
Using iPlanet UDS for OS/390
iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 9

List of Tables . 11

List of Procedures . 13

Preface . 15
Product Name Change . 15
Audience for This Guide . 16
Organization of This Guide . 16
Text Conventions . 17
Other Documentation Resources . 17

iPlanet UDS Documentation . 18
Express Documentation . 18
WebEnterprise and WebEnterprise Designer Documentation . 19
Online Help . 19

iPlanet UDS Example Programs . 19
Viewing and Searching PDF Files . 20

Chapter 1 iPlanet UDS for OS/390 . 23
iPlanet UDS for OS/390 . 23
Feature Restrictions . 25
Accessing DB2/MVS . 25

DB2 CLI Initialization Dataset . 26
Sample Dataset . 27

Security Privileges . 28
DB2 Access . 29
GRANT EXECUTE Procedure for DB2 . 29

4 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Integrating With External Systems . 30
Calling External C Functions . 31
Calling Native MVS Programs from iPlanet UDS . 31

MVS Program Requirements . 32
Integration Procedure . 32

Using System Activities . 33
Using the External Connection Class . 34

Performance Tuning . 35
Supporting Large Number of Users . 35
Memory Allocation . 36

Virtual Memory . 37
Real Storage Requirements . 39

Workload Management . 39
Overview . 40
Defining Service Classes for iPlanet UDS Processes . 41
Assigning a Service Class to a Group of iPlanet UDS Partitions . 42
Prioritizing a Single iPlanet UDS Partition . 43
Compatibility and Goal Mode . 45
Using Report Classes . 45

Chapter 2 Overview of the iPlanet UDS Transaction Adapter . 47
Overview . 47

APPC Interfaces . 48
Simple Interface . 49
Direct Interface . 51

Architecture . 52
Reference Information . 52
APPCApi . 53
APPCConversation . 53
APPCSecurityInfo . 53
APPCException . 54

Chapter 3 Using the iPlanet UDS Transaction Adapter . 55
Designing an Application . 55

Threading and Partitioning Considerations . 58
Using the Transaction Adapter Classes . 59

Define the Service Object . 60
Collect OLTP Information . 60
Write the Application . 60
Diagnostic Tools . 63

iPlanet UDS Traces . 63
VTAM Buffer Trace . 65

5

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 67
Developing a Transaction Adapter . 68

Identifying COBOL Exchanges . 69
Creating the Fscript Script . 69
Creating and Importing a Supplier Plan . 70

Creating a Transaction Adapter . 71
Fscript Commands . 72

Transaction Proxies . 73
AddTransactionProxy . 73
FindTransactionProxy . 74
GenerateTransactionProxy . 74
RemoveTransactionProxy . 75
ShowAllTransactionProxies . 75
ShowTransactionProxy . 76

Exchange Methods . 76
AddExchange . 76
FindExchange . 77
RemoveExchange . 77

Arguments . 77
AddInputArgument . 78
AddOutputArgument . 78
RemoveArgument . 79

Records . 79
AddRecord . 79
RemoveRecord . 81
ShowRecords . 81

Other Commands . 81
AddAPPCInfo . 81
CommandSet . 83
SwitchTruncOption . 83
UseServiceObject . 84

Generated Classes . 84
Supporting Classes . 85
Sample Script and Generated Code . 85

Appendix A Example Applications . 95
CICS VSAM Query Example . 95

Installing the Example Application . 96
CICS Transaction . 96
iPlanet UDS Application . 97

Running the Example Application . 97

6 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

CICS VSAM Query Example (continued)
Understanding the Application Logic . 98

Creating the APPCConversation Object . 98
Creating the COBOLBuffer and COBOLField Objects . 98
Defining the Layout of the COBOL Record . 98
Establishing the Conversation . 99
Sending the Input Data . 100
Receiving the Output Data . 101
Terminating the Conversation . 101
Processing the Data . 102

CICS DB2 Query Example . 102
Installing the Example Application . 103

CICS Transactions . 104
iPlanet UDS Application . 105

Running the Example Application . 106
Understanding the Application Logic . 107

Creating the APPCConversation Object . 107
Creating the COBOLBuffer and COBOLField Objects . 107
Defining the Layout of the COBOL Record . 108
Establishing the Conversation . 108
Sending the Input Data . 109
Receiving the Output Data . 110
Terminating the Conversation . 111
Processing the Data . 111

IMS DLI Query MFS Example . 112
Installing the Example Application . 112

IMS Transaction . 113
iPlanet UDS Application . 113

Running the Example Application . 114
Understanding the Application Logic . 114

Creating the APPCConversation Object . 114
Creating the COBOLBuffer and COBOLField Objects . 115
Defining the Layout of the COBOL Record . 115
Establishing the Conversation . 116
Sending the Input Data . 116
Receiving the Output Data . 117
Terminating the Conversation . 118
Processing the Data . 119

7

IMS DLI Query Explicit APPC Example . 119
Installing the Example Application . 120

IMS System Preparation . 120
IMS Transaction . 120
APPC/MVS Definition . 121
iPlanet UDS Application . 121

Running the Example Application . 121
Application Logic . 122

Creating the APPCConversation Object . 122
Establishing the Conversation . 122
Sending the Input Data . 123
Receiving the Output Data . 124
Terminating the Conversation . 125
Processing the Data . 125

Index . 127

8 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

9

List of Figures

Figure 1-1 DB2 Initialization Dataset . 28

Figure 1-2 Default UNIX Services Workload . 40

Figure 1-3 iPlanet UDS Partitions as Distinct Service Classes . 43

Figure 1-4 Prioritizing a Single iPlanet UDS Partition . 44

Figure 2-1 Using the iPlanet UDS Transaction Adapter to Call Online Transaction Processors . 48

Figure 4-1 Developing a transaction adapter with Transaction Adapter Builder 68

10 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

11

List of Tables

Table 1-1 Performance Goals and WLM Modes . 45

Table 2-1 iPlanet UDS Transaction Adapter Simple Interface . 50

Table 2-2 iPlanet UDS Transaction Adapter Direct Interface . 51

Table 4-1 Fscript commands for Transaction Adapter Builder . 72

Table 4-2 Sources and JCLs for FRTCEX02 program . 96

Table 4-3 Sources and JCLs for FRTCEX03 program . 104

Table 4-4 Sources and JCLs for FRTCEX04 program . 104

Table 4-5 Sources and JCLs for FRTCEX05 program . 104

Table 4-6 Source and JCLs for the FRTIEX02 program . 113

12 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

13

List of Procedures

To copy the documentation to a client or server . 20

To view and search the documentation . 20

To call a native MVS program . 32

To implement APPC conversation security . 54

To compute the number of concurrently active threads . 59

To enable the conversation trace . 63

To enable the API trace . 63

To use the .PEX file as a supplier plan . 70

To execute this example application . 97

To execute the CICS BMS version of this example application . 106

To execute the iPlanet UDS version of this example application . 106

To execute the IMS MFS version of this example application . 114

To execute the iPlanet UDS version of this example application . 114

To execute this example application . 121

14 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

15

Preface

This book describes iPlanet UDS for OS/390, which provides support for the
deployment and management of iPlanet UDS server partitions on the OS/390
platform.

This preface contains the following sections:

• “Product Name Change” on page 15

• “Audience for This Guide” on page 16

• “Organization of This Guide” on page 16

• “Text Conventions” on page 17

• “Other Documentation Resources” on page 17

• “iPlanet UDS Example Programs” on page 19

• “Viewing and Searching PDF Files” on page 20

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

16 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Audience for This Guide
Using iPlanet UDS for OS/390 is written for programmers who are fully conversant
with OS/390-hosted COBOL applications and familiar with the iPlanet UDS
environment. We assume that you:

• have TOOL programming experience

• are familiar with your particular window system

• understand the basic concepts of object-oriented programming as described in
A Guide to the iPlanet UDS Workshops

• have used the iPlanet UDS workshops to create classes

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “iPlanet UDS
for OS/390”

Explains how you use the OS/390 system as a deployment
environment for iPlanet UDS applications.

Chapter 2, “Overview of
the iPlanet UDS
Transaction Adapter”

Provides an overview of the iPlanet UDS Transaction Adapter
for OS/390.

Chapter 3, “Using the
iPlanet UDS Transaction
Adapter”

Explains how you use the iPlanet UDS Transaction Adapter
for OS/390 in developing an application.

Chapter 4, “Integrating
IBM OS/390-Hosted
COBOL Applications
with iPlanet UDS”

Explains how to use Fscript extensions to create Transaction
Adapters for connecting to OS/390-hosted COBOL programs.

Appendix A, “Example
Applications”

Describes sample applications that demonstrate the use of the
iPlanet UDS Transaction Adapter for OS/390 to interface with
various transaction processing monitors.

Text Conventions

Preface 17

Text Conventions
This section provides information about the conventions used in this document.

Other Documentation Resources
In addition to this guide, iPlanet UDS provides additional documentation
resources, which are listed in the following sections. The documentation for all
iPlanet UDS products (including Express, WebEnterprise, and WebEnterprise
Designer) can be found on the iPlanet UDS Documentation CD. Be sure to read
“Viewing and Searching PDF Files” on page 20 to learn how to view and search the
documentation on the iPlanet UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

http://docs.iplanet.com/docs/manuals/uds.html

Other Documentation Resources

18 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

iPlanet UDS Example Programs

Preface 19

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files

20 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 21

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

Viewing and Searching PDF Files

22 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

23

Chapter 1

iPlanet UDS for OS/390

This chapter describes iPlanet UDS for OS/390, an iPlanet UDS release that
provides support for the deployment of iPlanet UDS server partitions on the
OS/390 platform. This chapter also supplements the documentation set provided
by iPlanet UDS with information specific to the OS/390 deployment environment.
This includes the following:

• integrating with C applications

• calling native MVS programs from iPlanet UDS

• setting security privileges

• performance tuning

• DB2 access

• workload management

For information on installing iPlanet UDS for OS/390, see the iPlanet UDS System
Installation Guide.

iPlanet UDS for OS/390
Starting with release 3J of iPlanet UDS, you will be able to use the OS/390 system
as a deployment environment for iPlanet UDS applications. This means that an
iPlanet UDS partition installed as part of UNIX System Services on the OS/390
platform can communicate with any other iPlanet UDS partition on a platform that
is running iPlanet UDS release 3.0.J or higher.

iPlanet UDS for OS/390

24 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

An iPlanet UDS environment consists of a collection of networked nodes running
the iPlanet UDS runtime system. This system provides a common set of services
that allows an iPlanet UDS application, or a part of such an application (a partition)
to run on a number of platforms. The runtime system supports access to the local
operating system as well as communication and synchronization between
partitions running on other platforms.

An iPlanet UDS deployment environment is one in which you can deploy, run, and
manage an iPlanet UDS application. A deployment environment has the iPlanet
UDS runtime system and system management services installed and running and
includes the Escript environment console utility, which is used to deploy, start, and
manage distributed applications.

A node in an iPlanet UDS environment can be a server node, a client node, or both.
iPlanet UDS for OS/390 only supports server nodes. You can deploy only server
partitions on a server node. An iPlanet UDS for OS/390 partition refers to an iPlanet
UDS server partition that is executing in the UNIX System Services environment on
an OS/390 platform.

An iPlanet UDS OS/390 partition has the following characteristics:

• It can run in interpreted or compiled mode.

• It can be configured for failover and load balancing.

• It can transparently communicate with iPlanet UDS partitions deployed on
other platforms that are running iPlanet UDS version 3.0.J or higher.

• It can be managed using iPlanet UDS's system management facilities.

In addition, an iPlanet UDS for OS/390 partition can be integrated with
non-iPlanet UDS code. Methods in an iPlanet UDS for OS/390 partition can call
encapsulated C functions residing in C projects on any iPlanet UDS partition. By
way of this mechanism, iPlanet UDS applications can also call native MVS
programs.

“Integrating With External Systems” on page 30 provides additional information
that you need to perform this integration.

Feature Restrictions

Chapter 1 iPlanet UDS for OS/390 25

Feature Restrictions
This release of iPlanet UDS for OS/390 does not allow iPlanet UDS partitions to do
the following:

• read input from or send output to terminals or printers on the OS/390 system

• run the iPlanet UDS development workshops on OS/390. (Development and
distribution of iPlanet UDS applications is only possible on OS/390 using the
Fscript command-line utility)

• make calls to the Display library

• make C++ callins

• build and test applications that use the display system from an OS/390
platform used as a shared development platform

Accessing DB2/MVS
iPlanet UDS DB2 Adapter for OS/390 uses the DB2 Call Level Interface (CLI) to
connect directly to DB2 in cross-memory mode on the OS/390 platform. Therefore,
DB2 DBSession objects must always be instantiated on OS/390 partitions.

To enable CLI use by iPlanet UDS DB2 Adapter, you must GRANT EXECUTE
privileges to the iPlanet UDS for OS/390 user ID that starts the node manager. See
“Security Privileges” on page 28 for more information.

DB2/MVS DBSession objects require more virtual memory than allowed by the
default memory settings on OS/390. Partitions that use OS/390 DB2 require an
initial heap size of 32 MB or larger. You can use either the FORTE_GC_SPECIAL
environment variable or the -fm parameter to override default values. See “Virtual
Memory” on page 37 for more information.

CAUTION Note that there are significant differences between DB2/MVS SQL
syntax and DB2 SQL syntax on other platforms. For example,
DB2/MVS uses different date and time formats than DB2 on other
platforms, and supports shorter BLOB data items. DB2/MVS limits
BLOB data items to less then 32K bytes in length. Actual BLOB size
is further limited by the size of other column types in the table and
by the buffer pools assigned when the tablespace was created. See
DB2 for OS/390 V5 SQL Reference (SC26-8966) and DB2 for OS/390
Administration Guide (SC26-8957) for additional information.

Accessing DB2/MVS

26 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

DB2 CLI Initialization Dataset
IBM’s DB2 on OS/390 allows multiple database servers for each instance of DB2
running on OS/390. Each DB2 instance is identified by the OS/390 system
programmer with a
4-character subsystem name. Each DB2 subsystem may, in turn, access multiple
database servers. The DB2 CLI interface reads an initialization file that identifies
which DB2 instance and which database server within that instance can be
accessed. The DB2 instance is selected based on the subsystem ID specified in this
file; the database server is selected based on the server name, also specified in the
file.

The DSNAOINI environment variable identifies the name of the dataset containing
the specific DB2 CLI initialization parameters you want to use, and hence the DB2
instance and database server to be accessed. You specify the value for the
DSNAOINI environment variable to the iPlanet UDS installer when it prompts for
the DSNAOINI dataset name.

For example, the following response specifies the MVS dataset containing the DB2
CLI initialization parameters to be the IBM-supplied PDS member shipped with
DB2 5.1.0. Note the use of quotation marks; these are required to avoid UNIX
System Services treating the parenthesis as special characters. The installer accepts
the entire string and assigns it including the quotation marks.

"DSN510.SDSNSAMP(DSNAOINI)"

The following response specifies a customer-named sequential dataset. The value
for <qualifier> is typically the user id starting the iPlanet UDS for OS/390 node
manager. In this case, there are no special characters in the string. The quotation
marks are not required, but they are accepted if you decide to put them in.

<qualifier>.DSNAOINI

The installer uses your responses to set the fortedef.sh environment variable
DSNAOINI.

RACF authorization to read the dataset must be given to the user id running
iPlanet UDS and starting the iPlanet UDS for OS/390 node manager.

Accessing DB2/MVS

Chapter 1 iPlanet UDS for OS/390 27

Sample Dataset
The following DB2 CLI initialization dataset defines the DSN1 instance of DB2 and
the MYDB2SVR database server to be accessed. The user id that starts the iPlanet
UDS for OS/390 node manager must have RACF privileges to read this dataset and
also have DB2 privileges to execute the DSNACLI plan and the DSNCLI package
under the MYDB2SVR database server within the DNS1 instance.

You can find an IBM-supplied example of this initialization file in the IBM DB2
install dataset member *.SDSNSAMP(DSNAOINI).

Figure 1-1 shows the process we have described so far.

000001 ; This is a comment line...
000002 ; Example COMMON stanza
000003 [COMMON]
000004 MVSDEFAULTSSID=DSN1
000005
000006 ; Example SUBSYSTEM stanza for DSN1 subsystem
000007 [DSN1]
000008 MVSATTACHTYPE=CAF
000009 PLANNAME=DSNACLI
000010
000011 ; Example DATA SOURCE stanza for MYDB2SVR data source
000012 ; where MYDB2SVR is one of the database servers under
000011 ; the DSN1 DB2 subsystem
000013 [MYDB2SVR]
000014 AUTOCOMMIT=0
000015 CONNECTTYPE=1
000016 CURSORHOLD=1

Security Privileges

28 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Figure 1-1 DB2 Initialization Dataset

Security Privileges
Security privileges for iPlanet UDS for OS/390 partitions are controlled by the
OS/390 Security Access Facility (SAF) that is running on that platform. The IBM
Resource Access Control Facility (RACF) is one SAF-compliant security package;
other such packages are available from vendors other than IBM. The setting of
security privileges for iPlanet UDS processes running on the OS/390 platforms
does not depend on the SAF-compliant package being used.

On the OS/390 platform, the privileges for an iPlanet UDS partition are the same as
the privileges granted to the MVS user ID that starts the iPlanet UDS partition.
Whoever starts the UNIX process executing for the partition determines the
security privileges associated with that process.

Unix shell running
iPlanet UDS partition

DB2 CLI

DSNAOINI =
”DSN510.SDSNSAMP(DSNAOINI)”

MVS Dataset
DSN510.SDSNSAMP(DSNAOINI)

points to...

DB2
Subsystem
DSN1

Database
DSNDB07

Database
MYDB2SVR

CLI
connects to
subsystem DSN1

CLI reads in dataset
contents

CLI accesses default
database MYDB2SVR

[DSN1]
.
.
.
[MYDB2SVR]

1

2

43

Security Privileges

Chapter 1 iPlanet UDS for OS/390 29

For example, if user ID “sysadm” starts an iPlanet UDS node manager, the node
manager will have all SAF privileges associated with the MVS “SYSADM” user ID.
Furthermore, if this node manager autostarts a partition, then the started partition
will also have SYSADM authority. If a partition is not autostarted but another user
ID, for example, “bryanp” executes the ftexec command to start it, then that
partition runs with “BRYANP” privileges.

This scheme affects a number of areas, principally file and database access. For
example, if the partition is going to read and write to log files, repositories, or any
other type of file, then the user ID starting the partition must have appropriate read
and write privileges to the files that are accessed.

This scheme is enforced even if iPlanet UDS applications propagate a user ID to
server partitions running on the OS/390 platform. iPlanet UDS will not use a
client’s user ID to override or change any of the security privileges established for
the server partition. iPlanet UDS applications can certainly take advantage of a
client’s user ID to impose additional security measures, but these additional
measures must be enforced programmatically by the iPlanet UDS application.

DB2 Access
The OS/390 user ID that starts the iPlanet UDS for OS/390 node manager under
OS/390 Unix System Services (USS) is the user ID that must be authorized by
RACF to allow access to DB2 on OS/390.

When DB2 CLI establishes a connection to DB2 from an iPlanet UDS for OS/390
partition on behalf of an iPlanet UDS client, the user ID that must be authorized to
access DB2 is not the user ID of the client on the requesting node, but the user ID
which started the node manager on USS. In other words, the user ID and password
set for a DBSession object are not used to establish security privileges for DB2
access.

GRANT EXECUTE Procedure for DB2
Before using iPlanet UDS DBSession objects to access DB2, your database
administrator must grant certain stored procedure privileges to the iPlanet UDS
OS/390 partitions to enable use of the DB2 Call Level Interface. This procedure is
documented in IBM manual DB2 for OS/390 V5 Call Level Interface Guide
(SC26-8959). The JCL to perform the GRANTs can be found in
DSN510.SDSNSAMP, member DSNTIJCL. If you cannot find this sample member,
see IBM APAR PQ07001. PTF UQ08548 provides the sample JCL. See Tech Note
Vantive 11598 for more information.

Integrating With External Systems

30 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

After doing the BINDs using the sample JCL, the following GRANTs must be run
for DSNACLI as well as for any user who is to use DB2 CLI:

In the sample code above, <userid> is the user ID used to start the node manager. It
is quite likely that the above list of GRANTs must be done several times, once for
each user ID that might be starting a node manager, which, in turn, will start
iPlanet UDS for OS/390 with DB2 Adapter partitions. These user IDs could easily
be different for different purposes: for example, ’forte’, ’frteprod’, ’frtetest’.

Currently, the only way to associate different DB2/RACF controls with different
users is for different node managers to be started by different user IDs (with
corresponding different $FORTE_NS_ADDRESS values set) and have each iPlanet
UDS client use the iPlanet UDS for OS/390 node manager with the appropriate
authorizations.

Integrating With External Systems
An iPlanet UDS partition can call C functions. The process for this integration is
documented in Integrating with External Systems. The following sections offer
additional information that you need if you are using iPlanet UDS for OS/390 and
need to do the following:

• integrate with C code

• monitor operating system activities

• use the ExternalConnection class

GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLICS TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIC1 TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIC2 TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIF4 TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIMS TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLINC TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIQR TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIRR TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIRS TO <userid>;
GRANT EXECUTE ON PACKAGE DSNAOCLI.DSNCLIUR TO <userid>;

Integrating With External Systems

Chapter 1 iPlanet UDS for OS/390 31

Calling External C Functions
The following list is a summary of the steps required to call C functions from an
iPlanet UDS application. Any information that you need to perform these steps for
an iPlanet UDS OS/390 partition is noted for each step. For detailed information on
completing this process, see Integrating with External Systems.

1. Package your C functions in a C shared library.

The OS/390 platform requires that C object modules be shared libraries that
are compiled to be position-independent. The flag to the C89 and C++
compilers that produces position-independent code is:

-W c, EXPORTALL

2. Create a C project definition file that maps C function names to class method
names.

When you define the externalsharedlibs property for this project, note that
for OS/390 the library name should be the export file (sidedeck) name.

3. Import the C project definition into the Repository Workshop.

4. Partition the C project as a library.

5. Make a distribution to generate the shared library files you need and to install
these on the nodes where you will need them.

6. Add the C project for the C functions as a supplier project for your TOOL
project.

7. Write the TOOL application that uses the C functions.

In this application, you instantiate the classes you defined in the C project
definition file. Calling a method for such a class, invokes the C function that
has the same name as the method.

8. Test, partition, and deploy your application.

Calling Native MVS Programs from iPlanet UDS
This section explains how you can call native MVS programs from iPlanet UDS.
This technique involves the use of external C functions as an intermediary step, so
you need to familiarize yourself with the process of calling external C functions
from iPlanet UDS before you can implement this process.

Integrating With External Systems

32 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

An iPlanet UDS for OS/390 application can be linked with native MVS load
modules to provide access to native MVS services. You can use this technique only
to perform static links to MVS load modules; you cannot use this technique to link
with MVS object modules nor to provide automatic support for dynamic linkage as
provided by some MVS compilers.

The technique described in this section takes advantage of the MVS linkage editor
automatic call feature to link in native MVS code.

MVS Program Requirements
The native MVS program must adhere to the following requirements:

• It must be reentrant.

• It must run in 31-bit addressing mode (AMODE 31).

• It must be able to reside above the 16-megabyte line in an MVS address space
(RMODE ANY).

Integration Procedure
This section describes the procedure used to call a native MVS program from
iPlanet UDS for OS/390 and offers a simple example of such a call.

➤ To call a native MVS program

1. Write a C program in which you declare your native MVS program functions.

If your native MVS module is written in System/390 assembler and obeys
standard linkage conventions, you will need to add the following directive:

#pragma linkage(<function_name>, OS)

The function_name parameter is the name of the native MVS load module
entry point that you want to call.

2. Compile and link your native MVS program(s) into a standard MVS load
library.

The name of the load module (or one of its aliases) must be the same as the
function name declared in your external C program.

Integrating With External Systems

Chapter 1 iPlanet UDS for OS/390 33

3. Execute the following UNIX System Services export command in your
environment:

export FORTE_SYSLIBS=”-l //<'MY.MVS.LOADLIB.NAME'>”

The value you specify for this variable must contain valid parameters and
parameter values for the UNIX c89 utility. See the UNIX System Services c89
man page for additional information.

If you need to search multiple MVS load libraries, you can add multiple “-l”
directives and library names in the $FORTE_SYSLIBS environmental variable.

You can place this export command in your fortedef shell script if you wish to
make sure that all iPlanet UDS application links will be able to link in the
native MVS load module whenever necessary.

4. Integrate the external C program with your iPlanet UDS application as
described in “Calling External C Functions” on page 31.

The iPlanet UDS compcomp script will pick up the $FORTE_SYSLIBS
environmental variable value and append it to the end of the c89 link
command, allowing the linkage editor to search the load library for the
required native MVS load module.

For example, to link the System/390 Assembler routine IEFBR14 into your external
C application, include the following statement in the C source code:

#pragma linkage (IEFBR14, OS)

Set the $FORTE_SYSLIBS environmental variable to search the MVS
SYS1.LINKLIB dataset:

export FORTE_SYSLIBS=”-l //’SYS.LINKLIB’”

Use the standard iPlanet UDS facilities to link your external C library. The linkage
editor automatic call feature will automatically find SYS1.LINKLIB(IEFBR14) and
include it in the output shared library.

Using System Activities
iPlanet UDS provides the Rendezvous, SystemActivity, and Activity Manager
classes to enable iPlanet UDS applications or wrapped C code to register for certain
low-level operating system events or system activities. An iPlanet UDS partition
running on the OS/390 platform can also use these classes to register for system
events; once it does, it will be notified when the specified activity has occurred or
completed. For complete information about the system activities that are
supported, see Integrating with External Systems.

Integrating With External Systems

34 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Using the External Connection Class
iPlanet UDS’s ExternalConnection class facilitates network communications
between two points when one of the points is an iPlanet UDS application. Using
this class, an iPlanet UDS application can communicate with an external process or
program that is running locally or on another host. For complete information, see
Integrating with External Systems.

The following table shows the network transport protocols supported by the
ExternalConnection class. Note that TCP/IP connections and UnixDomainSockets
connections are both supported for the OS/390 platform:

Type of Connection From To

TCP/IP Sockets (BSD or
Winsock)

Mac

Windows

NT

Digital Unix (Alpha OSF)

HP/UX

AIX

DG/UX

OS/390

any reliable TCP/IP entity

TCP/IP TLI Endpoint
(System V)

Dynix PTX

Solaris

any reliable TCP/IP entity

UnixDomainSockets (UDS) Digital Unix

HP/UX

AIX

DG/UX

OS/390

any other process, running
on the same machine, that
can read and write UDS

DECnet Windows (Pathworks)

VMS

Macintosh (not PowerMac)

any DECnet entity

Performance Tuning

Chapter 1 iPlanet UDS for OS/390 35

Performance Tuning
The following sections provide information that you might need to improve the
performance of iPlanet UDS for OS/390 partitions. The areas addressed include the
setting of environment variables to support a large number of users and the use of
runtime options to allocate the virtual and real memory required by the iPlanet
UDS runtime product.

Supporting Large Number of Users
Default values for MVS system parameters and Language Environment 370
(LE/370) runtime environment options limit the number of POSIX threads that can
be created for an iPlanet UDS process. These defaults prevent iPlanet UDS for
OS/390 from creating more than 50 concurrent threads. Even though users share
threads, iPlanet UDS for OS/390 partitions that support large numbers of users
might need to create a larger number of POSIX threads. This section explains how
you can change the default value for POSIX threads and how to set runtime
options so that a large number of threads can be created.

To begin, an MVS system programmer must set the MAXTHREADS parameter for
the SYS1.PARMLIB data set BPXPRMxx member to a number that is larger than 50.

Next, you must reset several LE/370 runtime options to allow an iPlanet UDS for
OS/390 process to create a larger number of threads. The sample settings shown in
the table below allow an iPlanet UDS partition to create several hundred POSIX
threads.

Each POSIX thread is an MVS subtask for which the system allocates a Task
Control Block (TCB) and other private data areas below the 16-megabyte line.
Because memory is limited below this line, you should use the options specified in
the previous table to minimize memory allocation in this area.

Keyword Value string

all31 on

stack 48k, 0k, anywhere, free

heap 6m, 4m, anywhere, keep, 1k, 1k

anyheap 4m, 4m, anywhere, free

belowheap 256k, 256k, free

Performance Tuning

36 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

One easy way to set these options at runtime is to define the $_CEE_RUNOPTS
environmental variable as follows:

The $_CEE_RUNOPTS variable is set to these values by the fortedef.sh shell script,
created when you installed iPlanet UDS on your system.

For additional information on LE/370 runtime options, see IBM manual number
SC28-1940, OS/390 Language Environment for OS/390 and VM Programming
Reference, Chapter 2.

Memory Allocation
This section describes iPlanet UDS’s use of real and virtual memory and explains
how you can use LE/370 runtime options to allocate more virtual and real storage
for iPlanet UDS for OS/390 partitions.

When iPlanet UDS for OS/390 starts up, it allocates a large heap area above the
16MB line, then uses this memory area for runtime operations. iPlanet UDS for
OS/390 partitions provide their own memory management. For information on
how you can fine-tune iPlanet UDS’s own memory management scheme, see
iPlanet UDS System Management Guide.

The default settings for the iPlanet UDS memory manager on OS/390 are shown in
the table below.

export _CEE_RUNOPTS ="all31(on) stack(48k,0k,anywhere,free)
heap(6m,4m,anywhere,keep,1k,1k) anyheap(4m,4m,anywhere,free)
belowheap(256k,256k,free)”

Keyword value Description

n:4096

n:32768

initial heap size is 4 megabytes

if using DB2

i:1024

i:4096

additional heap allocations are rounded up to 1 megabyte increments

if using DB2

x:16384

x: 65536

maximum heap memory allowed is 16 megabytes

if using DB2

Performance Tuning

Chapter 1 iPlanet UDS for OS/390 37

Virtual Memory
The iPlanet UDS runtime product can require significant amounts of virtual
memory, depending on the size of the application, the number of concurrent users,
and the operations requested by these users.

• iPlanet UDS for OS/390 executable binaries and dynamic libraries typically
require 2MB - 4MB of virtual memory each.

• iPlanet UDS for OS/390 executables typically allocate 4MB of virtual memory
for runtime operations.

• Each POSIX thread that is created to support user connections allocates some
memory, depending on parameters established for the IBM LE/370 runtime
environment. For more information, see “Supporting Large Number of Users”
on page 35.

Note that these are virtual memory requirements. For information about real
storage requirements, see “Real Storage Requirements” on page 39. For detailed
information about how you change iPlanet UDS memory management values, see
the iPlanet UDS System Management Guide.

You can often just use LE/370 runtime options to adjust virtual memory allocation.
The default values set by the fortedef.sh shell script should be optimal for many
applications. The use of LE/370 runtime options is documented in Chapter 2 of
IBM manual SC28-1940, OS/390 Language Environment for OS/390 and VM
Programming Reference.

iPlanet UDS parameters and MVS operating system configuration parameters can
limit the amount of virtual memory available to iPlanet UDS for OS/390 partitions,
leading to memory allocation failures. These are indicated by error messages like
the following:

If you encounter such errors, you need to do the following:

• Increase the maximum amount of memory available to the iPlanet UDS
partition by running the partition with the -fm parameter or by setting the
$FORTE_GC_SPECIAL environment variable to increase the initial heap
allocation. For DB2 to run correctly, the $FORTE_GC_SPECIAL value should
provide an initial heap size of 32MB. The $FORTE_GC_SPECIAL value for
partitions on OS/390 that create DB2 DBSessions should be n: 32768, x:65536.

FATAL ERROR: Out of Memory (reason = qqOS_MM_EX_OUT_OF_MEMORY)
Class: qqsp_ResourceException with ReasonCode: SP_ER_OUTOFMEMORY

Performance Tuning

38 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

For example, to allocate 12 MB, use n:12288. You must also increase the LE/370
heap size by changing the $_CEE_RUNOPTS environment variable value. The
initial LE/370 heap size must be at least 40 bytes larger than the initial iPlanet
UDS memory manager heap size. In the following example, the initial heap
size is set to 13 MB, 1 MB larger than the amount allocated for the iPlanet UDS
partition:

• Increase the MAXASSIZE parameter value in SYS1.PARMLIB, member
BPXPRMxx.

• Check SYS1.PARMLIB, member SMFPRMxx to see if an IEFUSI user exit is
installed. If it is, examine the assembler source code for the exit to see if the exit
enforces artificially low memory allocation constraints above the 16 MB line.
You can either disable the exit or change the constraints enforced by the exit.

If you get the following error message:

Change the $_CEE_RUNOPTS environment variable setting to increase the heap
size. The heap extension size must be larger than the object you are trying to
allocate. For example, if your error message indicates that you’re allocating an 18
MB object, then you might change the heap extension size to 20 MB, as shown in
the following code sample

export _CEE_RUNOPTS ="all31(on) stack(48k,0k,anywhere,free)
heap(13m,4m,anywhere,keep,1k,1k) anyheap(4m,4m,anywhere,free)
belowheap(256k,256k,free)”

FATAL ERROR: Out of Memory (reason =
qqOS_MM_EX_OUT_OF_CONTIG_MEMORY)
Class: qqsp_ResourceException with ReasonCode: SP_ER_OUTOFMEMORY

export _CEE_RUNOPTS ="all31(on) stack(48k,0k,anywhere,free)
heap(6m,20m,anywhere,keep,1k,1k) anyheap(4m,4m,anywhere,free)
belowheap(256k,256k,free)”

Workload Management

Chapter 1 iPlanet UDS for OS/390 39

Note that when you change a single $_CEE_RUNOPTS value, you must include all
runtime parameter settings.

You might also need to increase the maximum amount of memory available to the
iPlanet UDS partition by running partitions with the -fm parameter or by setting
the $FORTE_GC_SPECIAL environment variable. As in the example above, you
would need to set the x value to at least 22528 (22 MB) to support an initial heap
size of 4 MB plus an
18-MB object.

Real Storage Requirements
The amount of real memory used by each iPlanet UDS for OS/390 process depends
on usage patterns and the demand for real storage in the OS/390 environment.

iPlanet UDS recommends that you put frequently used LE/370 runtime modules
into the MVS Link Pack Areas (LPA) so that iPlanet UDS processes and all users of
UNIX Services share copies of these modules. Specifically, you should always place
module CEEBINIT (alias CEEBLIBM) into LPA.

IBM provides a number of additional tuning recommendations on their World
Wide Web site. See http://www.s390.ibm.com/products/oe/ for more detailed
information.

Workload Management
This section describes the administrative setup and user actions required to
manage iPlanet UDS workloads with the OS/390 Workload Manager (WLM).
Using the procedures described in the following sections, you can

• distinguish iPlanet UDS work from other UNIX work running on OS/390

• assign different priorities to iPlanet UDS production and test workloads

• prioritize a favored server partition over other iPlanet UDS partitions

Obtaining this kind of workload management support does not require any
changes at the source code level.

Workload Management

40 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Overview
Workload management is a means of allocating system resources (cpu time, memory,
I/O) to different processers or groups of processes. To do this, the Workload
Manage, a system component, treats everything on the system as a workload or
service class: for example, one service class could consist of all UNIX services, online
work might comprise another service class, and CICS processing, another. The
OS/390 system administrator defines policies that associate performance goals
with each service class, and the allocation of MVS system resources varies as each
workload meets or fails to meet the goals that are set for it.

By default, UNIX system service work is lumped together in one service class.
Figure 1-2 shows how iPlanet UDS partitions are treated by default by the
workload manager: all iPlanet UDS partitions, started directly or indirectly by
userid JDoe, are treated the same.

Figure 1-2 Default UNIX Services Workload

User:
JDoe

JDoe1

JDoe6

JDoe3

JDoe8JDoe4JDoe2

JDoe5 JDoe9 JDoe3

JDoe2JDoe1JDoe7

(Server) (Server) (Server)

(Server) (Server) (Server)

NodeMgr

NodeMgr

(Other)

(Other) (Other) (Other)

SRVRCLASS=UNIX

Workload Management

Chapter 1 iPlanet UDS for OS/390 41

When a UNIX user, for example JDoe, starts a process on MVS, the underlying
address spaces are assigned job names based on the user ID as a prefix and a
sequence number as a suffix. These names cannot be effectively used by the
Workload Manager to distinguish work. Figure 1-2 shows how iPlanet UDS
partitions might be named and how they run (indistinguishably) by default in the
UNIX service class.

In order to allow the Workload Manager to distinguish one or more iPlanet UDS
processes as workloads that can be managed. The iPlanet UDS administrator and
the OS/390 system administrator must work together to set up policies and
naming conventions that allows the Workload manager to recognize one or more
iPlanet UDS processes as a specific workload. This process is described in the next
subsections.

Defining Service Classes for
iPlanet UDS Processes
To define a service class for one or more iPlanet UDS processes, the OS/390 system
administrator must work together with the iPlanet UDS administrator to do the
following:

• establish WLM job names for iPlanet UDS processes

• define WLM classification rules based on the job name; that is, map job names
to a particular service class

• associate performance goals with each service class

Performance goals vary depending on whether the WLM is in compatibility
mode or goal mode. See “Compatibility and Goal Mode” on page 45 for more
information.

• optionally, add a new report class or classes for iPlanet UDS processes

For more information about report classes, see “Using Report Classes” on
page 45.

Workload Management

42 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

In turn, the OS/390 performance administrator must ask the OS/390 security
administrator to do the following:

• define the Security Access Facility (SAF) Facility Class BPX.JOBNAME

• permit the iPlanet UDS administrator user ID to have read access to this facility
class

The iPlanet UDS administrator must ensure that the USS environment variable
_BPX_JOBNAME is set to the appropriate iPlanet UDS process name. This can be
done in one of the following ways:

• update the fortedef.sh file in the $FORTE_ROOT directory to set
_BPX_JOBNAME

• create a custom shell script that sources fortedef.sh and then set
_BPX_JOBNAME before manually starting a process (ftexec).

• manually set _BPX_JOBNAME and then start a process (ftexec)

The next two sections describe the effect of these techniques.

Assigning a Service Class to a Group of
iPlanet UDS Partitions
To classify a group of iPlanet UDS partitions as a service class with distinct
performance goals:

• The OS/390 performance administrator must edit, install, and activate a WLM
policy with iPlanet UDS classification rules.

For example, under workload type OMVS, the administrator would specify
two or more rules using different qualifier Transaction Name (TN) names, map
each of these names to a service class, and assign a performance goal to each
class. For example, the transaction names might be “PROD*” or “TEST*”; the
performance goals might be specified as ONLPRD (for production work) or
ONLTST (for testing work).

• The iPlanet UDS administrator who starts iPlanet UDS processes, would then
update the fortedef.sh file to set the appropriate name in the _BPX_JOBNAME
environment variable.

For example, the _BPX_JOBNAME variable might be set to “PRODxxx” for
production work, or “TESTyyy” for testing work, where xxx and yyy are
arbitrary numbers.

Workload Management

Chapter 1 iPlanet UDS for OS/390 43

Figure 1-3 shows how the workload management picture changes as iPlanet UDS
partitions are associated with different service classes (and therefore different
performance goals). The partitions running as part of the ONLPRD service class
might get the highest priority; the partitions running as part of the UNIX service
class might get the next highest; and those running as part of ONLTST would get
the lowest.

Figure 1-3 iPlanet UDS Partitions as Distinct Service Classes

Prioritizing a Single iPlanet UDS Partition
It is also possible to run a single iPlanet UDS partition with a performance goal that
is different from the goals set for production and testing work. In order to do this,
the partition cannot be autostarted; it must be started manually.

The set up required is the same as for the previous case. In addition,

• The OS/390 administrator must update the WLM policy to add a new job
name, for example HIPRI*, and relate it to a new or existing service class with a
different performance goal, for example ONLPRDHI.

User:
JDoe

TEST002

TEST002 TEST002
(Server) (Server)

NodeMgr

SRVCLASS=ONLTST

TEST002
(Server)

JDoe6

JDoe7
(Other)

(Other)

SRVCLASS=UNIX

JDoe2
(Other)

JDoe1
(Other)

PROD001

PROD001PROD001
(Server) (Server)

NodeMgr

SRVCLASS=ONLPRD

PROD001
(Server)

Workload Management

44 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

• The iPlanet UDS administrator must create a shell script which does the
following:

❍ sources the fortedef.sh file for the appropriate iPlanet UDS environment
(for example, test or production)

❍ overrides the _BPX_JOBNAME setting (for example, with HIPRIzzz, where
zzz is an arbitrary number)

❍ starts the favored partition (ftexec or /xxx/yyy.exe)

The result is illustrated in Figure 1-4:

Figure 1-4 Prioritizing a Single iPlanet UDS Partition

The partitions HIPRI001 and HIPRI002 belong to the service class ONLPRDHI, and
have different performance goals from service class ONLPRD and ONLTST.

User:
JDoe

TEST002

TEST002
(Server)

NodeMgr

SRVCLASS=ONLTST

TEST002
(Server)

JDoe6

JDoe7
(Other)

(Other)

SRVCLASS=UNIX

JDoe2
(Other)

JDoe1
(Other)

PROD001

PROD001
(Server)

NodeMgr

SRVCLASS=ONLPRD

PROD001
(Server)

SRVCLASS=
ONLPRDHI

HIPRI001
(Server)

HIPRI002
(Server)

Workload Management

Chapter 1 iPlanet UDS for OS/390 45

Compatibility and Goal Mode
The Workload Manager can run in one of two modes: compatibility mode or goal
mode:

• In compatibility mode, a configuration file is used to define performance
metrics in terms of ranked performance groups.

• In goal mode, performance targets are defined for each service class either as a
limit or as an ideal value. The targets that can be set are discretionary, velocity,
and response time. For practical purposes, the only target that can be
meaningfully set for iPlanet UDS processes is velocity.

How the OS/390 defines performance targets for iPlanet UDS service classes varies
depending on the WLM’s mode, as illustrated in Table 1-1.

Of course, all names shown in the table are arbitrary and given only as an example.

Using Report Classes
By default, Workload Management provides data for reporting based on the
service class. An iPlanet UDS installation can define additional report classes to get
finer granularity of reporting or to combine data across service classes.

For additional information, see OS/390 V2R10.0 MVS Planning: Workload
Management.

Table 1-1 Performance Goals and WLM Modes

Mode Rule Service Class Report
Class

Performance Goals

Compatibility PROD* ONLPRD FPROD PGN = HI

TEST* ONLTST FTST PGN = LO

OTHER OTHER OTHER PGN = MED

Goal PROD* ONLPRD FPROD Velocity goal HI

TEST* ONLTST FTST Velocity goal LO

OTHER OTHER OTHER Velocity goal MED

Workload Management

46 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

47

Chapter 2

Overview of the iPlanet UDS
Transaction Adapter

This chapter provides an overview of the iPlanet UDS Transaction Adapter for
OS/390. It describes the following:

• the functionality provided by the product

• the projects and classes included in the product

• the architecture of the product

Overview
The iPlanet UDS Transaction Adapter for OS/390 software provides a simple
interface to online transaction processors (OLTPs) running within an SNA
network, using SNA Advanced Program-to-Program Communications
(APPC). With this interface, transaction programs (TPs) running on OLTP
systems such as CICS/ESA, CICS/TS, IMS/TM, and APPC/MVS can be
invoked from within the iPlanet UDS Application Environment. This interface
allows existing applications running in a System/390 OLTP environment to be
integrated with applications running in the iPlanet UDS Application
Environment. This document explains how to use the iPlanet UDS Transaction
Adapter software. It assumes you have some knowledge of APPC and OLTP
concepts and programming.

Figure 2-1 shows how components installed on client nodes call out, using the
iPlanet UDS Transaction Adapter on an OS/390 server node, to online transaction
processors running either on the same OS/390 node or on a different OS/390 node.

Overview

48 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Figure 2-1 Using the iPlanet UDS Transaction Adapter to Call Online Transaction
Processors

APPC Interfaces
The OS/390 application programming interfaces (APIs) to APPC consist of a
number of routines callable from any program. These routines are provided as part
of the APPC/MVS component of OS/390. There are two APIs, Common
Programming Interface – Communications (CPI-C) and APPC/MVS Callable
Services. The iPlanet UDS Transaction Adapter uses the APPC/MVS Callable
Services API, because it provides some capabilities that are not available with the
CPI-C API.

The iPlanet UDS Transaction Adapter software is provided in the APPC project,
which contains the classes that implement the Transaction Adapter software. The
APPC project contains classes, instances of which can eventually be deployed on
client as well as on server partitions. For example, the object that implements
security functions can be deployed on a client partition, whereas the Transaction
Adapter, which serves as an interface to APPC, is always deployed on a server
partition.

The basic interface in the iPlanet UDS Transaction Adapter is the “direct” interface,
which offers a one-to-one mapping between the APPC verb set and iPlanet UDS
classes and methods. The APPCApi class implements the direct interface. In
addition, a “simple” interface is provided, and gives the iPlanet UDS programmer
a significantly easier way to work with APPC while sacrificing little of the power of
APPC. The simple interface is implemented by the APPCConversation and

OS/390

OS/390

APPC Api calls

MVS

CICS

IMSServer
Partition

UNIX Services MVS

Transaction
adapter
Service object

APPC/MVS

VTAM

CICS

IMS

Client
Partition

Client
Partition

Overview

Chapter 2 Overview of the iPlanet UDS Transaction Adapter 49

APPCSecurityInfo classes and uses the direct interface for performing APPC
functions. Unless your application requires direct control over the behavior of
APPC, your code will normally use the simple interface. Use of the direct interface
is not recommended unless it is absolutely necessary for your application to have
direct access to APPC functions.

The following sections provide a brief overview of the two interfaces and the
methods they provide. The classes implementing the simple interface, and their
methods and attributes, are described in detail in online help. The direct interface is
described in detail in Technote #12177 entitled ‘Using the Direct APPC Interface of
the Transaction Adapter for OS/390’.

Simple Interface
The iPlanet UDS Transaction Adapter offers the iPlanet UDS developer a powerful,
high-level simple interface to APPC. Typically, in order to interact with an APPC
transaction program, an application must make APPC API calls to manage the
state of the APPC conversation, in addition to the calls it makes to send and receive
data. The simple interface in the iPlanet UDS Transaction Adapter hides this
complexity by providing a straightforward read and write interface that manages
the state of the conversation internally. The APPCConversation and
APPCSecurityInfo classes, along with one method in the APPCApi class, provide
this interface.

• The APPCConversation class provides the actual representation of an APPC
conversation.

• The APPCSecurityInfo class provides a secure mechanism for providing
security parameters for the APPC conversation.

• The APPCApi class provides the underlying APPC support for the
APPCConversation class, and its NewConversation method is used to obtain a
new APPCConversation object that resides in the same partition as the
APPCApi object.

Your application will invoke methods on the classes shown in Table 2-1 to perform
high-level functions, that will in turn invoke methods on the APPCApi class. It is
important to note that all applications must use the NewConversation method of
the APPCApi class to create a new APPCConversation object. This is necessary to
provide the appropriate setup and anchoring of the APPCConversation object.

Overview

50 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

It is strongly recommended that you use the simple interface whenever possible, as
it greatly simplifies the interface between your iPlanet UDS application and OLTP
programs.

Table 2-1 iPlanet UDS Transaction Adapter Simple Interface

Class Method Purpose

APPCApi NewConversation Instantiates APPCConversation and
provides the object to the caller.

APPCConversation Open Allocates a conversation with a
partner transaction program.

Close Deallocates a conversation with a
partner transaction program.

Read Reads data from an open
conversation with a partner
transaction program.

SetNullReplacementChar Overrides the default replacement
character (blank) that is used to
replace null characters found in
buffers received from a partner
transaction program. Also enables
null replacement if it is not enabled.

SetReplaceNulls Enables or disables the replacement
of null characters in buffers received
from a partner transaction program
with a specified character.

Write Writes data to an open conversation
with a partner transaction program.

APPCSecurityInfo GetPassword Returns the conversation security
password.

GetProfile Returns the conversation security
profile.

GetUserid Returns the conversation security
userid.

SetPassword Sets the conversation security
password.

SetProfile Sets the conversation security profile
name (RACF group name).

SetUserid Sets the conversation security userid.

Overview

Chapter 2 Overview of the iPlanet UDS Transaction Adapter 51

Direct Interface
The iPlanet UDS Transaction Adapter software's direct interface provides “iPlanet
UDS-friendly” access to APPC routines while following the general design of the
APPC application programming interface. This interface is contained completely
within the APPCApi class, which must be deployed on an OS/390 node. If you
choose to use the direct interface, your iPlanet UDS application will invoke the
methods on the class shown in Table 2-2 to perform APPC operations. If you
choose to use the simple interface, your iPlanet UDS application will indirectly
invoke methods on this class through the methods in the APPCConversation class.

Table 2-2 iPlanet UDS Transaction Adapter Direct Interface

Class Method Purpose

APPCApi Accept Accepts an incoming conversation requested by a
partner transaction program.

Allocate Allocates a conversation with a partner transaction
program.

Confirm Sends a request for confirmation to the partner
transaction program and waits for a response.

Confirmed Sends a confirmation to the partner transaction
program in response to a request for confirmation.

Deallocate Deallocates a conversation with a partner
transaction program.

ErrorExtract Retrieves detailed information about an error on the
previous operation.

Flush Forces all buffered data to be sent immediately to
the partner transaction program.

GetAttributes Retrieves information about the current
conversation such as the local and partner LU
names, the mode name, the partner TP name, the
conversation type and state, and the security
parameters.

GetTpProperties Retrieves the APPC properties of the local
application.

GetType Retrieves the conversation type of the current
conversation.

PrepareToReceive Changes the conversation from SEND state to
RECEIVE state in order to receive data from the
partner transaction program.

Overview

52 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Architecture
The design of the iPlanet UDS Transaction Adapter is intended to provide
flexibility in how it is deployed and used by your applications. However, there is
one restriction that is important to understand. Because the APPC API used by the
iPlanet UDS Transaction Adapter is specific to OS/390 systems, the APPC server
portion of an application built using the Adapter can be deployed only on OS/390
nodes running the iPlanet UDS for OS/390. Other parts of the server side of the
application can be deployed on any iPlanet UDS node that can communicate with
the OS/390 node.

The iPlanet UDS Transaction Adapter contains several classes: APPCApi,
APPCConversation, APPCSecurityInfo, and APPCException. Their functions and
relationships are described in the following sections.

Reference Information
You can find complete reference information for the following classes by selecting
the topic APPC Library in the online help.

ReceiveAndWait Receives all available data and status information
from the partner transaction program. If nothing is
available, waits for data and/or status information
to arrive.

ReceiveImmediate Receives all immediately available data and status
information from the partner transaction program.

RequestToSend Notifies the partner transaction program that the
local transaction program is requesting to enter the
SEND state.

SendData Sends data to the partner transaction program. The
data can be buffered or sent immediately.

SendError Sends an error indication to the partner transaction
program.

Table 2-2 iPlanet UDS Transaction Adapter Direct Interface (Continued)

Class Method Purpose

Overview

Chapter 2 Overview of the iPlanet UDS Transaction Adapter 53

APPCApi
The APPCApi class is the server-only class, and uses the APPC/MVS Callable
Services API to perform all APPC operations. The APPCApi class provides the
server functionality upon which all iPlanet UDS Transaction Adapter applications
rely. APPCApi methods call the entry points in the APPC/MVS Callable Services
API directly, passing information from the APPCConversation object for the
appropriate conversation. A new instance of the APPCConversation class is
created by APPCApi for each APPC conversation requested by a client application.
The APPCApi class should be deployed as a service object so that it can be shared
by multiple clients.

APPCConversation
The APPCConversation class represents a single APPC conversation between an
iPlanet UDS application and a partner transaction program running under an
OLTP system. This class contains all of the methods necessary to operate upon the
APPC conversation. There are methods to open the APPC conversation, close the
APPC conversation, read data from the partner transaction program, and write
data to the partner transaction program. These methods provide an abstraction of
the actual APPC API; however, they are at a much higher level and are simpler to
use.

An instance of the APPCConversation class is created by the NewConversation
method in the APPCApi class for each new APPC conversation. The
APPCConversation objects are all anchored because they must remain in the same
iPlanet UDS partition for the duration of the conversation. An APPCConversation
object cannot move from one partition to another. The reason for this is that
APPC/MVS requires that all operations for a single APPC conversation be
executed from the same address space, and each iPlanet UDS partition running
under OS/390 is in a separate address space.

APPCSecurityInfo
The APPCSecurityInfo class is used to provide a secure way to supply APPC
conversation security parameters to the APPC API. This class is needed only when
APPC conversation security is enabled by the OLTP system. It contains methods to
set up the userid, password, and profile (or group) parameters to be used for
conversation security. Once these parameters are set for the APPCSecurityInfo
object, they are encrypted and are decrypted only when they are about to be passed
to the APPC API. The security information is guaranteed never to flow across the
network in clear text form.

Overview

54 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

➤ To implement APPC conversation security

1. Use the NewConversation method to get an APPCConversation class.

2. Create an instance of the APPCSecurityInfo class.

3. Use the methods of the APPCSecurityInfo class to set security parameters for
the instance you created in Step 2 on page 54.

Both the userid and the password are required, but the profile is optional and
should be used only if the OLTP system supports it. This varies with different
OLTP systems and the documentation for the specific OLTP system being used
should be checked for the applicability of the security parameters.

4. Pass an instance of the security object to the Open method of your
APPCConversation class.

All subsequent read and write calls you make on your conversation are now
secure.

You do not have to explicitly delete the security object. It will be automatically
disposed of by the garbage collector.

APPCException
The APPCException class is used to report APPC errors back to the application. A
pointer to the APPCConversation object on which the error occurred is included in
each APPCException object. In addition, error messages describing the error in
detail are included in the object. The APPCException class is instantiated wherever
the APPC error occurred, usually in one of the APPCConversation methods
following an error reported by the return code from an APPC operation.

55

Chapter 3

Using the iPlanet UDS
Transaction Adapter

This chapter provides information on how to use the iPlanet UDS Transaction
Adapter for OS/390 in developing an application. It explains how you do the
following:

• design an application

• use threading and partitioning

• use the Transaction Adapter classes

• use diagnostic tools to locate problems in your application

For information about known problems associated with the use of the COBOLField
class, please look up Bulletin 421 at http://www.forte.com/support/bulletins.html.

Designing an Application
How you design an iPlanet UDS application partially depends on design decisions
made when the OLTP transaction programs were written. Understanding the
logical flow of the OLTP transactions will help guide the design process of the
iPlanet UDS application. There are several questions you need to answer when you
design your application: some concern the OLTP transaction programs and some
concern the iPlanet UDS application. First, here are some questions you should
answer about the OLTP transaction programs:

1. On which OLTP does the transaction program reside?

Each OLTP system has a unique programming environment with its own
capabilities and constraints. This affects how the iPlanet UDS application
interfaces with the transaction program.

Designing an Application

56 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

2. Does the transaction program already have a 3270 terminal-based user
interface? If so, what OLTP facilities are used for that interface?

This is an important issue to the application programmer on the OLTP system.
The 3270 interface provided by CICS, Basic Mapping Support (BMS), does not
provide automatic conversion to APPC. The CICS transaction program must
be modified to support APPC communications or the CICS screen-scraping
facility, Front End Programming Interface (FEPI) must be used to write an
APPC front-end to the transaction. Conversely, the 3270 interface provided by
IMS/TM, Message Formatting Service (MFS), provides fully automatic
conversion to APPC that is completely transparent to the IMS transaction
program. This is known as implicit APPC support. In addition, IMS transaction
programs can be written solely for access via APPC using explicit APPC
support.

3. Is the application logic separated from the user interface logic in a way that
allows it to be called from another program?

This is an issue primarily for CICS transaction programs. Many CICS
applications are designed to run in a CICS multiple region environment, where
there are two CICS regions known as the Terminal Owning Region (TOR) and
the Application Owning Region (AOR). The TOR owns and manages all of the
terminals, and the AOR owns and manages all of the data and the business
logic to access that data. In such an application, the user interface logic and the
business logic are split into separate programs, with the user interface
programs calling the business logic programs through a Distributed Program
Link (DPL). Such applications can easily be adapted to use APPC
communications by writing separate user interface programs that use APPC
communications, or by making the existing user interface programs capable of
using either BMS or APPC for communications.

4. Is the transaction program a simple one-shot transaction with a single input
and a single output, or is it a more complex interactive transaction?

The iPlanet UDS application programmer must understand the logic of the
transaction program in order to design the application to interface correctly
with the transaction program. If the transaction program has multiple ways to
interact with the user, the iPlanet UDS application must be programmed to
handle all of them. The more complex the interactions of the transaction
program with the user, the more complex the iPlanet UDS application
becomes.

Designing an Application

Chapter 3 Using the iPlanet UDS Transaction Adapter 57

5. What are the input and output data for the transaction program?

The transaction program must be examined to determine the input and output
data items to be exchanged with the iPlanet UDS application. Character data
(COBOL PIC X) exchanged using TextData buffers is automatically translated
from EBCDIC to the appropriate character set on the client platform. However,
no conversion of COBOL data types such as packed decimal, zoned decimal,
binary integer or floating point is provided by this release of the Transaction
Adapter. If those data types are used, the iPlanet UDS application must be
designed to exchange the data in BinaryData buffers and to perform the
necessary conversions itself.

Here are some questions you should answer about the iPlanet UDS application:

1. Will your iPlanet UDS application require concurrent access to multiple OLTP
transaction programs, or will it require access to only one OLTP transaction
program at a time?

The Transaction Adapter allows multiple concurrent conversations with OLTP
transaction programs. All that is required is that each conversation has a
separate APPCConversation object. iPlanet UDS multitasking can be used to
reduce the wait time for the application, and maximize throughput, by
processing each conversation on a separate task.

2. Will your application be gathering information from multiple data sources that
could be accessed concurrently?

Again, iPlanet UDS multitasking can be used to access multiple data sources
concurrently. This can include conversations with OLTP transaction programs.

3. Is there work your application can perform while waiting for a response from
an OLTP transaction program?

If your application can perform other work while a conversation with a
transaction program is waiting for a response, iPlanet UDS multitasking is
again a good solution. The APPCConversation methods that perform APPC
operations are synchronous and block until the operations complete.

4. What data types are exchanged with the transaction program?

If your application exchanges only character data with the transaction
program, you may use TextData objects to handle the data so that iPlanet UDS
will perform the automatic character set conversion from EBCDIC to the
appropriate character set for the client platform.

Designing an Application

58 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Use a COBOLBuffer object if your application exchanges data with a COBOL
program. In particular, COBOLBuffer has mechanisms to help you convert
COBOL elementary items that are part of a group (like an 01-level record) into
textual or numeric values that can be manipulated in TOOL.

If your application exchanges other data types with the transaction program,
you must use BinaryData objects for handling the data. The contents of
BinaryData objects do not undergo conversions of any sort. You must perform
data conversions yourself, as necessary.

The answers to these questions help determine the appropriate application design
approach you should follow.

Threading and Partitioning Considerations
The APPC programming interface is thread-safe, which means that the code in the
APPC library can be executed safely by more than one flow of execution (thread) at
the same time. A single APPC conversation, however, can be operated upon by
only one thread at a time. Furthermore, each APPC operation on a single
conversation must complete before another operation on that conversation can be
initiated.

Because the APPC library is thread-safe, the APPCApi class is designed to be
thread-safe as well. This is done by having each separate APPC conversation, or
thread, be represented by a separate object, the APPCConversation object.

As discussed earlier in the architecture discussion in “APPCConversation” on
page 53, the APPCConversation object is always anchored so that it remains in the
same iPlanet UDS partition for the duration of its existence. The
APPCConversation object will ensure that all operations on the APPC conversation
are performed by the same iPlanet UDS partition. As a result, the use of Message
dialog duration with an APPCApi-based service object does not produce the
expected behavior, and is therefore not recommended.

An APPCApi-based service object is multi-threaded, so it would not normally be a
good candidate for load balancing, because that forces the service object to be
single-threaded. However, if the application must support more than 100
concurrently active threads, load balancing with a custom router can improve
performance by limiting the number of threads managed by each partition
replicate. The following algorithm can be used to compute the number of
concurrently active threads based on the number of users and the transaction rate.
(The use of this algorithm requires that you have some idea about the anticipated
average response time and the anticipated average amount of time between
transactions for each user (the think time).)

Using the Transaction Adapter Classes

Chapter 3 Using the iPlanet UDS Transaction Adapter 59

➤ To compute the number of concurrently active threads

1. Calculate the transaction rate in transactions per second (TPS) by dividing the
number of users (USERS) by the sum of the response time in seconds (RT) and
the think time in seconds (TT):

TPS = USERS / (RT + TT)

2. Calculate the number of concurrently active threads (THREADS) by
multiplying the transaction rate (TPS) by the response time in seconds (RT):

THREADS = TPS * RT

If this calculation results in a number greater than 100, your application is a good
candidate for a custom router. The router would have to distribute work among
the partition replicates in a way that would keep each conversation on the same
partition replicate for its duration, but allow the partitions to remain
multi-threaded. In this case, Transaction dialog duration should be used for the
APPCApi-based service object. Care must be taken in designing the application to
ensure that an iPlanet UDS transaction maps properly onto the APPC conversation
with the OLTP transaction program. The iPlanet UDS transaction should begin
before the APPC conversation is opened, and should not end until after the APPC
conversation is closed.

An additional consequence of the requirement that all operations of an APPC
conversation be handled within the same address space is that failover of the
APPCApi-based service object’s partition cannot be handled automatically. When
the partition fails, all of its APPC conversations are terminated abnormally by the
system, and the applications at the other end of the conversations receive a return
code indicating that fact.

Using the Transaction Adapter Classes
To use the classes provided by the iPlanet UDS Transaction Adapter, you must first
make the APPC project a supplier plan to your TOOL project using the workshop.
Once you have done this, you can access all of the classes provided by the APPC
project, which includes APPCApi, APPCConversation, APPCException, and
APPCSecurityInfo. This section provides a step-by-step guide for using the classes
to communicate with an OLTP transaction program, or partner transaction program.

Using the Transaction Adapter Classes

60 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Define the Service Object
Decide whether you want to have a unique APPCApi-based service object for your
application or whether you want to use a service object designed for sharing
among applications. If you want a separate service object for your application, you
must define it in your project and assign it a unique name. Make sure the service
object is defined with Transaction or Session dialog duration. If you want to use a
service object that is shared among applications, you must have already defined
the service object, and must define a reference partition to access the service object.

Collect OLTP Information
Next, you must collect some information from the OS/390 system programmer
who is in charge of the OLTP system where the partner transaction program
resides. You need to know the symbolic destination name that represents the OLTP
system. This name is used to reference a predefined set of parameters including a
partner LU name, a mode name, and an optional TP name, known as the side
information. Typically, there will be one set of side information defined for each
OLTP system. In this case, you will also need to know the TP name of the partner
transaction program. It is also possible to have a set of side information defined for
each transaction program. If your system is defined this way, you do not need to
know the TP name because it is already part of the side information.

The other piece of information you need from the OLTP system is the security
requirement. If RACF or some other security package is used to control access to
the OLTP, then a valid userid and password, and possibly a profile (or group), are
needed for your application to gain access. This information is available from the
OS/390 system programmer or security administrator.

Write the Application
Now you are ready to write your iPlanet UDS application. Complete the following
steps to communicate with the partner transaction program:

1. Obtain a new APPCConversation object from the APPCApi-based service
object. To do this, invoke the NewConversation method on the service object,
which will return a pointer to your APPCConversation object. The following
code fragment shows how to do this:

myConv : APPCConversation = APPCApiSO.NewConversation();

Using the Transaction Adapter Classes

Chapter 3 Using the iPlanet UDS Transaction Adapter 61

2. If security parameters are required, create a new APPCSecurityInfo object. Use
the SetUserid, SetPassword, and SetProfile methods to set the security userid,
password, and profile or group name. For example:

3. Open the APPC conversation with the partner transaction program by
invoking the Open method on the APPCConversation object. Use the dest
parameter to specify the symbolic destination name, and if necessary, use the
lu, mode, and tp parameters to specify the partner LU name, the mode entry
name, and the TP name, respectively. If security parameters are required, use
the security parameter to specify the APPCSecurityInfo object that contains
your security information. The following example assumes that there is one
side profile defined for the OLTP system, and that security information is
required:

myConv.Open(dest=’destname’,tp=’tpname’,security=mySec);

4. Send the first input data item to the partner transaction program using the
Write method on the APPCConversation object. The dataBuffer parameter
must specify a TextData or BinaryData object that contains the data to be sent,
and the writeLength parameter must specify the length of the data to be sent.
If the data is character data and you want iPlanet UDS to perform automatic
conversion of the data to the appropriate EBCDIC character set, use a TextData
object to contain the data. If the data is not in a format that can be converted
automatically by iPlanet UDS, use a BinaryData object and ensure that the data
is in the correct format for the partner transaction program. This example
shows how to send a TextData buffer:

mySec : APPCSecurityInfo = new;
mySec.SetUserid(userid=’userid’);
mySec.SetPassword(password=’password’);
mySec.SetProfile(profile=’profile’);

inBuf : TextData = new;
inLen : integer;
inBuf.SetValue(source=’This is a text message’);
inLen=inBuf.ActualSize;
myConv.Write(dataBuffer=inBuf,writeLength=inLen);

Using the Transaction Adapter Classes

62 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

5. Receive the output data from the partner transaction program using the Read
method on the APPCConversation object. The dataBuffer parameter must
specify a TextData, COBOLBuffer, or BinaryData object that will contain the
data received, and the readLength parameter must specify the maximum
length of the data to be received. If the data is character data and you want
iPlanet UDS to perform automatic conversion of the data to the appropriate
client character set, use a TextData object to contain the data.

If the data is not in a format that can be converted automatically by iPlanet
UDS, use a COBOLBuffer or BinaryData object and ensure that the data is
converted by your application once it is received. Once the Read method has
returned, the readLength parameter will contain the actual length of the data
that was received. Here is code to receive a TextData buffer:

Note that the Read method is a blocking operation. If the partner transaction
program has not yet sent data when the Read method is invoked, the method
will wait until data is received from the partner transaction program. Care
should be exercised in writing your application to ensure that a Read that
never completes cannot occur.

6. Close the APPC conversation with the partner transaction program by
invoking the Close method on the APPCConversation object. For example:

myConv.Close();

At this point the object can be reused for another APPC conversation by calling
the Open method again with new parameters.

Note that an APPC conversation can be deallocated only from one side of the
conversation. Whichever side deallocates first, causes the other side to receive
a return code on its deallocate operation indicating that the other side already
deallocated. This is not treated as an error. In most cases, the OLTP side will
perform its deallocate first, so the iPlanet UDS side will receive the
APPC_RC_DEALLOCATED_NORMAL return code on its deallocate call. This
is handled internally by the APPCConversation class and is not exposed to the
client application.

outBuf : TextData = new;
outLen : integer = max_length_to_receive;
outBuf.SetAllocatedSize(n=outLen);
myConv.Read(dataBuffer=outBuf,readLength=outLen);

Using the Transaction Adapter Classes

Chapter 3 Using the iPlanet UDS Transaction Adapter 63

Diagnostic Tools
This section describes the iPlanet UDS and VTAM traces you can use to diagnose
problems.

iPlanet UDS Traces
There are high-level and low-level diagnostic traces built into the APPCApi and
APPCConversation classes that you can use to locate problems with an application.
The high-level trace is called the conversation trace: it traces entry to and exit from
method calls within the APPCConversation class, along with significant events and
data. The low-level trace is called the API trace: it traces the initiation and
completion of every call to the APPC/MVS Callable Services, with pertinent
completion information included.

The conversation and API traces are helpful when there is a mismatch between
what the iPlanet UDS application is sending or expecting to receive and what the
partner transaction program is expecting to receive or is sending.

You enable these traces by setting standard iPlanet UDS trace flags. The traces fall
under the fo service.

➤ To enable the conversation trace

1. Set the following trace flag:

trc:fo:62

➤ To enable the API trace

1. Set the following trace flag:

trc:fo:63

You must set the trace flags on the OS/390 node where the APPCApi-based service
object executes. They can be set through the FORTE_LOGGER_SETUP
environment variable prior to the startup of the node manager for the OS/390
node, through the ModifyFlags method of the LogMgr object, or through the
Component > Modify Log Flags command in the Environment Console.

Using the Transaction Adapter Classes

64 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The following example shows the output produced with both the conversation and
the API traces enabled. The API trace output is shown in bold:

Code Example 3-1 Output produced with conversation and API traces
enabled

APPCApi.NewConversation: entered
APPCApi.NewConversation: exiting normally
APPCConversation.Open: entered
APPCConversation.Open: dest = ’FRTCEXSI’,
lu = ’’,
mode = ’’,
tp = ’FR02’,
synclevel = 0

APPCConversation.Open: calling APPCApi.Allocate
APPCApi.Allocate: calling ATBALC2
APPCApi.Allocate: dest = ’FRTCEXSI’,
lu = ’ ’,
mode = ’ ’,
tp = ’FR02’

APPCApi.Allocate: synclevel = 0,
security type = 100,
userid = ’ ’,
profile = ’ ’

APPCApi.Allocate: ATBALC2 returned 0
APPCConversation.Open: APPCApi.Allocate returned,
APPC return code = 0
APPCConversation.Open: calling APPCApi.GetAttributes
APPCApi.GetAttributes: calling ATBGTA2
APPCApi.GetAttributes: ATBGTA2 returned 0
APPCApi.GetAttributes: local LU = ’MVSLU03’,
partner LU = ’NET3.MVSLU03’,

‘mode name = 'APPCHOST',
‘TP name = 'FR02'
APPCApi.GetAttributes: userid = '',
profile = '',
synclevel = 0,
conversation type = 1

APPCConversation.Open: APPCApi.GetAttributes returned,
APPC return code = 0

APPCConversation.Open: exiting normally
APPCConversation.Write: entered
APPCConversation.Write: writeLength = 6
APPCConversation.Write: calling APPCApi.SendData
APPCApi.SendData: calling ATBSEND
APPCApi.SendData: length = 6,
send type = 0

Using the Transaction Adapter Classes

Chapter 3 Using the iPlanet UDS Transaction Adapter 65

VTAM Buffer Trace
On OS/390 systems, all SNA data traffic is eventually handled by VTAM. VTAM
provides extensive tracing capabilities using GTF for capturing the trace data. The
most useful trace for debugging problems with the Transaction Adapter is the
VTAM buffer trace. This trace provides a detailed record of the flow of data
between the Transaction Adapter and the target LU. You can use it to determine
whether data sent by the Transaction Adapter was received at the target LU and
vice versa, as well as exactly what data was transferred. This is especially useful if
the data being transferred is binary data, because the API trace will not show the
contents of binary data buffers.

APPCApi.SendData: ATBSEND returned 0
APPCApi.SendData: RTS = 0
APPCConversation.Write: APPCApi.SendData returned,
APPC return code = 0

APPCConversation.Write: exiting normally
APPCConversation.Read: entered
APPCConversation.Read: readLength = 81
APPCConversation.Read: calling APPCApi.PrepareToReceive
APPCApi.PrepareToReceive: calling ATBPTR
APPCApi.PrepareToReceive: ptrType is 1
APPCApi.PrepareToReceive: ATBPTR returned 0
APPCConversation.Read: APPCApi.PrepareToReceive returned,
APPC return code = 0

APPCConversation.Read: calling APPCApi.ReceiveAndWait
APPCApi.ReceiveAndWait: calling ATBRCVW
APPCApi.ReceiveAndWait: length = 81
APPCApi.ReceiveAndWait: ATBRCVW returned 18
APPCApi.ReceiveAndWait: length = 81,
status = 0,
data = 2,
RTS = 0

APPCConversation.Read: APPCApi.ReceiveAndWait returned,
APPC return code = 0

APPCConversation.SetState: entered
APPCConversation.SetState: state is now RESET
APPCConversation.SetState: exiting normally
APPCConversation.Read: exiting normally
APPCConversation.Read: readLength = 81
APPCConversation.Close: entered
APPCConversation.Close: exiting, conversation inactive

Code Example 3-1 Output produced with conversation and API traces
enabled (Continued)

Using the Transaction Adapter Classes

66 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Typically, the OS/390 system programmer is involved in assisting with the setup
and collection of VTAM traces. Here is a brief summary of the steps required to
obtain a VTAM buffer trace. The VTAM buffer trace is enabled by issuing an MVS
MODIFY command to the VTAM started task. The format of the MODIFY
command is:

F net,TRACE,ID=luname,TYPE=BUF

In the above command, net is the step name by which the VTAM started task is
known to the system, and luname is the name of either the APPC/MVS LU being
used by the Transaction Adapter or the name of the target OLTP system’s LU.

In order to record the trace data, GTF must be executing with the following trace
parameter included:

TRACE=USR

Once the application has been executed, the VTAM buffer trace can be disabled
using the following command:

F net,NOTRACE,ID=luname,TYPE=BUF

GTF must be stopped and then the trace can be viewed using IPCS.

67

Chapter 4

Integrating IBM OS/390-Hosted COBOL
Applications with iPlanet UDS

Transaction Adapter Builder is a tool for developing transaction adapters that
enable iPlanet UDS applications to share data with OS/390-hosted COBOL-based
CICS and IMS transactions. It is implemented as a set of extensions to Fscript,
which you use to define transactions in your COBOL code where data need to be
shared with your UDS application. When you execute your script the Transaction
Adapter Builder generates a .PEX file containing classes you use to code your
transaction adapter. Your generated classes use the APPC library to manage all
data transmission details, including conversions from native COBOL datatypes to
TOOL datatypes and back.

This chapter covers the following topics:

• “Developing a Transaction Adapter” on page 68

• “Fscript Commands” on page 72

• “Generated Classes” on page 84

• “Supporting Classes” on page 85

• “Sample Script and Generated Code” on page 85

Developing a Transaction Adapter

68 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Developing a Transaction Adapter
Before you use the Transaction Adapter Builder you first identify the data
exchange points in your COBOL transactions. Once you have done that you then
use the Transaction Adapter Builder to perform the following tasks, which are
illustrated in Figure 4-1:

1. Use Fscript extensions to define each transaction and its addressing
information (see “Fscript Commands” on page 72)

2. Execute the script to generate a supplier plan (see “GenerateTransactionProxy”
on page 74)

3. Import the supplier plan into the UDS application

Figure 4-1 Developing a transaction adapter with Transaction Adapter Builder

Fscript with
COBOL
xact defs

OS/390
COBOL
source
code

Supplier plan with
generated classes

Write Fscript
with COBOL
record
declarations

1

Execute Fscript:
Produce supplier
plan with
generated
classes

2

3 Develop
Transaction
adapter using
generated classes

Transaction Adapter

Data passes
between iPlanet
UDS app and
COBOL app via
Transaction
Adapter

iPlanet UDS
Application

with
Transaction

Adapter

COBOL
app db

OS/390
hosted
COBOL

application

Developing a Transaction Adapter

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 69

Identifying COBOL Exchanges
Your first task is to catalog all relevant data exchange points in your COBOL code.
These are the points at which your COBOL application will pass data to and
receive data from your UDS applications. Data record declarations can usually be
found in copybook files stored in partitioned datasets on your MVS file system. For
each transaction you need to collect the following information:

• All data inputs and their datatypes

• All data outputs and their datatypes

• The LU6.2 application information for your COBOL application

Once you have a full list of all your data exchanges you also need to know in which
order they need to be processed.

Creating the Fscript Script
When you have identified all the data exchanges in your COBOL transactions your
next step is to define these exchanges using the Fscript utility. The Transaction
Adapter Builder includes an Fscript command set with which you create and
remove transaction proxies, exchange methods, arguments, and records. (See
“Fscript Commands” on page 72.)

• A transaction proxy is a TOOL class that represents the IMS or CICS transaction

• An exchange method represents a single data exchange point

• Arguments are the input and output parameters used by exchange methods

• Records are record declarations, which must be created before they can be
passed as arguments

Developing a Transaction Adapter

70 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The Transaction Adapter Builder saves all your commands in a script file called
name.scr, where name is the name of the transaction proxy you created. By default,
this file is written to the directory in which your iPlanet UDS executables are,
typically FORTE_ROOT/install/bin. (You can change the directory to which these
files are written by using the Fscript CD command.) You can later edit this script file
as you wish, and use the GenerateTransactionProxy command again to create
your supplier plan.

All low-level connectivity and datatype conversion between your COBOL
application and your UDS application are managed by classes in the APPC library.
The classes generated from your Fscript input call classes from the APPC library.
For information about the APPC library see the UDS online help.

Creating and Importing a Supplier Plan
Executing your script generates two files: a .PEX file that contains TOOL code and
an .SCR file that captures all the Fscript commands you used to create your
transaction proxy. These files are written to the directory in which you installed
your UDS application. (Typically this is FORTE_ROOT/install/bin.) The .PEX file
can be imported into your UDS application as a supplier plan; it includes all the
TOOL classes required for managing the connection between your UDS
application and your COBOL application. You can use the .SCR file to recreate
your transaction proxy at a later date, or simply use it as a backup.

➤ To use the .PEX file as a supplier plan

1. Import it into the development repository where you want to use it.

2. In the Repository Workshop select File > Include Public Plan to include the
.PEX file in your workspace.

3. In the Project Workshop select File > Supplier Plans to import the contents of
the .PEX file as a supplier plan for your project.

NOTE You may find that as you are getting familiar with the Fscript
commands it may be easier to work interactively, rather than by
creating a script and executing it. This way you can correct any
mistakes as you make them, rather than have your script fail to
execute completely because of a mistake.

Creating a Transaction Adapter

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 71

Creating a Transaction Adapter
You create the actual transaction adapter in TOOL using your generated classes
and methods. (Do not edit the generated TOOL code itself.) If you require
additional functionality you can create extensions to your transaction adapter
using the generated classes as superclasses.

The following code fragment illustrates a simple example of TOOL code using
three generated classes: GTBZ, ZipcodeRecord, and TheaterRecord.

The GTBZ transaction-proxy class retrieves a TheaterRecord when passed a
ZipcodeRecord. It does this by invoking its GetTheaterRecord() method, which
takes a single input record (a zipcode value) and returns a single output record (a
theater located in that zipcode).

-- Generates a list of movie theaters in Oakland
OaklandTheaters : Array of TextData = new;
for zip in 94601 to 94627 do
-- Make the transaction proxy and connect to the
-- transaction monitor.
gtbz : GTBZ = new;
gtbz.Open();

-- Build the COBOL input record.
zipcodeRec : ZipcodeRecord = new;
zipcodeRec.value = zip;

-- Prepare a reference to the output record.
rec : TheaterRecord = NIL;

-- Call a TransactionProxy method. This one retrieves
-- a TheaterRecord when given a ZipcodeRecord.
gtbz.GetTheaterRecord(zipcodeRec, rec);
OaklandTheaters.AppendRow(rec.TheaterName);

-- Close proxy connection.
gtbz.Close();

end for;

Fscript Commands

72 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Both ZipcodeRecord and TheaterRecord are generated classes that represent
COBOL data. Their attributes (ZipcodeRecord.value,
TheaterRecord.TheaterName) are understood by the UDS application as simple
data structures. The APPC library, which is referenced by methods in the
generated classes, handles the conversion of COBOL datatypes into and from
TOOL datatypes.

Fscript Commands
You use the Fscript commands described in Table 4-1 to develop transaction
adapters.

To use any of these commands you first have to use the CommandSet command:

fscript > CommandSet appc

appc is the internal name of the Transaction Adapter Builder Fscript extensions.
Once you have used CommandSet to enable the appc extensions, you can enter
“help” to see a list of the appc commands.

Table 4-1 Fscript commands for Transaction Adapter Builder

Command Description See...

AddAPPCInfo Specifies information about the connection between UDS
application and COBOL application.

page 73

AddExchange Adds a new exchange method to the current transaction proxy. page 76

AddInputArgument Adds an input argument to the method signature of the current
exchange method.

page 78

AddOutputArgument Adds an output argument to the method signature of the current
exchange method.

page 78

AddRecord Adds a new COBOL record declaration. page 79

AddTransactionProxy Adds a new transaction proxy and set it as the current transaction
proxy.

page 73

FindExchange Sets the specified exchange method to be the current exchange
method.

page 77

FindTransactionProxy Sets the specified transaction proxy to be the current transaction
proxy.

page 74

GenerateTransactionProxy Processes the current transaction proxy and generates a .PEX file
and a .SCR file from it.

page 74

Fscript Commands

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 73

The following sections describe each of these commands in detail. The commands
are organized into the following sections:

• Transaction proxies

• Exchange methods

• Arguments

• Records

• Other commands

Transaction Proxies
This section describes commands used for creating and removing transaction
proxies, as well as for generating TOOL project plans from Fscript scripts.

AddTransactionProxy
AddTransactionProxy name

RemoveArgument Deletes the specified argument from the method signature of the
current exchange method.

page 79

RemoveExchange Deletes the specified exchange method from the current
transaction proxy.

page 77

RemoveRecord Deletes a COBOL record declaration from memory. page 81

RemoveTransactionProxy Deletes the specified transaction proxy from memory. page 75

ShowAllTransactionProxies Displays a list of all transaction proxies currently in memory. page 75

ShowRecords Displays the current record. page 81

ShowTransactionProxy Displays the current transaction proxy and all arguments passed
to its exchange methods.

page 76

SwitchTruncOption Toggles between “standard” and “binary” modes of numeric
data storage in COBOL application.

page 83

UserServiceObject Specifies that Transaction Adapter Builder should not create a
new service object when generating the current transaction
proxy, but should use specified service object.

page 84

Table 4-1 Fscript commands for Transaction Adapter Builder (Continued)

Command Description See...

Fscript Commands

74 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The AddTransactionProxy command adds a new transaction proxy and sets it as
the current transaction proxy. The new transaction proxy is kept in memory and is
written to disk only when you use the GenerateTransactionProxy command.

You specify a name for the transaction proxy with the name argument. This name is
given to the TOOL class generated from your transaction proxy.

Example:

fscript > AddTransactionProxy GetEmpRecord

This command would create a new transaction proxy GetEmpRecord and set it as
the current transaction proxy. When you use the GenerateTransactionProxy
command on GetEmpRecord a TOOL class called “GetEmpRecord” is created. This
class contains all the exchange methods you have defined for the transaction proxy.

FindTransactionProxy
FindTransactionProxy name

The FindTransactionProxy command makes the specified transaction proxy the
current transaction proxy.

Example:

fscript > FindTransactionProxy GetEmpRecord

GetEmpRecord is now the current transaction proxy.

GenerateTransactionProxy
GenerateTransactionProxy [name]

The GenerateTransactionProxy command processes the current transaction
proxy and creates two files:

• An .SCR script file containing the Fscript commands you used to create the
transaction proxy, that you can use at a later time to recreate the transaction
proxy

• A .PEX file containing the generated TOOL code that implements the
transaction proxy

The base name for both files is the name you used for your transaction proxy. For
example, if you had named your transaction proxy “GetEmpRecord” the
GenerateTransactionProxy command will create the files GetEmpRecord.scr
and GetEmpRecord.pex. Both files are written to the current working directory. (By
default this is the directory in which your iPlanet UDS executables reside, typically
FORTE_ROOT/install/bin. However, if you have explicitly changed directories,
the files are written to the current working directory.)

Fscript Commands

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 75

If you want to use different names for these files you can specify an alternate name
with the optional name argument.

When you execute the GenerateTransactionProxy command an .SCR file is
always created. However, a .PEX file can be created only if you have completely
described the transaction proxy. If, for example, your transaction proxy contains
arguments of types you have not declared the Transaction Adapter Builder raises
an error indicating that you need to use the AddRecord command to declare those
datatypes.

For information on generated classes that are created when you generate a
transaction proxy, see “Generated Classes” on page 84

RemoveTransactionProxy
RemoveTransactionProxy name

The RemoveTransactionProxy command removes a proxy while it is still in
memory and before you have generated it. It takes one argument name that
specifies which transaction proxy you want to remove.

Example:

fscript > RemoveTransactionProxy GetEmp

This command would remove the GetEmp proxy, assuming you hadn’t already
generated it with the GenerateTransactionProxy command.

ShowAllTransactionProxies
ShowAllTransactionProxies

The ShowAllTransactionProxies command displays a list of all transaction
proxies currently in memory, as well as the side profile information you entered
with the AddAPPCInfo command.

Example:

fscript > ShowAllTransactionProxies
GetEmp
GetEmpRecord
DeleteEmpRecord
CalcEmpSal
fscript >

Fscript Commands

76 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

ShowTransactionProxy
ShowTransactionProxy

The ShowTransactionProxy command displays the name of the current
transaction proxy and all arguments passed to its exchange methods.

Example:

fscript > ShowTransactionProxy
Name: GetEmpRecord
Side Profile:
Transaction Program: Payroll
Logical Unit: HRLU
Mode: HRSNA
Sync Setting: none
1 data exchange(s)
GetEmpRecord(input number:EmpNo, input text: Name, input binary:
DeptNo, output number: EmpCode)
fscript >

Exchange Methods
This section describes commands for creating and removing exchange methods.
An exchange is any point in your COBOL application where data must be passed
to and from your UDS application, and an exchange method is used to establish an
exchange.

AddExchange
AddExchange name

The AddExchange command adds a new exchange method to the current
transaction proxy. AddExchange takes only one argument name with which you
specify the name of the method.

Example:

fscript > AddExchange UpdateEmpRecord

This command adds the method UpdateEmpRecord() to the current transaction
proxy. At this point the method has no input or output arguments: these must be
added with the commands AddInputArgument (see “AddInputArgument” on
page 78) and AddOutputArgument (see “AddOutputArgument” on page 78).

Fscript Commands

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 77

FindExchange
FindExchange name

The FindExchange command sets the specified exchange method to be the current
exchange method.

Example:

fscript > FindExchange DeleteEmpRecord

DeleteEmpRecord is now the current exchange method.

RemoveExchange
RemoveExchange name

The RemoveExchange command removes the specified exchange method from the
current transaction proxy, while it is still in memory. If the
GenerateTransactionProxy command has already been invoked on the current
transaction proxy RemoveExchange will not remove the exchange from either the
.SCR or .PEX files.

Example:

fscript > RemoveExchange UpdateEmpRekord

This command removes the UpdateEmpRekord method from the current
transaction proxy. You could then use AddExchange to add the correctly spelled
exchange:

fscript > AddExchange UpdateEmpRecord

Arguments
This section describes commands for adding and deleting arguments for method
signatures.

Fscript Commands

78 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

AddInputArgument
AddInputArgument name datatype

The AddInputArgument command adds an input argument to the method
signature of the current exchange method. The first parameter name specifies an
arbitrary name for the input argument. Your UDS application will reference this
argument by this name in transactions with your COBOL application. The second
parameter datatype is the datatype of the new argument. Datatypes are declared
with the AddRecord command (see “AddRecord” on page 79). The type names
used with AddInputArgument must match those declared with AddRecord.

Example:

fscript > FindExchange Query
fscript > AddInputArgument EmpNo EmployeeNumber

This command adds an input argument of type EmployeeNumber to the current
exchange:

Query(input EmpNo: EmployeeNumber)

AddOutputArgument
AddOutputArgument name datatype

The AddOutputArgument command adds an output argument to the method
signature of the current exchange method. The first parameter name specifies an
arbitrary name for the output argument. Note that the name specified here will be
the name by which your UDS application will reference this argument in
transactions with your COBOL application. The second parameter datatype
specifies the datatype of the new output argument. Datatypes are declared with the
AddRecord command (see “AddRecord” on page 79). Note that the type names
used with AddOutputArgument must match those declared with AddRecord.

Example:

fscript > FindExchange Query
fscript > AddOutputArgument EmpRec EmployeeRecord

This command adds an output argument of type record to the current method
signature:

Query (input EmpNo: EmployeeNumber, output EmpRec:
EmployeeRecord)

Fscript Commands

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 79

RemoveArgument
RemoveArgument argument

The RemoveArgument command deletes the specified argument from the current
exchange method while it is still in memory. This can be useful if you have
mistyped an argument name and want to replace it with a correctly spelled one.
(Once you have used the GenerateTransactionProxy command you cannot
remove an argument from the .SCR or .PEX files with the RemoveArgument
command.)

Example:

fscript > FindExchange Query
fscript > RemoveArgument EmppRec

This command would remove the EmppRec argument from the Query exchange
method. You could then use the AddOutputArgument command to add the correct
argument name:

fscript > AddOutputArgument EmpRec EmployeeRecord

Your method signature would now be:

Query (input EmpNo: EmployeeNumber, output EmpRec:
EmployeeRecord)

Records
This section describes commands you use to add and remove COBOL record
declarations.

AddRecord
AddRecord name

The AddRecord command adds a new COBOL record declaration named with the
value you give to the name argument. You need to declare a COBOL record before
you can add arguments of its type. (Be sure to spell and capitalize the record names
correctly when you add arguments of each type. The Fscript parser does not
recognize misspelled or mis-capitalized record types.)

NOTE The UDS Transaction Adapter Builder supports only textual data.

Fscript Commands

80 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

When you use the AddRecord command Fscript switches to “line-entry” mode so
you can enter COBOL source code declarations. If you are using Fscript
interactively you terminate line-entry mode by entering the keyword “endrecord.”
If Fscript is reading the declarations from a script include-file line-entry mode is
terminated when Fscript reaches the end of the include file.

Example:

fscript > AddRecord FirstName
fscript > 01 FName PIC x(12).
fscript > endrecord
fscript > AddRecord LastName
fscript > 01 LName PIC x(24).
fscript > endrecord
fscript >

For records with multiple datatypes you only use the endrecord keyword after you
have entered the entire record with all its types:

fscript > AddRecord EmpRec
fscript > 01 EmpRec
fscript > 02 EmpNo PIC x(5).
fscript > 02 EmpLName PIC x(24).
fscript > 02 EmpFName PIC x(12).
fscript > 02 DeptNo PIC x(5).
fscript > 02 Mgr PIC x(24).
fscript > 02 HireDate PIC x(8).
fscript > 02 Salary PIC x(6).
fscript > 03 BonusRate PIC x(5).
fscript > 03 Commission PIC x(4).
fscript > endrecord
fscript >

If you have a record with a lot of types you may want to create an include file
containing the declaration instead of entering it interactively.

NOTE When you enter records interactively you need to terminate each
record with the endrecord keyword. If you forget to do this the
Fscript parser becomes confused and does not know whether the
following lines are meant as part of the record or not.

Fscript Commands

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 81

RemoveRecord
RemoveRecord name

The RemoveRecord command deletes a previously added COBOL record
declaration from memory. You specify the record to be deleted with the name
argument.

Example:

fscript > RemoveRecord EmpRec

This command would delete the EmpRec record from memory.

ShowRecords
ShowRecords

The ShowRecords command displays the current record.

Example:

fscript > ShowRecords
EmpRec
fscript >

Other Commands
This section describes other useful Fscript commands that don’t fit neatly into any
of the previous categories.

AddAPPCInfo
AddAPPCInfo [profile=profile_name | tp=tp_name | lu=lu_value |
mode=mode_value]

You use the AddAPPCInfo command to specify information about the connection
between your UDS application and your COBOL application.

On OS/390 systems information about connecting to OLTP programs is stored in a
“side profile,” which is contained in a system file called SYS1.APPCSI. The side
profile contains information about connecting to the entire OLTP system as well as
to specific programs within the overall system.

Transaction adapters connect to OS/390 systems by calling the APPC library
Open() method, which uses the information you specify with the AddAPPCInfo
command to locate the specific program to which you want to connect.

Fscript Commands

82 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

If you want to use the default connection information stored in the side profile you
need use only the profile argument. If you do not use the profile argument you must
use all three of the other arguments to specify connection information.

AddAPPCInfo takes the four following arguments:

• profile specifies the name of a side profile from which your UDS application
should get connection information. If you want to use the default values in the
side profile use only the profile argument. You can override specific defaults by
using the other three arguments.

• tp specifies the name of a particular transaction program within the larger
OLTP system. A transaction program name specified with the tp argument
overrides the default transaction program name from the profile argument.

• lu specifies the LU6.2 logical unit name of the OS/390 OLTP system, and is
used to override the default value specified with the profile argument.

• mode specifies the SNA mode entry name, and is used to override the default
value specified with the profile argument.

Arguments and their values are separated from other arguments with a single
blank space. You need only list those arguments for which you have values.

Example:

fscript > AddAPPCInfo profile=TOOLPROF

This command would specify that your UDS application should connect to the
OS/390 system using the default information in the TOOLPROF side profile.

Example:

fscript > AddAPPCInfo tp=STOCKTP1 lu=STOCKLU mode=STOCKSNA

This command would specify that your UDS application should connect to the
OS/390 system by overriding the default values in the side profile for tp, lu, and
mode with the values STOCKTP1, STOCKLU, and STOCKSNA respectively.

Fscript Commands

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 83

CommandSet
CommandSet name

The CommandSet command enables your current Fscript session to use the
Transaction Adapter Builder commands. (It also makes online help on those
commands available in Fscript, which you invoke by typing “help” at the Fscript
prompt.)

Example:

fscript > CommandSet appc
fscript >

This command makes the APPC commands available in your current Fscript
session.

SwitchTruncOption
SwitchTruncOption

The SwitchTruncOption command toggles between the standard
(“TRUNC(STD)”) and binary (“TRUNC(BIN)”) modes of numeric data storage in
your COBOL programs.

Depending on how the COBOL compiler’s TRUNC option was set when your
COBOL program code was compiled, numeric data are stored in either “standard”
mode or “binary” mode. (“Standard” mode is the default.) The
SwitchTruncOption command lets you toggle between these two modes.

It is likely that your COBOL code was compiled in standard mode, in which case
you need not use the SwitchTruncOption command. However, if you either know
for sure that your code was compiled in binary mode or you get errors raised at
runtime when using a generated transaction proxy class, try using the
SwitchTruncOption command.

Example:

fscript > SwitchTruncOption
fscript >

With this command the current mode will be switched to the other mode.

NOTE Until you have used the CommandSet command with “appc” as the
value of the name argument you cannot use or see any of the
Transaction Adapter Builder commands.

Generated Classes

84 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

UseServiceObject
UserServiceObject name

The UseServiceObject enables you to specify that the Transaction Adapter
Builder should not generate a new service object for your transaction adapter, but
instead should use an existing one specified with the name argument.

By default, the Transaction Adapter Builder creates a new service object when you
generate a transaction proxy, and names it “appcSO.” If you want to use an
existing service object from another iPlanet UDS project plan, and do not want to
create a new one for your generated classes, use the UseServiceObject command
to specify the existing service object you want to use.

Example:

fscript > UseServiceObject SomeOtherPlan.SomeOtherServiceObject

This command would specify that the classes generated for your transaction proxy
will use your service object “SomeOtherPlan.SomeOtherServiceObject” instead of
having Transaction Adapter Builder create a new service object.

Generated Classes
When you use the GenerateTransactionProxy command two kinds of generated
classes are created: one for each transaction proxy, and one for each COBOL
record.

Transaction proxy classes contain methods for each exchange you create, and each
of these methods takes the COBOL record classes you created as its attributes.

When you create an exchange you specify its input and output parameters. The
methods generated from your script take these parameters as their attributes.
Suppose you created an exchange called “GetEmpNo” with the input parameter
datatypes EmpLName and EmpFName and the output parameter datatype
EmpNo. From this exchange a method would be generated, with the signature:

...
has public method GetEmpNo(input text1: EmpLName,input text2:
EmpFName,output number: EmpNo);
...

Each of these parameter datatypes must have already been declared as a COBOL
record in your script.

Supporting Classes

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 85

Supporting Classes
The TOOL code generated from your script uses the classes and methods from two
iPlanet UDS libraries for low-level functionality:

• The Framework library

• The APPC library

Refer to the iPlanet UDS online help for information on these libraries.

Sample Script and Generated Code
The following sample script illustrates a simple transaction proxy called
EmployeeRecord that contains one exchange GetEmpRec. This exchange takes one
input argument EmpRec and returns one output argument EmpNo. Following this
script is an output sample illustrating the TOOL code that would be generated by
executing this script.

Code Example 4-1 Sample script illustrating a simple transaction proxy

Generated by Mainframe Transaction Adapter version 1.0
Generated script file that re-creates ’EmployeeRecord’
AddTransactionProxy EmployeeRecord
AddAPPCInfo profile=PAYROLL mode=HRSNA tp=HR03 lu=HRLU
AddExchange GetEmpRec
AddInputArgument EmpRec EmployeeNumber
AddOutputArgument EmpNo EmployeeRecord
UseServiceObject appcSO
AddRecord EmployeeNumber
1 EmployeeNumber.
2 EMPNO PIC X(5).
endrecord
AddRecord EmployeeRecord
1 EmployeeRecord.
2 LNAME PIC X(24).
2 FNAME PIC X(12).
2 NUM PIC X(5).
2 PNUM PIC X(5).
2 EMPLOC PIC X(9).
2 DEPT PIC X(12).
2 MGR PIC X(36).
2 STARTDATE PIC X(8).
2 TITLE PIC X(20).
2 SALARY PIC X(6).
2 BONUS PIC X(5).
2 COMRATE PIC X(2).
endrecord

Sample Script and Generated Code

86 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The output produced by using the GenerateTransactionProxy command on the
script is illustrated below.

.

Code Example 4-2 Output from sample script (page 1 of 9)

-- Generated by Mainframe Transaction Adapter version 1.0
begin TOOL EmployeeRecord;
-- GENERATED FILE - DO NOT MODIFY

includes Framework;
includes APPC;

HAS PROPERTY IsLibrary = FALSE;

-- START SERVICE OBJECT DEFINITIONS
service appcSO:APPC.APPCApi = (DialogDuration = SESSION,
Visibility = environment,
FailOver = FALSE,
LoadBalance = FALSE);

-- END SERVICE OBJECT DEFINITIONS

-- START FORWARD CLASS DECLARATIONS

forward EmployeeRecord;
forward EmployeeNumber;
forward EmployeeNumber_Impl;
forward EmployeeRecord;
forward EmployeeRecord_Impl;
-- END FORWARD CLASS DECLARATIONS

-- START CLASS DEFINITIONS

class EmployeeRecord inherits from Framework.Object
has property
 shared=(allow=off, override=on);
 transactional=(allow=off, override=on);
 monitored=(allow=off, override=on);
 distributed=(allow=on, override=on);
has public method Open(input dest:Framework.string=’PAYROLL’,input
lu:Framework.string=’HRLU’,input tp:Framework.string=’HR03’,input
mode:Framework.string=’HRSNA’,input security:APPC.APPCSecurityInfo=NIL);
has public method Init();
has public method GetEmpRec(input EmpRec:EmployeeNumber,output
EmpNo:EmployeeRecord);
has public method Close(input normal:Framework.Boolean=TRUE);
has public attribute Conv:APPC.APPCConversation;
has public attribute TraceActive:Framework.Boolean;
has public attribute Log:Framework.LogMgr;
has public attribute IsOpen:Framework.Boolean;
end class;
class EmployeeNumber inherits from Framework.Object
has property
 shared=(allow=off, override=on);

Sample Script and Generated Code

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 87

 transactional=(allow=off, override=on);
 monitored=(allow=off, override=on);
 distributed=(allow=on, override=on);
has public method Init();
has public attribute _private:EmployeeNumber_Impl has property extended =
(XMLServerIgnore=’true’);
has public attribute EMPNO:TextData;
end class;
class EmployeeNumber_Impl inherits from Framework.Object
has property
 shared=(allow=off, override=on);
 transactional=(allow=off, override=on);
 monitored=(allow=off, override=on);
 distributed=(allow=on, override=on);
has public method SetValues();
has public method Init();
has public method GetValues();
has public method Construct(input
implementedRecord:EmployeeNumber):EmployeeNumber_Impl;
has public method BinaryData():Framework.BinaryData;
has public attribute EmployeeNumber:EmployeeNumber;
has public attribute _buffer:COBOLBuffer;
has public attribute EMPNO:COBOLField;
end class;
class EmployeeRecord inherits from Framework.Object
has property
 shared=(allow=off, override=on);
 transactional=(allow=off, override=on);
 monitored=(allow=off, override=on);
 distributed=(allow=on, override=on);
has public method Init();
has public attribute _private:EmployeeRecord_Impl has property extended =
(XMLServerIgnore=’true’);
has public attribute LNAME:TextData;
has public attribute FNAME:TextData;
has public attribute NUM:TextData;
has public attribute PNUM:TextData;
has public attribute EMPLOC:TextData;
has public attribute DEPT:TextData;
has public attribute MGR:TextData;
has public attribute STARTDATE:TextData;
has public attribute TITLE:TextData;
has public attribute SALARY:TextData;
has public attribute BONUS:TextData;
has public attribute COMRATE:TextData;
end class;
class EmployeeRecord_Impl inherits from Framework.Object
has property
 shared=(allow=off, override=on);
 transactional=(allow=off, override=on);
 monitored=(allow=off, override=on);
 distributed=(allow=on, override=on);
has public method SetValues();

Code Example 4-2 Output from sample script (page 2 of 9)

Sample Script and Generated Code

88 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

has public method Init();
has public method GetValues();
has public method Construct(input
implementedRecord:EmployeeRecord):EmployeeRecord_Impl;
has public method BinaryData():Framework.BinaryData;
has public attribute EmployeeRecord:EmployeeRecord;
has public attribute _buffer:COBOLBuffer;
has public attribute LNAME:COBOLField;
has public attribute FNAME:COBOLField;
has public attribute NUM:COBOLField;
has public attribute PNUM:COBOLField;
has public attribute EMPLOC:COBOLField;
has public attribute DEPT:COBOLField;
has public attribute MGR:COBOLField;
has public attribute STARTDATE:COBOLField;
has public attribute TITLE:COBOLField;
has public attribute SALARY:COBOLField;
has public attribute BONUS:COBOLField;
has public attribute COMRATE:COBOLField;
end class;
method EmployeeRecord.Open(input dest:Framework.string=’PAYROLL’,input
lu:Framework.string=’HRLU’,input tp:Framework.string=’HR03’,input
mode:Framework.string=’HRSNA’,input security:APPC.APPCSecurityInfo=NIL)
begin
self.Conv = appcSO.NewConversation();
if self.TraceActive then
self.Log.Put(’Opening conversation.\n’);

end if;
self.Conv.Open(
dest=dest,
lu=lu,
mode=mode,
tp=tp,
security=security,
synclevel=0

);
self.IsOpen = true;
if self.TraceActive then
self.Log.Put(’Conversation opened.\n’);

end if;
end method;
method EmployeeRecord.Init()
begin
super.Init();
self.Conv = NIL;
self.TraceActive = FALSE;
self.Log = task.Part.LogMgr;
self.IsOpen = false;
end method;
method EmployeeRecord.GetEmpRec(input EmpRec:EmployeeNumber,output
EmpNo:EmployeeRecord)
begin
bits : BinaryData;

Code Example 4-2 Output from sample script (page 3 of 9)

Sample Script and Generated Code

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 89

len : Integer;
begin

-- This code handles the ’EmpRec’ parameter.
EmpRec._private.SetValues();
bits = EmpRec._private.BinaryData();
len = bits.ActualSize;
if self.TraceActive then
self.Log.Put(’Sending ’);
self.Log.Put(len);
self.Log.Put(’ bytes\n’);

end if;
self.Conv.Write(dataBuffer=bits,writeLength=len);

-- This code handles the ’EmpNo’ parameter.
EmpNo = new;
bits = EmpNo._private.BinaryData();
len = bits.ActualSize;
if self.TraceActive then
self.Log.Put(’Receiving ’);
self.Log.Put(len);
self.Log.Put(’ bytes\n’);

end if;
self.Conv.Read(dataBuffer=bits,readLength=len);
if self.TraceActive then
self.Log.Put(’Received ’);
self.Log.Put(len);
self.Log.Put(’ bytes: "’);

self.Log.Put(bits);
self.Log.Put(’"\n’);

end if;
EmpNo._private.GetValues();

exception when e:GenericException do begin
self.Close(normal=false);
raise;

end;

end;
end method;
method EmployeeRecord.Close(input normal:Framework.Boolean=TRUE)
begin
if not self.IsOpen then
return;

end if;
if normal then
self.Conv.Close(type=APPC.APPC_CLOSE_NORMAL);
if self.TraceActive then
self.Log.Put(’Conversation closed normally.\n’);

end if;
else
self.Conv.Close(type=APPC.APPC_CLOSE_ABNORMAL);
if self.TraceActive then
self.Log.Put(’Conversation closed abnormally.\n’);

Code Example 4-2 Output from sample script (page 4 of 9)

Sample Script and Generated Code

90 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

end if;
end if;
self.IsOpen = false;
end method;
method EmployeeNumber.Init()
begin
super.Init();
_private = EmployeeNumber_Impl().Construct(implementedRecord=self);
EMPNO = new;
end method;
method EmployeeNumber_Impl.SetValues()
begin
EMPNO.PutValue(buffer=_buffer, source=EmployeeNumber.EMPNO);
end method;
method EmployeeNumber_Impl.Init()
begin
super.Init();
_buffer = new;
_buffer.SetBufferAttribute(
 serverCodeset=APPC.COB_CODESET_EBCDIC,
 serverPlatform=APPC.COB_PLATFORM_S390,
 compileTruncOption=APPC.COB_COMPILER_TRUNC_STD
);
_buffer.SetAllocatedSize(5);
_buffer.ActualSize = 5;
EMPNO = new;
EMPNO.Define(
 location=0,
 picture=’X(5)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
end method;
method EmployeeNumber_Impl.GetValues()
begin
EMPNO.GetValue(buffer=_buffer, target=EmployeeNumber.EMPNO);
end method;
method EmployeeNumber_Impl.Construct(input
implementedRecord:EmployeeNumber):EmployeeNumber_Impl
begin
EmployeeNumber = implementedRecord;
return self;
end method;
method EmployeeNumber_Impl.BinaryData():Framework.BinaryData
begin
return _buffer;
end method;
method EmployeeRecord.Init()
begin
super.Init();
_private = EmployeeRecord_Impl().Construct(implementedRecord=self);
LNAME = new;

Code Example 4-2 Output from sample script (page 5 of 9)

Sample Script and Generated Code

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 91

FNAME = new;
NUM = new;
PNUM = new;
EMPLOC = new;
DEPT = new;
MGR = new;
STARTDATE = new;
TITLE = new;
SALARY = new;
BONUS = new;
COMRATE = new;
end method;
method EmployeeRecord_Impl.SetValues()
begin
LNAME.PutValue(buffer=_buffer, source=EmployeeRecord.LNAME);
FNAME.PutValue(buffer=_buffer, source=EmployeeRecord.FNAME);
NUM.PutValue(buffer=_buffer, source=EmployeeRecord.NUM);
PNUM.PutValue(buffer=_buffer, source=EmployeeRecord.PNUM);
EMPLOC.PutValue(buffer=_buffer, source=EmployeeRecord.EMPLOC);
DEPT.PutValue(buffer=_buffer, source=EmployeeRecord.DEPT);
MGR.PutValue(buffer=_buffer, source=EmployeeRecord.MGR);
STARTDATE.PutValue(buffer=_buffer, source=EmployeeRecord.STARTDATE);
TITLE.PutValue(buffer=_buffer, source=EmployeeRecord.TITLE);
SALARY.PutValue(buffer=_buffer, source=EmployeeRecord.SALARY);
BONUS.PutValue(buffer=_buffer, source=EmployeeRecord.BONUS);
COMRATE.PutValue(buffer=_buffer, source=EmployeeRecord.COMRATE);
end method;
method EmployeeRecord_Impl.Init()
begin
super.Init();
_buffer = new;
_buffer.SetBufferAttribute(
 serverCodeset=APPC.COB_CODESET_EBCDIC,
 serverPlatform=APPC.COB_PLATFORM_S390,
 compileTruncOption=APPC.COB_COMPILER_TRUNC_STD
);
_buffer.SetAllocatedSize(144);
_buffer.ActualSize = 144;
LNAME = new;
LNAME.Define(
 location=0,
 picture=’X(24)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
FNAME = new;
FNAME.Define(
 location=24,
 picture=’X(12)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,

Code Example 4-2 Output from sample script (page 6 of 9)

Sample Script and Generated Code

92 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

 maxOccurs=1
);
NUM = new;
NUM.Define(
 location=36,
 picture=’X(5)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
PNUM = new;
PNUM.Define(
 location=41,
 picture=’X(5)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
EMPLOC = new;
EMPLOC.Define(
 location=46,
 picture=’X(9)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
DEPT = new;
DEPT.Define(
 location=55,
 picture=’X(12)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
MGR = new;
MGR.Define(
 location=67,
 picture=’X(36)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
STARTDATE = new;
STARTDATE.Define(
 location=103,
 picture=’X(8)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,

Code Example 4-2 Output from sample script (page 7 of 9)

Sample Script and Generated Code

Chapter 4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS 93

 maxOccurs=1
);
TITLE = new;
TITLE.Define(
 location=111,
 picture=’X(20)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
SALARY = new;
SALARY.Define(
 location=131,
 picture=’X(6)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
BONUS = new;
BONUS.Define(
 location=137,
 picture=’X(5)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
COMRATE = new;
COMRATE.Define(
 location=142,
 picture=’X(2)’,
 usage=’’,
 sync=APPC.COB_NO_SYNC,
 flags=0,
 maxOccurs=1
);
end method;
method EmployeeRecord_Impl.GetValues()
begin
LNAME.GetValue(buffer=_buffer, target=EmployeeRecord.LNAME);
FNAME.GetValue(buffer=_buffer, target=EmployeeRecord.FNAME);
NUM.GetValue(buffer=_buffer, target=EmployeeRecord.NUM);
PNUM.GetValue(buffer=_buffer, target=EmployeeRecord.PNUM);
EMPLOC.GetValue(buffer=_buffer, target=EmployeeRecord.EMPLOC);
DEPT.GetValue(buffer=_buffer, target=EmployeeRecord.DEPT);
MGR.GetValue(buffer=_buffer, target=EmployeeRecord.MGR);
STARTDATE.GetValue(buffer=_buffer, target=EmployeeRecord.STARTDATE);
TITLE.GetValue(buffer=_buffer, target=EmployeeRecord.TITLE);
SALARY.GetValue(buffer=_buffer, target=EmployeeRecord.SALARY);
BONUS.GetValue(buffer=_buffer, target=EmployeeRecord.BONUS);
COMRATE.GetValue(buffer=_buffer, target=EmployeeRecord.COMRATE);
end method;

Code Example 4-2 Output from sample script (page 8 of 9)

Sample Script and Generated Code

94 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

method EmployeeRecord_Impl.Construct(input
implementedRecord:EmployeeRecord):EmployeeRecord_Impl
begin
EmployeeRecord = implementedRecord;
return self;
end method;
method EmployeeRecord_Impl.BinaryData():Framework.BinaryData
begin
return _buffer;
end method;
end EmployeeRecord;

Code Example 4-2 Output from sample script (page 9 of 9)

95

Appendix A

Example Applications

This appendix describes the example applications that are provided with the
iPlanet UDS Transaction Adapter for OS/390. Included are the following
examples:

• CICS VSAM query transaction with an APPC-only interface

• CICS DB2 query transaction with both BMS 3270 and APPC interfaces using
the AOR/TOR concept

• IMS DLI query transaction with an MFS 3270 interface

• IMS DLI query transaction with an explicit APPC interface using CPI-C

The example applications consist of two sets of files, one set for the client system
and one set for the OLTP systems. Client example application files are imported
into your iPlanet UDS environment using the developer workshop. The client
example files are in the FORTE_ROOT/install/examples/extsys/txadapt directory
of the iPlanet UDS installation system. The OLTP example application files are
installed into two partitioned datasets on the OS/390 system. The source files are
stored as members in the FORTE.V30M1.SOURCE dataset, and the JCL and
assorted other files are stored as members in the FORTE.V30M1.JCL dataset.

CICS VSAM Query Example
The CICS VSAM query example application shows the use of the Transaction
Adapter to invoke a simple CICS transaction that takes a customer number as
input, queries a VSAM file, and returns a customer record as output. This
application uses the CICS sample VSAM file, FILEA, provided by IBM with the
CICS product set. The CICS transaction is designed to be invoked only across an
APPC conversation. The purpose of this example is to show how simple the CICS
APPC interface is to use.

CICS VSAM Query Example

96 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The application consists of the FRTCEX02 CICS program and the CICSvsamQuery
iPlanet UDS project. The FRTCEX02 program is a COBOL program that
implements the CICS transaction FR02 and uses the EXEC CICS interface for its
APPC operations. The CICSvsamQuery project provides the iPlanet UDS client
interface to the CICS FR02 transaction.

Installing the Example Application

CICS Transaction
Table 4-2 lists the sources and JCLs you will need for the FRTCEX02 program.

The JCL files listed in Table 4-2 contain comments that detail the modifications that
must be made to tailor the JCL for your site.

At many sites, the definition of new CICS transactions requires the involvement of
the CICS system administrator. If your site requires this, have the CICS system
administrator perform the definition of the CICS transaction and the installation of
the CICS sample VSAM file.

To define the CICS transaction, first tailor the JCL in CSDCEX02 and submit the job
to define the FRTCEX02 program and FR02 transaction to CICS. This job uses the
CICS CSD update utility to build the definitions. Alternatively, you can manually
enter these definitions into CICS using the CEDA transaction. After the definitions
have been built, use CEDA to install the group to which the definitions were
added.

Next, make sure that the CICS sample VSAM file, FILEA, has been installed and
activated on your CICS system. Refer to the IBM CICS manuals for information on
the installation of FILEA.

Table 4-2 Sources and JCLs for FRTCEX02 program

Sources and JCLs Location

Source for the FRTCEX02 program FORTE.V30M1.SOURCE(FRTCEX02)

JCL to compile and link program FORTE.V30M1.JCL(FRTCEX02)

JCL to build the CICS definitions for the
transaction

FORTE.V30M1.JCL(CSDCEX02)

CICS VSAM Query Example

Appendix A Example Applications 97

To prepare the FRTCEX02 program, compile and link the program by tailoring the
JCL in FRTCEX02 and submitting the job. Once the job has successfully completed,
the CICS transaction is ready to use.

iPlanet UDS Application
The project export of the CICSvsamQuery project is in the cicsvsam.pex file. This
project should be imported into your workspace using the workshop, and then
deployed as a client on the machines where you wish to run the application. The
project deploys into two partitions, a client partition and a server partition
containing the APPCApiSO service object. Make sure that the server partition is
deployed on the OS/390 node where you installed the Transaction Adapter.

The CICSvsamQuery project contains three classes: FILEA describes the customer
record as an object, QueryCics is the class that interfaces with the CICS transaction
using the Transaction Adapter classes, and QueryWindow is the window class that
provides the user interface.

This example assumes that the symbolic destination name, FRTCEXSI, has been
defined on your system and accesses the CICS system where you have installed the
CICS transaction. It also assumes that the CICS transaction name is FR02. If either
of these names has been changed, you must modify the RunQuery method of the
QueryCics class to specify the correct names. The code under the topic
“Establishing the Conversation” on page 99 shows where the changes should be
made.

Running the Example Application

➤ To execute this example application

1. Bring up the iPlanet UDS client GUI window.

2. Type a 6-digit customer number into the input area, and click the Query
button.

The following are some of the valid customer numbers for which records exist:
100000, 111111, 200000, 222222, 300000, 333333, 400000, 444444, 500000, 555555,
600000, 666666, 700000, 777777, 800000, 888888, 900000, and 999999. The IBM
CICS documentation provides more complete information on the valid
customer numbers for the FILEA sample file.

3. To terminate the application, close the GUI window.

CICS VSAM Query Example

98 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Understanding the Application Logic
This section describes the logic for the communications between the iPlanet UDS
client application and the CICS transaction. Each step in the execution is covered,
with code fragments from both sides of the application included to show how the
Transaction Adapter is used to interface with the CICS transaction program. The
client application code fragments shown here are extracted from the RunQuery
method of the QueryCics class. The CICS application code fragments shown here
are extracted from the FRTCEX02 COBOL program.

Creating the APPCConversation Object
The first step in the iPlanet UDS application is to instantiate a new
APPCConversation object:

conv = APPCApiSO.NewConversation();

Creating the COBOLBuffer and COBOLField Objects
The next step is to instantiate the COBOLBuffer object used to hold the VSAM data,
and the COBOLField objects used to convert the fields into iPlanet UDS data:

Defining the Layout of the COBOL Record
Next, define the individual fields of the COBOL record using the COBOLField
objects and define the characteristics of the COBOL program using the
COBOLBuffer object as shown in the following code:

buf : COBOLBuffer = new;
cobAddress: COBOLField = new;
cobAmount: COBOLField = new;
cobComment: COBOLField = new;
cobDate: COBOLField = new;
cobName: COBOLField = new;
cobNum: COBOLField = new;
cobPhone: COBOLField = new;
cobRecStat: COBOLField = new;
cobStatus: COBOLField = new;

loc = cobStatus.Define(location=0,picture=’X’,usage=’DISPLAY’);
loc = cobNum.Define(location=loc,picture=’X(6)’,usage=’DISPLAY’);
loc = cobName.Define(location=loc,picture=’X(20)’,usage=’DISPLAY’);
loc = cobAddress.Define(location=loc,picture=’X(20)’, usage=’DISPLAY’);

CICS VSAM Query Example

Appendix A Example Applications 99

Establishing the Conversation
The next step is to establish the APPC conversation between the iPlanet UDS
application and the CICS transaction program. The following TOOL code shows
how the client application requests a conversation with the CICS transaction:

The following CICS COBOL code accepts the conversation request and checks for
errors:

If an error is found, a message is displayed on the OS/390 console, because there is
no way for a message to be sent back to the iPlanet UDS application without an
APPC conversation.

loc = cobPhone.Define(location=loc,picture=’X(8)’,usage=’DISPLAY’);
loc = cobDate.Define(location=loc,picture=’X(8)’,usage=’DISPLAY’);
loc = cobAmount.Define(location=loc,picture=’X(8)’, usage=’DISPLAY’);
loc = cobComment.Define(location=loc,picture=’X(9)’, usage=’DISPLAY’);
loc = cobRecStat.Define(location=loc,picture=’X’,usage=’DISPLAY’);
reclen = loc;

buf.SetBufferAttribute(serverCodeset=COB_CODESET_EBCDIC,
 compileTruncOption= COB_COMPILER_TRUNC_STD,
 serverPlatform=COB_PLATFORM_S390);

dest = ’FRTCEXSI’; -- must match your symbolic destination name
tp = ’FR02’; -- must match your CICS transaction name
conv.Open(dest=dest,tp=tp);

EXEC CICS ASSIGN FACILITY(APPC-CONVID) RESP(CICS-RESP)
END-EXEC.
IF CICS-RESP NOT = DFHRESP(NORMAL) THEN
 MOVE ’ASSIGN FACILITY FAILED’ TO DIAG-MSG
 PERFORM DIAG
END-IF.

CICS VSAM Query Example

100 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Sending the Input Data
Now the input data must be sent from the iPlanet UDS application to the CICS
transaction. In this application, the input data is a 6-digit customer number in
character format. The following TOOL code shows how the client application
sends the input data:

The following CICS COBOL code receives the input data and checks for errors:

len = custRec.NUM_LENGTH;
conv.Write(dataBuffer=custRec.Num,writeLength=len);

EXEC CICS IGNORE CONDITION LENGERR
END-EXEC.
MOVE LENGTH OF CUST-NUM TO IN-LENGTH.
EXEC CICS RECEIVE CONVID(APPC-CONVID)
 INTO(IN-AREA)
 LENGTH(IN-LENGTH)
 STATE(APPC-STATE)
 RESP(CICS-RESP)
END-EXEC.
IF (CICS-RESP NOT = DFHRESP(NORMAL) AND
 CICS-RESP NOT = DFHRESP(EOC)) OR
 (EIBERR = HIGH-VALUES) THEN
 MOVE ’FAILURE RECEIVING CUST-NUM’ TO DIAG-MSG
 PERFORM DIAG
ELSE
 IF EIBNODAT = HIGH-VALUES THEN
 MOVE ’RECEIVED NO CUST-NUM’ TO DIAG-MSG
 PERFORM DIAG
 END-IF
END-IF.
IF IN-LENGTH = LENGTH OF CUST-NUM THEN
 MOVE IN-AREA TO CUST-NUM
ELSE
 MOVE ’RECEIVED INCORRECT LENGTH FOR CUST-NUM’ TO DIAG-MSG
 PERFORM DIAG
END-IF.

CICS VSAM Query Example

Appendix A Example Applications 101

Receiving the Output Data
Now the output data must be received from the CICS transaction by the iPlanet
UDS application. In this application, the output data is an 80-byte customer record
in character format, plus a 1-byte record status code. The following TOOL code
shows how the client application receives the output data:

The following CICS COBOL code sends the output data and checks for errors:

Terminating the Conversation
The conversation with the CICS transaction is no longer needed by the iPlanet UDS
application. The following TOOL code shows how the client application terminates
the conversation:

conv.Close(type=CLOSE_NORMAL);

The following CICS COBOL code closes the APPC conversation from the CICS
side:

len = reclen;
conv.Read(dataBuffer=buf,readLength=len);

EXEC CICS SEND CONVID(APPC-CONVID)
 STATE(APPC-STATE)
 RESP(CICS-RESP)
 FROM(FILEA)
 LENGTH(LENGTH OF FILEA)
END-EXEC.
IF (CICS-RESP NOT = DFHRESP(NORMAL) AND
 CICS-RESP NOT = DFHRESP(EOC)) OR
 (EIBERR = HIGH-VALUES) THEN
 MOVE ’ERROR SENDING CUST-REC’ TO DIAG-MSG
 PERFORM DIAG
END-IF.

EXEC CICS FREE CONVID(APPC-CONVID)
 STATE(APPC-STATE)
 RESP(CICS-RESP)
END-EXEC.

CICS DB2 Query Example

102 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Processing the Data
The iPlanet UDS application can now use the data received from the CICS
transaction. The following TOOL code shows how the client application extracts
individual fields from the buffer:

In this example, the extraction of the individual fields is accomplished in the
application by calling the COBOLField.GetValue method to extract each field into a
TextData object. The necessary character set conversions are performed
automatically.

CICS DB2 Query Example
The CICS DB2 query example application shows the use of the Transaction
Adapter to invoke a CICS transaction that takes an employee number as input,
queries a DB2 table, and returns an employee row as output. This application uses
the DB2 sample employee table, EMP, provided by IBM with the DB2 product set.

This application is written using the CICS AOR/TOR concept, where the
application logic and the user interface logic are split into separate programs. This
example provides two versions of the user interface, one using CICS BMS 3270
support and one using CICS APPC support. The 3270 version of the application is
provided to show how the transaction runs in a CICS-only environment. This
section will not describe the 3270 version in detail. The purpose of this example is
to show how simple it is to add an APPC front-end to an existing application that is
already written for the AOR/TOR environment.

cobStatus.GetValue(buffer=buf,target=custRec.Status);
cobName.GetValue(buffer=buf,target=custRec.Name);
cobAddress.GetValue(buffer=buf,target=custRec.Address);
cobPhone.GetValue(buffer=buf,target=custRec.Phone);
cobDate.GetValue(buffer=buf,target=custRec.Date);
cobAmount.GetValue(buffer=buf,target=custRec.Amount);
cobComment.GetValue(buffer=buf,target=custRec.Comment);
cobRecStat.GetValue(buffer=buf,target=custRec.RecStat);

CICS DB2 Query Example

Appendix A Example Applications 103

The application consists of the FRTCEX03, FRTCEX04, and FRTCEX05 CICS
programs, and the CICSdb2Query iPlanet UDS project. The FRTCEX03 program is
a COBOL program that implements the CICS transaction FR03 and uses the CICS
BMS interface for communicating directly with a 3270 terminal. The FRTCEX04
program is a COBOL program that implements the application logic to query the
DB2 EMP table. The FRTCEX05 program is a COBOL program that implements the
CICS transaction FR05 and uses the CICS APPC interface for communicating with
the Transaction Adapter. Both the FRTCEX03 and the FRTCEX05 programs call the
FRTCEX04 program using a CICS DPL. The CICSdb2Query project provides the
iPlanet UDS client interface to the FR05 CICS transaction.

Installing the Example Application
The DB2 system administrator should be involved in the steps for setting up DB2
to run this example application.

Make sure that the DB2 sample employee table, EMP, has been installed on your
DB2 system and is accessible to your CICS transaction. Refer to the IBM DB2
manuals for information on the installation of the sample table.

The source for the FRTCEX04 program is shipped ready to use with DB2 Version 5.
If you are using a different version of DB2, then you must modify the FRTCEX04
program. Specifically, the schema name for the DB2 sample EMP table is
hard-coded in the source as DSN8510. For other versions of DB2 this should be
changed to the correct schema name. The DB2 system administrator can provide
the correct schema name. The actual compilation of the FRTCEX04 program is
covered in the section, “CICS Transaction” on page 96.

The CICS DB2 interface requires a special table called a Resource Control Table
(RCT) that contains entries for all CICS transactions that access DB2. An entry must
be added to the RCT for each CICS transaction in this example application. In
FORTE.V30M1.SOURCE(RCTCEX03), there is a sample entry for the FRTCEX03
program. In FORTE.V30M1.SOURCE(RCTCEX05), there is a sample entry for the
FRTCEX05 program. These entries should be added to the RCT that is used for
your CICS system, the RCT should be reassembled and relinked, and the CICS DB2
interface should be stopped and restarted before the example application is used.
The DB2 or CICS system administrator usually does this.

CICS DB2 Query Example

104 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

CICS Transactions
Table 4-3 lists the sources and JCLs you will need for the FRTCEX03 program.

Table 4-4 lists the sources and JCLs you will need for the FRTCEX04 program.

Table 4-5 lists the sources and JCLs you will need for the FRTCEX05 program.

Table 4-3 Sources and JCLs for FRTCEX03 program

Source and JCLs Location

Source for FRTCEX03 program FORTE.V30M1.SOURCE(FRTCEX03)

JCL to compile and link program FORTE.V30M1.JCL(FRTCEX03)

Source for BMS map for program FORTE.V30M1.SOURCE(FRTCEM03)

JCL to assemble and link BMS map FORTE.V30M1.JCL(FRTCEM03)

JCL to build CICS definitions for the
transaction

FORTE.V30M1.JCL(CSDCEX03)

Table 4-4 Sources and JCLs for FRTCEX04 program

Source and JCLs Location

Source for FRTCEX04 program FORTE.V30M1.SOURCE(FRTCEX04)

JCL to compile and link program FORTE.V30M1.JCL(FRTCEX04)

JCL to build CICS definitions for the
transaction

FORTE.V30M1.JCL(CSDCEX04)

Table 4-5 Sources and JCLs for FRTCEX05 program

Source and JCLs Location

Source for FRTCEX05 program FORTE.V30M1.SOURCE(FRTCEX05)

JCL to compile and link program FORTE.V30M1.JCL(FRTCEX05)

JCL to build CICS definitions for the
transaction

FORTE.V30M1.JCL(CSDCEX05)

CICS DB2 Query Example

Appendix A Example Applications 105

The JCL files for this example contain comments that detail the modifications that
you must make to tailor the JCL for your site.

At many sites, the definition of new CICS transactions requires the involvement of
the CICS system administrator. If your site requires this, have the CICS system
administrator perform the definition of the CICS transactions.

To build the CICS BMS 3270 user interface transaction, first tailor the JCL in
CSDCEX03 and submit the job to define the FRTCEX03 program, FR03 transaction,
and FRTCEM03 BMS map to CICS. This job uses the CICS CSD update utility to
build the definitions. Alternatively, you can manually enter these definitions into
CICS using the CEDA transaction. Next, compile and link the FRTCEX03 program
and FRTCEM03 BMS map by tailoring the JCL in FRTCEX03 and FRTCEM03,
respectively, and submitting the jobs.

To build the CICS DB2 query application logic program, first tailor the JCL in
CSDCEX04 and submit the job to define the FRTCEX04 program to CICS. This job
uses the CICS CSD update utility to build the definition. Alternatively, you can
manually enter this definition into CICS using the CEDA transaction. Next,
compile and link the FRTCEX04 program by tailoring the JCL in FRTCEX04 and
submitting the job. In addition to compiling and linking the program, this JCL
contains a step to perform the necessary DB2 BIND and GRANT processing to
allow the program to be used by both the FRTCEX03 and FRTCEX05 programs.

To build the CICS APPC user interface transaction, first tailor the JCL in
CSDCEX05 and submit the job to define the FRTCEX05 program and FR05
transaction to CICS. This job uses the CICS CSD update utility to build the
definitions. Alternatively, you can manually enter these definitions into CICS using
the CEDA transaction. Next, compile and link the FRTCEX05 program by tailoring
the JCL in FRTCEX05 and submitting the job.

After all of the CICS components of this example application have been built, use
CEDA to install the group into which the CICS definitions were added. Once this
has been done, the CICS transactions are ready to use.

iPlanet UDS Application
The project export of the CICSdb2Query project is in the cicsdb2.pex file. This
project should be imported into your workspace using the workshop, and then
deployed as a client on the machines where you wish to run the application. The
project deploys into two partitions, a client partition and a server partition
containing the APPCApiSO service object. Make sure that the server partition is
deployed on the OS/390 node where you installed the Transaction Adapter.

CICS DB2 Query Example

106 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The CICSdb2Query project contains three classes: EmpRec describes the employee
table row as an object, QueryCics is the class that interfaces with the CICS
transaction using the Transaction Adapter classes, and QueryWindow is the
window class that provides the user interface.

This example assumes that the symbolic destination name FRTCEXSI has been
defined on your system and accesses the CICS system where you have installed the
CICS transaction. It also assumes that the CICS transaction name is FR05. If either
of these names has been changed, you must modify the RunQuery method of the
QueryCics class to specify the correct names. The code under the topic
“Establishing the Conversation” on page 99 shows where the changes should be
made.

Running the Example Application
To execute either of the application versions, you need to enter employee
numbers.The following are some of the valid employee numbers for which rows
exist: 000100, 000110, 000120, 000130, 000140, 000150, 000160, 000170, 000180, and
000190. The IBM DB2 documentation provides more complete information on the
valid employee numbers for the EMP sample DB2 table.

➤ To execute the CICS BMS version of this example application

1. Log on to your CICS system.

2. Press the Clear key.

3. Type the following text and press Enter.

FR03

A formatted screen will appear.

4. Type in a 6-digit employee number and press Enter.

➤ To execute the iPlanet UDS version of this example application

1. Bring up the iPlanet UDS client GUI window.

2. Type a 6-digit employee number into the input area, and click the Query
button.

3. To terminate the application, close the GUI window.

CICS DB2 Query Example

Appendix A Example Applications 107

Understanding the Application Logic
This section describes the logic for the communications between the iPlanet UDS
client application and the CICS transaction. Each step in the execution is covered,
with code fragments from both sides of the application included to show how the
Transaction Adapter is used to interface with the CICS transaction program. The
client application code fragments shown here are extracted from the RunDb2q
method of the QueryCics class. The CICS application code fragments shown here
are extracted from the FRTCEX05 COBOL program.

Creating the APPCConversation Object
The first step in the iPlanet UDS application is to instantiate a new
APPCConversation object:

conv = APPCApiSO.NewConversation();

Creating the COBOLBuffer and COBOLField Objects
The next step is to instantiate the COBOLBuffer object used to hold the DB2 record,
and the COBOLField objects used to convert the fields into iPlanet UDS data:

buf : COBOLBuffer = new;
cobBirthDate : COBOLField = new;
cobBonus : COBOLField = new;
cobCommission : COBOLField = new;
cobDept : COBOLField = new;
cobEdLevel : COBOLField = new;
cobEmpNo : COBOLField = new;
cobHireDate : COBOLField = new;
cobJob : COBOLField = new;
cobMessage1 : COBOLField = new;
cobMessage2 : COBOLField = new;
cobName : COBOLField = new;
cobPhone : COBOLField = new;
cobSalary : COBOLField = new;
cobSex : COBOLField = new;

CICS DB2 Query Example

108 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Defining the Layout of the COBOL Record
Now you need to define the individual fields of the COBOL record using the
COBOLField objects and the characteristics of the COBOL program using the
COBOLBuffer object. These definitions are shown in the following code sample:

Establishing the Conversation
The next step is to establish the APPC conversation between the iPlanet UDS
application and the CICS transaction program. The following TOOL code shows
how the client application requests a conversation with the CICS transaction:

loc = cobEmpNo.Define(location=0,picture=’X(6)’,usage=’DISPLAY’);
loc = cobName.Define(location=loc,picture=’X(30)’,usage=’DISPLAY’);
loc = cobDept.Define(location=loc,picture=’X(3)’,usage=’DISPLAY’);
loc = cobPhone.Define(location=loc,picture=’X(4)’,usage=’DISPLAY’);
loc = cobHireDate.Define(location=loc,picture=’X(10)’,usage=’DISPLAY’);
loc = cobJob.Define(location=loc,picture=’X(8)’,usage=’DISPLAY’);
loc = cobEdLevel.Define(location=loc,picture=’X(4)’,usage=’DISPLAY’);
loc = cobSex.Define(location=loc,picture=’X(1)’,usage=’DISPLAY’);
loc = cobBirthDate.Define(location=loc,picture=’X(10)’,usage=’DISPLAY’);
loc = cobSalary.Define(location=loc,picture=’X(11)’,usage=’DISPLAY’);
loc = cobBonus.Define(location=loc,picture=’X(11)’,usage=’DISPLAY’);
loc = cobCommission.Define(location=loc,picture=’X(11)’,usage=’DISPLAY’);
loc = cobMessage1.Define(location=loc,picture=’X(40)’,usage=’DISPLAY’);
loc = cobMessage2.Define(location=loc,picture=’X(240)’,usage=’DISPLAY’);
reclen = loc;

buf.SetBufferAttribute(serverCodeset=COB_CODESET_EBCDIC,
compileTruncOption=COB_COMPILER_TRUNC_STD,
serverPlatform=COB_PLATFORM_S390);

dest = ’FRTCEXSI’;
tp = ’FR05’;
conv.Open(dest=dest,tp=tp);

CICS DB2 Query Example

Appendix A Example Applications 109

The following CICS COBOL code accepts the conversation request and checks for
errors:

If an error is found, a message is displayed upon the OS/390 console, because there
is no way for a message to be sent back to the iPlanet UDS application without an
APPC conversation.

Sending the Input Data
Now the input data must be sent from the iPlanet UDS application to the CICS
transaction. In this application, the input data is a 6-digit employee number in
character format. The following TOOL code shows how the client application
sends the input data:

The following CICS COBOL code receives the input data and checks for errors:

EXEC CICS ASSIGN FACILITY(APPC-CONVID) RESP(CICS-RESP)
END-EXEC.
IF CICS-RESP NOT = DFHRESP(NORMAL) THEN
 MOVE ’ASSIGN FACILITY FAILED’ TO DIAG-MSG
 PERFORM DIAG
END-IF.

len = empRec.EMPNO_LENGTH;
conv.Write(dataBuffer=empRec.Empno,writeLength=len);

EXEC CICS IGNORE CONDITION LENGERR
END-EXEC.
MOVE LENGTH OF EX04-EMPNO TO IN-LENGTH.
EXEC CICS RECEIVE CONVID(APPC-CONVID)
 INTO(IN-AREA)
 LENGTH(IN-LENGTH)
 STATE(APPC-STATE)
 RESP(CICS-RESP)
END-EXEC.
IF (CICS-RESP NOT = DFHRESP(NORMAL) AND
 CICS-RESP NOT = DFHRESP(EOC)) OR
 (EIBERR = HIGH-VALUES) THEN
 MOVE ’FAILURE RECEIVING EMPNO’ TO DIAG-MSG
 PERFORM DIAG
ELSE

CICS DB2 Query Example

110 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Receiving the Output Data
Now the output data must be received from the CICS transaction by the iPlanet
UDS application. In this application, the output data is a 109-byte employee record
in character format, plus a 40-byte message field and a 240-byte DB2 diagnostic
area. The following TOOL code shows how the client application receives the
output data:

The following CICS COBOL code sends the output data and checks for errors:

 IF EIBNODAT = HIGH-VALUES THEN
 MOVE ’RECEIVED NO EMPNO’ TO DIAG-MSG
 PERFORM DIAG
 END-IF
END-IF.
MOVE SPACES TO EX04-COMMAREA.
IF IN-LENGTH = LENGTH OF EX04-EMPNO THEN
 MOVE IN-AREA TO EX04-EMPNO
ELSE
 MOVE ’RECEIVED INCORRECT LENGTH FOR EMPNO’ TO DIAG-MSG
 PERFORM DIAG
END-IF.

len = reclen;
conv.Read(dataBuffer=buf,readLength=len);

EXEC CICS SEND CONVID(APPC-CONVID)
 STATE(APPC-STATE)
 RESP(CICS-RESP)
 FROM(EX04-COMMAREA)
 LENGTH(LENGTH OF EX04-COMMAREA)
END-EXEC.
IF (CICS-RESP NOT = DFHRESP(NORMAL) AND
 CICS-RESP NOT = DFHRESP(EOC)) OR
 (EIBERR = HIGH-VALUES) THEN
 MOVE ’ERROR SENDING RESPONSE’ TO DIAG-MSG
 PERFORM DIAG
END-IF.

CICS DB2 Query Example

Appendix A Example Applications 111

Terminating the Conversation
The conversation with the CICS transaction is no longer needed by the iPlanet UDS
application. The following TOOL code shows how the client application terminates
the conversation:

conv.Close(type=CLOSE_NORMAL);

The following CICS COBOL code closes the APPC conversation from the CICS
side:

Processing the Data
The iPlanet UDS application can now use the data received from the CICS
transaction. The following TOOL code shows how the client application extracts
individual fields from the buffer:

The extraction of the individual fields is accomplished by using the
COBOLField.GetValue method to extract the fields directly from the COBOLBuffer
object. All necessary character set conversions are performed automatically.

EXEC CICS FREE CONVID(APPC-CONVID)
 STATE(APPC-STATE)
 RESP(CICS-RESP)
END-EXEC.

cobName.GetValue(buffer=buf,target=empRec.Name);
cobDept.GetValue(buffer=buf,target=empRec.Dept);
cobPhone.GetValue(buffer=buf,target=empRec.Phone);
cobHireDate.GetValue(buffer=buf,target=empRec.HireDate);
cobJob.GetValue(buffer=buf,target=empRec.Job);
cobEdLevel.GetValue(buffer=buf,target=empRec.EdLevel);
cobSex.GetValue(buffer=buf,target=empRec.Sex);
cobBirthDate.GetValue(buffer=buf,target=empRec.BirthDate);
cobSalary.GetValue(buffer=buf,target=empRec.Salary);
cobBonus.GetValue(buffer=buf,target=empRec.Bonus);
cobCommission.GetValue(buffer=buf,target=empRec.Commission);
cobMessage1.GetValue(buffer=buf,target=empRec.Message1);
cobMessage2.GetValue(buffer=buf,target=empRec.Message2);

IMS DLI Query MFS Example

112 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

IMS DLI Query MFS Example
The IMS DLI query MFS example application shows the use of the Transaction
Adapter to invoke an IMS transaction that takes a part number as input, queries an
IMS database, and returns part information as output. This application uses the
IMS sample parts database, DI21PART, provided by IBM with the IMS product set.
The IMS transaction uses the Message Formatting Service (MFS) for its user
interface, and can be run directly from an IMS terminal. The purpose of this
example is to show how IMS implicit APPC support allows the Transaction
Adapter to execute a transaction that is written for interaction with a 3270 terminal,
with no changes to the IMS transaction program required.

The application consists of the FRTIEX02 IMS program and the IMSdliQuery
iPlanet UDS project. The FRTIEX02 program is a COBOL program that implements
the IMS transaction FRTIEX02 and uses the IMS MFS interface for communicating
directly with a 3270 terminal. The IMSdliQuery project provides the iPlanet UDS
client interface to the FRTIEX02 IMS transaction.

Installing the Example Application
With IMS, a stage 1 and stage 2 system generation must be performed to define the
example application to IMS/TM. This must be completed before the application
can be fully installed. Sample IMS definitions for the transaction are in
FORTE.V30M1.SOURCE(DEFIEX02). These definitions should be added to your
IMS stage 1 source and then a system generation should be performed. At some
installations, the IMS online change utility can be used to install the updates into
the running IMS system without a restart of IMS. Your IMS system administrator
should know whether or not this is allowed and should be involved in the process.

In addition to the system generation, IMS requires that a PSB and an ACB be built
for a transaction. The source for the PSB for the transaction is in
FORTE.V30M1.SOURCE(FRTIEP02). The JCL to perform the PSBGEN and the
ACBGEN is in FORTE.V30M1.JCL(GENIEX02). This JCL should be tailored and
then submitted to build the PSB and ACB for the application. At some installations,
the IMS online change utility can be used to install these into the running IMS
system without a restart of IMS. Your IMS system administrator should know
whether or not this is allowed and should be involved in the process.

Make sure that the IMS sample parts database, DI21PART, has been installed on
your IMS system and is accessible to your IMS transaction. Refer to the IBM IMS
manuals for information on the installation of the sample database.

IMS DLI Query MFS Example

Appendix A Example Applications 113

IMS Transaction
Table 4-6 lists the sources and JCLs needed for the FRTIEX02 program.

To build the IMS transaction, first tailor the JCL in FRTIEX02 and submit the job to
compile and link the FRTIEX02 program. Next, tailor the JCL in FRTIEF02 and
submit the job to assemble and link the FRTIEF02 message format.

iPlanet UDS Application
The project export of the IMSdliQuery project is in the imsdli.pex file. This project
should be imported into your workspace using the workshop, and then deployed
as a client on the machines where you wish to run the application. The project
deploys into two partitions, a client partition and a server partition containing the
APPCApiSO service object. Make sure that the server partition is deployed on the
OS/390 node where you installed the Transaction Adapter.

The IMSdliQuery project contains three classes: Part describes the parts database
record as an object, QueryIms is the class that interfaces with the IMS transaction
using the Transaction Adapter classes, and QueryWindow is the window class that
provides the user interface.

This example assumes that the symbolic destination name, FRTIEXSI, has been
defined on your system and accesses the IMS system where you have installed the
IMS transaction. It also assumes that the IMS transaction name is FRTIEX02. If
either of these names has been changed, you must modify the RunQuery method
of the QueryIms class to specify the correct names. The code under the topic
“Establishing the Conversation” on page 99 shows where the changes should be
made.

Table 4-6 Source and JCLs for the FRTIEX02 program

Source and JCLs Location

Source for FRTIEX02 program FORTE.V30M1.SOURCE(FRTIEX02)

JCL to compile and link program FORTE.V30M1.JCL(FRTIEX02)

Source for message format FORTE.V30M1.SOURCE(FRTIEF02)

JCL to assemble and link message
format

FORTE.V30M1.JCL(FRTIEF02)

IMS DLI Query MFS Example

114 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Running the Example Application
Complete the following steps for the version you want to execute. For either
version, the following are some of the valid part numbers for which records exist:
02AN960C10, 023003806, 023007228, 023013412, 02652799, 027438995P002, and
027618032P101. The IBM IMS documentation provides more complete information
on the valid part numbers for the DI21PART sample database

➤ To execute the IMS MFS version of this example application

1. Log on to your IMS system.

2. Type the following text and press Enter.

/for frtm02

A formatted screen will appear.

3. Type in a 1- to 17-character part number and press Enter.

➤ To execute the iPlanet UDS version of this example application

1. Bring up the iPlanet UDS client GUI window.

2. Type a 1- to 17-character part number into the input area, and click the Query
button.

3. To terminate the application, close the GUI window.

Understanding the Application Logic
This section describes the logic for the communications between the iPlanet UDS
client application and the IMS transaction. Each step in the execution is covered,
with code fragments from both sides of the application included to show how the
Transaction Adapter is used to interface with the IMS transaction program. The
client application code fragments shown here are extracted from the RunQuery
method of the QueryIms class. The IMS application code fragments shown here are
extracted from the FRTIEX02 COBOL program.

Creating the APPCConversation Object
The first step in the iPlanet UDS application is to instantiate a new
APPCConversation object:

conv = APPCApiSO.NewConversation();

IMS DLI Query MFS Example

Appendix A Example Applications 115

Creating the COBOLBuffer and COBOLField Objects
Next, you must instantiate the COBOLBuffer object used to hold the IMS record
and the COBOLField objects used to convert the fields into iPlanet UDS data:

Defining the Layout of the COBOL Record
Now you need to define the individual fields of the COBOL record using the
COBOLField objects, and the characteristics of the COBOL program using the
COBOLBuffer object:

buf : COBOLBuffer = new;
cPartNumber : COBOLField = new;
cDescription : COBOLField = new;
cProcurementCode : COBOLField = new;
cInventoryCode : COBOLField = new;
cMakeDept : COBOLField = new;
cMakeCostCenter : COBOLField = new;
cMakeTime : COBOLField = new;
cPlanningRevisionNumber : COBOLField = new;
cCommodityCode : COBOLField = new;
cMessage : COBOLField = new;
cSegmentNumber : COBOLField = new;

loc = cPartNumber.Define(location=0,picture=’X(17)’,usage=’DISPLAY’);
loc = cDescription.Define(location=loc,picture=’X(20)’,usage=’DISPLAY’);
loc = cProcurementCode.Define(location=loc,picture=’X(2)’,usage=’DISPLAY’);
loc = cInventoryCode.Define(location=loc,picture=’X(1)’,usage=’DISPLAY’);
loc = cMakeDept.Define(location=loc,picture=’X(2)’,usage=’DISPLAY’);
loc = cMakeCostCenter.Define(location=loc,picture=’X(2)’,usage=’DISPLAY’);
loc = cMakeTime.Define(location=loc,picture=’X(3)’,usage=’DISPLAY’);
loc = cPlanningRevisionNumber.Define(location=loc,picture=’X(2)’,

usage=’DISPLAY’);
loc = cCommodityCode.Define(location=loc,picture=’X(4)’,usage=’DISPLAY’);
loc = cMessage.Define(location=loc,picture=’X(70)’,usage=’DISPLAY’);
loc = cSegmentNumber.Define(location=loc,picture=’X(4)’,usage=’DISPLAY’);
reclen = loc;

buf.SetBufferAttribute(serverCodeset=COB_CODESET_EBCDIC,
compileTruncOption=COB_COMPILER_TRUNC_STD,
serverPlatform=COB_PLATFORM_S390);

IMS DLI Query MFS Example

116 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Establishing the Conversation
The next step is to establish the APPC conversation between the iPlanet UDS
application and the IMS transaction program. The following TOOL code shows
how the client application requests a conversation with the IMS transaction:

Note the use of the SetReplaceNulls method. This is necessary with this IMS
transaction to force the replacement of null characters (binary zeros) sent by IMS
with blanks. When the IMS transaction places data in output buffer, fields are
padded with null characters, and those must be replaced with blanks before the
data is placed into a TextData buffer to prevent truncation of the data.

IMS implicitly accepts the conversation request and no code is required to handle
this in the IMS transaction.

Sending the Input Data
Now the input data must be sent from the iPlanet UDS application to the IMS
transaction. In this application, the input data is a 17-character part number. The
following TOOL code shows how the client application prepares and sends the
input data:

dest = ’FRTIEXSI’;
tp = ’FRTIEX02’;
conv.SetReplaceNulls();
conv.Open(dest=dest,tp=tp);

len = partInfo.PART_NUMBER_LENGTH;
buf.SetValue(source=partInfo.PartNumber);
while buf.ActualSize < len do
 buf.Concat(source=’ ’);
end while;
conv.Write(dataBuffer=buf,writeLength=len);

IMS DLI Query MFS Example

Appendix A Example Applications 117

The following IMS COBOL code receives the input data and checks for errors:

If an error is found, a message is displayed upon the OS/390 console, because there
is no way for a message to be sent back to the iPlanet UDS application without an
APPC conversation. Note that the IMS Get Unique DLI call here is the exact same
call that reads from the 3270 terminal when the transaction is executed from a 3270
terminal. There is no change to the code to support APPC.

Receiving the Output Data
Now the output data must be received from the IMS transaction by the iPlanet UDS
application. In this application, the output data is a 57-byte part record in character
format, plus a 70-byte message field. The following TOOL code shows how the
client application receives the output data:

CALL ’CBLTDLI’ USING DLI-GETUNIQUE,
 IO-PCB,
 MID.
IF IO-STATUS = DLI-OK THEN
 MOVE MID-PARTNO TO PART-KEY
 SET PARTNO-OK TO TRUE
ELSE
 MOVE DLI-GETUNIQUE TO MSG-TERM-FUNCTION
 MOVE IO-LTERM TO MSG-TERM-NAME
 MOVE IO-STATUS TO MSG-TERM-STATUS
 DISPLAY MSG-TERM-ERROR UPON CONSOLE
 SET PARTNO-ERROR TO TRUE
END-IF.

len = reclen;
conv.Read(dataBuffer=buf,readLength=len);

IMS DLI Query MFS Example

118 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

The following IMS COBOL code sends the output data and checks for errors:

Note that the IMS Insert DLI call here is the exact same call that writes to the 3270
terminal when the transaction is executed from a 3270 terminal. There is no change
to the code to support APPC.

Terminating the Conversation
The conversation with the CICS transaction is no longer needed by the iPlanet UDS
application. The following TOOL code shows how the client application terminates
the conversation:

conv.Close(type=CLOSE_NORMAL);

IMS implicitly deallocates the conversation when the transaction program
terminates and no code is required to handle this in the IMS transaction.

CALL ’CBLTDLI’ USING DLI-INSERT,
 IO-PCB,
 MOD,
 MOD-NAME.
IF IO-STATUS NOT = DLI-OK THEN
 MOVE DLI-INSERT TO MSG-TERM-FUNCTION
 MOVE IO-LTERM TO MSG-TERM-NAME
 MOVE IO-STATUS TO MSG-TERM-STATUS
 DISPLAY MSG-TERM-ERROR UPON CONSOLE
END-IF.

IMS DLI Query Explicit APPC Example

Appendix A Example Applications 119

Processing the Data
The iPlanet UDS application can now use the data received from the IMS
transaction. The following TOOL code shows how the client application extracts
individual fields from the buffer:

In this application, the individual attributes of the part information object are of the
string data type. The COBOLField.GetValue method is used to extract each field
into the corresponding attribute in the part information object.

IMS DLI Query Explicit APPC Example
The IMS DLI query explicit APPC example application shows the use of the
Transaction Adapter to invoke an IMS transaction that takes a part number as
input, queries an IMS database, and returns part information as output. This
application uses the IMS sample parts database, DI21PART, provided by IBM with
the IMS product set. The IMS transaction uses CPI-C for its user interface, and can
be run only across an APPC conversation. The purpose of this example is to show
how IMS explicit APPC support (IMS/APPC) can be used to write transactions
that can be called by the Transaction Adapter. This example also shows a persistent
transaction; that is, one that continues receiving requests and processing them until
the client application deallocates the conversation.

The application consists of the FRTIEX03 IMS program and the IMScpicQuery
iPlanet UDS project. The FRTIEX03 program is a COBOL program that implements
the IMS transaction FRTIEX03 and uses the explicit APPC interface. The
IMScpicQuery project provides the iPlanet UDS client interface to the FRTIEX03
IMS transaction.

cDescription.GetValue(buffer=buf,target=partInfo.Description);
cProcurementCode.GetValue(buffer=buf,
 target=partInfo.ProcurementCode);
cInventoryCode.GetValue(buffer=buf,target=partInfo.InventoryCode);
cMakeDept.GetValue(buffer=buf,target=partInfo.MakeDept);
cMakeCostCenter.GetValue(buffer=buf,
 target=partInfo.MakeCostCenter);
cMakeTime.GetValue(buffer=buf,target=partInfo.MakeTime);
cPlanningRevisionNumber.GetValue(buffer=buf,
 target=partInfo.PlanningRevisionNumber);
cCommodityCode.GetValue(buffer=buf,target=partInfo.CommodityCode);
cMessage.GetValue(buffer=buf,target=partInfo.Message);

IMS DLI Query Explicit APPC Example

120 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Installing the Example Application

IMS System Preparation
With IMS, a stage 1 and stage 2 system generation must be performed to define the
example application to IMS/TM. This must be completed before the application
can be fully installed. Sample IMS definitions for the transaction are in
FORTE.V30M1.JCL(DEFIEX03). These definitions should be added to your IMS
stage 1 source and then a system generation should be performed. At some
installations, the IMS online change utility can be used to install the updates into
the running IMS system without a restart of IMS. Your IMS system administrator
should know whether or not this is allowed and should be involved in the process.

In addition to the system generation, IMS requires that a PSB and an ACB be built
for the transaction.

• The source for the PSB for the transaction is in
FORTE.V30M1.SOURCE(FRTIEP03).

• The JCL to perform the PSBGEN and the ACBGEN is in
FORTE.V30M1.JCL(GENIEX03).

This JCL should be tailored and then submitted to build the PSB and ACB for
the application. At some installations, the IMS online change utility can be
used to install these into the running IMS system without a restart of IMS. Your
IMS system administrator should know whether or not this is allowed and
should be involved in the process.

Make sure that the IMS sample parts database, DI21PART, has been installed on
your IMS system and is accessible to your IMS transaction. Refer to the IBM IMS
manuals for information on the installation of the sample database.

IMS Transaction
The source for the FRTIEX03 program is in FORTE.V30M1.SOURCE(FRTIEX03).
The JCL to compile and link this program is in FORTE.V30M1.JCL(FRTIEX03).

To build the IMS transaction, tailor the JCL in FRTIEX03 and submit the job to
compile and link the FRTIEX03 program.

IMS DLI Query Explicit APPC Example

Appendix A Example Applications 121

APPC/MVS Definition
IMS/APPC uses APPC/MVS for its APPC interface. Any IMS transactions that use
IMS/APPC must therefore be defined to APPC/MVS in a TP profile. The JCL to
define this IMS transaction program to APPC/MVS is in
FORTE.V30M1.JCL(FRTITP03). Tailor the JCL in FRTITP03 and submit the job to
define the FRTIEX03 transaction program to APPC/MVS.

iPlanet UDS Application
The project export of the IMScpicQuery project is in the imscpic.pex file. This
project should be imported into your workspace using the workshop, and then
deployed as a client on the machines where you wish to run the application. The
project deploys into two partitions, a client partition and a server partition
containing the APPCApiSO service object. Make sure that the server partition is
deployed on the OS/390 node where you installed the Transaction Adapter.

The IMScpicQuery project contains three classes: Part describes the parts database
record as an object, QueryIms is the class that interfaces with the IMS transaction
using the Transaction Adapter classes, and QueryWindow is the window class that
provides the user interface.

This example assumes that the symbolic destination name, FRTIEXSI, has been
defined on your system and accesses the IMS system where you have installed the
IMS transaction. It also assumes that the IMS transaction name is FRTIEX03. If
either of these names has been changed, you must modify the StartUp method of
the QueryIms class to specify the correct names. The code under the topic
’Establishing the Conversation’ shows where the changes should be made.

Running the Example Application

➤ To execute this example application

1. Bring up the iPlanet UDS client GUI window.

2. Type a 1- to 17-character part number into the input area, and click the Query
button.

The following are some of the valid part numbers for which records exist:
02AN960C10, 023003806, 023007228, 023013412, 02652799, 027438995P002, and
027618032P101. The IBM IMS documentation provides more complete
information on the valid part numbers for the DI21PART sample database.

3. To terminate the application, close the GUI window.

IMS DLI Query Explicit APPC Example

122 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Application Logic
This section describes the logic for the communications between the iPlanet UDS
client application and the IMS transaction. Each step in the execution is covered,
with code fragments from both sides of the application included to show how the
Transaction Adapter is used to interface with the IMS transaction program. The
client application code fragments shown here are extracted from the StartUp,
RunQuery, and ShutDown methods of the QueryIms class. The IMS application
code fragments shown here are extracted from the FRTIEX03 COBOL program.

Creating the APPCConversation Object
The first step in the StartUp method of the iPlanet UDS application is to instantiate
a new APPCConversation object:

self.Conv = APPCApiSO.NewConversation();

Establishing the Conversation
The next step is to establish the APPC conversation between the iPlanet UDS
application and the IMS transaction program. The following TOOL code from the
StartUp method shows how the client application requests a conversation with the
IMS transaction:

The following IMS COBOL code accepts the incoming conversation request and
checks for errors:

dest = ’FRTIEXSI’;
tp = ’FRTIEX03’;
self.Conv.Open(dest=dest,tp=tp);

OVE LOW-VALUES TO CONVERSATION-ID.
CALL ’CMACCP’ USING CONVERSATION-ID,
 CM-RETCODE.
IF NOT CM-OK THEN
 MOVE ’CMACCP’ MSG-CPIC-OPERATION
 MOVE CM-RETCODE TO MSG-CPIC-RETURN
DISPLAY MSG-CPIC-ERROR UPON CONSOLE
 GO TO 10-INIT-CPIC-EXIT
END-IF.

IMS DLI Query Explicit APPC Example

Appendix A Example Applications 123

Sending the Input Data
Now the input data must be sent from the iPlanet UDS application to the IMS
transaction. In this application, the input data is a 17-character part number. The
following TOOL code from the RunQuery method shows how the client
application prepares and sends the input data:

The following IMS COBOL code receives the input data and checks for errors:

len = partInfo.PART_NUMBER_LENGTH;
buf.SetValue(source=partInfo.PartNumber);
while buf.ActualSize < len do
 buf.Concat(source=’ ’);
end while;
self.Conv.Write(dataBuffer=buf,writeLength=len);

MOVE LENGTH OF RECEIVE-BUFFER TO REQUESTED-LENGTH.
CALL ’CMRCV’ USING CONVERSATION-ID,
 RECEIVE-BUFFER,
 REQUESTED-LENGTH,
 DATA-RECEIVED,
 RECEIVED-LENGTH,
 STATUS-RECEIVED,
 REQUEST-TO-SEND-RECEIVED,
 CM-RETCODE.
IF CM-DEALLOCATED-NORMAL THEN
 SET PARTNO-DONE TO TRUE
 GO TO 40-RECEIVE-PARTNO-EXIT
END-IF.
IF NOT CM-OK THEN
 MOVE ’CMRCV’ TO MSG-CPIC-OPERATION
 MOVE CM-RETCODE TO MSG-CPIC-RETURN
 DISPLAY MSG-CPIC-ERROR UPON CONSOLE
 PERFORM 70-DEAL-ABEND
 SET PARTNO-ERROR TO TRUE
 GO TO 40-RECEIVE-PARTNO-EXIT
END-IF.
IF RECEIVED-LENGTH NOT = LENGTH OF PART-KEY THEN
 MOVE RECEIVED-LENGTH TO MSG-BAD-RECV-LENGTH-LL
 MOVE MSG-BAD-RECV-LENGTH TO RESP-MSG
 SET PARTNO-ERROR TO TRUE
 GO TO 40-RECEIVE-PARTNO-EXIT
END-IF.
MOVE RECEIVE-BUFFER TO PART-KEY.
SET PARTNO-OK TO TRUE.

IMS DLI Query Explicit APPC Example

124 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

If the receive fails, a message is displayed upon the OS/390 console, because there
is no way for a message to be sent back to the iPlanet UDS application without an
APPC conversation. Note that if the iPlanet UDS application has deallocated the
conversation, flags are set for normal termination of the transaction.

Receiving the Output Data
Now the output data must be received from the IMS transaction by the iPlanet UDS
application. In this application, the output data is a 1-byte status code, a 37-byte
part record in character format, plus a 70-byte message field. The following TOOL
code from the RunQuery method shows how the client application receives the
output data:

The following IMS COBOL code sends the output data and checks for errors:

len = partInfo.PART_LENGTH;
buf.SetAllocatedSize(n=len);
self.Conv.Read(dataBuffer=buf,readLength=len);

SET CM-SEND-AND-PREP-TO-RECEIVE TO TRUE.
CALL ’CMSST’ USING CONVERSATION-ID,
 SEND-TYPE,
 CM-RETCODE.
IF NOT CM-OK THEN
 MOVE ’CMSST ’ TO MSG-CPIC-OPERATION
 MOVE CM-RETCODE TO MSG-CPIC-RETURN
 DISPLAY MSG-CPIC-ERROR UPON CONSOLE
 PERFORM 70-DEAL-ABEND
 GO TO 60-SEND-RESPONSE-EXIT
END-IF.
MOVE LENGTH OF RESP-BUFFER TO SEND-LENGTH.
CALL ’CMSEND’ USING CONVERSATION-ID,
 RESP-BUFFER,
 SEND-LENGTH,
 REQUEST-TO-SEND-RECEIVED,
 CM-RETCODE.
IF NOT CM-OK THEN
 MOVE ’CMSEND’ TO MSG-CPIC-OPERATION
 MOVE CM-RETCODE TO MSG-CPIC-RETURN
 DISPLAY MSG-CPIC-ERROR UPON CONSOLE
 PERFORM 70-DEAL-ABEND
END-IF.

IMS DLI Query Explicit APPC Example

Appendix A Example Applications 125

Terminating the Conversation
The conversation with the CICS transaction is no longer needed by the iPlanet UDS
application. The following TOOL code from the ShutDown method shows how the
client application terminates the conversation:

self.Conv.Close(type=CLOSE_NORMAL);

The IMS transaction gets a CM-DEALLOCATED-NORMAL return code on its
CMRCV call when the client has deallocated the conversation. This causes the IMS
transaction to terminate normally.

Processing the Data
The iPlanet UDS application can now use the data received from the IMS
transaction. The following TOOL code from the RunQuery method shows how the
client application extracts individual fields from the buffer:

buf.Offset = 0;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.STATUS_LENGTH);
partResp.Status = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.MSG_LENGTH);
partResp.Msg = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.DESCRIPTION_LENGTH);
partResp.Description = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.PROCUREMENT_CODE_LENGTH);
partResp.ProcurementCode = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.INVENTORY_CODE_LENGTH);
partResp.InventoryCode = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.MAKE_DEPT_LENGTH);
partResp.MakeDept = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.MAKE_COST_CENTER_LENGTH);
partResp.MakeCostCenter = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.MAKE_TIME_LENGTH);
partResp.MakeTime = work.Value;
work = buf.CutRange(startOffset=0,

endOffset=partResp.PLANNING_REVISION_NUMBER_LENGTH);
partResp.PlaningRevisionNumber = work.Value;
work = buf.CutRange(startOffset=0,
 endOffset=partResp.COMMODITY_CODE_LENGTH);
partResp.CommodityCode = work.Value;

IMS DLI Query Explicit APPC Example

126 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

In this application, the individual attributes of the part information object are of the
string data type. The TextData.CutRange method is used on the buffer to extract
each field into a temporary TextData object, and the string value of that object is
then assigned to the corresponding attribute in the part information object.

127

Index

SYMBOLS
.PEX files 70, 74
.SCR files 70, 74

A
AddAPPCInfo command 81
AddExchange command 76
AddInputArgument command 78
AddOutputArgument command 78
AddRecord command 79
AddTransactionProxy command 73
APPC

direct interface to 51
interfaces to 48
simple interface to 49

APPC conversation
closing 62
starting 61

APPC Library
thread safe 58

APPC library Open() method 81
APPC project 59
APPC/MVS Callable Services 48
APPCApi class

introduced 48
summary of 50, 51
thread safe 55
threading 58

tracing for 63
use of 53

APPCConversation class
summary of 50

APPCConversation object
anchored 58
getting new 60

APPCException class
use of 54

APPCSecurityInfo class
summary of 50
use of 53

APPCSecurityInfo object 61
application design 55
architecture of iPlanet UDS Transaction Adapter 52

B
BPX_JOBNAME environment variable 42

C
calling external C functions 31
calling native MVS programs 31
CEE_RUNOPTS environment variable 38
characteristics 24
CICS DB2 query example application 102
CICS VSAM query example application 95

Section D

128 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

classes
APPCApi 53
APPCConversation 53
APPCException 54
APPCSecurityInfo 53
COBOLBuffer 98
COBOLField 98
ExternalConnection 34

COBOL exchanges
identifying 69

COBOLBuffer class 98, 107, 115
COBOLField class 98, 107, 115
CommandSet command 72, 83
compatibility mode 45
concurrently active threads, number of 59

D
DB2 access 29
DB2 CLI initialization dataset 26, 27
designing an application 55
diagnostic tools 63
DSNAOINI environment variable 26

E
environment variables

BPX_JOBNAME 42
CEE_RUNOPTS 38
DSNAOINI 26
FORTE_GC_SPECIAL 37

environment variables, setting 35
error handling 54
error messages, memory allocation failures 37
example applications

IMS DLI query explicit APPC 119
MS DLI query MFS 112

external C functions, calling 31
external connections class 34

F
feature restrictions 25
FindExchange command 77
FindTransactionProxy command 74
FORTE_GC_SPECIAL environment variable 37
fortedef.sh file 42

G
GenerateTransactionProxy command 74
goal mode 45
GRANT EXECUTE Procedure 29

I
IMS DLI query explicit APPC example

application 119
iPlanet UDS DB2 Adapter for OS/390 25
iPlanet UDS for OS/390

calling external C functions 31
calling native MVS programs 31
characteristics 24
external connections class 34
memory management 36
performance tuning 35
registering for system activities 33
restrictions 25
security privileges for partitions 28
workload management 39

iPlanet UDS service classes 45
iPlanet UDS traces 63
iPlanet UDS Transaction Adapter for OS/390

application design 55
architecture 52
defined 47
sample applications using 95
threading and partitioning 55

Section L

Index 129

L
LE/370 runtime modules 39
LE/370 runtime options 37

M
memory management 36
MS DLI query MFS example application 112

N
name.scr file 70
native MVS programs, calling 31
number of concurrently active threads 59
number of users 35
Numeric data in COBOL code

binary mode 83
standard mode 83

O
OLTP transaction program, communicating with 59
online transaction processors, interfacing with 47

P
PDF files, viewing and searching 20
performance goals 45
performance tuning 35

Q
questions prior to application design 57

R
real memory 39
registering for system activities 33
RemoveArgument command 79
RemoveExchange command 77
RemoveRecord command 81
RemoveTransactionProxy command 75
Resource Access Control Facility (RACF) 28
restrictions 25

S
Security Access Facility (SAF) 28
security privileges 28
security privileges for partitions 28
service class

assigning to a group of iPlanet UDS partitions 42
defining for iPlanet UDS processes 41

ShowAllTransactionProxies command 75
ShowRecords command 81
ShowTransactionProxy command 76
side profile 81
SwitchTruncOption command 83
system activities, registering for 33

T
threading and partitioning 55
tools to diagnose problems 63
traces

API 63
conversation 63
iPlanet UDS 63
VTAM buffer 65

Section U

130 iPlanet Unified Development Server • Using iPlanet UDS for OS/390 • August 2001

Transaction Adapter Builder
AddAPPCInfo command 81
AddAPPCInfo lu argument 82
AddAPPCInfo mode argument 82
AddAPPCInfo profile argument 82
AddAPPCInfo tp argument 82
AddExchange command 76
AddInputArgument command 78
AddOutputArgument command 78
AddRecord command 79
AddTransactionProxy command 73
arguments defined 69
COBOL record declarations in 79
CommandSet command 72, 83
creating supplier plans for 70
datatype conversion in 70
example of TOOL code using generated

classes 71
exchange method defined 69
FindExchange command 77
FindTransactionProxy command 74
Fscript "line-entry" mode 80
GenerateTransactionProxy command 74
records defined 69
RemoveArgument command 79
RemoveExchange command 77
RemoveRecord command 81
RemoveTransactionProxy command 75
service objects in 84
ShowAllTransactionProxies command 75
ShowRecords command 81
ShowTransactionProxy command 76
steps for developing 68

supported data types 79
SwitchTruncOption command 83
transaction proxy defined 69
UseServiceObject command 84
using .PEX files as supplier plans 70

Transaction Adapter classes, using 59
TRUNC option in COBOL compiler 83

U
users, number of 35
UseServiceObject command 84

V
virtual memory 37
VTAM buffer trace 66

W
WLM modes 45
workload management

compatibility mode 45
goal mode 45
overview 39

	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 iPlanet UDS for OS/390
	iPlanet UDS for OS/390
	Feature Restrictions
	Accessing DB2/MVS
	DB2 CLI Initialization Dataset
	Sample Dataset

	Security Privileges
	DB2 Access
	GRANT EXECUTE Procedure for DB2

	Integrating With External Systems
	Calling External C Functions
	Calling Native MVS Programs from iPlanet UDS
	MVS Program Requirements
	Integration Procedure
	To call a native MVS program

	Using System Activities
	Using the External Connection Class

	Performance Tuning
	Supporting Large Number of Users
	Memory Allocation
	Virtual Memory
	Real Storage Requirements

	Workload Management
	Overview
	Defining Service Classes for iPlanet UDS Processes
	Assigning a Service Class to a Group of iPlanet UDS Partitions
	Prioritizing a Single iPlanet UDS Partition
	Compatibility and Goal Mode
	Using Report Classes

	2 Overview of the iPlanet UDS Transaction Adapter
	Overview
	APPC Interfaces
	Simple Interface
	Direct Interface

	Architecture
	Reference Information
	APPCApi
	APPCConversation
	APPCSecurityInfo
	To implement APPC conversation security
	APPCException

	3 Using the iPlanet UDS Transaction Adapter
	Designing an Application
	Threading and Partitioning Considerations
	To compute the number of concurrently active threads

	Using the Transaction Adapter Classes
	Define the Service Object
	Collect OLTP Information
	Write the Application
	Diagnostic Tools
	iPlanet UDS Traces
	To enable the conversation trace
	To enable the API trace
	VTAM Buffer Trace

	4 Integrating IBM OS/390-Hosted COBOL Applications with iPlanet UDS
	Developing a Transaction Adapter
	Identifying COBOL Exchanges
	Creating the Fscript Script
	Creating and Importing a Supplier Plan
	To use the .PEX file as a supplier plan

	Creating a Transaction Adapter
	Fscript Commands
	Transaction Proxies
	AddTransactionProxy
	FindTransactionProxy
	GenerateTransactionProxy
	RemoveTransactionProxy
	ShowAllTransactionProxies
	ShowTransactionProxy

	Exchange Methods
	AddExchange
	FindExchange
	RemoveExchange

	Arguments
	AddInputArgument
	AddOutputArgument
	RemoveArgument

	Records
	AddRecord
	RemoveRecord
	ShowRecords

	Other Commands
	AddAPPCInfo
	CommandSet
	SwitchTruncOption
	UseServiceObject

	Generated Classes
	Supporting Classes
	Sample Script and Generated Code

	A Example Applications
	CICS VSAM Query Example
	Installing the Example Application
	CICS Transaction
	iPlanet UDS Application

	Running the Example Application
	To execute this example application

	Understanding the Application Logic
	Creating the APPCConversation Object
	Creating the COBOLBuffer and COBOLField Objects
	Defining the Layout of the COBOL Record
	Establishing the Conversation
	Sending the Input Data
	Receiving the Output Data
	Terminating the Conversation
	Processing the Data

	CICS DB2 Query Example
	Installing the Example Application
	CICS Transactions
	iPlanet UDS Application

	Running the Example Application
	To execute the CICS BMS version of this example application
	To execute the iPlanet UDS version of this example application

	Understanding the Application Logic
	Creating the APPCConversation Object
	Creating the COBOLBuffer and COBOLField Objects
	Defining the Layout of the COBOL Record
	Establishing the Conversation
	Sending the Input Data
	Receiving the Output Data
	Terminating the Conversation
	Processing the Data

	IMS DLI Query MFS Example
	Installing the Example Application
	IMS Transaction
	iPlanet UDS Application

	Running the Example Application
	To execute the IMS MFS version of this example application
	To execute the iPlanet UDS version of this example application

	Understanding the Application Logic
	Creating the APPCConversation Object
	Creating the COBOLBuffer and COBOLField Objects
	Defining the Layout of the COBOL Record
	Establishing the Conversation
	Sending the Input Data
	Receiving the Output Data
	Terminating the Conversation
	Processing the Data

	IMS DLI Query Explicit APPC Example
	Installing the Example Application
	IMS System Preparation
	IMS Transaction
	APPC/MVS Definition
	iPlanet UDS Application

	Running the Example Application
	To execute this example application

	Application Logic
	Creating the APPCConversation Object
	Establishing the Conversation
	Sending the Input Data
	Receiving the Output Data
	Terminating the Conversation
	Processing the Data

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

