheduled time of the initial execution.
If an execution is delayed for any
reason, two or more executions will
occur in rapid succession to return to
the preset execution schedule. Overall,
the frequency of executions will be
exactly the reciprocal of the specified
period.
FALSE: Denotes a fixed delay. Each
execution is scheduled relative to the
actual execution time of the previous
execution. If an execution is delayed for
any reason, subsequent executions are
delayed as well. Overall, the frequency
of executions will generally be lower
than the reciprocal of the specified
period.

Select TRUE or FALSE. The
default is FALSE.

Table 8 Inbound Schedules—Listener Schedule (Continued)

Name Description Required Value
SNA eWay Adapter User’s Guide 31 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
Table 9 Inbound Schedules—Service Schedule

Name Description Required Value

Scheduler Specifies the scheduler type for this
inbound communication. Options are:

Timer Service: The task is scheduled
according to the Schedule Type, Delay,
Period, and At Fixed Rate values.
Work Manager: The work is scheduled
according to the Schedule Type, Delay,
and Period values.

If your container does not support JCA
Work Management (prior to JCA1.5),
select Timer Service.

Select Timer Service or Work
Manager. The default is Work
Manager.

Schedule Type Defines the type of schedule for inbound
communication. Options are:

One Time: A task is scheduled for a
one-time execution.
Repeated: A task is scheduled for
repeated execution at regular intervals
defined by the parameter Period (see
below).

Select One Time or Repeated.
The default is Repeated.

Delay Specifies the delay in milliseconds before
a task is executed. For further details,
refer to the SNA eWay Javadoc.

A valid numeric value. The
default is 0.

Period Specifies the regular interval in
milliseconds between successive task
executions. This parameter is used in
conjunction with the Schedule Type
parameter when set to Repeated.

A valid numeric value. The
default is 100.
SNA eWay Adapter User’s Guide 32 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4.6 Connectivity Map Outbound eWay General Settings
The Outbound eWay General Settings are included in Table 10.

At Fixed Rate Used in conjunction with the Repeated
setting for the Schedule Type parameter
and the Timer Service type of Scheduler.
Options are:

TRUE: Denotes a fixed rate. Each
execution is scheduled relative to the
scheduled time of the initial execution.
If an execution is delayed for any
reason, two or more executions will
occur in rapid succession to return to
the preset execution schedule. Overall,
the frequency of executions will be
exactly the reciprocal of the specified
period.
FALSE: Denotes a fixed delay. Each
execution is scheduled relative to the
actual execution time of the previous
execution. If an execution is delayed for
any reason, subsequent executions are
delayed as well. Overall, the frequency
of executions will generally be lower
than the reciprocal of the specified
period.

Select TRUE or FALSE. The
default is FALSE.

Table 9 Inbound Schedules—Service Schedule (Continued)

Name Description Required Value
SNA eWay Adapter User’s Guide 33 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4.7 Connectivity Map Outbound eWay SNA Settings
The Outbound eWay SNA Settings are included in Table 11.

Table 10 Outbound eWay—General Settings

Name Description Required Value

Scope of State Defines the scope of the State object,
which is an OTD sub-node.

The valid options for this
parameter are:

Connection Level: The State
has the same life cycle as
the connection.
Resource Adapter Level:
The State has the same life
cycle as the resource
adapter. The life terminates
when the resource adapter
is recycled.
OTD Level: The State has
the same life cycle as the
OTD object. This scope
represents the life cycle of
the State. The life
terminates when the
collaboration finishes.

The default is Connection
Level.

Table 11 Outbound eWay—SNA Settings

Name Description Required Value

Packet Size The number of bytes per packet of data.
This number also determines the size of
the buffers.

A valid numeric value. The
default is 1024.

Timeout Specifies the milliseconds of pause
before receiving a response from a server
following a sent request.

A valid numeric value. The
default is 1000.

Initialize
Conversation

Specifies how the eWay will establish a
SNA conversation. Options are:

TRUE: The eWay will initialize SNA
conversations as an invoking TP.
FALSE: The eWay will accept SNA
conversations as an invokable TP.

Select TRUE or FALSE. The
default is TRUE.
SNA eWay Adapter User’s Guide 34 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
3.4.8 Connectivity Map Outbound eWay Connection Establishment
The Outbound eWay Connection Establishment properties are included in Table 12.

Deallocation Type Specifies the type of deallocation
required at the end of a conversation
when a shutdown is issued. Please refer
to your SNA documentation for more
information.

Select one of the following
four options:

0 - SYNC_LEVEL.
1 - FLUSH.
2 - CONFIRM.
3 - ABEND.

The default is 0 - SYNC_LEVEL.

Synchronization
Level

Specifies the synchronization level
parameter (CM_SYNC_LEVEL). Please
refer to your SNA manual for more
information.
0 - None (Default)
1 - Confirm

Select one of the following
two options:

0 - None.
1 - Confirm.

The default is 0 - None.

Custom Handshake
Class Name

Defines your SNA handshake logic (see
Appendix B to deploy a custom
handshake class).

A fully qualified class name
such as com.abc.MyClass.
The class must implement the
interface
com.stc.connector.snalu62.ap
i.snaCustomerHandshake. No
value (leaving the property
blank) indicates that no SNA
conversation handshake logic
is defined. Instead, a built-in
standard handshake logic is
used.

Table 11 Outbound eWay—SNA Settings (Continued)

Name Description Required Value
SNA eWay Adapter User’s Guide 35 Sun Microsystems, Inc.

Chapter 3 Section 3.4
Configuring the SNA eWay eWay Connectivity Map Properties
Table 12 Outbound eWay—Connection Establishment

Name Description Required Value

Connection Mode Specifies how or when a connection will
become available. Options are:

AUTOMATIC: The eWay will establish a
SNA conversation automatically.
MANUAL: The SNA conversation will
become available to you only when you
manually call the OTD function
startConversation() from the
Collaboration; the conversation will
become unavailable when you call the
OTD function endConversation().

Note: The OTD functions
startConversation() and
endConversation() are expected
for Manual mode only. Automatic
mode does not allow you to call
them explicitly.

Select AUTOMATIC or
MANUAL. The default is
AUTOMATIC.

Max Connection
Retry

Specifies the maximum number of retries
to establish a connection upon failure to
acquire one.

A valid numeric value. The
default is 3.

Retry Connection
Interval

Specifies the milliseconds of pause
before each attempt to reaccess the SNA
LU62 destination. This setting is used in
conjunction with the Max Connection
Retry setting.

For example: In the event that the eWay
cannot connect to the SNA destination,
the eWay will try to reconnect three times
in 30 second intervals when the
Connection Retries value is 3 and the
Connection Retry Interval is 30000.

A valid numeric value. The
default is 30000.

Always Create New
Connection

Specifies whether to ALWAYS attempt to
create a new connection for a connection
establishment request. Options are:

TRUE: The eWay will always attempt to
create a new connection without trying
to match connection.
FALSE: The eWay will attempt to match
an existing connection.

Select TRUE or FALSE. The
default is FALSE.
SNA eWay Adapter User’s Guide 36 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Configuring the SNA eWay eWay Environment Properties
3.5 eWay Environment Properties
eWay External System properties must be configured from within the Environment.
Until you have successfully configured all eWays for your CAPS project, your project
cannot be properly executed. The following list identifies the SNA eWay properties.
There are six Environment Configuration categories that the SNA eWay implements.

Property Categories Configured in the Logical Host Environment

SNALU62 Inbound eWay Properties on page 37

SNALU62 Outbound eWay Properties on page 39

3.5.1 SNALU62 Inbound eWay Properties
Before deploying your eWay, you will need to set the Environment properties. The
Inbound SNA eWay includes the following configuration sections:

SNA Settings

General Settings

MDB Pool Settings

Auto Reconnect
Upon Matching
Failure

Specifies whether or not to make an
attempt to re-connect automatically after
getting a matched connection from a
container. Options are:

TRUE: The eWay will discard the invalid
matched connection and will attempt to
establish another connection
automatically.
FALSE: The eWay will not attempt to to
establish a new connection
automatically. Instead, control will be
deferred to your business rules which
will detect this type of failure and
perform the desired operations
accordingly.

Select TRUE or FALSE. The
default is TRUE.

Auto Disconnect
Connection

Specifies whether the eWay disconnects
automatically after the work on the
connection is completed. Options are:

TRUE: The eWay connection will be
disconnected and it will not be re-used.
FALSE: The connection will be left for
reuse.

Select TRUE or FALSE. The
default is FALSE.

Table 12 Outbound eWay—Connection Establishment (Continued)

Name Description Required Value
SNA eWay Adapter User’s Guide 37 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Configuring the SNA eWay eWay Environment Properties
SNA Settings

Details for the SNALU62 Inbound eWay SNA Settings are listed in Table 13.

General Settings

Details for the SNALU62 Inbound eWay General Settings are listed in Table 14.

MDB Pool Settings

Details for the SNALU62 Inbound eWay MDB Pool Settings are listed in Table 15.

Table 13 SNALU62 Inbound eWay—SNA Settings

Name Description Required Value

Host Name Specifies the host name where the LU62
Server runs.

Note: This parameter is only
required for the Brixton LU62
server and is ignored on other
platforms.

Any valid string. The default is
localhost.

Symbolic Dest Name Specifies the symbolic destination name
associated with a side information entry
loaded from the configuration file. Refer
to your SNA documentation for more
information.

Any valid string.

Note: This parameter
is case-sensitive.

Local LU Name Specifies the local LU name defined to
the SunLink LU62 server. Refer to your
SNA documentation for more
information.

Note: This parameter is required
for SunLink P2P LU6.2 9.1 and is
ignored on other platforms.

Any valid string.

Note: This parameter
is case-sensitive.

Local TP Name Specifies the local Transaction Program
(TP) name that is running on the local LU.
Refer to your SNA documentation for
more information.

Any valid string.

Note: This parameter
is case-sensitive.

Table 14 SNALU62 Inbound eWay—General Settings

Name Description Required Value

Persistent Storage
Location

Specifies the Persistent Location (a local
folder path and name) that contains the
file used to store the persistent data. The
base file name will be generated
according to the project, deployment,
and Collaboration information.

The absolute path and name
of the directory. The default is:
/temp/snalu62inbound/
persist.
SNA eWay Adapter User’s Guide 38 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Configuring the SNA eWay eWay Environment Properties
3.5.2 SNALU62 Outbound eWay Properties
Before deploying your eWay, you will need to set the Environment properties. The
Outbound SNA eWay includes the following configuration sections:

SNA Settings

General Settings

Connection Pool Settings

SNA Settings

Details for the SNALU62 Outbound eWay SNA Settings are listed in Table 16.

Table 15 SNALU62 Inbound eWay—MDB Pool Settings

Name Description Required Value

Steady Pool Size Specifies the minimum number of
physical connections the pool should
keep available at all times. 0 (zero)
indicates that there should be no physical
connections in the pool and the new
connections should be created as
needed.

If the pool size is too small, you may
experience a longer connection time due
to the existing number of physical
connections.

A connection that stays in the pool allows
transactions to use it via a logical
connection which is faster.

A valid numeric value. The
default is 10.

Max Pool Size Specifies the maximum number of
physical connections the pool should
keep available at all times. 0 (zero)
indicates that there is no maximum.

The pool size you set depends on the
transaction volume and response time of
the application. If the pool size is too big,
you may end up with too many
connections to the SNA destination.

A valid numeric value. The
default is 60.

Pool Idle Timeout in
Seconds

Specifies the maximum number of
seconds that a physical connection may
remain unused before it is closed. 0 (zero)
indicates that there is no limit.

A valid numeric value. The
default is 600.
SNA eWay Adapter User’s Guide 39 Sun Microsystems, Inc.

Chapter 3 Section 3.5
Configuring the SNA eWay eWay Environment Properties
General Settings

Details for the SNALU62 Outbound eWay General Settings are listed in Table 17.

Connection Pool Settings

Details for the SNALU62 Outbound eWay Connection Pool Settings are listed in Table
18.

Table 16 SNALU62 Outbound eWay—SNA Settings

Name Description Required Value

Host Name Specifies the host name where the LU62
Server runs.

Note: This parameter is only
required for the Brixton LU62
server and is ignored on other
platforms.

Any valid string. The default is
localhost.

Symbolic Dest Name Specifies the symbolic destination name
associated with a side information entry
loaded from the configuration file. Refer
to your SNA documentation for more
information.

Any valid string.

Note: This parameter
is case-sensitive.

Local LU Name Specifies the local LU name defined to
the SunLink LU62 server. Refer to your
SNA documentation for more
information.

Note: This parameter is required
for SunLink P2P LU6.2 9.1 and is
ignored on other platforms.

Any valid string.

Note: This parameter
is case-sensitive.

Local TP Name Specifies the local Transaction Program
(TP) name that is running on the local LU.
Refer to your SNA documentation for
more information.

Any valid string.

Note: This parameter
is case-sensitive.

Table 17 SNALU62 Outbound eWay—General Settings

Name Description Required Value

Persistent Storage
Location

Specifies the Persistent Location (a local
folder path and name) that contains the
file used to store the persistent data. The
base file name will be generated
according to the project, deployment,
and Collaboration information.

The absolute path and name
of the directory. The default is:
/temp/snalu62outbound/
persist.
SNA eWay Adapter User’s Guide 40 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Configuring the SNA eWay Object Type Definitions (OTDs)
3.6 Object Type Definitions (OTDs)
Unlike most other eWays, the SNA eWay does not consist of an OTD wizard. OTD
wizards typically facilitate the creation of a Collaborations that are used with eWay
projects. When an OTD wizard is available, a skeleton Collaboration is created to
provide minimal funtionality that you must modify to suit your application’s needs.
Without the OTD wizard, as in the case of the SNA eWay, you must create your
Collaborations completely from scratch.

To associate the standard SNA eWay OTD to a new Java Collaboration:

1 From the Project Explorer, right-click the targeted project.

2 Select New > Collaboration Definition (Java)...

3 Complete steps 1 and 2 of the Collaboration Definition Wizard (Java).

Table 18 SNALU62 Outbound eWay—Connection Pool Settings

Name Description Required Value

Steady Pool Size Specifies the minimum number of
physical connections the pool should
keep available at all times. 0 (zero)
indicates that there should be no physical
connections in the pool and the new
connections should be created as
needed.

If the pool size is too small, you may
experience a longer connection time due
to the existing number of physical
connections.

A connection that stays in the pool allows
transactions to use it via a logical
connection which is faster.

A valid numeric value. The
default is 1.

Max Pool Size Specifies the maximum number of
physical connections the pool should
keep available at all times. 0 (zero)
indicates that there is no maximum.

The pool size you set depends on the
transaction volume and response time of
the application. If the pool size is too big,
you may end up with too many
connections to the SNA destination.

A valid numeric value. The
default is 32.

Pool Idle Timeout in
Seconds

Specifies the maximum number of
seconds that a physical connection may
remain unused before it is closed. 0 (zero)
indicates that there is no limit.

A valid numeric value. The
default is 300.
SNA eWay Adapter User’s Guide 41 Sun Microsystems, Inc.

Chapter 3 Section 3.6
Configuring the SNA eWay Object Type Definitions (OTDs)
4 Select the OTD to use in the new Collaboration by traversing the Look In drop-
down box: SeeBeyond.eWays.SNALU62.

5 Highlight the desired OTD name and click the Add button.

6 Optionally, modify the instance name of the OTD that will be used in the
Collaboration.

7 Click the Finish button.

The new Collaboration that implements the SNA eWay OTD is created. For details
about the SNA eWay methods that may be used with Collaborations for the, refer to the
associated Javadoc.
SNA eWay Adapter User’s Guide 42 Sun Microsystems, Inc.

Chapter 4

Implementing the SNA eWay Sample
Projects

This chapter provides an introduction to the SNA eWay components, and information
on how these components are created and implemented in a Sun Java Composite
Application Platform Suite Project. Sample Projects are designed to provide an
overview of the basic functionality of the SNA eWay by identifying how information is
passed between eGate and supported external systems.

It is assumed that you understand the basics of creating a Project using the Enterprise
Designer. For more information on creating an eGate Project, see the Sun SeeBeyond
eGate™ Tutorial and the Sun SeeBeyond eGate™ Integrator User’s Guide.

What’s in This Chapter

About the SNA eWay Sample Project on page 43

Running the Sample Project on page 44

Importing a Sample Project on page 44

Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project on
page 45

4.1 About the SNA eWay Sample Project
The SNA sample Project demonstrates how the SNA eWay processes information from
a SNA system. The SNA eWay SNA_eWay_Sample.zip file contains one sample Project
that provides basic instruction on using SNA operations in the Java Collaboration
Definition (JCD) environment

The sample Project uses the SNACPIC_input.txt.~in input file to pass data into the
jcdSNACPIC_Inbound and jcdSNACPIC_Outbound Collaborations. These two
Collaborations demonstrate the capabilities of the SNA eWay using CPiC functions.

The sample Project uses the SNAHelper_input.txt.~in input file to pass data into the
jcdSNAHelper_Inbound and jcdSNAHelper_Outbound Collaborations. These two
Collaborations demonstrate how to use the SNA eWay with the Helper functions.

The Helper methods should be used if you are not familiar with CPIC methods. They
offer less flexibility than CPIC, but are relatively simple to implement and should be
considered only for simple project scenarios.
SNA eWay Adapter User’s Guide 43 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Implementing the SNA eWay Sample Projects Running the Sample Project
4.2 Running the Sample Project
The following steps are required to run the sample Project that is contained in the
SNAeWayDocs.sar file.

1 From your input directory, paste (or rename) the sample input file to trigger the
eWay.

2 Import the sample Project.

3 Build, deploy, and run the sample Project.

You must do the following before you can run an imported sample Project:

Create an Environment

Configure the eWays

Create a Deployment Profile

Create and start a domain

Deploy the Project

4 Check the output.

4.3 Importing a Sample Project
Sample eWay Projects are included as part of the installation CD-ROM package. To
import a sample eWay Project to the Enterprise Designer do the following:

1 Extract the samples from the Sun Java Composite Application Platform Suite
Installer to a local file.

Sample files are uploaded with the eWay’s documentation SAR file, and then
downloaded from the Installer’s Documentation tab. The SNA_eWay_Sample.zip
file contains the various sample Project ZIP files.

Note: Make sure you save all unsaved work before importing a Project.

2 From the Enterprise Designer’s Project Explorer pane, right-click the Repository
and select Import Project from the shortcut menu. The Import Manager appears.

3 Browse to the directory that contains the sample Project ZIP file. Select the sample
file and click Import.

4 Click Close after successfully importing the sample Project.
SNA eWay Adapter User’s Guide 44 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
4.4 Building, Deploying, and Running the
prjSNA_Sample_JCD Sample Project

The following provides step-by-step instructions for manually creating the
prjSNA_Sample_JCD sample Project.

Steps required to create the sample project include:

Creating a Project on page 45

Creating a Connectivity Map on page 45

Creating the Collaboration Definitions (Java) on page 47

Creating the Collaboration Business Rules on page 49

Binding the eWay Components on page 68

Creating an Environment on page 69

Configuring the eWays on page 70

Configuring the Logical Host on page 71

Configuring for Logical Host Platforms on page 72

Creating the Deployment Profile on page 75

Creating and Starting the Domain on page 75

Building and Deploying the Project on page 76

Running the Sample on page 76

4.4.1 Creating a Project
The first step is to create a new Project in the Enterprise Designer.

1 Start the Enterprise Designer.

2 From the Project Explorer tree, right-click the Repository and select New Project. A
new Project (Project1) appears on the Project Explorer tree.

3 Click twice on Project1 and rename the Project (for this sample,
prjSNA_Sample_JCD).

4.4.2 Creating a Connectivity Map
The Connectivity Map provides a canvas for assembling and configuring a Project’s
components.

Steps required to create a new Connectivity Map:

1 From the Project Explorer tree, right-click the new prjSNA_Sample_JCD Project
and select New > Connectivity Map from the shortcut menu.

2 The New Connectivity Map appears and a node for the Connectivity Map is added
under the Project, on the Project Explorer tree labeled CMap1.
SNA eWay Adapter User’s Guide 45 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Create four additional Connectivity Maps—CMap2, CMap3. CMap4, and
CMap5— and rename them as follows:

cmSNACPIC_Inbound

cmSNACPIC_Outbound

cmSNAHelper_Inbound

cmSNAHelper_Outbound

The icons in the toolbar represent the available components used to populate the
Connectivity Map canvas.

Populating the Connectivity Map

Add the Project components to the Connectivity Map by dragging the icons from the
toolbar to the canvas.

Each Connectivity Map in the prjSNA_Sample_JCD sample Project requires the
following components:

File External Application (2)

SNA External Application

Service

Any eWay added to the Connectivity Map is associated with an External System. To
establish a connection to SNA, first select SNA as an External System to use in your
Connectivity Map.

Steps required to select a SNA External System:

1 Click the External Application icon on the Connectivity Map toolbar.

2 Select the external systems necessary to create your Project (for this sample, SNA
and File). Icons representing the selected external systems are added to the
Connectivity Map toolbar.

3 Rename the following components and then save changes to the Repository:

File1 to FileClientIN

File2 to FileClientOUT

SNA1 to eaSNAOUT

4 Rename each Connectivity Map Service to match the intended operation, as for
example:

jcdSNACPIC_Inbound

jcdSNACPIC_Outbound

jcdSNAHelper_Inbound

jcdSNAHelper_Outbound
SNA eWay Adapter User’s Guide 46 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
4.4.3 Creating the Collaboration Definitions (Java)
The next step is to create Collaboration Definitions (Java) or JCDs using the
Collaboration Definition Wizard (Java). Once you create the Collaboration
Definitions, you can write the Business Rules of the Collaborations using the
Collaboration Editor.

The four Collaborations that you will create as part of this sample Project provide
different techniques for using the eWay to perform varying ranges of SNA conversation
tasks that you may need to execute. The Collaborations are not meant to demonstrate
the only way to perform desired operations. Rather, they should provide insight into
how you may use the SNA eWay to develop your applications.

Inbound SNA conversations accept incoming conversation requests from remote
transaction programs that initialize conversations. Outbound SNA conversations
initialize conversations and relay (send) data to transaction programs that accept the
initialize conversation request.

jcdSNACPIC_Inbound Collaboration

This Collaboration demonstrates how to use the eWay, in conjunction with the CPIC
Java methods, to accept an incoming SNA conversation and output the conversation to
a file on the local system.

Steps required to create the jcdSNACPIC_Inbound Collaboration:

1 From the Project Explorer, right-click the sample Project and select New >
Collaboration Definition (Java) from the shortcut menu. The Collaboration
Definition Wizard (Java) appears.

2 Enter a Collaboration Definition name (for this sample jcdSNACPIC_Inbound)
and click Next.

3 For Step 2 of the wizard, from the Web Services Interfaces selection window,
double-click Sun SeeBeyond > eWays > File > FileClient > receive. The File Name
field now displays receive. Click Next.

4 For Step 3 of the wizard, from the Select OTDs selection window, double-click Sun
SeeBeyond > eWays > SNALU62 > SNALU62eWay. The SNALU62eWay OTD is
added to the Selected OTDs field.

5 Click the Up One Level button twice to return to the Repository. Double-click Sun
SeeBeyond > eWays > File > FileClient. The Selected OTDs field now lists the
FileClient OTD.

6 Click Finish. The Collaboration Editor with the new jcdSNACPIC_Inbound
Collaboration appears in the right pane of the Enterprise Designer.

jcdSNACPIC_Outbound Collaboration

Steps required to create the jcdSNACPIC_Outbound Collaboration:

1 From the Project Explorer, right-click the sample Project and select New >
Collaboration Definition (Java) from the shortcut menu. The Collaboration
Definition Wizard (Java) appears.
SNA eWay Adapter User’s Guide 47 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
2 Enter a Collaboration Definition name (for this sample jcdSNACPIC_Outbound)
and click Next.

3 For Step 2 of the wizard, from the Web Services Interfaces selection window,
double-click Sun SeeBeyond > eWays > File > FileClient > receive. The File Name
field now displays receive. Click Next.

4 For Step 3 of the wizard, from the Select OTDs selection window, double-click Sun
SeeBeyond > eWays > SNALU62 > SNALU62eWay. SNALU62eWay is added to
the Selected OTDs field.

5 Click the Up One Level button twice to return to the Repository. Double-click Sun
SeeBeyond > eWays > File > FileClient. The Selected OTDs field now lists the
FileClient OTD.

6 Click Finish. The Collaboration Editor with the new jcdSNACPIC_Outbound
Collaboration appears in the right pane of the Enterprise Designer.

jcdSNAHelper_Inbound Collaboration

Steps required to create the jcdSNAHelper_Inbound Collaboration:

1 From the Project Explorer, right-click the sample Project and select New >
Collaboration Definition (Java) from the shortcut menu. The Collaboration
Definition Wizard (Java) appears.

2 Enter a Collaboration Definition name (for this sample jcdSNAHelper_Inbound)
and click Next.

3 For Step 2 of the wizard, from the Web Services Interfaces selection window,
double-click Sun SeeBeyond > eWays > File > FileClient > receive. The File Name
field now displays receive. Click Next.

4 For Step 3 of the wizard, from the Select OTDs selection window, double-click Sun
SeeBeyond > eWays > SNALU62 > SNALU62eWay. The SNALU62eWay OTD is
added to the Selected OTDs field.

5 Click the Up One Level button twice to return to the Repository. Double-click Sun
SeeBeyond > eWays > File > FileClient. The Selected OTDs field now lists the
FileClient OTD.

6 Click Finish. The Collaboration Editor with the new jcdSNAHelper_Inbound
Collaboration appears in the right pane of the Enterprise Designer.

jcdSNAHelper_Outbound Collaboration

Steps required to create the jcdSNAHelper_Outbound Collaboration:

1 From the Project Explorer, right-click the sample Project and select New >
Collaboration Definition (Java) from the shortcut menu. The Collaboration
Definition Wizard (Java) appears.

2 Enter a Collaboration Definition name (for this sample jcdSNAHelper_Outbound)
and click Next.
SNA eWay Adapter User’s Guide 48 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
3 For Step 2 of the wizard, from the Web Services Interfaces selection window,
double-click Sun SeeBeyond > eWays > File > FileClient > receive. The File Name
field now displays receive. Click Next.

4 For Step 3 of the wizard, from the Select OTDs selection window, double-click Sun
SeeBeyond > eWays > SNALU62 > SNALU62eWay. SNALU62eWay is added to
the Selected OTDs field.

5 Click the Up One Level button twice to return to the Repository. Double-click Sun
SeeBeyond > eWays > File > FileClient. The Selected OTDs field now lists the
FileClient OTD.

6 Click Finish. The Collaboration Editor with the new jcdSNAHelper_Outbound
Collaboration appears in the right pane of the Enterprise Designer.

4.4.4 Creating the Collaboration Business Rules
The next step in the sample is to create the Business Rules of the Collaboration using
the Collaboration Editor.

Creating the jcdSNACPIC_Inbound Collaboration Business Rules

The jcdSNACPIC_Inbound Collaboration contains the Business Rules displayed in
Figure 12.

Figure 12 jcdSNACPIC_Inbound Business Rules

The logger.info(“SNAIn_CPIC: SNAIn: “Started”) Business Rule is displayed in
Figure 13.
SNA eWay Adapter User’s Guide 49 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 13 jcdSNACPIC_Inbound Business Rule 1

The input.CPICCalls.cmrcv Business Rule is displayed in Figure 14.

Figure 14 jcdSNACPIC_Inbound Business Rule 2

The input.DataIn is equal to null condition within the if clause is displayed in Figure
15.
SNA eWay Adapter User’s Guide 50 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 15 jcdSNACPIC_Inbound Business Rule 3

The Copy “No data Received”.Bytes to Data Received then clause within the
input.DataIn is equal to null condition is displayed in Figure 16.
SNA eWay Adapter User’s Guide 51 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 16 jcdSNACPIC_Inbound Business Rule 4

The Copy input.DataIn to DataReceived else clause within the input.DataIn is equal
to null condition is displayed in Figure 17.

Figure 17 jcdSNACPIC_Inbound Business Rule 5
SNA eWay Adapter User’s Guide 52 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
The Copy DataReceived to FileClient_1.ByteArray Business Rule is displayed in
Figure 18.

Figure 18 jcdSNACPIC_Inbound Business Rule 6

The FileClient_1.writeBytes Business Rule is displayed in Figure 19.
SNA eWay Adapter User’s Guide 53 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 19 jcdSNACPIC_Inbound Business Rule 7

The loger.info(“SNAIn_CPIC: SNAIn: Ended”) Business Rule is displayed in Figure
20.

Figure 20 jcdSNACPIC_Inbound Business Rule 8
SNA eWay Adapter User’s Guide 54 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Sample code from the jcdSNACPIC_Inbound Collaboration includes the following:

package prjSNA_Sample_JCD;

public class jcdSNACPIC_Inbound
{

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;

 public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication input,
com.stc.connector.appconn.file.FileApplication FileClient_1)
 throws Throwable
 {
 logger.info("SNAIn_CPIC: SNAIn: Started");
 input.getCPICCalls().cmrcv();
 byte[] DataReceived;
 if (input.getDataIn() == null) {
 DataReceived = "No data Received".getBytes();
 } else {
 DataReceived = input.getDataIn();
 }
 FileClient_1.setByteArray(DataReceived);
 FileClient_1.writeBytes();
 logger.info("SNAIn_CPIC: SNAIn: Ended");
 }

}

Anaylyzing the Collaboration Sample Code:

The first six lines of code in this Collaboration are created by the default Collaboration
wizard. As such, these line of code will not be discussed here. However, keep in mind
that if you are creating a new Java Collaboration, your package name and class name
may differ. The next three lines of code tell the Collaboration from where the data
should be retrieved and to where the data should be sent.

Since the goal of this Collaboration is to handle incoming conversations, you need to
create an instance of the SNAInboundApplication interface in order to read
incoming conversation traffic. In order for the Collaboration to know to where the data
should be sent, you must create an instance of the FileApplication interface that
belongs to the File eWay. This will allow you to output incoming conversation traffic to
a file on the local system. Error handling is handled by the Throwable class.

One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the Collaboration is available, the next
step is to tell the Collaboration to listen to the incoming traffic. Listening to the
conversation traffic is performed by using the CPIC cmrcv() method of the exposed
Java CPIC calls. Since the SNA CPIC calls belong to getCPICCalls(), listening to the
input from the looks like this: input.getCPICCalls().cmrcv(). In order to process
the incoming traffic, a byte array, recv, is created.

Depending on the incoming conversation traffic, a logic loop is setup to tell the
Collaboration what to do with the incoming byte data. If no data is received (if (null
== input.getDataIn())), an output message is displayed, recv = "No data is
SNA eWay Adapter User’s Guide 55 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
received.".getBytes(), before continuing to listen for any change in the data
stream. When an incoming data array is finally detected, the loop captures the data,
recv = input.getDataIn(), and sends it to the FileApplication interface for
further processing.

Since the goal is to output the collected data array to a file, the File eWay takes the input
data, as a byte array (FileClient_1.setByteArray(recv)), and writes the data
(FileClient_1.writeBytes()) to the file specified by the eWay properties. After the
data array from the incoming conversation is collected and output to a file, a final log
message is displayed, logger.info("SNAIn1: Ended.").

Creating the jcdSNACPIC_Outbound Collaboration Business Rules

The jcdSNACPIC_Outbound Collaboration contains the Business Rules displayed in
Figure 21.

Figure 21 jcdSNACPIC_Outbound Business Rules

The logger.info(“SNAOut_CPIC: SNAOut: “Started”) Business Rule is displayed in
Figure 22.

Figure 22 jcdSNACPIC_Outbound Business Rule 1
SNA eWay Adapter User’s Guide 56 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
The Copy input.ByteArray to SNALU62eWay_1.DataOut Business Rule is displayed
in Figure 23.

Figure 23 jcdSNACPIC_Outbound Business Rule 2

The SNALU62eWay_1.CPICCalls.cmsend Business Rule is displayed in Figure 24.

Figure 24 jcdSNACPIC_Outbound Business Rule 3

The SNALU62eWay_1.CPICCalls.cmflus Business Rule is displayed in Figure 25.
SNA eWay Adapter User’s Guide 57 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 25 jcdSNACPIC_Outbound Business Rule 4

The logger.info(“SNAOut_CPIC: SNAOut: “Ended”) Business Rule is displayed in
Figure 26.

Figure 26 jcdSNACPIC_Outbound Business Rule 5

Sample code from the jcdSNACPIC_Outbound Collaboration includes the following:

package prjSNA_Sample_JCD;

public class jcdSNACPIC_Outbound
{

SNA eWay Adapter User’s Guide 58 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;

 public void receive(
com.stc.connector.appconn.file.FileTextMessage input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication
SNALU62eWay_1)
 throws Throwable
 {
 logger.info("SNAOut_CPIC: SNAOut: Started");
 SNALU62eWay_1.setDataOut(input.getByteArray());
 SNALU62eWay_1.getCPICCalls().cmsend();
 SNALU62eWay_1.getCPICCalls().cmflus();
 logger.info("SNAOut_CPIC: SNAOut: Ended");
 }

}

Anaylyzing the Collaboration Sample Code:

The first six lines of code in this Collaboration are created by the default Collaboration
wizard. As such, these lines of code will not be discussed here. However, keep in mind
that if you are creating a new Java Collaboration, your package name and class name
may differ. The next three lines of code tell the Collaboration from where to get the data
and to where the data should be sent.

Since the goal of this Collaboration is to handle incoming conversations, you need to
create an instance of the SNAInboundApplication interface in order to read
incoming conversation traffic. In order for the Collaboration to know to where the data
should be sent, you must create an instance of the FileApplication interface that
belongs to the File eWay. This will allow you to output incoming conversation traffic to
a file on the local system. Error handling is handled by the Throwable class.

One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the Collaboration is available, the next
step is to tell the Collaboration to listen to the incoming traffic. Listening to the
conversation traffic is performed by using the Helper recv() method (refer to the SNA
eWay Javadoc). In order to process the incoming traffic, a byte array, recv, is created.

Depending on the incoming conversation traffic, a logic loop is setup to tell the
Collaboration what to do with the incoming byte data. If no data is received (if (null
== input.getDataIn())), an output message is displayed, recv = "No data is
received.".getBytes(), before continuing to listen for any change in the data
stream. When an incoming data array is finally detected, the loop captures the data,
recv = input.getDataIn(), and sends it to the FileApplication interface for
further processing.

Since the goal is to output the collected data array to a file, the File eWay takes the input
data, as a byte array (FileClient_1.setByteArray(recv)), and writes the data
(FileClient_1.writeBytes()) to the file specified by the eWay properties. After the
data array from the incoming conversation is collected and output to a file, a final log
message is displayed, logger.info("SNAIn1: Ended.").
SNA eWay Adapter User’s Guide 59 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Creating the jcdSNAHelper_Inbound Collaboration Business Rules

The jcdSNAHelper_Inbound Collaboration contains the Business Rules displayed in
Figure 27.

Figure 27 jcdSNAHelper_Inbound Business Rules

The logger.info(“SNAIn_helper: SNAIn: “Started”) Business Rule is displayed in
Figure 28.

Figure 28 jcdSNAHelper_Inbound Business Rule 1

The input.recv Business Rule is displayed in Figure 29.
SNA eWay Adapter User’s Guide 60 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 29 jcdSNAHelper_Inbound Business Rule 2

The input.DataIn is equal to null condition within the if clause is displayed in Figure
15.

Figure 30 jcdSNAHelper_Inbound Business Rule 3

The Copy “No data Received”.Bytes to Data Received then clause within the
input.DataIn is equal to null condition is displayed in Figure 31.
SNA eWay Adapter User’s Guide 61 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 31 jcdSNAHelper_Inbound Business Rule 4

The Copy input.DataIn to DataReceived else clause within the input.DataIn is equal
to null condition is displayed in Figure 32.

Figure 32 jcdSNAHelper_Inbound Business Rule 5

The Copy DataReceived to FileClient_1.ByteArray Business Rule is displayed in
Figure 33.
SNA eWay Adapter User’s Guide 62 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 33 jcdSNAHelper_Inbound Business Rule 6

The FileClient_1.writeBytes Business Rule is displayed in Figure 34.

Figure 34 jcdSNAHelper_Inbound Business Rule 7

The loger.info(“SNAIn_helper: SNAIn: Ended”)Business Rule is displayed in Figure
35.
SNA eWay Adapter User’s Guide 63 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 35 jcdSNAHelper_Inbound Business Rule 8

Sample code from the jcdSNAHelper_Inbound Collaboration includes the following:

package prjSNA_Sample_JCD;

public class jcdSNAHelper_Inbound
{

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;

 public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication input,
com.stc.connector.appconn.file.FileApplication FileClient_1)
 throws Throwable
 {
 logger.info("SNAIn_helper: SNAIn: Started");
 input.recv();
 byte[] DataReceived;
 if (input.getDataIn() == null) {
 DataReceived = "No data received".getBytes();
 } else {
 DataReceived = input.getDataIn();
 }
 FileClient_1.setByteArray(DataReceived);
 FileClient_1.writeBytes();
 logger.info("SNAIn_helper: SNAIn: Ended");
 }

}

Anaylyzing the Collaboration Sample Code:

The first six lines of code in this Collaboration are created by the default Collaboration
wizard. As such, these lines of code will not be discussed here. However, keep in mind
that if you are creating a new Java Collaboration, your package name and class name
SNA eWay Adapter User’s Guide 64 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
may differ. The next three lines of code tell the Collaboration from where the data
should be retrieved and to where the data should be sent.

Since the goal of this Collaboration is to retrieve data from a file and send the data, you
need to create an instance of the SNAOutboundApplication interface in order to deliver
conversation traffic. In order for the Collaboration to know from where to retrieve the
data that is to be sent via the SNAOutboundApplication interface, you must create an
instance of the FileApplication interface that belongs to the File eWay. This will
allow you to read the data file on the local system. Error handling is handled by the
Throwable class.

One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the Collaboration is available, the next
step is to tell the Collaboration from where to retrieve the data that will be transmitted.
Using the getByteArray method available for the File eWay, the data can be read with
this: input.getByteArray().

A moderately simple construct of the SNAOutboundApplication interface can use this
getByteArray method to load the data into the send buffer before it is transmitted. In
order to load the data to the outbound buffer, you can use something similar to this:
SNALU62eWay_1.setDataOut(input.getByteArray()). This sets the content of the
outgoing payload buffer to the data found in the file.

After the payload buffer is filled with the contents of the conversation message to be
delivered, you can then send the message. Sending a message to can be performed by
using the CPIC cmsend() method of the exposed Java CPIC calls. Since the SNA CPIC
calls belong to getCPICCalls(), listening to the input looks like this:
input.getCPICCalls().cmsend(). After you initiate the send message activity, you
must to flush the contents of the payload buffer to ensure that all the data was sent and
to clean the buffer so that it can be used again, if the need arises. To flush the payload
buffer, you can use: SNALU62eWay_1.getCPICCalls().cmflus().

After the conversation traffic has been sent, a final log message is displayed,
logger.info("SNAIn1: Ended.").

Creating the jcdSNAHelper_Outbound Collaboration Business Rules

The jcdSNAHelper_Outbound Collaboration contains the Business Rules displayed in
Figure 36.

Figure 36 jcdSNAHelper_Outbound Business Rules

The logger.info(“SNAOut_helper: SNAOut: “Started”) Business Rule is displayed in
Figure 37.
SNA eWay Adapter User’s Guide 65 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 37 jcdSNAHelper_Outbound Business Rule 1

The Copy input.ByteArray to SNALU62eWay_1.DataOut Business Rule is displayed
in Figure 38.

Figure 38 jcdSNAHelper_Outbound Business Rule 2

The SNALU62eWay_1.send Business Rule is displayed in Figure 39.
SNA eWay Adapter User’s Guide 66 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Figure 39 jcdSNAHelper_Outbound Business Rule 3

The logger.info(“SNAOut_helper: SNAOut: “Ended”) Business Rule is displayed in
Figure 40.

Figure 40 jcdSNAHelper_Outbound Business Rule 4

Sample code from the jcdSNAHelper_Outbound Collaboration includes the following:

package prjSNA_Sample_JCD;

public class jcdSNAHelper_Outbound
{

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;

 public void receive(
com.stc.connector.appconn.file.FileTextMessage input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication
SNALU62eWay_1)
 throws Throwable
 {
 logger.info("SNAOut_helper: SNAOut: Started");
 SNALU62eWay_1.setDataOut(input.getByteArray());
SNA eWay Adapter User’s Guide 67 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
 SNALU62eWay_1.send();
 logger.info("SNAOut_helper: SNAOut: Ended");
 }

}

Anaylyzing the Collaboration Sample Code:

The first six lines of code in this Collaboration are created by the default Collaboration
wizard. As such, these lines of code will not be discussed here. However, keep in mind
that if you are creating a new Java Collaboration, your package name and class name
may differ. The next three lines of code tell the Collaboration from where the data
should be retrieved and to where the data should be sent.

Since the goal of this Collaboration is to retrieve data from a file and send the data, you
need to create an instance of the SNAOutboundApplication interface in order to deliver
conversation traffic. In order for the Collaboration to know from where to retrieve the
data that is to be sent via the SNAOutboundApplication interface, you must create an
instance of the FileApplication interface that belongs to the File eWay. This will
allow you to read the data file on the local system. Error handling is handled by the
Throwable class.

One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the Collaboration is available, the next
step is to tell the Collaboration to where the data that will be transmitted should be
sent. Using the getByteArray method available for the File eWay, the data can be read
with this: input.getByteArray().

A moderately simple construct of the SNAOutboundApplication interface can use this
getByteArray method to load the data into the send buffer before being transmitted.
In order to load the data to the outbound buffer, you can use something similar to this:
SNALU62eWay_1.setDataOut(input.getByteArray()). This sets the content of the
outgoing payload buffer to the data found in the file.

After the payload buffer is filled with the contents of the conversation message to be
delivered, you can then send the message. Sending a message can be performed by
using the Helper send() method of the exposed Java methods (refer to the SNA eWay
Javadoc). The send() method sends the outgoing payload (buffer) represented in the
OTD as node DataOut into the local LU’s send buffer for transmission to the partner TP
with confirmation flag. When the flag is true, a CPIC cmcfm will be called after the data
is sent. For the general logic flow of this helper function, you may need to refer to the
native interface
com.stc.connector.snalu62.jni.SNAInterface#send(boolean).

After the conversation traffic has been sent, a final log message is displayed,
logger.info("SNAIn1: Ended.").

4.4.5 Binding the eWay Components
The final step in creating a Connectivity Map is binding the eWay components together.
SNA eWay Adapter User’s Guide 68 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Steps required to bind eWay components together:

1 Double-click a Connectivity Map—in this example cmSNACPIC_Inbound—in the
Project Explorer tree. The cmSNACPIC_Inbound Connectivity Map appears in the
Enterprise Designers canvas.

2 Drag and drop the jcdSNACPIC_Inbound Collaboration from the Project Explorer
to the jcdSNACPIC_Inbound Service. The Service icon “gears” change from red to
green.

3 Double-click the jcdSNACPIC_Inbound Service. The jcdSNACPIC_Inbound
Binding dialog box appears.

4 Map the input SNALU62eWay (under Implemented Services) to the SNALU62
SNA External Application. To do this, click on SNALU62eWAy in the
jcdSNACPIC_Inbound Binding dialog box, and drag the cursor to the SNALU62
External Application in the Connectivity Map. A link is now visible between
SNALU62 and jcdSNACPIC_Inbound.

5 From the jcdSNACPIC_Inbound Binding dialog box, map FileClient_1 to the
FileClientOUT External Application, as seen in Figure 41.

Figure 41 Connectivity Map - Associating (Binding) the Project’s Components

6 Minimize the jcdSNACPIC_Inbound Binding dialog box by clicking the chevrons
in the upper-right corner.

7 Save your current changes to the Repository, and then repeat this process for each of
the other Connectivity Maps.

4.4.6 Creating an Environment
Environments include the external systems, Logical Hosts, Integration Servers and
message servers used by a Project and contain the configuration information for these
SNA eWay Adapter User’s Guide 69 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
components. Environments are created using the Enterprise Designer’s Environment
Editor.

Steps required to create an Environment:

1 From the Enterprise Designer’s Enterprise Explorer, click the Environment
Explorer tab.

2 Right-click the Repository and select New Environment. A new Environment is
added to the Environment Explorer tree.

3 Rename the new Environment to envSNAProj.

4 Right-click envSNAProj and select New > SNALU62 External System. Name the
External System esSNAOut. Click OK. esSNAOut is added to the Environment
Editor.

5 Right-click envSNAProj and select New > File External System. Name the External
System esFileClient. Click OK. esFileClient is added to the Environment Editor.

6 Right-click envSNAProj and select New > Logical Host. The LogicalHost1 box is
added to the Environment and LogicalHost1 is added to the Environment Editor
tree.

7 Right-click LogicalHost1 and select New > Sun SeeBeyond Integration Server. A
new Integration Server (IntegrationSvr1) is added to the Environment Explorer tree
under LogicalHost1. See Figure 42.

Figure 42 Environment Editor - envSNAProj

8 Save your current changes to the Repository.

4.4.7 Configuring the eWays
eWays facilitate communication and movement of data between the external
applications and the eGate system. Each Connectivity Map in the
prjSNA_Sample_JCD sample Project uses two eWays that are represented as nodes
between the External Applications and the Business Process. See Figure 43.
SNA eWay Adapter User’s Guide 70 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
You must configure eWay properties in both the Connectivity Map and the
Environment Explorer.

Figure 43 eWays in the cmSNACPIC_Inbound Connectivity Map

Configuring the eWay Properties

Steps required to configure the Inbound SNA eWay properties:

1 For the cmSNACPIC_Outbound and cmSNAHelper_Outbound Connectivity
Maps, double-click the FileIn eWay and modify the following property for your
system:

Input File Name: SNACPIC_input*.txt or SNAHelper_input*.txt

2 For the cmSNACPIC_Inbound and cmSNAHelper_Inbound Connectivity Maps,
double-click the FileOut eWay and modify the following property for your system:

Output File Name: SNACPIC_output%d*.dat or SNAHelper_output%d*.dat

Steps required to configure the Environment Explorer properties:

1 From the Environment Explorer tree, right-click the File External System
(esFileClient in this sample), and select Properties. The Properties Editor opens to
the File eWay Environment configuration.

2 Modify the Parameter Settings as required for your Environment, and click OK.

4.4.8 Configuring the Logical Host
Before you can execute any projects created with the SNA eWay, you must add the SNA
eWay Runtime JNI to the Logical Host.

1 If the Logical Host is not already installed, download and install the Logical Host as
described in the Sun Java Composite Application Platform Suite Installation Guide.

2 From the Environment Explorer, right-click the targeted environment and click
New Logical Host.

3 Launch the Enterprise Manager.

4 From the Enterprise Manager, click the DOWNLOADS tab.

5 Download and save the eWay Runtime JNI file to your local system.

FileClientOUT eWay

eaSNAOUT eWay
SNA eWay Adapter User’s Guide 71 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
A You are required to copy the the Runtime JNI file to one of the following two
folders:

<JavaCAPS51>\logicalhost\is\lib\

or

<JavaCAPS51>\logicalhost\is\domains\domain1\lib

where <JavaCAPS51> is the directory where the Sun Java Composite
Application Platform Suite is installed.

Note: If the Logical Host is running, it must be restarted to pickup the new JNI file.

SPARC64 logical host deployment

The SNA eWay is shipped with the Sparc64 Logical Host. The Java Virtual Machine
(JVM) for the Sparc64 Logical Host can be started in either 32-bit or 64-bit mode. By
default, the JVM is started in 32-bit mode. To properly deploy the logical host for Sparc
64, you must ensure that the JVM bit mode matches the bit size of the JNI bridge shared
library for the appropriate Brixton or SNAP-IX library that you installed in “Installing
the SNA eWay on an eGate supported system” on page 16.

If planning to host large EJB applications, the big EJB applications run more efficiently
on Solaris 9 with the JVM configured for 64-bit execution. To modify the logical host so
that the JVM starts in 64-bit mode, instead of the default 32-bit mode, you must first
perform all the procedures as specified in this section above before continuing.

To set the JVM to start in 64-bit mode:

1 Navigate to the Integration Server Administration Console.

2 Click the User Management tab.

3 Click the JVM Settings tab.

4 Click the JVM Options link.

5 Under the Options section, edit the appropriate settings to start the JVM in 64-bit
mode.

6 When you have completed any necessary changes, click the Save button.

4.4.9 Configuring for Logical Host Platforms
Specific logical host bootstrap procedures must be adhered to for this eWay.
Modifications to the bootstrap procedures are described below and should be
implemented according to the Logical Host platform:

Windows 2000/XP/Windows Server 2003 on page 73

Sparc (32-bit) on page 73

Sparc (64-bit) on page 74

Refer to theSun Java Composite Application Platform Suite Installation Guide for general
instructions on configuring the Logical Host.
SNA eWay Adapter User’s Guide 72 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Windows 2000/XP/Windows Server 2003

1 Ensure the stc_jnisna.dll resides in a directory specified in the system PATH
statement. Refer to “Installing the SNA eWay on an eGate supported system” on
page 16 for instructions on how to download and configure the stc_jnisna.dll
file.

2 Run the bootstrap.bat file.

IBM AIX 5L versions 5.2 and 5.3 (32-bit)

1 Ensure the libstc_jnisna.so file resides in a directory specified in the system
LIBPATH statement. Refer to “Installing the SNA eWay on an eGate supported
system” on page 16 for instructions on how to download and configure the
libstc_jnisna.so file.

2 Add the IBM Communication Server directory path (usr/lib/sna) to the system
LIBPATH.

3 From a command prompt, execute the following:

EXPORT OBJECT_MODE=32

EXPORT LIBPATH

4 Execute the bootstrap.sh file with the -32bit parameter (in addition to other
required parameters).

IBM AIX 5L versions 5.2 and 5.3 (64-bit)

1 Ensure the libstc_jnisna.so file resides in a directory specified in the system
LIBPATH statement. Refer to “Installing the SNA eWay on an eGate supported
system” on page 16 for instructions on how to download and configure the
libstc_jnisna.so file.

2 Add the IBM Communication Server directory path (usr/lib/sna) to the system
LIBPATH.

3 From a command prompt, execute the following:

EXPORT OBJECT_MODE=64

EXPORT LIBPATH

4 Execute the bootstrap.sh file.

Sparc (32-bit)

For Sparc 32-bit platforms, the SNA eWay supports two third-party SNA servers —
SNAP-IX, and Brixton. Both the SNAP-IX and Brixton libraries can be executed in either
32-bit or 64-bit modes. Refer to “Installing the SNA eWay on an eGate supported
system” on page 16 for instructions on how to download and configure the
libstc_jnisna.so file.

1 Ensure the runtime bridge library, libstc_jnisna.so, for either the SNA eWay -
Runtime sparc32 SNAP-IX bridge so or the SNA eWay - Runtime sparc32 Brixton
SNA eWay Adapter User’s Guide 73 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
bridge so, resides in a directory that is specified in the system
LD_LIBRARY_PATH.

2 Ensure that the Brixton or SNAP-IX 32-bit library directory is specified in the
system LD_LIBRARY_PATH.

3 Ensure the JVM for the Integration Server specified in your logical host is set to 32-
bits. Refer to “Configuring the Logical Host” on page 71 to configure the logical
host.

4 Execute the bootstrap.sh file.

Sparc (64-bit)

For bigger EJB applications hosted on Solaris 9, the 64-bit JVM has better performance.
If you run the SeeBeyond Integration Server JVM in 64-bit mode, you must also use the
64-bit JNI bridge shared library and the corresponding SNAP-IX or Brixton 64-bit
library.

1 Ensure the runtime bridge library, libstc_jnisna.so, for either the SNA eWay -
Runtime sparc64 SNAP-IX bridge so or the SNA eWay - Runtime sparc64 Brixton
bridge so reside in a directory that is specified in the system LD_LIBRARY_PATH.

2 Ensure that the Brixton or SNAP-IX 64-bit library directory is specified in the
system LD_LIBRARY_PATH.

3 Ensure the JVM for the Integration Server specified in your logical host is set to 64-
bits. Refer to “Configuring the Logical Host” on page 71 to configure the logical
host.

4 Execute the bootstrap.sh file.

Configuring the Integration Server

You must set your SeeBeyond Integration Server Password property before deploying
your Project.

1 From the Environment Explorer, right-click IntegrationSvr1 under your Logical
Host, and select Properties from the shortcut menu. The Integration Server
Properties Editor appears.

2 Click the Password property field under Sun SeeBeyond Integration Server
Configuration. An ellipsis appears in the property field.

3 Click the ellipsis. The Password Settings dialog box appears.

4 Enter STC as the Specific Value and as the Confirm Password, and click OK.

5 Click OK to accept the new property and close the Properties Editor.

For more information on deploying a Project see the Sun SeeBeyond Java™ Composite
Application Platform Suite Deployment Guide.
SNA eWay Adapter User’s Guide 74 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
4.4.10 Creating the Deployment Profile
A Deployment Profile is used to assign services and message destinations to the
Integration Server and message server. Deployment profiles are created using the
Deployment Editor.

Steps required to create the Deployment Profile:

1 From the Enterprise Explorer’s Project Explorer, right-click the
prjSNA_Sample_JCD Project and select New > Deployment Profile.

2 Enter a name for the Deployment Profile (for this sample dpSNA_JCD). Select
envSNAProj as the Environment and click OK.

3 From the Deployment Editor toolbar, click the Automap icon. The Project’s
components are automatically mapped to their system windows. See Figure 44.

Figure 44 Deployment Profile

4.4.11 Creating and Starting the Domain
To build and deploy your Project, you must first create a domain. A domain is an
instance of a Logical Host. After the domain is created, the Project is built and then
deployed.
SNA eWay Adapter User’s Guide 75 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
Note: You are only required to create a domain once when you install the Sun Java
Composite Application Platform Suite.

Steps required to create and start the domain:

1 Navigate to your <JavaCAPS51>\logicalhost directory (where <JavaCAPS51> is
the location of your Sun Java Composite Application Platform Suite installation).

2 Double-click the domainmgr.bat file. The Domain Manager appears.

3 If you have already created a domain, select your domain in the Domain Manager
and click the Start an Existing Domain button. Once your domain is started, a
green check mark indicates that the domain is running. Your domain will continue
to run unless you shut it down.

4 If there are no existing domains, a dialog box indicates that you can create a domain
now. Click Yes. The Create Domain dialog box appears.

5 Make any necessary changes to the Create Domain dialog box and click Create. The
new domain is added to the Domain Manager. Select the domain and click the Start
an Existing Domain button. Once your domain is started, a green check mark
indicates that the domain is running.

For more information about creating and managing domains see the eGate Integrator
System Administration Guide.

4.4.12 Building and Deploying the Project
The Build process compiles and validates the Project’s Java files and creates the Project
EAR file.

Build the Project

1 From the Deployment Editor toolbar, click the Build icon.

2 If there are any validation errors, a Validation Errors pane will appear at the bottom
of the Deployment Editor and displays information regarding the errors. Make any
necessary corrections and click Build again.

3 After the Build has succeeded you are ready to deploy your Project.

Deploy the Project

1 From the Deployment Editor toolbar, click the Deploy icon. Click Yes when the
Deploy prompt appears.

2 A message appears when the project is successfully deployed. You can now test
your sample.

4.4.13 Running the Sample
To run your deployed sample Project do the following:

1 From your configured input directory, paste (or rename) the sample input file to
trigger the eWay.

2 From your output directory, verify the output data.
SNA eWay Adapter User’s Guide 76 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Implementing the SNA eWay Sample Projects Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
SNA eWay Adapter User’s Guide 77 Sun Microsystems, Inc.

Appendix A

Working with SNA Collaborations

The intention of this appendix is to provide guidelines to using the SNA eWay when
you create SNA Java Collaborations and interfaces. Newly created Java Collaborations
that implement the SNA OTD consist of skeleton SNA functionality required to use the
Collaboration with your project. The Collaboration code generated upon SNA Java
Collaboration creation is discussed throughout Chapter 4.

An SNA conversation is the connection between the two transaction programs (TP).
When a TP want to communicate with another TP, it must first contact each of the other
potential TPs and determine their state. Each transaction program in the conversation
should be aware of the other TP and work together. If one side is expecting the other
side to do perform certain operations, and vise versa, you should ensure that the
behaviors are present, accurate, and accounted for; as, any change on one side of the
conversation may affect the other side.

1.5 Checking Conversation State
When writing Collaborations, it is a good programming procedure to check the pre-
condition and post-condition for any outstanding function call or major logic check-
point. Depending on the returned logic or function state, you can then determine the
next course of action. For example, after you call an SNA receive function, you should
check the lastReturnCode, exposed as an OTD node, as demonstrated below.

public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication
input, com.stc.connector.appconn.file.FileApplication

FileClient_1)
 throws Throwable

{
// it works along with project SNAOut1_Confirm which sends data

and
// requests confirmation.
// main logic: receive data over SNA, write it into file, then

confirm it.
logger.info("SNAIn1_Confirm: Started.");
// you can do whatever other logic before/after this CPIC

call according
// to your own actual case
input.getCPICCalls().cmrcv();
if (input.getLastReturnCode() !=

 input.getConstants().getReturnCodes().getCM_OK()) {
logger.error("SNAIn1_Confirm: cmrcv: Failed.");
SNA eWay Adapter User’s Guide 78 Sun Microsystems, Inc.

Appendix A Section 1.5
Working with SNA Collaborations Checking Conversation State
throw new Exception("SNAIn1_Confirm: cmrcv:
Failed.");

// or do your own error handling
}
//Conversation processing goes here

In the above example, a CPIC call, input.getCPICCalls().cmrcv(), is used to
accept an initiate conversation request. A getLastReturnCode is immediately called
on the inbound conversation to obtain the return code from the last SNA conversation-
related function call. The logic, as implemented here, checks to see if the returned code
from the cmrcv() call matches the return code value of getCM_OK. If the returned
codes match, the data from the conversation is captured and output to the target file as
specified in the remainder of the Collaboration code. If the return code obtained by the
input.getLastReturnCode() call does not match, an exception is thrown and logged.

Similar in construct to the previous example, this next inbound conversation code
segment uses the Confirmed (cmcfmd) CPIC call to send a confirmation reply to the
remote program confirmation request. The local and remote programs can use the
Confirmed and Confirm calls to synchronize their processing.

// you can do whatever other logic before/after this CPIC call
according

to your design
input.getCPICCalls().cmcfmd();
if (input.getLastReturnCode() !=

input.getConstants().getReturnCodes().getCM_OK()) {
logger.error("SNAIn1_Confirm: cmcfmd: Failed.");
throw new Exception("SNAIn1_Confirm: cmcfmd: Failed.");
// or do your own error handling

}
//Conversation processing goes here

To maintain the cohesion between the inbound conversation Collaboration and the
outbound conversation Collaboration, the outbound conversation code below will
request a confirmation of the conversation state before proceeding. Without the
outbound conversation Collaboration requesting the confirmation from the inbound
conversation Collaboration, it is possible that unexpected results could occur since the
confirmation codes are being sent to the requestor, even though the requestor didn’t ask
for confirmation.

SNALU62eWay_1.getCPICCalls().cmcfm();
if (SNALU62eWay_1.getLastReturnCode() !=

SNALU62eWay_1.getConstants().getReturnCodes().getCM_OK()) {
logger.error("SNAOut1_Confirm: cmcfm: Failed.");
throw new Exception("SNAOut1_Confirm: cmcfm: Failed.");
// or do your own error handling

}
//Conversation processing goes here

As you can see, the Confirm (cmcfm) call is used by the outbound conversation
Collaboration to send a confirmation request to the inbound conversation
Collaboration and then wait for a reply. The inbound conversation Collaboration
replies with a Confirmed (CMCFMD) call. The inbound and outbound conversation
Collaborations use the Confirm and Confirmed calls to synchronize their processing of
data.
SNA eWay Adapter User’s Guide 79 Sun Microsystems, Inc.

Appendix A Section 1.6
Working with SNA Collaborations Using CPIC Calls
If your design requires further conversation synchronization, you can check the
lastStatus (exposed as an OTD node) and/or check the lastConversationState
(exposed as an OTD node); in addition to, other confirmation status check calls (see the
SNA eWay Javadoc for additional information). Once the state is determined, your
program flow can be modified based on these expected or unexpected conversation
states. If you are not receiving expected returned values, you will know that something
is wrong and can process the conversation accordingly.

Depending on which type of Java calls you use in your Collaboration code, you will
need to select the proper calls that are related. A (non-exclusive) list of commly used
related confirmation methods is provided below:

cpic cmcfm()

cpic cmcfmd()

helper confirm()

helper confirmed()

helper send() or send(true)

helper recv() or recv(true)

1.6 Using CPIC Calls
For the users that want to use CPIC calls (cmxxxx) directly, the eWay and Integration
Server manage conversation initiation and termination. Normally, it is not necessary to
explicitly call the CPIC calls (e.g. cmaccp, cminit, cmdeal, etc.) that manage
conversation initiation and termination. Unless your design requires you to manage the
conversation on your own logic, of course risk also, you need not implement CPIC calls
for conversation handshakes.
SNA eWay Adapter User’s Guide 80 Sun Microsystems, Inc.

Appendix B

Implementing the SNA Custom Handshake
Class

To further utilize the capabilities of the SNA eWay, this appendix provides guidelines
for implementing a custom handshake class in a deployed Project. After the default
Collaboration is generated, you can then modify the Collaboration to suit your
application’s needs. While you will need to write your own code for both Inbound and
Outbound SNA modes, the following code is also provided as the source for the class
that is implemented in the eWay.

Sample Code for Inbound Mode:

package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;
import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/*
 * This is a sample class to implement the interface
SNACustomerHandshake.
 * It implements a simple Accept_Conversation scenario for windows
platform.
*/
public class SNACustomerHandshakeImplSampleAccept implements
SNACustomerHandshake {
 public static final String version = "cvs $Revision: 1.1.2.1.2.2 $
$Date: 2005/11/10 21:40:15 $";
 private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62."
+ getClass().getName());
 private String logMsg;

 /**
 * Constructor
 *
 */
 public SNACustomerHandshakeImplSampleAccept() {
 super();
 }
 /**
 * @see
com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation(
com.stc.connector.snalu62.api.SNACPICCalls)
 */
 public void startConversation(SNACPICCalls cpic) throws
SNAApplicationException {
 try {
 //do whatever checking logics before/after the following
CPIC call on your desires
SNA eWay Adapter User’s Guide 81 Sun Microsystems, Inc.

Appendix B Section
Implementing the SNA Custom Handshake Class
 cpic.cmsltp();

 //do whatever checking logics before/after the following
CPIC call on your desires
 cpic.cmaccp();
 if (!cpic.getConversationAttributes().returnCodeIs(0) &&
// 0: CM_OK
 !cpic.getConversationAttributes().returnCodeIs(35)) {
//35: CM_OPERATION_INCOMPLETE
 logMsg =
"SNACustomerHandshakeImplSampleAccept.startConversation(): The return
code is <"
 + cpic.getConversationAttributes().getReturnCode()
 + ">.";
 logger.error(logMsg);
 throw new SNAApplicationException(logMsg);
 }

 if (cpic.getConversationAttributes().returnCodeIs(35)) {
//35: CM_OPERATION_INCOMPLETE

logger.info("SNACustomerHandshakeImplSampleAccept.startConversation()
: About to call cmwait ...");
 //do whatever checking logics before/after the
following CPIC call on your desires
 cpic.cmwait();
 }

 if (!cpic.getConversationAttributes().returnCodeIs(0) ||
 !cpic.getConversationAttributes().convReturnCodeIs(0))
{ // 0: CM_OK
 logMsg =
"SNACustomerHandshakeImplSampleAccept.startConversation(): The
return_Code is <"
 + cpic.getConversationAttributes().getReturnCode()
 + "> and the conversation_Return_Code is <"
 +
cpic.getConversationAttributes().getConvReturnCode()
 + ">. SNA conversation is not established.";
 logger.error(logMsg);
 throw new SNAApplicationException(logMsg);
 }

 //do whatever other logics on your desires here
 //...
 } catch (Exception e) {
 logMsg =
"SNACustomerHandshakeImplSampleAccept.startConversation(): Failed.
Got exception ["
 + e.toString()
 + "].";
 logger.error(logMsg, e);
 throw new SNAApplicationException(logMsg, e);
 }

 }

}

Sample Code for Outbound Mode:

package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;
SNA eWay Adapter User’s Guide 82 Sun Microsystems, Inc.

Appendix B Section
Implementing the SNA Custom Handshake Class
import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/**
 * This is a sample class to implement the interface
SNACustomerHandshake.
 * It implements a simple Initialize_Conversation scenario for
windows platform.
*/
public class SNACustomerHandshakeImplSampleInitialize implements
SNACustomerHandshake {
 public static final String version = "cvs $Revision: 1.1.2.1.2.2 $
$Date: 2005/11/10 21:40:15 $";
 private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62."
+ getClass().getName());
 private String logMsg;

 /**
 * Constructor
 *
 */
 public SNACustomerHandshakeImplSampleInitialize() {
 super();
 }

 /**
 * @see
com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation(
com.stc.connector.snalu62.api.SNACPICCalls)
 */
 public void startConversation(SNACPICCalls cpic) throws
SNAApplicationException {
 try {
 //do whatever checking logics before/after the following
CPIC call on your desires
 cpic.cminit();

 //do whatever checking logics before/after the following
CPIC call on your desires
 cpic.cmssl();

 //do whatever checking logics before/after the following
CPIC call on your desires
 cpic.cmallc();
 if (!cpic.getConversationAttributes().returnCodeIs(0)) { /
/ 0: CM_OK
 logMsg =
"SNACustomerHandshakeImplSampleInitialize.startConversation(): The
return_Code is <"
 + cpic.getConversationAttributes().getReturnCode()
 + ">. SNA conversation is not established.";
 logger.error(logMsg);
 throw new SNAApplicationException(logMsg);
 }

 //do whatever other logics on your desires here
 //...
 } catch (Exception e) {
 logMsg =
"SNACustomerHandshakeImplSampleInitialize.startConversation():
Failed. Got exception ["
 + e.toString()
 + "].";
SNA eWay Adapter User’s Guide 83 Sun Microsystems, Inc.

Appendix B Section 1.7
Implementing the SNA Custom Handshake Class Importing a Custom Class
 logger.error(logMsg, e);
 throw new SNAApplicationException(logMsg, e);
 }

 }

}

1.7 Importing a Custom Class
1 On the Enterprise Designer’s Inbound SNA Connectivity Map, double-click the

SNA eWay icon.

Figure 45 Connectivity Map with Components - Inbound

The eWay Properties window appears, displaying the default properties for the
Inbound eWay.

SNA eWay
SNA eWay Adapter User’s Guide 84 Sun Microsystems, Inc.

Appendix B Section 1.7
Implementing the SNA Custom Handshake Class Importing a Custom Class
Figure 46 Inbound eWay Properties

2 Edit the Custom Handshake Class Name property in the Inbound Properties
window. For the sample code provided with the eWay, enter
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleAccept.

3 On the Enterprise Designer’s Outbound SNA Connectivity Map, double-click the
SNA eWay icon.

Figure 47 Connectivity Map with Components - Outbound

The eWay Properties window appears, displaying the default properties for the
Oubound eWay.

SNA eWay
SNA eWay Adapter User’s Guide 85 Sun Microsystems, Inc.

Appendix B Section 1.7
Implementing the SNA Custom Handshake Class Importing a Custom Class
Figure 48 Outbound eWay Properties

4 Edit the Custom Handshake Class Name property in the Outbound Properties
window. For the sample code provided with the eWay, enter
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleInitial
ize.

5 Redeploy your project (see Building and Deploying the Project on page 76 for
further information).

Steps when Building your own Class:

1 Prepare a JAR file that includes your built class.

2 From the Project Explorer, right-click the sample Project and select Import > File
from the shortcut menu.

Figure 49 Importing a JAR File - Project Folder
SNA eWay Adapter User’s Guide 86 Sun Microsystems, Inc.

Appendix B Section 1.7
Implementing the SNA Custom Handshake Class Importing a Custom Class
The Import Files window appears.

Figure 50 Import Files Window

3 Locate your JAR file and click Select. Your selected JAR file appears in the Selected
Import Files pane at the bottom of the Import Files window.

4 Click Import. Your selected JAR file appears in your sample Project’s folder in the
left pane of the Enterprise Designer.

5 Click the Import JAR file button on the Business Rules toolbar in the right pane of
Enterprise Designer.
SNA eWay Adapter User’s Guide 87 Sun Microsystems, Inc.

Appendix B Section 1.7
Implementing the SNA Custom Handshake Class Importing a Custom Class
Figure 51 Importing a JAR File - Collaboration

The Add/Remove JAR Files window appears.

Figure 52 Add/Remove JAR Files Window

6 Locate your JAR file and click Add. Your selected JAR file appears in the Imported
JAR Files pane.

7 Click Close. Your selected JAR file appears under your sample Project’s
Collaboration in the left pane of the Enterprise Designer.

Note: If you make any changes to the class, repeat steps 2 through 7.
SNA eWay Adapter User’s Guide 88 Sun Microsystems, Inc.

Appendix B Section 1.7
Implementing the SNA Custom Handshake Class Importing a Custom Class
The Java Collaboration can handle the SNA connection completely using the sample
Class
(com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleDummy).
This class has been implemented in the SNA eWay. The sample code for this custom
class is as follows:

package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;
import com.stc.connector.logging.Logger;
import com.stc.connector.snalu62.exception.SNAApplicationException;

/**
 * This is a sample class to implement the interface
SNACustomerHandshake.
 * It implements a dummy handshake. That is, the method
startConversation() does not perform a function.
 * No SNA conversation is established inside this implementation
 * class. You should establish the SNA conversation manually (e.g. in
the java Collaboration).
*/

public class SNACustomerHandshakeImplSampleDummy implements
SNACustomerHandshake {
 public static final String version = "cvs $Revision: 1.1.2.2 $
$Date: 2005/11/10 21:40:15 $";
 private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62."
+ getClass().getName());

 /**
 * Constructor
 *
 */
 public SNACustomerHandshakeImplSampleDummy() {
 super();
 }

 /**
 * @see
com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation(
com.stc.connector.snalu62.api.SNACPICCalls)
 */
 public void startConversation(SNACPICCalls cpic) throws
SNAApplicationException {

logger.info("SNACustomerHandshakeImplSampleDummy.startConversation():
Done nothing here.");

 }

}

SNA eWay Adapter User’s Guide 89 Sun Microsystems, Inc.

Index
Index

Numerics
32-bit 73
64-bit 74

JVM 72

A
alert codes, viewing 21
Automap 75

B
binding

dialog box 69

C
Collaboration

editor 47
configuring SNA eWay 23
Connection Level 27, 34
Connectivity Map

Inbound SNA eWay Properties 37, 39
conventions, text 14
CPIC 80

D
Deployment Profile

Automap 75

E
eWay Connectivity Map 23, 27
eWay environment properties 25
eWay plug-ins, installing 19
eWay Properties

Inbound SNA eWay Properties 37, 39

I
Importing sample Projects 44
Inbound SNA eWay Properties 37, 39
Installing

alert codes 21
eWay plug-ins 19
migration procedures 17
sample Projects and Javadocs 17

J
Javadocs, installing 17
JNI

upload JAR file 71
JVM

64-bit 72

L
Logical Host

configure 71
logical host

JVM 72

M
migration procedures 17

O
Object Type Definition 41
OTD 41
OTD Level 27, 34
overview

sample Projects 43

P
Persistent Storage Location 38
Project

importing 44

R
Resource Adapter Level 27, 34

S
sample Projects 44

overview 43
sample projects, installing 17
Setting Properties

configuring SNA eWay 23
eWay Connectivity Map 23, 27
eWay environment properties 25

SNA eWay Project
Importing 44
SNA eWay Adapter User’s Guide 90 Sun Microsystems, Inc.

Index
Sparc 73, 74
SPARC64

JVM 72
supporting documents 14

T
text conventions 14

W
Windows 73
SNA eWay Adapter User’s Guide 91 Sun Microsystems, Inc.

	eWAY™ SNA ADAPTER USER’S GUIDE
	Contents
	Introducing the SNA eWay
	1.1 About SNA
	1.1.1 Supported Logical Unit Types
	SNA LU6.2

	1.2 About the SNA eWay
	1.3 What’s New in This Release
	1.4 About This Document
	SNA eWay Javadoc
	1.4.1 Scope
	1.4.2 Intended Audience
	1.4.3 Text Conventions

	1.5 Related Documents
	1.6 Sun Microsystems, Inc. Web Site
	1.7 Documentation Feedback

	Installing the SNA eWay
	2.1 SNA eWay System Requirements
	2.2 Installing the SNA eWay
	2.2.1 Installing the SNA eWay on an eGate supported system
	Adding the eWay to an Existing Sun Java Composite Application Platform Suite Installation
	After Installation

	2.2.2 Extracting the Sample Projects and Javadocs

	2.3 ICAN 5.0 Project Migration Procedures
	2.4 Installing Enterprise Manager eWay Plug-Ins and Bridge Files
	2.4.1 Viewing Alert Codes

	Configuring the SNA eWay
	3.1 Creating and Configuring a SNA eWay
	3.2 Configuring the eWay Connectivity Map Properties
	3.3 Configuring the eWay Environment Properties
	3.4 eWay Connectivity Map Properties
	3.4.1 Connectivity Map Inbound eWay General Settings
	3.4.2 Connectivity Map Inbound eWay SNA Settings
	3.4.3 Connectivity Map Inbound eWay Connection Establishment
	3.4.4 Connectivity Map Inbound eWay Inbound Connection Management
	3.4.5 Connectivity Map Inbound eWay Inbound Schedules
	Listener Schedule
	Service Schedule

	3.4.6 Connectivity Map Outbound eWay General Settings
	3.4.7 Connectivity Map Outbound eWay SNA Settings
	3.4.8 Connectivity Map Outbound eWay Connection Establishment

	3.5 eWay Environment Properties
	3.5.1 SNALU62 Inbound eWay Properties
	SNA Settings
	General Settings
	MDB Pool Settings

	3.5.2 SNALU62 Outbound eWay Properties
	SNA Settings
	General Settings
	Connection Pool Settings

	3.6 Object Type Definitions (OTDs)

	Implementing the SNA eWay Sample Projects
	4.1 About the SNA eWay Sample Project
	4.2 Running the Sample Project
	4.3 Importing a Sample Project
	4.4 Building, Deploying, and Running the prjSNA_Sample_JCD Sample Project
	4.4.1 Creating a Project
	4.4.2 Creating a Connectivity Map
	Populating the Connectivity Map

	4.4.3 Creating the Collaboration Definitions (Java)
	jcdSNACPIC_Inbound Collaboration
	jcdSNACPIC_Outbound Collaboration
	jcdSNAHelper_Inbound Collaboration
	jcdSNAHelper_Outbound Collaboration

	4.4.4 Creating the Collaboration Business Rules
	4.4.5 Binding the eWay Components
	4.4.6 Creating an Environment
	4.4.7 Configuring the eWays
	Configuring the eWay Properties

	4.4.8 Configuring the Logical Host
	SPARC64 logical host deployment

	4.4.9 Configuring for Logical Host Platforms
	Windows 2000/XP/Windows Server 2003
	IBM AIX 5L versions 5.2 and 5.3 (32-bit)
	IBM AIX 5L versions 5.2 and 5.3 (64-bit)
	Sparc (32-bit)
	Sparc (64-bit)
	Configuring the Integration Server

	4.4.10 Creating the Deployment Profile
	4.4.11 Creating and Starting the Domain
	4.4.12 Building and Deploying the Project
	4.4.13 Running the Sample

	Working with SNA Collaborations
	1.5 Checking Conversation State
	1.6 Using CPIC Calls

	Implementing the SNA Custom Handshake Class
	1.7 Importing a Custom Class

	Index
	Numerics
	A
	B
	C
	D
	E
	I
	J
	L
	M
	O
	P
	R
	S
	T
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

