
Sun GlassFish Communications
Server 1.5 Deployment Planning
Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4288–10

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090122@21808

Contents

Preface ...11

1 Product Concepts ...17
Java EE Platform Overview .. 17

Java EE Applications .. 17
Containers .. 18
Java EE Services .. 18
Web Services ... 18
Client Access ... 18
External Systems and Resources .. 19

Application Server Components ... 20
Server Instances .. 20
Administrative Domains ... 20
Clusters .. 22
Node Agents ... 22
Named Configurations .. 23
Converged Load Balancer ... 23
IIOP Load Balancing in a Cluster ... 23
Message Queue and JMS Resources ... 24

2 Planning your Deployment ..25
Establishing Performance Goals .. 25

Estimating Throughput .. 26
Estimating Load on Application Server Instances ... 26

Planning the Network Configuration ... 29
Estimating Bandwidth Requirements ... 29
Calculating Bandwidth Required ... 30

3

Estimating Peak Load .. 30
Planning for Availability ... 31

Rightsizing Availability ... 31
Using Clusters to Improve Availability ... 31
Adding Redundancy to the System .. 32

Planning Message Queue Broker Deployment .. 32
Multi-Broker Clusters ... 33
Configuring Application Server to Use Message Queue Brokers ... 34
Example Deployment Scenarios .. 36

3 Checklist for Deployment ..39
Checklist for Deployment .. 39

Contents

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •4

Figures

5

6

Tables

TABLE 3–1 Checklist ... 39

7

8

Examples

EXAMPLE 2–1 Calculation of Response Time ... 28
EXAMPLE 2–2 Calculation of Requests Per Second .. 29
EXAMPLE 2–3 Calculation of Bandwidth Required .. 30
EXAMPLE 2–4 Calculation of Peak Load .. 30

9

10

Preface

Deployment Planning Guide explains how to build a production deployment.

This preface contains information about and conventions for the entire Sun GlassFishTM

Communications Server documentation set.

Communications Server Documentation Set
The Uniform Resource Locator (URL) for Communications Server documentation is
http://docs.sun.com/coll/1343.8. For an introduction to Communications Server, refer to
the books in the order in which they are listed in the following table.

TABLE P–1 Books in the Communications Server Documentation Set

Book Title Description

Documentation Center Communications Server documentation topics organized by task and subject.

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, JavaTM

Development Kit (JDKTM), and database drivers.

Quick Start Guide How to get started with the Communications Server product.

Installation Guide Installing the software and its components.

Application Deployment Guide Deployment of applications and application components to the Communications Server.
Includes information about deployment descriptors.

Developer’s Guide Creating and implementing Java Platform, Enterprise Edition (Java EE platform) applications
intended to run on the Communications Server that follow the open Java standards model for
Java EE components and APIs. Includes information about developer tools, security,
debugging, and creating lifecycle modules.

Java EE 5 Tutorial Using Java EE 5 platform technologies and APIs to develop Java EE applications.

Java WSIT Tutorial Developing web applications using the Web Service Interoperability Technologies (WSIT).
Describes how, when, and why to use the WSIT technologies and the features and options
that each technology supports.

11

http://docs.sun.com/coll/1343.8

TABLE P–1 Books in the Communications Server Documentation Set (Continued)
Book Title Description

Administration Guide System administration for the Communications Server, including configuration, monitoring,
security, resource management, and web services management.

High Availability Administration
Guide

Setting up clusters, working with node agents, and using load balancers.

Administration Reference Editing the Communications Server configuration file, domain.xml.

Performance Tuning Guide Tuning the Communications Server to improve performance.

Reference Manual Utility commands available with the Communications Server; written in man page style.
Includes the asadmin command line interface.

Related Documentation
For documentation about other stand-alone Sun GlassFish server products, go to the following:

■ Message Queue documentation (http://docs.sun.com/coll/1343.4)
■ Identity Server documentation (http://docs.sun.com/app/docs/prod/ident.mgmt#hic)
■ Directory Server documentation (http://docs.sun.com/coll/1224.1)
■ Web Server documentation (http://docs.sun.com/coll/1308.3)

A JavadocTM tool reference for packages provided with the Communications Server is located at
http://glassfish.dev.java.net/nonav/javaee5/api/index.html. Additionally, the
following resources might be useful:

■ The Java EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information on creating enterprise applications in the NetBeansTM Integrated Development
Environment (IDE), see http://www.netbeans.org/kb/55/index.html.

For information about the Java DB database included with the Communications Server, see
http://developers.sun.com/javadb/.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK), and are also available from the GlassFish Samples project page at
https://glassfish-samples.dev.java.net/.

Preface

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •12

http://docs.sun.com/coll/1343.4
http://docs.sun.com/app/docs/prod/ident.mgmt#hic
http://docs.sun.com/coll/1224.1
http://docs.sun.com/coll/1308.3
http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/55/index.html
http://developers.sun.com/javadb/
https://glassfish-samples.dev.java.net/

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
Communications Server.

SolarisTM and Linux installations, non-root user:

user’s-home-directory/SUNWappserver

Solaris and Linux installations, root user:

/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir Represents the directory containing all
domains.

All installations:

as-install/domains/

domain-dir Represents the directory for a domain.

In configuration files, you might see
domain-dir represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-dir

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

samples-dir Represents the directory containing sample
applications.

as-install/samples

docs-dir Represents the directory containing
documentation.

as-install/docs

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Preface

13

TABLE P–3 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •14

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Feedback. In the online form,
provide the document title and part number. The part number is a seven-digit or nine-digit
number that can be found on the title page of the book or at the top of the document.

Preface

15

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

16

Product Concepts

The Sun GlassFish Communications Server provides a robust platform for the development,
deployment, and management of Java EE , converged, and SIP applications. Key features
include scalable transaction management, web services performance, clustering, security, and
integration capabilities.

This chapter covers the following topics:

■ “Java EE Platform Overview” on page 17
■ “Application Server Components” on page 20

Java EE Platform Overview
The Communications Server implements Java 2 Enterprise Edition (Java EE) 1.4 technology.
The Java EE platform is a set of standard specifications that describe application components,
APIs, and the runtime containers and services of an application server.

Java EE Applications
Java EE applications are made up of components such as JavaServer Pages (JSP), Java servlets,
and Enterprise JavaBeans (EJB) modules. These components enable software developers to
build large-scale, distributed applications. Developers package Java EE applications in Java
Archive (JAR) files (similar to zip files), which can be distributed to production sites.
Administrators install Java EE applications onto the Application Server by deploying Java EE
JAR files onto one or more server instances (or clusters of instances).

The following figure illustrates the components of the Java EE platform discussed in the
following sections.

Sorry: the graphics are not currently available.

1C H A P T E R 1

17

Containers
Each server instance includes two containers: web and EJB. A container is a runtime
environment that provides services such as security and transaction management to Java EE
components. Web components, such as Java Server Pages and servlets, run within the web
container. Enterprise JavaBeans run within the EJB container.

Java EE Services
The Java EE platform provides services for applications, including:
■ Naming - A naming and directory service binds objects to names. A Java EE application can

locate an object by looking up its Java Naming and Directory Interface (JNDI) name.
■ Security - The Java Authorization Contract for Containers (JACC) is a set of security

contracts defined for the Java EE containers. Based on the client’s identity, containers can
restrict access to the container’s resources and services.

■ Transaction management - A transaction is an indivisible unit of work. For example,
transferring funds between bank accounts is a transaction. A transaction management
service ensures that a transaction is either completed, or is rolled back.

■ Message Service - Applications hosted on separate systems can communicate with each
other by exchanging messages using the JavaTM Message Service (JMS). JMS is an integral
part of the Java EE platform and simplifies the task of integrating heterogeneous enterprise
applications.

Web Services
Clients can access a Java EE application as a remote web service in addition to accessing it
through HTTP, RMI/IIOP, and JMS. Web services are implemented using the Java API for
XML-based RPC (JAX-RPC). A Java EE application can also act as a client to web services,
which would be typical in network applications.

Web Services Description Language (WSDL) is an XML format that describes web service
interfaces. Web service consumers can dynamically parse a WSDL document to determine the
operations a web service provides and how to execute them. The Application Server distributes
web services interface descriptions using a registry that other applications can access through
the Java API for XML Registries (JAXR).

Client Access
Clients can access Java EE applications in several ways. Browser clients access web applications
using hypertext transfer protocol (HTTP). For secure communication, browsers use the HTTP
secure (HTTPS) protocol that uses secure sockets layer (SSL).

Java EE Platform Overview

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •18

Rich client applications running in the Application Client Container can directly lookup and
access Enterprise JavaBeans using an Object Request Broker (ORB), Remote Method
Invocation (RMI) and the internet inter-ORB protocol (IIOP), or IIOP/SSL (secure IIOP). They
can access applications and web services using HTTP/HTTPS, JMS, and JAX-RPC. They can
use JMS to send messages to and receive messages from applications and message-driven beans.

Clients that conform to the Web Services-Interoperability (WS-I) Basic Profile can access Java
EE web services. WS-I is an integral part of the Java EE standard and defines interoperable web
services. It enables clients written in any supporting language to access web services deployed to
the Application Server.

The best access mechanism depends on the specific application and the anticipated volume of
traffic. The Application Server supports separately configurable listeners for HTTP, HTTPS,
JMS, IIOP, and IIOP/SSL. You can set up multiple listeners for each protocol for increased
scalability and reliability.

Java EE applications can also act as clients of Java EE components such as Enterprise JavaBeans
modules deployed on other servers, and can use any of these access mechanisms.

External Systems and Resources
On the Java EE platform, an external system is called a resource. For example, a database
management system is a JDBC resource. Each resource is uniquely identified and by its Java
Naming and Directory Interface (JNDI) name. Applications access external systems through
the following APIs and components:
■ Java Database Connectivity (JDBC) - A database management system (DBMS) provides

facilities for storing, organizing, and retrieving data. Most business applications store data
in relational databases, which applications access via JDBC. The Application Server includes
the PointBase DBMS for use sample applications and application development and
prototyping, though it is not suitable for deployment. The Application Server provides
certified JDBC drivers for connecting to major relational databases. These drivers are
suitable for deployment.

■ Java Message Service - Messaging is a method of communication between software
components or applications. A messaging client sends messages to, and receives messages
from, any other client via a messaging provider that implements the Java Messaging Service
(JMS) API. The Application Server includes a high-performance JMS broker, the Sun Java
System Message Queue. The Platform Edition of Application Server includes the free
Platform Edition of Message Queue. Sun GlassFishCommunications Server includes
Message Queue Enterprise Edition, which supports clustering and failover.

■ Java EE Connectors - The Java EE Connector architecture enables integrating Java EE
applications and existing Enterprise Information Systems (EIS). An application accesses an
EIS through a portable Java EE component called a connector or resource adapter, analogous
to using JDBC driver to access an RDBMS. Resource adapters are distributed as standalone

Java EE Platform Overview

Chapter 1 • Product Concepts 19

Resource Adapter Archive (RAR) modules or included in Java EE application archives. As
RARs, they are deployed like other Java EE components. The Application Server includes
evaluation resource adapters that integrate with popular EIS.

■ JavaMail - Through the JavaMail API, applications can connect to a Simple Mail Transport
Protocol (SMTP) server to send and receive email.

Application Server Components
This section describes the components in the Sun Java System Application Server:

■ “Server Instances” on page 20
■ “Administrative Domains” on page 20
■ “Clusters” on page 22
■ “Node Agents” on page 22
■ “Named Configurations” on page 23
■ “Converged Load Balancer” on page 23
■ “IIOP Load Balancing in a Cluster” on page 23
■ “Message Queue and JMS Resources” on page 24

The administration tools, such as the browser-based Admin Console, communicate with the
domain administration server (DAS), which in turn communicates with the node agents and
server instances.

Server Instances
A server instance is a Application Server running in a single Java Virtual Machine (JVM)
process. The Application Server is certified with Java 2 Standard Edition (J2SE) 5.0 and 1.4. The
recommended J2SE distribution is included with the Application Server installation.

It is usually sufficient to create a single server instance on a machine, since the Application
Server and accompanying JVM are both designed to scale to multiple processors. However, it
can be beneficial to create multiple instances on one machine for application isolation and
rolling upgrades. In some cases, a large server with multiple instances can be used in more than
adminsitrative domain. The administration tools makes it easy to create, delete and manage
server instances across multiple machines.

Administrative Domains
An administrative domain (or simply domain) is a group of server instances that are
administered together. A server instance belongs to a single administrative domain. The
instances in a domain can run on different physical hosts.

Application Server Components

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •20

You can create multiple domains from one installation of the Application Server. By grouping
server instances into domains, different organizations and administrators can share a single
Application Server installation. Each domain has its own configuration, log files, and
application deployment areas that are independent of other domains. Changing the
configuration of one domain does not affect the configurations of other domains. Likewise,
deploying an application on a one domain does not deploy it or make it visible to any other
domain. At any given time, an administrator can be authenticated to only one domain, and thus
can only perform administration on that domain.

Domain Administration Server (DAS)
A domain has one Domain Administration Server (DAS), a specially-designated application
server instance that hosts the administrative applications. The DAS authenticates the
administrator, accepts requests from administration tools, and communicates with server
instances in the domain to carry out the requests.

The administration tools are the asadmin command-line tool, the browser-based Admin
Console. The Application Server also provides a JMX-based API for server administration. The
administrator can view and manage a single domain at a time, thus enforcing secure separation.

The DAS is also sometimes referred to as the admin server or default server. It is referred to as
the default server because it is the default target for some administrative operations.

Since the DAS is an application server instance, it can also host Java EE applications for testing
purposes. However, do not use it to host production applications. You might want to deploy
applications to the DAS, for example, if the clusters and instances that will host the production
application have not yet been created.

The DAS keeps a repository containing the configuration its domain and all the deployed
applications. If the DAS is inactive or down, there is no impact on the performance or
availability of active server instances, however administrative changes cannot be made. In
certain cases, for security purposes, it may be useful to intentionally stop the DAS process; for
example to freeze a production configuration.

Administrative commands are provided to backup and restore domain configuration and
applications. With the standard backup and restore procedures, you can quickly restore
working configurations. If the DAS host fails, you must create a new DAS installation to restore
the previous domain configuration. For instructions, see “Recreating the Domain
Administration Server” in Sun GlassFish Communications Server 1.5 Administration Guide.

Sun Cluster Data Services provides high availability of the DAS through failover of the DAS
host IP address and use of the Global File System. This solution provides nearly continuous
availability for DAS and the repository against many types of failures. Sun Cluster Data Services
are available with the Sun Java Enterprise System or purchased separately with Sun Cluster. For
more information, see the documentation for Sun Cluster Data Services.

Application Server Components

Chapter 1 • Product Concepts 21

http://docs.sun.com/doc/820-4281/ablbl?a=view
http://docs.sun.com/doc/820-4281/ablbl?a=view

Clusters
A cluster is a named collection of server instances that share the same applications, resources,
and configuration information. You can group server instances on different machines into one
logical cluster and administer them as one unit. You can easily control the lifecycle of a
multi-machine cluster with the DAS.

Clusters enable horizontal scalability, load balancing, and failover protection. By definition, all
the instances in a cluster have the same resource and application configuration. When a server
instance or a machine in a cluster fails, the load balancer detects the failure, redirects traffic
from the failed instance to other instances in the cluster, and recovers the user session state.
Since the same applications and resources are on all instances in the cluster, an instance can
failover to any other instance in the cluster.

Clusters, domains, and instances are related as follows:

■ An administrative domain can have zero or more clusters.
■ A cluster has one or more server instances.
■ A cluster belongs to a single domain

Node Agents
A node agent is a lightweight process that runs on every machine that hosts server instances,
including the machine that hosts the DAS. The node agent:

■ Starts and stops server instances as instructed by the DAS.
■ Restarts failed server instances.
■ Provides a view of the log files of failed servers and assists in remote diagnosis
■ Synchronizes each server instance’s local configuration repository with the DAS’s central

repository, as it starts up the server instances under its watch.
■ When an instance is initially created, creates directories the instance needs and

synchronizes the instance’s configuration with the central repository.
■ Performs appropriate cleanup when a server instance is deleted.

Each physical host must have at least one node agent for each domain to which the host belongs.
If a physical host has instances from more than one domain, then it needs a node agent for each
domain. There is no advantage of having more than one node agent per domain on a host,
though it is allowed.

Because a node agent starts and stops server instances, it must always be running. Therefore, it
is started when the operating system boots up. On Solaris and other Unix platforms, the node
agent can be started by the inetd process. On Windows, the node agent can be made a
Windows service.

Application Server Components

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •22

For more information on node agents, see Chapter 4, “Configuring Node Agents,” in Sun
GlassFish Communications Server 1.5 High Availability Administration Guide.

Named Configurations
A named configuration is an abstraction that encapsulates Application Server property settings.
Clusters and stand-alone server instances reference a named configuration to get their property
settings. With named configurations, Java EE containers’ configurations are independent of the
physical machine on which they reside, except for particulars such as IP address, port number,
and amount of heap memory. Using named configurations provides power and flexibility to
Application Server administration.

To apply configuration changes, you simply change the property settings of the named
configuration, and all the clusters and stand-alone instances that reference it pick up the
changes. You can only delete a named configuration when all references to it have been
removed. A domain can contain multiple named configurations.

The Application Server comes with a default configuration, called default-config. The default
configuration is optimized for developer productivity in Application Server Platform Edition
and for security and high availability.

You can create your own named configuration based on the default configuration that you can
customize for your own purposes. Use the Admin Console and asadmin command line utility
to create and manage named configurations.

Converged Load Balancer
The load balancer distributes the workload among multiple physical machines, thereby
increasing the overall throughput of the system.

The load balancer plug-in accepts SIP, SIPS, HTTP, and HTTPS requests and forwards them to
one of the application server instances in the cluster. Should an instance fail, become
unavailable (due to network faults), or become unresponsive, requests are redirected to
existing, available machines. The load balancer can also recognize when a failed instance has
recovered and redistribute the load accordingly.

IIOP Load Balancing in a Cluster
With IIOP load balancing, IIOP client requests are distributed to different server instances or
name servers. The goal is to spread the load evenly across the cluster, thus providing scalability.
IIOP load balancing combined with EJB clustering and availability features in the Sun Java
System Application provides not only load balancing but also EJB failover.

Application Server Components

Chapter 1 • Product Concepts 23

http://docs.sun.com/doc/820-4287/abdjw?a=view
http://docs.sun.com/doc/820-4287/abdjw?a=view

When a client performs a JNDI lookup for an object, the Naming Service creates a
InitialContext (IC) object associated with a particular server instance. From then on, all
lookup requests made using that IC object are sent to the same server instance. All EJBHome
objects looked up with that InitialContext are hosted on the same target server. Any bean
references obtained henceforth are also created on the same target host. This effectively
provides load balancing, since all clients randomize the list of live target servers when creating
InitialContext objects. If the target server instance goes down, the lookup or EJB method
invocation will failover to another server instance.

For example, as illustrated in this figure, ic1, ic2, and ic3 are three different InitialContext
instances created in Client2’s code. They are distributed to the three server instances in the
cluster. Enterprise JavaBeans created by this client are thus spread over the three instances.
Client1 created only one InitialContext object and the bean references from this client are only
on Server Instance 1. If Server Instance 2 goes down, the lookup request on ic2 will failover to
another server instance (not necessarily Server Instance 3). Any bean method invocations to
beans previously hosted on Server Instance 2 will also be automatically redirected, if it is safe to
do so, to another instance. While lookup failover is automatic, Enterprise JavaBeans modules
will retry method calls only when it is safe to do so.

IIOP Load balancing and failover happens transparently. No special steps are needed during
application deployment. Adding or deleting new instances to the cluster will not update the
existing client’s view of the cluster. You must manually update the endpoints list on the client
side.

Message Queue and JMS Resources
The Sun Java System Message Queue (MQ) provides reliable, asynchronous messaging for
distributed applications. MQ is an enterprise messaging system that implements the Java
Message Service (JMS) standard. MQ provides messaging for Java EE application components
such as message-driven beans (MDBs).

The Application Server implements the Java Message Service (JMS) API by integrating the Sun
Java System Message Queue into the Application Server. Communications Server includes the
Enterprise version of MQ which has failover, clustering and load balancing features.

For basic JMS administration tasks, use the Application Server Admin Console and asadmin

command-line utility.

For advanced tasks, including administering a Message Queue cluster, use the tools provided in
the install_dir/imq/bin directory. For details about administering Message Queue, see the Sun
Java System Message Queue Administration Guide.

For information on deploying JMS applications and MQ clustering for message failover, see
“Planning Message Queue Broker Deployment” on page 32.

Application Server Components

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •24

Planning your Deployment

Before deploying the Application Server, first determine the performance and availability goals,
and then make decisions about the hardware, network, and storage requirements accordingly.

This chapter contains the following sections:

■ “Establishing Performance Goals” on page 25
■ “Planning the Network Configuration” on page 29
■ “Planning for Availability” on page 31
■ “Planning Message Queue Broker Deployment” on page 32

Establishing Performance Goals
At its simplest, high performance means maximizing throughput and reducing response time.
Beyond these basic goals, you can establish specific goals by determining the following:

■ What types of applications and services are deployed, and how do clients access them?
■ Which applications and services need to be highly available?
■ Do the applications have session state or are they stateless?
■ What request capacity or throughput must the system support?
■ How many concurrent users must the system support?
■ What is an acceptable average response time for user requests?
■ What is the average think time between requests?

You can calculate some of these metrics using a remote browser emulator (RBE) tool, or web
site performance and benchmarking software that simulates expected application activity.
Typically, RBE and benchmarking products generate concurrent HTTP requests and then
report the response time for a given number of requests per minute. You can then use these
figures to calculate server activity.

2C H A P T E R 2

25

The results of the calculations described in this chapter are not absolute. Treat them as
reference points to work against, as you fine-tune the performance of the Application Server
and your applications.

This section discusses the following topics:

■ “Estimating Throughput” on page 26
■ “Estimating Load on Application Server Instances” on page 26
■ “Estimating Bandwidth Requirements” on page 29
■ “Estimating Peak Load” on page 30

Estimating Throughput
In broad terms, throughput measures the amount of work performed by Communications
Server. For Communications Server, throughput can be defined as the number of requests
processed per minute per server instance.

As described in the next section, Communications Server throughput is a function of many
factors, including the nature and size of user requests, number of users, and performance of
Communications Server instances and back-end databases. You can estimate throughput on a
single machine by benchmarking with simulated workloads.

Estimating Load on Application Server Instances
Consider the following factors to estimate the load on Communications Server instances:

■ “Maximum Number of Concurrent Users” on page 26
■ “Think Time” on page 27
■ “Average Response Time” on page 27
■ “Requests Per Minute” on page 28

Maximum Number of Concurrent Users
Users interact with an application through a client, such as a web browser or Java program.
Based on the user’s actions, the client periodically sends requests to the Communications
Server. A user is considered active as long as the user’s session has neither expired nor been
terminated. When estimating the number of concurrent users, include all active users.

Initially, as the number of users increases, throughput increases correspondingly. However, as
the number of concurrent requests increases, server performance begins to saturate, and
throughput begins to decline.

Identify the point at which adding concurrent users reduces the number of requests that can be
processed per minute. This point indicates when optimal performance is reached and beyond

Establishing Performance Goals

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •26

which throughput start to degrade. Generally, strive to operate the system at optimal
throughput as much as possible. You might need to add processing power to handle additional
load and increase throughput.

Think Time
A user does not submit requests continuously. A user submits a request, the server receives and
processes the request, and then returns a result, at which point the user spends some time before
submitting a new request. The time between one request and the next is called think time.

Think times are dependent on the type of users. For example, machine-to-machine interaction
such as for a web service typically has a lower think time than that of a human user. You may
have to consider a mix of machine and human interactions to estimate think time.

Determining the average think time is important. You can use this duration to calculate the
number of requests that need to be completed per minute, as well as the number of concurrent
users the system can support.

Average Response Time
Response time refers to the amount of time Communications Server takes to return the results
of a request to the user. The response time is affected by factors such as network bandwidth,
number of users, number and type of requests submitted, and average think time.

In this section, response time refers to the mean, or average, response time. Each type of request
has its own minimal response time. However, when evaluating system performance, base the
analysis on the average response time of all requests.

The faster the response time, the more requests per minute are being processed. However, as the
number of users on the system increases, the response time starts to increase as well, even
though the number of requests per minute declines.

A system performance graph similar to this figure indicates that after a certain point, requests
per minute are inversely proportional to response time. The sharper the decline in requests per
minute, the steeper the increase in response time (represented by the dotted line arrow).

In the figure, the point of the peak load is the point at which requests per minute start to decline.
Prior to this point, response time calculations are not necessarily accurate because they do not
use peak numbers in the formula. After this point, (because of the inversely proportional
relationship between requests per minute and response time), the administrator can more
accurately calculate response time using maximum number of users and requests per minute.

Use the following formula to determine Tresponse, the response time (in seconds) at peak load:

Tresponse = n/r - Tthink

where

Establishing Performance Goals

Chapter 2 • Planning your Deployment 27

■ n is the number of concurrent users
■ r is the number requests per second the server receives
■ Tthink is the average think time (in seconds)

To obtain an accurate response time result, always include think time in the equation.

EXAMPLE 2–1 Calculation of Response Time

If the following conditions exist:
■ Maximum number of concurrent users, n, that the system can support at peak load is 5,000.
■ Maximum number of requests, r, the system can process at peak load is 1,000 per second.

Average think time, Tthink, is three seconds per request.

Thus, the calculation of response time is:

Tresponse = n/r - Tthink = (5000/ 1000) - 3 sec. = 5 - 3 sec.

Therefore, the response time is two seconds.

After the system’s response time has been calculated, particularly at peak load, compare it to the
acceptable response time for the application. Response time, along with throughput, is one of
the main factors critical to the Application Server performance.

Requests Per Minute
If you know the number of concurrent users at any given time, the response time of their
requests, and the average user think time, then you can calculate the number of requests per
minute. Typically, start by estimating the number of concurrent users that are on the system.

For example, after running web site performance software, the administrator concludes that the
average number of concurrent users submitting requests on an online banking web site is 3,000.
This number depends on the number of users who have signed up to be members of the online
bank, their banking transaction behavior, the time of the day or week they choose to submit
requests, and so on.

Therefore, knowing this information enables you to use the requests per minute formula
described in this section to calculate how many requests per minute your system can handle for
this user base. Since requests per minute and response time become inversely proportional at
peak load, decide if fewer requests per minute is acceptable as a trade-off for better response
time, or alternatively, if a slower response time is acceptable as a trade-off for more requests per
minute.

Experiment with the requests per minute and response time thresholds that are acceptable as a
starting point for fine-tuning system performance. Thereafter, decide which areas of the system
require adjustment.

Establishing Performance Goals

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •28

Solving for r in the equation in the previous section gives:

r = n/(Tresponse + Tthink)

EXAMPLE 2–2 Calculation of Requests Per Second

For the values:

■ n = 2,800 concurrent users
■ Tresponse = 1 (one second per request average response time)
■ Tthink = 3, (three seconds average think time)

The calculation for the number of requests per second is:

r = 2800 / (1+3) = 700

Therefore, the number of requests per second is 700 and the number of requests per minute is
42000.

Planning the Network Configuration
When planning how to integrate the Communications Server into the network, estimate the
bandwidth requirements and plan the network in such a way that it can meet users’
performance requirements.

The following topics are covered in this section:

■ “Estimating Bandwidth Requirements” on page 29
■ “Calculating Bandwidth Required” on page 30
■ “Estimating Peak Load” on page 30
■ “Identifying Failure Classes” on page 32

Estimating Bandwidth Requirements
To decide on the desired size and bandwidth of the network, first determine the network traffic
and identify its peak. Check if there is a particular hour, day of the week, or day of the month
when overall volume peaks, and then determine the duration of that peak.

During peak load times, the number of packets in the network is at its highest level. In general, if
you design for peak load, scale your system with the goal of handling 100 percent of peak
volume. Bear in mind, however, that any network behaves unpredictably and that despite your
scaling efforts, it might not always be able handle 100 percent of peak volume.

For example, assume that at peak load, five percent of users occasionally do not have immediate
network access when accessing applications deployed on Communications Server. Of that five

Planning the Network Configuration

Chapter 2 • Planning your Deployment 29

percent, estimate how many users retry access after the first attempt. Again, not all of those
users might get through, and of that unsuccessful portion, another percentage will retry. As a
result, the peak appears longer because peak use is spread out over time as users continue to
attempt access.

Calculating Bandwidth Required
Based on the calculations made in “Establishing Performance Goals” on page 25, determine the
additional bandwidth required for deploying the Application Server at your site.

Depending on the method of access (T-1 lines, ADSL, cable modem, and so on), calculate the
amount of increased bandwidth required to handle your estimated load. For example, suppose
your site uses T-1 or higher-speed T-3 lines. Given their bandwidth, estimate how many lines
are needed on the network, based on the average number of requests generated per second at
your site and the maximum peak load. Calculate these figures using a web site analysis and
monitoring tool.

EXAMPLE 2–3 Calculation of Bandwidth Required

A single T-1 line can handle 1.544 Mbps. Therefore, a network of four T-1 lines can handle
approximately 6 Mbps of data. Assuming that the average HTML page sent back to a client is 30
kilobytes (KB), this network of four T-1 lines can handle the following traffic per second:

6,176,000 bits/8 bits = 772,000 bytes per second

772,000 bytes per second/30 KB = approximately 25 concurrent response pages per second.

With traffic of 25 pages per second, this system can handle 90,000 pages per hour (25 x 60
seconds x 60 minutes), and therefore 2,160,000 pages per day maximum, assuming an even load
throughout the day. If the maximum peak load is greater than this, increase the bandwidth
accordingly.

Estimating Peak Load
Having an even load throughout the day is probably not realistic. You need to determine when
the peak load occurs, how long it lasts, and what percentage of the total load is the peak load.

EXAMPLE 2–4 Calculation of Peak Load

If the peak load lasts for two hours and takes up 30 percent of the total load of 2,160,000 pages,
this implies that 648,000 pages must be carried over the T-1 lines during two hours of the day.

Therefore, to accommodate peak load during those two hours, increase the number of T-1 lines
according to the following calculations:

Planning the Network Configuration

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •30

EXAMPLE 2–4 Calculation of Peak Load (Continued)

648,000 pages/120 minutes = 5,400 pages per minute

5,400 pages per minute/60 seconds = 90 pages per second

If four lines can handle 25 pages per second, then approximately four times that many pages
requires four times that many lines, in this case 16 lines. The 16 lines are meant for handling the
realistic maximum of a 30 percent peak load. Obviously, the other 70 percent of the load can be
handled throughout the rest of the day by these many lines.

Planning for Availability
This section contains the following topics:

■ “Rightsizing Availability” on page 31
■ “Using Clusters to Improve Availability” on page 31
■ “Adding Redundancy to the System” on page 32

Rightsizing Availability
To plan availability of systems and applications, assess the availability needs of the user groups
that access different applications. For example, external fee-paying users and business partners
often have higher quality of service (QoS) expectations than internal users. Thus, it may be
more acceptable to internal users for an application feature, application, or server to be
unavailable than it would be for paying external customers.

The following figure illustrates the increasing cost and complexity of mitigating against
decreasingly probable events. At one end of the continuum, a simple load-balanced cluster can
tolerate localized application, middleware, and hardware failures. At the other end of the scale,
geographically distinct clusters can mitigate against major catastrophes affecting the entire data
center.

To realize a good return on investment, it often makes sense identify availability requirements
of features within an application. For example, it may not be acceptable for an insurance
quotation system to be unavailable (potentially turning away new business), but brief
unavailability of the account management function (where existing customers can view their
current coverage) is unlikely to turn away existing customers.

Using Clusters to Improve Availability
At the most basic level, a cluster is a group of application server instances—often hosted on
multiple physical servers—that appear to clients as a single instance. This provides horizontal
scalability as well as higher availability than a single instance on a single machine. This basic

Planning for Availability

Chapter 2 • Planning your Deployment 31

level of clustering works in conjunction with the converged load balancer that accepts
HTTP/HTTPS and SIP/SIPS requests and forwards them to one of the instances in the cluster.
The ORB and integrated JMS brokers also perform load balancing to application server clusters.
If an instance fails, become unavailable (due to network faults), or becomes unresponsive,
requests are redirected only to existing, available machines. The load balancer can also
recognize when an failed instance has recovered and redistribute load accordingly.

Adding Redundancy to the System
One way to achieve high availability is to add hardware and software redundancy to the system.
When one unit fails, the redundant unit takes over. This is also referred to as fault tolerance. In
general, to maximize high availability, determine and remove every possible point of failure in
the system.

Identifying Failure Classes
The level of redundancy is determined by the failure classes (types of failure) that the system
needs to tolerate. Some examples of failure classes are:

■ System process
■ Machine
■ Power supply
■ Disk
■ Network failures
■ Building fires or other preventable disasters
■ Unpredictable natural catastrophes

Duplicated system processes tolerate single system process failures, as well as single machine
failures. Attaching the duplicated mirrored (paired) machines to different power supplies
tolerates single power failures. By keeping the mirrored machines in separate buildings, a
single-building fire can be tolerated. By keeping them in separate geographical locations,
natural catastrophes like earthquakes can be tolerated.

Planning Message Queue Broker Deployment
The Java Message Service (JMS) API is a messaging standard that allows Java EE applications
and components to create, send, receive, and read messages. It enables distributed
communication that is loosely coupled, reliable, and asynchronous. The Sun Java System
Message Queue, which implements JMS, is integrated with Communications Server, enabling
you to create components such as message-driven beans (MDBs).

Sun Java System Message Queue (MQ) is integrated with Communications Server using a
connector module, also known as a resource adapter, as defined by the Java EE Connector
Architecture Specification (JCA) 1.5. A connector module is a standardized way to add

Planning Message Queue Broker Deployment

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •32

functionality to the Communications Server. Java EE components deployed to the
Communications Server exchange JMS messages using the JMS provider integrated via the
connector module. By default, the JMS provider is the Sun Java System Message Queue, but if
you wish you can use a different JMS provider, as long as it implements JCA 1.5.

Creating a JMS resource in Communications Server creates a connector resource in the
background. So, each JMS operation invokes the connector runtime and uses the MQ resource
adapter in the background.

In addition to using resource adapter APIs, Communications Server uses additional MQ APIs
to provide better integration with MQ. This tight integration enables features such as connector
failover, load balancing of outbound connections, and load balancing of inbound messages to
MDBs. These features enable you to make messaging traffic fault-tolerant and highly available.

Multi-Broker Clusters
MQ supports using multiple interconnected broker instances known as a broker cluster. With
broker clusters, client connections are distributed across all the brokers in the cluster.
Clustering provides horizontal scalability and improves availability.

A single message broker scales to about eight CPUs and provides sufficient throughput for
typical applications. If a broker process fails, it is automatically restarted. However, as the
number of clients connected to a broker increases, and as the number of messages being
delivered increases, a broker will eventually exceed limitations such as number of file
descriptors and memory.

Having multiple brokers in a cluster rather than a single broker enables you to:

■ Provide messaging services despite hardware failures on a single machine.
■ Minimize downtime while performing system maintenance.
■ Accommodate workgroups having different user repositories.
■ Deal with firewall restrictions.

However, having multiple brokers does not ensure that transactions in progress at the time of a
broker failure will continue on the alternate broker. While MQ will re-establish a failed
connection with a different broker in a cluster, it will lose transactional messaging and roll back
transactions in progress. User applications will not be affected, except for transactions that
could not be completed. Service failover is assured since connections continue to be usable.

Thus, MQ does not support high availability persistent messaging in a cluster. If a broker
restarts after failure, it will automatically recover and complete delivery of persistent messages.
Persistent messages may be stored in a database or on the file system. However if the machine
hosting the broker does not recover from a hard failure, messages may be lost.

Planning Message Queue Broker Deployment

Chapter 2 • Planning your Deployment 33

The Solaris platform with Sun Cluster Data Service for Sun Message Queue supports
transparent failover of persistent messages. This configuration leverages Sun Cluster’s global file
system and IP failover to deliver true high availability and is included with Java Enterprise
System.

Master Broker and Client Synchronization
In a multi-broker configuration, each destination is replicated on all of the brokers in a cluster.
Each broker knows about message consumers that are registered for destinations on all other
brokers. Each broker can therefore route messages from its own directly-connected message
producers to remote message consumers, and deliver messages from remote producers to its
own directly-connected consumers.

In a cluster configuration, the broker to which each message producer is directly connected
performs the routing for messages sent to it by that producer. Hence, a persistent message is
both stored and routed by the message’s home broker.

Whenever an administrator creates or destroys a destination on a broker, this information is
automatically propagated to all other brokers in a cluster. Similarly, whenever a message
consumer is registered with its home broker, or whenever a consumer is disconnected from its
home broker—either explicitly or because of a client or network failure, or because its home
broker goes down—the relevant information about the consumer is propagated throughout the
cluster. In a similar fashion, information about durable subscriptions is also propagated to all
brokers in a cluster.

Configuring Application Server to Use Message Queue
Brokers
The Communications Server’s Java Message Service represents the connector module (resource
adapter) for the Message Queue. You can manage the Java Message Service through the Admin
Console or the asadmin command-line utility.

MQ brokers (JMS hosts) run in a separate JVM from the Communications Server process. This
allows multiple Communications Server instances or clusters to share the same set of MQ
brokers.

In Communications Server, a JMS host refers to an MQ broker. The Communications Server’s
Java Message Service configuration contains a JMS Host List (also called AddressList) that
contains all the JMS hosts that will be used.

Managing JMS with Admin Console
In the Admin Console, you can set JMS properties using the Java Message Service node for a
particular configuration. You can set properties such as Reconnect Interval and Reconnect
Attempts. For more information, see Chapter 4, “Configuring Java Message Service Resources,”
in Sun GlassFish Communications Server 1.5 Administration Guide.

Planning Message Queue Broker Deployment

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •34

http://docs.sun.com/doc/820-4281/abljw?a=view
http://docs.sun.com/doc/820-4281/abljw?a=view

The JMS Hosts node under the Java Message Service node contains a list of JMS hosts. You can
add and remove hosts from the list. For each host, you can set the host name, port number, and
the administration user name and password. By default, the JMS Hosts list contains one MQ
broker, called “default_JMS_host,” that represents the local MQ broker integrated with the
Communications Server.

Configure the JMS Hosts list to contain all the MQ brokers in the cluster. For example, to set up
a cluster containing three MQ brokers, add a JMS host within the Java Message Service for each
one. Message Queue clients use the configuration information in the Java Message Service to
communicate with MQ broker.

Managing JMS with asadmin
In addition to the Admin Console, you can use the asadmin command-line utility to manage
the Java Message Service and JMS hosts. Use the following asadmin commands:

■ Configuring Java Message Service attributes: asadmin set
■ Managing JMS hosts:

■ asadmin create-jms-host

■ asadmin delete-jms-host

■ asadmin list-jms-hosts

■ Managing JMS resources:
■ asadmin create-jms-resource

■ asadmin delete-jms-resource

■ asadmin list-jms-resources

For more information on these commands, see Sun GlassFish Communications
Server 1.5 Reference Manualor the corresponding man pages.

Java Message Service Type
There are two types of integration between Communications Server and MQ brokers: local and
remote. You can set this type attribute on the Admin Console’s Java Message Service page.

Local Java Message Service

If the Type attribute is LOCAL, the Communications Server will start and stop the MQ broker.
When Communications Server starts up, it will start the MQ broker specified as the Default
JMS host. Likewise, when the Communications Server instance shuts down, it shuts down the
MQ broker. LOCAL type is most suitable for standalone Communications Server instances.

With LOCAL type, use the Start Arguments attribute to specify MQ broker startup parameters.

Planning Message Queue Broker Deployment

Chapter 2 • Planning your Deployment 35

http://docs.sun.com/doc/820-4278
http://docs.sun.com/doc/820-4278

Remote Java Message Service

If the Type attribute is REMOTE, Communications Server will use an externally configured
broker or broker cluster. In this case, you must start and stop MQ brokers separately from
Communications Server, and use MQ tools to configure and tune the broker or broker cluster.
REMOTE type is most suitable for Communications Server clusters.

With REMOTE type, you must specify MQ broker startup parameters using MQ tools. The
Start Arguments attribute is ignored.

Default JMS Host
You can specify the default JMS Host in the Admin Console Java Message Service page. If the
Java Message Service type is LOCAL, then Communications Server will start the default JMS
host when the Communications Server instance starts.

To use an MQ broker cluster, delete the default JMS host, then add all the MQ brokers in the
cluster as JMS hosts. In this case, the default JMS host becomes the first JMS host in the JMS
host list.

You can also explicitly set the default JMS host to one of the JMS hosts. When the
Communications Server uses a Message Queue cluster, the default JMS host executes
MQ-specific commands. For example, when a physical destination is created for a MQ broker
cluster, the default JMS host executes the command to create the physical destinations, but all
brokers in the cluster use the physical destination.

Example Deployment Scenarios
To accommodate your messaging needs, modify the Java Message Service and JMS host list to
suit your deployment, performance, and availability needs. The following sections describe
some typical scenarios.

For best availability, deploy MQ brokers and Communications Servers on different machines, if
messaging needs are not just with Communications Server. Another option is to run an
Communications Server instance and an MQ broker instance on each machine until there is
sufficient messaging capacity.

Default Deployment
Installing the Communications Server automatically creates a domain administration server
(DAS). By default, the Java Message Service type for the DAS is LOCAL. So, starting DAS will
also start its default MQ broker.

Creating a new domain will also create a new broker. By default, when you add a standalone
server instance or a cluster to the domain, its Java Message Service will be configured as
REMOTE and its default JMS host will be the broker started by DAS.

Planning Message Queue Broker Deployment

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •36

“Default Deployment” on page 36 illustrates an example default deployment with an
Communications Server cluster containing three instances.

Using an MQ Broker Cluster with an Application Server Cluster
To configure an Communications Server cluster to use an MQ broker cluster, add all the MQ
brokers as JMS hosts in the Communications Server’s Java Message Service. Any JMS
connection factories created and MDBs deployed will then use the JMS configuration specified.

The following figure illustrates an example deployment with three MQ brokers in an broker
cluster and three Communications Server instances in a cluster.

Specifying an Application-Specific MQ Broker Cluster
In some cases, an application may need to use a different MQ broker cluster than the one used
by the Communications Server cluster. “Specifying an Application-Specific MQ Broker
Cluster” on page 37 illustrates an example of such a scenario. To do so, use the AddressList
property of a JMS connection factory or the activation-config element in an MDB
deployment descriptor to specify the MQ broker cluster.

For more information about configuring connection factories, see “JMS Connection Factories”
in Sun GlassFish Communications Server 1.5 Administration Guide. For more information
about MDBs, see “Using Message-Driven Beans” in Sun GlassFish Communications Server
Developer’s Guide.

Application Clients
When an application client or standalone application accesses a JMS administered object for
the first time, the client JVM retrieves the Java Message Service configuration from the server.
Further changes to the JMS service will not be available to the client JVM until it is restarted.

Planning Message Queue Broker Deployment

Chapter 2 • Planning your Deployment 37

http://docs.sun.com/doc/820-4281/ablkb?a=view
http://docs.sun.com/doc/820-4281/ablkb?a=view
http://docs.sun.com/doc/820-4282/beait?a=view
http://docs.sun.com/doc/820-4282/beait?a=view

38

Checklist for Deployment

This appendix provides a checklist to get started on evaluation and production with the
Communications Server.

Checklist for Deployment
TABLE 3–1 Checklist

Component/Feature Description

Application Determine the following requirements for the application to be deployed.
■ Required/acceptable response time.

■ Peak load characteristics.

■ Necessary persistence scope and frequency.

■ Session timeout in web.xml.

■ Failover and availability requirements.
For more information see Sun GlassFish Communications Server 1.5 Performance Tuning
Guide.

Hardware ■ Have necessary amounts of hard disk space and memory installed.

■ Use the sizing exercise to identify the requirements for deployment.
For more information see Sun GlassFish Communications Server 1.5 Release Notes

Operating System ■ Ensure that the product is installed on a supported platform.

■ Ensure that the patch levels are up-to-date and accurate.
For more information see Sun GlassFish Communications Server 1.5 Release Notes

3C H A P T E R 3

39

http://docs.sun.com/doc/820-4289
http://docs.sun.com/doc/820-4289
http://docs.sun.com/doc/820-4276
http://docs.sun.com/doc/820-4276

TABLE 3–1 Checklist (Continued)
Component/Feature Description

Network Infrastructure ■ Identify single points of failures and address them.

■ Make sure that the NICs and other network components are correctly configured.

■ Run ttcp benchmark test to determine if the throughput meets the requirements/expected
result.

■ Setup rsh/ssh based your preference so that HADB nodes are properly installed.
For more information see Sun GlassFish Communications Server 1.5 Installation Guide.

Back-ends and other external data
sources

Check with the domain expert or vendor to ensure that these data sources are configured
appropriately.

System Changes/Configuration ■ Make sure that changes to /etc/system and its equivalent on Linux are completed before
running any performance/stress tests.

■ Make sure the changes to the TCP/IP settings are complete.

■ By default, the system comes with lots of services pre-configured. Not all of them are
required to be running. Turn off services that are not needed to conserve system resources.

■ On Solaris, use Setoolkit to determine the behavior of the system. Resolve any flags that
show up.
For more information see Sun GlassFish Communications Server 1.5 Performance Tuning
Guide.

Installation ■ Ensure that these servers are not installed on NFS mounted volumes.

Communications Server
Configuration

■ Logging: Enable access log rotation.

■ Choose the right logging level. WARNING is usually appropriate.

■ Configure Java EE containers using Admin Console.

■ Configure HTTP listeners using Admin Console.

■ Configure SIP listeners using Admin Console.

■ Configure ORB threadpool using Admin Console.

■ If using Type2 drivers or calls involving native code, ensure that mtmalloc.so is specified in
the LD_LIBRARY_PATH.

■ Ensure that the appropriate persistence scope and frequency are used and they are not
overridden underneath in the individual Web/EJB modules.

■ Ensure that only critical methods in the SFSB are checkpointed.
For more information on tuning, see Sun GlassFish Communications Server 1.5
Performance Tuning Guide.
For more information on configuration, see Sun GlassFish Communications Server 1.5
Administration Guide.

Checklist for Deployment

Sun GlassFish Communications Server 1.5 Deployment Planning Guide •40

http://docs.sun.com/doc/820-4277
http://docs.sun.com/doc/820-4289
http://docs.sun.com/doc/820-4289
http://docs.sun.com/doc/820-4289
http://docs.sun.com/doc/820-4289
http://docs.sun.com/doc/820-4281
http://docs.sun.com/doc/820-4281

TABLE 3–1 Checklist (Continued)
Component/Feature Description

Converged Load balancer
Configuration

■ Make sure that you have set the auto-apply option appropriately.
■ Verify that the configuration file for load balancer has appropriate values.

Java Virtual Machine
Configuration

■ Initially set the minimum and maximum heap sizes to be the same, and at least one GB for
each instance.

■ See Java Hotspot VM Options for more information.

■ When running multiple instances of Communications Server, consider creating a
processor set and bind Communications Server to it. This helps in cases where the CMS
collector is used to sweep the old generation.

Configuring time-outs in
Communications Server

■ Max-wait-time-millis - Wait time to get a connection from the pool before throwing an
exception. Default is 6 s. Consider changing this value for highly loaded systems where the
size of the data being persisted is greater than 50 KB.

■ Cache-idle-timeout-in-seconds - Time an EJB is allowed to be idle in the cache before it
gets passivated. Applies only to entity beans and stateful session beans.

■ Removal-timeout-in-seconds - Time that an EJB remains passivated (idle in the backup
store). Default value is 60 minutes. Adjust this value based on the need for SFSB failover.

Tune VM Garbage Collection (GC) Garbage collection pauses of four seconds or more can cause intermittent problems. To avoid
this problem, tune the VM heap. In cases where even a single failure to persist data is
unacceptable or when the system is not fully loaded, use the CMS collector or the throughput
collector.

These can be enabled by adding:

<jvm-options>-XX:+UseConcMarkSweepGC</jvm-options>

This option may decrease throughput.

Checklist for Deployment

Chapter 3 • Checklist for Deployment 41

http://java.sun.com/docs/hotspot/VMOptions.html

42

	Sun GlassFish Communications Server 1.5 Deployment Planning Guide
	Preface
	Communications Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Product Concepts
	Java EE Platform Overview
	Java EE Applications
	Containers
	Java EE Services
	Web Services
	Client Access
	External Systems and Resources

	Application Server Components
	Server Instances
	Administrative Domains
	Domain Administration Server (DAS)

	Clusters
	Node Agents
	Named Configurations
	Converged Load Balancer
	IIOP Load Balancing in a Cluster
	Message Queue and JMS Resources

	Planning your Deployment
	Establishing Performance Goals
	Estimating Throughput
	Estimating Load on Application Server Instances
	Maximum Number of Concurrent Users
	Think Time
	Average Response Time
	Requests Per Minute

	Planning the Network Configuration
	Estimating Bandwidth Requirements
	Calculating Bandwidth Required
	Estimating Peak Load

	Planning for Availability
	Rightsizing Availability
	Using Clusters to Improve Availability
	Adding Redundancy to the System
	Identifying Failure Classes

	Planning Message Queue Broker Deployment
	Multi-Broker Clusters
	Master Broker and Client Synchronization

	Configuring Application Server to Use Message Queue Brokers
	Managing JMS with Admin Console
	Managing JMS with asadmin
	Java Message Service Type
	Local Java Message Service
	Remote Java Message Service

	Default JMS Host

	Example Deployment Scenarios
	Default Deployment
	Using an MQ Broker Cluster with an Application Server Cluster
	Specifying an Application-Specific MQ Broker Cluster
	Application Clients

	Checklist for Deployment
	Checklist for Deployment

