
SUN SEEBEYOND

eGATE™ API KIT FOR JMS IQ
MANAGER (JAVA EDITION)

Release 5.1.3

eGate API Kit for JMS IQ Manager (Java Edition) 2 Sun Microsystems, Inc.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun
Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents
listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in
other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms. This
distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo, Java, Sun Java Composite
Application Platform Suite, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex, eBAM, eWay, and JMS are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. This product is covered and
controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited.
Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but
not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est
décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuels peuvent inclure un ou plus
des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les
applications de brevet en attente aux Etats - Unis et dans les autres pays. L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties. Sun, Sun Microsystems, le logo Sun,
Java, Sun Java Composite Application Platform Suite, Sun, SeeBeyond, eGate, eInsight, eVision, eTL, eXchange, eView, eIndex,
eBAM et eWay sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et
licenciée exclusivement par X/Open Company, Ltd. Ce produit est couvert à la législation américaine en matière de contrôle
des exportations et peut être soumis à la règlementation en vigueur dans d'autres pays dans le domaine des exportations et
importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer,
d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en
matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Part Number: 820-0947-10

Version 20070412130450

Section
Contents
Contents

Chapter 1

Introduction 5
About This Document 5

What’s in This Document 5
Intended Audience 5
Text Conventions 6
Screenshots 6

Related Documents 6

Sun Microsystems, Inc. Web Site 6

Documentation Feedback 7

Chapter 2

Installing the eGate API Kit 8
Supported Operating Systems 8

System Requirements 8

Supported Compilers 8

Installing the eGate API Kit 9

Post-Installation Instructions 10

Chapter 3

JMS and Java Implementation Overview 11
About the Sun SeeBeyond JMS IQ Manager 11

JMS Specification 11
The Java CAPS JMS Interface 11
Java CAPS Project Considerations 13
Viewing JMS IQ Manager Port Numbers 13
Sample Code 14

Creating Destinations 14

Instantiating ConnectionFactories 14

Using the Built-In JNDI Provider 16
eGate API Kit for JMS IQ Manager (Java Edition) 3 Sun Microsystems, Inc.

Contents
Registering JNDI Using the JNDIRegister Tool 18

Implementing Message Selectors 19

Implementing XA 19

Implementing Secure Socket Layers (SSL) 19

Logging 20

Chapter 4

Working with the Java API Samples 21
About the Java Samples 21

Implementing the Java CAPS Projects 22
Importing the Sample Projects 22
Creating the Environment 23
Deploying the Projects 23

Building the Sample Java Applications 23

Running the Sample Java Applications 24

Index 26
eGate API Kit for JMS IQ Manager (Java Edition) 4 Sun Microsystems, Inc.

Chapter 1

Introduction

This chapter introduces you to this document, its general purpose and scope, and its
organization. It also provides sources of related documentation and information.

What’s in This Chapter

About This Document on page 5

Related Documents on page 6

Sun Microsystems, Inc. Web Site on page 6

Documentation Feedback on page 7

1.1 About This Document
This document describes how to install and use the eGate™ API Kit to create Java
applications that connect to Sun Java™ Composite Platform Suite (CAPS) Projects via
Java™ Message Service (JMS).

1.1.1 What’s in This Document
This document includes the following chapters:

Chapter 2 “Installing the eGate API Kit” describes how to install the eGate API Kit
and its samples.

Chapter 3 “JMS and Java Implementation Overview” describes how to develop
Java applications to access the Sun SeeBeyond JMS IQ Manager in Java CAPS
Projects.

Chapter 4 “Working with the Java API Samples” describes how to build and run
the Java sample included in the eGate API Kit.

1.1.2 Intended Audience
This document is intended for developers who are familiar with programming Java
applications that interface through JMS.
eGate API Kit for JMS IQ Manager (Java Edition) 5 Sun Microsystems, Inc.

Chapter 1 Section 1.2
Introduction Related Documents
1.1.3 Text Conventions
The following conventions are observed throughout this document.

1.1.4 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.2 Related Documents
For more information about eGate Integrator, refer to the following documents:

Sun SeeBeyond eGate Integrator JMS Reference Guide

Sun SeeBeyond Java Composite Application Platform Suite Installation Guide

Sun SeeBeyond eGate Integrator User’s Guide

Sun SeeBeyond eGate Integrator System Administration Guide

Sun SeeBeyond Java Composite Application Platform Suite Deployment Guide

1.3 Sun Microsystems, Inc. Web Site
The Sun Microsystems web site is your best source for up-to-the-minute product news
and technical support information. The site’s URL is:

http://www.sun.com

Table 1 Text Conventions

Text Convention Used For Examples

Bold Names of buttons, files, icons,
parameters, variables, methods,
menus, and objects

Click OK.
On the File menu, click Exit.
Select the eGate.sar file.

Monospaced Command line arguments, code
samples; variables are shown in
bold italic

java -jar filename.jar

Blue bold Hypertext links within
document

See Related Documents on page 6

Blue underlined Hypertext links for Web
addresses (URLs) or email
addresses

http://www.sun.com
eGate API Kit for JMS IQ Manager (Java Edition) 6 Sun Microsystems, Inc.

http://www.sun.com
http://www.sun.com

Chapter 1 Section 1.4
Introduction Documentation Feedback
1.4 Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

CAPS_docsfeedback@sun.com
eGate API Kit for JMS IQ Manager (Java Edition) 7 Sun Microsystems, Inc.

mailto:CAPS_docsfeedback@sun.com

Chapter 2

Installing the eGate API Kit

This chapter describes the process of installing the eGate API Kit.

What’s in This Chapter

Supported Operating Systems on page 8

System Requirements on page 8

Supported Compilers on page 8

Installing the eGate API Kit on page 9

Post-Installation Instructions on page 10

2.1 Supported Operating Systems
For information about supported operating systems, refer to the
eGateAPIKit_Readme.txt.

2.2 System Requirements
The eGate API Kit has the same system requirements as eGate Integrator. For
information, refer to the Sun SeeBeyond Java Composite Application Platform Suite
Installation Guide.

In addition, you need the JDK™ software, version 1.4.

2.3 Supported Compilers
When compiling your Java JMS client applications, you can use any standard Java
compiler that is compliant with JDK version 1.4.
eGate API Kit for JMS IQ Manager (Java Edition) 8 Sun Microsystems, Inc.

Chapter 2 Section 2.4
Installing the eGate API Kit Installing the eGate API Kit
2.4 Installing the eGate API Kit
The procedure below describes an overview of how to install the eGate API Kit. For
detailed installation instructions, refer to the Sun SeeBeyond Java Composite Application
Platform Suite Installation Guide.

Before you install the eGate API Kit, install and download the following items using the
Java CAPS Installer:

Repository

eGate Integrator

Enterprise Designer

Enterprise Manager

Logical Host

The procedure below describes how to install the following items for eGate API Kit:

the software

the documentation

the sample Java CAPS Projects and the code samples

To install eGate API Kit

1 Launch the Java Composite Application Platform Suite Installer.

2 In the Administrator page, click Click to install additional products.

3 In the list of products to install, select the following:

eGate API Kit > eGate_APIKit_Java (to install the eGate API Kit software)

Documentation > eGateAPIKitDocs (optional—to install the eGate API Kit
documentation and samples)

4 In the Administrator > Upload page, select the following items and click Next after
each SAR file is selected:

eGate_APIKit_Java.sar.

eGateAPIKitDocs.sar

When the installation is finished, the “Installation Completed” message appears.

5 In the Downloads page, select one of the following items, select a location for the
.zip file to be saved, and then extract the file.

API kit Java (zip file) - for Windows installations

API kit Java (tar file) - for UNIX installations

6 To view the documentation:

A Click the Documentation tab, and then click Add-ons.

B In the product list, click Sun SeeBeyond eGate(TM) API Kit.
eGate API Kit for JMS IQ Manager (Java Edition) 9 Sun Microsystems, Inc.

Chapter 2 Section 2.5
Installing the eGate API Kit Post-Installation Instructions
C Click the PDF icon next to the document or HTML help system you want to
view.

7 To download the sample Project and code samples:

A Click the Documentation tab, and then click Add-ons.

B In the product list, click Sun SeeBeyond eGate(TM) API Kit.

C Click the zip file icon next to Sample Projects, and then click Open.

D Extract the files to a temporary directory on your computer.

E Navigate to the temporary directory.

F Extract ProjectSamples.zip.

G For Windows, extract CodeSamples.zip. For UNIX systems, untar
CodeSamplesUNIX.tar.

For information about importing and using the sample Projects and working with
the sample code, see Chapter 4 “Working with the Java API Samples”.

2.5 Post-Installation Instructions
After the eGate API Kit installation, do the following:

1 Locate the com.stc.jms.jmsis.jar, jta.jar, jms.jar, and log4j.jar files in the folder
where you installed the eGate API Kit (these are the file extracted from the API kit
Java file).

2 Modify the CLASSPATH to include the jms.jar, com.stc.jmsis.jar, (for JNDI
connections) and log4j.jar (when connecting to JNDI through the Information
Server) files.

3 For XA support, include the jta.jar in your path.

4 For HP-UX, make sure that the JVM has been started with the
-XdoCloseWithReadPending flag, for example:

java -XdoCloseWithReadPending -cp com.stc.jmsis.jar;.;jms.jar
Sample
eGate API Kit for JMS IQ Manager (Java Edition) 10 Sun Microsystems, Inc.

Chapter 3

JMS and Java Implementation Overview

The eGate API Kit provides an interface for external applications to exchange data with
Java CAPS Projects via the Sun SeeBeyond JMS IQ Manager. This chapter gives an
overview of the JMS IQ Manager along with considerations to keep in mind when
developing external applications to work with runtime Java CAPS Projects.

What’s in This Chapter

About the Sun SeeBeyond JMS IQ Manager on page 11

Creating Destinations on page 14

Instantiating ConnectionFactories on page 14

Using the Built-In JNDI Provider on page 16

Implementing Message Selectors on page 19

Implementing XA on page 19

Implementing Secure Socket Layers (SSL) on page 19

Logging on page 20

3.1 About the Sun SeeBeyond JMS IQ Manager
This section provides an overview of the Sun SeeBeyond JMS IQ Manager, including
JMS version support and things to consider for the Java CAPS Project. This section also
describes how to find out the port numbers used for a runtime Project.

3.1.1 JMS Specification
The Java Edition of the eGate API Kit supports the Java Message Service Specification
version 1.1. For a complete reference of the Java classes and methods available to the
eGate API Kit, see the Java™ Message Service (JMS) API Documentation version 1.1.

3.1.2 The Java CAPS JMS Interface
For those of you unfamiliar with the Java CAPS JMS interfaces, this section provides an
overview. The Java CAPS JMS consists of the following components:

Message Service Client - The external application.
eGate API Kit for JMS IQ Manager (Java Edition) 11 Sun Microsystems, Inc.

Chapter 3 Section 3.1
JMS and Java Implementation Overview About the Sun SeeBeyond JMS IQ Manager
Message Service - The data container and router.

API Kit Connection - The link between eGate and the external system.

Figure 1 illustrates the communication between each component.

Figure 1 Message Service Communication Architecture

In Figure 2, all necessary components have been isolated onto a separate system. While
this separation is not mandatory, the combinations of components that reside together
on various systems change depending upon your needs.

Figure 2 Java CAPS TCP/IP Communication Architecture

The following components are required:

Repository

Logical Host

Sun SeeBeyond Integration Server (IS)

eGate

C
ol

la
bo

ra
tio

ns

JM
S IQ

 M
anager

Java Client

Database Server

Logical HostInternet

Repository

External System

JM
Sclient
eGate API Kit for JMS IQ Manager (Java Edition) 12 Sun Microsystems, Inc.

Chapter 3 Section 3.1
JMS and Java Implementation Overview About the Sun SeeBeyond JMS IQ Manager
External System (Message Service Client file)

Database Server (Data Repository)

Important: From this point forward, when referring to a machine, the above naming
conventions are used. Remember that multiple components may reside on the same
machine. For example, the Logical Host and the External System may exist on one
physical machine.

3.1.3 Java CAPS Project Considerations
To enable your application to communicate with a runtime JMS IQ Manager, consider
the following:

The message destination names and the names of the components used must
coincide.

Your JMS application must use the expected data format, the name of the message
destination, and the host name and port number of the JMS IQ Manager. For
instructions for displaying a JMS IQ Manager’s port numbers, refer to “Viewing
JMS IQ Manager Port Numbers”.

The methods used must correspond to the expected data format.

3.1.4 Viewing JMS IQ Manager Port Numbers
The default port number for JMS IQ Manager is 18007. The default port number for SSL
is 18008. To view the port numbers for your runtime Java CAPS Project, use the Domain
Manager as described in the procedure below.

To view JMS IQ Manager port numbers

1 Navigate to the folder where the Java CAPS Logical Host is installed.

2 Double-click domainmgr.bat. The Domain Manager window appears.

Figure 3 Viewing Runtime JMS IQ Manager Port Numbers

The IQ Manager property specifies the JMS IQ Manager port; the IQ Manager SSL
property specifies the JMS IQ Manager SSL port.
eGate API Kit for JMS IQ Manager (Java Edition) 13 Sun Microsystems, Inc.

Chapter 3 Section 3.2
JMS and Java Implementation Overview Creating Destinations
3.1.5 Sample Code
The eGate API Toolkit provides a sample download that includes code samples for
creating interfaces to the Java CAPS JMS using Java. For information about
implementing the sample code, see “Working with the Java API Samples” on page 21.

3.2 Creating Destinations
Destinations do not need to be created separately: they are created through the
session.createQueue() and session.createTopic() functions. If these
destinations do not exist, they are created automatically.

3.3 Instantiating ConnectionFactories
To create connection factories for JMS IQ Manager directly, create instances of one of the
following classes:

com.stc.jms.client.STCQueueConnectionFactory

com.stc.jms.client.STCTopicConnectionFactory

com.stc.jms.client.STCXAQueueConnectionFactory

com.stc.jms.client.STCXATopicConnectionFactory

These classes come with several different constructors. The two most useful
constructors are:

public STCConnectionFactory(String host, int port)

and

public STCConnectionFactory(Properties p)

The latter constructor allows a number of advanced properties to be set. These
properties are described below.

com.stc.jms.sockets.ServerHost

Specifies the host name of the machine the message server is running on.

com.stc.jms.sockets.ServerPort

Specifies the port number that the message server is listening on.

com.stc.jms.sockets.ConnectionManager.class

Specifies which threading model will be used for asynchronous communication.
Valid values are "com.stc.jms.sockets.MuxConnectionMgr" and
"com.stc.jms.sockets.ThreadPerConnectionMgr" (default). The former will use one
thread for all socket connections; the second will use one thread for each socket.
Note that there will be one socket in use for each consumer; when consumers are
used with a message listener, or are used with a receive(timeout), asynchronous
eGate API Kit for JMS IQ Manager (Java Edition) 14 Sun Microsystems, Inc.

Chapter 3 Section 3.3
JMS and Java Implementation Overview Instantiating ConnectionFactories
communication is used. Using the "MUX"-model reduces the number of threads,
but is more CPU intensive because there will be one thread polling sockets for
incoming data.

com.stc.jms.sessionpooling

Specifies whether session pooling is used. Valid values are true and false (default).
When session pooling is used, sessions are not physically closed when the close()
method on a session is called. Instead they are returned to a pool; when a new
session needs to be created, an attempt is made to reuse a session from the pool.
Because a separate socket connection is used for each session, session pooling will
speed up performance in situations where the application is creating and closing
sessions rapidly. Note that sessions are pooled per connection, i.e. the pool of
sessions is not global but each connection has its own session pool. When sessions
are pooled, producers are also pooled automatically, i.e. when the close() method on
a producer is called, the producer is not closed but is returned to the session's
producer pool. When a new producer is created, an attempt is made to satisfy this
request using the producer pool. Because each producer uses a socket connection,
producer pooling improves performance in applications that rapidly create and
close producers. Sessions and producers are closed physically, when the JMS
connection that created them is closed physically.

com.stc.jms.connectionpooling

Specifies whether connection pooling is used. Valid values are true and false
(default). When connection pooling is used, a connection is not physically closed
when the close() method on a connection is called. Instead, the connection is
returned to a global pool. Connection pooling is useful only in combination with
session pooling.

com.stc.jms.connectionpooling.maxidlesec

Specifies the number of seconds that idle JMS connections will reside in the global
connection pool before they are closed by a subsequent connection request. The
default is 30 seconds.

com.stc.jms.ssl.authenticationmode

Determines if TCP/IP connections made by the client to the server will use SSL, and
if so, how the server will be authenticated. Valid values are Authenticate, TrustAll
and False (default). If no value is specified, or if False is specified, connections will
not use SSL. A value of Authenticate will cause the client to assure that the
certificate presented by the JMS server is trusted, i.e. is signed by an authority
present in the truststore. See below on how to specify the truststore. A value of
TrustAll will cause the client to accept any certificate presented by the JMS server.
Note: if there is no value specified for this property, it will be looked up in the
System properties.

javax.net.ssl.trustStore

Specifies the path to the store that contains trusted certificate authorities. This store
is used to authenticate the JMS server when using SSL and the Authenticate
authentication mode. Note: if there is no value specified for this property, it will be
looked up in the System properties.
eGate API Kit for JMS IQ Manager (Java Edition) 15 Sun Microsystems, Inc.

Chapter 3 Section 3.4
JMS and Java Implementation Overview Using the Built-In JNDI Provider
javax.net.ssl.trustStorePassword

Specifies the password used to protect the certificate store that contains trusted
certificate authorities. This store is used to authenticate the JMS server when using
SSL and the Authenticate authentication mode. Note: if there is no value specified
for this property, it will be looked up in the System properties.

security.provider.1

Specifies the security provider used for SSL (default:
com.sun.net.ssl.internal.ssl.Provider). Note that if the provider is set to
com.ibm.jsse.IBMJSSEProvider, the IbmX509 TrustManagerFactory will be used; in
other cases, the SunX509 TrustManagerFactory will be used. Note: if there is no
value specified for this property, it will be looked up in the System properties.

3.4 Using the Built-In JNDI Provider
The JMS IQ Manager can be made to look like a JNDI server, that is, the server can
appear as if it has a JNDI server built in.

How it works

The com.stc.jms.stcjms.jar now has a few classes that implement the
javax.naming.Context and related classes. When an application instantiates the
initial context and does a lookup, these classes will connect to the server and retrieve a
list of topics and queues. The client converts the strings retrieved from the server into
STCTopic-s and STCQueue-s and. These topics and queues then can be used in calls to
send(Queue) etc. The JNDI provider also provides connection factories.

Practical use

This JNDI provider is available in the Integration Server. Clients can use this provider
directly to lookup connection factories and destinations rather than connecting to the
integration server's JNDI server. This is useful in cases where normal JNDI lookup is
difficult due to firewalls.

How to instantiate the initialcontext

Sample code:

Properties p = new Properties();
p.put(InitialContext.INITIAL_CONTEXT_FACTORY,
"com.stc.jms.jndispi.InitialContextFactory");
p.put(InitialContext.PROVIDER_URL, "stcms://localhost:18007");
p.put(InitialContext.SECURITY_PRINCIPAL, "Administrator");
p.put(InitialContext.SECURITY_CREDENTIALS,
TestConstants.getPassword());
InitialContext ctx = new InitialContext(p);
Topic t = (Topic) ctx.lookup("topics/myTopic");

Hence, the following properties need to be defined as in the following example:

java.naming.factory.initial=com.stc.jms.jndispi.InitialContextFactory
java.naming.provider.url=stcms://localhost:18007
java.naming.security.principal=Administrator
java.naming.security.credentials=STC
eGate API Kit for JMS IQ Manager (Java Edition) 16 Sun Microsystems, Inc.

Chapter 3 Section 3.4
JMS and Java Implementation Overview Using the Built-In JNDI Provider
The latter two are only needed if security is enabled for JMS IQ Manager.

The complete properties set is offered to the STCConnectionFactory. Hence, the
properties above can be mixed with properties like

com.stc.jms.strictPersistence = true

This is exactly how the connection properties are assembled:

use the properties as passed to InitialContext

use the host and port number as specified in the InitialContext.PROVIDER_URL,
possibly overwriting already defined properties

merge additional properties specified in the query string of the
InitialContext.PROVIDER_URL, possibly overwriting already defined properties

These connection properties are used both for connecting to the server to obtain the list
of queues and topics, as well as to configure the connection factories that are bound in
the JNDI tree.

The JNDI tree

The JNDI tree is built up as follows:

root
 topics
 topic1
 topic2
 etc
 queues
 queue1
 queue2
 etc.
 connectionfactories
 queueconnectionfactory
 topicconnectionfactory
 connectionfactory
 xaqueueconnectionfactory
 xatopicconnectionfactory
 xaconnectionfactory

Using the JNDI provider without connecting to the server

Typically, looking up a destination using lookup, for example, lookup(“queues/
myqueue”) connects to the server and retrieves a list of queues. You can change this
behavior so that the lookup method assumes the destination object is on the server, and
just creates a queue or topic object on the client side without connecting to the server.

To select this behavior, specify this property in either the InitialContext, or in the
connection URL:

 com.stc.jms.jndispi.disconnected = true

Example

Properties p = new Properties();
p.put(InitialContext.INITIAL_CONTEXT_FACTORY,
"com.stc.jms.jndispi.InitialContextFactory");
p.put(InitialContext.PROVIDER_URL, "stcms://localhost:18007");
p.put(InitialContext.SECURITY_PRINCIPAL, "Administrator");
p.put(InitialContext.SECURITY_CREDENTIALS, "STC");
p.put("com.stc.jms.jndispi.disconnected", "true");
InitialContext ctx = new InitialContext(p);
eGate API Kit for JMS IQ Manager (Java Edition) 17 Sun Microsystems, Inc.

Chapter 3 Section 3.4
JMS and Java Implementation Overview Using the Built-In JNDI Provider
Topic t = (Topic) ctx.lookup("topics/myTopic");

which is equivalent to:

Properties p = new Properties();
p.put(InitialContext.INITIAL_CONTEXT_FACTORY,
"com.stc.jms.jndispi.InitialContextFactory");
p.put(InitialContext.PROVIDER_URL, "stcms://
localhost:18007?com.stc.jms.jndispi.disconnected=true"); <<<<<<<
p.put(InitialContext.SECURITY_PRINCIPAL, "Administrator");
p.put(InitialContext.SECURITY_CREDENTIALS,
TestConstants.getPassword());
InitialContext ctx = new InitialContext(p);
Topic t = (Topic) ctx.lookup("topics/myTopic");

3.4.1 Registering JNDI Using the JNDIRegister Tool
To bind the ConnectionFactories from the command line:

The JMS IQ Manager also has functionality built in to create ConnectionFactories and
bind them into any JNDI provider. This functionality can be invoked from the
command line. The class com.stc.jms.client.JNDIRegister utility class is located in the
com.stc.jmsis.jar. To use this utility do the following:

Usage: JNDIRegister -fact InitialCtxFactory -url ProviderUrl -type
Object type

-jndiname JNDI name to be used to register the object
[-dest Destination name] [-host host-name] [-port port]

Options/Arguments:
 InitialCtxFactory *Initial context factory class, e.g.
com.sun
.jndi.fscontext.RefFSContextFactory
 ProviderUrl *Url to access the JNDI provider URL,
e.g. file://stcms.jndi
 Object type *Type: Q=queue connection factory;
q=queue;
 T=topic connection factory; t=topic
 JNDI name to be used to register the object
 *Name that the object will be registered
under
 -dest Destination name Name of queue or topic
 -host host-name specifies host name
 -port port specifies server port number

* Required

To register a queue

java -cp com.stc.jmsis.jar;jms.jar;fscontext.jar;providerutil.jar
com.stc.jms.client.JNDIRegister
-fact com.sun.jndi.fscontext.RefFSContextFactory -url file://c:\temp
-type q -jndiname jndi-myqueue -dest myqueue

To register a topic

java -cp com.stc.jmsis.jar;jms.jar;fscontext.jar;providerutil.jar
com.stc.jms.client.JNDIRegister
-fact com.sun.jndi.fscontext.RefFSContextFactory -url file://c:\temp
-type t -jndiname jndi-mytopic -dest mytopic
eGate API Kit for JMS IQ Manager (Java Edition) 18 Sun Microsystems, Inc.

Chapter 3 Section 3.5
JMS and Java Implementation Overview Implementing Message Selectors
To register a connection factory

java -cp com.stc.jmsis.jar;jms.jar;fscontext.jar;providerutil.jar
com.stc.jms.client.JNDIRegister
-fact com.sun.jndi.fscontext.RefFSContextFactory -url file://c:\temp
-type Q -jndiname jndi-myqfact -h 127.0.0.1 -p 7125

3.5 Implementing Message Selectors
A message selector allows a client to specify, via the message header, those messages in
which the client is interested. Only messages for which the headers and properties
match the selector are delivered. The semantics of not delivered differ depending on the
MessageConsumer implemented. Message selectors cannot reference message body
values.

The message selector matches a message, provided the selector evaluates to “true”,
when the message’s header field and the property values are substituted for the
corresponding identifiers within the selector.

For more information about Message Selection, see the Java Message Service Specification
Version 1.1 available at:

http://java.sun.com/products/jms/docs.html

3.6 Implementing XA
XA compliance is achieved when cooperating software systems contain sufficient logic
to ensure that the transfer of a single unit of data between those systems is neither lost
nor duplicated because of a failure condition in one or more of the cooperating systems.

For more information on XA, see the Sun SeeBeyond eGate Integrator User’s Guide.

3.7 Implementing Secure Socket Layers (SSL)
A TCP/IP connection between a client system and a server can be secured by
implementing Secure Socket Layers (SSL). The SeeBeyond Message Service listens on
two ports at the same time. While the default port listens for non-SSL connections, the
other can be restricted to only accept an SSL connection.

Connecting to the Message Server Using SSL:

The following sample shows how to connect to the message server using SSL by
instantiating a connection factory directly.

import com.stc.jms.client.STCQueueConnectionFactory;
import javax.jms.*;
import java.util.*;
eGate API Kit for JMS IQ Manager (Java Edition) 19 Sun Microsystems, Inc.

http://java.sun.com/products/jms/docs.html

Chapter 3 Section 3.8
JMS and Java Implementation Overview Logging
public class Sample {
 public static void main(String[] args) {
 try {
 Properties p = new Properties();
 p.put("com.stc.jms.sockets.ServerPort", "9225");
 p.put("com.stc.jms.sockets.ServerHost", "localhost");
 p.put("com.stc.jms.ssl.authenticationmode", "TrustAll");
 QueueConnectionFactory fact
 = new STCQueueConnectionFactory(p);
 QueueConnection conn = fact.createQueueConnection();
 QueueSession session = conn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 Queue dest = session.createQueue("Test");
 QueueSender producer = session.createSender(dest);
 TextMessage msg1 = session.createTextMessage("Hello world!");
 producer.send(msg1, DeliveryMode.NON_PERSISTENT,
 Message.DEFAULT_DELIVERY_MODE, 0);
 conn.close();
 } catch (JMSException ex) {
 ex.printStackTrace();
 }
 }
}

3.8 Logging
Java CAPS JMS clients use JDK logging by default rather than log4j logging. To use
log4j anyway, set the com.stc.jms.logging system property to:

com.stc.jms.util.LoggerFactoryApache.
eGate API Kit for JMS IQ Manager (Java Edition) 20 Sun Microsystems, Inc.

Chapter 4

Working with the Java API Samples

The eGate API Kit for JMS IQ Manager includes code and Project samples. This chapter
describes how to use the code samples to build a sample Java application for JMS IQ
Manager, and then describes how to run the sample applications through the JMS
server.

What’s in This Chapter

About the Java Samples on page 21

Implementing the Java CAPS Projects on page 22

Building the Sample Java Applications on page 23

Running the Sample Java Applications on page 24

4.1 About the Java Samples
The eGate API Kit provides Java code samples and Enterprise Designer Project samples
designed to work together to demonstrate different types of JMS messaging using a
Java client and eGate Integrator. The sample Projects provide examples of the following
messaging types:

Publish/subscribe (queues or topics)

Request-reply (queues or topics)

Message selector (topics)

Publish/subscribe using XA (topics)

The sample file, eGateAPIKit_Sample.zip, contains the .zip files listed in Table 2. The
table describes what each .zip file contains.

Table 2 eGate API Kit Samples

File Name Contents

CodeSamples.zip The sample code files for use on Windows.

CodeSamplesUNIX.tar The sample code files for use on UNIX
operating systems.
eGate API Kit for JMS IQ Manager (Java Edition) 21 Sun Microsystems, Inc.

Chapter 4 Section 4.2
Working with the Java API Samples Implementing the Java CAPS Projects
4.2 Implementing the Java CAPS Projects
The sample Java CAPS Projects include one Project with several sub-Projects, each used
to demonstrate a different type of JMS messaging. Each Project uses one of three
available pass-through Collaborations to deliver messages between senders and
receivers or between publishers and subscribers.

Before continuing, make sure you have downloaded the sample file as described in
“Installing the eGate API Kit” on page 9. Implementing the sample Projects consists of
the following steps:

Importing the Sample Projects on page 22

Creating the Environment on page 23

Deploying the Projects on page 23

4.2.1 Importing the Sample Projects
To work with the sample Projects for Enterprise Designer, you first need to import the
Projects into Enterprise Designer.

To import the sample Project into Enterprise Designer

1 If you have not already done so, extract eGateAPIKit_Sample.zip.

2 Start Enterprise Designer.

3 From the Repository context menu, select Import Project.

4 A message box appears, prompting you to save any unsaved changes to the
Repository.

A If you want to save your changes and have not already done so, click No. Save
your changes, and then re-select Import Project.

B If you have saved all changes, click Yes.

5 Click the Browse button to display the Open File dialog.

6 Locate and select Sample_Project.zip, located in the directory in which you
extracted eGateAPIKit_Sample.zip.

7 Click Open to select the file.

The Import Manager dialog appears.

Sample_Project.zip The sample Java CAPS Projects that you can
import into Enterprise Designer. The Project to
use with the Java sample code is in
Sample_Project.zip.

Table 2 eGate API Kit Samples

File Name Contents
eGate API Kit for JMS IQ Manager (Java Edition) 22 Sun Microsystems, Inc.

Chapter 4 Section 4.3
Working with the Java API Samples Building the Sample Java Applications
8 Click Import to import the file.

Note: An error message might appear, stating that certain APIs are missing. This error is
not serious. Click Continue to proceed with the import.

The Import Status message box appears after the file is imported successfully.

9 Click OK to close the message box.

10 When you are finished importing files, click Close to close the Import Manager
dialog. The Project Explorer is automatically refreshed from the Repository.

4.2.2 Creating the Environment
In order to deploy the Projects to a Logical Host, you must create an Environment used
by all sub-Projects. Use the Environment Explorer of Enterprise Designer to create a
new Environment and Logical Host. The Logical Host must include a Sun SeeBeyond
JMS IQ Manager and Integration Server (IS). For more information about
Environments, see the Sun SeeBeyond eGate Integrator User’s Guide or the Sun SeeBeyond
eGate Integrator System Administration Guide.

4.2.3 Deploying the Projects
For each sample sub-Project, you must create a Deployment Profile, and then build and
deploy the Project. You can use the Automap feature of the Deployment Profile to map
each Project component to its corresponding Environment component.

Before deploying the sub-Projects, make sure the Logical Host for the sample
applications is started. For more information about Deployment Profiles, see the Sun
SeeBeyond eGate Integrator User’s Guide or the Sun SeeBeyond eGate Integrator System
Administration Guide.

4.3 Building the Sample Java Applications
In order to compile the Java sample client application (or any client applications you
create), you must edit the CLASSPATH variable to include the .jar files you
downloaded during installation (see “Post-Installation Instructions” on page 10).
Make sure this has been completed before performing the following steps.

You can modify the sample code before compiling it if desired.

To build the sample Java application

1 Navigate to the location where you extracted eGateAPIKIT_Sample.zip.

2 From the extracted files, extract CodeSamples.zip (for Windows) or
CodeSamplesUNIX.zip (for UNIX).

The samples are located in one of the following paths:

CodeSamples\apikit\Java (for Windows)
eGate API Kit for JMS IQ Manager (Java Edition) 23 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Samples Running the Sample Java Applications
CodesamplesUNIX\apikit\Java (for UNIX)

3 From a command line, navigate to the directory where the code samples are located
and run the following command:

javac *.java

4.4 Running the Sample Java Applications
There are several different sample applications you can run. Each sends and receives a
simple message, using a Collaboration in the Java CAPS sample Project to deliver the
message. You can use Enterprise Manager to monitor the activity of the Projects.

Table 3 lists each messaging type demonstrated in the samples along with their
corresponding Java class names.

Each Java class requires the following flags:

-h <host>, where <host> is the name of the server on which the Logical Host is
running

-p <port>, where <port> is the IQ Manager port number of the Logical Host (18007
by default)

The exceptions to this are the SampleQueueRequestor and SampleTopicRequestor
classes, which require the host and port flags to be fully spelled out (-host and -port).

Important: To run the Java applications, you must modify the CLASSPATH environment
variable by adding the path to the class files you compiled.

To run a send/receive or non-XA publish/subscribe sample application

1 Open two command line windows.

2 In the first command line, run the message consumer class; for example:

Table 3 Class Names for Java Samples

Messaging Type Class Name

Queue Send Sender

Queue Receive Receiver

Queue Requestor SampleQueueRequestor

Topic Publish Publisher

Topic Subscribe Subscriber

Topic Requestor SampleTopicRequestor

Topic Selector Publish SelectorPublisher

Topic Selector Subscribe SelectorSubscriber

XA Publish XAPublisher

XA Subscribe XASubscriber
eGate API Kit for JMS IQ Manager (Java Edition) 24 Sun Microsystems, Inc.

Chapter 4 Section 4.4
Working with the Java API Samples Running the Sample Java Applications
java Subscriber -h localhost -p 18007

3 In the second command line, run the message producer class; for example:

java Publisher -h localhost -p 18007

The text of the default message appears along with a comment that the message
was processed.

To run an XA publish/subscribe sample application

1 Open two command line windows.

2 In the first command line, run the XA message consumer class; for example:

java XASubscriber -h localhost -p 18007

3 In the second command line, run the XA message producer class; for example:

java XAPublisher -h localhost -p 18007

4 In the message producer window, do one of the following:

To send the message, type C and press Enter.

To roll back the message, type R and press Enter.

5 If you committed the message, the subscriber window displays the text of the
message along with a comment that it was processed. Do one of the following:

To receive the message, type C and press Enter.

To roll back the message, type R and press Enter.

Note: If you do not commit the message, it remains in the queue to be reprocessed.

6 After the message is received, do one of the following:

Send additional messages from the producer.

Close the consumer by typing Q and pressing Enter.

To run a requestor sample application

1 Open a command line window.

2 Run the requestor class; for example:

java SampleQueueRequestor -host localhost -port 18007

The text of the default message appears along with a comment that the message
was processed.
eGate API Kit for JMS IQ Manager (Java Edition) 25 Sun Microsystems, Inc.

Index
Index

A
authenticationmode 15

C
CLASSPATH 10, 23
code samples 21

building 23
parameters 24
running 24

CodeSamples.zip 21, 23
CodeSamplesUNIX.tar 21
CodeSamplesUNIX.zip 23
Collaboration 24
connection factories 14
connectionpooling 15
conventions, text 6

D
Deployment Profile 23
Destinations 14
Domain Manager 13

E
eGateAPIKIT_Sample.zip 23
eGateAPIKit_Sample.zip 22
eGateAPIKitDocs.sar, installing 9
Enterprise Designer 21, 22
Environment 23

I
Implementing 22
Implementing Message Server Models 13, 22
importing 22

J
Java 13
Java CAPS Project

sample 22–23
Java Message Service Specification 11

javac 24
jms 10
JMS interfaces 11
JNDI 16–19

instantiating initialcontext 16
JNDIRegister tool 18
registering 18
registering connection factories 19
registering queues 18
registering topics 18
tree 17
without connecting to the server 17

L
log4j 20
logging 20
Logical Host 12, 13

M
maxidlesec 15
message selector 19

P
parameters 24
port number 13
project samples 21

building 23
parameters 24
running 24

provider.1 16

R
Repository 12

S
sample code 21
sample code for using JMS

message selector
(discussed) 19

sample Projects 21
Sample_Project.zip 22
samples 21, 22, 24

building 23
running 24

screenshots 6
Secure Socket Layers 19
ServerHost 14
ServerPort 14
eGate API Kit for JMS IQ Manager (Java Edition) 26 Sun Microsystems, Inc.

Index
sessionpooling 15
SSL 19
STCConnectionFactory properties 14

authenticationmode 15
ConnectionManager.class 14
connectionpooling 15
maxidlesec 15
provider.1 16
ServerHost 14
ServerPort 14
sessionpooling 15
trustStore 15
trustStorePassword 16

STCQueueConnectionFactory 14
STCTopicConnectionFactory 14
STCXAQueueConnectionFactory 14
STCXATopicConnectionFactory 14
supporting documents 6

T
text conventions 6
trustStore 15
trustStorePassword 16

X
XA 10

implementing 19
eGate API Kit for JMS IQ Manager (Java Edition) 27 Sun Microsystems, Inc.

	eGATE™ API KIT FOR JMS IQ MANAGER (JAVA EDITION)
	Contents
	Introduction
	1.1 About This Document
	1.1.1 What’s in This Document
	1.1.2 Intended Audience
	1.1.3 Text Conventions
	1.1.4 Screenshots

	1.2 Related Documents
	1.3 Sun Microsystems, Inc. Web Site
	1.4 Documentation Feedback

	Installing the eGate API Kit
	2.1 Supported Operating Systems
	2.2 System Requirements
	2.3 Supported Compilers
	2.4 Installing the eGate API Kit
	2.5 Post-Installation Instructions

	JMS and Java Implementation Overview
	3.1 About the Sun SeeBeyond JMS IQ Manager
	3.1.1 JMS Specification
	3.1.2 The Java CAPS JMS Interface
	3.1.3 Java CAPS Project Considerations
	3.1.4 Viewing JMS IQ Manager Port Numbers
	3.1.5 Sample Code

	3.2 Creating Destinations
	3.3 Instantiating ConnectionFactories
	3.4 Using the Built-In JNDI Provider
	3.4.1 Registering JNDI Using the JNDIRegister Tool

	3.5 Implementing Message Selectors
	3.6 Implementing XA
	3.7 Implementing Secure Socket Layers (SSL)
	3.8 Logging

	Working with the Java API Samples
	4.1 About the Java Samples
	4.2 Implementing the Java CAPS Projects
	4.2.1 Importing the Sample Projects
	4.2.2 Creating the Environment
	4.2.3 Deploying the Projects

	4.3 Building the Sample Java Applications
	4.4 Running the Sample Java Applications

	Index
	A
	C
	D
	E
	I
	J
	L
	M
	P
	R
	S
	T
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

