D Sun

microsystems

Sun Java™ System

Access Manager 6
Federation Management Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-7648

2005Q1

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://waw sun. con pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
al'adresse htt p:// v sun. con pat ent s et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans
les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit peuvent étre dérivées des systemes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.

L'interface d'utilisation graphiqgue OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de I'informatique. Sun détient une license non exclusive de Xerox sur I'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimigques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Part

Contents

LISt Of FlQUIES .o 11
List Of Tables 13
List of Code EXamples e 15
Preface .. 17
Who Should Use This GUITEt e i 17
Before You Read ThiS GUITE ot e 18
Conventions Used in ThisGUIde s 18
Typographic CONVENTIONS ittt e e ettt 18
SYMIDIOIS . 19
Default Paths and File NamMeso o e 20
Shell PromMPtS .. 20
Access Manager Documentation Set 21
Access Manager Core DOCUMENTAtioN i 21
Access Manager Policy Agent Documentation 22
Related JES Product DOCUMENtationottt e 23
Accessing Sun Resources OnliNe i 23
Contacting Sun Technical SUPPOIt 24
Related Third-Party Web Site References e 24
Sun Welcomes Your Feedback i 24
Liberty Specifications and Federation Management 25
Chapter 1 Introduction to the Liberty Alliance Project 27
OV IV . oottt et e e e 27
LA P MEMErS . 28
LAP ODbJeCtiVeS . . ot 28

The Concept Of Identity e e e e 29

The Concept of Identity Federation o 30
Liberty Alliance ProjeCt CONCEPLSttt ettt e e 30
The Liberty Alliance Project SpecCifications e 35
Liberty Identity Federation Framework 35
Single Sign-on and Federation Protocol i 37
Name Registration Protocol 38
Federation Termination Protocol i e 38
Single Log-0ut Protocol 39
Name Identifier Mapping Protocol 39
Additional ID-FF DOCUMENTSottt e e 39
Liberty Identity Web Services Framework 40
SOAP Binding Specification i 41
Discovery Service Specification 41
Security Mechanisms Specification i 41

Data Services Template Specification i 41
Interaction Service Specification 42
Authentication Service Specification 42
Client Profiles for Liberty-enabled User Agents or Devicescooiuiinn... 42
Additional ID-WSF DOCUMENTSttt e e e 42
Liberty Identity Service Interface Specifications i 43
Personal Profile SErviceo 43
Employee Profile Service 43
SUPPOITING DOCUMENTS . . . o ittt ettt e et e e e e e 44
Deploying a Liberty-based System 44
Size Up Your IT Staff o 44
Clean Your Directory Datat 44
Draft BUSINESS AQreEMENTS ittt et et e et e 44
Liberty-compliant Technology i e e 45
Chapter 2 Implementation of the Liberty Specifications 47
OV VW oottt e e e 47
Name Identifier Mapping Protocol 48
Single Sign-on and Federation Protocol i 48
Dynamic Identity Provider ProxXying 49
Affiliation Federation 49
One-Time Federationt e 49
Name Identifier Encryption Profile 49
Liberty Metadata Description and Discovery Specification 50
LIDErtY USE CaSS . . vttt e et et e e e e 50
Unified Access to INtranet RESOUICESttt e 50
Integrated Partner Networks 51
Sample Use Case PrOCESS oottt e e 51

4 Access Manager 6 2005Q1 « Federation Management Guide

Access Manager Implementations 52

WED SEIVICES . ..o 52
Authentication WEeD SErVICE i 53
DISCOVEIY SEIVICE . .ottt e e e e e 54
Liberty Personal Profile Service i 54
SOAP BINAING . .. oo 54

Application Programming Interfaces 55

Federation Management Module i 55

Packages and Global Interfaces 56
Liberty-based Samples 57
Chapter 3 Federation Managementttt e 59
OV IV . oottt et e e e e 59
The Federation Management Interface i 60
The Process of Federation i 62
Pre-10gin PrOCESSo 64
SINGIe SIgN-0N PrOCESS . ..ottt e e e e 65
CommoOoN DOMAIN SEIVICESttt ettt e e e e 65
Installing the Common DOMain SEIVICESttt e i i 66
Common Domain Service URLS o 66
Federation Managementt 67

Authentication DOMAINSot 67

Creating and Maintaining Authentication Domains i, 67
To Create An Authentication Domain e 67
To Modify An Authentication Domaint 68
To Delete An Authentication DOMainttt i 68

ENtity DesCriPlOrS .. oot 69
Provider Entity DesCriptort 69
Affiliate ENtity DeSCriptorot 69

Creating and Maintaining Entity Descriptorsot 70
To Create an Entity Descriptor of Either Type i 70
To Configure a Provider Entity Descriptort 70
To Configure an Affiliate Entity DesCriptorot e 84
To Delete an Entity Descriptor of Either Type ... e 87

Federation Management APl ... 87
Federation Management Samplest 88

Installing ACCESS MaNAGETttt e e e e e 89

Updating and Loading the Metadata i e 89

Deploying the Service Provider 90
To Configure AMCHENL.PrOPertiest e e e 90
ToCreatea WAR File for SPLo 91
To Deploy the Service Provider WARFile 91

Deploying the Identity Provider 92

Contents 5

To Configure AMCHENL.PrOPertiesttt e e e 93

To Create a WAR File for IDPL e 93

To Deploy the Identity Provider WARFile 93
Creating and Managing a Federation it 95
To Federate the Service Provider and Identity Provider Accounts 95

To Accomplish Single SIgN-Ono 96

To Perform aSingle LOGoUL 96

To Terminate Account Federation i e 96

Part Il Liberty-based Web Services 99
Chapter 4 Authentication Web Service e 101
OV IV BW ottt e 101
XML Service File 102
Application Programming Interfaces i 102
Authentication Web SErvice ProCESSttt e e 102
Authentication Web Service Attribute 103
Mechanism Handler List 104
KeY Parameter . ..o 104

Class Parameter 104
Authentication Web Service Interfaces i 104
com.sun.identity.liberty.ws.authnsve 104
com.sun.identity.liberty.ws.authnsvc.protocol i 105
Authentication Web Service Sample 105
Chapter 5 Data ServiCes 107
OV IV BW ottt e e 107
Data Services Template Specifications 108
Liberty Personal Profile Service i 109
XML Service File ... oo 109

XSD Schema Definition 109
Liberty Employee Profile Service i 110
XML Service File ... o 110

XSD Schema Definition 110

Data Services Template APl 111
Liberty Personal Profile Service 111
The Liberty Personal Profile Service Processt 111
Liberty Personal Profile Service Attributes 112
RESOUICEID MaPPEY . . oot e 113
AUTNOTIZEr . . 113
AtribULe Map el . oo 114

6 Access Manager 6 2005Q1 < Federation Management Guide

PrOVIAEr D .. 114

NaME SCNEIME .o e 114
Namespace PrefixX 115
Supported CONLAINETS ittt et e 115
PPLDAP Attribute Map LiSto 115
Require Query POIICYEVAlo 116
Require Modify PolicyEval 116
Extension Container Attributes i 116
Extension Attributes Namespace Prefix i 117

Is ServiceUpdate Enabled 117
Service Instance Update Classttt 117
Alternate Endpointo 117
Liberty Employee Profile Service 118
Data Services Template APl 118
com.sun.identity.liberty. Ws.dst 119
com.sun.identity.liberty. Ws.dst.SErvice i 119
Developing A New Data SErVICEt e 120
Chapter 6 DISCOVEIY SEIVICEttt i e e e e e 121
OV VW . oottt e e e e 121
DiSCOVEIY ENLIIESottt e e e e e e 122
XML Service Files ... 123
Application Programming Interfaces 123
com.sun.identity.liberty.ws.disco i 123
com.sun.identity.liberty.ws.disco.plugins 124
com.sun.identity.liberty.ws.interfaces 124
Discovery Service ArChiteCture 124
DiSCOVENY SEIVICE PrOCESSttt e e e e e e i 125
Discovery Service Attributes o 127
Provider ID 128
Supported Authentication Mechanisms 128
SUPPOted DireCtiVES . .. o 128
Enable Policy Evaluation for DiscoveryLooKup i 129
Enable Policy Evaluation for DiscoveryUpdate 129
AUthorizer PIUgin Classttt e e e 130
Entry Handler Plugin Classt e 130
Classes For ResourcelDMapper Plugin e 130
Authenticate ReSPONSE MESSAGEottt et e 130
Generate SessionContextStatement for Bootstrapping ..., 131
Encrypt Nameldentifier in Session Context for Bootstrappingt 131
Use Implied Resource; don't generate ResourcelD for Bootstrapping 131
Resource Offerings for Bootstrapping RESOUICESt 131
Discovery Entries and Resource Offerings e 132

Contents 7

8

Storing Discovery Entries as User Attributes i 132

Storing Discovery Entries as Dynamic Attributes i 136
Storing Discovery Entries for Bootstrapping 139
Discovery Service INterfacest 142
DefaultDiscoAuthorizer Implementation i 142
Default ResourcelDMapper Implementations i 144
DiscoEntryHandler Interface i 144
ClENt AP . 145
Discovery Service Sample 146
Chapter 7 SOAP Binding ServiCe 147
OV VW oottt e 147
XML Service File ... 148
Application Programming Interfaces i 148
SOAP BiNdiNG PrOCESS . . . oottt ittt e e e e e e e 148
SOAP Binding AttribULeso 149
Request Handler List e 150
KeY Parameter . .. 150

Class Parameter 150

Web Service AULNENTICALON ot e 151
Supported Authentication Mechanisms 151
SOAP Binding INterfaces 152
Chapter 8 Application Programming Interfaces 153
Overview of Public Interfaces 153
Common Service INterfaces 155
com.sun.identity.liberty.ws.common 155
com.sun.identity.liberty.ws.interfaces 156
AULNOTIZEE oo 156
RESOUICEIDIMAPPET . . oottt ettt et et e e e e 157
CommoON SECUNItY APl .. 157
com.sun.identity.liberty.WsS.SeCUFitY o 157
com.sun.identity.liberty.ws.COmmON.WSSEot 158
INteraction SErVICe APl 159
Configuring the Interaction SErvice i e 159
INteraction SErvice AP 161
PAOS BINAING ..ottt 161
PAOS VS, SOA P 162
PAOS BiNding APl .. 162
PAOS BIinding Sample 163

Access Manager 6 2005Q1 < Federation Management Guide

Part [l AppendiCes 167

Appendix A Included Samples 169
OV VW . oottt e e e e 169
Federation Framework Samples 169
SAMPIE L L 170
SAMPIE . 170
SAMPIES . o 171
Web Services Framework Sampleso 171
VUSC t vt ettt e et e e e e e e e 172
LT o 172
A0S . .t 173
AUENINSVC . 173
Appendix B Service Schema Files 175
OV VW . ottt e e e e 175
SOAP BINding SChema 176
Personal Profile Schema 178
Employee Profile Schema 183
Authentication Web Service SChema 185
PAOS BIiNding SChema o 189
Metadata Description SChema 190
GlOS S aIY vttt 197
X 199

Contents 9

10 Access Manager 6 2005Q1 « Federation Management Guide

Figure 0-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 3-1
Figure 5-1
Figure 6-1
Figure 6-2

List of Figures

Concepts of the ID-FF Specifications i, 35
Process of Federation, Web Services & Service Instances Framework 52
Web Services Listed in Access Manager Consoleot 53
Federation Management Module in Access Manager Console 55
Liberty-based Access Manager Authentication ProcessFlow 63
Data Service Template as Building Block for Data Services 108
Discovery Service Architecture i 125
Liberty-enabled Discovery Service Processcouuiiiiiiinannna.n. 126

11

12 Access Manager 6 2005Q1 « Federation Management Guide

Table 0-1
Table 0-2
Table 2-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 5-1
Table 6-1
Table 6-2
Table 7-1
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table A-1

List of Tables

Additional Help withthe ID-FF i 39
Additional Help withthe ID-WSF i 43
Summary of Liberty-based Packagesc.c i 56
Federation Management Module JSP i i 60
Possible Provider Combinations for Provider Entity Descriptor 69
Federation Management APl 88
Default Values in splnetadata. xm forSamplel 89
Data Service CHENt APIS 119
Policy-related DireCtivest 129
Discovery Service Client APIS 145
SOAP Binding AP ClIaSseS vttt e e e 152
Summary of Liberty-based Packages i 154
Common Liberty Classes 155
Common Liberty Interfaceso i 156
com.sun.identity.liberty.ws.security 157
SECUNItY APIS . . 158
Interaction Service APl 161
Summary of PAOS APIS . ..o 162
Relative Information for Samplel Servers i 170

13

14 Access Manager 6 2005Q1 « Federation Management Guide

Code Example 5-1
Code Example 5-2
Code Example 5-3
Code Example 8-1
Code Example B-1
Code Example B-2
Code Example B-3
Code Example B-4
Code Example B-5
Code Example B-6

List of Code Examples

Authorization RUIES 114
Attribute Mappings as Defined in XML ServiceFile 116
Extension Query forcreditcard 116
PAQOS Client Servlet from PAOS Sample oo, 163
SOAPBIinding XSD File 176
Personal Profile Service XSD Fileo o i, 178
Employee Profile Service XSD Schema 183
Authentication Web Service XSD File it 185
Reverse HTTP Binding for SOAP XSD File 189
Metadata Description and Discovery XSD File 190

15

16 Access Manager 6 2005Q1 « Federation Management Guide

Preface

The Sun Java™ System Access Manager 6 2005Q1 Federation Management Guide
provides information about the Federated Management module and related Web
services in Sun Java™ System Access Manager 6 2005Q1 (formerly Sun™ ONE
Identity Server). It includes an introduction to the Liberty Alliance Project’s
specifications and Access Manager’s compliance with them. Instructions for
enabling a Liberty-based environment, and summaries of the application
programming interface (API) for extending the framework are also provided. This
preface includes the following sections:

= Who Should Use This Guide

= Before You Read This Guide

= Conventions Used in This Guide

= Access Manager Documentation Set

« Related JES Product Documentation

= Accessing Sun Resources Online

= Contacting Sun Technical Support

= Related Third-Party Web Site References

e Sun Welcomes Your Feedback

Who Should Use This Guide

This Federation Management Guide is intended for use by IT professionals, network
administrators and software developers who implement a Liberty-enabled identity
management and web access platform using Sun Java System servers and software.
It is recommended that administrators understand the following technologies:

17

Before You Read This Guide

= Lightweight Directory Access Protocol (LDAP)
= Java

= JavaServer Pages™ (JSP)

= HyperText Transfer Protocol (HTTP)

= HyperText Markup Language (HTML)

= eXtensible Markup Language (XML)

= Web Services Description Language (WSDL)

= SOAP (SOAP is no longer an acronym for the messaging protocol.)

Before You Read This Guide

Access Manager is a component of the Sun Java Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or
Internet environment. You should be familiar with the documentation provided
with Sun Java Enterprise System, which you can access online at:

http:// docs. sun. cond pr od/ ent sys. 0591

Because Sun Java System Directory Server is used as the data store in an Access
Manager deployment, administrators should also be familiar with the
documentation provided with that product. The latest Directory Server
documentation can be accessed online at

http://docs. sun. coni col | / Di rect or ySer ver _05q1.

Conventions Used in This Guide

In the Access Manager documentation set, certain typographic conventions and
terminology are used. These conventions are described in the following sections.

Typographic Conventions

The following table describes the typographic conventions used in this guide.

18 Access Manager 6 2005Q1 « Federation Management Guide

Conventions Used in This Guide

Table1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 APl and language elements, HTML Edit your. | ogi n file.

(Monospace) tags, web site URLs, command]]
names, file names, directory path Use |I's -ato list all files.
names, onscreen computer output,)
samp|e code. %YOU have nal | .

AaBb(Cc123 What you type, when contrasted %su

(Monospace with onscreen computer output. Passwor d:

bold)

AaBbCc123 Book titles, new terms, words to be Read Chapter 6 in the User’s

(Italic) emphasized. Guide.

A placeholderin acommand or path

name to be replaced with a real
name or value.

These are called class options.
Do not save the file.

The file is located in the
install-dir/ bi n directory.

Symbols

The following table describes the symbol conventions used in this guide.

Table 2 Symbol Conventions
Symbol Description Example Meaning
[] Contains optional command |s [-1] The -1 option is not
options. required.
{11} Contains a set of choicesfor -d {y| n} The - d option requires that
a required command option. you use either the y
argument or the n
argument.
- Joins simultaneous multiple Control-A Press the Control key while
keystrokes. you press the A key.
+ Joins consecutive multiple Ctrl+A+N Press the Control key,

keystrokes.

release it, and then press
the subsequent keys.

Preface

19

Conventions Used in This Guide

Table 2 Symbol Conventions (Continued)

Symbol Description Example Meaning
> Indicates menu item File > New > Templates From the File menu, choose
selection in a graphical user New. From the New
interface. submenu, choose
Templates.

Default Paths and File Names

The following table describes the default paths and file names used in this guide:

Table 3 Default Paths and File Names

Term Description

AccessManager_base Represents the base installation directory for Access Manager. The
Access Manager 2005Q1 default base installation and product
directory depends on your specific platform:

Solaris™ systems: / opt / SUNVAmM
Linux systems: / opt / sun/ i denti ty

DirectoryServer_base Represents the base installation directory for Sun Java System
Directory Server. Refer to the product documentation for the
specific path name.

ApplicationServer_base Represents the base installation directory for Sun Java System
Application Server. Refer to the product documentation for the
specific path name.

WebServer_hase Represents the base installation directory for Sun Java System
Web Server. Refer to the product documentation for the specific
path name.

Shell Prompts

The following table describes the shell prompts used in this guide.

Table 4 Shell Prompts

Shell Prompt
C shell on UNIX or Linux machine-name%
C shell superuser on UNIX or Linux machine-name#

20 Access Manager 6 2005Q1 « Federation Management Guide

Access Manager Documentation Set

Table 4 Shell Prompts
Shell Prompt

Bourne shell and Korn shell on UNIX or Linux $
Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C\

Access Manager Documentation Set

The Access Manager documentation consists of two sets:
= Access Manager Core Documentation

= Access Manager Policy Agent Documentation

NOTE For instructions on installing Access Manager, see the Sun Java
Enterprise System 2005Q1 Installation Guide
(http://docs. sun. cont doc/ 819- 0056)

Access Manager Core Documentation

The Access Manager documentation set contains the following titles:

= The Release Notes (htt p://docs. sun. coni doc/ 817- 7642) will be available online
after the product is released. They gather an assortment of last-minute
information, including a description of what is new in this current release,
known problems and limitations, installation notes, and how to report issues
with the software or the documentation.

= Technical Overview (http://docs. sun. coni doc/ 817- 7643) provides an overview
of how Access Manager components work together to consolidate identity
management and to protect enterprise assets and web-based applications. It
also explains basic Access Manager concepts and terminology.

= Deployment Planning Guide (http: //docs. sun. com doc/ 817- 7644) provides
information for planning an Access Manager deployment within an existing
information technology infrastructure.

= Migration Guide (http://docs. sun. com doc/ 817- 7645) provides details on how
to migrate existing data and Sun Java System product deployments to the latest
version of Access Manager.

Preface 21

Access Manager Documentation Set

= Performance Tuning Guide (http: //docs. sun. com doc/ 817- 7646) provides
information on how to tune Access Manager and its related components for
optimal performance.

= Administration Guide (http: // docs. sun. cont doc/ 817- 7647) describes how to use
the Access Manager console as well as manage user and service data via the
command line interface.

= Federation Management Guide (this guide) provides information about the
Federation Management module and related Web services developed for
Access Manager. These features are based on the Liberty Alliance Project (LAP)
specifications available online at the LAP Web site,
http://wawu proj ect|iberty. org/ resources/ specifications. php#box1.

= Developer’s Guide (htt p:// docs. sun. con doc/ 817- 7649) offers information on
how to customize Access Manager and integrate its functionality into an
organization’s current technical infrastructure. It also contains details about the
programmatic aspects of the product and its API.

= Developer’s Reference (htt p://docs. sun. con doc/ 817- 7650) provides summaries
of data types, structures, and functions that make up the public Access
Manager C APIs.

= Java Specifications (ht t p: // docs. sun. cont doc/ 817- 7651) provides information on
the implementation of Java packages in Access Manager.

Updates to the Release Notes and links to modifications of the core documentation
can be found on the Access Manager page at the Sun Java System 2005Q1
documentation web site (http:// docs. sun. coni prod/ ent sys. 0591). Updated
documents will be marked with a revision date.

Access Manager Policy Agent Documentation

Documentation for the Access Manager policy agents is available at

http://docs. sun. coni col | / S1_| dSer vPol i cyAgent _21. Policy agents are developed
on a different schedule than the server product itself. Therefore, the documentation
set for the policy agents is available outside the core set of Access Manager
documentation. The Policy Agent documentation set contains the following titles:

= Web Policy Agents Guide documents how to install and configure an Access
Manager policy agent on various web and proxy servers. It also includes
troubleshooting and information specific to each agent.

22 Access Manager 6 2005Q1 « Federation Management Guide

Related JES Product Documentation

= J2EE Policy Agents Guide documents how to install and configure an Access
Manager policy agent to protect a variety of hosted J2EE applications. It also
includes troubleshooting and information specific to each agent.

= The Release Notes will be available online after the set of agents is released.
There is generally one Release Notes file for each agent type release. The Release
Notes gather an assortment of last-minute information, including a description
of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the
documentation.

Related JES Product Documentation

Useful information can be found at the following locations:

= Directory Server documentation:
http://docs. sun. coni col | / D rect or ySer ver _04q2

= Web Server documentation:
http://docs. sun. coni col | / S1_websvr 61_en

= Application Server documentation
http://docs. sun. conicol | / s1_asseu3_en

= Web Proxy Server documentation:
http://docs. sun. con pr od/ s1. webpr oxys#hi ¢

Accessing Sun Resources Online

For product downloads, professional services, patches, support, and additional
developer information, go to:

= Download Center:
http://wams. sun. con sof t war e/ downl oad/

= Technical Support:
htt p: // waw sun. cond ser vi ce/ suppor t/ sof t war e/

= SunJava Systems Services Suite:
htt p: // waw sun. cond ser vi ce/ sunj avasyst eni sj sservi cessui te. htm

= Sun Enterprise Services, Solaris Patches, and Support:
http://sunsol ve. sun. cont

Preface 23

Contacting Sun Technical Support

= Developer Information:
http: // devel opers. sun. cond pr odt ech/ i ndex. ht ni

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the
product documentation, go to:

ht t p: // waw sun. com ser vi ce/ cont acti ng.

Related Third-Party Web Site References

Third-party URLs are referenced in this documentation set and provide additional,
related information. Sun is not responsible for the availability of third-party Web
sites mentioned in this document. Sun does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on
or through such sites or resources. Sun will not be responsible or liable for any
actual or alleged damage or loss caused by or in connection with the use of or
reliance on any such content, goods, or services that are available on or through
such sites or resources.

Sun Welcomes Your Feedback

24

Sun Microsystems is interested in improving its documentation and welcomes
your comments and suggestions.

To share your comments, go to htt p: // docs. sun. comand click the Send Comments
link at the bottom of the page. In the online form provided, include the document
title and part number. The part number is a seven-digit or nine-digit number that
can be found on the title page of the book or at the top of the document. For
example, the title of this book is Sun Java System Access Manager 6 2005Q1
Federation Management Guide, and the part number is 817-7648.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Part |

Liberty Specifications and Federation
Management

Chapter 1, “Introduction to the Liberty Alliance Project” on
page 27

Chapter 2, “Implementation of the Liberty Specifications” on
page 47

Chapter 3, “Federation Management” on page 59

Chapter 1

Introduction to the Liberty Alliance
Project

Sun Java™ System Access Manager implements identity federation and Web
services specifications defined by the Liberty Alliance Project. Before describing
how this is accomplished, this appendix explains the concept of identity, identity
services, the purpose of identity federation, and the role of the Liberty Alliance
Project in creating identity-based solutions. It contains the following sections:

= Overview

= The Concept of Identity

= The Concept of Identity Federation

= Liberty Alliance Project Concepts

= The Liberty Alliance Project Specifications

= Deploying a Liberty-based System

Overview

In 2001 Sun Microsystems joined with other major companies to form the Liberty
Alliance Project (LAP). The goal of the LAP is to define standards for developing
identity-based infrastructures, software, and Web services, and to promote
adoption of these standards. The LAP does not deliver products or services; it
defines frameworks to ensure interoperability between homogeneous products
while respecting the privacy and security of identity data.

27

Overview

NOTE If you are already familiar with the concepts and protocols developed by the Liberty
Alliance Project, feel free to move on to Chapter 2, “Implementation of the Liberty
Specifications” which begins to describe how these standards are integrated into
the Sun Java System Access Manager product.

LAP Members

The members of the LAP include some of the world’s most recognized brand
names, representing products, services and partnerships across a wide spectrum of
consumer and business service providers. The consortium also includes
government organizations and technology vendors. A complete listing of current
members of the LAP can be found at

http://waw proj ect | i berty. or g/ menber shi p/ cur rent _menber s. php.

NOTE Only members of the Liberty Alliance Project are allowed to provide feedback on
drafts of the specifications although any organization may implement them.

LAP Obijectives

The specifications developed by the LAP enable individuals and organizations to
securely conduct network transactions. More specifically, they:

= Serve as open standards for federated identity management and Web services.
= Support and promote permission-based sharing of personal identity attributes.

= Provide a single sign-on standard that includes decentralized authentication
and authorization for multiple providers.

= Create an open network identity infrastructure that supports all current and
emerging user agents (network access devices such as Web browsers, or
wireless browsers).

= Enable consumers to protect their network identity information.

28 Access Manager 6 2005Q1 « Federation Management Guide

The Concept of Identity

The Concept of Identity

Identity can be defined as a set of information by which one person is definitively
distinguished. In the real world, this information starts with a document that
defines your name: a birth certificate. Over time, additional information further
designates aspects of your identity:

< anaddress

= atelephone number

= one or more diplomas

e adriver’s license

= apassport

= financial institution accounts
< medical records

< insurance statements

= employment records

= magazine subscriptions

utility bills

Each of these distinct documents represents data that defines your identity
specifically to the enterprise for which it was issued. The composite of this data
constitutes an overall identity with each specific piece detailing a distinguishing
characteristic.

Because the Internet is becoming the primary vehicle for the interactions
represented by this identity-defining information, people are now creating
identities online for the enterprises with which they interact. By defining a user
identifier and password, an email address, your personal preferences (style of
music, access device, opt-in/opt-out marketing decision, email frequency), and
other information more specific to the particular business (social security number,
credit records, bank account number, bill payment information, ship-to address),
users distinguish themselves from others who use the enterprise’s services by
creating this virtual identity. The virtual identity is referred to as a local identity
because it is specific to the service provider for which it has been set. Considering
the number of service providers for which you can define a local identity, it can
make accessing each one time-consuming and frustrating. In addition, although

Chapter 1 Introduction to the Liberty Alliance Project 29

The Concept of Identity Federation

most local identities are configured independently (and fragmented across the
Internet), it might be useful to connect the information; for example, your local
identity with a bank could be securely connected to your local identity with a
retailer. Identity federation is the solution to this issue.

The Concept of Identity Federation

Consider the many times you might access service provider accounts in a single
day; sending and receiving email, logging in to a news portal, checking bank
balances, finalizing travel arrangements, bidding on auction items, accessing utility
accounts, and shopping online are all possible services for which you would define
an identity. Each time you want to access one of these services, you identify
yourself to the provider by logging in. If you use all of these services, you’ve
configured a multitude of separate accounts that you must log in to (and log out of)
for access. This virtual identity phenomenom offers the opportunity to fashion a
system for computer users to link their local identities. Identity federation allows the
user to associate, connect or bind the various local identities they have configured
for multiple service providers. The linked local identities, referred to as a federated
identity, then allow the user to log in to one service provider site and click through
to an affiliated service provider site without having to re-authenticate or
re-establish their identity. This notion of single sign-on is an option to which the
user must agree. The Liberty Alliance Project was implemented to define standards
using open technologies, therefore encouraging an interoperational infrastructure
among service providers, and identity federation among users.

Liberty Alliance Project Concepts

30

A number of concepts are derived from the LAP specifications (discussed in “The
Liberty Alliance Project Specifications” on page 35). Definitions for them are
provided here.

Account Federation (Identity Federation)

Account federation occurs when a user chooses to unite distinct service provider
accounts with one or more identity provider accounts. Users retain the individual
account information with each provider while, simultaneously, establishing a link
that allows the exchange of authentication information between them.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty Alliance Project Concepts

Affiliation

An affiliation is a group of providers formed without regard to their particular
authentication domain. It is formed and maintained by an affiliation owner. An
affiliation document describes a group of providers collectively identified by their
provi der | D. Members of an affiliation may invoke services either as a member of
the affiliation (by virtue of their Affiliation ID) or individually (by virtue of their
Provider ID).

Attribute Provider

An attribute provider is a web service that hosts attribute data. An example of an
attribute provider would be an instance of the Personal Profile Service defined in
“Liberty Identity Service Interface Specifications” on page 43.

Authentication Domain

A authentication domain is a group of service providers (with at least one identity
provider) who agree to join together to exchange user authentication information
using Liberty-enabled technologies. Once an authentication domain is established,
single sign-on can be enabled amongst all membered providers. An authentication
domain is sometimes referred to as a Circle Of Trust.

NOTE An authentication domain is not a domain in the domain name system (DNS) sense
of the word.

Circle Of Trust
See Authentication Domain.

Client

A client is actually the role any system entity assumes when making a request of
another system entity. (In this scenario, the system entity of which the request is
made is termed a Server.)

Common Domain

In an authentication domain having more than one identity provider, service
providers need a way to determine which identity provider a principal uses.
Because this function must work across any number of domain name system
(DNS) domains, the Liberty approach is to create one domain common to all
identity and service providers in the authentication domain. This predetermined
domain is known as the common domain. Within the common domain, when a
principal has been authenticated to a service provider, the identity provider writes

Chapter 1 Introduction to the Liberty Alliance Project 31

Liberty Alliance Project Concepts

32

a common domain cookie that stores the principal’s identity provider. Now, when the
principal attempts to access another service provider within the authetnication
domain, the service provider reads the common domain cookie and the request can
be forwarded to the correct identity provider.

Defederation
See Federation Termination.

Federation Cookie

A federation cookie is a cookie implemented by Access Manager with the name

f edCooki e. It can have a value of either yes or no based on the principal’s
federation status. The concept was developed for Access Manager, and is not a
defined part of the LAP specifications. Information on how a federation cookie is
used can be found in “The Process of Federation” on page 62 of Chapter 3,
“Federation Management.”

Federated Identity

A federated identity refers to the amalgamation of the account information in all
service providers accessed by one user (personal data, authentication information,
buying habits and history, shopping preferences, etc.). The information is
administered by the user yet, with the user’s consent, privilege to access the
information is securely shared with their providers of choice.

Federation Termination

Users have the ability to terminate their federations. Federation termination (or
defederation) results in the cancellation of affiliations established between the user’s
identity provider and their federated service provider accounts.

Identity Provider

An identity provider is a service provider that specializes in providing
authentication services. As the administrating service for authentication, identity
providers also maintain and manage identity information. Authentication
accomplished by an identity provider is honored by all service providers with
whom it is affiliated. This term is used when defining an entity of this sort enabled
by the ID-FF.

Identity Service

An identity service is a Web service that acts upon a resource to retrieve, update, or
perform some action on data attributes related to a principal (an identity). An
example of an identity service might be a corporate phone book or calendar
service.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty Alliance Project Concepts

Liberty-enabled Client

A Liberty-enabled client is a client that has, or knows how to obtain, informatiuon
about the identity provider that a principal will use to authenticate to a service
provider.

Liberty-enabled Proxy
A Liberty-enabled proxy is an HTTP proxy that emulates a Liberty-enabled Client.

Name Identifier

To help preserve anonymity when identity information is exchanged between
identity and service providers, an arbitrary name identifier is used. This pseudonym
allows the providers to identify a principal without knowledge of the user’s actual
identity. The name identifier has meaning only in the context of the relationship
between partners.

Principal

A principal is an entity that can acquire a federated identity, that is capable of
making decisions, and to which authenticated actions are done on its behalf.
Examples of principals include an individual user, a group of individuals, a

corporation, other legal entities, or a component of the Liberty architecture.

Pseudonym
See Name ldentifier.

Receiver

A receiver is the role taken by a system entity when it receives a message sent by
another system entity. (In this scenario, the system entity from which the message
is received is termed a Sender.)

Resource Offering
In a discovery service, a resource offering defines associations between a piece of
identity data and the service instance that provides access to it.

Sender

A sender is the role donned by a system entity when it constructs and sends a
message to another system entity. (In this scenario, the system entity from which
the message is received is termed a Receiver.)

Server

A server is actually the role any system entity assumes when providing a service in
response to a request from another system entity. (In this scenario, the system
entity from which the request is received is termed a Client.)

Chapter 1 Introduction to the Liberty Alliance Project 33

Liberty Alliance Project Concepts

34

NOTE In order to provide a service to clients, a server will often be both a Sender and a
Receiver.

Service Provider

A service provider is a commercial or not-for-profit organization that offers
web-based services to a principal. This broad category can include internet portals,
retailers, transportation providers, financial institutions, entertainment companies,
libraries, universities, and governmental agencies. This term is used when defining
an entity of this sort enabled by the ID-FF.

Single Logout

A single logout occurs when a user logs out from an identity provider or a service
provider. By logging out from one provider, they will effectively be logged out
from all service providers or identity providers in that authentication domain.

Single Sign-on

Single sign-on is established when a user with a federated identity authenticates to
an identity provider. Because they have previously opted-in for federation, they
are now able to access affiliated service providers without having to
re-authenticate.

Trusted Provider

A trusted provider is a generic term for one of a group of service and identity
providers in an authentication domain. Users can transact and communicate with
trusted providers in a secure environment.

Web Service Consumer

A Web service consumer invokes the operations a Web service provides by making a
request to a Web service provider. This term is used when defining an entity of this
sort enabled by the ID-WSF.

Web Service Provider

A Web service provider implements a Web service based on a request from a Web
service consumer. It may run on the same Java™ virtual machine as the Web
service consumer using it. This term is used when defining an entity of this sort
enabled by the ID-WSF.

Access Manager 6 2005Q1 ¢ Federation Management Guide

The Liberty Alliance Project Specifications

The Liberty Alliance Project Specifications

The LAP develops and delivers specifications that enable federated network
identity management. Using Web redirection and open-source technologies like
SOAP and XML, the LAP specifications enable distributed, cross-domain
interactions. The LAP specifications are divided into three components:

« Liberty Identity Federation Framework
* Liberty Identity Web Services Framework

= Liberty Identity Service Interface Specifications

Liberty Identity Federation Framework

The Liberty Identity Federation Framework (ID-FF) defines a set of protocols, bindings
and profiles that provides a solution for identity federation, cross-domain
authentication and session management. These definitions can be used to create a
brand new identity management system or develop one in conjunction with legacy
systems. The ID-FF is designed to work with heterogeneous platforms, all types of
networking devices (including personal computers, mobile phones, and PDAS),
and other emerging technologies. A scenario implementing these specifications
includes the subjects illustrated in Figure 0-1 and defined beneath it.

Figure 0-1 Concepts of the ID-FF Specifications

The identity provider is the center
of the authentication infrastructure.
It is a trusted entity that maintains
core identity attributes.

Affiliated service providers
are partners in the
authentication domain that
offer complimentary services.

An authentication dormain

is an established group of
providers that joined together
to exchange authentication
information.

Chapter 1 Introduction to the Liberty Alliance Project 35

The Liberty Alliance Project Specifications

= Anprincipal has a defined local identity with one or more providers, and has the
option to federate these identities. The principal might be an individual user, a
grouping of individuals, a corporation, or a component of the Liberty
architecture.

= Aservice provider is a commercial or not-for-profit organization that offers a
Web-based service be it a news portal, a financial repository, or retail outlet.
This broad category can also include:

o utility companies

o financial institutions
o medical offices

v corporate intranets

o universities

o government agencies

= Anidentity provider is a service provider that stores identity profiles and offers
incentives to other service providers for the prerogative to federate their user
identities. (Identity providers might also offer services above and beyond those
related to identity profile storage.)

= Inorder to support identity federation, both service and identity providers
must join together into an authentication domain (also referred to as a circle of
trust). In an authentication domain, providers representing products, services
and partnerships across a wide spectrum of consumer and business enterprises
agree to join together to exchange authentication information using the LAP
specifications. An authentication domain must contain at least one identity
provider (to maintain and manage identity profiles) as well as at least two
service providers. (One organization may be both an identity provider and a
service provider.)

CAUTION In addition to integrating the LAP standards into their networks, organizations in an
authentication domain must come to operational agreements to define their trust
relationships. Operational agreements are a type of contractual relationship
between organizations that defines how the domain will work. Operational
agreements are out of the scope of the LAP specifications and this guide.

The set of ID-FF protocols include:
= Single Sign-on and Federation Protocol

< Name Registration Protocol

36 Access Manager 6 2005Q1 « Federation Management Guide

The Liberty Alliance Project Specifications

= Federation Termination Protocol
= Single Log-out Protocol
= Name Identifier Mapping Protocol

= Additional ID-FF Documents

NOTE More detailed information on the Liberty Identity Federation Framework can be
found in the Liberty ID-FF Protocols and Schema Specifications
(http://www projectliberty.org/specs/draft-Iiberty-idff-protocols-schena-1.2-e
rrata-vl. 0. pdf).

Single Sign-on and Federation Protocol

The Single Sign-on and Federation Protocol defines a request/response protocol by
which a principal is able to authenticate to a service provider, and federate (or link)
their identities. A service provider issues a request for authentication to an identity
provider. The identity provider responds with a message containing authentication
information, or an artifact that points to authentication information which can then
be de-referenced into authentication information. Additionally, the identity
provider can federate the principal’s identity (configured at the identity provider
level) with the principal’s identity (configured at the service provider level).

NOTE Under certain conditions, an identity provider may issue an authentication
response to a service provider without having received an authentication request.

The Single Sign-on and Federation Protocol also defines controls that allow for the
following behaviors:

Account federation. Principals can choose to federate their identity at the
identity provider with their identity at the service provider.

Authentication context. Service providers can choose the type and level of
authentication that should be used when the principal logs in.

Authentication credentials. Principals may be prompted for credentials at the
behest of the service provider.

Account handle. An identity provider can issue an anonymous and temporary
identifier to refer to a particular principal during communication with a service
provider. This identifier is used to obtain information for or about principals (with
their permission) during federation.

Chapter 1 Introduction to the Liberty Alliance Project 37

The Liberty Alliance Project Specifications

38

CAUTION This account handle is generated by the identity provider during federation unlike
the handle that can be generated by the service provider after federation using the
Name Registration Protocol.

Dynamic proxying. An identity provider that is asked to authenticate a principal
it believes has already authenticated via another identity provider may make an
authentication request on behalf of the requesting provider to the authenticating
identity provider.

Identity provider introduction. When an authentication domain has more than
one identity provider, a service provider can use this feature to discover which
identity provider a principal is using.

Message exchange profiles. The authentication request defines how messages
are exchanged between identity providers and service providers. The particular
transfer and messaging protocol (HTTP, SOAP, etc.) used in the exchange are
specified in profiles. Two of them are:

= The Liberty Artifact profile relies on SAML (Secure Access Markup Language)
artifacts and assertions to relay authentication information.

* Liberty Browser POST profile relies on an HTML form to communicate
authentication information between providers.

Name Registration Protocol

The Name Registration Protocol is an optional-use protocol used by the service
provider to create its own opaque handle to identify a principal when
communicating with the identity provider.

CAUTION This handle is not related to the opaque handle generated by the identity provider
during federation as defined in the Single Sign-on and Federation Protocol. The
Name Registration Protocol can, though, be used by the identity provider to change
the opaque handle they registered with the service provider during initial federation.

Federation Termination Protocol

The Federation Termination Protocol defines how one provider (of either type)
notifies another provider (of either type) when a principal has terminated their
identity federation. The notification is in the form of a one-way, asynchronous
message which states that either the service provider will no longer accept
authentication information regarding the particular user, or the identity provider
will no longer provide authentication information regarding the particular user.

Access Manager 6 2005Q1 ¢ Federation Management Guide

The Liberty Alliance Project Specifications

Single Log-out Protocol

The Single Log-out Protocol defines how providers will notify each other of logout
events. This message exchange protocol is used to terminate all sessions when a log
out occurs at the service provider or identity provider level. The particular transfer
and messaging protocol (HTTP, SOAP, etc.) used in the exchange are specified in
profiles. Two of them are:

e The SOAP/HTTP-based profile relies on asynchronous SOAP over HTTP
messaging calls between providers.

e The HTTP Redirect-based profile relies on HTTP redirects between providers.

Name Identifier Mapping Protocol

The Name Identifier Mapping Protocol defines how service providers can obtain
name identifiers for a principal that has federated in the name space of a different
service provider. This can be accomplished by querying an identity provider that
has federated the user with both service providers. This allows the requesting
provider to communicate with the other service provider without an identity
federation for the principal between them.

Additional ID-FF Documents

Additional information explaining the ID-FF specifications can be found in the
documents detailed in Table 0-1.

Table 0-1

Additional Help with the ID-FF

Name of Document

Overview

Liberty ID-FF 1.2 Architecture Overview

http://ww. projectliberty.org/specs/|iberty
-idff-arch-overviewvl. 2. pdf

Liberty ID-FF 1.2 Protocols and Schema
Specification

http://ww. projectliberty.org/specs/draft-|
i berty-idff-protocol s-schema-1.2-errata-vl.
0. pdf

Liberty ID-FF 1.2 Implementation Guidelines

http://ww. projectliberty.org/specs/liberty
-idff-guidelines-vl.2. pdf

The Architecture Overview provides an
architectural description of the ID--FF framework
as well as policy, security and technical notes.

The Protocols and Schema Specification provide
the abstract Liberty protocols for Identity
Federation, Single Sign-on, Name Registration,
Federation Termination, and Single Log-out.

The Implementation Guidelines provide
guidance and checklists for implementing a
Liberty-enabled environment using the ID-FF
Specifications.

Chapter 1 Introduction to the Liberty Alliance Project 39

The Liberty Alliance Project Specifications

40

Table 0-1 Additional Help with the ID-FF

Name of Document Overview
Liberty ID-FF 1.2 Static Conformance The Static Conformance Requirements define
Requirements what features are mandatory and optional for

implementations conforming to this version of

http://ww. projectliberty.org/specs/|iberty the ID-FF Specifications

-idff-1.2-scr-v1. 0. pdf

Liberty Identity Web Services Framework

The ID-FF defines how to implement single sign-on and identity federation to solve
problems related to network identity. The Liberty Identity Web Services Framework
(ID-WSF) builds upon this by providing specifications to build Web services that
retrieve, update, or perform an action on, identity data in a federated network
environment. The specifications outline the technical components necessary to
build Web services that interoperate with identity data, such as a calendar service,
a wallet service, or an alert service. A scenario implementing these specifications
includes the subjects defined below.

= A Web service consumer (WSC) invokes the operations a Web service provides
by making a request to a Web service provider.

= A Web service provider (WSP) implements a Web service based on a request
from a Web service consumer.

Web services are the basis of distributed computing across the Internet. A WSC
locates a Web service and invokes the operations it provides. The WSP is the
application implementing a Web service; it can be on the same Java™ virtual
machine as the WSC, or it can be thousands of miles away. When a WSC needs to
retrieve identity attributes from a WSP, it must first contact a discovery service to
locate where the particular attributes are stored. When this information is returned,
the WSC then contacts the WSP (for example, a personal profile service) to retrieve
the necessary attributes.

NOTE More information on the WSC/WSP process of the Liberty ID-WSF can be found in
“Discovery Service Process” on page 125 of Chapter 6, “Discovery Service.”

The defined features of the ID-WSF include:
< SOAP Binding Specification

= Discovery Service Specification

Access Manager 6 2005Q1 ¢ Federation Management Guide

The Liberty Alliance Project Specifications

= Security Mechanisms Specification

= Data Services Template Specification

= Interaction Service Specification

= Authentication Service Specification

= Client Profiles for Liberty-enabled User Agents or Devices

< Additional ID-WSF Documents

SOAP Binding Specification

The SOAP Binding Specification details a transport layer for handling SOAP
messages. Among other features, it defines SOAP header blocks and processing
rules enabling the invocation of identity services via SOAP requests and responses.
It also specifies how to configure messages for optimum message correlation
(assuring the relationship between a SOAP request and its response), consent
claims (permission to perform a certain action), and usage directives (data
handling policies).

Discovery Service Specification

The Discovery Service Specification defines a framework that enables a client to locate
the appropriate Web service for retrieving, updating, or modifying a particular
piece of identity data. Typically, there are one or more services on a network that
allow entities to perform an action on identity data. To keep track of these services
or to know which can be trusted, clients require a discovery service, essentially a
Web service interface for a registry of resource offerings. A resource offering defines
an association between a piece of identity data and the service instance that
provides access to it. A common use case is when a personal profile, or calendar
data are placed within a discovery resource so that the data can be located by other
entities.

Security Mechanisms Specification

The Security Mechanisms Specification describes the requirements for securing
authorization decisions sent for the discovery, and use, of identity services. The
specified mechanisms provide for authentication, signing and encryption
operations to ensure integrity and confidentiality of the messages.

Data Services Template Specification

The Data Services Template Specification defines how to query and modify identity
data attributes stored in a data service (a Web service that holds data). The
specification also provides some common attributes for data services.

Chapter 1 Introduction to the Liberty Alliance Project 41

The Liberty Alliance Project Specifications

42

Interaction Service Specification

The Interaction Service Specification details communication protocols for identity
services to obtain permission from a principal (or someone who owns a resource
on behalf of that principal) that allows the service to share their identity data with
requesting services.

Authentication Service Specification

The Authentication Service Specification defines how to authenticate parties
communicating via SOAP-based messages. It leverages widely used authentication
services and mechanisms, and facilitates selection of these services and
mechanisms at deployment time. The specification defines:

= An authentication protocol based on the Simple Authentication and Security
Layer (SASL).

= An authentication service that Liberty-enabled clients can use to authenticate
with identity providers.

= Asingle sign-on service that Liberty-enabled providers can use to interact with
each other.

The specification also defines an identity-based authentication security token
service, complementing the more general security token service defined by the
Discovery Service Specification.

Client Profiles for Liberty-enabled User Agents or Devices

The Client Profiles for Liberty-enabled User Agents or Devices describes the
requirements for Liberty-enabled clients interacting with the SOAP-based
Authentication Service. These profiles can enable browsers to perform an active
role in transactions, in addition to the functions of a standard browser.

Additional ID-WSF Documents

Additional information explaining the ID-WSF specifications can be found in the
documents detailed in Table 0-2 on page 43.

Access Manager 6 2005Q1 ¢ Federation Management Guide

The Liberty Alliance Project Specifications

Table 0-2 Additional Help with the ID-WSF

Name of Document Overview
Liberty ID-WSF Web Services Framework The Web Services Framework Overview
Overview provides an architectural description of the

ID-WSF framework including basic usage
scenarios. It also highlights how the ID-WSF
interacts with an identity management
framework (such as the ID-FF).

http://ww. projectliberty.org/specs/|iberty
-i dwsf - over vi ew v1. 0. pdf

Liberty ID-WSF Security and Privacy The Security and Privacy Overview provides an
Overview overview of security and privacy issues in
ID-WSF.

http://ww. projectliberty.org/specs/|iberty
-i dwsf - securi ty- privacy-overvi ew v1. 0. pdf

Liberty Identity Service Interface Specifications

The Liberty Identity Service Interface Specifications (ID-SIS) contain the following
specifications for building these identity-based Web services:

= Personal Profile Service

= Employee Profile Service

Personal Profile Service

The Personal Profile Service defines an identity-based Web service that keeps,
updates, and offers identity data regarding a user. The Personal Profile Service is
characterized by the ability to query and update attribute data and incorporates
mechanisms for access control and conveying data validation information and
usage directives from other specifications. A shopping portal that offers
information such the principal’s account number and shopping preferences is an
example of a personal profile service.

Employee Profile Service

The Employee Profile Service defines an identity-based web service which keeps,
updates, and offers profile information regarding a user’s workplace. An online
corporate phone book that provides an employee name, office building location,
and telephone extension number is an example of an employee profile service.

Chapter 1 Introduction to the Liberty Alliance Project 43

Deploying a Liberty-based System

Supporting Documents

There are many other support documents in the LAP specifications. They include a
metadata service protocol, reverse HTTP bindings, a glossary, and schema files.
More information can be found at the LAP Web site or, more specifically, at
http://ww proj ect|iberty. org/resources/ specifications. php#box4.

Deploying a Liberty-based System

44

This section details a few things to consider when building a successful
Liberty-based implementation.

Size Up Your IT Staff

Although the LAP specifications are aimed at large organizations, small and
medium-sized companies with a saavy IT staff can also roll out a federated identity
system. The specifications are complicated and cross several domains of expertise
(Web services development, XML, networking, and security).

Clean Your Directory Data

The LAP specifications do not specify where you store identity data; they are more
concerned with it’s accuracy. Purge your data store of old identity profiles,
consolidate multiple (or delete duplicated) identity profiles, and ensure privileges
are assigned correctly.

CAUTION Identity Providers should enforce strong passwords. A stolen identity can be
abused across multiple sites in a federated system.

Draft Business Agreements

The LAP specifications assume pre-existing trust relationships between members
in a Circle of Trust. This trust is defined through business arrangements or
contracts that describe the technical, operational, and legal responsibilities of each
party and the consequences for failing in them. When defined, a Liberty trust

Access Manager 6 2005Q1 ¢ Federation Management Guide

Deploying a Liberty-based System

relationship means that one organization trusts another’s user authentication
decisions. That trust among members lets a user log in at one site and access
another site as well: single sign-on (SSO). Ensure that these agreements are in play
before going live with a Liberty-compliant system.

Liberty-compliant Technology

At the minimum, a Liberty-compliant identity server is needed to process
Liberty-based requests and responses. Chapter 2, “Implementation of the Liberty
Specifications” begins our discussion of Sun Microsystems’ implementation of the
LAP specifications, the Sun Java™ System Access Manager.

Chapter 1 Introduction to the Liberty Alliance Project 45

Deploying a Liberty-based System

46 Access Manager 6 2005Q1 « Federation Management Guide

Chapter 2

Implementation of the Liberty
Specifications

Sun Java™ System Access Manager contains Sun Microsystems’ implementation of
the Liberty Alliance Project specifications. This chapter is an overview of how these
specifications have been implemented. It contains the following sections:

e Overview

= Liberty Use Cases

= Access Manager Implementations
= Packages and Global Interfaces

e Liberty-based Samples

Overview

Sun Java System Access Manager is a software product that helps organizations
manage secure access to the resources and Web applications both within the
company and across the Internet. The initial releases of Access Manager (formerly
Sun™ ONE Identity Server) implemented the Liberty Alliance Project (LAP)
Identity Federation Framework (ID-FF) specifications, focusing on account federation,
authentication domains and single sign-on.

NOTE The administration interface for managing the ID-FF implementation can be found
in the Access Manager console by clicking the Federation Management tab in the
Header frame.

47

Overview

Subsequently, Identity Server 2004Q2, added new features defined in version 1.2 of
the ID-FF specifications as well as the version 1.0 specifications of the Liberty
Identity Web Services Framework (ID-WSF). These Web services included a
framework for the retrieval and update of identity data (attributes stored in
identity-based Web services across the Internet), and a client application
programming interface (API) for intracommunication between providers.

NOTE The Web interface for the ID-WSF implementation can be found in the Access
Manager console by clicking the Service Management tab in the Header frame.
Implemented Liberty-based services are listed amongst the other Web services.

This release, Sun Java System Access Manager 2005Q1, continues the
implementation of Liberty-based features. The following sections detail features
added to this latest version of Access Manager 2005Q1.

NOTE The full scope of Liberty Alliance Project features are discussed in Chapter 1,
“Introduction to the Liberty Alliance Project.”

Name ldentifier Mapping Protocol

The new Name Identifier Mapping Protocol, a full protocol in the Liberty ID-FF
Protocols and Schema Specifications

(http://wwn proj ectliberty. org/specs/draft-1iberty-idff-protocol s-schena-1.2-e
rrata-vl. 0. pdf), allows a service provider to obtain a name identifier for a
principal that has federated in the name space of a different service provider.
Implementing this protocol allows the requesting service provider to communicate
with the second service provider without an identity federation having been
enabled. The Nameldentifier Mapping Profile can be found in the Liberty ID-FF
Bindings and Profiles Specification

(http://wwn proj ectliberty. org/specs/draft-1iberty-idff-bindings-profiles-1.2-
errata-vl. 0. pdf).

Single Sign-on and Federation Protocol

The following sections detail changes to the Single Sign-on and Federation
Protocol, part of the Liberty ID-FF Protocols and Schema Specifications

(http://wwn proj ectliberty. org/specs/draft-1iberty-idff-protocol s-schena-1.2-e
rrata-vl. 0. pdf).

48 Access Manager 6 2005Q1 « Federation Management Guide

Overview

Dynamic ldentity Provider Proxying

Dynamic Identity Provider Proxying can be enabled in an authentication request.
For example, one identity provider might be asked to authenticate a principal that
has already been authenticated via a second identity provider. In this case, the first
identity provider may request authentication information from the second identity
provider on behalf of the service provider. Proxy behavior can be controlled by
indicating a list of preferred identity providers, and a value that defines the
maximum number of proxy steps that can be taken. Proxy behavior is defined
locally by the proxying identity provider, although a service provider controls
whether or not to proxy.

Affiliation Federation

Federation based on affiliation to a specified group can be enabled in an
authentication request. If enabled, it would indicate that the requester is acting as a
member of the affiliation group identified. Federations are then established and
resolved based on the specified affiliation, and not the requesting provider. The
process allows for a unique identifier that represents the affiliation.

One-Time Federation

The ability to federate for one session only can be enabled in an authentication
request. This is useful for service providers with no user accounts, for principals
who wish to act anonymously, or for dynamically-created user accounts. It allows
for one-time federation, rather than a one-time name identifier for a session.

Name ldentifier Encryption Profile

The Name Identifier Encryption profile allows for a principal’s name identifier to
be encrypted so that only the provider possessing the decryption key can realize
the identity. The encrypted identifier is a different value when requested by
different providers or multiple times, reducing the chance for correlation of the
encrypted value across multiple logical transactions. The Name ldentifier
Encryption Profile can be found in the Liberty ID-FF Bindings and Profiles
Specification

(http://wwn proj ectliberty. org/specs/draft-1iberty-idff-bindings-profiles-1.2-
errata-vl. 0. pdf).

Chapter 2 Implementation of the Liberty Specifications 49

Liberty Use Cases

Liberty Metadata Description and Discovery
Specification

The Liberty Metadata Description and Discovery Specification, one of the Liberty
Alliance Support Documents,

(http://wwn projectliberty. org/specs/draft-1iberty-netadata-1. 0-errata-v1.0.pd
f) has been upgraded to reflect added profiles, to support identity provider and
service provider descriptors in the same metadata XML file, and to query metadata
over the DNS.

NOTE Due to changes in the Liberty Metadata specification, the Service Management
(SM) Configuration schema in Identity Server 6.2 is not compatible with that in
Identity Server 6.1. SM versioning will be used to support coexistence of the two
when running against an instance of Sun Java System Directory Server. When
upgrading from Identity Server 6.1 to 6.2, metadata migration is required.

Liberty Use Cases

Identity data consists of all the information that companies capture and maintain
about individual customers, corporate partners, and employees. Federating
sources of identity data allows for accessing, transporting, sharing, and managing
the data across and between partnered organizations and applications without
weakening existing security safeguards. Federation management establishes this
unifying network from multiple data stores. There are many ways to use Access
Manager and its Liberty-based implementations to federate sources of identity
data. The following sections detail just a few ways in which the product can be
used.

Unified Access to Intranet Resources

Many corporations provide access to outsourced human resources services, such as
health benefits and 401K plans. The corporate intranet offers central access to these
services, but employees have to log-in and authenticate themselves every time they
access each service. Employees may not want to share the same profile and
password with both their 401K provider and their healthcare provider. Federation
of identity data can also provide seamless integration of Web resources across
multiple security domains within the same enterprise making employee
ease-of-use and control possible.

50 Access Manager 6 2005Q1 « Federation Management Guide

Liberty Use Cases

Integrated Partner Networks

Enterprises can construct a network of partnered services for securely exchanging
customer account information, transaction data, and credentials via a set of
interoperable Web services. Federating among partner networks allows identities
to share key pieces of their respective data without sharing control. For example,
logging onto one Web site that represents an authentication domain consisting of an
airline, a car rental company, and a hotel chain allows an identity to make travel
plans even if one of the sites does not contain an identity data store.

Sample Use Case Process

Figure 2-1 on page 52 illustrates the process of requesting a service and being
authenticated for access. MyRingtones is a service provider in a federation
framework that also acts as a Web service consumer in a Web services framework.
MyWireless is an identity provider in a federation framework that contains access to
the Discovery Service in a Web services framework. MyBank is a Web service
provider in a Web services framework.

NOTE The same Web service can act as a different entity in different frameworks.

The user attempts to access MyRingtones and, after being prompted for credentials
stored in MyBank, receives authorization through MyWireless. Single sign-on is
accomplished in the back-end, and the entire process is based on the
implementations of the ID-FF, ID-WSF, and ID-SIS specifications of the LAP.

Chapter 2 Implementation of the Liberty Specifications 51

Access Manager Implementations

Figure 2-1 Process of Federation, Web Services & Service Instances Framework

MyRingtones —— MyWireless — MyBank
User Agent Service Provider Identity Discovery Personal
(also acts as Provider Service Profile Service
Web Service (Web Service
Consumer) Provider)

1. Single sign-on authorized by Identity Brovider
= — — — e — — — >

2. Returns assertion including Discovery|Service location

3. Request service
"

4. Request Personal|Profile Service (WSP) location

5. Provide Personal [Profile Service (WSP) location

6. Request user attrjibutes

7. Provide user attrjbutes

8. Provide service

Access Manager Implementations

52

Access Manager is installed with a set of default Liberty-based Web services. They,
and the larger Federation Management module, are introduced in the following
sections.

Web Services

Liberty-based Web services (based on the Liberty Identity Web Services
Framework) are accessible from the Access Manager console by clicking the Service
Management tab in the Header frame. Implemented services are listed
alphabetically among other Access Manager Web services. Figure 2-2 is a screen
shot of this.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Access Manager Implementations

Figure 2-2 Web Services Listed in Access Manager Console

T N

Ibentity Management E=gf A sOI T ALY Current Sessions | Federation Management

Service Conliguration 21| Admanistration
(Save [Reset |
Access Manager Conflguration
b Global
Authentication Configuration b Enable =]
Authentication Modules Federation
Active Directory b Management:
Arorymous | Enable Lser
Certificate ¥ Maragermant
Core, 3 Show People
HIT# Basic B Contalners:
LEC § sh
LDAP b W S
Cortairers in
Membership b :
MEISON b Wiaw Maru
RADILE b Show Group
Safeword | =] Contairers
SabML b Managed Dynamic =]
SeoxD b Group Type:!
LRGEX. b Default Role
3 ’ Crgardzation Admin]Organization Admin Cesoription| ORG
x':g:w: (N"_?ﬁk‘tﬂﬂ S50 b Permissions: | Arganization Help Desk Admin|Organization Help Desk A
ik o Permission|Mo Permission Description|
Authentication Web Service k COrganization Policy Admin|Organization Palicy Admin Des

Client Detection b
Discevery Service |
Globalization Settings ¥

Libserty Personal Profile 2

Servioe ACEE grant admiresIrative prviledpes when reating new roles
Loggirg B [

Naming §

bamsiesd et} (et Ceever]
Platform b Enable]

Palicy Configuration b Daomain

SAML) Component

Session b Tres

S0P Birding) Enable n

User ¥ Adminestrative

Authentication Web Service

The Authentication Web Service provides Web service-based authentication to a
Web service consumer (WSC), allowing the WSC to obtain security tokens for

further interactions with other services at the same provider. These other services

may include a discovery service or single sign-on service. The implementation of
the Access Manager Authentication Web Service is based on the Liberty Alliance

Project (LAP) “Authentication Service Specification.” The Access Manager
Authentication Web Service is for service-to-service (non-user) authentication.
More information can be found in Chapter 4, “Authentication Web Service.”

Chapter 2 Implementation of the Liberty Specifications

53

Access Manager Implementations

54

CAUTION The Liberty-based Authentication Web Service is not to be confused with the
proprietary Access Manager Authentication Service discussed in the Sun Java
System Access Manager Developer’s Guide (htt p://docs. sun. conf doc/ 817- 5710).

Discovery Service

The Discovery Service is an identity service that allows a requesting entity, such as
a service provider, to dynamically determine a principal’s registered attribute
provider. Typically, a service provider queries the Discovery Service, which
responds by providing a resource offering describing the requested attribute
provider. (A resource offering defines associations between a piece of identity data
and the service instance that provides access to it.) The implementation of the
Access Manager Discovery Service is based on the LAP “Discovery Service
Specification” and includes Java and Web-based interfaces. More information can
be found in Chapter 6, “Discovery Service.”

NOTE By definition, a discoverable service is assigned a service type URI (typically done
in the specification defining the service) allowing their registration in Discovery
Service instances.

Liberty Personal Profile Service

The Liberty Personal Profile Service is an identity service that supports the storage
and modification of identity data attributes regarding principals. Identity data
attributes might include information such as first name, last name, home address,
and emergency contact information. The Liberty Personal Profile Service is queried
or updated by a WSC acting on behalf of the principal. The implementation of the
Access Manager Liberty Personal Profile Service is based on the LAP “Personal
Profile Service.” More information can be found in Chapter 5, “Data Services.”

SOAP Binding

The SOAP Binding is a set of Java APIs used by the developer of a Liberty-enabled
identity service that describes how to send and receive identity-based messages
using SOAP, an XML-based messaging protocol. The implementation of the Access
Manager SOAP Binding Service is based on the LAP “SOAP Binding
Specification.” More information can be found in Chapter 7, “SOAP Binding
Service.”

Access Manager 6 2005Q1 ¢ Federation Management Guide

Access Manager Implementations

Application Programming Interfaces

A number of the Liberty-based Web services specifications have also been
implemented in the back end of the Access Manager product as APIs. They include
the interaction service, and PAOS binding. More information can be found in
Chapter 8, “Application Programming Interfaces.”

Federation Management Module

The Federation Management module (based on the Liberty Identity Federation
Framework) provides an interface for creating, modifying, and deleting
authentication domains and, service and identity providers (both remote and
hosted types) for a federated model. It is accessible through the Federation
Management tab in the Header frame of the Access Manager console. Figure 2-3 on
page 55 is a screen shot of this.

Figure 2-3 Federation Management Module in Access Manager Console
Logout Help

. | 'Welcome
n Access M r amadmin

Identity Management [Service Configuration Federation Management

Federation Management test
View: [Authentication Domains = Description: [
Writer Service |
Authentication Domains (1 item) URL: Specifies the location of the Writer service that writes the cookie
New... || Delete [ﬁ Seard from the Common Domain.
Name Reader Service |
r EEst) URL: Specifies the location of the Reader service that reads the cookie
from the Common Domain,
Status: @ Active
©Inactive

The following steps illustrate the basic procedure for creating a federation model.
1. Create an authentication domain.
2. Create one or more hosted providers that belong to the authentication domain.

3. Create one or more remote providers that belong to the authentication domain.
You must also include the metadata for the remote providers.

Chapter 2 Implementation of the Liberty Specifications 55

Packages and Global Interfaces

4. Establish a trusted relationship between the providers. A hosted provider can
choose to trust a subset of providers, either hosted or remote, that belong to the
same authentication domain.

NOTE The Federation Management module is the Web interface for the Access Manager
implementation of the Liberty Identity Federation Framework.

Packages and Global Interfaces

56

Table 2-1 summarizes the public application programming interface (API) you can
use to deploy Liberty-enabled components or extend the core services. For detailed
API reference that includes classes, methods and their syntax and parameters, see
the Javadocs in / AccessManager_base/ SUNVni docs.

Table 2-1 Summary of Liberty-based Packages

Package Name Description

comsun.identity.liberty.ws.c Defines common classes used by many of the Access
ommon Manager Liberty-based Web service components. See
“Common Service Interfaces” on page 155.

comsun.identity.liberty.ws.c Provides an interface to parse and create a X.509 Certificate
onon. wsse Token Profile. See “Interaction Service API” on page 159.

comsun.identity.liberty.ws.d Provides interfaces to manage the Discovery Service. See
i sco Chapter 6, “Discovery Service” on page 121.

comsun.identity.liberty.ws.d Provides a plugin interface for the Discovery Service. See
i sco. pl ugi ns Chapter 6, “Discovery Service” on page 121.

comsun.identity.liberty.ws.d Provides classes to implement an identity service on top of

st the Access Manager framework. The Data Services
Template (DST) specification defines how to query and
modify data stored in a data service, and provides some
common attributes for the data services. From the
implementation point of view, all the identity services must
be built on top of the DST which provides the data model
and message interfaces for all identity services. See
“Interaction Service API” on page 159.

comsun.identity.liberty.ws.i Provides classes to support the Interaction RequestRedirect
nteraction Profile. See “Interaction Service API” on page 159.
comsun.identity.liberty.ws.i Provides interfaces common to all Access Manager
nterfaces Liberty-based Web service components. “Common Service

Interfaces” on page 155.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty-based Samples

Table 2-1 Summary of Liberty-based Packages

Package Name Description

comsun.identity.liberty.ws.p Provides classes for Web applications to construct and

aos process PAOS requests and responses. See “PAOS
Binding” on page 161 of Chapter 8, “Application
Programming Interfaces.”

comsun.identity.liberty.ws.s Provides interface to manage Liberty-based Web service

ecurity security mechanisms. See “Common Security API” on
page 157.
com sun. | iberty Provides interfaces common to the Access Manager

Federation Management module. See “Federation
Management API” on page 87.

Liberty-based Samples

Access Manager has included sample code and files that can be used to understand
the implementation of the LAP specifications. Information on the specifics of these
samples can be found in Appendix A, “Included Samples.”

Chapter 2 Implementation of the Liberty Specifications 57

Liberty-based Samples

58 Access Manager 6 2005Q1 « Federation Management Guide

Chapter 3

Federation Management

Sun Java™ System Access Manager provides an interface for creating, modifying,
and deleting authentication domains and, service and identity providers (both
remote and hosted types). This chapter is an overview of how to use this module to
create a Liberty-based federation. It contains the following sections:

e Overview

= The Federation Management Interface
= The Process of Federation

= Common Domain Services

= Federation Management

= Federation Management API

= Federation Management Samples

Overview

The Federation Management module is the Access Manager implementation of the
Liberty Alliance Project (LAP) Liberty Identity Federation Framework (ID-FF)
specification. The ID-FF defines a set of protocols, bindings and profiles that
provides a solution for identity profile federation, cross-domain authentication and
session management. The Federation Management module is the Access Manager
Web interface to the ID-FF implementation. It is accessible through the Federation
Management tab in the Header frame of the Access Manager console.

59

The Federation Management Interface

NOTE More detailed information on the Liberty Identity Federation Framework can be
found in the Liberty ID-FF Protocols and Schema Specifications
(http://wmw projectliberty.org/specs/draft-Iiberty-idff-protocols-schena-1.2-e
rrata-vl. 0. pdf).

The Federation Management Interface

60

The Federation Management module uses JavaServer Pages™ (JSP) to define its
look and feel. JSP are HTML files that contain additional code to generate dynamic
content. More specifically, JSP contain HTML code to display static text and
graphics, as well as application code to generate information. When the page is
displayed in a Web browser, it will contain both the static HTML content and, in
the case of the Federation Management module, dynamic content retrieved via
calls to the Federation Management API. An administrator can customize the look
and feel of the interface by changing the HTML tags in the JSP, but the APIs
invoked must not be changed. The JSP are located in

| AccessManager_base/ SUNVan web- sr ¢/ ser vi ces/ confi g/ f eder ati on/ defaul t. The
files in this directory provide a default interface to the Federation Management
module. To customize it for a specific organization, this default directory can be
copied and renamed to reflect the name of the organization (or any value). It would
then be placed at the same level as the default directory and the files within this
directory would be modified as needed. Table 3-1 is a list of the JSP with details on
what each page is used for and the invoked APIs that cannot be modified. More
information on modifying these pages to customize the console can be found in the
Sun Java System Access Manager 6 2005Q1 Developer’s Guide

(http://docs. sun. conl doc/ 817- 7649).

Table 3-1 Federation Management Module JSP

File Name and its Purpose Invoked APIs

CommonLogin.jsp displays the links tothe login + LibertyManager.getLoginURL(request)
pages of the trusted identity providers as well as
the local login page. Itis displayed when the user
is not logged in locally or at an identity provider * LibertyManager.getIDPList(providerID)
site. The list of identity providers is obtained by
the get | DPLi st (host edPr ovi der | D)

method. ¢ LibertyManager.getSuccintID(idpID)

« LibertyManager.getinterSite URL (request)

« LibertyManager.getNewRequest(request)

¢ LibertyManager.cleanQueryString(request)

Error.jsp displays an error page when an error No APIs are invoked.
has occurred.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Table 3-1

The Federation Management Interface

Federation Management Module JSP (Continued)

File Name and its Purpose

Invoked APIs

Federate.jsp is displayed when the user clicks a
Federate link. It displays a drop-down list of all
providers with which the user is not yet
federated. This list is constructed from the

get Provi der sToFeder at e(user Nane,
provi der| D) method.

FederationDone.jsp displays the status of
federation (success or cancelled). It checks this
status using the

i sFeder ati onCancel | ed(request)
method.

Footer.jsp displays a branded footer included on
all the pages.

Header .jsp displays a branded header included
on all the pages.

ListOfCOTs.jsp displays a list of Circles Of
Trust. When a user is authenticated by an
identity provider and the service provider belongs
to more than one Circle Of Trust, they will be
shown this JSP to select an authentication
domain as their preferred domain. In the case
that the provider belongs to only one domain, this
page will not be displayed. The list is obtained by
using the get Li st OF COT's(pr ovi der | D)
method.

LogoutDone.jsp displays the status of the local
logout operation.

NameRegistration.jsp is displayed when a
federated user chooses to register a new Name
Identifier from a service provider to an identity
provider. When the Name Registration link is
clicked, this JSP is displayed.

NameRegistrationDone.jsp displays the status
of NaneRegi st rat i on. j sp. When finished,
this page is displayed.

* LibertyManager.isLECPProfile(request)

« LibertyManager.getAuthnRequestEnvelope(
request)

¢ LibertyManager.getUser(request)

¢ LibertyManager.getProvidersToFederate(pr
oviderlD,userDN)

¢ LibertyManager.isFederationCancelled(requ
est)

No APlIs are invoked.

No APlIs are invoked.

¢ LibertyManager.getListOfCOTs(providerID)

¢ LibertyManager.isLogoutSuccess(request)

¢ LibertyManager.getUser(request)

¢ LibertyManager.getRegisteredProviders(use
rDN)

¢ LibertyManager.isNameRegistrationSuccess
(request)

¢ LibertyManager.isNameRegistrationCancele
d(request

Chapter 3 Federation Management 61

The Process of Federation

Table 3-1 Federation Management Module JSP (Continued)

File Name and its Purpose Invoked APIs

Termination.jsp is displayed when the user ¢ LibertyManager.getUser(request)
clicks the defederate link. It shows a drop-down
menu of all providers to which the user has
federated; from this list, the user can choose to
defederate. The list is constructed using the
get Feder at edPr ovi der s(user Nane)
method which returns all active providers to
which the user is already federated.

* LibertyManager.getFederatedProviders(user
DN)

TerminationDone.jsp displays the status of ¢ LibertyManager.isTerminationSuccess(requ
federation termination (success or cancelled). It est)

checks status using the

i sTerm nationCancel | ed(request)
method.

¢ LibertyManager.isTerminationCanceled(req
uest)

The Process of Federation

62

The process of federation begins with authentication. By default, Access Manager
comes with two options for user authentication. The first is the proprietary
Authentication Service; the second is the Liberty-enabled Federation process. With
the proprietary option, users attempting to access a resource protected by Access
Manager are redirected to the Authentication Service via an Access Manager login
page. After they provide credentials, the Authentication Service allows or denies
access to the resource based on the outcome.

NOTE For more information on the proprietary Authentication Service, see Chapter 4,
Authentication Service in the Sun Java System Access Manager 6 2005Q1 Developer’s
Guide (http://docs. sun. conl doc/ 817- 7649).

With Liberty-enabled federation, when a principal attempts to access a Web site
belonging to a member provider from an authentication domain, the process
begins with a search for a valid Access Manager session token from the
Authentication Service. If a session token is found, the principal is granted (or
denied) access. Assuming access is granted, the page then displayed would contain
a link that provides the principal an opportunity to federate the authenticated
identity provider identity with the accessed service provider identity. When the
principal clicks this link, the Single Sign-on Process process begins.

If no session token is found, the principal is directed through the Pre-login Process.
Figure 1-1 illustrates these different paths.

Access Manager 6 2005Q1 ¢ Federation Management Guide

The Process of Federation

Figure 3-1 Liberty-based Access Manager Authentication Process Flow

Usar attampts to [0 User Interaction
access protected .
web resource. [Identity Server Components

B Liberty-based components

No Is SSO token Yes

Pre-Login Processes

Is Federation
cookie present?

Federation
cookie
value = yes?

Show local login
page.

4

User presents
Send credentials.
authentication
request to .
identity provider A 4
(IDP).

Show requested
page with
Federated link.

Y
Did IDP send User clicks link,
valid response? enables
P Federation.

Federation Processes

Show IDP List.
Yes
User selects an IDP.
) 4 : Send Federation
Sl .
t"‘ * request.

Generate SSO L L e e S i s il :
token and create
a session.

Chapter 3 Federation Management 63

The Process of Federation

64

Pre-login Process

The pre-login process establishes a valid session. When a principal attempts to
access a service provider site and no Access Manager session token is found, the
pre-login process then begins with the search for a federation cookie.

NOTE A federation cookie is a cookie implemented by Access Manager with the name
f edCooki e. It can have a value of either yes or no based on the principal’s
federation status. It is NOT detailed in the Liberty Alliance Project specifications.

The pre-login process can take one of the following paths:

= Ifafederation cookie is found and its value is no, an Access Manager login
page is displayed and the principal submits credentials to the Authentication
Service. When authenticated by Access Manager, the principal is redirected to
the requested page which might contain a link to allow for identity federation.
If the user clicks this link, the Single Sign-on Process begins.

= |fafederation cookie is found and its value is yes, the principal has already
federated an identity but has not been authenticated by an identity provider
within the authentication domain for this session. Authentication to Access
Manager is accomplished on the back-end by sending a request to the
principal’s identity provider. After authentication, the principal is directed
back to the requested page.

= If no federation cookie is found, a passive authentication request is sent to the
principal’s identity provider. (A passive authentication request does not allow
identity provider interaction with the principal.) If an affirmative
authentication is received back from the identity provider, the principal is
redirected to the Access Manager Authentication Service a session token is
granted and the principal is redirected to the requested page. If the response
from the identity provider is negative (for example, if the session has timed
out), the principal is sent to a common login page to complete either a local
login or the Liberty-enabled Single Sign-on Process.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Common Domain Services

Single Sign-on Process

When a principal logs in for access to a protected resource or service, Access
Manager sends a request to the appropriate identity provider for authentication
confirmation. If the identity provider sends a positive response, the principal gains
access to all provider sites membered within the authentication domain. If the
identity provider sends a negative response, the principal is directed to
authenticate again using the Liberty-enabled single sign-on process.

In Liberty-enabled single sign-on, principals select an identity provider and send
their credentials for authentication. (This is accomplished through the Common
Domain Services.) Once authentication is complete and access is granted, the
principal is automatically issued a session token from the Access Manager
Authentication Service, and redirected to the requested page. As long as the
session token remains valid, the principal can access other service providers in the
authentication domain without having to sign on again.

Common Domain Services

The Common Domain Services allow a service provider to discover the specific
identity provider used by a principal in an authentication domain with multiple
identity providers. The Services rely on a cookie that is written in a domain that is
common to all identity providers and service providers in the authentication
domain. The domain (predetermined by all members of the authentication
domain) is known as the common domain. The Common Domain Services use a
common domain cookie (which contains a list of Base64-encoded identity provider
identifiers) to determine the preferred identity provider.

NOTE The Common Domain Services are based on the Identity Provider Introduction
Profiles detailed in the Liberty ID-FF Bindings and Profiles Specifications located at
http: //ww. proj ectliberty.org/specs/draft-Iliberty-idff-bindings-profiles-1.2-
errata-v2. 0. pdf.

Let’s assume an authentication domain contains more than one identity provider.
Because of this, a service provider in the authentication domain trusts more than
one identity provider. But, a principal can only issue a federation request to one
identity provider so, the service provider to which the principal is requesting
access must discover the correct one. When the request contains no common

Chapter 3 Federation Management 65

Common Domain Services

66

domain cookie, the service provider presents a list of trusted identity providers
from which the principal may choose. When the request contains a common
domain cookie, the service provider reads the cookie to discover the correct
identity provider.

Installing the Common Domain Services

The Common Domain Services for Federation Management are installed as one
Web application within the Access Manager product using the Sun Java Enterprise
System installer. However, they can also be installed as one Web application
(separate from the Access Manager product) on a J2EE™ web container using the
same installer.

NOTE For more information on installing the service, see the Sun Java Enterprise System
Installation Guide on docs. sun. com As of this writing, the latest version is available
at htt p://docs. sun. coni doc/ 817- 5760.

Common Domain Service URLs

In Access Manager, the Common Domain Services are exposed through two URLs
that point to services developed for writing and reading the common domain
cookie. The URLs are defined as attributes when an authentication domain is
created.

NOTE The Reader and Writer service URLs are Access Manager specific. The concepts
are not defined in the Liberty ID-FF Bindings and Profiles Specifications.

The format for the Writer Service URL is:
protocol://common_domain_hostname:port/deloy_uri/writer
The format for the Reader Service URL is:
protocol://common_domain_hostname:port/deloy_uri/transfer

See “To Create An Authentication Domain” on page 67 for information on
configuring these attributes.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Federation Management

Federation Management

The Federation Management module in the Access Manager console provides an
interface for creating, modifying, and deleting providers, authentication domains,
and affiliations. The subsequent sections define these concepts and detail
procedures for using the Federation Management interface.

NOTE In a federation setup, all service providers and identity providers must share a
synchronized clock. You can implement the synchronization by pointing to an
external clock source or by ensuring that, in case of delays in receiving responses,
the responses are captured without fail through adjustments of the timeouts.

Authentication Domains

An authentication domain (also referred to as a circle of trust) is a federation of any
number of service providers and, at least, one identity provider with whom
principals can transact business in a secure and apparently seamless environment.
The members of the domain have established business relationships based on the
LAP architecture and operational agreements.

NOTE An authentication domain is not a domain in the domain name system (DNS) sense
of the word.

Creating and Maintaining Authentication
Domains

The following sections describe how to create, modify, and delete authentication
domains using the Access Manager console.

To Create An Authentication Domain

1. Choose Authentication Domain from the View menu in the Navigation pane of
the Federation Management module.

2. Click New in the Navigation pane.
The New Authentication Domain attributes are displayed in the Data pane.
3. Enter a name for the authentication domain.

This is a required field.

Chapter 3 Federation Management 67

Federation Management

68

To

To

Enter a description of the authentication domain in the Description field.
Enter a value for the Writer Service URL.

The Writer Service URL specifies the location of the service that writes the
common domain cookie. The URL is in the format:

ht t p: / / common_domain_host:port/ conmon/ wri t er
Enter a value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the
common domain cookie. The URL is in the format:

ht t p: / / common_domain_host:port/ conmon/ t r ansf er
Select Active or Inactive.

The default status is Active. Selecting Inactive disables communication within
the authentication domain.

Click OK.

The new authentication domain is now displayed in the Navigation pane.

Modify An Authentication Domain

Click on the Properties arrow next to the authentication domain you wish to
modify in the Navigation pane of the Federation Management module.

The authentication domain’s properties are displayed in the Data pane.
Modify the properties of the authentication domain.

Click Save.

Delete An Authentication Domain

Choose Authentication Domains from the View menu in the Navigation pane
of the Federation Management module.

All created Authentication Domains display in the Navigation pane.
Check the box next to the name of the Authentication Domain to be deleted.

Click Delete.

CAUTION Deleting an authentication domain does not delete the providers that belong to it.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Federation Management

Entity Descriptors

An entity descriptor contains one or more descriptions of individual providers, or
affiliations. In the Access Manager Liberty implementation, there are two types:

= Provider Entity Descriptor

= Affiliate Entity Descriptor

Provider Entity Descriptor

The provider entity descriptor holds information configured for providers (both
service and identity) associated with an authentication domain. Within this
descriptor, the provider combinations detailed in Table 3-2 can be represented.

Table 3-2 Possible Provider Combinations for Provider Entity Descriptor

Entity Description

Single Provider This document defines one service or identity provider entity that can be
referenced using a configured pr ovi der | D.

Multiple Providers This document combines multiple provider entities by referencing their
configured provi der | D.

Affiliate Entity Descriptor

The affiliate entity descriptor holds information configured for a group of
providers, but this group is formed outside of the boundaries of an authentication
domain. This affiliation is formed and maintained by an affiliation owner that
chooses trusted providers without regard to their particular authentication
domain. This descriptor does not contain single or multiple providers unless they
are specifically configured as an affiliation. An affiliation document describes a
group of providers collectively identified by one pr ovi der | Dand maintained by an
affiliation owner (referenced by its af fi | i at i onOaner | D). The document lists each
member using their configured provi der | D.

NOTE More information on entity descriptors can be found in the Liberty Metadata
Description and Discovery Specification
(http://ww projectliberty.org/specs/draft-1iberty-netadata-1.0-errata-v2.0.pd

).

Chapter 3 Federation Management 69

Federation Management

Creating and Maintaining Entity Descriptors

Creating an entity descriptor using the Access Manager console is a two-step
process. First, you create the entity descriptor itself. Then, you populate the
descriptor with provider information (either service or identity) or an affiliation,
depending on the descriptor created. The following sections describe how to
create, modify, and delete entity descriptors using the Access Manager console.

To Create an Entity Descriptor of Either Type

1. Choose Entity Descriptors from the View menu in the Navigation pane of the
Federation Management module.

2. Click New in the Navigation pane.
The New Entity Descriptor attributes are displayed in the Data pane.
3. Enter a value for the Entity ID.

This required field should specify the URL identifier of the entity. It must be
unique across all entities.

4. Enter a description of the entity descriptor in the Description field.
5. Select Provider or Affiliate to define the Type.
a. Ifyou select Provider, click OK.

b. If you select Affiliate, enter a value for both the Affiliate ID and Affiliate
Owner ID attributes and click OK.

The Affiliate ID should specify the URL identifier of the affiliate. It must be
unique across all entities. The Affiliate Owner ID is the Provider ID of the
owner or parent operator of the affiliation, from which additional
metadata can be received. These fields are required.

The new entity descriptor is now displayed in the Navigation pane.

To Configure a Provider Entity Descriptor

1. Choose Entity Descriptors from the View menu in the Navigation pane of the
Federation Management module.

2. Select the desired provider entity descriptor.

The entity descriptor’s attributes are displayed in the Data pane.

To Configure General Attributes for a Provider Entity Descriptor
After selecting the desired provider entity descriptor from the Navigation pane:

70 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management

Select General from the View menu in the Data pane and provide information
for the following attributes (separated into three groups):

Entity Common Attributes

a.

b.

Entity Type. The static value of this attribute is Provider.
Description. Enter a description of the provider.

Valid Until. Enter the expiration date for the metadata pertaining to the
provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ
For example, 2004- 12- 31T12: 30: 00. 0- 0800

Cache Duration. Enter the maximum amount of time the entity descriptor
can be cached. The value is defined in the format:

PnYnMnDTnHNMNS, where n is an integer variable.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1 year, 2
months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Entity Contact Person

f.

g.

First Name. Enter the first name of the entity’s contact person.
Last Name. Enter the last name of the entity’s contact person.

Type. Select the type of entity from the drop down menu. The choices are
Billing, Technical, Administrative, and Other.

Company. Enter the name of the company to which the contact person is
employed.

Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

Email. Enter the email address of the contact person.

Telephone. Enter the telephone number of the contact person.

Entity Organization

a.

Name. Enter the name of the entity’s organization. The value is defined in
the format:

locale | organization_name

For example, en]organization_name. com

Chapter 3 Federation Management 71

Federation Management

b. Display Name. Enter the display nhame of the entity’s organization. The
value is defined in the format:

locale] organization_display_name
For example, en]organization_display_name. com
c. URL. Enter the URL of the organization. The value is defined in the format:
locale | organization_URL
For example, en|htt p: // waw. organization_name. com
2. Click Save.
To Configure Identity Provider Attributes for a Provider Entity Descriptor
After selecting the desired provider entity descriptor from the Navigation pane:

1. Select Identity Provider from the View menu in the Data pane to add an
identity provider to the entity descriptor.

2. Click the New Provider button to display the New Provider Wizard.

a. Provide information for the following Common Provider attributes
displayed in Step 1.

I. Provider ID. Enter a unique identifier for the provider.
Il. Description. Enter a description of the provider.

. Provider is Hosted or Remote. Select Local if the provider is hosted on
the same server as Access Manager or Remote, if not. By default,
Remote is selected.

CAUTION Attributes displayed and configured in subsequent steps depend on the type
defined for the Provider is Hosted or Remote attribute.

IV. Valid Until. Enter the expiration date for the metadata pertaining to
the provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ
For example, 2004- 12- 31T12: 30: 00. 0- 0800

V. Cache Duration. Enter the maximum amount of time an entity
descriptor can be cached. The value is defined in the format:

PnYnMnDTnHNnMNRS, where n is an integer.

72 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management

For example, P1Y2M4DT9H8M20S defines the cache duration as 1
year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

VI. Protocol Support Enumeration. Select the protocol release supported
by this entity.

urn:liberty:iff:2003-08 refers to the Liberty ldentity Federation
Framework version 1.2 and urn: | i berty: i ff:2002- 12 refers to the
Liberty Identity Federation Framework version 1.1.

VII. Server Name Identifier Mapping Binding. Enter a URI describing the
SAML authority binding used by the identity provider. Identifier
mapping queries are able to locate and communicate with the SAML
authority using this URI.

VIIl. Additional Meta Locations. Enter the location of other relevant
metadata concerning the provider.

Signing Key

I. Key Alias. Enter the signing certificate key alias used to sign requests
and responses for a hosted (local) provider. For a remote provider, this
is a public key that the provider uses to verify the signatures.

Encryption Key

I. Key Alias. Enter the security certificate alias. Certificates are stored in
a JKS keystore file. Each specific certificate is mapped to an alias which
is used to fetch the certificate.

Il. Key Size. Enter the length for keys used by the Web service consumer
when interacting with another entity.

ll. Encryption Method. Choose the method of encryption. The choices
are None, 3DES, AES, and DES.

b. Click Next to provide information for the following Communications and
Service Provider attributes displayed in Step 2.

CAUTION Some of the following attribute subsections are displayed based upon whether the
identity provider is defined as Remote or Hosted (Local) in Step Il on page 72. This
is called out in parentheses next to the heading.

Communication URLs

I. SOAP Endpoint URL. Enter a location for the identity provider’s
SOAP messages receiver.

Chapter 3 Federation Management 73

Federation Management

VI.

VII.

VIIL.

This value communicates the location of the SOAP receiver in
non-browser communications.

Single Sign-On Service URL. Enter a location to which service
providers can send single sign-on and federation requests.

Single Logout Service URL. Enter a location to which service
providers can send logout requests.

Single logout synchronizes the logout functionality across all sessions
authenticated by the identity provider.

Single Logout Return URL. Enter a location to which the identity
provider will redirect the principal after completing a logout.

Federation Termination Service URL. Enter a location to which a
service provider will send federation termination requests.

Federation Termination Return URL. Enter a location to which the
identity provider will redirect the principal after completing
federation termination.

Name Registration Service URL. Enter a location to which a service
provider will send requests to specify the name identifier that will be
used when communicating with the identity provider about a
principal.

Registration can occur only after a federation session is established.

Name Registration Return URL. Enter a location to which the identity
provider will redirect the principal after HTTP name registration has
been completed.

Authentication Service URL. Enter a location for the identity
provider’s ID-FF-based Authentication Service.

Communication Profiles

Federation Termination Profile. Select a profile to notify other
providers of a principal’s federation termination. The choices are
SOAP and HTTP/Redirect.

Single Logout Profile. Select a profile to notify other providers of a
principal’s logout. The choices are SOAP and HTTP/Redirect.

Name Registration Profile. Select a profile to notify other providers of
a principal’s name registration. The choices are SOAP and
HTTP/Redirect.

74 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management

IV. Single Sign-on/Federation Profile. Select a profile used by a hosted
provider for sending authentication requests. The choices are:

* LECP (Liberty-enabled Client Proxy)
* Browser Post (specifies a browser-based HTTP POST protocol)
* Browser Artifact (specifies a non-browser SOAP-based protocol)

V. Enable Name Identifier Encryption. Select the check box to enable
encryption of the name identifier.

Proxy Authentication Configuration (only displayed when identity provider is
defined as Remote)

I. Enable Proxy Authentication. If selected, this attribute enables proxy
authentication for a service provider.

Il. Proxy Identity Providers List. This attribute displays the list of
identity providers that can be proxied for authentication.

. Maximum Number Proxies. This attribute specifies the maximum
number of identity provider proxies.

IV. Use Introduction Cookie For Proxying. If enabled, introductions will
be used to find the proxying identity provider.

Access Manager Configuration (only displayed when identity provider is
defined as Hosted (Local))

I. Provider URL. Enter the URL of the local identity provider.
Il. Alias. Enter an alias name for the local identity provider.

. Authentication Type. Select the provider that should be used for
authentication requests from a provider hosted locally. Remote
specifies that the provider hosted locally would contact a remote
identity provider upon receiving an authentication request. Local
specifies that the provider hosted locally should contact a local identity
provider upon receiving an authentication request (essentially, itself).

IV. Default Authentication Context. Select the authentication context to
be used if the identity provider does not receive it as part of a service
provider request. It also specifies the authentication context used by
the service provider when an unknown user tries to access a protected
resource. The choices are Previous-Session, Time-Sync-Token,
Smartcard, MobileUnregistered, Smartcard-PKI, MobileContract,
Password, Password-ProtectedTransport, MobileDigitallD, and
Software-PKI.

Chapter 3 Federation Management 75

Federation Management

VI.

VII.

VIIL.

XI.

Forced Authentication at Identity Provider. Select the check box to
indicate if the identity provider must reauthenticate (even during a
live session) when an authentication request is received.

Request Identity Provider to be Passive. Select the check box to
specify that the identity provider must not interact with the principal
and must interact with the user

Organization DN. Enter the location of the DN of the organization if
each hosted provider chooses to manage users across different
organizations leading to a hosted model.

Liberty Version URI. Enter the URI of the version of the Liberty
specification.

Name Identifier Implementation. This field allows the option for a
service provider to participate in name registration. Name registration
is a profile by which service providers specify a principal’s name
identifier that an identity provider will use when communicating to
the service provider.

Provider Home Page URL. Enter the URL of the home page of the
identity provider.

Single Sign-on Failure Redirect URL. Enter the URL to which a
principal will be redirected if single sign-on has failed.

SAML Configuration (only displayed when identity provider is defined as
Hosted (Local))

Assertion Interval. Enter the interval of time for which an assertion
issued by the identity provider will remain valid. A principal will
remain authenticated until the assertion interval expires.

Cleanup Interval. Enter the interval of time before assertions stored in
the identity provider will be cleared.

Artifact Timeout. Enter an interval to specify the timeout of a identity
provider for assertion artifacts.

Assertion Limit. Enter a number to define the amount of assertions an
identity provider can issue, or the number of assertions that can be
stored.

Click Next to provide information for the following Organization
Attributes and Contact Persons attributes displayed in Step 3.

Organization

76 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management

Name. Enter the name of the entity’s organization. The value is
defined in the format:

locale] organization_name
For example, en]organization_name. com

Display Name. Enter the display name of the entity’s organization.
The value is defined in the format:

locale] organization_display_name
For example, en]organization_display_name. com

URL. Enter the URL of the organization. The value is defined in the
format:

locale | organization_URL

For example, en]htt p: // waw. organization_name. com

Click New to access the attributes for Contact Persons.

Contact Persons

VI.

VII.

First Name. Enter the first name of the entity’s contact person.
Last Name. Enter the last name of the entity’s contact person.

Type. Select the type of entity from the drop down menu. The choices
are Billing, Technical, Administrative, and Other.

Company. Enter the name of the company to which the contact person
is employed.

Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

Email. Enter the email address of the contact person.

Telephone. Enter the telephone number of the contact person.

Click OK to save the values assigned to the Contact Person attributes.

Click Next to configure the Authentication Domains to which the provider
belongs in Step 4.

Use the direction arrows to move a Selected authentication domain
into the Available list.

Click Save.

Chapter 3 Federation Management 77

Federation Management

78

This will assign the provider to an authentication domain. A provider
can belong to one or more authentication domains, however a
provider without a specified authentication domain can not participate
in Liberty-based communications.

g. Click Finish.
To Configure Service Provider Attributes for a Provider Entity Descriptor
After selecting the desired provider entity descriptor from the Navigation pane:

1. Select Service Provider from the View menu to add a service provider to the
entity descriptor.

2. Click the New Provider button to display the New Provider Wizard.

a. Provide information for the following Common Provider attributes
displayed in Step 1.

I. Provider ID. Enter a unique identifier for the provider.
Il. Description. Enter a description of the provider.

. Provider is Hosted or Remote. Select Local if the provider is hosted on
the same server as Access Manager or Remote, if not. By default,
Remote is selected.

CAUTION Attributes displayed and configured in subsequent steps depend on the type
defined for the Provider is Hosted or Remote attribute.

IV. Valid Until. Enter the expiration date for the metadata pertaining to
the provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ
For example, 2004- 12- 31T12: 30: 00. 0- 0800

V. Cache Duration. Enter the maximum amount of time an entity
descriptor can be cached. The value is defined in the format:

PnYnMnDTnHNMnS, where n is an integer.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1
year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

VI. Protocol Support Enumeration. Select the protocol release supported
by this entity.

Access Manager 6 2005Q1 ¢ Federation Management Guide

VII.

Federation Management

urn:liberty:iff:2003-08 refers to the Liberty ldentity Federation
Framework version 1.2 and urn: | i berty:iff:2002- 12 refers to the
Liberty Identity Federation Framework version 1.1.

Server Name ldentifier Mapping Binding. Enter a URI describing the
SAML authority binding used by the identity provider. Identifier
mapping queries are able to locate and communicate with the SAML
authority using this URI.

VIIl. Additional Meta Locations. Enter the location of other relevant

metadata concerning the provider.

Signing Key

Key Alias. Enter the signing certificate key alias used to sign requests
and responses for a hosted (local) provider. For a remote provider, this
is a public key that the provider uses to verify the signatures.

Encryption Key

Key Alias. Enter the security certificate alias. Certificates are stored in
a JKS keystore file. Each specific certificate is mapped to an alias which
is used to fetch the certificate.

Key Size. Enter the length for keys used by the Web service consumer
when interacting with another entity.

Encryption Method. This field defines the encryption method. The
choices are None, 3DES, AES, and DES.

b. Click Next to provide information for the following Communications and
Service Provider attributes in Step 2.

CAUTION

Some of the following attribute subsections are displayed based upon whether the
service provider is defined as Remote or Hosted (Local) in Step 11l on page 78. This
is called out in parentheses next to the heading.

Communication URLs

SOAP Endpoint URL. Enter a location for the service provider’s SOAP
messages receiver.

This value communicates the location of the SOAP receiver in
non-browser communications.

Single Logout Service URL. Enter a location to which service
providers can send logout requests.

Chapter 3 Federation Management 79

Federation Management

VI.

VII.

Single logout synchronizes the logout functionality across all sessions
authenticated by the identity provider.

Single Logout Return URL. Enter a location to which the service
provider will redirect the principal after completing a logout.

Federation Termination Service URL. Enter a location to which a
service provider will send federation termination requests.

Federation Termination Return URL. Enter a location to which the
service provider will redirect the principal after completing federation
termination.

Name Registration Service URL. Enter a location to which a service
provider will send requests to specify the name identifier that will be
used when communicating with the identity provider about a
principal.

Registration can occur only after a federation session is established.

Name Registration Return URL. Enter a location to which the identity
provider will redirect the principal after HTTP name registration has
been completed.

VIII. Authentication Service URL. Enter a location for the identity

provider’s ID-FF-based Authentication Service.

Communication Profiles

Federation Termination Profile. Select a profile to notify other
providers of a principal’s federation termination. The choices are
SOAP and HTTP/Redirect.

Single Logout Profile. Select a profile to notify other providers of a
principal’s logout. The choices are SOAP and HTTP/Redirect.

Name Registration Profile. Select a profile to notify other providers of
a principal’s name registration. The choices are SOAP and
HTTP/Redirect.

Single Sign-on/Federation Profile. Select a profile used by a hosted
provider for sending authentication requests. The choices are:

* LECP (Liberty-enabled Client Proxy)
* Browser Post (specifies a browser-based HTTP POST protocol)

* Browser Artifact (specifies a non-browser SOAP-based protocol)

80 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management

V. Enable Name Identifier Encryption. Select the check box to enable
encryption of the name identifier.

Service Provider

I. Assertion Consumer URL. Enter the SAML endpoint to which a
provider will send SAML assertions.

II. Assertion Consumer Service URL ID. Enter the identifier of the
Assertion Consumer Service URL to be used as a reference in
authentication requests.

This identifier is required if Protocol Support Enum (Step VI on
page 78) isurn:|iberty:iff:2002-12.

IIl. Set Assertion Consumer Service URL as Default. Select this check
box to use the Assertion Consumer URL as the default.

IV. Sign Authentication Request. Select this check box to specify that the
service provider send signed authentication and federation requests.
The identity provider will not process unsigned requests.

V. Name Registration After Federation. Select this check box to allow for
a service provider to participate in name registration after it has been
federated. For more information, see “Name Registration Protocol” on
page 38 of Chapter 1, “Introduction to the Liberty Alliance Project.”

VI. Name ID Policy. Choose an option to determine the name identifier
format generated by the identity provider. The choices are None,
One-time, and Federated. This attribute value is part of the
authentication request. If the Name ID Policy value is f eder at ed, the
name identifier formatis urn: i berty:iff:2003: f ederat ed.

VIl. Enable Affiliation Federation. If enabled, federation based on
affiliation IDs is allowed.

Access Manager Configuration (only displayed when service provider is
defined as Hosted (Local))

I. Provider URL. Enter the URL of the local identity provider.
Il. Alias. Enter an alias name for the local identity provider.

. Authentication Type. Select the provider that should be used for
authentication requests from a provider hosted locally. Remote
specifies that the provider hosted locally would contact a remote
identity provider upon receiving an authentication request. Local
specifies that the provider hosted locally should contact a local identity
provider upon receiving an authentication request (essentially, itself).

Chapter 3 Federation Management 81

Federation Management

VI.

VII.

VIIL.

XI.

Default Authentication Context. Select the authentication context to
be used if the identity provider does not receive it as part of a service
provider request. It also specifies the authentication context used by
the service provider when an unknown user tries to access a protected
resource. The choices are Previous-Session, Time-Sync-Token,
Smartcard, MobileUnregistered, Smartcard-PKI, MobileContract,
Password, Password-ProtectedTransport, MobileDigitalID, and
Software-PKI.

Forced Authentication at Identity Provider. Select the check box to
indicate if the identity provider must reauthenticate (even during a
live session) when an authentication request is received.

Request Identity Provider to be Passive. Select the check box to
specify that the identity provider must not interact with the principal
and must interact with the user

Organization DN. Enter the location of the DN of the organization if
each hosted provider chooses to manage users across different
organizations leading to a hosted model.

Liberty Version URI. Enter the URI of the version of the Liberty
specification.

Name lIdentifier Implementation. This field allows the option for a
service provider to participate in name registration. Name registration
is a profile by which service providers specify a principal’s name
identifier that an identity provider will use when communicating to
the service provider.

Provider Home Page URL. Enter the URL of the home page of the
identity provider.

Single Sign-on Failure Redirect URL. Enter the URL to which a
principal will be redirected if single sign-on has failed.

SAML Configuration (only displayed when service provider is defined as
Hosted (Local))

Assertion Interval. Enter the interval of time for which an assertion
issued by the identity provider will remain valid. A principal will
remain authenticated until the assertion interval expires.

Cleanup Interval. Enter the interval of time before assertions stored in
the identity provider will be cleared.

Artifact Timeout. Enter an interval to specify the timeout of a identity
provider for assertion artifacts.

82 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management

IV. Assertion Limit. Enter a number to define the amount of assertions an
identity provider can issue, or the number of assertions that can be
stored.

Proxy Authentication Configuration

I. Enable Proxy Authentication. If selected, this attribute enables proxy
authentication for a service provider.

Il. Proxy Identity Providers List. This attribute displays the list of
identity providers that can be proxied for authentication.

. Maximum Number Proxies. This attribute specifies the maximum
number of identity provider to be proxied.

IV. Use Introduction Cookie For Proxying. If enabled, introductions will
be used to find the proxying identity provider.

Click Next to provide information for the following Organization
Attributes and Contact Persons attributes displayed in Step 3.

Organization

I. Name. Enter the name of the entity’s organization. The value is
defined in the format:

locale] organization_name
For example, en]organization_name. com

Il. Display Name. Enter the display name of the entity’s organization.
The value is defined in the format:

locale] organization_display_name
For example, en]organization_display_name. com

ll. URL. Enter the URL of the organization. The value is defined in the
format:

locale] organization_URL

For example, en]htt p: // waw. organization_name. com
Click New to access the attributes for Contact Persons detailed below.
Contact Persons
I. First Name. Enter the first name of the entity’s contact person.

Il. Last Name. Enter the last name of the entity’s contact person.

Chapter 3 Federation Management 83

Federation Management

84

ll. Type. Select the type of entity from the drop down menu. The choices
are Billing, Technical, Administrative, and Other.

IV. Company. Enter the name of the company to which the contact person
is employed.

V. Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

VI. Email. Enter the email address of the contact person.
VIl. Telephone. Enter the telephone number of the contact person.
e. Click OK to save the values assigned to the Contact Person attributes.

f. Click Next to configure the Authentication Domains to which the provider
belongs in Step 4.

I. Use the direction arrows to move a Selected authentication domain
into the Available list.

II. Click Save.

This will assign the provider to an authentication domain. A provider
can belong to one or more authentication domains, however a
provider without a specified authentication domain can not participate
in Liberty-based communications.

g. Click Finish.

To Configure an Affiliate Entity Descriptor

1. Choose Entity Descriptors from the View menu in the Navigation pane of the
Federation Management module.

2. Select the desired affiliate entity descriptor.
The entity descriptor’s attributes are displayed in the Data pane.
To Configure General Attributes for an Affiliate Entity Descriptor
After selecting the desired affiliate entity descriptor from the Navigation pane:

1. Select General from the View menu in the Data pane and provide information
for the following attributes (separated into three groups):

Entity Common Attributes
a. Entity Type. The static value of this attribute is Affiliate.

b. Description. Enter a description of the affiliation.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Federation Management

Valid Until. Enter the expiration date for the metadata pertaining to the
affiliation. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ
For example, 2004- 12- 31T12: 30: 00. 0- 0800

Cache Duration. Enter the maximum amount of time the entity descriptor
can be cached. The value is defined in the format:

PnYnMnDTnHNMNS, where n is an integer variable.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1 year, 2
months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Entity Contact Person

a.
b.

C.

f.

g.

First Name. Enter the first name of the entity’s contact person.
Last Name. Enter the last name of the entity’s contact person.

Type. Select the type of entity from the drop down menu. The choices are
Billing, Technical, Administrative, and Other.

Company. Enter the name of the company to which the contact person is
employed.

Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

Email. Enter the email address of the contact person.

Telephone. Enter the telephone number of the contact person.

Entity Organization

a.

Name. Enter the name of the entity’s organization. The value is defined in
the format:

locale] organization_name
For example, en]organization_name. com

Display Name. Enter the display name of the entity’s organization. The
value is defined in the format:

locale] organization_display_name

For example, en]organization_display_name. com

Chapter 3 Federation Management 85

Federation Management

86

2.

c. URL. Enter the URL of the organization. The value is defined in the format:
locale | organization_URL
For example, en]htt p: // waw. organization_name. com

Click Save.

To Configure Affiliates Attributes for an Affiliate Entity Descriptor
After selecting the desired affiliate entity descriptor from the Navigation pane:

1.

2.

Select Affiliates from the View menu in the Navigation pane.

Provide information for the following Affiliate Common attributes (separated
into three groups):

Affiliate Common Attributes

a. Affiliate ID. The value of this attribute should be defined during the
creation of the Affiliate Entity Descriptor. For more information, see “To
Create an Entity Descriptor of Either Type” on page 70.

b. Affiliate Owner ID. The value of this attribute should be defined during
the creation of the Affiliate Entity Descriptor. For more information, see
“To Create an Entity Descriptor of Either Type” on page 70.

c. Valid Until. Enter the expiration date for the metadata pertaining to the
provider. The value is defined in the format:
yyyy-mm-ddThh:mm:ss.SZ
For example, 2004- 12- 31T12: 30: 00. 0- 0800

d. Cache Duration. Enter the maximum amount of time an entity descriptor
can be cached. The value is defined in the format:

PnYnMnDTnHNnMNRS, where n is an integer.
For example, P1Y2M4DT9H8M20S defines the cache duration as 1 year, 2
months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Signing Key

a. Key Alias. Enter the signing certificate key alias used to sign requests and

responses for a hosted (local) provider. For a remote provider, this is a
public key that the provider uses to verify the signatures.

Encryption Key

Access Manager 6 2005Q1 ¢ Federation Management Guide

Federation Management API

a. Key Alias. Enter the security certificate alias. Certificates are stored in a
JKS keystore file. Each specific certificate is mapped to an alias which is
used to fetch the certificate.

b. Key Size. Enter the length for keys used by the Web service consumer
when interacting with another entity.

c. Encryption Method. Choose the method of encryption. The choices are
None, 3DES, AES, and DES.

Affiliate Members

a. Affiliate Members. Use the direction arrows to move a Selected provider
into the Available list.

This field allows you to define one or more providers as members of the
affiliation. The providers displayed in the Selected list are pre-defined in
existing container entity descriptors.

3. Click Save.

To Delete an Entity Descriptor of Either Type

1. Choose Entity Descriptors from the View menu in the Navigation pane of the
Federation Management module.

2. Check the box next to the entity descriptor you want to delete.
3. Click Delete.

There is no warning message when performing a delete.

NOTE If a remote entity descriptor is to be deleted from the console, it first needs to be
manually removed from the Trusted Providers list (if the provider is hosted) and the
Available Providers list (if part of an affiliation).

Federation Management API

The com sun. | i berty package provides the interface that forms the basis of the
Federation Management API. The Li ber t yManager class must be instantiated by
web applications that want to access the Federation Management module. It
contains the methods needed by the module JSPs for account federation, session
termination, log in, log out and other actions. Some of these methods are:

Chapter 3 Federation Management 87

Federation Management Samples

Table 3-3

Federation Management API

Method

Description

get SPLi st ()

get SPLi st(String
host edPr ovi der | D)

get | DPLi st ()

get | DPLi st (String
host edPr ovi der | D)

get SPFeder ati onStat us(String
user, String provider)

get | DPFederationStatus(String
user, String provider)

get Feder at edProvi ders(String
user Name)

get Provi dersToFederat e(String
providerID, String userNange)

Li st O COTs(String providerl D)

Returns a list of all trusted service providers.

Returns a list of all trusted service providers for the
specified hosted provider.

Returns a list of all trusted identity providers.

Returns a list of all trusted identity providers for the
specified hosted provider.

Retrieves a user’s federation status with a specified
service provider. This method assumes the user is
already federated with the provider.

Retrieves a user’s federation status with a specified
identity provider. This method assumes the user is
already federated with the provider.

Returns a specific user’s federated providers.

Returns the list of all trusted identity providers to which
the specified user is not already federated.

Returns a list of authentication domains for the given
provider.

For more detailed API reference information, see the Javadocs in

[AccessManager_base/ SUNVAn1 docs.

Federation Management Samples

Access Manager provides a collection of sample files, located in the
| AccessManager_base/ SUNVan sanpl es/ | i ber t y/ Sanpl el directory, to configure a
basic environment for creating and managing a federation. The example

88

demonstrates the basic use of various Liberty-based federation protocols including

account federation, SSO, single logout, and federation termination. The sample
should be completed in the following sequence:

1. Install Access Manager

2. Update and load the metadata

3. Deploy the service provider

Access Manager 6 2005Q1 ¢ Federation Management Guide

Federation Management Samples

4. Deploy the identity provider
5. Create and manage the federation

The following sections include more information on these steps.

NOTE The Readme file located with the sample in
/ AM_Install_Dir/ SUNVn sanpl es/ | i berty/ sanpl el also contains instructions for
configuring a common domain. For information on common domains, see
“Common Domain” on page 31 of Chapter 1, “Introduction to the Liberty Alliance
Project” and “Common Domain Services” on page 65 of this chapter.

Installing Access Manager

The first step in creating a federated environment is installing Access Manager on
two separate machines. One installation will act as a service provider, and one will
act as an identity provider.

NOTE Instructions on installing Access Manager can be found in the Sun Java Enterprise
System Installation Guide (htt p: //docs. sun. coni col | / ent sys_05q1).

The default installation directory for the Solaris™ operating system is
[opt / SUNVm

Updating and Loading the Metadata

Update and load the sp1Met adat a. xni file with values appropriate to your Access
Manager installation. The file is located in

/ AccessManager_base/ SUNVnT sanpl es/ | i berty/ sanpl el. Table 3-4 summarizes the
default values which should be modified based on your installation configuration.

Table 3-4 Default Values in splnet adat a. xni for Samplel

Installation Parameter Service Provider Value Identity Provider Value
Provider Name SP1 IDP1

Host Name www.spl.com www.idpl.com

Port SERVER_PORT _# SERVER_PORT_#
Access Manager amserver amserver

Deployment URI

Chapter 3 Federation Management 89

Federation Management Samples

90

Table 3-4 Default Values in splmet adat a. xni for Samplel

Installation Parameter Service Provider Value Identity Provider Value
Access Manager root suffix ~ dc=spl, dc=com dc=i dp1, dc=com
(attribute DN for element (attribute DN for element
Organi zat i onRequest s) QO gani zati onRequest s)
Certificate Alias SP1_SECURITY_KEY IDP1_SECURITY_KEY
metaAlias www.spl.com www.idpl.com

Load the updated sp1Met adat a. xmi file using the following command:

/AccessManager_base/ SUNVAn bi n/ amadmi n -u amadni n -w password -t
splhet adat a. xm

Deploying the Service Provider

The following sequence should be followed in order to deploy the service provider:
1. Configure the AMJ i ent. properti es file.

2. Create a WAR file.

3. Deploy the WAR file.

To Configure AMClient.properties

Replace the following tags in the AMJ i ent . properti es file with values
appropriate to your configuration. AMJ i ent . proper ti es is located in
/ AccessManager_base/ SUNVa sanpl es/ | i berty/ sanpl el/ spl/ WEB- | NF/ ¢l asses/ .

= SERVER_PROTO: Enter HTTPS or HTTP.

= SERVER_HOST: Enter the fully-qualified host name for your installation. For
example, waww: spl. com

= SERVER_PORT: Enter the port number on which Access Manager is running.

= SERVICE_DEPLOY_URI: Enter the Access Manager services deployment
URI. The default value is anser ver.

= META_ALIAS: Enter the metaAlias for SP1. In sp1Met adat a. xni , the default
value is wwv spl. com

Access Manager 6 2005Q1 ¢ Federation Management Guide

Federation Management Samples

To Create a WAR File for SP1
1. Change to the spl directory.

cd / AccessManager_base/ SUNWANT sanpl es/ | i berty/ sanpl el/ spl
2. Runthejar command.

jar -cvf spl.war

To Deploy the Service Provider WAR File
Choose the option appropriate to your environment.

= If Access Manager is Installed on Sun Java System Web Server

= If Access Manager is Installed on Sun Java System Application Server

NOTE Instructions for deploying the WAR file on other application servers can be found in
the Readme file located with the sample in
/ AM_Install_Dir/ SUN\Vani sanpl es/ | i berty/ sanpl el.

If Access Manager is Installed on Sun Java System Web Server

CAUTION Before manually deploying a web application, be sure that the:
e server_root/ bi n/ ht t ps/ ht t psadmi n/ bi n directory is in your path.

¢ | WS_SERVER HOME environment variable is set to your server_r oot directory.

1. Enter the command
wdepl oy depl oy -u uri_path -i instance -v vs_id [-d directory] war file

where:

o uri_path is the URI prefix for the web application.
o instance is the server instance name.

o vs_id is the virtual server ID.

o directory is the directory to which the application is deployed. If not
specified, the application is deployed to the document root directory.

Chapter 3 Federation Management

91

Federation Management Samples

o war_file is the WAR file name.
An example might be:

wdepl oy deploy -u /spl -i wwv spl.com-v https-ww spl. com
-d begi n_di r/ web- apps/ spl spl.war

2. Restart the Web Server.
If Access Manager is Installed on Sun Java System Application Server
1. Use the asadni n depl oy command to deploy the WAR module.

The complete syntax is:

asadm n depl oy --user admin_user [--password admin_password]
[--passwordfil e password_file] --host hostname
--port adminport [--secure | -s] [--virtual servers virtual_servers]
--type application|ejb|web| connect or]
[--contextroot contextroot] [--force=true]
[--preconpil ejsp=fal se] [--verify=fal se]
[--nane component_name] [--upl oad=true]
[--retrieve |ocal _dirpath]
[--instance instance_name] path_to_file

For example:

asadmin depl oy --user anmadnin --password pswdl234
--host www. spl.com--port 4848 --type web --contextroot SP1
--instance serverl spl.war

2. Restart the Application Server.

Deploying the Identity Provider

The following sequence should be followed in order to deploy the identity
provider:

1. Configure the AMJ i ent. properti es file.
2. Create a WAR file.
3. Deploy the WAR file.

92 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management Samples

To Configure AMClient.properties

Replace the following tags in the AMJ i ent . properti es file with values
appropriate to your configuration. AMJ i ent . proper ti es is located in
/ AccessManager_base/ SUNVar sanpl es/ | i berty/ sanpl el/ i dpl/ WEB- | NF/ cl asses/ .

= SERVER_PROTO: Enter HTTPS or HTTP.

e SERVER_HOST: Enter the fully-qualified host name for your installation. For
example, waw i dpl. com

= SERVER_PORT: Enter the port number on which Access Manager is running.

= SERVICE_DEPLOY_URI: Enter the Access Manager services deployment
URI. The default value is anser ver.

= META_ALIAS: Enter the metaAlias for IDPL. In i dplMet adat a. xm , the
default value is waww. i dpl. com

To Create a WAR File for IDP1
1. Change to thei dpl directory.

cd / AccessManager_base/ SUN\VanT sanpl es/ | i berty/ sanpl el/i dpl
2. Runthejar command.

jar -cvf idpl. war

To Deploy the Identity Provider WAR File
Choose the option appropriate to your environment.

= If Access Manager is Installed on Sun Java System Web Server

= If Access Manager is Installed on Sun Java System Application Server

NOTE Instructions for deploying the WAR file on other application servers can be found in
the Readme file located with the sample in
AM _Install_Dir/ SUNWant sanpl es/ | i berty/ sanpl el.

If Access Manager is Installed on Sun Java System Web Server

CAUTION Before manually deploying a web application, be sure that the:
e server_root/ bi n/ ht t ps/ htt psadni n/ bi n directory is in your path.

¢ | WS_SERVER HOME environment variable is set to your server _r oot directory.

Chapter 3 Federation Management 93

Federation Management Samples

1. Enter the command
wdepl oy depl oy -u uri_path -i instance -v vs_id [-d directory] war file

where:

o uri_path is the URI prefix for the web application.
o instance is the server instance name.

o vs_id is the virtual server ID.

o directory is the directory to which the application is deployed. If not
specified, the application is deployed to the document root directory.

o war_file is the WAR file name.
An example might be:

wdepl oy deploy -u /idpl -i wwwidpl.com-v https-ww:idpl. com
-d / AccessManager_base/ SUNVani web- apps/ i dpl i dpl. war

2. Restart the Web Server.

If Access Manager is Installed on Sun Java System Application Server
1. Use the asadni n depl oy command to deploy the WAR module.

The complete syntax is:

asadmi n depl oy --user admin_user [--password admin_password]
[--passwordfil e password_file] --host hostname
--port adminport [--secure | -s] [--virtual servers virtual_servers]
--type application|ejb|web| connect or]
[--contextroot contextroot] [--force=true]
[--preconpilejsp=fal se] [--verify=fal se]
[--name component_name] [--upl oad=tr ue]
[--retrieve | ocal _dirpath]
[--instance instance_name] path_to_file

For example:

asadmin depl oy --user amadnin --password pswdl234
--host ww. i dpl.com--port 4848 --type web --contextroot |DP1
--instance serverl idpl. war

2. Restart the Application Server.

94 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management Samples

Creating and Managing a Federation

The following sections provide procedures for creating, managing, and
terminating a federation.

= To Federate the Service Provider and Identity Provider Accounts
= To Accomplish Single Sign-On
= To Perform a Single Logout

e To Terminate Account Federation

To Federate the Service Provider and Identity Provider Accounts
1. Access the following URL in a web browser:

SERVER_PROTO/ / SERVER_HOST: PORT/ sp1/i ndex. j sp
For example, htt p: // waw. spl. com 58080/ spl/ i ndex. j sp.

NOTE i ndex. j sp is a protected page that includes _head. j sp. _head. j sp checks the
request for a valid user session. If invalid, it redirects the request to the Pre-Login
service which attempts single sign-on. Since this is a first time access, single
sign-on will fail and the request is then redirected to the common login page.

2. Click the Local Login link on the common login page.
You are redirected to the SP1’s login page.
3. Loginto SP1.

After successful authentication at SP1, the i ndex. j sp is displayed. i ndex. j sp
has three links:

o The Federate link initiates the federation process.

o The Logout link initiates the single logout process.

o The Terminate Federation link initiates the federation termination process.
4. Click the Federate link.

The Federate page is displayed.
5. Select the identity provider with which you want to federate.

In Samplel, you would select the deployed | DP1 as your identity provider, and
IDP1’s login page is displayed.

Chapter 3 Federation Management 95

Federation Management Samples

6. Provide authentication credentials for your IDP1 account.

If the authentication is successful, the Federation Done page is displayed
indicating that you have successfully federated these two accounts.

NOTE If the account is already federated, you will be redirected to the IDP login page

To Accomplish Single Sign-On
After successfully federating the two providers, follow these instructions to
accomplish single sign-on.

1. Start a new browser session and access the SP1 protected page,
SERVER_PROTO// SERVER_HOST: PORT/ spl/i ndex. j sp.

For example, htt p: // waw. spl. com 58080/ spl/ i ndex. j sp.
2. You will be redirected to the IDP1 Login page for authentication.
3. Provide authentication credentials for your IDP1 account.

If authentication is successful, the initially accessed SP1 protected page is
displayed without asking for SP1 authentication credentials. If authentication
is not successful, an error message is displayed, and you are directed to start
oVer.

To Perform a Single Logout

From either the SP1 protected page or the IDP1 protected page, i ndex. j sp, click
the Logout link. You will be logged out from both providers, and the Logout Done
page is displayed.

NOTE Both the service provider and identity provider have different protected i ndex. j sp
pages. The URLs are:

¢ SERVER_PROTO//SERVER_HOST:PORT/ spl/index. j sp
« SERVER_PROTO//SERVER_HOST:PORT/i dpl/i ndex. | sp

To Terminate Account Federation

1. From either the SP1 protected page or the IDP1 protected page, click the
Terminate Federation link.

The Federation Termination page is displayed.

96 Access Manager 6 2005Q1 « Federation Management Guide

Federation Management Samples

2. Select a provider to terminate your account federation.

For Samplel, select IDP1. Upon successful federation termination, the
Termination Done page is displayed.

NOTE Appendix A, “Included Samples” includes information on two more samples that
make use of the Federation Management module.

Chapter 3 Federation Management 97

Federation Management Samples

98 Access Manager 6 2005Q1 « Federation Management Guide

Part |l

Liberty-based Web Services

Chapter 4, “Authentication Web Service” on page 101
Chapter 5, “Data Services” on page 107

Chapter 6, “Discovery Service” on page 121

Chapter 7, “SOAP Binding Service” on page 147

Chapter 8, “Application Programming Interfaces” on page 153

Chapter 4

Authentication Web Service

The Sun Java™ System Access Manager contains an implementation of the Liberty
ID-WSF Authentication Service Specification of the Liberty Alliance Project. The
Authentication Web Service defines how to perform authentication using SOAP.
This chapter contains the following topics:

e Overview

= Authentication Web Service Process

= Authentication Web Service Attribute
= Authentication Web Service Interfaces

= Authentication Web Service Sample

Overview

The implementation of the Access Manager Authentication Web Service is based
on the Liberty ID-WSF Authentication Service Specification. The specification defines a
protocol that adds authentication functionality to the SOAP binding discussed in
the Liberty ID-WSF SOAP Binding Specification (and Chapter 7, “SOAP Binding
Service.”) The Simple Authentication and Security Layer (SASL) is the method
used to add this authentication support to the SOAP transport layer. The Access
Manager Authentication Web Service is for service-to-service (non-user)
authentication.

NOTE On the Liberty Alliance Project Web site, the Liberty ID-WSF Authentication
Service Specification can be found at
http://ww. projectliberty.org/specs/|iberty-idwsf-authn-svc-vi.0. pdf.

101

Authentication Web Service Process

XML Service File

The Access Manager Liberty Personal Profile Service is configured using the XML
service file amAut hnSvc. xm . amAut hnSvc. xm defines the attribute for the
Authentication Web Service which can be managed through the Access Manager
console or the XML file itself.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. coni doc/ 817- 7649).

The Liberty ID-WSF Authentication Service Specification also contains an XML schema
that defines the authentication protocol. This XML Schema Defintion (XSD) file can
be found on the LAP Web site. Version 1.0 is also reproduced in Appendix B,
“Service Schema Files.”

Application Programming Interfaces

The Access Manager Authentication Web Service includes two Java programming
packages: comsun. i dentity.|iberty.ws. authnsvc. protocol and
comsun.identity.|iberty.ws.authnsvc. The former listed package contains
classes that represent the SASL request and response while the latter package is a
client API for external Java applications to send SASL requests and receive SASL
responses. They are used to initiate the authentication process and communicate
authentication credentials to the Authentication Web Service.

Authentication Web Service Process

102

The exchange of authentication information between a Web service consumer
(WSC) and the Web service provider (WSP) is accomplished using SOAP-bound
messages. The messages are a series of client requests and server responses specific
to the defined SASL mechanism (or mode of authentication).

NOTE The authentication exchange can involve an arbitrary number of round trips,
dictated by the particular SASL mechanism employed. The WSC may have
knowledge of the supported SASL mechanisms, or it may send the server its own
list and allow the server to choose one from among them. The list of supported
mechanisms can be found at htt p: // wm i ana. or g/ assi gnment s/ sasl - mechani sns.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Authentication Web Service Attribute

After receiving a request for authentication (or any response from the WSC), the
WSP may issue additional challenges, or indicate authentication failure or success.
The following steps detail the sequence between the WSC and the Authentication
Web Service (a WSP).

1. The authentication exchange begins with a WSC sending an SASL
authentication request to the Authentication Web Service on behalf of a
principal.

The request message contains an identifier for the principal and indicates one
or more SASL mechanisms from which the service can choose.

2. The Authentication Web Service responds by asserting the method to use and,
if applicable, initiating a challenge.

If the Authentication Web Service does not support any of the cited methods, it
responds by aborting the exchange.

3. The WSC responds with the necessary credentials for the chosen method of
authentication.

4. The Authentication Web Service replies by approving or disproving the
authentication.

If approved, the response includes the credentials the WSC needs to invoke
other Web services (like the Discovery Service).

CAUTION The Liberty-based Authentication Web Service is not to be confused with the
proprietary Access Manager Authentication Service discussed in the Sun Java
System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. coni doc/ 817- 7649).

Authentication Web Service Attribute

The Authentication Web Service attribute is a global attribute. The value of this
attribute is carried across the Sun Java System Access Manager configuration and
inherited by every organization.

NOTE For information on the types of attributes used in Access Manager, see the Service
Management chapter of the Sun Java System Access Manager 6 2005Q1 Developer’s
Guide (http://docs. sun. con doc/ 817- 7649).

Chapter 4 Authentication Web Service 103

Authentication Web Service Interfaces

The attribute for the Authentication Web Service is defined in the amAut hnSvc. xm
service file and is called the Mechanism Handler List.

Mechanism Handler List

The Mechanism Handler List attribute stores information about the SASL
mechanisms supported by the Authentication Web Service. It displays entries that
contain key/value pairs separated by a pipe (“]”) as in:

key=PLAI N cl ass=com sun.identity.liberty.ws. aut hnsvc. mechani sm P ai nMec
hani snHandl er

key Parameter

The required key parameter defines the SASL mechanism supported by the
Authentication Web Service.

class Parameter

The required class parameter specifies the name of the implementation class for the
SASL mechanism. The Authentication Web Service layer provides a handler
interface that needs to be implemented in order for each SASL mechanism to
process the requested message and return a response.

Authentication Web Service Interfaces

104

The Authentication Web Service provides programmatic interfaces to allow clients
to interact with the Authentication Web Service. They are:

e comsun.identity.liberty.ws.authnsvc

e comsun.identity.liberty.ws.authnsvc. protocol

com.sun.identity.liberty.ws.authnsvc

This package provides Web service clients with a method to request authentication
credentials from the Authentication Web Service and receive responses back from
it using the Simple Authentication and Security Layer (SASL).

Access Manager 6 2005Q1 ¢ Federation Management Guide

Authentication Web Service Sample

com.sun.identity.liberty.ws.authnsvc.protocol

This package provides classes that correspond to the request and response
elements defined in the Liberty XSD schema that accompanies the Liberty ID-WSF
Authentication Service Specification. This schema is reprod

Authentication Web Service Sample

A sample authentication client is included with Access Manager. It is located in the
AccessManager_base/ SUNWan sanpl es/ phase2/ aut hnsvc directory. The client uses the
PLAI NSASL authentication mechanism. It first authenticates against the
Authentication Web service, then extracts a resource offering to bootstrap the
Discovery Service. It looks for SAML Bearer token credential, issues a discovery
query request with SAML assertion included, and gets back a response.

NOTE This sample can be used a Liberty User Agent Device WSC.

Chapter 4 Authentication Web Service 105

Authentication Web Service Sample

106 Access Manager 6 2005Q1 « Federation Management Guide

Chapter 5

Data Services

The Sun Java™ System Access Manager contains implementations of the Liberty
ID-WSF Data Services Template Specification (ID-WSF-DST) in addition to
instructions on how you can add your own data service to the deployment. This
chapter contains the following topics:

= Overview

« Liberty Personal Profile Service
e Liberty Employee Profile Service
= Data Services Template API

= Developing A New Data Service

Overview

A data service is a Web service that supports the query and modification of identity
data. Identity data includes, but is not limited to, attributes that define first name,
last name, home address, business address, and emergency contact. A data service
allows this data to be queried or modified. A query is when a Web service consumer
(WSC) requests data (in an XML format) from a user’s profile. A modify is when a
WSC sends new data to update a user’s profile. The Liberty Alliance Project (LAP)
has defined the Liberty ID-WSF Data Services Template Specification (ID-WSF-DST) as
the standard protocol used for the query and modification of identity data profiles
comprised of attributes exposed by a data service.

107

Overview

Data Services Template Specifications

The ID-WSF-DST specifies a base layer that can be extended by any instance of a
data service. An example of a data service is an identity service such as an online
corporate directory. When you want to contact a colleague, you conduct a search
based on the individual’s name, and the data service returns information
associated with their identity. The information may include the individual’s office
location and phone number, as well as job title or department name. From the
implementation point of view, all data services must be built on top of the
ID-WSF-DST which provides the data model and message interfaces. Figure 5-1
illustrates how Access Manager uses the ID-WSF-DST as the framework for its data
services.

Figure 5-1 Data Service Template as Building Block for Data Services
Liberty ID-SIS Data Services

Liberty Liberty Additional Custom
Personal Profile Employee Profile Data Services

|
|
|
[Service Service (Calendar, Wallet)
|
|

Liberty ID-WSF Data Services Template Specification

Discovery SOAP
Service Binding

Liberty Web Services Framework

The Liberty-defined Web Services Layer uses the ID-WSF-DST (and other Web
services that allow data services to be discovered and invoked) for the
development of data services. Access Manager has developed both the Liberty
Personal Profile Service and the Liberty Employee Profile Service on top of the
Liberty-defined Web Services Layer. Additional data services can also be
developed by the customer. (More information on developing other data services
can be found in “Data Services Template AP1” on page 118.)

108 Access Manager 6 2005Q1 ¢ Federation Management Guide

Overview

NOTE The Liberty ID-WSF Data Services Template Specification can be found at
http: //ww. projectliberty.org/specs/draft-liberty-idwsf-dst-1.0-errata-v1.0.p
df.

Liberty Personal Profile Service

The Liberty ID-SIS Personal Profile Service Specification (ID-SIS-PP) of the LAP
describes a data service which provides an identity’s basic profile information (full
name, contact details, financials, etc.). It is intended to be the least common
denominator for holding consumer-based information about a principal. Access
Manager has implemented this specification and developed the Liberty Personal
Profile Service.

XML Service File

The Access Manager Liberty Personal Profile Service is configured using the XML
service file anLi ber t yPer sonal Profil e. xnl . anii bert yPer sonal Profil e. xm
defines the attributes for the Liberty Personal Profile Service which can be
managed through the Access Manager console or the XML file itself.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. cont doc/ 817- 7649).

XSD Schema Definition

The ID-SIS-PP also defines an XML schema for use in building the service itself.
This XML Schema Defintion (XSD) file can be found on the LAP Web site. Version
1.0 is also reproduced in Appendix B, “Service Schema Files.”

NOTE The Liberty ID-SIS Personal Profile Service Specification can be found at
http: //ww. proj ect!liberty. org/specs/|iberty-idsis-pp-vl.0.pdf.

Chapter5 Data Services 109

Overview

Liberty Employee Profile Service

The Liberty ID-SIS Employee Profile Service Specification (ID-SIS-EP) describes a data
service which provides an identity’s profile information in regards to their
employment. An example of a employee profile service might be a corporate
calendar or phone book. Access Manager has implemented this specification by
developing a sample that includes the files needed to deploy and invoke a Liberty
Employee Profile Service.

TIP The Liberty Employee Profile Service is not available when Access Manager is
installed. It must first be deployed. Information on accessing the sample files and
how to deploy them can be found in “Liberty Employee Profile Service” on
page 118.

XML Service File

Among the files included with the sample is the XML service file

anLi bert yEnpl oyeePr of i | e. xni . anbLi ber t yEnpl oyeeProf il e. xm defines the
attributes for the Liberty Employee Profile Service which, once deployed, can be
managed through the Access Manager console or the XML file itself.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. cont doc/ 817- 7649).

XSD Schema Definition

The ID-SIS-EP also defines an XML schema for use in building the service itself.
This XSD file can be found on the LAP Web site. Version 1.0 is also reproduced in
Appendix B, “Service Schema Files.”

NOTE The Liberty ID-SIS Employee Profile Service Specification can be found at
http: //ww. proj ect!liberty. org/specs/|iberty-idsis-ep-vl.0.pdf.

110 Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty Personal Profile Service

Data Services Template API

Access Manager data services are built using a Java package called
comsun.identity.liberty.ws. dst. Access Manager provides this package for
developing custom services based on the ID-WSF-DST. Additional information on
these interfaces can be found in “Data Services Template API1” on page 118 and in
the Javadocs at / AccessManager_base/ SUNVAnT docs.

Liberty Personal Profile Service

The Liberty Personal Profile Service is a default Access Manager identity service.
The Service can be queried for identity data or its attributes can be updated. In
order for access to occur, the hosting provider of the Liberty Personal Profile
Service needs to be registered with the Discovery Service on behalf of each identity
principal.

NOTE Registering a service with the Discovery Service is done by updating a resource
offering for that service. For more information, see Chapter 6, “Discovery Service.”

The Liberty Personal Profile Service Process

The invocation of a personal profile begins when a WSC posts a query or a modify
request to the Liberty Personal Profile Service on behalf of the user. The following
steps detail the system process for the Liberty Personal Profile Service.

1. A Web services client uses the Data Services Template API to post a query or a
modify request to the Liberty Personal Profile Service.

All the query or modify requests to any identity service are SOAP Requests.

2. Theclient’s SOAP request is received by the SOAP receiver provided by the
SOAP Binding Service.

The SOAP receiver invokes either the Discovery Service, the Authentication
Web Service, or the Liberty Personal Profile Service, depending on the service
key transmitted as part of the URL. The SOAP Binding Service might also
authenticate the client identity.

Chapter5 Data Services 111

Liberty Personal Profile Service

112

3. The Liberty Personal Profile Service implements the SOAP Request handler to
process the request.

The PersonalProfile RequestHandler processes the request based on the
request type (either query or modify) and the query expression. This might
entail the authorization of a WSC using Access Manager Policy Service. It
might also make use of Interaction Service for interacting with the user before
sending data to the WSC.

4. The Liberty Personal Profile Service builds a service response, adds credentials
(if they are required), and sends it back to the WSC.

a. Foraresponse to a query request, the Liberty Personal Profile Service
builds a personal profile container (as defined by the specification). This is
an XML blob based on the Query Select expression. The Personal Profile
attribute values are extracted from the data store by making use of the
attribute mapper. The attribute mapper is defined by the XML service file,
and these values will be used while building the XML container. The
Personal Profile Service then applies xpat h queries on the XML blob and
gives us the resultant XML data node.

b. For aresponse to a modify request, it parses the Modifiable Select
expression and updates the new data from the new data node in the
request.

Liberty Personal Profile Service Attributes

The Liberty Personal Profile Service attributes are global attributes. The values of
these attributes are carried across the Sun Java System Access Manager
configuration and inherited by every organization.

NOTE For information on the types of attributes used in Access Manager, see the Service
Management chapter of the Sun Java System Access Manager 6 2005Q1 Developer’s
Guide (http://docs. sun. con doc/ 817- 7649).

Attributes for the SOAP Binding service are defined in the
anLi bertyPer sonal Profil e.xni service file. The Liberty Personal Profile Service
attributes are:

= ResourcelD Mapper
= Authorizer

= Attribute Mapper

Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty Personal Profile Service

« Provider ID

< Name Scheme

< Namespace Prefix

= Supported Containers

= PPLDAP Attribute Map List

= Require Query PolicyEval

= Require Modify PolicyEval

= Extension Container Attributes
= Extension Attributes Namespace Prefix
= Is ServiceUpdate Enabled

= Service Instance Update Class

= Alternate Endpoint

ResourcelD Mapper

The value of this attribute specifies the implementation of
comsun.identity.liberty.ws.interfaces. Resourcel Dvapper. Although a new
implementation can be developed, Access Manager provides the default
comsun.identity.|iberty.ws.idpp.plugin.|DPPResourcel DVvapper which maps
a discovery resource identifier to a user ID.

Authorizer

Before processing a request, the Liberty Personal Profile Service will verify the
authorization of the WSC making the request. There are two levels of authorization
check that can be done:

1. Isthe requesting entity authorized to access the requested resource profile
information?

2. Isthe requested resource published to the requestor?

Authorization occurs via a plug-in to the Liberty Personal Profile Service: an
implementation of the com sun.identity.liberty.ws.interfaces. Authorizer
interface. Although a new implementation can be developed, Access Manager
provides the default:

comsun.identity.liberty.ws.idpp.plugin.|DPPAut hori zer. This plug-in
defines four policy action values for the query and nodi fy operations:

Chapter5 Data Services 113

Liberty Personal Profile Service

114

< Allow

e Deny

= Interact For Consent
= Interact For Value.

The resource values for the rules are similar to x- pat h expressions defined by the
Personal Profile service. For example, a rule can be defined as follows:

Code Example 5-1 Authorization Rules

/ PP/ CommonNane/ Anal yzedNane/ FN Query Interact for consent
| PPl CormonNane/ * Modify Interact for value
[PP/ I nf or mal Nane Query Deny

Authorization can be turned off by deselecting one or both of the following
attributes also defined in the Liberty Personal Profile Service:

= Require Query PolicyEval
= Require Modify PolicyEval

Attribute Mapper

This value of this attribute defines the class for mapping a Liberty Personal Profile
Service attribute to an Access Manager User attribute. By default, the class is
comsun.identity.liberty.ws.idpp.plugin. |DPPAttributeMapper.

Provider ID

The value of this attribute defines the unique identifier for this instance of the
Liberty Personal Profile Service. The format is:

protocol://hostname:port/deloy_uri/Li berty/ i dpp

Name Scheme

The value of this attribute defines the naming scheme for the Liberty Personal
Profile Service common name. You can choose from Fi rst Last,or First Mddl e
Last .

Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty Personal Profile Service

Namespace Prefix

The value of this attribute specifies the namespace prefix used for Liberty Personal
Profile Service XML protocol messages. A namespace differentiates elements with
the same name that come from different XML schemas. The Namespace Prefix is
prepended to the element and is useful to distinguish metadata from different
XML schema namespaces.

Supported Containers

The values of this attribute define a list of supported containers in the Liberty
Personal Profile Service. A container, as used in this instance, is an attribute of the
Service.

NOTE The term container as described here is not related to the Access Manager
identity-related object also named container.

For example, Emergency Contact and Common Name are two default containers
for the Liberty Personal Profile Service. To add a new container, click Add, enter
values in the provided fields and click OK.

NOTE Currently, Access Manager has not made piublic this functionality.

PPLDAP Attribute Map List

Each identity attribute defined by the Liberty Personal Profile Service has a
one-to-one match to an Access Manager User service attribute. The value of this
attribute is a list that specifies those mappings. For example,

JobTi t| e=sunl dent i t ySer ver PPEnpl oynent | denti t yJobTi t| e maps the Liberty
JobTi t| e attribute to the Access Manager

sunl dent i t ySer ver PPEnpl oynent | denti t yJobTi t| e attribute. When adding new
attributes to either side of this equation, ensure that any new attribute mappings are
configured in this attribute.

NOTE Attribute mappings are defined as global attributes under the name
sunl denti tyServer PPDSAt tri but eMaplLi st in the Liberty Personal Profile Service
XML service file definition. This “PPLDAP Attribute Map List” attribute corresponds
to that sunl dent i t ySer ver PPDSAt t ri but eMapLi st global attribute.

Chapter5 Data Services 115

Liberty Personal Profile Service

116

In Code Example 5-2, the Liberty Personal Profile Service i nf or mal Nane attribute
mapping to the User service attribute ui d is added to the mappings already present
in the anli ber t yPer sonal Profile.xm.

Code Example 5-2 Attribute Mappings as Defined in XML Service File

<Attribut eSchema nane="sunl dentityServer PPDSAttri but eMapLi st

type="list"

syntax="stri ng"

i 18nKey="p108" >

<Def aul t Val ues>
<Val ue>CN=sunl dent i t ySer ver PPCommonNanmeCN</ Val ue>
<Val ue>FN=sunl dent i t ySer ver PPCommonNaneFN</ Val ue>
<Val ue>M\=sunl dent i t ySer ver PPCommonNanmeM\</ Val ue>
<Val ue>SN=sunl dent i t ySer ver PPCommonNanmeSN</ Val ue>
<Val ue>| nf or mal Nane=ui d</ Val ue>

</ AttributeSchema>

Require Query PolicyEval
If selected, this option requires a policy evaluation to be performed for Liberty
Personal Profile Service queries.

Require Modify PolicyEval

If selected, this option requires a policy evaluation to be performed for Liberty
Personal Profile Service modifications.

Extension Container Attributes

The Liberty Personal Profile Service allows you to specify extension attributes that
are not defined in the LAP specification. The values of this attribute specify a list of
extension container attributes. All extensions should be defined as:

| PP/ Ext ensi on/ PPl SExt ensi on [@ane="extensi onattribute']

Code Example 5-3 illsutrates an extension query expression for creditcard, an
extension attribute.

Code Example 5-3 Extension Query for creditcard

|/ pp: PP/ pp: Ext ensi on/ i spp: PPl SExt ensi on[@are="credi tcard']
Note: The prefix for the PPl SExtension is different, and the schema for the

PP extension is as foll ows:
<?xnm version="1.0" encodi ng="UTF-8" ?>
<xs:schema xm ns: xs="http:// ww. w3. or g/ 2001/ XM_Schena"

Access Manager 6 2005Q1 ¢ Federation Management Guide

Liberty Personal Profile Service

Code Example 5-3 Extension Query for creditcard (Continued)

xm ns="http:// wwv sun. confidentity/liberty/pp"
t ar get Nanespace="htt p: //waw. sun. conl i dentity/liberty/ pp">
<Xs:annot at i on>
<xs: docunent at i on>
</ xs: docunent at i on>
</ xs:annot ati on>

<xs: el ement name="PPlI SExt ensi on" >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="xs:string">
<xs:attribute nane="name" type="xs:string" use="required"/>
</ xs: ext ensi on>
</ xs: si mpl eCont ent >
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

Extension Attributes Namespace Prefix

The value of this attribute specifies the namespace prefix for the extensions defined
in the “Extension Container Attributes.” This prefix is prepended to the element
and is useful to distinguish metadata from different XML schema namespaces.

Is ServiceUpdate Enabled

The SOAP Binding Service allows a service to indicate that requesters should
contact it on a different endpoint or use a different security mechanism and
credentials to access the requested resource. If selected, this attribute affirms that
there is an update to the service instance.

Service Instance Update Class

The value of this attribute specifies the default implementation class
comsun.identity.liberty.ws.idpp.plugin.|DPPServicel nstanceUpdat e. This
class is used to update the information for the service instance.

Alternate Endpoint

The value of this attribute specifies an alternate SOAP endpoint to which a SOAP
request can be sent.

Chapter5 Data Services 117

Liberty Employee Profile Service

Liberty Employee Profile Service

The Liberty Employee Profile Service sample provides a collection of files, located
in the / AccessManager_base/ SUNVn1 sanpl es/ phase?2/ si s- ep directory, that can be
used to deploy and invoke a corporate-based data service.

NOTE Before implementing this example, you must have two instances of Access
Manager installed, running, and Liberty-enabled. Completing the steps in
“samplel” on page 170 of Appendix A, “Included Samples” will accomplish this.

The Liberty Employee Profile Service is a deployment of the ID-SIS-EP
specification as discussed in “Liberty Employee Profile Service” on page 110. The
Readne. ht m in the sample directory provides detailed steps on how to deploy and
configure this sample for use as a data service. More information can be found in
Appendix A, “Included Samples.”

Data Services Template API

118

The ID-WSF-DST specifies a base layer that can be extended by any instance of a
data service. It defines how to query and modify data stored in a data service, and
provides some common attributes that might be used in a data service. An example
of a data service is an identity service such as an online corporate directory. When
you want to contact a colleague, you conduct a search based on the individual’s
name, and the service returns information associated with their identity. The
information may include the individual’s office location and phone number, as
well as other data such as job title and department name. From the implementation
point of view, all identity services must be built on top of the ID-WSF-DST which
provides the data model and message interfaces.

NOTE Figure 5-1 on page 108 illustrates how Access Manager uses the ID-WSF-DST as
the framework for identity data services. The Liberty Web Services layer is the
framework for creating, discovering and consuming identity data services, including
a SOAP-based transport binding that allows identity services to be discovered and
invoked. Other Liberty Web Services include the Discovery Service, and Interaction
Service.

Access Manager contains two packages based on the ID-WSF-DST. They are:

e comsun.identity.liberty.ws.dst

Access Manager 6 2005Q1 ¢ Federation Management Guide

Data Services Template API

e comsun.identity.liberty.ws.dst.service

com.sun.identity.liberty.ws.dst

Table 5-1 summarizes the Data Services Template client APIs included in the
comsun.identity.liberty.ws.dst package.

Table 5-1 Data Service Client APIs

Class Name Description

DSTC i ent Provides common functions for the Data Service Templates query and
modify option.

DSTDat a Provides a wrapper for any data entry.

DSTMbdi ficati on Represents a Data Services Template modification operation.

DSTMbdi fy Represents a Data Services Template modify request.

DSTMbdi f yResponse Represents a Data Services Template response for DST modify
request.

DSTQuery Represents a Data Services Template query request.

DSTQueryltem The wrapper for one query item for Data service.

DSTQuer yResponse Represents a Data Services Template query response.

DSTUtil s Provides utility methods used by the DST layer.

For more detailed API reference information, including methods and their syntax
and parameters, see the Javadocs in / AccessManager_base/ SUNWanT docs.

com.sun.identity.liberty.ws.dst.service

Thecomsun.identity.liberty.ws.dst. services package provides a handler
class that can be used by any generic identity data service built using the Liberty
Alliance ID-SIS 1.0 Specifications.

NOTE The Data Services is built using the Liberty ID-SIS Personal Profile Service
Specification, based on the Liberty Alliance ID-SIS 1.0 Specifications.

Chapter5 Data Services 119

Developing A New Data Service

The DSTRequest Handl er is used to process query or modify requests sent to an
identity data service. It is an implementation of the interface
comsun.identity.|iberty.ws. soapbindi ng. Request Handl er . For more detailed
API reference information, see the Javadocs in / AccessManager_base/ SUNVni docs.

NOTE Access Manager provides a sample which makes use of the DSTRequest Handl er
interface. The si s- ep sample illustrates how to implement the DSTRequest Hand| er
and deploy a new identity data service instance. It is located in the
| AccessManager_base/ SUNVANT sanpl es/ phase?2/ si s- ep directory. “sis-ep” on page 172
of the Appendix A, “Included Samples” further discusses this sample.

Developing A New Data Service

120

In addition to deploying an employee profile service, the Liberty Employee Profile
Service sample can be used to deploy other custom data services based on the
ID-WSF-DST. Sections 2 and 3 in the Readne. ht i provided in the

| AccessManager_base/ SUNVAnT sanpl es/ phase?2/ si s- ep directory have detailed steps
on how to deploy and configure data services. But, in order to use those
instructions for a new data service, you need to write a new data service schema.
This XSD file (as discussed in Appendix B, “Service Schema Files”) defines the
service’s data and data structure. Once this new XSD file is written, it can be used
in place of the |'i b-i d- si s-ep. xsd in the sample instructions to deploy your new
data service.

CAUTION Instructions on writing the XSD service file are beyond the scope of this
documentation.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Chapter 6

Discovery Service

The Sun Java™ System Access Manager contains an implementation of the
“Discovery Service Specification” from the Liberty Alliance Project. The Discovery
Service instance allows a requesting entity to dynamically determine a principal’s
registered identity service. It might also function as a security token service,
issuing security tokens to the requester that can then be used in the request to the
discovered identity service. This chapter contains the following topics:

= Overview

= Discovery Service Architecture

= Discovery Service Process

= Discovery Service Attributes

= Discovery Entries and Resource Offerings
= Discovery Service Interfaces

= Discovery Service Sample

Overview

The initial step in accessing identity data is to determine where the information is
located. (For example, which identity service holds the principal’s credit card
information, or which server stores the principal’s calendar service.) Typically,
there are one or more services on a network that allow other entities to perform an
action on identity data. Because clients are not expected to keep track of these
services or to know which can be trusted, they require a discovery service. The

121

Overview

Liberty ID-WSF Discovery Service Specification (part of the Liberty Identity Web
Services Framework) defines the framework that enables a client to locate the
appropriate Web service for retrieving, updating, or modifying a specific piece of
identity data.

NOTE The Discovery Service Specification can be found on the Liberty Alliance Project
Web site at
http: //ww. projectliberty.org/specs/|iberty-idwsf-disco-svc-vl. 1. pdf.

A discovery service is essentially a Web service interface for discovery resources. A
discovery resource is a registry of resource offerings. A resource offering defines an
association between a piece of identity data and the service instance that provides
access to that data. A resource identifier is a unique resource identifier (URI)
registered with the discovery service that points to a particular discovery resource.

NOTE A discoverable service is assigned a service type URI in the specification that
defines it. This URI points to a Web Services Description Language (WSDL) file
that describes the service’s data, the operations that can be perfomed on it, and a
protocol detailing how to send it. The discoverable service specification itself adds
the available ways the data can be exchanged.

When a client sends a request for some type of data, it includes a resource identifier
that the discovery service uses to locate the Web services provider (WSP) for the
requested attributes. The discovery service returns a resource offering that contains
the information necessary to locate the data.

TIP Because a provider hosting the Discovery Service may also be fulfilling other roles
for an identity (such as a Policy Decision Point or an Authentication Authority), a
query response also functions as a security token service, by providing a requester
with the means of obtaining security tokens that can be used to invoke service
instances returned.

Discovery Entries

One user account has one discovery resource. This discovery resource though can
include zero or more resource offerings. Storing resource offerings within a user
profile supports both entry lookups and updates. Another option is to store
discovery entries within a service and assign that service to an organization or a
roll. This scenario only supports entry lookups. For more information on discovery
entries, see “Discovery Entries and Resource Offerings” on page 132.

122 Access Manager 6 2005Q1 « Federation Management Guide

Overview

XML Service Files

The Discovery Service is defined using the XML service file anDi sco. xni .

anDi sco. xn defines the attributes for the Discovery Service. All of the attributes in
the Discovery Service can be managed through either the Access Manager console
or this file.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. coni doc/ 817- 7649).

A second XML file, anDi sco_add. xni (found in

| AccessManager_base/ SUNVAT upgr ade/ ser vi ces50_sunl dent i t yServer D scoverySer
vi ce/ 10_20/ dat a), is used for upgrading ldentity Server 6.2 to Access Manager 6.3.
It lists the changes to the anDi sco. xm file since 6.2.

NOTE More information on upgading and migration can be found in the Java Enterprise
System 2005Q1 Upgrade and Migration Guide located at
(http://docs. sun. cont doc/ 817- 7645).

Application Programming Interfaces

Access Manager contains several Java packages that are used by the Discovery
Service. They include:

e comsun.identity.liberty.ws.disco
e comsun.identity.liberty.ws.disco.plugins
e comsun.identity.liberty.ws.interfaces

Additional information on these interfaces can be found in “Discovery Service
Interfaces” on page 142 and in the Javadocs.

com.sun.identity.liberty.ws.disco

The comsun.identity.liberty.ws. di scopackage includes a client application
programming interface (API) that provides interfaces to communicate with the
Discovery Service.

Chapter 6 Discovery Service 123

Discovery Service Architecture

com.sun.identity.liberty.ws.disco.plugins

Thecomsun.identity.|iberty.ws.disco.plugins package includes an interface
that can be used to develop plugins.

com.sun.identity.liberty.ws.interfaces

The comsun.identity.liberty.ws.interfaces package includes interfaces that
can be used to implement functionality common to all Liberty-enabled identity
services in Sun Java System Access Manager. Several implementations of these
interfaces have been developed for the Discovery Service.

Discovery Service Architecture

124

The Access Manager Discovery Service includes Java and Web services-based
interfaces. Java applications use the client API (discussed in “Client APIs” on

page 145) to form requests sent to the Discovery Service and to parse the responses
received back from it. Requests are received by the Access Manager SOAP receiver
which constructs a SOAP message incorporating the client request.

NOTE The Access Manager SOAP Binding service defines how to send and receive
messages using SOAP, an XML-based messaging protocol. The SOAP receiver is
a servlet that constructs the message using these definitions. Information on the
SOAP Binding Service can be found in Chapter 7, “SOAP Binding Service.”

The SOAP message is then sent on to the Discovery Service which parses a
discovery resource identifier from it. This identifier is used to find the matching
user DN which is then used to process the request. The necessary information is
then culled from the corresponding profile, a response is generated, and the
response is sent back to the SOAP Receiver. The SOAP receiver then sends the
response back to the client. Figure 6-1 on page 125 details this architecture.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Figure 6-1 Discovery Service Architecture

Java Applications/ Form messages
Client APls and parse responses

SOAP messages and responses

SOAP Receiver/
Discovery Service

Query and Modify
through SDK

Discovery

Resource
store

Discovery Service Process

Figure 6-2 provides a high-level overview of the interaction between parties in a

Discovery Service Process

Liberty-enabled Web services environment using the Discovery Service.

NOTE In Figure 6-2, the identity provider hosts the Discovery Service.

Chapter 6

Discovery Service

125

Discovery Service Process

Figure 6-2

Liberty-enabled Discovery Service Process

User Agent

SPAWSC |DP/DS 1D-515-PP

1. Single sign-on & #ntroduction
4l

)

1

2. Request access tg service
.

L

3. Send Discovery |gokup query

Ll

4, Return Discovery

il
-

response

5. Send data query o identity service (ek. Personal Profile)

>

with identity data for

6. Return response access
-
+

7. Render service ppges

)

The following steps detail the process illustrated in Figure 6-2.

1.

126

The user logs onto a Liberty-enabled identity provider, is authenticated, and
completes the introduction process, enabling single sign-on with other members
of the authentication domain. More specifically:

a.

b.

The user points their browser to a Liberty-enabled service provider.

The service provider collects the user’s credentials and redirects the
information to the identity provider for authentication.

If the credentials pass muster, the user is authenticated.

Assuming the identity provider is the center of an authentication domain,
it will notify authenticated principals that they have the option to federate
any local identities created with member organizations. The principal
would then accept or decline this invitation to federate. By accepting the
invitation, the principal will be introduced to the option of federation
everytime they log on to a member organization’s Web site. If they accept
this federation option, single sign-on is enabled.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Discovery Service Attributes

2. After authentication, the user now requests access to services hosted by
another service provider in the authentication domain.

Single sign-on authentication in this step requires contacting the user’s
Personal Profile service via information from the Discovery Service.

3. The service provider sends a lookup query to the Discovery Service.

Information used by any client to contact Discovery Service is culled from the
authentication statement returned in Step 1.

4. The Discovery Service returns a discovery lookup response to the service
provider.

The lookup response contains the resource offering (defining an association
between a piece of identity data and the service instance that provides access to
it) for the user’s Personal Profile Service.

5. The service provider then sends a query (using the Data Services Template
Specification) to the Personal Profile Service instance.

The required authentication mechanism specified in the Personal Profile
Service resource offering must be followed.

6. The Personal Profile Service instance returns a Data Services Template
response after collecting all required data.

The Personal Profile Service authenticates and validates authorization or
policy, or both, for the requested user and service provider. If user interaction
is required for some attributes, the Interaction Service will be invoked to query
the user for consents or for attribute values.

7. The service provider processes the Personal Profile Service response, and
renders HTML pages based on the original request and user authorization.

Users’ actual account information is not exchanged during federation. Thus,
the identifier displayed on each provider site will be based on the local identity
profile.

Discovery Service Attributes

The Discovery Service attributes are global attributes whose values are applied
across the Access Manager configuration and inherited by every configured
organization. The Discovery Service attributes are:

e Provider ID

Chapter 6 Discovery Service 127

Discovery Service Attributes

= Supported Authentication Mechanisms

= Supported Directives

= Enable Policy Evaluation for DiscoveryLookup

= Enable Policy Evaluation for DiscoveryUpdate

= Authorizer Plugin Class

= Entry Handler Plugin Class

= Classes For ResourcelDMapper Plugin

= Authenticate Response Message

= Generate SessionContextStatement for Bootstrapping

= Encrypt Nameldentifier in Session Context for Bootstrapping
= Use Implied Resource; don't generate ResourcelD for Bootstrapping

= Resource Offerings for Bootstrapping Resources

Provider ID

This attribute takes as a value a URI that points to the Discovery Service. The value
is written in the format:

ht t p: / / host: port/ anser ver/ Li berty/ di sco

Supported Authentication Mechanisms

This attribute specifies the authentication methods supported by the Discovery
Service. By default, all available methods are selected. If an authentication method
is not selected, and a Web services consumer (WSC) sends a request using that
method, the request is rejected.

Supported Directives

This attribute allows you to specify a policy-related directive for a resource. If a
service provider wants to use an unsupported directive, the request will fail.
Table 6-1 details the available options.

128 Access Manager 6 2005Q1 « Federation Management Guide

Discovery Service Attributes

Table 6-1 Policy-related Directives

Directive

Purpose

AuthenticateRequester

AuthenticateSessionContext

AuthorizeRequestor

EncryptResourcelD

GenerateBearerToken

The Discovery Service should include a SAML assertion
(containing an AuthenticationStatement) in its responses to enable
the client to authenticate to the service instance hosting the
resource.

The Discovery Service should include a SAML assertion
(containing a SessionContextStatement) in its responses that
indicate the status of the session.

The Discovery Service should include a SAML assertion
(containing a ResourceAccessStatement) in its responses that
indicate whether the client is allowed to access the resource.

The Discovery Service should encrypt the resource identifier in
responses to all clients.

For use with Bearer Token Authentication, the Discovery Service
should generate a token that grants the bearer permission to
access the resource.

CAUTION The Aut hori zeRequest or and Encrypt Resour cel D directives can not be used

together.

Enable Policy Evaluation for DiscoveryLookup

If selected, the service will perform a policy evaluation for the Di scover yLookup
operation. By default, the option is not selected.

Enable Policy Evaluation for DiscoveryUpdate

If selected, the service will perform a policy evaluation for the Di scover yUpdat e
operation. By default, this option is not selected.

Chapter 6 Discovery Service 129

Discovery Service Attributes

130

Authorizer Plugin Class

The value of this attribute is the name and path to the plugin class that implements
thecomsun.identity.liberty.ws.interfaces. Authorizer interface used for
policy evaluation of a WSC.

Entry Handler Plugin Class

The value of this attribute is the name and path to the plugin class that implements
the D scoEnt ryHandl er interface used to set or retrieve a principal’s discovery
entries. A default implementation is provided for the Access Manager Discovery
Service. To handle discovery entries differently, implement the
comsun.identity.|iberty.ws.disco.plugins. D scoEntryHandl er interface and
set the implementing class as the value for this attribute.

Classes For ResourcelDMapper Plugin

The value of this attribute is a list of classes that generate identifiers for a resource
offering configured for an organization or role.
comsun.identity.liberty.ws.interfaces.Resourcel DVapper is an interface
used to map a user identifier to the resource identifier associated with it. The
Discovery Service provides two implementations for this interface:

e comsun.identity.liberty.ws.disco.plugins. Defaul t 64Resour cel DVapper
(format: providerID + "/" + the Base64 encoded userIDs)

e comsun.identity.liberty.ws.disco.plugins. Defaul t HexResour cel Dvapper
(format: providerID + "/" + the hex string of userID)

Different implementations may be developed with the implementing class and
added as a value of this attribute by clicking Add and using the following format:

provi deri d=providerID| class_name_and_path

The value of provi deri d is a key/value pair separated by a pipe (“|”).

Authenticate Response Message

If selected, the service will authenticate the response message. By default, the
option is not selected.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Discovery Service Attributes

Generate SessionContextStatement for
Bootstrapping

If selected, the specifies whether to generate a Sessi onCont ext St at enent for
bootstrapping. Sessi onConxt ext in the Sessi onCont ext St at ement is needed by the
Discovery Service to support the Aut heni cat eSessi onCont ext directive. By
default, this option is not selected.

Encrypt Nameldentifier in Session Context for
Bootstrapping

If selected, the service will encrypt the name identifier in a
Sessi onCont ext St at enent . By default, the option is not selected.

Use Implied Resource; don't generate
ResourcelD for Bootstrapping

If selected, the service will not generate a resource identifier for bootstrapping. By
default, the option is not selected.

Resource Offerings for Bootstrapping Resources

This attribute defines a resource offering for bootstrapping a service. After single
sign-on (SSO), this resource offering and its associated credentials will be sent to
the client in the SSO assertion. Only one resource offering is allowed for
bootstrapping; by default, this offering contains information regarding the
Discovery Service. For more information defining on resource offerings, see
“Discovery Entries and Resource Offerings.”

CAUTION The value of the Resource Offerings for Bootstrapping Resources attribute is a
default value configured during installation of Access Manager. If you wish to
define a new resource offering, click New. If you wish to edit an existing resource
offering, click Edit.

Chapter 6 Discovery Service 131

Discovery Entries and Resource Offerings

Discovery Entries and Resource Offerings

132

In Access Manager, a discovery entry can be stored as a user attribute or as a
dynamic attribute. When storing a discovery entry as a user attribute, one user
account has one discovery resource which can include zero or more resource
offerings. Storing resource offerings within a user profile supports both entry
lookups and updates. When storing a discovery entry as a dynamic attribute, the
entry can be assigned to an organization or a role. This scenario only supports
entry lookups. More information can be found in:

= Storing Discovery Entries as User Attributes
= Storing Discovery Entries as Dynamic Attributes

= Storing Discovery Entries for Bootstrapping

Storing Discovery Entries as User Attributes

Discovery entries can be stored as a user attribute under a user’s distinguished
name (DN) using the Lightweight Directory Access Protocol (LDAP). Storing
resource offerings within a user profile supports both entry lookups and updates.
The following procedure details how to access and create a user’s resource
offerings.

1. Choose Users from the View menu in the Navigation pane of the Identity
Management module.

2. Click on the Properties arrow next to the user for whom you wish to create (or
modify) a resource offering.

3. Choose Resource Offering from the View menu in the Data pane.
4. Click New to access the resource offering attributes.
5. Enter a value for the Resource ID Attribute.

This field defines an optional identifier for the resource offering.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Discovery Entries and Resource Offerings

Enter the Resource ID Value.

This required field defines the resource identifier. Resource identifiers are URIs
registered with the Discovery Service that point to a particular discovery
resource. The value of this attribute must not be a relative URI and should
contain a domain name that is owned by the provider hosting the resource. Ifa
discovery resource is exposed in multiple Resource Offerings, the Resource ID
Value for all of those resource offerings would be the same. An example of a
valid Resource ID value is:

http://profile-provider.conprofiles/14n0B82k15csalxs

TIP

urn:libery:isf:inplied-resource canbe used as a Resource ID Value in
circumstances where there is only one resource that can be operated upon at the
service instance being contacted; the URI only implicitly identifies the resource in
question. In some circumstances, the use of this resource identifier can eliminate
the need for contacting the discovery service to access the resource.

10.

Enter a description of the resource offering in the Abstract field.
This field is optional.
Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this
attribute be the t ar get Nanespace URI defined in the abstract WSDL description
for the service. An example of a valid URI is:

urn:liberty:id-sis-pp:2003-08
Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is
useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a
valid URl is:

http://profile-provider.com
Click New to define the Service Description.

For each resource offering, at least one service description must be created.

Chapter 6 Discovery Service 133

Discovery Entries and Resource Offerings

134

Select the values for the Security Mechanism ID attribute to define how a
Web service client can authenticate to a Web service provider.

This field lists the security mechanisms that the service instance supports.
Select the security mechanisms you wish to add and click the Add button.
To arrange the priority of the list, select the mechanism and use the Move
Up or Move Down buttons.

Define a value for the Conrete Service Description attributes by selecting
either the Brief SoapHttp Description radio button or the WSDL Reference
radio button.

To configure Brief SoapHttp Description (selected by default):

I. Select Brief SoapHttp Description to provide the information necessary
to invoke basic SOAP-over-HTTP-based service instances without
using WSDL.

Il. Enter a value for the SOAP-over-HTTP end point in the End Point
attribute field.

This field contains the URI of the SOAP-over-HTTP endpoint. The URI
scheme must be HTTP or HTTPS as in:

https://soap. profil e-provi der. coni soap
IIl. Enter a value for the SOAP action in the SOAP Action attribute field.

This field contains the equivalent of the wsdl soap: soapActi on
attribute of the wsdl soap: oper ati on element in the service’s concrete
WSDL-based description.

To configure WSDL Reference:

I. Select WSDL Reference to in order to reference a concrete WSDL
service instance file.

Il. Enter a value for the Required Field WSDL URI attribute.
This field contains the URI of the WSDL document.
ll. Enter a value for the Required Field Service Namespace attribute.

This field references awsdl : servi ce element with the WSDL resource,
such that Ser vi ceNaneRef is equal to the wsdl : nane attribute of the
proper wsdl : servi ce element.

IV. Enter a value for the Service Local Part attribute.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Discovery Entries and Resource Offerings

This field provides the local portion of the qualified name of the
service namespace URI.

NOTE WSDL Reference is not currently supported in the client.

11. Add a URI to specify any options for the resource offering.

This field lists the options available for the resource offering. Options provide
hints to a potential requestor concerning the availability of certain data or
operations to a particular offering. The set of possible URIs are defined by the
service type and not the discovery service. If no option is specified, the service
instance does not advertise any available options.

NOTE The Liberty ID-SIS Personal Profile Service Specification standardizes a set of
options. This specification can be found at
http: //ww. proj ect!liberty. org/specs/|iberty-idsis-pp-vl.0.pdf.

12. Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to
enforce policy-related decisions. You can choose from the following:

a. GenerateBearerToken. This directive specifies that a bearer token be
generated.

b. AuthenticateRequester. This directive must be used with any service
description that use SAML for message authentication.

c. EncryptResourcelD. This directive specifies that the Discovery Service
encrypt the resource ID.

d. AuthenticateSessionContext. This directive is specified when a Discovery
Service provider includes a SAML assertion containing a
Sessi onCont ext St at ement in any future Quer yResponse messages.

e. AuthorizeRequester. This directive is specified when a Discovery Service
provider wants to include a SAML assertion containing a
Resour ceAccessSt at ement in any future Quer yResponse messages.

NOTE If you wish to associate a directive with one or more service descriptions, select the
checkbox in front of that Description ID. If no service descriptions are selected, the
directive is applied to all description elements in the resource offering.

Chapter 6 Discovery Service 135

Discovery Entries and Resource Offerings

136

13. Click Save.

Storing Discovery Entries as Dynamic Attributes

Due to the repetition inherent in storing discovery entries as user attributes, Access
Manager has established the option of storing a discovery entry as a dynamic
attribute within a role or an organization. The role or organization can then be
assigned to an identity-related object making the entry available to all users within
the object. To create a discovery entry as a dynamic attribute, the Discovery Service
must first be added and a template for the service created.

NOTE For more information on adding a service and creating a template, see the Sun Java
System Access Manager Administration Guide (http: //docs. sun. coni doc/ 817- 7647).

After a service has been added and a template created, the procedure is the same as
that detailed in “Storing Discovery Entries as User Attributes” on page 132 except
for the following:

1. Select the Identity Management module in the Header frame.
2. Choose Roles from the View menu in the Navigation pane.

3. Click on the Properties arrow next to the role to which you want to add the
discovery entry.

4. Choose Services from the View menu in the Data pane.

5. Click Edit next to the Discovery Service under the heading Service
Configuration for this Role.

6. Select a priority level to resolve conflicting resource offerings.

The conflict resolution level sets a priority level for roles that may contain the
same user. For example, if Userl is assigned to both Rolel and Role2, you can
define a higher priority level for Rolel so the resource offering from Rolel will
be dominant.

7. Enter a description of the resource offering in the Abstract field.

This field is optional.

Access Manager 6 2005Q1 ¢ Federation Management Guide

10.

Discovery Entries and Resource Offerings

Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this
attribute be the t ar get Nanespace URI defined in the abstract WSDL description
for the service. An example of a valid URI is:

urn:liberty:id-sis-pp: 2003- 08
Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is
useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a
valid URl is:

http://profile-provider.com
Click New to define the Service Description.
For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a
Web service client can authenticate to a Web service provider.

This field lists the security mechanisms that the service instance supports.
Select the security mechanisms you wish to add and click the Add button.
To arrange the priority of the list, select the mechanism and use the Move
Up or Move Down buttons.

b. Define a value for the Conrete Service Description attributes by selecting
either the Brief SoapHttp Description radio button or the WSDL Reference
radio button.

To configure Brief SoapHttp Description (selected by default):

I. Select Brief SoapHttp Description to provide the information necessary
to invoke basic SOAP-over-HTTP-based service instances without
using WSDL.

Il. Enter a value for the SOAP-over-HTTP end point in the End Point
attribute field.

This field contains the URI of the SOAP-over-HTTP endpoint. The URI
scheme must be HTTP or HTTPS as in:

https://soap. profil e-provi der. con soap

IIl. Enter a value for the SOAP action in the SOAP Action attribute field.

Chapter 6 Discovery Service 137

Discovery Entries and Resource Offerings

This field contains the equivalent of the wsdl soap: soapActi on
attribute of the wsdl soap: oper ati on element in the service’s concrete
WSDL-based description.

To configure WSDL Reference:

I. Select WSDL Reference to in order to reference a concrete WSDL
service instance file.

Il. Enter a value for the Required Field WSDL URI attribute.
This field contains the URI of the WSDL document.
ll. Enter a value for the Required Field Service Namespace attribute.

This field references awsdl : servi ce element with the WSDL resource,
such that Ser vi ceNaneRef is equal to the wsdl : name attribute of the
proper wsdl : servi ce element.

IV. Enter a value for the Service Local Part attribute.

This field provides the local portion of the qualified name of the
service namespace URI.

NOTE WSDL Reference is not currently supported in the client.

11. Add a URI to specify any options for the resource offering.

This field lists the options available for the resource offering. Options provide
hints to a potential requestor concerning the availability of certain data or
operations to a particular offering. The set of possible URIs are defined by the
service type and not the discovery service. If no option is specified, the service
instance does not advertise any available options.

NOTE The Liberty ID-SIS Personal Profile Service Specification standardizes a set of
possible option values. This specification can be found at
http: //ww. proj ectliberty. org/specs/|iberty-idsis-pp-vl.0.pdf.

12. Select a directive for the resource offering.
You can choose from the following:

a. GenerateBearerToken. This directive specifies that a bearer token be
generated.

138 Access Manager 6 2005Q1 « Federation Management Guide

Discovery Entries and Resource Offerings

b. AuthenticateRequester. This directive must be used with any service
description that use SAML for message authentication.

c. EncryptResourcelD. This directive specifies that the Discovery Service
encrypt the resource ID.

d. AuthenticateSessionContext. This directive is specified when a Discovery
Service provider includes a SAML assertion containing a
Sessi onCont ext St at ement in any future Quer yResponse messages.

e. AuthorizeRequester. This directive is specified when a Discovery Service
provider wants to include a SAML assertion containing a
Resour ceAccessSt at ement in any future Quer yResponse messages.

13. Click Save.

CAUTION Unlike storing a discovery entry as a user attribute, this scenario only supports
entry lookups, not updates.

Storing Discovery Entries for Bootstrapping

When a WSC contacts the Discovery Service for a resource offering, the WSC first
needs to find the Discovery Service itself. Thus, an initial resource offering for
locating the Discovery Service is sent back to the WSC in a single sign-on assertion.
The following procedure details how to configure a global attribute for
bootstrapping the Discovery Service itself.

1. Select the Service Management module in the Header frame.

2. Click on the Properties arrow next to the Discovery Service in the Navigation
pane.

3. Choose New under Resource Offerings for Bootstrapping Resources.

By default, the resource offering for bootstrapping the Discovery Service is
already configured. In order to create a new resource offering, you must first
delete the default resource offering.

4. Enter a description of the resource offering in the Abstract field.

This field is optional.

Chapter 6 Discovery Service 139

Discovery Entries and Resource Offerings

140

Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this
attribute be the t ar get Nanespace URI defined in the abstract WSDL description
for the service. An example of a valid URI is:

urn:liberty:di sco: 2003- 08
Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is
useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a
valid URl is:

http://sanpl e_di sco.com
Click New to define the Service Description.
For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a
Web service client can authenticate to a Web service provider.

This field lists the security mechanisms that the service instance supports.
Select the security mechanisms you wish to add and click the Add button.
To arrange the priority of the list, select the mechanism and use the Move
Up or Move Down buttons.

b. Define a value for the Conrete Service Description attributes by selecting
either the Brief SoapHttp Description radio button or the WSDL Reference
radio button.

To configure Brief SoapHttp Description (selected by default):

I. Select Brief SoapHttp Description to provide the information necessary
to invoke basic SOAP-over-HTTP-based service instances without
using WSDL.

Il. Enter a value for the SOAP-over-HTTP end point in the End Point
attribute field.

This field contains the URI of the SOAP-over-HTTP endpoint. The URI
scheme must be HTTP or HTTPS as in:

https://soap. profil e-provi der. con soap

IIl. Enter a value for the SOAP action in the SOAP Action attribute field.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Discovery Entries and Resource Offerings

This field contains the equivalent of the wsdl soap: soapActi on
attribute of the wsdl soap: oper ati on element in the service’s concrete
WSDL-based description.

To configure WSDL Reference:

I. Select WSDL Reference to in order to reference a concrete WSDL
service instance file.

Il. Enter a value for the Required Field WSDL URI attribute.
This field contains the URI of the WSDL document.
ll. Enter a value for the Required Field Service Namespace attribute.

This field references awsdl : servi ce element with the WSDL resource,
such that Ser vi ceNaneRef is equal to the wsdl : name attribute of the
proper wsdl : servi ce element.

IV. Enter a value for the Service Local Part attribute.

This field provides the local portion of the qualified name of the
service namespace URI.

NOTE WSDL Reference is not currently supported in the client.

8. Add a URI to specify any options for the resource offering.

This field lists the options available for the resource offering. Options provide
hints to a potential requestor concerning the availability of certain data or
operations to a particular offering. The set of possible URIs are defined by the
service type and not the discovery service. If no option is specified, the service
instance does not advertise any available options.

NOTE The Liberty ID-SIS Personal Profile Service Specification standardizes a set of
possible option values. This specification can be found at
http: //ww. proj ectliberty. org/specs/|iberty-idsis-pp-vl.0.pdf.

9. Select a directive for the resource offering.
You can choose from the following:

a. GenerateBearerToken. This directive specifies that a bearer token be
generated.

Chapter 6 Discovery Service 141

Discovery Service Interfaces

b. AuthenticateRequester. This directive must be used with any service
description that use SAML for message authentication.

c. EncryptResourcelD. This directive specifies that the Discovery Service
encrypt the resource ID.

d. AuthenticateSessionContext. This directive is specified when a Discovery
Service provider includes a SAML assertion containing a
Sessi onCont ext St at ement in any future Quer yResponse messages.

e. AuthorizeRequester. This directive is specified when a Discovery Service
provider wants to include a SAML assertion containing a
Resour ceAccessSt at ement in any future Quer yResponse messages.

10. Click Save.

Discovery Service Interfaces

142

By default, a discovery service is implemented as one of the identity web services
in Access Manager. The Discovery Service provides the following implementations
and interfaces:

« DefaultDiscoAuthorizer Implementation
« Default ResourcelDMapper Implementations
= DiscoEntryHandler Interface

e Client APIs

DefaultDiscoAuthorizer Implementation

The comsun.identity.liberty.ws.interfaces. Authorizer is an interface used
to enable an identity service to check the authorization of a WSC. The

Def aul t D scoAut hori zer class is the default implementation of this interface. It
uses the Access Manager Policy Service for creating and applying policy
definitions.

NOTE The Policy Service looks for an SSOToken defined for Authenticated Users or Web
Service Clients. More information on this, and the Policy Service in general, can be
found in the Sun Java System ldentity Server 2004Q2 Administration Guide
(http://docs. sun. cont doc/ 817- 7647).

Access Manager 6 2005Q1 ¢ Federation Management Guide

Discovery Service Interfaces

Policy definitions for the Discovery Service are configured using the Access
Manager console. The procedure is as follows:

1.

10.

11.

12.

13.

14.

15.

16.

Choose Services from the View menu in the Navigation pane of the Identity
Management module.

The Discovery Service must be added to the organization for which the
Discovery Service policy is being created. Proceed to Step 5 if this has already
been done.

Click Add to add a new service to the organization.
Choose Discovery Service from the list of services in the Data Pane.
Click OK.

Choose Policies from the View menu in the Navigation pane of the Identity
Management module.

Click New to create a new policy.

Select the type of policy.

Enter a name for the policy.

Click OK.

Choose Rules from the View menu in the Data pane for the created policy.
Click New.

Select Discovery Service for the rule type and click Next.
Enter a name for the rule.

Enter a resource on which the rule acts.

The Resource Name field uses the form:

ServiceType + RESOURCE_SEPARATOR + ProviderID

For example:

urn:liberty:id-sis-pp:2003-08; http://exanpl e.com
Select an action for the rule.

Discovery Service policies can only look up or update data.

Click Finish.

Chapter 6 Discovery Service 143

Discovery Service Interfaces

NOTE The comsun.identity.liberty.ws.interfaces. Authorizer interface can be
implemented by any Web service in Access Manager. More information can be
found in “Common Service Interfaces” on page 155 of Chapter 8, “Application
Programming Interfaces” and in the Access Manager Javadocs (located in
| AccessManager_base/ SUNWanT docs.).

Default ResourcelDMapper Implementations

Thecomsun.identity.liberty.ws.interfaces. Resourcel DVapper is an interface
used to map a user ID to the resource identifier associated with it. Access Manager
provides two implementations of this interface.

e comsun.identity.liberty.ws.disco.plugins. Defaul t 64Resour cel DVapper
assumes the ResourcelD format to be:

providerID +"/" + the Base64 encoded userIDs

e comsun.identity.liberty.ws.disco.plugins. Defaul t HexResour cel DVappes
ssumes the ResourcelD format to be:

providerID +"/" + the hex string of userID.

A different implementation of the interface may be developed. The
implementation class should be given to the provider that hosts the Discovery
Service. The mapping between the provi der | Dand the implementation class can
be configured through the “Classes For ResourcelDMapper Plugin” attribute.

NOTE The comsun.identity.liberty.ws.interfaces. Resourcel Dvapper interface is
common to all identity services in Access Manager not only the Discovery Service.
More information can be found in “Common Service Interfaces” on page 155 of
Chapter 8, “Application Programming Interfaces” and in the Access Manager
Javadocs (located in / AccessManager_base/ SUNWanT docs.).

DiscoEntryHandler Interface

The comsun.identity.liberty.ws. disco.plugins. D scoEntryHandl er isan
interface used to get and set discovery entries for a user. A number of default
implementations are provided but, if you want to handle this function differently,
implement this interface and set the implementing class as the value of the “Entry
Handler Plugin Class” attribute in the Discovery Service. The default
implementations of this interface are:

144 Access Manager 6 2005Q1 « Federation Management Guide

Discovery Service Interfaces

UserDiscoEntryHandler. Thisimplementation gets or modifies discovery entries

stored in the user’s entry as a value of the sunl denti tySer ver Di scoEntries
attribute. The User D scoEnt ryHandl er implementation is used in
business-to-consumer scenarios such as the Personal Profile service.

DynamicDiscoEntryHandler. This implementation gets discovery entries stored
as avalue of the sunl dent i t ySer ver Dynani cDi scoEnt ri es dynamic attribute in the

Discovery Service. Modification of these entries is not supported and always
returns f al se. The resource offering is saved in an organization or a role. The
Dynani cD scoEnt r yHandl er implementation is used in business-to-business
scenarios such as the Employee Profile service.

UserDynamicDiscoEntryHandler. This implementation gets a union of the
discovery entries stored in the user entry sunl denti t ySer ver D scoEntri es
attribute and discovery entries stored in the Discovery Service

sunl denti t ySer ver Dynam cDi scoEntri es attribute. It modifies only discovery
entries stored in the user entry. The User Dynani cDi scoEnt r yHand| er
implementation can be used in both business-to-consumer and
business-to-business scenarios.

Client APIs

Table 6-2 summarizes the client APIs in the package
comsun.identity.liberty.ws. di sco. For detailed API reference, including
methods and their syntax and parameters, see the Javadocs in

[AccessManager_base/ SUNVAn1 docs.

Table 6-2 Discovery Service Client APIs

Class Name Description

Descri ption Represents a Description Type of a service instance.

Directive Represents a discovery service DirectiveType element.

Di scoveryd i ent Provides methods to send Discovery Service query and modify.

Encrypt edResour cel D Represents an Encryption Resource ID element for the Discovery
Service.

I nsertEntry Represents a Insert Entry for Discovery Modify request.

Modi fy Represents a discovery modify request.

Modi f yResponse Represents a discovery response for modify request.

Query Represents a discovery Query object.

QueryResponse Represents a response for a discovery query request.

Chapter 6 Discovery Service

145

Discovery Service Sample

Table 6-2 Discovery Service Client APIs (Continued)

Class Name Description

RermoveEnt ry Represents a remove entry element for the discovery modify
request.

Request edSer vi ce Enables the requester to specify that all the resource offerings

returned must be offered via a service instance complying with one
of the specified service type.

Resour cel D Represents a discovery service resource ID

Resour ceOf f eri ng Associates a resource with a service instance that provides access
to that resource

Servi cel nst ance Describes a web service at a distinct protocol endpoint.

Discovery Service Sample

A sample outlining the process involved in querying and modifying the Discovery
Service is included with Access Manager. It is located in the

AccessManager_base/ SUNWani sanpl es/ phase2/ wsc directory. The sample initally
details how to deploy and run a WSC. The final portion queries the Discovery
Service and modifies identity data in the Liberty Personal Profile Service. More
information can be found in Appendix A, “Included Samples.”

146 Access Manager 6 2005Q1 « Federation Management Guide

Chapter 7

SOAP Binding Service

The Sun Java™ System Access Manager contains an implementation of the Liberty
ID-WSF SOAP Binding Specification from the Liberty Alliance Project. SOAP
Binding is a transport layer for sending and receiving SOAP messages. This
chapter contains the following topics:

= Overview

= SOAP Binding Process

= SOAP Binding Attributes
= SOAP Binding Interfaces

Overview

The Liberty Identity Web Services Framework (ID-WSF) and Liberty Identity Service
Interface Specification (ID-SIS) components of the Liberty Alliance Project (LAP)
specifications use messages to convey identity data between providers. These
identity messages themselves do not address a specific method of transport so
Access Manager has implemented the Liberty ID-WSF SOAP Binding Specification
(ID-WSF-SBS) for this purpose. The specification defines SOAP as the binding to
the HyperText Transport Protocol (HTTP), which is itself layered onto the TCP/IP
stack.

NOTE The Liberty ID-WSF SOAP Binding Specification can be found on the Liberty
Alliance Project Web site at
http://ww. projectliberty.org/specs/liberty-idwsf-soap-binding-v1. 1. pdf.

147

SOAP Binding Process

XML Service File

The Access Manager SOAP Binding service is defined using the XML service file
anB0OAPBI ndi ng. xm . anSOAPBI ndi ng. xm defines the attributes for the SOAP
Binding service which can be managed through the Access Manager console or the
XML file itself.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. coni doc/ 817- 7649).

The ID-WSF-SBS also defines an XML schema for use in building the SOAP
messages. This XML Schema Defintion (XSD) file can be found on the LAP Web
site. Version 1.0 is also reproduced in Appendix B, “Service Schema Files.”

Application Programming Interfaces

The Access Manager SOAP Binding service includes a Java package named
comsun.identity.|iberty.ws.soapbindi ng. Additional information on these
interfaces can be found in “SOAP Binding Interfaces” on page 152.

SOAP Binding Process

148 Access Manage

In the SOAP Binding process, an identity service calls the client side application
programming interface (API) to construct a message and send it to the SOAP
endpoint URL; in effect, a SOAP Receiver servlet.

NOTE Currently, only the Discovery Service, the Liberty Personal Profile Service and the
Authentication Web Service use the SOAP Binding Service client API. Additionally,
the Liberty Employee Profile sample uses them. They are not yet public.

The SOAP Receiver servlet receives the message, verifies the signature, and
constructs a second message. The SOAP Receiver servlet then invokes the correct
Request Handler to send this second message to the corresponding identity service
for a response.

r 6 2005Q1 « Federation Management Guide

SOAP Binding Attributes

NOTE The Request Handler is an interface that must be implemented on the server side
by any Liberty-based identity Web service using the SOAP Binding Service. More
information on this interface can be found in the “Request Handler List” on
page 150.

The identity service processes the second message, generates a response, and sends
that response back to the SOAP Receiver servlet. The SOAP receiver, in turn, sends
the response back to the identity service for processing.

NOTE Before invoking a corresponding service, the SOAP framework might also do the
following:

1. Authenticate sender identity: This is to verify the credentials of a WSC peer,
probably by verifying it's client certificate.

2. Authenticate invoking identity: This verifies the credentials of a WSC on behalf
of a user to verify whether the user has been authenticated. This depends on
the security authentication profile.

3. Granular authorization: This is to authorize the WSC itself before processing a
service request.

SOAP Binding Attributes

The SOAP Binding service attributes are global attributes. The values of these
attributes are carried across the Sun Java System Access Manager configuration
and inherited by every organization.

NOTE For information on the types of attributes used in Access Manager, see the Service
Management chapter of the Sun Java System Access Manager Developer’s Guide
(http://docs. sun. cont doc/ 817- 7649).

Attributes for the SOAP Binding service are defined in the anSQAPBi ndi ng. xni
service file. The SOAP Binding attributes are:

= Request Handler List
e \Web Service Authenticator

= Supported Authentication Mechanisms

Chapter 7 SOAP Binding Service 149

SOAP Binding Attributes

150

Request Handler List

The SOAP Binding Service provides the Request Handl er interface to process the
request message and return a response. This interface must be implemented on the
server side by each Liberty-based identity service that uses the SOAP Binding
Service. The Request Handler List attribute stores information about the
implementation classes of the Web services that implement the Request Handler.

NOTE Currently, only the Discovery Service, the Liberty Personal Profile Service and the
Authentication Web Service use the SOAP Binding Service RequestHandler
interface. Additionally, the Liberty Employee Profile Service sample uses it. The
interface itself is not yet public.

The Request Handler List displays entries that contain key/value pairs separated
by a pipe (“]”) as in:

key=di sco| cl ass=com exanpl e. i dentity.|iberty.ws.di sco.D scoveryService

key Parameter

The required key parameter is the last part of the URI path to a SOAP endpoint. The
SOAP endpoint in Access Manager is the SOAP Receiver servilet. The URI to the
SOAP Receiver is:

protocol://hostname:port/deloy_uri/Liberty/key

If you define di sco as the key, the URI path to the SOAP endpoint for the
corresponding Discovery Service would be:

protocol://hostname:port/amserver/Liberty/disco

Different service clients use different keys when connecting to the SOAP Receiver.

class Parameter

The required class parameter specifies the name of the Request Handler
implementation class for the particular identity service. For example:

cl ass=com exanpl e.identity.liberty.ws. disco. D scoveryService

Access Manager 6 2005Q1 ¢ Federation Management Guide

SOAP Binding Attributes

Web Service Authenticator

This attribute takes as a value the implementation class for the Web Service
Authenicator interface. This class authenticates a request and generates a credential
for a Web service consumer (WSC).

NOTE This interface is not currently public. The value of the attribute is configured during
installation.

Supported Authentication Mechanisms

This attribute specifies the authentication mechanisms supported by the SOAP
Receiver. Authentication mechanisms offer user authentication, as well as data
integrity and encryption. By default, all available authentication mechanisms are
selected. If one is not selected, and a Web services consumer (WSC) sends a request
using it, the request is rejected. Following is a list of the supported authentication
mechanisms:

e urn:liberty:security:2003-08:null:null

e urn:liberty:security:2003-08: nul | : X509

e urn:liberty:security:2003-08: nul | : SAM

e urn:liberty:security:2004-04: nul | : Bear er

e urn:liberty:security:2003-08: TLS: nul |

e urn:liberty:security:2003-08: TLS: X509

e urn:liberty:security:2003-08: TLS: SAML

e urn:liberty:security: 2004- 04: TLS: Bear er

e urn:liberty:security:2003-08:dientTLS: nul |
e urn:liberty:security:2003-08: dientTLS: X509
e urn:liberty:security:2003-08:dientTLS: SAML
e urn:liberty:security:2004-04: dient TLS: Bearer

Chapter 7 SOAP Binding Service 151

SOAP Binding Interfaces

NOTE More complete information on authentication mechanisms and their level of
security can be found in the Liberty ID-WSF Security Mechanisms document on the
Liberty Alliance Project Web site at
http: //ww. projectliberty. org/specs/|iberty-idwsf-security-nechani sns-v1. 1. pd
f.

SOAP Binding Interfaces

152

The Access Manager SOAP Binding Service includes a Java package named
comsun.identity.liberty.ws. soapbi ndi ng. It provides classes to construct
SOAP requests and responses and to change the contact point for the SOAP
binding. Table 7-1 details the available classes.

Table 7-1 SOAP Binding API Classes

Class Description

Message Used by both the Web service client and server to construct SOAP
requests and responses.

Servi cel nst anceUpdat eHe Allows a service to change the endpoint on which requesters will
ader contact it.

Servi cel nst anceUpdat eHe Allows a service to use a different security mechanism and
ader. Credenti al credentials to access the requested resource.

The package also includes a Request Handl er interface. The implementation of this
interface is discussed further in “Interaction Service API” on page 159 of Chapter 8,
“Application Programming Interfaces.” For more detailed API reference
information, see the Javadocs in / AccessManager _base/ SUNVand docs.

NOTE Be sure to check out Appendix A, “Included Samples” for sample code and files to
help you understand the implementation of the Liberty Alliance Project’s
specifications in Access Manager.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Chapter 8

Application Programming Interfaces

Sun ™ Java System Access Manager provides a framework for identity federation
and creating, discovering, and consuming identity Web services. This framework
includes exposed graphical user interfaces for Liberty-based Web services
(discussed in the Web services section of this book) as well as application
programming interfaces (APIs). This chapter details information on the APIs that
do not have a corresponding graphical user interface (GUI) and contains the
following sections:

= Overview of Public Interfaces
= Common Service Interfaces

= Common Security API

= Interaction Service API

< PAOS Binding

Overview of Public Interfaces

Table 8-1 lists all of the public APIs you can use to deploy Liberty-enabled
components or extend the core services. Packages that are part of a Web service
with a GUI are described in the corresponding chapters of this book; links to those
chapters are provided in the Description column. Packages that are used in the
back-end are described in this chapter; links to those sections are also provided in
the Description column. For detailed API reference, including methods and their
syntax and parameters, see the Javadocs in / AccessManager_base/ SUNVé&n docs.

153

Overview of Public Interfaces

154

Table 8-1 Summary of Liberty-based Packages

Package Name

Description

comsun.identity.liberty.
ut hnsvc

comsun.identity.liberty.
ut hnsvc. prot ocol

comsun.identity.liberty.
onmon

com sun.identity.liberty.
onmon. wsse

com sun.identity.liberty.
i sco

com sun.identity.liberty.
i sco. pl ugi ns

com sun.identity.liberty.
st

com sun.identity.liberty.
st.service

comsun.identity.liberty.
nteraction

com sun.identity.liberty.
nterfaces

comsun.identity.liberty.
aos

com sun.identity.liberty.
ecurity

Ws.

Provides classes to manage the Authentication Web
Service. See Chapter 4, “Authentication Web Service” on
page 101.

Provides classes to manage Authentication Web Service
protocol. See Chapter 4, “Authentication Web Service” on
page 101.

Defines common classes used by many of the Access
Manager Liberty-based Web service components. See
“Common Service Interfaces” on page 155 of this chapter.

Provides an interface to parse and create a X.509 Certificate
Token Profile. See “Interaction Service API” on page 159 of
this chapter.

Provides interfaces to manage the Discovery Service. See
Chapter 6, “Discovery Service” on page 121.

Provides a plugin interface for the Discovery Service. See
Chapter 6, “Discovery Service” on page 121.

Provides classes to implement an identity service on top of
the Access Manager framework. See Chapter 5, “Data
Services” on page 107 for information on a service built
using this APl and for more general information.

Provides a handler class that can be used by any generic
identity data service. See Chapter 5, “Data Services” on
page 107 for information on data services and for more
general information.

Provides classes to support the Interaction RequestRedirect
Profile. See “Interaction Service API” on page 159 of this
chapter.

Provides interfaces common to all Access Manager
Liberty-based Web service components.See Chapter 6,
“Discovery Service” on page 121 and Chapter 5, “Data
Services” on page 107 for information on default
implementations. See “Common Service Interfaces” on
page 155 of this chapter for more general information.

Provides classes for Web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 161 of this chapter.

Provides interface to manage Liberty-based Web service
security mechanisms. See “Common Security API” on
page 157 of this chapter.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Common Service Interfaces

Table 8-1 Summary of Liberty-based Packages (Continued)

Package Name Description

comsun.identity.liberty.ws.s Provides classes to construct SOAP requests and

oapbi ndi ng responses and to change the contact point for the SOAP
binding. See Chapter 7, “SOAP Binding Service” on
page 147.

com sun. | iberty Provides interfaces common to the Access Manager

Federation Management module. See Chapter 3,
“Federation Management” on page 59.

Common Service Interfaces

This section summarizes classes that can be used by all Liberty-based Access
Manager service components, as well as interfaces common to all Liberty-based
Access Manager services. The packages are:

e comsun.identity.liberty.ws.commn

e comsun.identity.liberty.ws.interfaces

com.sun.identity.liberty.ws.common

The comsun.identity.liberty.ws. conmon package includes classes common to
all Liberty-based Access Manager service components.

Table 8-2 Common Liberty Classes

Class Description

LogUti Class that defines methods which are used by the Liberty component
of Access Manager to write logs.

St at us Class that represents a common status object.

For more detailed API reference information, see the Javadocs in
| AccessManager_base/ SUNVAnT docs.

Chapter 8 Application Programming Interfaces 155

Common Service Interfaces

156

com.sun.identity.liberty.ws.interfaces

The comsun.identity.liberty.ws.interfaces package includes interfaces that
can be implemented to add their corresponding functionality to each Liberty-based
Access Manager Web service.

Table 8-3 Common Liberty Interfaces

Interface Description
Aut hori zer Interface for identity service to check authorization of a WSC.
Resour cel Dvapper Interface used to map between a userID and the ResourcelD

associated with it.

Authorizer

The comsun.identity.liberty.ws.interfaces. Authorizer is an interface that,
once implemented, can be used by each Liberty-based Web service component for
access control.

NOTE The Def aul t Di scoAut hori zer class is the implementation of this interface for the
Discovery Service. For more information, see Chapter 6, “Discovery Service.” The
com sun.identity.liberty.ws.idpp.plugin.|DPPAuthori zer class is the
implementation for the Liberty Personal Profile Service. For more information, see
Chapter 5, “Data Services.”

The Aut hori zer interface enables the Web service to check for the authorization of
a Web service consumer (WSC) to access the requested resource. When a WSC
contacts a Web service provider (WSP), the WSC conveys a sender identity and an
invocation identity. (The invocation identity is always the subject of the SAML
assertion.) These conveyances allow the WSP to make an authorization decision
based on one or both identities. The Access Manager Policy Service performs the
authorization based on defined policies.

NOTE See the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs. sun. cont doc/ 817- 7649) for more information on policy management,
single sign-on and sessions. See the Sun Java System Access Manager 6 2005Q1
Administration Guide (ht t p: // docs. sun. coni doc/ 817- 7647) for information on
creating policy.

Access Manager 6 2005Q1 ¢ Federation Management Guide

Common Security API

ResourcelDMapper

Thecomsun.identity.liberty.ws.interfaces. Resourcel DVapper is an interface
used to map a user DN to the resource identifier associated with it. Access
Manager provides two implementations of this interface.

e comsun.identity.liberty.ws.disco.plugins. Defaul t 64Resour cel DVapper
assumes the ResourcelD format to be:

providerID +"/" + the Base64 encoded userIDs

e comsun.identity.liberty.ws.disco.plugins. Defaul t HexResour cel DVappes
ssumes the ResourcelD format to be:

providerID +"/" + the hex string of userID.

A different implementation of the interface may be developed. The
implementation class should be given to the provider that hosts the Discovery
Service. The mapping between the provi der | Dand the implementation class can
be configured through the “Classes For ResourcelDMapper Plugin” attribute.

Common Security API

The Liberty-based security APIs are included in the
comsun.identity.liberty.ws.security package and the
comsun.identity.liberty.ws.comon. wsse package.

com.sun.identity.liberty.ws.security

Thecomsun.identity.liberty.ws.security package includes an interface and
classes to manage Liberty-based security mechanisms.

Table 8-4 com.sun.identity.liberty.ws.security

Class Name Description

Securi t yTokenPr ovi der A provider interface for managing Web Service Security (WSS)
type tokens.

Pr oxySubj ect Represents the identity of a proxy, the confirmation key and
confirmation obligation the proxy must possess and demonstrate
for authentication purpose

Resour ceAccessSt at enent Conveys information regarding the accessing entities and the
resource for which access is being attempted

Chapter 8 Application Programming Interfaces 157

Common Security API

158

Table 8-4 com.sun.identity.liberty.ws.security (Continued)

Class Name Description

SecurityAssertion Provides an extension to the Assertion class to support ID-WSF
ResourceAccessStatement and SessionContextStatement

Securit yTokenManager This is the entry class for the security package
comsun.identity.liberty.ws.security. You can call its
methods to generate X509 and SAML tokens for message
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does not meet your requirements.

SecurityWils Class that defines methods which are used to get certificates and
sign messages.

Sessi onCont ext Represents session status of an entity to another system entity.

Sessi onCont ext St at ement An element that conveys session status of an entity to another

system entity within the body of an <saml:assertion> element.

Sessi onSubj ect Represents a liberty subject with associated session status.

For more detailed API reference information, see the Javadocs in
| AccessManager_base/ SUNVAn1 docs.

com.sun.identity.liberty.ws.common.wsse

The comsun.identity.liberty.ws. conmon. wsse package includes APIs for
creating security tokens used for authentication and authorization in accordance
with the Liberty ID-WSF Security Mechanisms specification. This document can be
found at the Liberty Alliance Project (LAP) Web site at

http://waw project!liberty. org/ specs/|iberty-idwsf-security-nechani sns-vl. 1. pdf
. Both WSS X509 and SAML tokens are supported.

Table 8-5 Security APIs

Class Name Description

Bi narySecurit yToken The class BinarySecurityToken provides interface to parse and
create X.509 Security Token depicted by Web Service Security:
X.509

WESEConst ant s

Access Manager 6 2005Q1 ¢ Federation Management Guide

Interaction Service API

For more detailed API reference information, see the Javadocs in
| AccessManager_base/ SUNVAn1 docs.

Interaction Service API

Itis often necessary for providers of identity services to interact with the owner of a
reosurce to get the resource owner’s consent to expose data, or to get additional
data from the resource owner. The Liberty Alliance Project (LAP) has defined the
Liberty ID-WSF Interaction Service Specification to specify how these interactions can
be carried out. Of the options for this interaction defined in the specification,
Access Manager has implemented one of them: the RedirectRequest. In this profile,
the Web service provider (WSP) requests the connecting Web service consumer
(WSC) to redirect the user agent (principal) to an interaction resource (URL) at the
WSP. Once the user agent sends an HTTP request to fetch the URL, the WSP has
the opportunity to present one or more pages to the principal with questions for
other information. When the WSP obtains the information it requires to serve the
WSC, it redirects the user agent back to the WSC which can now reissue its original
request to the WSP.

Configuring the Interaction Service

There is no XML service file for the Interaction Service. There are two properties,
though, that are configured upon installation in the AMConf i g. properti es file
located in / AccessManager_base/ SUNVand | i b.

e comsun.liberty.ws.interaction.wpRedirectHandl er —This property
points to the URL at which the WSPRedirectHandler servlet is deployed. The
servlet handles the service provider side of interactions for user redirects.

e comsun.identity.liberty.interaction. wscSpecifiedl nteractionChoice
—This property indicates the level of interaction in which the WSC will
participate if they participate in user redirects. Possible values include
i nteract ! fNeeded, doNot | nt er act, and doNot | nt er act For Dat a. The
affirmative i nt eract | f Needed is the default.

e comsun.identity.liberty.interaction.wscWIIIncludeUserlnteractionHea
der —This property indicates whether the WSC will include a SOAP header to
indicate certain preferences for interaction based on the LAP specifications.
The default value is yes.

Chapter 8 Application Programming Interfaces 159

Interaction Service API

comsun.identity.liberty.interaction. wscWI| Redirect —This property
indicates whether the WSC will participate in user redirections. The default
value is yes.

comsun.identity.liberty.interaction.wscSpecifiedMaxlnteractionTi ne
—This property indicates the maximum length of time (in seconds) the WSC is
willing to wait for the WSP to complete their portion of the interaction. The
WSP would not then initiate an interaction if the interaction is likely to take
more than the time specified. For example, if the WSP receives a request where
this property is set to a maximum 30 seconds and their own property
comsun.identity.liberty.interaction. wspRedirectTi me (see below) is set
to 40 seconds, the WSP will return a SOAP fault (ti meNot Suf fi ci ent)
indicating that the time is not sufficient for interaction.

comsun.identity.liberty.interaction. wscWI | EnforceHtpsCheck—This
property indicates whether the WSC will enforce HTTPS in redirected URLSs.

The default value, yes, indicates that the WSC will not redirect the user when
the value of redi rect URL (specified by the WSP) is not an HTTPS URL.

comsun.identity.liberty.interaction. wspWI | Redirect—The WSP can
initiate an interaction to get user consent for something or to collect additional
data. This property indicates whether the WSP will redirect the user for
consent. The default value is yes.

comsun.identity.liberty.interaction. wspWI | RedirectForData—The
WSP can initiate interaction to get user consent for something or to collect
additional data. This property indicates whether the WSP will redirect the user
to collect additional data. The default value is yes.

comsun.identity.liberty.interaction.wspRedirectTi me—This property
indicates the length of time (in seconds) the WSP expects to take to complete an
interaction and return control back to the WSC. For example, if the WSP
receives a request indicating that the WSC will wait a maximum 30 seconds
(setin
comsun.identity.liberty.interaction.wscSpecifiedMaxlnteractionTi ne)
for interaction and wspRedi r ect Ti ne is set to 40 seconds, the WSP will return a
SOAP fault (t i meNot Suf f i ci ent) indicating that the time is not sufficient for
interaction.

comsun.identity.liberty.interaction. wspWI | EnforceHtpsCheck—This
property indicates whether the WSP will enforce a HTTPS r et ur nToURL
specified by the WSC. The default value is yes.

160 Access Manager 6 2005Q1 « Federation Management Guide

PAOS Binding

e comsun.identity.liberty.interaction.wspWI | EnforceRet urnToHost Equal s
Request Host —This property indicates whether the WSP would enforce the
address values of r et ur nToHost and r equest Host if they are the same. Per the
LAP specifications, the value of this property is always yes.

e comsun.identity.liberty.interaction.htm Styl eSheet Locati on—This
property points to the location of the style sheet used to render the interaction
page in HTML.

e comsun.identity.liberty.interaction. wi StyleSheetLocati on—This
property points to the location of the style sheet used to render the interaction
page in WML.

Interaction Service API

The Access Manager Interaction Service includes a Java package named
comsun.identity.liberty.ws.interaction. WSCsand WSPs use these classes to
interact with a resource owner. Table 8-6 details the API.

Table 8-6 Interaction Service API

Class Description

InteractionManager This class provides the interface and implementation for resource
owner interaction.

InteractionUtils This class provides some utility methods related to resoource
owner interaction.

JAXBObjectFactory This object contains factory methods. An ObjectFactory allows you
to programatically construct new instances of the Java
representation for XML content.

For more detailed API reference information, including methods and their syntax
and parameters, see the Javadocs in / AccessManager_base/ SUNWanT docs.

PAQOS Binding

Access Manager has implemented the optional Liberty Alliance Project (LAP)
Liberty Reverse HTTP Binding for SOAP Specification. It defines a message exchange
protocol that permits a HTTP client to be a SOAP responder. HTTP clients are no
longer necessarily equipped with HTTP servers. For example, mobile terminals

Chapter 8 Application Programming Interfaces 161

PAQOS Binding

and personal computers contain Web browsers yet they do not operate HTTP
servers. These clients, though, can use their browsers to interact with an identity
service (possibly a personal profile service or a calendar service). These identity
services could also be valuable when the client devices interact with an HTTP
server. The use of PAOS makes it possible to exchange information between user
agent hosted services and remote servers.

PAOS vs. SOAP

In a typical SOAP binding, an HTTP client interacts with an identity service via a
client request and a server response. For example, a cell phone user (client) may
contact his phone service provider (service) in order to retrieve stock quotes and
weather information. The service verifies the user’s identity, and responds with the
requested information.

In a reverse HTTP for SOAP binding, the phone service provider plays the client
role, and the cell phone client plays the server role. The initial SOAP request from
the server is actually bound to a HTTP response. The subsequent response from the
client is bound to a request. This is why the reverse HTTP for SOAP binding is also
known as PAOS; the spelling of SOAP is reversed.

PAOS Binding API

The Access Manager implementation of PAOS binding includes a Java package
named com sun. i dentity.liberty.ws. paos. It provides classes to parse a PAOS
header, make a PAOS request, and receive a PAOS response.

NOTE These APIs are used by PAOS clients on the HTTP server side. APIs for PAOS
servers on the HTTP client side would be developed by the manufacturers of the
HTTP client side products, for example, cell phone manufacturers.

Table 8-7 details the available classes in com sun. identity.liberty.ws. paos. For
more detailed information, including methods and their syntax and parameters,
see the Javadocs in / AccessManager_base/ SUNVanT docs.

Table 8-7 Summary of PAOS APIs

Class Name Description

PAOSHeader The PAOSHeader class is used by a web application on the HTTP server side
to parse a PAOS header in an HTTP request from the user agent side.

162 Access Manager 6 2005Q1 « Federation Management Guide

PAOS Binding

Table 8-7 Summary of PAOS APIs

Class Name Description

PAOSRequest The PAOSRequest class is used by a web application on the HTTP server
side to construct a PAOS request message and send it via an HTTPresponse
to the user agent side.

PACSResponse The PAOSResponse class is used by a web application on the HTTP server
side to receive and parse a PAOS response via an HTTP request from the
user agent side.

Note that PACSRequest is made available in PACBResponse to provide correlation if
needed by API users.

PAOS Binding Sample

A sample demonstrating PAOS service interaction between a HTTP client and
server is provided in the / AccessManager_base/ SUNWand sanpl es/ phase2/ paos
directory. The PAOS client is a servlet, and the PAOS server is a stand-alone Java
program. Instructions on how to run the sample can be found in the Readne. ht m
or Readne. t xt both included in the paos directory. Code Example 8-1 is the PAOS
client servlet also included.

Code Example 8-1 PAOQOS Client Servlet from PAOS Sample

inport java.util.*;
inport java.io.*;

inport javax.servlet.*;
inport javax.servlet.http.*;

inport comsun.identity.liberty.ws.paos.*;
inport comsun.identity.liberty.ws.idpp.jaxb.*;
public class PAOSO i ent Servlet extends HtpServlet {

public void doGet(HtpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | CException {

PACSHeader paosHeader = null;
try {
paosHeader = new PACSHeader(req);
} catch (PACSException pel) {
pel. print StackTrace();

String meg = "No PACS header\n";

Chapter 8 Application Programming Interfaces 163

PAQOS Binding

Code Example 8-1 PAQOS Client Servlet from PAOS Sample (Continued)

res. set Cont ent Type("text/plain");

res. set Cont ent Lengt h(1+nsg. | ength());

PrintWiter out = new PrintWiter(res.getCQutputStrean());
out.println(nsg);

out.close();

t hrow new Ser vl et Excepti on(pel. get Message());

HashMap servi cesAndQpti ons = paosHeader . get Servi cesAndQpti ons() ;
Set services = servicesAndQptions. keySet ();

String thisURL = req. get Request URL().toString();
String[] queryltens = { "/IDPP/ Denographics/Birthday" };
PACSRequest paosReq = nul | ;
try {
paosReq = new PACSRequest (thi sURL,
(String)(services.iterator().next()),
thisURL,
queryltens);
} catch (PACSException pe2) {
pe2. print StackTrace();
t hrow new Servl et Exception(pe2. get Message());

}
System out . printl n("PACS request to User Agent side
_______________ >")-

System out . p'ri ntl n(paosReq.toString());
paosReq. send(res, true);

public void doPost (HtpServl et Request req, HtpServletResponse res)
throws Servl et Exception, | CException {

PACSResponse paosRes = nul | ;
try {
paosRes = new PACSResponse(req);
} catch (PACSException pe) {
pe. print StackTrace();
t hrow new Servl et Excepti on(pe. get Message());

}

System out . printl n("PACS response from User Agent side
-------------- >
System out . printl n(paosRes.toString());

Systemout.println("Data output after parsing -------------- >");

String dataStr = null;
try {
dataStr = paosRes. get PPResponseStr();
} catch (PACSException paose) {
paose. print StackTrace();
t hrow new Servl et Excepti on(paose. get Message());

164 Access Manager 6 2005Q1 « Federation Management Guide

PAOS Binding

Code Example 8-1 PAQOS Client Servlet from PAOS Sample (Continued)

}
Systemout . println(dataStr);
String msg = "Got the data: \n" + dataStr;

res. set Content Type("text/plain");
res. set Cont ent Lengt h(1+msg. | ength());

PrintWiter out = new PrintWiter(res.getQutputStrean());
out. println(nsg);

out . cl ose();

NOTE Be sure to check out Appendix A, “Included Samples” for information on all the
sample code and files included with Access Manager.

Chapter 8 Application Programming Interfaces 165

PAQOS Binding

166 Access Manager 6 2005Q1 « Federation Management Guide

Part Il

Appendices

Appendix A, “Included Samples” on page 169

Appendix B, “Service Schema Files” on page 175

Appendix A

Included Samples

Sun Java™ System Access Manager has included a number of samples that make
use of the Liberty Alliance Project’s specifications and its own implementations of
said documents. This appendix contains information regarding the Liberty-based
samples. It includes the following sections:

= Overview
= Federation Framework Samples

= Web Services Framework Samples

Overview

The samples are located in / AccessManager_base/ SUNVAnI sanpl es. This directory
includes samples for the entire Access Manager product as well as two directories
specific to the Liberty-based features: | i berty and phase2.

Federation Framework Samples

Access Manager 2005Q1 supports the Liberty Alliance Identity Federation Framework
1.2 Specifications. The Federation Framework samples are located in

| AccessManager_base/ SUNVAnT sanpl es/ | i berty. To demonstrate the different
Liberty-based federation protocols featured in Access Manager, three sample
applications are included. They are located in the following sub-directories:

e samplel
e sample2

e sample3

169

Federation Framework Samples

170

samplel

The sanpl el sample provides a collection of files, located in the

[AccessManager_base/ SUNVAnT sanpl es/ | i ber t y/ sanpl el directory, to configure a
basic environment for creating and managing a federation. The sample
demonstrates the basic use of various Liberty-based federation protocols
(including account federation, SSO, single logout, and federation termination). The
scenario includes a service provider (SP) and an identity provider (IDP). Each
needs to be deployed and configured on different Access Manager installations.
Table A-1 contains relative information for the two required servers.

Table A-1 Relative Information for Samplel Servers

Variable Placeholder Host Name Components Deployed on This Host

machinel wwv. spl. com Service Provider
Web Service Consumer
machine2 wwy, i dpl. com Identity Provider
Discovery Service

Personal Profile Service

The Readne. ht M in the sample directory provides detailed steps on how to deploy
and configure this sample. In addition, the procedures and additional information
are written up in “Federation Management Samples” on page 88 of Chapter 3,
“Federation Management.”

NOTE Samplel also contains instructions for configuring a common domain. For
information on common domains, see “Common Domain” on page 31 of Chapter 1,
“Introduction to the Liberty Alliance Project” and “Common Domain Services” on
page 65 of Chapter 3, “Federation Management.”

sample2

The sanpl e2 sample provides a collection of files, located in the

| AccessManager_base/ SUNVan sanpl es/ | i ber t y/ sanpl e2 directory, to configure a
basic environment for creating and managing a federation but, in this case, the
resources of the SP are deployed on a Sun Java System Web Server protected by an
Access Manager Policy Agent. As in samplel, the SP and IDP are deployed and
configured on different Access Manager installations. Apart from highlighting
account federation, SSO, single logout, and federation termination, this sample also

Access Manager 6 2005Q1 ¢ Federation Management Guide

Web Services Framework Samples

demonstrates how different authentication contexts can be configured, by
associating different authentication levels with different protected pages. This
association is made by creating policies for the protected resources. The

Readne. ht m in the sample directory provides detailed steps on how to deploy and
configure this sample.

sample3

The sanpl e3 sample provides a collection of files, located in the

| AccessManager_base/ SUN\VAnT sanpl es/ | i bert y/ sanpl e3 directory, to configure an
environment for creating and managing a federation that includes two SPs and two
IDPs. In this case, though, all hosted providers are deployed on a single installation
of the Access Manager. Because of this, you need to host the same IP address (the
one on which Access Manager is installed) in four different DNS domains. Thus,
four virtual server instances are created on the Web Server, one for each of the
providers.

NOTE Virtual server instances can be simulated by adding entries in the / et ¢/ host s file
for the fully qualified host names of the virtual servers.

Since this scenario involves multiple IPs, you will also need to install a Common
Domain Service. This service can be installed on the same machine as the Access
Manager software or on a different machine. The Readne. ht m in the sample
directory provides detailed steps on how to deploy and configure this sample. In
addition, information on common domains can be found in “Common Domain
Services” on page 65 of Chapter 3, “Federation Management.”

Web Services Framework Samples

Access Manager 6 2005Q1 supports both the Liberty Alliance Identity Web Services
Framework 1.0 Specifications and the Liberty Alliance Identity Services Interface
Specifications 1.0. These Web services samples are located in

| AccessManager_base/ SUNVAnT sanpl es/ phase2. To demonstrate the different
Liberty-based Web services protocols featured in Access Manager, four sample
applications are included. They are located in the following sub-directories:

® WSC

- sis-ep

Appendix A Included Samples 171

Web Services Framework Samples

172

e paos

e authnsvc

WSC

The wsc sample provides a collection of files, located in the
| AccessManager_base/ SUNVan sanpl es/ phase2/ wsc directory, to deploy and run a
Web service consumer (WSC).

NOTE Before implementing this example, you must have two instances of Access
Manager installed, running, and Liberty-enabled. Completing the steps in
“samplel” on page 170 will accomplish this.

In addition, this sample illustrates how to use the Discovery Service and Data
Service Template client APIs to allow the WSC to communicate with a Web service
provider (WSP). (The WSP is the Liberty Personal Profile Service installed with
Access Manager.) It details the flow of the Liberty-based Web Service Framework
(ID-WSF), and how the security mechanisms and interaction service come into
play. The Readre. ht mi in the sample directory provides detailed steps on how to
deploy and configure this sample. In addition, information can be found in
Chapter 6, “Discovery Service” and Chapter 5, “Data Services.”

sis-ep

The si s- ep sample provides a collection of files, located in the

| AccessManager_base/ SUNVan sanpl es/ phase2/ si s- ep directory, to develop, deploy
and invoke a new Liberty-based Web service to Access Manager. The sample
implements a Liberty-based Employee Profile Service.

NOTE Before implementing this example, you must have two instances of Access
Manager installed, running, and Liberty-enabled. Completing the steps in
“samplel” on page 170 will accomplish this.

The Employee Profile Service is a deployment of the Liberty ID-SIS Employee Profile
Service Specification (ID-SIS-EP) which is itself an instance of the Liberty Alliance
ID-SIS 1.0 Specifications. The Readre. ht mi in the sample directory provides
detailed steps on how to deploy and configure this sample. In addition, related
information can be found in Chapter 5, “Data Services.”

Access Manager 6 2005Q1 ¢ Federation Management Guide

Web Services Framework Samples

paos

The paos sample provides a collection of files, located in the

| AccessManager_base/ SUN\VAnT sanpl es/ phase2/ paos directory, to demonstrate how to
set up and invoke a PAOS Service interaction between a client and server. (In a
real-world deployment, the server-side code would be developed by a service
provider.) The sample is based on the following scenario: a cell phone user
subscribes to a news service offered by his cell phone’s manufacturer. The news
service automatically pushes stocks and weather information to the user’s cell
phone at regular intervals. In this scenario, the manufacturer is the news service
provider and the individual cell phone user is the consumer. After running the
sample, you will see the output from the PAOSServer program.

NOTE You can also see the output from PAOSClientServlet program in the log file of the
Web Server. For example, when using Sun Java System Web Server, look in the
| og subdirectory for the errors file.

The Readne. ht M in the sample directory provides detailed steps on how to deploy
and configure this sample. In addition, information can be found in “PAOS
Binding Sample” on page 163 of Chapter 8, “Application Programming Interfaces.”

authnsvc

The aut hnsvec sample provides a collection of files, located in the

[AccessManager_base/ SUNVAnT sanpl es/ phase2/ aut hnsvc directory, to illustrate the
use of the Access Manager Authentication Web Service. This sample program
authenticates against the service, and extracts the resource offering of a discovery
bootstrap. The Readne. ht i in the sample directory provides detailed steps on how
to deploy and configure this sample. In addition, information can be found in
“Authentication Web Service Sample” on page 105 of Chapter 4, “Authentication
Web Service.”

Appendix A Included Samples 173

Web Services Framework Samples

174 Access Manager 6 2005Q1 ¢ Federation Management Guide

Appendix B

Service Schema Files

This appendix contains some of the XML Schema Definition (XSD) files discussed
in this document. It includes the following sections:

= Overview

= SOAP Binding Schema

= Personal Profile Schema

= Employee Profile Schema

= Authentication Web Service Schema
< PAOS Binding Schema

= Metadata Description Schema

Overview

The purpose of an eXtensible Markup Language (XML) schema is to describe the
structure of an XML document. The XML schema language is referred to as XML
Schema Definition (XSD).

NOTE XSD is an XML-based alternative to the Document Type Definition (DTD). A DTD
also describes the structure of an XML document, but it is not in the XML format.

The XSD files in this appendix specify the information its corresponding service
can host by defining the data and data structure. Typically, this structure is
hierarchical and has one root node. Individual branches of the structure can be
accessed separately and the whole structure can be accessed by pointing to the root
node. The data may be stored in implementation-specific ways, but will be exposed

175

SOAP Binding Schema

by the service using the XML schema (specified here), and the Web Services

Description Language definition of the service type (not specified in this

documentation set). The XSD files in this appendix are reproduced here for your
convenience. They (and a number of other XSD files) are also available on the
Project Liberty Web site at

http://waw projectliberty. org/resources/ specifications. php.

SOAP Binding Schema

Code Example B-1 is a reproduction of | i berty-i dwsf - soap- bi ndi ng-v1. 1. xsd,
the XSD file that accompanies the Liberty ID-WSF SOAP Binding Specification as
discussed in Chapter 7, “SOAP Binding Service.”

Code Example B-1 SOAP Binding XSD File

<?xnm version="1.0" encodi ng="UTF-8"?>
<xs:schema target Namespace="urn:|i berty: sh: 2004- 04"

xm ns: S="htt p:// schenas. xm soap. or g/ soap/ envel ope/"
xm ns: sb-ext="urn:|iberty: sh: 2004- 04"
xmns:lib="urn:liberty:iff:2003-08"

xm ns: xs="http:// ww w8. or g/ 2001/ XM_Schena"

xm ns="urn: | iberty: sh: 2004- 04"

el enent For mDef aul t ="qual i fi ed"

attri but eFor mDef aul t ="unqual i fi ed">

<I-- Author: John Kenp -->

<I-- Last editor: $Author: dgreenspon $ -->
<!-- $Date: 2004/08/02 19:25:27 $ -->

<!-- $Revision: 1.1 $ -->

<xs: i nport
nanespace="http://schemas. xn soap. or g/ soap/ envel ope/ "
schemalocati on="htt p://schemas. xm soap. or g/ soap/ envel ope/ "/ >

<xs: i nport
nanespace="urn: | iberty:iff:2003-08"
schemalLocati on="1i berty-i df f- prot ocol s-schema-v1. 2. xsd"/>

<xs:include schemalLocation="liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

<Xs:annot ati on>
<xs: docunent ati on>
Liberty | D WBF SQAP Bi ndi ng Speci fication Extensi on XSD
</ xs: docurrent at i on>
<xs: docunent ati on>
The source code in this XSD file was excerpted verbati mfrom

Liberty |1 D WBF SQAP Bi ndi ng Speci fication
Version 1.1
April 2004

176 Access Manager 6 2005Q1 ¢ Federation Management Guide

SOAP Binding Schema

Code Example B-1 SOAP Binding XSD File (Continued)

Copyright (c) 2004 Liberty A liance participants, see
http://ww proj ectliberty.org/specs/idwsf_copyrights. htn
</ xs: docunent at | on>
</ xs: annot ati on>

<xs: conpl exType name="Credenti al sCont ext Type" >
<Xs: sequence>
<xs: el ement ref="1ib: Request Aut hnContext" m nCccurs="0"/>
<xs: el ement nanme="SecurityMechl D' type="xs:anyUR" m nCccurs="0"
maxCccur s="unbounded"/ >
</ xs: sequence>
<xs:attribute nane="id" type="xs:|D" use="optional"/>
<xs:attribute ref="S: nustUnderstand" use="optional"/>
<xs:attribute ref="S actor" use="optional"/>
</ xs: conpl exType>

<xs: el ement name="Credenti al sContext" type="Credential sContext Type"/>

<xs: conpl exType name="Servi cel nst anceUpdat eType" >
<Xs: sequence>
<xs: el ement nanme="SecurityMechl D' type="xs:anyUR" m nCccurs="0"
maxCceur s="unbounded"/ >
<xs: el ement name="Credential" m nCccurs="0"
maxCccur s="unbounded" >
<xs: conpl exType>
<Xs: sequence>
<xs: any nanespace="##any" processContents="|ax"/>
</ xs: sequence>
<xs:attribute nane="notOnOrAfter" type="xs:dateTi me"
use="optional "/ >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="Endpoi nt" type="xs:anyUR" ninCccurs="0"/>
</ xs: sequence>
<xs:attribute nane="id" type="xs:|D' use="optional"/>
<xs:attribute ref="S: nustUnderstand" use="optional"/>
<xs:attribute ref="S: actor" use="optional"/>
</ xs: conpl exType>

<xs: el ement nanme="Servi cel nst anceUpdat e"
t ype="Servi cel nst anceUpdat eType"/ >

<xs: conpl exType name="Ti neout Type" >
<xs:attribute nane="maxProcessi ngTi me" type="xs:integer"
use="required"/>
<xs:attribute nane="id" type="xs:|D' use="optional"/>
<xs:attribute ref="S: nustUnderstand" use="optional"/>
<xs:attribute ref="S: actor" use="optional"/>
</ xs: conpl exType>

<xs: el ement name="Ti meout" type="Ti meout Type"/>

Appendix B Service Schema Files 177

Personal Profile Schema

Code Example B-1 SOAP Binding XSD File (Continued)

</ xs: schema>

Personal Profile Schema

Code Example B-2 is a reproduction of | i berty-i dsi s- pp- v1. 0. xsd, the XSD file
that accompanies the Liberty ID-SIS Personal Profile Service Specification as
discussed in Chapter 5, “Data Services.”

Code Example B-2 Personal Profile Service XSD File

<l-- 2003-11-02-->

<xs: schenma target Nanespace="urn:|iberty:id-sis-pp: 2003- 08"
xm ns="urn:|iberty:id-sis-pp:2003- 08"

xm ns: xs="htt p:// ww. w3. or g/ 2001/ XM-Schena"

xm ns: ds="http:// ww. w3. or g/ 2000/ 09/ xm dsi g#"

el ement For nDef aul t ="qual i fi ed" version="1.0">
<xs:inport namespace="http://wmw. w3. or g/ 2000/ 09/ xn dsi g#"
schenmalocati on="http://wm w3. or g/ TR/ xni dsi g- cor e/ xn dsi g- cor e- scherma. xsd"/
>
<xs: annot at i on>
<xs: docunentation>Title: Liberty |IDWsF-SI'S Personal Profile Services

Schema</ xs: docurrent at i on>
<xs: docunent ati on>The source code in this XSD file was excerpted

verbatimfrom

Li berty Liberty 1D SIS Personal Profile Service Specification
Version 1.2
12t h Novenber 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://waw projectliberty. org/specs/idwsf_copyrights. htm
</ xs: docunent at i on>
</ xs: annot ati on>
<xs:include schemalocation="liberty-idwsf-dst-vl.0.xsd"/>
<xs:include schenalLocation="liberty-idwsf-dst-dt-v1.0.xsd"/>
<xs: conpl exType nane="Keyl nf oType" m xed="true">
<xs: conpl exCont ent m xed="true">
<xs: ext ensi on base="ds: Keyl nf oType" >
<xs:attribute ref="nodificationTi me"/>
<xs:attribute ref="ACC'/>
<xs:attribute ref="ACCTi ne"/>
<xs:attribute ref="nodifier"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

178 Access Manager 6 2005Q1 « Federation Management Guide

Code Example B-2

Personal Profile Schema

Personal Profile Service XSD File (Continued)

maxQccur s="unbounded"/ >

<xs: si npl eType nanme="Sel ect Type" >
<xs:restriction base="xs:string"/>
</ xs: si npl eType>
<xs: el ement nane="PP" type="PPType"/>
<xs: conpl exType name="PPType" >
<Xs: sequence>

<xs: el ement ref="Informal Name" m nCccurs="0"/>

<xs: el ement ref="LInformal Nane" m nQccurs="0" maxCccurs="unbounded"/>
<xs: el ement ref="ComonNane" ni nCccurs="0"/>

<xs: el ement ref="Legal I dentity" m nQccurs="0"/>

<xs: el ement ref="Enpl oyment|dentity" mnCccurs="0"/>

<xs: el ement ref="AddressCard" mi nCccurs="0" maxCccurs="unbounded"/>
<xs: el ement ref="MgContact" ninCccurs="0" maxCQccurs="unbounded"/>
<xs: el ement ref="Facade" ninCccurs="0"/>

<xs: el ement ref="Denmographi cs" m nCccurs="0"/>

<xs: el ement ref="S gnkKey" m nCccurs="0"/>

<xs: el ement ref="EncryptKey" ninCccurs="0"/>

<xs: el ement ref="EmergencyContact" m nCccurs="0"/>

<xs: el ement ref="LEmergencyContact" m nQccurs="0"

<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="Inf or mal Nane" type="DSTString"/>
<xs: el ement name="LI nformal Nane" type="DSTLocal i zedString"/>
<xs: el ement name="CommonNane" type="CommonNaneType"/>
<xs: conpl exType nanme="CommonNaneType">
<Xs: sequence>

<xs:element ref="CN' m nQccurs="0"/>

<xs:element ref="LCN' m nCccurs="0" maxCccurs="unbounded"/>
<xs:element ref="AltCN' m nCccurs="0" nmaxQccur s="unbounded"/ >
<xs:element ref="LA t CN' m nCccurs="0" maxCccur s="unbounded"/>
<xs: el ement ref="Anal yzedNane" m nCccurs="0"/>

<xs: el ement ref="Extension" mnCccurs="0"/>

</ xs: sequence>
<xs:attributeGoup ref="conmonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="CN' type="DSTString"/>
<xs: el ement nane="LCON' type="DSTLocal i zedString"/>
<xs: el ement nane="AltCN' type="DSTString"/>
<xs: el ement name="LA tCN' type="DSTLocal i zedString"/>
<xs: el ement nane="Anal yzedNarme" type="Anal yzedNaneType"/ >
<xs: conpl exType nane="Anal yzedNaneType" >
<Xs: sequence>

<xs:element ref="Personal Title" mnQccurs="0"/>

<xs:element ref="LPersonal Title" mnCccurs="0" maxQccurs="unbounded"/>
<xs:element ref="FN' m nQccurs="0"/>

<xs:element ref="LFN' m nCccurs="0" maxCccurs="unbounded"/>
<xs:element ref="SN' m nQccurs="0"/>

<xs:element ref="LSN' m nCccurs="0" maxCccurs="unbounded"/>
<xs:element ref="M\'" m nQccurs="0"/>

<xs:element ref="LMN' m nCccurs="0" maxCccurs="unbounded"/>

<xs: el ement ref="Extension" mnCccurs="0"/>

</ xs: sequence>

Appendix B Service Schema Files 179

Personal Profile Schema

Code Example B-2 Personal Profile Service XSD File (Continued)

<xs:attribute nane="naneScherme" type="xs:anyUR" use="optional "/>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="Personal Title" type="DSTString"/>
<xs: el ement name="LPersonal Title" type="DSTLocalizedString"/>
<xs: el ement name="FN' type="DSTString"/>
<xs: el ement name="LFN' type="DSTLocal i zedString"/>
<xs: el ement name="SN' type="DSTString"/>
<xs: el ement name="LSN' type="DSTLocal i zedString"/>
<xs: el ement name="M' type="DSTString"/>
<xs: el ement name="LM\' type="DSTLocal i zedString"/>
<xs: el ement nane="Legal Identity" type="Legal | dentityType"/>
<xs: conpl exType name="Legal | dentityType">
<Xs: sequence>
<xs: el ement ref="Legal Nane" m nQccurs="0"/>
<xs: el ement ref="LLegal Nane" ni nCccurs="0" maxQccurs="unbounded"/>
<xs: el ement ref="Anal yzedName" m nCccurs="0"/>
<xs: el ement ref="VAT" m nCccurs="0"/>
<xs:element ref="AtID'" minCccurs="0" maxCccur s="unbounded"/>
<xs: el ement ref="DOB" m nCccurs="0"/>
<xs: el ement ref="CGender" ninCccurs="0"/>
<xs: el ement ref="Marital Status" mnQccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="Legal Nane" type="DSTString"/>
<xs: el ement nane="LLegal Name" type="DSTLocalizedString"/>
<xs: el ement name="VAT" type="VATType"/>
<xs: conpl exType name="VATType">
<Xs: sequence>
<xs: el ement ref="|Dval ue"/>
<xs:el ement ref="IDType" m nCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="conmonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="|DVal ue" type="DSTString"/>
<xs: el ement name="1|DType" type="DSTUR"/>
<xs:element nane="Alt1D' type="Altl|DIype"/>
<xs: conpl exType name="Alt | Dlype" >
<Xxs: sequence>
<xs: el ement ref="|Dval ue"/>
<xs:el ement ref="IDType" m nCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="conmonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="DCB" type="DSTDate"/>
<xs: el ement name="Cender" type="DSTUR"/>
<xs:el ement name="Marital Status" type="DSTUR"/>
<xs: el ement nanme="Enpl oynent | dentity" type="Enpl oynentldentityType"/>
<xs: conpl exType nanme="Enpl oyrent | dentityType">
<Xs: sequence>
<xs: el ement ref="JobTitle" m nCccurs="0"/>

180 Access Manager 6 2005Q1 « Federation Management Guide

Personal Profile Schema

Code Example B-2 Personal Profile Service XSD File (Continued)

<xs: el ement ref="LJobTitle" m nQccurs="0" maxCccurs="unbounded"/>
<xs:element ref="0" ninCccurs="0"/>
<xs: el ement ref="LO" ninCccurs="0"/>
<xs:element ref="AtO" mnCccurs="0" maxCccur s="unbounded"/>
<xs:element ref="AtLO" minCccurs="0" maxCOccur s="unbounded"/>
<xs: el ement ref="Extensi on" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="JobTitle" type="DSTString"/>
<xs: el ement name="LJobTitle" type="DSTLocal i zedString"/>
<xs: el ement name="0' type="DSTString"/>
<xs: el ement name="LO' type="DSTLocalizedString"/>
<xs: el ement name="AltO' type="DSTString"/>
<xs: el ement name="AltLO" type="DSTLocal i zedString"/>
<xs: el ement nanme="AddressCard" type="AddressCardType"/>
<xs: conpl exType name="AddressCar dType" >
<Xs: sequence>
<xs: el ement ref="Addr Type" m nCccurs="0" maxCccur s="unbounded"/>
<xs: el ement ref="Address" minCccurs="0"/>
<xs: el ement ref="Nck" mnCccurs="0"/>
<xs:element ref="LN ck" ninCccurs="0" maxCccur s="unbounded"/ >
<xs: el ement ref="LComent" ninCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="Addr Type" type="DSTUR "/>
<xs: el ement nanme="Address" type="AddressType"/>
<xs: conpl exType name="AddressType">
<Xs: sequence>
<xs: el ement ref="Post al Address" ninCccurs="0"/>
<xs: el ement ref="LPostal Address" ninCccurs="0" nmaxCccurs="unbounded"/>
<xs: el ement ref="Postal Code" m nCccurs="0"/>
<xs:element ref="L" mnCccurs="0"/>
<xs:element ref="LL" mnCccurs="0" nmaxCccurs="unbounded"/>
<xs:element ref="St" mnCccurs="0"/>
<xs:element ref="LSt" m nCccurs="0" maxQccurs="unbounded"/>
<xs:element ref="C' mnCccurs="0"/>
<xs:el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="conmonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="Post al Addr ess" type="DSTString"/>
<xs: el ement nane="LPost al Address" type="DSTLocal i zedString"/>
<xs: el ement nanme="Postal Code" type="DSTString"/>
<xs: el ement name="L" type="DSTString"/>
<xs: el ement name="LL" type="DSTLocal i zedString"/>
<xs: el ement name="St" type="DSTString"/>
<xs: el ement nanme="LSt" type="DSTLocalizedString"/>
<xs: el ement name="C' type="DSTString"/>
<xs: el ement nane="N ck" type="DSTString"/>
<xs: el ement nane="LN ck" type="DSTLocal i zedString"/>
<xs: el ement nanme="LComment" type="DSTString"/>
<xs: el ement nanme="MsgCont act" type="MsgCont act Type"/>

Appendix B Service Schema Files 181

Personal Profile Schema

182

Code Example B-2 Personal Profile Service XSD File (Continued)

<xs: conpl exType name="MsgCont act Type">
<Xs: sequence>
<xs: el ement ref="Nck" mnCccurs="0"/>
<xs: el ement ref="LN ck" m nQccurs="0" maxCccur s="unbounded"/>
<xs: el ement ref="LComment" m nCccurs="0"/>
<xs: el ement ref="MgType" m nCccurs="0" maxQccurs="unbounded"/>
<xs: el ement ref="MgMethod" m nQccurs="0" maxCccurs="unbounded"/>
<xs: el ement ref="MgTechnol ogy" m nQccurs="0" maxCccurs="unbounded"/>
<xs: el ement ref="MgProvider" mnCccurs="0"/>
<xs: el ement ref="MgAccount" ninCccurs="0"/>
<xs: el ement ref="MgSubaccount" ninCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="MsgType" type="DSTUR "/>
<xs: el ement name="MsgMet hod" type="DSTUR"/>
<xs: el ement nanme="MsgTechnol ogy" >
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="DSTUR ">
<xs:attribute name="nmsgLimt" type="xs:integer" use="optional"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="MsgProvi der" type="DSTString"/>
<xs: el ement name="MsgAccount" type="DSTString"/>
<xs: el ement nane="MsgSubaccount" type="DSTString"/>
<xs: el ement nane="Facade" type="FacadeType"/>
<xs: conpl exType nane="FacadeType">
<Xs: sequence>
<xs: el ement ref="MigShot" m nCccurs="0"/>
<xs: el ement ref="VebSite" m nCccurs="0"/>
<xs: el ement ref="NamePronounced" ni nCccurs="0"/>
<xs: el ement ref="GeetSound" ninCccurs="0"/>
<xs: el ement ref="G eet MeSound" m nCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="conmonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="MigShot" type="DSTUR "/>
<xs: el ement nane="WbSite" type="DSTUR "/>
<xs: el ement name="NamePronounced" type="DSTUR "/>
<xs: el ement nanme="Q eet Sound" type="DSTUR "/>
<xs: el ement name="Q eet MeSound" type="DSTURI"/>
<xs: el ement nane="Denographi cs" type="Denographi csType"/>
<xs: conpl exType nane="Denogr aphi csType" >
<Xs: sequence>
<xs: el ement ref="D spl ayLanguage" m nCccurs="0"/>
<xs: el ement ref="Language" m nCccurs="0" maxCccur s="unbounded"/ >
<xs: el ement ref="Birthday" m nCccurs="0"/>
<xs: el ement ref="Age" mnCccurs="0"/>
<xs: el ement ref="Ti meZone" m nCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>

Access Manager 6 2005Q1 ¢ Federation Management Guide

Employee Profile Schema

Code Example B-2 Personal Profile Service XSD File (Continued)

</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="D spl ayLanguage" type="DSTString"/>
<xs: el ement name="Language" type="DSTString"/>
<xs: el ement nanme="Birthday" type="DSTMont hDay"/>
<xs: el ement nane="Age" type="DSTInteger"/>
<xs: el ement name="Ti meZone" type="DSTString"/>
<xs: el ement nanme="Si gnkKey" type="Keyl nfoType"/>
<xs: el ement nane="Encrypt Key" type="Keyl nfoType"/>
<xs: el ement name="Emer gencyContact" type="DSTString"/>
<xs: el ement name="LEnmergencyCont act" type="DSTLocalizedString"/>
</ xs: schema>

Employee Profile Schema

Code Example B-3 is a reproduction of | i berty-i dsi s- ep-v1. 0. xsd, the XSD file
that accompanies the Liberty ID-SIS Employee Profile Service Specification as
discussed in Chapter 5, “Data Services.”

Code Example B-3 Employee Profile Service XSD Schema

<I-- Cenerated by gen-prof.pl $ld: liberty-idsis-ep-v1l.0.xsd,v 1.1
2004/ 08/ 02 19: 25: 27 dgreenspon Exp $
from$ld: |iberty-idsis-ep-vl.0.xsd,v 1.1 2004/08/02 19: 25: 27 dgr eenspon Exp
-->
i! -- adjust 2003-10-02 TDW changed copyright -->
<xs: schenma target Nanespace="urn:|iberty:id-sis-ep: 2003- 08"
xm ns="urn:liberty:id-sis-ep: 2003- 08"
xm ns: xs="htt p:// www. w3. or g/ 2001/ XM_Schema" el enent For mDef aul t ="qual i fi ed"
versi on="1.0">
<Xs:annot at | on>
<xs: docunentation>Title: Liberty ID SIS Enpl oyee Profile Services
Schema</ xs: docunent ati on>
<xs: docunent ati on>The source code in this XSD file was excerpted
verbatim from

Li berty Liberty 1D SIS Enpl oyee Profile Service Specification
Version 1.2
12t h Novenber 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://wa projectliberty. org/specs/idwsf_copyrights. htm

</ xs: docunent at i on>
</ xs: annot ati on>

Appendix B Service Schema Files 183

Employee Profile Schema

184

Code Example B-3

Employee Profile Service XSD Schema (Continued)

<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:

<XS: sequence>

<XS:
<XS:
<XS:
<XS:
<XS:

<XS: sequence>

conpl exType

<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement

<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement
<xs: el ement

<xs: el ement

</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
nane="Enpl oyeel D' type="DSTString"/>
name="Alt Enpl oyeel D' type="DSTString"/>
nanme="Dat e H re" type="DSTDate"/>
nanme="JobStart Date" type="DSTDate"/>
name="Enpl oyeeSt atus" type="DSTUR "/>
name="Enpl oyeeType" type="DSTURI"/>
name="Int ernal JobTitle" type="DSTString"/>
nanme="LI nternal JobTi tl e" type="DSTLocal i zedString"/>
name="QUJ' type="DSTString"/>
name="LOU" type="DSTLocal i zedString"/>
nanme=" Cor pCormonNane" t ype="Cor pConnonNaneType"/ >

el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
conpl exType

el enent
el enent
el enent
el enent
el enent

<XS:
<XS:
<XS:
<XS:
<XS:

</ xs: sequence>

<xs:attributeGoup ref="conmmonAttributes"/>
</ xs: conpl exType>
<XS:

<xs:include schemalocation="liberty-idwsf-dst-v1.0. xsd"/>

<xs:include schenalocation="liberty-idwsf-dst-dt-v1.0.xsd"/>

<xs: el ement name="EP" type="EPType"/>

<XS:
<Xs: sequence>

nanme="EPType" >

ref =" Enpl oyeel D' ni nCccurs="0"/>

ref="At Enpl oyeel D' m nQccurs="0" nmaxCccur s="unbounded" />
ref="DateCHre" mnCccurs="0"/>

ref="JobStartDate" m nCccurs="0"/>

ref =" Enpl oyeeStatus” m nCccurs="0"/>

ref =" Enpl oyeeType" minCccurs="0"/>

ref="Internal JobTitle" mnCccurs="0"/>

ref="LlInternal JobTitle" mnCccurs="0"

maxQceur s="unbounded"/ >

ref="QJ' mnCccurs="0"/>

ref="LQU" m nQccurs="0" maxQccur s="unbounded"/>
ref =" Cor pConmonNane" m nCccurs="0"/>

ref =" CorpLegal | dentity" nminCccurs="0"/>

ref =" Manager Enpl oyeel D' ni nCccurs="0"/>

ref =" Subal t er nat eEnpl oyeel D' ni nQccur s="0"

maxQccur s="unbounded"/ >

ref ="Extensi on" m nCccurs="0"/>

nane=" Cor pCommonNaneType" >

ref="CN' mnCccurs="0"/>

ref="LCON' m nCccurs="0" naxCQccur s="unbounded"/ >
ref="AltCN' m nCccurs="0" maxCccur s="unbounded"/ >
ref="LAIt CN' m nCccurs="0" maxCccurs="unbounded"/>
ref ="Extensi on" m nCccurs="0"/>

el enent nanme="CN' type="DSTString"/>

el enent name="LCN' type="DSTLocal i zedString"/>

el enent name="Alt CN' type="DSTString"/>

el enent nanme="LAl tCN' type="DSTLocal i zedString"/>

el enent nane="Cor pLegal | dentity" type="CorpLegal | dentityType"/>

conpl exType

<xs: el ement

nane="Cor pLegal | dentityType">

ref ="Legal Name" ninCccurs="0"/>

Access Manager 6 2005Q1 ¢ Federation Management Guide

Authentication Web Service Schema

Code Example B-3 Employee Profile Service XSD Schema (Continued)

<xs: el ement ref="LLegal Nane" ni nCccurs="0" maxCQccurs="unbounded"/>
<xs: el ement ref="VAT" m nCccurs="0"/>
<xs:element ref="AtID'" mnCccurs="0" maxCOccur s="unbounded"/>
<xs: el ement ref="Extensi on" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement nanme="Legal Nane" type="DSTString"/>
<xs: el ement nane="LLegal Name" type="DSTLocal i zedString"/>
<xs: el ement nanme="VAT" type="VATType"/>
<xs: conpl exType name="VATType">
<Xs: sequence>
<xs: el ement ref="|Dval ue"/>
<xs: el ement ref="1DType" ninCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="comonAttributes"/>
</ xs: conpl exType>
<xs: el ement name="|DVal ue" type="DSTString"/>
<xs: el ement name="|DType" type="DSTUR"/>
<xs:el ement name="Alt|ID" type="Alt|DIype"/>
<xs: conpl exType name="Alt | Dlype" >
<Xs: sequence>
<xs:el ement ref="IDval ue"/>
<xs: el ement ref="1DType" nminCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attributeGoup ref="conmonAttributes"/>
</ xs: conpl exType>
<xs: el ement nane="Manager Enpl oyeel D' type="DSTString"/>
<xs: el ement nane="Subal t er nat eEnpl oyeel D' type="DSTString"/>
<xs: si npl eType nanme="Sel ect Type" >
<xs:restriction base="xs:string"/>
</ xs: si npl eType>
</ xs: schema>

Authentication Web Service Schema

Code Example B-4 is a reproduction of the | i berty-i dwsf - aut hn- svc-v1. 0. xsd,
the XSD file that accompanies Liberty ID-WSF Authentication Service Specification
as discussed in Chapter 4, “Authentication Web Service.”

Code Example B-4 Authentication Web Service XSD File

<?xn version="1.0" encodi ng="UTF-8"?>

<xs: schena
t ar get Nanespace="urn: | i berty: sa: 2004- 04"

Appendix B Service Schema Files 185

Authentication Web Service Schema

186

Code Example B-4 Authentication Web Service XSD File (Continued)

xm ns: S="http://schemas. xm soap. or g/ soap/ envel ope/"
xm ns: sa="urn:|iberty: sa: 2004- 04"

xm ns: xs="http:// wwv w3. or g/ 2001/ XM_Schena"

xmns: lib="urn:liberty:iff:2003-08"

xm ns: di sco="urn: | iberty:di sco: 2003- 08"

xm ns="urn:|iberty: sa: 2004- 04"

el ement For nDef aul t ="qual i fi ed"

attribut eFor mDef aul t ="unqual i fi ed"

ver si on="06">

<I-- Filenare: |ib-arch-authn-svc.xsd -->

<I-- $ld: liberty-idwsf-authn-svc-v1.0.xsd,v 1.1 2004/08/02 19: 25: 27
dgr eenspon Exp $ -->

<I-- Author: Jeff Hodges -->

<l-- Last editor: $Author: dgreenspon $ -->

<I-- $Date: 2004/08/02 19:25:27 $ -->

<I-- $Revision: 1.1 $ -->

<xs:inport
nanespace="urn: i berty:iff:2003- 08"
schenmaLocat i on="11i berty-i df f- protocol s- schena-v1.2. xsd"/>

<xs:inport
namespace="urn: | i berty: di sco: 2003- 08"
schenmaLocat i on="11i berty-i dwsf - di sco-svc-1.0-errata-vl. 0. xsd"/>

<xs:include schemaLocation="1iberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

<xs: annot at i on>
<xs: docunent ati on>
Li berty | D-WBF Aut hentication Service XSD
</ xs: docunent at i on>
<xs: docunent ati on>
The source code in this XSD file was excerpted verbatimfrom
Li berty | D-WBF Aut hentication Service Specification
Version 1.0
16 Feb 2004
Copyright (c) 2003, 2004 Liberty Alliance participants,
see http://ww. projectliberty.org/specs/idwsf_copyrights. htm
</ xs: docunent at i on>
</xs:annotation>

<I'-- SASLRequest and SASLResponse |D-* nessages -->

<xs: el ement name="SASLRequest ">
<xs: conpl exType>
<xs: sequence>

<xs: el ement name="Data" m nCccurs="0">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="xs: base64Bi nary"/ >
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >

Access Manager 6 2005Q1 ¢ Federation Management Guide

Code Example B-4

Authentication Web Service Schema

Authentication Web Service XSD File (Continued)

<xs: el ement ref="1ib: Request Aut hnCont ext "

</ xs: sequence>

<xs:attribute name="nmechani sn{

<xs:attribute name="aut hzl D'

<xs:attribute name="advi soryAut hnl D'

<xs:attribute nane="id"

</ xs: conpl exType>

</ xs: el ement >

<xs: el ement name="SASLResponse" >
<xs: conpl exType>
<XS:sequence>
<xs:element ref="Status"/>
<xs: el ement ref="Passwor dTransforns" m nQccurs="0"/>

<xs: el ement nane="Data" m nCccurs="0">

</ xs: el enent >

<xs: el ement ref="disco: ResourceC fering"

<xs: el ement nane="Credential s" m nCccurs="0">

m nCccurs="0"/>

type="xs:string"
use="required"/>

type="xs:string"
use="optional "/>

type="xs:string"
use="optional "/>

type="xs: D"
use="optional "/>

<xs: conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base="xs: base64Bi nary"/ >
</ xs: si npl eCont ent >
</ xs: conpl exType>

m nCccurs="0"
maxQccur s="unbounded"/ >

<xs: conpl exType>
<Xs: sequence>
<XsS:any namespace="##any"

processCont ent s="| ax"
m nCccur s="0"
maxCOccur s=" unbounded" / >

</ xs: sequence>

</ xs: conpl exType>

Appendix B Service Schema Files 187

Authentication Web Service Schema

188

Code Example B-4 Authentication Web Service XSD File (Continued)

</ xs: el enent >
</ xs: sequence>

<xs:attribute nane="serverMechani sni
type="xs:string"
use="optional "/>

<xs:attribute name="id"
type="xs:1D'
use="optional "/>

</ xs: conpl exType>
</ xs: el enent >

<l-- Password Transformations -->
<xs: el ement nane="Passwor dTr ansf or ns" >

<Xs: annot at i on>
<xs: docunent at i on>

</ xs: docurent at i on>
</ xs: annot at i on>

<xs: conpl exType>
<xs: sequence>

<xs: el ement nane="Transform maxQccur s="unbounded" >
<xs: conpl exType>
<Xs: sequence>

<xs: el ement nane="Par anet er"
m nCccur s="0"
maxCccur s=" unbounded" >
<xs: conpl exType>
<xs: si npl eCont ent >
<Xs: ext ensi on base="xs:string">
<xs:attribute nane="nane"

</ xs: ext ensi on>
</ xs: si mpl eCont ent >
</ xs: conmpl exType>
</ xs: el enent >

</ xs: sequence>

<xs:attribute name="nanme"
type="xs: anyUR "
use="required"/>

<xs:attribute name="id"
type="xs: I D'
use="optional "/>

Contains ordered list of sequential password transformations

type="xs:string"
use="required"/>

Access Manager 6 2005Q1 ¢ Federation Management Guide

PAQOS Binding Schema

Code Example B-4 Authentication Web Service XSD File (Continued)

</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

</ xs: schema>

PAOS Binding Schema

Code Example B-5 is a reproduction of | i berty- paos- 1. 0-errat a- v1. 0. xsd, the
XSD file that accompanies the Liberty Reverse HTTP Binding for SOAP
Specification. This XSD file describes structure of PAOS requests and responses.
PAOS Binding is discussed in Chapter 8, “Application Programming Interfaces.”

Code Example B-5 Reverse HTTP Binding for SOAP XSD File

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schema target Namespace="urn: | i berty: paos: 2003- 08"

xm ns: xs="htt p:// ww. w3. or g/ 2001/ XM-Schena"

xm ns: S="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns="urn: | i berty: paos: 2003- 08" el enent For mDef aul t ="qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed" >

<xs: annot at i on>
<xs: docunent ati on>The source code in this XSD file was excerpted

verbatimfrom

Li berty Reverse HITP Bi nding
Version 1.0
12th Novenber 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://wa projectliberty. org/specs/idwsf_copyrights. htm

</ xs: docunent at i on>
</ xs: annot ati on>
<xs:inport nanmespace="http://schenmas. xm soap. or g/ soap/ envel ope/ "
schemalocation="http://schemas. xm soap. or g/ soap/ envel ope/ "/ >
<xs:include schenalLocation="Iliberty-utility-v1.0.xsd"/>
<xs: el ement name="Request" type="Request Type"/>
<xs: conpl exType name="Request Type">
<xs:attribute nane="responseConsumer URL" type="xs:anyURl"
use="required"/>
<xs:attribute nane="service" type="xs:anyUR " use="required"/>
<xs:attribute nane="messagel D' type="IDType" use="optional "/>

Appendix B Service Schema Files 189

Metadata Description Schema

Code Example B-5 Reverse HTTP Binding for SOAP XSD File (Continued)

<xs:attribute ref="S: nustUnderstand" use="required"/>
<xs:attribute ref="S: actor" use="required"/>

</ xs: conpl exType>

<xs: el ement name="Response" type="ResponseType"/>

<xs: conpl exType nane="ResponseType" >
<xs:attribute nane="ref ToMessagel D' type="1DType" use="optional"/>
<xs:attribute ref="S: nustUnderstand" use="required"/>
<xs:attribute ref="S: actor" use="required"/>

</ xs: conpl exType>

</ xs: schema>

Metadata Description Schema

190

Code Example B-6 is a reproduction of | i bert y- net adat a- 1. 0- err at a- v2. 0. xsd,
the XSD file that accompanies the Liberty Metadata Description and Discovery
Specification. This XSD file describes metadata, protocols for obtaining metadata,
and resolution methods for discovering the location of metadata.

Code Example B-6 Metadata Description and Discovery XSD File

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema target Namespace="urn: | i berty: net adat a: 2003- 08"
xm ns="urn: | iberty: nmetadat a: 2003- 08"
xnm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#"
xni ns: sam ="ur n: oasi s: nanes: tc: SAM.: 1. 0: assertion"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
el enent For mDef aul t ="qual i fi ed"
attribut eFornDef aul t ="unqual i fi ed" version="1.0">
<xs:inport namespace="http://wa. W3. or g/ 2000/ 09/ xm dsi g#"

schemalLocation="http://wa w8. or g/ TR/ xm dsi g- cor e/ xm dsi g- cor e- schema. xsd"/
>
<xs:inport namespace="urn:oasis: nanmes:tc: SAM.: 1. 0: asserti on"
schenmalocat i on="oasi s- sstc-sanl - schema-assertion-1. 1. xsd"/ >
<xs:inmport namespace="htt p://www. w3. or g/ XM/ 1998/ nanespace"
schemaLocati on="htt p:// waw. w3. or g/ 2001/ xm . xsd"/ >
<xs:include schenalLocation="liberty-utility-v1.0.xsd"/>
<xs: annot at i on>
<xs: docunent ati on>
XM Schena fom Metadata description and di scovery protocol s
</ xs: docunent at i on>
<xs: docunent ati on>

The source code in this XSD file was excerpted verbatimfrom

Li berty Metadata Description and Di scovery Specification
Version 1.0-errata-v2.0

Access Manager 6 2005Q1 ¢ Federation Management Guide

Metadata Description Schema

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

4 June 2004

Copyright (c) 2004 Liberty Aliance participants, see
https://www. projectliberty.org/specs/idff_copyrights. htn

</ xs: docunent at i on>

</ xs: annot ati on>
<xs: si npl eType nane="entityl DType">

<xs:restriction base="xs:anyUR ">

<xs: maxLength val ue="1024" i d="max| engt hi d"/>

</xs:restriction>
</ xs: si npl eType>
<l--
<xs:attribute nanme="libertyPrincipalldentifier" type="entitylDIype"/>
<xs:attribute name="provider| D' type="entityl DType"/>

<xs:attribute name="validuntil" type="xs:dateTine"/>
<xs:attribute name="cacheDuration" type="xs:duration"/>
-->

<xs: conpl exType nanme="addi ti onal Met adat aLocati onType" >
<xs: si npl eCont ent >
<xs: ext ensi on base="xs:anyURl ">
<xs:attribute nane="namespace" type="xs:anyUR"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: conpl exType nane="organi zati onType" >
<Xs: sequence>
<xs: el ement nane="(Cr gani zati onNane" type="organi zati onNaneType"

maxCceur s="unbounded"/ >
<xs: el ement nanme="(Crgani zati onDi spl ayNane"

type="organi zati onD spl ayNarmeType" maxQccur s="unbounded"/ >
<xs: el ement nane="Qr gani zati onURL" type="I ocal i zedURl Type"

maxCceur s="unbounded"/ >
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="or gani zati onNameType" >
<xs: si npl eCont ent >
<Xs:ext ension base="xs:string">
<xs:attribute ref="xm:lang"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: conpl exType name="organi zati onDi spl ayNaneType" >
<xs: si npl eCont ent >
<Xs:ext ensi on base="xs:string">
<xs:attribute ref="xm:lang" use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: conpl exType nane="|ocal i zedURI Type" >
<xs: si npl eCont ent >
<Xs: ext ensi on base="xs:anyURl ">
<xs:attribute ref="xm:lang" use="required"/>

Appendix B Service Schema Files 191

Metadata Description Schema

192

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: conpl exType nane="cont act Type">
<Xs: sequence>
<xs: el ement name="Conpany" type="xs:string" m nQccurs="0"/>
<xs: el ement nanme="d venNanme" type="xs:string" mnCccurs="0"/>
<xs: el ement nane="Sur Name" type="xs:string" mnQCccurs="0"/>
<xs: el ement nane="Enai | Address" type="xs:anyURI" m nQccurs="0"

maxQccur s="unbounded"/ > _ _
<xs: el ement name="Tel ephoneNunber" type="xs:string" mnCccurs="0"

maxCccur s="unbounded"/ >
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attribute nanme="libertyPrincipalldentifier" type="entitylDType"
use="opti onal "/>
<xs:attribute nane="contact Type" type="attr.contact Type"
use="required"/>
</ xs: conpl exType>
<xs: si npl eType nane="attr.contact Type">
<xs:restriction base="xs:string">
<xs:enumeration val ue="t echnical "/>
<xs:enumeration val ue="adninistrative"/>
<xs:enumeration val ue="billing"/>
<xs:enumeration val ue="ot her"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType nane="keyTypes">
<xs:restriction base="xs:string">
<xs:enureration val ue="encryption"/>
<xs:enureration val ue="signi ng"/>
</xs:restriction>
</ xs: si npl eType>
<xs: conpl exType nanme="provi der Descri pt or Type" >
<Xs: sequence>
<xs: el ement name="KeyDescriptor" type="keyDescri ptorType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xs: el ement nane="SoapEndpoi nt" type="xs:anyURl" m nCccurs="0"/>
<xs: el ement nane="Si ngl eLogout Servi ceURL" type="xs:anyURl"

m nCccurs="0"/>

<xs: el ement nane="Si ngl eLogout Servi ceRet ur nURL"
type="xs:anyUR " m nCccurs="0"/>

<xs: el ement name="FederationTer m nati onServi ceURL"
type="xs:anyUR " m nCccurs="0"/>

<xs: el ement name="FederationTer m nati onSer vi ceRet ur nURL"
type="xs:anyUR " m nCccurs="0"/>

<xs: el ement nanme="FederationTerm nationNotificationProtocol Profile"
type="xs:anyUR " m nCccurs="0" nmaxCccur s="unbounded"/>

<xs: el ement nane="Si ngl eLogout Prot ocol Profile"
type="xs:anyUR " m nCccurs="0" nmaxCccur s="unbounded"/>

<xs: el ement nane="Regi st er Narrel denti fi er Prot ocol Profile"
type="xs:anyUR " m nCccurs="0" nmaxCccur s="unbounded"/>

<xs: el ement nane="Regi st er Narel dent i fi er Servi ceURL"
type="xs:anyUR " m nCccurs="0"/>

Access Manager 6 2005Q1 ¢ Federation Management Guide

Metadata Description Schema

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

<xs: el ement nanme="Regi st er Nanel dent i fi er Servi ceRet ur nURL"
type="xs:anyUR " m nCccurs="0"/>
<xs: el ement nane="Nanel denti fi er Mappi ngPr ot ocol Profil e"
type="xs:anyUR " m nCQccurs="0" naxCccur s="unbounded"/>
<xs: el ement nanme="Namel denti fi er Mappi ngEncryptionProfile"
type="xs:anyUR " m nCccurs="0" naxCccur s="unbounded"/>
<xs: el ement nane="QCrgani zati on" type="organi zati onType"
m nCccurs="0"/>
<xs: el ement nane="Cont act Per son" type="cont act Type"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xs: el ement nane="Addi ti onal Met aLocati on"
t ype="addi ti onal Met adat aLocat i onType" m nQccurs="0"

maxCceur s="unbounded"/ >
<xs: el ement ref="Extension" mnQcurs="0"/>
<xs: el ement ref="ds: Signature" m nCccurs="0"/>
</ xs: sequence>
<I--xs:attribute ref="providerl D' use="required"/-->
<xs:attribute nane="protocol Support Enumerati on" type="xs: NMITOKENS"
use="required"/>
<xs:attribute nane="id" type="xs:|D" use="optional"/>
<xs:attribute nane="val idUntil" type="xs: dateTine"/>
<xs:attribute nane="cacheDuration" type="xs:duration"/>
</ xs: conpl exType>
<! --added-- >
<xs: el ement name="KeyDescriptor" type="keyDescri ptorType"/>
<xs: conpl exType nane="keyDescri pt or Type">
<Xs: sequence>

<xs: el ement nane="KeySize" type="xs:integer" m nCccurs="0"/>
<xs: el ement ref="ds: Keyl nfo" m nCccurs="0"/>
<xs: el ement ref="Extension" mnQcurs="0"/>
</ xs: sequence>
<xs:attribute nane="use" type="keyTypes" use="optional"/>
</ xs: conpl exType>
<l-- -->
<xs: el ement nane="EntityDescriptor" type="entityDescriptorType"/>
<Xs: group name="provi der G oup" >
<Xs: sequence>
<xs: el ement nane="|DPDescriptor" type="1DPDescri ptorType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xs: el ement nane="SPDescriptor" type="SPDescri ptorType"
m nCccur s="0" maxCccur s="unbounded" />
</ xs: sequence>
</ xs: gr oup>
<xs: conpl exType name="entityDescri ptor Type" >
<Xs: sequence>
<xs: choi ce>
<xs: group ref="providerGoup"/>
<xs: el ement name="AffiliationDescriptor"
type="affiliationDescriptorType"/>
</ xs: choi ce>

<xs: el ement nane="(Crgani zati on" type="organi zati onType"
m nCccurs="0"/>

<xs: el ement nanme="EncryptionMet hod" type="xs:anyUR" ninCccurs="0"/>

<xs: el ement nane="Cont act Per son" type="contact Type" m nCccurs="0"/>

Appendix B Service Schema Files

193

Metadata Description Schema

194

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

<xs: el ement ref="Extension" mnQcurs="0"/>
<xs: el ement ref="ds: Signature" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute nane="providerl D' type="entitylDIype" use="required"/>
<xs:attribute nane="id" type="xs:|D" use="optional"/>
<xs:attribute nane="validUntil" type="xs: dateTine"/>
<xs:attribute nane="cacheDuration" type="xs:duration"/>
</ xs: conpl exType>
<xs: conpl exType nane="SPDescri pt or Type" >
<xs: conpl exCont ent >
<xs: ext ensi on base="provi der Descri pt or Type" >
<Xs: sequence>
<xs: el ement nane="AssertionConsuner Servi ceURL"

maxQccur s="unbounded" >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base="xs: anyUR ">
<xs:attribute nane="id" type="xs:|D' use="required"/>
<xs:attribute nane="isDefault" type="xs:bool ean"
default="fal se"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conmpl exType>
</ xs: el enent >
<xs: el ement name="Aut hnRequest sSi gned" type="xs: bool ean"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs: conpl exType nane="I|DPDescri pt or Type" >
<xs: conpl exCont ent >
<xs: ext ensi on base="provi der Descri pt or Type" >
<Xs: sequence>
<xs: el ement nanme="Si ngl eSi gnOnServi ceURL" type="xs:anyURl"/>
<xs: el ement nanme="Si ngl eSi gnOnProt ocol Profile" type="xs:anyUR"
maxCceur s="unbounded"/ >
<xs: el ement nane="Aut hnServi ceURL" type="xs:anyURl"
m nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs:el ement name="EntitiesDescriptor" type="entitiesDescriptorType"/>
<xs: conpl exType nanme="entiti esDescri ptor Type">
<Xs: sequence>
<xs:element ref="EntityDescriptor" mnCccurs="2"
maxCceur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="affiliati onDescri ptor Type">
<Xxs: sequence>
<xs:element nanme="AffiliateMenber" type="entityl DType"
maxCceur s="unbounded"/ >
<xs: el ement ref="Extensi on" mnQcurs="0"/>

Access Manager 6 2005Q1 ¢ Federation Management Guide

Metadata Description Schema

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

<xs: el ement nanme="KeyDescriptor" type="keyDescri ptorType"
m nQccurs="0" maxQccur s="unbounded"/>
<xs: el ement ref="ds: Signature" m nCccurs="0"/>
</ xs: sequence> o _
<I-- <xs:attribute name="affiliationl D' type="entityl DType"
use="required"/> --> _
<xs:attribute nane="affiliationOwmerl D' type="entitylDType"
use="required"/> _
<xs:attribute name="validuntil" type="xs: dateTime"/>
<xs:attribute nane="cacheDuration" type="xs:duration"/>
<xs:attribute nane="id" type="xs:|D"' use="optional"/>
</ xs: conpl exType>
</ xs: schema>

Appendix B Service Schema Files 195

Metadata Description Schema

196 Access Manager 6 2005Q1 « Federation Management Guide

Glossary

For a list of terms used in this documentation set, refer to the latest Sun Java™
Enterprise System Glossary:

http://docs. sun. con doc/ 816- 6873

197

198 Access Manager 6 2005Q1 « Federation Management Guide

A

Access Manager documentation set 21

affiliate entity descriptors 69
affiliation federation 49
API

Authentication Web Service 104
client for Discovery Service 145
common security 157

common service 155

Data Services Template 108, 118
Discovery Service 142
federation management 87
Interaction Service 159

list of packages 56

PAOS Binding 161

SOAP Binding Service 152

architecture

Discovery Service 124

attributes

Authentication Web Service 103
Discovery Service 127

Liberty Personal Profile Service 112

SOAP Binding Service 149

authentication domains 67
Authentication Web Service 101

APl 104

attribute 103
extract 53

process 102

sample 105, 173
schema file 185
XML service file 102

Index

Authorizer interface 113, 142, 156

B

bootstrapping for Discovery Service 139

C

client API
Data Services Template 119
Discovery Service 145

common domain services 65

common security APl 157

common service interfaces 155

creating authentication domains 67

creating federation model 55

customizing federation management module 60

D

data services
defined 107
developing 120
Liberty Employee Profile Service 118
Liberty Personal Profile Service 111
see also Data Services Template

199

Section E

Data Services Template 108, 118

client API 119
default paths and file names 20
Default64Resourcel DMapper 144
DefaultDiscoAuthorizer class 142
DefaultHexResourceIDMapper 144
defined

discovery entries 122

identity 29

identity federation 30

Liberty Alliance Project terms 30
deploying Liberty-based system 44
developing data services 120
Directory Server documentation 18
DiscoEntryHandler interface 144
discovery entries 132

as dynamic attributes 136

as user attributes 132

defined 122

for bootstrapping Discovery Service 139
Discovery Service

architecture 124

attributes 127

client API 145

extract 54

overview 121

process 125

sample 146

XML service files 123
documentation

Access Manager 21
dynamic identity provider proxying 49
DynamicDiscoEntryHandler 145

E

employee profile service sample 172

entity descriptors 69
procedures 70
provider 69

200 Access Manager 6 2005Q1 « Federation Management Guide

F

federation
process 62
federation management
and JavaServer Pages 60
API 87
authentication domains 67
entity descriptors 69
affiliate 69
procedures 70
provider 69
extract 55
moduloe customization 60
overview 59, 67
pre-login process 64
process of federation 62
samples 88, 169
single sign-on process 65

federation model 55

identity defined 29

identity federation defined 30

Interaction Service 159

interfaces
Authentication Web Service 104
Authorizer 113, 142
common service 155
DiscoEntryHandler 144
Discovery Service 142
federation management 60
Liberty-based APl 56
ResourcelDMapper 113,144
SOAP Binding Service 152

J

JavaServer Pages and federation management 60

L

Liberty Alliance Project
overview 27
service schema files 175
specifications 35
terms defined 30

Liberty Employee Profile Service 118
schema file 183

Liberty Identity Federation Framework specification
overview 35

Liberty Identity Service Interface Specifications
overview 43

Liberty Identity Web Services Framework
specifications overview 40

Liberty Metadata Description and Discovery
Specification 50

Liberty Personal Profile Service 111
attributes 112
extract 54
process 111
schema file 178

Liberty process sample 51

Liberty-based data services
overview 107

Liberty-based system deployment 44

M

Metadata Description
schema file 190

N

name identifier encryption profile 49
name identifier mapping protocol extract 48
new features
Liberty metadata description and discovery
specification
overview 50
name identifier mapping protocol 48

Section L

single sign-on and federation protocol 48

O

one-time federation 49

overview
Authentication Web Service 101
Data Services Template 108, 118
discovery entries 132
Discovery Service 121
federation management 59, 67
implementation of Liberty Alliance Project 47
implementation of Liberty Web services 52
Interaction Service 159
Liberty Alliance Project 27
Liberty Alliance Project specifications 35
Liberty metadata description and discovery

specification 50

Liberty-based data services 107
name identifier mapping protocol 48
PAOS Binding 161
public interfaces 153
resource offerings 132
samples 169
single sign-on and federation protocol 48
SOAP Binding Service 147

P

packages
Liberty-based 56

PAOS Binding 161
sample 163, 173

PAQOS Binding Service
schema file 189

PAQOS vs. SOAP 162

patches
Solaris 23

policy agent documentation 22
policy creation 142
procedures

Index

201

Section R

create discovery entries as user attributes 132
create discovery entry as dynamic attributes 136
create policy for DefaultDiscoAuthorizer 142
creating authentication domains 67
creating federation model 55
entity descriptors 70
process
Authentication Web Service 102
Discovery Service 125
federation 62
pre-login in federation 64
single sign-on in federation 65
SOAP Binding Service 148
provider entity descriptors 69
public interfaces 153

R

related JES product documentation 23
RequestHandler interface 120, 152
Resource ID Mapper attribute 113
resource offerings 132
ResourcelDMapper interface 113, 144, 157

S

sample use case 51

samples
Authentication Web Service 105, 173
Discovery Service 146
employee profile service 172
federation management 88, 169
PAOS Binding 163, 173
use case process 51
web service consumer 172

samples overview 169

schema files 175
Authentication Web Service schema 185
Employee Profile schema 183
Metadata Description 190
PAOS Binding Service 189

202 Access Manager 6 2005Q1 « Federation Management Guide

Personal Profile schema 178
SOAP Binding schema 176
service schema files 175

services
common domain 65

shell prompts 20
single sign-on and federation protocol extract 48
SOAP Binding
extract 54
SOAP Binding Service
APl 152
attributes 149
overview 147
process 148
schema file 176
XML service files 148
SOAP vs. PAOS 162
Solaris
patches 23
support 23

specifications (Liberty Alliance Project) 35

support
Solaris 23

symbols used 19

T

typographic conventions 18

U

use cases 50

sample process 51
UserDiscoEntryHandler 145
UserDynamicDiscoEntryHandler 145

W

web service consumer sample 172

Section X

web services implementation 52

X

XML service files
Authentication Web Service 102
Discovery Service 123
SOAP Binding Service 148

XSD files 175

Index 203

Section X

204 Access Manager 6 2005Q1 ¢ Federation Management Guide

	Access Manager 6 Federation Management Guide
	Contents
	List of Figures
	List of Tables
	List of Code Examples
	Preface
	Who Should Use This Guide
	Before You Read This Guide
	Conventions Used in This Guide
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Access Manager Documentation Set
	Access Manager Core Documentation
	Access Manager Policy Agent Documentation

	Related JES Product Documentation
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Feedback

	Liberty Specifications and Federation Management
	Introduction to the Liberty Alliance Project
	Overview
	LAP Members
	LAP Objectives

	The Concept of Identity
	The Concept of Identity Federation
	Liberty Alliance Project Concepts
	Account Federation (Identity Federation)
	Affiliation
	Attribute Provider
	Authentication Domain
	Circle Of Trust
	Client
	Common Domain
	Defederation
	Federation Cookie
	Federated Identity
	Federation Termination
	Identity Provider
	Identity Service
	Liberty-enabled Client
	Liberty-enabled Proxy
	Name Identifier
	Principal
	Pseudonym
	Receiver
	Resource Offering
	Sender
	Server
	Service Provider
	Single Logout
	Single Sign-on
	Trusted Provider
	Web Service Consumer
	Web Service Provider

	The Liberty Alliance Project Specifications
	Liberty Identity Federation Framework
	Liberty Identity Web Services Framework
	Liberty Identity Service Interface Specifications
	Supporting Documents

	Deploying a Liberty-based System
	Size Up Your IT Staff
	Clean Your Directory Data
	Draft Business Agreements
	Liberty-compliant Technology

	Implementation of the Liberty Specifications
	Overview
	Name Identifier Mapping Protocol
	Single Sign-on and Federation Protocol
	Liberty Metadata Description and Discovery Specification

	Liberty Use Cases
	Unified Access to Intranet Resources
	Integrated Partner Networks
	Sample Use Case Process

	Access Manager Implementations
	Web Services
	Application Programming Interfaces
	Federation Management Module

	Packages and Global Interfaces
	Liberty-based Samples

	Federation Management
	Overview
	The Federation Management Interface
	The Process of Federation
	Pre-login Process
	Single Sign-on Process

	Common Domain Services
	Installing the Common Domain Services
	Common Domain Service URLs

	Federation Management
	Authentication Domains
	Creating and Maintaining Authentication Domains
	Entity Descriptors
	Creating and Maintaining Entity Descriptors

	Federation Management API
	Federation Management Samples
	Installing Access Manager
	Updating and Loading the Metadata
	Deploying the Service Provider
	Deploying the Identity Provider
	Creating and Managing a Federation

	Liberty-based Web Services
	Authentication Web Service
	Overview
	XML Service File
	Application Programming Interfaces

	Authentication Web Service Process
	Authentication Web Service Attribute
	Mechanism Handler List

	Authentication Web Service Interfaces
	com.sun.identity.liberty.ws.authnsvc
	com.sun.identity.liberty.ws.authnsvc.protocol

	Authentication Web Service Sample

	Data Services
	Overview
	Data Services Template Specifications
	Liberty Personal Profile Service
	Liberty Employee Profile Service
	Data Services Template API

	Liberty Personal Profile Service
	The Liberty Personal Profile Service Process
	Liberty Personal Profile Service Attributes

	Liberty Employee Profile Service
	Data Services Template API
	com.sun.identity.liberty.ws.dst
	com.sun.identity.liberty.ws.dst.service

	Developing A New Data Service

	Discovery Service
	Overview
	Discovery Entries
	XML Service Files
	Application Programming Interfaces

	Discovery Service Architecture
	Discovery Service Process
	Discovery Service Attributes
	Provider ID
	Supported Authentication Mechanisms
	Supported Directives
	Enable Policy Evaluation for DiscoveryLookup
	Enable Policy Evaluation for DiscoveryUpdate
	Authorizer Plugin Class
	Entry Handler Plugin Class
	Classes For ResourceIDMapper Plugin
	Authenticate Response Message
	Generate SessionContextStatement for Bootstrapping
	Encrypt NameIdentifier in Session Context for Bootstrapping
	Use Implied Resource; don't generate ResourceID for Bootstrapping
	Resource Offerings for Bootstrapping Resources

	Discovery Entries and Resource Offerings
	Storing Discovery Entries as User Attributes
	Storing Discovery Entries as Dynamic Attributes
	Storing Discovery Entries for Bootstrapping

	Discovery Service Interfaces
	DefaultDiscoAuthorizer Implementation
	Default ResourceIDMapper Implementations
	DiscoEntryHandler Interface
	Client APIs

	Discovery Service Sample

	SOAP Binding Service
	Overview
	XML Service File
	Application Programming Interfaces

	SOAP Binding Process
	SOAP Binding Attributes
	Request Handler List
	Web Service Authenticator
	Supported Authentication Mechanisms

	SOAP Binding Interfaces

	Application Programming Interfaces
	Overview of Public Interfaces
	Common Service Interfaces
	com.sun.identity.liberty.ws.common
	com.sun.identity.liberty.ws.interfaces

	Common Security API
	com.sun.identity.liberty.ws.security
	com.sun.identity.liberty.ws.common.wsse

	Interaction Service API
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	PAOS vs. SOAP
	PAOS Binding API
	PAOS Binding Sample

	Appendices
	Included Samples
	Overview
	Federation Framework Samples
	sample1
	sample2
	sample3

	Web Services Framework Samples
	wsc
	sis-ep
	paos
	authnsvc

	Service Schema Files
	Overview
	SOAP Binding Schema
	Personal Profile Schema
	Employee Profile Schema
	Authentication Web Service Schema
	PAOS Binding Schema
	Metadata Description Schema

	Glossary
	Index

