
Getting Started With iPlanet UDS
iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 5

List of Procedures . 7

Preface . 9

Product Name Change . 10
Audience for This Guide . 10
Organization of This Guide . 10
Text Conventions . 11
Other Documentation Resources . 11

iPlanet UDS Documentation . 12
Express Documentation . 12
WebEnterprise and WebEnterprise Designer Documentation . 12
Online Help . 13

iPlanet UDS Example Programs . 13
Viewing and Searching PDF Files . 13

Chapter 1 Introduction . 17
Getting Started . 17
Stages of Application Development . 18
Designing the Application . 19

The Architecture of an iPlanet UDS Application . 19
The Architecture of the Sample Application . 21

Chapter 2 Defining the Logical Application . 23
Working in the iPlanet UDS Workshops . 23

Creating a Workspace . 24
Creating Projects . 28
Including a Supplier Plan . 32

4 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Chapter 3 Creating the Service Side . 33
Overview . 33

Defining Business Classes . 34
Defining Service Object Classes . 37
Working with Arrays . 39
Creating a New Method . 41
Posting and Handling Events . 43
Creating Service Objects . 48

Chapter 4 Creating the User Interface . 53
About Window Classes . 53

Creating a Window Class . 54
Using the Window Workshop . 56

Adding a Label . 58
Adding a Data Field . 58
Adding Push Buttons . 60
Testing the Window . 62
Defining a Window Title . 62
The Representation of Window Attributes . 64
Creating a Window’s Methods . 65
Creating the Transaction Window . 67
Using Grid Fields . 70
Window Classes Before and After Gridding . 74
Coding a Window’s Methods . 76
Setting the Start Class and Method . 79

Chapter 5 Handling Exceptions . 81
About Exception Handling . 81
Creating an Exception . 82

Raising an Exception . 83
Handling an Exception . 85
Checking Your Work . 86

Chapter 6 Testing and Running the Application . 87
The Partitioning and Deployment Process . 87

Partitioning the Application . 88
Getting Information About Nodes . 92
Customizing the Partitioning Scheme . 93
Testing Your Configuration . 94

Making a Distribution . 94
Running Your Application . 96
Checking Concurrency . 96

Index . 97

5

List of Figures

Figure 1-1 Logical and Deployed Applications . 20

Figure 1-2 Architecture of the Sample Application . 21

Figure 1-3 User Windows for Sample Application . 22

Figure 2-1 The iPlanet UDS Workshops . 24

Figure 2-2 Working with Repositories . 25

Figure 2-3 Main Project and Supplier Plans . 28

Figure 2-4 BankServices Project . 31

Figure 3-1 Init Method . 36

Figure 3-2 Classes in the BankServices Project . 37

Figure 3-3 AcctUpdated Event . 45

Figure 4-1 User Start-up Window . 56

Figure 4-2 The AccountWindow Class . 64

Figure 4-3 Transaction Window . 67

Figure 4-4 Transaction Class Window . 70

Figure 4-5 TransactionWindow Class After Gridding . 75

Figure 4-6 TransactionWindow Class Before Gridding . 76

Figure 6-1 Making a Distribution and Installing the Application . 87

6 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

7

List of Procedures

To copy the documentation to a client or server . 14

To view and search the documentation . 14

To open a workspace . 26

To create the BankServices project . 29

To create the BankClient project . 31

To create a new class . 34

To create an attribute . 35

To create the BankMgr class . 38

To initialize the AccountList array . 40

To create a new method . 41

To create an event . 44

To post an event . 45

To create a service object . 49

To create a window class . 54

To open the Window Workshop and create the start-up window . 57

To add a label to the window . 58

To add a data field for the account number . 58

To add a push button . 60

To test a window . 62

To add title bar text . 63

To create the AccountWindow Display method . 65

To create the transaction window . 67

To add the push buttons . 69

To create a grid field . 71

To make a project a supplier plan to another project . 74

To modify the Display method for the TransactionWindow . 77

To set a start method and class . 79

8 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

To create the exception class . 82

To raise the AccountNotFound exception . 83

To handle the AccountNotFound exception . 85

To run the application . 86

To partition the application . 89

To display information about individual nodes . 92

To move a client or server partition from another node to your own node . 93

To make an application distribution . 94

To check concurrency . 96

9

Preface

Welcome to Getting Started With iPlanet UDS. This manual presents a tutorial that
walks you through the basic steps required to create an iPlanet UDS application.
When you have completed this tutorial, you will be familiar with:

• the iPlanet UDS Workshops

• the architecture of an iPlanet UDS application

• the process of creating an iPlanet UDS application

• important and common features of iPlanet UDS programming, including the
use of service object, events, and exception handling.

This preface contains the following sections:

• “Product Name Change” on page 10

• “Audience for This Guide” on page 10

• “Organization of This Guide” on page 10

• “Text Conventions” on page 11

• “Other Documentation Resources” on page 11

• “iPlanet UDS Example Programs” on page 13

• “Viewing and Searching PDF Files” on page 13

Product Name Change

10 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide
Getting Started With iPlanet UDS is intended for application developers. We assume
that you:

• have programming experience

• are familiar with your particular window system

• are familiar with SQL and your particular database management system

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Introduction” Introduces the tutorial and discusses the
architecture of the tutorial application.

Chapter 2, “Defining the Logical
Application”

Describes the steps required to define the
logical application and provides an overview
of the iPlanet UDS Workshops.

Chapter 3, “Creating the Service Side” Describes the steps required to create the
service side of the application, including
defining business classes, service objects, and
working with events.

Chapter 4, “Creating the User Interface” Explains how to create the user interface of
the application using the Window Workshop.

Chapter 5, “Handling Exceptions” Describes how to create the exception classes
as well as the code to raise and handle the
exception.

Chapter 6, “Testing and Running the
Application”

Describes how to partition and then test run
the application.

Text Conventions

Preface 11

Text Conventions
This section provides information about the conventions used in this document.

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iPlanet UDS products
(including Express, WebEnterprise, and WebEnterprise Designer) can be found on
the iPlanet UDS Documentation CD. Be sure to read “Viewing and Searching PDF
Files” on page 13 to learn how to view and search the documentation on the iPlanet
UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

http://docs.iplanet.com/docs/manuals/uds.html

Other Documentation Resources

12 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

iPlanet UDS Example Programs

Preface 13

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

http://www.adobe.com

Viewing and Searching PDF Files

14 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

NOTE To uninstall the documentation, delete the doc directory.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Viewing and Searching PDF Files

Preface 15

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

Viewing and Searching PDF Files

16 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

17

Chapter 1

Introduction

The sample program that you will create in the following tutorial is an extremely
simple application. Its aim is to make you familiar with the iPlanet UDS
Workshops and to introduce a number of features that are important in developing
iPlanet UDS applications. These features include:

• the use of service objects

• the use of events

• exception handling

• the partitioning of an application

You will be writing the application in TOOL, the iPlanet UDS object-oriented,
scripting language. You do not have to know TOOL to use this tutorial. For
complete information about TOOL, see the TOOL Reference Guide.

This chapter introduces you to the tutorial and discusses the architecture of the
tutorial application.

Getting Started
Before you can use this tutorial, you must have iPlanet UDS set up to run in
distributed mode. This tutorial assumes that there is a repository you can connect
to and that you specified its name in the iPlanet UDS Control Panel. It would also
be helpful if you could clear your desktop so that your view of iPlanet UDS
windows and dialogs is not cluttered.

Stages of Application Development

18 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Menu commands This tutorial represents menu commands in the following way:
Choose File > New…. This means that you should select the menu indicated by the
first bold-faced word, and then continue to select the next bold-faced word as an
item from that menu. Thus, the general form is the following:

Choose Menu > MenuItem > MenuItem…

Comments in code There are several ways to enter comments in iPlanet UDS
code. One way is to prefix two dashes before the comment. For example:

-- This is a comment.

self.open();

Sample code shown in the tutorial includes comments. You do not have to type
these comments when you enter the code into your own application.

Stages of Application Development
There are four distinct stages in developing an iPlanet UDS application:

• designing the application

During this stage, you model the application problem and decide how to
divide the parts of a distributed application into separate interconnected
services.

• defining the logical application

During this stage, you create classes grouped into different projects. Classes
represent the programming logic of the application. The application definition
stage does not depend on the details of the target deployment environment.

• partitioning the application

During this stage, you generate application distribution files. To do this you
specify the target iPlanet UDS environment and partition the logical
application in that environment. The application is not actually installed at this
stage; you are, rather, creating an installation plan that iPlanet UDS uses to
create installable files.

• deploying the application

During this stage, the system manager deploys (installs) and manages the
application in a deployment environment.

Designing the Application

Chapter 1 Introduction 19

When you create an iPlanet UDS application, you are concerned with completing
the first three stages of this process. These stages are covered in the following
tutorial.

Designing the Application
An iPlanet UDS application is distributed across clients and servers by separating
the logical application into discrete pieces called partitions. A partition is a separate
operating system process running on client or server machines. All communication
between partitions and across the nodes where they reside is handled by the
underlying iPlanet UDS runtime system. While you do not have to do anything to
make this communication happen, you do need to design the logical parts of your
application to correspond to its eventual deployment on different machines.

The Architecture of an iPlanet UDS Application
Figure 1-1 shows how the logical parts of our sample application correspond to the
partitions that are eventually installed on client and server nodes.

Designing the Application

20 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Figure 1-1 Logical and Deployed Applications

In a typical iPlanet UDS application, the client part of the application is responsible
for display processing, while the server part is responsible for intensive business
computation and for the enforcement of business rules. After the application is
deployed, many clients can use the service provided by one or more server
partitions. The typical application architecture consists of three types of classes:

Window classes Interact with the end user, display data to the user, allow the
user to update data, and specify the logical flow of the user interface. Objects based
on these classes normally reside on client partitions.

Service object classes Define the services provided to application clients. These
classes define the business logic, access data stored in a database, and call out to
external systems. Objects based on these classes normally reside on server
partitions.

Business classes Define the data that is manipulated by the application. The
data associated with these objects is often stored persistently in a database or on
server partitions and is passed between the client and the server partitions.

BankSO
(service object)

Server

BankClient
(user windows)

Client Client Client

Logical Application Deployed Application

Designing the Application

Chapter 1 Introduction 21

The Architecture of the Sample Application
In accordance with the model just described, the application you will create is
organized as a client and server as shown in Figure 1-2.

Figure 1-2 Architecture of the Sample Application

Client side The client side includes logic that displays windows, allowing the
user to obtain information about her account, deposit and withdraw money, and
view updated information about the account.

The user windows for your application will look like this.

Server

Array of
Bank Account

Client

BankSO

Transaction
Window

display

Account
Window

withdraw/deposit calculate new balance
send update event

Designing the Application

22 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Figure 1-3 User Windows for Sample Application

Server side The server side stores account data and defines methods that retrieve
account information, calculate new account balances, and update the account
information that is displayed to the user.

Service objects The server side uses a special kind of object, called a service
object, to make these services available to the client. A service object is a named
object that you can reference globally from any method in your application. In
Figure 1-2, this object is shown as BankSO. The service object you will create in this
application includes two methods:

• GetAccountData, which returns information for an individual account

• UpdateAcct, which is called (following a deposit or withdrawal) to calculate a
new account balance and to update the account information shown in the
user’s window

This tutorial will discuss the special characteristics of service objects when you
create one, later in this tutorial.

23

Chapter 2

Defining the Logical Application

This chapter describes the steps required to define the logical application. It also
provides an overview of the iPlanet UDS workshops, which you will then use to:

• open a workspace

• create your application’s projects

• create service object classes and service objects

• create the user interface

• make a distribution

Working in the iPlanet UDS Workshops
You build an iPlanet UDS application using the iPlanet UDS Workshops, a
development environment that you use to create application components and
write TOOL code. Figure 2-1 shows the iPlanet UDS Workshops and their
interrelation.

Working in the iPlanet UDS Workshops

24 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Figure 2-1 The iPlanet UDS Workshops

The arrows and the relative positioning of the workshops to one another indicates
the path you must traverse to access a particular workshop. The Repository
Workshop is the main entry point to the iPlanet UDS workshops. Thus, to open the
Class Workshop, you must open the Repository Workshop, and then the Project
Workshop. You will be working with all but the workshops with a dotted outline
in this tutorial.

Creating a Workspace
iPlanet UDS provides a central development repository that allows a team of
developers to synchronize their work, when each is creating a different part of the
same application. The latest version of each project checked into the repository
forms the system baseline for the repository. Each developer works in a workspace,
which affords her a partial view of the total contents of the repository. Figure 2-2
shows how each developer views a subset of the files in a central repository.

WindowMethodEvent Handler Menu

Repository

Debugger Project Partition

Class Cursor

Working in the iPlanet UDS Workshops

Chapter 2 Defining the Logical Application 25

Figure 2-2 Working with Repositories

This tutorial focuses on an individual development project, so it does not explore
the subject of a shared repository. Instead, you will be creating your application in
a private repository, which is a type of repository that is designed for independent
development.

For information about using repositories and workspaces in a team environment,
see A Guide to the iPlanet UDS Workshops. This tutorial assumes that there is a
repository you can connect to and that you specified its name in the iPlanet UDS
Control Panel.

In this part of the tutorial, you will open a workspace and create projects in it.

Central Repository

Plan C
Plan B

Plan A

Plan B
Workspace 1

Plan C

Plan C
Workspace 2

Plan A

developer 1

Plan B

Workspace 1

Plan C

developer 2

Plan C

Workspace 2

Plan A

Baseline

Working in the iPlanet UDS Workshops

26 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

➤ To open a workspace

1. Launch iPlanet UDS distributed if you have not already done so.

If you have not yet worked with the iPlanet UDS repositories, the application
opens a window titled FirstWorkspace. Otherwise iPlanet UDS opens the last
workspace in which you have been working.

FirstWorkspace contains the system libraries shipped with iPlanet UDS.
Libraries are indicated by the books icon. It is recommended that you not use
this default workspace to develop your iPlanet UDS application. You will be
creating your own workspace in the next steps.

Working in the iPlanet UDS Workshops

Chapter 2 Defining the Logical Application 27

2. Choose the File > New Workspace… command.

iPlanet UDS displays a dialog that you use to specify the name of the
workspace you want to create.

3. Enter TutorialWS for the workspace name and click OK.

iPlanet UDS displays the TutorialWS workspace in the Repository Workshop
window (see next figure) and displays the message “New workspace created”
on the status line of the Repository Workshop.

Your new workspace also contains the system libraries included in
FirstWorkspace. These libraries are included by default for every iPlanet UDS
workspace, and supply the basic functionality to create an iPlanet UDS application.

Status line

Working in the iPlanet UDS Workshops

28 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Three of the most commonly used system libraries are:

• Framework library, which contains foundation classes for building your
application

• Display library, which contains classes for creating windows

• GenericDBMS library, which contains classes for accessing a database
management system and its specific functions

iPlanet UDS also provides additional system libraries, for example CORBA and
OLE, which allow you to integrate iPlanet UDS applications with external systems.

You can import additional libraries or plans into the workspace by choosing the
Plan > Import command (or Plan > Include Public if the plan or library is already in
the repository). You should not delete system libraries from your workspace, even
if you do not plan on using them in your application.

Creating Projects
You use the Repository Workshop to develop an application in separate modules
called plans. A plan is a project, a library, a business model, or an application
model. In this tutorial, you will just be working with projects and libraries.

A logical application is a collection of plans. One plan is the main project; the rest of
the plans are called supplier plans. The project that marks the starting point for
your application is called the main project. Typically, this project contains the
window classes that provide the user interface. A supplier plan is another project or
library that you include as part of your project. All elements of supplier plans are
available to your current project as though the elements were all part of one big
project. Figure 2-3 shows the relationship between the main project and its supplier
plans.

Figure 2-3 Main Project and Supplier Plans

Main Project

Starting point for application

+
Plan CPlan BPlan A

supplier plans

= Logical
Application

Working in the iPlanet UDS Workshops

Chapter 2 Defining the Logical Application 29

An iPlanet UDS project is a collection of classes and other components. Classes
include window classes or non-window classes. Components include service
objects, constants, and cursors (used for database queries).

In this section of the tutorial you will create two projects for your application. The
first project, called BankServices, will contain the classes used for retrieving and
updating data. The second project, called BankClient, will contain the window
classes for your application.

➤ To create the BankServices project

1. Choose the Plan > New Project… command.

iPlanet UDS displays the New Project dialog, which allows you to specify the
name of the new project and, optionally, to include the Display library or the
GenericDatabase library. The Framework library is always included as a
supplier plan.

2. Enter BankServices in the Project Name field.

By default all projects include both the Display and the GenericDatabase
libraries. The BankServices project does not need either of these libraries.

3. Disable the Include Database and the Include Display toggles.

Working in the iPlanet UDS Workshops

30 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

4. Click OK.

iPlanet UDS opens the Project Workshop for the BankServices project.

.

5. Close the BankServices project window using the appropriate control for your
windowing system.

Take another look at your workspace window. The window, shown in Figure 2-4,
now contains the BankServices project in addition to the libraries that were listed
before.

Working in the iPlanet UDS Workshops

Chapter 2 Defining the Logical Application 31

Figure 2-4 BankServices Project

➤ To create the BankClient project

1. Choose the Plan > New Project… command.

2. When iPlanet UDS displays the New Project dialog, enter BankClient in the
Project Name data field.

3. Disable the Include Database toggle, but leave the Include Display toggle on.

The BankClient project will include window classes and therefore needs the
Display library as a supplier plan.

4. Examine the workspace window again. The BankClient and the BankServices
projects should both be listed.

iPlanet UDS has also opened the Project Workshop for the BankClient project.

5. Close the BankClient project window.

Working in the iPlanet UDS Workshops

32 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Including a Supplier Plan
When you created the BankClient and BankServices projects, you specified
whether the Display and GenericDatabase libraries should be included as supplier
plans. In addition to using system libraries as supplier plans, you also need to
define the relationship between the projects you create. One project will always be
the main project; the other projects will serve as suppliers to the main project or to
one another. You will specify the supplier relationship between the BankClient and
BankServices projects later in this tutorial.

33

Chapter 3

Creating the Service Side

In this part of the tutorial you create the service side of the application. You will
learn how to:

• define business classes

• define service objects

• work with arrays

• create methods

• post and handle events

Overview
The service side contains business classes, which define the data you want to
process, and service object classes, which process that data and define the services
provided to the client. Because the service side is a key design component in an
iPlanet UDS application, it is a good idea to work on developing the service side
before tackling the client side.

For this application, the service side includes a business class that specifies the
structure of account information for each client, and a service object class that
returns account information and updates account information in response to the
user making withdrawals and deposits. If an application uses a database, the
service side would also be responsible for interacting with the database to obtain
and update account information. In this case, however, the application will store
account information in the service side.

Overview

34 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Defining Business Classes
In this part of the tutorial, you will define a business class called BankAccount,
which defines account information for each client. The class contains three
attributes:

➤ To create a new class

1. In the workspace window, double-click the BankServices project to open the
Project workshop.

2. In the BankServices project, choose Component > New > Non-window Class.

iPlanet UDS displays the Class Properties dialog. You use this dialog to specify
the name of the class you want to create, the name of its superclass, and any
runtime properties you want to define.

All user-defined classes in iPlanet UDS must have a superclass. You can use
the browser button in the Class Properties dialog to select the name of any class
that can be a superclass from a list of supplier projects and their classes. The
default superclass for non-window classes is Object.

3. Enter BankAccount in the Class Name field.

Attribute Description

Balance A floating-point number that specifies the current account balance.

Name A string specifying the name of the client for this account.

Number An integer that uniquely identifies the account.

Browser button

Overview

Chapter 3 Creating the Service Side 35

4. Object is shown as the Superclass. Do not change this value.

5. Click OK.

iPlanet UDS displays the BankAccount class in the Class Workshop window. In the
next part of the tutorial you will define the attributes of the BankAccount class.

➤ To create an attribute

1. In the BankAccount class window, choose the Element > New Attribute…
command.

iPlanet UDS displays the Attribute Properties dialog, which you use to specify
the name and type of an attribute.

2. Enter Balance in the Name field and Float in the Type field and click OK

.

3. Click the New button.

iPlanet UDS adds the Balance attribute to the BankAccount class and clears the
Attribute Properties dialog so that you can enter information for additional
attributes. (The New button provides a quicker way to add more than one
attribute to a class. The alternate method is to click the OK button to save the
current attribute and then to choose the Element > New Attribute command to
bring up the Attribute Properties dialog again.)

4. Enter Name in the Name field and String in the Type field.

5. Click the New button.

6. Enter Number in the Name field and Integer in the Type field.

Overview

36 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

7. Click OK.

When you are done, the BankAccount class window should look like the
following:

If you would like to change the definition of an attribute, because you want a
different name or type, double-click the attribute name, make the desired changes
in the Attribute Properties dialog, and then click OK to make your changes
permanent.

If you want to delete an attribute, select the attribute in the class window and
choose Edit > Delete.

As you can see, in addition to the attributes you have just defined, the class also
contains an Init method, which is supplied in skeletal form for all newly created
classes. You can examine the Init method by double-clicking it in the Class
Workshop window.

iPlanet UDS opens the Method Workshop and displays the body of the Init
method, as shown in Figure 3-1.

Figure 3-1 Init Method

Overview

Chapter 3 Creating the Service Side 37

The super.Init statement, which is included by default, invokes the Init method of
the Object class, which is the superclass of the BankAccount class. This Init method
is called whenever an object of the BankAccount class is constructed. You do not
need to modify this method, so you can just close the Method Workshop window,
and then close the BankAccount class window.

You have just finished defining the business class for the sample application.

Defining Service Object Classes
To process client requests, the application will use the BankMgr class. This class
includes an attribute that is an array of BankAccount objects and defines methods
that manipulate this entire set of current accounts. Figure 3-2 shows the
relationship between the BankAccount class, which you have just created, and the
BankServices class, which you will create in the next part of the tutorial. Later in
this tutorial, you will create a service object that is an instance of the BankMgr
class.

Figure 3-2 Classes in the BankServices Project

The BankMgr class has an attribute defined for storing an array of BankAccount
objects, and includes methods for getting and updating account information.

AccountList

UpdateAcct()

GetAccountData()

Init()

Class BankMgr

Balance

Number

Name

Init()

Class BankAccount

Array of
BankAccount

Overview

38 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

➤ To create the BankMgr class

1. In the BankServices project workshop, choose the Component > New >
Non-window Class… command.

iPlanet UDS displays the Class Properties dialog.

2. Enter BankMgr for the Class Name field. Leave the Superclass property as
Object.

3. Click the Runtime tab in the Class Properties dialog.

4. Set the Distributed property to Allowed.

The service object that instantiates the BankMgr class needs to be distributed so
that the object can be visible to other partitions. To allow this to happen, you
must set the class’s Distributed property to Allowed.

5. Click OK.

iPlanet UDS displays the BankMgr class window.

6. Use the procedure described in Step 1 and Step 2 (page 35) to create an
attribute for the BankMgr class named AccountList as shown below:

Overview

Chapter 3 Creating the Service Side 39

Working with Arrays
A TOOL Array class is a special class for storing and manipulating a collection of
objects. The objects in an array are either of the same class or they share the same
superclass. Because an array is a single object that references each object item in the
array, you can use the array to reference the set of objects as a unit or you can
manipulate the individual objects. The array class also provides methods for
manipulating the array and its elements, including methods for inserting rows,
appending rows, and deleting rows. You will work with arrays when you define
the Init method for the BankMgr class.

For information about arrays, see the TOOL Reference Guide and the Framework
Library online Help.

In the next part of the tutorial you will initialize the AccountList array in the
BankMgr class Init method.

Overview

40 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

➤ To initialize the AccountList array

1. In the BankMgr class window, double-click the Init method to open the
Method Workshop.

2. Enter the code shown below in the Init method window, after the call to
super.Init. Note that TOOL is not case sensitive.

The statements that you added to the Init method instantiate the AccountList
object, initialize three objects of type BankAccount, and append them to the
AccountList array. Note that in a more realistic iPlanet UDS program, account
data would be extracted from a database. In this tutorial, the data is placed in
the Init method of the BankMgr class to keep the example simple.

The application now has the data it needs to operate on when the user interacts
with the account. To respond to user actions, the application needs two more
methods, one that gets account information and one that updates account
information. You will be creating these in the next two sections.

-- declare local variable account
account : BankAccount;
-- instantiate the AccountList attribute
self.AccountList = new();
-- instantiate the account variable
-- and initialize some of its attributes
account = new(

Number = 1000,
Name = ’Paul Cezanne’,
Balance = 300.00
);

self.AccountList.AppendRow(account);

account = new(
Number = 2000,
Name = ’Vincent van Gogh’,
Balance = 2.25
);

self.AccountList.AppendRow(account);

account = new(
Number = 2000,
Name = ’Andy Warhol’,
Balance = 45000000.00
);

self.AccountList.AppendRow(account);

Overview

Chapter 3 Creating the Service Side 41

3. In the Method workshop, choose File > Compile to compile the Init method.
This step is not required, but it can help you check for errors in entering your
code.

4. Close the Method Workshop.

5. Save the work you have done so far by choosing the File > Save All command
in any open workshop window.

Creating a New Method
So far you have only examined or modified existing methods. In this part of the
tutorial you will create a new method.

➤ To create a new method

1. In the BankMgr class window, choose Element > New Method.

iPlanet UDS displays the Method Properties dialog. You use this dialog to
define the method signature—its name, return type, and the names and types
of its parameters.

2. Use the appropriate fields to enter the information shown below and then click
OK.

iPlanet UDS opens the Method Workshop.

Overview

42 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

3. Enter the following code to define the GetAccountData method:

The GetAccountData method attempts to find the Account object element in
the AccountList array whose account number matches the one specified by the
AcctNumber parameter. If a matching account is found, the method returns it
to the caller.

For more information about working with arrays, see the TOOL Reference Guide
and the Framework Library online Help.

4. In the Method Workshop, choose File > Compile to check for entry errors.

iPlanet UDS displays the following dialog:

You have made no provision for what the method should do if it does not find
an account, and iPlanet UDS displays a warning about this situation. The
section Chapter 5, “Handling Exceptions,” will address that issue.

5. Close the Errors in Source Code window and the Method Workshop.

Let’s review what you have done so far. You have defined two classes in the
service side: BankAccount and BankMgr. In the BankMgr class you have defined
the attribute AccountList, an array of Account type objects. You have also defined a
method that returns an object containing information about an individual account.
You still need to define a method to update account information when a client
makes a deposit or withdrawal. To implement this method, you will use events, as
described in the next section.

-- This method returns a copy of the BankAccount object
-- specified by the account number.
for a in self.AccountList do
if acctNumber = a.Number then

return a;
end if;

end for;

Overview

Chapter 3 Creating the Service Side 43

Posting and Handling Events
iPlanet UDS is an event-driven system. It triggers events representing user actions
(mouse clicks, field entries, or menu activation) automatically. Typically, the
Display method for a window includes an event loop that you use to handle events
on the various controls (widgets) defined for the window. For example, if the
window includes a Save button, you might handle it as follows:

In the example just given, when the user pushes the Save button (which is an
instance of the PushButton class), iPlanet UDS automatically posts the predefined
Click event. The only thing you have to do is provide code in your event loop that
is executed when the event occurs.

The custom classes that you create can also have custom events associated with
them. Such events are not defined or triggered automatically. Instead, you must
create the event using the Project Workshop and then trigger the event by using the
post statement later in your TOOL code. Finally, you also have to write some code
that handles the event.

In this part of the tutorial, you will create a custom event called AcctUpdated and
post the event whenever the user makes a withdrawal or a deposit. The event you
define will be added to the BankMgr class and displayed in its window.

self.Open();
event loop
when <SaveButton>.Click do
self.Save();

end event;
self.Close();

Overview

44 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

➤ To create an event

1. In the BankMgr Class window, choose the Element > New Event… command.

iPlanet UDS displays the Event Properties dialog.

2. Enter AcctUpdated in the Event Name field.

3. Enter acctNumber in the Parameter Name field.

An event can have one or more parameters to provide additional information
about the event. Why would you want to specify a parameter for an event?

Remember that when the application is deployed, there might be many clients
waiting for AcctUpdated events. Passing the account number as a parameter to
the AcctUpdated event allows the client to check the value of the parameter to
the event and to process only the event that has the client’s account number.

4. Enter Integer in the Type field.

When you are done, the Event Properties window should look like the
following:

5. Click OK to add the event to the BankMgr class.

Take a look at the BankMgr Class window. The AcctUpdated event has been
added, as shown in Figure 3-3.

Overview

Chapter 3 Creating the Service Side 45

Figure 3-3 AcctUpdated Event

An event is identified by a “radio broadcasting” icon, which reflects the nature of
posting, or “selectively broadcasting” an event to interested parties. Any number
of clients or services can be tuned in, or registered, waiting for that particular
signal.

After you have created an event for a particular class, a method must post the
event. Posting an event causes that event to be broadcast, which notifies all
interested parties that the event has occurred. An interested party is a class that
contains a method that handles the event. In this example, the BankMgr class will
post the event on itself in the UpdateAcct method.

➤ To post an event

1. In the BankMgr class window, choose the Element > New Method…
command.

iPlanet UDS displays the Method Properties dialog.

2. Enter UpdateAcct for the Method Name field.

3. Enter Float for the Return Type field.

The UpdateAcct method will return the new account balance.

Overview

46 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

4. Enter the following information for the Parameter Name and Data Type fields:

When you are done, the dialog should look like the following:

5. Click OK to add the method to the BankMgr class.

iPlanet UDS opens the Method Workshop for the UpdateAcct method. This
method will be called from the client side when the user makes a deposit or a
withdrawal. The caller will specify the number of the account being updated,
which will be passed in using the AcctNumber parameter. The caller will also
specify the amount being added or subtracted, which will be passed in using
the TransactionAmt parameter.

The AcctUpdate method will add the transaction amount to the current
balance, post an AcctUpdated event to notify all parties that are registered to
receive the event that some account information has changed, and return the
new account balance.

Parameter Name Data Type

acctNumber Integer

transactionAmt Float

Overview

Chapter 3 Creating the Service Side 47

6. Add the following code to the UpdateAcct method:

The code shown iterates through the array until it finds an account whose
number matches the value of the acctNumber parameter passed to the
UpdateAcct method. When it finds that account, the method adjusts the
account balance by adding the transaction amount (passed in as the
TransactionAmt parameter). The UpdateAcct method then posts the event and
returns the new account balance. Note that this method does not include code
for the case where the account number cannot be found. You will add this code
in Chapter 5, “Handling Exceptions.”

7. Choose File > Compile to compile the method.

You will get a warning about the method possibly ending without returning a
value. You can ignore this warning for now. Close the Errors in Source Code
window and close the Method Workshop.

You have now finished defining the BankMgr class. It should look like the
following:

8. Close the BankMgr class window.

for a in self.AccountList do
if acctNumber = a.Number then
a.Balance = a.Balance + transactionAmt;
post self.AcctUpdated(acctNumber = acctNumber);
return a.Balance;

end if;
end for;

Overview

48 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Creating Service Objects
So far, you have defined the BankMgr and BankAccount classes in the
BankServices project. You have also created and initialized the BankAccount array
object in the Init method of the BankMgr class. But where is the object that
instantiates the BankMgr class? This is the object that interests us most because it
contains all the logic required to return account information and update account
information for all clients wanting to use the Banking application.

Instantiating a global object of type BankMgr that is accessible throughout the
application is a special step in creating an iPlanet UDS application; this step is
called creating a service object.

A service object is a named, shared, global object that provides a set of centralized
operations. In a distributed application, the service object is used to implement
business rules, provide access to persistent data such as databases, and provide
access to external applications, such as a bar code reader or a telephone line. For
this tutorial, the service object you will create (an instance of the BankMgr class)
contains the methods that a client can call to return and update information about
individual accounts.

Service objects are also used as the basis for partitioning an application.
Partitioning is discussed in Chapter 6, “Testing and Running the Application.”

When creating service objects and the classes upon which they are based, follow
these guidelines:

• Make sure that the class for which you will be creating a service object has its
Distributed runtime property set to IsDefault or Allowed. (You did this on
page 38, Step 4.)

• Make the project that contains the service object a supplier to the project that
calls service object methods. (You will do this in Chapter 4, “Creating the User
Interface.”)

• Do not instantiate the service object. Service objects are automatically
instantiated by iPlanet UDS when the server partition containing the service
object is started.

Overview

Chapter 3 Creating the Service Side 49

➤ To create a service object

1. In the BankServices Project Workshop, choose the Component > New > Service
Object… command.

iPlanet UDS displays the New Service Object dialog.

2. Enter BankSO in the Name field.

3. Click the TOOL Class radio button.

When you are done, the dialog should look like the following:

4. Click OK.

iPlanet UDS displays the Service Object Properties dialog to get more
information about the service object you want to create.

5. Enter BankMgr for the Class field.

6. Specify Environment for the Visibility field.

This makes the service object visible to all users in the environment.

Overview

50 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

7. Leave Session for the Dialog Duration field.

The Dialog Duration is the interval over which a service object retains its
connection to a particular caller after the connection is started. Specifying
session means that a caller making a request from the service object is bound to
that object for the entire run of the application. For more information about
dialog duration, see the iPlanet UDS Programming Guide.

When you are done, the dialog window should look like the following:

Overview

Chapter 3 Creating the Service Side 51

8. Click OK to add the service object to the BankServices project.

You have finished creating the BankServices project. The BankServices Project
Workshop should look like the following:

Note that the BankServices project contains two classes and a service object.
The colon indicates that BankSO is a service object of type BankMgr.

9. Close the BankServices Project window.

For more information about service objects, see the iPlanet UDS Programming Guide.

In the next part of the tutorial, you will create the user interface for the application.

Overview

52 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

53

Chapter 4

Creating the User Interface

The user interface to the sample application consists of two windows that allow the
user to obtain and modify information about her account. Account data and the
methods used to return and manipulate that data reside in the objects you created
in the last part of the tutorial.

In this chapter you will use the Window Workshop to create the tutorial
application’s user interface. You will learn how to:

• create a window

• add buttons and labels

• create data fields

• use grid fields

• code a window’s logic

• test your window

About Window Classes
You use window classes to create the appearance and behavior of your
application’s user interface.

Window classes contain graphical user interface (GUI) elements called widgets such
as push buttons, data fields, and so on. You use the Window Workshop to add
these elements to a window. In addition to creating the graphical user interface,
you must also add code to the window’s skeletal Display method to respond to
events (user actions) in the windows. At runtime, the application constructs a
window object of a given window class and executes the methods defined for that
class when the user manipulates the window’s controls

About Window Classes

54 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Creating a Window Class
In creating the user windows for this application, you will be working with a small
subset of the tools iPlanet UDS provides for building user interfaces. For more
information about creating a user interface, see the iPlanet UDS Programming Guide
chapters about creating user interfaces. For a complete reference to the iPlanet UDS
Display library, see the Display Library online Help.

➤ To create a window class

1. Open the BankClient project by double-clicking its name in the Repository
Workshop.

In the next part of the tutorial you will be working in the Project Workshop to
add two new window classes to the BankClient project. Each user window will
be defined as a window class.

2. Choose the Component > New > Window Class… command.

iPlanet UDS displays the Window Class Properties dialog. You use this dialog
to enter the name of the window class you want to create and the name of its
superclass.

3. Enter AccountWindow in the Class Name field.

By default, UserWindow is the superclass for window classes. Creating a
subclass of the UserWindow class automatically provides you with an empty
window, which you can then format using the Window Workshop. The
UserWindow class also provides the methods you need to manipulate your
window; for example, opening it and closing it. For details, see the Display
Library online Help.

About Window Classes

Chapter 4 Creating the User Interface 55

When you are done, the Window Class Properties dialog should look like the
following:

4. Click OK to add the AccountWindow class to the BankClient project.

iPlanet UDS displays the name of the class in the BankClient project window
and opens the Class Workshop for this window class.

Note that the class already includes two default methods: Init and Display.

5. Close the AccountWindow class window.

6. In the BankClient window, choose the Component > New > Window class…
command.

iPlanet UDS displays the Window Class Properties dialog.

7. Enter TransactionWindow in the Class Name field. The Superclass field is set
to UserWindow. Do not change this value.

About Window Classes

56 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

8. Click OK to add the TransactionWindow class to the BankClient project.

iPlanet UDS displays the name of the class in the BankClient project window
and opens the Class Workshop for this window class.

9. Close the TransactionWindow class window.

Using the Window Workshop
In this part of the tutorial, you will use the Window Workshop to create the user
interface for the application.

To begin, you will create the first window the user sees after the application is
launched. The window will look like the following:

Figure 4-1 User Start-up Window

Note the default controls (zoom icon, window close icon, title bar) that are
provided for the window in your windowing system. In the next part of the
tutorial, you will add the three types of user-defined controls marked in Figure 4-1:
a text graphic (used for labels), a data field, and two push buttons.

Data field

Push buttonsText graphic

Data field

About Window Classes

Chapter 4 Creating the User Interface 57

➤ To open the Window Workshop and create the start-up window

1. Double-click the AccountWindow class in the BankClient project window.

2. Choose File > Window to open the Window Workshop.

iPlanet UDS opens the Window Workshop and displays a blank window, as
shown below.

The Window Workshop provides the tools and widgets (controls) you need to
create your window. You select the tools and widgets you need either from the
appropriate palette or by choosing items from the menu.

Toolbar

Status

Color palette

line

About Window Classes

58 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Before you continue, take a little time to get acquainted with the Window
Workshop. One way to do this is to move the cursor over the widgets and tools
shown in the window. As you do, pause over each tool. iPlanet UDS displays
float-over help text for each element, as well as descriptive text in the status line at
the bottom of the window.

For information about the Window Workshop, see A Guide to the iPlanet UDS
Workshops.

Adding a Label
A text graphic is a static series of characters that you enter directly onto the window
form. You can use a text graphic to provide information, instructions, or labels for
widgets.

➤ To add a label to the window

1. Click once on the text graphic icon, A.

2. Click again in the window at the approximate location where you want to
enter text.

iPlanet UDS displays a default text graphic like the following:

3. Type the following label text: Account Number:

iPlanet UDS now displays this text in the window.

Adding a Data Field
A data field displays a single line of data of a specific type, such as a date, money
value, or ID number. Use a data field to display information or to provide a data
entry field where the user can enter or modify information.

➤ To add a data field for the account number

1. Choose Widget > New > DataField.

iPlanet UDS displays a + cursor.

About Window Classes

Chapter 4 Creating the User Interface 59

2. Click and drag the + cursor to form a rectangle that is roughly the size of the
data field.

3. Double-click on the data field.

iPlanet UDS displays the DataField Properties dialog.

4. Complete the fields in the dialog as shown in the figure above, then click OK.

Every widget has a properties dialog, such as this one, that defines the widget’s
attributes. In general these properties include the name of the widget and its
mapped type.

You use the widget’s attribute name to reference the widget in TOOL code. For
example, if a push button’s name is QuitButton, you could catch events on it as
follows:

when <QuitButton>.Click do

task.PostShutdown;

About Window Classes

60 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

You specify a mapped type to define the type of data contained in the widget. This
type can be a simple data type or a class data type.

DataField widgets can also have an input mask and a template to control the
format of characters that are keyed in. If you attempt to enter an illegal format, the
application gives a warning beep and does not accept the input.

Adding Push Buttons
A push button is a labeled button that the user can click to give a command or
instruction. When you place a button on the form in the Window Workshop,
iPlanet UDS provides a default label. You can change the label using the
PushButton Properties dialog.

➤ To add a push button

1. Choose Widget > New > PushButton.

2. Click in the window at the position where you want to place the button.

iPlanet UDS displays a widget labeled “Button.”

3. Double-click the button.

iPlanet UDS displays the PushButton Properties dialog. You use this dialog to
specify the name of the PushButton attribute for the AccountWindow class and
also to specify the name of the button as it will be displayed in the window.

4. Enter DisplayButton for the Attribute Name field.

5. Enter Display in the Label Text field.

About Window Classes

Chapter 4 Creating the User Interface 61

6. Click the Default Button check box to set the Display button as the default
button.

A default button is displayed with an extra border around it. When the user
presses Return, the application responds as if the default button were clicked.
If a window contains a set of buttons, only one can be designated as the default
button.

7. Click OK.

The newly created push button is now displayed in your window. To
reposition the button, select the button and drag it to the desired location.

8. Choose Widget > New > Pushbutton to add a Quit button.

9. Click in the window at the position where you want to place the push button.

iPlanet UDS displays a widget labeled “Button”.

10. Double-click the button.

iPlanet UDS displays the PushButton Properties dialog.

11. Enter QuitButton in the Attribute Name field.

12. Enter Quit in the Label Text field and click OK.

iPlanet UDS adds the button to your window. Click the button and drag to
place it in the desired location.

You are now finished creating the start-up window for the application. Before you
go on to create the window’s methods, take a moment to see what the window will
actually look like and how its controls are represented in its class window.

About Window Classes

62 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Testing the Window
iPlanet UDS allows you to test a window without having to run the entire
application. The window’s methods will not execute, but you can examine the
widget’s layout and behavior.

➤ To test a window

1. In the Window Workshop, choose File > Test Window.

iPlanet UDS displays the AccountWindow as it would when its Display
method is invoked

.

While the window is in test mode, you cannot use any of its controls. Note that
the window has no title. You will add one in the next section.

2. Close the window (by using the window control, not the Quit button).

Defining a Window Title
In the Window Workshop, you can also define text that is displayed in a window’s
title bar.

About Window Classes

Chapter 4 Creating the User Interface 63

➤ To add title bar text

1. Choose File > Window Properties.

iPlanet UDS displays the Window Properties dialog.

2. Enter Welcome for the Window Title field. Leave the other settings as they are,
and click OK.

3. Choose File > Test Window again and examine the window.

4. Close the Welcome window (by using the window control, not the Quit
button).

5. Choose File > Save All from the Window Workshop to save the window.

6. Close the Window Workshop.

About Window Classes

64 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

The Representation of Window Attributes
Let’s take another look at the AccountWindow class window. You added widgets
to control the appearance of the window. Widgets are graphic objects. When you
use the Window Workshop to add widgets to a window, you are actually adding
attributes to the window class.

How are these attributes represented in the window class? Take a look at
Figure 4-2.

Figure 4-2 The AccountWindow Class

Both of the buttons you added are shown. Their class type is PushButton; their
attribute names are displayed in angle brackets to indicate that they are widgets.

In the case of the Number widget, there are two entries: Number and <Number>.
This convention for representing widgets is an important distinction in iPlanet
UDS.

iPlanet UDS associates widgets that display data with two attributes:

• The attribute shown in angle brackets identifies the graphic object, its
appearance and behavior.

You use this attribute in code when you do something that affects the
appearance of the widget. For example, the following statement changes the
pen color so that the characters displayed in the Number field are red.

<Number>.PenColor = C_BRIGHTRED;

About Window Classes

Chapter 4 Creating the User Interface 65

• The attribute shown without angle brackets references the data displayed in
the widget.

You use this attribute in code when manipulating the value of the data; for
example, the following statement calls the Display method for the transaction
window, passing the value the user entered for the account number as a
parameter.

transwin.Display(currAcct = self.Number);

Creating a Window’s Methods
In this part of the tutorial, you will create the methods for the AccountWindow
class.

➤ To create the AccountWindow Display method

1. In the AccountWindow class window, double-click the Display method.

As you can see, the Display method already contains some code, as shown
below:

If you do nothing else, the default Display method will open the window when
the method is invoked and then close it when the task terminates.

self.Open();
event loop
when task.Shutdown do
exit;

end event;
self.Close();

About Window Classes

66 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

2. Modify the existing code so that it matches the following:

Do not compile the method yet. You need to modify the Display method of the
TransactionWindow class before this method will compile.

The Display method you just created still opens the account window. Then,
depending on whether the user clicks the Display button or the Quit button, it
either creates and displays the transaction window or it quits the application,
as described next.

For every task, (the sample application is defined and structured to run as one
task), iPlanet UDS creates a TaskHandle object. You reference this object using
the task keyword. In the code shown above, the PostShutdown method of the
TaskHandle class is invoked when the user clicks the Quit button. This method
posts a Shutdown event on the task. The following when task.Shutdown
clause handles the event by calling exit. The exit statement closes the event
loop statement block and passes control to the first statement that follows the
block, if any.

3. Close the Method Workshop.

You do not need to change the Init method. If you want to see what it looks
like, double-click its name in the AccountWindow class window. Close it when
you are done.

4. Close the AccountWindow class window.

self.Open();
event loop
when <DisplayButton>.Click do
-- To display another window, first instantiate it
-- then invoke its Display method.
-- This will cause a synchronous modal window to appear.
transWin: TransactionWindow = new();
transWin.Display(currAcct = self.Number);

when <QuitButton>.Click do
task.PostShutdown();

when task.Shutdown do

exit;
end event;

self.Close();

About Window Classes

Chapter 4 Creating the User Interface 67

Creating the Transaction Window
In this part of the tutorial you will create the transaction window and, in the
process, you will learn about a key feature of the iPlanet UDS user interface, the
grid field.

A grid field is a compound widget that arranges widgets into rows and columns of
cells. By using grid fields, you can specify the relative placement of widgets on a
form. This assures that widgets in a grid field never overlap, even when the user
interface has to be ported to other windowing systems. We will discuss other
features of grid fields later in this tutorial.

The window you will create next is displayed to the user after she clicks the
Display button in the Account window. The window is shown in Figure 4-3.

Figure 4-3 Transaction Window

Note that when the window is first displayed, all fields are filled in with account
information except for the Transaction Amount field. The user would enter an
amount in this field and then click the Deposit or Withdraw button. When the user
is finished making transactions, she would click the Exit button.

As you create the window in the next part of the tutorial, do not worry about
aligning labels and data fields neatly. You will be using grid fields to group and
arrange widgets in a window.

➤ To create the transaction window

1. Open the TransactionWindow class.

2. Choose File > Window to open the Window Workshop.

3. Select the text graphic icon, A.

About Window Classes

68 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

4. Click in the window where you want the label to be placed and enter the text:
Account Number:

5. Choose Widget > New > DataField.

iPlanet UDS displays a + cursor.

6. Click and drag the + cursor to form a rectangle that is roughly the size of the
data field.

7. Double-click on the data field.

iPlanet UDS displays the DataField Properties dialog.

8. Complete the fields in the dialog as shown in the figure above and click OK.

9. Use the procedure outlined in Step 3 through Step 7 to add the following data
fields to the window form. Add the text graphic labels for each field, as shown
in Figure 4-2 on page 64.

About Window Classes

Chapter 4 Creating the User Interface 69

➤ To add the push buttons

1. Choose Widget > New > Pushbutton and click again in the window at the
approximate location where you want to place the button.

2. Double-click the button to set its properties.

iPlanet UDS displays the PushButton Properties dialog.

3. Specify the Deposit button properties as shown below.

4. Create two more buttons and specify the following values in the PushButton
Properties dialog for each button. Make the Exit button the default button.

5. Choose File > Save All from the Window Workshop to save the Transaction
window.

You are now nearly done designing the Transaction window. Let’s look at the
TransactionWindow class.

Attribute name Mapped Type Widget Type Input Mask Template

Name String DataField None None

Balance Float DataField Template CURRENCY

TransactionAmt Float DataField Template CURRENCY

Attribute Name Label Text

WithdrawButton Withdraw

ExitButton Exit

About Window Classes

70 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Figure 4-4 Transaction Class Window

For each widget you added to the window form, iPlanet UDS has added an
attribute to the TransactionWindow class. As with the AccountWindow class,
widgets that are data fields have two attributes: one for the widget and the other
for the data it contains.

Using Grid Fields
In this section you are going to create a grid field by grouping together some
widgets in the transaction window. A grid field is a compound field that arranges
its component fields in rows and columns.

About Window Classes

Chapter 4 Creating the User Interface 71

➤ To create a grid field

1. Open the Window Workshop for the TransactionWindow class if it is not
already open.

2. Click the selection tool, and lasso the following elements in the window form:

3. Choose Widget > Group into > GridField.

4. Choose View > Compound Field Lines.

The window form should now look like this:

5. Position the cursor so that it is not over any of the data fields. (A good position
is shown in the figure above.)

6. Double-click to bring up the GridField Properties dialog.

Place cursor
here

About Window Classes

72 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

7. Change the values in your dialog so that it looks like the following.

The values you enter in the Default Cell Margin fields determine the space (in
millimeters) between the widget and the cell margin. The value you enter in
the Default Cell Gravity field determines the alignment of the widget within its
cell.

One of the optional properties you can specify for a grid field is its mapped
type. This is the name of a class to which the grid field maps. Mapping a grid
field to a class can simplify the coding required to display a business object.

If you map a grid field, the named attributes of the widgets contained by the
grid field must match the attribute names and types of the class to which you
are mapping the grid field. When you want to display the business object in the
window, instead of assigning each attribute to a widget, you simply assign the
entire business object reference to the grid field data attribute. You will be
using this technique in the Transaction window’s Display method, by
assigning a BankAccount object directly to the grid field.

About Window Classes

Chapter 4 Creating the User Interface 73

8. Click OK.

Note the changed appearance of the Transaction window. We leave it as an
optional exercise for you to grid the other widgets in the window. For more
information about grids, see the iPlanet UDS Programming Guide and the
Display Library online Help.

9. Choose File > Save All from the Window Workshop.

iPlanet UDS displays the following error message:

To make the BankAccount type known to the BankClient project, you must
make the BankServices project (which defines the BankAccount class) a
supplier plan to the BankClient project. Once you do this, classes defined in the
BankClient project will be able to access classes and other elements defined in
the BankServices project. (The concept of supplier plans was introduced in
“Including a Supplier Plan” on page 32.)

About Window Classes

74 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

➤ To make a project a supplier plan to another project

1. Open the BankClient project by double-clicking its icon in the workspace
window.

2. Choose the File > Supplier Plans… command.

iPlanet UDS displays the Supplier Plans window, which contains two scrolling
lists: one labeled Supplier Plans and another labeled Available Plans. To make
an available plan a supplier plan, you must select it and move it to the Supplier
Plan scroll list.

3. Select the BankServices project in the Available Plans scroll list.

4. Click the left arrow to move the project to the Supplier Plans scroll list and click
OK.

5. Choose File > Save All again from the Window Workshop.

This time, iPlanet UDS is able to compile and save your work.

6. Close the Window Workshop.

Window Classes Before and After Gridding
Let’s look at the TransactionWindow class again.

About Window Classes

Chapter 4 Creating the User Interface 75

Figure 4-5 TransactionWindow Class After Gridding

Do you see the difference? By creating the grid field, we have added two new
attributes to the TransactionWindow: Account (an attribute of type BankAccount)
and <Account> (a widget of type GridField). In addition, the widgets that were
named <Balance>, <Name>, <Number>, are now shown as children of the grid
field. Figure 4-6 shows how the TransactionWindow class looked before creating
the grid field.

About Window Classes

76 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Figure 4-6 TransactionWindow Class Before Gridding

Coding a Window’s Methods
In the next part of the tutorial, you will be modifying the Display method for the
TransactionWindow so that the window displays updated information as the user
deposits or withdraws money.

About Window Classes

Chapter 4 Creating the User Interface 77

➤ To modify the Display method for the TransactionWindow

1. Double-click the Display method in the TransactionWindow class window.

iPlanet UDS opens the Method Workshop and displays the contents of the
default Display method. First, you need to modify the method signature so
that the AccountWindow Display method can pass a parameter specifying the
current account number when it calls this method.

2. Choose File > Properties from the Method Workshop.

iPlanet UDS displays the Method Properties dialog.

3. Enter currAcct for Parameter Name and integer for Data Type.

4. Click OK to close the dialog.

About Window Classes

78 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

5. Modify the Display method so that it looks like the following:

The Display method begins by invoking the GetAccountData method of the
BankSO service object to get current account information that it can display in
the Transaction window. Then, it opens the transaction window.

If the user clicks the Deposit button, the Display method invokes the
UpdateAcct method of the BankSO service object, passing the TransactionAmt
as a positive value. If the user clicks the Withdraw button, the Display method
invokes the UpdateAcct method, passing the TransactionAmt as a negative
value. In either case, it resets the TransactionAmt to zero.

When the user clicks the Exit button, the method exits.

The method also contains an event handler for the AcctUpdated event on the
service object. When it receives such an event, the handler tests to see whether
it concerns the current account. If it does, the handler invokes the
GetAccountData method of the BankSO service object to update the account
information being displayed in the TransactionWindow.

6. Close the Method Workshop.

You are now done creating the classes of the application.

Account = BankSO.GetAccountData (
AcctNumber = currAcct);

self.Open();
event loop

when <DepositButton>.Click do
BankSO.UpdateAcct(acctNumber = currAcct,

transactionAmt = TransactionAmt);
self.TransactionAmt = 0;

when <WithdrawButton>.Click do
BankSO.UpdateAcct(acctNumber = currAcct,
transactionAmt = -(TransactionAmt));

self.TransactionAmt = 0;
when <ExitButton>.Click do
exit;

when BankSO.AcctUpdated(AcctUpdated) do
if AcctUpdated = currAcct then
Account = BankSO.GetAccountData(currAcct);

end if;
when task.Shutdown do
exit;

end event;
self.Close();

About Window Classes

Chapter 4 Creating the User Interface 79

Setting the Start Class and Method
Before you can run the application, you need to specify the start class and method.
These define the entry point to the application. iPlanet UDS begins execution of the
application by creating an object of the start class and then invoking the start
method on it.

➤ To set a start method and class

1. Open the BankClient project and choose the File > Start Class Method…
command.

iPlanet UDS displays the Start Class and Method dialog.

2. Enter AccountWindow for the StartClass property, and enter Display for the
Start Method property as shown below.

3. Click OK.

The start method for an application cannot have parameters and cannot be the Init
method. iPlanet UDS will instantiate the object for you before calling the method
you specified. In this case, for example, you specified that the Display method be
invoked, but before this happens, the Init method is actually called first.

You can run your application now by choosing the Run > Test Run command.
Remember that the only valid account numbers you can enter are 1000, 2000, 3000.
When you run your application, you will still get a warning that there are methods
that might not return a value. You will resolve this problem in the next section.

About Window Classes

80 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

81

Chapter 5

Handling Exceptions

In this chapter you will create an exception class as well as the code for handling
the exception.

About Exception Handling
Both the GetAccountData and the UpdateAcct methods of the BankMgr class
search an array of accounts to find an account whose number is specified by the
user. Neither method currently handles the case in which an account is not found.
In this section of the tutorial, you will add an exception handler that will deal with
this possibility. Exception handling means passing an exception to a special
exception handler, outside the current block of code. This handler provides the
code that handles the exception.

An exception is an abnormal condition. Such a condition might arise when the
system detects an error; for example, division by zero, or a user input error. In the
case of a system error, your application needs to handle the exception. In the case
of an error that occurs in your code, you need to do the following:

• identify the possible source of an error and construct an exception object of a
custom exception class

• use the raise statement to raise the exception in the method where the error
might occur

• handle the exception in the method that calls the methods where the exception
is raised

In the rest of this section you will create the AccountNotFound exception class, you
will add code to the GetAccountData and UpdateAcct methods to raise this
exception, and then you will add some code to the TransactionWindow.Display
method to handle the exception.

Creating an Exception

82 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Creating an Exception
To create an exception, you need to create an exception class and make it a subclass
of the GenericException class, which is a pre-defined iPlanet UDS class.

➤ To create the exception class

1. Open the BankServices project window.

2. Choose the Component > New > Nonwindow Class… command.

The Class Properties dialog appears, as shown below.

3. Enter NotFoundException as the Class Name.

Creating an Exception

Chapter 5 Handling Exceptions 83

4. Enter GenericException as the Superclass.

iPlanet UDS provides a special class for exceptions, the GenericException class,
which has attributes and methods defined that you can use when raising and
handling exceptions. iPlanet UDS displays the name of the new class in the
BankServices project window, as shown below, and opens the
NotFoundException class window.

5. Close the NotFoundException class window.

Raising an Exception
Now you need to add some code to the GetAccountData method to raise the
exception. Raising an exception generates the exception to be handled by an
exception handler.

➤ To raise the AccountNotFound exception

1. Open the BankMgr class window.

2. Double-click the GetAccountData method to open the Method Workshop.

Creating an Exception

84 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

3. Add the following code to the method after the end for statement:

All subclasses of GenericException inherit the SetWithParams method from the
superclass ErrorDesc. This method allows you to specify the Severity attribute
for the class and a message that is displayed when the exception is handled.
The code SP_ER_ERROR indicates an error in user code.

Calling the ErrorMgr.AddError method allows iPlanet UDS to add a
user-raised exception to the Error Stack, which is a listing of all exceptions that
have been raised while the application has been executing.

For more information about the GenericException, ErrorDesc, and ErrorMgr
classes, see the Framework Library online Help.

4. Choose File > Compile to compile the method and close the Method
Workshop.

5. Open the Method Workshop for the UpdateAcct method.

6. Add the same code to that method after the for loop and compile the method.

7. Close the Method Workshop and all windows in the BankServices project.

accountNotFound: NotFoundException = new();
accountNotFound.SetWithParams(severity = SP_ER_ERROR,
message = ’The account number you entered does not exist’)

task.ErrMgr.AddError(accountNotFound);
raise accountNotFound;

Creating an Exception

Chapter 5 Handling Exceptions 85

Handling an Exception
Finally, you need to add code to the Display method of the TransactionWindow
class to handle the exception.

➤ To handle the AccountNotFound exception

1. Open the BankClient project and the TransactionWindow class.

2. Open the Method Workshop for the TransactionWindow Display method.

3. Add the following code to the Display method after the self.Close method
call:

An exception handler begins with the word exception, followed by one or
more when clauses. Each when clause contains the statement block to handle a
given exception class. When an exception object that is raised is of the
exception class defined in the when clause, the statement block for that clause is
executed. In this case, the exception handler contains only one when clause,
which executes when an exception of the NotFoundException class is raised.

The code shown above also calls the UserWindow.MessageDialog method.
This method displays an error message when an exception occurs. The
Message attribute of the exception object is assigned to the MessageText
parameter of the MessageDialog method, and the Severity attribute of the
exception object is assigned to the MessageType parameter. For more
information about the UserWindow.MessageDialog method, see the Display
Library online Help.

4. Choose File > Compile to compile the method.

5. Close all windows except your Repository Workshop.

exception
when accountNotFound : NotFoundException do
self.window.MessageDialog(
 messageText = accountNotFound.message,
 messageType = accountNotFound.severity);
self.Close();

Creating an Exception

86 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Checking Your Work
To check the exception handling code you entered, run the application and enter an
account number you know is invalid.

➤ To run the application

1. Select the BankClient project.

2. Click the Run icon to run the application.

3. Enter any number in the Account number field other than 1000, 2000, or 3000.

iPlanet UDS executes the exception handler you just added and displays the
following dialog

.

4. Click OK to close the dialog and exit the Welcome window.

5. Choose File > Save All.

For more information about exception handling, see the TOOL Reference Guide.

87

Chapter 6

Testing and Running the Application

So far you have used the iPlanet UDS workshops to develop a logical application
without worrying about the details of the environment in which the application
will be deployed. In the last step of the development process, you are going to
partition this logical application for a specific environment.

The Partitioning and Deployment Process
Figure 6-1 shows the steps required to complete the partitioning and deployment
process. The rest of this section will provide a more detailed view of each step.

Figure 6-1 Making a Distribution and Installing the Application

In general, before you can partition the application, the system manager must set
up the iPlanet UDS environment in which the application is partitioned. If you are
running iPlanet UDS in distributed mode, you are already connected to an
environment. You may or may not be able to duplicate the steps in this section of

Set up
development
environment

DeveloperSystem Manager

Install
application
distribution

Partition
application

Make
application
distribution

Customize
partition
scheme

Test application
in distributed

mode

The Partitioning and Deployment Process

88 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

the tutorial depending on whether you are working on a machine that can be a
server node. If you are running on a machine that is a pure client, you will be able
to perform most of these steps, but you will not be able to install the application on
your own machine.

For more information about partitioning and deployment, see the iPlanet UDS
Programming Guide.

Partitioning the Application
When you use the Partition Workshop to partition your application, iPlanet UDS
creates logical partitions and assigns them to various nodes in the environment
based on the properties of each node. Each partition is an independent process that
can run on its own machine. The result of assigning partitions to nodes in an
environment is called a configuration.

The Partitioning and Deployment Process

Chapter 6 Testing and Running the Application 89

➤ To partition the application

1. Open the BankClient project window.

2. Choose File > Configure as > Client.

iPlanet UDS opens the Partition Workshop and displays the default partition
configuration in the Configuration window, as shown below.

The left browser, called the Logical Partition browser, displays the
application’s logical partitions. The right browser, called the Node browser,
displays the names of the nodes available in your environment. Just above the
Logical Partition browser, there is a drop list that you can use to choose the
environment in which to partition the application.

The node browser of your Partition Workshop window will look different, you
might have only one node in your environment or you might have several, but
their names and types will differ from the ones shown in the figure. You
should be able to see the name of your own machine displayed in the node
browser.

If the Logical Partition browser is not large enough to show the names of the
logical partitions in their entirety, click the cursor on the vertical line dividing
the browsers until it is changed into a cross-hair cursor and then drag to
expand the browser to the right.

Node

Environment

Logical

drop list

partitions

The Partitioning and Deployment Process

90 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

3. Choose View > Node Outline to change the view of the assigned nodes in the
Node browser.

iPlanet UDS changes the display to look like the one below.

4. To see the contents of your logical partitions, click on the arrows to the left of
the partition icon. Note the use of the icons to identify logical partition types.

Client partition

Server partition

Service object

icon

icon

icon

The Partitioning and Deployment Process

Chapter 6 Testing and Running the Application 91

5. To see how your logical partitions are assigned to the nodes in your
environment, click on the arrows to the left of the node icons in the Node
browser.

In the figure below, you can see that the BankClient client partition and the
BankClient server partition are both assigned to the node named MINNA. If
they were installed on this node, they would run as two separate processes on
this machine.

The Partitioning and Deployment Process

92 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Getting Information About Nodes
You can get more information about the nodes in your environment to help you
decide how to customize your configuration.

➤ To display information about individual nodes

1. Select the node and choose the Component > Properties… command.

iPlanet UDS displays a Node dialog like the following:

The node properties that are displayed in this dialog were specified for the
node when the environment was created. You cannot change them in the
Partition Workshop.

2. Close the Node dialog.

The Partitioning and Deployment Process

Chapter 6 Testing and Running the Application 93

Customizing the Partitioning Scheme
You can change the default partitioning configuration in the Partition Workshop
by modifying the logical partitioning scheme or by modifying node assignments.
After customizing the partitioning scheme, you can run the application in test
mode. During this stage, iPlanet UDS creates the application partitions in the
development environment and runs it as a distributed application.

For complete information about customizing the partitioning scheme, see the
iPlanet UDS Programming Guide.

Unless your machine is a pure client, the client and server partitions should be
assigned on your machine. For this exercise, you want all partitions to be placed on
your machine. This way you can be sure that you have read/write access to your
own machine and complete the subsequent steps of the tutorial.

➤ To move a client or server partition from another node to your own node

1. Click the partition name and drag it to your node.

The figure below shows one possible configuration for the application.

2. Experiment with your own configuration to see what you can do.

3. When you are done, make sure that the client and server partitions are
assigned to your machine.

Making a Distribution

94 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Testing Your Configuration
When you have customized your configuration to your satisfaction, it is time to test
the application as a distributed application using the configuration you just
defined.

To run your application using the configuration that you have defined in the
Partition Workshop, click the Run icon in the Partition Workshop. iPlanet UDS
creates a process that instantiates the BankSO service object in memory on the node
you have chosen, and you can test your application in distributed mode. Note,
however, that no executable files are created and installed until you complete the
next step, which is making a distribution.

Making a Distribution
After testing, you can make an application distribution. During this stage, iPlanet
UDS creates all the files needed to install the application into a deployment
environment. During installation, which is typically done by the system manager,
code for each partition is installed in a location on its assigned node.

➤ To make an application distribution

1. In the Partition Workshop, choose the File > Make Distribution… command.

iPlanet UDS displays a dialog that you use to specify on which node you want
the files created, whether you want a full or partial distribution, and whether
you want it to compile partitions that are marked as compiled.

The first time you make a distribution, you should choose the Full Make
option. Subsequently, you can choose Partial Make.

Location where you want UDS to
place application distribution files

Making a Distribution

Chapter 6 Testing and Running the Application 95

2. Specify the name of the node where you want the application distribution files
placed by selecting an item from the drop list. Unless you have good reason to
do otherwise, it is best to make the distribution on your local machine.

3. Click the Full Make radio button.

4. If you are running on a machine that can be a serve, turn on the Install in
Current Environment toggle. Otherwise, leave this checkbox clear.

5. Leave the Auto Compile toggle off, because you have not marked any
partitions to be compiled.

6. Click the Make button.

If you are running on a machine that is not a pure client, iPlanet UDS will
create the distribution files and install them on your machine. When it is
finished, iPlanet UDS displays the following message to inform you when the
distribution is complete.

If you are making a distribution on a pure client, iPlanet UDS displays the
message “Distribution made” on the status line. iPlanet UDS has created the
files that need to be installed; you need to have the system manager install
these files on the appropriate machines.

7. Click the OK button to close the dialog.

Making a Distribution

96 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

Running Your Application
If you have been using a UNIX or NT machine to create your application, you can
run it by entering one of the following commands:

• If you are using the launch server, enter the following command:

ftcmd run BankClient

• If you are not using the launch server, enter the following command on UNIX:

ftexec -fi bt:FORTE_ROOT/userapp/bankclie/cl0/bankcl0

• Enter the following command on WindowsNT:

ftexec -fi bt:FORTE_ROOT\userapp\bankclie\cl0\bankcl0

Congratulations! You have just created your first iPlanet UDS application.

Checking Concurrency
If you want, take another few minutes to see how the service object is shared by
two clients.

➤ To check concurrency

1. Launch your application.

2. Launch your application again.

Two Welcome windows should now be open on your screen.

3. Enter the same account number in each window and click the Display button
in each window to open two Transaction windows.

4. Make a deposit or withdrawal in one of the Transaction windows.

Note that the account and balance information is instantly updated in the other
Transaction window. Your AcctUpdated event has been sent by the service
object to both clients.

5. You can quit both applications now.

97

Index

A
Application

architecture 19
distribution, definition 94
partitioning 88
running 86, 96
stages of development 18
test running 79

Array class, using 39
Array, initializing 40

B
Business class

defining 34
definition 20, 33

C
Concurrency, checking 96
Configuration

definition 88
testing 94

D
Data field

creating 58
definition 58

Deployment
making a distribution 94
process 87

Display library 28
Display method, modifying 77
Distribution, making 94

E
Event

creating 44
posting and handling 43

Exception
creating 82
definition 81
raise statement 81
raising 83

Exception handling
definition 81
GenericException class 83
process 85
SP_ER_ERROR code 84

Section F

98 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

F
Fields, laying out 70
Framework library 28

G
GenericDBMS library 28
GenericException class 83
Grid field

creating 71
definition 70
mapped type 72

Grouping fields 70

H
Handling an exception 85

I
Import command 28
Include Public command 28

L
Label, adding to window 58
Library

importing 28
overview of system 28

Logical application, definition 28

M
Main project 28

Making a distribution 94
Mapped type, definition 72
Method

creating 41
start 79

N
New Event command 44
New Project command 29
New Window Class command 54

P
Partition

customizing default configuration 93
default partition configuration 89
definition 19, 88

Partitioning
an application 88
process 87

PDF files, viewing and searching 13
Plan

definition 28
supplier 28

Project
creating 29
definition 29
main, definition 28
making a supplier 74

Push button
creating 60
definition 60

R
raise statement 81

Section S

Index 99

S
Service object

creating 49
defining 37
definition 20, 33, 48
guidelines for creating 48

SP_ER_ERROR code 84
Start Class Method command 79
Start class, setting 79
Start method, setting 79
Supplier plan

definition 28
including 32

Supplier Plans command 74
Supplier project 74
System libraries

Display 28
Framework 28
GenericDBMS 28

T
Test run an application 79
Test Run command 79
Text graphic, definition 58
Text graphic, using 58

U
User interface

adding a data field 58
adding a label 58
adding a push button 60
creating 56
laying out fields 70
using grid fields 70

W
Widget, definition 53
Window class

about 53
creating 54
definition 20
widget 53

Window Workshop tools 57
Window Workshop, using 56
Windows, laying out fields 70
Workspace

creating 26
definition 25
opening 26

Section W

100 iPlanet Unified Development Server • Getting Started With iPlanet UDS • August 2001

	Contents
	List of Figures
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 Introduction
	Getting Started
	Stages of Application Development
	Designing the Application
	The Architecture of an iPlanet UDS Application
	The Architecture of the Sample Application

	2 Defining the Logical Application
	Working in the iPlanet UDS Workshops
	Creating a Workspace
	To open a workspace

	Creating Projects
	To create the BankServices project
	To create the BankClient project

	Including a Supplier Plan

	3 Creating the Service Side
	Overview
	Defining Business Classes
	To create a new class
	To create an attribute

	Defining Service Object Classes
	To create the BankMgr class

	Working with Arrays
	To initialize the AccountList array

	Creating a New Method
	To create a new method

	Posting and Handling Events
	To create an event
	To post an event

	Creating Service Objects
	To create a service object

	4 Creating the User Interface
	About Window Classes
	Creating a Window Class
	To create a window class

	Using the Window Workshop
	To open the Window Workshop and create the start-up window
	Adding a Label
	To add a label to the window
	Adding a Data Field
	To add a data field for the account number
	Adding Push Buttons
	To add a push button
	Testing the Window
	To test a window
	Defining a Window Title
	To add title bar text
	The Representation of Window Attributes
	Creating a Window’s Methods
	To create the AccountWindow Display method
	Creating the Transaction Window
	To create the transaction window
	To add the push buttons
	Using Grid Fields
	To create a grid field
	To make a project a supplier plan to another project
	Window Classes Before and After Gridding
	Coding a Window’s Methods
	To modify the Display method for the TransactionWindow
	Setting the Start Class and Method
	To set a start method and class

	5 Handling Exceptions
	About Exception Handling
	Creating an Exception
	To create the exception class
	Raising an Exception
	To raise the AccountNotFound exception

	Handling an Exception
	To handle the AccountNotFound exception

	Checking Your Work
	To run the application

	6 Testing and Running the Application
	The Partitioning and Deployment Process
	Partitioning the Application
	To partition the application

	Getting Information About Nodes
	To display information about individual nodes

	Customizing the Partitioning Scheme
	To move a client or server partition from another node to your own node

	Testing Your Configuration

	Making a Distribution
	To make an application distribution
	Running Your Application
	Checking Concurrency
	To check concurrency

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	W

