
Accessing Databases
iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 11

List of Tables . 13

List of Procedures . 15

Preface . 17
Product Name Change . 17
Audience for This Guide . 18
Organization of This Guide . 18
Text Conventions . 19
Other Documentation Resources . 20

iPlanet UDS Documentation . 20
Express Documentation . 21
WebEnterprise and WebEnterprise Designer Documentation . 21
Online Help . 21

iPlanet UDS Example Programs . 21
Viewing and Searching PDF Files . 22

Chapter 1 Introduction to the iPlanet UDS Database Interface . 25
About the iPlanet UDS Database Interface . 26

Support for Multiple Database Management Systems . 26
Support for Standard and Proprietary SQL . 27

ANSI SQL and Vendor SQL Extensions . 27
Accessing Databases Using TOOL SQL . 28
Accessing Databases using the Database Classes . 28
The iPlanet UDS GenericDBMS Library . 29

How to Access an RDBMS . 30

4 iPlanet Unified Development Server • Accessing Databases • August 2001

Database Vendor Notes . 32
DB2 Notes . 32
Informix Notes . 33
Oracle Notes . 33
Rdb Notes . 34
Unsupported Database Features . 35

Using ODBC . 35
Supported Data Sources . 36
Supported Database Drivers . 37
Using ODBC When Running iPlanet UDS in Standalone Model . 37
Cautions on Using ODBC with iPlanet UDS . 38

Chapter 2 Defining a Resource Manager . 39
About Resource Managers . 39

Choosing a Node for the Resource Name . 41
Defining a Resource Name . 42

Using Escript to Define a Resource Name . 44
Environment Variables . 44

DB2 Variables . 46
Informix Variables . 46
Oracle Variables . 46
Rdb Variables . 47
Sybase Variables . 47

Removing a Resource Name . 47
Testing a Resource Name with the DynamicSQL Example . 48
Using a Local Database when Running iPlanet UDS Standalone . 52

Setting up an iPlanet UDS ODBC Data Source on Windows . 53
Using an Existing Data Source . 54

Chapter 3 Making a Database Connection . 55
Connecting to a Database . 55

Using Database Service Objects . 56
When to Use a DBSession Service Object . 57
When to Use a DBResourceMgr Service Object . 57

When You Should Not Use a Service Object . 58
Creating a Database Service Object . 58

Entering General Properties . 59
Entering Database Information . 60
Entering Search Path Information . 62
Entering Connection Information . 62
Specifying Connection Options in a Method . 63
Optimizing Service Object Performance . 63

Visibility of the Service Object . 65

5

Making a Database Connection . 65
Connecting with a DBSession Service Object . 65
Connecting with a DBResourceMgr Service Object . 66
Connecting to a Database without a Service Object . 68

Dynamically Choosing a Database Vendor . 69
Other Connection Information . 71

Using Variable User Names and Passwords . 71
Creating a DefaultDBSession Service Object . 73
Reconnecting to a Database Session . 75
Disconnecting a Database Session . 76

Vendor-Specific Notes . 76
Informix . 76
Oracle . 77
Rdb . 78

Chapter 4 Working with Data Types . 79
Using Database Data with iPlanet UDS . 79

Using Simple Data Types in TOOL . 80
Using Nullable DataValue Subclasses . 80

Data Type Conversion . 81
Reading the Data Type Conversion Tables . 82
DB2 Data Conversion Table and Notes . 84
Informix Data Conversion Table and Notes . 85
ODBC Data Conversion Table and Notes . 86
Oracle Data Conversion Table and Notes . 88
Rdb Data Conversion Table and Notes . 89
Sybase Data Conversion Table and Notes . 92

Chapter 5 Manipulating Data . 93
Accessing Database Data from iPlanet UDS . 93

Using iPlanet UDS Names in SQL Statements . 95
TOOL SQL Statements . 95
Using Conditional TOOL for Vendor-Specific Code . 96

Using TOOL Statements to Query Data . 98
Selecting Data and Object Creation . 98
Selecting a Single Row . 100
Selecting into a Variable . 100
Selecting into an Object . 100

When Attribute and Column Names Match . 101
When Attribute and Column Names Do Not Match . 101
When Attributes are of Other Class Types . 102
When Attributes are Inherited . 104

6 iPlanet Unified Development Server • Accessing Databases • August 2001

Using TOOL Statements to Query Data (continued)
Selecting Multiple Rows into Arrays . 104
Selecting Multiple Rows Using the TOOL for Statement . 105
Selecting Multiple Rows using Cursors . 105

Defining a Cursor . 106
Retrieving Rows . 107
Fetching into an Array . 108
Fetching an Arbitrary Number of Rows . 108
Repeating a Statement Block . 108

Using TOOL to Update Data . 109
Inserting a Single Row . 109

Inserting Variables . 109
Inserting from an Object . 109

Inserting Multiple Rows . 110
Updating a Row . 110
Deleting a Row . 111
Executing a Single SQL Statement . 111
Executing a Database Procedure . 111

Vendor-Specific Notes on Database Procedures . 112
Working with ImageData Objects . 113

Using Binary Large Objects (BLOBs) . 113
Selecting Binary Data . 113
Inserting Binary Data . 114
Vendor-Specific Notes on BLOB Handling . 116

Using iPlanet UDS Classes to Execute SQL . 118
DBSession Methods . 118
Executing Single SQL Statements . 119
Using Prepared Statements . 120

Executing Prepared Queries . 120
About the DynamicDataAccess Example . 121
Building the SQL Statement . 122
Preparing the Statement . 124
Opening the Cursor . 125
Fetching Rows from the Result Set . 126
Storing the Data . 126
Closing the Cursor . 127

Executing Prepared DML Statements . 127
About the DynamicDataAccess Example . 127
Building the SQL Statement . 128
Preparing the Statement . 129
Processing Placeholders . 130
Executing the Statement . 131
Removing the Statement . 131

7

Improving Application Performance . 132
Multi-threaded Database Access . 132

Enabling Single-Threaded Access to Databases . 133
Mapping DBDataSets into Objects . 133

Vendor-Specific Information . 136
Informix . 136

Scroll Cursor Support . 136

Chapter 6 Transactions . 139
Relationship Between iPlanet UDS and Database Transactions . 139
Explicit iPlanet UDS Transactions . 140
Implicit iPlanet UDS Transactions . 141

Single SQL DML Statements . 142
SQL Execute Immediate Statements with DDL . 142
Use of Cursors in Implicit iPlanet UDS Transactions . 143

SQL Open Cursor . 143
SQL Fetch Cursor . 144
For Loops . 145
SQL Close Cursor . 145

Independent, Dependent, and Nested Transactions . 145
Using Dependent Transactions . 145
Using Independent Transactions . 146
Avoid Nested Transactions . 146

Common Problems with Shared and Transactional Objects . 147
Unexpected Blocking Due to a Long-Running Query . 148
Unexpected Blocking Due to a Long-Running Transaction . 148
Avoiding Deadlocks . 149

Transactions and Database Sessions . 150
Multitasking in a Database Session . 150
iPlanet UDS Support for Two-Phase Commit . 151

Two-Phase Commit with One Database Vendor . 153
Two-Phase Commit with Multiple Database Vendors . 153

Notes on Vendor-Specific Transaction Handling . 154
DB2 . 154
Informix . 154
Rdb . 155

Chapter 7 Error Handling . 157
Types of Database Exceptions . 158

8 iPlanet Unified Development Server • Accessing Databases • August 2001

Appendix A Database Example Applications . 161
How to Install iPlanet UDS Example Applications . 161
Overview of Database Example Applications . 162

GenericDBMS Library Examples . 162
Application Descriptions . 163

DynamicDataAccess . 163
DynamicSQL . 164
WinDB . 165

Appendix B TOOL SQL Statement Reference . 167
Note on Vendor-Specific SQL Extensions . 168
SQL Close Cursor . 168

Syntax . 168
Example . 168
Description . 168

SQL Delete . 169
Syntax . 169
Example . 169
Description . 169

Return Value . 169
Table Name . 170
Where Clause . 170
On Session Clause . 170

SQL Execute Immediate . 171
Syntax . 171
Example . 171
Description . 171

Return Value . 172
On Session Clause . 173

SQL Execute Procedure . 173
Syntax . 173
Example . 173
Description . 174

Return Value . 174
Procedure Name . 174
Parameter List . 175
On Session Clause . 176

Exceptions . 176

9

SQL Fetch Cursor . 176
Syntax . 176
Example . 176
Description . 176

Return Value . 178
Cursor . 179
Into Clause . 179

SQL Insert . 180
Syntax . 180
Example . 180
Description . 180

Return Value . 181
Table Name . 181
The Column List . 181
Specifying the Insert Values . 181
On Session Clause . 182

SQL Open Cursor . 182
Syntax . 183
Example . 183
Description . 183

Cursor Reference . 184
Placeholder Assignment . 184
On Session Clause . 185

SQL Select . 185
Syntax . 185
Example . 186
Description . 186

Return Value . 186
Eliminating Duplicate Rows . 187
Column List . 187
Into Clause . 188
From Clause . 189
Where Clause . 189
Group By Clause . 189
Having Clause . 189
Order By Clause . 189
On Session Clause . 190

Exceptions . 190

10 iPlanet Unified Development Server • Accessing Databases • August 2001

SQL Update . 190
Syntax . 190
Example . 190
Description . 191

Return Value . 191
Table Name . 191
Set Clause . 191
Where Clause . 191
On Session Clause . 192

Index . 193

11

List of Figures

Figure 1-1 Components of a Typical iPlanet UDS Database Application . 30

Figure 1-2 Steps to Build an iPlanet UDS Database Application . 31

Figure 1-3 ODBC Architecture. . 36

Figure 2-1 Resource Name used by Two Databases . 40

Figure 3-1 New Service Object Dialog . 59

Figure 3-2 General Properties Tab Page . 59

Figure 3-3 Database Tab Page . 60

Figure 3-4 Search Path Tab Page . 62

Figure 3-5 Connection Tab Page . 63

Figure 3-6 Partitioning with Intermediate Data Service on Same Partition as Session Service . . 64

Figure 3-7 Login screen for DynamicData Access Example . 68

Figure 3-8 Using Environment Variables in Service Object Definition . 72

Figure 5-1 Choosing Selection Criteria . 121

Figure 5-2 Dynamically Constructed SQL Statement . 122

Figure 5-3 Displaying the Results . 122

Figure 5-4 Insert Screen . 128

Figure 7-1 The Database Exception Hierarchy . 158

12 iPlanet Unified Development Server • Accessing Databases • August 2001

13

List of Tables

Table 1-1 Equivalent TOOL SQL Statements and Methods . 27

Table 4-1 Legend for the Data Type Conversion Tables . 82

Table 4-2 DB2 Data Conversion Table . 84

Table 4-3 Informix Data Conversion Table . 86

Table 4-4 ODBC Data Conversion Table . 87

Table 4-5 Oracle Data Conversion Table . 88

Table 4-6 Rdb Data Conversion Table . 90

Table 4-7 Sybase Data Conversion Table . 92

14 iPlanet Unified Development Server • Accessing Databases • August 2001

15

List of Procedures

To copy the documentation to a client or server . 22

To view and search the documentation . 22

To define a resource name for a database using Environment Console . 42

To test a resource name . 48

To define a new ODBC data source . 53

To make the data source available to iPlanet UDS users . 54

To start a database session using a DBSession service object . 66

To start a database session using a DBResourceMgr service object . 67

To create and connect through a DBSession object . 69

To create a default database session for an entire project . 73

To create a default database session for a class and its associated methods . 74

To create a default database for use in a single method . 75

To make a connection using SQL*Net V2 . 77

To execute a prepared select statement . 120

To execute a prepared insert, update, or delete statement . 127

To maximize your application’s performance, remember to . 132

To use DynamicDataAccess . 164

To use DynamicSQL . 164

To use WinDB . 166

16 iPlanet Unified Development Server • Accessing Databases • August 2001

17

Preface

Accessing Databases provides information about accessing databases from iPlanet™
Unified Development Server (iPlanet UDS) applications. This preface contains the
following sections:

• “Product Name Change” on page 17

• “Audience for This Guide” on page 18

• “Organization of This Guide” on page 18

• “Text Conventions” on page 19

• “Other Documentation Resources” on page 20

• “iPlanet UDS Example Programs” on page 21

• “Viewing and Searching PDF Files” on page 22

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

18 iPlanet Unified Development Server • Accessing Databases • August 2001

Audience for This Guide
System managers will find instructions for preparing a database management
system to work with an iPlanet UDS application. This primarily entails defining a
resource manager for each database that will interact with an iPlanet UDS program
(described in Chapter 2, “Defining a Resource Manager”).

iPlanet UDS application programmers will find information they need to write
applications using TOOL SQL statements or dynamic SQL methods.

We assume that these readers:

• have programming experience

• are familiar with their particular window system

• are familiar with SQL and their particular database management system

• understand the basic concepts of object-oriented programming as described in
A Guide to the iPlanet UDS Workshops

• have used the iPlanet UDS workshops to create classes

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Introduction to the
iPlanet UDS Database Interface”

Provides an overview of iPlanet UDS support for
database integration.

Chapter 2, “Defining a
Resource Manager”

Describes how to create a resource manager for
database access.

Chapter 3, “Making a Database
Connection”

Describes DBSession and DBResourceMgr
services objects, how to create each, and their
advantages and disadvantages.

Chapter 4, “Working with Data
Types”

Discusses the mappings between database data
types and iPlanet UDS TOOL data types, and
points out conversion issues.

Chapter 5, “Manipulating Data” Provides information about writing TOOL SQL
statements and SQL methods to access (query)
and manipulate (update) database data.

Text Conventions

Preface 19

Text Conventions
This section provides information about the conventions used in this document.

Chapter 6, “Transactions” Discusses the relationship between database
transactions and iPlanet UDS transactions.

Chapter 7, “Error Handling” Provides a brief overview of iPlanet UDS’s
database exception classes.

Appendix A, “Database Example
Applications”

Describes the standard iPlanet UDS sample
applications for database access, with instructions
for installation and use.

Appendix B, “TOOL SQL Statement
Reference”

Provides the primary source of information about
the SQL subset of TOOL statements; for other
TOOL statement reference, see the TOOL Reference
Guide.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Chapter Description

Other Documentation Resources

20 iPlanet Unified Development Server • Accessing Databases • August 2001

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iPlanet UDS products
(including Express, WebEnterprise, and WebEnterprise Designer) can be found on
the iPlanet UDS Documentation CD. Be sure to read “Viewing and Searching PDF
Files” on page 22 to learn how to view and search the documentation on the iPlanet
UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

http://docs.iplanet.com/docs/manuals/uds.html

iPlanet UDS Example Programs

Preface 21

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files

22 iPlanet Unified Development Server • Accessing Databases • August 2001

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 23

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

Viewing and Searching PDF Files

24 iPlanet Unified Development Server • Accessing Databases • August 2001

25

Chapter 1

Introduction to the iPlanet UDS
Database Interface

This chapter provides an introduction to the iPlanet UDS database interface.
Database management systems (DBMS) are standard components of many
complex applications. iPlanet UDS includes interfaces to the following database
management systems:

• IBM UDB/DB2

• Informix Dynamic Server

• Microsoft SQL Server

• Oracle

• Rdb (both Oracle Rdb and its predecessor, DEC Rdb)

• Sybase

In addition, the iPlanet UDS database interface also supports Microsoft’s Open
Database Connectivity (ODBC), allowing access to data sources through database
drivers that conform to the ODBC standard.

For information about which database versions or platforms are certified for a
given iPlanet UDS release, you should refer to the platform support matrix,
available at http://www.forte.com/support/platforms.html.

About the iPlanet UDS Database Interface

26 iPlanet Unified Development Server • Accessing Databases • August 2001

About the iPlanet UDS Database Interface
The iPlanet UDS database interface allows iPlanet UDS application developers to
build database access into their applications quickly and easily. Application
developers can take advantage of virtually all database features, both standard and
proprietary, while building applications that are portable across hardware
platforms, operating systems, and databases.

The primary iPlanet UDS tools that support database access are the TOOL SQL
statements and iPlanet UDS’s GenericDBMS library. This introduction describes
these tools in more detail. iPlanet UDS also provides a number of sample
applications that demonstrate working with database data. These programs are
described in Appendix A, “Database Example Applications.”

Support for Multiple Database Management
Systems
The iPlanet UDS database interface supports the following database systems:

• IBM UDB/DB2 R6000 & Mainframe

• Informix

• Microsoft SQL Server

• ODBC Level 1 API ODBC 2.1 SDK

• Oracle

• Rdb

• Sybase

For detailed information regarding which versions and platforms of a particular
database management system are supported, refer to the iPlanet UDS System
Installation Guide, which contains the following types of information:

• version and release numbers of certified third party components

• notes on platforms that are certified for a given product and release

The iPlanet UDS Release Notes may also contain additional information.

When this manual describes information that is unique to one or more database
vendors, the information is identified as database vendor-specific information.

About the iPlanet UDS Database Interface

Chapter 1 Introduction to the iPlanet UDS Database Interface 27

Support for Standard and Proprietary SQL
iPlanet UDS database applications can contain any SQL statement supported by
any database vendor, with very few exceptions. An application can contain any
combination of DML (data manipulation language, including queries, updates,
inserts, and deletes), DDL (data definition language, for creating, altering, and
dropping tables), or DCL (data control language, for database access and security).
Many applications consist primarily of DML.

ANSI SQL and Vendor SQL Extensions
You can write portable applications using ANSI standard SQL statements that all
vendors support. You can also use vendor-specific SQL extensions, such as
outer-joins and advanced set operations, although when you use such extensions,
your applications may not be portable across all databases.

The iPlanet UDS database interface supports SQL access to a relational database
system using two different approaches:

• using iPlanet UDS TOOL SQL statements

• using classes in iPlanet UDS’s GenericDBMS library

Table 1-1 lists the SQL statements supported by TOOL along with the equivalent
method. All methods are on the DBSession class of the GenericDBMS library.

Table 1-1 Equivalent TOOL SQL Statements and Methods

TOOL SQL
Statement

DBSession Method Description

sql select Select * Retrieve a single row from a database
table or retrieves multiple rows from a
database table into an array.

sql delete Execute * Remove rows from a database table.

sql insert Execute * Add a new row to a database table.

sql update Execute * Replace values in a database table.

sql open cursor OpenCursor * Open a cursor.

sql close cursor CloseCursor * Close a cursor.

sql fetch cursor FetchCursor * Retrieve a single row from a cursor or
retrieve multiple rows from a cursor into
an array.

* These statements must be previously prepared using the DBSession class interface.

** This statement must be previously prepared using the PrepareProcedure method of the DBSession class.

About the iPlanet UDS Database Interface

28 iPlanet Unified Development Server • Accessing Databases • August 2001

Accessing Databases Using TOOL SQL
TOOL SQL statements can be used in a number of situations. If you have a choice
of using a TOOL SQL statement or a GenericDBMS class, it is usually simpler to
use the TOOL statement.

In general, any operation you can perform using TOOL SQL you can also perform
using a GenericDBMS class. For single return values, use the TOOL SQL statement
execute procedure; for multiple result sets, use the DBSession class.

Appendix B, “TOOL SQL Statement Reference” is the primary reference for TOOL
SQL statements. Many of these statements are demonstrated in Chapter 5,
“Manipulating Data.” For reference information regarding non-SQL TOOL
statements, refer to the TOOL Reference Guide.

Accessing Databases using the Database
Classes
The GenericDBMS library contains a number of classes that support connecting to
and working with relational database systems. This library must be named as a
supplier plan in order to access any database. You use the Project Workshop to
make the GenericDBMS library a supplier plan to the project in which you want to
access the database.

sql execute
immediate

ExecuteImmediate Execute a single SQL statement specified
as a literal string, a string variable, or a
TextData variable.

sql execute
procedure **
(all databases
except Sybase)

OpenCursor
(Sybase procedures only)

Execute a database procedure.

Table 1-1 Equivalent TOOL SQL Statements and Methods (Continued)

TOOL SQL
Statement

DBSession Method Description

* These statements must be previously prepared using the DBSession class interface.

** This statement must be previously prepared using the PrepareProcedure method of the DBSession class.

About the iPlanet UDS Database Interface

Chapter 1 Introduction to the iPlanet UDS Database Interface 29

Many GenericDBMS classes and methods, in particular, those on the DBSession
class, are functionally equivalent to TOOL SQL statements. For example, when you
are writing a method, you can either invoke the Select method on the DBSession
class or use the TOOL statement sql select; either way provides the same
execution, features, and performance.

Other classes in GenericDBMS, such as DBDatabaseDesc, DBTableDesc,
DBColumnDesc, and DBKeyDesc are “helper” classes; they do not have TOOL
SQL equivalents, but are very useful for returning information about database
tables, columns, keys, and so on.

The iPlanet UDS GenericDBMS Library
Every iPlanet UDS application that interacts with a database system must include
the iPlanet UDS library called GenericDBMS as a supplier plan. This library
contains the classes that allow you to use SQL in your applications.

In addition to the GenericDBMS library you also need a vendor-specific library for
each database to which you actually connect. For example, if you partition your
application to use an Oracle resource manager, then you need the library called
Oracle. The database-specific libraries have the name of the database vendor (as in
DB2, Informix, and so on).

Always add the GenericDBMS library as a supplier library for any database access,
even if you know that you will only use one type of database. Do not explicitly
refer to or add the individual database vendor libraries as supplier libraries. They
are added dynamically during partitioning, as needed.

The iPlanet UDS online Help contains reference material for the GenericDBMS
library.

NOTE In some circumstances you must use the classes and methods in
GenericDBMS. You must use the classes in the GenericDBMS library
to build applications that execute SQL statements that are
constructed at runtime. These statements are often used in
applications to construct queries or updates based upon input from
the end-user. TOOL SQL statements cannot be used to execute SQL
statements specified at runtime.

“Using iPlanet UDS Classes to Execute SQL” on page 118 describes
how to use the GenericDBMS classes to build and execute SQL
statements at runtime.

How to Access an RDBMS

30 iPlanet Unified Development Server • Accessing Databases • August 2001

How to Access an RDBMS
This manual describes how to integrate an iPlanet UDS application with a
database, so that your iPlanet UDS application users can query and update
database data. To integrate a database with an iPlanet UDS application, you can
define a service object whose purpose is to handle calls to the database (you can
also build iPlanet UDS applications without such a service object).

The basic components of an iPlanet UDS database application configuration are
shown in Figure 1-1.

Figure 1-1 Components of a Typical iPlanet UDS Database Application

Figure 1-1 does not necessarily represent a typical iPlanet UDS database
application, but rather the minimal components of one. Note that it shows two
service objects. Each iPlanet UDS application service object (there may be several)
manages iPlanet UDS objects and their logic. A DBSession service object (or a
DBResourceMgr service object) coordinates communications with the database,
and interacts with the iPlanet UDS service objects. Service objects are sometimes
called “servers.”

Figure 1-2 shows a chart of the high-level steps required to build an application
such as that shown in Figure 1-1. This book describes each of these tasks in more
detail.

Server

iPlanet UDS Clients

UDS Server
Partition

iPlanet UDS Business Server iPlanet UDS Database Server
(DBSession Service Object)

Database

How to Access an RDBMS

Chapter 1 Introduction to the iPlanet UDS Database Interface 31

Figure 1-2 Steps to Build an iPlanet UDS Database Application

The following table lists some of the integration steps, keyed to sections in this
manual.

Task Reference

Include the GenericDBMS library
as a supplier plan.

A Guide to the iPlanet UDS Workshops

Define a database resource name. “Defining a Resource Name” on page 42

Set database environment
variables.

“Environment Variables” on page 44

Create a service object of either
type.

“Creating a Database Service Object” on page 58

Create Database
Resource Name

Add GenericDBMS
as Supplier Plan

Connect to DB

Use SQL (runtime)

Disconnect

Do an instance Alloc
of a DBSession object

Load the DB
library (runtime)

Create DBSession
Service Object

Use SQL (runtime)

Disconnect (runtime)

Use SQL (runtime)

Connect to DB (runtime)

Create DBResourceMgr
Service Object

Database Vendor Notes

32 iPlanet Unified Development Server • Accessing Databases • August 2001

Database Vendor Notes
Following are some general notes on how the iPlanet UDS database interface
works with specific databases. This type of database vendor-specific information is
found throughout the manual; for example, see “Environment Variables” on
page 44.

DB2 Notes
In IBM’s DB2 Client/Server architecture, a DB2/6000 application executing
through the DB2 CLI Driver can connect to the following:

• a local DB2/6000 database using its DB2 server

• a remote DB2/6000 database using a local DB2 Client Application Enabler and
a remote DB2 Client Support, using DB2 networking services

Use a DBResourceMgr service
object.

“When to Use a DBResourceMgr Service Object” on
page 57

“Connecting with a DBResourceMgr Service Object”
on page 66

Use a DBSession service object. “When to Use a DBSession Service Object” on page 57

“Connecting with a DBSession Service Object” on
page 65

Dynamically select a database to
connect to.

“Dynamically Choosing a Database Vendor” on
page 69

Run iPlanet UDS using a
standalone database.

“Using a Local Database when Running iPlanet UDS
Standalone” on page 52

Write TOOL SQL statements to
query and update database data.

“Using TOOL Statements to Query Data” on page 98

Write methods on DBSession
class to generate SQL statements
at application runtime.

“Using iPlanet UDS Classes to Execute SQL” on
page 118

Reconnect a dropped database
session.

“Reconnecting to a Database Session” on page 75

Disconnect the session. “Disconnecting a Database Session” on page 76

Task Reference

Database Vendor Notes

Chapter 1 Introduction to the iPlanet UDS Database Interface 33

When connecting from an iPlanet UDS application to a DB2/6000 database, the
first DB2 configuration above is used. iPlanet UDS partitions the application to
execute the DB2 service object (either a DBResourceMgr or DBSession) on the
RS/6000 node where the DB2 database resides. iPlanet UDS application services
are used to communicate between the iPlanet UDS/DB2 server partition and other
application components. The actual DB2 connection, then, is a local connection
between the iPlanet UDS server partition and the DB2/6000 server.

iPlanet UDS provides array interface support for DB2 and ODBC. This standard
can improve network performance when transferring multiple rows between a
database and a client. Using the array interface requires only one round trip
between the database and client to transfer multiple rows, rather than one round
trip per row.

Informix Notes
An Informix database is identified by both an Informix server name and a database
name. If a server name is not specified, then the value of the INFORMIXSERVER
environment variable is used. Note that, unlike native Informix tools such as
dbaccess, when iPlanet UDS connects to Informix a database must be specified;
server-only connections are not supported.

Oracle Notes
An iPlanet UDS application that integrates with an Oracle RDBMS offers two
communication models; both models require SQL*Net to be installed on any
machine which will initiate a database connection (specifically, any machine that
will run a DBSession object—for example, a DBSession service object).

The first model installs the iPlanet UDS server partition on the same node as the
Oracle RDBMS; in this scenario, SQL*Net is not required on either node. This
model provides efficient and fast communication between the application and the
Oracle database.

The second model allows the Oracle RDBMS to reside on any machine in the
network, provided that SQL*Net is running on that machine. This model provides
more flexibility.

NOTE An iPlanet UDS server partition is limited to a single shared
memory connection to a local Informix database.

Database Vendor Notes

34 iPlanet Unified Development Server • Accessing Databases • August 2001

The node on which the database is installed can even be a different operating
system and hardware platform than the node running the iPlanet UDS application,
as long as both the iPlanet UDS server and the Oracle server support the same
network transport protocol (TCP/IP, for example) and SQL*Net is installed on the
iPlanet UDS server machine.

Rdb Notes
iPlanet UDS can access both local and remote Rdb databases from OpenVMS
systems. iPlanet UDS can also access non-Rdb databases through Oracle’s Database
Integrator (DBI) family of products. Note that iPlanet UDS requires only the Rdb
Run-Time license to access Rdb databases.

Because of the design of the iPlanet UDS architecture, the connectivity model
departs from conventional Rdb connections. In the conventional configuration of a
local, native Rdb application, the Rdb runtime system runs within the server
partition and accesses Rdb data on the server node.

In a typical Rdb client-server configuration, SQL/Services enables the client
application to access Rdb data on the server node; SQL/Services software is
required on both sides of the connection. DECnet, TCP/IP, and AppleTalk
communication protocols are supported between SQL/Services clients and servers.

NOTE In an iPlanet UDS client-server application accessing local Rdb data,
communication between the client and server is handled by iPlanet
UDS rather than SQL/Services. If the iPlanet UDS server partition is
installed on the same node as the Rdb database, iPlanet UDS will
make an efficient local database connection.

The Rdb database can be installed on an OpenVMS machine that
does not have iPlanet UDS software installed. The iPlanet UDS
database service object accesses the remote Rdb database using
DECnet and an RDB$REMOTE account. While less efficient than the
configuration described above, this illustrates the flexibility
available with the iPlanet UDS/Rdb interface.

Using ODBC

Chapter 1 Introduction to the iPlanet UDS Database Interface 35

Unsupported Database Features
Most database management systems extend the ANSI standard SQL language.
Whenever possible, iPlanet UDS supports vendor-specific SQL extensions;
however some extensions are inconsistent with the implementation of TOOL SQL
and cannot be supported. These are indicated below.

• scroll cursors (cursors that can be fetched in a non-next fashion)

For Informix only, scroll cursors are supported through the DBSession class
interface; scroll cursors are not supported for other databases.

• Informix hold cursors are not supported (cursors that remain open across
transactions).

Using ODBC
Microsoft’s Open Database Connectivity (ODBC) is a standard application
programming interface (API) for accessing data stored in database management
systems. Using ODBC, you can develop, compile, and ship an application that is
database independent. Using standard SQL to access data, an ODBC application
can access various databases without modification or recompilation. At runtime,
dynamic-link libraries, called database drivers, are linked on demand to access a
specific data source through a specific communication method.

The ODBC architecture has four main components, shown in Figure 1-3 and
described below.

Using ODBC

36 iPlanet Unified Development Server • Accessing Databases • August 2001

Figure 1-3 ODBC Architecture

application Performs processing and calls ODBC functions to submit SQL
statements that manipulate and/or retrieve data in the target database. When
using iPlanet UDS with ODBC, the iPlanet UDS ODBC resource manager is the
ODBC application. This component is the only one provided by iPlanet UDS; all
other components must be in place for an iPlanet UDS application to use ODBC.

driver manager Loads database drivers on behalf of an application. This
component allows ODBC applications to access different databases without
recompilation. The driver manager is provided by Microsoft on Windows
platforms.

database driver Processes ODBC function calls, submits SQL requests to a
specific data source, and returns results to an application. Database drivers are
provided by database vendors or other third parties.

data source The user’s data, the associated operating system, database, and
network platform (if any) used to access the DBMS.

Supported Data Sources
To see the official list of which data sources (and versions) iPlanet UDS certifies
against which platforms, refer to the platform support matrix, which is available at
http://www.forte.com/support/platforms.html.

Architecture

Application

Driver Manager

(Example)

iPlanet UDS Resource Manager

Driver Manager

SQLServer Driver

SQLServer

Driver Driver

Data SourceData Source

Using ODBC

Chapter 1 Introduction to the iPlanet UDS Database Interface 37

Supported Database Drivers
In addition to a data source, you must have a supported database driver for that
data source. The platform support matrix, at
http://www.forte.com/support/platforms.html, lists certified database drivers
for each platform.

Because various databases and database drivers offer a range of functionality, the
ODBC interface defines conformance levels to categorize the level of support each
driver and database provides. iPlanet UDS applications require drivers to support:

• Level 1 API and Core SQL grammar, as defined in the ODBC 2.1 SDK.

Also, iPlanet UDS can use ODBC array interface support if the ODBC driver
supports:

• SQL Extended Fetch, so that iPlanet UDS can perform an array fetch

• SQL Param Options, so that iPlanet UDS can perform array inserts

If the driver does not support these features, iPlanet UDS simply does not use the
array fetch and insert features.

Using ODBC When Running iPlanet UDS in
Standalone Model
The primary benefit of ODBC is that it allows you to access a database system
when running iPlanet UDS standalone, rather than distributed. This can be useful
in a number of situations, for both application developers and end users.

For example, an application developer can prototype an entire distributed iPlanet
UDS application running standalone on Windows running against a SQL Server
data source. Later, the developer could deploy the application in a different
environment against other, possibly multiple, databases.

Another example is an end user who daily accesses a local database while running
standalone, but periodically connects to a distributed environment to access a
different database. Such a user could use ODBC when running standalone,
regardless of the type of database he accesses when running distributed.

When the iPlanet UDS development/runtime system is run standalone, iPlanet
UDS always assumes a Database Resource manager type of ODBC. For more
information on using ODBC in standalone mode, refer to “Using a Local Database
when Running iPlanet UDS Standalone” on page 52.

Using ODBC

38 iPlanet Unified Development Server • Accessing Databases • August 2001

Cautions on Using ODBC with iPlanet UDS
When you use ODBC with iPlanet UDS you should be aware that not all data
sources or all drivers provide the same functionality. Depending upon which data
source and driver you use, some database features may not be available.

On NT and Windows 95, your ODBC driver must be thread safe. iPlanet UDS
exploits the native threading capability on these platforms and requires the ODBC
driver to operate in a multithreaded environment.

If an iPlanet UDS application attempts to use a database feature that is not
supported by a particular data source, iPlanet UDS generates an exception (a
DBUsageException or a DBResourceException, depending upon the
circumstances). Examples of features that may generate this type of exception
include outer joins and database procedures.

39

Chapter 2

Defining a Resource Manager

Before an iPlanet UDS application can access data in a relational database, you
must create a resource name for the database. This chapter contains the following
topics:

• the purpose of the database resource manager

• choosing a node for the resource manager

• defining a database resource name

• running the DynamicSQL example to test a resource name

• accessing a local database when running iPlanet UDS standalone

If you are an iPlanet UDS system manager, follow the instructions in this chapter to
set up and test a resource name.

If you are an iPlanet UDS application developer, ask your system manager for
valid resource names. Then, to access a database from an iPlanet UDS application,
you must establish database connections as described in Chapter 3, “Making a
Database Connection.”

About Resource Managers
For a given database to be accessible by an iPlanet UDS application, a resource
manager must be associated with the database. A resource manager simply
indicates a type of database (as specified by the name of the database vendor, which
indicates the database’s interface) that can be accessed from a particular node. Note
that a resource manager does not uniquely identify a particular database instance,
but only a database type, such as Oracle, Sybase, or ODBC.

About Resource Managers

40 iPlanet Unified Development Server • Accessing Databases • August 2001

The iPlanet UDS system manager creates a database resource name using the
Environment Console. Each resource name is associated with a resource manager.
See “Defining a Resource Name” on page 42 to see an example of the dialog
window. iPlanet UDS application developers use the resource name in applications
that need to access a database of that type (vendor). During partitioning, iPlanet
UDS places the database service objects on the same node as the resource managers
they use. Subsequently, all database connections to a given database are
established through the resource name for that database.

A resource name contains no connection information (specifically, unique database
name, username, and password). All connection information is provided either
through a DBSession service object, or when connecting to a database using the
ConnectDB method on the DBResourceMgr class. See Chapter 3, “Making a
Database Connection” for a discussion of database connection options.

One resource name can be used by multiple database service objects. Each service
object would reference the same resource name, but could use different database
names when providing the connection string to initiate a database session.
Figure 2-1 shows an example of three different applications using the same
database resource name but connecting to different databases.

Figure 2-1 Resource Name used by Two Databases

Application
with DBSession
Service Object
referencing Test

Oracle Database
Instance "Test"

Oracle Database
Instance "Prod"

Resource Name
"OracleDBs"

Application
with DBSession
Service Object
referencing Prod

Application
with DBSession
Service Object
referencing Prod

About Resource Managers

Chapter 2 Defining a Resource Manager 41

Distributed Development and Access The iPlanet UDS system manager defines
a resource name for access by multiple application developers (and end users)
running iPlanet UDS in distributed mode. To do so, the manager uses the Node
Properties dialog of the Environment Console, and defines the resource name on a
node on which the DBMS client interface resides. The node need not have the
database itself installed, as long as the node can access the database (for example,
any database-specific environment variables are set). “Defining a Resource Name”
on page 42 describes this procedure.

Stand-alone Development and Access Any iPlanet UDS application developer
or end user running iPlanet UDS in standalone mode uses an ODBC resource name
by default; all database connections are assumed to use ODBC. The name of the
data source must be specified, but the resource name and resource manager are
assumed. See “Using a Local Database when Running iPlanet UDS Standalone” on
page 52 for more information.

Choosing a Node for the Resource Name
You should define a resource name on a node that has guaranteed and efficient
access to the target database system or ODBC data source. When choosing the
node, keep the following in mind:

• The iPlanet UDS database interface can be considered the client side of a
specific database vendor’s client-server support. This is the case even though
iPlanet UDS generates server partitions for the DBSession or DBResourceMgr
service objects.

• By default, iPlanet UDS partitioning locates service objects on the same node as
the resource manager they use.

• Some database vendors provide client-server connectivity using standard
networking protocols or fast transfer using shared memory when the client is
on the same node as the DBMS server. It may be advantageous, therefore, to
define a resource name on the same node that runs the DBMS server
process(es).

• For databases accessed through the ODBC interface, the resource name must
be defined on a Windows node that contains the required ODBC driver
manager and drivers.

• It can sometimes be advantageous to load balance client-server activity by
having clients run on a node (or nodes) other than that which runs the server
process(es).

Defining a Resource Name

42 iPlanet Unified Development Server • Accessing Databases • August 2001

Defining a Resource Name
If you are running iPlanet UDS standalone using an ODBC data source, this section
is irrelevant because you do not use an Environment Console in standalone mode.
However, if you are a developer who runs both stand-alone and connected
(accessing both local and central databases), then your iPlanet UDS system
manager would complete these steps to define a resource name for a
server-resident database.

After you choose a node on which to define the resource name, you can use either
the Environment Console or the Escript utility to define a resource name.

➤ To define a resource name for a database using Environment Console

1. Open the Environment Console.

2. Choose either the View > Node Topology or View > Node Outline command.

3. Lock the environment by clicking the Locked toggle.

4. Select the node on which you will define the resource name.

It is from this node that connections will be made to the database or ODBC
data source. Therefore, this node must be running either the database system
itself or the database client software.

Defining a Resource Name

Chapter 2 Defining a Resource Manager 43

5. For this node, choose the Component > Properties… command.

The Node Properties dialog appears, as shown below. Make sure that Resource
Managers, the default choice, appears in the node properties drop list.

6. Enter any unique name to be the resource name for the database.

All resource names defined for a given environment must be unique within
that environment (the name space is an iPlanet UDS environment).

You will use this name later, in the “Database Manager” field of the Database
tab page of the Service Object Properties dialog (see “Entering Database
Information” on page 60). Because the resource name is not physically mapped
to any specific database, you can easily move the resource name to a different
node, if desirable, without changing any iPlanet UDS code.

7. Choose the appropriate database type (vendor) from the Resource Manager
drop list.

The drop list varies by platform; it shows only database interfaces that iPlanet
UDS supports for that node’s architecture. It does not reflect databases that are
actually installed on the node.

8. Save the changes to the environment using the File > Save Environment
command.

Node properties

List of
Resource Managers

Resource names

drop list

Defining a Resource Name

44 iPlanet Unified Development Server • Accessing Databases • August 2001

9. Unlock the environment by clicking the Locked toggle. Exit the Environment
Console.

10. If necessary, set the appropriate environment variables for the database, as
described later in this chapter. On some platforms, notably VMS, other
environmental considerations such as process privileges and quotas may
apply.

Using Escript to Define a Resource Name
Rather than using the Environment Console, you can use the Escript command
AddExternalRM to define a resource name. For more information on the Node
Properties dialog, or the AddExternalRM command, refer to the iPlanet UDS
System Management Guide.

Environment Variables
When you install or reinstall iPlanet UDS on a server node, you provide
database-specific information that iPlanet UDS uses to automatically update all
required environment variables for each database. So, you may not need to
manually set any environment variables, because the installation does so for you.
However, if you want to add a new database (that is, a new database instance from
the same vendor, or a database from a different vendor) then you must update the
environment variables so that iPlanet UDS can interact with the new database.
Refer to the appropriate sections below to set any environment variables that apply
to the database you are adding.

Environment variables at three different levels may affect your iPlanet UDS
database application. You can set environment variables (or logical names)
required or used by (1) the operating system, (2) by iPlanet UDS, or (3) by the
database.

O/S environment variables You should set the UNIX LIBPATH environment
variable to include the library directory for each database you will connect to on a
UNIX node. Check either of the files fortedef.sh (for K or Bourne shell) or
fortedef.csh (for C shell) and add the value for LIBPATH if necessary. The
LIBPATH variable must be set before you start the iPlanet UDS Node Manager
process.

Defining a Resource Name

Chapter 2 Defining a Resource Manager 45

The actual name for LIBPATH varies slightly by platform:

iPlanet UDS environment variables iPlanet UDS requires no additional iPlanet
UDS-specific environment variables to access databases. However, there are a few
optional environment variables you can use to tune application performance
(FORTE_DB_MAX_STATEMENTS and FORTE_DB_VENDORFLG are two that
relate to databases; for more information on these variables see the iPlanet UDS
online Help).

Vendor-specific environment variables All database vendor-specific
environment variables must be set in the iPlanet UDS server process containing the
database resource manager or session. Since iPlanet UDS server partitions inherit
environment variables from their iPlanet UDS Node Manager, it is sufficient to set
the database environment variables in the iPlanet UDS Node Manager process
before any iPlanet UDS process is started.

The following table lists the database vendor-specific environment variables that
must be set for a given vendor-type of database. These variables are described in
following sections.

Platform Name of LIBPATH to use

Compaq Tru 64 Unix, Solaris, DG, PTX LD_LIBRARY_PATH

RS6000 LIBPATH

HP SHLIB_PATH

Database Environment Variables

DB2 DB2INSTANCE and other variables specified in the files db2profile
and db2cschrc

Informix INFORMIXDIR, INFORMIXSERVER

Oracle ORACLE_HOME, ORACLE_SID

Rdb RDMS$RUJ, SORTWORK, and RDMS$DEBUG_FLAGS

Sybase SYBASE, if root directory (interfaces file) is in non-standard location.

Defining a Resource Name

46 iPlanet Unified Development Server • Accessing Databases • August 2001

DB2 Variables
An iPlanet UDS Node Manager may access only one DB2/6000 instance. Each
DB2/6000 instance has one of two example files, db2profile (for K shell) and
db2cschrc (for C shell), which defines the environment variables necessary to
access the instance (such as DB2INSTANCE). You should incorporate (add) the
appropriate file into either your .profile file (for K shell) or .cshrc file (for C shell).
See IBM’s DATABASE 2 AIX/6000 Installation Guide for a description of these
environment variables.

Informix Variables
Informix uses a number of environment variables to modify a given installation.
Two variables are particularly important for iPlanet UDS applications:

INFORMIXDIR A required variable that specifies the top directory of the node’s
Informix product installation.

INFORMIXSERVER A required variable that can be used to specify a default
Informix database server for database connections. When a connection
resourceName parameter does not contain a server name component, the value set
for INFORMIXSERVER is used.

Oracle Variables

ORACLE_HOME During the Oracle installation, you set the environment
variable ORACLE_HOME to indicate the home directory for the Oracle
installation. SQL*Net V2 uses this environment variable to locate the file
tnsnames.ora.

Environment
Variable

Platforms Setting

INFORMIXSERVER
and INFORMIXDIR

Solaris, Alpha
OSF,
DG Intel, PTX
Intel

LD_LIBRARY_PATH should include
$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql

RS6000 LIBPATH should include
$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql

HP9000 SHLIB_PATH should include
$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql

Defining a Resource Name

Chapter 2 Defining a Resource Manager 47

ORACLE_SID You should also set the environment variable ORACLE_SID to
the instance of Oracle to which you are going to connect. Local connections to an
Oracle database require ORACLE_SID to be set.

Rdb Variables
While there are no VMS logical names required to access Rdb databases from
iPlanet UDS, some Rdb-specific logical names may be useful. Logical names can be
used for two distinct purposes:

• Rdb configuration and load balancing, using the RDMS$RUJ, SORTWORK,
and RDMS$DEBUG_FLAGS logical names.

• Naming databases, by defining a logical name that translates to an Rdb
database specification. This logical name can then be specified in the
ConnectDB method of the DBResourceMgr class (see “Connecting to a
Database” on page 55). Using a logical name for a database makes your iPlanet
UDS code and service object definitions more portable.

For an iPlanet UDS/Rdb session to process a logical name, the name must be
“visible” to the Rdb server process created by the iPlanet UDS Node Manager. The
recommended procedure is to define the name in the iPlanet UDS “global logical
name table” by adding the definition of the logical name to the FORTE_STARTUP
procedure. See the section on installing on Alpha OpenVMS in the iPlanet UDS
System Installation Guide for more details.

Sybase Variables
During the Sybase installation, a file named “interfaces” is created in the root
directory for Sybase. By default, this directory is the login directory for the Sybase
account. Sybase CB-Library must be able to find the interfaces file to translate the
server name to an appropriate network address. If the Sybase root directory is not
in the login directory for the Sybase account, then you must use the environment
variable SYBASE (a logical name on VMS) to tell Sybase where to find the
interfaces file.

Removing a Resource Name
You might wish to remove a resource name from one node in an environment so
that you can redefine it on another node. You might do this if you moved your
database to a more powerful machine. You could redefine the resource name to use
a resource manager on the newer machine; this would cause iPlanet UDS to place
the servers that use that resource manager on the newer machine during
partitioning.

Testing a Resource Name with the DynamicSQL Example

48 iPlanet Unified Development Server • Accessing Databases • August 2001

To remove a resource name, complete steps 1 through 4 as described in “Defining a
Resource Name” on page 42. Then, highlight the resource name you wish to
remove and click the Delete button.

Testing a Resource Name with the
DynamicSQL Example

You can use the iPlanet UDS sample application called DynamicSQL to test a new
or existing resource name. This section contains instructions for running
DynamicSQL. When the instructions differ by database vendor, follow the
instructions that pertain to your particular vendor.

The DynamicSQL example does not create any new tables or add any data to your
database. It simply opens an iPlanet UDS window through which you can enter
any SQL statement using tables and data that already exist in the database.

➤ To test a resource name

1. Using the vendor’s utilities, verify that the database (or ODBC data source) is
accessible. After you complete this step, your database should also be
accessible from iPlanet UDS.

Database
Vendor

To verify that the database is accessible:

DB2 Login to the node. Define the environment variables appropriate
for accessing the local DB2/6000 database “dbname.” Run the DB2
command line processor (“db2”) and use the following command:

connect to dbname user uname using upass

Informix Login to the node using the uname account. Define the
INFORMIXDIR environment variable, and if appropriate,
INFORMIXSERVER. Use the dbaccess command to connect to
the Informix database.

Testing a Resource Name with the DynamicSQL Example

Chapter 2 Defining a Resource Manager 49

2. Create a resource name for the database (vendor) of your choice.

If you already have an existing resource name, go to Step 3.

If you do not have an existing resource name, follow the instructions in the
previous section. The DynamicSQL example assumes that the resource name is
“AnyDBMgr.” You can either use AnyDBMgr, or modify the reference to the
resource name to match your name (described in the next step).

ODBC Login to the node and use the database-specific interface to test
database access. For example, if you are using a Microsoft SQL
Server data source, you would run the isql command line
processor and connect to the dbname database, using uname and
upass.

Oracle Use the following command:

sqlplus scott/tiger@servicename
When you see a SQL> prompt, type Quit to exit the program.

RDB Use the following command:

$ RMU /SHOW VERSION
You should see the message
“Executing RMU for DEC Rdb Vx.y.”

If your database node has an Rdb Interactive or Development
license, then you can verify that the Rdb database is accessible
using the SQL$ Interactive SQL program.

For example, if the database filename associated with
MYDBNAME is DKAO:[DATABASES]FINCHES, then enter:

$ RUN SYS$SYSTEM:SQL$
SQL> ATTACH 'FILENAME DKAO:[DATABASES]FINCHES':
SQL> SHOW TABLES
SQL> EXIT

Sybase Use the following command:

isql -S DBname -U uname -P upass

Database
Vendor

To verify that the database is accessible:

Testing a Resource Name with the DynamicSQL Example

50 iPlanet Unified Development Server • Accessing Databases • August 2001

3. Create the DynamicSQL project. Open the Repository Workshop and import
the two files:

$FORTE_ROOT/install/examples/frame/utility.pex

$FORTE_ROOT/install/examples/database/dynsql. pex

If you have an existing resource name, you must edit the service object for this
example to use your resource name. In the Project Workshop for the
DynamicSQL project, double-click on the AnyDBMgr service object. In the
Service Object Properties dialog (General tab page), change the name in the
Database Manager field from “AnyDBMgr” to match your resource name.

4. Run the DynamicSQL application.

The application input and output appear in the console/trace window, so you
should open the window if it is iconized.

5. You are prompted for a database name, a username and a password. Respond
to the prompts using the format that corresponds to your database vendor, as
described in the following table.

Database Vendor Database Username Password

DB2 dbname
The name of the local DB2
database, as specified on a
DB2/6000 SQL CONNECT
statement. This database must be
accessible from the local instance
defined by the DB2INSTANCE
environment variable.

Example: TestDB2DB

uname
An authorization
name associated with
a DB2/6000 SQL
CONNECT statement.
uname must be an
authorized login user
name on the AIX
system.

upass
The valid AIX password
for uname.

Informix dbname@dbserver
The name of the Informix server
and database.

or

dbname
The name of the Informix
database. The translation of the
INFORMIXSERVER environment
variable is used for the Informix
server.

Example: testinfdb or
testinfdb@HQ3

uname
A valid UNIX account
on the iPlanet UDS
server node.

upass
The password associated
with the uname account.

Testing a Resource Name with the DynamicSQL Example

Chapter 2 Defining a Resource Manager 51

ODBC dbname
The name of a valid ODBC data
source.

Example: MyLocalDB

uname
uname must follow the
conventions related to
the database to which
you are connecting.

upass
upass must follow the
conventions related to
the database to which
you are connecting.

Oracle @[TNSResourceName]
A database name, as specified in
the SQL*Net V2 file
ORACLE_HOME/network/
admin/tnsnames.ora
If TNSResourceName is omitted,
then the connection is to a local
database and the environment
variable ORACLE_SID must be
set. TNSResourceName is
case-sensitive.

Example: @testora or @

uname
A valid username for
the current Oracle
database instance.

upass
The password for the
Oracle username.

Rdb RDB.dbname

dbname is the Rdb database
filename specification used to
attach to the database from the
current node. A logical name can
be used only if it is “visible” to
the iPlanet UDS process
associated with the RDBMGR
service.

The Rdb connection established
by iPlanet UDS runs under the
persona of the specified VMS
user. This persona includes the
username, UIC, authorized
privileges and (new to iPlanet
UDS Release 3), any general
identifiers associated with the
user. The Rdb database should
have appropriate access granted
to the user's UIC and/or
identifiers.

Example: RDB.MYDBNAME

uname
A valid VMS
username.

upass
The password associated
with the uname account.

Database Vendor Database Username Password

Using a Local Database when Running iPlanet UDS Standalone

52 iPlanet Unified Development Server • Accessing Databases • August 2001

6. To use the application, enter SQL select statements for tables that you know to
exist in the database. Type Quit to exit.

(Appendix A, “Database Example Applications” also contains instructions for
installing and running the DynamicSQL example.)

Using a Local Database when Running iPlanet
UDS Standalone

You can run iPlanet UDS in standalone mode on Windows platforms iPlanet UDS
(as opposed to distributed mode) and connect to a local database using the ODBC
database interface. Using this configuration you can run standalone iPlanet UDS
database applications, or develop portable database applications that can later be
deployed in distributed systems running on multiple platforms and accessing
multiple databases from different vendors.

When you run iPlanet UDS standalone, an ODBC resource manager is always
assumed. iPlanet UDS automatically assumes a resource manager type of ODBC
for any DBSessions or DBResourceMgr service objects; you simply need to enter
valid, local data source name when you define a database service object. For
additional information about running standalone refer to “Entering Database
Information” on page 60.

Sybase resource.dbname

resource is the name of the
resource in the Sybase interfaces
file.
dbname is the name of the
database for that server.

Example: SYBASE.master

uname
A valid Sybase
username.

upass
The password associated
with the uname account.

Database Vendor Database Username Password

Using a Local Database when Running iPlanet UDS Standalone

Chapter 2 Defining a Resource Manager 53

Setting up an iPlanet UDS ODBC Data
Source on Windows
This section contains instructions for making an ODBC data source available to an
iPlanet UDS system running standalone on any Windows platform.

➤ To define a new ODBC data source

1. Install the ODBC Driver Manager (this is a component of ODBC, not the driver
itself).

2. Install the appropriate database driver for each target database (each database
that you wish ODBC to access for your iPlanet UDS application).

For a review of the ODBC architecture, showing the Driver Manager and
database drivers, see Figure 1-3 on page 36. Also, refer to the ODBC 2.0
Programmer’s Reference and SDK Guide for additional information about
installing these components.

3. Open the ODBC Administrator from the ODBC Control Panel. Click on the
Add button. You will see a list of installed drivers, from which you select one
for the new data source.

4. Choose the appropriate driver for your target data source and click OK.

To see a list of installed drivers, you simply click on the Drivers button on the
ODBC Administrator dialog.

For example, to create a data source for a local SQL Server database, choose
SQL Server as the driver type.

NOTE These instructions assume that you have already installed the
underlying data source (database). They allow you to define a data
source that is running either locally on the same machine or
remotely; in either case iPlanet UDS standalone can use it as a data
source.

Using a Local Database when Running iPlanet UDS Standalone

54 iPlanet Unified Development Server • Accessing Databases • August 2001

5. In the next dialog that appears, the ODBC Data Source Setup, enter
information about the Data Source.

You can specify any database accessible to this node, whether local or remote.
You can even specify a flat file as a data source using ODBC.

Enter any arbitrary name; you will use this name later as the Database Name in
the Service Object Properties sheets, when specifying connection information.

Enter appropriate information for the Server, the Network Address and
Network Library. At this point you can specify either a local or remote data
source.

When you click OK, you have added a new data source.

After an ODBC data source has been defined to ODBC, there are a few additional
steps required to make the data source available to iPlanet UDS users and
developers.

➤ To make the data source available to iPlanet UDS users

1. The data source (for example, a database) must be running. From the program
group for the database, start the database service by double clicking on the
database icon and selecting Start.

2. (If you want iPlanet UDS users who are running distributed to be able to access
the ODBC data source) In the Environment Console, add an ODBC resource
manager for the node on which you defined the data source.

(For detailed instructions see “Defining a Resource Name” on page 42.)

Using an Existing Data Source
To see the names of existing ODBC data sources, open the ODBC Administrator.
You will see a display containing the names of valid data sources with the drivers
they use.

To see the available drivers, press the Drivers button in the ODBC Administrator.

55

Chapter 3

Making a Database Connection

This chapter describes options you have for connecting to a database. Many
applications will use a service object to initiate a database connection. Both types of
database service objects, DBSession and DBResourceMgr, allow you to connect to a
database, establish a database session, and query and update database data.

You can also connect to a database without using a database service object. This
process is also described in this chapter.

This chapter contains the following topics:

• choosing between the two types of database service objects

• creating a service object and connecting to a database

• connecting to a database without a service object

• using connection options, such as creating a default DBSession service object (a
default user name and password) and using variable user names and
passwords

• resuming dropped database connections

Connecting to a Database
You connect to the database by establishing a database session. A database session
is a connection to a particular database (using an iPlanet UDS database resource
name) through which you execute an isolated set of statements.

You can open and use any number of sessions to a single database, subject to
operating system and database limitations. For example, to avoid creating a
long-term transaction when an end user is browsing through the database and
making changes, you can use two different database sessions. The first session can

Connecting to a Database

56 iPlanet Unified Development Server • Accessing Databases • August 2001

open a cursor for read only, and the second session can use short transactions to
make any database updates that the end user requests. You can also use sessions to
access more than one database or type of database in the same iPlanet UDS
application.

To initiate a database session you specify connection information (a database and a
valid username and password). There are three ways to start a database session:

• using a DBSession service object (based upon the DBSession class)

• using a DBResourceMgr service object (based upon the DBResourceMgr class)

• using no service object

The following sections describe how to start a database session.

Every database connection (session) is represented by an object of class DBSession.
When you invoke the ConnectDB method on a DBResourceMgr service object, the
ConnectDB method returns a DBSession object. In fact, iPlanet UDS uses the same
ConnectDB method for every database connection, but the method is transparent
when used with a DBSession service object or without any service object at all.
Subsequently, your application can execute TOOL SQL statements or invoke
methods from the GenericDBMS library during a database session; both cases
cause iPlanet UDS to invoke methods on the DBSession class on the current
DBSession object.

Using Database Service Objects
Typically you will use either a DBSession service object or a DBResourceMgr
service object to initiate connections to a database, although you can make
connections without a service object (see “When You Should Not Use a Service
Object” on page 58). The two service objects are used in different circumstances, as
described below.

(See “Creating a Database Service Object” on page 58 for instructions for defining
either type of service object.)

NOTE Every SQL statement issued against a database is associated with an
on session clause that identifies an active database session. You can
use a service object name or reference to an object of the DBSession
class. You can also omit the on session clause to specify the default
session called DefaultDBSession (see “Creating a DefaultDBSession
Service Object” on page 73).

Connecting to a Database

Chapter 3 Making a Database Connection 57

When to Use a DBSession Service Object
DBSession service objects are perhaps the most convenient way to access a
database, but offer somewhat less flexibility than the DBResourceMgr service. You
can use a DBSession service object if the following are true:

• You can pre-specify the connection information (resource name, database
name, user name and password) when you define the service object.

(You can override user information using environment variables; see “Using
Variable User Names and Passwords” on page 71.)

• Your application does not require a dynamic number of database sessions.
While there can be multiple sessions, the number of sessions cannot change at
runtime.

The DBSession service object has the following advantage:

• It automatically connects to and disconnects from the specified database, using
the pre-specified connection information, at application start-up and
shutdown.

The DBSession service object has the following disadvantages:

• You must provide the user name/password and server/database name when
you partition the application that contains the service object. (You may not
specify these items after partitioning or when the application is running.)

• If the service object’s visibility is set to environment, then many clients share
the same DBSession service object; thus, you cannot use individual users'
accounts for the sessions. Instead, you must use a generic account that stays the
same across transaction boundaries.

When to Use a DBResourceMgr Service Object
You must use a DBResourceMgr service object if you want your application to
obtain connection information at runtime.

The DBResourceMgr service object has the following advantages:

• You can invoke the ConnectDB method multiple times to start multiple
database sessions.

• You can use different connection information for each database session.

Creating a Database Service Object

58 iPlanet Unified Development Server • Accessing Databases • August 2001

The primary disadvantage to using a DBResourceMgr service object is that you
must explicitly manage the connects and disconnects in your program. Some
vendor-specific limitations do exist for DBResourceMgr service objects:

Rdb All concurrent sessions within a DBResourceMgr must use the same user
name.

Oracle on VMS Only one session can be directly connected to the Oracle
RDBMS; other concurrent sessions must be connected via the SQL*Net mailbox
driver.

Informix Only a single shared memory connection may be active in an iPlanet
UDS partition. Multiple network connections to Informix databases are fully
supported.

When You Should Not Use a Service Object
In many applications, all database connections are made through a database
service object. However, a characteristic of any database service object is that it is
associated with one database when it is defined, and can only be used to connect to
that particular database. This characteristic of service objects means that any
application that must be able to connect to multiple databases cannot use either
type of service object. For example, many applications might reasonably prompt
users to specify which database they wish to connect to when they start the
application.

You can write an application that is not bound to one database. Rather than using a
service object to initiate a database session, you invoke the Connect method on the
DBSession class, after you have determined which vendor-type of database the
user will connect to. The vendor type of library must be determined first, because
all objects and methods that iPlanet UDS uses during a given database session are
actually vendor-specific.

See “Connecting to a Database without a Service Object” on page 68 for detailed
instructions on initiating database sessions without service objects.

Creating a Database Service Object
A project can contain any number of DBResourceMgr or DBSession service objects.
To create a new service object, use the Project Workshop (see A Guide to the iPlanet
UDS Workshops for details). Then use the New > Service Object command. The
Service Object dialog appears, as shown in Figure 3-1.

Creating a Database Service Object

Chapter 3 Making a Database Connection 59

Figure 3-1 New Service Object Dialog

Specify a name for the service object and indicate whether it is a DBSession or
DBResourceMgr service object. The Service Object Properties dialog appears next.

The Service Object Properties dialog uses tab pages to define the properties of one
service object. A DBResourceManager uses three tab pages while a DBSession
service object uses four pages.

To see more information on using the iPlanet UDS workshops, or the procedures
and dialogs you use to create service objects, refer to A Guide to the iPlanet UDS
Workshops.

Entering General Properties
Both types of service object use the General Properties tab page, shown in
Figure 3-2.

Figure 3-2 General Properties Tab Page

Creating a Database Service Object

60 iPlanet Unified Development Server • Accessing Databases • August 2001

Visibility The default visibility of database service objects is
environment-visible.

Dialog Duration If you want the service object to be replicated for failover, load
balancing, or both, then you must use either Message or Transaction dialog
duration; you cannot use Session duration with replication.

Replication Options Check one or both of the fields “Load Balancing” or
“Failover” if you wish the service object to have these characteristics. For more
information see the iPlanet UDS Programming Guide.

Entering Database Information
Both types of service object use the Database tab page, although the fields differ for
the two types of objects.

For both types of service objects you specify the resource name to be used for
database connections initiated by this service object. Use the drop list to enter this
information in the “Database Manager” field.

For a DBResourceMgr service object, this tab page shows only the “Database
Manager” field. Only the database manager information is required, because this
type of service object allows different user information to be specified whenever a
database connection is initiated.

For a DBSession service object, three additional fields appear as shown in
Figure 3-3. You must enter user information for a DBSession service object, as it
uses the same user information whenever it requests a database connection.

Figure 3-3 Database Tab Page

Resource Name

Creating a Database Service Object

Chapter 3 Making a Database Connection 61

Database Manager The drop list for this field shows the resource names that
have been defined by the iPlanet UDS system manager (as described in “Defining a
Resource Name” on page 42.) Select the resource name for the type (vendor) of
database with which this service object will interact.

If you are running iPlanet UDS stand-alone, the drop list is empty. It does not
matter what you enter, because iPlanet UDS assumes an ODBC resource manager;
however, you must enter something. This name is not case sensitive; in fact, you do
not use it anywhere else.

Database Name Enter the name of the actual database with which the service
object will interact.

Vendor Format Description

DB2 dbname dbname is the name of the DB2 database as
known to the DB2 instance (defined by the
DB2INSTANCE environment variable) running
on AIX.

Informix dbname[@dbservername] If dbservername is not specified, then the Informix
environment variable INFORMIXSERVER must
be set to identify the default server.

Oracle @[TNSResourceName] The TNSResourceName, including the @ symbol,
is passed, unedited, to the Oracle connection
routine. If only the "@" symbol is specified, then
a local connection is made to the instance
associated with the Environment Manager’s
ORACLE_SID value.

ODBC data source name Specifies the data the application will access, and
its associated operating system, DBMS, and
network platform (if any). Data source names
are case sensitive.

Rdb DBtype.databasename DBtype is the type of database to which you are
connecting (see the Rdb table in the iPlanet UDS
online Help) databasename is the location of the
database.

Sybase servername[.databasename] servername is the SYBASE domain server name. If
you do not specify the database name, iPlanet
UDS uses the Sybase default database for the
user.

Creating a Database Service Object

62 iPlanet Unified Development Server • Accessing Databases • August 2001

Username and Password Enter a valid username and password for the target
database. Case sensitivity of these two fields depends upon the target database.

Entering Search Path Information
 Both types of service object use the Search Path tab page, as shown in Figure 3-4.
Refer to A Guide to the iPlanet UDS Workshops for a discussion of how the search
path is specified and used.

Figure 3-4 Search Path Tab Page

Entering Connection Information
Only a DBSession service object uses the Connection tab page, shown in Figure 3-5.
This page is entirely optional. Use this page if you want to specify connection
options for any database connection to be made by the DBSession service object.

To specify each connection option you use a name-value pair. To see a list of valid
options, refer to the description of the optionList parameter for the Connect
method (see the iPlanet UDS online Help).

Creating a Database Service Object

Chapter 3 Making a Database Connection 63

Figure 3-5 Connection Tab Page

You can specify Ingres connection flags by using the DB_VENDORFLG option. For
example, to specify a role to use for an Ingres connection, you would enter
DB_VENDORFLG under OptionName, and -RroleID/password under Value.

Specifying Connection Options in a Method
While only the DBSession service object allows you to enter connection options
using the Connection tab page, you can enter connection options if you connect
using either the ConnectDB method on DBResourceMgr or the Connect method on
DBSession. An example follows:

Optimizing Service Object Performance
This section briefly touches upon some considerations that impact performance of
your application. It does not discuss a number of designs that can be used to
optimize performance of typical types of database applications.

options : Array of NamedElement = new;
opt : NamedElement = new (Name= ‘DB_VENDORFLG’,
 Object=TextData(Value=’-RroleID/password’));
options.Append(opt);
myResource.ConnectDB
 (resourceName= ‘IngresDB’,
 userName=’ingres’, userPassword=",
 optionList = options);

Creating a Database Service Object

64 iPlanet Unified Development Server • Accessing Databases • August 2001

The location of a DBResourceMgr service object or DBSession service object does
impact the performance of your application. By default, iPlanet UDS automatically
places these service objects in a server partition on a node that supports the
database vendor being used. However, you can easily change iPlanet UDS default
partitioning.

The most critical factor in determining which partition to use for a service object is
“Where is the user of the DBSession object with respect to the session?” For best
performance the user should be placed in the same partition as the DBSession
object.

While the DBSession class is distributed and can be referenced remotely, doing so
will degrade performance. There may be circumstances when an application
designer must use a remote DBSession object, but the overall application design
must take this into account. Remote access is preferably used primarily during
development and testing phases.

This is not to say that data cannot originate from, or be destined for, a remote
partition. In fact, this is a typical scenario for a multi-tiered application. The best
way to do this is to place a service object responsible for the data manipulation in
the same partition as the database and channel access to the database through that
service object. Figure 3-6 illustrates this:

Figure 3-6 Partitioning with Intermediate Data Service on Same Partition as Session
Service

MyClient

Client Partition

MyDataService

MyDBSession

Server Partition

Making a Database Connection

Chapter 3 Making a Database Connection 65

Any access to data in the database managed by MyDBSession from MyClient must
go through MyDataService. Access to DBSession is from MyDataService which is
local to MyDBSession. This design optimizes performance, since only the data is
sent between the client and server partitions in a single client/server interaction.
Whereas, if MyClient accesses MyDBSession directly, the DBSession conversation
takes place remotely and requires many more client/server interactions. This
design has other benefits:

• MyDataService can do any processing of the data appropriate at this level,
potentially resulting in less data to move between the client and server.

• The location of MyDataService can be moved at partitioning time if the
database is moved.

• MyDataService can be replicated for fault tolerance or load balancing.

Visibility of the Service Object
If you use an architecture like that shown in Figure 3-6 you should also set the
visibility for the MyDBSession service object to “user” visibility. User visibility
means that the service object is only known within its containing partition, not
outside. This prevents unintended distributed access; MyClient cannot access or
use the MyDBSession service.

On the other hand, the MyDataService object, as the public interface to persistent
data, requires “environment” visibility so that it can be seen by MyClient (and any
other client). MyDataService would in turn implement this persistence using
MyDBSession as the data store.

Making a Database Connection
The following sections describe the standard ways to connect to a database, using
either type of database service objects, or connecting to a database specified
dynamically at runtime.

Connecting with a DBSession Service Object
A DBSession service object implicitly connects to and disconnects from the
database. After you have created a DBSession service object, you simply reference
that service object name in a SQL on session clause each time you access the
database.

Making a Database Connection

66 iPlanet Unified Development Server • Accessing Databases • August 2001

➤ To start a database session using a DBSession service object

1. Define a DBSession service object. (See “Creating a Database Service Object” on
page 58.)

2. Use the service object name in the on session clause of your SQL statements to
specify the database connection the statement should use.

For example:

The session connects to the database using the user name, password, and database
name that were specified when the DBSession service object was created in the
Project Workshop. You can override this information at several points, using either
the Service Object Properties dialog in the Partition Workshop or the Environment
Console.

Connecting with a DBResourceMgr Service
Object
One benefit of using a DBResourceMgr service object is that database connection
information can be provided at runtime.

NOTE In the on session clause you can use a service object name or
reference to an object of the DBSession class. If you omit the on
session clause, the default session called DefaultDBSession is used
(see “Creating a DefaultDBSession Service Object” on page 73).

sql execute immediate
’create table ArtistTab(Name char(30) not null, Country char(30)
not null)’
on session MySession;

Making a Database Connection

Chapter 3 Making a Database Connection 67

➤ To start a database session using a DBResourceMgr service object

1. Define a DBResourceMgr service object. (See “Creating a Database Service
Object” on page 58.)

2. Explicitly invoke the ConnectDB method on the DBResourceMgr service object
in your TOOL code.

Your program may prompt users for database name, user name, and
password, as shown in Figure 3-7. If you do not prompt the user for userName,
userPassword, and resourceName, you must enter the actual values to be used
for the ConnectDB parameters.

The ConnectDB method returns a DBSession object, which you will reference
when you access the database.

3. Reference this DBSession object in the on session clause of your SQL
statements.

4. If desired, invoke the Reconnect method (of the DBSession class) on a
DBRemoteAccessException.

5. Explicitly disconnect each DBSession from the database.

6. Set the DBSession object to NIL for optimal memory management.

When the partition that issued the ConnectDB exits, any active DBSessions are
automatically disconnected.

Getting connection information The iPlanet UDS DynamicDataAccess sample
application demonstrates obtaining database and user information before starting
a database session. It displays a login screen, shown in Figure 3-7, in which you
enter a user name, password, and the database to which you want to connect. Once
this information is entered, the application invokes the ConnectDB method on the
DBResourceMgr service object and connects to the database using the login input
as parameters.

MySession : DBSession;
MySession = DBResMgr.ConnectDB(resourceName = DBName,

userName = UserName,
userPassword = Password);

Making a Database Connection

68 iPlanet Unified Development Server • Accessing Databases • August 2001

Figure 3-7 Login screen for DynamicData Access Example

For more information about installing and running the Dynamic Data Access
example, see “DynamicDataAccess” on page 163.

Connecting to a Database without a Service
Object
When you use a DBSession service object or a DBResourceMgr service object, the
service object is associated with a specific database resource name during
partitioning. For a DBSession service object the user name and password are also
pre-specified. So, when you access a database using either type of service object,
you must access a predetermined database. If you require more flexibility
(specifically, you would like to choose which database to connect to) you do not
need to use a service object to initiate a database connection.

The Connect method of the DBSession class allows you to specify, at runtime,
connection information (database vendor, database, and user information) to be
used to establish the database session. The Connect method also provides some
additional security over the use of an environment visible service object.

By using the Connect method and dynamically loading libraries, you can
dynamically start a database session without a service object.

Making a Database Connection

Chapter 3 Making a Database Connection 69

The Connect method has the same parameters as, and functions similarly to, the
ConnectDB method in the DBResourceMgr class. However, the ConnectDB
method creates and returns a DBSession object, whereas the Connect method
works on an existing DBSession object.

For reference information on the Connect method, see the iPlanet UDS online Help.

Dynamically Choosing a Database Vendor
This section describes how to use the Connect method to create and connect a
database session. This procedure allows you to indicate the database vendor to be
used for the connection (in contrast to when you use a service object).

➤ To create and connect through a DBSession object

1. Load the library that corresponds to the desired database vendor using the
FindLibrary method on the Partition object.

To invoke the FindLibrary method for a database vendor, you must know both
the library name and a file key. The vendor’s library must be available on the
current node. Valid values are shown in the table below.

NOTE The Connect method does not function on a DBSession service
object. The Connect method will only work on a DBSession object
created at runtime, either directly as described below or via the
ConnectDB method on the DBResourceMgr class.

Database Vendor LibName FileKey ClassName

DB2 DB2 D2 qqdb_DB2Session

Informix Informix IX qqdb_InformixSession

ODBC ODBC OD qqdb_OdbcSession

Oracle Oracle OR qqdb_OracleSession

RDB Rdb RD qqdb_RDBSession

Sybase Sybase SY qqdb_SybaseSession

Making a Database Connection

70 iPlanet Unified Development Server • Accessing Databases • August 2001

2. Create a DBSession object of the desired database vendor subclass.

For this step you must know the name of the DBSession subclass for the
desired database vendor. These classes are shown in column 4 of the table
above.

3. Connect the DBSession object to the database using the Connect method.

The TOOL code that follows specifies a particular database vendor and creates a
vendor-specific DBSession object. In this code you would substitute actual values
for the three variables LibName, FileKey, and ClassName; these parameters take
string or TextData values.

Initially the DBSession object is not connected to the database; the Connect method
establishes the actual connection. For example, to establish a connection to an
Oracle database you would use the following code:

Just as with database service objects, you can use environment variables for the
name of the database, as shown in the example (as well as for the user name and
password).

DBVendorLibrary : Library;
DBVendorClassType : ClassType;
Session : DBSession;
DBVendorLibrary =
 task.part.FindLibrary(LibName, NIL, 0, FileKey, 4);
DBVendorClassType =
 DBVendorLibrary.FindClass(ClassName);
Session = DBSession(DBVendorClassType.InstanceAlloc());
-- then invoke Session.Connect ...

DBVendorLibrary : Library;
DBVendorClassType : ClassType;
Session : DBSession;
DBVendorLibrary =
 task.part.FindLibrary(’Oracle’, NIL, 0, ’OR’, 4);
DBVendorClassType =
 DBVendorLibrary.FindClass(’qqdb_OracleSession’);
Session = DBSession(DBVendorClassType.InstanceAlloc());
Session.Connect(resourceName = '${MY_DATABASE}',
 userName = 'scott',
 userPassword = 'tiger');

Other Connection Information

Chapter 3 Making a Database Connection 71

Because the DB2 library is a subclass of ODBC, you must invoke the FindLibrary
method twice, first for ODBC and then for DB2. So the example above would
require one additional call to use DB2:

For more information, see the iPlanet UDS online Help.

Other Connection Information
This section describes connection options, such as specifying a default database
session or using default connection information (user name and password). It also
describes how to reconnect a dropped session or disconnect a session.

Using Variable User Names and Passwords
Although the DBSession service object requires a user name, password, and
database name, you can use environment variables to provide this information at
start-up time. You can also reference environment variables at some points in your
TOOL code. When iPlanet UDS encounters a variable, it looks to the environment
for the actual value, and replaces the variable accordingly in the TOOL code.

DBVendorLibrary =
 task.part.FindLibrary(’ODBC’, NIL, 0, ’OD’, 4);
DBVendorLibrary =
 task.part.FindLibrary(’DB2’, NIL, 0, ’D2’, 4);

NOTE The server portions of the application (which include the DBSession
start-up code) are started by the Node Manager process running on
the node where the resource name is defined. Therefore, the
environment variables need to be defined in the command shell that
starts the Node Manager process. Also, depending on the operating
system, it may not be possible to change the values being used by
the Node Manager once it has started. This is the case on UNIX, for
example.

Other Connection Information

72 iPlanet Unified Development Server • Accessing Databases • August 2001

You can use environment variables when defining your DBSession service object as
a way to dynamically change the database name, user name, and password
without altering your application—you simply change the value of the
environment variable. Specify the values for these parameters as strings or
TextData values containing a dollar sign, followed by an environment variable
name surrounded by braces.

For example, you could use the following values for database name, user name,
and user password when you define your DBSession service object in the Service
Object Properties dialog:

• ${SITE_DATABASE}

• ${SITE_USERNAME}

• ${SITE_PASSWORD}

Figure 3-8 Using Environment Variables in Service Object Definition

As iPlanet UDS processes the values it checks for a dollar sign followed by a name
enclosed in braces. If braces are found, iPlanet UDS checks for an environment
variable with the same name. If variables are found, their values are substituted for
database name, user name, and user password. For example, your environment
could include the following definitions:

• SITE_DATABASE = @Test2Oracle

• SITE_USERNAME = scott

• SITE_PASSWORD = emu

Other Connection Information

Chapter 3 Making a Database Connection 73

This creates a session for scott/emu on the database Test2Oracle. You can create a
connection for different users and databases by simply changing the environment
variables.

You can also use this technique with a DBResourceMgr service object: simply use
the variables as the values for the parameters of the ConnectDB method, as shown
below:

Creating a DefaultDBSession Service Object
You can establish a default database session for your SQL statements. A default
database session allows you to issue a SQL statement without the on session clause.
Using a default database session assures you that your program logic will always
contain a reference to a database session. However, if you structure your code to
use several sessions, you will need to change your TOOL code.

You can create a default database session for several scopes. You can create a
default database session that will apply to an entire project, to a class and all of its
associated methods, or to one method only. Each type is explained below.

➤ To create a default database session for an entire project

1. Create a DBSession service object.

2. Name it DefaultDBSession, as shown below:

self.Session = AnyDBMgr.ConnectDB(
username = ’${SITE_USERNAME}’,
password = ’${SITE_PASSWORD}’,
ResourceName = ’${SITE_DATABASE}’);

Other Connection Information

74 iPlanet Unified Development Server • Accessing Databases • August 2001

➤ To create a default database session for a class and its associated methods

1. Create a DBSession service object called AnotherDBSession.

2. Create a class called DataSelection.

3. Create an attribute for the above class called DefaultDBSession, as shown
below.

4. In the Init method of the class, assign the DefaultDBSession attribute to the
existing service object, as shown below.

5. Create a method DoSelect for the DataSelection class that executes any SQL
statement.

The SQL statement will use the default database session, as will all methods of
the DataSelection class.

super.init;
DefaultDBSession = AnotherDBSession;

begin method DoSelect
empArray : Array of employee;
sql select * into :empArray from emp; -- no on session clause
end method;

Other Connection Information

Chapter 3 Making a Database Connection 75

➤ To create a default database for use in a single method

1. Assign the DBSession object to a local variable in your method:

Reconnecting to a Database Session
The Reconnect method of the DBSession class can be used to handle connections to
a database that were initiated, but lost, by a DBSession service object. For example,
you can use Reconnect to resume a connection dropped due to network failure or
interruption.

The Reconnect method uses the same connection information that was used to
make the previous connection, whether it was coded into the application, specified
in the Service Object Properties dialog, or supplied through environment variables.

The value of the IsConnected attribute must be FALSE for the Reconnect method to
execute. The occurrence of a DBRemoteAccessException sets the IsConnected
attribute to FALSE.

A typical use of the Reconnect method is to invoke it upon the occurrence of a
DBRemoteAccessException, as in the following example:

It is most efficient to catch this exception and do the reconnect in the server
partition (the same partition as the DBSession service object). You must do so if a
router is in use, because otherwise the reconnect could be performed on a different
replicate. If a router is not in use it is still preferred, since iPlanet UDS can catch the
exception and perform the reconnect for one client, while other clients are
unaffected by the interruption.

etab : EmpObject = new;
DefaultDBSession : DBSession;
-- Assign to service object
DefaultDBSession = AnotherSession;
sql select * into :etab from tab; -- no on session clause
sql insert into tab values (:etab); -- no on session clause

when e : DBRemoteAccessException do
 defaultDBSession.Reconnect();

Vendor-Specific Notes

76 iPlanet Unified Development Server • Accessing Databases • August 2001

For more information on the Reconnect method, see the iPlanet UDS online Help.

Disconnecting a Database Session
Once the session is no longer needed, you end the session and release its resources
by invoking the Disconnect method on the DBSession object, and setting the
DBSession to NIL, as shown below:

Setting the DBSession object to NIL is not required, but releases the object from
memory immediately, which may be useful in more complex applications.

Vendor-Specific Notes

Informix
Informix has two mechanisms for connecting to Informix Dynamic Server
databases: shared memory (local IPC) and network. A process, such as an iPlanet
UDS server partition, is permitted only one shared memory connection. Multiple
network connections are fully supported.

NOTE Lost connections are treated differently for database sessions that
are created dynamically by a DBResourceMgr service object. In this
case, a TOOL service object can listen for the
DBRemoteAccessException, and recreate a DBSession object in the
exception handler.

MySession.Disconnect();
MySession = NIL;

Vendor-Specific Notes

Chapter 3 Making a Database Connection 77

Oracle
iPlanet UDS uses OCI calls to communicate with Oracle. The connection is either a
local Oracle connection or through SQL*Net V2.

SQL*Net V2 supports the following adapters: IPC and TCP/IP. IPC uses shared
memory for local connections, and TCP uses the underlying transport protocol to
connect to remote databases. Both IPC and TCP require the tnsnames.ora file.

➤ To make a connection using SQL*Net V2

• To make a local connection using the Bequeath adapter, use @ as a database
name.

• To make a local connection using the IPC adapter, use @TNSResourceName as a
database name.

If you use the IPC adapter, the sqlnet.ora file must include the line:

automatic_ipc=on

• To make a network connection using the TCP adapter, use @TNSResourceName
as a database name.

The TNSResourceName points to an entry in the tnsnames.ora file that SQL*Net V2
uses to identify the requested machine on behalf of the SQL*Net client; the entry
specifies the adapter and Oracle SID, among other things.

If you have difficulty connecting to Oracle, try connecting using SQL*Plus to
determine whether the problem is your Oracle configuration. A SQL*Net V2
connection might look like:

sqlplus joe/joepass@ORACLE_COACH

On Unix platforms you can see the shadow Oracle process once a connection is
made and the command line will show what adapter is being used.

NOTE Oracle on OpenVMS has further architectural limitations. Oracle 7.3
on OpenVMS no longer supports shared memory database
connections. In OpenVMS, regardless of the installed version of
Oracle, an iPlanet UDS partition may have only one active “@”
connection to Oracle. To create multiple connections, connect
through the SQL*Net mailbox driver.

Vendor-Specific Notes

78 iPlanet Unified Development Server • Accessing Databases • August 2001

Rdb
You can connect to multiple Rdb databases in a single iPlanet UDS application by
creating as many DBSession objects as you need. However, all concurrent
DBSession objects created with a single DBResourceMgr service object must use
the same user name. An application that needs multiple concurrent connections
with different user names must use multiple DBSession or DBResourceMgr service
objects.

DBSession or DBResourceMgr connections to Rdb use the “default” Rdb alias. If an
application directly issues an Rdb ATTACH statement (to create, for example,
multiple Rdb database attachments in a single Rdb transaction managed by
DECdtm), it should specify an explicit, non-default, alias.

79

Chapter 4

Working with Data Types

When you select data from a database table into an iPlanet UDS application, you
must be aware of the type of data you are handling. iPlanet UDS converts database
data to the iPlanet UDS data or class type that your application specifies. For many
vendor data types, the appropriate iPlanet UDS types are fairly obvious, but some
conversion issues are more subtle—for example, loss of precision or incompatible
data types. You should choose iPlanet UDS data types carefully to make sure you
represent the database data accurately and consistently.

This chapter discusses using simple (scalar) TOOL data types and more complex
object data types with database data. It also contains several data type conversion
tables, one for each database vendor, showing allowable mappings for when you
insert iPlanet UDS data into a database, or select database data into iPlanet UDS
objects or simple data types.

For reference information about simple TOOL data types, refer to the TOOL
Reference Guide; for details about the object data types, refer to the online Help.

Using Database Data with iPlanet UDS
When you use database data in an iPlanet UDS application, one choice you have is
whether to bring database data in as a simple scalar data type or as a class type.
You also must indicate which scalar or class type is appropriate for each database
value. Generally this means mapping database column data types to the
appropriate iPlanet UDS data types. While some mappings are obvious and
natural, there are more subtle considerations that you may very well encounter,
including representing money, dates and times, internationalization issues, and
numeric precision. This chapter addresses many of these issues; you may also wish
to refer to the iPlanet UDS online Help or the iPlanet UDS Programming Guide.

Using Database Data with iPlanet UDS

80 iPlanet Unified Development Server • Accessing Databases • August 2001

In iPlanet UDS applications, you may store data in variables or in the attributes of
objects, which are either scalar types or predefined subclasses of the iPlanet UDS
DataValue class. In addition, some TOOL SQL extensions to some of the SQL
statements allow for an automatic mapping of database result values to
user-defined object attributes, and a mapping of user-defined object attributes to
columns that will be inserted into a database.

Using Simple Data Types in TOOL
Simple TOOL data types are appropriate and easy to use when you transfer data
between a database and an iPlanet UDS application and you do not encounter
NULL values; for example, to retrieve integer data, you would simply declare a
variable of type integer, and perform a select statement into that variable, as shown
below:

Using Nullable DataValue Subclasses
The Framework library contains several classes for data storage and manipulation,
including subclasses to represent NULL values from database tables. The nullable
classes are useful because database tables often contain NULL data. The following
table lists the DataValue classes and corresponding nullable subclasses:

year : integer;
sql select YearPainted into :year from Paintings
where Title = ’Mona Lisa’
on session MySession;

Data Type Conversion

Chapter 4 Working with Data Types 81

You use these classes as you would any other iPlanet UDS class: define an attribute
or variable of the class type you need, and then construct the object before you use
it. For example:

Data Type Conversion
The next several sections contain tables that show the internal data types for DB2,
Informix, ODBC, Oracle, Rdb, and Sybase databases, with corresponding TOOL
data types. Note that the direction the data flows affects the appropriate data
conversion. That is: certain TOOL data types can accept certain internal database
types (for example, from a sql select statement), while the internal database types
may accept other TOOL types (from a sql insert statement).

Handling NULL values Remember that if you select a NULL value into a scalar
variable, scalar attribute, or non-nullable object, you will get an error of the
DatatypeException class. To avoid this, use the nullable variant of the DataValue
subclass (for example, TextNullable).

Overflow If you use a type that is too small, such as i1 for a value bigger than 256,
you may get conversion errors at runtime.

Class Data Type Nullable Variant

BinaryData BinaryNullable

BooleanData BooleanNullable

DateTimeData DateTimeNullable

DecimalData DecimalNullable

DoubleData DoubleNullable

ImageData ImageNullable

IntegerData IntegerNullable

IntervalData IntervalNullable

TextData TextNullable

Comments : TextData;
Comments = new;

Data Type Conversion

82 iPlanet Unified Development Server • Accessing Databases • August 2001

Reading the Data Type Conversion Tables
In the following data conversion tables, the first entry for each category represents
the most “natural” mapping of the database type to an iPlanet UDS TOOL type.
We have also grouped several related data types into one representative, generic
TOOL data type. These groupings are shown in Table 4-1.

For example, if an Oracle VARCHAR2 can be selected into a generic data type
called “Text” it can also be selected into a String or objects of type TextData or
TextNullable.

The following additional notes may apply to one or more of the data conversion
tables.

(a) Can be used as a host TOOL variable only if the selected column's data
contains appropriate values for the TOOL data type (for example, a VARCHAR
column can be selected into an IntegerData TOOL variable only if the column's
value consists of numeric characters).

(b) The database data type can contain values that are larger than can be
represented in the TOOL variable data type. Selecting out-of-range values may
result in undetected arithmetic overflow/underflow conditions (for example, a
BIGINT can be selected into an IntegerData TOOL variable, but column values
exceeding 2,147,483,647 in absolute value cannot be represented in an IntegerData
object and will be incorrectly stored). Use these TOOL data types only if you are

Table 4-1 Legend for the Data Type Conversion Tables

Generic Data Type Represents These Types

Boolean boolean, BooleanData, BooleanNullable

Datetime DateTimeData, DateTimeNullable

Integer integer, long, short, i4, ui4, i2, ui2, i1, ui1, IntegerData,
IntegerNullable

Interval IntervalData, IntervalNullable

Text String, TextData, TextNullable

Double double, float, DoubleData, DoubleNullable, DecimalData,
DecimalNullable

Binary BinaryData, BinaryNullable, ImageData

Data Type Conversion

Chapter 4 Working with Data Types 83

certain that no out-of-range values will be stored in the database. Note that you
may select these columns into a “large” TOOL data type (DoubleData, for example)
and then assign it to another TOOL data type (for example, IntegerData) if its value
is within IntegerData's range.

(c) When selecting a database column value that is “scaled” (for example, either a
scaled integer or a floating point data type) into an exact numeric TOOL data type
(IntegerData, i2, and so on), the fractional part of the value (the part to the right of
the decimal point) will be lost.

(d) When inserting a TOOL data value into the database, the TOOL value must be
appropriate for the database data type. For example, a BinaryData object inserted
into a VARCHAR column cannot contain any embedded binary zeros, and a
TextData object inserted into a TINYINT column must contain numeric characters
and the total value must be within the -256 to +255 range for TINYINT.

(e) When inserting from a TOOL data type that has a larger range than the
database data type (for example, from a TOOL DoubleData into a Rdb
SMALLINT), overflow/underflow conditions may result. These may be
undetected. Be careful when inserting from TOOL data types that are “larger” than
their corresponding database data types. The iPlanet UDS application should
ensure that out-of-range values are not inserted into the database.

(f) (Rdb and DB2 only) Rdb's DATE ANSI and DB2’s DATE data types contain no
hour/minute/second component. If the TOOL DateTimeData value contained
such a value, that part will be lost. Use the Rdb or DB2 TIMESTAMP data type
when values will include both year/month/day and hour/minute/second
components.

(g) (Rdb and DB2 only) Rdb's and DB2’s TIME data type contain no
year/month/day component. If the TOOL IntervalData value contains a
year/month/day component, it will be lost. Use the Rdb or DB2 TIMESTAMP data
type when values will include both year/month/day and hour/minute/second
components.

(h) (DB2 and ODBC only) Limitations in the DB2 CLI V2 interface prevent data
type conversion for parameter markers. Parameter marker TOOL variables must
therefore be of the data class that directly maps to the data type of the DB2 column
or parameter marker. When using the DBSession classes directly (in lieu of TOOL
SQL), it is possible to force data type conversion by explicitly setting the input
marker’s DBColumnDesc.DBDataType attribute to the value associated with the
DB2 column’s actual data type. For example, to insert an IntervalData object into a
DB2 VARCHAR column, the input DataSet’s associated
DBColumnDesc.DBDataType attribute must be set to
DB_DT_CHARACTERVARYING before the Execute method is invoked.

Data Type Conversion

84 iPlanet Unified Development Server • Accessing Databases • August 2001

DB2 Data Conversion Table and Notes
In this release, TOOL parameter markers cannot be used for DB2 DATE data type
columns. DateTimeData objects are assumed to be associated with DB2
TIMESTAMP columns. As a workaround, applications can affect DATE columns
only by building queries using the DBSession classes directly. Specifically, when
input values are set in the inputDataSet (returned by the Prepare method), the
associated DBColumnDesc.DBDataType attribute must be changed to the value
DB_DT_ANSIDATE. The Execute method will then be able to bind the parameter
to the DB2 DATE column.

DB2’s TIMESTAMP data type can contain fractional seconds to the resolution of a
microsecond. iPlanet UDS DateTimeData data class, however, is limited to
millisecond resolution. When DB2 TIMESTAMP columns are selected into iPlanet
UDS DateTimeData objects, the fractional second component is truncated to
millisecond resolution.

See notes (a) through (h) and Table 4-1 on page 82 as you use this table.

Table 4-2 DB2 Data Conversion Table

DB2 Data Types can be selected into
these generic TOOL types

and inserted from
these TOOL types

VARCHAR
LONGVARCHAR
CLOB

TEXT
Integer (a)
Boolean (a)
DateTime (a)
Double (a)
Interval (a)
Binary

TEXT (h)

CHAR TEXT
Integer (a)
Boolean (a)
DateTime (a)
Double (a)
Interval (a)
Binary

TEXT (h)

GRAPHIC
VARGRAPHIC
LONGVARGRAPHIC

TEXT
Binary

TEXT (h)

SMALLINT INTEGER
Double
Text

INTEGER (e, h)

Data Type Conversion

Chapter 4 Working with Data Types 85

Informix Data Conversion Table and Notes
The Informix DATETIME datatype is actually a family of 28 data types. Along with
the DATE datatype, these are mapped to the iPlanet UDS DateTimeData class.
When used in an SQL where clause, the set clause of an update, or as an input
parameter to an Informix database procedure, only Informix DATETIME YEAR TO
SECOND database columns and parameters can be referenced by a DateTimeData
host variable. To reference columns of other DATETIME subtypes in these cases,
use a TextData or string and specify the precise Informix string representation for
the column or parameter.

The Informix INTERVAL data type is actually a family of 18 data types. These are
mapped to the iPlanet UDS IntervalData class. When used in an SQL WHERE
clause, the set clause of an update, or as an input parameter to an Informix
database procedure, iPlanet UDS maps IntervalData values containing a year or
month to an Informix INTERVAL YEAR TO MONTH value and other Interval
Data values to Informix INTERVAL DAY TO FRACTION values. To reference
other types of INTERVAL columns or parameters, use a TextData or string host
variable and specify the precise Informix string representation for the column or
parameter.

INTEGER
DECIMAL
NUMERIC

INTEGER
Double
Text

INTEGER (h)

DECIMAL
FLOAT

DOUBLE
Integer (b c)
Text

DOUBLE (h)

DATE DATETIME
Text

DATETIME (f)
(see note above)

TIMESTAMP DATETIME
Text

DATETIME (h)
(see note above)

TIME INTERVAL
Text

INTERVAL (g, h)

BLOB BINARY
Text

BINARY

Table 4-2 DB2 Data Conversion Table (Continued)

DB2 Data Types can be selected into
these generic TOOL types

and inserted from
these TOOL types

Data Type Conversion

86 iPlanet Unified Development Server • Accessing Databases • August 2001

See notes (a) through (h) and Table 4-1 on page 82 as you use this table.

ODBC Data Conversion Table and Notes
Only ODBC data types may be used with an iPlanet UDS ODBC resource manager.
The mapping of database to ODBC data types is database-specific; consult your
database driver documentation to obtain the mappings you require.

Table 4-3 Informix Data Conversion Table

Informix Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

CHARACTER
CHAR
CHARACTER VARYING
NCHAR
NVARCHAR
TEXT
VARCHAR

TEXT
Integer (a)
Double (a)
DateTime (a)
Interval (a)

TEXT
Integer (d)
Double (d)
Binary (d)
DateTime (d)
Boolean

INTEGER
INT
SERIAL
SMALLINT

INTEGER
Double
Binary
Boolean (a)
Text

INTEGER
Double (e)
Text (d)

DEC
DECIMAL
DOUBLE PRECISION
FLOAT
MONEY
NUMERIC
REAL
SMALLFLOAT

DOUBLE
Integer (c)
Text
Boolean (a)

DOUBLE (e)
Integer (e)
Text (d,e)

BYTE BINARY
Text (a)

BINARY
Text

DATE
DATETIME

DATETIME
Text

DATETIME
Text (d)
(see note above)

INTERVAL INTERVAL INTERVAL
(see note above)

Data Type Conversion

Chapter 4 Working with Data Types 87

If you insert a data type of BIGINT with a fractional component into generic data
type DOUBLE, it will be truncated (no rounding).

See notes (a) through (h) and Table 4-1 on page 82 as you use this table.

NOTE This manual does not include data type mappings for data sources
such as SQL Server to ODBC, as those mappings are supported and
updated by other vendors. For example, to see Microsoft SQL Server
to ODBC datatype mappings you are referred to the documentation
for Microsoft SQL Server.

Table 4-4 ODBC Data Conversion Table

ODBC Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

VARCHAR
LONGVARCHAR

TEXT
Integer (a)
Boolean (a)
DateTime (a)
Double (a)
Interval (a)
Binary

TEXT (h)

BINARY
VARBINARY
LONGVARBINARY

BINARY
Text
DateTime

BINARY

CHAR TEXT
Integer (a)
Boolean (a)
DateTime (a)
Double (a)
Interval (a)
Binary

TEXT (h)

BIT INTEGER
Boolean
Double

INTEGER
Boolean
Text (d)

SMALLINT INTEGER
Double
Text

INTEGER (e)
Double (e)
Text (d)

TINYINT INTEGER
Double
Text

INTEGER (e)
Double (e)
Text(d)

Data Type Conversion

88 iPlanet Unified Development Server • Accessing Databases • August 2001

Oracle Data Conversion Table and Notes
An Oracle number type is integer if scale is 0, floating point otherwise.

See notes (a) through (h) and Table 4-1 on page 82 as you use this table.

BIGINT DOUBLE
Integer (b)
Text

DOUBLE (see note above)
Integer
Text (d)

INTEGER
DECIMAL
NUMERIC

INTEGER
Double
Text

INTEGER
Double
Text (d)

DECIMAL
FLOAT

DOUBLE
Integer (b,c)
Text

DOUBLE
Integer
Text (d)

DATE DATETIME
Text

DATETIME
Text (d)

TIMESTAMP BINARY BINARY

TIME DATETIME
Text

DATETIME
Text (d)

Table 4-5 Oracle Data Conversion Table

Oracle Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

VARCHAR2
CHAR
LONG

TEXT
Integer (a)
Double (a)
DateTime (a)
Interval (a)

TEXT
Integer (d)
Double (d)
Binary (d)
DateTime (d)
Boolean

NUMBER INTEGER (b)
Double (see note above)
Binary
Boolean (a)
Text

INTEGER
Double (e)
Text (d)

ROW ID TEXT Can’t insert into ROWID

Table 4-4 ODBC Data Conversion Table (Continued)

ODBC Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

Data Type Conversion

Chapter 4 Working with Data Types 89

Rdb Data Conversion Table and Notes
On the VAX only, Rdb’s DOUBLE PRECISION columns are stored in
“G_FLOATING” format, while TOOL's DoubleData data type is stored in
“D_FLOATING” format. G_FLOATING’s range is larger than D_FLOATING (see
Digital's VAX Architecture Handbook for details), thus, very large column values
(with exponents exceeding 38 in absolute value) cannot be stored in a TOOL data
class. These cases are best handled by using CAST and/or arithmetic functions on
the select statement to reduce the column value to a storable range. Note that on
Alpha AXP OpenVMS, both Rdb DOUBLE PRECISION and TOOL DoubleData
data types are stored in “G_FLOATING” format and are entirely compatible.

When inserting a TOOL data value that is “scaled” (either a DecimalData or
DoubleData data type, for example) into an exact numeric Rdb column (TINYINT,
SMALLINT, INTEGER, or BIGINT), the fractional part of the value (the part to the
right of the decimal point) will be lost.

When inserting into a LIST OF BYTE VARYING column, the byte string is written
in segments of the maximum segment size defined when the column was
originally created. When these columns are fetched, all the columns’ segments are
concatenated to form the BinaryData object. Note that Rdb SQL does not permit
LIST OF BYTE VARYING columns to be updated; they may only be inserted and
selected.

DBKEYS cannot be inserted into a table, but can be used as host variables in a
WHERE clause to identify a row to be updated, deleted, or fetched.

RAW MLS LABEL
MLS LABEL

Not supported Not supported

LONG RAW
RAW

BINARY
Text

BINARY
Text

DATE DATETIME
Text

DATETIME
Text (d)

Table 4-5 Oracle Data Conversion Table (Continued)

Oracle Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

Data Type Conversion

90 iPlanet Unified Development Server • Accessing Databases • August 2001

See notes (a) through (h) and Table 4-1 on page 82 as you use this table.

Table 4-6 Rdb Data Conversion Table

Rdb Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

VARCHAR TEXT
Integer (a)
Boolean (a)
DateTime (a)
Double (a)
Interval (a)
Binary

TEXT
Integer
Boolean
DateTime
Double
Interval
Binary (d)

CHAR TEXT
Integer (a)
Boolean (a)
DateTime (a)
Double (a)
Interval (a)
Binary

TEXT
Integer (e)
Boolean (e)
DateTime (e)
Double (e)
Interval (e)
Binary (d,e)

TINYINT (unscaled) INTEGER
Double
Text

INTEGER (d,e)
Double (d,e)
Text (d,e)

TINYINT (scaled) DOUBLE

Integer (c)

Text

DOUBLE (d,e)
Integer (d,e)
Text (d,e)

SMALLINT
(unscaled)

INTEGER
Double
Text

INTEGER (d,e)
Double
Text (de)
(see note above)

SMALLINT (scaled) DOUBLE
Integer (c)
Text

DOUBLE (e)
Integer (e)
Text (d,e)

INTEGER (unscaled) INTEGER
Double
Text

INTEGER
Double (e)
Text (d,e)
(see note above)

INTEGER (scaled) DOUBLE
Integer (c)
Text

DOUBLE (e)
Integer (e)
Text (d,e)

Data Type Conversion

Chapter 4 Working with Data Types 91

BIGINT (unscaled) DOUBLE
Integer (b)
Text

DOUBLE
Integer
Text (d,e)

BIGINT (scaled) DOUBLE
Integer (b,c)
Text

DOUBLE (e)
Integer
Text (d,e)

REAL DOUBLE
Integer (b c)
Text

DOUBLE
Integer
Text (d)

DOUBLE PRECISION DOUBLE (see note above)
Integer (b,c)
Text

DOUBLE
Integer
Text (d)

DATE VMS DATETIME
Text

DATETIME
Text (d)

DATE ANSI DATETIME
Text

DATETIME (f)
Text (d,f)

TIMESTAMP DATETIME
Text

DATETIME
Text (d)

TIME INTERVAL
Text

INTERVAL (g)
Text (d,g)

INTERVAL INTERVAL
Text

INTERVAL
Text (d)

LIST OF BYTE
VARYING
(see note above)

BINARY
Text (a)

BINARY
Text
(see note above)

DBKEY BINARY BINARY

Table 4-6 Rdb Data Conversion Table (Continued)

Rdb Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

Data Type Conversion

92 iPlanet Unified Development Server • Accessing Databases • August 2001

Sybase Data Conversion Table and Notes
See notes (a) through (h) and Table 4-1 on page 82 as you use this table.

Table 4-7 Sybase Data Conversion Table

Sybase Data Type can be selected into
these generic TOOL types

and inserted from
these TOOL types

VARCHAR
CHAR

TEXT
Integer (a)
Boolean (a)
Double (a)
DateTime (a)
Binary
Interval (a)

TEXT
Binary (d)

TINYINT
SMALLINT
INT

INTEGER
Double
Text
Boolean

INTEGER (d)
Double (e)
Boolean

REAL
FLOAT
MONEY
SMALLMONEY

DOUBLE
Integer (b)
Text
Boolean

DOUBLE
Integer
Boolean

DATETIME
SMALLDATETIME

DATETIME
Text

DATETIME
Text

VARBINARY
BINARY

BINARY
Text
DateTime

BINARY
Integer
Boolean

BIT INTEGER
Text
Boolean

INTEGER
Boolean

TEXT TEXT
Binary

TEXT
Binary
DateTime

IMAGE BINARY
Text

BINARY
Text
DateTime

93

Chapter 5

Manipulating Data

The iPlanet UDS database interface allows application programmers to write
applications that use the full potential of relational databases. This chapter
describes how to add SQL statements to an iPlanet UDS application so that it can
access and manipulate database data.

You can use TOOL SQL statements to query or update data. You can also use the
iPlanet UDS database management classes found in the GenericDBMS library to
access and manipulate database data.

This chapter describes the various ways you can query, insert, update and delete
database data. It includes several examples, some drawn from the iPlanet UDS
examples. It also describes creating and naming the iPlanet UDS objects into which
you will select data. At the end of the chapter are database vendor-specific notes.

For reference information about TOOL SQL statements, refer to Appendix B,
“TOOL SQL Statement Reference.”

Accessing Database Data from iPlanet UDS
While iPlanet UDS provides full support for building SQL statements into an
iPlanet UDS application, programmers should keep in mind some general
questions when working with database data. These questions include:

• If I use non-standard SQL (that is, vendor-proprietary extensions to SQL) in
my application, will that prevent my application from working with any
database that it must work with?

• When should I use TOOL SQL statements or the classes in the GenericDBMS
library?

• When moving data between a database and iPlanet UDS application, how can I
assure that I use compatible data types?

Accessing Database Data from iPlanet UDS

94 iPlanet Unified Development Server • Accessing Databases • August 2001

iPlanet UDS passes all SQL to the database including vendor-specific extensions.
Using only standard ANSI SQL increases the likelihood that your applications will
run on any of the database management systems that iPlanet UDS supports. Note,
however, that iPlanet UDS does not do any translation of TOOL SQL before
passing it to the DBMS; that is, compiling a TOOL method containing SQL does not
guarantee that it will execute on any database. If you need to write an application
that is portable across multiple databases, you must ensure that you use a subset of
SQL that works for all of those particular databases.

A small number of vendor-specific SQL extensions are not supported; to see a list,
refer to “Unsupported Database Features” on page 35.

To manipulate database data, you can use either TOOL SQL statements or iPlanet
UDS GenericDBMS classes.

TOOL SQL statements are more convenient to use, particularly when you can
embed specific SQL statements in your application. An example is a query for
which you know the selection criteria and the names of the columns to be returned,
even though you might not know what the selection criteria values are. You can
embed the known column and table names, and use variables to get a selection
value from the user (such as, generate the report for Department “10”).

However, TOOL SQL cannot be used to write SQL statements that are generated at
runtime. An application that allows SQL statements to be generated and executed
“on-the-fly” has the potential to be a more flexible, multi-purpose application. To
write such an application, you use the classes in the iPlanet UDS GenericDBMS
library, particularly the DBSession class. The section “Using iPlanet UDS Classes to
Execute SQL” on page 118 begins the discussion of using the DBSession class
interface to write these applications.

Application performance is the same, whether you use TOOL SQL or methods on
the DBSession class, because TOOL statements are translated into invocations of
methods on the DBSession class at compile time.

In iPlanet UDS applications, you may store data in variables or in object attributes,
which are either scalar types or predefined subclasses of the iPlanet UDS
DataValue class. In addition, TOOL SQL extensions to some of the SQL statements
allow for an automatic mapping of database result values to user-defined object
attributes, and a mapping of user-defined object attributes to columns that will be
inserted into a database.

You must also consider issues of data type conversion when integrating database
data into your iPlanet UDS application. While examples in this chapter illustrate
some data type conversion, you should also refer to Chapter 4, “Working with
Data Types” to see how iPlanet UDS converts and uses the data types for your
particular database vendor.

Accessing Database Data from iPlanet UDS

Chapter 5 Manipulating Data 95

Using iPlanet UDS Names in SQL Statements
When you use iPlanet UDS names (variables, attributes, and so on) in TOOL SQL
statements, you must preface the iPlanet UDS names with colons to distinguish
them from database names (columns and tables).

TOOL SQL Statements
The following table lists the TOOL statements that correspond to SQL DML
statements used to query and update database data. You can find reference
information for these statements in Appendix B, “TOOL SQL Statement
Reference.”

Code Example 5-1 Distinguishing iPlanet UDS names from database names in TOOL
SQL statements

name : TextData = new;
year_born : integer = 1900;
sql select ptr_name into :name from painter_table
 where birth < :year_born;

NOTE You do not precede iPlanet UDS names with colons in two TOOL
SQL statements (sql open cursor and sql execute procedure). These
statements both take a parameter list and a syntax error occurs if a
colon precedes a parameter value.

TOOL SQL Statement Description

sql select Retrieves rows from a database table.

sql delete Removes rows from a database table.

sql insert Adds a new row to a database table.

sql update Replaces values in a database table.

sql open cursor Opens a cursor.

sql close cursor Closes a cursor.

sql fetch cursor Retrieves rows from a cursor.

Accessing Database Data from iPlanet UDS

96 iPlanet Unified Development Server • Accessing Databases • August 2001

For a TOOL SQL statement to execute in a database, it must be associated with a
connected database session. You can initiate a database connection in three ways,
described in “Connecting to a Database” on page 55. To associate a TOOL SQL
statement with a database session, you use the on session clause with the name of
the DBSession object that you wish to use for the connection. Note that not all
statements require or allow the on session clause.

For example, the following query retrieves a single row from the database, using
the session specified by the MySession DBSession object, into an object referenced
by a variable called emp:

Using Conditional TOOL for Vendor-Specific
Code
In your SQL statements, you can use any vendor-specific extensions to the ANSI
SQL syntax that are allowed by the particular database management system you
are using. Examples of extensions to ANSI standard SQL include the Rdb cast
statement, Sybase compute statement, or Oracle outer join.

However, if you include a vendor-specific clause in a SQL statement, your code is
no longer generic, and will work only for database products that support that
particular syntax. Also note that because iPlanet UDS passes vendor-specific
syntax directly to the database, it does not detect syntax errors within
vendor-specific clauses.

sql execute immediate Executes a single SQL statement specified as a literal string, a
string variable, or a TextData variable.

sql execute procedure Executes a database procedure.

sql select * into :emp from emptable
where name = ’Smith’
 on session MySession;

TOOL SQL Statement Description

Accessing Database Data from iPlanet UDS

Chapter 5 Manipulating Data 97

If your application must execute against multiple databases and you want to use
vendor-specific SQL extensions, then you can use conditional TOOL code.
Conditional code allows you to issue different SQL statements depending on
which type of database an application is connected to.

To write conditional code that is based on the database vendor, you use the
DBVendorType attribute of the DBSession class. This attribute contains the
database vendor for the current database session. By using the DBVendorType
attribute in a case or if statement, you can include vendor-specific SQL extensions
that will be invoked only for the databases that support them.

The following example shows the use of DBVendorType to issue vendor-specific
SQL:

case DefaultDBSession.DBVendorType
when DB_VT_ORACLE do
sql execute immediate
 ’create table emp (id int, hired date, salary float)’;

when DB_VT_INFORMIX do
sql execute immediate
 ’create table emp (id integer, hired datetime year to fraction

(3),
 salary money)’;

when DB_VT_SYBASE do
sql execute immediate

 ’create table emp(id int, hired dateTime, salary float)’;

when DB_VT_DB2 do
sql execute immediate
 ’create table emp (id integer, hired timestamp, salary

 float)’;

when DB_VT_Rdb do
sql execute immediate
 ’create table emp (id integer, hired timestamp, salary

 double precision)’;
end case;

Using TOOL Statements to Query Data

98 iPlanet Unified Development Server • Accessing Databases • August 2001

Using TOOL Statements to Query Data
The following sections describe various ways of retrieving data from a database,
with several examples. Also note the first few sections that describe how to create
and name objects and variables into which you will select database data.

Selecting Data and Object Creation
When you query data (using either the sql select or cursor statements) you
may assign the retrieved data to an iPlanet UDS object. In some cases, iPlanet UDS
creates the object for you; in other cases you must explicitly create the objects
yourself.

In a simple select into a set of DataValue objects, you must create the DataValue
objects before the select, as in the following:

You must also create objects that are used as attributes to the object. For example:

i : IntegerNullable = new;
f : DoubleNullable = new;
sql select intval, floatval into :i, :f
from myTab on session MySession;

class myClass
has public i : IntegerNullable;
has public f : DoubleNullable;

end class

method init
begin
super.Init;
self.i = new;
self.f = new;

end method;

method doSelect
begin
myObj : myClass = new;
sql select * from myTab into :myObj on session MySession;

Using TOOL Statements to Query Data

Chapter 5 Manipulating Data 99

You do not need to create an instance of the array when you select into an array of
objects. iPlanet UDS also creates the rows of the array during the select. For
example:

iPlanet UDS automatically creates the objects on each iteration in a for loop, as
shown below:

You must explicitly create the objects before a sql fetch cursor statement, as
shown below:

myArray : Array of myClass;
sql select * from myTab into :myArray on session MySession;

for (myObj : myClass) in sql select * from myTab
 on session mySession do
... myObj is created for you...
end for;

-- Assume cursor myCursor with the following definition
-- select * from myTab on session mySession

myCursor_ref : myCursor;
sql open cursor myCursor_ref on session mySession;
while (TRUE) do
i : integer;
i : IntegerNullable = new;
f : DoubleNullable = new;

i = sql fetch cursor myCursor_ref into :i, :f;
end while;

Using TOOL Statements to Query Data

100 iPlanet Unified Development Server • Accessing Databases • August 2001

Selecting a Single Row
You can select a single row from a database into an iPlanet UDS variable or object
attribute using the TOOL sql select statement. If more than one row would be
returned, iPlanet UDS raises an exception of the DBOperationException class, and
does not return any data. To select more than one row, you must select into an
array or a cursor, or use a for loop—these techniques are explained below.

Selecting into a Variable
You can select data from a database into one or more iPlanet UDS variables. In the
following example, note that the two iPlanet UDS variable names are preceded
with colons when used in the TOOL statement:

Selecting into an Object
You can use the sql select statement to retrieve one row from a database table
and store the row values in an iPlanet UDS object. To do so, the names of the object
attributes must match the names of the retrieved columns. (Attribute names are
case-insensitive, while column names may be case-sensitive depending upon the
database vendor.) You specify the conditions that the row must meet, as in the
following example:

name : string = ’Picasso’;
t_comments : TextData = new;
t_country : string;
sql select comments, country into :t_comments, :t_country
from ArtistTab
where Name = :name
on session MySession;

painter : Artist = new;
name : TextData = new(value=’De%’);
sql select * into :painter

from ArtistTab
where Name like :name
on session MySession;

Using TOOL Statements to Query Data

Chapter 5 Manipulating Data 101

When Attribute and Column Names Match
When a sql select statement selects all columns from a table into an object (for
example, using select *), iPlanet UDS retrieves all table columns. Every column
with a matching attribute is selected into that attribute. That is, if the column name
and attribute name match (case-insensitive), the attribute receives the column’s
value.

If the table has columns with no corresponding attribute, those columns are
ignored. Similarly, if the object has attributes with no corresponding columns,
those attributes are untouched. Note that if the number of attributes is significantly
higher than the number of columns, you will get better performance if you
explicitly specify the column names in the select statement.

If a sql select statement selects specific columns from a table, those columns
must have matching attributes in the receiving object. For example, if you select the
name and birthdate from ArtistTab, then the painter object must also have
attributes named name and birthdate.

When Attribute and Column Names Do Not Match
When you need to select into an object whose attribute names do not match the
column names of the source database table, you can do so in several ways:

You can “rename” the columns in the select list of the statement, as in:

sql select col1 “attr1”, col2 “attr2”, into :obj from tablea...;

You can select directly into the attributes, as in:

sql select col1, col2 into :obj.attr1, :obj.attr2 from tableA...:

You can also use the TOOL for statement to achieve column renaming in order to
match column and attribute names, as described in the next section.

Using TOOL Statements to Query Data

102 iPlanet Unified Development Server • Accessing Databases • August 2001

When Attributes are of Other Class Types
In most cases, if there are any attributes in the object that have user-defined class
types (other than DataValue types), iPlanet UDS ignores these attributes even
when they have matching names. To select into such an object, you must rename
the column in the select list to reference the class to which the attribute belongs. For
example, assume you have the two classes AddrClass and EmpClass:

Also assume the Emp table has the following definition:

class AddrClass inherits from Object
has public
Street : TextData:
State : TextData;
Zip : Integer;

...

Class EmpClass inherits from Object
has public
Name : TextData;
Address : AddrClass;

table Emp
(ID int, Name char(20), Street char(30), City char(20), Zip int)

Using TOOL Statements to Query Data

Chapter 5 Manipulating Data 103

To select into an EmpClass object, which contains an attribute Address of type
AddrClass, you must rename the columns that reference the Street, City, and Zip
attributes, as shown below:

Code Example 5-2 Renaming Columns

empObj: EmpClass;
sql select
 ID,
 Name,
 Street "Address.Street",
 City "Address.City",
 Zip "Address.Zip"
 into :empObj
 from Emp on session MySession;

NOTE Column renaming may not be portable across all databases and is
subject to restrictions of each database vendor. Some of the known
vendor-specific restrictions follow:

• For Rdb, columns are renamed using the ANSI SQL “as” clause.

• For Oracle, the length of a column alias is limited to 32
characters.

• DB2 does not allow you to rename a result column arbitrarily
(eliminating the above approach).

• Informix does not allow an embedded period when renaming a
column (also eliminating the above approach).

If the syntax in the example above does not work for your database,
you can use a for loop to achieve the same effect; see the TOOL
Reference Guide for more information on the for statement.

Using TOOL Statements to Query Data

104 iPlanet Unified Development Server • Accessing Databases • August 2001

When Attributes are Inherited
As is true with all TOOL objects, you can select data into an object that is a subclass
of another object, using the attributes of both classes. For example, say you have a
superclass Person with attributes Name, Address, and Age. Person has a subclass
called Employee, with the attribute Salary. Your database table has columns Name,
Address, Age, and Salary. You can successfully perform the following select
statement:

Selecting Multiple Rows into Arrays
To select data into an array, you declare an array object and select into it (you do
not need to instantiate it). Also, you do not need to add rows to the array—when
you perform the select, the array will accommodate as many rows as are retrieved.
Any rows that existed in the array before the select will be gone.

You can use the into clause to select multiple rows into an array, as shown in the
following example:

info : Employee = new;
sql select Name, Address, Age, Salary into :info
 from empTable on session MySession;

painter.ListOfPaintings : Array of Painting;
sql select * into :painter.ListOfPaintings from ArtistTab

where Painter = :painter.name
on session MySession;

Using TOOL Statements to Query Data

Chapter 5 Manipulating Data 105

Selecting Multiple Rows Using the
TOOL for Statement
You can use the for statement with a sql select statement to retrieve multiple
rows from a database.

Selecting Multiple Rows using Cursors
A cursor is a row marker that you use to work with a set of rows from a database.
Cursors have the following benefits:

• Cursors are useful if you do not know how many rows a query will
retrieve—you can simply fetch one or more rows at a time from the cursor’s
result set.

• A cursor is defined in one place only—the Cursor Workshop. You can use a
cursor in multiple methods, but if you need to modify the cursor’s select
statement, you need only make the change once in the Cursor Workshop.

You can use a cursor in several different ways:

• You can use the sql open cursor, sql fetch cursor, and sql close
cursor statements to step through the cursor’s result set one row at a time.

• You can use the same statements to fetch the entire result set into an array.

• You can use the same statements, but with sql fetch next n, to step through
the result set n rows at a time.

• You can use the for statement to repeat a statement block for each row in the
result set of the cursor.

painters : Array of Artist;
for (a : Artist) in sql select * from artistTab
on session MySession do
-- A new Artist object is allocated each time through
 painters.AppendRow(a);
end for;

Using TOOL Statements to Query Data

106 iPlanet Unified Development Server • Accessing Databases • August 2001

For Oracle, Rdb, and Informix, you can also use a cursor with the sql update ...
where current of or sql delete ... where current of statements to update
or delete the row to which the cursor is pointing (a “positioned update”). When
you define the cursor, you need to include the for update clause in the cursor’s
SQL statement. See “SQL Update” on page 190 and “SQL Delete” on page 169 for
more information about using positioned updates.

Defining a Cursor
You define a cursor in the Cursor Workshop (described in A Guide to the iPlanet
UDS Workshops). A cursor definition includes a cursor name and an underlying
query. Because a cursor definition is associated with an iPlanet UDS project, you
can refer to the cursor in any method in the project.

An example of a cursor definition follows:

As described in the TOOL Reference Guide, most TOOL statements use a cursor
reference rather than the cursor’s name. (The TOOL for statement uses the cursor
name rather than a cursor reference.) In the following code fragment blobCurs is
the cursor reference for the cursor named BlobCursor:

cursor BlobCursor(name: Framework.string)
begin
 select BlobValue from ArtistBlob
 where Name like :name;
end;

blobCurs : BlobCursor;
begin transaction
 sql open cursor blobCurs(name) on session self.MGRSession;
 rowcount = (sql fetch cursor blobCurs into :binData);
 sql close cursor blobCurs;
. . .

Using TOOL Statements to Query Data

Chapter 5 Manipulating Data 107

Retrieving Rows
To retrieve rows from a cursor, you must first open the cursor with the sql open
cursor statement. You can then use the fetch statement to retrieve one or more
rows at a time. Finish by using the sql close cursor to close the cursor. For best
performance, you should enclose all statements relating to one use of a cursor in an
explicit iPlanet UDS transaction.

The sql open cursor statement executes the select statement associated with
the cursor and positions the cursor before the first row in the result set. At this
point you specify the values for any placeholders used in the original cursor
declaration. (Placeholders are mechanisms through which you can pass data into
your methods at runtime.):

In this example, the cursor name is empcursor and the cursor reference is dbcursor.

Use the sql fetch cursor statement to move one or more rows at a time through
the result set. This statement need not be in the same method as the sql open
cursor statement but it should be in the same explicit transaction. The first time
you use the sql fetch cursor statement, iPlanet UDS moves the cursor to the
first row (or set of rows) in the result set and retrieves the data into the specified
TOOL variables. With each successive sql fetch statement, iPlanet UDS moves
the cursor forward one or more rows, retrieving the data into the specified TOOL
variables. You continue using sql fetch cursor to move through the result set
until you reach the last row.

Use the sql close cursor statement to close the cursor. After the cursor is closed,
it cannot be used again until you give another sql open cursor statement to open
it.

sql close cursor dbcursor;

dbcursor : empcursor;
empid : integer;
sql open cursor dbcursor (empid) on session MySession;

emp : employee = new;
sql fetch cursor dbcursor into :emp;

Using TOOL Statements to Query Data

108 iPlanet Unified Development Server • Accessing Databases • August 2001

Fetching into an Array
You can also fetch the entire result set into an array. For example:

Fetching an Arbitrary Number of Rows
Rather than having to fetch only one row or all rows, you can use the sql fetch
cursor statement with the next key word to specify the maximum number of
rows to fetch into an array. For example:

Repeating a Statement Block
You can use a for statement to create a loop that will fetch and process one record
at a time. The for statement automatically opens the cursor, fetches the rows one at
a time as it goes through the loop, and then closes the cursor. To use the for
statement with a cursor, you use the cursor name rather than a cursor reference, as
follows:

empArray : array of employee;
sql fetch cursor dbcursor into :empArray on session MySession;

dbsess : DBSession;
rows : integer = 1;
dbcursor : artist_cursor;
painters : array of artist = new;

sql open cursor dbcursor (’%’) ON SESSION dbsess;
while (rows > 0) do
 sql fetch next 10 from cursor dbcursor into :painters;
 rows = painters.Items;
 -- do something with painters ...
end while;

MySession : DBSession = ...get a session...
for (emp : employee)
in cursor empcursor(empid) on session MySession do
-- A new emp object is allocated each time through
-- user code

end for;

Using TOOL to Update Data

Chapter 5 Manipulating Data 109

Note that this operation is identical to using the for statement with a sql select
statement (described above). Using a cursor in the for statement is especially
useful when the cursor is also used in other parts of the application.

Using TOOL to Update Data
The next several sections discuss using TOOL SQL statements to insert, update,
and delete database data.

Inserting a Single Row
You use a sql insert statement to insert data directly into a table.

Inserting Variables
You can insert data from variables using the sql insert statement. For example:

Inserting from an Object
Use the sql insert statement to add a new row to a table from an object. If you do
not specify a column list, iPlanet UDS uses the object’s attributes as the column list.
If you do not specify a column list and the database uses case-sensitive column
names (for example, Sybase or Microsoft SQL Server), the attribute names must
exactly match the database column names (that is, both spelling and case must
match).

t_comments : TextData = new(value = ’Comments’);
t_name : string = ’Picasso’;
t_country : string = ’Spain’;
sql insert into ArtistTab
 (name, comments, country)
values (:t_name, :t_comments, :t_country)
on session MySession;

NewPainting : Artist = new;
sql insert into ArtistTab
values (:Newpainting)
on session MySession;

Using TOOL to Update Data

110 iPlanet Unified Development Server • Accessing Databases • August 2001

You can also insert into a subset of the columns by specifying a column list:

Inserting Multiple Rows
To insert a set of rows into a table, you can use a sql insert statement with an
array in the values clause. This is the most efficient way to insert a set of rows. For
example:

Updating a Row
To replace the current column values in selected rows, use the sql update
statement. For example:

Unless you specify a where clause, values in all rows are updated.

NewPainting : Artist = new;
sql insert into ArtistTab(name, comments)
values (:newPainting)
on session MySession;

NOTE If you do not instantiate an object (using “new”), it is treated as a
NULL by the database.

artists : Array of Artist = new;
-- Fill in array...
sql insert into ArtistTab values (:artists) on session MySession;

sql update ArtistTab set born = :birthyear
where name = :vname on session MySession;

Using TOOL to Update Data

Chapter 5 Manipulating Data 111

Deleting a Row
To remove one or more rows from a table, use the sql delete statement. For
example:

sql delete from ArtistTab where born < 1500;

If you do not include a where clause, all rows in the table are deleted.

Executing a Single SQL Statement
Use the sql execute immediate statement to execute a SQL statement that you
enter directly as a literal string, or a statement that is stored in an iPlanet UDS
variable or attribute. You use the sql execute immediate statement to execute
SQL statements that are not explicitly part of TOOL, or to execute statements
constructed at runtime. For example, you can use it to issue DDL (data definition
language) statements, such as the following:

Executing a Database Procedure
To execute a database procedure, use the sql execute procedure statement. You
can pass parameters either by name or by position. For example:

sql execute immediate ’create table ArtistTab(
Name char(30) not null, Country char(30) not null,

 Comments varchar(200) not null)’
on session MySession;

sql execute immediate
 ‘grant all on ArtistTab to public’ on session MySession

Project: QueryMgr • Class: ExecuteSQL • Method: MakeTables

empid : integer = 12345;
salaryIncrement : integer = 15000;

-- Passing parameters by position.
sql execute procedure updateSalary(empid, salaryIncrement);

-- Passing parameters by name.
sql execute procedure updateSalary(AddToSalary = salaryIncrement,
 Id = empid);

Using TOOL to Update Data

112 iPlanet Unified Development Server • Accessing Databases • August 2001

Vendor-Specific Notes on Database Procedures
The following table describes iPlanet UDS support for database procedures:

• Informix dbprocs do not support input-output parameters. If input-output
parameters are passed from a TOOL execute procedure, an exception is
generated.

• If the ODBC database driver you are using does not support procedures, you
will receive a runtime error.

Oracle procedures can return functional results. The following example is valid for
Oracle:

Because sql execute procedure returns a DataValue object, you must cast the
return value to the desired class. In this example, an extra set of parameters is
required in order to cast the result to IntegerData. Thus, you must know what
datatype the procedure returns so as to cast it appropriately. If the cast is to the
wrong class, the user receives a runtime error.

DBMS Procedures Named
Parameters

Positional
Parameters

Comments

DB2 v2 Yes No Yes v2 CLI ODBC restriction

Informix Yes Yes Yes no input/output
parameters

ODBC Yes No Yes drivers may provide less,
eg Access

Oracle Yes Yes Yes

Rdb Yes No Yes

SQLserver Yes No Yes ODBC restriction

Sybase Yes Yes Yes

intval : integer;
intval = IntegerData((sql execute procedure p(param1 =
5))).Value;

Using Binary Large Objects (BLOBs)

Chapter 5 Manipulating Data 113

Working with ImageData Objects
When selecting ImageData from a database, the data is read using one of several
iPlanet UDS formats, just as is described for the ReadFromFile method for the
ImageData class. iPlanet UDS determines the type of image just as it does when the
format SP_IF_DEFAULT is used with ReadFromFile; that is, iPlanet UDS
determines the type of image data by reading the start of the actual data.

When inserting ImageData into a database, the data is always written as serialized
ImageData.

Using Binary Large Objects (BLOBs)
You can generally manipulate BinaryData objects (also called Binary Large Objects,
or BLOBs) and large TextData objects just like other datatypes. The iPlanet UDS
database interface allows you to fetch, insert, and update BLOB columns (both
TEXT and BYTE) using the BinaryData and TextData classes.

You need not know in advance the maximum BLOB size to select BLOB data.
iPlanet UDS automatically allocates enough space to retrieve or manipulate any
BLOB data.

When working with binary objects, you must be sure to satisfy vendor-specific
requirements. To ensure application portability, follow the recommendations
below when working with binary data.

Selecting Binary Data
The following example demonstrates using a cursor to fetch BLOB from a database
into a BinaryData object. It then deserializes the BinaryData object into an object of
type Artist. The cursor reference BlobCurs refers to the cursor that is defined in
“Defining a Cursor” on page 106.

GetArtist(name:string) : Artist

-- This method returns an Artist Object, given an artist
-- name. It does this by fetching a serialized version
-- of the Artist from the ArtistBlob table in the database.

-- When it gets the BinaryData, it is assumed to contain
-- a MemoryStream object which is deserialized.

Using Binary Large Objects (BLOBs)

114 iPlanet Unified Development Server • Accessing Databases • August 2001

Inserting Binary Data
When inserting BLOB data into a database, iPlanet UDS generates multiple SQL
statements from the original sql insert statement, and, in turn, requires
information about column names that correspond to the data inserted. Thus, to
insert a BLOB, you must use an object of a class whose attribute names and data
types correspond to the columns you wish to insert into a table.

-- The method returns an Artist object, or NIL value, if no
-- artist with matching name is found.

-- This will pass any exceptions back to the invoking method
-- for display, including an exception if more than one
-- matching name was found.

-- First, get the BinaryData if it exists.
rowcount : integer = 1;
binData : BinaryData = new;
blobCurs : BlobCursor;

begin transaction

 sql open cursor blobCurs(name) on session self.MGRSession;
 rowcount = (sql fetch cursor blobCurs into :binData);
 sql close cursor blobCurs;
 if rowcount = 0 then
 return NIL;
 end if;

end transaction;

-- Now that the data is read from the DB, deserialize
-- the MemoryStream that is in the BinaryData.
strm : MemoryStream = new;
strm.Open(accessMode = SP_AM_READ, isBinary = TRUE);
-- The UseData method will simply make the stream point
-- to the memory that has already been set up in the
-- BinaryData object.
strm.UseData(data = (pointer to char)(binData.Value),
 length = binData.ActualSize);
-- Deserialize the Artist. Remember to cast.
painter : Artist =
 (Artist) (strm.ReadSerialized());
strm.Close();

return painter;

Project: WinDB • Class: ArtistMgrTable • Method: GetArtist

Using Binary Large Objects (BLOBs)

Chapter 5 Manipulating Data 115

The following code example shows serializing an iPlanet UDS object into a
BinaryData object, and then inserting the BinaryData object into a database column
declared as a BLOB type.

MakeDatabase()

-- This method creates the blob table needed in the example.
-- A single table is created, with an appropriate type for
-- the target database (since each supports a different
-- type for blobs). It is created with two columns,
-- one for the key (artist name) and one with the actual blob
-- data. The sample data is loaded first into memory,
-- and then transferred to the blob.

-- Any exceptions that occur will be passed back to the
-- code that invokes this method. This allows the user
-- interface to display any of the error code.

-- First, get some sample data, from a generic method.
artists : Array of Artist;
artists = self.GetSampleData();

-- The tables are assumed not to exist. Any errors if
-- they do are simply sent back to the client. Note that
-- the names of the columns use the exact same case as the
-- attributes in the tables. This is because Sybase
-- is case sensitive in names. Also the table name
-- is case sensitive.

case self.MGRSession.DBVendorType is

 when DB_VT_SYBASE do
 sql execute immediate
 ’create table ArtistBlob(Name varchar(30) not null,
BlobValue image not null)’
 on session self.MGRSession;
 when DB_VT_ORACLE do
 sql execute immediate
 ’create table ArtistBlob(Name varchar(30) not null,
BlobValue long raw not null)’
 on session self.MGRSession;
 else do
 e : GenericException = new;
 e.SetWithParams(severity = SP_ER_ERROR,
 message = ’This example does not demonstrate using blobs
for this database.’);
 task.ErrorMgr.AddError(e);
 raise e;
end case;

-- Grant privileges
sql execute immediate
 ’grant all on ArtistBlob to public’ on session self.MGRSession;

Using Binary Large Objects (BLOBs)

116 iPlanet Unified Development Server • Accessing Databases • August 2001

Vendor-Specific Notes on BLOB Handling
iPlanet UDS does not support references to Informix BLOBs by file name or file
handle.

Because Rdb does not allow updates of BLOB data, you cannot update Rdb BLOB
data using either TOOL or the iPlanet UDS classes. However, you can insert BLOB
data.

There are some additional restrictions when inserting or updating BLOB data with
Sybase. These restrictions are necessary since the Sybase interface does not allow
direct modification of Sybase text or image columns through SQL. Text or image
columns must be modified by selecting back the affected row and then using a
separate interface.

-- Create memory streams for the artist data, transfer them into
-- BinaryData objects, and then insert into the database.

-- Note also that the data is transferred into the
artistBlobObjects
-- array. The row class of this array has attributes that
-- correspond to the columns in the ArtistBlob table. This is
-- a more portable way to handle insertion of blob data.

artistBlobObjects : array of ArtistBlobObject = new;
i : integer = 1;
while i <= artists.Items do
 strm : MemoryStream = new;
 strm.Open(accessMode = SP_AM_READ_WRITE, isBinary = TRUE);
 strm.WriteSerialized(object = artists[i]);
 -- Now transfer the stream to a BinaryData object.
 strm.Seek(0);
 artistBlobObjects[i] = new;
 artistBlobObjects[i].Name = artists[i].Name;
 strm.ReadBinary(target = artistBlobObjects[i].BlobValue);

 -- Insert into the database
 sql insert into ArtistBlob(Name, BlobValue)
 values (:artistBlobObjects[i])
 on session MGRSession;
 strm.Close();
 i = i + 1;
end while;

return;

Project: WinDB • Class: ArtistMgrBlob • Method: MakeDatabase

Using Binary Large Objects (BLOBs)

Chapter 5 Manipulating Data 117

The restrictions on using BLOB data with Sybase follow:

1. If you insert a row which contains a text or image column, then all of the
following must be true:

a. The non-text, and non-image columns must uniquely identify the row to
be inserted. In the following example the variables intval and charval must
contain values that together will uniquely identify the row inserted:

SQL INSERT INTO T (intcol, charcol, textcol) values

(:intval, :charval, :textval);

b. You must explicitly name the columns to be inserted.

Unlike the previous example, the following example will fail since it does
not have a column list:

SQL INSERT INTO T values (:intval, :charval, :textval);

This restriction does not apply if you do not insert any text or image
columns.

c. The values clause cannot contain literals. For example, the following
example will fail because the literal 5 is invalid in this context:

SQL INSERT INTO T (intcol, charcol, textcol) values

(5, :charval, :textval);

2. If you insert or update a row with more than one text or image column, then all
the text and image values must be either less than 256 bytes, or 256 bytes or
more. If some values are shorter and some longer then you must break the
statement into two, one which inserts or updates the text and image columns
shorter than 256 bytes, and another which updates the values 256 bytes or
longer.

3. When performing an update which contains a text or image column, you must
include a where clause which limits the update to a single row.

4. When performing an update which contains a text or image column you
cannot update any column which appears in the where clause.

Using iPlanet UDS Classes to Execute SQL

118 iPlanet Unified Development Server • Accessing Databases • August 2001

Using iPlanet UDS Classes to Execute SQL
Whenever possible, it is most convenient to use TOOL SQL statements directly in
your methods. However, for many applications, you will need to use the
GenericDBMS database class interface. This interface lets you execute a SQL
command whose exact text is unknown at compile time; it provides more
flexibility, but may require more programming to handle various conditions.

You can generate SQL statements at runtime in your application when any of the
following is unknown:

• the text of the SQL statement

• the number and/or data types of host variables (either for input or what will
be returned by the SQL statement)

• the references to columns, tables, and views

iPlanet UDS sample applications Two iPlanet UDS example applications,
DynamicSQL and DynamicDataAccess, demonstrate the use of the database class
interface. We use the DynamicDataAccess example to demonstrate various
techniques in the remainder of this chapter. You may have used the DynamicSQL
sample application to verify your database connection. It is mentioned in “Testing
a Resource Name with the DynamicSQL Example” on page 48. You can find
general instructions for both examples in Appendix A, “Database Example
Applications.”

DBSession Methods
The DBSession class (along with some other classes) provides the methods you use
to execute SQL in your TOOL code. In particular, you will invoke the following
DBSession methods on the DBSession object for your database session:

Method Description

CloseCursor Closes a cursor opened by the OpenCursor or ExtendCursor
method.

CloseExtent When you are working with multiple result sets, this method
cancels the current result set so you can use the ExtendCursor
method to get to the next result set (Microsoft SQL Server and
Sybase only).

Execute Executes a prepared SQL DML statement (other than select or
execute procedure).

Using iPlanet UDS Classes to Execute SQL

Chapter 5 Manipulating Data 119

Executing Single SQL Statements
The simplest way to execute SQL is to use the ExecuteImmediate method. The
ExecuteImmediate method executes a single SQL statement—of any type—stored
in a string or a TextData object. The only restrictions are that the statement must
not contain any placeholders or return any results. (Your particular database
vendor may impose additional restrictions.) The ExecuteImmediate method is
useful when you need to execute a statement only once.

The ExecuteImmediate method provides the same functionality as the sql
execute immediate TOOL statement. There is no particular advantage to using
ExecuteImmediate instead of the corresponding TOOL statement.

ExecuteImmediate Executes any single SQL statement that does not return
results.

ExtendCursor When you are working with multiple result sets, this method
moves the cursor to the next result set or to the return
parameters for the procedure (Microsoft SQL Server and
Sybase only).

FetchCursor Retrieves a single row or a set of rows from the result set of a
cursor.

OpenCursor Executes a prepared select or execute procedure statement to
produce a result set.

Prepare Prepares a SQL DML statement for execution, allowing you to
use placeholders.

PreparePositioned Prepares a SQL DML statement that references another
cursor.

RemoveStatement Removes a prepared statement.

Select Executes a prepared select statement and retrieves a set of
rows.

DefaultDBSession.ExecuteImmediate(’create table Paintings(
Name varchar(60), Artist varchar(60), YearPainted integer);

Method Description

Executing Prepared Queries

120 iPlanet Unified Development Server • Accessing Databases • August 2001

Using Prepared Statements
A prepared SQL statement is one that has been parsed by the database compiler.
Prepared statements offer several advantages:

• You can execute the prepared statement multiple times (without reparsing),
which improves performance for the second and subsequent iterations.

• You can use placeholders in the SQL statement.

• You can use a cursor to work with rows returned by the executed statement.

When you work with SQL statements that require input values (for placeholders)
or that return results, you will use objects of the DBDataSet class in the
GenericDBMS library. You will use DBDataSet objects both to describe and to store
data for input values and result values. Some of the following examples
demonstrate the use of DBDataSet objects.

There is a distinction between how you execute prepared select statements and
prepared insert, update, or delete statements. While the initial steps for
processing both types of statements are the same, select statements are executed
using the OpenCursor or Select methods, and the other statements are executed
using the Execute method.

Executing Prepared Queries
When you use the database class interface to execute a SQL statement that returns
results, you may open a cursor to process the results a row at a time, or you may
retrieve the entire result set all at once using the Select method.

The following steps summarize how to use a cursor to process SQL select
statements. Each step is explained in detail below using examples from the
DynamicDataAccess sample application.

➤ To execute a prepared select statement

1. Build the SQL statement.

2. Prepare the statement.

3. Set up a DBDataSet object with input values for placeholders, if necessary.

4. Open the cursor.

5. Fetch the rows.

Executing Prepared Queries

Chapter 5 Manipulating Data 121

6. Transfer or process the data.

7. Close the cursor.

About the DynamicDataAccess Example
The DynamicDataAccess sample application provides a window that lets the end
user query the database by selecting specific criteria. The application constructs the
actual SQL queries and then executes them using the appropriate GenericDBMS
classes.

The DynamicDataAccess example allows end users to select or insert data from a
database. Figure 5-1 shows the Select screen for this example, as an end user might
fill it in.

Figure 5-1 Choosing Selection Criteria

First the user chooses the table to query. Based on the table, the appropriate
columns populate the Columns to View drop list and Criteria List array. Then the
user chooses the columns to view and the criteria to use to determine the result set.
When the user clicks the Execute button, iPlanet UDS constructs the sql select
statement based on the criteria just entered. In this case, iPlanet UDS constructs the
following SQL statement:

Executing Prepared Queries

122 iPlanet Unified Development Server • Accessing Databases • August 2001

Figure 5-2 Dynamically Constructed SQL Statement

When the query executes, the application builds a screen that displays the data, as
shown in Figure 5-3:

Figure 5-3 Displaying the Results

The following section discusses the SQL methods used in this application.

Building the SQL Statement
When you write an application that will generate SQL statements at runtime, you
must determine the range of information that the end user may require, write a
user interface that allows the user to specify the full breadth of this information,
construct valid SQL statements in your methods, perform the desired processing,
and possibly display or return results. To construct a SQL statement, you simply
build each phrase of the query as you collect input from the user.

Executing Prepared Queries

Chapter 5 Manipulating Data 123

The following method from the DynamicDataAccess application constructs a select
statement based on input from the end user, as shown in Figure 5-1. First, the
BuildQuery method builds the select list:

Then the BuildQuery method determines if there is a where clause:

CommandString = ’select ’;

Selected : Array of ListElement;
Selected = <ColumnList>.GetElementList(ET_SELECTED);

NumColumns = Selected.Items;
for i in 1 to Selected.Items do
 if i < Selected.Items then
 Commandstring.concat(Selected[i].TextValue).concat(’, ’);
 else
 Commandstring.concat(Selected[i].TextValue);
 end if;
end for;

Commandstring.concat(’ from ’).concat(TableList);

Project: QueryMgr • Class: QueryWindow • Method: BuildQuery

HasWhere : Boolean = FALSE;
Columns : integer = 0;
WhereClause : TextData = new;
WhereClause.concat(’ where ’);
for i in 1 to CriteriaArray.Items do

 if CriteriaArray[i].Value.IsNotEqual(’’) then
 WhereClause.concat(CriteriaArray[i].Column).concat(
 ’ ’).concat(CriteriaArray[i].Operator).concat(’ ’);
 WhereClause.concat(’’’’).concat(CriteriaArray[i].
 Value).concat(’’’’);
 if i < LastRow then
 WhereClause.concat(’
 ’).concat(CriteriaArray[i].AndOr).concat(’ ’);
 end if;
 HasWhere = TRUE;
 end if;
end for;

Project: QueryMgr • Class: QueryWindow • Method: BuildQuery

Executing Prepared Queries

124 iPlanet Unified Development Server • Accessing Databases • August 2001

Finally, the BuildQuery method concatenates the where clause to the select
statement:

Preparing the Statement
Before you can invoke the OpenCursor method, you must use the Prepare method
to prepare the SQL statement. The Prepare method parses the statement and gives
it a unique identifier so you can later reference it in the OpenCursor method. The
Prepare method also returns an integer that indicates the type of statement being
prepared. If you are using placeholders, the Prepare method returns information
about the placeholders used in the statement. The following example from the
DynamicDataAccess application illustrates preparing a SQL statement:

This code returns an object of type DBStatementHandle, which is used to uniquely
identify the prepared statement in subsequent method invocations.

if HasWhere then
Commandstring.concat(WhereClause);

end if;

Project: QueryMgr • Class: QueryWindow • Method: BuildQuery

begin
dynStatement : DBStatementHandle;-- Statement from Prepare
inputDescriptor : DBDataSet; -- Description of input
outputDescriptor : DBDataSet; -- Description of output
outputData : DBDataSet; -- Actual output
statementType : integer;
rowType : integer;
DataFetched : StoredData = new;

 dynStatement = MySession.Prepare(
 commandString = CommandString, -- the command
 inputDataSet = inputDescriptor, -- output of substitutions
 cmdType = statementType); -- output of statement type

Project: QueryMgr • Class: ExecuteSQL • Method: RetrieveData

Executing Prepared Queries

Chapter 5 Manipulating Data 125

Opening the Cursor
To execute the prepared select or execute procedure statement, use the
OpenCursor method. This method opens the cursor and positions it before the first
row in the result set. The inputDataSet parameter is required in the OpenCursor
method, but it is not actually used in this example because there are no
placeholders. A description of the expected output is given in the resultDataSet
parameter. Notice that this method does not actually bring any data back in the
resultDataSet, but only describes the data that will be returned with the
FetchCursor method.

Before you retrieve the rows, the application must determine what columns will be
retrieved so it can display them properly, as shown in Figure 5-3. The example
below uses the GetColumn method on the OutputDescriptor (which contains a
description of the data) to retrieve the column description into ColumnInfo. It also
stores a copy of the name in ColumnsArray, which creates the fields for the
dynamically created window.

ColumnInfo is a DBColumnDesc object. The DBColumnDesc class describes a
column in a relational table (or a single placeholder, as shown later in this section).

rowType = MySession.OpenCursor(
 statementHandle = dynStatement, -- the statement
 inputDataSet = inputDescriptor;
 resultDataSet = outputDescriptor); -- the output data

Project: QueryMgr • Class: ExecuteSQL • Method: RetrieveData

for j in 1 to NumColumns do
 ColumnName : TextData;
 ColumnInfo : DBColumnDesc;
 ColumnInfo = OutputDescriptor.GetColumn(position = j);
 ColumnName = ColumnInfo.Name.Clone(TRUE);
 DataFetched.ColumnsArray.AppendRow(ColumnName);
end for;

Project: QueryMgr • Class: ExecuteSQL • Method: RetrieveData

Executing Prepared Queries

126 iPlanet Unified Development Server • Accessing Databases • August 2001

Fetching Rows from the Result Set
To retrieve data from the result set, invoke the FetchCursor method. (An example
appears in the next section.) FetchCursor retrieves one row or an array of rows
from the result set and stores the values in the resultDataSet output parameter
(a DBDataSet object). You can then work with these values in your code using the
GetValue method of the DBDataSet class. Each time you invoke the FetchCursor
method, the cursor moves forward either one row or the number of rows you
specify.

Storing the Data
The FetchCursor method uses a DBDataSet object to store the fetched row or rows.
Because iPlanet UDS uses the same DBDataSet object each time the FetchCursor
method is invoked, if you need to preserve the data you should assign the
DBDataSet values to other objects before the next FetchCursor, as in this example.
For each row in the result set, the GetValue method retrieves the column values
and appends them to the DataArray array. Remember, the column names have
already been stored—the column values are matched by position.

numrows : integer;
 totalRows : integer = 0;
 while TRUE do
 numrows = MySession.FetchCursor(
 statementHandle = dynStatement,
 resultDataSet = outputData);
 if numrows <= 0 then
 exit;
 end if;
 TotalRows = TotalRows + 1;
 DataFetched.ResultSetArray[TotalRows] = new;
 for j in 1 to NumColumns do
 ColumnValue: TextData = new;
 (outputData.GetValue(position = j, value=columnValue));
 DataFetched.ResultSetArray[TotalRows].DataArray.
 AppendRow(ColumnValue);
 end for;
 end while;

Project: QueryMgr • Class: ExecuteSQL • Method: RetrieveData

Executing Prepared DML Statements

Chapter 5 Manipulating Data 127

Closing the Cursor
After you have finished using the cursor, use the CloseCursor method to close it.

mySession.CloseCursor(statementHandle = dynStatement);

Executing Prepared DML Statements
You can use the DBSession class interface to execute insert, update, and delete
SQL statements. This is particularly useful when you know what kind of statement
you want to execute repeatedly, but you need to vary the criteria. iPlanet UDS
methods use placeholders, which are mechanisms through which you can pass
data into your methods at runtime—placeholders are discussed in detail later in
this section.

The following steps summarize the use of the DBSession class methods to perform
insert, update, and delete statements. Each step is described in detail below.

➤ To execute a prepared insert, update, or delete statement

1. Build the SQL statement.

2. Prepare the statement.

3. Set the input values for placeholders in a DBDataSet object, if necessary.

4. Execute the statement.

5. Remove the statement if it will not execute again.

About the DynamicDataAccess Example
The DynamicDataAccess application includes a form through which users can
insert data into the database, as shown in Figure 5-4.

Executing Prepared DML Statements

128 iPlanet Unified Development Server • Accessing Databases • August 2001

Figure 5-4 Insert Screen

Because this screen allows inserts only, the sql insert statement is already built
in the example. This application uses placeholders to allow users to construct
unique insert statements. These insert statements can also be built at runtime—see
“Building the SQL Statement” on page 122. Similarly, placeholders can be used in
SQL statements built at runtime.

The application first checks to see if the user selected PaintingTab or ArtistTab.
Based on the user’s choice, the appropriate fields are displayed. The user then
enters the data to insert; this data is handled by the placeholders, described below.

Building the SQL Statement
In this particular example, we know we are building a sql insert statement. In
the following SQL insert statement, notice that colons precede the placeholder
names.

Once the statement is built, it is ready to be prepared.

CommandString.setValue
(’sql insert into PaintingTab (Painter, Title, YearPainted)
 Values (:Painter, :Title, :YearPainted)’)

Project:DynamicDataAccess • Class: InsertDataWindow • Method: BuildInsert

Executing Prepared DML Statements

Chapter 5 Manipulating Data 129

Preparing the Statement
Before you can invoke the Execute method, you must use the Prepare method to
prepare the SQL statement. The Prepare method parses the statement and gives it a
unique identifier so you can later reference it in the Execute method. The Prepare
method also returns an integer that indicates the type of statement being prepared.
If you are using placeholders, the Prepare method returns information about the
placeholders used in the statement—this example does use placeholders, which are
discussed below.

The following code demonstrates preparing a statement:

The commandString parameter contains the statement that was used in the
previous step. The inputDataSet output parameter contains information about the
placeholders (described below), and the cmdType parameter returns the type of
statement.

Finally, the Prepare method returns an object of type DBStatementHandle, which is
used to uniquely identify the prepared statement in subsequent method
invocations.

inputDescriptor : DBDataSet;
inputDescriptor = new;
dynStatement : DBStatementHandle;
statementType : Integer;
dynStatement = MySession.Prepare(

commandString = commandString,
inputDataSet = inputDescriptor,
cmdType = statementType);

Project: QueryMgr • Class: ExecuteSQL • Method: RetrieveData

Value Description

DB_CV_INSERT Insert statement

DB_CV_UPDATE Update statement

DB_CV_DELETE Delete statement

DB_CV_SELECT Select statement

DB_CV_EXECUTE Execute procedure statement

Executing Prepared DML Statements

130 iPlanet Unified Development Server • Accessing Databases • August 2001

Processing Placeholders
A placeholder is an arbitrary name used in a SQL statement to represent a value that
will be supplied when the statement is actually executed. The placeholder values
are supplied through the inputDataSet parameter (described below) to the
Execute or OpenCursor methods. For example, in the DynamicDataAccess
example, the user can supply the data to insert multiple rows without the
programmer having to re-prepare each sql insert statement.

DBDataSet class You use the DBDataSet class to represent placeholders. The
DBDataSet class describes the columns and the data in the placeholders and their
values.

When you use the Prepare method to prepare the statement, the inputDataSet
output parameter contains information about the placeholders that were included
in the DML statement. This information is provided in the form of a DBDataSet
object. You can then use the SetValue method to set the values of the individual
placeholders for use in a subsequent Execute method. You can use the SetValue
method to set values by name or by position; setting the values by position is more
efficient.

The following example demonstrates setting the values for the placeholders
referenced by the inputDataSet parameter.

NOTE In ANSI SQL, placeholders are represented by the “?” character. In
iPlanet UDS, placeholders are represented by a colon preceding the
variable name, as in “:name”. A placeholder name can be any legal
iPlanet UDS name. However, if the name is the same as a SQL key
word, you must enclose the placeholder name in quotation marks.

inputDescriptor.SetValue(columnName = ’:Painter’,
 value = paintingData.Painter);
inputDescriptor.SetValue(columnName = ’:Title’,
 value = paintingData.Title);
inputDescriptor.SetValue(columnName = ’:YearPainted’,
 value = paintingData.YearPainted);

Project: QueryMgr • Class: ExecuteSQL • Method: ExecuteInsert

Executing Prepared DML Statements

Chapter 5 Manipulating Data 131

The columnName parameter to the SetValue method is set to the placeholder
name; the paintingData object contains the data entered by the user and used to fill
in the placeholders.

Executing the Statement
After you set the values for the placeholders, you can execute the statement. Use
the inputDataSet parameter of the Execute method to reference the DBDataSet
object that contains the values for the placeholders. In the following example from
the DynamicDataAccess application, the inputDataSet parameter references the
DBDataSet object whose values were set in the previous example:

Note that the Execute method returns the number of rows affected, if known.

Removing the Statement
Use the RemoveStatement method when you no longer intend to execute a
statement and you are finished with its result set. This is especially important if
your application is complex and contains a number of statements, since each
prepared statement consumes iPlanet UDS resources and usually database
resources as well. It may also be necessary to use exception handlers to remove
statements when exceptions occur.

MySession.RemoveStatement(statementHandle = dynStatement);

To see the RemoveStatement method in context, see the Isql.Process command in
the example program DynamicSQL in “DynamicSQL” on page 164.

MySession.Execute(statementHandle = dynStatement,
inputDataSet = inputDescriptor);

Improving Application Performance

132 iPlanet Unified Development Server • Accessing Databases • August 2001

Improving Application Performance
When you build an iPlanet UDS application that accesses one or more databases,
you have a number of variables to consider when tuning performance.
Applications can rapidly become very complex, as they scale up to accommodate
new users, new components, and more data. While tuning an iPlanet UDS
database application is an appropriate topic for a large book, this section contains
some high level reminders that, in general, should always be heeded to maximize
performance.

➤ To maximize your application’s performance, remember to

1. Use explicit iPlanet UDS transactions.

For best performance you should use explicit iPlanet UDS transactions for all
SQL statements, including selects.

2. Remove a cursor after closing it.

Unremoved cursors slowly use up the open cursors allowed by a database, and
will eventually lock up the instance.

3. Wrap exception handlers around all of the prepare/fetch/close code and
perform the remove in the exception handler as well. Otherwise exceptions
occurring after the prepare will leave cursors unremoved.

Multi-threaded Database Access
iPlanet UDS supports non-blocking database connections on platforms where
iPlanet UDS uses native threads and the vendor’s libraries are thread safe. This
multi-threaded database access is available on the following platforms:

• Windows platforms with a server partition connecting to a Microsoft SQL
Server or Oracle database

• Sun Solaris, RS6000 AIX, and HP9000 HPUX platforms with a server partition
connecting to an Oracle database

Additional platforms and databases vendors may also be supported for
multi-threaded database access. Contact technical support for more
information.

NOTE Multi-threaded database access does not apply to iPlanet
UDS-threaded partitions. Partitions implementing iPlanet UDS
threads must use serial access to databases.

Improving Application Performance

Chapter 5 Manipulating Data 133

For UNIX platforms only, any partition that participates in multi-threaded
database access must be set to use native threads. This partition configuration
parameter can be set as a partition property in the Partition Workshop, in Econsole
for the installed partition, or using the Escript SetThreadPkg command.

When multi-threaded database access is enabled, an iPlanet UDS server partition
can have other tasks running while one task is waiting on results from the
database. Thus, accessing the database from one task does not block other tasks in
the partition from running. This capability may allow sites to reduce the number of
replicates needed when load balancing, or eliminate the need for process-level load
balancing.

Note, however, that this does not change the transactional nature of DBSession
objects. A DBSession object can only participate in one transaction at a time. Thus
while the partition may not be blocked and may be able to run other tasks, those
tasks may not be runnable if they reference a locked resource—for example, a
DBSession object being used by another task in another transaction.

Enabling Single-Threaded Access to Databases
By default, multi-threaded database access is enabled for native-threaded
partitions. To implement serial database access on UNIX platforms with
native-threaded partitions, set the FORTE_CLIB_LOCK environment variable to
TRUE (disabling multi-threaded database access).

Mapping DBDataSets into Objects
When you select data, it is initially returned in a DBDataSet object. While it is most
efficient to use the returned object directly, it is often not very convenient. Usually
you will put the selected data into one or more custom objects. You typically use
the GetValue method of the DBDataSet class to move data from the DBDataSet to
your object.

While the GetValue method can handle any data type, it has four general
variations. Performance for these variations varies. The variations are described
below:

• GetValue can take either an integer position or name of the column for which to
retrieve data.

Using positions is faster since iPlanet UDS can index the column directly rather
than looking up a name in a list.

Improving Application Performance

134 iPlanet Unified Development Server • Accessing Databases • August 2001

• GetValue can return a DBDataSet return value or pass an output parameter.

Using passed parameters is faster when you have an object into which you
want to retrieve the result. Using a return value requires that a new object be
created to hold the value; then the new object is returned. If you will then store
the value in yet another object (and discard the returned object), it is more
efficient to use the variation of GetValue that returns the value in a parameter.

For example this is faster:

than this:

which is faster than:

Of course this assumes that myAttr has already been instantiated. If it hasn’t the
following may be more convenient:

myObj : myObjType;
// All examples assume that myObj gets initialized somehow
dataset.GetValue(position = 1, value = myObj.myAttr);

myObj : myObjType;
myObj.myAttr.SetValue(dataset.GetValue(position = 1));

myObj : myObjType;
myObj.myAttr.SetValue(dataset.GetValue(columnName = ’mycol’));

myObj : myObjType;
myObj.myAttr = dataset.GetValue(position = 1);

Improving Application Performance

Chapter 5 Manipulating Data 135

Note: the preceding is a little different than the seemingly equivalent:

The difference lies in the fact that the datatype of myAttr and the column in the
dataset may differ. In the latter example the GetValue method will convert the
value in the dataset to the type of myAttr (if possible). In the former example you
will get a type clash error at runtime if the type of myAttr is not the same class or a
superclass of the type of the column.

myObj : myObjType;
myObj.myAttr = new;
dataset.GetValue(position = 1, value = myObj.myAttr);

Vendor-Specific Information

136 iPlanet Unified Development Server • Accessing Databases • August 2001

Vendor-Specific Information

Informix

Scroll Cursor Support
A scroll cursor must be used in an explicit iPlanet UDS transaction; it cannot be
used in an implicit transaction. To use a scroll cursor, use the optional parameters
for the DBSession methods Prepare and FetchCursor.

An example of using Informix scroll cursor feature follows:

SelectStatement : DBStatementHandle = NIL;
InputDescriptor : DBDataSet;
OutputDescriptor : DBDataSet;
CmdType : Integer;
MaxRows : 3;
Rows : Integer;

-- Prepare the statement by indicating that we want
-- to open a scroll cursor.
SelectStatement = DefaultDBSession.Prepare(
 commandstring = ’select * from test’,
 inputDataSet = InputDescriptor,
 cmdtype = CmdType,
 forScroll = TRUE);

begin transaction
--Scroll cursor can only be used within an explicit transaction.
DefaultDBSession.OpenCursor(
 statementHandle = SelectStatement,
 inputDataSet = InputDescriptor,
 resultDataSet = OutputDescriptor);

-- skip 2 records, fetch the next
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor,
 maxrows = MaxRows,
 key = DB_FK_RELATIVE, offset=2);
printResult(OutputDescriptor);
-- The method printResult is not showed here in the example.

-- fetch the next row
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor,
 maxrows = MaxRows,
 key = DB_FK_CURRENT);

Vendor-Specific Information

Chapter 5 Manipulating Data 137

printResult(OutputDescriptor);

-- fetch the 8th row
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor, maxrows = MaxRows,
 key = DB_FK_ABSOLUTE, offset=8);
printResult(OutputDescriptor);

-- fetch the previous (7th) row
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor, maxrows = MaxRows,
 key = DB_FK_PREVIOUS);
printResult(OutputDescriptor);

-- fetch the first row
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor,
 maxrows = MaxRows,
 key = DB_FK_FIRST);
printResult(OutputDescriptor);

-- fetch the next (2nd) row
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor,
 maxrows = MaxRows,
 key = DB_FK_NEXT);
printResult(OutputDescriptor);

-- fetch the last row
Rows = DefaultDBSession.FetchCursor(
 statementHandle = SelectStatement,
 resultDataSet = OutputDescriptor,
 maxrows = MaxRows,
 key = DB_FK_LAST);
printResult(OutputDescriptor);

DefaultDBSession.CloseCursor(statementHandle = SelectStatement);
end transaction;

Vendor-Specific Information

138 iPlanet Unified Development Server • Accessing Databases • August 2001

139

Chapter 6

Transactions

When you include SQL statements (or equivalent methods) in an iPlanet UDS
application, you use the iPlanet UDS transaction model to start explicit transactions
or under some circumstances, implicit transactions.

This chapter describes how to use transactions so that your application uses
transactions properly and with the best possible performance. A rule of thumb is to
always use explicit iPlanet UDS transactions for best performance.

This chapter discusses a variety of transaction scenarios, and includes the
following topics:

• explicit and implicit transactions

• dependent and independent transactions

• common problems with shared and transactional objects

• two-phase commit and distributed transactions

• vendor-specific notes

Relationship Between iPlanet UDS
and Database Transactions

When you write an iPlanet UDS application that accesses a database, you will
structure your application into iPlanet UDS transactions. (iPlanet UDS transactions
are the same as TOOL transactions.) Like a database transaction, an iPlanet UDS
transaction should consist of a set of statements that should be treated as a unit,
succeeding or failing together.

Explicit iPlanet UDS Transactions

140 iPlanet Unified Development Server • Accessing Databases • August 2001

The only transaction commands you use are to start and end iPlanet UDS
transactions. You do not use the explicit transaction statements for your database
(such as commit, rollback, or set autocommit), because iPlanet UDS starts and
coordinates all database transactions on your behalf. You can, however, use the
iPlanet UDS Abort method to abort both the iPlanet UDS and DBMS transactions.
Thus, you need only be concerned with iPlanet UDS transactions, because all
database transactions are transparently managed.

You should always use explicit transactions. If you do not, iPlanet UDS will start
implicit transactions and your application’s performance may be significantly
impacted. The following sections describe explicit and implicit transactions in
more detail.

A transaction that is entirely local provides better performance. A transaction that
starts and ends in the same partition and makes no intervening remote calls is a
local transaction. A transaction becomes distributed when a remote call is made. To
the degree that you can increase the number of local transactions in an application
relative to distributed transactions, you can improve the performance of the
application.

Explicit iPlanet UDS Transactions
You should always include SQL statements and methods in explicit iPlanet UDS
transactions. Your application will perform far better if you do so, particularly
when you select data using a cursor (this includes TOOL sql select statements
where the target is an array object). In addition, some operations behave differently
when not used in an explicit transaction (see the iPlanet UDS online Help).

Starting an iPlanet UDS transaction To start an explicit iPlanet UDS transaction,
you can do either of the following:

• use the begin transaction TOOL statement (described in the TOOL
Reference Guide)

• use the TransactionHandle class (described in the iPlanet UDS online Help)

Ending an iPlanet UDS transaction To end an iPlanet UDS transaction, you use
the end transaction clause of the begin transaction statement, or you can use
methods on the TransactionHandle class. An iPlanet UDS transaction is always
ended explicitly; no type of event or statement will implicitly end an iPlanet UDS
transaction.

Implicit iPlanet UDS Transactions

Chapter 6 Transactions 141

Any number of SQL statements can be contained in a transaction; however, the
transaction should consist only of statements that should succeed or fail together
— no other statements. You should also exclude any SQL statements that your
database does not allow within a transaction (for example, some systems do not
allow DDL statements in transactions).

The following example shows two SQL statements enclosed in an explicit
transaction defined using TOOL:

When you embed SQL in an explicit iPlanet UDS transaction, iPlanet UDS
automatically starts a database transaction, and both the iPlanet UDS and database
transaction must succeed together or both will fail. That is, if failure occurs in the
underlying database transaction, it rolls back and the enclosing iPlanet UDS
transaction also aborts. Or, if the enclosing iPlanet UDS transaction aborts, iPlanet
UDS rolls back the underlying database transaction.

Implicit iPlanet UDS Transactions
If you invoke a method on the DBSession object or issue a TOOL SQL statement
that accesses the database, and no iPlanet UDS transaction is currently in effect,
then iPlanet UDS starts an implicit iPlanet UDS transaction. While an implicit
transaction does ensure the integrity of your data with respect to the database, it
can also have a severe impact on performance. An implicit transaction is slower
and may consume more memory than an explicit transaction.

An implicit iPlanet UDS transaction always has a scope of one SQL statement.
Execution of multiple SQL statements enclosed in separate transactions is generally
slower than if the statements are executed within a single transaction. While this
may be acceptable for testing or ad hoc use, implicit transactions should never be
used in deployed applications because they dramatically reduce performance.

begin transaction
sql insert into mytab (a) values (10) on session MySession;
sql insert into othertab (b) values (12) on session

YourSession;
exception
when e : GenericException do
task.ErrorMgr.showErrors(TRUE);

end transaction;

Implicit iPlanet UDS Transactions

142 iPlanet Unified Development Server • Accessing Databases • August 2001

Single SQL DML Statements
If you issue a single SQL statement, such as sql delete, sql insert, sql
update, and sql execute immediate, iPlanet UDS places the statement in an
implicit iPlanet UDS transaction encompassing just the SQL statement. That is, the
transaction will be started before the SQL statement and committed after it. No
other TOOL statements are included in the transaction. For example:

SQL Execute Immediate Statements with DDL
The sql execute immediate statement can be used to issue data definition
language (DDL) statements, such as create table. The database vendors treat DDL
statements differently with respect to transactions, as shown in the following table:

If you need to ensure portability across databases, do not put sql execute
immediate statements containing DDL in iPlanet UDS transactions that contain
more than one SQL statement. Instead, enclose each DDL statement in an
independent transaction block.

-- An insert
sql insert in paintings values (:newPainting);

Database Interaction between a DDL statement and a transaction

DB2 Allows one or more DDL statements in a multi-statement transaction.

Informix Allows one or more DDL statements in a multi-statement transaction.

ODBC Uses the semantics of the underlying database.

Oracle Use of a DDL statement automatically commits the current transaction.

Rdb Allows one or more DDL statements in a multi-statement transaction.

Sybase Allows only one DDL statement in a transaction.

Implicit iPlanet UDS Transactions

Chapter 6 Transactions 143

Use of Cursors in Implicit iPlanet UDS
Transactions
While you can use cursor statements in implicit transactions, it is not
recommended. iPlanet UDS buffers the entire result set for a cursor, which
consumes memory. As a result, performance may degrade because iPlanet UDS
retrieves the entire result set before executing the next statement. The following
sections describe the effect of implicit iPlanet UDS transactions on the TOOL SQL
statements sql open cursor, sql fetch cursor, and sql close cursor. In
general, the descriptions below also apply when you use the OpenCursor,
FetchCursor, and CloseCursor methods on a DBSession object.

SQL Open Cursor
A sql open cursor statement executed outside an explicit TOOL transaction is
enclosed in an implicit transaction. If a cursor is opened in an implicit transaction,
the sql open cursor statement alone causes all the data to be fetched, buffered,
the database cursor to be closed, and the implicit transaction to end. The database
cursor is closed because most databases do not allow a database cursor to remain
open after the transaction ends. However, the TOOL cursor remains open and
subsequent sql fetch cursor statements retrieve results from the cursor as
usual, but the data is retrieved from the buffer, rather than directly from the
database.

Executing sql open cursor within an implicit transaction has several effects, all
of which can degrade performance:

• The entire result set is retrieved for the cursor, and data is copied twice: once
into the buffer, and again into wherever you finally put it.

• It requires additional memory, as the entire result set must be buffered in
memory at one time.

• Control is not returned back to the user to start processing the first row of data
until all of the data is retrieved from the database.

In addition, because the implicit transaction automatically buffers all the data and
commits the transaction, the actual data in the database corresponding to the
buffered data may be concurrently updated without any notification to your TOOL
program, or any locking on the data. This is not a problem for read-only data, but
for updatable data, you should be sure to consider a concurrency strategy that is
appropriate. For maximum consistency, use explicit iPlanet UDS transactions.

Implicit iPlanet UDS Transactions

144 iPlanet Unified Development Server • Accessing Databases • August 2001

SQL Fetch Cursor
The sql fetch cursor statement is never enclosed in an implicit transaction. The
behavior of a sql fetch cursor statement executed outside of an explicit iPlanet
UDS transaction depends on when (how) the cursor was opened:

• If the cursor was opened in an explicit iPlanet UDS transaction, then the cursor
was closed at the end of the transaction; any fetch outside the transaction in
which the cursor was opened will fail.

• If the cursor was opened outside of an explicit transaction, the result set for the
cursor was buffered and the fetch statement will fetch the next row from the
buffer.

The following example shows two cursors: cursor1 is opened in an implicit
transaction and cursor2 in an explicit transaction:

sql open cursor1...-- surrounded by an implicit transaction

begin transaction
sql open cursor2...
while condition do
sql fetch cursor2...-- fetches a row from the database
sql fetch cursor1...-- fetches a row from the buffer
other TOOL statements;

end while;
end transaction;

sql fetch cursor2...
-- This will cause an exception because the
-- cursor was closed at the end of the transaction.

sql fetch cursor1...
-- This will execute successfully because it continues
-- to fetch from the buffer.
sql close cursor1...
-- This will execute successfully and change the state of
-- the cursor to closed so it may subsequently be opened again.

NOTE When using the FetchCursor method on the DBSession object on a
cursor that was opened in an implicit transaction, you should not
use the maxrows input parameter to determine the number of rows
returned. Instead, check the functional result. Generally rows are
returned one at a time.

Independent, Dependent, and Nested Transactions

Chapter 6 Transactions 145

For Loops
When you use a for loop with a cursor name or sql select statement, iPlanet
UDS performs an open cursor as part of the initialization of the for loop. If no
explicit iPlanet UDS transaction is in effect, this open cursor is enclosed in an
implicit transaction, causing the result set to be buffered as described earlier in the
“SQL Open Cursor” section. However, the body of the for loop is not part of the
transaction.

SQL Close Cursor
When you issue the sql close cursor statement against a buffered cursor, the
data buffered for the cursor is released.

Independent, Dependent, and Nested
Transactions

It is strongly recommended that you always use transaction blocks for units of
work that might be a transaction.When you start an explicit transaction, you can
make it one of three types of transactions:

• independent

• dependent

• nested

For transactions that interact with databases, you will most often use dependent,
and in some cases independent. (Dependent transactions are the default if you do
not specify a type in the begin transaction statement.) You should not declare
nested transactions that manipulate database data (see below for an explanation).

Using Dependent Transactions
A coding practice that makes transaction design more modular is to define as a
dependent transaction any segment of code which might comprise a unique
transaction in some context. This has the dual benefits of ensuring that all SQL
always runs in an explicit transaction with no constraint on its re-use. In fact, the
default type of transaction is dependent; the statement begin transaction is the
same as begin dependent transaction.

Independent, Dependent, and Nested Transactions

146 iPlanet Unified Development Server • Accessing Databases • August 2001

An example will help illustrate. Assume a method containing the following code
fragment:

This code can run as a top level transaction or it can be invoked from a context
where a transaction is already in progress:

• If it is invoked when a transaction is not in progress, it simply starts a new
transaction.

• If it is invoked when another transaction is in progress, it would just become
part of the transaction already in progress.

However, if instead you used begin independent transaction, this method
could not be invoked when a transaction was already in progress, since an
independent transaction can not be nested inside another transaction.

Using Independent Transactions
Since dependent transactions can be used whether or not a transaction is in
progress, when are independent transactions preferred? While dependent
transactions are appropriate for many situations, there are circumstances when you
should start a new transaction, rather than pick up or continue from a previous
step. In such a case you should explicitly use an independent transaction (using the
TOOL statement begin independent transaction, for example).

Avoid Nested Transactions
While the preferred way to execute all SQL statements (using TOOL or equivalent
methods) in an iPlanet UDS application is within an explicit iPlanet UDS
transaction, you should avoid placing SQL statements within nested iPlanet UDS
transactions. While iPlanet UDS does not flag nested iPlanet UDS transactions
containing SQL as an error, using this construction can result in inconsistent data
for the following reasons.

begin dependent transaction;
SQL UPDATE personTable set dept = :var where dept = :cond;

Common Problems with Shared and Transactional Objects

Chapter 6 Transactions 147

While iPlanet UDS nested transactions provide a useful mechanism for fine-tuning
the scope of a rollback in applications with complex transactional structure, most
database vendors do not support nested transactions. The result of this fact is that
SQL statements in a nested iPlanet UDS transaction are considered part of the outer
iPlanet UDS transaction, not the nested transaction. (All other transactional
operations within the nested transaction succeed or fail together as the nested
transaction.) This has the following implications:

• If the nested iPlanet UDS transaction aborts, but the outer iPlanet UDS
transaction commits, the SQL work is committed.

• Only if the outer transaction aborts is the SQL work aborted or rolled back.

• If the nested transaction aborts, the SQL statements within the nested
transaction are not rolled back, as long as the outer transaction commits.
However, other iPlanet UDS transactional logging which may have occurred
within the nested transaction is rolled back, potentially leaving an inconsistent
data state.

This behavior is true regardless of whether the nested transaction is invoked locally
or remotely relative to the outer transaction, and whether the transaction is within
a bracketed transaction block or asynchronous nested task.

Common Problems with Shared and
Transactional Objects

Because the DBSession object is both a shared and transactional object, you must
take the same precautions that you would for other shared and transactional TOOL
objects. The most common problems are described below—note that all these
problems can occur in normal TOOL objects with the same properties.

In general, you should avoid starting transactions before any operation that might
wait—for example, before an event loop where your application might wait for
user input. If you begin a transaction in such a situation, you might unnecessarily
cause data to be locked, preventing access by other users.

Common Problems with Shared and Transactional Objects

148 iPlanet Unified Development Server • Accessing Databases • August 2001

Unexpected Blocking Due to a
Long-Running Query
While executing a query in a database session, the DBSession object holds the
internal mutex lock on the session. While this mutex is held, no other query may be
executed. Note that due to the nature of iPlanet UDS’s database interface, the entire
iPlanet UDS server process may be blocked while the query is running.

Unexpected Blocking Due to a
Long-Running Transaction
If a task begins a transaction and then executes a TOOL SQL statement against a
DBSession object, that session’s transaction lock is now exclusively held by the
task’s transaction. The lock remains held until the transaction terminates (commits
or aborts). No other tasks may execute any SQL statements against that same
session, unless those tasks are in the same transaction or the owning transaction
terminates. For example, assume the following code fragment uses a
DefaultDBSession:

Note that an event loop begins after the transaction has begun. Because an event
loop can potentially last a long time, any data that is locked by a given SQL
statement will remain locked until you exit the window.

begin transaction
event loop
SQL select...into array object;
when <detail>.click do
start task self.SelectCurrentRow(currentRow)
 where transaction = dependent;

when <update>.click do
SQL...

when <save>.click do
exit;
when <abort>.click do
transaction.Abort(TRUE)

end event;
end transaction;

Common Problems with Shared and Transactional Objects

Chapter 6 Transactions 149

Any child transaction is dependent on the parent task’s transaction; thus, any
queries executed within the child task are not blocked. However, queries executed
by other tasks not participating in the same transaction (or from other clients) are
blocked.

Avoiding Deadlocks
It is possible under some scenarios to encounter a database deadlock. These
scenarios most often entail multiple database sessions accessing the same table
data on the same server. For example:

• If an application has two or more database sessions accessing the same table on
the same server (but different rows), a deadlock may occur on a database that
uses page-level locking (Sybase Adaptive Server 11.5, for example).

• If an application has two or more database sessions that are not only accessing
the same table on the same server, but also the same rows, then a deadlock may
occur on a database that uses row-level locking (Oracle, for example).

The fundamental basis for the deadlock is that the database cannot detect that
separate iPlanet UDS sessions are part of the same transaction. These scenarios
may result in deadlocks, whether the database sessions originate from one or more
clients, from one or more iPlanet UDS transactions, or from one or more partitions
(or from multiple applications).

You can usually write an application so as to avoid deadlocks. Depending on the
requirements of the application, the following hints may be useful:

• Use a single database session to access data. Multiple requests within the same
transaction and same database session do not block.

• When using multiple database sessions, try to ensure that each session accesses
different tables.

• When using multiple database sessions and accessing the same data, an
application should minimize contention at the database level by synchronizing
the invocation of transactions. This can be accomplished by using an iPlanet
UDS transaction lock to block and defer other transactions at the iPlanet UDS
level.

NOTE Starting with Adaptive Server 11.9, Sybase provides row-level
locking.

Transactions and Database Sessions

150 iPlanet Unified Development Server • Accessing Databases • August 2001

• When possible, narrow the scope of each transaction to encompass the fewest
SQL statements using a single database session. This minimizes the possibility
of deadlock, since locks held are immediately released upon completion of the
explicit transaction.

If a database deadlock occurs, the database will raise a DBDeadlockException to
the iPlanet UDS application. Your application should be prepared to handle this
potential exception.

Transactions and Database Sessions
A single iPlanet UDS transaction can access more than one database session, more
than one database, or more than one database resource manager. iPlanet UDS acts
as the transaction coordinator for all iPlanet UDS transactional objects,
coordinating all commits and aborts.

For example, if a transaction accesses two resource managers and one resource
manager aborts the transaction, iPlanet UDS notifies the other database that the
transaction is aborted. Likewise, when the transaction commits, iPlanet UDS
signals all resource managers to commit the transaction.

While iPlanet UDS coordinates transaction commit across all of the sessions using a
two-phase commit protocol, the iPlanet UDS database interface cannot currently
use DBMS two-phase commit mechanisms. The iPlanet UDS transaction manager
will commit all database transactions first, and then the recoverable object
transactions. This means that you should plan for failures of multi-session commits
accordingly.

Multitasking in a Database Session
If you want to use the same database session in multiple concurrent tasks, all the
tasks must be in the same transaction. You can add a task to a transaction in
progress in one of two ways:

• Use the dependent option on the start task statement.

• Use the Join method on the TransactionHandle class.

See the TOOL Reference Guide for more information on transactions and
multitasking

Transactions and Database Sessions

Chapter 6 Transactions 151

iPlanet UDS Support for Two-Phase Commit
iPlanet UDS support for two-phase commit (2PC) is limited by general database
vendor implementation restrictions on multiple-vendor, two-phase commit.
iPlanet UDS guarantees two-phase commit with respect to iPlanet UDS objects;
however, iPlanet UDS only guarantees two-phase commit with respect to database
data if a third-party transaction monitor, like Encina or Tuxedo, is used in
conjunction with iPlanet UDS. (See “Two-Phase Commit with Multiple Database
Vendors” on page 153.)

What is two-phase commit? The purpose of two-phase commit is to allow a
transaction to span multiple databases, regardless of vendor, with a guarantee that
the transaction is committed only after all databases involved in the transaction
guarantee that the commit will succeed. For example, the following “code” would
use two-phase commit:

iPlanet UDS two-phase commit implementation The main purpose of
two-phase commit in a distributed transaction manager is to enable recovery from
a failure that occurs during the actual transaction commit processing. The iPlanet UDS
transaction manager was built with this in mind, but only with respect to the
“volatile” (or “in memory”) objects that iPlanet UDS manages. What this implies is
that because iPlanet UDS stores objects in memory and not persistently on disk, the
requirement of recovery for these objects is significantly reduced.

In the iPlanet UDS distributed two-phase commit model, tasks and messages carry
along with them transaction identification and, during commit processing, every
distributed participant is polled for its availability to commit the transaction. If an
application saves persistent data to disk during a distributed iPlanet UDS
transaction, that application should address the potential for failure during the
transaction commit processing.

begin transaction
sql update ... (on dbms 1);
sql update ... (on dbms 2);
end transaction;

Transactions and Database Sessions

152 iPlanet Unified Development Server • Accessing Databases • August 2001

The iPlanet UDS prepare phase polls each site (confirming a communications link
with each distributed participant) but no prepare request goes to the database.
When all sites are ready to commit, iPlanet UDS expects that the commit will complete
successfully. Then, at this point, called the “commit window,” three scenarios can
occur:

• All participating servers commit successfully. The distributed transaction is
committed, and all data is consistent.

• One participating server terminates (with data not yet committed) but no other
participating server has committed its unit of work. In this scenario, iPlanet
UDS will abort the transaction, and the data will not be inconsistent. The entire
transaction is, in effect, rolled back.

• One participating server terminates (with data not yet committed) while a
second participating server has already committed its unit of work. In this
scenario, the outcome of the distributed transaction is inconsistent data.

Only the last scenario is cause for concern. Without two-phase commit, if one
server fails during the process of committing (that is, while TOOL is executing the
end transaction clause), there is no guarantee that the other server(s) will abort,
as they might have already committed. Therefore, if a transaction is being
committed and it accesses multiple database sessions, multiple databases, or
multiple DBMS resource managers and there is a failure during the commit
window, your data might be inconsistent. You should take this into consideration
when planning your transactions.

Mission critical applications that require distributed transactions can anticipate the
third “commit window” scenario in a number of ways:

• Utilize a TP monitor such as Encina (see below)

• Log distributed updates in an auxiliary database table (much like a distributed
transaction monitor's transaction-state log). While this approach has been the
traditional banking application solution prior to the commercial availability of
products like Encina, it is somewhat complex. Nor is it generic enough so as
not to have to change code every time a new table or database site is
introduced into the data model.

• Rearrange the data model in order to eliminate the need for distributed
transactions. This is usually only a temporary solution (with smaller numbers
of active clients) and cannot be applied to complex legacy systems.

Transactions and Database Sessions

Chapter 6 Transactions 153

With the advent of the X/Open distributed transaction architecture (the XA
Interface) more database vendors have found that by complying with the XA
interface they can plug their database-specific implementation of transaction into a
globally managed transaction, with commit and abort processing being conducted
by a central coordinator. Of course, the overall transaction manager coordinating
the global transaction must itself, persistently record the state of the different
distributed branches participating in the transaction. A significant portion of the
functionality provided by products such as Encina is to provide exactly this global
transaction management.

Two-Phase Commit with One Database Vendor
You can use a true implementation of two-phase commit in an iPlanet UDS
application if both of the following conditions are true:

• The distributed transaction is between two or more databases from the same
vendor.

• The distributed transaction is initiated by the SQL statements issued within
one database, which in turn calls another database to complete the transaction.

In this scenario, the two-phase commit protocol of the RDBMS itself manages the
transaction across the multiple databases; iPlanet UDS could be considered
“outside” of the actual distributed transaction.

Two-Phase Commit with Multiple Database Vendors
Two-phase commit with multiple databases, except for the limited case above,
requires the use of Encina with iPlanet UDS (see Integrating with External Systems).
To use Encina you must use an XA-compliant TP monitor (Encina) along with the
two XA-compliant database systems.

Notes on Vendor-Specific Transaction Handling

154 iPlanet Unified Development Server • Accessing Databases • August 2001

Notes on Vendor-Specific Transaction Handling
Generally, you should avoid using explicit database transaction statements, as
iPlanet UDS starts database transactions for you. And, as described in “SQL
Execute Immediate Statements with DDL” on page 142, you should only execute
SQL DDL statements individually, in explicit independent transactions. However,
some transaction control statements are allowed.

DB2
DB2’s prepared SQL statements do not persist across transaction boundaries.
iPlanet UDS will automatically re-prepare TOOL statements as required. To
minimize this overhead, you should use multi-statement, explicit transactions.

Informix
The iPlanet UDS interface to Informix IDS Server supports connections to each type
of Informix database:

• a non-ANSI database with logging

• a non-ANSI database without logging

• an ANSI database

While Informix handles transactions and logging differently in these databases,
iPlanet UDS transparently accesses any database, and issues (or ignores)
transactional SQL statements as appropriate for that database type.

NOTE iPlanet UDS does not support the use of autocommit. Do not use the
statement set autocommit on within a sql execute immediate
statement.

NOTE NOT WAIT is the default for Informix’s SET LOCK MODE; any lock
conflicts encountered will return an error immediately.

Notes on Vendor-Specific Transaction Handling

Chapter 6 Transactions 155

Rdb
If you use multiple database sessions within an iPlanet UDS transaction, take care
to avoid locking conflicts between the sessions, because Rdb does not allow for the
sharing of locks within an Rdb process. This is a concern only if the sessions are
running within the same iPlanet UDS server partition.

By default, all Rdb transactions initiated through the iPlanet UDS application
interface are in “READ WRITE NOWAIT” mode.

To set an Rdb database session to a different transaction mode, you can issue a sql
execute immediate statement in your application code to issue Rdb DECLARE
TRANSACTION or SET TRANSACTION statements. Because these statements are valid
only if there is no active Rdb transaction, you must issue these statements
immediately after a TOOL begin transaction statement. For example:

Alternatively, a DECLARE TRANSACTION statement issued implicitly (outside of
a TOOL transaction) will affect the mode of a subsequent Rdb transaction, either
implicit and explicit. For example:

The sql delete statement will fail because its implicit transaction is in READ
ONLY mode.

begin transaction
sql execute immediate ’set transaction read only’;

...
end transaction;

-- Read-only SQL operations
sql delete from emp;

Notes on Vendor-Specific Transaction Handling

156 iPlanet Unified Development Server • Accessing Databases • August 2001

157

Chapter 7

Error Handling

iPlanet UDS converts all database errors into exceptions so that a single exception
handler can process all errors that occur in a set of SQL statements. This allows you
to separate error handling code from the body of a program, providing for more
readable and maintainable code.

This chapter contains a brief overview about how iPlanet UDS handles database
exceptions.

See the iPlanet UDS online help (under Native Database Errors) where you can
find, for each supported database, a mapping of native database errors to iPlanet
UDS exceptions. The online help also lists the ODBC and ISO SQL-92 mappings to
iPlanet UDS exceptions.

The Exception class reference can be found in the iPlanet UDS online help.

Types of Database Exceptions

158 iPlanet Unified Development Server • Accessing Databases • August 2001

Types of Database Exceptions
The class hierarchy for exceptions that may be returned in an iPlanet UDS database
application is shown in Figure 7-1.

Figure 7-1 The Database Exception Hierarchy

iPlanet UDS uses two general classes for database exceptions:
DBRemoteAccessException and DBResourceException.

DBRemoteAccessException class Exceptions of class DBRemoteAccessException
occur when a session cannot be initiated or a current session is no longer valid.
These types of errors are generally non-recoverable in the sense that you lose the
current transaction and session if one existed. You can recover in the sense that you
can attempt to start a new database session, or connect to a different server. Refer
to the iPlanet UDS online Help for more information on this exception class.

ErrorDesc

GenericException

ResourceException

DBResourceException RemoteAccessException

Object

DBRemoteAccessExceptionDBDeadlockException DBOperationException DBSecurityException

DBValueExceptionDBUserException DBUsageException

Types of Database Exceptions

Chapter 7 Error Handling 159

DBResourceException class Exceptions of class DBResourceException occur
when accessing a database. These types of errors are considered recoverable, since
the current transaction or session is not lost, and the application can continue after
handling the exception. See the iPlanet UDS online Help for more information on
this class.

Many common database errors result in exceptions of type DBResourceException,
such as incorrectly formed SQL statements, data constraint violations, access
violations, and so on. In fact, there are several subclasses of the
DBResourceException class as shown below:

See the iPlanet UDS online help for more information on each of these subclasses.

The iPlanet UDS online help (Native Database Errors) contains tables that map
vendor-specific errors to these exception classes. Refer to the table for your
database vendor to become familiar with how errors generated in your database
map to the various iPlanet UDS exceptions.

Exceptions Cause

DBDeadlockException A database deadlock.

DBOperationException An error in the runtime operation of a SQL statement.

DBSecurityException A security violation.

DBUsageException Incorrect TOOL program use for the (particular) database:
syntax errors, attempt to use non-existent tables, and so on.

DBUserException An error generated by a user database procedure or trigger.

DBValueException An error in assigning a value, either through conversion,
truncation, constraint, or arithmetic error.

Types of Database Exceptions

160 iPlanet Unified Development Server • Accessing Databases • August 2001

161

Appendix A

Database Example Applications

iPlanet UDS provides a number of example applications that illustrate how to use
the features described in this manual. This appendix provides instructions on how
to install the examples, a brief overview of the applications to help you locate
relevant examples, and a section describing each example in detail. Typically, you
run an example application, then examine it in the various iPlanet UDS Workshops
to see how it is implemented. You can modify the examples if you wish.

How to Install iPlanet UDS Example Applications
You can access the iPlanet UDS example applications only if they have been
installed into your central repository or into a private local repository during
installation of iPlanet UDS, or if you have imported them into your repository.

The examples are located in subdirectories under the
FORTE_ROOT/install/examples directory. The example applications are stored as
.pex files. If they are not already installed in your repository, import them by
including the tstapps.fsc script in Fscript. The tstapps.fsc script is located in the
FORTE_ROOT/install/examples/install directory. Bring up Fscript in standalone
mode and issue the following commands:

This will import most of the example applications and quit Fscript. Note that
certain highly specialized examples are not automatically imported by tstapps.fsc.

fscript> UsePortable
fscript> SetPath %{FORTE_ROOT}/install/examples/install
fscript> Include tstapps.fsc

Overview of Database Example Applications

162 iPlanet Unified Development Server • Accessing Databases • August 2001

To run an application, select it in the Repository Workshop’s plan browser and
then click on the Run button.

If you want to remove all the examples from your workspace, you can do so by
including the remprj.fsc script in Fscript. Bring up Fscript in standalone mode and
issue the following commands:

This will exclude all the example applications and quit Fscript.

Overview of Database Example Applications
This section provides an overview of the database example applications. For a
complete list of the iPlanet UDS example applications, see A Guide to the iPlanet
UDS Workshops.

You can find the .pex files for the examples in the directory
FORTE_ROOT/install/examples/database. For the complete description of an
individual application, see “Application Descriptions” on page 163, which lists the
applications in alphabetical order.

GenericDBMS Library Examples

fscript> UsePortable
fscript> SetPath %{FORTE_ROOT}/install/examples/install
fscript> Include remprj.fsc

Example Description

DynamicDataAccess Shows how to build dynamic SQL queries.

DynamicSQL Illustrates the use of the GenericDBMS classes with a command
line utility.

QueryMgr Acts as a server for DynamicDataAccess.

WinDB Illustrates the use of GenericDBMS classes in a window-based
application.

Application Descriptions

Appendix A Database Example Applications 163

Application Descriptions
This section lists the example applications in alphabetical order. Each example has
five sections describing it.

The Description section defines the purpose of the example, what problem it solves,
and what TOOL features and iPlanet UDS classes it illustrates.

The Pex Files section gives you the subdirectory and file names of the exported
projects. The examples are in subdirectories under the
FORTE_ROOT/install/examples directory. You can import example applications
individually if you wish. When multiple .pex files are listed, there are supplier
projects in addition to the main project. You will need to import all the files listed
to run the application. Import them in the order given so that dependencies will be
satisfied.

The Mode section indicates whether the application can be run in either standalone
or distributed mode, or whether it must be run in distributed mode.

The Special Requirements section identifies whether you need a database connection,
an external file, or any other special setup.

Finally, the To Use section tells you how to step through the application’s functions.

See the iPlanet UDS System Management Guide if you need directions to set up an
iPlanet UDS server. See Chapter 3, “Making a Database Connection” if you need
information on how to make a connection to a database. The database examples
run against either Sybase or Oracle.

DynamicDataAccess
Description DynamicDataAccess lets you construct ad hoc SQL queries. The data
fields used to display the data and the text graphics used for labels are created at
runtime to match the columns in the dynamic query.

Pex Files database/querymgr.pex, database/dda.pex.

Mode Distributed only.

Special Requirements Database connection. The files artist.dat and painting.dat
must be located in FORTE_ROOT/install/examples/database.

Application Descriptions

164 iPlanet Unified Development Server • Accessing Databases • August 2001

➤ To use DynamicDataAccess

1. Before running DynamicDataAccess, open the Project Workshop for the
QueryManager project.

2. Open the DBResourceMgr service object properties dialog. Make sure the
Database Manager value is correct for your database connection.

3. Run DynamicDataAccess. You will be prompted for a User Name, Password,
and Database. You must provide all three values.

This application will create its own tables and data in the database you
selected. The data is read in from the files
FORTE_ROOT/install/examples/database/artist.dat and painting.dat.

4. Choose Select from the radio list to select from existing artist and painting
values. Choose Insert to add your own data. Follow the prompts in the Insert
and Select Windows to construct SQL statements and view the results.

DynamicSQL
Description DynamicSQL is a command line utility illustrating the use of the
GenericDBMS Library classes. It lets you perform standard SQL database access
commands.

Pex Files frame/utility.pex, database/dynsql.pex.

Mode Distributed only.

Special Requirements Database connection, table creation (if necessary).

➤ To use DynamicSQL

1. You need an environment that has a node with a resource manager. Before
running DynamicSQL, open the DynamicSQL Project Workshop. Open the
AnyDBMgr service object property sheet. Make sure the Database Manager
value is correct for your database connection.

Application Descriptions

Appendix A Database Example Applications 165

2. DynamicSQL does not create any tables. You must either create them ahead of
time, or use an existing test table. If you need to create a test table, the files
maketst.syb and maketst.ora are provided in
FORTE_ROOT/install/examples/database. If you will be using maketst.syb,
edit the first line to use an existing database. For example, create a database
called testapps, then edit maketst.syb to start with:

use testapps

Use the standard mechanism for redirecting the maketst file to load the data
into your database.

3. Run DynamicSQL. You will need to know the name of the database you will
use, and a userid and password. Make sure that the iPlanet UDS Launch Server
- Console window is visible. It is this application’s only window.

4. At the prompts enter your database name, then your userid and password.
You should then see a SQL> prompt. If you used the maketst file, enter:

SQL> select * from alltypes;

5. You should see the data displayed. Then enter:

6. To end your session, type:

SQL> exit

7. The program will print out “Disconnecting,” but you will need to return the
focus to the iPlanet UDS Workshop yourself.

WinDB
Description WinDB uses the GenericDBMS Library classes. It lets you perform
standard SQL database access commands. It also illustrates how to send and
retrieve Binary Data (BLOBs) from a database, and how to read and write
serialized data to a file.

SQL> select * from alltypes where intcol = :a;
Enter values for the following placeholders:
a:> 1
Reexecute? (Y/N)y
Enter values for the following placeholders:
a:> 5
Reexecute? (Y/N)y

Application Descriptions

166 iPlanet Unified Development Server • Accessing Databases • August 2001

Pex Files database/windb.pex.

Mode Distributed only.

Special Requirements Database connection. The files artist.dat and painting.dat
must be located in FORTE_ROOT/install/examples/database.

➤ To use WinDB

1. You need an environment that has a node with a resource manager.

Before running WinDB, open the WinDB Project Workshop, and open the
MySession service object. Provide the correct values for your database in the
Database Manager, Database Name, User Name, and User Password fields,
then click OK. WinDB creates its own tables in the database you specified. The
data is provided from files in the FORTE_ROOT/install/examples/database
directory, called artist.dat and painting.dat.

2. Start the application. In the radio list, Table is selected by default. Click on the
Make Database button. The following painter names are valid:

❍ Leonardo da Vinci

❍ Henri Rousseau

❍ Edgar Degas

❍ Jaspar Johns

❍ Pablo Picasso

3. Enter a valid painter name and click the Select button. (Note that additional
painting data is available for Edgar Degas and Leonardo da Vinci only.)

4. Enter a valid first letter of a painter name followed by% (such as E%), and click
the Select button.

5. Enter an invalid painter name and click the Select button.

6. Click on the Drop Database button.

7. Now select Blob from the radio list, click on the Make Database button, and
make the same selections as you did for Table. Click the Drop Database button
when you’re done.

8. Now select File from the radio list, and click on the Make Database button. This
will actually create a file to which objects are written. This time, when you
select artists, you must type their entire name. Again, click the Drop Database
button when you’re done.

167

Appendix B

TOOL SQL Statement Reference

This appendix is the primary reference for the TOOL SQL statements:

• sql close cursor

• sql delete

• sql execute immediate

• sql execute procedure

• sql fetch cursor

• sql insert

• sql open cursor

• sql select

• sql update

These statements are a subset of all TOOL statements. The TOOL Reference Guide
provides complete reference regarding TOOL language components and usage,
and all other TOOL statements.

In general, any operation you can perform using TOOL SQL you can also perform
using a GenericDBMS class. However, for all databases except Sybase, you must
use the TOOL SQL statement execute procedure to execute a database procedure;
you cannot execute procedures using classes in GenericDBMS.

Note on Vendor-Specific SQL Extensions

168 iPlanet Unified Development Server • Accessing Databases • August 2001

Note on Vendor-Specific SQL Extensions
You can include vendor-specific extensions to the ANSI SQL syntax in your TOOL
SQL statements. However, if you include vendor-specific clauses in TOOL
statements, your code will be valid only for database systems that support that
particular syntax extension.

You can make vendor-specific code conditional upon the type of database for the
current database session; see “Using Conditional TOOL for Vendor-Specific Code”
on page 96 for information on using vendor-specific extensions in the iPlanet UDS
SQL statements.

A small number of vendor-specific database features are explicitly not supported;
see “Unsupported Database Features” on page 35.

Because the iPlanet UDS parser does not explicitly recognize vendor extensions, it
cannot verify whether they are syntactically or semantically correct. Also, TOOL
code that compiles may run without exception against one database but not against
another, due to different support for the SQL language.

SQL Close Cursor
The sql close cursor statement closes a cursor that was opened with the sql
open cursor statement.

Syntax
sql close cursor cursor_reference;

Example
sql close cursor dbcursor;

Description
After a cursor is closed, you cannot use it again until you open it. If you close a
cursor before all rows have been fetched, the remaining rows are not fetched.

SQL Delete

Appendix B TOOL SQL Statement Reference 169

To specify the cursor you wish to close, you must specify a currently open cursor
using a cursor reference (see “Cursor Reference” on page 184).

SQL Delete
The sql delete statement removes rows from a table.

Syntax
sql delete from table_name

[where {search_condition | current of cursor_reference}]
[on session {session_object_reference | default}];

or

{numeric_attribute | numeric_variable} = (sql_delete_statement);

Example
sql delete from artist_table where born < 1500;

Description
The sql delete statement removes the specified rows from a database table. The
where clause identifies the particular rows to be deleted. If you do not include the
where clause, all rows in the table are deleted.

Return Value
If the sql delete statement succeeds, it returns a numeric value indicating the
number of rows that were deleted. A value of 0 indicates that no rows were deleted
because a matching row was not found. A value of 1 or more indicates the number
of rows that were deleted.

To assign the return value to a numeric variable or attribute, you must enclose the
entire sql delete statement in parentheses. See the TOOL Reference Guide for
information about using SQL statements in numeric expressions.

If the sql delete statement fails, iPlanet UDS raises an exception. The return
value does not indicate whether there was an error.

SQL Delete

170 iPlanet Unified Development Server • Accessing Databases • August 2001

Table Name
The table name identifies the database table that contains the rows to be deleted.
The table must be available to the database session used for the sql delete
statement. See “On Session Clause” below.

Where Clause
The optional where clause specifies the rows to be deleted. If you omit the where
clause, all rows in the table are deleted. If you include a where clause, you use
either a search condition, or, if your particular database system permits it, a cursor.

The search condition for the where clause specifies a condition that deleted rows
must meet. If the condition is TRUE for a row, the row is deleted. If the condition is
FALSE for a row, the row is retained.

The search condition is the same as the search condition in the where clause of the
sql select statement (see “SQL Select” on page 185). If you use an iPlanet UDS
variable or attribute in the where clause, you must preface it with a colon to
distinguish it from a database name. The following example illustrates:

name : TextData = new(value = ‘Leonardo da Vinci’);

sql delete from artist_table where name = :name;

For databases that allow positioned update, you can use a cursor with the sql
delete statement to delete the single row to which the cursor is pointing (that is,
the last row fetched). To identify the cursor, you must use a cursor reference. The
cursor must be defined for the table specified in the delete statement and the
cursor must include the for-update clause.

Before you can use a cursor with the sql delete statement, you must use the sql
open cursor statement in an explicit transaction. Then you use the sql fetch
statement to position the cursor on the row you want to delete. Finally, you use the
where current of clause in the sql delete statement with a reference to that
cursor. Note that when you use the where current of clause, you cannot use the
on session clause, because iPlanet UDS uses the session associated with the
cursor when the cursor was opened.

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

SQL Execute Immediate

Appendix B TOOL SQL Statement Reference 171

SQL Execute Immediate
The sql execute immediate statement executes one SQL statement.

Syntax
sql execute immediate
{string_literal | string_variable | attribute | TextData_reference}
[on session {session_reference | default}];

or

{numeric_attribute | numeric_variable} =
(sql_execute_immediate_statement);

Example
sql execute immediate ‘create table xyz (co1 int)’

on session dbsess;

Description
The sql execute immediate statement executes a single SQL statement that you
enter directly as a literal string or that is stored in an iPlanet UDS variable or
attribute.

The sql execute immediate statement allows you to execute SQL statements that
you cannot include directly in a method or that are constructed at runtime. For
example, you can use sql execute immediate to execute a create table or create
index statement.

The literal string can be any SQL statement that does not return results. Be sure to
enclose the string in single quotes.

You can use either a variable or attribute of type string or TextData to specify the
SQL statement. If you use a string, its value must equal a single SQL statement. If
you use a TextData object, its Value attribute must be set to a single SQL statement.

SQL Execute Immediate

172 iPlanet Unified Development Server • Accessing Databases • August 2001

The sql execute immediate statement can be used to issue data definition
language (DDL) statements, such as create table. Database systems differ in how
they treat DDL statements within a transaction. They may:

• permit DDL statements within multi-statement transactions

• prohibit DDL statements within multi-statement transactions

• cause an implicit commit of the transaction in progress.

The following table summarizes the behavior of each iPlanet UDS-supported
DBMS:

If your application must be portable across databases, do not put execute
immediate statements containing DDL in transactions that contain more than one
SQL statement. Instead, enclose each DDL statement in its own explicit transaction
block.

Return Value
If the sql execute immediate statement succeeds, it returns a numeric value
indicating the number of rows that were affected. A value of 0 indicates that no
rows were affected. A value of 1 or more indicates the number of rows that were
affected.

Database Interaction between a DDL statement and a transaction

DB2 Allows one or more DDL statements in a multi-statement
transaction.

Informix Allows one or more DDL statements in a multi-statement
transaction.

Ingres Allows one or more DDL statements in a multi-statement
transaction.

ODBC Uses the semantics of the underlying database.

Oracle Use of a DDL statement automatically commits the current
transaction.

Rdb Allows one or more DDL statements in a multi-statement
transaction.

Sybase Allows only one DDL statement in a transaction.

SQL Execute Procedure

Appendix B TOOL SQL Statement Reference 173

To assign the return value to a numeric variable or attribute, you must enclose the
entire sql execute immediate statement in parentheses. See the TOOL Reference
Guide for information about using SQL statements in numeric expressions.

If the sql execute immediate statement fails, iPlanet UDS raises an exception.
The return value does not indicate whether there was an error.

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

SQL Execute Procedure
The sql execute procedure statement executes a database procedure.

Syntax
sql execute procedure procedure_name

[([input | output | input output] parameter = expression
[, [input | output | input output] parameter = expression]...)]
[on session {session_object_reference | default}];

or

DataValue_reference = (sql _execute_procedure_statement);

Example

empid : integer = 12345;
salaryIncrement : integer = 15000;
-- Passing parameters by position.
sql execute procedure updateSalary(empid, salaryIncrement);

SQL Execute Procedure

174 iPlanet Unified Development Server • Accessing Databases • August 2001

Description
The sql execute procedure statement executes a database procedure using the
parameter values you specify. If your database supports it, the procedure can use
output parameters to return values to your iPlanet UDS application.

Return Value
If the procedure produces a return value, you can assign the return value to an
iPlanet UDS variable or attribute. The sql execute procedure statement returns
a DataValue object reference, which is the return value for the procedure. The
actual class of the DataValue object corresponds to the return type of the
procedure.

The variable or attribute to which you assign the return value must be a DataValue
class, and the type must be compatible with the data type of the return value (see
Chapter 4, “Working with Data Types” for information about data type
compatibility). When you assign the return value to an attribute or variable, you
must enclose the sql execute procedure statement in parentheses. See the TOOL
Reference Guide for information about using SQL statements in expressions.

Note that the return value for this statement does not indicate whether there was
an error. If the statement fails, iPlanet UDS raises an exception.

Procedure Name
The procedure name identifies the database procedure to be executed. This can be
any procedure available to the database session associated with the execute
procedure statement (see “On Session Clause” below).

-- Passing parameters by name.
sql execute procedure updateSalary(AddToSalary = salaryIncrement,
 Id = empid);

NOTE You must use this TOOL SQL statement to execute database
procedures for all databases except Sybase; you cannot execute
procedures using classes in the GenericDBMS Library. However, to
process results from a Sybase stored procedure, you must use
methods in the GenericDBMS classes; you cannot use this TOOL
statement. See “Executing Prepared Queries” on page 120 for more
information.

SQL Execute Procedure

Appendix B TOOL SQL Statement Reference 175

Parameter List
The optional parameter list provides input values for the procedure. If your
procedure is defined with output or input-output parameters, you can also use this
parameter list to specify variables or attributes to store the output values. Although
the input, input-output, and output parameters for database procedures appear to
be the same as the parameters for iPlanet UDS methods, the following differences
apply:

• the database contains and controls their definitions

• for database parameters, you must specify whether they are input or output at
the point of call because iPlanet UDS does not have the parameter definition

• you must make sure that the call matches the original parameter definition
because the iPlanet UDS compiler cannot check this

You must specify values for all required parameters (that is, parameters that do not
have default values). You do not need to specify values for optional parameters
(parameters having default values). Any parameter that you omit uses its default
value.

To specify an input parameter value with an optional name, enter the name of the
parameter as specified in the procedure declaration followed by the value. The
value can be any expression that is compatible with the data type of the parameter
(see Chapter 4, “Working with Data Types” for information about data type
compatibility). The input key word before the parameter name is not required,
because this is the default.

To specify an output or input-output parameter value, use the output or input
output options to identify the kind of parameter. Then enter the name of the
parameter as specified in the procedure declaration followed by the iPlanet UDS
variable or attribute to specify the input value (for input-output parameters) and
contain the output value (for both input-output and output parameters). The data
type of the variable can be any simple type or DataValue type that is compatible
with the data type of the parameter.

Because iPlanet UDS cannot verify the parameter names or types at compile time,
you get a runtime error if they are incorrect. You will also get a runtime error if you
try to use the input output or output options and the parameter was not
originally declared for that purpose.

NOTE Do not use colons to identify the iPlanet UDS names in the
parameter list in the sql execute procedure statement.

SQL Fetch Cursor

176 iPlanet Unified Development Server • Accessing Databases • August 2001

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

Exceptions
Any subclass of DBResourceException.

SQL Fetch Cursor
The sql fetch cursor statement allows you to fetch the next row, the next n
rows, or the entire result set.

Syntax
sql fetch [[next {integer_constant | :integer_varName}] from]
cursor cursor_reference
[into {:object_reference | simple_list | array_reference}];

or

{numeric_variable | numeric_attribute} = (sql_fetch_cursor_statement);

Example
sql fetch cursor dbcursor into :a;

Description
If you fetch one row, sql fetch cursor moves the cursor to the next row in the
result set and assigns the values in the row to the specified attributes or variables.

SQL Fetch Cursor

Appendix B TOOL SQL Statement Reference 177

If you fetch multiple rows, the sql fetch cursor statement fetches either the
entire result set or the specified number of rows into the iPlanet UDS array
specified in the into clause. Fetching multiple rows is more efficient than fetching
rows one at a time. In addition, if array support exists in the DBMS, iPlanet UDS
takes advantage of this.

Before you can use sql fetch, you must first open the cursor using the sql open
cursor statement. After you open the cursor, the cursor is positioned before the
first row in the result set.

If you are fetching rows one at a time, you can use the sql fetch statement in a
loop to process each row in the result set. The first time you use the sql fetch
statement, iPlanet UDS moves the cursor to the first row in the result set. Then with
each successive sql fetch statement, iPlanet UDS moves the cursor forward one
row, until it fetches the last row in the result set. An example follows:

If you use the optional key word next, you can specify that a given number of rows
should be fetched, and you must use an array reference in the into clause.

-- Assume that the following cursor is declared.
cursor artist_cursor (name : string)
begin
select name, country, born, died, school, comments
from artist_table
where name LIKE :name;

end;

-- The following code will use the cursor.
dbsess : DBSession = ... more here ...
dbcursor : artist_cursor;
a : Artist = new;
painters : Array of Artist = new;
sql open cursor dbcursor (‘%’) on session dbsess;
while (sql fetch cursor dbcursor into :a)

 > 0 do
-- Since ‘a’ will be reused, make a new one after append.
painters.AppendRow(a);
a = new;

end while;
sql close cursor dbcursor on session dbsess;
-- Now print them out
for x in painters do
x.WriteToLog();

end for;

SQL Fetch Cursor

178 iPlanet Unified Development Server • Accessing Databases • August 2001

If the value following the next key word (say n) evaluates to a positive number, at
most n rows are fetched from the cursor. If less than n rows remain, they are all
fetched. If n evaluates to 0, all remaining rows are fetched from the cursor. If n
evaluates to less than 0, no rows are fetched. You can use the Array.Items attribute
to find out how many rows were fetched and put into the array.

An example showing the use of the next keyword follows:

The sql fetch cursor statement is never enclosed in an implicit transaction. The
behavior of a sql fetch cursor statement executed outside of an explicit TOOL
transaction depends on when the cursor was opened. If the cursor was opened in
an explicit TOOL transaction, then it was closed at the end of the transaction and
any fetch outside the transaction in which it was opened will fail. If the cursor was
opened outside of an explicit transaction, the result set for the cursor was buffered
and the fetch statement will fetch the next row from the buffer.

Return Value
The sql fetch cursor statement returns a numeric value indicating the number
of rows that were fetched. A return value of one indicates that iPlanet UDS
successfully fetched one row. A return value of greater than one indicates that you
fetched the entire result set into an array, and the number indicates the total
number of rows in the array. A return value of zero indicates that there are no more
rows left in the result set.

To assign this return value to a numeric variable or attribute, you must enclose the
entire sql fetch cursor statement in parentheses. See the TOOL Reference Guide
for information about using SQL statements in numeric expressions.

Note that the return value for this statement does not indicate whether there was
an error. If the statement fails, iPlanet UDS raises an exception.

dbsess : DBSession;
rows : integer = 1;
dbcursor : artist_cursor;
painters : array of artist = new;

sql open cursor dbcursor (’%’) ON SESSION dbsess;
while (rows > 0) do
 sql fetch next 10 from cursor dbcursor into :painters;
 rows = painters.Items;
 -- do something with painters ...
end while;

SQL Fetch Cursor

Appendix B TOOL SQL Statement Reference 179

Cursor
To identify the cursor, you must use the cursor reference. This must be a cursor
that you have opened with the sql open cursor statement.

Into Clause
The into clause identifies the attributes and/or variables in which you want to
store the column values. You can specify either a single object reference, or a list of
simple data items or DataValue objects. Note that when you use iPlanet UDS
names in a SQL statement, you must precede each name with a colon.

You can reference an existing object in which to store the column values. The
attributes in the object must correspond by name with the columns in the result set.
They must also have compatible data types. If there are any attributes in the object
that have class types (other than DataValue types), iPlanet UDS ignores these, even
if they have matching names.

If there are more columns in the row than attributes in the object, the extra columns
are ignored (you cannot access them from TOOL). If there are more attributes in the
object than columns in the row, the extra attributes retain the values they had
before the sql fetch statement.

The object must already have been created, and any attributes that are DataValue
objects must be created before the sql fetch statement.

Note that if you wish to fetch the values from a table into an object whose attribute
names do not match the column names, you can use the column list of the select
statement for the cursor to specify correlation names for the columns.

If the object you reference is an array object, the sql fetch statement fetches either
the entire result set in the cursor or the number of rows specified in the next clause
into the array. If the array reference is NIL, iPlanet UDS creates a new array object
and adds the rows in the result set to the array. If the array reference is for an
existing array object, iPlanet UDS replaces the values of the attributes in each of the
array rows with the values from the result set. If there are more rows in the result
set than in the original array, iPlanet UDS adds the remaining rows as new rows. If
there are more rows in the array, iPlanet UDS deletes the extra array rows.

The list of simple attributes and/or variables can include any attributes or
variables with a simple data type or with a subclass of the DataValue class (such as
TextData, IntegerNullable, or DateTimeData). The order of the attributes and/or
variables must match the order of the columns in the result set, and they must have
compatible data types (see Chapter 4, “Working with Data Types” for information
on data type compatibility). The syntax is:

variable | attribute [, variable | attribute]...

SQL Insert

180 iPlanet Unified Development Server • Accessing Databases • August 2001

If you include DataValue objects on the list of simple data items, you must create
them before using the sql fetch statement.

In order to return null values from the database, you must assign the value to a
nullable DataValue object. If you do not use a nullable DataValue object, you will
get a runtime exception. Use the IsNull method to check if there is a null value. See
the iPlanet UDS online Help for information on the nullable DataValue classes.

SQL Insert
The sql insert statement adds a new row to a database table.

Syntax
sql insert into table_name [(column [, column]...)]

{values ({object_reference | simple_list}) | select_statement}
[on session {session_object_reference | default }];

or

{numeric_attribute | numeric_variable} = (sql_insert_statement);

Example

Description
The sql insert statement adds a new row to the specified table. You can either
provide a list of values to use for the new row or you can use a select statement to
get the values from another table. If you wish to add a set of rows stored in an
iPlanet UDS array, you can specify an array object in the values clause.

a : Artist = new ... fill in data...;
sql insert into artist_table
(name, country)
values (:a.name, :a.country)
on session dbsess;

SQL Insert

Appendix B TOOL SQL Statement Reference 181

Return Value
The sql insert statement returns a numeric value indicating the number of rows
that were inserted. A value of zero indicates that no rows were inserted. A value of
one indicates that one row was inserted. If you are inserting an set of rows stored in
an iPlanet UDS array, the return value indicates the total number of rows added to
the table.

To assign this return value to any numeric variable or attribute, you must enclose
the entire sql insert statement in parentheses. See the TOOL Reference Guide for
information about using SQL statements in numeric expressions.

Note that the return value for this statement does not indicate whether there was
an error. If the statement fails, iPlanet UDS raises an exception.

Table Name
The table name identifies the database table to which you wish to add a new row.
This can be any table available from the database session that you are using with
the sql insert statement.

The Column List
The column list identifies the columns for which you are providing values. Any
columns that you do not include on this list will be set to their default values. If you
are specifying the insert values with a list of simple variables and attributes, or
with a select statement, the column list must match by position with the insert
values. If you are specifying the insert values with an object reference, the column
list must match the attributes in the object by name.

Specifying the Insert Values
You can specify the values for the new row either by using the values clause to
enter a list of values or by using an sql select statement to select the values from
another table.

The values clause provides the values to use for the new row. You can use a single
object reference or a list of variables and attributes.

You can reference an existing object to provide the column values. The attributes in
the object must correspond by name with the columns in the table (or the columns
you specified in the column list). They must also have compatible data types. Any
attributes that do not have simple data types or DataValue class types are ignored.

If you provided a column list for the statement, any attribute names that are not
also on the column list will be ignored.

SQL Open Cursor

182 iPlanet Unified Development Server • Accessing Databases • August 2001

By specifying an array object in the values clause, you can insert an entire set of
rows with a single sql insert statement. iPlanet UDS also uses any underlying
optimizations that may be provided by a specific vendor. To match the attributes in
the array rows with the columns in the table, iPlanet UDS uses name matching as
described above for a single object.

The list of simple attributes and/or variables can include any attributes or
variables with a simple data type or with a subclass of the DataValue class (such as
the TextData, IntegerNullable, or DateTimeData classes). The order of the
attributes and/or variables must be in the same order as the columns in the column
list of the sql insert statement, and they must have compatible data types (see
Chapter 4, “Working with Data Types” for information on data type
compatibility). The syntax is:

variable | attribute [, variable | attribute]...

The select statement selects a row from another table and uses its values for the
new row. You can use any valid select statement, without an into clause. The
columns in the select statement’s column list must be in the same order as the
columns in the table you are inserting into. If you specify an asterisk instead of a
column list, the columns in the table you are selecting from must be in the same
order as the table you are inserting into.

If the select statement selects more than one row, the sql insert statement uses
the values from the first row.

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

SQL Open Cursor
The sql open cursor statement selects rows from a database table to be used with
a database cursor.

SQL Open Cursor

Appendix B TOOL SQL Statement Reference 183

Syntax
sql open cursor cursor_reference

[(expression [, expression]...)]
[on session {session_object_reference | default}];

Example

Description
The sql open cursor statement executes the select statement associated with
the cursor and positions the cursor before the first row in the result set.

For an overview of defining and using cursors, see “Selecting Multiple Rows using
Cursors” on page 105.

When you define a cursor in the Cursor Workshop, you may define it as a read-only
or for- update cursor. The effect of using either type of cursor varies by database
vendor. One use of a for-update cursor is to use it in a “positioned update.” A
positioned update uses the where current of clause in the sql delete or sql
update statements to update (or delete) the current row. Of the database vendors,
Oracle, Ingres, Informix, and Rdb support positioned update of cursors; Sybase,
DB2 and ODBC do not support positioned updates.

As an alternative to using cursors, you can use the TOOL for statement to work
with a result set of a select statement. The for statement is a simpler way to work
with ad hoc queries; a cursor is more efficient for queries that will be re-executed,
and the cursor can be shared. See the TOOL Reference Guide for information on the
for statement.

For best performance, you should start an explicit iPlanet UDS transaction, using
the begin transaction TOOL statement, before opening a cursor. While you can use
sql open cursor outside of an explicit transaction, it is not recommended, as
explained below.

dbcursor : empcursor;
empid : integer;
sql open cursor dbcursor (empid) on session dbsess;

SQL Open Cursor

184 iPlanet Unified Development Server • Accessing Databases • August 2001

An sql open cursor statement executed outside an explicit iPlanet UDS
transaction is enclosed in an implicit transaction. Since the implicit transaction
ends before the data is actually fetched, and because most DBMSs do not allow
cursors to remain open when a transaction ends, the session automatically buffers
the data as part of executing the sql open cursor statement. This means that the
entire result set is retrieved for the cursor. Subsequent sql fetch cursor
statements retrieve results from the cursor as usual, but the data comes from the
buffer rather than from the database.

An implicit transaction for an open cursor buffers all the data and then
automatically commits the transaction in the database. The actual data in the
database corresponding to the buffered data can be concurrently updated without
any notification to your program nor any locking on the data. Concurrent updating
does not pose a problem for read-only data; however, to assure maximum
consistency for data that will be updated, you should use explicit transaction
statements.

Cursor Reference
When you work with cursors, you use a cursor reference. After a cursor is defined
in the Cursor Workshop it has a cursor name. However, to reference a cursor in a
TOOL SQL statement, you declare a cursor reference variable using the following
format:

variable_name : cursor_name

Subsequently, in SQL statements that use that same cursor, you use the cursor
reference.

Placeholder Assignment
The placeholder assignment list specifies the values for the placeholders used in
the original cursor declaration. To specify these values, simply enter a list of values.
The order of the values must match the order specified in the original cursor
definition by position. The value for a placeholder can be any expression that is
compatible with the data type of the placeholder.

NOTE Do not use colons to identify the iPlanet UDS names in the
placeholder list in the sql open cursor statement.

SQL Select

Appendix B TOOL SQL Statement Reference 185

In the following example, colons do not precede the iPlanet UDS variables empid,
ival, and fval.

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

SQL Select
The sql select statement retrieves one or more rows from one or more database
tables.

Syntax
sql select [all | distinct] {* | column_list}

[into {object_reference | simple_list}]
[from table_name [, table_name]...]
[where search_condition]
[group by column_name [, column_name]...]
[having search_expression]
[order by column [asc | desc] [, column [asc | desc]]...]
[on session {session_object_reference | default}];

or

{numeric_attribute | numeric_variable} = (sql_select_statement);

sql open cursor dbcursor (empid) on session dbsess;
integer ival = 4;
float fval = 5.2;
sql open cursor mycursor (ival, fval) on session dbsess;

SQL Select

186 iPlanet Unified Development Server • Accessing Databases • August 2001

Example

Description
The sql select statement allows you to retrieve rows from one or more database
tables, and to store the values in iPlanet UDS variables or attributes.

You can use this statement to select a single row into an iPlanet UDS object or set of
simple variables, or to select a set of rows to insert into an iPlanet UDS array. You
can also use the sql select statement in a for statement and in a cursor
declaration. (See the TOOL Reference Guide for information on using the sql
select statement in a for statement. See “Repeating a Statement Block” on
page 108 for information about using sql select in the cursor statement.)

Unless you are selecting into an array object (see “Into Clause” on page 188), if you
use sql select on its own, you can select only one row. If the result is more than
one row, no data is returned and iPlanet UDS raises a DBOperationException.

Note that this section does not contain an exhaustive list of the valid syntax for
every clause of the select statement for all databases. Generally speaking, iPlanet
UDS supports almost all standard and vendor-specific supporting clauses, such as
group by, compute, and so on.

Return Value
The sql select statement returns a numeric value indicating the number of rows
that were selected. A value of zero indicates that there was no matching row. A
value of one or greater indicates the total number of matching rows.

To assign this return value to any numeric variable or attribute, you must enclose
the entire sql select statement in parentheses. See the TOOL Reference Guide for
information about using SQL statements in numeric expressions.

Note that the return value for this statement does not indicate whether there was
an error. If the statement fails, iPlanet UDS raises an exception.

sql select * into :artist_object from artist_table
where name = :vname
on session dbsess;
i : integer;
vname, vcountry : TextData = new;
i = (sql select name, country into :vname, :vcountry from

artist_table on session dbsess);

SQL Select

Appendix B TOOL SQL Statement Reference 187

Eliminating Duplicate Rows
When you are using a for loop or a cursor to select a set of rows, or if you are
selecting into an array, you can use the distinct option to eliminate duplicate
rows from the result set. This option ensures that the statement does not return
identical rows. The all option specifies the default, which is that the statement
returns all rows that match the where clause.

Column List
You must specify which columns you wish to retrieve. You can use the asterisk (*)
to specify all columns or you can provide a list of column names. We recommend
that you do specify the column names, even if you want to retrieve them all. iPlanet
UDS can only optimize the select statement when the column names are specified
at compile time.

The syntax for the column list is:

column [alias] [, column [alias]]...

If you specify a list of simple attributes and/or variables in the into clause (see
below), these must match the columns in the column list by position. If you specify
an object in the into clause, the attributes in the object must match the columns in
the column list by name. However, if the object you wish to store the values in has
attributes with different names than the columns, you can use the optional alias in
the column list to “rename” the column.

In the following example, the Employee class has the following attributes: empId,
EmpFname, and empLname. The columns in the database table have the following
names: id, firstName, and lastName. By using aliases in the column list, the sql
select statement provides the matching names to associate each column with the
appropriate attribute in the object.

Note that the use of column renaming is subject to the restrictions of your database.
For example, in Rdb you rename columns using the ANSI SQL “AS” clause.

sql select id empId, firstName empFname,
lastName empLname from emptable

into :empObject
where id = :id;

SQL Select

188 iPlanet Unified Development Server • Accessing Databases • August 2001

Using aggregates and functions You can include aggregates and functions in the
column list. iPlanet UDS lets you use any SQL construct that is supported by your
particular DBMS. However, because aggregates and functions vary between
databases, this may mean that your SQL is not portable.

Into Clause
The into clause identifies the attributes and/or variables in which you want to
store the column values. You can specify a single object or a list of simple data
items.

You can reference an existing object in which to store the column values. The
attributes in the object must correspond by name with the columns in the column
list (or the columns in the table if you use an asterisk). They must also have
compatible data types (see Chapter 4, “Working with Data Types” for information
on data type compatibility). If there are any attributes in the object whose type is a
class (other than DataValue types), iPlanet UDS ignores these, even if they have
matching names.

If there are more columns in the column list than attributes in the object, the extra
columns are ignored (you cannot access them from TOOL). If there are more
attributes in the object than columns in the column list, the extra attributes retain
the values they had before the sql select statement.

The object must already have been created, and any attributes that are DataValue
objects must be created before the sql select statement.

If the object you reference is an array object, the sql select statement fetches the
entire result set into the array. If the array reference is NIL, iPlanet UDS creates a
new array object and adds the rows in the result set to the array. If the array
reference is for an existing array object, iPlanet UDS replaces the values of the
attributes in each of the array rows with the values from the result set. If there are
more rows in the result set than in the original array, iPlanet UDS adds the
remaining rows as new rows. If there are more rows in the array than in the result
set, iPlanet UDS deletes the extra rows.

The list of simple attributes and/or variables can include any attributes or
variables with a simple data type or with a subclass of the DataValue class (such as
TextData, IntegerNullable, or DateTimeData). The order of the attributes and/or
variables must match the order of the columns in the result set, and they must have
compatible data types (see Chapter 4, “Working with Data Types” for information
on data type compatibility). The syntax is:

variable | attribute [, variable | attribute]...

If you include DataValue objects on the list of simple data items, you must create
them before using the select statement.

SQL Select

Appendix B TOOL SQL Statement Reference 189

From Clause
The from clause identifies one or more database tables from which you wish to
select rows. You can include any tables available to the database session that you
are using with the sql select statement.

Where Clause
The where clause specifies one or more conditions that the selected row or rows
must meet. This can be any search condition that is allowed by your database
management system.

You can use iPlanet UDS attributes and variables in the search condition to specify
values. These are allowed anywhere that a literal is allowed. Be sure to precede all
iPlanet UDS names with colons to distinguish them from column names.

You can include any SQL functions in your search condition that are allowed by
your particular database. However, since supported functions vary among
database systems, this may mean that your SQL is not portable.

If you omit the where clause, the select statement returns all the rows in the table.

Group By Clause
When you are using aggregates in the column list, you can use the group by clause
to break the result set into groups. iPlanet UDS produces a summary value for each
group rather than for the result set as a whole.

The group by clause specifies the columns to use as the basis for creating the
groups. You can enter any columns from the select statement’s column list.
iPlanet UDS starts a new group each time the value changes in the specified
column.

Having Clause
The having clause is for use with the group by clause. It specifies a condition that
rows must meet in order to be included in the groups controlled by the group by
clause. The search condition for the having clause is exactly the same as the search
condition for the where clause, except that it can also include aggregates.

Order By Clause
The order by clause sorts the result set by one or more columns. You can specify
any columns from the select statement’s column list.

For each sort column you can specify an ascending sort or descending sort. If you
do not specify either, the default is ascending.

SQL Update

190 iPlanet Unified Development Server • Accessing Databases • August 2001

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

Exceptions
Any subclass of DBResourceException.

SQL Update
The sql update statement changes values in one or more rows from a database
table.

Syntax
sql update table_name set column = expr [, column = expr]...

[where {search_expression | current of cursor_reference}]
[on session {session_object_reference | default}];

or

{numeric_attribute | numeric_variable} = (sql_update_statement);

Example
sql update artist_table set born = :vborn

where name = :vname on session dbsess;

SQL Update

Appendix B TOOL SQL Statement Reference 191

Description
The sql update statement replaces the current column values in the selected row
or rows with the new values that you specify. You use the set clause to specify the
new values for the columns. You use the where clause to select the rows that you
wish to update. Without the where clause, the sql update statement changes the
specified column values in all the rows in the table.

Return Value
The sql update statement returns a numeric value indicating the number of rows
that were updated. A value of zero indicates that no rows were updated. A value of
one or more specifies the total number of rows that were updated.

To assign this return value to any numeric variable or attribute, you must enclose
the entire sql update statement in parentheses. See the TOOL Reference Guide for
information about using SQL statements in numeric expressions.

Note that the return value for this statement does not indicate whether there was
an error. If the statement fails, iPlanet UDS raises an exception.

Table Name
The table name identifies the database table that you wish to update. This can be
any table from the database session that you are using with the sql update
statement (see “On Session Clause” on page 192).

Set Clause
To specify the new values for the rows, you enter a list of column names with their
corresponding values.

The value for a column can be any expression that is compatible with the data type
of the column (see Chapter 4, “Working with Data Types” for information on data
type compatibility). If you use iPlanet UDS names in the expressions, be sure to
precede the names with colons.

Where Clause
The where clause selects the rows to be updated. You can specify a search condition
or, if your particular database system permits it, a cursor. If you omit the where
clause, all the rows in the table are updated.

The search condition for the where clause specifies a condition that the rows must
meet. iPlanet UDS tests all the rows in the table. If the condition is TRUE for a row,
the row is updated. If the condition is FALSE for a row, the row is not updated.

SQL Update

192 iPlanet Unified Development Server • Accessing Databases • August 2001

The search condition is the same as the search condition in the where clause of the
sql select statement (see “Where Clause” on page 189). If you use iPlanet UDS
variable or attribute names in the where clause, be sure to preface them with
colons. This distinguishes the iPlanet UDS names from the column names.

For databases that allow positioned update, you can use a cursor with the sql
update statement to update the single row to which the cursor is pointing (that is,
the last row fetched). To identify the cursor, you must use a cursor reference. The
cursor must be defined for the table specified in the update statement, it must
include the for-update clause, and if updating is restricted to certain columns, you
can update only those columns.

Before you can use a cursor with the sql delete statement, you must use the sql
open cursor statement in an explicit transaction. Then you use the sql fetch
statement to position the cursor on the row you want to update. Finally, you use
the where current of clause in the sql delete statement with a reference to that
cursor. Note that when you use the where current of clause, you cannot use the
on session clause, because iPlanet UDS uses the session associated with the
cursor when the cursor was opened.

On Session Clause
The on session clause identifies a database session to use for the execution of this
statement. You can use a service object name or a reference to an object of the
DBSession class.

The default keyword specifies the DBSession object associated with a variable or
attribute named DefaultDBSession. If you omit the on session clause, it is the
same as specifying default.

name : string = ‘Leonardo da Vinci’;
whenborn : integer = 1922;
sql update artist_table set born = :whenborn
where name = :name on session dbsess;

193

Index

A
AddExternalRM Escript command 44
Array interface support 33
Arrays

fetching into 108
selecting data into 99, 104
SQL insert statement with 182
SQL select statement with 188

Autocommit 154

B
Binary data

Informix 113
inserting 114
selecting 113
using 113

BinaryData objects
deserializing 113

BLOB data, inserting 114

C
Casting 89
Class types, user-defined 102
ClassName for database vendor 69

CloseCursor method
described 118
using 127

CloseExtent method
described 118

Columns
case sensitive names 109
mapping attribute names to 100
mapping to database 80, 94
pseudo 102

Conditional code 96
Connect method

connection options 63
dynamic connection 68

ConnectDB method
connection options 63
and DBSession object 56
example 67

Connecting to the database 55
Creating a service object 56
Creating objects

for statement 99
SQL fetch cursor statement 99
SQL select 98
SQL select into array 99

Cursor reference 184
Cursor workshop 105
Cursors

example definition 106
hold 35
opening 125
read-only, for-update 183

Section D

194 iPlanet Unified Development Server • Accessing Databases • August 2001

Cursors (continued)
reference vs. name 106
retrieving rows 107
scroll 35
SQL close cursor statement 168
SQL fetch cursor statement 176
SQL open cursor statement 182
using 105

D
Data

accessing 79, 93
inserting 110
nullable 80
overflow 81, 82

Data source, ODBC
definition 36
format 51
name 61

Data type conversion
DB2 84
NULL values 81
ODBC data sources 87
Oracle 88
overview 80–83
Rdb 89
Sybase 92

Data types
DataValue class 80
simple TOOL 80

Database connections
connecting 55
disconnecting 76
options 62

Database Integrator (DBI) 34
Database name

compared to resource name 43
logical 47
specifying at runtime 68
vendor-specific format 60

Database procedures. See Procedures, database

Database sessions
DBSession object 56
default 73
ending 76
multiple 150
multitasking 150
starting 55, 65
with no service object 68

Database vendors, specifying at runtime 69
DataValue class, nullable variants 81
DB2

data type conversion 84
db2cschrc file 45
DB2INSTANCE environment variable 45, 61
db2profile file 45
library name 69
pseudo-columns 103
resource manager 32
ResourceName parameter format 61

db2cschrc file 45
DB2INSTANCE environment variable 45, 46
db2profile file 45
DB2-specific information 46, 154
DBDataSet class

placeholders 130
DBDeadlockException class 150
DBResourceMgr service objects

definition 57
using 66

DBSession class
using for runtime SQL 118

DBSession object, database vendor specific 70
DBSession service objects

creating 58
default 73
definition 57
overriding login information 72
using 65

DBStatementHandle class
using 124

DBVendorType attribute
using 97

DDL statements 142

Section E

Index 195

Deadlocks 149
DefaultDBSession service object 73
Deleting a row 111
Disconnect method 76
Disconnecting from the database 76
DynamicDataAccess sample application 163
DynamicSQL sample application 164

E
Encina 153
Environment variables

for resource manager 44
for user name and password 71
iPlanet UDS-specific 45
LIBPATH 44

Error handling
DBRemoteAccessException class 158

Errors, database 157
Execute method

described 118
using 131
using placeholders 130

ExecuteImmediate method
described 119
using 119

Executing
database procedures 111
ExecuteImmediate method 119
insert, update, delete statements 127
single SQL statements 111

Explicit transactions
Informix scroll cursor 136
recommendation 132
sql fetch statement 107
using 140

ExtendCursor method
described 119

F
FetchCursor method

described 119
scroll cursor 136
using 126

FileKey for database vendor 69
FindLibrary method for database vendor 69
For update clause 106, 170, 192
FORTE_DB_MAX_STATEMENTS environment

variable 45
FORTE_DB_VENDORFLG environment variable 45
FORTE_STARTUP 47
fortedef.csh file 44
fortedef.sh file 44

G
GenericDBMS classes

compared to TOOL SQL 94

H
Hold cursors 35

I
ImageData class

formats 113
inserting into database 113
selecting from database 113

Informix
hold cursors 35
INFORMIXDIR environment variable 45, 46
INFORMIXSERVER environment variable 45, 46,

61

Section L

196 iPlanet Unified Development Server • Accessing Databases • August 2001

Informix (continued)
library name 69
pseudo-columns 103
resource manager 33
resourceName parameter format 61
scroll cursors 35, 136

Informix-specific information 46, 76, 112, 154
Inserting data

binary 114
from objects 109
from variables 109
multiple rows 110
single row 109
using a column list 110

Instantiating objects 110
Interfaces file (Sybase) 47
IsConnected attribute 75

L
LIBPATH environment variable 44

M
Mutex lock 148

N
Names

columns and attributes 101
iPlanet UDS 95
placeholders 130

Node properties dialog 41
NULL data, transferring 80

O
Objects. See Creating objects; Selecting data;

Transactional objects
ODBC

architecture 35
array interface support requirements 37
data source 35, 51
data type conversion 86
drivers 35
flat file data source 54
library name 69
resource manager 53
resourceName parameter format 61
SQL Extended Fetch feature 37
SQL Param Option feature 37

ODBC-specific information 53, 112
OpenCursor method

described 119
using 125
using placeholders 130

Oracle
column aliases 103
data type conversion 88
library name 69
OpenVMS usage notes 77
ORACLE_SID 61
resource manager 33
ResourceName parameter format 61

ORACLE_HOME 46
ORACLE_SID 47
Oracle-specific information 77

P
Partitioning 64
PDF files, viewing and searching 22
Placeholders

assigning values 184
DBDataSet class 130
definition 130
in prepared statements 120, 127

Section R

Index 197

Positioned update 106
SQL delete 170
SQL update 192
vendor support for 183

Prepare method
described 119
scroll cursor 136
using 124, 129

Prepared statements
executing 120
select 120

PreparePositioned method
described 119

Preparing a select statement 124
Procedures, database

executing 111

R
Rdb

data type conversion 89
environment variables 47
library name 69
pseudo-columns 103
renaming columns 103
resource manager 34
resourceName parameter format 61
transactions 155

Rdb-specific information 78, 155
RDMS$DEBUG_FLAGS 45, 47
RDMS$RUJ 45, 47
ReadFromFile method 113
Reconnect method

using 75
RemoveStatement method

described 119
Resource manager

and resource name 39
DB2 32
defining a 39
environment variables 44
Informix 33

name 43
name space 43
ODBC 53
Oracle 33
Rdb 34
removing 47

Resource name
definition 40

resourceName parameter format 61
Result set, fetching rows from 126
ResultDataSet parameter, using 125
Retrieving rows

fetching into an array 108
SQL fetch cursor statement 107
using a for statement 108

Rows
deleting 111
inserting multiple 110
inserting single 109
retrieving 107–109
updating 110

S
Sample applications

DynamicDataAccess 163
DynamicSQL 164
WinDB 165

Scroll cursors 35
Select method

described 119
Select statements

building dynamically 122
preparing 124

Selecting data
a single row 100
attributes and column names differ 101
binary 113
with for statements 105
inherited attributes 104
into a variable 100
into an array 99
into an object 100

Section S

198 iPlanet Unified Development Server • Accessing Databases • August 2001

Selecting data (continued)
matching attributes and columns 101
multiple rows into arrays 104
using cursors 105

SORTWORK rdb logical name 45, 47
SQL

DDL statements 142
using DBStatementHandle 124
using DBVendorType with 97
vendor-specific extensions 96, 168

SQL as clause (column renaming) 103
SQL close cursor statement 168

definition 27, 95
syntax 168
using 105

SQL delete statement 169–170
definition 27, 95
on session clause 170
positioned update 183
return value 169
syntax 169
table name 170
using 111
where clause 170

SQL execute immediate statement 171–173
definition 28, 96
exceptions 176
on session clause 173, 176
parameter list 175
procedure name 174
return value 172
syntax 171
using 111

SQL execute procedure statement 173–176
definition 28, 96
return value 174
syntax 173
using 111

SQL fetch cursor statement 176–180
cursor 179
definition 27, 95
into clause 179
return value 178
syntax 176
using 99105–108

SQL insert statement 180–182
array of rows 182
column list 181
definition 27, 95
insert values 181
on session clause 182
return value 181
syntax 180
table name 181
using 109

SQL open cursor statement 182–185
cursor_reference 184
definition 27, 95
on session clause 185
placeholder assignment 184
syntax 183
using 105–107

SQL select statement 185–190
all option 187
definition 27, 95
distinct option 187
exceptions 190
from clause 189
group by clause 189
having clause 189
into clause 188
object creation 98
on session clause 190
order by clause 189
return value 186
selecting into an array 188
syntax 185
using 98, 100
where clause 189

SQL update statement 190–192
definition 27, 95
on session clause 192
positioned update 183
return value 191
set clause 191
syntax 190
table name 191
using 110
where clause 191

SQL*Net (Oracle), using 77

Section T

Index 199

Sybase
data type conversion 92
interfaces file 45, 47
library name 69
resourceName parameter format 61
stored procedures 174

SYBASE environment variable 45
Sybase-specific information 47

T
tnsnames.ora file (Oracle SQL*Net) 46, 77
TOOL SQL statements 93–98

list of 95
vendor-specific extensions 96

Transactional objects 147
Transactions

explicit 140
implicit 141
Informix 154
iPlanet UDS 140
SQL open cursor 143

U
Updating a row 110
User name

DBSession service objects 60
dynamic 71
overriding 66
specifying at runtime 68

User password 60

V
Variable user names and passwords 71
Variable, selecting data into 100

W
Where current of clause 106, 183
WinDB sample application 165

Section W

200 iPlanet Unified Development Server • Accessing Databases • August 2001

	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 Introduction to the iPlanet UDS Database Interface
	About the iPlanet UDS Database Interface
	Support for Multiple Database Management Systems
	Support for Standard and Proprietary SQL
	ANSI SQL and Vendor SQL Extensions

	Accessing Databases Using TOOL SQL
	Accessing Databases using the Database Classes
	The iPlanet UDS GenericDBMS Library

	How to Access an RDBMS
	Database Vendor Notes
	DB2 Notes
	Informix Notes
	Oracle Notes
	Rdb Notes
	Unsupported Database Features

	Using ODBC
	Supported Data Sources
	Supported Database Drivers
	Using ODBC When Running iPlanet UDS in Standalone Model
	Cautions on Using ODBC with iPlanet UDS

	2 Defining a Resource Manager
	About Resource Managers
	Choosing a Node for the Resource Name

	Defining a Resource Name
	To define a resource name for a database using Environment Console
	Using Escript to Define a Resource Name
	Environment Variables
	DB2 Variables
	Informix Variables
	Oracle Variables
	Rdb Variables
	Sybase Variables

	Removing a Resource Name

	Testing a Resource Name with the DynamicSQL Example
	To test a resource name

	Using a Local Database when Running iPlanet UDS Standalone
	Setting up an iPlanet UDS ODBC Data Source on Windows
	To define a new ODBC data source
	To make the data source available to iPlanet UDS users

	Using an Existing Data Source

	3 Making a Database Connection
	Connecting to a Database
	Using Database Service Objects
	When to Use a DBSession Service Object
	When to Use a DBResourceMgr Service Object

	When You Should Not Use a Service Object

	Creating a Database Service Object
	Entering General Properties
	Entering Database Information
	Entering Search Path Information
	Entering Connection Information
	Specifying Connection Options in a Method
	Optimizing Service Object Performance
	Visibility of the Service Object

	Making a Database Connection
	Connecting with a DBSession Service Object
	To start a database session using a DBSession service object

	Connecting with a DBResourceMgr Service Object
	To start a database session using a DBResourceMgr service object

	Connecting to a Database without a Service Object
	Dynamically Choosing a Database Vendor
	To create and connect through a DBSession object

	Other Connection Information
	Using Variable User Names and Passwords
	Creating a DefaultDBSession Service Object
	To create a default database session for an entire project
	To create a default database session for a class and its associated methods
	To create a default database for use in a single method

	Reconnecting to a Database Session
	Disconnecting a Database Session

	Vendor-Specific Notes
	Informix
	Oracle
	To make a connection using SQL*Net V2

	Rdb

	4 Working with Data Types
	Using Database Data with iPlanet UDS
	Using Simple Data Types in TOOL
	Using Nullable DataValue Subclasses

	Data Type Conversion
	Reading the Data Type Conversion Tables
	DB2 Data Conversion Table and Notes
	Informix Data Conversion Table and Notes
	ODBC Data Conversion Table and Notes
	Oracle Data Conversion Table and Notes
	Rdb Data Conversion Table and Notes
	Sybase Data Conversion Table and Notes

	5 Manipulating Data
	Accessing Database Data from iPlanet UDS
	Using iPlanet UDS Names in SQL Statements
	TOOL SQL Statements
	Using Conditional TOOL for Vendor-Specific Code

	Using TOOL Statements to Query Data
	Selecting Data and Object Creation
	Selecting a Single Row
	Selecting into a Variable
	Selecting into an Object
	When Attribute and Column Names Match
	When Attribute and Column Names Do Not Match
	When Attributes are of Other Class Types
	When Attributes are Inherited

	Selecting Multiple Rows into Arrays
	Selecting Multiple Rows Using the TOOL for Statement
	Selecting Multiple Rows using Cursors
	Defining a Cursor
	Retrieving Rows
	Fetching into an Array
	Fetching an Arbitrary Number of Rows
	Repeating a Statement Block

	Using TOOL to Update Data
	Inserting a Single Row
	Inserting Variables
	Inserting from an Object

	Inserting Multiple Rows
	Updating a Row
	Deleting a Row
	Executing a Single SQL Statement
	Executing a Database Procedure
	Vendor-Specific Notes on Database Procedures

	Working with ImageData Objects

	Using Binary Large Objects (BLOBs)
	Selecting Binary Data
	Inserting Binary Data
	Vendor-Specific Notes on BLOB Handling

	Using iPlanet UDS Classes to Execute SQL
	DBSession Methods
	Executing Single SQL Statements
	Using Prepared Statements

	Executing Prepared Queries
	To execute a prepared select statement
	About the DynamicDataAccess Example
	Building the SQL Statement
	Preparing the Statement
	Opening the Cursor
	Fetching Rows from the Result Set
	Storing the Data
	Closing the Cursor

	Executing Prepared DML Statements
	To execute a prepared insert, update, or delete statement
	About the DynamicDataAccess Example
	Building the SQL Statement
	Preparing the Statement
	Processing Placeholders
	Executing the Statement
	Removing the Statement

	Improving Application Performance
	To maximize your application’s performance, remember to
	Multi-threaded Database Access
	Enabling Single-Threaded Access to Databases

	Mapping DBDataSets into Objects

	Vendor-Specific Information
	Informix
	Scroll Cursor Support

	6 Transactions
	Relationship Between iPlanet UDS and Database Transactions
	Explicit iPlanet UDS Transactions
	Implicit iPlanet UDS Transactions
	Single SQL DML Statements
	SQL Execute Immediate Statements with DDL
	Use of Cursors in Implicit iPlanet UDS Transactions
	SQL Open Cursor
	SQL Fetch Cursor
	For Loops
	SQL Close Cursor

	Independent, Dependent, and Nested Transactions
	Using Dependent Transactions
	Using Independent Transactions
	Avoid Nested Transactions

	Common Problems with Shared and Transactional Objects
	Unexpected Blocking Due to a Long-Running Query
	Unexpected Blocking Due to a Long-Running Transaction
	Avoiding Deadlocks

	Transactions and Database Sessions
	Multitasking in a Database Session
	iPlanet UDS Support for Two-Phase Commit
	Two-Phase Commit with One Database Vendor
	Two-Phase Commit with Multiple Database Vendors

	Notes on Vendor-Specific Transaction Handling
	DB2
	Informix
	Rdb

	7 Error Handling
	Types of Database Exceptions

	A Database Example Applications
	How to Install iPlanet UDS Example Applications
	Overview of Database Example Applications
	GenericDBMS Library Examples

	Application Descriptions
	DynamicDataAccess
	To use DynamicDataAccess

	DynamicSQL
	To use DynamicSQL

	WinDB
	To use WinDB

	B TOOL SQL Statement Reference
	Note on Vendor-Specific SQL Extensions
	SQL Close Cursor
	Syntax
	Example
	Description

	SQL Delete
	Syntax
	Example
	Description
	Return Value
	Table Name
	Where Clause
	On Session Clause

	SQL Execute Immediate
	Syntax
	Example
	Description
	Return Value
	On Session Clause

	SQL Execute Procedure
	Syntax
	Example
	Description
	Return Value
	Procedure Name
	Parameter List
	On Session Clause

	Exceptions

	SQL Fetch Cursor
	Syntax
	Example
	Description
	Return Value
	Cursor
	Into Clause

	SQL Insert
	Syntax
	Example
	Description
	Return Value
	Table Name
	The Column List
	Specifying the Insert Values
	On Session Clause

	SQL Open Cursor
	Syntax
	Example
	Description
	Cursor Reference
	Placeholder Assignment
	On Session Clause

	SQL Select
	Syntax
	Example
	Description
	Return Value
	Eliminating Duplicate Rows
	Column List
	Into Clause
	From Clause
	Where Clause
	Group By Clause
	Having Clause
	Order By Clause
	On Session Clause

	Exceptions

	SQL Update
	Syntax
	Example
	Description
	Return Value
	Table Name
	Set Clause
	Where Clause
	On Session Clause

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

