
SUN SEEBEYOND

IMPLEMENTING THE SUN
SEEBEYOND MATCH ENGINE WITH
eVIEW™ STUDIO

Release 5.1.3

Implementing the Sun SeeBeyond
Match Engine with eView Studio 2 Sun Microsystems, Inc.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun
Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents
listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in
other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms. This
distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo, Java, Sun Java Composite
Application Platform Suite, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex, eBAM, eWay, and JMS are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. This product is covered and
controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited.
Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but
not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est
décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuels peuvent inclure un ou plus
des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les
applications de brevet en attente aux Etats - Unis et dans les autres pays. L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties. Sun, Sun Microsystems, le logo Sun,
Java, Sun Java Composite Application Platform Suite, Sun, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex,
eBAM et eWay sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et
licenciée exclusivement par X/Open Company, Ltd. Ce produit est couvert à la législation américaine en matière de contrôle
des exportations et peut être soumis à la règlementation en vigueur dans d'autres pays dans le domaine des exportations et
importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer,
d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en
matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Part Number: 820-0936-10

Version 20070425124355

Section
Contents
Contents

List of Tables 8

Chapter 1

Introduction 10
About the Sun SeeBeyond Match Engine 10

What’s New in This Release 10

About This Document 11
What’s in This Document 11
Scope 12
Intended Audience 12
Text Conventions 12
Screenshots 12

Related Documents 13

Sun Microsystems, Inc. Web Site 13

Documentation Feedback 13

Chapter 2

The Sun SeeBeyond Match Engine 14
About the Matching Algorithm 14

Standardization and Matching 15

Data Types 15

How it Works 15

Matching Weight Formulation 16
Matching and Unmatching Probabilities 17
Agreement and Disagreement Weight Ranges 17

Chapter 3

Standardization Configuration Files 18
About Standardization Configuration Files 18

Standardization Configuration File Types 18
Implementing the Sun SeeBeyond
Match Engine with eView Studio 3 Sun Microsystems, Inc.

Section
Contents
Internationalization 19

Chapter 4

Matching Configuration Files 21
About Matching Configuration Files 21

The Match Configuration File 21
Match Configuration File Format 22

Sample 22
Probability Type 22
Matching Rules 23

Matching Comparison Functions 24

The Match Constants File 27

Chapter 5

eView Studio and the Sun SeeBeyond Match Engine 28
The Sun SeeBeyond Match Engine and eView Studio 28

Searching and Matching in eView Studio 28
The Standardization and Matching Process 29
The Match String 29
Field Identifiers 29
Match and Standardization Types 34
About Configuration File Modifications 36

Configuring the Matching Service 37
Standardization Configuration 37

Normalization Structures 37
Standardization Structures (Parsing and Normalization) 38
Phonetic Encoding Structures 39

Matching Configuration 40
Match and Standardization Engine Configuration 40
Phonetic Encoder Configuration 40

Implementing Domain-specific Standardization Files 41
Specifying a Domain Selector 41
Specifying Multiple Domains 42
Loading Standardization Files 44

Chapter 6

Person Data Type Configuration 45
Person Matching Overview 45

Person Data Processing Fields 45
Match String Fields 46
Standardized Fields 46
The Object Structure 46
Implementing the Sun SeeBeyond
Match Engine with eView Studio 4 Sun Microsystems, Inc.

Section
Contents
Match Configuration for Person Data 47

Standardization Configuration for Person Data 47
Common Standardization Files for Person Data 47

personFirstNameDash.dat 47
personNamePatt.dat 48
personRemoveSpecChars.dat 48

Domain-specific Standardization Files 48
personConjon*.dat 49
personConstants*.cfg 49
personFirstName*.dat 50
personGenSuffix*.dat 51
personLastNamePrefix*.dat 52
personLastName*.dat 52
personOccupSuffix*.dat 53
personThree*.dat 53
personTitle*.dat 53
personTwo*.dat 54
businessOrRelated*.dat 54

Customizing Person Data Configuration Files 55

Configuring the eView Studio Matching Service for Names 55
Configuring the Standardization Structure 55

Normalization Structures 56
Phonetic Encoding 57

Configuring the Match String 58

Chapter 7

Address Data Type Configuration 60
Address Matching Overview 60

Address Data Processing Fields 60
Match String Fields 61
Standardized Fields 61
The Object Structure 61

Match Configuration for Address Data 62

Standardization Configuration for Address Data 62
addressConstants*.cfg 63
addressClueAbbrev*.dat 63
addressInternalConstants*.cfg 64
addressMasterClues*.dat 65
addressPatterns*.dat 66
addressOutPatterns*.dat 68
Address Pattern File Components 69

Modifying Address Data Configuration Files 72

Configuring the eView Studio Matching Service 72
Configuring the Standardization Structure 73

Standardization Structures 73
Phonetic Encoding 75
Implementing the Sun SeeBeyond
Match Engine with eView Studio 5 Sun Microsystems, Inc.

Section
Contents
Configuring the Match String 75

Chapter 8

Business Names Data Type Configuration 77
Business Name Matching Overview 77

Business Name Processing Fields 77
Match String Fields 78
Standardized Fields 78
The Object Structure 78

Match Configuration for Business Names 79

Standardization Configuration for Business Names 79
bizConstants.cfg 79
bizAdjectivesTypeKeys.dat 80
bizAliasTypeKeys.dat 81
bizAssociationTypeKeys.dat 81
bizBusinessGeneralTerms.dat 82
bizCityorStateTypeKeys.dat 82
bizCompanyFormerNames.dat 83
bizCompanyMergerNames.dat 83
bizCompanyPrimaryNames.dat 84
bizConnectorTokens.dat 84
bizCountryTypeKeys.dat 85
bizIndustryCategoryCode.dat 85
bizIndustryTypeKeys.dat 86
bizOrganizationTypeKeys.dat 87
bizPatterns.dat 87
bizRemoveSpecChars.dat 90

Modifying Business Name Configuration Files 90

Configuring the eView Studio Matching Service 91
Configuring the Standardization Structure 91

Standardization Structures 91
Phonetic Encoding 93

Configuring the Match String 93

Appendix A

Fine-tuning Weights and Thresholds 94
Probabilities or Agreement Weights 95
Defining Relative Value 95
Determining the Weight Range 95
Comparison Functions 97
Specifying the Weight Thresholds 98
Fine-tuning the Thresholds 99
Implementing the Sun SeeBeyond
Match Engine with eView Studio 6 Sun Microsystems, Inc.

Section
Contents
Appendix B

Match Configuration Comparison Functions 100
Bigram String Comparator (b1) 101
Advanced Bigram String Comparator (b2) 101
Generic String Comparator (u) 101
Advanced Generic String Comparator (ua) 102
Simplified String Comparator (us) 102
Simplified String Comparator - FirstName (uf) 102
Simplified String Comparator - LastName (ul) 103
Simplified String Comparator - HouseNumber (un) 103
Language-specific String Comparator (usu) 103
Generic Number Comparator (n) 105
Integer Comparator (nI) 105
Real Number Comparator (nR) 105
Alpha-numeric Comparator (nS) 105
Date Comparator - Year only (dY) 107
Date Comparator - Month-Year (dM) 107
Date Comparator - Day-Month-Year (dD) 108
Date Comparator - Hour-Day-Month-Year (dH) 108
Date Comparator - Min-Hour-Day-Month-Year (dm) 108
Date Comparator - Sec-Min-Hour-Day-Month-Year (ds) 108

Glossary 111

Index 115
Implementing the Sun SeeBeyond
Match Engine with eView Studio 7 Sun Microsystems, Inc.

List of Tables
List of Tables

Table 1 Text Conventions 12

Table 2 Match Configuration File Columns 23

Table 3 Comparison Functions 25

Table 4 Standardization Field Identifiers 30

Table 5 Standardization Types 35

Table 6 Match Types 35

Table 7 Sun SeeBeyond Match Engine Standardization and Match Classes 40

Table 8 Phonetic Encoder Classes for the Sun SeeBeyond Match Engine 41

Table 9 Domain Selectors 42

Table 10 Domain Configuration Elements 43

Table 11 Hyphenated Name Category File 48

Table 12 Person Constants File Parameters 49

Table 13 First Name Category File 50

Table 14 Generational Suffix Category File 51

Table 15 Last Name Prefix Category File 52

Table 16 Last Name Category File 52

Table 17 Person Title Category File 53

Table 18 Address Constants File Parameters 63

Table 19 Address Clues File Columns 64

Table 20 Address Master Clue File Columns 65

Table 21 Address Patterns File 67

Table 22 Address Output Patterns File 68

Table 23 Input Address Pattern Type Tokens 69

Table 24 Output Address Pattern Tokens 70

Table 25 Business Constants File Parameters 80

Table 26 Alias Key Type File 81

Table 27 Association Type Key Table 81

Table 28 City or State Key Type File 82

Table 29 Business Former Name Reference File 83

Table 30 Business Merger Name Category File 83

Table 31 Business Primary Name Reference File 84

Table 32 Country Key Type Files 85
Implementing the Sun SeeBeyond
Match Engine with eView Studio 8 Sun Microsystems, Inc.

List of Tables
Table 33 Industry Sector Reference File 85

Table 34 Industry Key Type File 86

Table 35 Organization Key Type File 87

Table 36 Business Patterns File Components 88

Table 37 Business Name Input Pattern Tokens 89

Table 38 Business Name Output Pattern Tokens 90

Table 39 Sample Agreement and Disagreement Weight Ranges 96

Table 40 Sample m-probabilities and u-probabilities 96

Table 41 usu Comparison Function Parameter 103

Table 42 n, nI, and nR Comparison Function Parameters 105

Table 43 nS Comparison Function Parameters 105

Table 44 Date Comparison Function Parameters 107

Table 45 Prorated Comparison Function Parameters 109
Implementing the Sun SeeBeyond
Match Engine with eView Studio 9 Sun Microsystems, Inc.

Chapter 1

Introduction

This guide explains how to implement the Sun SeeBeyond Match Engine with
applications created by the Sun SeeBeyond eView™ Studio, referred to as eView Studio
throughout this guide. This chapter provides an overview of this guide and the
conventions used throughout, as well as a list of supporting documents and
information about using this guide.

What’s in This Chapter

About the Sun SeeBeyond Match Engine on page 10

What’s New in This Release on page 10

About This Document on page 11

Related Documents on page 13

Sun Microsystems, Inc. Web Site on page 13

Documentation Feedback on page 13

1.1 About the Sun SeeBeyond Match Engine
The Sun SeeBeyond Match Engine (SBME) provides data parsing, data standardization,
phonetic encoding, and record matching capabilities for master index applications
created by the Sun SeeBeyond eView™ Studio (eView Studio). Before records can be
compared to evaluate the possibility of a match, the data contained in those records
must be standardized and in certain cases phonetically encoded or parsed. Once the
data is conditioned, the match engine determines a match weight for each field defined
for matching. The match weight is based on your configuration of the match engine and
the fields on which matching is performed. The composite weight (the sum of weights
generated for all match fields in the records) indicates how closely two records match.

1.2 What’s New in This Release
For this release, no changes were made to the match engine. The names of the
comparison functions (or comparators) in the match configuration file were changed to
be more descriptive of the comparator types (this refers to the names used in this
document and not the name in the match configuration file itself).
Implementing the Sun SeeBeyond
Match Engine with eView Studio 10 Sun Microsystems, Inc.

Chapter 1 Section 1.3
Introduction About This Document
1.3 About This Document
This guide provides comprehensive information about working with the components
of the Sun SBME and implementing the match engine with eView Studio. As a
component of the Java Composite Application Platform Suite, eView Studio helps you
integrate information from disparate systems throughout your organization, using a
matching algorithm to identify data.

This guide includes complete descriptions of the components of the Sun SBME along
with information about customizing each component. It also describes how to
customize the eView Studio configuration files to define standardization and matching
fields for the Sun SBME. This guide is designed to be used in conjunction with the Sun
SeeBeyond eView Studio User’s Guide and the Sun SeeBeyond eView Studio Configuration
Guide.

1.3.1 What’s in This Document
This guide is divided into the following chapters and appendixes that cover the topics
shown below.

Chapter 1 “Introduction” gives a general preview of this document—its purpose,
scope, and organization—and provides sources of additional information.

Chapter 2 “The Sun SeeBeyond Match Engine” gives an overview of the Sun
SBME, the underlying matching algorithm, and the components of the match
engine.

Chapter 3 “Standardization Configuration Files” gives an overview of the
standardization configuration files and their purpose.

Chapter 4 “Matching Configuration Files” gives an overview of the matching
configuration files and a reference of the Sun SBME comparison functions.

Chapter 5 “eView Studio and the Sun SeeBeyond Match Engine” describes how
the Sun SBME works with an eView Studio master index.

Chapter 6 “Person Data Type Configuration”gives information and instructions
for customizing the standardization and matching configuration files for person
data, and also gives instructions for customizing the Match Field file.

Chapter 7 “Address Data Type Configuration”gives information and instructions
for customizing the standardization and matching configuration files for address
fields, and also gives instructions for customizing the Match Field file.

Chapter 8 “Business Names Data Type Configuration”gives information and
instructions for customizing the standardization and matching configuration files
for business name fields, and also gives instructions for customizing the Match
Field file.

Appendix A “Fine-tuning Weights and Thresholds” describes the process of fine-
tuning the matching logic and weight thresholds.

Appendix B “Match Configuration Comparison Functions” lists and describes the
comparison functions you can use with the Sun SBME.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 11 Sun Microsystems, Inc.

Chapter 1 Section 1.3
Introduction About This Document
1.3.2 Scope
This guide provides background information and instructions for implementing the
Sun SBME with an eView Studio master index. It includes descriptions of all
components and the default configuration, and also provides instructions for
customizing the eView Studio configuration files for the match engine.

This guide does not include information or instructions for installing or configuring
eView Studio. These topics are covered in the appropriate user guide (for more
information, see “Related Documents” on page 13).

1.3.3 Intended Audience
Any user who configures the eView Studio Matching Service (that is, the eView Studio
Project’s Match Field file) or creates or customizes the match engine configuration files
should read this book. A thorough knowledge of eView Studio is not needed to
understand this guide, but familiarity with the eView Studio configuration files
(especially the Match Field file) is recommended. A general understanding of basic
standardization and matching logic is helpful. It is presumed that the reader of this
guide is familiar with the type of data being stored in the master index and the
processing requirements for that data.

1.3.4 Text Conventions
The following conventions are observed throughout this document.

1.3.5 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document might differ from what you see on your system.

Table 1 Text Conventions

Text Convention Used For Examples

Bold Names of buttons, files, icons,
parameters, variables, methods,
menus, and objects

Click OK.
On the File menu, click Exit.
Select the eGate.sar file.

Monospaced Command line arguments, code
samples; variables are shown in
bold italic

java -jar filename.jar

Blue bold Hypertext links within
document

See Text Conventions on page 12

Blue underlined Hypertext links for Web
addresses (URLs) or email
addresses

http://www.sun.com
Implementing the Sun SeeBeyond
Match Engine with eView Studio 12 Sun Microsystems, Inc.

http://www.sun.com

Chapter 1 Section 1.4
Introduction Related Documents
1.4 Related Documents
Sun has developed a suite of user's guides and related publications that are distributed
in an electronic library. The following documents might provide information useful in
implementing the Sun SBME.

Sun SeeBeyond eView Studio User’s Guide

Sun SeeBeyond eView Studio Configuration Guide

Sun SeeBeyond eView Studio Reference Guide

1.5 Sun Microsystems, Inc. Web Site
The Sun Microsystems web site is your best source for up-to-the-minute product news
and technical support information. The site’s URL is:

http://www.sun.com

1.6 Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

CAPS_docsfeedback@sun.com
Implementing the Sun SeeBeyond
Match Engine with eView Studio 13 Sun Microsystems, Inc.

http://www.sun.com
mailto:CAPS_docsfeedback@sun.com

Chapter 2

The Sun SeeBeyond Match Engine

The Sun SeeBeyond Match Engine (SBME) is the standard match engine designed to
work with the master indexes created by eView Studio. It is highly configurable in the
eView Studio environment and can be used to match on various types of data.

This chapter provides information about the configurable components of the match
engine and how the Sun SBME standardizes and matches data.

What’s in This Chapter

About the Matching Algorithm on page 14

Standardization and Matching on page 15

Data Types on page 15

How it Works on page 15

Matching Weight Formulation on page 16

2.1 About the Matching Algorithm
The Sun SBME compares records containing similar data types by calculating how
closely the records match. The resulting comparison weight is either a positive or
negative numeric value that represents the degree to which the two sets of data are
similar. The match engine relies on probabilistic algorithms to compare data of a given
type using a comparison function specific to the type of data being compared. The
comparison functions for each matching field are defined in a match configuration file
that you can customize for the type of data you are indexing. The formula used to
determine the matching weight is based on either matching and unmatching
probabilities or on agreement and disagreement weight ranges.

The Sun SBME is also designed to standardize freeform text fields, such as street
address fields or business names. This allows the match engine to generate a more
accurate weight for freeform data.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 14 Sun Microsystems, Inc.

Chapter 2 Section 2.2
The Sun SeeBeyond Match Engine Standardization and Matching
2.2 Standardization and Matching
The Sun SBME matching algorithm uses a proven methodology to process and weight
records in the master index database. By providing both standardization and matching
capabilities, the match engine allows you to condition data prior to matching. You can
also use these capabilities to review legacy data prior to loading it into the database.
This review helps you determine data anomalies, invalid or default values, and missing
fields.

Both matching and standardization occur when two records are analyzed for the
probability of a match. Before matching, certain fields are normalized, parsed, or
converted into their phonetic values if necessary. The match fields are then analyzed
and weighted according to the rules defined in a match configuration file. The weights
for each field are combined to determine the overall matching weight for the two
records. After the match engine has performed these steps, survivorship is determined
by the master index, based on how the overall matching weight compares to the
duplicate and match thresholds of the master index. These thresholds are configured
for the eView Studio Manager Service in the Threshold file.

2.3 Data Types
You can standardize and match on different types of data with the Sun SBME. In its
default implementation with eView Studio, the match engine supports data
standardization and matching on the three primary types of data listed below.

Person Information (described in Chapter 6 “Person Data Type Configuration”)

Street Addresses (described in Chapter 7 “Address Data Type Configuration”)

Business Names (described in Chapter 8 “Business Names Data Type
Configuration”)

In addition, the Sun SBME provides comparison functions for matching on various
types of fields contained within the primary data types, such as numbers, dates, Social
Security Numbers, single characters, and so on.

When processing person information, the match engine assumes that each match field
is stored in a separate field. For street address and business name processing, eView
Studio is configured to parse freeform text fields for searching and matching. Each data
type requires specific customizations to the Match Field file in the eView Studio Project.

2.4 How it Works
The Sun SBME compares two records and returns a match weight indicating the
likelihood of a match between the two records. The three primary components of the
Sun SBME are the configuration files, the standardization engine, and the match
engine.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 15 Sun Microsystems, Inc.

Chapter 2 Section 2.5
The Sun SeeBeyond Match Engine Matching Weight Formulation
Configuration Files
The Sun SBME includes several sets of files that define standardization and
matching logic for all supported data types. One set is common to all national
domains, and one additional set is provided for the following national domains:
Australia, France, Great Britain, and the United States. You can customize these
files to adapt the standardization and matching logic to your specific needs.

Standardization Engine
Standardization involves converting non-standard data into a standardized form
for more accurate and efficient processing. Standardization consists of any one or
more of the following actions:

Parsing - separating a free-text field into its individual components, such as
street address information or a business name.

Normalization - changing the value of a field to a standard version, such as
changing a nickname to a common name.

Phonetic Encoding - changing the value of a field to its phonetic version. The
field to be converted can be the original field, a parsed field, a normalized field,
or a parsed and normalized field.

Using the person data type, for example, first names such as “Bill” and “Will” are
normalized to “William”, which is then phonetically converted. Using the street
address data type, street addresses are parsed into their component parts, such as
house numbers, street names, and so on. The street name is then phonetically
converted. Standardization logic is defined in the standardization engine
configuration files and in the StandardizationConfig section of the eView Studio
Match Field file, and is performed prior to assigning match weights.

Match Engine
Matching involves comparing two standardized records and returning a weight
that indicates the likelihood of a match between the two records. A higher weight
indicates a greater likelihood of a match. Matching criteria and logic are defined in
the match engine configuration files. The data fields that are sent to the Sun SBME
for matching, known as the match string, are defined in the MatchingConfig section
of the eView Studio Match Field file. The match engine configuration files define
how the match string is standardized and which matching rules to use to process
each match field.

2.5 Matching Weight Formulation
The Sun SBME determines the matching weight between two records by comparing the
match string fields between the two records using the rules defined in the match
configuration file and taking into account the matching logic specified for each field.
The Sun SBME can use either matching (m) and unmatching (u) conditional
probabilities or agreement and disagreement weight ranges to fine-tune the match
process. It uses the underlying algorithm to arrive at a match weight for each match
string field. The weight generated for each field in the match string indicates the level
of match between each field. The weights assigned to each field are then summed
Implementing the Sun SeeBeyond
Match Engine with eView Studio 16 Sun Microsystems, Inc.

Chapter 2 Section 2.5
The Sun SeeBeyond Match Engine Matching Weight Formulation
together for a total, composite matching weight between the two records. Agreement
and disagreement weight ranges or m-probabilities and u-probabilities are defined in
the match configuration file.

Matching and Unmatching Probabilities

When matching and unmatching conditional probabilities are used, the match engine
uses a logarithmic formula to determine agreement and disagreement weights between
fields. The m-probabilities and u-probabilities you specify determine the maximum
agreement weight and minimum disagreement weight for each field, and so define the
agreement and disagreement weight ranges for each field and for the entire record.
These probabilities allow you to specify which fields provide the most reliable
matching information and which provide the least. For example, in person matching,
the gender field is not as reliable as the SSN field for determining a match since a
person's SSN is more specific. Therefore, the SSN field should have a higher m-
probability than the gender field. The more reliable the field, the greater the m-
probability for that field should be.

If a field matches between two records, an agreement weight, determined by the
logarithmic formula using the m-probability and u-probability, is added to the
composite match weight for the record. If the fields disagree, a disagreement weight is
subtracted from the composite match weight. m-probabilities and u-probabilities are
expressed as double values between one and zero (excluding one and zero) and can
have up to 16 decimal points.

Agreement and Disagreement Weight Ranges

Defining agreement and disagreement weight ranges is a more direct way to
implement m-probabilities and u-probabilities. Like probabilities, the maximum
agreement and minimum disagreement weights you define for each field allow you to
define the relative reliability of each field; however, the match weight has a more linear
relationship with the numbers you specify. When you use agreement and disagreement
weight ranges to determine the match weight, you define a maximum weight for each
field when they are in complete agreement and a minimum weight for when they are in
complete disagreement. The Sun SBME assigns a matching weight to each field that
falls between the agreement and disagreement weights specified for the field. This
provides a more convenient and intuitive representation of conditional probabilities.

Using the SSN and gender field example above, the SSN field would be assigned a
higher maximum agreement weight and a lower minimum disagreement weight than
the gender field because it is more reliable. If you assign a maximum agreement weight
of “10” and two SSNs match, the match weight for that field is “10”. If you assign a
minimum disagreement weight of “-10” and two SSNs are in complete disagreement,
the match weight for that field is “-10”. Agreement and disagreement weights are
expressed as double values and can have up to 16 decimal points.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 17 Sun Microsystems, Inc.

Chapter 3

Standardization Configuration Files

The standardization configuration files for the Sun SeeBeyond Match Engine must
follow certain rules for formatting and interdependencies. This chapter provides an
overview of the types of configuration files provided for standardization, the
architecture of those files, and formatting descriptions.

What’s in This Chapter

About Standardization Configuration Files on page 18

Internationalization on page 19

3.1 About Standardization Configuration Files
The standardization configuration files define additional logic used by the Sun SBME
to standardize specific data types. This logic helps define how fields in incoming
records are parsed, standardized, and classified for processing. Standardization files
include data patterns files, category files, clues files, key type tables, constants files, and
reference files.

The standardization configuration files are stored in the eView Studio Project and
appear as nodes in the Standardization Engine node of the Project. Several
standardization files are common to all implementations of the Sun SBME, but each
national domain uses a subset of unique files. The common files are listed directly
under the Standardization Engine node of the eView Studio Project; the files unique to
each national domain are listed in individual sub-folders under the Standardization
Engine node.

3.1.1 Standardization Configuration File Types
Several different types of configuration files are included with the Sun SBME, each
providing specific information to help the engine standardize and match data
according to requirements. Several of these files are common to all supported
nationalities, but a small subset is specific to each.

Category Files
The Sun SBME uses category files when processing person or business names.
These files list common values for certain types of data, such as titles, suffixes, and
nicknames for person names or industries and organizations for business names.
Category files also define standardized versions of each term or classify the terms
Implementing the Sun SeeBeyond
Match Engine with eView Studio 18 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Standardization Configuration Files Internationalization
into different categories, and some files perform both functions. When processing
address files, category files named “clues files” are used.

Clues Files
The Sun SBME uses clues files when processing address data types. These files list
general terms used in street address fields, define standardized versions of each
term, and classify the terms into various component types using predefined address
tokens. These files are used by the standardization engine to determine how to
parse a street address into its various components. Clues files provide clues in the
form of tokens to help the engine recognize the component type of certain values in
the input fields.

Constants Files
The Sun SBME refers to constants files for information about the standardization
files, such as the maximum length of the files. For the address data type, the
constants file also describes input and output field lengths.

Patterns Files
The patterns files specify how incoming data should be interpreted for
standardization based on the format, or pattern, of the data. These files are used
only for processing data contained in freeform text fields that must be parsed prior
to matching (such as street address fields or business names). Patterns files list
possible input data patterns, which are encoded in the form of tokens. Each token
signifies a specific component of the freeform text field. For example, in a street
address field, the house number is identified by one token, the street name by
another, and so on. Patterns files also define the format of the output fields for each
input pattern.

Key Type Files
For business name processing, the Sun SBME refers to a number of key type files for
processing information. These files generally define standard versions of terms
commonly found in business names and some classify these terms into various
components or industries. These files are used by the standardization engine to
determine how to parse a business name into its different components and to
recognize the component type of certain values in the input fields.

Reference Files
Reference files define general terms that appear in input fields for each data type.
Some reference files define terms to ignore, and some define terms that indicate the
business name is continuing. For example, in business name processing “and” is
defined as a joining term. This helps the standardization engine to recognize that
the primary business name in “Martin and Sons, Inc.” is “Martin and Sons” instead
of just “Martin”. Reference files can also define characters to be ignored by the
standardization engine.

3.2 Internationalization
The Sun SBME supports addresses and names originating from Australia, France, Great
Britain, and the United States. Each national domain uses a set of common
standardization files and a smaller set of unique, domain-specific files to account for
Implementing the Sun SeeBeyond
Match Engine with eView Studio 19 Sun Microsystems, Inc.

Chapter 3 Section 3.2
Standardization Configuration Files Internationalization
international differences in address formats, names, and so on. These files are described
in detail in later chapters. You can process with your data with using the
standardization files for a single national domain or you can use multiple domains
depending on how the Match Field file is configured.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 20 Sun Microsystems, Inc.

Chapter 4

Matching Configuration Files

The matching configuration files for the Sun SeeBeyond Match Engine must follow
certain rules for formatting and interdependencies. This chapter provides an overview
of the two matching configuration files provided, the architecture of those files, and
formatting descriptions. It also provides a reference of comparison functions used in
the match configuration file.

What’s in This Chapter

About Matching Configuration Files on page 21

The Match Configuration File on page 21

The Match Constants File on page 27

4.1 About Matching Configuration Files
The matching configuration files define how the Sun SBME processes records to assign
matching probability weights, allowing the master index to identify matches, potential
duplicates, and non-matches. These files consist of two configurable files, the match
configuration file and the match constants file. Together these files define additional
logic for the Sun SBME to use when determining the matching probability between two
records. A third file, the internal match constants file, is read-only and used internally
by the match engine. It defines each comparison function and the comparison options.

The matching configuration files are very flexible, allowing you to customize the
matching logic according to the type of data stored in the master index and for the
record matching requirements of your business. The matching configuration files are
stored in the eView Studio Project and appear as nodes in the Match Engine node of
the Project. The Sun SBME typically standardizes the data prior to matching, so the
match process is performed against the standardized data.

4.2 The Match Configuration File
The match configuration file, matchConfigFile.cfg, contains the matching logic for
each field on which matching is performed. This file handles the matching logic for the
three primary data types (person names, business names, and addresses), and can also
Implementing the Sun SeeBeyond
Match Engine with eView Studio 21 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
handle generic data types, such as dates, numbers, social security numbers, and
characters.

The match configuration file defines matching logic for each field on which matching is
performed. The Sun SBME provides several comparison functions that you can call in
this file to fine-tune the match process. Comparison functions contain the logic to
compare different types of data in very specific ways in order to arrive at a match
weight for each field. These functions allow you to define how matching is performed
for different data types and can be used in conjunction with either matching and
unmatching probabilities or agreement and disagreement weight ranges for each field.
This file also defines how to handle missing fields.

4.2.1 Match Configuration File Format
The match configuration file is divided into two sections. The first section consists of
one line that indicates the matching probability type. The second section consists of the
matching rules to use for each match field.

Sample

Following is an excerpt from the default match configuration file. This excerpt
illustrates the components that are described in the following sections.

ProbabilityType 1

FirstName 15 0 uf 0.99 0.001 15 -5
LastName 15 0 ul 0.99 0.001 15 -5
String 25 0 ua 0.99 0.001 10 -5
DateDays 20 0 dD 0.99 0.001 10 -10 y 15 30
DateMonths 20 0 dM 0.99 0.001 10 -10 n
DateHours 20 0 dH 0.99 0.001 10 -10 y 30 60
DateMinutes 20 0 dm 0.99 0.001 10 -10 y 300 600
DateSeconds 20 0 ds 0.99 0.001 10 -10 y 75 60
Numeric 15 0 n 0.99 0.001 10 -10 y 8
Integer 15 0 nI 0.99 0.001 10 -10 n
Real 15 0 nR 0.99 0.001 10 -10 n
Char 1 0 c 0.99 0.001 5 -5
pro 15 0 p 0.99 0.001 10 -10 20 5 5

Probability Type

The first line of the match configuration file defines the probability type to use for
matching. Specify “0” (zero) to use m-probabilities and u-probabilities to determine a
field’s match weight; specify “1” (one) to use agreement and disagreement weight
ranges. If the probability type is set to use agreement and disagreement weight ranges,
the m-prob and u-prob columns in the matching rules section are ignored. Likewise, if
the probability type is set to use m-probabilities and u-probabilities, the agreement-
weight and disagreement-weight columns in the matching rules section are ignored.
The default is to use agreement and disagreement weight ranges because they are more
intuitive.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 22 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
Matching Rules

The section after the first line of the match configuration file contains match field rows,
with each row defining how a certain data type or field will be matched. The syntax for
this section is:

match-type size null-field function m-prob u-prob agreement-weight
disagreement-weight parameters

Table 2 describes each element in a match field row.

Table 2 Match Configuration File Columns

Column
Number

Column Name Description

1 match-type A value that indicates to the Sun SBME how each
field should be weighted. Each field included in the
match string (the MatchingConfig section of the
Match Field file) must have a match type
corresponding to a value in this column.

2 size The number of characters in the field on which
matching is performed, beginning with the first
character. For example, to match on only the first
four characters in a 10-digit field, the value of this
column should be “4”.

3 null-field An index that specifies how to calculate the total
weight for null fields or fields that only contain
spaces. You can specify any of the following values:

0 - (zero) If one or both fields are empty, the
weight used for the field is 0 (zero).
1 - (one) If both fields are empty, the agreement
weight is used; if only one field is empty, the
disagreement weight is used.
a# - An “a” followed by a number specifies to use
the agreement weight if both fields are empty. The
agreement weight is divided by the number
following the “a” to obtain the match weight for
that field. If no number is specified, the default is
“2”. You can specify any number from 1 through
10.
d# - A “d” followed by a number specifies to use
the disagreement weight if only one field is empty.
The disagreement weight is divided by the
number following the “d” to obtain the match
weight for the field. If no number is specified, the
default is “2”. You can specify any number from 1
through 10.

Note: In the above descriptions, the agreement and
disagreement weights are either specified in this file
or calculated using a logarithmic formula based on
the m and u-probabilities (depending on the
probability type).
Implementing the Sun SeeBeyond
Match Engine with eView Studio 23 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
4.2.2 Matching Comparison Functions
Match field comparison functions compare the values of a field in two records to
determine whether the fields match. The fields are then assigned a matching weight
based on the results of the comparison function. You can use several different types of
comparison functions in the match configuration file to define how the Sun SBME
should match the fields in the match string. The Sun SBME also provides several
options to use with each function. Table 3 summarizes each comparison function. A

4 function The type of comparison to perform when weighting
the field. For information about the available
comparison functions, see Match Configuration
Comparison Functions on page 100.

5 m-prob The initial probability that the specified field in two
records will match if the records match. The
probability is a double value between 0 and 1, and
can have up to 16 decimal points.

6 u-prob The initial probability that the specified field in two
records will match if the records do not match. The
probability is a double value between 0 and 1, and
can have up to 16 decimal points.

7 agreement-weight The matching weight to be assigned to a field given
that the fields match between two records. This
number can be between 0 and 100 and can have up
to 16 decimal points. It represents the maximum
match weight for a field.

8 disagreement-weight The matching weight to be assigned to a field given
that the fields do not match between two records.
This number can be between 0 and -100 and can
have up to 16 decimal points. It represents the
minimum match weight for a field.

9 parameters The parameters correspond to the comparison
function specified in column 4. Some comparison
functions do not take any parameters, and some
take multiple parameters. For additional information
about parameters, see Match Configuration
Comparison Functions on page 100.

Table 2 Match Configuration File Columns

Column
Number

Column Name Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 24 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
complete reference of the comparison functions and their parameters is included in
Appendix B “Match Configuration Comparison Functions”.

Table 3 Comparison Functions

Comparison
Function

Name Description

b1 Bigram String
Comparator

Based on the Bigram algorithm, this function compares
two strings using all combinations of two consecutive
characters and returns the total number of combinations
that are the same.

b2 Advanced Bigram
String Comparator

Similar to the standard Bigram comparison function (b1),
but allows for character transpositions.

u Generic String
Comparator

Based on the Jaro algorithm, this function compares two
strings taking into account uncertainty factors, such as
string length, transpositions, and characters in common.

ua Advanced Generic
String Comparator

Based on the Jaro algorithm with variants of Winkler/
Lynch and McLaughlin, this function is similar to the
generic string comparator (u), but increases the
agreement weight if the initial characters of each string
are exact matches. This comparison function takes into
account key punch and visual memory errors.

uf Simplified String
Comparator -
FirstName

Based on the generic string comparator (u), this function
is designed to specifically weight first name values. The
string is analyzed and the weight adjusted based on
statistical data.

ul Simplified String
Comparator -
LastName

Based on the generic string comparator (u), this function
is designed to specifically weight last name values. The
string is analyzed and the weight adjusted based on
statistical data.

un Simplified String
Comparator -
HouseNumber

Based on the generic string comparator (u), this function
is designed to specifically weight house number values.
The string is analyzed and the weight adjusted based on
statistical data.

us Simplified String
Comparator

A custom string comparator that compares two strings
taking into account such uncertainty factors as string
length, transpositions, key punch errors, and visual
memory errors. Unlike the generic string comparator
(“u”), this function handles diacritical marks. This
function also improves processing speed.

usu Language-specific
String Comparator

A custom string comparator similar to the “us”
comparator with the exception that it is based in
Unicode to support multiple languages and alphabets.
This comparator takes one parameter indicating the
language to use.

c Exact char-by-char
Comparator

Compares string fields character by character. Each
character must match in order for an agreement weight
to be assigned.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 25 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
n Generic Number
Comparator

Compares numeric fields using a relative distance value
to determine the match weight. As the difference
between the two fields increases, the match weight
decreases. Once the difference is beyond the relative
distance, a disagreement weight it assigned. This
comparator takes two parameters; the first indicates
whether to use a relative distance or direct string
comparison, and the second indicates the relative
distance to use.

nI Integer Comparator Compares integer fields using a relative distance
comparison. This comparison function is based on the
generic number comparator (n), and accepts the same
parameters.

nR Real Number
Comparator

Compares fields containing real numbers using a
relative distance comparison. This comparison function
is based on the generic number comparator (n), and
accepts the same parameters.

nS Alpha-Numeric
Comparator

Compares social security numbers or other unique
identifiers, taking into account any of these parameters:

Field length
Character types
Invalid values

dY Date Comparator -
Year only

Compares year values using relative distance values
prior to and following the given year to determine the
match weight. As the difference between the two fields
increases, the match weight decreases. Once the
difference is beyond the relative distance, a
disagreement weight is assigned. The date comparison
functions handle Gregorian years. This comparator takes
up to three parameters; the first indicates whether to
use a relative distance or direct string comparison, and
the second and third indicate the relative distance
before and after.

dM Date Comparator -
Month-Year

Compares the month and year using a relative distance
as described above for the year comparison function
(dY).

dD Date Comparator -
Day-Month-Year

Compares the day, month, and year using a relative
distance as described above for the year comparison
function (dY).

dH Date Comparator -
Hour-Day-Month-
Year

Compares the hour, day, month, and year using a
relative distance as described above for the year
comparison function (dY).

dm Date Comparator -
Min-Hour-Day-
Month-Year

Compares the minute, hour, day, month, and year using
a relative distance as described above for the year
comparison function (dY).

Table 3 Comparison Functions

Comparison
Function

Name Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 26 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Matching Configuration Files The Match Constants File
4.3 The Match Constants File
The match constants file, matchConstants.cfg, defines certain configurable constants
used by the match engine. This file includes four parameters, but currently only the
first parameter, nFields, is used. This parameter defines the maximum number of fields
being used for matching. This must be equal to or greater than the number of fields
defined in the match-columns element of the eView Studio Match Field file. The match
constants file defines the following constants for the match engine.

nFields

This constant defines the maximum number of different matching fields. You can enter
any integer, but this number must be equal to or greater than the number of fields
defined in the match-columns elements in the eView Studio Match Field file.

maxFreqTableSize

This constant is only used when frequency tables are used. This is not currently
available and this constant is ignored.

maxNumberTables

This constant is only used when frequency tables are used. This is not currently
available and this constant is ignored.

mcls

This constant is only used when the generic-type frequency tables are used. This is not
currently available and this constant is ignored.

ds Date Comparator -
Sec-Min-Hour-Day-
Month-Year

Compares the second, minute, hour, day, month, and
year using a relative distance as described above for the
year comparison function (dY).

p Prorated
Comparator

Prorates the disagreement weight for a date or numeric
field based on values you specify. Differences greater
than the amount you specify receive the full
disagreement weight. This comparator takes three
parameters indicating the relative distance and the
agreement and disagreement ranges.

Table 3 Comparison Functions

Comparison
Function

Name Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 27 Sun Microsystems, Inc.

Chapter 5

eView Studio and the Sun SeeBeyond
Match Engine

Implementing the Sun SeeBeyond Match Engine with an eView Studio master index
requires some customization to the Match Field file in the eView Studio Project. You
can also customize the Sun SBME configuration files to better suit your data
standardization and matching requirements.

This chapter provides information about the required customizations, and how the
Match Field file corresponds to the configuration files.

What’s in This Chapter

The Sun SeeBeyond Match Engine and eView Studio on page 28

Configuring the Matching Service on page 37

Implementing Domain-specific Standardization Files on page 41

5.1 The Sun SeeBeyond Match Engine and eView Studio
eView Studio master index applications use the Sun SBME specifically for
standardization and probabilistic weighting, while the master index determines
survivorship. This process relies on the logic specified in the configuration files of the
eView Studio Project and of the Sun SBME.

5.1.1 Searching and Matching in eView Studio
When a new record is passed to the master index database, the index selects a subset of
possible matches from the database. The master index then uses the Sun SBME’s
matching algorithm to assign a matching probability weight for each record in this
subset (known as the candidate selection pool). To create the candidate selection pool, the
master index makes a series of query passes of the existing data, searching for matches
on specific combinations of data. These combinations are defined by the blocking
query, which is defined in the Candidate Select file and specified in the Threshold file.

Matching is performed on the fields included in the match string in the Match Field file.
Each field is assigned a matching weight. The weights for each field are summed to
determine the matching probability weight for the entire record (known as the
composite weight). Before matching on some fields, such as the first name, the index
Implementing the Sun SeeBeyond
Match Engine with eView Studio 28 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
might standardize the field based on information in the standardization files. You can
customize how each field is weighted in the match configuration file.

5.1.2 The Standardization and Matching Process
The standardization and matching processes use logic that is defined by a combination
of Sun SBME configuration files and eView Studio configuration files. During the
standardization and match processes, the following occurs.

1 The Sun SBME receives an incoming record.

2 The Sun SBME standardizes the fields specified for parsing, normalization, and
phonetic encoding. These fields are defined in the StandardizationConfig section
of the Match Field file and the rules for standardization are defined in the Sun
SBME standardization configuration files.

3 eView Studio queries the database for a candidate selection pool (records that are
possible matches) using the specified blocking query. If the blocking query uses
standardized or phonetic fields, the criteria values are obtained from the database.

4 For each possible match, eView Studio creates a match string (based on the match
columns in MatchingConfig) and sends the string to the Sun SBME.

5 The Sun SBME checks the incoming record against each possible match, producing
a matching weight. Matching is performed using the weighting rules defined in the
match configuration file.

5.1.3 The Match String
The data string that is passed to the Sun SBME for match processing is called the match
string and is defined in the MatchingConfig section of the Match Field file. The Sun
SBME configuration files, the blocking query, and the matching configuration are
closely linked in the search and matching processes. The blocking query defines the
select statements for creating the candidate selection pool during the matching process.
The matching configuration defines the match string that is passed to the Sun SBME
from the records in the candidate selection pool. Finally, the Sun SBME configuration
files define how the match string is processed.

The Sun SBME configuration files are dependent upon the match string, and it is very
important when you modify the match string to ensure that the match type you specify
corresponds to the correct row in the match configuration file (matchConfigFile.cfg).
For example, if you are using person matching and add “MaritalStatus” as a match
field, you need to specify a match type for the MaritalStatus field that is listed in the
first column of the match configuration file. You must also make sure that the matching
logic defined in the corresponding row of the match configuration file is defined
appropriately for matching on the MaritalStatus field.

5.1.4 Field Identifiers
The Sun SBME breaks down fields into various components. For example, it breaks
addresses into floor number, street number, street name, street direction, and so on.
Some of these components are similar and are typically stored in the same field in the
Implementing the Sun SeeBeyond
Match Engine with eView Studio 29 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
database. In the default configuration, for example, when the standardization engine
finds a house number, rural route number, or PO box number, the value is stored in the
HouseNumber database field. You can customize this as needed, as long as any field
you specify to store a component is also included in the defined object structure.

The Sun SBME uses field identifiers to determine how to process fields that are defined
for normalization or parsing. The IDs are defined internally in the match engine and are
referenced in the Match Field file. The field IDs you specify for each field in the Match
Field file determine how that field is processed by the standardization engine. The field
IDs for person names determine how each name is normalized. The field IDs for
business names specify which business type key file to use for standardization. The
field IDs for addresses determine which database fields store each field component and
how each component is standardized.

Table 4 lists each field component generated by the Sun SBME along with their
corresponding field IDs. You can only specify the predefined field IDs that are listed in
this table.

Table 4 Standardization Field Identifiers

Field ID Description

Person Name Standardization Field Identifiers

FirstName Specifies a first name field for normalization.

LastName Specifies a last name field for normalization.

Address Standardization Field Identifiers

HouseNumber Specifies the parsed house number from a
standardized address field. By default, this is
stored in the <field_name>_HouseNo field (or
the HouseNumber field for eIndex SPV).

RuralRouteIdentif Specifies the parsed rural route identifier from
a standardized address field. By default, this is
stored in the <field_name>_HouseNo field (or
the HouseNumber field for eIndex SPV).

BoxIdentif Specifies the parsed PO box number from a
standardized address field. By default, this is
stored in the <field_name>_HouseNo field (or
the HouseNumber field for eIndex SPV).

MatchStreetName Specifies the parsed and standardized street
name from a standardized address field and is
used internally by the match engine. If you
want to store the standardized street name in
the database (recommended), map this field to
the street name field in the database. By
default, this is stored in the
<field_name>_StName field (or the
StreetName field for eIndex SPV).
Implementing the Sun SeeBeyond
Match Engine with eView Studio 30 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
OrigStreetName Specifies the parsed street name from an
address field. If you want to store the original
street name in the database, map this field to
the street name field in the database. This
address component is not included in the
default standardization structure, but you can
add it if needed.

RuralRouteDescript Specifies the parsed rural route description
from a standardized address field. By default,
this is stored in the <field_name>_StName
field (or the StreetName field for eIndex SPV).

BoxDescript Specifies the PO box type from a standardized
address field. By default, this is stored in the
<field_name>_StName field (or the
StreetName field for eIndex SPV).

PropDesPrefDirection Specifies the parsed property direction from a
standardized address field. This field ID
handles cases where the direction is a prefix to
the property description. By default, this is
stored in the <field_name>_StDir field (or the
StreetDir field for eIndex SPV).

PropDesSufDirection Specifies the parsed property direction from a
standardized address field. This field ID
handles cases where the direction is a suffix to
the property description. By default, this is
stored in the <field_name>_StDir field (or the
StreetDir field for eIndex SPV).

StreetNamePrefDirection Specifies the parsed street direction from a
standardized address field. This field ID
handles cases where the direction is a prefix to
the street name. By default, this is stored in the
<field_name>_StDir field (or the StreetDir field
for eIndex SPV).

StreetNameSufDirection Specifies the parsed street direction from a
standardized address field. This field ID
handles cases where the direction is a suffix to
the street name. By default, this is stored in the
<field_name>_StDir field (or the StreetDir field
for eIndex SPV).

StreetNameSufType Specifies the parsed street type from a
standardized address field. This field ID
handles cases where the street type is a suffix
to the street name. By default, this is stored in
the <field_name>_StType field (or the
StreetType field for eIndex SPV).

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 31 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
StreetNamePrefType Specifies the parsed street type from a
standardized address field. This field ID
handles cases where the street type is a prefix
to the street name. By default, this is stored in
the <field_name>_StType field (or the
StreetType field for eIndex SPV).

PropDesSufType Specifies the parsed property type from a
standardized address field. This field ID
handles cases where the street type is a suffix
to the property description. By default, this is
stored in the <field_name>_StType field (or
the StreetType field for eIndex SPV).

PropDesPrefType Specifies the parsed property type from a
standardized address field. This field ID
handles cases where the street type is a prefix
to the property description. By default, this is
stored in the <field_name>_StType field (or
the StreetType field for eIndex SPV).

HouseNumPrefix Specifies the parsed house number prefix from
a standardized address field (such as the “A” in
“A 1587 4th Street”). This address component is
not included in the default standardization
structure, but you can add it if needed.

SecondHouseNumberPrefix Specifies the parsed second house number
prefix from a standardized address field (such
as “25” in “25 319 10th Ave.”). This address
component is not included in the default
standardization structure, but you can add it if
needed.

SecondHouseNumber Specifies the parsed second house number
prefix from a standardized address field. This
address component is not included in the
default standardization structure, but you can
add it if needed.

HouseNumSuffix Specifies the parsed house number suffix from
a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

OrigSecondStreetName Specifies the parsed second street name from
a standardized address field (for example, an
address might include a cross-street or a
thoroughfare and dependent thoroughfare).
This address component is not included in the
default standardization structure, but you can
add it if needed.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 32 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
SecondStreetNameSufDirection Specifies the parsed second street direction
from a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

SecondStreetNameSufType Specifies the parsed second street type from a
standardized address field.This address
component is not included in the default
standardization structure, but you can add it if
needed.

StreetNameExtensionIndex Specifies the parsed street name extension
from a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

WithinStructDescript Specifies the parsed internal descriptor (such
as “Floor”) from a standardized address field.
This address component is not included in the
default standardization structure, but you can
add it if needed.

WithinStructIdentif Specifies the parsed internal identifier (such as
a floor number) from a standardized address
field. This address component is not included
in the default standardization structure, but
you can add it if needed.

OrigPropertyName Specifies the parsed original property name
(such as the name of a complex or business
park) from a standardized address field. This
address component is not included in the
default standardization structure, but you can
add it if needed.

MatchPropertyName Specifies the parsed match property name
from a standardized address field and is used
internally by the match engine for blocking
and phonetic encoding. This address
component is not included in the default
standardization structure, but you can add it if
needed.

CenterDescript Specifies the parsed structure description from
a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 33 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
5.1.5 Match and Standardization Types
The Match Field file in the eView Studio Project uses indicators to reference the type of
matching and standardization to perform on each field. You must specify one of these
indicators, called match types and standardization types, for the fields you define for
standardization or matching. The match types correspond to the match types listed in
the first column of the match configuration file (matchConfigFile.cfg). The
standardization types are defined internally in the match engine. The Sun SBME uses
these types to determine how to process each field.

Table 5 lists the default standardization types; Table 6 lists the default match types. You
can modify the match type names, but not the standardization type names. For more
information about match and standardization types, see “Match and Standardization
Types” in the Sun SeeBeyond eView Studio User’s Guide. Note that the match types you

CenterIdentif Specifies the parsed structure identifier from a
standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

ExtraInfo Specifies any extra information that was not
included in any of the other parsed
components. This address component is not
included in the default standardization
structure, but you can add it if needed.

Business Name Standardization Field Identifiers

PrimaryName Specifies the field containing the parsed name
in a freeform text business name field.

OrgTypeKeyword Specifies the field containing the parsed
organization type in a freeform text business
name field.

AssocTypeKeyword Specifies the field containing the parsed
association type in a freeform text business
name field.

IndustrySectorList Specifies the field containing the parsed
industry sector in a freeform text business
name field.

IndustryTypeKeyword Specifies the field containing the parsed
industry type in a freeform text business name
field (industry type is a subset of the sector).

AliasList Specifies the field containing the parsed alias
in a freeform text business name field.

Url Specifies the field containing the parsed URL
in a freeform text business name field.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 34 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
can specify in the Match Field file (listed in Table 6) are not the same values you specify
for the Match Type field drop-down list in the eView Studio Wizard.

The standardization types listed above correspond to the three categories of match
types listed below. You can also specify miscellaneous match types, which do not
correspond to any standardization types.

Table 5 Standardization Types

This indicator ... processes this data type ...

Address Freeform street address fields.

PersonName Pre-parsed name fields (including any first,
middle, last, or alias names).

BusinessName Freeform business names.

Table 6 Match Types

This indicator ... processes this data type ...

Business Name Match Types

PrimaryName The parsed name field of a business name.

OrgTypeKeyword The parsed organization type field of a
business name.

AssocTypeKeyword The parsed association type field of a
business name.

AliasList The parsed alias type field of a business
name.

IndustrySectorList The parsed industry sector field of a
business name.

IndustryTypeKeyword The parsed industry type field of a business
name.

Url The parsed URL field of a business name.

Address Match Types

StreetName The parsed street name field of a street
address.

HouseNumber The parsed house number field of a street
address.

StreetDir The parsed street direction field of a street
address.

StreetType The parsed street type field of a street
address.

Person Name Match Types

FirstName A first name field, including middle name,
alias first name, and alias middle name fields.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 35 Sun Microsystems, Inc.

Chapter 5 Section 5.1
eView Studio and the Sun SeeBeyond Match Engine The Sun SeeBeyond Match Engine and eView Studio
5.1.6 About Configuration File Modifications
The Sun SBME configuration files are designed to perform very specific functions in the
standardization and match processes. These files should only be modified by personnel
with an understanding of the Sun SBME and an understanding of the data integrity
requirements of your organization. Sun recommends that any modifications to both the
eView Studio configuration files and the Sun SBME configuration files be made while
the master index is in the pre-production stages. Modifying the files after the master
index has moved into production might cause variances in matching weights and data
processing.

The most common modifications to the Sun SBME configuration files are generally in
the match configuration file, where you can fine-tune the weighting process. This file
defines probabilities used by the algorithm to determine a matching probability weight
for each match field. You can use the match comparison functions provided by the Sun
SBME to fine-tune the matching logic in this file. Another common modification is
inserting additional names or terms into category files, such as the first name category
file (personFirstName*.dat).

LastName A last name field, including alias last name
fields.

Date Match Types

DateDays The day, month, and year of a date field.

DateMonths The month and year of a date field.

DateHours The hour, day, month, and year of a date
field.

DateMinutes The minute, hour, day, month, and year of a
date field.

DateSeconds The seconds, minute, hour, day, month, and
year of a date field.

Miscellaneous Match Types

String A generic string field.

Numeric A numeric field.

Integer A field containing integers.

Real A field containing real numbers.

SSN A field containing a social security number.

Char A field containing a single character.

pro Any field on which you want the Sun SBME
to use prorated weights.

Exac Any field you want the Sun SBME to match
character for character.

Table 6 Match Types

This indicator ... processes this data type ...
Implementing the Sun SeeBeyond
Match Engine with eView Studio 36 Sun Microsystems, Inc.

Chapter 5 Section 5.2
eView Studio and the Sun SeeBeyond Match Engine Configuring the Matching Service
Depending on your data requirements, you might need to modify additional
standardization files. Some of the patterns files (most notably the address patterns files)
are very complex and should only be modified by personnel who thoroughly
understand the defined patterns and tokens. If you modify standardization files, make
sure you modify them for each national domain specified in the Match Field file.

5.2 Configuring the Matching Service
To configure an eView Studio master index for specific data types and for the Sun
SBME, you must customize the Matching Service by modifying the Match Field file in
the eView Studio Project. Configuring the matching service consists of the following
four tasks.

Standardization Configuration on page 37

Matching Configuration on page 40

Match and Standardization Engine Configuration on page 40

Phonetic Encoder Configuration on page 40

5.2.1 Standardization Configuration
The StandardizationConfig section of the Match Field file determines which fields are
normalized, parsed, or phonetically encoded and defines the nationality of the data
being processed. The standardization section includes the following structures.

Normalization Structures on page 37

Standardization Structures (Parsing and Normalization) on page 38

Phonetic Encoding Structures on page 39

The StandardizationConfig section defines fields that will be normalized, fields that
will be parsed and normalized, and fields that will be phonetically encoded. The
standardization types you specify in this section correspond to the match configuration
file; the field IDs you can specify are listed in Table 4 on page 30.

Normalization Structures

The normalization structure defines fields that are already parsed, but need to be
normalized. It also tells the Sun SBME where to place the normalized data in the object
structure. Matching on any of these fields is determined by the match string and the
logic is defined in the match configuration file.

Of the three data types processed by the Sun SBME, only the person name data type is
expected to provide information in fields that are already parsed; that is, the first, last,
and middle names appear in separate fields, as do the suffix, title, and so on. The
person standardization files define logic for normalizing person name fields. By
default, only person first, last, and middle names and the alias first, last, and middle
names are defined for normalization. You can specify additional name fields for
Implementing the Sun SeeBeyond
Match Engine with eView Studio 37 Sun Microsystems, Inc.

Chapter 5 Section 5.2
eView Studio and the Sun SeeBeyond Match Engine Configuring the Matching Service
normalization, such as maiden name, spouse’s name, and so on. For each normalization
structure, you must specify the national domains for the data you are processing.

Defining new fields for normalization

The fields you define for normalization in the Match Field file can include any name
fields. If you define normalization for fields that are not currently defined for
normalization in the Match Field file, you must make the following modifications to the
remaining configuration files.

1 In the Match Field file, define the normalization structure, using the appropriate
standardization type (PersonName), domain selector, and field IDs (FirstName,
MiddeName, or LastName).

2 Add the new fields that will store the normalized field value to the appropriate
objects in the Object Definition file.

3 If any of the normalized fields are to be used for blocking, modify the Candidate
Select file by adding the new fields to the blocking query.

4 Regenerate the eView Studio application in Enterprise Designer to include the new
fields in the database creation script, the outbound Object Type Definition (OTD),
and the method OTD.

Defining new normalized fields for matching

If you want to match on the new fields storing the normalized data, you must perform
the following steps.

1 Determine the match type or the match comparison function you want to use to
match the normalized data, and modify the match configuration file
(matchConfigFile.cfg) if needed.

2 Add the new normalized field to the match-columns element of the
MatchingConfig section of the Match Field file, making sure to use the appropriate
match type from the match configuration file.

Standardization Structures (Parsing and Normalization)

The fields that must be parsed, and possibly normalized, are defined in a
standardization structure in StandardizationConfig. The standardization structure
tells the Sun SBME where to place the standardized information extracted from the
parsed fields. The target fields you specify for standardization facilitate searching by
the parsed values. Matching on any of these fields is determined by the match string
and the logic is defined in the match configuration file.

The Sun SBME expects business names and street address information in freeform text
fields that must be parsed and normalized prior to matching. The logic for parsing and
normalizing street address information is contained in the address standardization
files; the logic for parsing and normalizing business names is contained in the business
standardization files. You can customize the standardization of these data types by
modifying the appropriate patterns file. For each standardization structure, you must
specify the national domains for the data being processed.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 38 Sun Microsystems, Inc.

Chapter 5 Section 5.2
eView Studio and the Sun SeeBeyond Match Engine Configuring the Matching Service
Defining new Fields for Standardization

The fields you define for standardization in the Match Field file can include any street
address or business name field. Perform the following tasks if you need to define one of
these field types for standardization.

1 If necessary, modify the patterns file (you can define new input and output patterns
or modify existing ones).

2 Define the standardization structure, using the appropriate standardization type
(BusinessName or Address), domain selector, and field IDs (described in Table 4 on
page 30).

3 Add the new fields that will store the parsed or normalized data to the appropriate
objects in the Object Definition file.

4 If any of the parsed or normalized fields are to be used for blocking, modify the
Candidate Select file by adding the new fields to the blocking query.

5 Regenerate the eView Studio application in Enterprise Designer to include the new
fields in the database creation script, the outbound Object Type Definition (OTD),
and the method OTD.

Defining new standardized fields for matching

If you want to match on the new fields that store standardized data, you must perform
the following steps.

1 Determine the match type or the match comparison function you want to use to
match the parsed data, and modify the match configuration file
(matchConfigFile.cfg) if needed.

2 Add the new standardized field to the match-columns element of the
MatchingConfig section of the Match Field file, making sure to use the appropriate
match type from the match configuration file.

Phonetic Encoding Structures

The fields that must be phonetically encoded are defined in a phonetic encoding
structure in StandardizationConfig. The phonetic encoding structure tells the Sun
SBME where to place the phonetic data created from the fields that are encoded. You
can define any field in the object structure for phonetic encoding.

Defining new fields for phonetic encoding

The fields you define for phonetic encoding in the Match Field file can include any
field.

1 Determine the type of phonetic encoder to use to convert the field. You can use any
of the encoders described in Table 8 on page 41.

2 Define the phonetic encoding structure, as described in chapters 6 through 8.

3 Add the new fields that will store the phonetic values to the appropriate objects in
the Object Definition file.

4 If any the phonetic fields are to be used for blocking, modify the Candidate Select
file by adding the new fields to the blocking query.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 39 Sun Microsystems, Inc.

Chapter 5 Section 5.2
eView Studio and the Sun SeeBeyond Match Engine Configuring the Matching Service
5 Regenerate the eView Studio application in Enterprise Designer to include the new
fields in the database creation script, the outbound OTD, and the method OTD.

5.2.2 Matching Configuration
The MatchingConfig section determines which fields are passed to the Sun SBME for
matching (the match string). If you are matching on fields parsed from a freeform text
field, define each individual parsed field you want to use for matching. The default
fields listed in MatchingConfig depend on the fields you specified for matching in the
eView Wizard (for eIndex SPV, the default fields are FirstName, LastName, DOB,
Gender, and SSN).

The match types you can use for each field in this section are defined in the first column
of the match configuration file. Make sure the match type you specify has the correct
matching logic defined in the match configuration file.

5.2.3 Match and Standardization Engine Configuration
The MEFAConfig section of the Match Field file defines which standardization and
match engines will be used by the eView Studio application. By default, the eView
Studio application is already configured to use the Sun SBME for matching and
standardization. For more information, see “MEFA Configuration” in Chapter 6 of the
Sun SeeBeyond eView Studio Configuration Guide.

Table 7 lists the elements in the Match Field file that define the match and
standardization engine, along with the appropriate values for the Sun SBME.

5.2.4 Phonetic Encoder Configuration
The Sun SBME supports several phonetic encoders, which are defined in the
PhoneticEncodersConfig section of the Match Field file. Any encoders specified in the
phonetic encoding structures (see “Phonetic Encoding Structures” on page 39) must
also be defined in the PhoneticEncodersConfig section. The classes for the encoders are
listed in Table 8.

Soundex - This algorithm is an industry standard for phonetically encoding first
names.

French Soundex - This algorithm is based on the Soundex algorithm, but is
customized for French characters and names.

Table 7 Sun SeeBeyond Match Engine Standardization and Match Classes

Match Field File Element Sun SeeBeyond Match Engine Value

standardizer-api com.stc.eindex.matching.adapter.SbmeStandardizerAdapter

standardizer-config com.stc.eindex.matching.adapter.SbmeStandardizerAdapter Config

matcher-api com.stc.eindex.matching.adapter.SbmeMatcherAdapter

matcher-config com.stc.eindex.matching.adapter.SbmeMatcherAdapter Config
Implementing the Sun SeeBeyond
Match Engine with eView Studio 40 Sun Microsystems, Inc.

Chapter 5 Section 5.3
eView Studio and the Sun SeeBeyond Match Engine Implementing Domain-specific Standardization Files
Refined Soundex - This algorithm is similar to the Soundex algorithm, but is
optimized for spell checking.

NYSIIS - This algorithm is an industry standard for phonetically encoding last
names.

Metaphone - This algorithm is similar to the Soundex algorithm, but is better at
identifying words that sound similar. This encoder is limited to encoding a single
word in ASCII format containing only characters in the A - Z range. No punctuation
or numbers can be in the input string.

Double Metaphone - This algorithm is an improvement on the Metaphone
algorithm, at times returning two encodings for a word that could have multiple
pronunciations.

5.3 Implementing Domain-specific Standardization Files
Implementing domain-specific standardization files involves two primary steps:

Specifying a Domain Selector on page 41

Specifying Multiple Domains on page 42

Loading Standardization Files on page 44

You only need to perform the first step if you are implementing national domains other
than the United States. Perform the second step only if you want to process data from
multiple national domains.

5.3.1 Specifying a Domain Selector
An attribute in the Match Field file, domain-selector, lets the standardization engine
know which standardization files to use. Each standardization and normalization
structure must be modified to point to the correct domain. If a domain selector is not
specified, the default is the United States domain.

To specify a domain selector

1 In the Project Explorer in Enterprise Designer, expand the eView Studio Project,
expand the eView Studio application, and then expand the Configuration folder.

Table 8 Phonetic Encoder Classes for the Sun SeeBeyond Match Engine

Encoder Java Class

Soundex com.stc.eindex.phonetic.impl.Soundex

NYSIIS com.stc.eindex.phonetic.impl.NYSIIS

Metaphone com.stc.eindex.phonetic.impl.Metaphone

Double Metaphone com.stc.eindex.phonetic.impl.DoubleMetaphone

Refined Soundex com.stc.eindex.phonetic.impl.RefinedSoundex

French Soundex com.stc.eindex.phonetic.impl.SoundexFR
Implementing the Sun SeeBeyond
Match Engine with eView Studio 41 Sun Microsystems, Inc.

Chapter 5 Section 5.3
eView Studio and the Sun SeeBeyond Match Engine Implementing Domain-specific Standardization Files
2 Check out and open the Match Field file.

3 For each normalization or standardization structure, change the value of the
domain-selector attribute to the appropriate domain selector (for possible values,
see Table 9). For example:

<group standardization-type="PersonName" domain-selector=
"com.stc.eindex.matching.impl.SingleDomainSelectorUK">

4 Save and check in the Match Field file.

Note: For more information about modifying the Match Field file, see the Sun
SeeBeyond eView Studio Configuration Guide.

5.3.2 Specifying Multiple Domains
The multiple domain selector requires that one field in the object structure identify
which national domain to use for each field that will be standardized. For example, the
value of the Country field in a system record could be used to tell the standardization
engine which domain to use for a particular set of data. If you specified the multiple
domain selector in the domain-selector element, you must also define the identifying
field and then map the values that can be populated into that field to their
corresponding national domain (or locale).

The following rules apply to the multiple domain selector.

You can specify a value of “Default” for the identifying field. The corresponding
national domain will be used if the identifying field is blank, contains the value
“Default”, or contains a value not defined by any of the value elements.

If a “Default” value is not defined, the system default domain, United States, is
used as the default.

To specify multiple domains

1 In the Project Explorer in Enterprise Designer, expand the eView Studio Project,
expand the eView Studio application, and then expand the Configuration folder.

2 Check out and open the Match Field file.

3 For each normalization or standardization structure for which you want to use
multiple domains, change the domain-selector value to

Table 9 Domain Selectors

For this national domain... enter this domain-selector

Australia com.stc.eindex.matching.impl.SingleDomainSelectorAU

France com.stc.eindex.matching.impl.SingleDomainSelectorFR

Great Britain com.stc.eindex.matching.impl.SingleDomainSelectorUK

United States com.stc.eindex.matching.impl.SingleDomainSelectorUS

Multiple Domains com.stc.eindex.matching.impl.MultiDomainSelector
Implementing the Sun SeeBeyond
Match Engine with eView Studio 42 Sun Microsystems, Inc.

Chapter 5 Section 5.3
eView Studio and the Sun SeeBeyond Match Engine Implementing Domain-specific Standardization Files
“com.stc.eindex.matching.impl.MultiDomainSelector”, and then specify the
elements described in Table 10. For example:

<locale-field-name>Person.PobCountry</locale-field-name>
<locale-maps>

<locale-codes>
<value>GB</value>
<locale>UK</locale>

</locale-codes>
<locale-codes>

<value>UNST</value>
<locale>US</locale>

</locale-codes>
<locale-codes>

<value>AU</value>
<locale>AU</locale>

</locale-codes>
<locale-codes>

<value>FR</value>
<locale>FR</locale>

</locale-codes>
<value>Default</value>
<locale>AU</locale>

</locale-codes>
</locale-maps>

4 Save and check in the Match Field file.

5 Regenerate the application and redeploy the Project.

Table 10 Domain Configuration Elements

Element Description

locale-field-name The ePath to a field in the object structure that will
identify which of the defined local-codes elements to
use. If this field is blank, the standardization engine
defaults to the United States domain, regardless of
whether any of the following elements are defined. This
field must be contained in the object that contains the
fields to be standardized.

locale-maps elements

locale-codes Each locale codes stanza defines a value (value) that
could be contained in the identifying field (locale-field-
name) along with the corresponding domain (locale).

value The value that must be contained in the identifying field
to indicate that the standardization engine will use the
corresponding locale element to determine which
national domain to use to standardize the data. You can
specify a default domain by entering “Default” in the
value element and one of the locale codes described
below in the locale element.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 43 Sun Microsystems, Inc.

Chapter 5 Section 5.3
eView Studio and the Sun SeeBeyond Match Engine Implementing Domain-specific Standardization Files
5.3.3 Loading Standardization Files
Loading the standardization files brings them into the Repository and the eView Studio
Project. This procedure is only required for Projects that were upgraded from previous
versions and that do not contain all the needed files. The files are loaded into the
Standardization Engine node, with domain-specific files being loaded into their own
subdirectory. In a fresh installation of eView Studio, all files are automatically loaded.

To load standardization files

1 In the Project Explorer in Enterprise Designer, expand the eView Studio Project,
and then expand the eView Studio application.

2 Right-click the Standardization Engine folder, and then select Load Configuration
Files from the context menu.

3 In the Open dialog box, open the folder containing the files you want to load.

4 Select the files to load, and then click Open.

5 On the Information dialog box, click OK.

locale A domain code indicating which national domain to use
to standardize data when the identifying field value in a
transaction matches the corresponding value element.
Use any of the following codes:

For Australian data, specify AU
For French data, specify FR
For Great Britain data, specify UK
For United States data, specify US

Table 10 Domain Configuration Elements

Element Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 44 Sun Microsystems, Inc.

Chapter 6

Person Data Type Configuration

Processing person data involves normalizing and phonetically encoding certain fields
prior to matching. This chapter describes the configuration files that define person
processing logic, and provides instructions for modifying the Match Field file for
processing person data. The information presented in this chapter is especially
pertinent to the eIndex SPV application.

What’s in This Chapter

Person Matching Overview on page 45

Match Configuration for Person Data on page 47

Standardization Configuration for Person Data on page 47

Customizing Person Data Configuration Files on page 55

Configuring the eView Studio Matching Service for Names on page 55

6.1 Person Matching Overview
Matching on the person data type includes standardizing and matching a person’s
demographic information. The Sun SBME can create normalized and phonetic values
for person data. Several configuration files designed specifically to handle person data
are included to provide additional logic for the standardization and phonetic encoding
process. The Sun SBME can phonetically encode any field you specify, with some
modification to the standardization files. It can also match on any field, as long as the
match type for the field is defined in the match configuration file
(matchConfigFile.cfg).

In addition, when storing person information, you might want to standardize
addresses to enable searching against address information. This requires working with
the address configuration files described in Chapter 7, “Address Data Type
Configuration”.

6.1.1 Person Data Processing Fields
When matching on person data, not all fields in a record need to be processed by the
Sun SBME. The match engine only needs to process fields that must be parsed,
normalized, or phonetically converted, and the fields against which matching is
performed. These fields are defined in the Match Field configuration file and
Implementing the Sun SeeBeyond
Match Engine with eView Studio 45 Sun Microsystems, Inc.

Chapter 6 Section 6.1
Person Data Type Configuration Person Matching Overview
processing logic for each field is defined in the Sun SBME standardization and
matching configuration files.

Match String Fields

The match string processed by the Sun SBME is defined by the match fields specified in
the Match Field file. The match engine can process any combination of fields you
specify for matching. By default, the match configuration file includes rows specifically
for matching on first name, last name, social security number, and dates (such as a date
of birth). It also includes a row for matching a single character, such as might be the
case in a gender field. You can use any of the existing rows for matching or you can
create new rows for the fields you want to match. Any field for which you specify a
Match Type in the eView Wizard is added to the match string.

Standardized Fields

The Sun SBME expects person data to be provided in separate fields within a single
record, meaning that no parsing is required of the name fields prior to normalization.
The match engine is designed to normalize only first and last name fields in person
data and can phonetically convert any field you choose using any of the supported
phonetic encoders.

The Object Structure

The fields you specify for person name matching in the eView Studio Wizard are
automatically defined for standardization and phonetic encoding. If you specify the
appropriate match types in the eView Wizard, the following fields are automatically
added to the object structure and database creation script.

<field_name>_Std

<field_name>_Phon

where <field_name> is the name of the field for which you specified person name
matching. For example, if you specify the PersonFirstName match type for the
FirstName field, two fields, FirstName_Std and FirstName_Phon, are automatically
added to the structure. You can also add these fields manually if you do not specify
match types in the eView Studio Wizard. If you store additional names in the database,
such as alias names, maiden names, parent names, and so on, you can modify the
phonetic structure to phonetically encode those names as well.

Note: The object structure for eIndex SPV uses a slightly different naming convention.
For the names of the fields defined for eIndex SPV, refer to the Sun SeeBeyond
eIndex Single Patient View User’s Guide.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 46 Sun Microsystems, Inc.

Chapter 6 Section 6.2
Person Data Type Configuration Match Configuration for Person Data
6.2 Match Configuration for Person Data
The default match configuration file, matchConfigFile.cfg, defines several match types
for the kinds of data typically included in a person master index. You can customize the
existing match types or create new match types for the data being processed. The
following match types are typical for matching on person data

This file appears under the Match Engine node of the eView Studio Project. For more
information about the comparison functions used for each match type and how the
weights are tuned, see “The Match Configuration File” on page 21 and “Match
Configuration Comparison Functions” on page 100.

6.3 Standardization Configuration for Person Data
Several configuration files are used to define standardization logic for the Sun SBME.
You can customize any of the configuration files described in this section to fit your
processing and standardization requirements for person data. There are two types of
standardization files for person data: common and domain-specific. The common files
appear under the Standardization Engine node of the eView Studio Project and are
used for all national domains; the domain-specific files appear within sub-folders of the
Standardization Engine node and each corresponds to a specific national domain.

6.3.1 Common Standardization Files for Person Data
The standardization files described in this section are common to all national domains.
These files define special characters to remove from name fields and define hyphenated
first names. A patterns file is also common, but is not currently used.

personFirstNameDash.dat

The hyphenated name category file defines first names that include hyphens (such as
Anne-Marie) to help the Sun SBME recognize and process these values as first names.
The file also classifies each name into a gender category. This file is used to standardize
all domains except Australia, which uses the personFirstNameDashAU.dat file located
in the Australia folder, and France, which uses the personFirstNameDashFR.dat file
located in the France folder.

The hyphenated name category files use the following syntax:

FirstName Real

LastName SSN

String Char

Date pro

Numeric Exac

Integer
Implementing the Sun SeeBeyond
Match Engine with eView Studio 47 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
name gender-class

You can modify or add entries in this table as needed. Table 11 describes the columns in
the personFirstNameDash.dat file.

Following is an excerpt from the personFirstNameDash.dat file.

ANNE-MARIE F
JEAN-NOEL M
JEAN-MARIE M
JEAN-BAPTISTE M
JEAN-PIERRE M
JEAN-YVES M

personNamePatt.dat

The person name patterns file is not currently used, but is designed to standardize
freeform text name fields.

personRemoveSpecChars.dat

The special characters reference file lists characters that might appear in person data,
but that should be ignored. The Sun SBME removes these characters from a field before
making any comparisons or before normalizing data. You can define additional
characters to remove from person data by simply adding the character to the list.

An excerpt from the personRemoveSpecChars.dat file appears below.

[
]
{
}
<
>
/
?
*
^

!

6.3.2 Domain-specific Standardization Files
Most standardization files for person data are specific to each national domain. Each
domain node within the Standardization node of the Project includes the files defined

Table 11 Hyphenated Name Category File

Column Description

name A hyphenated first name.

gender-class An indicator of the gender with which the first
name corresponds. The possible values are:

N—the name is neutral, and can be applied
to male or female first names.
F—the name is used for females.
M—the name is used for males.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 48 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
in this section. The domain corresponding to each file is indicated at the end of the file
name; for example, personConstantsUK.cfg and personConstantsFR.cfg. These
domain abbreviations are indicated by an asterisk (*) in the descriptions.

Note: You can customize these files to add entries of other nationalities or languages,
including those containing diacritical marks.

personConjon*.dat

The conjunction reference file is not currently used, but is designed to work with the
person name patterns file during standardization.

personConstants*.cfg

The person constants file defines certain information about the standardization files
used for processing person data, primarily the number of lines contained in each file.
The number of lines specified here must be equal to or greater than the number of lines
actually contained in each file. The constants file for United States data is in the
Standardization node of the Project and is named personConstants.cfg; the person
constants file for the other domains is located under the domain name node.

Table 12 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

Table 12 Person Constants File Parameters

Parameter Description

words The maximum number of words in a given freeform text
field containing a person name. This parameter is not
currently used.

conjmax The maximum number of lines in the person conjunction
reference file (personConjon*.dat).

jrsrmax The maximum number of lines in the generational suffix
category file (personGenSuffix*.dat).

nickmax The maximum number of lines in the first name category file
(personFirstName*.dat).

lastmax The maximum number of lines in the last name category file
(personLastName*.dat).

premax The maximum number of lines in the last name prefix
category file (personLastNamePrefix*.dat).

titlmax The maximum number of lines in the title category file
(personTitle*.dat).

sufmax The maximum number of lines in the occupational suffix
category file (personOccupSuffix*.dat).

skpmax The maximum number of lines in the business name
reference file (businessOrRelated*.dat).

ptrnmax1 The maximum number of lines in the person patterns file
(personNamePatt.dat).
Implementing the Sun SeeBeyond
Match Engine with eView Studio 49 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
personFirstName*.dat

The first name category file defines standardized versions of first names and assigns a
gender classification for each name. This file is used to standardize first names when
comparing person names. The gender classification helps to further clarify the match.
The Sun SBME uses this file when a first name field is defined for normalization or
standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form gender-class

You can modify or add entries in this table as needed. Table 13 describes the columns in
the personFirstName*.dat file.

Following is an excerpt from the personFirstNameUS.dat file. Certain rows contain a
zero (0) for the standardized form, indicating that the name is already standard (for
example, Stephen, Sterling, and Summer).

STEPHEN 0 M
STEPHENIE STEPHANIE F
STEPHIE STEPHANIE F

twomax The maximum number of lines in the two-character
reference file for occupational suffixes (personTwo*.dat).

thremax The maximum number of lines in the three-character
reference file for occupational suffixes (personThree*.dat).

blnkmax The maximum number of lines in the special characters
reference file (personRemoveSpecChars.dat).

dashSize The maximum number of lines in the hyphenated name
category file (personFirstNameDash.dat).

Table 13 First Name Category File

Column Description

original-value The original value of the first name.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.
If this column contains a name instead of a
zero, that name must also be listed in a
different entry as an original value with a
standardized form of “0”.

gender-class An indicator of the gender with which the first
name corresponds. The possible values are:

N—the name is neutral, and can be applied
to male or female first names.
F—the name is used for females.
M—the name is used for males.

Table 12 Person Constants File Parameters

Parameter Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 50 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
STEPHINE STEPHANIE F
STEPHNIE STEPHANIE F
STERLING 0 M
STEVE STEPHEN M
STEVEN STEPHEN M
STEVIE STEPHEN N
STEW STUART M
STEWART STUART M
STU STUART M
STUART 0 M
SU SUSAN F
SUE SUSAN F
SUHANTO 0 M
SULLIVAN 0 F
SULLY SULLIVAN F
SUMMER 0 F

personGenSuffix*.dat

The generational suffix category file defines standardized versions of generational
suffixes, such as Jr., III, and so on. This file is used to compare standard versions of the
suffix field. You can define additional suffixes and their standardized form following
the syntax below.

field-value standard-form

Table 14 describes each column of the personGenSuffix*.dat file.

An excerpt from the personGenSuffixUS.dat file appears below. In this excerpt, certain
suffixes, such as 2ND, 3RD and JR, are already in their standardized form.

11 2ND
111 3RD
1V 4TH
2ND 0
3RD 0
4TH 0
FOURTH 4TH
II 2ND
III 3RD
IV 4TH
JR 0
JUNIOR JR
SECOND 2ND
SENIOR SR

Table 14 Generational Suffix Category File

Column Description

field-value The original value of the generational suffix in
the record being processed.

standard-form The standard form of the generational suffix. A
zero (0) in this column indicates that the value
listed in column one is already in its
standardized form.
If this column contains a suffix instead of a
zero, that suffix must also be listed in a
different entry as an original value with a
standard form of “0”.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 51 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
personLastNamePrefix*.dat

The last name prefix category file defines standardized versions of last name prefixes,
such as “Van” or “Le”. This file is used to standardize these prefixes prior to
standardizing the last name when comparing person names. The Sun SBME uses this
file when a last name field is defined for normalization or standardization in the Match
Field file.

The syntax of this file is:

original-value standardized-form

You can modify or add entries in this table as needed. Table 15 describes the columns in
the personLastNamePrefix*.dat file.

Following is an excerpt from the personLastNamePrefixUS.dat file. Some of these
prefixes are already in their standardized form, such as “Los” and “Mac”.

LOS 0
MAC 0
MC MAC
SAINT 0
ST SAINT
VAN 0
VAN DER 0
VANDE VAN DER

personLastName*.dat

The last name category file defines standardized versions of last names. This file is used
to standardize last names when comparing person names. The Sun SBME uses this file
when a last name field is defined for normalization or standardization in the Match
Field file.

The syntax of this file is:

original-value standardized-form

You can modify or add entries in this table as needed. Table 16 describes the columns in
the personLastName*.dat file.

Table 15 Last Name Prefix Category File

Column Description

original-value The original value of the last name prefix.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.
If this column contains a prefix instead of a
zero, that prefix must also be listed in a
different entry as an original value with a
standardized form of “0”.

Table 16 Last Name Category File

Column Description

original-value The original value of the last name.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 52 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
Following is an excerpt from the personLastNameUS.dat file.

FINK 0
PHINQUE FINK

personOccupSuffix*.dat

The occupational suffix category file is not currently used, but is designed to work with
the person name patterns file during standardization.

personThree*.dat

This reference file is not currently used, but is designed to work with the person name
patterns file during standardization.

personTitle*.dat

The title category file defines standard forms for titles and classifies each title into a
gender category. For example, “Mister” is standardized to “MR” and is classified as
male; “Doctor” is standardized to “DR” and is classified as gender neutral. You can
add, modify, or delete entries in this file as needed. Use the following syntax.

original-value standardized-form gender-class

Table 17 describes each column of the personTitle*.dat file.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.
If this column contains a name instead of a
zero, that name must also be listed in a
different entry as an original value with a
standardized form of “0”.

Table 17 Person Title Category File

Column Description

original-value The original value of the title in the person
name field.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.
If this column contains a title instead of a zero,
that title must also be listed in a different entry
as an original value with a standardized form of
“0”.

Table 16 Last Name Category File

Column Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 53 Sun Microsystems, Inc.

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
An excerpt from the personTitleUS.dat file appears below. In this excerpt, certain titles,
such as DR, GEN, and MISS, are already in their standardized form.

CTO 0 N
DEAN 0 N
DIR DIRECTOR N
DIRECTOR 0 N
DOC DR N
DOCTOR DR N
DR 0 N
DRS 0 N
EMERITUS 0 N
FOUNDER 0 N
GEN 0 N
GENERAL GEN N
MANAGER 0 N
MGR MANAGER N
MISS 0 F
MISSUS MRS F

personTwo*.dat

This reference file is not currently used, but is designed to work with the person name
patterns file during standardization.

businessOrRelated*.dat

The business-related category file is used to identify business terms in person name
information. Examples of when this could occur would be when indexing both person
and business names or when business information is included within a person object
structure. The Sun SBME removes these terms for person matching. This file contains a
list of common business terms that might be found in person data. You can modify this
file by adding, changing, or deleting terms.

An excerpt from the businessOrRelatedUS.dat file appears below.

ACCOUNTANT
ACCT
ACDY
ACRE
ACREAGE
ACRES
ACS
ACT
AD
ADATU
ADM
ADMIN
ADMINISTRATIO

gender-class An indicator of the gender with which the title
corresponds. The default values are:

N—the title is neither male nor female.
F—the title is used for females.
M—the title is used for males.

Table 17 Person Title Category File

Column Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 54 Sun Microsystems, Inc.

Chapter 6 Section 6.4
Person Data Type Configuration Customizing Person Data Configuration Files
ADMINISTRATION
ADMINISTRATOR

6.4 Customizing Person Data Configuration Files
To customize the Sun SBME configuration files for processing person data, you can
modify any of the files described in this chapter using the text editor provided in
Enterprise Designer. Before modifying the match configuration file, review the
information provided in Chapter 4 “Matching Configuration Files” and Appendix B
“Match Configuration Comparison Functions”. Make sure a thorough data analysis
has been performed to determine the best fields for matching and the best comparison
functions to use for each field.

Updating most standardization files is a straight-forward process. Make sure to follow
the syntax guidelines provided in “Standardization Configuration for Person Data”
on page 47. If you add any lines to any of the standardization configuration files, be
sure to adjust the corresponding parameter in the person constants file
(personConstants*.cfg).

6.5 Configuring the eView Studio Matching Service for
Names

To ensure correct processing of person information, you must customize the eView
Studio Matching Service. This includes modifying the Match Field file to support the
fields on which you want to match, to standardize the appropriate fields, and to specify
the Sun SBME as the match and standardization engine (by default, the Sun SBME is
already specified so this does not need to be changed). Perform the following tasks to
configure the eView Studio Matching Service.

Configuring the Standardization Structure on page 55

Configuring the Match String on page 58

When configuring the eView Studio Matching Service, keep in mind the information
presented in “Configuring the Matching Service” on page 37.

6.5.1 Configuring the Standardization Structure
The standardization structure is configured in the StandardizationConfig section of
the Match Field file, which is described in detail in Chapter 6 of the Sun SeeBeyond eView
Studio Configuration Guide. To configure the required fields for normalization and
phonetic encoding, modify the normalization and phonetic encoding structures in the
Match Field file. This is described in detail in Chapter 6 of the Sun SeeBeyond eView
Studio Configuration Guide. The following sections provide additional guidelines and
samples specific to standardizing person data.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 55 Sun Microsystems, Inc.

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Studio Matching Service for Names
Note: In the current configuration, the rules defined for the person data type assume the
incoming data to be parsed prior to processing. Therefore, you do not need to
configure fields to parse unless you want to search on address information. In that
case, you must configure address fields to parse and normalize.

Normalization Structures

The fields defined for normalization for the person data type can include any name
fields. By default this includes first, middle, and last name fields. Follow the
instructions under “Defining Normalization” in Chapter 6 of the Sun SeeBeyond eView
Studio Configuration Guide to define fields for normalization. For the standardization-
type element, enter “PersonName” (for more information, see “Match and
Standardization Types” on page 34). For a list of field IDs to use in the standardized-
object-field-id element, see Table 4 on page 30.

A sample normalization structure for person data is shown below. This sample
specifies that the PersonName standardization type is used to normalize the first name,
alias first name, last name, and alias last name fields. For all name fields, both United
States and United Kingdom domains are defined for standardization.

<structures-to-normalize>
<group standardization-type="PersonName"
domain-

selector="com.stc.eindex.matching.impl.MultiDomainSelector">
<locale-field-name>Person.PobCountry</locale-field-name>
<locale-maps>

<locale-codes>
<value>UNST</value>
<locale>US</locale>

</locale-codes>
<locale-codes>

<value>GB</value>
<locale>UK</locale>
</locale-codes>

</locale-maps>
<unnormalized-source-fields>

<source-mapping>
<unnormalized-source-field-name>Person.FirstName
</unnormalized-source-field-name>
<standardized-object-field-id>FirstName
</standardized-object-field-id>

</source-mapping>
<source-mapping>

<unnormalized-source-field-name>Person.LastName
</unnormalized-source-field-name>
<standardized-object-field-id>LastName
</standardized-object-field-id>

</source-mapping>
</unnormalized-source-fields>

<normalization-targets>
<target-mapping>

<standardized-object-field-id>FirstName
</standardized-object-field-id>
<standardized-target-field-name>Person.FirstName_Std
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>LastName
</standardized-object-field-id>
<standardized-target-field-name>Person.LastName_Std
Implementing the Sun SeeBeyond
Match Engine with eView Studio 56 Sun Microsystems, Inc.

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Studio Matching Service for Names
</standardized-target-field-name>
</target-mapping>

</normalization-targets>
</group>

<group standardization-type="PersonName" domain-selector=
 "com.stc.eindex.matching.impl.MultiDomainSelector">

<locale-field-name>Person.PobCountry</locale-field-name>
<locale-maps>

<locale-codes>
<value>UNST</value>
<locale>US</locale>

</locale-codes>
<locale-codes>

<value>GB</value>
<locale>UK</locale>

</locale-codes>
</locale-maps>
<unnormalized-source-fields>

<source-mapping>
<unnormalized-source-field-name>Person.Alias[*].FirstName
</unnormalized-source-field-name>
<standardized-object-field-id>FirstName
</standardized-object-field-id>

</source-mapping>
<source-mapping>

<unnormalized-source-field-name>Person.Alias[*].LastName
</unnormalized-source-field-name>
<standardized-object-field-id>LastName
</standardized-object-field-id>

</source-mapping>
</unnormalized-source-fields>
<normalization-targets>

<target-mapping>
<standardized-object-field-id>FirstName
</standardized-object-field-id>
<standardized-target-field-name>
Person.Alias[*].FirstName_Std
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>LastName
</standardized-object-field-id>
<standardized-target-field-name>
Person.Alias[*].LastName_Std
</standardized-target-field-name>

</target-mapping>
</normalization-targets>

</group>
</structures-to-normalize>

Phonetic Encoding

When you specify a name field for person name matching in the eView Wizard, these
fields are automatically defined for phonetic encoding. You can define additional
names, such as maiden names or alias names, for phonetic encoding as well. Follow the
instructions under “Defining Phonetic Encoding” in Chapter 6 of the Sun SeeBeyond
eView Studio Configuration Guide to define fields for phonetic encoding.

A sample of fields defined for phonetic encoding is shown below. This sample converts
name and alias name fields, as well as the street name.

<phoneticize-fields>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 57 Sun Microsystems, Inc.

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Studio Matching Service for Names
<phoneticize-field>
<unphoneticized-source-field-name>Person.FirstName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.FirstName_Phon
</phoneticized-target-field-name>
<encoding-type>Soundex</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>Person.LastName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.LastName_Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>Person.Alias[*].FirstName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.FirstName_Phon
</phoneticized-target-field-name>
<encoding-type>Soundex</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>Person.Alias[*].LastName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.LastName_Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>
Person.Address[*].AddressLine1_StName

</unphoneticized-source-field-name>
<phoneticized-target-field-name>
Person.Address[*].AddressLine1_StPhon

</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field></phoneticize-fields>

6.5.2 Configuring the Match String
You can include any fields on which you want to match in the match string. The match
string is defined by the match-column elements in the MatchingConfig section of the
Match Field file. If you specify a Match Type for a field in the eView Wizard, that field
(or any fields parsed from that field) is automatically defined in the match string.

To configure the match string, follow the instructions under “Configuring the Match
String” in Chapter 6 of the Sun SeeBeyond eView Studio Configuration Guide. For the Sun
SBME, each data type has a different match type (specified by the match-type element).
The FirstName and LastName match types are specific to person matching. You can
specify any of the other match types defined in the match configuration file as well. For
more information, see “Match and Standardization Types” on page 34.

A sample match string for person matching is shown below. This sample matches on
first and last names, date of birth, social security number, gender, and the street name
of the address.

<match-system-object>
<object-name>Person</object-name>
<match-columns>

<match-column>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 58 Sun Microsystems, Inc.

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Studio Matching Service for Names
<column-name>
Enterprise.SystemSBR.Person.FirstName_Std

</column-name>
<match-type>FirstName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.LastName_Std
</column-name>
<match-type>LastName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.SSN
</column-name>
<match-type>SSN</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.DOB
</column-name>
<match-type>DateDays</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Gender
</column-name>
<match-type>Char</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.StreetName
</column-name>
<match-type>StreetName</match-type>

</match-column>
</match-columns>

</match-system-object>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 59 Sun Microsystems, Inc.

Chapter 7

Address Data Type Configuration

Processing street addresses involves parsing, normalizing, and phonetically encoding
certain fields prior to matching. This chapter describes the configuration files that
define address processing logic and provides instructions for modifying the Match
Field file for processing address fields.

What’s in This Chapter

Address Matching Overview on page 60

Match Configuration for Address Data on page 62

Standardization Configuration for Address Data on page 62

Modifying Address Data Configuration Files on page 72

Configuring the eView Studio Matching Service on page 72

7.1 Address Matching Overview
Matching on the address data type includes both standardizing and matching on
address information in the master index. You can implement street address
standardization and matching on its own, or within a master index designed to process
person or business information. For example, standardizing address information
allows you to include address fields as search criteria, even though matching might not
be performed against these fields.

The Sun SBME can create standardized and phonetic values for street address
information. Several configuration files are designed specifically to handle address data
to define additional logic for the standardization and phonetic encoding process. These
include address clues files, a patterns file, and a constants file. The United States
address standardization engine is based on the work performed at the US Census
Bureau. The clues files, in particular, are based on census bureau statistics.

The Sun SBME can match on any field as long as the match type for the field is defined
in the match configuration file (matchConfigFile.cfg).

7.1.1 Address Data Processing Fields
When matching on address data, not all fields in a record need to be processed by the
Sun SBME. The match engine only needs to process fields that must be parsed,
normalized, or phonetically encoded, and the fields against which matching is
Implementing the Sun SeeBeyond
Match Engine with eView Studio 60 Sun Microsystems, Inc.

Chapter 7 Section 7.1
Address Data Type Configuration Address Matching Overview
performed. These fields are defined in the Match Field file and processing logic for each
field is defined in the standardization and matching configuration files.

Match String Fields

The match string processed by the Sun SBME is defined by the match fields specified in
the Match Field file. If you specify an “Address” match type for any field in the eView
Wizard, the parsed address fields are automatically added to the match string in the
Match Field file. These fields include the house number, street direction, street type,
and street name. You can remove any of these fields from the match string.

The match engine can process any combination of fields you specify for matching. By
default, the match configuration file includes rows specifically for matching on the
fields that are parsed from the street address fields, such as the street number, street
direction, and so on. The file also defines several generic match types. You can use any
of the existing rows for matching or you can create new rows for the fields you want to
match.

Standardized Fields

The Sun SBME expects that street address data will be provided in a freeform text field
containing several components that must be parsed. The match engine is designed to
parse these components and to normalize and phonetically encode the street name. You
can specify additional fields for phonetic encoding.

If you specify an “Address” match type for any field in the eView Wizard, a
standardization structure for that field is defined in the Match Field file. The fields
listed below under “The Object Structure” are automatically defined as the target
fields. Each of these fields has several entries in the standardization structure. This is
because different parsed components can be stored in the same field. For example, the
house number, post office box number, and rural route identifier are all stored in the
house number field. If you do not specify address fields for matching in the eView
Wizard but want to standardize the fields, you can create a standardization structure in
the Match Field file.

The Object Structure

The address fields specified for standardization are parsed into several additional
fields. If you specify the “Address” match type in the eView Wizard, the following
fields are automatically added to the object structure and database creation script.

<field_name>_HouseNo

<field_name>_StName

<field_name>_StDir

<field_name>_StType

<field_name>_StPhon

where <field_name> is the name of the field for which you specified address
matching. For example, if you specify the Address match type for the
AddressLine1 field, the following fields are automatically added to the structure:
Implementing the Sun SeeBeyond
Match Engine with eView Studio 61 Sun Microsystems, Inc.

Chapter 7 Section 7.2
Address Data Type Configuration Match Configuration for Address Data
AddressLine1_HouseNo, AddressLine1_StName, AddressLine1_StDir,
AddressLine1_StType, and AddressLine1_StPhon.

You can add these fields manually if you do not specify a match type in the eView
Wizard.

Note: The object structure for eIndex SPV uses a slightly different naming convention.
For the names of the fields defined for eIndex SPV, refer to the Sun SeeBeyond
eIndex Single Patient View User’s Guide.

7.2 Match Configuration for Address Data
The default match configuration file, matchConfigFile.cfg, defines several match types
for the kinds of address data typically included in the match string. You can customize
the existing match types or create new match types for the data being processed. The
following match types are typical for matching on address data.

In addition, you can use any of these generic match types for matching on address data.

The match configuration file appears under the Match Engine node of the eView
Studio Project. For more information about the comparison functions used for each
match type and how the weights are tuned, see “The Match Configuration File” on
page 21 and “Match Configuration Comparison Functions” on page 100.

7.3 Standardization Configuration for Address Data
Several configuration files are used to define address processing logic for the Sun
SBME. You can customize any of the configuration files described in this section to fit
your processing and standardization requirements for address data. There are no
address standardization files that are common to all domains; all address files are
domain-specific. These files are located within the domain-specific folders of the
Standardization Engine node (with two exceptions noted below).

Address standardization files are specific to each domain and include patterns and
clues files, as well as files that define internal and external constants. The domain
corresponding to each file is indicated at the end of the file name; for example,

StreetNumber StreetDir

HouseNumber StreetType

String SSN

Date Char

Numeric pro

Integer Exac

Real
Implementing the Sun SeeBeyond
Match Engine with eView Studio 62 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
addressConstantsUK.cfg and addressConstantsFR.cfg. These domain abbreviations
are indicated by an asterisk (*) in the following descriptions.

addressConstants*.cfg

The address constants file defines certain information about the standardization files
used for processing address data, primarily the number of lines contained in each file.
The number of lines specified here must be equal to or greater than the number of lines
actually contained in each file. The constants file for United States data is in the
Standardization node of the Project and is named addressConstants.cfg; the constants
file for the other domains is located under the domain name node.

Table 18 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

addressClueAbbrev*.dat

The address clues file lists common terms in street addresses, specifies a normalized
value for each common term, and categorizes the terms into street address component
types. A term can be categorized into multiple component types. The relevance value

Table 18 Address Constants File Parameters

Parameter Description

maxWords The maximum number of words in a given address
field.

clueArraySize The maximum number of lines in the address clues
file (addressClueAbbrev*.dat).

patternArraySize The maximum number of lines in the patterns file
(addressPatterns*.dat).

maxPattSize The maximum length (in characters) of any pattern
in the address patterns file.

imageSize The maximum length of an input address field.

nameOutputFieldSize The maximum output length of a street or property
name.

numberOutputFieldSize The maximum output length of a house number or
rural route number within the structure identifier or
post office box fields.

directionOutputFieldSize The maximum output length of a directional field
(prefix or suffix).

typeOutputFieldSize The maximum output length of a street type field
(prefix or suffix).

prefixOutputFieldSize The maximum length of a number prefix field.

suffixOutputFieldSize The maximum length of a number suffix field.

extensionOutputFieldSize The maximum output length of any extension field.

extrainfoOutputFieldSize The maximum output length of any miscellaneous
information that is not recognized as a known type.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 63 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
specifies which of the component types the term is most likely to be. For example, the
term “Junction” is standardized as “Jct”, and is classified as a street type, building unit,
and generic term (giving relevance in that order).

This file helps the Sun SBME recognize common terms in street addresses, and to parse
and normalize the values correctly. The syntax of this file is:

common-term normalized-term ID-number/type-token

You can modify or add entries in this table as needed. Table 19 describes the columns in
the addressClueAbbrev*.dat file.

Following is an excerpt from the addressClueAbbrevUS.dat file.

TRLR VLG Trpk 59BU
TRPK Trpk 59BU
TRPRK Trpk 59BU
VILLA Vlla 305TY 60BU
VLLA Vlla 305TY 60BU
VILLAS Vlla 60BU
VILL Vlg 317TY 61BU 364AU
VILLAG Vlg 317TY 61BU 364AU
VLG Vlg 317TY 61BU 364AU
VILLAGE Vlg 317TY 61BU 364AU
VILLG Vlg 317TY 61BU 364AU
VILLIAGE Vlg 317TY 61BU 364AU
VLGE Vlg 317TY 61BU 364AU
VIVI Vivi 62BU
VIVIENDA Vivi 62BU
COLLEGE Coll 64BU 0AU
CLG Coll 64BU
COTTAGE Cott 65BU 65BP 0AU

addressInternalConstants*.cfg

The address internal constants file defines and configures tokens and array sizes used
by the address standardizer. This file is used internally by the standardization engine
and most of the parameters should not be modified.

One parameter you might need to modify is spCh, which defines any special characters
that should not be removed from addresses during standardization. By default, the
standardization process keeps hyphens (-), pound signs (#), forward slashes (/),
ampersands (&), and pipes (|). Any other special characters found in the address are

Table 19 Address Clues File Columns

Column Description

common-term A term commonly found in street addresses.

normalized-term The normalized version of the common term.

ID-number/type-token An ID number and a token indicating the type
of address component represented by the
common term. The ID number corresponds to
an ID number in the address master clues file,
and the type token corresponds to the type
specified for that ID number in the address
master clues file. One term might have several
ID number and token type pairs.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 64 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
removed unless they are defined for the spCh parameter. Delineate each special
character in the list with a space, as shown below.

spCh = & < >

Characters that are not included in the standard ISO 8859-1 (Latin-1) character set must
be preceded by a back slash (\) and represented in Unicode. For example, use the
following to retain right and left single quotes (‘ ’) in addresses:

spCh = \u2018 \u2019

Note: Periods (.) and commas (,) are always removed from addresses, even if they are
added to the spCh list.

addressMasterClues*.dat

The address master clues file lists common terms in street addresses as defined by the
United States Postal Service (USPS), the United Kingdom’s Royal Mail, the Australian
Postal Corporation, or France’s La Poste (depending on the domain in use). For each
common term, this file specifies a normalized value, defines postal information, and
categorizes the terms into street address component types. A term can be categorized
into multiple component types.

The syntax of this file is:

ID-number common-term normalized-term short-abbrev postal-abbrev
CFCCS type-token usage-flag postal-flag

You can modify or add entries in this table as needed. Table 20 describes the columns in
the addressMasterClues*.dat file.

Table 20 Address Master Clue File Columns

Column Description

ID-number A unique identification number for the address
common term. This number corresponds to an
ID number for the same term in the address
clues file.

common-term A common address term, such as Park, Village,
North, Route, Centre, and so on.

normalized-term The normalized version of the common term.

short-abbrev A short abbreviation of the common term.

postal-abbrev The standard postal abbreviation of the
common term.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 65 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Following is an excerpt from the addressMasterCluesUS.dat file.

11Alley Alley Al Aly A TY R U
12Alternate Route Alt Rte Alt Alt A TY R
15Arcade Arcade Arc Arc A TY R U
16Arroyo Arroyo Arryo ArryHA TY R
17Autopista Atpta Apta AptaA TY R
18Avenida Avenida Ava Ava A TY R
19Avenue Avenue Ave Ave A TY R U
26Boulevard Blvd Blvd BlvdA TY R U
32Bulevar Blvr Blv Blv A TY R
33Business Route Bus Rte BusRt BsRtA TY R
34Bypass Bypass Byp Byp A TY R U
36Calle Calle Calle ClleA TY R
37Calleja Calleja Cja Cja A TY R
38Callejon Callej Cjon CjonA TY R
39Camino Camino Cam Cam A TY R
47Carretera Carrt Carr CarrA TY R
48Causeway Cswy Cswy CswyAH TY R U
51Center Center Ctr Ctr DA TY R U

addressPatterns*.dat

The address patterns file defines the expected input patterns of each individual street
address field being standardized so the Sun SBME can recognize and process these
values. Tokens are used to indicate the type of address component in the input and
output fields. This file contains two rows for each pattern. The first row defines the
input pattern for each address field and provides an example. The second row defines
the output pattern for each address field, the pattern type, the relative importance of
the pattern compared to other patterns, and usage flags (as shown below).

AU A1 TY 01 Oak B Street

CFCCS The census feature class code of the term (as
defined in the Census Tiger® database). The
following values are used:

A—Road
B—Railroad
C—Miscellaneous
D—Landmark
E—Physical feature
F—Nonvisible feature
H—Hydrography
X—Unclassified

type-token The type of address component represented
by the common term. Types are specified by an
address token (for more information, see
Address Type Tokens on page 69).

usage-flag A flag indicating how the term is used (for
more information, see Pattern Classes on
page 71)

postal-flag The standard postal code for the term.

Table 20 Address Master Clue File Columns

Column Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 66 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
NA NA ST T* 75 TX

When an address is parsed, each line of the address is delineated by a pipe (|) and sent
to the parser separately. The output tokens for each line are then concatenated and the
output pattern is processed using the addressOutPatterns*.dat file to determine
whether the output pattern is listed in the file. If the pattern is found, output patterns
are modified as indicated in the addressOutPatterns*.dat file to resolve any
ambiguities that might arise when two lines of address information contain common
elements. The relative importance determines which pattern to use when the format of
the input field matches more than one pattern. This file should only be modified by
personnel with a thorough understanding of address patterns and tokens.

The syntax of this file is:

input-pattern example
output-pattern pattern-class pattern-modifier priority usage-flag
exclude-flag

You can modify or add entries in this table as needed. Table 21 describes the columns in
the addressPatterns*.dat file.

Table 21 Address Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern
from an individual unparsed street address
field. Each token represents one component.
For more information about address tokens,
see Address Type Tokens on page 69.

example An example of a street address that fits the
specified pattern. This file element is optional.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component of the output of
the Sun SBME. For more information about
address tokens, see Address Type Tokens
on page 69.

pattern-class An indicator of the type of address component
represented by the pattern. Possible pattern
types are listed in Pattern Classes on page 71.

pattern-modifier An indicator of whether the priority of the
pattern is averaged against other patterns that
match the input. Pattern modifiers are listed in
Pattern Modifiers on page 72.

priority The priority weight to use for the pattern when
the pattern is a sub-pattern of a larger input
pattern. For more information, see Priority
Indicators on page 72.

usage-flag A flag indicating how the term is used (for
more information, see Pattern Classes on
page 71). This file element is optional.

exclude-flag This file element is optional.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 67 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Following is an excerpt from the addressPatternsUS.dat file.

NU DR TY A1 AU 01 123 South Avenida B Oak
HN PD PT NA NA H* 70

NU DR TY NU DR 01 123 South Avenida 1 West
HN PD PT NA SD H* 70

NU A1 TY AU TY 01 123 C circle hill drive
HN HS NA NA ST H* 70

NU A1 AM A1 TY 01 123 M & M road
HN NA NA NA ST H* 65

NU TY AU A1 01 123 Avenida Oak B
HN PT NA NA H* 60

NU TY NU A1 01 123 Avenida 1 B
HN PT NA NA H* 60

addressOutPatterns*.dat

The address output patterns file uses the field patterns output by the
addressPatterns*.dat file to determine how to parse all standardized address fields. As
with the addressPatterns*.dat file, tokens are used to indicate the type of address
component in the input and output data. This file contains two rows for each pattern.
The first row defines the input pattern received from addressPatterns*.dat and
provides an example. The second row defines the output pattern (as shown below).

EI|BN BT|* // HILLVIEW|FULBOURN HOSPITAL
BN|BI BY

The syntax of this file is:

input-pattern example
output-pattern

You can modify or add entries in this table as needed. Table 22 describes the columns in
the addressOutPatterns*.dat file.

Table 22 Address Output Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern
from addressPatterns*.dat. Each token
represents one component and the pattern for
each address field in the address is separated
by a pipe (|). For more information about
address tokens, see Address Type Tokens
on page 69. Note that this file only uses output
tokens.

example An example of a street address that fits the
specified pattern. This file element is optional.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 68 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Following is an excerpt from the addressPatternsUS.dat file. In the first example,
addressPatternsUS.dat outputs three address fields containing these components:
building name and type; street name and type; and street name and type.
addressOutPatternsUS.dat changes the tokens for the second street name and type to
indicate they are not the primary street name and type. Therefore, “New Bridge” is
populated into the parsed street name field in the database.

BN BT|NA ST|NA ST|* // PROTEA HOUSE|NEW BRIDGE|MARINE PARADE
BN BT|NA ST|N2 S2

HN NA ST|HN NA ST|* // 21 HEIGHWAY COURT|45 BROOKLAND ROAD
HN NA ST|H2 N2 S2

HN NA ST|NA ST|* // 21 HEIGHWAY COURT|BROOKLAND ROAD
HN NA ST|N2 S2

NA ST|HN NA ST|* // HEIGHWAY COURT|45 BROOKLAND ROAD
NA ST|H2 N2 S2

Address Pattern File Components

The address patterns files use pattern type tokens, pattern classes, pattern modifies,
and priority indicators to process and parse address data. Before modifying any of the
patterns files, you must have a good understanding of these file components.

Address Type Tokens

The address pattern and clues files use tokens to denote different components in a
street address, such as street type, house number, street names, and so on. These files
use one set of tokens for input fields and another set for output fields. You can use only
the predefined tokens to represent address components; the Sun SBME does not
recognize custom tokens.

Table 23 lists and describes each input token; Table 24 lists and describes each output
token.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component of the output of
the Sun SBME. For more information about
address tokens, see Address Type Tokens
on page 69.

Table 23 Input Address Pattern Type Tokens

Token Description

A1 Alphabetic value, one character in length

AM Ampersand

AU Generic word

BP Building property

Table 22 Address Output Patterns File

Column Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 69 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
BU Building unit

BX Post office box

DA Dash (as a starting character)

DR Street direction

EI Extra information

EX Extension

FC Numeric fraction

HR Highway route

MP Mile posts

NL Common words, such as “of”, “the”, and so on

NU Numeric value

OT Ordinal type

PT Prefix type

RR Rural route

SA State abbreviation

TY Street type

WD Descriptor within the structure

WI Identifier within the structure

Table 24 Output Address Pattern Tokens

Token Description

1P Building number prefix

2P Second building number prefix

BD Property or building directional suffix

BI Structure (building) identifier

BN Property or building name

BS Building number suffix

BT Property or building type suffix

BX Post office box descriptor

BY Structure (building) descriptor

DB Property or building directional prefix

EI Extra information

EX Extension index

H1 First house number (the actual number)

Table 23 Input Address Pattern Type Tokens

Token Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 70 Sun Microsystems, Inc.

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Pattern Classes

Each pattern defined in the address patterns file must have an associated pattern class.
The pattern class indicates a portion of the input pattern or the type of address data that
is represented by the pattern. You can specify any of the following pattern classes.

H - the address pattern represents a house

B - the address pattern represents a building

W - the address pattern represents a unit within a structure, such as an apartment
or suite number

T - the address pattern represents a street type or direction

R - the address pattern represents a rural route

P - the address pattern represents a Post Office box

N - the address pattern is mostly numeric

These classes are also specified as usage flags in the patterns file and the master clues
file.

H2 Second house number (house number suffix)

HN House number

HS House number suffix

N2 Second street name

NA Street name

NB Building number

NL Conjunctions that connect words or phrases in one
component type (usually the street name)

P1 House number prefix

P2 Second house number prefix

PD Directional prefix to the street name

PT Street type prefix to the street name

RR Rural route descriptor

RN Rural route identifier

S2 Street type suffix to the second street name

SD Directional suffix to the street name

ST Street type suffix to the street name

TB Property or building type prefix

WI Identifier within the structure

WD Descriptor within the structure

XN Post office box identifier

Table 24 Output Address Pattern Tokens

Token Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 71 Sun Microsystems, Inc.

Chapter 7 Section 7.4
Address Data Type Configuration Modifying Address Data Configuration Files
Pattern Modifiers

Each pattern type must be followed by a pattern modifier that indicates how to handle
cases where one or more defined patterns is found to be a sub-pattern of a larger input
pattern. In this case, the Sun SBME must know how to prioritize each defined pattern
that is a part of the larger pattern. There are two pattern modifiers.

* - An asterisk indicates that the priority weight for the matching pattern is
averaged down equally with the other matching sub-patterns.

+ - A plus sign indicates that the priority weight for the matching pattern is not
averaged down equally with the other matching sub-patterns.

Priority Indicators

The priority indicator is a numeric value following the pattern modifier that indicates
the priority weight of the pattern. These values work best when defined as a multiple of
five between and including 35 and 95. If a pattern is assigned a priority of 90 or 95 and
the pattern matches, or is a sub-pattern of, the input pattern, the match engine stops
searching for additional matching patterns and uses the high-priority matching pattern.

7.4 Modifying Address Data Configuration Files
To customize the Sun SBME configuration files for processing street address data, you
can modify any of the files described in this chapter using the text editor provided in
Enterprise Designer. Before modifying the match configuration file, review the
information provided in Chapter 4 “Matching Configuration Files” and Appendix B
“Match Configuration Comparison Functions”. Make sure a thorough data analysis
has been performed to determine the best fields for matching and the best comparison
functions to use for each field.

Updating most standardization files is a straight-forward process. Make sure to follow
the syntax guidelines provided in “Standardization Configuration for Address Data”
on page 62. If you add rows to any of the standardization files, make sure to adjust the
corresponding parameter in the address constants file (addressConstants.cfg).

Modifying the patterns file is a more complex task. Only modify this file once you fully
understand pattern tokens, types, relevance, and flags.

7.5 Configuring the eView Studio Matching Service
To ensure the master index uses the Sun SBME to process address information, you
must customize the eView Studio Matching Service. This includes modifying the Match
Field file to support the fields on which you want to match, to standardize the
appropriate fields, and to specify the Sun SBME as the match and standardization
engine (by default, the Sun SBME is already specified so this does not need to be
changed). Perform the following tasks to configure the eView Studio Matching Service.

Configuring the Standardization Structure on page 73
Implementing the Sun SeeBeyond
Match Engine with eView Studio 72 Sun Microsystems, Inc.

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Studio Matching Service
Configuring the Match String on page 75

When configuring the eView Studio Matching Service, keep in mind the information
presented in “Configuring the Matching Service” on page 37.

7.5.1 Configuring the Standardization Structure
The standardization structure is configured in the StandardizationConfig section of
the Match Field file, which is described in detail in Chapter 6 of the Sun SeeBeyond eView
Studio Configuration Guide. To configure the required fields for standardization and
phonetic encoding, modify the standardization and phonetic encoding structures. This
is described in detail in Chapter 6 of the Sun SeeBeyond eView Studio Configuration Guide.
The following sections provide additional guidelines and samples specific to
standardizing address data.

Note: In the default configuration, the rules defined for the address data type assume that
all input fields must be parsed as well as normalized. Thus, there is no need to
configure fields only for normalization.

Standardization Structures

For address fields, the source fields in the standardization structure must include the
fields predefined for parsing and normalization. This includes any fields containing
street address information, which are parsed into the street address fields listed in “The
Object Structure” on page 61 (excluding the phonetic street name field). The target
fields can include any of these parsed fields. Follow the instructions under “Defining
Normalization” in Chapter 6 of the Sun SeeBeyond eView Studio Configuration Guide to
define fields for normalization. For the standardization-type element, enter “Address”
(for more information, see “Match and Standardization Types” on page 34). For a list
of field IDs to use in the standardized-object-field-id element, see Table 4 on page 30.

A sample standardization structure for address data is shown below. This structure
parses the first two lines of street address into the standard street address fields. Only
the United States domain is defined in this structure.

free-form-texts-to-standardize>
<group standardization-type="ADDRESS"
domain-

selector="com.stc.eindex.matching.impl.SingleDomainSelectorUS">
<unstandardized-source-fields>

<unstandardized-source-field-name>Person.Address[*].Address1
</unstandardized-source-field-name>
<unstandardized-source-field-name>Person.Address[*].Address2
</unstandardized-source-field-name>

</unstandardized-source-fields>
<standardization-targets>

<target-mapping>
<standardized-object-field-id>HouseNumber
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].HouseNumber
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>RuralRouteIdentif
Implementing the Sun SeeBeyond
Match Engine with eView Studio 73 Sun Microsystems, Inc.

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Studio Matching Service
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].HouseNumber
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>BoxIdentif
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].HouseNumber
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>MatchStreetName
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetName
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>RuralRouteDescript
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetName
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>BoxDescript
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetName
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>PropDesPrefDirection
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetDir
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>PropDesSufDirection
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetDir
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>StreetNameSufType
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetType
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>StreetNamePrefType
</standardized-object-field-id>
<standardized-target-field-

name>Person.Address[*].StreetType
</standardized-target-field-name>

</target-mapping>
</standardization-targets>

</group>
</free-form-texts-to-standardize>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 74 Sun Microsystems, Inc.

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Studio Matching Service
Phonetic Encoding

When you match or standardize on street address fields, the street name should be
specified for phonetic conversion (this is done by default). Follow the instructions
under “Defining Phonetic Encoding” in Chapter 6 of the Sun SeeBeyond eView Studio
Configuration Guide to define fields for phonetic encoding.

A sample of the phoneticize-fields element is shown below. This sample only converts
the address street name. You can define additional fields for phonetic encoding.

<phoneticize-fields>
<phoneticize-field>

<unphoneticized-source-field-name>Person.Address[*].StreetName
</unphoneticized-source-field-name>
<phoneticized-target-field-

name>Person.Address[*].StreetName_Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
</phoneticize-fields>

7.5.2 Configuring the Match String
For matching on street address fields, make sure the match string you specify in
MatchingConfig contains all or a subset of the fields that contain the standardized data
(the original text in street address fields are generally too inconsistent to use for
matching). You can include additional fields for matching, such as the city name or
postal code.

To configure the match string, follow the instructions under “Configuring the Match
String” in Chapter 6 of the Sun SeeBeyond eView Studio Configuration Guide. For the Sun
SBME, each component of a street address has a different match type (specified by the
match-type element). The default match types for addresses are StreetName,
HouseNumber, StreetDir, and StreetType. You can specify any of the other match types
defined in the match configuration file, as well. For more information, see “Match and
Standardization Types” on page 34.

A sample match string for address matching is shown below.

<match-system-object>
<object-name>Person</object-name>
<match-columns>

<match-column>
<column-name>Enterprise.SystemSBR.Person.Address.StreetName
</column-name>
<match-type>StreetName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.HouseNumber
</column-name>
<match-type>HouseNumber</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.StreetDir
</column-name>
<match-type>StreetDir</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.StreetType
Implementing the Sun SeeBeyond
Match Engine with eView Studio 75 Sun Microsystems, Inc.

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Studio Matching Service
</column-name>
<match-type>StreetType</match-type>

</match-column>
</match-columns>

</match-system-object>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 76 Sun Microsystems, Inc.

Chapter 8

Business Names Data Type Configuration

Processing business name fields involves parsing, normalizing, and phonetically
encoding certain fields prior to matching. This chapter describes the configuration files
that define business name processing logic and provides instructions for modifying the
Match Field file for processing business names.

What’s in This Chapter

Business Name Matching Overview on page 77

Match Configuration for Business Names on page 79

Standardization Configuration for Business Names on page 79

Modifying Business Name Configuration Files on page 90

Configuring the eView Studio Matching Service on page 91

8.1 Business Name Matching Overview
Matching on the business name data type includes standardizing and matching on
freeform business name fields. You can implement business name standardization and
matching on its own or within a master index designed to process person information.
For example, standardizing business name fields allows you to include these fields as
search criteria, even though matching might not be performed against these fields.

The Sun SBME can create standardized and phonetic values for business names.
Several configuration files are designed specifically to handle business names to define
additional logic for the standardization and phonetic encoding process. These include
reference files, a patterns file, and key type files. The Sun SBME can match on any field
as long as the match type for the field is defined in the match configuration file
(matchConfigFile.cfg).

The business name standardization files are common to all national domains, so no
domain-specific configuration is required.

8.1.1 Business Name Processing Fields
When matching on freeform business names, not all fields in a record need to be
processed by the Sun SBME. The match engine only needs to process fields that must be
parsed, normalized, or phonetically converted, and the fields against which matching is
Implementing the Sun SeeBeyond
Match Engine with eView Studio 77 Sun Microsystems, Inc.

Chapter 8 Section 8.1
Business Names Data Type Configuration Business Name Matching Overview
performed. These fields are defined in the Match Field file, and processing logic for
each field is defined in the standardization and matching configuration files.

Match String Fields

The match string processed by the Sun SBME is defined by the match fields specified in
the Match Field file. If you specify a “BusinessName” match type for any field in the
eView Wizard, most of the parsed business name fields are automatically added to the
match string in the Match Field file, including the name, organization type, association
type, sector, industry, and URL. You can remove any of these fields from the match
string.

The match engine can process any combination of fields you specify for matching. By
default, the match configuration file includes rows specifically for matching on the
fields that are parsed from the business name fields. The file also defines several
generic match types. You can use any of the existing rows for matching or you can
create new rows for the fields you want to match.

Standardized Fields

The Sun SBME expects that business name data will be provided in a freeform text field
containing several components that must be parsed. The match engine is designed to
parse these components, and to normalize and phonetically encode the business name.
You can specify additional fields for phonetic encoding.

If you specify the “BusinessName” match type for any field in the eView Wizard, a
standardization structure for that field is defined in the Match Field file. The fields
defined as the target fields are listed in the next section, “The Object Structure”.

The Object Structure

For the default configuration of the business name data type, the address fields
specified for standardization are parsed into several additional fields, one of which is
also normalized. If you specify the appropriate match type in the eView Wizard, the
following fields are automatically added to the object structure and database creation
script.

<field_name>_Name

<field_name>_NamePhon

<field_name>_OrgType

<field_name>_AssocType

<field_name>_Industry

<field_name>_Sector

<field_name>_Alias

<field_name>_Url

where <field_name> is the name of the field for which you specified business name
matching. For example, if you specify the BusinessName match type for the
Implementing the Sun SeeBeyond
Match Engine with eView Studio 78 Sun Microsystems, Inc.

Chapter 8 Section 8.2
Business Names Data Type Configuration Match Configuration for Business Names
Company field, the fields automatically added to the structure include
Company_Name, Company_NamePhon, Company_OrgType, and so on.

You can add these fields manually if you do not specify a match type in the eView
Wizard.

8.2 Match Configuration for Business Names
The default match configuration file, matchConfigFile.cfg, defines several match types
for the kinds of business name data typically included in the match string. You can
customize the existing match types or create new match types for the data being
processed. The following match types are typical for matching on business names.

In addition, you can use any of these generic match types for matching on business
names.

This file appears under the Match Engine node of the eView Studio Project. For more
information about the comparison functions used for each match type and how the
weights are tuned, see “The Match Configuration File” on page 21 and “Match
Configuration Comparison Functions” on page 100.

8.3 Standardization Configuration for Business Names
Several configuration files are used to define business name processing logic for the
Sun SBME. You can customize any of the configuration files described in this section to
fit your data processing and standardization requirements. These files appear under
the Standardization Engine node of the eView Studio Project.

bizConstants.cfg

The business constants file defines certain information about the standardization files
used for processing business data, primarily the number of lines contained in each file.
The number of lines specified must be equal to or greater than the number of lines
actually contained in each file.

PrimaryName AliasList

OrgTypeKeyword IndustryTypeKeyword

AssocTypeKeyword URL

IndustrySectorList

String Real

Date Char

Numeric pro

Integer Exac
Implementing the Sun SeeBeyond
Match Engine with eView Studio 79 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Table 25 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

bizAdjectivesTypeKeys.dat

The adjectives key type file defines adjectives commonly found in business names so
the Sun SBME can recognize and process these values as a part of the business name.
This file contains one column with a list of commonly used adjectives, such as General,
Financial, Central, and so on.

You can modify or add entries in this file as needed. Following is an excerpt from the
bizAdjectivesTypeKeys.dat file.

DIGITAL
DIRECTED
DIVERSIFIED
EDUCATIONAL
ELECTROCHEMICAL
ENGINEERED
EVOLUTIONARY

Table 25 Business Constants File Parameters

Parameter Description

cityMax The maximum number of lines in the city or state key type
file (bizCityorStateTypeKey.dat).

primaryMax The maximum number of lines in the primary business
names reference file (bizCompanyPrimaryNames.dat).

countryMax The maximum number of lines in the country key type file
(bizCountryTypeKeys.dat).

industryMax The maximum number of lines in the industry key type file
(bizIndustryTypeKeys.dat).

patternMax The maximum number of lines in the business patterns file
(bizPatterns.dat).

mergerMax The maximum number of lines in the merged business name
category file (bizCompanyMergerNames.dat).

adjectiveMax The maximum number of lines in the adjective key type file
(bizAdjectiveTypeKeys.dat).

orgMax The maximum number of lines in the organization key type
file (bizOrganizationTypeKeys.dat).

assocMax The maximum number of lines in the association key type
file (bizAssociationTypeKeys.dat).

genTermMax The maximum number of lines in the general terms
reference file (bizBusinessGeneralTerms.dat).

charsMax The maximum number of lines in the special characters
reference file (bizRemoveSpecChars.dat).

bizMaxWords The maximum number of tokens allowed in the input
business name. If no value is defined for this parameter, the
default is the value set for the words parameter in the
personConstants.cfg file.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 80 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
EXTENDED
FACTUAL
FEDERAL

bizAliasTypeKeys.dat

The alias key type file lists business name acronyms and abbreviations along with their
standardized names so the Sun SBME can recognize and process these values correctly.
You can add entries to the alias key type file using the following syntax.

alias standardized-name

Table 26 describes the columns in the bizAliasTypeKeys.dat file.

Following is an excerpt from the bizAliasTypeKeys.dat file.

BBH BARTLE BOGLE HEGARTY
BBH BROWN BROTHERS HARRIMAN
IBM INTERNATIONAL BUSINESS MACHINE
IDS INCOMES DATA SERVICES
IDS INSURANCE DATA SERVICES
IDS THE INTEGRATED DECISION SUPPORT GROUP
IDS THE INTERNET DATABASE SERVICE
CAL-TECH CALIFORNIA INSTITUTE OF TECHNOLOGY

bizAssociationTypeKeys.dat

The association key type file lists business association types along with their
standardized names so the Sun SBME can recognize and process these values correctly.
You can add entries to the association key type file using the following syntax.

association-type standardized-type

Table 27 describes the columns in the bizAssociationTypeKeys.dat file.

Following is an excerpt from the bizAssociationTypeKeys.dat file.

ASSOCIATES 0
BANCORP 0

Table 26 Alias Key Type File

Column Description

alias An abbreviation or acronym commonly used in
place of a specific business name.

standardized-name The normalized version of the alias name.

Table 27 Association Type Key Table

Column Description

association-type A common association type for businesses,
such as Partners, Group, and so on.

standardized-type The standardized version of the association
type. If this column contains a name instead of
a zero, that name must also be listed in a
different entry as an association type with a
standardized form of “0”.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 81 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
BANCORPORATION BANCORP
COMPANIES 0
GP GROUP
GROUP 0
PARTNERS 0

bizBusinessGeneralTerms.dat

The general terms reference file lists terms commonly used in business names. This file
is used to identify terms that indicate a business, such as bank, supply, factory, and so
on, so the Sun SBME can recognize and process the business name.

This file contains one column that lists common terms in the business names you
process. You can add entries as needed. Below is an excerpt from the
bizBusinessGeneralTerms.dat file.

BUILDING
CITY
CONSUMER
EAST
EYE
FACTORY
LATIN
NORTH
SOUTH

bizCityorStateTypeKeys.dat

The city or state key type file lists various cities and states that might be used in
business names. It also classifies each entry as a city (CT) or state (ST) and indicates the
country in which the city or state is located. This enables the Sun SBME to recognize
and process these values correctly. You can add entries to the city or state key type file
using the following syntax.

city-or-state type country

Table 28 describes the columns in the bizCityorStateTypeKeys.dat file.

Following is an excerpt from the bizCityorStateTypeKeys.dat file.

ADELAIDE CT AU
ALABAMA ST US
ALASKA ST US
ALGIERS CT DZ
AMSTERDAM CT NL
ARIZONA ST US

Table 28 City or State Key Type File

Column Description

city-or-state The name of a city or state used in business
names.

type An indicator of whether the value is a city or
state. “CT” indicates city and “ST” indicates
state.

country The country code of the country in which the
city or state is located.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 82 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
ARKANSAS ST US
ASUNCION CT PY
ATHENS CT GR

bizCompanyFormerNames.dat

The business former name reference file provides a list of common company names
along with names by which the companies were formerly known so the Sun SBME can
recognize a business when a record processing a record containing a previous business
name. You can add entries to the business former name table using the following
syntax.

former-name current-name

Table 29 describes each column in the bizCompanyFormerNames.dat file.

Below is an excerpt from the bizCompanyFormerNames.dat file.

HELLENIC BOTTLING COCA-COLA HBC
INTERNATIONAL PRODUCTS THE TERLATO WINE
ORGANIC FOOD PRODUCTS SPECTRUM ORGANIC PRODUCTS
SUTTER HOME WINERY TRINCHERO FAMILY ESTATES

bizCompanyMergerNames.dat

The merged business name category file provides a list of companies whose name
changed because of a merger along with the name of the company after the merge. It
also classifies the business names into industry sectors and sub-sectors. This enables the
Sun SBME to recognize the current company name and determine the sector of the
business. You can add entries to the business merger name file using the following
syntax.

former-name/merged-name sector-code

Table 30 describes each column in the bizCompanyMergerNames.dat file.

Below is an excerpt from the bizCompanyMergerNames.dat file.

Table 29 Business Former Name Reference File

Column Description

former-name One of the company’s previous names.

current-name The company’s current name.

Table 30 Business Merger Name Category File

Column Description

former-name The name of the company whose name was
not kept after the merger.

merged-name The name of the company whose name was
kept after the merger.

sector-code The industry sector code of the business.
Sector codes are listed in the
bizIndustryCategoriesCode.dat file.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 83 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
DUKE/FLUOR DANIEL 20005
FAULTLESS STARCH/BON AMI 09004
FIND/SVP 10013
FIRST WAVE/NEWPARK SHIPBUILDING 27005
GUNDLE/SLT 19020
HMG/COURTLAND 23004
J BROWN/LMC 10014
KORN/FERRY 10020
LINSCO/PRIVATE LEDGER 14005

bizCompanyPrimaryNames.dat

The primary business name reference file provides a list of companies by their primary
name. It also classifies the business names into industry sectors and sub-sectors. This
enables the Sun SBME to determine the correct value of the sector field when parsing
the business name. You can add entries to the primary business name file using the
following syntax.

primary-name sector-code

Table 31 describes the columns in the bizCompanyPrimaryNames.dat file.

Below is an excerpt from the bizCompanyPrimaryNames.dat file.

BROTHER INTERNATIONAL 12006
BRYSTOL-MYERS SQUIBB 11005
BURLINGTON COAT FACTORY 24003
BURLINGTON NORTHERN SANTA FE 27005
BV SOLUTIONS 06012
CABLEVISION 26001
CABOT 04006
CADENCE 06010
CAMPBELL 22006
CAPITAL BLUE CROSS 17001

bizConnectorTokens.dat

The connector tokens reference file defines common values (typically conjunctions) that
connect words in business names. For example, in the business name “Nursery of
Venice”, “of” is a connector token. This helps the Sun SBME recognize and process the
full name of a business by indicating that the token connects two parts of the full name.

This file contains one column that lists the connector tokens in the business names you
process. You can add entries as needed. Below is an excerpt from the
bizConnectorTokens.dat file.

AN
DE
DES
DOS

Table 31 Business Primary Name Reference File

Column Description

primary-name The primary name of the company.

sector-code The industry sector code of the business.
Sector codes are listed in the
bizIndustryCategoriesCode.dat file.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 84 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
LA
LAS
LE
OF
THE

bizCountryTypeKeys.dat

The country key type file lists countries and continents, along with their abbreviations
and assigned nationalities. For continents, the abbreviation is “CON” to separate them
from countries. This enables the Sun SBME to recognize and process these values as
countries or continents. You can add entries to the country key type file using the
following syntax.

country abbreviation nationality

Table 32 describes the columns in the bizCountryTypeKeys.dat file.

Following is an excerpt from the bizCountryTypeKeys.dat file.

AMERICA CON AMERICAN
AFRICA CON AFRICAN
EUROPE CON EUROPEAN
ASIA CON ASIAN
AFGHANISTAN AF AFGHAN
ALBANIA AL ALBANIAN
ALGERIA DZ ALGERIAN

bizIndustryCategoryCode.dat

The industry sector reference file lists and groups various industry sectors and sub-
sectors, and includes an identification code for each type so the Sun SBME can identify
and process the industry sectors for different businesses. You can add entries to the
industry sector reference file using the following syntax.

sector-code industry-sector

Table 33 describes each column in the bizIndustryCategoryCode.dat file.

Table 32 Country Key Type Files

Column Description

country The name of a country or continent.

abbreviation The common abbreviation for the specified
country. The abbreviation for a continent is
always “CON”.

nationality The nationality assigned to a person or
business originating in the specified country.

Table 33 Industry Sector Reference File

Column Description

sector-code The identification code of the specified sector.
The first two numbers of each code identify
the general industry sector; the last three
number identify a sub-sector.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 85 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
02006 Automotive & Transport Equipment - Recreational Vehicles
02007 Automotive & Transport Equipment - Shipbuilding & Related
Services
02008 Automotive & Transport Equipment - Trucks, Buses & Other
Vehicles
03001 Banking - Banking
04001 Chemicals - Agricultural Chemicals
04002 Chemicals - Basic & Intermediate Chemicals & Petrochemicals
04003 Chemicals - Diversified Chemicals
04004 Chemicals - Paints, Coatings & Other Finishing Products
04005 Chemicals - Plastics & Fibers
04006 Chemicals - Specialty Chemicals
05001 Computer Hardware - Computer Peripherals
05002 Computer Hardware - Data Storage Devices
05003 Computer Hardware - Diversified Computer Products

bizIndustryTypeKeys.dat

The industry key type file is used to standardize the value of the Industry field into
common industries to which businesses belong so the Sun SBME can recognize and
process the industry types for different businesses. You can add entries to the industry
key type file using the following syntax.

industry-type standardized-form sectors

Table 34 describes each column in the bizIndustryTypeKeys.dat file.

industry-sector A description of the industry category. This is
written in the format “<sector> - <sub-
sector>”, where <sector> is a general category
of industry types, and <sub-sector> is a specific
industry within that category.

Table 34 Industry Key Type File

Column Description

industry-type The original value of the industry type in the
input record.

standardized-form The normalized version of the industry type. If
this column contains a name instead of a zero,
that name must also be listed in a different
entry as an industry type with a standardized
form of “0”.

sectors The industry categories of the specified
industry type. These values correspond to the
sector codes listed in the industry sector file
(bizIndustryCategoryCode.dat). You can list as
many categories as apply for each type, but
they must be entered with a space between
each and no line breaks, and they must
correspond to an entry in the industry sector
file.

Table 33 Industry Sector Reference File

Column Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 86 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Below is an excerpt from the bizIndustryTypeKeys.dat file.

TECH TECHNOLOGY 05001-05007
TECHNOLOGIES TECHNOLOGY 05001-05007
TECHNOLOGY 0 05001-05007
TECHSYSTEMS 0 05001-05007
TELE PHONE TELEPHONE 16005
TELE PHONES TELEPHONES 16005
TELEVISION TV 11013 21014
TELECOM 0 16005 26006 26009 26010
TELECOMM TELECOMMUNICATION 16005 26006 26008
TELECOMMUNICATION 0 16005 26006 26008

bizOrganizationTypeKeys.dat

The organization key type file is used to standardize the value of the Organization field
into common organizations to which businesses belong. This helps the Sun SBME
recognize and process the organization types for different businesses. You can add
entries to the organization key type file using the following syntax.

original-type standardized-form

Table 35 describes each column in the bizOrganizationTypeKeys.dat file.

Below is an excerpt from the bizOrganizationTypeKeys.dat file.

INC INCORPORATED
INCORPORATED 0
KG 0
KK 0
LIMITED 0
LIMITED PARTNERSHIP 0
LLC 0
LLP 0
LP LIMITED PARTNERSHIP
LTD LIMITED

bizPatterns.dat

The business patterns file defines multiple formats expected from the business name
input fields along with the standardized output of each format. The patterns and
output appear in two-row pairs in this file, as shown below.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

Table 35 Organization Key Type File

Column Description

original-type The original value of the organization field in
an input record.

standardized-form The normalized version of an organization
type. A zero (0) in this field indicates that the
value in the first column is already in its
standardized form. If this column contains a
name instead of a zero, that name must also be
listed in a different entry as an original type
with a standardized form of “0”.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 87 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
The first line describes the input pattern and the second describes the output pattern
using tokens to denote each component. The supported tokens are described in
“Business Name Tokens” on page 88. A number at the beginning of the first line
indicates the number of components in the given business name format. You can
modify this file using the following syntax.

length input-pattern
output-pattern

Table 36 lists and describes the syntax components.

Below is an excerpt from the bizPatterns.dat file.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

4 NFG AJT SEP-GLC ORT
PNT PNT DEL ORT

4 NF AJT SEP-GLC ORT
PNT PNT DEL ORT

4 CST IDT NF ORT
PNT PNT PNT ORT

4 PNT AJT SEP-GLC ORT
PNT PNT DEL ORT

Business Name Tokens

The business patterns file uses tokens to denote different components in a business
name, such as the primary name, alias type key, URL, and so on. The file uses one set of
tokens for input fields and another set for output fields. The tokens indicate the type
key files to use to determine the appropriate values for each output field. You can use
only the predefined tokens to represent business name components; the Sun SBME
does not recognize custom tokens.

Table 36 Business Patterns File Components

Component Description

length The number of business name components in
the input field.

input-pattern Tokens that represent a possible input pattern
from the unparsed business name fields. Each
token represents one component. For more
information about address tokens, see
“Business Name Tokens” on page 88.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component. For more
information about business name tokens, see
“Business Name Tokens” on page 88.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 88 Sun Microsystems, Inc.

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Table 37 lists and describes each input token; Table 38 lists and describes each output
token.

Table 37 Business Name Input Pattern Tokens

Pattern Identifier Description

CTT A connector token

PNT A primary name of a business

PN-PN A hyphenated primary name of a business

BCT A common business term

URL The URL of the business’ web site

ALT A business alias type key (usually an acronym)

CNT A country name

NAT A nationality

CST A city or state type key

IDT An industry type key

IDT-AJT Both an industry and an adjective type key

AJT An adjective type key

AST An association type key

ORT An organization type key

SEP A separator key

NFG Generic term, not recognized as a specific
business name component, with an internal
hyphen

NF Generic term, not recognized as a specific
business name component

NFC A single character, not recognized as a specific
business name component

SEP-GLC A joining comma (a glue type separator)

SEP-GLD A joining hyphen (a glue type separator)

AND The text “and”

GLU A glue type key, such as a forward slash,
connecting two parts of a business name
component

PN-NF A business primary name followed by a
hyphen and a generic term that is not
recognized as a specific business name
component

NF-PN A generic term that is not recognized as a
specific business name component, followed
by a hyphen and a recognized business
primary name
Implementing the Sun SeeBeyond
Match Engine with eView Studio 89 Sun Microsystems, Inc.

Chapter 8 Section 8.4
Business Names Data Type Configuration Modifying Business Name Configuration Files
bizRemoveSpecChars.dat

The special characters reference file lists certain characters that should be removed
from a business name prior to processing the field, which typically include punctuation
marks such as exclamation points, parenthesis, and so on. This enables the Sun SBME
to recognize the business name.

This file contains one column that lists the characters to be removed from the business
names you process. You can add entries as needed. Below is an excerpt from the
bizRemoveSpecChars.dat file.

[
]
{
}
<
>
/
?

8.4 Modifying Business Name Configuration Files
To customize the Sun SBME configuration files for processing business names, you can
modify any of the files described in this chapter using the text editor provided in
Enterprise Designer. Before modifying the match configuration file, review the
information provided in Chapter 4 “Matching Configuration Files” and Appendix B

NF-NF Two generic terms, not recognized as specific
business name components and separated by
a hyphen

Table 38 Business Name Output Pattern Tokens

Pattern Identifier Description

PNT The primary name of the business

URL The URL of the business

ALT The alias type key of the business (usually an
acronym)

IDT The industry type key of the business

AST The association type key of the business

ORT The organization type key of the business

NF A generic term not recognized as a business
name component

Table 37 Business Name Input Pattern Tokens

Pattern Identifier Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 90 Sun Microsystems, Inc.

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Studio Matching Service
“Match Configuration Comparison Functions”. Make sure a thorough data analysis
has been performed to determine the best fields for matching, and the best comparison
functions to use for each field.

Updating most standardization files is a straight-forward process. Make sure to follow
the syntax guidelines provided in “Standardization Configuration for Business
Names” on page 79. If you add rows to any standardization files, make sure to modify
the corresponding parameter in the business constants file (bizConstants.cfg). Before
making any changes to the patterns file, make sure you understand the tokens used to
represent business name field components.

8.5 Configuring the eView Studio Matching Service
To ensure correct processing of business names, you must customize the eView Studio
Matching Service. This includes modifying the Match Field file to support the fields on
which you want to match, to standardize the appropriate fields, and to specify the Sun
SBME as the match and standardization engine (by default, the Sun SBME is already
specified so this does not need to be changed). Perform the following tasks to configure
the eView Studio Matching Service.

Configuring the Standardization Structure on page 91

Configuring the Match String on page 93

When configuring the eView Studio Matching Service, keep in mind the information
presented in “Configuring the Matching Service” on page 37.

8.5.1 Configuring the Standardization Structure
The standardization structure is configured in the StandardizationConfig section of
the Match Field file, which is described in detail in Chapter 6 of the Sun SeeBeyond eView
Studio Configuration Guide. To configure the required fields for standardization and
phonetic encoding, modify the standardization and phonetic encoding structures. This
is described in detail in Chapter 6 of the Sun SeeBeyond eView Studio Configuration Guide.
The following sections provide additional guidelines and samples specific to
standardizing business names.

Note: In the default configuration, the rules defined for the business data type assume that
all input fields must be parsed as well as normalized. Thus, there is no need to
configure fields only for normalization.

Standardization Structures

For business name fields, the source fields in the standardization structure must
include the fields predefined for parsing and normalization. This includes any fields
containing business name information, which are parsed into the business name fields
listed in “The Object Structure” on page 78 (excluding the phonetic business name
field). The target fields can include any of these parsed fields. Follow the instructions
under “Defining Standardization” in Chapter 6 of the Sun SeeBeyond eView Studio
Implementing the Sun SeeBeyond
Match Engine with eView Studio 91 Sun Microsystems, Inc.

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Studio Matching Service
Configuration Guide to define fields for normalization. For the standardization-type
element, enter “BusinessName” (for more information, see “Match and
Standardization Types” on page 34). For a list of field IDs to use in the standardized-
object-field-id element, see Table 4 on page 30.

A sample standardization structure for business name data is shown below. This
structure parses a business name field into the standard business name fields. Note that
there is no domain selector specified, which would normally default to the United
States domain; however, since business names are not domain dependent, it is
irrelevant here.

<free-form-texts-to-standardize>
<group standardization-type="BusinessName">

<unstandardized-source-fields>
<unstandardized-source-field-name>Company.Name
</unstandardized-source-field-name>

</unstandardized-source-fields>
<standardization-targets>

<target-mapping>
<standardized-object-field-id>PrimaryName
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_Name
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>OrgTypekeyword
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_OrgType
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>AssocTypeKeyword
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_AssocType
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>IndustrySectorList
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_Sector
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>IndustryTypeKeyword
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_Industry
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>AliasList
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_Alias
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>Url
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_URL
</standardized-target-field-name>

</target-mapping>
</standardization-targets>

</group>
</free-form-texts-to-standardize>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 92 Sun Microsystems, Inc.

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Studio Matching Service
Phonetic Encoding

When you match on business name fields, the name field should be specified for
phonetic conversion (by default, the eView Wizard defines this for you). Follow the
instructions under “Defining Phonetic Encoding” in Chapter 6 of the Sun SeeBeyond
eView Studio Configuration Guide to define fields for phonetic encoding.

A sample of the phoneticize-fields element is shown below. This sample only converts
the business name. You can define additional fields for phonetic encoding.

<phoneticize-fields>
<phoneticize-field>

<unphoneticized-source-field-name>Company.Name_Name
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Company.Name_NamePhon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
</phoneticize-fields>

8.5.2 Configuring the Match String
For matching on business name fields, make sure the match string you specify in
MatchingConfig contains all or a subset of the fields that contain the standardized data
(the unparsed business names are typically too inconsistent for matching). You can
include additional fields for matching if required.

To configure the match string, follow the instructions under “Configuring the Match
String” in Chapter 6 of the Sun SeeBeyond eView Studio Configuration Guide. For the Sun
SBME, each data type has a different match type (specified by the match-type element).
The PrimaryName, OrgTypeKeyword, AssocTypeKeyword, IndustrySectorList,
IndustryTypeKeyword, and Url match types are specific to business name matching.
You can specify any of the other match types defined in the match configuration file, as
well. For more information, see “Match and Standardization Types” on page 34.

A sample match string for business name matching is shown below. This sample
matches on the company name, the organization type, and the sector.

<match-system-object>
<object-name>Company/object-name>
<match-columns>

<match-column>
<column-name>Enterprise.SystemSBR.Company.Name_PrimaryName
</column-name>
<match-type>PrimaryName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Company.Name_OrgType
</column-name>
<match-type>OrgTypeKeyword</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Company.Name_Sector
</column-name>
<match-type>IndustryTypeKeyword</match-type>

</match-column>
</match-columns>

</match-system-object>
Implementing the Sun SeeBeyond
Match Engine with eView Studio 93 Sun Microsystems, Inc.

Appendix A

Fine-tuning Weights and Thresholds

Each eView Studio implementation is unique, typically requiring extensive data
analysis to determine how to best configure the structure and matching logic of the
master index. This chapter provides an overview of the process of fine-tuning the
matching logic in the match configuration file and fine-tuning the match and duplicate
thresholds.

What’s in This Appendix

Data Analysis Overview on page 94

Customizing the Match Configuration and Thresholds on page 94

A.1 Data Analysis Overview
A thorough analysis of the data to be shared with the master index is a must before
beginning any implementation. This analysis not only defines the types of data to
include in the object structure, but indicates the relative reliability of each system’s
data, helps determine which fields to use for matching, and indicates the relative
reliability of each match field.

To begin the analysis, the legacy data that will be converted into the master index
database is extracted and analyzed. Once the initial analysis is complete, you can
perform an iterative process to fine-tune the matching and duplicate thresholds and to
determine the level of potential duplication in the existing data.

A.2 Customizing the Match Configuration and Thresholds
There are three primary steps to customizing how records are matched in the master
index.

Determining the Match Fields on page 94

Customizing the Match Configuration on page 95

Determining the Weight Thresholds on page 97
Implementing the Sun SeeBeyond
Match Engine with eView Studio 94 Sun Microsystems, Inc.

Appendix A Section
Fine-tuning Weights and Thresholds
A.2.1 Determining the Match Fields
Before extracting data for analysis, review the types of data stored in the messages
generated by each system. Use these messages to determine which fields and objects to
include in the object structure of the master index. From this object structure, select the
fields to use for matching. When selecting these fields, keep in mind how
representative each field is of a specific object. For example, in a master person index,
the social security number field, first and last name fields, and birth date are good
representations whereas marital status, suffix, and title are not. Certain address
information or a home telephone number might also be considered. In a master
company index, the match fields might include any of the fields parsed from the
complete company name field, as well as a tax ID number or address and telephone
information.

A.2.2 Customizing the Match Configuration
Once you determine the fields to use for matching, determine how the weights will be
generated for each field. The primary tasks include determining whether to use
probabilities or agreement weight ranges and then choosing the best comparison
functions to use for each match field.

Probabilities or Agreement Weights

The first step in configuring the match configuration is to decide whether to use m-
probabilities and u-probabilities or agreement and disagreement weight ranges. Both
methods will give you similar results, but agreement and disagreement weight ranges
allow you to specify the precise maximum and minimum weights that can be applied
to each match field, giving you control over the value of the highest and lowest
matching weights that can be assigned to each record.

Defining Relative Value

For each field used for matching, define either the m-probabilities and u-probabilities
or the agreement and disagreement weight ranges in the match configuration file.
Review the information provided under “Matching Weight Formulation” on page 16
to help determine how to configure these values. Remember that a higher m-
probability or agreement weight gives the field a higher weight when field values
agree.

Determining the Weight Range

In order to find the initial values to set for the match and duplicate thresholds, you
must determine the total range of matching weights that can be assigned to a record.
This weight is the sum of all weights assigned to each match field.

Weight Ranges Using Agreement Weights

For agreement and disagreement weight ranges, determining the match weight ranges
is very straightforward. Simply total the maximum agreement weights for each field to
determine the maximum match weight. Then total the minimum disagreement weights
Implementing the Sun SeeBeyond
Match Engine with eView Studio 95 Sun Microsystems, Inc.

Appendix A Section
Fine-tuning Weights and Thresholds
for each match field to determine the minimum match weight. Table 39 provides a
sample agreement/disagreement configuration for matching on person data. As you
can see, the range of match weights generated for the master index with this
configuration is from -36 to +38.

Weight Ranges Using Probabilities

Determining the match weight ranges when using m-probabilities and u-probabilities
is a little more complicated than using agreement and disagreement weights. To
determine the maximum weight that will be generated for each field, use the following
formula:

LOG2(m_prob/u_prob)

To determine the minimum match weight that will be generated for each field, use the
following formula:

LOG2((1-m_prob)/(1-u_prob))

Table 40 below illustrates a sample of m-probabilities and u-probabilities, including the
corresponding agreement and disagreement weights that are generated with each
combination of probabilities. As you can see, the range of match weights generated for
the master index with this configuration is from -35.93 to +38

Table 39 Sample Agreement and Disagreement Weight Ranges

Field Name
Maximum

Agreement Weight
Minimum

Disagreement Weight

First Name 8 -8

Last Name 8 -8

Date of Birth 7 -5

Gender 5 -5

SSN 10 -10

Maximum Match Weight 38

Minimum Match Weight -36

Table 40 Sample m-probabilities and u-probabilities

Field Name m-probability u-probability
Max Agreement

Weight
Min Disagreement

Weight

First Name .996 .004 7.96 -7.96

Last Name .996 .004 7.96 -7.96

Date of Birth .97 .007 7.11 -5.04

Gender .97 .03 5.01 -5.01

SSN .999 .001 9.96 -9.96

Maximum Match Weight 38

Minimum Match Weight -35.93
Implementing the Sun SeeBeyond
Match Engine with eView Studio 96 Sun Microsystems, Inc.

Appendix A Section
Fine-tuning Weights and Thresholds
Comparison Functions

The match configuration file defines several match types for different types of fields.
You can either modify existing rows in this file or create new rows that define custom
matching logic. To determine which comparison functions to use, review the
information provided in Appendix B “Match Configuration Comparison Functions”.
Choose the comparison functions that best suit how you want the match fields to be
processed.

A.2.3 Determining the Weight Thresholds
Weight thresholds tell the master index how to process incoming records based on the
matching probability weights generated by the Sun SBME. Two parameters in the
Threshold configuration file provide the master index with the information needed to
determine if records should be flagged as potential duplicates, if records should be
automatically matched, or if a record is not a potential match to any existing records.

Match Threshold - Specifies the weight at which two profiles are assumed to
represent the same person and are automatically matched (this depends on the
setting for the OneExactMatch parameter).

Duplicate Threshold - Specifies the minimum weight at which two profiles are
considered potential duplicates of one another. The matching threshold indicates
the maximum weight for potential duplicates.

Figure 1 illustrates the match and duplicate thresholds in comparison to total
composite match weights.

Figure 1 Weight Thresholds

Sun SeeBeyond
Match Engine

New Member
Profle

New or
Matched

Member Profile

Profiles are a match

Profiles might be
a match

Profiles do not match

Matching Threshold

Duplicate Threshold

Maximum Weight

Master Index
Database

Minimum Weight
Implementing the Sun SeeBeyond
Match Engine with eView Studio 97 Sun Microsystems, Inc.

Appendix A Section
Fine-tuning Weights and Thresholds
Specifying the Weight Thresholds

There are many techniques for determining the initial settings for the match and
duplicate thresholds. This section discusses two methods. The first method, the weight
distribution method, is based on the calculation of the error rates of false matches and
false non-matches from analyzing the distribution spectrum of all the weighted pairs.
This is the standard method, and is illustrated in Figure 2. The second method, the
percentage method relies on measuring the total maximum and minimum weights of
all the matched fields and then specifying a certain percentage of these values as the
initial thresholds.

The weight distribution method is more thorough and powerful but requires analyzing
a large amount of data (match weights) to be statistically reliable. It does not apply well
in cases where one candidate record is matched against very few reference records. The
percentage method, though simple, is very reliable and precise when dealing with such
situations. For both methods, defining the match threshold and the duplicate threshold
is an iterative process.

Weight Distribution Method

Each record pair in the master index can be classified into three categories: matches,
non-matches, and potential matches. In general, the distribution of records is similar to
the graph shown in Figure 2. Your goal is to make sure that very few records fall into
the False Matches region (if any), and that as few as possible fall into the False Non-
matches region. You can see how modifying the thresholds changes this distribution.
Balance this against the number of records falling within the Manual Review section, as
these will each need to be reviewed, researched, and resolved individually.

Figure 2 Weight Distribution Chart

Percentage Method

Using this method, you set the initial thresholds as a percentage of the maximum and
minimum weights. Using the information provided under “Weight Ranges Using
Agreement Weights” or “Weight Ranges Using Probabilities”, determine the

Correct Assumed
Matches

Match
Threshold

Duplicate
Threshold

Manual
Review

Non-matching
Records

False
Matches

False
Non-matches
Implementing the Sun SeeBeyond
Match Engine with eView Studio 98 Sun Microsystems, Inc.

Appendix A Section
Fine-tuning Weights and Thresholds
maximum and minimum values that can be generated for composite match weights.
For the initial run, the match threshold is set intentionally high to catch only the most
probable matches. The duplicate threshold is set intentionally low to catch a large set of
possible matches.

Set the match threshold at 70% of the maximum composite weight starting from zero as
the neutral value. Using the weight range samples in Table 39 on page 96, this would
be 70% of 38, or 26.6. Set the duplicate threshold near the neutral value (that is, the
value in the center of the maximum and minimum weight range). The value could be
set between 10% of the maximum weight and 10% of the minimum weight. Using the
samples above, this would be between 3.8 (10% of 38) and -3.6 (10% of -36).

Fine-tuning the Thresholds

Achieving the correct thresholds for your implementation is an iterative process. First,
using the initial thresholds described earlier, process the data extracts into the master
index database. Then analyze the resulting assumed match and potential duplicates,
paying close attention to the assumed match records with matching weights close to the
match threshold, to potential duplicate records close to either threshold, and to non-
matches near the duplicate threshold.

If you find that most or all of the assumed matches at the low end of the match range
are not actually duplicate records, raise the match threshold accordingly. If, on the
other hand, you find several potential duplicates at the high end of the duplicate range
that are actual matches, decrease the match threshold accordingly. If you find that most
or all of the potential duplicate records in the low end of the duplicate range should not
be considered duplicate matches, consider raising the duplicate threshold. Conversely,
if you find several non-matches with weight near the duplicate threshold that should
be considered potential duplicates, lower the duplicate threshold.

Repeat the process of loading and analyzing data and adjusting the thresholds until
you are satisfied with the results.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 99 Sun Microsystems, Inc.

Appendix B

Match Configuration Comparison Functions

Match field comparison functions, or comparators, compare the values of a field in two
records to determine whether the fields match or how closely they match. The fields are
then assigned a matching weight based on the results of the comparison function. You
can use several different types of comparison functions in the match configuration file
in order to customize how the Sun SBME matches records.

What’s in This Appendix

Comparison Functions on page 100

Comparison Function Options on page 110

B.1 Comparison Functions
There are six primary types of comparison functions used by the Sun SBME. The
following types of comparison functions are available.

Bigram Comparators on page 100

String Comparators on page 101

Exact char-by-char Comparator (c) on page 103

Numeric Comparators on page 104

Date Comparators on page 106

Prorated Comparator (p) on page 108

Certain comparison function types are very specific to the type of data being matched,
such as the numeric functions and the date functions. Others, such as the Bigram and
uncertainty functions, are more general and can be applied to various data fields.

Be sure to review Table 2 on page 23 for information about how the parameters in the
match configuration file affect the outcome of the comparator functions. For example,
these parameters define how null fields are handled and what the actual agreement
and disagreement weights will be.

B.1.1 Bigram Comparators
The Sun SBME provides two different comparison functions based on the Bigram
algorithm, the standard bigram (b1) and the transposition bigram (b2). A Bigram
Implementing the Sun SeeBeyond
Match Engine with eView Studio 100 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
algorithm compares two strings using all combinations of two consecutive characters
within each string. For example, the word “bigram” contains the following bigrams:
“bi”, “ig”, “gr”, “ra”, and “am”. The Bigram comparison function returns a value
between 0 and 1, which accounts for the total number of bigrams that are in common
between the strings divided by the average number of bigrams in the strings. Bigrams
handle minor typographical errors well.

Bigram String Comparator (b1)

This is a standard Bigram comparison function, processing match fields as described
above. This comparison function takes no parameters.

Advanced Bigram String Comparator (b2)

This comparison function is based on the standard Bigram comparison function, but
handles transpositions of characters within a string. This comparison function takes no
parameters.

B.1.2 String Comparators
The Sun SBME provides the following uncertainty comparison functions for comparing
string fields. Most uncertainty comparison functions are generic, but three comparison
functions are designed for specific types of information (first name, last name, and
house number).

Generic String Comparator (u)

Advanced Generic String Comparator (ua)

Simplified String Comparator (us)

Simplified String Comparator - FirstName (uf)

Simplified String Comparator - LastName (ul)

Simplified String Comparator - HouseNumber (un)

Simplified String Comparator (usu)

Generic String Comparator (u)

This is the standard uncertainty comparison function, which processes string fields as
described above. As more differences are found between two fields, the agreement
weight decreases non-linearly. Thus, the agreement weight can remain high for several
differences, but will drop sharply at a certain point. This comparison function takes no
parameters.

The uncertainty comparison function is based on the Jaro algorithm with McLaughlin
adjustments for similarities. The Jaro algorithm is a string comparison function that
accounts for insertions, deletions, and transpositions by performing the following
steps.

1 Compute the lengths of both strings to be matched.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 101 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
2 Determine the number of common characters between the two strings. In order for
characters to be considered common, they must be within one-half the length of the
shorter string.

3 Determine the number of transpositions. A transposition means a character from
the first string is out of order with the corresponding common character from the
second string.

Advanced Generic String Comparator (ua)

This comparison function is based on the standard uncertainty comparison function, u,
with variants of Winkler/Lynch and McLaughlin. It has additional features to handle
specific differences between fields, such as key punch and visual memory errors. Each
feature makes use of the information made available from previous features. This
comparison function takes no parameters. The following features are included in the
advanced uncertainty function.

The function determines each character in exact agreement and then assigns a value
of 1.0 to each agreeing character. It then determines each disagreeing but similar
character and assigns a value of 0.3 to each. Similar characters might occur because
of scanning errors (for example, “1” the number versus “l” the letter) or keypunch
errors (for example, “S” versus “D”).

The function gives increased value to agreement on the beginning characters of a
string. The algorithm adjusts the weighting value up by a fixed amount if the first
four characters in each string agree; it adjusts the weighting value up by smaller
value if only the first three, two, or one characters agree.

The function adjusts the string comparison value if the strings are longer than six
characters and more than half of the characters after the fourth character agree.

Simplified String Comparator (us)

This comparison function is a custom version of a generic string comparison function. It
is similar to the basic uncertainty comparison function, u, but processes data in a more
simple and efficient manner, improving processing speed. The agreement weights
generated by this comparison function decrease in a more uniform manner for each
difference found between two fields.

Like the basic uncertainty function, the simplex function takes into account such
uncertainty factors as string length, transpositions, key punch errors, and visual
memory errors. Unlike the uncertainty comparison function (“u”), this function
handles diacritical marks. This comparison function takes no parameters.

Simplified String Comparator - FirstName (uf)

This comparison function is designed specifically for matching on first name fields, and
is based on the simplex uncertainty comparison function, us. This comparison function
analyzes the string and then adjusts the weight based on statistical data. This
comparison function takes no parameters.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 102 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
Simplified String Comparator - LastName (ul)

This comparison function is designed specifically for matching on last name fields, and
is based on the simplex uncertainty comparison function, us. This comparison function
analyzes the string and then adjusts the weight based on statistical data. This
comparison function takes no parameters.

Simplified String Comparator - HouseNumber (un)

This comparison function is designed specifically for matching on house numbers, and
is based on the simplex uncertainty comparison function, u. This comparison function
analyzes the string and then adjusts the weight based on statistical data. This
comparison function takes no parameters.

Language-specific String Comparator (usu)

This comparison function is a custom version of a generic string comparison function. It
is similar to the simplex uncertainty comparison function, us, but is based in Unicode to
enable multilingual support. This locale-oriented comparator recognizes the nuances of
each language and supports the complexities and subtleties of each. For example, when
configured to use the German language set, the function recognizes “ß” and “ss” as
equivalent. Like the simplex uncertainty function, the Unicode function takes into
account such uncertainty factors as string length, transpositions, key punch errors, and
visual memory errors. This comparison function takes the parameter described in Table
41.

B.1.3 Exact char-by-char Comparator (c)
The Sun SBME provides one exact-match comparison function, “c”. With this
comparison function, two fields must match on each character in order to be considered
a match. This comparison function takes no parameters.

Table 41 usu Comparison Function Parameter

Parameter Description

language An indicator of the language being used for the
information stored in the database. Enter one of the
following codes to indicate the language in use.
da - Danish
sv - Swedish
nb - Norwegian Bokmål
nn - Norwegian Nynorsk
nl - Dutch
es - Spanish
fr - French
en - English
it - Italian
de - German
Implementing the Sun SeeBeyond
Match Engine with eView Studio 103 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
B.1.4 Numeric Comparators
The Sun SBME provides several comparison functions for matching on numeric fields.

Generic Number Comparator (n)

Integer Comparator (nI)

Real Number Comparator (nR)

Alpha-Numeric Comparator (nS)

All but the nS comparison function can perform numeric string comparisons or relative
distance calculations. When set for a string comparison, the functions compare numeric
strings based on the advanced uncertainty comparator. When set for relative distance
calculations, the matching weight between two numbers decreases as the numbers
become further apart, until the relative distance plus one is reached. At this point, the
numbers are considered non-matches. For example, if the relative distance is “10” and
the base number for comparison is “2”, a field value of 8 receives a lower matching
weight than a field value of 4; but a field value of 13 is considered a complete non-
match (since the distance between 2 and 13 is 11).

Figure 3 illustrates how the weight is decreased as the difference between the two
compared fields reaches the relative distance. In this diagram, the relative distance is 10
and the light blue line represents the agreement weight. When the difference between
two fields reaches 11 (relative distance plus one), the fields are considered a non-match
and are given the full disagreement weight.

Figure 3 Numeric Relative Distance Comparison

-10 Full
Disagreement

Full
Agreement

+10
Difference

Weight
less relative

distance

plus relative
distance

-11 +11
Implementing the Sun SeeBeyond
Match Engine with eView Studio 104 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
Generic Number Comparator (n)

This is a basic numeric comparison function, processing numeric fields as described
above. It accepts the parameters listed in Table 42.

Integer Comparator (nI)

This numeric comparison function matches specifically on integers and accepts the
parameters listed in Table 42.

Real Number Comparator (nR)

This numeric comparison function matches specifically on real numbers and accepts
the parameters listed in Table 42.

Alpha-numeric Comparator (nS)

This numeric comparison function is designed specifically for matching on numeric
strings and is very useful for matching social security numbers or other unique
identifiers. This is the only numeric comparator that can compare alphanumeric values
rather than just numeric values. It accepts the parameters listed in Table 43.

Table 42 n, nI, and nR Comparison Function Parameters

Parameter Description

distance-or-string Specifies whether a relative distance calculation or a
direct string comparison is used. Specify “y” to use a
relative distance calculation; specify “n” to use a
string comparison.

relative-distance The greatest difference between two integers at
which the values could still be considered a possible
match. When the difference between two numbers
is greater than the relative distance, the numbers are
considered a non-match (the weight becomes zero
when the actual difference is the relative distance
plus one).

Table 43 nS Comparison Function Parameters

Parameter Description

fixed-length An optional parameter that takes the length of the
field value into account. If a fixed length is specified,
the match engine considers any field of a different
length to be a non-match. Specify any integer
smaller than the value specified for the size
specified for the field (for more information, see
“Matching Rules” on page 23).
Implementing the Sun SeeBeyond
Match Engine with eView Studio 105 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
B.1.5 Date Comparators
The Sun SBME provides various date comparison functions. When comparing dates,
the match engine compares each date component (for example, it compares the year in
the first date against the year in the second date, the month against the month, and the
day against the day). This allows for multiple transpositions in each date field. The date
comparators use the Java date format (java.sql.Date), allowing the comparator to use
the Gregorian calendar and to take into account the time zone where the date field
originated.

The following comparison functions are available for matching on date fields.

Date Comparator - Year only (dY)

Date Comparator - Month-Year (dM)

Date Comparator - Day-Month-Year (dD)

Date Comparator - Hour-Day-Month-Year (dH)

Date Comparator - Min-Hour-Day-Month-Year (dm)

Date Comparator - Sec-Min-Hour-Day-Month-Year (ds)

As with the numeric comparison functions, the date comparison functions can use
either a direct string comparison or a relative distance calculation. When using a
relative distance calculation, the matching weight between two dates decreases as the
dates become further apart, until the relative distance is reached. When the difference
becomes the relative distance plus one, the dates are considered non-matches. You can
specify different relative distances for before and after the given date. Any dates falling
outside of the specified time period receive a complete disagreement weight. The
relative distances are specified in the smallest unit of time being matched.

Figure 4 illustrates how the weight is decreased as the difference between the two
compared fields reaches either the before or after relative distance. In this diagram, the
before relative distance is 11, the after relative distance is 5, and the light blue line
represents the agreement weight. When the base date is later than the compared date
and the difference between the dates reaches 11 (distance before plus one), the fields are
considered a non-match and are given the full disagreement weight. When the base

character-type An indicator of whether the field must be all
numeric. Specify “nu” for numeric only, or specify
“an” to allow alphanumeric characters. The match
engine considers any fields containing characters
that are not allowed to be a non-match.

invalid-characters A list of invalid characters for the field. If you specify
a character, the match engine considers fields that
consist of only that character to be a non-match. For
example, if you specify “0”, then an SSN field cannot
contain all zeros. Specify as many alphanumeric
characters as needed, separated by a space.

Table 43 nS Comparison Function Parameters

Parameter Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 106 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
date is earlier than the compared date and the difference between the dates reaches 6
(distance after plus 1), the fields are considered a non-match.

Figure 4 Date Relative Distance Comparison

The date comparison functions take the parameters listed in Table 44.

Date Comparator - Year only (dY)

This date comparison function takes only the 4-character year into account for
matching. If relative distance calculation is specified, the relative distance is specified in
years.

Date Comparator - Month-Year (dM)

This date comparison function takes the month and year into account for matching. If
relative distance calculation is specified, the relative distance is specified in months.

Table 44 Date Comparison Function Parameters

Parameter Description

distance-or-string Specifies whether a relative distance calculation or a
direct string comparison is used. Specify “y” to use a
relative distance calculation; specify “n” to use a
string comparison.

distance-before The number of units prior to the reference date/time
for which two date fields can still be considered a
match.

distance-after The number of units following the reference date/
time for which two date fields can still be considered
a match.

-10 Full
Disagreement

Full
Agreement

+5
Difference

Weight
distance
before

distance
after

-11 +6
Implementing the Sun SeeBeyond
Match Engine with eView Studio 107 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
Date Comparator - Day-Month-Year (dD)

This date comparison function takes the day, month, and year into account for
matching. If relative distance calculation is specified, the relative distance is specified in
days.

Date Comparator - Hour-Day-Month-Year (dH)

This date comparison function takes the hour, day, month, and year into account for
matching. If relative distance calculation is specified, the relative distance is specified in
hours.

Date Comparator - Min-Hour-Day-Month-Year (dm)

This date comparison function takes the minute, hour, day, month, and year into
account for matching. If relative distance calculation is specified, the relative distance is
specified in minutes.

Date Comparator - Sec-Min-Hour-Day-Month-Year (ds)

This date comparison function takes the second, minute, hour, day, month, and year
into account for matching. If relative distance calculation is specified, the relative
distance is specified in seconds.

B.1.6 Prorated Comparator (p)
The prorated comparison function uses a relative distance calculation and allows you
to specify how quickly the agreement weight between two fields decreases. Matching
weights are assigned with a linear adjustment according to the parameters you specify.
You specify an initial agreement range. If the difference between two fields falls within
that range, the fields are considered a complete match. You also specify a disagreement
range ending with the relative distance. If the difference between two fields falls within
that range, the fields are considered a non-match. When the difference between the
fields falls between those two ranges, they are considered to be partial matches and the
agreement weight is adjusted linearly. Any difference greater than the relative distance
is always considered a non-match.

Figure 5 illustrates how weighting is adjusted per the parameters you define. In these
diagrams, the green line indicates full agreement, the light blue line indicates prorated
agreement, and the red line indicates full disagreement. The diagrams illustrate how
increasing the disagreement weight causes the prorated agreement weight to decrease
more sharply.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 108 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
Figure 5 Prorated Linear Adjustment Comparison

The prorated comparison functions takes the parameters listed in Table 45.

Table 45 Prorated Comparison Function Parameters

Parameter Description

relative-distance The greatest difference between two numbers at
which they can still be considered a match or partial
match.

agreement-range The greatest difference between two numbers at
which they are considered a full match. This number
must be less than the relative distance.

5
Full

Disagreement

Full
Agreement

2010 15
Difference

Weight
agreement

range

relative distance less
disagreement range

relative
distance

relative distance = 20
agreement range = 5
disagreement range = 5

5
Full

Disagreement

Full
Agreement

2010 15
Difference

Weight
agreement

range

relative distance less
disagreement range

relative
distance

relative distance = 20
agreement range = 5
disagreement range = 10
Implementing the Sun SeeBeyond
Match Engine with eView Studio 109 Sun Microsystems, Inc.

Appendix B Section
Match Configuration Comparison Functions
B.2 Comparison Function Options
The options listed below can be used in conjunction with the above string comparison
functions to give them more functionality. For example, you can use an ‘ufI’ string
comparison function that refers to the first name comparison function with the
possibility to switch fields if the first one does not match.

I - This is a major inversion option that allows for field transpositions. If two
compared fields do not match, this option lets the match engine know to compare
the original field in the first record with the next field in the second record. If those
fields agree, the match engine assigns the full agreement weight and switches the
fields.

i - This is a minor inversion option similar to the major inversion (I) described
above. This option only assigns one-half of the full agreement weight if the
transposed fields match.

x - If two or more fields with this option match, their weight is doubled; but if any
of the fields with this option disagree, the weight is not doubled.

k - This option can be used with the ‘x’ option to give more importance to one field.
Specifying this option on a field tells the match engine to double the match weight
for a sub-group of fields with the ‘x’ option by doubling the weight as soon as it
comes to the field with the ‘k’ option.

disagreement-range This number indicates the minimum difference at
which two numbers are considered a non-match
and shortens or lengthens the weighting scale. To
find this difference, the match engine subtracts this
value from the relative distance. If the fields differ by
that amount or greater, they are considered to be a
non-match.
The weighting scale decreases in size as the value of
the full-disagreement parameter increases (see
diagram).

Table 45 Prorated Comparison Function Parameters

Parameter Description
Implementing the Sun SeeBeyond
Match Engine with eView Studio 110 Sun Microsystems, Inc.

Glossary

agreement weight
A positive weight assigned to a match field if the values agree between two fields.

Blocking Query
Also known as a blocker query, this is used during matching to search the database for
possible matches to a new or updated record. Blocking queries can also be used for
searches done from the EDM.This query makes multiple passes against the database
using different combinations of criteria, which are defined in the Candidate Select file.

Candidate Select file
The eView Studio configuration file that defines the queries you can perform from the
Enterprise Data Manager (EDM) and the queries that are performed for matching.

candidate selection
The process of performing the blocking query for match processing. See Blocking Query.

candidate selection pool
The group of possible matching records returned by the blocking query. These records
are weighed against the new or updated record to determine the probability of a match.

comparison function
A command specific to the SeeBeyond Match Engine that specifies how two fields are
compared. Comparison functions are specified for each match field in the match
configuration file.

disagreement weight
A negative weight assigned to a match field if the field values disagree between two
fields.

duplicate threshold
The matching probability weight at or above which two records are considered to
potentially represent the same entity. See also matching threshold.

enterprise object
A complete object representing a specific entity, including the SBR and all associated
system objects.

ePath
A definition of the location of a field in an eView Studio object. Also known as the
element path.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 111 Sun Microsystems, Inc.

Section
Glossary
EUID
The enterprise-wide unique identification number assigned to each object profile in the
master index. This number is used to cross-reference objects and to uniquely identify
each object throughout your organization.

eView Studio Manager Service
An eView Studio component that provides an interface to all eView Studio components
and includes the primary functions of the master index. This component is configured
by the Threshold file.

field IDs
An identifier for each field that is defined in the standardization engine and referenced
from the Match Field file.

master index
A database application that centralizes and cross-references information on specific
objects in a business organization.

Match Field File
An eView Studio configuration file that defines normalization, parsing, phonetic
encoding, and the match string for an instance of eView Studio. The information in this
file is dependent on the type of data being standardized and matched.

match pass
During matching several queries are performed in turn against the database to retrieve
a set of possible matches to an incoming record. Each query execution is called a match
pass.

match string
The data string that is sent to the match engine for probabilistic weighting. This string
is defined by the match system object defined in the Match Field file and must match
the string defined in the match engine configuration files.

match type
An indicator specified in the MatchingConfig section of the Match Field file that tells
the match engine which rules in the match configuration file to use for determine
matching weights between records.

matching probability weight
An indicator of how closely two records match one another. The weight is generated
using matching algorithm logic, and is used to determine whether two records
represent the same object. See also duplicate threshold and matching threshold.

Matching Service
An eView Studio component that defines the matching process. This component is
configured by the Match Field file.

matching threshold
The lowest matching probability weight at which two records can be considered a
match of one another. See also duplicate threshold and matching probability weight.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 112 Sun Microsystems, Inc.

Section
Glossary
matching weight or match weight
See matching probability weight.

normalization
A standardization process by which the value of a field is converted to a standard
version, such as changing a nickname to a common name.

object
A component of an object profile, such as a company object, which contains all of the
demographic data about a company, or an address object, which contains information
about a specific address type for the company.

object profile
A set of information that describes characteristics of one enterprise object. A profile
includes identification and other information about an object and contains a single best
record and one or more system records.

parsing
A component of the standardization process by which a freeform text field is separated
into its individual components, such as separating a street address field into house
number, street name, and street type fields.

phonetic encoding
A standardization process by which the value of a field is converted to its phonetic
version.

phonetic search
A search that returns phonetic variations of the entered search criteria, allowing room
for misspellings and typographic errors.

potential duplicates
Two different enterprise objects that have a high probability of representing the same
entity. The probability is determined using matching algorithm logic.

probabilistic weighting
A process during which two records are compared for similarities and differences, and
a matching probability weight is assigned based on the fields in the match string. The
higher the weight, the higher the likelihood that two records match.

probability weight
See matching probability weight.

Query Builder
An eView Studio component that defines how queries are processed. The user-
configured logic for this component is contained in the Candidate Select file.

SBR
See single best record.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 113 Sun Microsystems, Inc.

Section
Glossary
single best record
Also known as the SBR, this is the best representation of an entity’s information. The
SBR is populated with information from all source systems based on the survivor
strategies defined for each field and child object. It is a part of an entity’s enterprise
object and is recalculated each time a system record is updated.

standardization
The process of parsing, normalizing, or phonetically encoding data in an incoming or
updated record. Also see normalization, parsing, and phonetic encoding.

standardization type
An indicator specified in the StandardizationConfig section of the Match Field file that
tells the SeeBeyond Match Engine how to standardize information.

survivor calculator
The logic that determines which field values or child objects from the available source
systems are used to populate the SBR.

survivorship
Refers to the logic that determines which field values are used to populate the SBR. The
survivor calculator defines survivorship.

system
A computer application within an organization where information is entered about
objects and that shares information with the master index (such as a registration
system). Also known as a source system, local system, or external system.

system object
A record received from a local system. The fields contained in system objects are used
in combination to populate the SBR. The system objects for one entity are part of that
entity’s enterprise object.

Threshold file
An eView Studio configuration file that specifies duplicate and match thresholds, EUID
generator parameters, and which blocking query defined in the Candidate Select file to
use for matching.
Implementing the Sun SeeBeyond
Match Engine with eView Studio 114 Sun Microsystems, Inc.

Index
Index

Numerics
1P address token 70
2P address token 70

A
A1 address token 69
address clues file 63

column descriptions 64
address constants file 63
address data type

input and output patterns 66
match configuration file 62
match string 61, 75
object structure 61
phonetic encoding 75
standardization files 62
standardization structure 61

address field identifiers 30
address internal constants file 64
address master clues file 65

column descriptions 65
address match types 35
address output patterns file 68
address patterns file 66

classes 71
column descriptions 67, 68
modifiers 72
priority indicator 72
tokens 69

Address standardization type 35
addressClueAbbrev*.dat 63

column descriptions 64
addressConstants*.cfg 63
addressInternalConstants*.cfg 64
addressMasterClues*.dat

column descriptions 65
addressMasterCluesUS.dat 65
addressOutPatterns*.dat 68
addressPatterns*.dat 66

column descriptions 67
addressPatternsUS.dat

column descriptions 68
adjectiveMax parameter 80

adjectives key type file 80
advanced bigram string comparator 101
advanced string comparator 25, 102
agreement weights 14, 17, 22
AJT business name token 89
alias key type file 81

column descriptions 81
AliasList field identifier 34
AliasList match type 35
alpha-numeric comparator 26, 105
ALT business name token 89, 90
AM address token 69
AND business name token 89
association key type file 81

column descriptions 81
assocMax parameter 80
AssocTypeKeyword field identifier 34
AssocTypeKeyword match type 35
AST business name token 89, 90
AU address token 69

B
B address pattern class 71
b1 comparator 25, 101
b2 comparator 25, 101
BCT business name token 89
BD address token 70
BI address token 70
bigram comparators 100–101

advanced 25
advanced bigram 101
standard bigram 25
string 25, 101

bizAdjectivesTypeKeys.dat 80
bizAliasTypeKeys.dat 81

column descriptions 81
bizAssociationTypeKeys.dat 81

column descriptions 81
bizBusinessGeneralTerms.dat 82
bizCityorStateTypeKeys.dat

column descriptions 82
bizCityorStateTypekeys.dat 82
bizCompanyFormerNames.dat 83

column descriptions 83
bizCompanyMergerNames.dat 83

column descriptions 83
bizCompanyPrimaryNames.dat 84

column descriptions 84
bizConnectorTokens.dat 84
bizConstants.cfg 79
bizCountryTypeKeys.dat 85

column descriptions 85
bizIndustryCategoryCode.dat 85
Implementing the Sun SeeBeyond
Match Engine with eView Studio 115 Sun Microsystems, Inc.

Index
column descriptions 85
bizIndustryTypeKeys.dat 86

column descriptions 86
bizMaxWords parameter 80
bizOrganizationTypeKeys.dat 87

column descriptions 87
bizPatterns.dat 87

column descriptions 88
bizRemoveSpecChars.dat 90
blnkmax parameter 50
blocking query 28, 29, 38, 39
BN address token 70
BoxDescript field identifier 31
BoxIdentif field identifier 30
BP address token 69
BS address token 70
BT address token 70
BU address token 70
business constants file 79
business former name reference file 83

column descriptions 83
business name data type

input and output patterns 88
match configuration file 79
match string 78
object structure 78
phonetic encoding 93
standardization files 79
standardization structure 78

business name field identifiers 34
business name match types 35
business patterns file 87

column descriptions 88
tokens 88

BusinessName standardization type 35
businessOrRelated*.dat 54
business-related category file 54
BX address token 70
BY address token 70

C
c comparator 25, 103
Candidate Select file 28, 38, 39
candidate selection pool 28, 29
category files 18
CenterDescript field identifier 33
CenterIdentif field identifier 34
Char match type 36
charsMax parameter 80
city or state key type file 82

column descriptions 82
cityMax parameter 80
clueArraySize parameter 63

clues files 19
CNT business name token 89
comparators 22, 26, 100, 105

advanced bigram 25, 101
advanced string 25, 102
alpha-numeric 26, 105
b1 25, 101
b2 25, 101
bigram 100–101
c 25, 103
date 106–108

day 26, 108
hour 26, 108
minute 26, 108
month 26, 107
second 27, 108

dD 26, 108
dH 26, 108
dM 26, 107
dm 26, 108
ds 27, 108
dY 26, 107
exact 25, 103
first name 25, 102
house number 25, 103
integer 26, 105
language-specific 25, 103
last name 25, 103
n 26, 105
nl 26, 105
nR 26, 105
numeric 104–106
options 110
overview 24–27
p 27, 108
prorated 27, 108
simplified string 25, 102
string 25, 101–103
u 25, 101
ua 25, 102
uf 25, 102
ul 25, 103
un 25, 103
uncertainty 25
us 25, 102
usu 25, 103

comparison functions 22
advanced bigram 25, 101
advanced string 25, 102
alpha-numeric 26, 105
b1 25, 101
b2 25, 101
bigram 25, 100–101
c 25, 103
Implementing the Sun SeeBeyond
Match Engine with eView Studio 116 Sun Microsystems, Inc.

Index
date 106–108
day 26, 108
hour 26, 108
minute 26, 108
month 26, 107
second 27, 108
yearcomparators
date
year 26, 107

dD 26, 108
dH 26, 108
dM 26, 107
dm 26, 108
ds 27, 108
dY 26, 107
exact 25, 103
first name 25, 102
house number 25, 103
integer 26, 105
language-specific 25, 103
last name 25, 103
n 26, 105
nI 26, 105
nR 26, 105
nS 26, 105
numeric 104–106
options 110
overview 24–27
p 27, 108
prorated 27, 108
real number 26, 105
simplified string 25, 102
string 25, 101–103
types 100
u 25, 101
ua 25, 102
uf 25, 102
ul 25, 103
un 25, 103
uncertainty 25
us 25, 102
usu 25, 103

components
configuration files 16
match engine 16
standardization engine 16

configuration files
about 18
modifying 36
types 18

configuration files, about 16
conjmax parameter 49
conjunction reference file 49

connector tokens reference file 84
constants files 19
country key type file 85

column descriptions 85
countryMax parameter 80
CST business name token 89
CTT business name token 89

D
DA address token 70
dashSize parameter 50
data analysis

and initial load 94
data extract 94

data types 15
database 46, 61, 78
date

match types 36
date comparator

day 26, 108
hour 26, 108
month 26, 107
second 27, 108
year 26, 107

date comparators 106–108
minute 26, 108
parameters 107

DateDays match type 36
DateHours match type 36
DateMinutes match type 36
DateMonths match type 36
DateSeconds match type 36
DB address token 70
dD comparators 26, 108
dH comparator 26, 108
directionOutputFieldSize parameter 63
disagreement weights 14, 17, 22
dm comparator 26, 108
dM comparators 26, 107
domain selector

defaults 42
multiple domains 42

domain selectors
specifying 41–42

domain-selector 41
domain-selector attribute 42
domain-specific files 41
DR address token 70
ds comparator 27, 108
duplicate threshold 94
dY comparator 26, 107
Implementing the Sun SeeBeyond
Match Engine with eView Studio 117 Sun Microsystems, Inc.

Index
E
EI address token 70
eIndex SPV 30, 31, 32, 40, 45, 46, 62
Enterprise Designer 38, 39, 40
eView Studio configuration

Candidate Select 38, 39
Match Field 37–41, 45, 55, 72, 78, 91
Object Definition 38, 39

eView Studio Project 28
EX address token 70
Exac match type 36
exact comparator 25, 103
extensionOutputFieldSize parameter 63
ExtraInfo field identifier 34
extrainfoOutputFieldSize parameter 63

F
FC address token 70
field identifiers 30–34

address 30
AliasList 34
AssocTypeKeyword 34
BoxDescript 31
BoxIdentif 30
business name 34
CenterDescript 33
CenterIdentif 34
ExtraInfo 34
FirstName 30
HouseNumber 30
HouseNumPrefix 32
HouseNumSuffix 32
IndustrySectorList 34
IndustryTypeKeyword 34
LastName 30
MatchPropertyName 33
MatchStreetName 30
OrgTypeKeyword 34
OrigPropertyName 33
OrigSecondStreetName 32
OrigStreetName 31
person name 30
PrimaryName 34
PropDesPrefDirection 31
PropDesPrefType 32
PropDesSufDirection 31
PropDesSufType 32
RuralRouteDescript 31
RuralRouteIdentif 30
SecondHouseNumber 32
SecondHouseNumberPrefix 32
SecondStreetNameSufDirection 33

SecondStreetNameSufType 33
StreetNameExtensionIndex 33
StreetNamePrefDirection 31
StreetNamePrefType 32
StreetNameSufDirection 31
StreetNameSufType 31
Url 34
WithinStructDescript 33
WithinStructIdentif 33

first name category file 50
column descriptions 50

FirstName
field identifier 30
match type 35

G
general terms reference file 82
generational suffix category file 51

column descriptions 51
genTermMax parameter 80
GLU business name token 89

H
H address pattern class 71
H1 address token 70
H2 address token 71
HN address token 71
HouseNumber

field identifier 30
match type 35

HouseNumPrefix field identifier 32
HouseNumSuffix field identifier 32
HR address token 70
HS address token 71
hyphenated name category file 47

column descriptions 48

I
IDT business name token 89, 90
IDT-AJT business name token 89
imageSize parameter 63
industry key type file 86

column descriptions 86
industry sector reference file 85

column descriptions 85
industryMax parameter 80
IndustrySectorList

field identifier 34
match type 35

IndustryTypeKeyword
Implementing the Sun SeeBeyond
Match Engine with eView Studio 118 Sun Microsystems, Inc.

Index
field identifier 34
match type 35

input patterns
address data 66
business names 88

integer comparator 26, 105
Integer match type 36
internal match constants file 21
inversion option 110

J
jrsrmax parameter 49

K
key type files 19

L
language-specific comparator

parameters 103
language-specific string comparator 25, 103
last name category file 52

column descriptions 52
last name prefix category file 52

column descriptions 52
lastmax parameter 49
LastName field identifier 30
LastName match type 36
locale element 44
locale-codes element 43
locale-field-name element 43
locale-maps element 43

M
match configuration file 21, 46

address data type 62
business name data type 79
column descriptions 23–24
file format 23–24
person name data type 47

match constants file 21, 27
parameters 27

match constants file, internal 21
match engine 16

configuring 40
match engine components

configuration files 16
match engine 16
standardization engine 16

match field configuration 40

Match Field file 28, 29, 30, 37–41, 45, 55, 61, 72, 78,
91
match process 15, 28, 29
match string 28, 29, 38, 40

address data type 61, 75
address sample 75
business name data type 78
business sample 93
person name data type 46, 58
person sample 58

match threshold 94
match types 34

address 35
AliasList 35
AssocTypeKeyword 35
business name 35
Char 36
DateDays 36
DateHours 36
DateMinutes 36
DateMonths 36
dates 36
DateSeconds 36
Exac 36
FirstName 35
HouseNumber 35
IndustrySectorList 35
IndustryTypeKeyword 35
Integer 36
LastName 36
miscellaneous 36
Numeric 36
OrgTypeKeyword 35
person name 35, 47
PrimaryName 35
pro 36
Real 36
SSN 36
StreetDir 35
StreetName 35
StreetType 35
string 36
Url 35

match-columns 38, 39
matching configuration files 21
matching probability 14, 17
matching probability type 22
matching probability weights 21

formulation 16
matching rules 23
MatchingConfig 29, 38, 39, 40, 58, 75, 93
MatchPropertyName field identifier 33
MatchStreetName field identifier 30
maxFreqTableSize parameter 27
Implementing the Sun SeeBeyond
Match Engine with eView Studio 119 Sun Microsystems, Inc.

Index
maxNumberTables parameter 27
maxPattSize parameter 63
maxWords parameter 63
mcls parameter 27
merged business name category file 83

column descriptions 83
mergerMax parameter 80
miscellaneous match types 36
missing values 23
MP address token 70
m-probability 14, 17, 22
MultiDomainSelector 42
multiple domain selector 42

N
N address pattern class 71
n comparator 26, 105
N2 address token 71
NA address token 71
nameOutputFieldSize parameter 63
NAT business name token 89
NB address token 71
NF business name token 89, 90
NFC business name token 89
NFG business name token 89
nFields parameter 27
NF-NF business name token 90
NF-PN business name token 89
nI comparator 26, 105
nickmax parameter 49
NL address token 70, 71
normalization 16, 38
normalization structure 37, 41

person data type 56
person data type sample 56

nR comparator 26, 105
nS 26, 105
nS comparator 26, 105

parameters 105
NU address token 70
null fields 23
numberOutputFieldSize parameter 63
numeric comparator 26, 105

parameters 105
numeric comparators 104–106
Numeric match type 36

O
Object Definition 38, 39
object structure

address data type 61
business name data type 78

person data type 46
Object Type Definition 38, 39, 40
occupational suffix category file 53
organization key type file 87

column descriptions 87
orgMax parameter 80
OrgTypeKeyword

field identifier 34
match type 35

OrigPropertyName field identifier 33
OrigSecondStreetName field identifier 32
OrigStreetName field identifier 31
ORT business name token 89, 90
OT address token 70
OTD 38, 39, 40
output patterns

address data 66
business names 88

P
P address pattern class 71
p comparator 27, 108
P1 address token 71
P2 address token 71
parsing 16
patternArraySize parameter 63
patternMax parameter 80
patterns files 19, 39

address data type 66, 68
person data type 48

PD address token 71
person constants file 49
person name data type

match string 46
match types 47
normalized fields 46
phonetic encoding 57
phonetic fields 46
standardization files 47–55

person name field identifiers 30
person name match types 35
person name patterns file 48
personConjon*.dat 49
personConstants*.cfg 49
personFirstName*.dat 50

column descriptions 50
personFirstNameDash.dat 47

column descriptions 48
personGenSuffix*.dat 51

column descriptions 51
personLastName*.dat 52

column descriptions 52
personLastNamePrefix*.dat 52
Implementing the Sun SeeBeyond
Match Engine with eView Studio 120 Sun Microsystems, Inc.

Index
column descriptions 52
PersonName standardization type 35
personNamePatt.dat 48
personOccupSuffixUS.dat 53
personRemoveSpecChars.dat 48
personThreeUS.dat 53
personTitle*.dat 53

column descriptions 53
personTwoUS.dat 54
phonetic encoding 16, 39

address data type 75
business name data type 93
person name data type 57

phonetic structure
address data type sample 75
business name data type sample 93
person name data type sample 57

PN-NF business name token 89
PN-PN business name token 89
PNT business name token 89, 90
prefixOutputFieldSize parameter 63
premax parameter 49
primary business name reference file 84

column descriptions 84
primaryMax parameter 80
PrimaryName

field identifier 34
match type 35

pro match type 36
probabilistic weighting 28
probability type 22
PropDesPrefDirection field identifier 31
PropDesPrefType field identifier 32
PropDesSufDirection field identifier 31
PropDesSufType field identifier 32
prorated comparator

illustration 108
parameters 109

prorated comparators 27, 108
PT address token 70, 71
ptrnmax1 parameter 49

R
R address pattern class 71
Real match type 36
real number 26, 105
real number comparator 26, 105
reference files 19
relative distance

calculations 104, 106
illustration 104, 107

RN address token 71
RR address token 70, 71

RuralRouteDescript field identifier 31
RuralRouteIdentif field identifier 30

S
S2 address token 71
SA address token 70
screenshots 12
SD address token 71
SecondHouseNumber field identifier 32
SecondHouseNumberPrefix field identifier 32
SecondStreetNameSufDirection field identifier 33
SecondStreetNameSufType field identifier 33
SEP business name token 89
SEP-GLC business name token 89
SEP-GLD business name token 89
simplified string comparator 25, 102

first name 25, 102
house number 25, 103
last name 25, 103

SingleDomainSelectorAU 42
SingleDomainSelectorFR 42
SingleDomainSelectorUK 42
SingleDomainSelectorUS 42
skpmax parameter 49
special characters reference file 48, 90
SSN match type 36
ST address token 71
standardization 15, 28, 38–39

address data type 73
business name data type 91
configuration files 18
normalization 16
parsing 16
phonetic encoding 16

standardization engine 16
configuring 40

standardization files
address data type 62
business name data type 79
category 18
clues 19
constants 19
domain specific 41
key type 19
loading 44
patterns 19
person name data type 47–55
reference 19

standardization process 29
standardization structure 41

address data type 61, 73
address data type sample 73
business name data type 78, 91
Implementing the Sun SeeBeyond
Match Engine with eView Studio 121 Sun Microsystems, Inc.

Index
business name data type sample 91
standardization types 34

Address 35
BusinessName 35
default 35
PersonName 35

StandardizationConfig 37, 38, 39, 55, 73, 91
StreetDir match type 35
StreetName match type 35
StreetNameExtensionIndex field identifier 33
StreetNamePrefDirection field identifier 31
StreetNamePrefType field identifier 32
StreetNameSufDirection field identifier 31
StreetNameSufType field identifier 31
StreetType match type 35
string comparators 25, 101–103
string comparison 104, 106
String match type 36
suffixOutputFieldSize parameter 63
sufmax parameter 49
survivorship 28

T
T address pattern class 71
target fields 38
TB address token 71
thremax parameter 50
Threshold file 28
title category file 53

column descriptions 53
titlmax parameter 49
tokens 19

address data type 69
in business patterns 88

twomax parameter 50
TY address token 70
typeOutputFieldSize parameter 63

U
u comparator 25, 101
u probability 14
ua comparator 25, 102
uf comparator 25, 102
ul comparator 25, 103
un comparator 25, 103
unmatching probability 14, 17
u-probability 17, 22
URL business name token 89, 90
Url field identifier 34
Url match type 35
us comparator 25, 102
usu comparator 25, 103

V
value element 43

W
W address pattern class 71
WD address token 70, 71
WI address token 70, 71
WithinStructDescript field identifier 33
WithinStructIdentif field identifier 33
words parameter 49

X
XN address token 71
Implementing the Sun SeeBeyond
Match Engine with eView Studio 122 Sun Microsystems, Inc.

	IMPLEMENTING THE SUN SEEBEYOND MATCH ENGINE WITH eVIEW™ STUDIO
	Contents
	List of Tables
	Introduction
	1.1 About the Sun SeeBeyond Match Engine
	1.2 What’s New in This Release
	1.3 About This Document
	1.3.1 What’s in This Document
	1.3.2 Scope
	1.3.3 Intended Audience
	1.3.4 Text Conventions
	1.3.5 Screenshots

	1.4 Related Documents
	1.5 Sun Microsystems, Inc. Web Site
	1.6 Documentation Feedback

	The Sun SeeBeyond Match Engine
	2.1 About the Matching Algorithm
	2.2 Standardization and Matching
	2.3 Data Types
	2.4 How it Works
	2.5 Matching Weight Formulation
	Matching and Unmatching Probabilities
	Agreement and Disagreement Weight Ranges

	Standardization Configuration Files
	3.1 About Standardization Configuration Files
	3.1.1 Standardization Configuration File Types

	3.2 Internationalization

	Matching Configuration Files
	4.1 About Matching Configuration Files
	4.2 The Match Configuration File
	4.2.1 Match Configuration File Format
	Sample
	Probability Type
	Matching Rules

	4.2.2 Matching Comparison Functions

	4.3 The Match Constants File

	eView Studio and the Sun SeeBeyond Match Engine
	5.1 The Sun SeeBeyond Match Engine and eView Studio
	5.1.1 Searching and Matching in eView Studio
	5.1.2 The Standardization and Matching Process
	5.1.3 The Match String
	5.1.4 Field Identifiers
	5.1.5 Match and Standardization Types
	5.1.6 About Configuration File Modifications

	5.2 Configuring the Matching Service
	5.2.1 Standardization Configuration
	Normalization Structures
	Standardization Structures (Parsing and Normalization)
	Phonetic Encoding Structures

	5.2.2 Matching Configuration
	5.2.3 Match and Standardization Engine Configuration
	5.2.4 Phonetic Encoder Configuration

	5.3 Implementing Domain-specific Standardization Files
	5.3.1 Specifying a Domain Selector
	5.3.2 Specifying Multiple Domains
	5.3.3 Loading Standardization Files

	Person Data Type Configuration
	6.1 Person Matching Overview
	6.1.1 Person Data Processing Fields
	Match String Fields
	Standardized Fields
	The Object Structure

	6.2 Match Configuration for Person Data
	6.3 Standardization Configuration for Person Data
	6.3.1 Common Standardization Files for Person Data
	personFirstNameDash.dat
	personNamePatt.dat
	personRemoveSpecChars.dat

	6.3.2 Domain-specific Standardization Files
	personConjon*.dat
	personConstants*.cfg
	personFirstName*.dat
	personGenSuffix*.dat
	personLastNamePrefix*.dat
	personLastName*.dat
	personOccupSuffix*.dat
	personThree*.dat
	personTitle*.dat
	personTwo*.dat
	businessOrRelated*.dat

	6.4 Customizing Person Data Configuration Files
	6.5 Configuring the eView Studio Matching Service for Names
	6.5.1 Configuring the Standardization Structure
	Normalization Structures
	Phonetic Encoding

	6.5.2 Configuring the Match String

	Address Data Type Configuration
	7.1 Address Matching Overview
	7.1.1 Address Data Processing Fields
	Match String Fields
	Standardized Fields
	The Object Structure

	7.2 Match Configuration for Address Data
	7.3 Standardization Configuration for Address Data
	addressConstants*.cfg
	addressClueAbbrev*.dat
	addressInternalConstants*.cfg
	addressMasterClues*.dat
	addressPatterns*.dat
	addressOutPatterns*.dat
	Address Pattern File Components

	7.4 Modifying Address Data Configuration Files
	7.5 Configuring the eView Studio Matching Service
	7.5.1 Configuring the Standardization Structure
	Standardization Structures
	Phonetic Encoding

	7.5.2 Configuring the Match String

	Business Names Data Type Configuration
	8.1 Business Name Matching Overview
	8.1.1 Business Name Processing Fields
	Match String Fields
	Standardized Fields
	The Object Structure

	8.2 Match Configuration for Business Names
	8.3 Standardization Configuration for Business Names
	bizConstants.cfg
	bizAdjectivesTypeKeys.dat
	bizAliasTypeKeys.dat
	bizAssociationTypeKeys.dat
	bizBusinessGeneralTerms.dat
	bizCityorStateTypeKeys.dat
	bizCompanyFormerNames.dat
	bizCompanyMergerNames.dat
	bizCompanyPrimaryNames.dat
	bizConnectorTokens.dat
	bizCountryTypeKeys.dat
	bizIndustryCategoryCode.dat
	bizIndustryTypeKeys.dat
	bizOrganizationTypeKeys.dat
	bizPatterns.dat
	bizRemoveSpecChars.dat

	8.4 Modifying Business Name Configuration Files
	8.5 Configuring the eView Studio Matching Service
	8.5.1 Configuring the Standardization Structure
	Standardization Structures
	Phonetic Encoding

	8.5.2 Configuring the Match String

	Fine-tuning Weights and Thresholds
	A.1 Data Analysis Overview
	A.2 Customizing the Match Configuration and Thresholds
	A.2.1 Determining the Match Fields
	A.2.2 Customizing the Match Configuration
	Probabilities or Agreement Weights
	Defining Relative Value
	Determining the Weight Range
	Comparison Functions

	A.2.3 Determining the Weight Thresholds
	Specifying the Weight Thresholds
	Fine-tuning the Thresholds

	Match Configuration Comparison Functions
	B.1 Comparison Functions
	B.1.1 Bigram Comparators
	Bigram String Comparator (b1)
	Advanced Bigram String Comparator (b2)

	B.1.2 String Comparators
	Generic String Comparator (u)
	Advanced Generic String Comparator (ua)
	Simplified String Comparator (us)
	Simplified String Comparator - FirstName (uf)
	Simplified String Comparator - LastName (ul)
	Simplified String Comparator - HouseNumber (un)
	Language-specific String Comparator (usu)

	B.1.3 Exact char-by-char Comparator (c)
	B.1.4 Numeric Comparators
	Generic Number Comparator (n)
	Integer Comparator (nI)
	Real Number Comparator (nR)
	Alpha-numeric Comparator (nS)

	B.1.5 Date Comparators
	Date Comparator - Year only (dY)
	Date Comparator - Month-Year (dM)
	Date Comparator - Day-Month-Year (dD)
	Date Comparator - Hour-Day-Month-Year (dH)
	Date Comparator - Min-Hour-Day-Month-Year (dm)
	Date Comparator - Sec-Min-Hour-Day-Month-Year (ds)

	B.1.6 Prorated Comparator (p)

	B.2 Comparison Function Options

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

