Sun Java™ System

Access Manager 6
Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-7649

2005Q1

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://wamv sun. con pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
al'adresse http://wwv sun. com pat ent's et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans
les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit peuvent étre dérivées des systemes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.

L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une license non exclusive de Xerox sur I'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Ccontents

LISt Of FIgUIeS ..o e e e 17
List Of Tables . ..o 19
List Of Procedures 21
List of Code EXamples 23
Preface 27
Who Should Use This BOOK e 27
Before You Read ThisS BOOK i e 28
Conventions Used in ThiS BOOK o e e e 28
Typographic CONVENLIONSttt e e e e et 28
SYMIDOIS .« 29
Default Paths and File Names e 29
SHEll PrOMDES 30
Related DOCUMENTAtION o e e 31
Books in This Documentation Set e 31
Access Manager Policy Agent Documentationttt 32
Other Server DOCUMENTatioN e et e e 33
Accessing Sun Resources Online o 33
Contacting Sun Technical SUPPOIt e e 33
Related Third-Party Web Site References i e 34
Sun Welcomes YoUr COMIMENTSttt et e et e e e et et e 34
Chapter 1 INtrodUCHiON e e 35
ACCESS ManNager OVEIVIEWttt et e e e e e e 35
Data Management COmMPONENTSottt et e e e 36
Access Manager Management SENVICESttt e e 37
MANAGING A CCESS & o v v ettt ettt et e e e 39
VD ACCESS . . v ittt e 39

4

APPHICALION ACCESS ottt et e e 40

Extending ACCESS MANAJETottt et e e e 40
Service Definition With XMLo 40
Console CUStOMIZALIONottt e e e e e e 41
ACCESS Manager SDK . ..o 41
Identity Management SDK 41
Service Management SDK 41
Authentication Programming Interfaces i 41
Ut Y AP L 42
Logging API And Logging SPI o 42
Client Detection APl ... oo 42
SO0 AP L 42
POlICY SDK . . 42
SAMEL SDK o 42
Federation Management APl 43
Access Manager File System e 43
Client BroOWSEr SUPPOItt e e e e e e e e e e e e e 43
Chapter 2 Usingthe Client SDK e 45
How the Client SDK WOIKSo e e 45
JDK and CLASSPATH ReqUIreMENtS e e e et e 46
Configuring the Client SDK 47
To Configure the Client SDK e 47
Initializing the Client SDK o 49
Using a Properties File 49
To Set ClientSDK Properties in a Properties File i, 49
Using the Java APl 50
Setting Individual Properties 50
Naming URL Propertiest e e e 50
DebuUg Properties 51
Notification URL Propertieso e et 51
Setting Up a Client Identity e e 52
To Set Username and Password Propertiest e e 52
To Set an SSO TOKEN ProVIder e 53
Building Custom Web Applications 53
Building Stand-Alone Applications it 53
To Build a Stand-Alone Application 53
Targets Defined inclientsdk 54
About the Client SDK Samples o 54
Chapter 3 The Access Manager Console i e 55

OVEBIVIBW L .o 55

Access Manager 6 2005Q1 ¢ Developer's Guide

ConSole INtBIfaCE . ..o 56

Generating The Console Interface i 57
Plug-In ModUIEs 58
ACCeSSING The CONSOIEo e e 58
Customizing The CoNSO0le e e 58
The Default Console Files oo i 59
Creating Custom Organization Files e 59
To Create Custom Organization Files e 60
Alternate Customization Procedure i 61
Miscellaneous CUSTOMIZAtIONS ottt e e 61
To Modify The Service Configuration Display i, 61

To Modify The User Profile VIiew e 62
Display Options For The User Profile Page 63
ToLocalize The CONSOIE i e 63

To Display Service AttribUtes 63

To Customize Interface ColOrS e 63

To Change The Default Attribute Display Elements 64
TOAdd AModule Tab 68

To Display Container ODJECtSt 68
CONS0le AP 69
Precompiling The Console JSP 70
CoNS0le SAMIPIES . . oo 70
Modify User Profile Page 70
Create A Tabbed ldentity Management Display 70
CoNSOIEEVENTLISIENEY . . . oo 71
Add Administrative FUNCLION e 71
Add ANew Module Tab 71
Create A Custom User Profile VIew 72
Chapter 4 Single Sign-On And SESSIONSttt e 73
OV VI W . oot 73
SESSION SEIVICE CONCEPLS . ..ottt et et e e e e e e e e e e e 74

B 1Tt o] o 74
SESSION I .o 74
SOOI T OKEN . 75
SiNGIE SIgN-ON PrOCESS . . . o\ oottt et e e e e e e e e e e e e e e 75
Contacting A Protected RESOUICEt e e 75
Providing User Credentials e 75
COoO0KIES AN SESSIONS . ..ottt et e e e 76
SESSION STIUCTUIE . . oottt ettt et e e e e et e e e e e 76
FiXed ATriDUTESo 76
Protected And CUStOmM Propertieso e 77
Protected Properties it e 77

Contents 5

CUSIOM PrOPErtiES . . ottt e e e e e e 78

Cross-Domain SUPPOrt FOr SSO 78
POl Y AN . . 79
Cross-Domain Controller e 79
A Cross-Domain SSO SCENANIOttt e et 80
Enabling Cross-Domain Single Sign-On e 81

SO0 AP o 81
JAVA AP OVEIVIEW . . 82

SSOTokenManager Classttt e e e et e e e 82
SSOTOKeNID INterface ...t e e e e e 83
SSOTOKEN INterface 83
SSOTOKENEVENT .. 85
SSOTOKENLISIENEr ..ot 85
Sample SSO Java Files 86

C AP OV W . . o e e e e 88
CSSO INCIUde FIlES ... e e e 88

C SSO PrOPEIIES . . . oottt e e 88
(OIS 1@ I 1) =1 =T = 89

C SSO SaMIPIE . . 97
JaVa VEISUS C AP . 97
Non-Web-Based Applications e 99
SSO SaAMIPIES . 99

Chapter 5 Customizing the

Authentication User Interface i e e 101
User Interface Files You Can Modify i e 101
SeIVICES. AN File . . . 103
JAVA SBIVEr PageS . ..ot 104
Customizing the Login Page oo e 104
Customizing JSP Templatest 104

XML RIS e 106
Callbacks Element o 108
ConfirmationCallback Element i 109
JAVAS Pt FIlES . .o 110
Cascading Style Sheets i 110

I AgES . oot 111
Localization Files o 111
Customizing Branding and Functionality i e 113
To Modify Branding and Functionality i i 113
Customizing the Self-Registration Page i e 115
To Modify the Self-Registration Paget e e e 115
Updating and Redeploying SErVICES.WaAr ittt ittt e 117
TO UPate SEIVICES. WAL . ..ottt ettt e et e e e e e e 117

Access Manager 6 2005Q1 ¢ Developer's Guide

TO Redeploy SEIVICES.WAK oot et e e e e e e 118

ONBEA WEDBLOGIC . ..o 118
On Sun ONE Application SEIVEN e 118
ON IBM WebSphere o 119
Chapter 6 Using Authentication APIsand SPIs 121
Overview of Authentication APISand SPIS e 121
How the Authentication Java APISWOrK e 122
How the Authentication C-APISWOrk e 123
XML/HTTP Interface for Other Applications i 124
Examples of XML MESSA0ES oottt et e e e et et e e e e 124
How the Authentication SPISWOrK 128
Extending the AMLoginModule Classc. i e 129
Pluggable JAAS Module 129
Authentication POSt ProCessingt e 129
Using Authentication APIS 132
Running the Sample Authentication Programs i 132
Java API Code Samples and Their Locationsco i 132
To Compile and Execute the Java APl Samples i 133
To Configure SSL forJava APl Samples 134
LDAPLOGIN EXamPle ... e 135
CertLogin EXample 135
JCDI Module EXamPle 136
C-A P SamPIle .. 137
Using Authentication SPIS e 138
Implementing a Custom Authentication Module 138
About the Login Module Sample 138
Writing a Sample Login Module 139
Compiling and Deploying the LoginModule program, 142
Loading the Login Module Sample into Access Managerc.ooiieinaan.. 143
Running the LoginModule Sample Program i 144
Deploying the Login Module Sample Program i 146
Implementing Authentication PostProcessing SPI i 146
About the PostProcessing SPI Sample 147
To Compile the ISAuthPostProcessSample Program on Solaris Sparc/x86 or Linux 147
Configuring the Authentication Post Processing SPI 148
Compiling ON Windows2000t e e 150
Generating an Authentication User ID e 150
To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux 151
To Deploy the UserIDGeneratorSample programoueieeenennaeennnn 151
Configuring the UserIDGeneratorSample Programt .. 152
Compiling the UserIDGeneratorSample Program on Windows 2000 153
Implementing A Pure JAAS Module 154

Contents 7

8

Conventions Used inthe Samples 154

To Run the Sample on Solaris Sparc X86 or Linux:t 155

To Run the Sample on Windows 2000ottt e e 156
Chapter 7 Identity Management e 159
OV VI W . oot e 159
Access Manager CONSOIE 160
UMS XM o e 160
Identity Management Software Development Kit (SDK) 160
Identity-related ODJECTS o 160
Marker ODJeCt Classes oot e e 161
Identity-related Objects As LDAP ENtries e 162
OrganiZatioNsS 162
CONAINEIS . ottt et e 162
USBES . . 163

LT 11 o 163
ROIES . 164
Object Templates And UMS.XMI 164
Structure Of UMS.XMI ..o 164
Structure TemMPIAteso 165
Creation Templates 165
Search Templates 166
Modifying UMS. XMl . .o 166
Adding Custom ODbject Classest e 167

DAL SIVICE . .t 167
amENtrySpecific.Xxml 168
Identity Management SDK 169
It aCES . o o oo 170
AMASSIgNableDynamicGroUpt 170
AMCaAIIDACK 170
AMCONSIANTS . . . 170
AMDYNAMICGIOUD . ..ottt et et e e e e e e e e 170
AMEVENTLISTENEr .. o e 170
AMEFilteredROle 171
AM G OUD o e 171
AMGIOUPCONTAINET . . . ot e e e e e e 171
AMODECT . . oo 171
AMOIgaNIZationo 172
AMOrganizationalUnit 172
AMPeopleCONtAINEr 172
AMROIE o 172
AMSearchCoNtrol e 172
AMSEAICGIOUD . . . ottt e e e e e e e e 173

Access Manager 6 2005Q1 ¢ Developer's Guide

AMSIOreCONNECTION oottt et 173

AMTEmMpPIate ... 173
AMUS L 174
AMUSserPasswordValidation o 175
Search Methods IN The SDK e e 175
Search Method Parameters 176
searchUsers Sample Code i e 177
Search Groups Sample Code i 178
Email Notification And The SDK 179
Caching And The SDK 180
Installing The SDK Remotely e e 180
Management Function Samples e 181
Creating ObJeCtS o 181
Retrieve Templates e 183
Identity Management Samples 183
Adding User AttribULES e 184
Creating Objects With The SDK e 184
Chapter 8 Service Management 185
OV VI W . oottt 185
XML SerViCe FileS ... 186
Document Type Definition Structure Files 186
Service Management SDK 187
Defining A CUSIOM SEIVICEo e e e e e e e e e 187
Creating A Service File 189
Service File Naming CONVENLIONS ottt e e 189
Service ALribULES 189
ALtribute INNEritanCe 192
Extending The Directory Server SChema e 193
To Extend The Directory Server LDAP Schema i 194
Adding Access Manager Object Classes To ExistingUsers, 195
Importing The XML Service File i 195
Configuring Console Localization Properties 196
Localizing With TWO Languagesottt e e e 197
Updating Files For Abstract Objects e 197
Registering The Service e 197
DT D RIS ..ttt 198
The SMS.Atd StrUCTUIEo e e e e e e 199
ServicesConfiguration Element 199
Service Element 200
Schema Element 200
Service Attribute Elements 202
SubSchema Element o 204

Contents 9

10

AttributeSchema Element 204

The amAdMIN.Atd SITUCTUIE o e e e 209
Requests Element 210
OrganizationRequests Element 211
ContainerRequests Element 213
PeopleContainerRequests Element 214
RoleRequests Element 215
GroupRequests EIement 215
UserRequests Element 216
ServiceConfigurationRequests Element 216
AttributeValuePair Element e 217
CreateObject Elements 218
DeleteObject EIemMENtS o 222
ModifyObject EIements 224
GetObjeCt ElemMENtS 225
GetService Elements o o 226
ActionServiceTemplate Element 226
ActionServiceTemplateAttributeValues Element i 227
ACtIONSErVICES EIBMENTSo e 227
SchemaRequests Element 228
Federation Management Elements i 230

XML SerVice FileS ..o 231

Default XML Service Files 231
Modifying A Default XML Service File 233

Batch Processing With XML Templates i 234
XML TempPlateso e e e 235
Modifying A Batch Processing XML Template 237

CUStOMIZING USEr PageS . . . o oottt e e e e e e e e 237
Creating Users Using A Modified Directory Server Schema.............. 238

Service Management SDK 239

ServiceSchemaManager Class it 239
Retrieve Logging LOCAtioN i 239
Retrieve User Or Dynamic Attributes e 239

Retrieve Attribute Values 240

Chapter 9 Policy Management e 249
POlICY SDK .. 249

Java SDK FOr POIICY ... o 249
Policy APLFOrJava 250
Policy PIugin APLFOrJava oo e e 255

C Library FOr PoliCY 256
Policy Evaluation APILfor C 257

Extending the Policy Management Feature it 257

Access Manager 6 2005Q1 « Developer’s Guide

Compiling the Policy Samples 258

Adding the Policy Service to ACCeSS Managert 258
Developing Custom Subjects, Conditionsand Referrals 259
To Load the Modified SErvices 260
Creating Policies for the SErvice e 261
Developing and Running Policy Evaluation Programs, 262
To Run the Policy Evaluation Program e 262
Constructing Policies Programmatically 263
TOo RUN POLICYCreatorjavaot e e e e et 263
POlICYCIeator.javat 264
Chapter 10 Using the JAAS Authorization Framework 269
Overview of JAAS AULNOKIZatioN e 269
How Policy Enforcement WOrKS oo 271
How the JS2E Access Controller WOrks e 273
JAAS Authorization in ACCESS MaANAJErttt 274
CUSTOM AP IS o 275
User INterfaceo 275
Enabling the JAAS Authorization Framework 276
Chapter 11 SAML SeIVICEt e e e e e 279
OVEBIVIBW . . ot 279
ACCESSING The SAML SEIVICE . ..\t e e 281
SAML Component Details oo 281
Profile Ty PES . oot 282
Web Browser Artifact Profile 282

Web Browser POST Profile e 284
AT ON TY S o o ittt ettt e e e 285
SAML SOAP RECEIVEN . . .o\ttt 286
SOAP MBS agES v vt ottt ettt e et 287
Protecting The SOAP ReCEIVEr it e e e 287

AMS AM L XIMI 288
SAML SDK . o 289
COM.LSUNIAENtitY.Saml 289
com.sun.identity.samlassertion i 290
com.sun.identity.saml.CoOmMmMON i 290
com.sun.identity.samlplugins 291
com.sun.identity.samlprotocol i 292
AUthenticatioNQUEIYt e 292

A DUTEQUEIY . . o 293
AuthorizationDeCiSIONQUENYottt e e e 293
com.sun.identity.samlXmISig o 295

Contents 11

SAML SaMIPIES . . 295

Chapter 12 Auditing Features e e 297
LOgging SErvice OVEIVIEBWttt et e e e e e e e e e e e e 297
Logging ArchiteCture e 298
amLogging. XMl .. 299
LOg IS . .o 299
Recorded EVeNTS 300
TIMIE o 300

Data ... 300
ModUIENGAME . .. 300
DOMAIN . o 300

Log LeVel .. 300
LOgin ID . . 301

TP AAAIESS . o 301
LOgged BY .. 301

HOSE NAME . .. 301

Log File FOrmMatso 301
Flat File FOrmMato e e 301
Relational Database FOrmato i e 302

Java Enterprise System Installation LOgSo 303
AcCCESS Manager SErViCe LOGS . .. oottt e e e 304
SSSION LOgS .« . ottt e et e e e e e 304
CONSOIE LOOS . . ottt 304
AULhentication LOgSo 304
Federation LOgSt e e 305
POIICY LOgS . it 305
AGENE LOGS . .ot 305
SAML OGS it 306
AMAAMIN LOGS . ottt e e e e e e e 306
LOgging FEAtUIES oottt e e e e e e 306
To Enable Secure LOGQiNg oottt 306
Command Line LOQQiNg . . .« ..ottt et et 307
REMOtE LOGQING . . . oottt et e e e e e e 307
Using ReMOte LOGQING oottt et et e e e e e 307
Enabling Remote LOggingot o it e e e 308
LOgging APl . . 309
Setting Environment Variables 310

If Client Can Execute in the Local Access Manager Serverc..cooiieinnnn. 310

If Client Executes Only ina Remote Server i 311
IfSSLISENADIed . ..o o 313
LOgger Classottt 313
LOgRecOrd Classt e 313

12 Access Manager 6 2005Q1 « Developer’'s Guide

AddIiNg Log Data 314

Caching LOG RECOIASo e e e e e e e e 314
Flushing Log ReCOIdS oo e e 314
Sample Logging Codet 314
LOgging Pl . .. 315
Log Verifier PIUgin o 315
Log Authorization PIUgin e 315
DebUg FileS . .. 316
DebUg LeVels ... 317
Debug OUtpUL Files o 317
Using Debug Files 318
Multiple Access Manager Instances And Debug Files it 319
Chapter 13 Client Detection ServiCe e 321
OV IV . o ettt e e e e e e e e 321
Client Detection PrOCESSttt et e e e e e e e e e e e e 322
Enabling Client DeteCtiono e e e e 322
ClIENt Data . .. oot 324
HT ML 324
OENENCHT ML L. 325
Client Detection APl 326
Chapter 14 Access Manager Utilities e 327
Uty APl 327
AdMINULIIS .« .o 327
AMCIIENTDETECION . .. ot 327
AMPasSWOrdULIL 328

[0 T o] T 328
LOCale . oo 328
YA (=] a1 o] o =T o 1= 329
ThreadPool 329
Password APl PIUg-INS 329
Notify Password Sample 330
Password Generator SAmpPle it e 330
Appendix A AMConfig.properties File 331
OVEBIVIBW L o o e e 331
DEpPlOYMENt PrOPErtiES . .ottt 332
ACCESS MANAG T . . ottt et e e e e 332
INSEAIIALION 332
CONSO0IE . ot 332
CO0KIES .« . vttt 333

Contents 13

14

MiISCEIlaNBOUSo 334

DIrECIOrY SEIVEY . . ot e e e 334
INStallation 334
DiIreCtOrY SEIVEI TIEE . ittt et et e e e e e e e 335

Configuration Properties oo e 335

DU SEIVICE . . .o e 335

SHALS SEIVICE .. ottt 336

NOLIfICatioN SErVICE e e 337

SDK CaChingt 338

Online Certificate Status Protocol (OCSP) e 338

Identity ODbjJect Processingttt e 339

S UL . ot 339

SO o 339

Certificate Databaset 339

REPICAtION 340

Event And LDAP CONNECLION e e e e e e e e 341
Event CONNECHION o 341
LDAP CONNECLION . .. e e e e e e 341

SAMIL L 342
KeYStOre Properties e e 342

MISCEIlaNBOUS SEIVICESo it e e 343

Read-Only Properties e e 343

INStallation o 343

D lOYMENt . e 344

Shared SECrel 344

SESSION PrOPEITIES . .ottt e 345

Simple Mail Transfer Protocol (SMTP) o i 346

AULheNtiCatioN e 346
I 346
SBCUNID . . 347
Ui L 347

S UL . ottt 347
SECUrERANAOM .. 347
SOCKETFACTONY . .ttt 347
BN Y P iON 348

IP Address ChecKing o e 348

Remote Policy APl 348

POy .o 350

Federation 350

FODN MDD . oottt e e e 350

ENCryptioNn KeY ..o 351

Access Manager 6 2005Q1 « Developer’s Guide

Appendix B serverconfig.xml File 353

OV IV W . ittt e e e e e e e 353
PrOXY USBl o 353
AAMIN USBr . e 354

server-config Definition Type DOCUMENt i 355
iPlanetDataAccessLayer Element 355
ServerGroup Element 355
SerVer ElemMeNt . 355
User Element ... e 356

DIirDN Element . ..o 356
DirPassword Element 356
BaseDN Element o 356
MiscConfig Element e 357

Failover Or Multimaster Configuration e 358

Appendix C WAR FIlES e 359

(@Y Y = 359
WD COMIPONENTS oottt e e e e 360
Packaging Web Componentst e e 360

WARS ANd Their CONENTSttt 361
CONSOIE VAL ot e e e e e 361
PASSWOITL WAL . .ottt ettt et e e e e e e 362
SEIVICES. WAL oottt et ettt e e e e e e e e 363

Redeploying Modified WARS o 364
BEA WebLogiC SErVer 6.1 . ..ot e e 365

To Deploy console.war OnNWebLogiCot e e 365
To Deploy services.war on WebLOgICttt i e e 365
To Deploy password.war on WebLOgICt e 365
Sun Java System Application Server 7.0 365
To Deploy console.war On Sun Java System ApplicationServer 365
To Deploy services.war On Sun Java System Application Server 366
To Deploy password.war on Sun Java System Application Server 366
IBM WebSphere Application Server 366

Appendix D Notification Service 367

OV IV I . ittt e e e e e e e e e 367

Appendix E Directory Server CONCePtSttt e e 371

(@Y Y = 371

ROIES o 372
Managed ROIES o 372

DefiNItioN ENtrY ..o 373

Contents 15

Member ENtry . .. 373

How Access Manager UsesS ROIES 374
ROl Creation 374

ROIE LOCAtION 375
Displaying The Correct Login StartPage 375
ACCeSS Control INSTIUCTIONSo e e e e 376
DefiNING ACIS . .. 377
iplanet-am-admin-console-role-default-acis 377
iplanet-am-admin-console-dynamic-aci-list 377
Format of Predefined ACIS e 377
Default ACIS ... 378

Class Of SBIVICE . . .o 380
CoS Definition ENtry oo 381
€oSClassicDefiNitioN 381

CoS Template ENtry 381
Conflicts and COS 382
GlOSSaNY . e 383
N X .o 385

16 Access Manager 6 2005Q1 « Developer’'s Guide

Figure 2-1
Figure 3-1
Figure 3-2
Figure 5-1
Figure 10-1
Figure 11-1
Figure 12-1

List of Figures

Client SDK ArchiteCture ot e e 46
The Access Manager Consolet e e 57
Console With Three Tabso e 71
Default Login Page when authlevel=0 i, 103
JAAS Authorization Framework 274
SAML Interaction Within Access Manager 280
Logging Service Architecture i e 298

17

18 Access Manager 6 2005Q1 « Developer’'s Guide

Table 1
Table 2
Table 3
Table 4
Table 5
Table 2-1
Table 2-2
Table 3-1
Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 7-1
Table 12-1
Table 12-2

List of Tables

Typographic CONVENLIONSottt et aa 28
Symbol CoNVENTIONSot 29
Default Pathsand File Names e 30
SHEll PrOmMPES o 30
Access Manager 6 2005Q1 Documentation Set 31
Contents of AccessManager-base/ SUNVanT antl ientsdk.jar 47
Contents of AccessManager - base/ SUN\nt antl i entsdk.war 48
Service Attribute Values and Corresponding Display Elements 65
Comparison Between Java ANd CSSO AP e 97
Authentication User Interface Files and Their Locations at Installation 102
List of Customizable JSP Templatesc i i 105
List of Authentication Module Configuration Files 107
Listof JavaScript Files o 110
List of Cascading Style Sheets e 110
List of Sun Microsystems Branded GIF Images iiiiiia... 111
List of Localization Properties Files i i 112
IndexXName Values i 122
Default directories for Solaris Sparc/x86 132
Default directories for LINUX oo 133
Default directories for Windows 2000 ...ttt 133
Default directories for Solaris Sparc/x86 i 154
Default directories for LINUX oo e 154
Default directories for Windows 2000ottt 154
Recorded Cache Properties e 180
LOg FilES .. 299
Relational Database LogFormat it 302

19

20 Access Manager 6 2005Q1 « Developer's Guide

List of Procedures

To Create Custom Organization Files i e e 60
To Modify The Service Configuration Display i e 61
To Modify The User Profile VIew e 62
Display Options For The User Profile Page e 63
ToLocalize The CONSOIE i e e e 63
To Display Service AttribDULES o 63
To Customize Interface COlOrS it e 63
To Change The Default Attribute Display Elements i e 64
ToAdd AModule Tab o 68
To Display Container ObjJectSttt e 68
Creating A ServiCe File i 189
To Extend The Directory Server LDAP Schema o e 194
Adding Access Manager Object Classes To Existing Users ..., 195
Importing The XML Service File e e 195
Modifying A Default XML Service File e 233
Modifying A Batch Processing XML Template i 237
Creating Users Using A Modified Directory ServerSchemao, 238
To Enable Secure LOggingot 306
Enabling Remote LOggiNg . ..ottt et e e e 308
Enabling Client Detectiont e e 322
To Deploy console.war OnWebLOogiC 365
To Deploy services.war 0N WebLOGICottt e e e 365
To Deploy password.war on WebLOGICt e e 365
To Deploy console.war On Sun Java System Application Server 365
To Deploy services.war On Sun Java System Application Serverc.cov... 366
To Deploy password.war on Sun Java System Application Server 366

21

22 Access Manager 6 2005Q1 « Developer’s Guide

Code Example 2-1
Code Example 3-1
Code Example 3-2
Code Example 3-3
Code Example 3-4
Code Example 4-1
Code Example 4-2
Code Example 4-3
Code Example 4-4
Code Example 4-5

Code Example 4-6
Interfaces

Code Example 4-7
Code Example 5-1
Code Example 6-1
Code Example 6-2
Code Example 6-3
Code Example 6-4
Code Example 6-5
Code Example 6-6
Code Example 6-7
Code Example 6-8
Code Example 6-9
Code Example 7-1
Code Example 7-2
Code Example 7-3
Code Example 7-4

List of Code Examples

Setting ClientSDK Properties ..., 50
The AMBase.jsp Fileo 60
BQODY. navFrane Portion of adminstyle.css 63
ui type XML Attribute Sample 64
Module Tab Key And Value Pairs ..., 68
Sample Uses Of SSOTokenManager Codecoviiinn.. 82
Sample Use Of SSOToken 84
Sample Code To Create A Cookie From Session Token 85
Sample Code For SSOToken Event And SSOToken Listener 86
Code Sample For am_sso_initandam cleanup 90

Sample Code For Get, Set, Create, Refresh, Validate, Invalidate, and Destroy
93

Sample Implementation Of SSOToken Listener 96
Adding a Telephone Number as Requested Data 116
Initial AuthContext XML MESSageo vvv ittt e 125
Authldentifier XML Message ResSponsecoiiiininaen... 125
Second Request Message With Authentication Module Specified 126
Return XML Message With Login Callbacks 126
Response Message With Callback Values 127
Successful Authentication XML Message ..., 127
AMAgent.propertiesFile i 137
Module Configuration Sample 139
Adding the LoginModuleSampleentry. 143
Organization Subschema of anEntrySpecific.xmt 169
Sample Code Using AMSearchControl 173
Sample Code ToFind User Statusc.cvviiiiiiiinennn.. 174
Available Search Methods For searchUsers 175

23

24

Code Example 7-5
Code Example 7-6
Code Example 7-7
Code Example 7-8
Code Example 8-1
Code Example 8-2
Code Example 8-3
Code Example 8-4
Code Example 8-5
Code Example 8-6
Code Example 8-7
Code Example 8-8
Code Example 8-9
Code Example 8-10
Code Example 8-11
Code Example 8-12
Code Example 8-13
Code Example 8-14
Code Example 8-15
Code Example 8-16
Code Example 8-17
Code Example 8-18
Code Example 8-19
Code Example 8-20
Code Example 8-21
Code Example 8-22
Code Example 8-23
Code Example 8-24
Code Example 8-25
Code Example 8-26
Code Example 9-1
Code Example 9-2
Code Example 10-1
Code Example 10-2
Code Example 10-3
Code Example 10-4
Code Example 10-5

Sample Code For Search Methods 177
Search Groups Code Sample 178
Sample Code ToOCreate AUSErottt e 181
Retrieve Service’s Dynamic Template 183
Cont ai nerDefaul t Tenpl ateRol e LDIFENntryova.. 193
Sample LDIF Listing For Mail Service, 194
amClientDetection.PropertiesFile 196
ServicesConfiguration and Service Element 200
i 18nFi | eNane, i 18nKey and servi ceH erar chy Attributes 201
serviceObjectClass Defined As Global Element 203
Attribut eSchema Element With Attributes 205
DefaultValues In amAut hLDAP. xmlo 207
Portion Of createRequests. xm i 211
Another Portion Of createRequests. xml 217
SamplePolicy. xml 221
contCr eat eSer vi ceTenpl at eRequests. xm File 222
orgDeleteRequests. XMl 222
orgDeleteServiceTemplateRequests.xml 223
contModifyPeoplecontainerRequests.xml 224
Portion of Batch Processing File get Requests.xm 225
orgGetNumberOfServiceRequests.xml it 226
orgRegisterServiceRequests.xml 227
schemaAddChoi ceVal uesRequests. xml o 229
RemoveDefaultValues ElementCode, 229
AddDefaultValues ElementCode 230
nsaccount | ock Example Attribute 233
User Account Locked Example il8nKey, 234
Retrieve Logging Location Sample 239
Retrieve User Or Dynamic Attributes 239
Sample Code To Retrieve Attribute Values 240
Public Methods For ProxyPolicyEvaluator 252
PolicyCreator.javaooiii 264
Example of alJava Security Policy o i 270
A Policy File Grant Statement i 270
The Subject.doAs Method 271
Sample Code for Subject.doAS 272
Sample JAAS AuthorizationCode i 276

Access Manager 6 2005Q1 « Developer’s Guide

Code Example 11-1
Code Example 11-2
Code Example 11-3
Code Example 12-1
Code Example 12-2
Code Example 12-3
Code Example 13-1
Code Example A-1
Code Example A-2
Code Example B-1

Code Example B-2

Code Example B-3

Code Example B-4

Code Example 14-1
Code Example 14-2

Sample Authentication ASsertiono i 286

Sample Code To Get An Attribute Value 290
AuthorizationDecisionQuery Code Sample 294
Flat File Record From amAuthentication.access....................... 302
Sample Policy LOg Recordsot i 305
Logging API Sampleso 315
Loginjsp Written INWML 323
Portion of amSDKStats File ... 336
Changes TolJavaPolicy File i, 339
Proxy User In serverconfig.xml i 354
Admin User In serverconfig.xml i, 354
serverconfig.Xml 357
Configured Failover in serverconfigxml 358
LDAP Definition Entry 373
LDAP Member ENtryo 374

List of Code Examples 25

26 Access Manager 6 2005Q1 « Developer’s Guide

Preface

The Sun Java™ System Access Manager 6 2005Q1 Developer’s Guide offers
information on how to customize Sun Java System Access Manager (formerly
Sun™ ONE ldentity Server) and integrate its functionality into an organization’s
current technical infrastructure. It also contains details about the programmatic
aspects of the product and its APIs. Topics in this Preface include the following:

e “Who Should Use This Book™ on page 27

= “Before You Read This Book™ on page 28

= “Conventions Used in This Book” on page 28

< “Related Documentation” on page 31

= “Accessing Sun Resources Online” on page 33

= “Contacting Sun Technical Support” on page 33

« “Related Third-Party Web Site References” on page 34

e “Sun Welcomes Your Comments” on page 34

Who Should Use This Book

This Developer’s Guide is intended for use by IT administrators and software
developers who implement an integrated identity management and web access
platform using Sun Java System servers and software. It is recommended that
administrators understand the following technologies:

= Lightweight Directory Access Protocol (LDAP)
« Java™ technology

= JavaServer Pages™ (JSP) technology

27

Before You Read This Book

< HyperText Transfer Protocol (HTTP)
< HyperText Markup Language (HTML)
= eXtensible Markup Language (XML)

Before You Read This Book

Access Manager is a component of Sun Java Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or
Internet environment. You should be familiar with the documentation provided
with Sun Java Enterprise System, which can be accessed online at

http://docs. sun. cond col | / ent sys_04q4.

Because Sun Java System Directory Server is used as the data store in an Access
Manager deployment, you should be familiar with the documentation provided
with that product. Directory Server documentation can be accessed online at
http://docs. sun. com col | / Di rect oryServer _04q2.

Conventions Used in This Book

28

The tables in this section describe the conventions used in this book.

Typographic Conventions

The following table describes the typographic changes used in this book.

Table1l Typographic Conventions

Typeface Meaning Examples

AaBbCc123 API and language elements, HTML Edit your. | ogi n file.
(Monospace) tags, web site URLs, command
names, file names, directory path Use |'s -ato listall files.
names, onscreen computer output,

sample code. % You have mail .
AaBbCc123 What you type, when contrasted %su
(Monospace with onscreen computer output. Passwor d:

bold)

Access Manager 6 2005Q1 « Developer’s Guide

Conventions Used in This Book

Table1l Typographic Conventions (Continued)

Typeface Meaning Examples

AaBbCc123 Book titles, new terms, words to be Read Chapter 6 in the User’s
(Italic) emphasized. Guide.

A placeholder in a command or path

name to be replaced with a real

name or value.

These are called class options.

Do not save the file.

The file is located in the
install-dir/ bi n directory.

Symbols

The following table describes the symbol conventions used in this book.

Table 2 Symbol Conventions
Symbol Description Example Meaning
[1] Contains optional command |s [-1] The -1 option is not
options. required.
{11} Contains a set of choicesfor -d {y| n} The - d option requires that
a required command option. you use either the y
argument or the n
argument.
Joins simultaneous multiple Control-A Press the Control key while
keystrokes. you press the A key.
+ Joins consecutive multiple Ctrl+A+N Press the Control key,

keystrokes.

Indicates menu item
selection in a graphical user
interface.

File > New > Templates

release it, and then press
the subsequent keys.

From the File menu, choose
New. From the New
submenu, choose
Templates.

Default Paths and File Names

The following table describes the default paths and file names used in this book.

Example

Preface

29

Conventions Used in This Book

Table 3 Default Paths and File Names

Term Description

AccessManager-base Represents the base installation directory for Access Manager. The
Access Manager 2005Q1 default base installation and product
directory depends on your specific platform:

Solaris™ systems: / opt / SUNVAmM
Linux systems: / opt/ sun/i dentity

DirectoryServer-base Represents the base installation directory for Sun Java System
Directory Server. Refer to the product documentation for the
specific path name.

ApplicationServer-base Represents the base installation directory for Sun Java System
Application Server. Refer to the product documentation for the
specific path name.

WebServer-base Represents the base installation directory for Sun Java System
Web Server. Refer to the product documentation for the specific
path name.

Shell Prompts

The following table describes the shell prompts used in this book.

Table 4 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%
C shell superuser on UNIX or Linux machine-name#
Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C\

30 Access Manager 6 2005Q1 « Developer’s Guide

Related Documentation

Related Documentation

To access Sun technical documentation online, go to htt p: // docs. sun. com

You can browse the documentation archive or search for a specific book title, part

number, or subject.

Books in This Documentation Set

Table5 Access Manager 6 2005Q1 Documentation Set

Title

Description

Technical Overview
http://docs. sun. com doc/ 817- 7643

Deployment Planning Guide
http://docs. sun. com doc/ 817- 7644
Administration Guide

http://docs. sun. com doc/ 817- 7647

Migration Guide
http://docs. sun. com doc/ 817- 7645

Performance Tuning Guide
http://docs. sun. com doc/ 817- 7646
Federation Management Guide
http://docs. sun. com doc/ 817- 7648
Developer’s Guide

http://docs. sun. com doc/ 817- 7649

Developer’s Reference
http://docs. sun. com doc/ 817- 7650

Provides a high-level overview of how Access Manager
components work together to consolidate identity
management and to protect enterprise assets and
web-based applications. Explains basic Access Manager
concepts and terminology

Provides information about planning a deployment within
an existing information technology infrastructure

Describes how to use the Access Manager console as
well as manage user and service data via the command
line.

Describes how to migrate existing data and Sun Java
System product deployments to the latest version of
Access Manager. (For instructions about installing and
upgrading Access Manager and other products, see the
Sun Java Enterprise System 2005Q1 Installation Guide.)

Describes how to tune Access Manager and its related
components.

Provides information about Federation Management,
which is based on the Liberty Alliance Project.

Offers information on how to customize Access Manager
and integrate its functionality into an organization’s current
technical infrastructure. Contains details about the
programmatic aspects of the product and its API.

Provides summaries of data types, structures, and
functions that make up the Access Manager public
C APlIs.

Preface 31

Related Documentation

Table 5 Access Manager 6 2005Q1 Documentation Set (Continued)

Title Description
Release Notes Available after the product is released. Contains
http: // docs. sun. cond doc/ 817- 7642 last-minute information, including a description of what is

new in this current release, known problems and
limitations, installation notes, and how to report issues
with the software or the documentation.

Access Manager Policy Agent Documentation

Documentation for the Access Manager Policy Agents is available on the following
documentation Web site:

http://docs. sun. com col | / S1_I dServPol i cyAgent 21

Policy Agents for Access Manager are available on a different schedule than the
server product itself. Therefore, the documentation set for the policy agents is
available outside the core set of Access Manager documentation. The following
titles are included in the set:

= Policy Agents For Web and Proxy Servers Guide documents how to install and
configure an Access Manager policy agent on various web and proxy servers.
It also includes troubleshooting and information specific to each agent.

= J2EE Policy Agents Guide documents how to install and configure an Access
Manager policy agent that can protect a variety of hosted J2EE applications. It
also includes troubleshooting and information specific to each agent.

= The Release Notes are available online after a set of agents is released. The
Release Notes include a description of what is new in the current release, known
problems and limitations, installation notes, and how to report issues with the
software or the documentation.

32 Access Manager 6 2005Q1 « Developer’s Guide

Accessing Sun Resources Online

Other Server Documentation

For other server documentation, go to the following:

= Directory Server documentation
http://docs. sun. com col | / D rect oryServer _05q1

= Web Server documentation
http://docs. sun. com col | / \bSer ver _05g1

= Application Server documentation
http://docs. sun. con col | / Appl i cati onServer 8_ee 04qg4

< Web Proxy Server documentation
http://docs. sun. con prod/ s1. webpr oxys#hi ¢

Accessing Sun Resources Online

For product downloads, professional services, patches and support, and additional
developer information, go to the following:

Download Center
htt p: // wws. sun. con sof t war e/ downl oad/

Sun Java System Services Suite
htt p: // ww. sun. cond ser vi ce/ sunps/ sunone/ i ndex. ht m

Sun Enterprise Services, Solaris Patches, and Support
http://sunsol ve. sun. con

Developer Information
http://devel opers. sun. com prodt ech/ i ndex. ht m

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the
product documentation, go to:

htt p: // waw. sun. cond servi ce/ cont act i ng.

Preface 33

Related Third-Party Web Site References

Related Third-Party Web Site References

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments

34

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to htt p: // docs. sun. comand click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the guide or
at the top of the document.

For example, the title of this guide is Sun Java System Access Manager 6 2005Q1
Developer’s Guide, and the part number is 817-7649.

Access Manager 6 2005Q1 « Developer’s Guide

Chapter 1

Introduction

The Sun Java™ System Access Manager 6 2005Q1 Developer’s Guide describes the
programmatic and customization details of Access Manager. It includes
instructions on how to augment the application with new services using the
eXtensible Markup Language (XML) files for configuration, the public Java™
application programming interfaces (APIs) for integration and the JavaServer
Pages™ (JSP) for customization. This introductory chapter contains the following
sections:

= “Access Manager Overview” on page 35
= “Extending Access Manager” on page 40
= “Access Manager File System” on page 43

e “Client Browser Support” on page 43

Access Manager Overview

Sun Java System Access Manager integrates identity management with the ability
to create and enforce authentication processes and access to directory data and
corporate resources. These capabilities enable organizations to deploy a
comprehensive system that helps to secure and protect their assets and
information, as well as deliver their web-based applications. Towards this end,
Access Manager contains components and application management utilities or
services.

35

Access Manager Overview

36

NOTE An identity is a representation of an object used in a network environment. The

identity, which can be internal (an employee, a printer) or external (a customer, a
vendor), contains a set of attributes that uniquely identifies it. The simplest identity
might contain user name (or object identifier) and password attributes. More
complex identities might contain attributes for a phone number, social security
number, building location, or address.

Data Management Components

Access Manager provides the following components to simplify the administration
of identities and the management of data:

Service Configuration—provides a solution for customizing and registering
configuration parameters or attributes into a service; the service can then be
integrated into, and managed using, Access Manager. The solution includes a
Document Type Definition (DTD) that defines the structure for creating a
service’s XML file, Java APIs that are used to integrate the XML file into the
deployment and the Access Manager console which is used to manage the
service.

Identity Management—provides a solution for managing identities. It includes
an API for creating, modifying and removing ldentity-related Objects (users,
roles, groups, containers, organizations, sub-organizations, etc.) as well as an
XML template that defines each object’s Lightweight Directory Access Protocol
(LDAP) attributes. This template allows for the object’s storage in the Sun Java
System Directory Server, the data store for Access Manager.

Policy Management—provides a solution for defining and retrieving access
privilege settings (or policy) to protect an enterprise’s resources. It includes an
API that applications can use to retrieve an identity’s policy. The policy is then
used to determine an identity’s right to access the requested resource.

Federation Management—provides a solution for defining authentication
domains, service providers and identity providers in order to give users the
functionality of federation. Federation allows a user to aggregate multiple
digital identities allowing single sign-on to affiliated sites. This module is
based on the Liberty Alliance Project’s Version 1.1 specifications.

Current Sessions—provides a solution for an Access Manager administrator to
view and manage user session information. It keeps track of session times as
well as allowing the administrator to terminate a session.

Access Manager 6 2005Q1 « Developer’s Guide

Access Manager Overview

Sun Java System Directory Server—provides the storage facility in an Access
Manager deployment. It holds all identity data as well as configured policies.
The majority of the data is stored in the Directory Server using LDAP; certain
of it is stored as XML.

Access Manager Management Services

When Access Manager is installed, a number of utilities (or services) are installed to
help manage the deployment. A service is actually a grouping of configuration
parameters (or attributes). The attributes can be randomly grouped together for
easy management or specifically grouped together for one purpose. Additional
information on services can be found in Chapter 8, “Service Management,” in this
manual and the Sun Java System Access Manager Administration Guide. The current
installed services include:

Administration Service—provides properties for the configuration of the
Access Manager as well as attributes to customize the application specific to
each configured organization. Information on the Administration Service
attributes can be found in the Administration Service attributes chapter of the
Sun Java System Access Manager Administration Guide.

Authentication Service—provides an interface for gathering user credentials
and issuing single sign-on (session) tokens. It also contains an SDK to write
plug-ins in order to integrate token validation and authentication credential
storage functionality for proprietary authentication servers. For information on
this service, see Chapter 5, “Authentication Service” of this manual and the
chapter on the Authentication Service attributes in the Sun Java System Access
Manager Administration Guide.

Client Detection Service—allows Access Manager to detect the client type of an
accessing browser. Information on this service can be found in Chapter 13,
“Client Detection Service,” in this manual and the chapter on the Client
Detection Service attributes in the Sun Java System Access Manager
Administration Guide.

Globalization Settings—contains properties to configure Access Manager for
different character sets. More information on this service, see the chapter on
the Globalization Settings attributes in the Sun Java System Access Manager
Administration Guide.

Chapter 1 Introduction 37

Access Manager Overview

Auditing Features—provides a record-keeping functionality. Both file-based
logs and logs stored in a relational database are supported. Information on this
service can be found in Chapter 12, “Auditing Features,” in this manual and
the chapter on the Logging Service attributes in the Sun Java System Access
Manager Administration Guide.

Naming Service—allows client browsers to locate the URL for services in a
deployment that is running more than one Access Manager ensuring that the
URL returned for the service is the one for the host on which the user session
was created. More information on this service can be found in the Naming
Service attributes chapter of the Sun Java System Access Manager Administration
Guide.

Password Reset Service—contains properties that can be configured per
organization to implement the Password Reset Service. For information on this
service, see the chapter on the Password Reset Service attributes in the Sun Java
System Access Manager Administration Guide.

Platform Service—provides configurable attributes for the Access Manager
deployment. For information on this service, see the chapter on the Platform
Service attributes in the Sun Java System Access Manager Administration Guide.

Policy Configuration Service—provides properties for configuring the policy
function as well as attributes to configure the Policy Service for each
configured organization. For information on this service, see Chapter 9, “Policy
Management,” in this manual and the chapter on the Policy Configuration
Service attributes in the Sun Java System Access Manager Administration Guide.

Security Assertion Markup Language (SAML) Service—provides an interface
integrating SAML service, Simple Object Access Protocol (SOAP) and ht t ps
for sending and receiving security information. This service encrypts data
passed between different security entities. An APl is provided to this end. For
information on this service, see Chapter 11, “SAML Service,” in this manual
and the chapter on the SAML Service attributes in the Sun Java System Access
Manager Administration Guide.

Session Service—provides attributes to configure session properties for all
authorized sessions in each configured organization. For information on this
service, see Chapter 4, “Single Sign-On And Sessions,” in this manual and the
chapter on the Session Service attributes in the Sun Java System Access Manager
Administration Guide.

User Service—provides attributes to configure the user properties for all users
in each configured organization. For information on this service, see Chapter 7,
“ldentity Management,” in this manual or the chapter on the User Service
attributes in the Sun Java System Access Manager Administration Guide.

38 Access Manager 6 2005Q1 « Developer’s Guide

Access Manager Overview

In addition to its configured services, Access Manager provides a graphical user
interface that allows the application user to manage identity objects, services and
policy information via a web browser. This console is built using the Sun Java
System Application Framework and can be called by all users, from top level
administrator to end users. The console can be customized for each configured
organization by modifying and integrating a set of JSP and related files.
Information on console customization can be found in Chapter 3, “The Access
Manager Console,” in this manual. Access Manager also offers data backup,
restoration and other software utilities. Information on these functionalities can be
found in Chapter 14, “Access Manager Utilities,” in this manual. Information on
command-line executables can be found in the Sun Java System Access Manager
Administration Guide.

Managing Access

Access Manager can manage access to its protected resources in either of two ways:
an user can authenticate and access Access Manager via a web browser or, an
external application can access Access Manager directly, requesting user
authentication information through the use of integrated Access Manager API.

Web Access

When a user requests access to a secure application or page using a web browser,
they must first be authenticated. The request is directed to the Authentication
Service which determines the type of authentication to initiate based on the
method associated with the requestor’s profile. For instance, if the user’s profile is
associated with LDAP authentication, the Authentication Service would send an
HTML form to their web browser asking for an LDAP user name and password.
(More complex types of authentication might include requesting information for
multiple.) Having obtained the user’s credentials, the Authentication Service calls
the respective provider to verify the credentials. (The provider in the LDAP
example would be the Directory Server.) Once verified, the service calls the SSO
API to generate a Single Sign-On (SSO) or session token which holds the user’s
identity. The API also generates a token 1D, a random identification string
associated with the session token. The session token is then sent back to the
requesting browser in the form of a cookie while the authentication component
directs the user to the requested secure application or page. Additional information
on the Authentication Service can be found in Chapter 5, “Authentication Service,”
in this manual.

Chapter 1 Introduction 39

Extending Access Manager

NOTE Web access might also include an additional security measure to evaluate a user’'s
access privileges. This includes installed policy agents. Additional information can
be found in the Sun Java System Access Manager Web Policy Agents Guide and J2EE
Policy Agents Guide.

Application Access

External applications can access Access Manager to request user information using
the Access Manager SDK. For example, a mail service might store its users’ mailbox
size information in Access Manager and the SDK can be used to retrieve this
information. To process the request, the system running the application must have
the Access Manager SDK installed. Additional information on both the C and Java
APIs can be found throughout this manual in the respective chapters.

Extending Access Manager

40

One of the architectural goals of Access Manager is to provide an extensible
interface. This interface is defined by the following functions:

1. Custom services can be defined for the deployment using XML.

2. Console templates can be modified and/or customized for each organization
using JSP.

3. Default services can be implemented using a set of Java API.

Service Definition With XML

Access Manager contains a number of management services. All Access Manager
services are written using the XML. Administrators or service developers can
modify the internal XML service files installed with Access Manager or configure
new XML service files to customize the application based on their need. More
information on services and how they are integrated into the Access Manager
deployment can be found in Chapter 8, “Service Management,” of this manual.

NOTE Access Manager services only manage attribute values that are stored in Sun Java
System Directory Server. They do not implement their behavior or dynamically
generate code to interpret them. It is up to an external application to interpret or
utilize these values.

Access Manager 6 2005Q1 « Developer’s Guide

Extending Access Manager

Console Customization

The Access Manager console is used for managing and monitoring identities,
services and protected resources throughout the Access Manager deployment. The
framework uses XML files, JSP templates and Cascading Style Sheets (CSS) to
control the look and feel of the console screens. These files can be duplicated and
then modified to make changes to the design for each configured organization; for
instance, an organization’s logo can be added in place of the Sun logo. The entire
template can also be replaced with an organization’s custom HTML page.
Additional information on customizing the Access Manager console can be found
in Chapter 3, “The Access Manager Console,” of this manual.

Access Manager SDK

The Access Manager SDK contains public interfaces to implement the behavior of
Access Manager’s default or customized services. Both Java and C interfaces are
provided. The packages include:

Identity Management SDK

Access Manager provides the framework to create and manage users, roles,
groups, containers, organizations, organizational units, and sub-organizations. The
Java package name is com i pl anet . am sdk. There are currently no comparable C
interfaces.

Service Management SDK

The service management interfaces can be used by developers to register services
and applications, and manage their configuration data. The Java package name is
com sun. i dentity. sm There are currently no comparable C interfaces.

Authentication Programming Interfaces

Access Manager provides interfaces to extend the functionality of the
Authentication Service in two ways. The API provides interfaces that can be used
remotely by either Java or C applications to utilize the authentication features of
Access Manager. The SPI can be used to plug new authentication modules, written
in Java, into the Access Manager authentication framework.

Chapter 1 Introduction 41

Extending Access Manager

42

Utility API

This API provides a number of Java classes that can be used to manage system

resources. It includes thread management and debug data formatting. The Java
package name iscom i pl anet. am uti | . There are currently no comparable C

interfaces.

Logging API And Logging SPI

The Logging Service records, among other things, access approvals, access denials
and user activity. The Logging API can be used to enable logging for external Java
applications. The package names begin with com sun. i dentity. | og. The
Logging SPI are Java packages that can be used to develop plug-ins for customized
features. The package names begin with com sun. i dentity. | og. spi . There are
currently no comparable C interfaces.

Client Detection API

Access Manager can detect the type of client browser that is attempting to access its
resources and respond with the appropriately formatted pages. The Java package
used for this purpose iscom i pl anet . servi ces. cdm There are currently no
comparable C interfaces.

SSO API

Access Manager provides Java interfaces for validating and managing SSO tokens,
and for maintaining the user’s authentication credentials. All applications wishing
to participate in the SSO solution can use this API. The Java package name is

com i pl anet . sso. The Session Service also includes an API for C applications.

Policy SDK

The Policy API can be used to evaluate and manage Access Manager policies as
well as provide additional functionality for the Policy Service. The Java package
names begin with com sun. i denti ty. pol i cy. The Policy Service also includes an
API for C applications.

SAML SDK

Access Manager uses the SAML API to exchange acts of authentication,
authorization decisions and attribute information. The Java package names begin
with com sun. i dentity. sanm . There are currently no comparable C interfaces.

Access Manager 6 2005Q1 « Developer’s Guide

Access Manager File System

Federation Management API

Access Manager uses the Federation Management API to add functionality based
on the Liberty Alliance Project specifications. The Java package name is
com sun. | i berty. There are currently no comparable C interfaces.

Access Manager File System

Access Manager installs its packages and files in a directory named SUN\Vam The
complete file system layout for Access Manager can be found in the Sun Java System
Access Manager Deployment Guide.

Client Browser Support

Access Manager 2005Q1 is supported on the following client browsers:
= Netscape™ Communciator 7.0

= Netscape Communicator 6.2.1

= Netscape Navigator™ 4.79

« Microsoft® Internet Explorer 6.0

= Microsoft Internet Explorer 5.5

Chapter 1 Introduction 43

Client Browser Support

44 Access Manager 6 2005Q1 « Developer’s Guide

Chapter 2

Using the Client SDK

The Sun Java™ System Access Manager 6 2005Q1 Client SDK package provides
Access Management Java libraries for implementing stand-alone and web
applications. You can use the Client SDK interfaces in your applications to take
advantage of Access Manger services such as authentication, Single Sign-On (SSO),
authorization, auditing and logging, user management, and Security Assertion
Markup Language (SAML). The client SDK libraries communicate with Access
Manager using XML (SOAP) over HTTP or HTTPS.

“How the Client SDK Works” on page 45

e “JDKand CLASSPATH Requirements” on page 46
= “Configuring the Client SDK” on page 47

= “Initializing the Client SDK” on page 49

= “Setting Up a Client Identity” on page 52

« “Building Custom Web Applications” on page 53

How the Client SDK Works

The Client SDK is different from the SDK packages provided in previous versions
of Access Manager. The Access Manager 6.3 Client SDK has been streamlined to
include only the client-side classes and configuration properties you need to access
Access Manager services. These changes result in a smaller jar file, and eliminate

45

JDK and CLASSPATH Requirements

the dependency on connections to Directory Server when developing and
deploying client applications. In the Access Manager 6.3 architecture, the Client
SDK and client applications communicate with the Access Manager server. Only
the Access Manager server communicates directly with the Directory Server.

Figure 2-1 Client SDK Architecture

Web
Server
Application
Y
Client SDK _ Access Firewall
Application ~| Manager6 [

Directory
Server

JDK and CLASSPATH Requirements

The Client SDK can be used with JDK versions J2SE 1.3.2, J2SE 1.4.2 and higher.
To use the Client SDK with JDK 1.3.2 add the following to the CLASSPATH.

Java Authentication and Authorization Service (JAAS). Available at the
following URL: JAAS hht p://java. sun. conl product s/j aas/

Java Web Services Developer Pack 1.3 (Java WSDP). Available at the
following URL: Java WEDP http://j ava. sun. con product s/ j wsdp/

Java Secure Socket Extension (JSSE). Available at the following URL:
http://java. sun. coni product s/ j sse/

JDK Logging. The jar j dk_| oggi ng. j ar can be obtained from SUN\Vansdk
package for Solaris and sun-i dent it y- sdk RPM for Linux

amclientsdk.jar. This jar is located in the directory
AccessManager-base/ SUNVani | i b.

46 Access Manager 6 2005Q1 « Developer’s Guide

Configuring the Client SDK

servlet.jar. This jar can be obtained as part of the SU\Vansdk package, or from
the AccessManager-base/ SUNVanT | i b directory if Access Manger is installed.

NOTE To use the Client SDK with JDK 1.4.2 and higher versions, only antl i ent sdk. j ar
and servl et.j ar are required in the CLASSPATH.

Configuring the Client SDK

Before installing the Client SDK, an instance of Access Manager must be running,
and you must know the URL for accessing it. The client SDK libraries use this URL
to communicate with Access Manager using XML (SOAP) over HTTP or HTTPS.
The Client SDK is contained in the following file:

AccessManager-base/ SUNVan | i b/ ancl i ent sdk. j ar

Table 2-1 summarizes items included in the Client SDK.

Table 2-1 Contents of AccessManager-base/ SUNVan anrcl i ent sdk. j ar

File Description

README. cl i ent sdk ASCII version of this chapter. Contains information on
installing and using Access Manager client SDK.

I'ib/anmclientsdk.jar Client SDK for stand-alone applications.

anclient. war Archive of Access Manager samples, web applications,

and Javadoc.

Makefile.clientsdk Defines objects and parameters for building sample
properties, stand-alone samples and web applications.

To Configure the Client SDK

1. InMkefile.clientsdk, edit the following parameters to suit your
environment:

JAVA_HOME
SERVER_HOSTNAME
SERVER_PORT

2. If implementing User Management, SAML, or Policy, then edit the following
parameters to suit your environment:

Chapter 2 Using the Client SDK 47

Configuring the Client SDK

48

APPLICATION_USERNAME
APPLICATION_PASSWORD

If an encrypted password or secret exists, then provide the following instead of
ADM N_PASSWCRD:

ENCRYPTED_PASSWORD
ENCRYPTION_KEY

3. Run the make command:
make -f Makefile.clientsdk

This generates a sample properties file in the directory t enp, standalone
samples in the directory cl i ent sdk- sanpl es and a deployable war file,
ancl i ent webapps. war , that can be deployed in any Servlet 2.3 compliant
container. Table 2-2 summarizes the items included in the war file.

Table 2-2 Contents of AccessManager - base/ SUNVni antl i ent sdk. war

File Description

i ndex. ht m Instructions for installing and using the Client SDK
packages

VEB- | NF/ web. xmi Client SDK for stand-alone applications

WEB- | NF/ cl asses/ AMO i ent . propert Archive of Access Manager samples, web applications,

ies and Javadoc

\\EB- | NF/ cl asses/ *. cl asses File for building stand-alone samples and web
applications

\\EB- | NF/ docs Javadoc (Public Client SDK APIs)

\EB- | NF/ sanpl es Sample stand-alone programs

AEB- | NF/ webapps Sample web applications

Access Manager 6 2005Q1 « Developer’s Guide

Initializing the Client SDK

Initializing the Client SDK

Before Access Manager Client SDK can communicate with Access Manager Server,
you must initialize some properties in the client SDK. You can set these properties
in one of three ways:

= Using a Properties File
« Using the Java API

= Setting Individual Properties

Using a Properties File

You can set properties in a properties file and then provide a path to it at runtime.
The properties files must be in the CLASSPATH. The default properties file name is
AMDonfi g. properties and is always read at start-up.

To Set ClientSDK Properties in a Properties File

1. Generate a sample AMConfi g. properti es by running the following command:
make -f Makefile.clientsdk properties
The AMConfi g. properti es will be present in the t enp directory.
2. Edit properties to suit your environment.

3. Atruntime if the file name is different from AMConf i g, provide the edited
properties filename (without the . properti es extension, and also with the
path. The path should be in the CLASSPATH) by declaring the JVM option:

- Dantonfi g=filname

Chapter 2 Using the Client SDK 49

Initializing the Client SDK

50

Using the Java API

The ClientSDK properties can also be set programatically using the class:
comiplanet.amutil. SystenProperties. See Code Example 2-1:

Code Example 2-1 Setting ClientSDK Properties

inport comiplanet.amutil. SystenProperties;

inport java.util.Properties;

public static void nain(String[] args) {
/]l Toinitialize a set of properties
Properties props = new Properties();
props. set Property(‘ comi pl anet.am nam ng. url ",

“http://sanpl e. con anser ver/ nam ngservice');
props. set Property(‘comsun.identity.agents. app.usernane’, ‘amAdnin’);
props. set Property(‘ comi pl anet.am service. password’, ‘11111111");
SystenProperties.initializeProperties

(props) ;
/] Toinitialize a single property
SystenProperties.initializeProperties(“comiplanet.amnamng.url’,

“http://sanpl e. con anser ver/ nam ngservice');
/1 Application specific code ...

Setting Individual Properties

You can set properties one at a time. For example, you can declare the following
JVM option at run time to assign a value to a particular property:

-DpropertyName=propertyValue

The following sections describe the properties expected by Access Manager Client
SDK. A client application deployed within a servlet container can register for
changes to session, user attributes and policy decisions.These properties must be
set to receive such notifications.

Naming URL Properties

com.iplanet.am.naming.url. This is a required property. The value of this property
represents the URL where the Client SDK would retrieve the URLs of Access
Manager internal services. This is the URI for the Naming Service. Example;

com i pl anet. am nani ng. ur | =ht t p: / / access_manager_host.domain_name: port/
anser ver/ nam ngservi ce

Access Manager 6 2005Q1 « Developer’s Guide

Initializing the Client SDK

com.iplanet.am.naming.failover.url. This is a required property. This property can
be used by any remote SDK application that wants failover in, for example, session
validation or getting the service URLs. Example:

com i pl anet.am nam ng. fai l over.url =
ht t p: // access_manager_host.domain_name: port/ anser ver/f ai | over

Debug Properties

com.iplanet.services.debug.level. Specifies the debug level.Possibe values are
levels are; of f, error, war ni ng, or message.

com.iplanet.services.debug.directory. The value of this property is the output
directory for the debug information. This directory should be writable by the
server process. Example:

com i pl anet. servi ces. debug. di rect ory=/ var/ opt / SU\Van1 debug

Notification URL Properties
com.iplanet.am.notification.url.

The value of this property is the URI of the Notification Service running on the host
machine where you installed the Client SDK. Example:

comiplanet.amnotification.url=
htt p: // clientSDK_host.domain_name: port/ anserver/noti fi cati onservi ce

com.sun.identity.agents.notification.enabled. This property enable or disables
notifications for remote policy API. Example:

comsun.identity.agents.notification.enabl ed=fal se

com.sun.identity.agents.notification.url. This property defines the notification
URL for remote policy API.

Chapter 2 Using the Client SDK 51

Setting Up a Client Identity

Setting Up a Client Identity

52

Some of the Access Manager components such as SAML, User Management,
Policy, require an identity for the client. The client application reads configuration
data to identify the client. You can set up the identity for the client in one of two
ways:

= Set username and password properties can be authenticated

e Set an SSO Token Provider

NOTE Some of the configuration attributes (such as password) are encrypted and stored
in the data store as an Encryption/Decryption Key. If such attributes have to be
decrypted by the client, the property must be set, and must be the same as that of
the Access Manager Server.

This value is generated at installation time and stored in

/1dentityServer_base/ SUN\VanT | i b/ AMConfi g. proper ti es. More information on
this property can be found in the “Encryption” section of the Appendix A,
“AMConfig.properties File.”

To Set Username and Password Properties

The following properties can be used to set the username and password that can be
used by client SDK to obtain the configuration parameters. The authenticated
username should have permissions to read the configuration data for SAML and
User Management.

« The property to provide the user name is;
comsun. identity.agents. app. user nane

= The property to provide the plain text password is;
com i pl anet. am servi ce. password

For scenarios where plain text password would be security concern, an encrypted
password can be provided using the property: com i pl anet. am ser vi ce. secr et

Access Manager 6 2005Q1 « Developer’s Guide

Building Custom Web Applications

If an encrypted password is provided, the encryption key must also be provided
using the property: am encrypti on. pwd

To Set an SSO Token Provider

Set the following property: com sun. i dentity. security. Adm nToken

This provides an implementation for the the interface, which returns the following
single-sign-on (SSO) token: com sun. i dentity. security. AppSSOTokenProvi der .

Building Custom Web Applications

The Client SDK package contains Makefil e. cli ent sdk that you can use to
generate and build samples and web applications. The makefile defines targets to
build configuration properties, samples and web applications.

Building Stand-Alone Applications

Use these steps a template for building their identity-enabled web applications.

To Build a Stand-Alone Application
1. Install the Client SDK.

Follow the steps in the section“To Configure the Client SDK” on page 47.
2. Copyservlet.jar to../lib directory.
3. Ifusing JDK 1.3, follow these steps:
a. copy the following jars to the ../lib directory:
« jaas.jar
e jsse.jar jcel 2 1. jar
« jdk_logging.jar

b. Add the jar files the CLASSPATH definition in the file
cl i ent sdk- sanpl es/ defi nes. nk.

4. Run the stand-alone application.

Change directory to respective components within cl i ent sdk- sanpl es. Each

Chapter 2 Using the Client SDK 53

Building Custom Web Applications

54

has a Readne. ht m file explaining the changes to done and a Makefile to
rebuild and run the program.

Targets Defined in clientsdk

For web deployment, ancl i ent webapps. war is ready to be deployed. However,
you can make changes in cl i ent sdk- webapps directory and the war file can be
recreated.

Custom web applications can use the following as a template to build their identity
enabled web application.

properties: Generates AMConf i g. properti es in the temp directory that can
used as a template for setting AM SDK's properties

samples: Copies standalone samples and corresponding Makefiles to samples
directory.

webapp: Generates antl i ent webapps. war that can be deployed on any Servlet
2.3 compliant web container.

About the Client SDK Samples

Sample files are included in the Client SDK. These demonstrate how to write
stand-alone programs and how to write web applications.The samples are located
under the directory where you generated the Makefi | e. cl i ent sdk, and in the
following subdirectories:

...Ilclientsdk-sanpl es/
... Iclientsdk-webapps/

A i ent sdk- sanpl es includes samples for authentication, logging, policy and
SAML stand-alone programs.d i ent sdk- webapps includes samples for user
management, service management, and policy programs. Each sample has a
Readme. ht ni file with instructions on compiling and running the sample program..

Access Manager 6 2005Q1 « Developer’s Guide

Chapter 3

The Access Manager Console

The Sun Java™ System Access Manager 6 2005Q1 console is a web-based interface
for creating, managing, and monitoring the identities, web services, and
enforcement policies configured throughout an Access Manager deployment. It is
built with Sun Java System Application Framework, a Java™ 2 Enterprise Edition
(J2EE) framework used to help developers build functional web applications. XML
files, JavaServer Pages™ (JSP) and Cascading Style Sheets (CSS) are used to define
the look of the HTML pages. This chapter explains the console, its pluggable
architecture, and how to customize it. It contains the following sections:

= “Overview” on page 55

e “Customizing The Console” on page 58

= “Console API” on page 69

e “Precompiling The Console JSP” on page 70

= “Console Samples” on page 70

Overview

The Access Manager console is a web interface that allows administrators with
different levels of access to, among other things, create organizations, create (and
delete) users to (and from) those organizations, and establish enforcement policies
that protect and limit access to the organization’s resources. In addition,
administrators can view and terminate current user sessions and manage their
federation configurations (create, delete and modify authentication domains and
providers). Users without administrative privileges, on the other hand, can
manage personal information (name, e-mail address, telephone number, etc.),
change their password, subscribe and unsubscribe to groups, and view their roles.
All of these functionalities are accomplished using a web browser.

55

Overview

NOTE The client web browser accessing the console must support JavaScript, version 1.2
and cookies.

The console ships with four modules: Identity Management (including user and
policy management), Service Configuration, Current Sessions (including session
management) and Federation Management. Customization of these modules and
the Access Manager console can be achieved, in varying degrees, by modifying the
JSP and XML files that define the interface as well as extending the Sun Java
System Application Framework ViewBeans.

NOTE A ViewBean is a Java class written specifically for rendering display. In Access
Manager, each identity object has its own profile ViewBean. For example, the user
profile has the UMJser Pr of i | eVi ewBean.

Console Interface

The console is divided into three frames as pictured in Figure 3-1: Header,
Navigation and Data. The Header frame displays corporate branding information
as well as the first and last name of the currently logged-in user as defined in their
profile. It also contains a set of tabs to allow the user to switch between the
management modules, a hyperlink to the Access Manager Help system, a Search
function and a Logout link. The Navigation frame on the left displays the object
hierarchy of the chosen management module, and the Data frame on the right
displays the attributes of the object selected in the Navigation frame.

56 Access Manager 6 2005Q1 « Developer’s Guide

Overview

Figure 3-1 The Access Manager Console

) 5un Java System Access Manager - Mozilla Firefox -3l x|
File Edit Wiew Go Bookmarks Tools Help

Search Logout | Help

Welcome
Header QM amAdmin

Frame —]
Identity Service Current Federation
Management Configuration Sessions Management
sun | sun -
wview: [organizations =] Wiew: |General = save || Reset
MNavigation)
Frame Organizations (1 item) General Properties - Data
m Frame
Domain |
MNarme:
™ top b organization IActwe -]
Status:
Organization [e S e nr e] —
4 | | K1 | _>l_I
| Done v

Generating The Console Interface

When the Access Manager console receives an HTTP(S) request, it first determines
whether the requesting user has been authenticated. If not, the user is redirected to
the Access Manager login page supplied by the Authentication Service. After
successful authentication, the user is redirected back to the console which reads all
of the user’s available roles, and extracts the applicable permissions and behaviors.
The console is then dynamically constructed for the user based on this information.
For example, users with one or more administrative roles will see the
administration console view while those without any administrative roles will see
the end user console view. Roles also control the actions a user can perform and the
identity objects that a user sees. Pertaining to the former, the organization
administrator role allows the user read and write access to all objects within that
organization while a help desk administrator role only permits write access to the
users’ passwords. With regards to the latter, a person with a people container
administrator role will only see users in the relevant people container while the
organization administrator will see all identity objects. Roles also control read and
write permissions for service attributes as well as the services the user can access.

Chapter 3 The Access Manager Console 57

Customizing The Console

Plug-In Modules

An external application can be plugged-in to the console as a module, gaining
complete control of the Navigation and Data frames for its specific functionality. In
this case, a tab with the name of the custom application needs to be added to the
Header frame. The application developer would create the JSPs for both left and
right frames, and all view beans, and models associated with them. Information on
how to define a module tab can be found in “To Add A Module Tab” on page 68.

Accessing The Console

The Naming Service defines URLs used to access the internal services of Access
Manager. The URL used to access the Administration Console web application is:

ht t p: / / identity_server_host.domain_name:port/ antonsol e

The first time Administration Console (antonsol e) is accessed, it brings the user to
the Authentication web application (anser ver) for authentication and
authorization purposes. After login, anser ver redirects the user to the configured
success login URL as discussed in “The User Interface Login URL” on page 77 of
Chapter 5, “Authentication Service.” The default successful login URL is
http(s)://identity_server_host.domain_name:port/ anconsol e/ base/ AMAdni nFr ane.

Customizing The Console

58

The Access Manager console uses JSP and CSS to define the look and feel of the
pages used to generate its frames. A majority of the content is generated
dynamically—based on where, and at what, the user is looking. In that regard, the
modification of the content is somewhat restricted. Within the Navigation frame,
the layout of the controls (the view menu), the action buttons, and the table with
current objects in each JSP can be changed. In the Data frame, the content displayed
is dynamically generated based on the XML service file being accessed but the
layout, colors, and fonts are controlled by the adm nst yl e. css style sheet.

Access Manager 6 2005Q1 « Developer’s Guide

Customizing The Console

The Default Console Files

An administrator can modify the console by changing tags in the JSP and CSS. All
of these files can be found in the

IdentityServer_base/ SUN\VanT web- sr c/ appl i cati ons/ consol e directory. The files
in this directory provide the default Sun Java System interface. Out of the box, it
contains the following sub-directories:

= base contains JSP that are not service-specific.

= css contains the admi nst yl e. css which defines styles for the console.

< federati on contains JSP related to the Federation Management module.
« htni contains miscellaneous HTML files.

= i mages contains images referenced by the JSP.

= | s contains JavaScript™ files.

= pol i cy contains JSP related to the Policy Service.

= servi ce contains JSP related to the Service Management module.

= sessi on contains JSP related to the Current Sessions (session management)
module.

= user contains JSP related to the Identity Management module.

NOTE Console-related JSP contain HTML and custom library tags. The tags are defined
in tag library descriptor files (. t | d) found in the
IdentityServer_base/ SUNWANT web- sr ¢/ VEB- | NF directory. Each custom tag
corresponds to a view component in its view bean. While the tags in the JSP can
be removed, new tags can not be added. For more information, see the Sun Java
System Application Framework documentation.

Creating Custom Organization Files

To customize the console for use by a specific organization, the

IdentityServer_base/ SUNVAnT web- sr c/ appl i cati ons/ consol e directory should
first be copied, renamed and placed on the same level as the default directory. The
files in this new directory can then be modified as needed.

NOTE There is no standard to follow when naming the new directory. The new name can
be any arbitrarily chosen value.

Chapter 3 The Access Manager Console 59

Customizing The Console

60

For example, customized console files for the organization dc=new org, dc=com
might be found in the

IdentityServer_base/ SUNWANT web- src/ appl i cati ons/ custom di rectory
directory.

To Create Custom Organization Files
1. Change to the directory where the default templates are stored:

cd IdentityServer_base/ SUNVA web- src/ appl i cati ons
2. Make a new directory at that level.

The directory name can be any arbitrary value. For this example, it is named
IdentityServer_base/ SUN\VAM web- sr c/ appl i cati ons/ custom di rectory/.

3. Copy all the JSP files from the consol e directory into the new directory.

IdentityServer_base/ SUN\VanT web- sr c/ appl i cati ons/ consol e contains the
default JSP for Access Manager. Ensure that any image files are also copied
into the new directory.

4. Customize the files in the new directory.

Modify any of the files in the new directory to reflect the needs of the specific
organization.

5. Modify the AMBase. j sp file.

In our example, this file is found in

IdentityServer_base/ SUNWANT web- sr c/ appl i cati ons/ cust om di rect ory/ bas
E. ThelineString consol e = "../consol e"; needstobechangedtoStri ng
consol e = "../new_directory name";.The String consol el mages tag also
needs to be changed to reflect a new image directory, if applicable. The
contents of this file are copied in Code Example 3-1.

Code Example 3-1 The AMBase.jsp File

<l--
Copyright © 2002 Sun Mcrosystens, Inc. Al rights reserved.

Use is subject to |icense terns.
>

<% String console = "../consol e";

String consol elrl = console + "/"; _

String consol el mages = consol elrl + "images";
%

Access Manager 6 2005Q1 « Developer’s Guide

Customizing The Console

6. Change the value of the JSP Directory Name attribute in the Administration
Service to match that of the directory created in Step 2 on page 60.

The JSP Directory Name attribute points the Authentication Service to the
directory which contains an organization’s customized console interface. Using
the console itself, display the services registered to the organization for which
the console changes will be displayed. If the Administration Service is not
visible, it will need to be registered. For information on registering services, see
Chapter 8, “Service Management” in this manual or the Sun Java System Access
Manager Administration Guide.

Once the new set of console files have been modified, the user would need to log
into the organization where they were made in order to see any changes.
Elaborating on our example, if changes are made to the JSP located in the
IdentityServer_base/ SUN\WANT web- sr c/ appl i cati ons/ custom di rectory
directory, the user would need to login to that organization using the URL

ht t p: / / server_name.domain_name:port/ service_deploy uri/ Ul / Logi n?or g=custom_directo
ry_organization.

NOTE More information on this login URL and authentication URL parameters can be
found in Chapter 5, “Authentication Service” in this manual.

Alternate Customization Procedure

The console can also be modified by simply replacing the default images in
IdentityServer_base/ SUNWANT web- sr c/ appl i cati ons/ consol e/ i mages, with new,
similarly named images.

Miscellaneous Customizations

Included in this section are procedures for several specific customizations available
to administrators of the Access Manager console.

To Modify The Service Configuration Display

A service is a group of attributes that are managed together by the Access Manager
console. Out-of-the-box, Access Manager loads a number of services it uses to
manage its own features. For example, the configuration parameters of the Logging
Service are displayed and managed in the Access Manager console, while code
implementations within Access Manager use the attribute values to run the service.
There is a defined procedure for adding Access Manager services to the console.
For information on this procedure, see “Defining A Custom Service” on page 187

Chapter 3 The Access Manager Console 61

Customizing The Console

62

of Chapter 8, “Service Management.” Chapter 8 also contains information on how
to extend existing services, add or remove a service name from the Navigation
frame using the “serviceHierarchy Attribute” and change the default service
display using the “propertiesViewBeanURL Attribute”

To Modify The User Profile View

The Access Manager console creates a default User Service view based on
information defined in the amJser . xn service file.

NOTE Attributes defined as User attributes in each service’s specific XML file can also be
displayed in the User Service. More information on how this is done can be found in
“Customizing User Pages” on page 237 of Chapter 8, “Service Management” in
this manual.

A modified user profile view with functionality more appropriate to the
organization’s environment can be defined by creating a new ViewBean and/or a
new JSP. For example, an organization might want User attributes to be formatted
differently than the default vertical listing provided. Another customization option
might be to break up complex attributes into smaller ones. Currently, the server
names are listed in one text field as:

protocol://Access Manager_host.domain:port
Instead, the display can be customized with three text fields:
protocol_chooser_field://server_host_field:port_number_field

A third customization option might be to add JavaScript to the ViewBean to
dynamically update attribute values based on other defined input. The custom JSP
would be placed in the following directory:

IdentityServer_base/ SUN\VANT web- sr c/ appl i cati ons/ consol e/ user. The
ViewBean is placed in the classpath com i pl anet . am consol e. user . The value of
the attribute User Profile Display Class in the Administration Service

(i pl anet - am admi n- consol e-user- profile-class inthe

amAdm nConsol e. xm service file) would then be changed to the name of the
newly created ViewBean. The default value of this attribute is

com i pl anet. am consol e. user. UMJser Prof i | eVi ewBean. More information on
this procedure can be found in “Console Samples” on page 70.

Access Manager 6 2005Q1 « Developer’s Guide

Customizing The Console

Display Options For The User Profile Page

There are a number of attributes in the Administration Service that can be selected
to display certain objects on the User Profile page. Display User’s Roles, Display
User’s Groups and User Profile Display Options specify whether to display the
roles assigned to a user, the groups to which a user is a member and the schema
attributes, respectively. More information on these service attributes can be found
in the Sun Java System Access Manager Administration Guide.

To Localize The Console

All textual resource strings used in the console interface can be found in the
amAdm nMbdul eMsgs. properti es file, located in

IdentityServer_base/ SUNWanN | ocal e/ . The default language is English (en_US).
Modifying this file with messages in a foreign language will localize the console.

To Display Service Attributes

Service attributes are defined in XML service files based on the sns. dt d. In order
for a particular service attribute to be displayed in the console, it must be
configured with the any XML attribute. The any attribute specifies whether the
service attribute for which it is defined will display in the Access Manager console.
More information on this attribute can be found in “any Attribute” on page 208 of
Chapter 8, “Service Management” in this manual.

To Customize Interface Colors

All the colors of the console are configurable using the Access Manager style sheet
admi nstyl e. css located in the

IdentityServer_base/ SUNVANT web- sr c/ appl i cati ons/ consol e/ css directory. For
instance, to change the background color for the navigation frame, modify the
BCDY. navFr ane tag; or to change the background color for the data frame, modify
the BCDY. dat aFr ane. The tags take either a text value for standard colors (blue,
green, red, yellow, etc.) or a hexadecimal value (#ff0000, #aadd22, etc.). Replacing
the default with another value will change the background color of the respective
frame after the page is reloaded in the browser. Code Example 3-2 details the tag in
adm nstyl e. css.

Code Example 3-2 BODY. navFr ane Portion of adm nst yl e. css

BODY. navFrane {
color: bl ack;
background: #ffffff;

}

Chapter 3 The Access Manager Console 63

Customizing The Console

64

To Change The Default Attribute Display Elements

The console auto-generates Data frame pages based on the definition of a service’s
attributes in an XML service definition file. As documented in “The sms.dtd
Structure” in Chapter 8, “Service Management” in this manual, each service
attribute is defined with the XML attributes t ype, ui t ype and synt ax. Type
specifies the kind of value the attribute will take. ui t ype specifies the HTML
element displayed by the console. synt ax defines the format of the value. The
values of these attributes can be mixed and matched to alter the HTML element
used by the console to display the values of the attributes. For example, by default,
an attribute of the si ngl e_choi ce type displays its choices as a drop down list in
which only one choice can be selected. This list can also be presented as a set of
radio buttons if the value of the ui t ype attribute is changed to r adi 0. Code
Example 3-3 illustrates this concept.

Code Example 3-3 ui t ype XML Attribute Sample

<AttributeSchema name="test-attribute"

type="si ngl e_choi ce"

syntax="string"

any="di spl ay"

ui type="radi o"

i 18nKey="d105" >

<Choi ceVal ues>
<Choi ceVal ue i 18nKey="u200">Dai | y</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="u201" >Weekl y</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="u202">Mont hl y</ Choi ceVal ue>

</ Choi ceVal ues>

<Def aul t Val ues>

<Val ue>Dai | y</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchena>

Table 3-1 is a listing of the possible values for each attribute, and the corresponding
HTML element that each will display based on the different groupings.

Access Manager 6 2005Q1 « Developer’s Guide

Customizing The Console

Table 3-1 Service Attribute Values and Corresponding Display Elements

type Value syntax Value uitype Value Element Displayed In Console
single_choice string No value defined pull-down menu choices
I choice 1 *I
radio radio button choices

& Choice 1 © Choice 2 0 Choice 3

Chapter 3 The Access Manager Console 65

Customizing The Console

Table 3-1 Service Attribute Values and Corresponding Display Elements (Continued)
type Value syntax Value uitype Value Element Displayed In Console
Single boolean No value defined checkbox

radio radio button

Y

string No value defined text field

link hyperlink

hyperimk
button clickable button
Button |

password No value defined text field
paragraph No value defined scrolling text field

66 Access Manager 6 2005Q1 « Developer's Guide

Customizing The Console

Table 3-1 Service Attribute Values and Corresponding Display Elements (Continued)

type Value

syntax Value uitype Value Element Displayed In Console

list

multiple_choice

string No value defined Add/Delete name list

[=

|
Add | Delete |

name_value_list Add/Edit/Delete name list

[~

Add| Edit| Delete |

string No value defined choice list

choice 1 AI

choice 2
choice 3

Chapter 3 The Access Manager Console

67

Customizing The Console

68

To Add A Module Tab

“Plug-In Modules” on page 58 mentions the capability to plug-in external
applications as modules. Once this is accomplished, the module needs to be
accessible via the console by adding a new module tab. Label information for
module tabs are found in the amAdni nMbdul eMsgs. proper ti es console properties
file located in IdentityServer_base/ SUN\VanT | ocal e/ . To add label information for a
new module, add a key and value pair similar to nodul e105_NewTab=M/ New Tab.
Code Example 3-4 illustrates the default pairs in the file.

Code Example 3-4 Module Tab Key And Value Pairs

modul €101 i dentity=ldentity Managenent
modul e102_ser vi ce=Servi ce Configuration
modul e103_sessi on=Qurrent Sessi ons

modul e104_f eder at i on=Feder ati on Managemnent

The module name and a URL for the external application also need to be added to
the View Menu Entries attribute in the Administration Service (or

i pl anet - am adm n- consol e- vi ew nenu in the amAdm nConsol e. xm service
file). When a module tab in the Header frame is clicked, this defined URL is
displayed in the Navigation frame. For example, to define the display information
for the tab sample, an entry similar to

nmodul e105_NewTab| / antonsol e/ custom_directory/ custom_NavPage would be
added to the View Menu Entries attribute in the Administration Service.

NOTE The console retrieves all the entries from this attribute and sorts them by i18n key.
This determines the tab display order in the Header frame.

After making these changes and restarting Access Manager, a new tab will be
displayed with the name My New Tab. For information on the sample that explains
how to add a new tab, see “Console Samples” on page 70.

To Display Container Objects

In order to create and manage LDAP organizational units (referred to as containers
in the console), the following attributes need to be enabled (separately or together)
in the Administration Service.

Access Manager 6 2005Q1 « Developer’s Guide

Console API

= Display Containers In Menu—Containers are organizational units as viewed
using the Access Manager console. If this option is selected, the menu choice
Containers will be displayed in the View menu for top-level Organizations,
Sub-Organizations and other containers.

= Show People Containers—People containers are organizational units
containing user profiles. If this option is selected, the menu choice People
Containers will be displayed in the View menu for Organizations, Containers
and Sub-Organizations.

= Show Group Containers—Group containers are organizational units
containing groups. If this option is selected, the menu choice Group Containers
will be displayed in the View menu for Organizations, Containers and Group
Containers.

Viewing any of these display options is also dependent on whether the Enable User
Management attribute is selected in the Administration Service. (This attribute is
enabled by default after a new installation.) More information on these attributes
can be found in the Sun Java System Access Manager Administration Guide.

Console API

The public console API package is named

com i pl anet. am consol e. base. nodel . It contains interfaces that can be used to
monitor and react to events that occur in the console. This listener can be called
when the user executes an action on the console that causes an event. An event can
have multiple listeners registered on it. Conversely, a listener can register with
multiple events. Events that might be used to trigger a listener include:

< Displaying a tab in the Header frame.

= Creating or deleting identity-related objects.

= Modifying the properties of an identity-related object.

= Sending attribute values to the console ViewBean for display purposes.

When a listener is created all the methods of that interface must be implemented
thus, the methods in the AMConsol eLi st ener interface must be implemented. The
AMOonsol eLi st ener Adapt er class provides default implementations of those
methods and can be used instead. Creating a console event listener includes the
following:

1. Write a console event listener class (or implement the default methods in the
AMDonsol eLi st ener Adapt er class).

Chapter 3 The Access Manager Console 69

Precompiling The Console JSP

2. Compile the code.
3. Register the listener in the Administration Service.

Access Manager includes a sample implementation of the ConsoleEventListener.
See “ConsoleEventListener” on page 71 for more information. The Access Manager
Javadocs also contains more detailed information on the listener interfaces and
class.

Precompiling The Console JSP

Each JSP is compiled when it is first accessed. Because of this, there is a delay when
displaying the HTML page on the browser. To avoid this delay, the system
administrator can precompile the JSP by running the following command:

WebServer_install_directory/ ser ver s/ bi n/ htt ps/ bin/j spc -webapp
IdentityServer_base/ SUNWAN web- sr ¢/ appl i cat i ons

where, by default, WebServer_install_directory is / opt / SUN\Wbsvr .

Console Samples

70

Sample files have been included to help understand how the Access Manager
console can be customized. The samples include instructions on how to:

Modify User Profile Page

This sample modifies the user interface by adding a hyperlink that allows an
existing user to change their configured password. It is in the
ChangeUser Passwor d directory.

Create A Tabbed Identity Management Display

This sample creates a custom user profile which displays the profile with three
tabs. Figure 3-2 contains a screenshot of a tabbed user profile. It is in the
User Prof i | e directory.

Access Manager 6 2005Q1 « Developer’s Guide

Console Samples

Figure 3-2 Console With Three Tabs

C lEm e e him _h_ﬂt_ﬂn_?_

T T T I R S P g P e—— T P — i

T TP i f Ty e f s f s ey ——

| REE

Laa (] rewe,
[P | | v - | Fiar
& v O

CTE e T ER=

e ETEEE b
pelart RN

|-
i3 Eeras

ConsoleEventListener

This sample displays the parameters passed to AMConsol eLi st ener class in the
anConsol e debug file. It is in the Consol eEvent Li st ener directory.

Add Administrative Function

This sample adds functionality to the Identity Management module that allows an
administrator to move a user from one organization to other. It is in the MoveUser
directory.

Add A New Module Tab

This sample adds a new tab into the Header frame. This tab will connect to an
external application and can be configured using the console. It is in the NewTab
directory.

Chapter 3 The Access Manager Console 71

Console Samples

Create A Custom User Profile View

This sample creates a custom user profile view to replace the default user profile
view. A different user profile view can be created for each configured organization.
A custom class would need to be written that extends the default user profile view
bean. This class would then be registered in the User Profile Display Class attribute
of the Administration Service. There is an example of how to do this in the samples
directory. This sample is in the User Pr of i | e directory.

These samples are located in IdentityServer_base/ SUNVan1 sanpl es/ consol e. Open
the README file in this directory for general instructions. Each specific sample
directory also contains a READVE file with instructions relevant to that sample.

NOTE The console samples are only available when Access Manager is installed on the
Solaris™ operating system.

72 Access Manager 6 2005Q1 « Developer’s Guide

Chapter 4

Single Sign-On And Sessions

The Session Service is a key component of the Sun Java™ System Access Manager 6
2005Q1 single sign-on (SSO) solution that enables users to authenticate once yet
access multiple resources. In other words, successive attempts by a user to access
protected resources will not require them to provide authentication credentials for
each attempt. This chapter explains the Session Service, the SSO solution, and the
SSO APIs. It contains the following sections:

e “Overview”

= “Cookies and Sessions” on page 76

= “Session Structure” on page 76

e “Cross-Domain Support For SSO” on page 78
= “SSO API” on page 81

e “SSO Samples” on page 99

Overview

A user wanting to access resources protected by Access Manager must first pass
validating credentials through the Authentication Service. A successful
authentication gives the user authorization to access the protected resources, based
on their assigned access privileges or policy. If a user wants to access several
resources protected by Access Manager, the Session Service provides proof of
authorization so there is no need to re-authenticate; this is single sign-on. As
different DNS domains generally have common users who need to gain access to
their services in a single session, Access Manager supports a cross-domain single
sign-on functionality.

73

Overview

NOTE In an Access Manager deployment, all Access Manager instances must be located
in one primary cookie domain. The deployment may have multiple instances for
high-availability but they may not be located in multiple DNS domains.

The Session Service provides the functionality to maintain information about an
authenticated user’s session across all applications participating in a single sign-on.
It is responsible for:

= Generating session identifiers.
= Maintaining a master copy of the session’s state information.
=< Implementing the time-dependent behavior of sessions.

=« Implementing the session’s life cycle events (For example: logout, session
destruction).

= Generating the session’s life cycle event notifications.

= Implementing session failover facilities.

NOTE The Sun Java System Access Manager Deployment Guide contains a detailed
section explaining the complete life cycle of a user session.

Session Service Concepts

The following concepts are closely tied together when discussing the Session
Service and SSO. To understand the differences between them, consider the
following definitions and how they will be used in this chapter.

Session

A session is a data structure held in the Access Manager memory that contains
session information about an authenticated user.

Session ID

A session identifier (ID) is an opaque, globally unique string that programmatically
identifies a specific session instance. With the session ID, a resource is able to
retrieve session information.

74 Access Manager 6 2005Q1 « Developer’s Guide

Overview

SSOToken

An SSOToken is a data structure, defined by the SSO API, that represents a
snapshot of the session local to the particular application’s memory.

Single Sign-On Process

The next sections describe the process that occurs when a user attempts to gain
access to a resource protected by Access Manager.

Contacting A Protected Resource

When a user attempts to access a protected resource via a web browser, a policy
agent installed on the server that hosts the resource intercepts the request and,
inspects it to see if it contains a Session ID. If none exists, the request is redirected
to Access Manager where the Session Service creates a Session for the requesting
user. Initially, the session is in an invalid state and does not contain user identity
information. It does though contain the aforementioned randomly-generated
session ID to represent the user’s session. Once the session/session ID is created,
the Authentication Service sets a cookie with the session ID only and sends it to the
client browser. Simultaneously, a login page is generated by the Authentication
Service and returned to the user based upon their configured method of
authentication (LDAP, RADIUS, etc.).

NOTE For more information on the different methods of authentication, see
“Authentication Methods” on page 105 in Chapter 5, “Authentication Service,” of
this manual.

Providing User Credentials

The user, having received the login page (as well as the session ID) fills in the
appropriate credentials based on the type of authentication. After entering their
credentials, the data is sent to the authentication provider (LDAP server, RADIUS
server, etc.) for verification. Once the provider has successfully verified the
credentials, the user is authenticated. The user’s specific session information is
retrieved (using the session ID) and the session state is set to valid. The user can
now be redirected to the resource they were attempting to access.

NOTE In reality, the user can only be redirected to the resource if their assigned policy
permits it. More information on the Policy Service can be found in Chapter 9,
“Policy Management,” of this manual.

Chapter 4 Single Sign-On And Sessions 75

Cookies and Sessions

Cookies and Sessions

Session

A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server by which it has been generated. It does not imply that the user is
authenticated. Cookies are domain-specific; for example, a cookie generated by
DomainA cannot be used in DomainB. Cookies will only be passed to a server in
the domain for which the cookie is set. Conversely, servers may only set a cookie in
their own domain.

In an Access Manager deployment, the cookie contains the Session 1D, an
encrypted string generated by the Session Service. With the session ID, a protected
resource can get access to the Session where the user’s session information is
stored. This information is then used for session validation.

NOTE Details on the attributes stored in the session token can also be found in
“Authentication Methods” on page 105 in Chapter 5, “Authentication Service,” of
this manual.

Structure

When a user is successfully authenticated they are assigned a valid session. This
session contains a number of attributes and properties that define the user’s
identity and some time-dependent behaviors (for example, the maximum time before
the session expires). The following sections detail these attributes.

NOTE The values of most of these attributes and properties are set by services other than
the Session Service (primarily, the Authentication Service). The Session Service
only provides storage for session information and enforces some of the
time-dependent behavior.

Fixed Attributes

The session token contains the following fixed attributes concerning the
authenticated user:

= | D—This is the Session ID, a randomly-generated session identifier.
= (i entDomai n—This is the DNS domain in which the client is located.

e dientlD—This is the user DN or the application’s principal name.

76 Access Manager 6 2005Q1 « Developer’s Guide

Session Structure

Type—This is the user or application type.
St at e—This is the state of the session: valid, invalid, destroyed or inactive.

max! dl eTi me—This is the maximum time in minutes without activity before the
session will expire and the user must reauthenticate.

nmaxSessi onTi me—This is the maximum time in minutes before the session
expires and the user must reauthenticate.

maxCachi ngTi ne—This is the maximum time in minutes before the client
contacts Access Manager to refresh cached session information.

| at est AccessTi me—This is the last time the user has accessed the resource.

creati onTi me—This is the time at which the session token was set to a valid
state.

Protected And Custom Properties

The session token also contains an extensible set of properties that are divided into
two subsets: protected (or core) properties and custom properties. Protected
properties are set by Access Manager. Custom properties are set remotely by any
application that knows the Session ID.

Protected Properties
The current protected properties are;

Q gani zat i on—This is the DN of the organization to which the user belongs.
Princi pal —This is the DN of the user.

Pri nci pal s—This is a list of names to which the user has authenticated. (This
property may have more then one value defined as a pipe separated list.)

Wser | d—This is the user’s DN as returned by the module, or in the case of
modules other than LDAP or Membership, the user name. (All Pri nci pal s
must map to the same user. The UserID is the user DN to which they map.)

Wser Token—This is a user name. (All Pri nci pal s must map to the same user.
The UserToken is the user name to which they map.)

Host —This is the host name or IP address for the client.

aut hLevel —This is the highest level to which the user has authenticated.

Chapter 4 Single Sign-On And Sessions 77

Cross-Domain Support For SSO

< AuthType—This is a pipe separated list of authentication modules to which the
user has authenticated (For example nodul el | nodul e2] nodul e3).

= Rol e—Applicable for role-based authentication only, this is the role to which
the user belongs.

= Servi ce—Applicable for service-based authentication only, this is the service to
which the user belongs.

e | ogi nURL—This is the client’s login URL.
e Host nane—This is the host name of the client.

= cooki eSupport —This attribute contains a value of true if the client browser
supports cookies.

= authl nst ant —This is a string that specifies the time at which the authentication
took place.

e SessionTi nedQut —This attribute contains a value of true if the session has
timed out.

Custom Properties

The custom properties currently used are:
= client Type—This is the device type of the client browser.
« Local e—This is the locale of the client.

e Char Set —This is the determined character set for the client.

Cross-Domain Support For SSO

Access Manager supports cross-domain SSO. A user authenticated to Access
Manager in one DNS domain can access resources in another, integrated DNS
domain. This cross-domain functionality is achieved using the Cross-Domain
Controller servlet in Access Manager and Policy Agents installed in web
containers. The Controller communicates with the policy agent that resides on
servers where the protected resources are kept.

NOTE The Authentication Service handles SSO requests while the Cross-Domain
Controller servlet handles cross-domain SSO requests.

78 Access Manager 6 2005Q1 « Developer’s Guide

Cross-Domain Support For SSO

Policy Agents

A policy agent polices the web container on which a protected resource lives by
enforcing a user’s assigned policies. They are an integral part of the cross-domain
SSO functionality. Two types of policy agents are supported by Access Manager:
the web agent and the J2EE/Java agent. The web agent enforces URL-based policy
while the J2EE/Java agent enforces J2EE-based security and policy. Both types are
available for installation separately from Access Manager and can be downloaded.
Additional information can be found in the Sun Java System Access Manager Web
Policy Agents Guide and J2EE Policy Agents Guide. General information on the Policy
Service can be found in Chapter 9, “Policy Management,” of this manual.

Cross-Domain Controller

The Cross-Domain Controller is a servlet responsible for redirecting user requests.
The default URL for it is

http(s)://identity_server_host.domai n_name: port/anserver/cdcser vl et
. There are three scenarios where the Controller comes into play:

1. Ifarequest for a protected resource contains no session ID, the agent redirects
the user to the Controller which, in turn, redirects the user to the appropriate
Authentication Service module. Assuming the user is authenticated, this
scenario would then follow the path outlined in either Step 2 or Step 3.

NOTE The authentication process itself is discussed in Chapter 5, “Authentication
Service,” of this manual.

2. Ifarequest for a protected resource already contains a session ID set in a
cookie for the same DNS domain in which the resource is deployed, the agent
retrieves it and sends an XML/HTTP request to the Naming, Session and
Policy Services to retrieve the identity, session and policy information for the
requesting user. The user is allowed or denied access to the resource based on
this information.

3. Ifarequest for a protected resource does not contain a session ID set in a cookie
for the same DNS domain in which the resource is deployed (For example: it
carries a session ID set in a different DNS domain from the one in which the
Access Manager is deployed), the agent redirects the request to the Controller
with a Liberty AuthnRequest in the query string. The Controller then finds the
session ID, extracts it from the cookie, places it in a Liberty AuthnResponse
and sends it back to the agent. The agent finds the session ID, extracts it from

Chapter 4 Single Sign-On And Sessions 79

Cross-Domain Support For SSO

80

the AuthnResponse, sets it in a cookie for the new domain, and sends an
XML/HTTP request to the Naming, Session and Policy Services to retrieve the
identity, session and policy information for the requesting user. The user is
allowed or denied access to the resource based on this information.

NOTE The Liberty AuthnRequest and AuthnResponse are part of the Federation
Management module. For more information, see the Access Manager
Federation Management Guide.

A Cross-Domain SSO Scenario

In one scenario, the Access Manager instance for DomainA is its authentication
provider. A user authenticates to Access Manager in DomainA and, after
authentication, the session is set for DomainA. ServerB, on the other hand, is
protected by a policy agent talking to an Access Manager in DomainB.

NOTE This is just one scenario; it is not obligatory to have an installed instance of Access
Manager in both domains to use the cross-domain feature.

The Access Manager instance in DomainB recognizes the DomainA instance as an
authentication provider. If UserA, after authenticating to DomainA, requests a
resource on ServerB, the policy agent for DomainB checks for a session ID and will
find that there is none (authorizing access to DomainB, that is). The agent then
redirects the request to the Cross-Domain Controller running with the Access
Manager instance in DomainB. The servlet, following the path outlined in Step 3 on
page 79, finds the session ID from DomainA, extracts it from the cookie, places it in
a Liberty AuthnResponse and sends it back to the agent. The agent finds the
session ID and sets a cookie for DomainB using the session ID. The agent then
sends an XML/HTTP request to the Naming, Session and Policy Services deployed
in DomainB. Since the instance of Access Manager in DomianB recognizes the
instance of Access Manager in DomainA as an authentication provider, DomainB
retrieves identity, session and policy information for the requesting user from
DomainA. The user is then allowed or denied access to the resource based on this
information.

NOTE Access Manager uses a combination of URL parameters and cookies to implement
cross-domain SSO. If a cookie is set in DomainA, the cookie value is carried over
to DomainB using the URL parameters, and a new cookie can be set for DomainB
with the same cookie name and value.

Access Manager 6 2005Q1 « Developer’s Guide

SSO API

Enabling Cross-Domain Single Sign-On

As described, in order to exchange session information across two different
domains, Policy Agents and the Cross-Domain Controller communicate with each
other. By default, Access Manager is installed with the servlet. Policy agents, on the
other hand, are installed separately. When installing the agent, the option to
configure it for CDSSO must be selected. The cookie domain for the agent must be
configured after installation. This is done by editing the AMAgent . pr oper ti es file.
The com sun. am pol i cy. agent s. cooki eDomai nLi st property must be set with
the domain in which the agent is installed. If the field is left blank, the cookie
domain will be set to the FQDN of the web server on which the agent is installed.
Additional information on enabling cross-domain single sign-on can be found in
the Web Policy Agents Guide and the J2EE Policy Agents Guide.

SSO API

The Session Service provides Java and C API to allow external applications to
participate in the SSO functionality. All Access Manager services (except for
Authentication) require a valid session (programmatically referred to as SSOToken)
to process a HTTP request. External applications wishing to use the SSO
functionality must also use the SSOToken to authenticate the user’s identity. With
the SSO API, an external application can retrieve it and, in turn, the user’s identity,
session and policy information. The application then uses this information to
determine whether to provide user access to a protected resource.

After successfully authenticating to Access Manager, a user carries their Session ID
with them using browser cookies or URL query parameters. Now, each time a user
requests access to a protected application, the application needs to verify their
identity. Assume a user authenticates to htt p: / / www. or gA. comi St or e
successfully and later tries to access ht t p: / / www. or gA. com Updat el nf o, a service
that is SSO-enabled. Rather than having the second application authenticate the user
again, it can use the API and the user’s session to determine if the user is already
authenticated. If the methods determine that the user has already been
authenticated (and the session is still valid), access to this page can be achieved.
Otherwise, the user would be prompted to authenticate again. The SSO API can
also be used to create or destroy a SSOToken, or to listen for SSOToken events. (An
event might be a SSOToken timing out because the user has reached the their
maximum time limit.) Following are both the Java API Overview and C API
Overview.

Chapter 4 Single Sign-On And Sessions 81

SSO API

Java API Overview

In Java, the main classes of the SSO API are SSOTokenManager , SSOToken and
SSOrokenLi st ener . The SSOTokenManager class is used to get, destroy, validate,
and refresh a session token which is represented by the SSOToken class. The
SSOrokenLi st ener class allows the application to be notified when a SSOToken
has become invalid, for example when a session has timed out.

SSOTokenManager Class

The SSOTokenManager class contains the methods needed to get, validate, destroy
and refresh session tokens. SSOTokenManager is implemented using the singleton
design pattern. In order to obtain an instance of SSOTokenManager , the
SSOrokenManager . get | nst ance() method must be called. An instance of
SSOrokenManager can then be used to instantiate an SSOToken object using one of
the overloaded forms of the cr eat eSSOToken() method.

The dest r oyToken() method would be called to invalidate and delete a token
when its session has ended. The i sVal i dToken() and val i dat eToken() methods
can be called to verify whether a token is valid, or authenticated. i sVal i dToken()
returns true or false depending on whether the token is valid or invalid,
respectively. val i dat eToken() throws an exception only when the token is
invalid; nothing happens if the token is valid. The r ef r eshSessi on() method
resets the idle time of the session. Code Example 4-1 illustrates one way in which
the SSOTokenManager class can be used.

Code Example 4-1 Sample Uses Of SSOTokenManager Code

try {
/* get an instance of the SSOTokenManager */

SSOTokenManager ssoManager = SSOTokenManager . get | nst ance() ;

/* The request here is the HtpServl et Request. Get
/* SSOToken for session associated with this request. */
SSOToken ssoToken = ssoManager . cr eat eSSOToken(request);

/* use isValid nmethod to check if token is valid or not.

* This nethod returns true for valid token, fal se otherw se. */
if (ssolvanager i sVal i dToken(ssoToken)) {

/* If token is valid, this information may be enough for
* sonme applications to grant access to the requested
* resource. Avalid user represents a user who is
* already authenticated. An application can further
* utilize user identity information to apply
* personalization |ogic.
*/
els
/*

} else {

Token is not valid, redirect the user |ogin page. */

}

82 Access Manager 6 2005Q1 « Developer’s Guide

SSO API

Code Example 4-1 Sample Uses Of SSOTokenManager Code (Continued)

/* Aternative: use of validateToken method to check
* if tokenis valid */
try {
ssoManager . val i dat eToken(ssoToken);
/* handl e token is valid */
} catch (SSCException e) {
/* handl e token is invalid */

}

/*refresh session. idle time should be 0 after refresh. */
ssoManager . r ef reshSessi on(ssoToken) ;

} catch (SSCeException e) {
/* An error has occurred. Do error handling here. */

}

SSOTokenlID Interface
The SSOTokenl Dinterface is used to identify the SSOToken object.

CAUTION The string value of SSOTokenl Dis globally unique and must only be known to the
client browser, Access Manager and the application code. Exposing it to
unauthorized users or applications can lead to a security breach by allowing a
malicious attacker to impersonate a user.

SSOToken Interface

The SSOToken interface represents a single sign-on token returned from the
SSOrokenManager . cr eat eSSOToken() method, and contains information such as
the authenticated principal name, authentication method, and session information
(session idle time, maximum session time, etc.). The SSOToken interface has
methods to get predefined session information, such as get Aut hType() for the
authentication type, as well as a method get Propert y() to get any information
about the session, predefined or otherwise (for example, information set by the
application). The method set Propert y() can be used by the application to set
application-specific information in the session. The addSSOTokenLi st ener ()
method can be used to set a listener to be invoked when the session state has
become invalid.

CAUTION The methods get Ti meLeft () andget | dl eTi me() return values in
seconds while the methods get MaxSessi onTi ne() and
get Max| dl eTi ne() return values in minutes.

Chapter 4 Single Sign-On And Sessions 83

SSO API

84

Code Example 4-2 shows an example of SSOToken code.

Code Example 4-2 Sample Use Of SSOToken

/* get http request output streamfor output */
Servl et Qut put Stream out = response. get Qut put Strean();

/* get the sso token fromhttp request */
SSOrokenManager ssoManager = SSOTokenManager . get | nst ance();
SSOToken ssoToken = ssoManager . cr eat eSSOToken(request);

/* get the sso token ID fromthe sso token */
SSOrokenl D ssoTokenl D = ssoToken. get Tokenl () ;
out.println("The SSO Token IDis "+ssoTokenl D.toString());

/* use validate method to check if the token is valid */
try {

ssoManager . val i dat eToken(ssoToken) ;

out.println("The SSO Token validated.");
} catch (SSCException e) {

out.println("The SSO Token failed to validate.");

/* use isValid nethod to check if the token is valid */
if (!ssoManager.isValidToken(token)) {
out.println("The SSO Token is not valid.");
} else {
/* get sone values fromthe SSO Token */
java.security.Principal principal = ssoToken.getPrincipal();
out.println("Principal name is "+principal.getName());
String aut hType = ssoToken. get Aut hType();
out.println("Authentication type is "+authType);
int authLevel = ssoToken. get Aut hLevel ();
out.println("Authentication level is "+authLevel);
long idleTinme = ssoToken. get | dl eTine();
out.printin("ldle time is "+idleTine);
I ong maxldl eTi me = ssoToken. get Max! dl eTi ne();
out.printin("Max idle time is "+maxldleTine);
I ong maxTi me = token. get MaxSessi onTi me() ;
out.println("Max session time is "+maxTine);
String host = ssoToken. get Host Nane() ;
out.println("Host name is "+host);
/* host nanme is a predefined information of the session,
/* and can al so be obtained the fol |l owi ng way */
String hostProperty = ssoToken. get Property("HOST");
out.println("Host property is "+hostProperty);
/* set application specific information in session */
String appPropertyName = "appProperty";
String appPropertyVal ue = "appVal ue";
ssoToken. set Propert y(appPropertyNane, appPropertyVal ue);
/* now get the app specific information back */
String appVal ue = ssoToken. get Property(appPropertyNane);
i f (appVal ue. equal s(appPropertyVal ue)) {
out.println("Property "+appPropertyName+", val ue
"+appPropertyVal ue+" verified to be set.");

Access Manager 6 2005Q1 « Developer’s Guide

SSO API

Code Example 4-2 Sample Use Of SSOToken (Continued)

} else {
out.println("ALERT: Setting property "+appPropertyNane+"
failed'");

}
}

A code sample using the get Tokenl Dmethod is illustrated in Code Example 4-3.
With this code, a cookie is created from an SSOToken in order to make SSO work
for protected resources not residing on the same server as Access Manager.

Code Example 4-3 Sample Code To Create A Cookie From Session Token

/] Get SSOroken string

String strToken = null;

strToken = get SSOToken(). get Tokenl D().toString();
/] Set it to response as cookies

String s = strToken;

String ssotokencooki enane = "i Planet DirectoryPro”;
String ssot okencooki edomain = ". nydomai n. com tw';
String ssotokencooki epath = "/";

String gt = "/wel comepage.jsp";

Cooki e cooki e = new Cooki e(ssot okencooki enane, s) ;
cooki e. set Domai n(ssot okencooki edonai n) ;

cooki e. set Pat h(ssot okencooki epat h) ;

r esponse. addCooki e(cooki e) ;

response. sendRedi rect (gt);

SSOTokenEvent

The SSOTokenEvent interface represents a token event. An event is, for example,
when a session has been idle for over a maximum idle time limit, or when a session
has reached its maximum allowed time.

SSOTokenListener

The SSOTokenLi st ener interface represents a token notification object. An
implementation of the SSOTokenLi st ener interface must be written, then
registered with the SSOTokenManager to be invoked when a token event occurs.

Chapter 4 Single Sign-On And Sessions 85

SSO API

The SSOTokenLi st ener interface provides a mechanism to notify applications
when a session token has become invalid due to, for instance, the session reaching
maximum idle time or the maximum session time. Applications wishing to be
notified must write an implementation of the SSOTokenLi st ener interface, then
register the implementation through the SSOToken. addSSOTokenLi st ener
method. When the SSOToken state has become invalid, the SSOTokenLi st ener
implementation’s ssoTokenChanged method will be invoked with a
SSOrokenEvent object containing the event type, time, and SSOToken object with
the new SSOToken state and other properties of the SSOToken.

Code Example 4-4 Sample Code For SSOToken Event And SSOToken Listener

public class Sanpl eTokenLi stener inpl ements SSOTokenLi st ener {
public void ssoTokenChanged(SSOTokenEvent event) {
try {
SSOToken token = event. get Token();
int type = event.get Type();
long time = event.getTinme();
SSOrokenl D i d = token. get Tokenl) ;
Systemout.printin("Token id: " + id.toString() + "is not valid
anynore");
/* redirect user to login */
} é;aié'h'(Exception e) {
Systemout. println(e.get Message());

}

}

public Sanpl eTest Routine {
SSCTokenNanager ssoManager = SSOTokenManager . get | nst ance() ;
SSOroken ssoToken = SSOManager . cr eat eSSOToken(request);

SSOTokenLi st ener sanpl eLi stener = new Sanpl eTokenLi st ener () ;
ssoToken. addSSOTokenLi st ener (sanpl eLi st ener) ;

Sample SSO Java Files

Access Manager provides three groups of sample Java files. With these samples, a
developer can create a session token in several ways:

1. W.ith the SSO Servlet Sample, a session token can be created for an application
that runs on the Access Manager server.

2. With the Remote SSO Sample, a session token can be created for an application
that runs on a server other than the Access Manager server.

86 Access Manager 6 2005Q1 « Developer’s Guide

SSO API

3. With the Command Line SSO Sample, a session token can be created by a
session ID string and passed through the command line.

The sample files are located in the IdentityServer_base/ SUN\Vni sanpl es/ sso
directory.

SSO Servlet Sample

This sample can be used to create a token for an application that resides on the
same server as the Access Manager application. The files used for this sample are:

* Readne. htm

e Sanpl eTokenLi st ener. j ava

» SSOTokenSanpl eServl et. j ava

The instructions in Readne. ht m can be followed to run this code.

Remote SSO Sample

This sample can be used to create a token for an application that resides on a
different server from the one on which the Access Manager application lives. The
files used for this sample are:

« renmote. htm

e SSOrokenFronRenot eServl et . j ava

» SSOTokenSanpl eServl et. j ava

The instructions in r enot e. ht M can be followed to run this code.

Command Line SSO Sample

This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

* ssocli.txt
e« CommandLi neSSQO. j ava
e SSOrokenSanpl e. j ava

The instructions in ssocl i . t xt can be followed to run this code.

Chapter 4 Single Sign-On And Sessions 87

SSO API

C API Overview

The C API are provided in the SU\Vantompackage which comes with Access
Manager or any of its downloadable agents. The package includes header files,
libraries and samples.

CAUTION Previous releases of Access Manager contained C libraries in
IdentityServer_base/ | i b/ capi . The capi directory is being deprectated, and
is curently available for backward compatability. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD LI BRARY _PATH, PATH, compiler options, etc.)

C SSO Include Files

Include files for the C SSO APl are am sso. hand am noti fy. h. am sso. h must be
included for any SSO routines. am not i f y. h must be included for parsing
notification messages from the server and calling SSO listeners.

C SSO Properties

Certain properties must be read in and passed to am sso_i ni t (), the routine
which initializes C API. Because of this, am sso_i ni t () must be called before any
other SSO interface. The default properties file used is AMAgent . pr operti es,
located in IdentityServer_base/ SUN\WANT confi g/ . The following properties must be
set;

e The com sun. am nam ngURL property specifies the URL for the Naming
Service. This service is used to find the URL of the Session Service for the given
SSOroken ID. This property must be set as:

com sun. am nam ngURL =
ht t ps: // nyhost . nydomai n. com 58080/ anser ver / nam ngser vi ce

e Thecom sun.am noti fi cati onEnabl ed and com sun. am noti fi cati onURL
properties specify whether notification is enabled, and if enabled, a URL where
the application can listen for messages from Access Manager. These properties
must be set as:

com sun. am noti fi cati onEnabl ed=t r ue

88 Access Manager 6 2005Q1 « Developer's Guide

SSO API

NOTE Ifcom sun. am not i fi cati onEnabl ed is not found in the properties file,

the default is false.

com sun. am noti fi cati onURL=ht t ps:// nmyhost . nydomai n. com 8000/ nyU
RL

The com sun. am sso. cacheEnt ryLi f eTi me property specifies how long, in
minutes, a session token can live in cache before it should be removed. This
property must be set as:

com sun. am sso. cacheEnt ryLi f eTi me=5

If not set, the default is 3 minutes.

The com sun. am sso. checkCachel nt er val property specifies how often, in
minutes, the cache should be checked for entries that have reached the cache
entry life time. This property must be set as:

com sun. am sso. checkCachel nt erval =5

The com sun. am sso. maxThr eads specify the maximum number threads the
SSO API should invoke for handling notifications. The API maintains a thread
pool and invokes a thread for each notification. If the maximum number of
threads has been reached, the notification will wait until a thread is available. If
not specified the default maximum number of threads is 10. This property
must be set as:

com sun. am sso. maxThreads = 5

The com sun. am cooki eEnabl ed property specifies whether the session ID
found in the cookie is URL encoded. If true, it will be URL decoded before sent
to Access Manager for any session operation. This property must be set as:

com sun. am cooki eEncoded = true|fal se

More information on properties in the AMAgent . proper ti es file can be found in
the Web Policy Agents Guide and the J2EE Policy Agents Guide.

C SSO interfaces

The C SSO interfaces consist of the following routines. A detailed description of the
input and output parameters for each interface is in the header files.

Initialization and Cleanup
Get, Validate, Refresh And Destroy SSO Token

Get Session Information Interfaces

Chapter 4 Single Sign-On And Sessions 89

SSO API

= Get And Set Property Interfaces
= Listener And Notify Interfaces

Initialization and Cleanup

To use the C SSO API, the am sso_i ni t () routine needs to be called before any
other routines. This interface initializes the internal SSO module. At the end of all
SSO routines, am cl eanup() should be called to cleanup the internal SSO module.
Code Example 4-5 on page 90 is a code sample for these interfaces.

am_sso_init() initializes internal data structures for talking to the Session Service.
It takes a properties input parameter that contains name /value pairs from a
configuration or properties file, and returns a status on the success or failure of the
initialization. The properties used by the C SSO API are covered in “C SSO
Properties” on page 88.

am_cleanup() cleans up all internal data structures created by am sso_ini t,
amauth_init,orampolicy_init.amcl eanup() needs to be called only once
when using any of the Access Manager C API interfaces (authentication, SSO or

policy).

Code Example 4-5 Code Sample For am_sso_init and am_cleanup

#i ncl ude <am sso. h>

int min() {
am properties_t *properties;
amstatus_t status;

/* create a properties handle */

status = amproperties_create(&properties);

if (status !'= AM SUCCESS) {
printf("amproperties_create failed.\n");
exit(l);

/* load properties froma properties file */
status = amproperties_| oad(properties, "./nyPropertiesFile");
if (status !'= AM SUCCESS) {

printf("amproperties_|load failed.\n");

exit(1);

/* initialize SSO nmodul e */

status = amsso_init(properties);

if (status !'= AM SUCCESS) {
printf("amsso_init failed.\n");
return 1;

}

/* login through auth modul e, and do auth functions.

90 Access Manager 6 2005Q1 « Developer’s Guide

SSO API

Code Example 4-5 Code Sample For am_sso_init and am_cleanup (Continued)

*

*/
/* do sso functions
*

*/

/* done - cleanup. */

status = am cl eanup();

if (status !'= AM SUCCESS) {
printf("amcleanup failed!'\n");
return 1,

/* free menory for properties */
status = am properties_destroy(properties);
if (status !'= AM SUCCESS) {
printf("Failed to free properties.\n");
return 1,

/* exit program successfully. */
return O;

Get, Validate, Refresh And Destroy SSO Token

A user needs to be authenticated to get the token ID for their login session. A token
can be obtained with the token ID and the am sso_creat e_sso_t oken_handl e
interface. This interface checks to see if the token is in its local cache and, if not,
goes to the server to get the session information associated with the token ID and
caches it. If the reset flag is set to t r ue, this interface will refresh the idle time of the
token on the server. Here is the interface of am sso_creat e_sso_t oken_handl e:

e amstatus_t
am sso_create_sso_token_handl e(am sso_token_handle t *
sso_token_handl e ptr, const char *sso_token_id, boolean_t
refresh_token);

Once a token handle is obtained, the caller can check if the session is valid with the
am sso_i s_val i d_t oken interface. The am sso_t oken_val i dat e interface will
flush the token handle in the local cache (if any) and go to the server to fetch the
latest session information. The am sso_r ef resh_t oken will also flush the token
handle in the local cache (if any) and go to the server to fetch the session
information. In addition, it will reset the idle time of the session on the server. Here
are the token-related interfaces:

Chapter 4 Single Sign-On And Sessions 91

SSO API

e bool ean_t am sso_is_valid token(amsso_token_handl e_t
sso_t oken_handl e);

e amstatus_t amsso_validate token(am sso_t oken_handl e_t
sso_t oken_handl e) ;

e amstatus_t amsso_refresh_t oken(am sso_t oken_handl e_t
sso_t oken_handl e) ;

When caller is done with a token handle, it must be freed by calling
am sso_destroy_sso_t oken_handl e to prevent memory leak. Here is that
interface:

e am_status_tam_sso_destroy sso _token_handle(am_sso_token_handle_t
sso_token_handle);

The session associated with the token can be invalidated or ended with

am sso_i nval i dat e_t oken. Although this ends the session for the user, the
proper way to log out is through am aut h_| ogout . Using the former interface to
end a session will result in authentication resources associated with the session to
remain on the server unnecessarily until the session has timed out. Here is the
interface for am sso_i nval i dat e_t oken:

e amstatus_t amsso_invalidate_token(amsso_token_handl e_t
sso_t oken_handl e) ;

Get Session Information Interfaces

The following interfaces make it convenient to get server-defined information (or
properties) about the session associated with a token. This can include the session
idle time, max session time, etc.

e const char * amsso_get sso_token_id(const
am sso_t oken_handl e t sso_token_handl e);

e const char * amsso_get aut h_type(const
am sso_t oken_handl e t sso_token_handl e);

e unsigned | ong amsso_get _auth_| evel (const
am sso_t oken_handl e t sso_token_handl e);

e time_t am sso_get _idle_time(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

e time_t am sso_get _max_idl e_tine(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

e time_t am sso_get _tine_| eft(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

92 Access Manager 6 2005Q1 « Developer’s Guide

SSO API

tine_t am sso_get max_sessi on_ti me(const
am sso_t oken_handl e t sso_token_handl e);

const char * am sso_get _pri nci pal (const
am sso_t oken_handl e_t sso_t oken_handl e) ;

amstring_set_t amsso_get principal _set(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

const char * am sso_get host(const am sso_t oken_handl e_t
sso_t oken_handl e) ;

Get And Set Property Interfaces

The get and set property interfaces allows an application to get any property
(server or application defined) and to set any property in a session. Note that

am sso_set _property will update the sso_t oken_handl e with the latest session
properties from Access Manager, including the new property that was set. In
addition, if the property that is given in pr op_nane is a protected property,

am sso_set _property will return success, however the value given will not be set
as it is a property protected by Access Manager. These interfaces are:

const char * amsso_get property(const am sso_t oken_handl e_t
sso_t oken_handl e, const char *prop_nane);

amstatus_t am sso_set_property(amsso_token_handl e_t
sso_t oken_handl e, const char *prop_nane, const char
*prop_val ue);

Code Example 4-6 is a sample of the SSO get, set, create, refresh, validate,
invalidate, and destroy interfaces.

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate,

Invalidate, and Destroy Interfaces

/* initialize sso as in previous sanple */

amstatus_t status = NULL;

am sso_t oken_handl e_t sso_handl e = NULL;
char *session_status = NULL;
amstring_set t principal _set = NULL;

/* create sso token handl e */
status = am sso_create_sso_t oken_handl e(&so_handl e, sso_t oken_id,
fal se);
I f (status !'= AM SUCCESS) {
printf("Failed getting sso token handle for sso token id %.\n",
sso_token_i d);
return 1;

Chapter 4 Single Sign-On And Sessions

93

SSO API

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces (Continued)

}

/* check if sessionis valid */

session_status = amsso_is_valid_token(sso_handle) ? "Valid" :
"Invalid";

printf("Session state is %\n", session_status);

/* check if session is valid using validate. This al so updates the
handle with info fromthe server */
status = am sso_val i dat e_t oken(sso_handl e) ;
if (status == AM SUCCESS) ({
printf("Session state is valid.\n");
} else if (status == AM I NVALID SESS| {
printf("Session status is invalid.\n");

} else {
printf("Error validating sso token.\n");
return 1,

}

/* get info on the session */
printf("SSO Token IDis %.\n", amsso_get sso_token_i d(sso_handle));
printf("Auth type is %.\n", amsso_get_auth_type(sso_handle));
printf("Auth level is %.\n", amsso_get auth_| evel (sso_handle));
printf("ldle timeis %l.\n", amsso_get_idle_tine(sso_handle));
printf("Max Idle tine is %.\n", amsso get _nax_idle_tine(sso_handl e));
printf("Tine left is %l.\n", amsso_get _tine_|left(sso_handle));
printf("Max session tinme is %l \n",
am sso_get _nmax_sessi on_time(sso_handl e));

printf("Principal is %.\n", amsso_get_principal (sso_handle));
printf("Host is %.\n", amsso_get host(sso_handle));
principal _set = amsso_get _principal _set(sso_handl e);
if (principal_set == NULL) {

printf("ERROR Principal set is NULLI\n");
}else {

printf("Principal set size %l.\n", principal _set->size);

for (i =0; i < principal_set->size; i++) {

printf("Principal [%] = %.\n", i,
princi pal _set->strings[i]);
}

am string_set_destroy(principal_set);

}

/* get "HOST" property on the session. Sane as amsso_get_host (). */
printf("Host is 9%.\n", amsso_get property(sso_handle, "HOST"));

/* set a application defined property and get it back */
status = am sso_set _property(sso_handl e, "AppPropName",
" AppPr opVal ue");
if (status !'= AM SUCCESS) {
printf("Error setting property.\n");
return 1,

94 Access Manager 6 2005Q1 « Developer’s Guide

SSO API

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces (Continued)

printf("AppPropName value is %.\n", amsso_get_property(sso_handl e,
" AppPr opNare”) ;

/* refresh token, idle time should be O after refresh */
status = amsso_refresh_token(sso_handl e);
if (status !'= AM SUCCESS) {

printf("Error refreshing token !'\n");

return 1,

}
printf("After refresh, idle timeis %l.\n",
am sso_get _idle_tine(sso_handle));

/* end this session abruptly. amauth_logout() is the right way to end
session */
status = amsso_inval i date_t oken(sso_handl e) ;
if (status !'= AM SUCCESS) ({
printf("Error invalidating token.\n");
return 1,

/* we're done with sso token handle. free menory for sso handle. */
status = am sso_destroy_sso_t oken_handl e(sso_handl e) ;
if (status !'= AM SUCCESS) {

printf("Failed to free sso token handle.\n");

return 1;

/* call amcleanup, and other cleanup routines as in previous sanple */

Listener And Notify Interfaces

Applications can be notified when a session has become invalid, possibly because it
has been idle over a time limit, or it has reached the maximum session time. This is
done by implementing a listener function of type

am sso_t oken_| i stener _func_t, which takes a SSO token handle, event type,
event time, application-defined arguments handle, and a boolean argument to
indicate whether the listener function should be called in the calling thread or
dispatched to a thread from the internal thread pool managed by the C SDK. This
listener function must be registered to be invoked when the session has ended and
notification must be enabled for an application to receive notifications. Notification
is enabled by setting the property com sun. am not i fi cati onEnabl ed to true, and
by providing a URL where the application is receiving HTTP messages from
Access Manager. The URL where the application is receiving messages from the
Access Manager is expected to take any message from the server (as an XML

Chapter 4 Single Sign-On And Sessions 95

SSO API

string) and pass itto am noti fy().am noti fy() will parse the message and
invoke session listeners or policy listeners depending on whether the message is a
session or policy notification. Code Example 4-7 is a sample implementation of
SSOToken listener and how to register it.

Code Example 4-7 Sample Implementation Of SSOToken Listener

voi d sanpl e_listener_func(
am sso_t oken_handl e_t sso_token_handl e,
const am sso_t oken_event _type_t event _type,
const time_t event_tine,
voi d *opaque)

if (sso_token_handle !'= NULL) {
const char *sso_token_id =

am sso_get _sso_t oken_i d(sso_t oken_handl e) ;
bool ean_t is_valid = amsso_is_valid_token(sso_token_handle);
printf("sso token id is %.\n",
sso_token_i d==NULL?"NULL": sso_token_id);
printf("session state is %.\n",
is valid =BTRE ? "valid":"invalid");
printf("event type %l.\n", event_type);
printf("event tine %l.\n", event_tine);

el se {

printf("Error: sso token handle is null!");
if (opaque)

*(int *)opaque = 1;
return;

}
int min(int argc, char *argv[]) {

amstatus_t status;
char *sso_token_id = argv[1];
int |istener_func_done = 0;

/* initialize sso as in previous sanples */

/* get sso token handl e */
status = am sso_create_sso_t oken_handl e(&so_handl e, sso_t oken_id,

fal se);

/* register listener function. notification nust be enabled, if not,
status AM NOTI F_NOT_ENABLED wi | | be returned. */
status = am sso_add_sso_token_|istener(sso_handl e, sanple_listener_func,
&l i stener_func_done, B TRUE);
if (status !'= AM SUCCESS) {
printf("Failed to register sanple listener function.\n");
return 1,

96 Access Manager 6 2005Q1 « Developer’s Guide

C SSO Sample

SSO API

A sample for the C SSO API is provided in the SU\vantompackage. The README
file in the samples directory contains information on each sample including
compile instructions and how to run the samples for testing. The sample for C SSO
isam sso_test.c. Theusage isam sso _test -u [user] -p [password] [-f

properties file] [-I

| ogfi | e] . Access Manager must be available with LDAP

authentication to test the sample. See the README file and the sample itself for more

information.

Java versus C API

The following table provides a side by side comparison of the Java and C SSO API.

Table 4-1 Comparison Between Java And C SSO API
Java Interface C Interface
SSOTokenManager am_status_t

SSOTokenManager.getinstance()
SSOToken

SSOTokenManager.createSSOToken(S
tring tokenld)

boolean

SSOTokenManager.isValidToken(SSO
Token token)

void

SSOTokenManager.validateToken(SSO
Token token)

void

SSOTokenManager.destroyToken(SSO
Token token)

void

SSOTokenManager.refreshSession(SS
OToken token)

Principal
SSOToken.getPrincipal()

am_sso_init(am_properties_t properties)
am_status_t

am_sso_create_sso_token_handle(
am_sso_token_handle_t *sso_token_handle_ptr,
const char *sso_token_id, am_bool_t reset_idle_timer)

boolean_t

am_sso_is_valid_token(const
am_sso_token_handle_t sso_token_handle)

am_status_t

am_sso_validate_token(const
am_sso_token_handle_t sso_token_handle)

am_status_t

am_sso_invalidate_token(const
am_sso_token_handle_t sso_token_handle)

am_status_t

am_sso_refresh_session(am_sso_token_handle_t
sso_token_handle)

char *

am_sso_get_principal(const am_sso_token_handle_t
sso_token_handle)

Chapter 4 Single Sign-On And Sessions 97

SSO API

Table 4-1 Comparison Between Java And C SSO API (Continued)

Java Interface C Interface

int unsigned long

SSOToken.getAuthLevel() am_sso_get_auth_level(const
am_sso_token_handle_t sso_token_handle)

String char *

SSOToken.getAuthType() am_sso_get_auth_type(const
am_sso_token_handle_t sso_token_handle)

String char *

SSOToken.getHostName() am_sso_get_host(const am_sso_token_handle_t

sso_token_handle)
long time_t

SSOToken.getldleTime() am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle)

long time_t

SSOToken.getMaxIdleTime() am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle)

SSOTokenlID char *

SSOToken.getTokenlD() am_sso_get_sso_token_id(const
am_sso_token_handle_t sso_token_handle)

String char *

SSOToken. getProperty(java.lang.String am_sso_get_property(const am_sso_token_handle_t

name) sso_token_handle, const char *property_name)

void am_status_t

SSOToken.setProperty(String name, am_sso_set_property(am_sso_token_handle_t

String value) sso_token_handle, const char *name, const char
*value)

void am_status_t

SSOToken.addSSOTokenListener(am_sso_add_sso_token_listener(am_sso_token_han

SSOTokenListener listener) dle_t sso_token_handle, const

am_sso_token_listener_func_t listener, void *args,
boolean_t dispatch_in_sep_thread)

String am_status_t

SSOToken.getProperty(“principals"); am_sso_get_principal_set(am_sso_token_handle_t
sso_handle)

N/A am_status_t

am_sso_destroy_sso_token_handle(am_sso_token_h
andle_t sso_handle)

98 Access Manager 6 2005Q1 « Developer’s Guide

SSO Samples

Table 4-1 Comparison Between Java And C SSO API (Continued)

Java Interface C Interface

N/A void

am_cleanup()

Non-Web-Based Applications

Access Manager provides the SSO API primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

1. The application has to obtain the Access Manager cookie value and pass it into
the SSO client methods to get to the session token. The method used for this
process is application-specific.

2. Command line applications, such as amadm n, can be used. In this case, session
tokens can be created to access the Directory Server directly. There is no
session created, making the Access Manager access valid only within that
process or VM.

SSO Samples

Access Manager provides the files necessary to compile and run a sample SSO
application. There are three ways in which this can be done;

< Compiling and running a SSO application local to Access Manager.
= Installing and running the SSO SDK from a remote client.
= Running the SSO application from the command line.

More specific information on these samples can be found in “Sample SSO Java
Files” on page 86.

Chapter 4 Single Sign-On And Sessions 99

SSO Samples

100 Access Manager 6 2005Q1 « Developer's Guide

Chapter 5

Customizing the
Authentication User Interface

The authentication service provides the web-based Graphical User Interface (GUI)
for all out-of-box and custom authentication modules installed in the Sun Java™
System Access Manager 6 2005Q1 deployment. This interface provides a dynamic
and customizable means for gathering authentication credentials by presenting the
web-based login requirement pages to a user requesting access.

The authentication service GUI is built on top of JATO (J2EE Assisted Take-Off), a
Java 2 Enterprise Edition (J2EE) presentation application framework. This
framework is used to help developers build complete functional Web applications.

The following topics are covered in this chapter:
= User Interface Files You Can Modify
e Customizing Branding and Functionality

= Customizing the Self-Registration Page

User Interface Files You Can Modify

The authentication GUI dynamically displays the required credentials information
depending upon the authentication module invoked at run time. The Table 5-1 lists
the types of files you can modify to convey custom representations of Login pages,
Logout pages, and error messages. Detailed information is provided in following
sections.

101

User Interface Files You Can Modify

Table 5-1 Authentication User Interface Files and Their Locations at Installation

File Type Default Location

services.war File AccessManager-base/ SUNVANT web- sr c/ ser vi ces

Java Server Pages AccessManager-base/ SUNVan web- src/ servi ces/ confi g/ aut h/ def aul t
XML Files AccessManager-base/ SUNVanT web- sr c/ servi ces/ confi g/ aut h/ def aul t
JavaScript Files AccessManager-base/ SUNVAnT web- src/ services/j s

Cascading Style <AccessManager-base/ SUNVAN web- sr c/ servi ces/ css

Sheets

Images AccessManager-base/ SUNVan web- src/ servi ces/ | ogi n_i mages
Localization Files AccessManager-base/ SUN\Vani | ocal e

To access the default Login page, use the following URL.:
<server_protocol >://<server_host >. <server_domai n>; <server_port >/
<servi ce_depl oy _uri>/ U/Login

To access the default Logout page, use the following URL.:

<server_protocol > //<server_host >. <server_domai n>; <server_port >/
<servi ce_depl oy_uri>/ U/ Logout

The following image illustrates the first page seen for a login when all modules
have been configured for authlevel 0.

102 Access Manager 6 2005Q1 « Developer's Guide

User Interface Files You Can Modify

Figure 5-1 Default Login Page when authlevel=0

~\ Netscape: Sun ONE Identity Server (Login) \ . \J
File Edit View Go Communicator Help

" Bookmarks i Location: [8080/anserver /UTLogin?authlevel -1 | @7 What's Related
| P

@NT
SafeWord
HTTPBasic
Anonymous o
Authentication Membership
Menu Unix
Cert
SecurlD
LDAP
RADIUS

1= [|

services.war File

The servi ces. war contains all the files you need to modify the authentication GUI.
When you install Access Manager on Sun ONE Application Server, on Sun Java ES
Web Server, or on WebLogic Web Server, servi ces. war is automatically installed
and deployed. Its files and directories are installed by default in the following
location:

AccessManager-base/ SUNVAnT web- sr ¢/ ser vi ces

If you install Access Manager on other web containers, you may have to manually
deploy ser vi ces. war . See the documentation that comes with the web container.

Once you’ve modified the authentication GUI files, in order to see the changes in
the actual GUI, you must update and then redeploy ser vi ces. war . See “Updating
and Redeploying services.war” on page 117 in this chapter for instructions. See
Appendix C, “WAR Files” on page 359 for general information on updating and
redeploying Access Manager . war files.

Chapter 5 Customizing the Authentication User Interface 103

User Interface Files You Can Modify

Java Server Pages

All authentication GUI pages are . j sp files with embedded JATO tags. You do not
need to understand JATO to customize Access Manager GUI pages. Java server
pages handle both the Ul elements and disciplines displayed through peer
ViewBeans. By default, JSP pages are installed in the following directory:
AccessManager-base/ SUNVa web- sr ¢/ ser vi ces/ confi g/ aut h/ def aul t

Note that Java server pages are looked up from the deployed location. In previous
Access Manager versions, the Java server pages were looked up from the installed
location.

Customizing the Login Page

The Login page is a common Login page used by most authentication modules
except for the Membership module. For all other modules, at run time the Login
page dynamically displays all necessary GUI elements for the required credentials.
For example, the LDAP authentication module Login page dynamically displays
the LDAP module header, LDAP User name, and Password fields.

You can customize the following Login page Ul elements:
= Module Header text

= User Name label and field

= Password label and field

= Choice value label and field
Note, the field is a radio button by default, but can be change to a check box.

< Image (at the module level)

= Login button

Customizing JSP Templates

Use the JSP templates to customize the look and feel of presented in the graphical
user interface (GUI). See “To Modify Branding and Functionality” on page 113 for
detailed instructions. Table 5-2 contains provides descriptions of templates you can
customize. The templates are located in the following directory:

IdentityServer_base/ SUN\VAnT web- sr c/ ser vi ces/ confi g/ aut h/ def aul t

104 Access Manager 6 2005Q1 « Developer's Guide

Table 5-2

User Interface Files You Can Modify

List of Customizable JSP Templates

File Name

Purpose

account _expired.jsp

auth_error_tenplate.jsp

aut hException. j sp
di scl ai ner.jsp

Exception.jsp
i nval i dPCooki eUseri d. j sp

i nval i dPassword. j sp

i nval i d_domai n. j sp
Logi n.j sp

| ogi n_deni ed. j sp

login failed tenplate.jsp
Logout . j sp

nmaxSessi ons. j sp

nenbership.jsp
Message. j sp

m ssi ngReqgFi el d. j sp
nodul e_deni ed. j sp

nodul e_tenpl ate. | sp

new org.jsp

noConfig.jsp

Informs the user that their account has expired and should
contact the system administrator.

Informs the user when an internal authentication error has
occurred. This usually indicates an authentication service
configuration issue.

Informs the user that an error has occurred during
authentication.

This is a customizable disclaimer page used in the
Self-registration authentication module.

Informs the user that an error has occurred.

Informs the user that a persistent cookie user name does
not exist in the persistent cookie domain.

Informs the user that the password entered does not
contain enough characters.

Informs the user that there is no such domain.
This is a Login/Password template.

Informs the user that no profile has been found in this
domain.

Informs the user that authentication has failed.
Informs the user that they have logged out.

Informs the user that the maximum sessions have been
reached.

A login page for the Self-registration module.

A generic message template for a general error not
defined in one of the other error message pages.

Informs the user that a required field has not been
completed.

Informs the user that the user does not have access to the
module.

A customizable module page.

This page is displayed when a user with a valid session in
one organization wants to login to another organization.

Informs the user that no module configuration has been
defined.

Chapter 5 Customizing the Authentication User Interface 105

User Interface Files You Can Modify

Table 5-2 List of Customizable JSP Templates (Continued)

File Name

Purpose

noConfirmation.jsp

noPasswor d. j sp

noUser Nane. j sp

noUserProfile.jsp

org_inactive.jsp
passwor dM snat ch. j sp
profil eException.jsp

Redirect.jsp
register.jsp

session_timeout.jsp
user Deni ed. j sp

user Exi sts.jsp

user Passwor dSane. j sp

user _inactive.jsp

wr ongPasswor d. j sp

Informs the user that the password confirmation field has
not been entered.

Informs the user that no password has been entered.

Informs the user that no user name has been entered. It
links back to the login page.

Informs the user that no profile has been found. It gives
them the option to try again or select New User and links
back to the login page.

Informs the user that the organization they are attempting
to authenticate to is no longer active.

This page is called when the password and confirming
password do not match.

Informs the user that an error has occurred while storing
the user profile.

This page carries a link to a page that has been moved.
A user self-registration page.

Informs the user that their current login session has timed
out.

Informs the user that they do not possess the necessary
role (for role-based authentication.)

This page is called if a new user is registering with a user
name that already exists.

Called if a new user is registering with a user name field
and password field have the same value.

Informs the user that they are not active.

Informs the user that the password entered is invalid.

XML Files

XML files describe the authentication module-specific properties based on the
Authentication Module Properties DTD. Access Manager defines an authentication
module configuration file for each of the default authentication modules. By
default, Authentication XML files are installed in the following directory:
IdentityServer_base/ SUNVANT web- sr c/ ser vi ces/ confi g/ aut h/ def aul t . Table 5-3
provides descriptions of the authentication module configuration files.

Access Manager 6 2005Q1 « Developer's Guide

User Interface Files You Can Modify

Note that XML files are looked up from the deployed location. In previous Access
Manager versions, the XML files were looked up from the installed location.

Table 5-3 List of Authentication Module Configuration Files

File Name

Purpose

AD. xm
Anonynous. xni

Appl i cation. xmni
Cert . xni

HTTPBasi c. xni
JDBC. xni

LDAP. xmi

Menber shi p. xm
VBl SDN. xm

NT. xm
RADI US. xm

Saf eWbrd. xni
SAM.. xm
Secur | D. xm

Uni x. xm

Defines a Login screen for use with Active Directory
authentication.

For anonymous authentication, although there are no
specific credentials required to authenticate.

Needed for application authentication.

For certificate-based authentication although there are no
specific credentials required to authenticate.

Defines one screen with a header only as credentials are
requested via the user’'s web browser.

Defines a Login screen for use with Java Database
Connectivity (JDBC) authentication.

Defines a Login screen, a Change Password screen and
two error message screens (Reset Password and User
Inactive).

Default data interface which can be used to customize for
any domain.

Defines a Login screen for use with Mobile Subscriber
ISDN (MSISDN).

Defines a Login screen.

Defines a Login screen and a RADIUS Password
Challenge screen.

Defines two Login screens: one for User Name and the
next for Password.

Defines a Logins screen for Security Assertion Markup
Language (SAML) authentication.

Defines five Login screens including UserID and
Passcode, PIN mode, and Token Passcode.

Defines a Login screen and an Expired Password screen.

This following sections describe XML elements you can modify to customize the
authentication Ul. For a comprehensive list of authentication elements defined in
the Authentication Module Properties DTD, see the Developer’s Reference.

Chapter 5 Customizing the Authentication User Interface 107

User Interface Files You Can Modify

Callbacks Element

The Callbacks element is used to define the information a module needs to gather
from the client requesting authentication. Each Callbacks element signifies a
separate screen that can be called during the authentication process.

Nested Elements

The following table describes nested elements for the Cdlbacks element.

Element

NaneCal | back

Passwor dCal | back
Choi ceCal | back

ConfirmationCal | back

Ht t pCal | back

Attributes

Required

*

Description

Requests data from the user; for example, a user
identification.

Requests password data to be entered by the user.

Used when the application user must choose from
multiple values.

Sends button information such as text which needs
to be rendered on the module’s screen to the
authentication interface.

The following table describes attributes for the Calbackselement.

Attribute
I ength
or der

ti meout

tenpl ate

i mage

header

error

Default

60

Authentication

false

108 Access Manager 6 2005Q1 « Developer's Guide

Description
The number or length of callbacks
Is the sequence of the group of callbacks

Number of seconds the user has to enter credentials
before the application times out.

Defines the Ul or page level attributes for the Ul
customization

Defines the Ul or page level attributes for the Ul
customization

the text header information to be displayed on the Ul

Indicates whether authentication framework/module
needs to terminate the authentication process. If
yes, then the value is true.

User Interface Files You Can Modify

ConfirmationCallback Element

This element is used by the authentication module to send button information for
multiple buttons. An example is the button text which needs to be rendered on the
Ul page. The element also receives the selected button information from the UI.

Nested Elements
The following table describes nested elements for the Conf i r nat i onCal | back
element.

Element Required Description

OptionVaues

Attributes
None

Details

If there is only one button on the Ul page then module is not required to send this
callback.lf Confirmation Callback is not provided through the Authentication
Module properties XML file, then the global Ul i18n properties file for all modules
(anAut hU . propert i es) will be used to pick and display the button text (label) for
Login button.

Callbacks length value should be adjusted accordingly after addition of the new
callback.

Example:
<Confi rmationCal | back>
<Qpti onVal ues>
<Qpti onVal ue>
<Val ue> <required button text> </Val ue>
</ Opti onVal ue>
</ Opt i onVal ues>

</ ConfirmationCal | back>

Chapter 5 Customizing the Authentication User Interface 109

User Interface Files You Can Modify

110

JavaScript Files

JavaScript files are parsed within the Logi n. j sp file. You can add custom functions
to the JavaScript files in the following directory:
IdentityServer_base/ SUN\VAnT web- sr c/ servi ces/ | s.

The JavaScript files used by the Authentication Service are summarized in
Table 5-4.

Table 5-4 List of JavaScript Files

File Name Purpose

auth.js Used by Logi n. j sp for parsing all module files to display
login requirement screens.

browser Version. s Used by Logi n. j sp to detect the client type.

Cascading Style Sheets

Modify the cascading style sheets (CSS) files to define the look and feel of the Ul.
Characteristics such as fonts and font weights, background colors, and link colors
are specified in the CSS files. You must choose the appropriate .css file for your
browser in order to customize the look and feel on the User Interface.

In the appropriate .css file, change the background-color attribute. Examples:

.button-content-enabl ed { background-color: red; }

button-link:link, a button-link:visited { color: #000;
background-col or: red; text-decoration: none; }

There are a number of browser-based CSS files installed with Access Manager in
the following directory:

IdentityServer_base/ SUN\VAnT web- src/ servi ces/ css.

Table 5-5 provides a brief description of each CSS file.

Table 5-5 List of Cascading Style Sheets

File Name Purpose

Ccss_generic. css Configured for generic web browsers.

css_iebwin. css Configured specifically for Microsoft® Internet Explorer v.5
for Windows®.

Access Manager 6 2005Q1 « Developer's Guide

User Interface Files You Can Modify

Table 5-5 List of Cascading Style Sheets (Continued)

File Name Purpose

css_ns4sol . css Configured specifically for Netscape™ Communicator v. 4
for Solaris™.

CSs_ns4wi n. css Configured specifically for Netscape Communicator v.4 for
Windows.

styl es. css Used in JSP pages as a default style sheet.

Images

The default authentication GUI is branded with Sun Microsystems, Inc. logos and
images. By default, the GIF files are installed in the following directory:

SUNVani web- src/ servi ces/ | ogi n_i mages

These images can be replaced with images relevant to your company. Table 5-6
provides a brief description for each GIF image used for the default GUI.

Table 5-6 List of Sun Microsystems Branded GIF Images

File Name Purpose

Identity_Logln. gif Sun Java System Access Manager banner across
the top.

Regi stry_Logi n. gi f No longer used.

banner Txt _regi stryServer.gif Nolonger used.

| ogo_sun. gi f Sun Microsystems logo in the upper right corner.
spacer. gi f A one pixel clear image used for layout purposes.
sunOne.gif Sun Java System logo in the lower right corner.

Localization Files

Location: <install-dir>/SUNWam/locale

These are "i18n" properties files global to the Access Manager instance. A
localization properties file, also referred to as an i18n (internationalization) properties
file specifies the screen text and error messages that an administrator or user will
see when directed to an authentication module’s attribute configuration page. Each
authentication module has its own properties file that follows the naming format

Chapter 5 Customizing the Authentication User Interface 111

User Interface Files You Can Modify

amAut hmodulename. pr oper ti es; for example, amAut hLDAP. pr operti es. They are
located in IdentityServer_base/ SUN\WANT | ocal e/ . The default character set is
ISO-8859-1 so all values are in English, but Java applications can be adapted to
various languages without code changes by translating the values in the

localization properties file.

Table 5-7 contains a listing of the localization properties files configured for each
module. These files can be found in IdentityServer_base/ SUNVani | ocal e.

Table 5-7

List of Localization Properties Files

File Name

Purpose

amAut h. properti es

amAut hAD. properti es

amAut hAnonynous. properti es
amAut hAppl i cati on. properties

amAut hCert . properties
amAut hConf i g. properties
amAut hCont ext . properti es

amAut hCont ext Local . propertie
s

amAut hHTTPBasi c. properti es
amAut hJDBC. properti es

amAut hLDAP. properti es
amAut hMenber shi p. properties
amAut hivBl SDN. properti es

amAut hNT. properti es

amAut hRadi us. properties
amAut hSaf eWsr d. properti es
amAut hSAM.. properti es

amAut hSecur | D. properti es

Defines the parent Core Authentication Service.
Defines the Active Directory Authentication Module.
Defines the Anonymous Authentication Module.

For Access Manager internal use only. Do not
remove or modify this file.

Defines the Certificate Authentication Module.
Defines the Authentication Configuration Module.

Defines the localized error messages for the
Aut hCont ext Java class.

For Access Manager internal use only. Do not
remove or modify this file.

Defines the HTTP Basic Authentication Module.

Defines the Java Database Connectivity (JDBC)
Authentication Module.

Defines the LDAP Authentication Module.
Defines the Membership Authentication Module.

Defines the Mobile Subscriber ISDN Authentication
Module.

Defines the Windows NT Authentication Module.
Defines the RADIUS Authentication Module.
Defines the Safeword Authentication Module.

Defines the Security Assertion Markup Language
(SAML) Authentication Module.

Defines the SecurlD Authentication Module.

Access Manager 6 2005Q1 « Developer's Guide

Customizing Branding and Functionality

Table 5-7 List of Localization Properties Files

File Name Purpose

amAut hUl . properties Defines labels used in the authentication user
interface.

amAut hUni x. properties Defines the UNIX Authentication Module.

Customizing Branding and Functionality

You can modify JSP templates and module configuration properties files to reflect
branding or functionality specified for any of the following:

Organization of the request
SubOrganization of the request.
Locale of the request

Client Path

Client Type information of the request

Service Name (serviceName)

To Modify Branding and Functionality

1.

2.

Go to the directory where default JSP templates are stored.
cd AccessManager-base/ SUNVANT web- sr ¢/ servi ces/ confi g/ aut h
Create a new directory.

Use the appropriate customized directory path based on the level of
customization. Use the following forms:

org_l ocal e/ orgPat h/fil ePath
org/orgPath/filePath
defaul t _| ocal e/ orgPath/fil ePath

Chapter 5 Customizing the Authentication User Interface 113

Customizing Branding and Functionality

defaul t/orgPath/fil ePath
In these examples,
orgPat h represents subQr g1/ subQr g2
filePath represents clientPath + servi ceName
clientPath represents client Type/ sub-client Type

Note that Sub-org, Locale, Client Path, Service Name (which represents
orgPat h and fi | ePat h) are optional. Note also that the organization name you
specify may match the organization attribute set in the Directory Server. For
example, if the organization attribute value is SunMicrosystems, then the
organization customized directory should also be SunMicrosystems. If no
organization attribute exists, then the lowercase value of the organization
name (sunmicrosystems) should be used.

For example, for the following attributes:
or g = SunMicrosystems
[ocale=en
subQr g = solaris
cl i ent Pat h = html/customerName/
servi ceNane = paycheck

customized directory paths would be:
SunM crosyst ens_en/ sol ari s/ ht m / ustomerName/ paycheck
SunM cr osyst ens/ sol ari s/ ht m / ustomerName/ paycheck
defaul t _en/ sol ari s/ ht ni / ustomerName/ paycheck
defaul t/sol ari s/ ht m / ustomerName/ paycheck

3. Copy the default templates.

Copy all the JSP templates (*. j sp) and authentication module configuration
properties xml files (*. xnt) from the default directory:

AccessManager-base/ SUNVan web- sr ¢/ ser vi ces/ confi g/ aut h/ def aul t
to the new directory:

AccessManager-base/ SUNWam web- sr ¢/ ser vi ces/ confi g/
aut h/ CustomizedDirectoryPath

114 Access Manager 6 2005Q1 « Developer's Guide

Customizing the Self-Registration Page

4. Customize the files in the new directory.

The files in the new directory can be customized if necessary, but not this is not
required. See “Customizing the Login Page” on page 104 and “Customizing
JSP Templates” on page 104 for information on what you can modify.

5. Update and redeploy ser vi ces. war .

Once you’ve modified the authentication GUI files, in order to see the changes
in the actual GUI, you must update and then redeploy ser vi ces. war . See
“Updating and Redeploying services.war” on page 117 in this chapter for
instructions. See Appendix C, “WAR Files” on page 359 for general
information on updating and redeploying Access Manager . war files.

6. Restart both Access Manager and the web container server.

Customizing the Self-Registration Page

You can customize the Self-registration page which is part of Membership
authentication module. The default data and interface provided with the
Membership authentication module is generic and can work with any domain.You
can configure it to reflect custom data and information.You can add custom user
profile data or fields to register or to create a new user.

To Modify the Self-Registration Page

1. Customize the Menber shi p. xm file.

By default, the first three data fields are required in the default Membership
Module configuration:

o User name
o User Password
o Confirm User Password

You can specify which data is requested, which is required, and which is
optional. Code Example 5-1 on page 116 illustrates how to add a telephone
number as requested data.

You can specify or add data which should be requested from a user as part of
the User Profile. By default you can specify or add any attributes from the
following objectClasses:

Chapter 5 Customizing the Authentication User Interface 115

Customizing the Self-Registration Page

116

o top

o person

o organi zational Person

o inetQOrgPerson

o iplanet-amuser-service

o inetuser

Administrators can add their own user attributes to the User Profile.

2. Update and redeploy servi ces. war .

Once you’ve modified the authentication GUI files, in order to see the changes

in the actual GUI, you must update and then redeploy ser vi ces. war . See
“Updating and Redeploying services.war” on page 117 in this chapter for
instructions. See Appendix C, “WAR Files” on page 359 for general
information on updating and redeploying Access Manager . war files.

3. Restart both Access Manager and the web container server.

Code Example 5-1 Adding a Telephone Number as Requested Data

<Cal | backs | ength="9" order="16" timeout="300" header="Self Registration"
tenpl ate="register.jsp" >

<NaneCal | back isRequired="true" attribute="uid" >
<Pronpt > User Nane: </Pronpt>
</ NaneCal | back>

<Passwor dCal | back echoPasswor d="fal se" i sRequired="true"

attri but e="user Password" >
<Pronpt > Password: </ Pronpt >
</ Passwor dCal | back>

<Passwor dCal | back echoPassword="fal se" isRequi red="true" >
<Pronpt > Confirm Password: </ Pronpt>
</ Passwor dCal | back>

<NaneCal | back isRequired="true" attribute="givennane" >
<Pronpt> First Nane: </Pronpt>
</ NaneCal | back>

<NaneCal | back isRequired="true" attribute="sn" >
<Pronpt > Last Nane: </Pronpt>
</ NaneCal | back>

<NaneCal | back isRequired="true" attribute="cn" >
<Pronpt> Full Nane: </Pronpt>
</ NaneCal | back>

Access Manager 6 2005Q1 « Developer's Guide

Updating and Redeploying services.war

Code Example 5-1 Adding a Telephone Number as Requested Data (Continued)

<NaneCal | back attribute="mail" >
<Pronpt> Emai | Address: </Pronpt>
</ NarmeCal | back>

<NamneCal | back i sRequired="true"attribute="tel phonenunber">
<Pronpt > Tel : </ Pronpt >
</ NarmeCal | back>

<Confirmati onCal | back>

<Qpti onVal ues>

<Qpti onVal ue>

<Val ue> Regi ster </Val ue>
</ Opti onVal ue>

<Qpti onVal ue>

<Val ue> Cancel </Val ue>
</ Qpti onVal ue>

</ Opti onVal ues>

</ ConfirnmationCal | back>
</ Cal | backs>

Updating and Redeploying services.war

If Access Manager is installed on BEA WebLogic, IBM WebSphere, or Sun ONE
Application Server, you must update and redeploy servi ces. war before you can
see any changes in the user interface. Once you’ve made changes to the
authentication GUI files, regardless of the brand of web container you’re using, it is
a good practice to update and redeploy the servi ces. war file. When you update
and redeploy servi ces. war, you overwrite the default GUI files with your
changes, and the changed files are placed in their proper locations. The section
“services.war File” on page 103 provides background information on this file.

To Update services.war

1. cd ldentityServer_base/SUN\Wam
This is the directory in which the WARs are kept.

Chapter 5 Customizing the Authentication User Interface 117

Updating and Redeploying services.war

118

2. jar -uvf WARfilename.war <path_to_modified_file>
The - uvf option replaces the old file with the newly modified file. For example:
jar -uvf services.war newfile/index. htm

replaces the i ndex. ht mi file in console.war with the i ndex. ht ni file located in
IdentityServer_base/ SUNVAN newfii | e.

3. rmnewfile/index.htni

Deletes the modified file.

To Redeploy services.war

The servi ces. war will be in the following directory:
AccessManager - hase/ SUN\VAmM

Depending upon the brand of web container you are using, execute one of the
following commands.

On BEA WebLogic

java webl ogi c. depl oy -url ServerURL - conponent { ServerDeployURI} :
{ WL61 Server} depl oy WL61AdminPassword { ServerDeployURI}

{ AccessManager-base} / { SUNVan} / ser vi ces. war
In this example,

ServerURL uses the form protocol://host:port
Example: http: //abc. com 58080

ServerDeployURI represents the server Universal Resource Identifier
Example: anser ver

WL61 Server represents the Weblogic Server name
Example: name.com

On Sun ONE Application Server

asadmin deploy -u IAS7Admin -w IAS7AdminPassword -H HostName -p
IAS7AdminPort --type web SECURE_FLAG --contextroot

Access Manager 6 2005Q1 « Developer's Guide

Updating and Redeploying services.war

ServerDeployURI --name amserver --instance IAS7Instance
{AccessManager-base}/ { SUN\Van} / ser vi ces. war

On IBM WebSphere

See the deployment documentation that comes with the IBM WebSphere product.
websphere:

http://ww 3. i bm con sof t war e/ webser ver s/ st udi o/ doc/ v40/ st udi ogui de/
en/ htm/sdsscenariol. htm

Chapter 5 Customizing the Authentication User Interface 119

Updating and Redeploying services.war

120 Access Manager 6 2005Q1 « Developer's Guide

Chapter 6

Using Authentication APIs and SPIs

This chapter provides information on using Sun Java™ System Access Manager 6
2005Q1 authentication programming interfaces to use and to extend the
Authentication Service.

This chapter contains the following sections:

= “Overview of Authentication APIs and SPIs” on page 121
= “Using Authentication APIs” on page 132

= “Using Authentication SPIs” on page 138

Overview of Authentication APIs and SPIs

Access Manager provides both Java APIs and C APIs for writing authentication
clients that remote applications can use to gain access to the Authenticate Service.
This communication between the APIs and the Authentication Service occurs by
sending XML messages over HTTP(S) . The r enot e- aut h. dt d is the template used
in formatting the XML request messages sent to Access Manager and for parsing
the XML return messages received by the external application. You can access
renot e- aut h. dt d in the directory AccessManager-base/ SUNVanT dt d.

New authentication modules are added to Access Manager by using the

com i pl anet. aut henti cati on. spi package. The SPI implements the JAAS

Logi nMbdul e, and provides additional methods to access the Authentication
Service and module configuration properties files. Because of this architecture, any
custom JAAS authentication module will work within the Authentication Service.

< How the Authentication Java APIs Work
< How the Authentication C-APIs Work
e XML/HTTP Interface for Other Applications

121

Overview of Authentication APIs and SPIs

122

< How the Authentication SPIs Work

NOTE If contacting the Authentication Service directly through its URL
(ht t p: // identity_server_host.domain_name:port/ service_deploy_uri/au
t hser vi ce) without the API, a detailed understanding of r enot e- aut h. dt d
will be needed for generating and interpreting the messages passed between the
client and server. Sample response and return XML messages can be found in
“Examples of XML Messages” on page 124.

How the Authentication Java APIs Work

External Java applications can authenticate users with the Access Manager
Authentication Service by using the Authentication Java APls. The APIs are
organized in a package called com sun. i dentity. aut henti cati on and can be
executed locally or remotely. The classes and methods defined in this package are
used to initiate the authentication process and communicate authentication
credentials to the specific modules within the Authentication Service. The classes
and methods can be incorporated into a Java application to allow communication
with the Authentication Service.

The first step necessary for an external Java application to authenticate to Access
Manager is to create a new Aut hCont ext object

(com sun.identity. aut henticati on. Aut hCont ext). The Aut hCont ext class is
defined for each authentication request as it initiates the authentication process.
Since Access Manager can handle multiple organizations, Aut hCont ext is
initialized, at the least, with the name of the organization to which the requestor is
authenticating. Once an Aut hCont ext object has been created, the | ogi n() method
is called indicating to the server what method of authentication is desired.

I ndexNane is the value of the authentication type. Table 6-1 sunmari zes
I ndexNanme val ues and their correspondi ng aut hetnication types.

Table 6-1 IndexName Values

IndexName Value Authentication Type

Aut hCont ext . | ndexType. ROLE Role-based

Aut hCont ext . | ndexType. SERVI CE Service-based

Aut hCont ext . | ndexType. USER User-based

Aut hCont ext . | ndexType. LEVEL Authentication Level-based
Aut hCont ext . | ndexType. MODULE_INS Module-based

TANCE

Access Manager 6 2005Q1 « Developer's Guide

Overview of Authentication APIs and SPIs

The get Requi r enent s() method then calls the objects that will be populated by
the user. Depending on the parameters passed with the instantiated Aut hCont ext
object and the two method calls, Access Manager responds to the client request
with the correct login requirement screens. For example, if the requested user is
authenticating to an organization configured for LDAP authentication only, the
server will respond with the LDAP login requirement screen to supply a user name
and a password. The client must then loop by calling the hasMor eRequi r errent s()
method until the required credentials have been entered. Once entered, the
credentials are submitted back to the server with the method call

submi t Requi r ement s() . The final step is for the client to make a get St at us()
method call to determine if the authentication was successful. If successful, the
caller obtains a session token for the user; if not, a Logi nExcept i on is thrown.

Because the Authentication Service is built on the JAAS framework, the
Authentication API can also invoke any authentication modules written purely
with the JAAS API.

For detailed information about Java APls for authentication, see the Javadoc in the
following directory:

AccessManager-base/ SUNVnT docs

How the Authentication C-APIs Work

C applications can authenticate users with the Access Manager Authentication
Service by using the Authentication C-API. The C application contacts the
Authentication Service to initiate the authentication process, and the
Authentication Service responds with a set of requirements. The client application
submits authentication credentials back to the Authentication Service and receives
further authentication requirements back until there are no more to fulfill. After all
requirements have been sent, the client makes one final call to determine if
authentication has been successful or has failed. The C API can be found in
IdentityServer_base/ SUN\VANT agent s. This directory also includes a C APl sanpl es
directory.

CAUTION Previous releases of Access Manager contained C libraries in
IdentityServer_base/ | i b/ capi . The capi directory is being deprecated, and
is currently available for backward compatibility. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD LI BRARY _PATH, PATH, compiler options, etc.)

Chapter 6 Using Authentication APIs and SPIs 123

Overview of Authentication APIs and SPIs

The sequence of calls necessary to authenticate to Access Manager begins with the
function call am aut h_creat e_aut h_cont ext . This call will return an

Aut hCont ext structure used for the rest of the authentication calls. Once an

Aut hCont ext structure has been initialized, the am aut h_| ogi n function is called.
This indicates to the Authentication Service that an authentication is desired.
Depending on the parameters passed when creating the Aut hCont ext structure
and making the am aut h_I ogi n function call, the Authentication Service will
determine the login requirements with which to respond. For example, if the
requested authentication is to an organization configured for LDAP authentication,
and no authentication module chaining is involved, the server will respond with
the requirements to supply a user name and a password. These attributes
correspond to elements in the remote-auth.dtd structure. The user name
corresponds to the NameCallback element; the password which corresponds to the
PasswordCallback element. The client loops on function call

am aut h_has_nore_requi renment s (in this specific case there will be two). The
client then fills in the needed information and submits this back to the server with
function call am_auth_submit_requirements. The final step is to make function call
am aut h_get _st at us to determine if the authentication was successful or not.

XML/HTTP Interface for Other Applications

Applications written in a programming language other than Java or C can
exchange authentication information with Access Manager using the
XML/HTTP(s) interface. Using the URL

ht t p: / / server_name.domain_name: port/ service_deploy_uri/ aut hser vi ce, an application
can open a connection using the HTTP POST method and exchange XML messages
with the Authentication Service. The structure of the XML messages is defined in
renot e- aut h. dt d. In order to access the Authentication Service in this manner, the
client application must contain the following:

= A means of producing valid XML compliant with the r enot e- aut h. dt d.

e HTTP 1.1 compliant client implementation to send XML-configured
information to Access Manager.

e HTTP 1.1 compliant server implementation to receive XML-configured
information from Access Manager.

< An XML parser to interpret the data received from Access Manager.
Examples of XML Messages

The following code examples illustrate how customers might configure the XML
messages posted to the Authentication Service.

124 Access Manager 6 2005Q1 « Developer's Guide

Overview of Authentication APIs and SPIs

NOTE Although the client application need only write XML based on the
r enot e- aut h. dt d, when these messages are sent they include additional
XML code produced by the Authentication API. This additional XML code is not
illustrated in the following examples.

Code Example 6-1 illustrates the initial XML message sent to the Access Manager.
It opens a connection and asks for authentication requirements regarding the
exanpl eor g organization to which the user will login.

Code Example 6-1 Initial AuthContext XML Message

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext versi on="1.0">

<Request authldentifier="0">

<NewAut hCont ext or gNanme="dc=exanpl eor g, dc=con >
</ NewAut hCont ext >

</ Request >

</ Aut hCont ext >

Code Example 6-2 illustrates the successful response from Access Manager that
contains the aut hl denti fi er, the session identifier for the initial request.

Code Example 6-2 Authldentifier XML Message Response

<?xm version="1.0" encodi ng="UTF-8"?>
<Aut hCont ext version="1.0">
<Response

aut hl denti fi er="AQ CoWMRLYASf cwnVdbgTX+OVeyWEPI W bloVb5esqDl kaY=">
<Logi nSt atus status="in_progress">

</ Logi nSt at us>

</ Response>

</ Aut hCont ext >

Code Example 6-3 illustrates the client response message back to Access Manager.
It specifies the type of authentication module needed by the user to log in.

Chapter 6 Using Authentication APIs and SPIs 125

Overview of Authentication APIs and SPIs

126

Code Example 6-3 Second Request Message With Authentication Module Specified

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext versi on="1.0">

<Request aut hldentifier="AQ CGWM2LY4Sf cwnvdbg TX+9WyWEP W bloVb5esqD kaY=">
<Logi n>

<I ndexTypeNanePai r i ndexType="nodul el nst ance" >

<I ndexNane>LDAP</ | ndexNane>

</ I ndexTypeNanePai r >

</ Logi n>

</ Request >

</ Aut hCont ext >

Code Example 6-4 illustrates the return message from Access Manager which
specifies the authentication module’s login requirements. In this case, the LDAP
requirements include a user name and password. Note the page time out value of
120 seconds.

Code Example 6-4 Return XML Message With Login Callbacks

<?xm version="1.0" encodi ng="UTF-8"?>
<Aut hCont ext versi on="1.0">
<Response

aut hl denti fi er ="AQ CSWMRLY4Sf cwnVdbgTX+OWyWEPI W bloVb5esqDl kay=">

<Get Requi renent s>

<Cal | backs | ength="3">

<PagePropertiesCal | back isErrorState="fal se">
<Mbdul eNane>LDAP</ Modul eNane>

<Header Val ue>Thi s server uses LDAP Aut henti cati on</ Header Val ue>
<I mageNane></ | mageNane>

<PageTi meQut >120</ PageTi neQut >

<Tenpl at eNane></ Tenpl at eNarme>

<PageSt at e>1</ Page$t at e>

</ PagePr opertiesCal | back>

<NaneCal | back>

<Pronpt >User Nane: </Pronpt>

</ NaneCal | back>

<Passwor dCal | back echoPasswor d="f al se">
<Pronpt > Password: </Pronpt>
</ Passwor dCal | back>

</ Cal | backs>

</ Get Requi r enent s>
</ Response>

</ Aut hCont ext >

Access Manager 6 2005Q1 « Developer's Guide

Overview of Authentication APIs and SPIs

Code Example 6-5 illustrates the client responses to the call for login requirements.
They specify anmadni n as the user and 11111111 for the password.

Code Example 6-5 Response Message With Callback Values

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext version="1.0">

<Request aut hl dentifier="AQ CoWM2LY4Sf cwnVdbgTX+9WyWEP W bloVb5esqDl kaY=">
<Subm t Requi r ement s>

<Cal | backs | ength="3">

<NaneCal | back>

<Pronpt >User Nane: </ Pr onpt >
<Val ue>amadm n</ Val ue>

</ NaneCal | back>

<Passwor dCal | back echoPasswor d="f al se">
<Pr onpt >Passwor d: </ Pr onpt >

<Val ue>11111111</ Val ue>

</ Passwor dCal | back>

</ Cal | backs>

</ Subni t Requi r enent s>

</ Request >

</ Aut hCont ext >

Code Example 6-6 illustrates that a successful authentication has occurred. As the
value of <Subj ect > uses the Java serialization, it can not be used by non-Java client
applications. It’s value is retrieved by all applications from the session token.

Code Example 6-6 Successful Authentication XML Message

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext versi on="1.0">

<Response

aut hl denti fi er="AQ CoWMRLYASf cwnVdbgTX+OVeyWEPI W bloVb5SesqDl kay=">
<Logi nSt atus st at us="success"

ssoToken="AQ COWM2LY4Sf cwiVdbgTX+9Ve yWEPl W b1loVh5esqD kaY="
successURL="http://torpedo. red.ipl anet.com/antonsol ">

Chapter 6 Using Authentication APIs and SPIs 127

Overview of Authentication APIs and SPIs

Code Example 6-6 Successful Authentication XML Message

<Subj ect >AQ CneczChuel Z5TqDIKKCt i Aepxq@23g40TnNVUIY/ / | 1 2S4KD1/ gENS4uLwWDCH
|1 yFSt hxoKLM/NDH

h2vwAvr DnpsomlvnbgnJJ90DS+28nj G Dv+l v8Fql Vhhbxr ct bi | UECHYKOFzXnXj PYi zdOm W
XJ+9DJ8T2HbYI Dxn9UBe VNAMPg3uVb/ RFUEr EnbMIPU7PN\VWG ¢12SZr e4ZEcwW8TI 45NKN d/ NZ
ZD97bcqL5gEV7 SVHspH dZKno9vA86aEkvMs9P53Ri Jt r usHNLFKE 9+4JqSr dcVLKMzIVAr 3z5E
ohwHh9/ hzd7hguc 6619z 71 gk T7VEpve/ EBRAendny3HgHy 7Bg7i 3Aky X6 YSkoAncdVXMINMMb7
Ov5cBgy Bzs8Pp5/ 3dALXI wAOTj xshk6Y6LA6 TAQROqRFwy nC1RILGACRNr t 33knmY\VyB1l Jy
JxT8ut PKy DOEKFRHh57N KThFhBKc1l Gcd@@cr H f pXawx 6 YouQyQBWEdsqV@1 ahY4+ gbBTPnG
DyZkKz9yy2ZKVj DROSHAKuU8el vEWBE40XTJI3gF/ mbwCGh3cypr ahLgRXboy8eoEQ 3ubQriR2My
+bh+Nr sRf zf FV50CcpJEGDX v YE 4z OruKk 3FhGH NIz AAor 920V/ Opr t YeS58ZPVWBC7gwxI NaW
OxdMQ/+pgE3NZVM p5CGeZl SI MBQ XD49n4t qopSl soK+ei wPCDKxp992+6/ uJhhVHHBI 0Qzuy 6
(3 Y]

dCIDG/nMENVCUZVKI 3+t b92f QW x MiCabNnz3j Tl Kk2uhnb59j q9hr a8gHHX nnu4ebj Zj zf
Rdk@3Godi TMOHDNQATH vT1PBXgor Tf UMa4Zj pt vzFul HSI 4eQags4Z8FAX2QAr 8XGHRkhBwox
rhj Yi CDBpkNpEi FNnWATT3bwk AUFht 0Dg6836kwH xeLXKAz3T6qy NQz T+ ar SXUxr t / Tl j wbP

R3vg4G4RzbH WALWQ US/ 9Qe/ N3aegEEEvxPvo9f W</ Subj ect >
</ Logi nSt at us>

</ Response>

</ Aut hCont ext >

How the Authentication SPIs Work

= Extending the AMLoginModule Class
= Pluggable JAAS Module
= Authentication Post Processing

Access Manager provides the capability to plug new, Java-based authentication
modules into its framework allowing proprietary authentication providers to be
managed using the Access Manager console. A custom authentication module
must first be created using Java. Once created, the custom module can be added to
the list of available authentication modules.

NOTE This guide does not document the JAAS. For more information on these APIs, see
the Java Authentication And Authorization Service Developer's Guide. Additional
information can be found at ht t p: // j ava. sun. com product s/ j aas/ .

128 Access Manager 6 2005Q1 « Developer's Guide

Overview of Authentication APIs and SPIs

Extending the AMLoginModule Class

Custom authentication modules extend the

com sun. i dentity. aut henticati on. spi . AMLogi nMbdul e class. The class must
also implement theini t (), process() and get Pri nci pal () methods in order to
communicate with the authentication module configuration files. The callbacks are
then dynamically generated based on this file. Other methods that can be defined
include set Logi nFai | ur eURL and set Logi nSuccessURL which defines URLS to
send the user to based on a failed or successful authentication, respectively.

NOTE To make use of the account locking feature with custom authentication modules,
the | nval i dPasswor dExcept i on exception should be thrown when the
password is invalid.

Pluggable JAAS Module

The Java Authentication and Authorization Service (JAAS) is a set of APIs that
enable services to authenticate and enforce access controls upon users. It
implements a Java technology version of the standard Pluggable Authentication
Module (PAM) framework, and supports user-based authorization. Access
Manager supports pure JAAS pluggable authentication modules. In Access
Manager, pure JAAS modules extend the JAAS Logi nMbdul e rather than
AM_ogi nModul e. A pure JAAS module is plugged in to the Authentication
framework using the Authentication API.

Authentication Post Processing

The Authentication SPI includes the AMPost Aut hPr ocessl nt er f ace which can be
implemented for post-processing tasks. The following are examples of
post-processing tasks:

= Adding attributes to a user’s session after successful authentication
= Sending notification to an administrator after failed authentication

= General clean-up such as clearing cookies after logout or logging out of other
system components.

The Core Authentication Service contains the Authentication PostProcessing Class
attribute which contains the authentication post-processing class name as its value.
Custom post processing interfaces can also be implemented.

AMPost Aut hPr ocessl nt er f ace can be implemented for post authentication
processing on authentication success, failure and logout. The SP1 is configurable at
the organization , service and role levels. The Authentication Service invokes the
post processing SPI methods on successful, failed authentication and logout.

Chapter 6 Using Authentication APIs and SPIs 129

Overview of Authentication APIs and SPIs

130

The AVPost Processl nterface class has 3 methods:
= onlLoginSuccess

= onlLoginFailure

= onlLogout

Some supporting information on these methods is provided in the following
sections. For a comprehensive listing and detailed information on all Access
Manager methods, see the Javadoc installed in the following directory:

AccessManager - base/ SUN\VanT docs

onLoginSuccess

This method should be implemented for post-processing after a successful
authentication. Authentication Service will invoke this method on successful
authentication.

Method signature is:

public void onLogi nSuccess(Map request Par anmsMap,
Ht t pSer vl et Request request,
Ht t pSer vl et Response response,
SSOToken ssoToken)

throws Aut henticati onExcepti on;

where
o request Map is a map containing H t pServl et Request parameters
o requestHt t pServl et Request obj ect
o response HtpServl et Response aobj ect

com sun. identity.authentication.spi.AuthenticationException isthrown on
error.

onLoginFailure

This method should be implemented for post processing after a failed
authentication. Authentication Service will invoke this method on failed
authentication.

Access Manager 6 2005Q1 « Developer's Guide

Overview of Authentication APIs and SPIs

Method signature is:

public void onLogi nFai | ure(Map request Par amsMap,
H t pSer vl et Request request,
Ht t pSer vl et Response response)

throws Aut henticati onExcepti on;

where
o request Map is a map containing H t pSer vl et Request parameters
o request H t pServl et Request object
o response HtpServl et Request object

comsun. identity.authentication.spi.AuthenticationException isthrown on
error.

onLogout

This method should be implemented for post-processing on a logout request.
Authentication Service will invoke this method on logout.

Method signature is:

public void onLogout (H t pSer vl et Request request,
Ht t pSer vl et Response response,
SSOToken ssoToken)

throws Aut henticati onExcepti on;

where

o request HttpServletRequest object is a map containing
Ht t pSer vl et Request parameters

o response HtpServl et Response object
o ssoToken authenticated user's single sign on token

comsun.identity.authentication.spi AuthenticationException isthrown on
error.

Chapter 6 Using Authentication APIs and SPIs 131

Using Authentication APIs

Using Authentication APIs

132

Access Manager comes with a number of sample programs that demonstrate how
you can use the Authentication APIs to extend the functionality of the
authentication service and authentication modules.

= Running the Sample Authentication Programs
< LDAPLogin Example

« CertLogin Example

< JCDI Module Example

e C-API Sample

Running the Sample Authentication Programs

The source code and Makefile are provided for all sample programs. For some
sample programs, additional supporting files are also included.The instructions for
compiling and executing the sample programs are the same for all samples
described in this section. See “To Compile and Execute the Java APl Samples.”
Instructions for configuring the sample programs to run in Secure Sockets Layer
(SSL) mode are also included in this section. See “To Configure SSL for Java API
Samples.”

Java API Code Samples and Their Locations

The following tables describe the locations of all the files you need to implement
the sample programs on various platforms, and the variable names used for
default directories in the source code and Makefiles. Table 6-2 summarizes file
locations and variable names used for Solaris Sparc/x86.1 Table 6-3 summarizes
default directories for Linux. Table 6-4 summarizes default directories for
Windows 2000.

Table 6-2 Default directories for Solaris Sparc/x86

Variable Description Location

Api_sample_dir Directory that contains <instal | _root >/ SU\Vni sanpl es/ aut heni tc
authentication API ation/ api
sample files

Config_directory Directory that contains / et ¢/ opt/ SUN\Vani confi g

configuration files

Product_Directory Directory where Access i nstal | _root> SU\VAm
Manager is installed.

Access Manager 6 2005Q1 « Developer's Guide

Using Authentication APIs

Table 6-3 Default directories for Linux
Variable Description Location
Api_Sample_Dir Directory that contains <install _root>/sun/identity/sanpl es/aut

authentication API
sample files

Config_Directory Directory that contains

configuration files

Directory where Access
Manager is installed.

Product_Directory

henti cati on/ api

/etc/opt/sun/identity/config

<install _root> sun/identity

Table 6-4 Default directories for Windows 2000
Variable Description Location
Api_Sample_Dir Directory that contains <instal | _root>\sanpl es\ aut henti cation\a

authentication API
sample files

Directory that contains
configuration files

Config_Directory

Product_Directory
Manager is installed.

Directory where Access

pi

<install _root>\lib

<install _root>

To Compile and Execute the Java API Samples

These steps are for all platforms.

1. Inthe Makefile, modify the following variables as necessary to suit your

Access Manager installation:

BASE_DIR: Enter the path to the directory where Access Manager is installed.

JAVA HOME: Enter the path to the directory where the Java compiler is

installed.

DOMAIN: Enter the name of the organization to login to.

SHARE_LIB: Enter the path to the directory where Access Manager jar files are

stored.

JSS_JAR_PATH: Enter the path to the directory where JSS jar files are stored.

JSSPATH: Enter the path to the directory where JSS libraries are located.

Chapter 6 Using Authentication APIs and SPIs 133

Using Authentication APIs

To

In the Certificate Sample Makefile only, modify the following as necessary:
CERTNICKNAME: Enter the Certificate nickname.

URL: Enter the Access Manger Server URL.

PASSWORD: Enter the Certificate DB Password.

Copy AMXonf i g. properti es from Config_Directory in the Access Manager
server installation to the client machine.

(Note: For SSL check SSL Configuration Setup, step 2).

In the Makefile, update the classpath to include the location of the newly
created AMConfi g. properti es.

In the client machine, create a directory named | ocal e. Then copy all the
property files from the | ocal e directory in the Access Manager server
installation machine to the client machine. The locale directory on the server
machine can be found under the Product_Directory.

Update the classpath in the Makefile to include the location of newly created
| ocal e files.

Include j aas. j ar in your classpath if you are using a JDK version less than
JDK1.4

Compile the program.

o On Solaris Sparc/x86, Linux, run the gnake command.

o On Windows 2000, run the make command.

Run the sample program.

o On Solaris Sparc/x86 or Linux, run the following command: gmake run

o On Windows 2000, run the following command: make run

Configure SSL for Java APl Samples
In the Makefile, add this JVM property in the r un target:

-D "java. protocol . handl er. pkgs=com i pl anet . servi ces. comm{

Copy AMXonf i g. properti es from Config_Directory in the Access Manager
server installation to the client machine.

134 Access Manager 6 2005Q1 « Developer's Guide

Using Authentication APIs

3. Edit the following properties in AMConfi g. properti es.

com.iplanet.am.admin.cli.certdb.dir: Enter the path to the certificate database
directory.

com.iplanet.am.admin.cli.certdb.prefix: Enter the certificate database prefix.
4. Inthe LDAP and JCDI Samples only:
com.iplanet.am.server.protocol: Change the value to https.

com.iplanet.am.server.port: Enter the appropriate port number from the
server machine.

5. Create or copy the certificate database file to the certificate db directory. Use
the directory name in comi pl anet.amadmin.cli.certdb.dir.

6. Rename the file to use the prefix specified in the property
comi pl anet.am adnmin.cli.certdb. prefix.

For the details, see the Javadoc for the Remote Client API.

LDAPLogin Example

The LDAPLogin sample is an example of a custom Java application that uses the
authentication remote APIs to authenticate to the LDAP module. You can modify
the sample source code to authenticate to other existing or customized
authentication modules. The sample source code, Makefile, and Readme.html are
located in the following directory:

IdentityServer_base/ SUN\Van sanpl es/ aut hent i cati on/ LDAP

To compile and run the sample program, follow the steps in “To Compile and
Execute the Java APl Samples” on page 133.

CertLogin Example

The CertLogin sample is an example of a custom Java application that uses digital
certificates for authentication. You can modify the sample source code to
authenticate to other existing or customized authentication modules. The sample
source code, Makefi | e, and Readre. ht ni are located in the following file;

IdentityServer_base/ SUN\VanT sanpl es/ aut henti cati on/ Cert

Chapter 6 Using Authentication APIs and SPIs 135

Using Authentication APIs

136

To Run the CertLogin Program
1. Enable SSL.

Follow the instructions in “To Configure SSL for Java APl Samples” on
page 134.

2. Compile and execute the sample code.
“To Compile and Execute the Java APl Samples” on page 133.

Using certutil for Client Certificate Management

Certutil isacommand-line utility that can create and modify cert7.db and
key3.db database files. It can also list, generate, modify, or delete certificates within
the cert7.db file and create or change the password, generate new public and
private key pairs, display the contents of the key database, or delete key pairs
within the key3.db file. The key and certificate management process usually begins
with creating keys in the key database, then generating and managing certificates
in the certificate database.

JCDI Module Example

The JCDI Module Example demonstrates the use of Java Card Digital ID (JCDI)
authentication with Access Manager. The sample has two components:

= Remote client

= Server JCDI authentication module

The remote client component is located in the following directory:
Identity_Server_base/sanpl es/ aut henti cati on/ api/j cdi

The server JCDI authentication module is located in the following directory:
Identity_Server_base/sanpl es/ aut henti cati on/ spi/j cdi

The sample illustrates JCDI authentication using the Remote Authentication
APIl.You can modify the sample source code to authenticate to other existing or
customized authentication modules. The source code, Makef i | e, and Readne. ht ni
are located in the following directory:

Identity_Server_base/sanpl es/ aut henti cati on/ api/j cdi

To compile and run the sample program, follow the steps in “To Compile and
Execute the Java APl Samples” on page 133.

Access Manager 6 2005Q1 « Developer's Guide

Using Authentication APIs

C-API Sample

Access Manager provides a sample program to demonstrate how an external C
application can use the API to authenticate a user via Access Manager. The sample
can be found in IdentityServer_base/ SUN\Van1 agent s/ sanpl es/ common/ .

By default, the C Authentication sample checks the directory
IdentityServer_base/ SUN\VAnT agent s/ conf i g for a properties file named

AVAgent . properti es.

C Authentication Sample Properties. Code Example 6-7 lists the properties that
are needed by the C Authentication API. Some of these are defined in

AMAgent . properti es and some are not. Those that are not defined in

AMAgent . properti es can be added to the file so they needn’t be identified for each
function call. For example, com sun. am aut h. or gNane, which identifies the
organization from which you want to authenticate, can be added to

AVAgent . properties.

C Header File. The C Authentication API header file, am aut h. h, can be found in
IdentityServer_base/ SUN\VANT agent s/ i ncl ude. It contains the function prototypes
for the function calls available in the C Authentication API.

Code Example 6-7 AMAGgent.properties File

SOME PRCPERTI ES LI STED ARE NOT PRE-EXI STING | N THE PROPERTI ES FI LE

the identity server namng service url
com sun. am nani ngURL=ht t p: / / ser ver exanpl e. donai n. com 58080/ anser ver/ nam ngs

ervice

the directory to use for logging

com sun. am | ogFi | e=/ hore/ ui d/ | ogs/ aut h- | og

the logging level, all:5 being the highest and all:3 being rmedi um
comsun. am | ogLevel s=al | : 5

the directory containing the certificate and key databases
comsun. am ssl Cert D r=/horre/ | evel / certdir

the prefix of the cert7.db and key3.db files, if any

com sun. am cert DbPrefi x=

the password to the key3.db file

com sun. am cert DBPasswor d=11111111

true to trust SSL certificates not inthe client cert7.db
com sun. amtrust Server Certs=true

the nick nane of the client certificate in the cert7.db
comsun.amaut h. certificateA ias=Cert-N ckname

the identity server organization desired for authentication
com sun. am aut h. or gName=dc=sun, dc=com

Chapter 6 Using Authentication APIs and SPIs 137

Using Authentication SPIs

Using Authentication SPIs

138

Access Manager provides the following sample programs to demonstrate how you
can use the Authentication service provider interfaces (SPIs) to extend
authentication functionality:

< Implementing a Custom Authentication Module
< Implementing Authentication PostProcessing SPI
= Generating an Authentication User ID

< Implementing A Pure JAAS Module

Implementing a Custom Authentication Module

Access Manager contains a sample exercise for integrating a custom authentication
module with files that have already been created. This sample illustrates the steps
for integrating an authentication module into the Access Manager deployment. All
the files needed to compile, deploy and run the sample authentication module can
be found in the following directory:

IdentityServer_base/ SUNWANT sanpl es/ aut hent i cat i on/ provi ders
The following sections will use files from this sample as example code:

= Writing a Sample Login Module

Compiling and Deploying the LoginModule program

= To Deploy the Login Module Sample Program

« Loading the Login Module Sample into Access Manager
= Running the LoginModule Sample Program

= Deploying the Login Module Sample Program

About the Login Module Sample
<PRODUCT_DIR> setting on different Platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam
Linux: <PRODUCT _DIR> = bhase-directory/sun/identity
W2K: <PRODUCT_DIR> = hase-directory

Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

Writing a Sample Login Module

Use the AMLogi nMbdul e SPI (Service Provider Interface) to write your own sample
login module. Three steps are required:

1. Create a Module Properties File.

2. Write the Principal Class.

3. Implement the LoginModule Interface.

The following are the default directories used in the sample exercise for the various
platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam
Linux: <PRODUCT _DIR> = bhase-directory/sun/identity
W2K: <PRODUCT_DIR> = bhase-directory

Create a Module Properties File

Create a Module properties XML file with the same name of the class (no package
name) and use the extension . xnl . You must create an XML file with this naming
convention even if no states required

Based on this configuration file, the Authentication user interface will dynamically
generate a login page.

You can define page states in the module properties file as shown in Code
Example 6-8. Each callback element corresponds to one login page state. When an
authentication process is invoked, Cal | back[] wvalues will be generated from the
user's Login Module for each state. All login state definitions start with 1. The
module controls the login process, and then determines what the next state is.

Aut h_Modul e_Properti es. dt d defines the data structure that will be used by each
authentication module to specify its properties. Aut h_Modul e_Properties. dtd
provides definitions to initiate, construct and send required callbacks information
to the Authentication Ul. Aut h_Mddul e_Properti es. dtd is stored in the
<PRODUCT _DIR>/dtd directory.

Code Example 6-8 Module Configuration Sample

<Mbdul eProperties nodul eNane="Logi nMbdul eSanpl e" versi on="1.0" >
<Cal | backs | ength="2" order="1" tinmeout="60" header="This is a
sanpl e | ogi n page" >
<NaneCal | back>
<Pronpt> User Nane </ Pronpt>
</ NarreCal | back>
<NaneCal | back>
<Pronpt> Last Nane </Pronpt>

Chapter 6 Using Authentication APIs and SPIs 139

Using Authentication SPIs

140

</ NaneCal | back>

</ Cal | backs>
<Cal | backs | ength="1" order="2" tineout="60" header="You nade it to
page 2" >

<Passwor dCal | back echoPasswor d="f al se" >
<Pronpt> Just enter any password </Pronpt>
</ Passwor dCal | back>
</ Cal | backs>
</ Modul eProperties>

In the module configuration sample in Code Example 6-8, page st at e one has two
callbacks. The first callback is for user ID, and second is for Last Name. When the
user fills in the callbacks, the following events occur:

1. The Cal I back[] values are sent to the module.
2. Theprocess() routine validates the callback values, and then returns what?.
3. The module writer sets the next page state to 2.

Page state 2 has one callback to request the user to enter a password. The
process() routine is again called after the user submits the Cal | back[] val ues.
If the module writer throws a Logi nExcept i on, then an Authentication Failed page
will be sent to the user. If no exception is thrown, the user is redirected to his or her
default page.

Write the Principal Class

After creating module configuration xml file, the next step is to write a Sample
Principal class which implements j ava. security. Pri nci pal . The constructor
takes the user’s username as an argument. If authentication is successful, the
module will return this principal to Authentication framework. The Authentication
framework populates a Subject with a Sanpl ePri nci pal representing the user.

Implement the LoginModule Interface

AMLogi nModul e is an abstract class which implements JAAS Logi nhodul e.

AML_ogi nModul e provides methods for accessing Access Manager services and the
module XML configuration. Logi n Modul e writers must subclass AM.ogi nhodul e
class and implement the following methods:

e init()
e process()

e getPrincipal ()

Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

For detailed descriptions, syntax, and parameters, see the Javadoc. The following
provides some supporting information about these methods.

i nit() Thisisan abstract method, Module writer should implement to initialize
this LoginModule with the relevant information. If this LoginModule does not
understand any of the data stored in sharedState or options parameters, the data
can be ignored. This method is called by a AMLoginModule after this
SampleLoginModule has been instantiated, and prior to any calls to its other public
methods. The method implementation should store away the provided arguments
for future use. The init method may additionally peruse the provided sharedState
to determine what additional authentication state it was provided by other
LoginModules, and may also traverse through the provided options to determine
what configuration options were specified to affect the LoginModule's behavior. It
may save option values in variables for future use.

process() The process method is called to authenticate a Subject. This method
implementation should perform the actual authentication. For example, it may
cause prompting for a user name and password, and then attempt to verify the
password against a password database. If your LoginModule requires some form
of user interaction (retrieving a user name and password, for example), it should
not do so directly. That is because there are various ways of communicating with a
user, and it is desirable for LoginModules to remain independent of the different
types of user interaction. Rather, the LoginModule's process method should invoke
the handle method of the CallbackHandler passed to this method to perform the
user interaction and set appropriate results, such as the user name and password
and the AMLoginModule internally passes the Ul an array of appropriate
Callbacks, for example a NameCallback for the user name and a PasswordCallback
for the password, and the Ul performs the requested user interaction and sets
appropriate values in the Callbacks.

Consider the following points while writing the process() method:

= Perform the authentication. If Authentication succeeded, save the principal
who has successfully authenticated.

= Return -1 if authentication succeeds, or throw a LoginException such as
AuthLoginException if authentication fails or return relevant state specified in
module configuration XML file

= If multiple states are available to the user, the Callback array from a previous
state may be retrieved by using the getCallbak(int state) methods. The
underlying login module keeps the Callback[] from the previous states until
the login process is completed.

Chapter 6 Using Authentication APIs and SPIs 141

Using Authentication SPIs

142

= |famodule writer needs to substitute dynamic text in next state, the writer
could use the getCallback() method to get the Callback][] for the next state,
modify the output text or prompt, then call replaceCallback() to update the
Callback array. This allows a module writer to dynamically generate
challenges, passwords or user IDs. Note: Each authentication session will
create a new instance of your Login Module Java class. The reference to the
class will be released once the authentication session has either succeeded or
failed. It is important to note that any static data or reference to any static data
in your Login module must be thread-safe.

get Pri nci pal () This method should be called once at the end of a successful
authentication session. A login session is deemed successful when all pages in the
Module properties XML file have been sent and the module has not thrown an
exception. The method retrieves the authenticated token string that the
authenticated user will be known by in the Access Manager environment.

Compiling and Deploying the LoginModule program

If you are writing your own Custom Authentication module based on the

AML_ogi nModul e SPI or a pure JAAS module, then you can skip this step. Otherwise,
after writing the sample Login Modue, compile and deploy the sample found
under AccessManager-base/ sanpl es/ aut henti cati on/ spi / provi ders.

To compile the Login Module
1. Set the following environment variables.

These variables will be used to run the gmake command. You can also set these
variables in the Makefile. This Makefile is in the following directory:
AccessManager-base/ sanpl es/ aut hent i cati on/ spi / provi ders.

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the Idetnity_base/lib directory. (Note: Include j aas.j ar in your classpath if
you are using JDK version less than JDK1.4)

BASE_DIR: Set this variable to the directory where the Access Manager is
installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

2. Inthe AccessManager-base/ sanpl es/ aut henti cati on/ spi / provi der s directory,
run grake.

To Deploy the Login Module Sample Program

1. Copy Logi nMdul eSanpl e. j ar from JAR_DIR to
AccessManager-base/ web- src/ servi ces/ WEB- I NF/ | i b.

2. Copy LoginModuleSample.xml from
AccessManager-base/ sanpl es/ aut hent i cati on/ spi/ provi ders to
AccessManager-base/web- sr ¢/ servi ces/ confi g/ aut h/ defaul t.

3. Redeploy the anserver. war file.

See Appendix C, “WAR Files” on page 359 for detailed information on
deploying Access Manager . war files.

Loading the Login Module Sample into Access Manager

Once you’ve compiled and deployed the login module, you must load the login
module into Access Manager. You can load the login module by using either the
Access Manager administration console, or by using the anmadm n command.

To Load the Login Module Using the Administration Console

1. Login to Access Manager Console as amadmin, using the URL.:
htt p: // <host >. <domai n>; <por t >/ <Consol e- Depl oy- URL>

2. Click Service Configuration.

3. In Service Configuration frame, under Authentication, click Core.

4. Add class file name
com i pl anet. am sanpl es. aut henti cati on. spi . provi ders.
Logi nModul eSanpl e
to the Pluggable Auth Modules Classes list.

5. Click Save.

To Load the Login Module Using using the Command Line

1. Write a sample XML file as shown in Code Example 6-9, which will add the
Logi nMbdul eSanpl e auth module entry into the allowed modules and an
authenticators list.

Code Example 6-9 Adding the LoginModuleSample entry.

<l--
Copyright (c) 2003 Sun Mcrosystens, Inc. All rights reserved

Chapter 6 Using Authentication APIs and SPIs 143

Using Authentication SPIs

Code Example 6-9 Adding the LoginModuleSample entry.

Use is subject to |icense terns.
>

<! DOCTYPE Requests
PUBLIC "-//iPlanet//i DSAME 5.0 Adnmin CLI DID//EN'
"jar://coniplanet/an adm n/cli/amAdni n. dtd"
>

<Request s>

<SchenmaRequest s servi ceNarme="i Pl anet AMAut hSer vi ce"
SchemaType="d obal ">
<AddDef aul t Val ues>
<At tributeVal uePair>
<Attribute nane="i pl anet - am aut h-aut henti cators"/>

<Val ue>com i pl anet . am sanpl es. aut henti cati on. spi . provi der s. Logi nMbdul eSanpl

e</ Val ue>
</ AttributeVal uePair>
</ AddDef aul t Val ues>

</ SchemaRequest s>
</ Request s>

2. Use amadm n to load sanpl e. xm :

<AMADM N> - -runasdn ui d=amAdni n, ou=Peopl e, <root _suffi x> --password
<password> --data sanpl e. xn

Solaris Sparc/x86: AVADM N = <PRCDUCT_DI R>/ bi n/ amadmi n
On W2K: AMMDM N = <PRCDUCT_Di R>\ bi n\ anadmi n

Running the LoginModule Sample Program

This sections provides instructions for running the login module on Solaris and on
Windows platforms.

To Run the LoginModule on Solaris

1. Use the following URL to log in to Access Manager console as amAdmin:
ht t p: // <host >. <domai n>; <por t >/ <Consol e- Depl oy- LR >

2. Click Identity Management, and in the lIdentity Management view select your
organization.

3. From the View menu, select Services.

144 Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

In the navigation frame, under Authentication, click Core.

Select LoginModuleSample to add it to the list of highlighted modules in
Organization Authentication Modules.

Make sure LDAP module is also selected. If not selected, you will not be able to
login to Access Manager Console. You can use Control + mouse click to add
additional modules.

Click Save.
Log out.
Enter the following URL.:

htt p://<host >. <domai n>: <por t >/ <Ser vi ce- Depl oy- UR >/ U / Logi n?nodul e=
Logi nMbdul eSanpl e

If you choose to use an organization other than the default, be sure to specify
that in the URL using the or g parameter.

To Run the Login Module on Windows 2000

1.

Set the following environment variables. These variables will be used to run
the make command. You can also set these variables in the Makefile.

This Makefile is in the same directory as the Login Module Sample program
files: AccessManager-base\ sanpl es\ aut hent i cati on\ spi\ provi ders

JAVA HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

BASE: Set this variable to base-directory

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the base-directory\lib directory. (Note: Include jaas.jar in your classpath if
you are using JDK version less than JDK1.4)

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

In the base-directory\ sanpl es\ aut hent i cati on\ spi\ provi der s directory, run
the make command.

Chapter 6 Using Authentication APIs and SPIs 145

Using Authentication SPIs

146

Deploying the Login Module Sample Program

To Deploy the Login Module

1. Copy Logi nMdul eSanpl e. j ar from JAR_DIR to
AccessManager-base\ web- src\ servi ces\VWEB- I NF\ i b

2. Inthe Web Container from which this sample has to run, update the classpath
with Logi nMbdul eSanpl e. j ar.

3. Update server. xm with the new classpath and server.xml locations:

o SunJava System Web Server :
<W&-instal | -di r>\ https-<Ws-i nst ance- nane>\ confi g\ server. xni

o Sun Java System Application Server:
<AS-install-dir>\donai n\ <appserver domai n>\ <appserver _i nstance>
\confi g\ server. xni
Example:
<AS-install -dir>\donmai n\ donmai n1\ server 1\ confi g\ server. xni

4. Copy Logi nMbdul eSanpl e. xm from
base-directory\ sanpl es\ aut henti cat i on\ spi \ provi der s to
base-directory\web- sr c\ servi ces\ confi g\ aut h\ def aul t.

5. Restart the web container
WebServer: <W&- hone- di r >\ ht t ps- <\W5- i nst ance- nane>\rest art

Application Server: AppSer ver - hone- di r >\ donai ns\
<domai n name>\ <server _i nstance>\bin\restartserv

Implementing Authentication PostProcessing
SPI

The Authentication SPI includes the AMPost Aut hPr ocessl nt er f ace which can be
implemented for post-processing tasks. The AMPostProcessinterface Javadocs are
available at:

AccessManager-base/ SUNVan docs/ cond sun/ i denti ty/ aut henti cati on/ spi/
AMPost Aut hProcessl nt er f ace. ht n

The SPI is configurable at the organization, service and role levels. The
Authentication Service invokes the post processing SPI methods on successful or
failed authentication and on logout.

Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

About the PostProcessing SPI Sample
<PRODUCT _DIR> or AccessManager-base directory on different Platforms:

Solaris Sparc/x86: AccessManager-base/SUNWam

Linux: AccessManager-base/sun/identity

To Compile the ISAuthPostProcessSample Program on Solaris
Sparc/x86 or Linux

Follow these steps given below to compile the sample found under
AccessManager-base/ sanpl es/ aut hent i cati on/ spi / post process .

1.

Set the following environment variables.

JAVA HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the AccessManager-base/lib directory. (Note: Include j aas. j ar in your
classpath if you are using JDK version less than JDK1.4)

BASE_DIR: Set this variable to the directory where the Access Manager is
installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

These variables will be used to run the gmake command. You can also set these
variables in the Makefile. This Makefile is in the following directory:
AccessManager-base/samples/authentication/spi/postprocess.

In the directory
AccessManager-base/ sanpl es/ aut henti cati on/ spi/ post process, run the
gmake command.

To Deploy the ISAuthPostProcess Sample Program

1.

Copy | SAut hPost Process. jar from JAR DI Rto AccessManager-base/lib.

Chapter 6 Using Authentication APIs and SPIs 147

Using Authentication SPIs

2.

Update the Web Container configuration file server. xn .

Add | SAut hPost ProcessSanpl e. j ar to the classpath. The server. xni file for
different web containers can be found at the following locations:

Web Server:<\W&- hore- di r >/ ht t ps- <\W5- i nst ance- nane>/ confi g/
Application Server:<AS- horre- di r >/ domai n/ domai n1/ server 1/ confi g/
For all other web containers consult, the manufacturer’s documentation.
Restart the web container.

WebServer: <W&- hore- di r >/ ht t ps- <\W5- i nst ance- nane>/ rest art

Application Server: <AS-i nst al | - di r >/ <donai ns>/ <donai n nane>/ <server
i nstance>/ bin/restartserv
Example: / <AS- horre- di r >/ donai ns/ domai n1/ server1/bin/restartserv

For all other web containers consult their documentation.

Configuring the Authentication Post Processing SPI

The Authentication PostProcessing Sample can be configured at the
Organization,Service or Role level.

To Configure ISAuthPostProcess Sample for an Organization

1.

Log in to Access Manager console as amAdmin. Use the following URL:
htt p:// <host >. <domai n>: <por t >/ <Consol e- Depl oy- UR >

Click Identity Management, and select your organization.

From the View menu, click Services.

In the navigation frame, under Authentication, click Core.

Add the following to the Authentication PostProcessing Class attribute:
com i pl anet. am sanpl es. aut henti cati on. spi . post process

Add the following to the Aut hent i cati on Post Processi ng d ass attribute:
| SAut hPost Pr ocessSanpl e

Click Save.

Log out.

Go to the following URL
htt p: // <host >. <domai n>: <port >/ <Ser vi ce- Depl oy- URI >/ Ul / Logi n

148 Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

If you choose to use an organization other than the default, be sure to specify
that in the URL using the 'org' parameter.

The postprocessing SPI will be executed on successful authentication, on failed
authentication, and on Logout.

To Configure the ISAuthPostProcess Sample for a Service

1.

d w0

10.

11.

Log in to Access Manager console as amAdmin. Use the following URL:
htt p: // <host >. <domai n>; <por t >/ <Consol e- Depl oy- UR >

Click Identity Management, and select your organization.
From the View menu, select Services.

Select Authentication Configuration

From the Service Instance frame, select New Instance.
Enter a name for the service.

Add the following to the Authentication PostProcessing Class attribute:
com i pl anet. am sanpl es. aut henti cati on. spi . post process.
| SAut hPost Pr ocessSanpl

Click Submit to save the changes.

Click Service Name and define the Authentication Configuration for the new
service.

Log out.

Go to the following URL:
http: // <host >. <domai n>: <port >/ <Ser vi ce- Depl oy- URI >/ Ul /
Logi n?ser vi ce=<ser vi cenane>

If you choose to use an organization other than the default, be sure to specify
that in the URL using the or g parameter.

The postprocessing SPI will get executed on successful authentication, failed
authentication and on Logout for the service accessed.

To Configure ISAuthPostProcess Sample for a Role

1.

Log in to Access Manager console as amAdmin. Use the following URL:
http: // <host >. <domai n>: <por t >/ <Consol e- Depl oy- URl >

Click the Identity Management tab, and select your organization.
From the View menu, select Roles to view the role properties.

From the View menu, select Services.

Chapter 6 Using Authentication APIs and SPIs 149

Using Authentication SPIs

5. Click Edit to edit the authentication configuration.
6. Add the following to the Authentication post Processing Class attribute:

com i pl anet . am sanpl es. aut henti cati on. spi . post process.
| SAut hPost ProcessSanpl e

7. Click Submit to save the changes.
8. Log out.

9. Go to the following URL.:
htt p: // <host >. <domai n>; <por t >/ <Ser vi ce- Depl oy- UR >/ U / Logi n?r ol e=r ol eNane

If you choose to use an organization other than the default, be sure to specify
that in the URL using the or g parameter. Example: or g=orgName

The postprocessing SPI will be executed for the service accessed on successful
authentication, on failed authentication, and on Logout.

Compiling On Windows2000

Go to the base-directory\samples\authentication\spi\postprocess directory and
run make.

To Deploy the ISAuthPostProcessSample Program
1. Copy | SAut hPost Process. j ar from JAR DI Rto base-directory\lib

2. Inthe Web Container from which this sample has to run, update the classpath
with | SAut hPost Process. j ar.

3. Restart Access Manager.
base-directory\bin\amserver start

To Configure Authentication Post Processing SPI

This sample can be can be set in the Core Auth Service for Organization and
Authentication Configuration Service for Role OR Service.

See the section “Configuring the Authentication Post Processing SPI”” on page 148.

Generating an Authentication User ID

This file explains how to compile, deploy and configure the Authentication User ID
Generation SPI Sample.

= To Compile the UserlIDGeneratorSample on Solaris Sparc/x86, Linux

150 Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

To Deploy the UserIDGeneratorSample program
Configuring the UserIDGeneratorSample Program

Compiling the UserIDGeneratorSample Program on Windows 2000

In the following sections, the PRODUCT_DIR setting depends on which platform
you’re using:

Solaris Sparc/x86: PRODUCT DI R = <instal | _root >/ SU\Vém

Linux: PRODUCT DIR = <install _root>/sun/identity

To Compile the UserlIDGeneratorSample on Solaris Sparc/x86, Linux
The sample is located in the following directory:

AccessManager-base/ sanpl es/ aut hent i cati on/ spi/ genui d

1.

To

Set the following environment variables.

These variables will be used to run the gnake command. You can also set these
variables in the Makefile which is located in the following directory:

AccessManager-base/ sanpl es/ aut henti cati on/ spi/ genui d

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the <PRODUCT_DIR>/lib directory. (Note: Include jaas.jar in your
classpath if you are using JDK version less than JDK1.4)

BASE_DIR: Set this variable to the directory where the Access Manager is
installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

In the directory AccessManager-base/ sanpl es/ aut hent i cati on/ spi / genui d,
run the gnake command:

Deploy the UserIDGeneratorSample program
Copy User | DGener at or Sanpl e. j ar from JAR DI Rto AccessManager-base/ | i b.

in the Web Container from which this sample has to run, update the classpath
with User | DGener at or Sanpl e. j ar.

Chapter 6 Using Authentication APIs and SPIs 151

Using Authentication SPIs

o On Sun ONE Web Server, go to server instance's config directory:
<W&- hone- di r >/ htt ps- <W&- i nst ance- name>/ confi g/

o On Sun ONE Application Server, in the directory
<AS- horre- di r >/ domai n/ domai nl/ server 1/ confi g/ update server. xn
with the new classpath.

o For all other containers, consult the documentation that came with the
product.

3. Restart web container.
<W5- horre- di r >/ htt ps- <W&-i nst ance- nane>/ start

<AS- hone- di r >/ domai ns/ domai n1/ server 1/ bi n/ start

Configuring the UserIDGeneratorSample Program

The Authentication User ID Generation Sample can be configured at the
Organization level, and then used or invoked by the out-of-box Membership/Self-
registration authentication module.

To Configure UserIDGeneratorSample for an Organization

1. Loginto Access Manager console as amAdmin. Use the following URL:
http: // <host >. <domai n>: <por t >/ <Consol e- Depl oy- UR >

Click the Identity Management tab, and select your organization.

From the View menu, select Services.

A w0 D

In the navigation frame, under Authentication, click Core.

5. Add the following to the “Pluggable User Name Generator Class" attribute:
com i pl anet . am sanpl es. aut henti cati on. spi . genui d.
User | DGener at or Sanpl e

6. Click Save to save the changes.
7. Logout.

To Access an Authentication Module for an Organization

This module is the one which invokes the User | DGener at or SPI implementation
class. By default, only the Membership/Self-registration authentication module
calls this SPI implementation.

1. Make sure that you have registered and enabled the Membership
authentication module, and that you have created a template for the
organization.

152 Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

Enter the following URL.:

http://<host >. <domai n>: <por t >/ <Ser vi ce- Depl oy- UR >/ U /
Logi n?nmodul e=Menber shi p

If you choose to use an organization other than the default, be sure to specify
that in the URL using the or g parameter. Example: or g=orgName

Click New User.

You should be able to register any existing username or user ID.

The User | DGener at or Sanpl e will be executed. You will be presented with the
generated User IDs choice menu to choose any one username or user ID.

Compiling the UserIDGeneratorSample Program on Windows 2000

In the <i nst al | - r oot >\ sanpl es\ aut hent i cati on\ spi \ genui d directory, run the
make command.

To deploy the UserIDGeneratorSample Program

1.
2.

Copy User | D&ener at or Sanpl e. j ar from JAR Dl Rto <install-root>\lib

In the Web Container from which this sample has to run, update the classpath
with User | DGener at or Sanpl e. j ar.

Restart Access Manager.

<install-root>\bin\anserver start

To Configure the UserlIDGeneratorSample Program

Configuring the program on Windows 2000 is similar to configuring the program
on Solaris. See “Configuring the Authentication Post Processing SPI1” on page 148.

Chapter 6 Using Authentication APIs and SPIs 153

Using Authentication SPIs

Implementing A Pure JAAS Module

A sample program demonstrates how to write pure a JAAS module to replay
callbacks by authenticating using Access Manager Auth Remote API. It will
authenticate a user by replaying the callbacks required by Access Manager the
Authentication Module. You can modify this program to use other existing or
customized Access Manager Authentication modules. This sample module can be
plugged in into any standard JAAS framework using the JAAS API.

NOTE For detailed information on JAAS, see the Sun Developer Documentation at the
following URL: http://j ava. sun. coni product s/ j aas/ . For detailed information on
how to write a JAAS module, see the JAAS LoginModule Developer's Guide at the
following URL:
http://java. sun. comj 2se/ 1. 4. 2/ docs/ gui de/ securi ty/ j aas/ JAASLMDevQui de. ht n

Conventions Used in the Samples
Table 6-5 Default directories for Solaris Sparc/x86

Variable Description Location

Config_directory Directory that contains /CONFIG_DIR = /etc/opt/SUNWam/config
configuration files

Product_Directory Directory where Access PRODUCT_DIR = <install_root>/SUNWam
Manager is installed.

Table 6-6 Default directories for Linux

Variable Description Location

Config_Directory Directory that contains CONFIG_DIR = /etc/opt/sun/identity/config
configuration files

Product_Directory Directory where Access PRODUCT_DIR = <install_root>/sun/identity
Manager is installed.

Table 6-7 Default directories for Windows 2000

Variable Description Location

Config_Directory Directory that contains CONFIG_DIR = <install_root>\lib
configuration files

Product_Directory Directory where Access
Manager is installed.

154 Access Manager 6 2005Q1 « Developer's Guide

Using Authentication SPIs

To Run the Sample on Solaris Sparc x86 or Linux:

1.

In the Makefile, set the following variables:
BASE: Enter the path to the directory where Access manager is installed.
JAVA_HOME: Enter the path to the directory where Java compiler is installed

CONFIG: Enter the entry specified in the login configuration file. This entry
will be used to do the user authentication

Copy AMXonf i g. properti es from Access Manager server installation machine
location <CONFI G_DI R> to the client machine where the sample will be run.

On the client machine, be sure the following are in your classpath:
o amservices.jar

o jaas.jar

o jss3.jar

o AMDonfig. properties

Include j aas. j ar in your classpath if you are using a JDK version less than
JDK1.4

A sample configuration file pur ej aassanpl e. confi g is provided for testing
this sample. It contains only one entry named Sample. Sample is the name to be
entered for CONFI Gin the Makefile.:

Sanpl e {
Pur eJAASSanpl eLogi nhbdul e requi red ORG NAME="dc=i pl anet , dc=cont
| NDEX_NAME="LDAP" debug=tr ue;

b

The entry specifies that the LoginModule to be used to do the user authentication is
the Pur eJAASSanpl eLogi nMbdul e and that this Sanpl eLogi nMbdul e must succeed
in order for authentication to be considered successful. It passes options with
ORG _NAME as the organization name and | NDEX_NAME as the Access Manager
authentication module to which this sample must authenticate.

If you must use a different login configuration, modify the Makefile. For example,
change the following:

-Djava. security.auth.logi n. confi g=purej aassanpl e. confi g

to this:

Chapter 6 Using Authentication APIs and SPIs 155

Using Authentication SPIs

156

-Dyava. security.auth.login.config=<yourj jaas_config file.config>

5.

6.

To compile, run the gmake command.

To run the sample program run the gmake run command.

To Enable SSL

1.

To

In the sample client program, add this JVM property:

-D "java. protocol . handl er. pkgs=com i pl anet . servi ces. commt

In the AMConfi g. properti es file, edit the following properties:
com.iplanet.am.admin.cli.certdb.dir: <PRCDUCT_Dl R>/ servers/ al i as
com.iplanet.am.admin.cli.certdb.prefix: ht t ps- machi nel. com nachi nel-
com.iplanet.am.server.protocol: htt ps

com.iplanet.am.server.port: Enter the appropriate port on the server machine
where machi nel is the host name of the server

Run the Sample on Windows 2000

In make. bat , set the following properties:
BASE: Enter the path to the directory where Access manager is installed

JAVA_HOME: Enter the path to the directory where the Java compiler is
installed.

CONFIG: Enter the entry which will be used for user authentication. This
entry is specified in the login configuration file.

Copy AMXonf i g. properti es from Access Manager server installation machine
location <OONFI G DI R> to the client machine where this sample will be run.

On the client machine, make sure the following are in your classpath;
o amservices.jar

o jaas.jar

o jss3.jar

o AMDonfig. properties

Include j aas. j ar in your classpath if you are using JDK version less than
JDK1.4.

Access Manager 6 2005Q1 « Developer's Guide

4.

5.

6.

Using Authentication SPIs

A sample configuration file pur ej aassanpl e. confi g is provided for testing
this sample. It contains only one entry named.Sample. Sample is the name to
be entered for CONFI Gin the Makefile.

Sanmpl e {
Pur eJAASSanpl eLogi nMbdul e requi red ORG NAME="dc=i pl anet, dc=con¥
| NDEX_NAME="LDAP" debug=t r ue;

b

The entry specifies that the LoginModule to be used to do the user
authentication is the Pur eJAASSanpl eLogi nMbdul e. SampleLoginModule is
must succeed in order for authentication to be considered successful. It passes
options with CRG NAME as the organization name and | NDEX_NAME as the
Access Manager authentication module to which this sample has to
authenticate.

If you must use a different login configuration, modify the Makefile. For
example, change the following:

-Djava. security.auth.login. confi g=purejaassanpl e. config

to this:

-Djava. security.auth.login.config=<yourj jaas_config file.config>
To compile, run the make command.

To run the sample program, run the make run command.

To Enable SSL

1.

In the sample client program, add this JVM property:
-D "java. protocol . handl er. pkgs=com i pl anet . servi ces. commt
Edit the following properties in the AMConf i g. properti es file:

com.iplanet.am.admin.cli.certdb.dir:
<ISinstall-dir>SUMIdentityServer6\Servers\alias

com.iplanet.am.admin.cli.certdb.prefix:
ht t ps- machi nel. red. i pl anet. com machi nel-

com.iplanet.am.server.protocol: htt ps

com.iplanet.am.server.port: Enter the appropriate port on the server machine
where machi nel is the host name of the server

Chapter 6 Using Authentication APIs and SPIs 157

Using Authentication SPIs

For the detailed information, see the Javadoc for Remote Client APIs. By default,
Access Manager Javadoc is installed in the following directory:

AccessManager-base/ SUNVan docs

For the detailed information on how to plug the Login Module into the standard
JAAS Context, see the JAAS Reference Guide at
http://java.sun. com j 2se/ 1. 5. 0/ docs/ gui de/ securi ty/j aas/ JAASRef Qui de. ht m .

158 Access Manager 6 2005Q1 « Developer's Guide

Chapter 7

|ldentity Management

The ldentity Management module of Sun Java™ System Access Manager 6 2005Q1
contains an XML template file and application programming interfaces (APIs) that
provide the functionality to, among other operations, create, delete and manage
identity entries in the Sun Java System Directory Server used for data storage. This
chapter offers information on these identity-related features. It contains the
following sections:

= “Overview” on page 159

« “ldentity-related Objects” on page 160

e “Object Templates And ums.xml” on page 164
= “amEntrySpecific.xml” on page 168

= “ldentity Management SDK” on page 169

= “ldentity Management Samples” on page 183

Overview

The Identity Management module allows for the management of Identity-related
Objects using the Access Manager console or command line tools. These objects,
that are created and managed via Access Manager, are actually stored as LDAP
entries in Directory Server. To bridge the gap between the two products, Access
Manager provides interfaces that are used to create and delete identity-related
objects as well as get, add, modify, or remove their attributes.

159

Identity-related Objects

Access Manager Console

All aspects of the Access Manager console are covered in Chapter 3, “The Access
Manager Console,” of this manual and the Sun Java System Access Manager
Administration Guide.

ums.xmi

This file defines a set of templates that contain the configuration information needed
to set up each identity-related object created with Access Manager as an LDAP
entry in the Directory Server data store. More information on uns. xni can be found
in “Object Templates And ums.xml” on page 164.

Identity Management Software Development Kit
(SDK)

The SDK is used to integrate the management functions of Access Manager into
external applications or services. More information on the SDK can be found in
“ldentity Management SDK” on page 169.

|dentity-related Objects

160

Access Manager defines and manages the following identity-related objects:
= Organizations
= Containers
o Organizational Units (referred to as containers in the console)
v People Containers
o Group Containers
e Users
= Groups
o Static Groups
o Assignable Groups (Dynamic)

Access Manager 6 2005Q1 « Developer's Guide

Identity-related Objects

o Filtered Groups
= Roles

o Static Roles

o Filtered Roles

These identity-related objects are not LDAP objects as defined in the Directory
Server schema. These objects are configured using an Access Manager schema,
managed using the Access Manager application and only stored in Directory
Server. In other words, an identity-related object in Access Manager does not
necessarily correspond to its LDAP counterpart in Directory Server. But, because
they are stored in Directory Server, these Access Manager objects must be mapped
to the existing Directory Server schema. Thus, Access Manager object entries are
appended with marker object classes.

Marker Object Classes

An identity-related object stored in Directory Server is identified as such through
the use of special marker object classes appended to its LDAP entry. These object
classes are defined in the Access Manager schema, ds_r enot e_schena. | di f,
located in IdentityServer_base/ SUNWaNd | di f. When a marker object class is added to
a Directory Server entry, Access Manager is able to access and manage that entry
using its console or command line tools. For example, an enterprise’s existing
directory schema may use organizational unit as its root rather than the default
organization; by adding the Access Manager organization marker object class,
sunManagedQr gani zat i on, to the LDAP entries of the organizational unit, Access
Manager can manage it as the organization’s root. It is through the use of marker
object classes that Access Manager can manage most existing directory structures.
The marker object classes are:

* sunManagedOr gani zati on

e iplanet-am nanaged- org-unit

e iplanet - am nanaged- peopl e- cont ai ner
e ipl anet - am nanaged- gr oup- cont ai ner
* ipl anet - am nanaged- per son

* iplanet-am nanaged- static-group

* iplanet-am nmanaged- gr oup

e iplanet - am nanaged- assi gnabl e- gr oup

Chapter 7 Identity Management 161

Identity-related Objects

162 Access Manage

e iplanet-am nanaged-filtered-group
* iplanet-am nanaged-role
* iplanet-am managed-filtered-role

For information on how to configure an existing directory tree within Access
Manager, see the Sun Java System Access Manager Migration Guide.

Identity-related Objects As LDAP Entries

Following is a discussion of the Access Manager objects and how they map to
LDAP entries in Directory Server.

Organizations
Represented by the marker object class sunManagedQr gani zat i on, organization is

the root entry of an Access Manager tree. It generally maps to an LDAP
or gani zati on or or gani zat i onal Uni t object class.

Containers
Functionally, there are three types of containers in Access Manager.

Organizational Units

Represented by the marker object class i pl anet - am managed- or g- uni t, an
organizational unit is referred to as a container in the Access Manager console. It
generally maps to the LDAP or gani zat i onal Uni t object class and can contain
sub-organizations, other containers, roles, groups, and users.

People Containers

Represented by the marker object classi pl anet - am nanaged- peopl e- cont ai ner,
a people container is an organizational unit which is a parent for user entries. It
generally maps to the LDAP or gani zat i onal Uni t object class and can contain
sub-people containers and users.

Group Containers

Represented by the marker object class i pl anet - am managed- gr oup- cont ai ner,
a group container is an organizational unit which is a parent for any number of
group entries. It generally maps to the LDAP or gani zat i onal Uni t object class
and can only contain groups and other group containers.

r6 2005Q1 « Developer's Guide

Identity-related Objects

Users

Represented by the markerobject class i pl anet - am nanaged- per son, a user is the
representation of a person. It maps to an LDAP i net Or gPer son. It is a leaf node
that may not contain other entries.

Groups

Functionally, there are three types of groups in Access Manager. Assignable
Groups (Dynamic) (by default) and Static Groups are configured using the
Membership By Subscription option in the console. Filtered Groups are configured
by choosing the Membership By Filter option in the console.

Assignable Groups (Dynamic)

Represented by the marker object classi pl anet - am nanaged- assi gnabl e- gr oup,
an assignable group is one in which an administrator wants to explicitly add the
user to a group. For example, Larry wants to give Ramona permission to look at his
employees’ telephone numbers so he adds her to the ReadPhoneNumbers group.
In Directory Server, member entries contain the menber of LDAP attribute

(i net Adm n object class) and the group membership is dynamically established.

NOTE Assignable groups are referred to as Dynamic when seen in the console as,
technically, they are created with an LDAP filter albeit a static one.

Static Groups

Represented by the marker object class i pl anet - am nmanaged- st ati c- group, a
static group is one in which members are added by appending the

gr oupCOF Uni queNanes object class to the LDAP group entry itself. It can contain
users, filtered groups or other static sub-groups. This type of group can be enabled
using the Administration Service in the console. By default, it is disabled and all
groups created are of the type “Assignable Groups (Dynamic).”

Filtered Groups

Represented by the marker object class i pl anet - am managed-fil t er ed- group, a
filtered group is created through the use of an LDAP filter. All user entries are
funneled through the filter and dynamically assigned to the group. The filter
would look for a specified attribute in an entry and return those entries that contain
the attribute as a member of the group.

Chapter 7 Identity Management 163

Object Templates And ums.xml

Roles

Functionally, there are two types of roles in Access Manager. Roles can only be
created in organizations, suborganizations and generic containers; they can not be
configured in people containers.

Static Roles

Represented by the marker object class i pl anet - am managed-r ol e, a static role is
a role entry in which the members are added by appending the
gr oupCF Uni queNanes object class to the role entry itself. It can contain users.

Filtered Roles

Represented by the marker object class i pl anet - am managed-filtered-rol e, a
filtered role is created through the use of an LDAP filter. All user entries are
funneled through the filter and dynamically assigned to the role. The filter would
look for a specified attribute in an entry and return those entries that contain the
attribute as a member of the role.

Object Templates And ums.xml

The uns. xnl provides a set of parameters, or templates, that contain the LDAP
configuration information for all Identity-related Objects managed using Access
Manager. The templates are used to create LDAP entries for the identity-related
objects so they can be stored in Directory Server. In addition, the templates are
used for the dynamic generation of roles and the construction of object searches.
The file can be found in the IdentityServer_base/ SUNWANT conf i g/ uns directory; it is
based on the sns. dt d which is defined in Chapter 8, “Service Management,” of
this manual.

NOTE These templates can be modified by administrators to alter the behavior of the Java
interfaces. But, if uns. Xxm is modified and reloaded, there will be inconsistencies
between the entries created prior to the modifications and the newer ones.

Structure Of ums.xml

The uns. xni defines three types of templates: Structure, Creation and Search.
Structure templates define the Directory Server information tree attributes for the
object. Creation templates define an LDAP template for the object being created.
Search templates define guidelines for performing searches using LDAP.

164 Access Manager 6 2005Q1 « Developer's Guide

Object Templates And ums.xml

Structure Templates

Structure templates define the form an Access Manager object will take within the
Directory Server information tree. In other words, these templates define the child
nodes (roles, groups, containers) that are created IN ADDITION to the creation of
the object itself. There are six attributes that need to be defined for each object’s
structure.

« cl ass—This attribute represents the name of the Java class that will
implement the object. This attribute is fixed and should never be modified.

= name—This attribute defines the Relative Distinguished Name (RDN) for the
object. RDN is "ou=People" or "ch=ContainerDefaultTemplateRole". For the
core structure templates such as Organization or OrganizationaUnit, the value
defined at run time (when you create Org's or containers from console or CLI).
Thats why you don't see the RDN value for the core ones. Where as for others
such as PeopleContainer & DefaultOrgRole, you see the RDN's. You can
specify the RDN values for the PeopleContainers, Groups that can be created.
A note of caution that the naming attribute specified in the RDN, for example
ou from ou=Groups should match the naming attribute defined in the Group
Creation template. For example, an organization has o=or g as its naming
attribute while a people container uses ou=Peopl e.

= chi | dNode—This attribute specifies the child nodes (roles, groups, containers)
that will be created in tandem with the object. The value is the name of the
structure template for the respective object.

= tenpl at e—This attribute specifies the name of the Creation template used to
create this object.

e filter—This attribute is not currently used.

= priority—Forinternal use only, the value of this attribute should always
remain 0.

Creation Templates

Every identity object that Access Manager creates has a corresponding creation
template which defines the LDAP schema for the object. It specifies which object
classes and attributes are mandatory or optional and which default values, if any,
should be set. This conforms to the actual LDAP entry in the Directory Server.
There are six attributes that need to be defined for each object’s template.

= name—This attribute defines the type of object that the template will create. It is
also the name of the template itself. This attribute should not be modified.

Chapter 7 Identity Management 165

Object Templates And ums.xml

= javacl ass—This attribute defines the name of the Java class used to
instantiate the object. This attribute should not be modified.

= requi red—This attribute defines the required LDAP object classes and
attributes for the object.

= optional —This attribute defines the optional LDAP object classes and
attributes for the object.

« val i dat ed—This attribute is reserved for future use.

< nam ngatt ri but e—This attribute specifies the LDAP attribute used to name
the object. For instance, the Basic User creation template has as its
nam ngat t ri but e the value of the LDAP attribute, ui d.

Search Templates

Search templates are used to define how searches for identity-related objects are
performed in Directory Server. This template defines a default search filter and the
attributes returned in the search. For example, a search filter is constructed which
defines and specifies which attributes and values are to be retrieved from the
Directory Server.

= name—This attribute defines the name of the search template.
= searchfilter—This attribute defines the value the search will look for.

= attrs—This attribute specifies the LDAP attributes that need to be returned.

NOTE For a listing of interfaces applicable to each identity-related objects, see
“amEntrySpecific.xml” on page 168.

Modifying ums.xml

Any LDAP attributes or object classes not already present in the Directory Server
LDAP schema must be added to the uns. xm file in order for them to be
recognized by the Access Manager. In most cases, the attributes that service
developers might want to add may already exist in the i net or gper son and the

i net user object classes. If, for example, a custom mail service is being added with,
specifically, an enpl oyeeNunber attribute, the uns. xm file does not need to be
modified because this attribute already exists in the i net or gper son object class.
Generally, the uns. xni file does not need to be modified. Some circumstances
where this file would need to be modified are:

= if Access Manager is being installed against a legacy DIT.

166 Access Manager 6 2005Q1 « Developer's Guide

Object Templates And ums.xml

= if new object classes are being added to users or organizations.
= if service developers want to change the default organizations or roles.
= if service developers need to change an entry’s naming attribute.

Additional information on when and how to modify the uns. xm file is covered in
the section on installing against a legacy DIT in the Sun Java System Access Manager
Migration Guide.

CAUTION It is recommended that the unms. Xxm configuration file be backed up before any
modifications are made.

Adding Custom Object Classes

If a service developer wants to add new or customized object classes to the
Directory Server for Access Manager’s use, they would need to modify the
templates in the uns. xm file. The DAI Service would then need to be deleted from
Directory Server and the modified ums.xml reloaded using the amadm n command
line tool.

Once uns. xm has been modified, the new object classes and attributes must be
defined in an XML service file which would then be imported into Access Manager
using the procedures described in Chapter 8, “Service Management,” of this
manual. This configures Access Manager to manage the new object classes from the
console.

NOTE unsExi sti ng. xm contains objectclasses and user object class tags which will
be replaced after installation and is used when installing Access Manager with an
existing directory server information tree.

DAI Service

When Access Manager is installed, the uns. xm file is stored in Directory Server as
the Directory Access Instructions (DAI) service. The DAI service is only available
for modification through the Directory Server; it is not available through the Access
Manager console or command line interface. The Access Manager SDK gets the
configuration information from this directory tree node, when needed, to create an
identity-related object or perform a search. Any attribute specified in the uns. xni
can be set for a created object. If uns. xm is modified, the DAI Service would need
to be deleted from Directory Server and reloaded using the amadm n command line
tool. To delete the DAI Service from Directory Server, delete the DAI branch

Chapter 7 Identity Management 167

amEntrySpecific.xml

(ou=DAl , ou=ser vi ces, root-suffix) or use the amadm n command line tool with the
-r option. To reload uns. xm , use amadnm n and the -s option. (The administrator
user and password options will also be used for both.) For more detailed
information on the command line tools, see the Sun Java System Access Manager
Administration Guide.

NOTE When using the amadm n command line tool to reload uns. xm , the full DN of
the amadm n user must be used as a parameter. If not, the LDAP Authentication
Service will not be able to find the administrator in its search for the user DN. For
example, instead of usingamadm n -u amadmn -w 11111111 -s ums.xml
file path, the input command would be:

amadmin -u
"ui d=amadm n, ou=peopl e, dc=exanpl e_or g, dc=conl’ -w
11111111 - s ums.xml file path

amEntrySpecific.xml

The purpose of the anEnt rySpeci fi c. xn service file is to define attributes from
an existing directory to display on the Access Manager console’s functional pages
for all Identity-related Objects. These functional pages are as follows;

= Create—The Create page is displayed when the administrator clicks New.

= Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an object is clicked.

= Search—The Search link is in the top left frame of the Access Manager console.

Each object can have its own schema definition in the anEnt r ySpeci fi c. xm file
which is based on the sns. dt d as described in Chapter 8, “Service Management,”
of this manual.

NOTE Dynamic attributes are not supported in anEnt rySpeci fi c. xn .

If a service developer wants to customize the console’s functional pages with
attributes that are not default to the Access Manager tree, they would modify the
ankEnt rySpeci fi c. xm file. For example, to display an attribute on the group
page, the new attribute needs to be added to the anEnt r ySpeci fi c. xm file. Any
object with customized attributes in the Directory Server would need to have those
attributes reflected in the anEnt r ySpeci fi c. xm file also. (Most often, a service
developer would only be customizing the organization pages.) Code Example 7-1

168 Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

is the organization attribute subschema that defines the display of an
organization’s Organization Status and its choice values. Note that based on the
information in“any Attribute” on page 208, this Organization Status attribute will
be displayed on the Search page and is not an attribute requiring a value for
creation.

Code Example 7-1 Organization Subschema of anEnt r ySpeci fi c. xm

<SubSchena nane="QCr gani zati on">
<AttributeSchema name="i net domai nst at us"
type="si ngl e_choi ce"
synt ax="string"
any="optional |filter"
i 18nKey="02">
<Choi ceVal ues>
<Choi ceVal ue>Act i ve</ Choi ceVal ue>
<Choi ceVal ue>l nact i ve</ Choi ceVal ue>
</ Choi ceVal ues>
</ Attribut eSchena>
</ SubSchena>

If the t ype attribute is not specified in anEnt rySpeci fi c. xni , the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the Access Manager console.

All the attributes listed in the schema definitions in the anEnt r ySpeci fi c. xm file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the anEnt r ySpeci fi c. xn file, the Access
Manager console will not display the attribute.

NOTE The User service is not configured in the anEnt r ySpeci fi c. xm file butin its
own anJser . xm file.

|ldentity Management SDK

The Access Manager SDK contains an API for identity management. These
interfaces can be used by developers to integrate management functions into
external applications or services that will be managed by Access Manager. The API
functions to create or delete identity-related objects as well as get, modify, add or
delete the object’s attributes. The com i pl anet . am sdk package contains all the
interfaces and classes necessary to perform these operations in Directory Server.

Chapter 7 Identity Management 169

Identity Management SDK

170

Interfaces

Below are brief explanations of the Identity Management API.

NOTE All operations performed using the API open and close LDAP connections via a
connection pool. The connection pool size can be set in the serverconfig.xml file.
For more information, see Appendix B, “serverconfig.xml File,” in this manual.

AMAssignableDynamicGroup

The AMAssi gnabl eDynam c¢G oup interface provides the methods used to manage
“Assignable Groups (Dynamic).” This class extends the base AMX oup interface.
Associated with this object are the following uns. xm templates that define its
behavior at runtime. The creation template used is the
BasicAssignableDynamicGroup; and the search template used is the
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

AMCallback

AMCal | Back is a plug-in class that needs to be extended by external applications in
order to do special pre/post-processing for the creation, deletion and modification
operations for users, organizations, roles and groups.

AMConstants

AMConst ant s is the base interface for all identity-related objects. It is used to define
constants for use with the SDK (constants associated with searches, etc.).

AMDynamicGroup

The AMDynam c¢G oup interface provides the methods used to manage dynamic
groups. This class extends the base AMX oup interface. Associated with this object
are the following urms. xml templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMEventListener

The AMEvent Li st ener interface that can be used to monitor and react to events.
This listener can be called when an identity-related object is removed, renamed or
modified. It must be implemented using the following procedure:

Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

1. Implement the AVEvent Li st ener interface.
2. Get an instance of the object to which AMEvent Li st ener will listen.

For example, get an AMJser object and add the listener:
AMJser . addEvent Li st ener ().

3. When an event changes something in this object, the listener will be called.

CAUTION Access Manager does not currently support attaching an event listener to template
creation code.

AMFilteredRole

The AMFi | t er edRol e interface provides the methods used to manage “Filtered
Roles.” Associated with this object are the following uns. xm templates that define
its behavior at runtime. The creation template used is BasicFilteredRole; and the
search template used is BasicFilteredRoleSearch. It does not have a pre-defined
structural template.

AMGroup

The AM3 oup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMGroupContainer

The AMa oupCont ai ner interface provides the methods used to manage “Group
Containers.” Associated with this object are the following uns. xm templates that
define its behavior at runtime. The structural template used by this class is
GroupContainer; the creation template used is BasicGroupContainer, and the search
template is BasicGroupContainerSearch.

AMObiject

AMDj ect provides basic methods to manage identity-related objects. Since thisis a
generic class, it does not have any templates (as defined in “Object Templates And
ums.xml” on page 164) associated with it.

Chapter 7 Identity Management 171

Identity Management SDK

172

AMOrganization

The AMX gani zat i on interface provides the methods used to manage
“Organizations.” Associated with this interface are the following uns. xn
templates that define its behavior at runtime. The structural template used by this
class is Organization; the creation template used is BasicOrganization, and the search
template is BasicOrganizationSearch.

NOTE The AMOr gani zat i on interface contains methods that can be used to search
through identity-related objects in Directory Server. More information can be found
in “Search Methods In The SDK” on page 175.

AMOrganizationalUnit

The AMX gani zat i onal Uni t interface provides the methods used to manage
“Organizational Units.” Associated with this object are the following urs. xni
templates that define its behavior at runtime. The structural template used by this
class is OrganizationalUnit; the creation template used is BasicOrganizationalUnit,
and the search template is BasicOrganizationalUnitSearch.

AMPeopleContainer

The AMPeopl eCont ai ner interface provides the methods used to manage “People
Containers.” Associated with this object are the following uns. xm templates that
define its behavior at runtime. The structural template used by this class is
PeopleContainer; the creation template used is BasicPeopleContainer, and the search
template is BasicPeopleContainerSearch.

AMRole

The AMRol e interface provides the methods used to manage “Roles.” Associated
with this object are the following uns. xm templates that define its behavior at
runtime. The creation template used is BasicManagedRole; and the search template
used is BasicManagedRoleSearch. It does not have a pre-defined structural template.

AMSearchControl

The AMBear chCont r ol class provides a way to customize search behavior.
Common behaviors are time limit, result limit and virtual list view.

Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

Code Example 7-2 Sample Code Using AMSearchControl

SSOrokenManager nanager = SSOTokenManager . get | nst ance();

SSOroken token = manager . cr eat eSSOToken(new

Aut hPri nci pal ("ui d=anadni n, ou=Peopl e, dc=exanpl e, dc=coni), "11111111");
suo = get Sanpl eUser Qper at i ons(t oken) ;

ansc = new AMBt or eConnect i on(t oken);

/] Systemout. println(suo. createUser(ansc));

AVBear chControl ant = new AMBear chControl ();

anc. set Ti meQut (2000) ;

anct. set Sear chScope (AMOonst ant's. SCOPE_CNE) ;

AMVPeopl eCont ai ner anp =

ansc. get Peopl eCont ai ner (" ou=peopl e, dc=exanpl e, dc=cont') ;

Set userset = (anp.searchUsers(ant, "(uid=u*)")).getSearchResults();
(bj ect users[] = userset.toArray();

Systemout. println((String)users[0Q]);

Systemexit(0);

AMStaticGroup

The AMVBt at i cG oup interface provides the methods used to manage “Static
Groups.” This class extends the base AM& oup interface. The name of the creation
template used with this class is BasicGroup; and the search template used is
BasicGroupSearch. It does not have a pre-defined structural template.

AMStoreConnection

The AMBt or eConnect i on class provides the means to establish a connection to the
data store Directory Server and provides methods to create, remove and get
different types of identity-related objects. A SSOToken is required in order to
instantiate a AM5t or eConnect i on object.

AMTemplate

The AMTenpl at e interface represents a service template associated with AMbj ect .
Access Manager distinguishes between virtual and entry attributes. As defined for
Sun Java System Directory Server, a virtual attribute is an attribute not physically
stored in an LDAP entry but still returned with it as a result of a LDAP search.
Virtual attributes are analogous to inherited attributes. An entry attribute is a
non-inherited attributes.

NOTE More information on virtual attributes can be found in “Virtual Attribute” on
page 373 of Appendix E, “Directory Server Concepts,” in this manual.

Chapter 7 Identity Management 173

Identity Management SDK

For AMOr gani zat i on, AMO gani zat i onal Uni t and AMRol e, virtual attributes can
be grouped in a template on a per-service basis; there may be one service template
for each service for any given AMbj ect . Such templates determine the service
attributes inherited by the users within the scope of this object. The templates are:
DYNAM C _TEMPLATE and ORGANI ZATI ON_TEMPLATE. DYNAM C TEMPLATE are
implemented using CoS; ORGANI ZATI ON_TEMPLATE does not have virtual attributes
or LDAP attributes.

Template Priority

When an object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), the conflict is
resolved through template priorities. (This conflict will only occur with services
that contain “Dynamic Attributes.”) The priority is defined by the value of the
“cosQualifier Attribute” as discussed in Chapter 8, “Service Management,” of this
manual. (The comparison values are def aul t, overri de, and rer ge- schenes.)
The priority level for a service template is set when then template is created using
the Access Manager console. The levels are Highest, Higher, High, Medium, Low,
Lower, and Lowest. Templates with higher priorities will be favored over
templates with lower priorities when def aul t is the value of cosQual i fi er. In the
case where two or more templates are being considered for inheritance of an
attribute value, and they have the same (or no) priority, the result is merged. If the
value is overri de, the priority level of the template takes precedence over any
priority specified in the user profile. Merge-schemes signifies that the priority
values will not be used, but a merged list of attribute values from all templates will
be assigned. Templates which do not have an explicitly assigned priority are
considered to have the lowest priority possible, or no priority.

AMUser

The AMJser interface provides the methods used to manage “Users.” Associated
with this object are the following uns. xm templates that define its behavior at
runtime. The creation template used is BasicUser; and the search template used is
BasicUserSearch. It does not have a pre-defined structural template.

Default Implementation Of AMUser

There is a default implementation of AMJser . Assuming an SSOToken and a user
DN, the code to find the user status is illustrated in Code Example 7-3.

Code Example 7-3 Sample Code To Find User Status

AMVBt or eConnecti on conn = new AVBt oreConnection (ssoToken) ;
AMXker user = conn. get User (userDN) ;
if (user.isActivated()) {

174 Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

Code Example 7-3 Sample Code To Find User Status (Continued)

} else {

o

AMUserPasswordValidation

AMJker Passwor dVal i dat i on is an interface to plugin external modules to validate
user names and passwords. The methods of this class must be overridden by the
implementation plugin modules. The modules will be invoked whenever a useriD
or password value is being added or modified using Access Manager console, the
amadm n CLI or the SDK directly.

Search Methods In The SDK

The SDK provides a variety of methods to conduct searches throughout the
organizational tree. They are provided within the AMOrganization interface.
Criteria is needed by the API to perform a search. Typically, the criteria is a LDAP
search filter string, the scope of the search (one level or sub-tree), and where the
search will begin (the base DN). The SDK provides the APIs to conduct searches
and obtain results for all identity objects.

NOTE The SDK always includes the objectclass used to search so it is not required to
explicitly include the filter. For example if searching for users, the SDK will include
the default user search filter provided in the BasicUserSearch search template in
the ums.xml.

This section specifically discusses one of the search methods: sear chUser s. (For
information on all of the search methods, refer to the Access Manager Javadocs.)
Code Example 7-4 is the set of different search methods available for sear chUser s.

Code Example 7-4 Available Search Methods For searchUsers

public Set searchUsers(String wildcard, int |evel)
throws AMException, SSCException;

public Set searchUsers(String wildcard, Map avPairs, int |evel)
throws AMException, SSCException;

Chapter 7 Identity Management 175

Identity Management SDK

176

Code Example 7-4 Available Search Methods For searchUsers

publ i c AVBearchResults searchUsers(String w ldcard, Map avPairs,

AlBear chControl searchControl)
throws AMException, SSCException;

publ i c AVBearchResults searchUsers(String wldcard,
AVBear chCont rol searchControl)
throws AMException, SSCException

public AvBearchResults searchUsers(String w ldcard,
AVBear chControl searchControl, String avfilter)
throws AMException, SSCException;

Search Method Parameters
Here are brief descriptions of some of the search method parameters.

AMSearchControl

This class provides a way to specify detailed search criteria such as the scope of the
search, the maximum results, time out value, etc. It must be implemented for all
searches to set these criteria.

wildCard

This parameter can be used to specify the wild card used for naming attributes. For
example, if searching for all users whose naming attributes (uid or cn) start with
"Ma", then the wild card could be Ma*.

avPair

This parameter is a map of attribute/value pairs that need to be added to a search
filter. The key of the map is the attribute name and the value is a set of values. The
SDK will construct a filter from this avPai r map. Each of the pairs in the map will
be OR ("]") and not AND (&) to construct the filter.

avFilter

In most cases it will be sufficient to OR the attributes, but this parameter provides
flexibility for applications to pass their own search filter to meet search criteria.
Such filters could be a complex LDAP search filter as in the following example:

(&(obj ect cl ass=i pl anet - am nanaged- per son) ((cust onEnpl oyeeNuner =12*)
&(cust onDepart ment =3459932)))

This example illustrates when two conditions (the employee number and
department number) need to be met. For this purpose, AND (&) is used.

Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

NOTE The methods that return aj ava. uti | . Set will throw an exception if the search
fails as a result of exceeding the search limit or the time limit. In such cases, even
partial results of the failed search will not be returned. To obtain the partial results
in such cases, the methods that return an AMSear chResul t s object must be
used. The error code can be verified by using the class methods to check if the
search was successful.

searchUsers Sample Code

Code Example 7-5 demonstrates how to search for all users in an organization (DN:
dc=exanpl e, dc=com) who belong to department 3459932 and whose user hames
end with smith.

Code Example 7-5 Sample Code For Search Methods

/] Note obtain a valid token of a principal who has privileges to
/'l performthis operation.
SSOroken token = get SSOToken();

/] Create an AMBtoreConnection and obtain an AMX gani zation

/'l instance for dc=exanple, dc=com

ANVBt or eConnecti on ant = new ANMBt or eConnecti on(t oken) ;

AMX gani zation anmrg = ant. get O gani zati on("dc=exanpl e, dc=con') ;

/1 Construct the search filter

/] Need to retrieve all usernanes ending with snmth
String wildCard = "*smth"

Map avPair = new HashMap();

Set departnent Val ue = new HashSet ();

depart ment Val ue. add(" 3459932") ;

avPai r. put ("cust onmDepart nent”, departnent Val ue);

Il Set the search control

AVBear chControl = new A\VBear chControl ();

Il Sub tree search

sear chControl . set Sear chScope(AMConst ant s. SCOPE_SUB) ;
/1 Time out 3000 mlliseconds.

searchControl . set Ti meQut (3000);

/1 Wuld like to get only first 100 results
searchControl . set MaxResul t s(100) ;

/1 Performthe search
AVBear chResul ts results = anrg. sear chUsers(wi |l dcard, avPair,
searchControl);

/] Check if any time out or size limt errors occured.
if (results.getErrorCode == AVBear chResul ts. SUCCESS) {

/'l Process the results
} else {

Il Verify the error condition and take appropriate action
}

Chapter 7 Identity Management 177

Identity Management SDK

178

Here the filter to conduct the search will look like:

(&(ui d=*smi t h) (obj ect cl ass=i net or gper son) ((cust orrer Depar t nent =" 3459
932")))

To add an additional department, one more value can be added to the search as in:

(&(ui d=*smi t h) (obj ect cl ass=i net or gper son) ((cust orrer Depar t nent =" 3459
932")| (cust oner Depart ment =" 3459933")))

Search Groups Sample Code
Code Example 7-6 uses interfaces from the com i pl anet . am sdk package to

search groups.

Code Example 7-6 Search Groups Code Sample

try {
Set orgSetl = new HashSet ();
Set orgSet2 = new HashSet ();
Set orgSet3 = new HashSet ();
Set orgSet4 = new HashSet ();

AVBear chResul ts results = nul | ;
AvBear chControl ctl = new AvBearchControl (); //use default val ues
String DN = "ou=Q@ oups, dc=i dpl, dc=coni’;
AMX gani zational Unit org = conn. get O gani zati onal Unit (DN);
if (org.isExists()) {
/lget all groups in this QU
orgSet1 = org. get Assi gnabl eDynani cG oups(AMConst ant s. SOOPE_SUB) ;
/I get Assignabl e Dynam ¢ G oups
orgSet 2 = org. get Dynam c@ oups(AMConst ant s. SCOPE_SUB) ; //get Dynam ¢
QG oups
orgSet3 = org. get Stati cQG oups(AMonst ants. SCOPE SUB); //get Static
QG oups

//set up the avPairs for the search on attribute within group
Map avPairs = new HashMap();
Set set = new HashSet (1);
set.add("true");
avPai rs. put ("i pl anet - am gr oup- subscri babl e", set);
results = org. searchAssi gnabl eDynam cQG oups("*", avPairs, ctl);

[lreturns all subscribabl e groups
orgSet4 = results. get SearchResul ts();

}
[IPrint the results
return "Assignable Dynamic Goups: " + orgSetl.toString() +
"Dynanic Goups: " + orgSet2.toString() +
"Static Qoups: " + orgSet3.toString() +
"Qoup with subscribable=true:" + orgSet4.toString();
} catch (Exception ex) {
ex. print StackTrace();

Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

Code Example 7-6 Search Groups Code Sample

return "got errors";

}

Email Notification And The SDK

anProfil e. properti es is the localization file for the SDK. All strings that may be
visible via an error message or a feature are stored in this file as key=val ue pairs.
The file itself is located in IdentityServer_base/ SUN\Vant | ocal e. Although all of the
properties are not discussed in this section, there are some worth noting that
pertain to email notification. The Administration Service has a number of
notification attributes: User Creation, User Deletion and User Modification
notification lists. When a user profile is created, deleted or modified, a notification
email will be sent to the addresses listed as values of these attributes. To modify the
message that is sent, the following key=val ue pairs in anProf i | e. properties
need to be modified.

= 490=The user creation email subject can be defined with this key. The default is
WARNI NG user creation notice.

= 491=The user deletion email subject can be defined with this key. The default is
WARNI NG user del etion notice.

= 492=The user modification email subject can be defined with this key. The
default is WARNI NG user nodi fication noti ce.

= 493=The user creation email body text can be defined with this key. The default
isuser is created: followed by the DN of the user.

e 494=The user deletion email body text can be defined with this key. The
defaultisuser is del eted: followed by the DN of the user.

= 495=The user modification email body text can be defined with this key. The
defaultisuser is nodified: user DN. attribute is changed: attribute
old_value: original_value new value: modified_value

= 497=The entity from which the email comes is defined with this key. The
default is Identity-Server.

More information on the Administration Service and the notification attributes
themselves can be found in the Sun Java System Access Manager Administration
Guide.

Chapter 7 Identity Management 179

Identity Management SDK

180

Caching And The SDK

Caching in the Identity Management SDK is used for storing all AMDbj ect
attributes (For example, attributes of identity-related objects) that are retrieved
from Directory Server. The cache does not hold AMbj ect directly, only its
attributes. All attributes retrieved from Directory Server using the methods
AMbj ect. get Attri butes(), AMbj ect.get Attribute(String nane) or
AMDoj ect . get Attri but es(set Attri but eNanmes) will be cached. Table 7-1
contains a listing of the recorded cache properties.

Table 7-1 Recorded Cache Properties

Information Name What is recorded

Number of requests during Number of get requests during the specified interval
this interval

Number of cache hits Number of hits during the specified interval

during this interval

Hit ratio for this interval Hit ratio for the specified interval

Total number of requests Overall number of get requests since a server re-start

since server start

Total number of cache hits Overall number of hits since a server re-start
since server start

Overall Hit ratio Overall hit ratio since a server re-start

Total Cache Size The total size of the cached information

Cache properties can be configured by modifying attributes in the
AMonf i g. proper ti es file. For more information see “SDK Caching” on page 338
of Appendix A, “AMConfig.properties File,” in this manual.

Installing The SDK Remotely

It is possible for an external application to perform management functions on the
Directory Server without installing the full Access Manager application at the
external location. By installing the SU\Vansdk package using the pkgadd utility (or
the installer), the Identity Management SDK can be installed on a non-Access
Manager machine. For more details on the Identity Management SDK only
installation option, refer to the Java Enterprise System Installation Guide.

Access Manager 6 2005Q1 « Developer's Guide

Identity Management SDK

NOTE If the SUNVANs dk package is installed remotely and Access Manager is running
in SSL mode, a certificate database needs to be created. Create the database
using the Sun Java System Web Server command line tool cert uti | or the Web
Server console and then copy the database to the remote machine. For more
information, see the Sun Java System Web Server documentation set.

Management Function Samples

Following are several samples that illustrate identity management functions using
the Identity Management SDK.

NOTE Access Manager can authenticate and authorize against directories other than Sun
Java System Directory Server (for example, Microsoft™ Active Directory), but
Access Manager can not perform management functions against these directories
such as creating users or deleting organizations.

Creating Objects

Typically, three steps are involved in creating an object with the SDK. The
following three steps are specific to creating users but can be modified for any
object.

To Create A User
1. Get AVBt or eConnect i on object to connect to the data store.

2. From the AMSt or eConnect i on, get AMPeopl eCont ai ner object where the users
will be created.

3. In AMPeopl eCont ai ner object, create users.

Code Example 7-7 Sample Code To Create A User

/**
* This nethod will describe the SDK usage for creating a user.
* |t uses AVBtoreConnection to get the organization object

* |t also uses the Set Paraneters to store the different

* attributes of the user. It throws

* an AMException if it's unble to create it and we throw

* message "unable to create" to the GJ by catching the same

*
/

public String createlUser (HtpServl et Request req, Set paraneters,
AMVBt or eConnecti on conn) {
try {

Chapter 7 Identity Management 181

Identity Management SDK

Code Example 7-7 Sample Code To Create A User (Continued)

Map userAttributeMap = new HashMap();

if (paraneters.contains("uid")) {
uid = req.get Parameter ("uid");
storeUserAttributes("uid", uid, userAttributeMap);

i f(parameters. contains("firstnane")) {
firstName = req. getParanmeter("firstname");
storeUser Attributes("givennane", firstNane,

user Attri but eMap) ;
}

i f(parameters. contai ns("lastname")) {
| ast Name = req. get Paramet er ("1 ast name") ;
storeUser Attributes("sn", |astName, userAttributeMap);

i f (pararet ers. contai ns("password")) {
passWrd = req. get Paramet er (" user Passwor d") ;
storeUser Attribut es("user Password", pass\Wrd,

user At tri but eMap) ;
}

Map user Mapl = new HashMap();

user Mapl. put (ui d, userAttributeMap);

String orgDN = req. get Paranet er (" or gNane") ;

String dn = "ou=People" + "," + orgD\

AMPeopl eCont ai ner anpc = conn. get Peopl eCont ai ner (dn) ;
anpc. creat eUser s(user Mapl) ;

userDN = "uid=" + uid +"," + dn;

/*

* This is to keep the context of the user
*/

cont ext User = conn. get User (user DN) ;
return showCr eat eUser Success();
} catch (Exception ex) {
ex. print StackTrace();
return "Unable to create";

To Create An Organization
1. Get AMBt or eConnect i on object to connect to the data store.

2. From the AMSt or eConnect i on, get AMOr gani zat i on object for the top level
organization.

3. In AMX gani zat i on object, create sub-organization.

NOTE or g. cr eat eUser s creates users directly under the organization. In order to
create users in a people container, use the AMPeopl eCont ai ner object.

182 Access Manager 6 2005Q1 « Developer's Guide

Identity Management Samples

Retrieve Templates

Code Example 7-8 retrieves a service’s dynamic templates by opening a connection
to Directory Server with AVBt or eConnect i on. It retrieves a service’s dynamic
template by defining the DN of the top organization (t opor g. con) as well as the
string attribute of the specific service to be retrieved.

Code Example 7-8 Retrieve Service’s Dynamic Template

/] instantiate a store connector from SSO Token
AVBt or eConnection ansc = new AMBt or eConnect i on(ssoToken) ;
Il retrieve top | evel organization by DN
AMX gani zation org = ansc. get O gani zati on("dc=t opor g, dc=cont) ;
Il retrieve Dynamc type AMIenpl ate for i Pl anet AMBessi onService
AMTlenpl ate tenplate = org. get Tenpl at e("i Pl anet AMBessi onSer vi ce",
AMTenpl at e. DYNAM C_TEMPLATE) ;
/'l retrieve attributes
String maxSessionTine =
tenpl ate. get StringAttribute("iplanet-am sessi on- max-session-tine");

TIP As an alternative to creating a new XML service file, amJser . xm can be
modified. In this case, unregister the old anlJser service file, modify it and
re-register the modified file. Attribute/value pairs need to be integrated into the
amJser . properti es file for newly-defined internationalization keys.
uns. X does not need to be modified for this option.

ldentity Management Samples

Access Manager contains samples that illustrate user management functions. These
include a sample to add an attribute to the user profile and one to illustrate how to
create organizations, users, roles, and services using the SDK. They can be found in
IdentityServer_base/ SUNVAnI sanpl es/ um

Chapter 7 Identity Management 183

Identity Management Samples

Adding User Attributes

This sample explains how to add new attributes to the User profile so that those
new attributes can be managed via the user page in the Access Manager console.
There are 2 ways this can be achieved: modify the existing anlser . xnl , or create a
new XML service file and import it into Access Manager.

Creating Objects With The SDK

This sample contains sample Java code that can be generated and run to create
some identity-related objects including an organization, roles and users. The
defined Sanpl eQ gQper at i ons. j ava creates an organization, gets the registered
services, and adds them. Sanpl eUser Cper at i ons. j ava and

Sanpl eRol eQper at i ons. j ava can also be used for their respective purposes.

184 Access Manager 6 2005Q1 « Developer's Guide

Chapter 8

Service Management

Sun Java™ System Access Manager 6 2005Q1 provides a mechanism for the
definition and management of services and their configuration data. Both
eXtensible Markup Language (XML) files and Java™ interfaces are used for this
purpose. This chapter provides information on how to define a service, the
structure of the XML files and the service management application programming
interfaces (API). It contains the following sections:

= “Overview” on page 185

< “Defining A Custom Service” on page 187
e “DTD Files” on page 198

e “XML Service Files” on page 231

= “Service Management SDK” on page 239

Overview

A service is a group of attributes that are managed together by the Access Manager
console. The attributes can be the configuration parameters of a software module or
they might just be related information with no connection to a software
application. As an example of the first scenario, after creating a payroll module, a
developer can create an XML service file that might include attributes to define an
employee name, an hourly pay rate and an income tax rate. This XML file is then
integrated into the Access Manager deployment so that these three attributes and
their corresponding values can be stored in, and managed from, the Sun Java
System Directory Server data store and Access Manager console, respectively.

185

Overview

Access Manager provides the necessary tools for administrators to define, integrate
and manage groups of attributes as a service. Creating a service for management
using the Access Manager console involves preparing an XML service file,
configuring an LDAP Data Interchange Format (LDIF) file with any new object
classes and importing both, the XML service file and the new LDIF schema, into the
Directory Server. Administrators can then register, customize and manage the
service using the Access Manager console. More specific information on this
process can be found in “Defining A Custom Service” on page 187.

NOTE Throughout this chapter, the term attribute is used to illustrate two concepts. An
Access Manager or service attribute refers to the configuration parameters of a
defined service. An XML attribute refers to the parameters that qualify an XML
element in an XML service file.

XML Service Files

XML service files enable Access Manager to manage attributes that are stored in
Directory Server. It is important to remember that Access Manager does not
implement any behavior or dynamically generate any code to interpret the
attributes; it can only set or get the attribute values. Out-of-the-box though, Access
Manager loads a number of services it uses to manage the attributes of its own
features; it manages and uses these values. For example, the Logging attributes are
displayed and managed in the Access Manager console, while code
implementations within the Access Manager use these configured attributes to
record the operations of the application. All XML service files are located in

/ et c/ opt / SUN\VanT confi g/ xml . For more specific information on the XML files
used in service management, see “XML Service Files” on page 231.

NOTE Any application with LDAP attributes can have its data managed using the Access
Manager console by configuring a custom XML service file and loading it into the
Directory Server. For more information, see “Defining A Custom Service” on
page 187.

Document Type Definition Structure Files

The format of an XML file is based on a structure defined in a DTD file. In general,
a DTD file defines the elements and qualifying attributes needed to write a
well-formed and valid XML document. Access Manager exposes the DTD files that
are used to define the structure for the different types of XML files it uses. The

186 Access Manager 6 2005Q1 « Developer's Guide

Defining A Custom Service

DTDs are located in IdentityServer_base/ SUN\VanT dt d. This chapter primarily
concerns itself with sis. dt d, the file that defines the structure for all XML service
files. Additional information on Access Manager DTDs can be found in “DTD
Files” on page 198.

NOTE Knowledge of XML is necessary to understand DTD elements and how they are
integrated into Access Manager. When creating an XML file, it might be helpful to
print out the relevant DTD and a corresponding sample XML file.

Service Management SDK

Access Manager also provides a service management SDK that gives application
developers the interfaces necessary to register and un-register services as well as
manage schema and configuration information. These interfaces are bundled in a
package called com sun. i dentity. sm More information on the SDK can be found
in “Service Management SDK” on page 239.

Defining A Custom Service

To define a service for management using Access Manager, the developer must
create an XML service file as well as configure an LDIF file for any object classes
not already defined in Directory Server. Both, the XML service file and the new
LDIF schema, must then be imported into Directory Server. Once imported, the
service can be registered to an organization using Access Manager and its
attributes managed and customized by the Access Manager administrator. The
following steps detail the procedure used to define a service. The sections
following the procedure explain each step in more detail.

1. Create an XML service file containing a group of attributes.

This XML service file must conform to the sns. dt d. A simple way to create a
new XML service file would be to copy and modify an existing one. More
information on creating an XML service file can be found in “Creating A
Service File” on page 189. An explanation of the DTD syntax can be found in
“The sms.dtd Structure” on page 199.

Chapter 8 Service Management 187

Defining A Custom Service

Extend the LDAP schema in Directory Server using | dapnodi fy, if necessary.

Loading an LDIF file into Directory Server will add any newly defined or
modified LDAP object classes and attributes to the directory tree. This step is
only necessary when defining dynamic, policy and user attributes. (Using
Access Manager-specific object classes and attributes do not require that
changes be made to the LDAP schema.) Instructions on extending the LDAP
schema can be found in “Extending The Directory Server Schema” on

page 193. Additional information on identity-related objects and the Access
Manager schema can be found in Chapter 7, “ldentity Management,” of this
manual and the Sun Java System Access Manager Deployment Planning Guide,
respectively. The Sun Java System Directory Server documentation contains
information on the LDAP schema.

Import the XML service file into Directory Server using amadmni n.

Information on importing an XML service file and the anadm n command line
utility can be found in “Importing The XML Service File” on page 195 and the
Sun Java System Access Manager Administration Guide, respectively.

Configure a localization properties file and copy it into the
IdentityServer_base/ SU\ani | ocal e directory.

The localization properties file must be created with accurate i 18nKey fields.
These console names map to fields defined in the XML service file. If no
localization properties file exists, Access Manager will display the actual
attribute names. More information on the localization properties file can be
found in “Configuring Console Localization Properties” on page 196 and
“Localization Properties Files” on page 90 of Chapter 5, “Authentication
Service,” in this manual.

Update the anEnt r ySpeci fi c. xmi or anmser. xn files, if necessary.

The anEnt rySpeci fi c. xn file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the Access Manager
abstract objects. The amJser . xmi file can be modified to add User attributes to
the User Service. (Alternately, User attributes can be defined in the actual XML
service file in which case, anmser . xm would not need to be modified.)
Information on abstract objects and updating anEnt r ySpeci fi c. xm can be
found in Chapter 7, “Identity Management,” of this manual. Information on
modifying amJser . xm can be found in “Modifying A Default XML Service
File” on page 233.

188 Access Manager 6 2005Q1 « Developer's Guide

Defining A Custom Service

6. Register the service using Access Manager console.

After importing the service into Directory Server, it can be registered to an
organization and the attributes managed through the Access Manager console.
Information on how this can be done is in the Service Configuration chapter in
the Sun Java System Access Manager Administration Guide. Information on how
to register the service using the command line can be found in “Registering
The Service” on page 197.

Creating A Service File

The information in this section corresponds to Step 1 on page 187, creating an XML
service file. The XML service file defines the attributes of an Access Manager
service. It must follow the structure defined in the sns. dt d which enforces the
service developer to combine attributes into one of five groups, allowing the
developer to differentiate between those attributes applicable to, for example, a
service instance or a user. The DTD syntax can be found in “The sms.dtd Structure”
on page 199.

Service File Naming Conventions
When creating a new XML service file, there are some naming conventions that
must be followed.

= The name of a service (other than an authentication module service) as defined
in the XML service file can be any string as long as it is unique.

< The name of an authentication module service as defined in the XML service
file must be in the form i Pl anet AMAut hmodule_nameService.)

< Any defined authentication level attribute must be configured as
i pl anet - am aut h- module_name- aut h- | evel .

Service Attributes

The sns. dt d requires the service developer to define attributes into one of five
groups. These groups differentiate between those attributes applicable to, for
example, the Access Manager deployment as a whole, a specific service or a single
user.

Chapter 8 Service Management 189

Defining A Custom Service

190

Global Attributes

Global attributes are defined for the entire Access Manager installation and are
common to all data trees, service instances and integrated applications within the
configuration. Global attributes can not be applied to users, roles or organizations
as their purpose is to configure Access Manager itself. Server names, port numbers,
service plug-ins, cache size, and maximum number of threads are examples of
global attributes that are configured with one value. For example, when Access
Manager performs logging functions, the log files are written into a directory. The
location of this directory is defined as a global attribute in the Logging Service and
all Access Manager logs, independent of their purpose, are written to it. Access
Manager administrators can modify these default values using the console. Global
attributes are stored in Directory Server using specially-defined LDAP attributes so
the LDAP schema does not need to be extended to add a new global attribute.

NOTE If a service has only global attributes, it can not be registered to an organization nor
can a service template be created. An example of this would be the Platform
Service.

Organization Attributes

Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication Service are a good example. When the
Authentication Service is registered, attributes are configured depending on the
organization to which it is registered. The LDAP Server and the DN To Start
User Sear ch would be defined at the organization level as this information is
dependent on the address of an organization’s LDAP server and the structure of
their directory tree, respectively. Organization attributes are stored in Directory
Server using specially-defined LDAP attributes so the LDAP schema does not need
to be extended to add a new organization attribute.

NOTE Organization attributes are not inherited by sub-organizations. Only dynamic
attributes can be inherited. For additional information, see “Attribute Inheritance” on
page 192.

Dynamic Attributes

Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations and roles which, in general, have access to any service
assigned to its parent organization. Dynamic attributes are inherited by users that
possess a role or belong to the organization. Because dynamic attributes are

Access Manager 6 2005Q1 « Developer's Guide

Defining A Custom Service

assigned to roles or organizations instead of set in a user entry, they are virtual
attributes inherited by users using the concept of Class of Service (CoS). When these
attributes change, the administrator only has to change them once, in the role or
organization, instead of a multitude of times in each user entry.

NOTE Dynamic attributes are modeled using class of service (CoS) and roles. For
information on these features, see Appendix E, “Directory Server Concepts,” in this
manual or refer to the Sun Java System Directory Server documentation.

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in
the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

Policy Attributes

Policy attributes specify the access control actions (or privileges) associated with a
service. They become a part of the rules when rules are added to a policy. Examples
include canFor war dEmai | Addr ess and canChangeSal aryl nf or mat i on. The
actions specified by these attributes can be associated with a resource if the

| sResour ceNaneAl | owed element is specified in the attribute definition. For
example, in the web agent XML service file, am¢bAgent . xm , GET and PCST are
defined as policy attributes with an associated URL resource as

| sResour ceNaneAl | owed is specified.

NOTE Out of the box, only the Policy Configuration Service uses policy attributes although
they can be defined for any number of services.

User Attributes

User attributes are defined for a single user. User attributes are not inherited from
the role, organization, or sub-organization levels. They are typically different for
each user, and any changes to them would affect only the particular user. User
attributes could be an office telephone number, a password or an employee ID. The
values of these attributes would be set in the user entry and not in a role or
organization. For example, if 70 attributes are user-defined and an organization has
two million users, each attribute is stored two million times. This, of course, only

Chapter 8 Service Management 191

Defining A Custom Service

192

occurs if the service is assigned to the user and a value is set for them. User
attributes can be a part of any service but, for convenience, Access Manager has
grouped a number of the most widely-used attributes into a service defined by the
amJser . xm service file. User attributes are stored within the Directory Server as
LDAP objects, making it feasible to use traditional LDAP tools to manage them. A
Directory Server LDAP schema needs to be defined for these attributes.

NOTE When defining user attributes in an XML service file (other than anUser . xm),
the service must be assigned to the user for the user attributes to be displayed on
their User Profile page. In addition, the User Profile Display Option in the
Administration Service must be set to Conbi ned. For more information, see the
Sun Java System Access Manager Administration Guide.

Attribute Inheritance

After creating and loading an XML service file, an administrator can assign the
service’s attributes by registering it and creating a service template. Then, when a
user possesses a role or belongs to an organization to which the service is
registered, they inherit the dynamic attributes of the role or the service,
respectively. Inheritance only occurs, though, when the service possessed is
explicitly assigned to the user. A user can inherit attributes from multiple roles or
parent organizations.

TIP Service templates created for a parent organization contain attributes that trickle
down to sub-organizations. Therefore it is not necessary to create templates for
sub-organizations unless the attribute values are being customized. Creating a
large number of service templates will have a performance impact.

ContainerDefaultTemplateRole Attribute

Dynamic attributes are used in an XML service file if an administrator wants to
define a particular attribute as one which is inherited by all identity objects to
which the service is registered. After uploading the XML service file and
registering the service to an organization or role, all users in the sub-trees of the
organization or role will inherit the dynamic attributes. To accomplish this, Access
Manager uses classic CoS and role templates (as described in Appendix E,
“Directory Server Concepts”). Cont ai ner Def aul t Tenpl at eRol e is a default
filtered role configured for each organization in which the LDAP object class

i pl anet - am managed- per son is the default filter. Every user in Access Manager is
a member of i pl anet - am managed- per son so every user in the organization
possesses Cont ai ner Def aul t Tenpl at eRol e. Access Manager creates a separate

Access Manager 6 2005Q1 « Developer's Guide

Defining A Custom Service

CoS template for each registered service which points to the service’s dynamic
attributes. Because of this, any user who has Cont ai ner Def aul t Tenpl at eRol e (all
of them, by default) will inherit the dynamic attributes of the service. The LDIF
entry for Cont ai ner Def aul t Tenpl at eRol e is illustrated in Code Example 8-1.

Code Example 8-1 Cont ai ner Def aul t Tenpl at eRol e LDIF Entry

dn: cn=Cont ai ner Def aul t Tenpl at eRol e, o=exanpl e

obj ectd ass: top

obj ect d ass: nsconpl exrol edefinition

objectd ass: nsfilteredrol edefinition

obj ect d ass: nsrol edefinition

obj ect d ass: | dapsubentry

nsRol eFi | ter: (objectclass=ipl anet - am managed- per son)

Modifying Inheritance

The nsRol eFi | t er attribute (as displayed in Code Example 8-1 may be modified
to allow objects other than users to inherit from Cont ai ner Def aul t Tenpl at eRol e.
Formatting its value as, for example,

(] (obj ect cl ass=i pl anet - am nanaged- per son) (obj ect cl ass=or gani zat i on)
) allows users and organizations to inherit the dynamic attributes. Any valid filter
syntax can be used although typically it would be limited to attributes or
objectclasses in the user entries. In addition, the relevant objectclass from the LDAP
attributes must also be added to the entry.

Extending The Directory Server Schema

The information in this section corresponds to Step 2 on page 188, extending the
LDAP schema in Directory Server. When configuring an XML service file for
Access Manager, it might also be necessary to modify the Directory Server schema.
First, any customized dynamic, policy or user attributes defined in an Access
Manager service that are not already defined in the Directory Server schema need
to be associated with an LDAP object class. Then the attribute(s) and object
class(es) need to be added to the LDAP schema using the | dapnodi fy command
line tool and an LDIF file as input.

NOTE The order in which the LDAP schema is extended or the XML service file is loaded
into Directory Server is not important.

Chapter 8 Service Management 193

Defining A Custom Service

To Extend The Directory Server LDAP Schema

1. Create an LDIF file to define any new or modified LDAP object classes and

attributes.

2. Change to the Access Manager bi n directory.

cd IdentityServer_base/ SUNVn1 bi n

3. Run| dapnodi fy using the LDIF file as input.

The syntax is | dapnodi fy - D userid_of_DSmanager -w password - f
path_to_LDIF_file. By default, userid_of_DSmanager is cn=D r ect ory Manager . If
the LDIF was created correctly, the result of this command would be to modify
the entry cn=schena.

NOTE After extending the schema, it is not necessary to restart the Directory Server but,
as | dapnodi fy is server-specific, the schema needs to be extended on all
configured servers. Information on how this is done can be found in the Sun Java
System Directory Server documentation.

4. Run | dapsear ch to ensure that the schema has been created.

The syntax is| dapsearch -b cn=schema -s base - D userid_of_DSmanager - w
password (obj ectclass=*) | grep -i servicenane. If the LDIF was created
correctly, the result of this command would be a listing of the object classes as
illustrated in Code Example 8-2.

Code Example 8-2 Sample LDIF Listing For Mail Service

obj ectd asses: (1.2. NEW
NAME ' am sanpl e- mai | - servi ce'
DESC ' Sanpl eMai | Service' SUP top AUXI LI ARY
MAY (amsanpl e-mai | -service-status $
am sanpl e-mai | -root-fol der $
am sanpl e- nai | - sent messages-fol der $
am sanpl e-nmai | -i ndent-prefix $
amsanpl e-nai | -initial -headers $
am sanpl e-nmai | -i nactivity-interval $
am sanpl e-nai | -auto-1oad $
am sanpl e- mai | - header s- per page $
amsanpl e-nmai | -quota $
am sanpl e-mai | -nax-attach-len $
am sanpl e- nai | - can- save- addr ess- book- on- server)
X-ORA N "user defined
attributeTypes: (11.24.1.996.1
NAMVE ' am sanpl e- mai | - servi ce- st at us’
DESC ' Sanpl eMai | Service Attribute’

194 Access Manager 6 2005Q1 « Developer's Guide

Defining A Custom Service

Code Example 8-2 Sample LDIF Listing For Mail Service

SYNTAX 1.3.6.1.4.1.1466. 115.121. 1. 15
X-ORIA N "user defined)

Adding Access Manager Object Classes To Existing Users

If a new service is created and the service’s users already exist, the service’s object
classes need to be added to the user’s LDAP entries. To do this, Access Manager
provides migration scripts for performing batch updates to already-existing user
entries. No LDIF file need be created. These scripts and the procedures are
described in the Sun Java System Access Manager Migration Guide. Alternatively,
registered services can be added to each user by selecting the service on their
Properties page although, for an organization with many users, this would be
time-consuming.

CAUTION ltis not recommended to use | dapnodi f y to extend the schema.

Importing The XML Service File

The information in this section corresponds to Step 3 on page 188, importing an
XML service file into Access Manager. This step is important as it serves to
populate Directory Server and Access Manager with the newly defined service
attributes.

1. Change to the Access Manager install directory:
cd IdentityServer_base/ SUNVni bi n

2. Run following command line application: . / amadni n - -runasdn
DN_of_directory_server_administrator - - passwor d
password_directory_server_administrator - - ver bose --schema xml_service file path.

More information on the amadm n command line tool can be found in the Sun
Java System Access Manager Administration Guide

NOTE If changing an existing service, the original XML service file must be deleted before
importing the newly modified XML service file. Information on this function can be
found in the Sun Java System Directory Server documentation.

Chapter 8 Service Management 195

Defining A Custom Service

196

Configuring Console Localization Properties

The information in this section corresponds to Step 4 on page 188, configuring a
localization properties file. A localization properties file specifies the locale-specific
screen text that an administrator or user will see when directed to a service’s
attribute configuration page.

NOTE For certain services, this file also localizes error messages, Java exceptions and
email notification specifics. This section though concerns itself only with
service-related values. Additional information can be found in “Localization
Properties Files” on page 90 of Chapter 5, “Authentication Service,” in this manual.

The localization properties files are located in the

IdentityServer_base/ SUNWanNT | ocal e directory. They are generally named using the
format anservice_name. pr oper ti es. Code Example 8-3 is the localization
properties file for the Client Detection service named

anCl i ent Det ecti on. properties.

Code Example 8-3 amClientDetection.Properties File

attr descriptions nsgs

#

i pl anet-amclient -detection-service-description=0ient Detection
al00=Aient Types

alOl=Default Qient Type

al02=Cient Detection dass

al03=Aient Detection Enabl ed

a100. | i nk=Edi t

unknown_key=r equested key is not available in the property

nul | _key=nul| key passed to getProperty

null _client Type=client type is null

unknown_cl i ent Type=r equest ed client Type doesn't exi st
update_error=notification received between setproperty and store. Need to do
setproperty again.

The localization properties files consist of a series of key=value pairs. The value of
each pair will be displayed on the service’s Properties page in the Access Manager
console. The keys (al, a2, etc.) map to the i 18nKey fields defined for each attribute
in a service in the XML service file. The keys also determine the order in which the
fields are displayed on screen as the keys are displayed in the order of their ASCII

Access Manager 6 2005Q1 « Developer's Guide

Defining A Custom Service

characters (al is followed by al0, followed by a2, followed by bl). For example, if
an attribute needs to be displayed at the top of the service attribute page, the
alphanumeric key should have a value of al. The second attribute could then have
a value of either a10, a2 or b1, and so forth.

TIP If a localization properties file is modified, Access Manager needs to be restarted to
see the changes. If importing a new localization properties file, Access Manager
does not need to be restarted.

Localizing With Two Languages

When one instance of Access Manager is localized with two languages, the
localization properties files still go into the same directory. Each file name would
be appended with a suffix to match the locale. For example, if French localization
packages are added, the file name would be anservice_name_f r. properti es. If
Spanish localization packages are added, that properties file name would be
anservice_name_es. properti es.

NOTE Information on downloading and installing localized versions of Access Manager
can be found at ht t p: / / wws. sun. coni sof t war e/ downl oad/
inter _ecomhtm.

Updating Files For Abstract Objects

For information corresponding to Step 5 on page 188, updating the

anEnt rySpeci fi c. xni , see Chapter 7, “Identity Management,” of this manual. For
information corresponding to Step 5, updating the anser . xn , see “XML Service
Files” on page 231.

Registering The Service

The information in this section corresponds to Step 6 on page 189, registering a
new service to an identity object. The preferred way to register a service is to use
the Access Manager console. Information on how this is done can be found in the
Sun Java System Access Manager Administration Guide. An alternate process to
register a service is to use the anmAdmi n. dt d, batch processing templates and the
command line. Information can be found in “The amAdmin.dtd Structure” on
page 209 and “Batch Processing With XML Templates” on page 234.

Chapter 8 Service Management 197

DTD Files

NOTE To register a service, ensure that Access Manager is properly binding to the
Directory Server.

DTD Files

198

Access Manager contains numerous DTD files to define the structures for the XML
files used in Access Manager. The DTDs are located in
IdentityServer_base/ SUNWANI dt d and include:

e Auth_Mdul e_Properties. dt d—defines the structure for XML files used by
each authentication module to specify the properties for the Authentication
Service interface. Information on this document can be found in
“Authentication Programming Interfaces” on page 155 in Chapter 5,
“Authentication Service,” of this manual.

e amAdm n. dt d—which defines the structure for XML files used to perform
batch LDAP operations on the directory tree using the command line tool
amAdmi n. Information on this document can be found in “The amAdmin.dtd
Structure” on page 209.

= anm/ébAgent . dt d—defines the structure for XML files used to handle requests
from, and send responses to, web agents. This file is deprecated and remains
for purposes of backward compatibility.

e policy. dt d—defines the structure for XML files used to store policies in
Directory Server. Information on this document can be found in the Access
Manager Administration Guide.

= renot e-aut h. dt d—defines the structure for XML files used by the
Authentication Service’s remote Authentication API. Information on this
document can be found in “The remote-auth.dtd Structure” on page 137 of
Chapter 5, “Authentication Service,” of this manual.

< server-confi g. dt d—defines the structure for ser ver confi g. xmi which
details ID, host and port information for all server and user types. Information
on this document can be found in Appendix B, “serverconfig.xml File,” in this
manual.

e sns. dt d—which defines the structure for XML service files. Information on
this document can be found in “The sms.dtd Structure” on page 199.

Access Manager 6 2005Q1 « Developer's Guide

DTD Files

e web-app_2 2. dt d—defines the structure for XML files used by the Access
Manager deployment container to deploy J2EE applications. The
corresponding XML file is called a deployment descriptor which specifies
container options and describes specific configuration requirements to be
resolved by the deployer.

CAUTION None of the DTD files should be modified. The APIs and their internal parsing
functions are based on the installed definitions. Any alterations to the DTD files will
hinder the operation of Access Manager.

The sms.dtd Structure

The sns. dt d defines the data structure for all XML service files. It is located in the
IdentityServer_base/ SUNWANT dt d directory. The sns. dt d enforces the developer to
define each service attribute as one of five types which are then stored and
managed differently. For instance, some of the attributes are applicable to an entire
Access Manager installation (such as a port number or server name), while others
are applicable only to individual users (such as a password). The attribute types
are Global, Organization, Dynamic, Policy, and User. More information on these
types can be found in “Service Attributes” on page 189.

An explanation of the main elements defined by the sis. dt d follows. Each element
includes a number of XML attributes which are also explained. Explanations of the
remaining elements can be found in the sns. dt d file itself. Access Manager
currently supports only about some of the elements contained in sns. dt d; this
section discusses only those elements.

NOTE Customized attribute names in XML service files should be written in lower case as
Access Manager converts all attribute names to lower case when reading from the
Directory Server.

ServicesConfiguration Element

ServicesConfiguration is the root element of the XML service file. It allows for the
definition of multiple services per one XML file. Its immediate sub-element is the
Service Element. Code Example 8-4 on page 200 illustrates the ServicesConfiguration
element as defined in the anC i ent Det ect i on. xm service file located in

/ et c/ opt/ SUNVAM confi g/ xm .

Chapter 8 Service Management 199

DTD Files

Code Example 8-4 ServicesConfiguration and Service Element

<Servi cesConf i gurati on>
<Servi ce name="i Pl anet AMO i ent Det ecti on” version="1.0">
<Schena. . . >

Service Element

The Service element defines the schema for one given service. A number of different
services can be defined in one XML file using this element, although this is not
recommended. Currently, Access Manager supports the following sub-elements:
Schema Element (which defines the service’s attributes as either Global,
Organization, Dynamic, User or Policy) and Configuration. The required XML
attributes for the Service element are the name of the service, such as
iPlanetAMLogging, and the version number of the XML service file itself. Code
Example 8-4 on page 200 also illustrates the Service element, its attributes and the
opening Schema tag.

Schema Element

The Schema element is the parent of the family of elements that define the service’s
attributes and their default values. The sub-elements can be the Global Element,
Organization Element, Dynamic Element, User Element or Policy Element. The
required XML attributes of the Schema element include the serviceHierarchy
Attribute, the i18nFileName Attribute, the i18nKey Attribute, and the
propertiesViewBeanURL Attribute.

serviceHierarchy Attribute

When a new service is configured, its name will be dynamically displayed in the
Navigation frame of the console based on the value of this attribute. The value is a
"/" separated string. Each "/" portion of the string represents a level in the
hierarchy. Code Example 8-5 on page 201 illustrates the ser vi ceHi er ar chy
attribute as defined in an i ent Det ecti on. xni . i Pl anet AMJ i ent Det ecti on is
the name of the service. The name used for display in the console, though, is
defined by the i 18nKey (or i18nKey Attribute), and retrieved from the service’s
localization file defined by the i18nFileName Attribute. In this example, the value
of i pl anet -amcl i ent - det ecti on-servi ce-descri pti on will be found in

anmd i ent Det ecti on. properties and its value displayed. The service name will

200 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

be displayed below the Access Manager Configuration header in the left frame of
the Service Configuration module. To prevent a service from displaying in the
console, either remove the ser vi ceH er ar chy attribute or setit’'s valueto"", asin

servi ceH erarchy="".

NOTE DSAMEConf i g as used in Code Example 8-5 and all XML service files refers to
the Access Manager Configuration header. The use of DSAME is a holdover from
the previous name of Access Manager. This is defined in the
anmAdm nhMbdul eMsgs. properti es file located in
IdentityServer_base/ SUN\VAn | ocal e.

Code Example 8-5 i 18nFi | eNane, i 18nKey and ser vi ceH er ar chy Attributes

<Schena
servi ceH erarchy="/ DSAVEConfi g/ i Pl anet AMJ i ent Det ecti on"
i 18nFi | eNane="anQ i ent Det ecti on"
i 18nKey="i pl anet - am cl i ent - det ect i on- servi ce-descri pti on">

i18nFileName Attribute

The i 18nFi | eNane attribute refers to the localization properties files. It takes a
value equal to the name of the localization properties file for the defined service
(minus the . pr oper ti es file extension). For example, Code Example 8-5 defines
the name of the properties file as anC i ent Det ect i on.

i18nKey Attribute

The value of the % 18nl ndex attribute maps to the final, localized name of the
service to be displayed in the Access Manager console as it is defined in the
localization properties file.

NOTE The % 18nl ndex attribute is defined as an entity at the top of the sns. dt d. In
the configured XML service files, % 18nl ndex is replaced by i 18nKey and its
corresponding value.

Chapter 8 Service Management 201

DTD Files

For example, Code Example 8-5 refers to the value of the
iplanet-am-client-detection-service-description attribute as defined in

and i ent Det ecti on. properti es. This value is the name of the service as it will
be displayed in the Access Manager console; in this case, Client Detection is the
name defined in and i ent Det ecti on. properties. (Remember, the value of the
defined attribute might not be in English.) More information on the localization
properties file can be found in Chapter 5, “Authentication Service,” of this manual.

NOTE If the i 18nKey value is blank (i 18nKey=""), the Access Manager console will
not display the attribute.

propertiesViewBeanURL Attribute

The default display for a service is a simple table showing the attribute name and
its value. The pr operti esVi enBeanURL attribute provides the URL to the Java
bean used by the console to generate this display. It is possible to override the
default display by creating a new class and defining the URL to this class as a value
of this attribute. If no value is specified, the display is created by the console.

Service Attribute Elements

The next five elements are sub-elements of the “Schema Element” on page 200;
they are the declarations of the service’s Access Manager attributes. When defining
a service, each attribute must be defined as either a Global Element, an
Organization Element, a Dynamic Element, a User Element, or a Policy Element.
Any configuration of these elements (all of them or none of them) can be used
depending on the service. Each attribute defined within these elements is itself
defined by an AttributeSchema Element.

Global Element

The Global element defines Access Manager attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Global Attributes” on page 190.

serviceObjectClasses Attribute. The ser vi ceChj ect A asses attribute is a global
attribute defined in an XML service file that contains either dynamic or user
elements (attributes). The value of this attribute is an object class set in the LDAP
entries (stored in Directory Server) for users whom are registered to the service. It
allows any user with this object class to be dynamically assigned the service’s
dynamic or user attributes, if any exist.

202 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

CAUTION Ifthe servi ceCbj ect A asses attribute is not specified and the service has
defined dynamic or user attributes, an object class violation is called when an
administrator tries to create a user under that organization, and assign this service.

Multiple values can be defined for the ser vi ce(oj ect A asses attribute. For
example, if a service is created with two attributes each from three other services,
the servi ce(bj ect A asses attribute would need to list all three object classes as
Def aul t Val ues. Code Example 8-6 illustrates a ser vi ce(hj ect A asses attribute
with a defined object class from anQ i ent Det ecti on. xm .

Code Example 8-6 serviceObjectClass Defined As Global Element

<d obal >
<AttributeSchema nanme="servi ceChj ect d asses"
type="Ilist"
synt ax="string"
i 18nKey="">
<Def aul t Val ues>
<Val ue>i pl anet -am cl i ent - det ect i on- servi ce</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchena>
</ d obal >

Organization Element

The Organization element defines Access Manager attributes that are modifiable
per organization or sub-organization. For example, a web hosting environment
using Access Manager would have different configuration data defined for each
organization it hosts. A service developer would define different values for each
organization attribute per organization. These attributes are only accessible using
the Access Manager SDK. For additional information, see “Organization
Attributes” on page 190.

Dynamic Element

The Dynamic element defines Access Manager attributes that can be inherited by
all user objects. Examples of Dynamic elements would be user-specific session
attributes, a building number, or a company mailing address. Dynamic attributes
use the Directory Server features, CoS and roles. For additional information, see
“Dynamic Attributes” on page 190.

Chapter 8 Service Management 203

DTD Files

User Element

The User element defines Access Manager attributes that exist physically in the
user entry. User attributes are not inherited by roles or organizations. Examples
include password and employee identification number. They are applied to a
specific user only. For additional information, see “User Attributes” on page 191.

Policy Element

The Policy element defines Access Manager attributes intended to provide actions
(or privileges). This is the only attribute element that uses the Act i onSchena
element to define its parameters as opposed to the At t ri but eSchena element.
Generally, privileges are GET, PCST, and PUT; examples of privileges might include
canChangeSal aryl nf or mat i on and canFor war dEnmai | Addr ess. For additional
information, see “Policy Attributes” on page 191.

SubSchema Element

The SubSchena element can specify multiple sub-schemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. The required XML
attributes of the SubSchema element include nane which defines the name of the
sub-schema, i nheri t ance which defines whether this schema can be inherited by
one or more nodes on the directory tree, mai nt ai nPri ori ty which defines
whether priority is to be honored among its peer elements, and “i18nKey
Attribute” on page 201.

NOTE The SubSchenma element is used only in the anEnt rySpeci fi c. xm file. It
should not be used in any external XML service files.

AttributeSchema Element

The AttributeSchema element is a sub-element of the five schema elements
discussed in “Service Attribute Elements” on page 202 as well as the SubSchema
element described in “SubSchema Element” on page 204. It defines the structure
for each configurable parameter (or attribute) of a service. The sub-elements that
qualify the AttributeSchema can include | sOpti onal ?, I sServi cel denti fier?,

| sResour ceNaneAl | owed?, | sSt at usAttri but e?, Choi ceVal ues?,

Bool eanVal ues?, Def aul t Val ues?, or Condi ti on. The XML attributes that define
each portion of the attribute value are the “name Attribute”, the “type Attribute”,
the “uitype Attribute”, the “syntax Attribute”, the “cosQualifier Attribute”,
rangeStart, rangeEnd, m nVal ue, maxVal ue, val i dat or, the “any Attribute”, the

204 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

“propertiesViewBeanURL Attribute” on page 202 and, the “i18nKey Attribute” on
page 201. Code Example 8-7 on page 205 illustrates an AttributeSchema element
taken from anikser . xni , its attributes and their corresponding values. Note that
this example attribute is a Dynamic attribute.

Code Example 8-7 At t ri but eSchema Element With Attributes

<Dynani c>
<AttributeSchema nane="i pl anet - am user - | ogi n- st at us"

t ype="si ngl e_choi ce"
syntax="string"
any="di spl ay"
i 18nKey="d105" >
<Choi ceVal ues>

<Choi ceVal ue i 18nKey="u200">Act i ve</ Choi ceVal ue>

<Choi ceVal ue i 18nKey="u200">I nacti ve</ Choi ceVal ue>
</ Choi ceVal ues>
<Def aul t Val ues>

<Val ue>Act i ve</ Val ue>

</ Def aul t Val ues>

</ Attribut eSchema>

name Attribute

This required XML attribute defines the a name for the attribute. Any string format
can be used but attribute names must be in lower-case. Code Example 8-7 on
page 205 defines it with a value of iplanet-am-user-login-status.

type Attribute

This attribute specifies the kind of value the attribute will take. The default value
for type is | i st but it can be defined as any one of the following:

= singl e specifies that the user can define one value.
= |i st specifies that the user can define a list of values.

= single_choi ce specifies that the user can choose a single value from a list of
options. A default value must be defined from the list.

< nultiple_choice specifies that the user can choose multiple values from a
list of options. A default value must be defined from the list.

Chapter 8 Service Management 205

DTD Files

ChoiceValues Sub-Element. If the t ype attribute is specified as either

si ngl e_choi ceormul tipl e_choi ce, the ChoiceValues sub-element must also be
defined in the At t ri but eScherma element. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValues sub-element,
ChoiceValue. Code Example 8-7 on page 205 defines the t ype as si ngl e_choi ce;
the Choi ceVal ues attribute defines the list of options as Act i ve and | nacti ve
with the DefaultValue as Act i ve.

syntax Attribute

The synt ax attribute defines the format of the value. The default value for syntax is
st ri ng but, it can be defined as any one of the following:

= bool ean specifies that the value is either true or false.

= string specifies that the value can be any string.

= passwor d specifies that user must enter a password, which will be encrypted.
= dn specifies that the value is a LDAP Distinguish Name.

= emai | specifies that the value is an email address.

= url specifies that the value is a URL address.

« nureri c specifies that the value is a number.

= percent specifies that the value is a percentage.

= nunber specifies that the value is a number.

« deci mal _nunber specifies that the value is a number with a decimal point.
= nunber _r ange specifies that the value is a range of numbers.

= deci mal _r ange specifies that the value is a range of numbers that might
include a decimal figure.

NOTE If creating policy, note that the policy schema only supports boolean, string,
password, dn, email, numeric, percent, number, decimal_number, and
number_range. It does not support paragraph, encrypted_password,
decimal_range, xml, and date (some of which are not defined above).

206 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

uitype Attribute

This attribute specifies the HTML element that will be displayed in the Access
Manager console. Possible values include r adi o, | i nk, but t on, or

name_val ue_l i st. No value defined for this attribute displays a default element
based on the information in Table 3-1 on page 65 of Chapter 3, “The Access Manager
Console.”

NOTE The “type Attribute”specifies the kind of value an attribute will take. The “syntax
Attribute” defines the format of that value. The “uitype Attribute” specifies the HTML
element. The values of these attributes can be mixed and matched to alter the
console display. See “To Change The Default Attribute Display Elements” on
page 64 of Chapter 3, “The Access Manager Console,” in this manual for
information on how these attributes work together.

DefaultVValues Sub-Element. Defining a syntax might also necessitate defining a
value for the DefaultValue sub-element. A default value will then be displayed in
the Access Manager console; this default value can be changed for each
organization when creating a new template for the service.

CAUTION Default values of User attributes are not inherited by users when the service is
assigned using the Access Manager console.

For example, all instances of the LDAP Authentication Service use the port
attribute so a default value of 389 is defined in the XML service file. Once
registered, this value can be modified for each organization using the Access
Manager console. (The default value is also used by integrated applications when a
service template has not been registered to an organization.) Code Example 8-8 on
page 207 from amAut hLDAP. xm illustrates this scenario.

Code Example 8-8 DefaultValues In amAut hLDAP. xm

<Qr gani zati on>

<Attribut eSchema name="i pl anet - am aut h- | dap- ser ver"
type="list"
synt ax="string"
i 18nKey="a101">
<Def aul t Val ues>

<Val ue>i dentity_server_host.com 389</ Val ue>

</ Def aul t Val ues>

</ Attribut eSchena>

Chapter 8 Service Management 207

DTD Files

cosQualifier Attribute

This attribute defines how Access Manager resolves conflicting dynamic attribute
values assigned to the same user object. The value of cosQual i fi er will appear as
a qualifier to the cosAt t ri but e in the LDAP entry of the CoS definition.

NOTE The priority level is defined by the Conflict Resolution Level attribute. More
information on this attribute can be found in the Sun Java System Access Manager
Administration Guide.

The value of cosQual i fi er can be defined as:

< defaul t indicates that if there are two conflicting attributes assigned to the
same user object, the one with the highest priority takes precedence. For more
information on CoS conflicts, see Appendix E, “Directory Server Concepts,” in
this manual.

= override indicates that the CoS template value defined at the service itself
overrides any priority value defined in the user entry; that is, CoS takes
precedence over a defined user entry value.

= nerge- schenes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS template values. For example , if there are
multiple templates for a particular service that contains dynamic attributes and
they are applied to a user (based on the user’s roles), a merged list of attributes
will be returned. mer ge- schemnres works only for dynamic (or COS) type
attributes.

If the cosQual i fi er attribute is not defined, the default behavior is for the user
entry value to override the CoS value in the organization or role. The default value
is def aul t. (The oper at i onal value is reserved for future use.)

any Attribute

The any attribute specifies whether the attribute for which it is defined will display
in the Access Manager console. It has six possible values that can be multiply
defined using the “|” (pipe) construct;

= di spl ay specifies that the attribute will display on both the administrator and
end user profile pages. The attribute is read/write for administrators and end
users. The attribute will display on the Create page with an asterisk signifying
it as a required field.

208 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

« adm nDi spl ay specifies that the attribute will display on the administrator
profile page only. It will not appear on the end user page; the attribute is
read/write for administrators only.

= user ReadOnl y specifies that the attribute is read/write for administrators but
is read only for end users. It is displayed on the end user profile pages as a
non-editable label.

= required specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk signifying it as a required field.

= optional specifies that a value for the attribute is not required in order for the
object to be created. The attribute will display on the Create page without an
asterisk signifying it as an optional field.

= filter specifies that the attribute will display on the Advanced Search page.

The requi red or opti onal keywordsandthefilter and di spl ay keyword can
be specified with a pipe symbol separating the options (any=r equi r ed| di spl ay or
any=opt i onal | di spl ay| fil ter). If the any attribute is set to di spl ay, the
qualified attribute will display in Access Manager console when the properties for
the Create page are displayed. If the any attribute is set to r equi r ed, an asterisk
will display in that attribute’s field, thus the administrator or user is required to
enter a value for the object to be created in Access Manager console. If the any
attribute is set to opt i onal , it will display on the Create page, but users are not
required to enter a value in order for the object to be created. If the any attribute is
settofilter,the qualified attribute will display as a criteria attribute when Search
is clicked from the User page.

NOTE Setting the any attribute to " " (any="") will prevent the attribute to
which it refers from being displayed in the console.

The amAdmin.dtd Structure

The amAdni n. dt d defines the data structure for an XML file which can be used to
perform batch operations on the directory tree using the amAdm n command line
tool. The file reflects the structure of the Access Manager SDK and is located in the
IdentityServer_base/ SUN\Van dt d directory. Possible command line operations
include reads and gets on the attributes as well as creations and deletions of Access
Manager objects (roles, organizations, users, people containers, and groups).

Chapter 8 Service Management 209

DTD Files

NOTE XML files that are created based on the amAdmi n. dt d are used as input with the
anmAdm n command line tool. More information on this tool can be found in the
Sun Java System Access Manager Administration Guide.

The following sections explain the elements and attributes of the amAdm n. dt d
using the sample XML templates installed with Access Manager for illustration.
These samples can be found in

IdentityServer_base/ SUN\Vn sanpl es/ adm n/ cl i / bul k- ops.

Requests Element

The Requests element is the root element of the XML file. It must contain at least one
sub-element to define the object(s) (Organization, Container, People Container,
Role and/or Group, et. al.) upon which the configured actions can be performed.
The Requests element must contain at least one of the following sub-elements:

e (Ogani zati onRequest s

e SchemaRequests

e ServiceConfigurationRequests
e Contai ner Request s

* Peopl eCont ai ner Request s

* Rol eRequests

* QG oupRequests

* UserRequests

+ ListAccts

To enable batch processing, the root element can take more than one of these
sub-element requests.

CAUTION If multiple sub-elements are specified, they must occur in the order in which they
appear in the amAdmi n. dt d. For example, a O eat eUser cannot come before
a Or eat eRol e in the same OrganizationRequests element.

Code Example 8-9 illustrates the Requests element tag and its corresponding
OrganizationRequests sub-element which details the creation of two roles, two
groups, a suborganization, a container, and a people container in the organization
with the LDAP Distinguished Name (DN), dc=exanpl e, dc=com

210 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

Code Example 8-9 Portion Of cr eat eRequest s. xm

'<R'equest s>
<Qrgani zat i onRequest s DN="dc=exanpl e, dc=coni >

<O eat eSubQr gani zati on creat eDN="SubQrgl1"/ >
<Oreat eCont ai ner creat eDN="Cont ai ner 1"/ >
<O eat ePeopl eCont ai ner creat eDN="Peopl e2"/ >
<Oreat eRol e creat eDN="Manager Rol e"/ >

<(reat eRol e creat eDN="Enpl oyeeRol "/ >
<Oreat eG oup creat eDN="Cont ract or s@ oup"/ >
<Oreat eQ oup creat eDN=" Enpl oyees@ oup"/ >

</ Or gani zat i onRequest s>

OrganizationRequests Element

The OrganizationRequests element defines actions that can be performed on
Organization objects. The required XML attribute for this element is the LDAP DN
of the organization on which the configured requests will be performed. This
element can have one or more sub-elements. (Different OrganizationRequests
elements can be defined in one file to modify more than one organization.) Code
Example 8-9 defines a myriad of objects to be created under the top level
organization, dc=example,dc=com. The sub-elements of OrganizationRequests include:

e CreateSubQO gani zation
= (O eateContai ner

e Creat ePeopl eCont ai ner
e Creat eG oupCont ai ner
e CreateRole

= (OeateUser

e OeateGoup

e CreatePolicy

< RegisterServices

< Modi f ySubQOrgani zat i on
e ModifyServiceTenpl ate

Chapter 8 Service Management 211

DTD Files

e AddServiceTenpl at eAttri but eVal ues

< RenoveServi ceTenpl at eAt tri but eVal ues
e GetServiceTenpl ate

e DeleteServiceTenpl ate

< Modi f yPeopl eCont ai ner

< ModifyRole

e Get SubOrgani zati ons

e Get Peopl eCont ai ners

e CetRoles
e CetGoups
e CetlUsers

e CreateServiceTenpl ate

< Unregi sterServices

e (et Regi st eredServi ceNanes
e Cet Nunber O Servi ces

e DeleteRol es

e Del eteG oups

e DeletePolicy

= Del et ePeopl eCont ai ners

e Del et eSubQr gani zat i ons

e AddSubConfiguration

e Del et eSubConfiguration

e CreateAuthenticati onDomain
= Creat eHost edProvi der

= (O eat eRenot eProvi der

= Del et eAut henti cati onDomai n

e Del et eProvi der

212 Access Manager 6 2005Q1 « Developer's Guide

Cet Provi der

Get Aut hent i cat i onDonmai n
Modi f yHost edPr ovi der

Modi f yRenot ePr ovi der

Modi f yAut henti cat i onDonai n

ContainerRequests Element

The ContainerRequests element defines actions that can be performed on Container
objects. The required XML attribute for this element is the LDAP DN of the
container on which the configured requests will be performed. This element can
have one or more sub-elements. (Different ContainerRequests elements can be
defined in one file to modify more than one container.) The syntax for this element
is basically the same as that of the OrganizationRequests element illustrated in Code
Example 8-9 on page 211. The sub-elements of ContainerRequests can include:

Cr eat eSubCont ai ner

Cr eat ePeopl eCont ai ner

Cr eat eG oupCont ai ner

OreateRol e

Creat eG oup

Creat eServi ceTenpl ate

Modi f ySer vi ceTenpl at e

AddSer vi ceTenpl at eAt tri but eVal ues
RenoveSer vi ceTenpl at eAt t ri but eVal ues
Get Servi ceTenpl at e

Modi f ySubCont ai ner

Modi f yPeopl eCont ai ner

Modi f yRol e

Get SubCont ai ners

Get Peopl eCont ai ners

Cet Rol es

Chapter 8

DTD Files

Service Management 213

DTD Files

e CetGoups

 CGetUsers

= CeatelUser

< RegisterServices

< Unregi sterServices

e DeleteServiceTenpl ate
e (et Regi st eredServi ceNanes
e Cet Nunber O Servi ces

e DeleteRoles

e Del eteG oups

« Del et ePeopl eCont ai ners

e Del et eSubCont ai ners

PeopleContainerRequests Element

The PeopleContainerRequests element defines actions that can be performed on
People Container objects. The required XML attribute for this element is the LDAP
DN of the people container on which the configured requests will be performed.
This element can have one or more sub-elements. (Different
PeopleContainerRequests elements can be defined in one document to modify more
than one people container.) The syntax for this element is basically the same as that
of the OrganizationRequests element illustrated in Code Example 8-9 on page 211.
The sub-elements of PeopleContainerRequests can include:

e Creat eSubPeopl eCont ai ner
< Modi f yPeopl eCont ai ner

= (OeateUser

e ModifyUser

e Cet Nunber O Users
 CetUsers

e Get SubPeopl eCont ai ners

e DeleteUsers

e Del et eSubPeopl eCont ai ners

214 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

RoleRequests Element

The RoleRequests element defines actions that can be performed on roles. The
required XML attribute for this element is the LDAP DN of the role on which the
configured requests will be performed. This element can have one or more
sub-elements. (Different RoleRequests elements can be defined in one document to
modify more than one role.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 8-9 on page 211. The
sub-elements of RoleRequests can include;

e CreateServiceTenpl ate
e ModifyServiceTenpl ate
e GetServiceTenpl ate

e Cet Nunber O User s

e CetUsers

= RenoveUsers

e AddUsers

GroupRequests Element

The GroupRequests element defines actions that can be performed on Group objects.
The required XML attribute for this element is the LDAP DN of the group on which
the configured requests will be performed. This element can have one or more
sub-elements. (Different GroupRequests elements can be defined in one document to
modify more than one group.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 8-9 on page 211. The
sub-elements of GroupRequests can include:

e CreateSubG oup

e (Get SubG oups

e Cet Nunber O User s
e CetUsers

< Modi f ySubG oups
= AddUsers

= RenoveUsers

e Del et eSubG oups

Chapter 8 Service Management 215

DTD Files

UserRequests Element

The UserRequests element defines actions that can be performed on User objects.
The required XML attribute for this element is the LDAP DN of the user on which
the configured requests will be performed. This element can have one or more
sub-elements. (Different UserRequests elements can be defined in one document to
modify more than one user.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 8-9 on page 211. The
sub-elements of UserRequests can include:

e RegisterServices

< Unregi sterServices

ServiceConfigurationRequests Element

The ServiceConfigurationRequests element defines actions that can be performed on a
specific service. The required XML attribute for this element is serviceName; it
specifies the service on which the configured requests will be performed. This
element can have one or more sub-elements. The syntax for this element is the
same as that of the OrganizationRequests element illustrated in Code Example 8-9 on
page 211. The sub-elements of ServiceConfigurationRequests can include:

e AddSubConfiguration
e Del et eSubConfiguration
e DeleteAl ServiceConfiguration

AddSubConfiguration Element

The AddSubConfiguration element adds a secondary schema to an existing service.
The AttributeVValuePair Element must be defined for each attribute configured in
the subconfiguration. The required XML attributes are subConf i gNarre,

subConfi gl D priorityand servi ceNane.

NOTE Attributes defined for a subconfiguration are validated against attributes defined in
a subschema based on sms.dtd. A subconfiguration is defined for an organization,
choosing from attributes globally defined in the subschema. For more information,
see “SubSchema Element.”

DeleteSubConfiguration Element

The DeleteSubConfiguration element deletes an existing secondary schema from a
service. The required XML attributes are subConf i gNarre and ser vi ceNarre which
takes a string value.

216 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

DeleteAllServiceConfiguration Element

The DeleteAllServiceConfiguration element deletes all configurations relating to a
service and removes them from the data store. The required XML attribute is
user At t which specifies whether to delete the user attributes related to the service.

AttributeValuePair Element

The AttributeValuePair element can be a sub-element of many of the batch
processing requests. It can have two sub-elements, Attribute and Value, neither of
which may have sub-elements. Code Example 8-10 illustrates that a sub-people
container, ou=SubPeopl e2, ou=People2,dc=example,dc=com, and a user, dpUser , will
be created with the attributes of the two objects defined as per the attribute/value
pairs.

Attribute Element

The Attribute element must be paired with a Value element. The Attribute element
itself contains no other elements. The required XML service attribute for the
Attribute element is narme which is equal to the name of the attribute that is being
processed. Any string format can be used without spaces.

Value Element

The Value element defines the value of the Attribute element. More than one Value
element can be specified for an Attribute. The Value element contains no other
elements and it contains no XML service attributes.

Code Example 8-10 Another Portion Of cr eat eRequest s. xm

'<i3éopl eCont ai ner Request s DN=" ou=Peopl e2, dc=exanpl e, dc=con' >

<O eat eSubPeopl eCont ai ner cr eat eDN=" SubPeopl 2" >
<Attri but eVal uePai r >
<Attribute nane="description"/>
<Val ue>SubPeopl e descri ption</ Val ue>
</ AttributeVal uePai r>
</ O eat eSubPeopl eCont ai ner >

<(reat elser creat eDN="dpUser" >

<Attri but eVal uePai r>
<Attribute nane="cn"/>
<Val ue>dpUser </ Val ue>

</ AttributeVal uePair>

<Attri but eVal uePai r>
<Attribute nane="sn"/>
<Val ue>dpUser </ Val ue>

</ AttributeVal uePair>

<Attri but eVal uePai r>
<Attribute nanme="user Password"/>

Chapter 8 Service Management 217

DTD Files

Code Example 8-10 Another Portion Of cr eat eRequest s. xml (Continued)

<Val ue>12345678</ Val ue>
</ AttributeVal uePair>
</ Creat elser>

CreateObiject Elements

The CreateSubOrganization, CreateContainer, CreatePeopleContainer, CreateRole,
CreateGroup, CreateServiceTemplate, CreateUser, CreateSubContainer, CreateSubGroup,
CreateSubPeopleContainer elements create a sub-organization, container, people
container, role, group, service template, user, sub-container, sub-group, and
sub-people container, respectively. The object is created in the DN that is defined in
the <Object>Requests element under which the particular Create<Object> element is
being defined. AttributeVValuePair Elements may be defined (or not). The required
XML attribute for each element is cr eat eDN; it takes the DN of the object to be
created. Code Example 8-10 on page 217 illustrates an example of
CreateSubPeopleContainer and CreateUser. The DN is defined in the
PeopleContainerRequests element as ou=Peopl e2, dc=exanpl e, dc=com

NOTE CreateGroup/CreateSubGroup and CreateRole each have an additional attribute:
groupType and r ol eType, respectively. gr oupType defines whether itis a
static group, a filtered group or an assignable (dynamic) group. r ol eType defines
whether it is a static role or a filtered role.

CreatePolicy Element

The CreatePolicy element creates one or more policy attributes. It takes the Policy
element as a sub-element; cr eat eDNis the required XML attribute which takes the
DN of the organization where the policy will be created. This and the following
nested elements are illustrated in Code Example 8-11 on page 221. This file is
Sanpl ePol i cy. xnl , part of the policy sample application located in
IdentityServer_base/ SUNWANI sanpl es/ pol i cy.

NOTE The following policy elements are the elements extracted from anAdm n. dt d for
inclusion into the pol i cy. dt d. More information can be found in the Access
Manager Administration Guide.

218 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

Policy Element. The Policy sub-element defines the permissions or rules of the
policy and to whom/what the rule applies or the subject. It also defines whether or
not the policy is a referral (delegated) policy and whether there are any restrictions
(or conditions) to the policy. It may contain one or more of the following
sub-elements: Rule, Conditions, Subjects, or Referrals. The required XML attributes
are nane which specifies the name of the policy and r ef err al Pol i cy which
identifies whether or not the policy is a delegated one.

Rule Element. The Rule sub-element defines the specific permission of the policy
and can take three sub-elements. The required XML attribute is name which defines
a name for the rule. The three sub-elements are:

e ServiceName Element

The ServiceName element defines the name of the service to which the policy
applies. This element represents the service type. It contains no other elements.
The value is exactly as that defined in the service’s XML file (based on the
sns. dt d) . The XML service attribute for the ServiceName element is the name
of the service (which takes a string value).

e ResourceName Element

The ResourceName element defines the object that will be acted upon. The
policy has been specifically configured to protect this object. It contains no
other elements. The XML service attribute for the ResourceName element is the
name of the object. Examples of a ResourceName might be

ht t p: / / www. sunone. com 8080/ i nages on a web server or

| dap: / / sunone. com 389/ dc=i pl anet, dc=comon a directory server. A more
specific resource might be

sal ary://ui d=j sm t h, ou=peopl e, dc=i pl anet, dc=comwhere the object
being acted upon is the salary information of John Smith.

e AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“AttributeValuePair Element” on page 217.

Subjects Element. The Subjects sub-element identifies a collection of objects to
which the policy applies; this overview collection is chosen based on membership
in a group, ownership of a role or individual users. It takes the Subject sub-element.
The XML attributes it can be defined with are narme which defines a name for the
collection, descri pti on which takes a description and i ncl udeType which
defines whether the collection is as defined or its inverse (For example: the policy
applies to users who are NOT members of the subject).

Chapter 8 Service Management 219

DTD Files

Subject Element. The Subject sub-element identifies a collection of objects to
which the policy applies; this collection pinpoints more specific objects from the
collection defined by the Subjects element. Membership can be based on roles,
group membership or simply a listing of individual users. It takes as a sub-element
the AttributeValuePair Element. Its required XML attribute is t ype which
identifies a generic collection of objects from which the specifically defined subjects
are taken. Other XML attributes include narme which defines a name for the
collection and i ncl udeType which defines whether the collection is as defined or
its inverse (For example: the policy applies to users who are NOT members of the
subject).

Referrals Element. The Referrals sub-element identifies a collection of policy
assignments. It takes the Referral sub-element. The XML attributes it can be defined
with are narme which defines a name for the collection and descri pti on which
takes a description. (Code Example 8-11 is not an example of a referral policy so
there is not a Referrals element definition.)

Referral Element. The Referral sub-element identifies a specific policy assignment.
It takes as a sub-element the AttributeValuePair Element. Its required XML
attribute is t ype which identifies a generic collection of assignments from which
the specifically defined referrals are taken. It can also include the nane attribute
which defines a name for the collection. (Code Example 8-11 is not an example of a
referral policy so there are no Referral elements definition.)

Conditions Element. The Conditions sub-element identifies a collection of policy
restrictions (time range, authentication level, et.al.). It must contain one or more of
the Condition sub-element. The XML attributes it can be defined with are nane
which defines a name for the collection and descri pti on which takes a
description.

Condition Element. The Condition sub-element identifies a specific policy
restriction (time range, authentication level, et.al.). It takes as a sub-element the
AttributeValuePair Element. Its required XML attribute is t ype which identifies a
generic collection of restrictions from which the specifically defined conditions are
taken. It can also include the nane attribute which defines a name for the collection.

NOTE The Condition element might be used to configure policy for different URIs on the
same domain. For example, ht t p: // or g. exanpl e. com hr can only be
accessed by or g. exanpl e. net from 9 am to 5 pm yet
http://org. exanpl e. cont fi nance can be accessed by
or g. exanpl e2. net from 5 am to 11 pm. By defining an IP Condition
attribute/value pair together with a SimpleTime Condition attribute/value pair and
specifying ht t p: / / or g. exanpl e. coni hr/ *. j sp as the resource, the
policy would apply to all the JSPs under ht t p: / / or g. exanpl e. coni hr.

220 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

Code Example 8-11 SamplePolicy.xml

<Request s>
<QOrgani zat i onRequest s DN="dc=i pl anet, dc=con' >

<CreatePol i cy createDN="dc=i pl anet, dc=coni >
<Pol i cy nane="Pol i cy(ne" referral Policy="fal se" >
<Rul e name="dsdasd">
<Servi ceNane nane="Sanpl e\bSer vi ce" />
<Resour ceNanme nane="http://ww sun. conpublic" />
<Attribut eVal uePai r >
<Attribute name="CET" />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
<Attribut eVal uePai r >
<Attribute nane="DELETE' />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
<Attribut eVal uePai r >
<Attribute name="PUT" />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
<Attribut eVal uePai r >
<Attribute name="POST" />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
</ Rul e>
<Subj ect s name="Subj ect s1" description="">
<Subj ect name="subj ect1" type="Crganization">
<Attribut evVal uePai r>
<Attribute name="Val ues"/>
<Val ue>dc=i pl anet , dc=conx/ Val ue>
<Val ue>o=ni cp, dc=i pl anet, dc=conx/ Val ue>
</ AttributeVal uePair>
</ Subj ect >
</ Subj ect s>
<Condi ti ons name="Conditionsl" description="">
<Condi ti on nanme="condi tionl" type="Sanpl eCondition">
<Attribut eVal uePai r >
<Attribute name="user NaneLengt h"/><Val ue>5</ Val ue>
</ Attri but eVal uePai r >
</ Condi tion>
</ Condi ti ons>
</ Pol i cy>
</ OreatePolicy>

</ Or gani zat i onRequest s>
</ Request s>

Chapter 8 Service Management

221

DTD Files

CreateServiceTemplate Element

The CreateServiceTemplate element creates a service template for the organization
defined under the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
ser vi ceNarre which takes a string value. Code Example 8-12 illustrates a User
service template being registered to ou=Containerl,dc=example,dc=com.

Code Example 8-12 contCr eat eSer vi ceTenpl at eRequest s. xm File

'<R'equest s>
<Cont ai ner Request s DN="ou=Cont ai ner 1, dc=exanpl e, dc=con' >

<Qr eat eSer vi ceTenpl at e>
<Servi ce_Nane>i Pl anet AMJser Servi ce</ Servi ce_Nane>
</ Oreat eServi ceTenpl at e>

</ Cont ai ner Request s>
</ Request s>

DeleteObject Elements

The DeleteSubOrganizations, DeletePeopleContainers, DeleteGroups, DeleteRoles,
DeleteSubContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteUsers
elements delete a sub-organization, people container, group, role, sub-container,
sub-group, sub-people container and user, respectively. The object is deleted from
the DN that is defined in the <Object>Requests element under which the particular
Delete<Object> element is being defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the
listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all sub-trees can be avoided; it’s
default value is false. The DNsub-element takes a character value equal to the DN of
the object to be deleted. Code Example 8-13 illustrates an example of some of these
concepts. The DN is defined in the OrganizationRequests element as

dc=exanpl e, dc=com

Code Example 8-13 orgDeleteRequests.xml

'<i?équest s>
<QOrgani zat i onRequest s DN="dc=exanpl e, dc=coni' >

222 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

Code Example 8-13 orgDeleteRequests.xml (Continued)

<Del et eRol es>
<DN>cn=Manager Rol e, dc=exanpl e, dc=comnx/ D\>
<DN>cn=Enpl oyeeRol e, dc=exanpl e, dc=conx/ DN>
</ Del et eRol es>

<Del et eG oups del et eRecur si vel y="true">
<DN>cn=Enpl oyees@ oup, dc=exanpl e, dc=conx/ DN>
<DN>cn=Cont r act or s@& oup, dc=exanpl e, dc=comx/ D\N>
</ Del et eG oups>

<Del et ePeopl eCont ai ners del et eRecur si vel y="true" >
<DN>ou=Peopl el, dc=exanpl e, dc=conx/ DN\N>
</ Del et ePeopl eCont ai ner s>

<Del et eSubQr gani zat i ons del et eRecur si vel y="true" >
<DN>o=sun. com dc=exanpl e, dc=conx/ DN>
</ Del et eSubCr gani zat i ons>

</ Or gani zat i onRequest s>
</ Request s>

DeletePolicy Element

The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: del et eDN. It takes a value equal to
the DN of the policy to be deleted.

DeleteServiceTemplate Element

The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are ser vi ceNane which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 8-14 illustrates the deletion of the Membership
Authentication Service from dc=exanpl e, dc=com

Code Example 8-14 orgDeleteServiceTemplateRequests.xml

<Request s>
<QOrgani zat i onRequest s DN="dc=exanpl e, dc=coni' >

<Del et eServi ceTenpl at e servi ceNane="i Pl anet AMAut hMenber shi pSer vi ce"
schemaType="organi zati on"/ >

Chapter 8 Service Management 223

DTD Files

Code Example 8-14 orgDeleteServiceTemplateRequests.xml (Continued)

</ Or gani zat i onRequest s>
</ Request s>

ModifyObject Elements

The ModifySubOrganization, ModifyPeopleContainer, ModifySubContainer, ModifyRole,
and ModifySubGroups elements change the specified object. AttributeVValuePair
Elements can be defined for the listed elements. The required XML attribute is
nmodi f yDNwhich takes the DN of the object to be modified. Code Example 8-15
illustrates how the people container’s description can be modified.

Code Example 8-15 contModifyPeoplecontainerRequests.xml

<Request s>
<Cont ai ner Request s DN="dc=sun, dc=coni >

<Modi f yPeopl eCont ai ner
modi f yDN=" ou=Test , ou=Test 1, ou=Peopl el, dc=sun, dc=cont >
<At tribut eVal uePai r >
<Attribute nane="Description"/>
<Val ue>Sun ONE ldentity Server Modify</Val ue>
</ Attri buteVal uePair>
</ Modi f yPeopl eCont ai ner >

</ Cont ai ner Request s>
</ Request s>

ModifyServiceTemplate Element

The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair Element must be defined for ModifyServiceTemplate to change
the values. The required XML attributes are ser vi ceNanme which takes a string
value, schemaType which defines the attribute group (Global, Organization,
Dynamic, User or Policy) and r ol eTenpl at e. A search level attribute can also be
defined. It takes a value of either SCOPE_ONE or SCOPE_SUB. SCOPE_QONE will
retrieve just the groups at that node level; SCOPE_SUB gets groups at the node level
and all those underneath it.

224 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

GetObject Elements

The GetSubOrganizations, GetUsers, GetSubGroups, GetGroups, GetSubContainers,
GetRoles, GetPeopleContainers and GetSubPeopleContainers elements get the specified
object. A DN may be defined as a sub-element (or not). If none is specified, ALL of
the specified objects at all levels will be returned within the organization that is
defined in the <Object>Requests element under which the particular Get<Object>
element is being defined. The required XML attribute for all but GetGroups and
GetRoles is DNsOnl y and takes at r ue or f al se value. (This attribute is explained in
more detail in DNs Only Attribute.) The required XML attribute of GetGroups and
GetRoles is | evel which takes a value of either SCOPE_ONE or SCOPE_SUB.
SCCPE_ONE wiill retrieve just the groups at that node level; SCOPE_SUB gets groups
at the node level and all those underneath it. Code Example 8-16 illustrates how
these elements can be modeled. The top-level DN is defined in the
OrganizationRequests element as o=i sp.

DNs Only Attribute
For all objects using the DNsOnl y attribute, the Get elements work as stated below:
= If the element has the required XML attribute DNsOnl y set to true and no

sub-element DN is specified, only the DNs of the objects asked for will be
returned.

= Ifthe element has the required XML attribute DNsOnl y set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

= Ifsub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnl vy is set to true or false.

Code Example 8-16 Portion of Batch Processing File get Request s. xmi

'<i?équest s>
<Qrgani zati onRequest s DN="o=i sp" >

<Get SubQr gani zati ons DNsOnl y="f al se" >
<DN>o=exanpl el. com o=i sp</ D\>
<DN\>o=exanpl e2. com o0=i sp</ DN>

</ Get SubCr gani zat i ons>

<Cet Peopl eCont ai ners DNsOnl y="f al se" >
<DN\>ou=Peopl e, o=exanpl el. com o=i sp</ D\>
<DN>ou=Peopl e, o=exanpl e2. com o=i sp</ DN\>
</ Get Peopl eCont ai ner s>

<Get Rol es | evel ="SUB_TREE'/ >

<Get G oups | evel ="SUB TREE'/ >

Chapter 8 Service Management 225

DTD Files

Code Example 8-16 Portion of Batch Processing File get Request s. xni

'<R'equest s>
<CGet Users DNsOnly="fal se">
<DN>cn=puser, ou=Peopl e, o=exanpl el. com o=i sp</ D\>
</ Get User s>

</ Or gani zat i onRequest s>

GetService Elements

The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 8-17 illustrates
the GetNumberOfServices element.

Code Example 8-17 orgGetNumberOfServiceRequests.xml

<Request s>

<Qrgani zat i onRequest s DN="dc=exanpl e, dc=coni >
<Cet Nunber Of Ser vi ces/ >

</ Or gani zat i onRequest s>

</ Request s>

ActionServiceTemplate Element

The GetServiceTemplate and DeleteServiceTemplate elements get or delete a service
template for the organization defined under the OrganizationRequests element,
respectively. There are no sub-elements; the elements themselves must be empty.
The required XML attributes are ser vi ceNane which takes a string value and
schenaType.

226 Access Manager 6 2005Q1 ¢ Developer's Guide

DTD Files

ActionServiceTemplateAttributeValues Element

The AddServiceTemplateAttributeValues and RemoveServiceTemplateAttributeValues
elements get or delete attribute values defined in a service template for the
organization defined under the OrganizationRequests element, respectively.
AttributeValuePair Element must be defined for each attribute to be added or
removed. The required XML attributes are ser vi ceNane which takes a string
value, r ol eTenpl at e and schemaType which defines the attribute group (Global,
Organization, Dynamic, User or Policy). A search level attribute can also be
defined. It takes a value of either SCOPE_ONE or SCOPE_SUB. SCOPE_QONE will
retrieve just the groups at that node level; SCOPE_SUB gets groups at the node level
and all those underneath it.

ActionServices Elements

The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

Service Action Caveats

= The XML service file for the service must be loaded using the command line
interface amadm n before a service can be acted upon.

= If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

= Ifno Service_Name element is specified, the request will be ignored.

Code Example 8-18 illustrates how the RegisterServices element is modeled.

Code Example 8-18 orgRegisterServiceRequests.xml

<Request s>
<QOrgani zat i onRequest s DN="dc=sun, dc=coni >

<Regi st er Servi ces>
<Servi ce_Nane>sanpl eMai | Servi ce</ Servi ce_Name>
</ Regi st er Servi ces>
</ Or gani zat i onRequest s>

</ Request s>

Chapter 8 Service Management 227

DTD Files

SchemaRequests Element

The SchemaRequests element consists of all requests to be performed on the XML
file that defines a particular service. It has two required XML attributes:
serviceName takes a value equal to the name of the service where the schema lives,
and SchemaType defines the attribute group (Global, Organization, Dynamic, User
or Policy). The “i18nFileName Attribute” on page 201 or a SubSchema (which
specifies the complete hierarchy of the subschema separated by a “/””) can also be
defined.

NOTE See “Service File Naming Conventions” on page 189 for information on how the
name is defined.

This element can have one or more sub-elements. (Different SchemaRequests
elements can be defined in one document to modify more than one service.) The
sub-elements of SchemaRequests can include:

* RenoveDef aul t Val ues

* RenoveParti al Def aul t Val ues
* AddDef aul t Val ues
 Modi fyDefaul t Val ues

* Get ServiceDefaul t Val ues
* AddChoi ceVal ues

* RenoveChoi ceVal ues

e ModifyType

e MdifyU Type

 Modi fyi 18nKey

« ModifySynt ax

e AddPropertiesVi enBean

e AddStart Range

e AddEndRange

* AddSubSchema

* AddAttri buteSchena

* RenoveSubSchema

* RenoveAttribut eScherma

228 Access Manager 6 2005Q1 « Developer's Guide

DTD Files

Code Example 8-19 illustrates the opening of the Requests element tag and its
corresponding SchemaRequests sub-element. The file is adding the choice Deleted to
the Default User Status drop-down menu in the User Service.

Code Example 8-19 schemaAddChoi ceVal uesRequest s. xni

<Request s>
<SchenmaRequest s servi ceName="i Pl anet AMJker Ser vi ce"
SchenmaType="dynani c"
i 18nKey="">
<AddChoi ceVal ues>
<At tri but eVal uePai r>
<Attribute nane="ipl anet - am user-| ogi n-status"/>
<Val ue>Act i ve</ Val ue>
<Val ue>l nact i ve</ Val ue>
<Val ue>Del et ed</ Val ue>

</ Attri buteVal uePair>
</ AddChoi ceVal ues>

</ SchemaRequest s>
</ Request s>

RemoveDefaultValues Element

The RemoveDefaultValues element removes the default values from the service
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
that specifies the service attribute which contains the values to be removed. The
Attribute sub-element itself must be empty; it takes no sub-element. There is no
required XML attribute. The syntax for this element is the same as that illustrated
in Code Example 8-20.

Code Example 8-20 RemoveDefaultValues Element Code

<Request s>
<SchenaRequest s servi ceNarme="i Pl anet AMker Ser vi ce"
SchemaType="dynani c" >
<RenoveDef aul t Val ues>
<Attribute nane="preferredl anguage"/ >
</ RenoveDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

Chapter 8 Service Management 229

DTD Files

AddDefaultValues and ModifyDefaultValues Elements

The AddDefaultValues and ModifyDefaultVValues elements add or change the default
values from the specified schema, respectively. They take an AttributeValuePair
Element which specifies the name of the attribute and the new default value; one or
more attribute/value pairs can be defined. Code Example 8-21 illustrates how the
AddDefaultValues element can be modeled.

Code Example 8-21 AddDefaultValues Element Code

<Request s>

<SchenmaRequest s servi ceName="i Pl anet AMJker Ser vi ce"
SchemaType="dynani c" >

<AddDef aul t Val ues>

<Attribut eVal uePair>
<Attribute nane="i pl anet - am user - aut h- rodul es"/ >
<Val ue>Cert </ Val ue>
</ Attri buteVal uePai r>

</ AddDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

GetServiceDefaultValues Element

The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

Federation Management Elements

The following elements consist of requests that can be performed on Access
Manager configured federations. They are:

= CreateAuthenticationDomain
= DeleteAuthenticationDomain
= GetAuthenticationDomain

= ModifyAuthenticationDomain
= CreateRemoteProvider

= CreateHostedProvider

e DeleteProvider

230 Access Manager 6 2005Q1 « Developer's Guide

XML Service Files

= GetProvider

= IDPAuthContextinfo

= SPAuthContextinfo

= AuthMethodQueryString
< ModifyRemoteProvider
< ModifyHostedProvider

= ListAccts

For more information on these elements, see the DTD file itself located in the
IdentityServer_base/ SUN\Van dt d directory.

XML Service Files

Access Manager uses XML files to define service attributes as well as perform batch
processing operations. This section contains information on the XML files included
with Access Manager and how they are used.

Default XML Service Files

Access Manager installs services to manage the configurations of its components.
The attributes for these services are managed using the Access Manager console; in
addition, Access Manager provides code implementations to use them. These
default XML service files are based on the sns. dt d and are located in

et c/ opt / SUN\vani conf i g/ xnml . They include:

e amAdni nConsol e. xm —Defines attributes for the Administration service.
< anmAut h. xm —Defines attributes for the Core Authentication service.

= amAut hAnonynous. xm —Defines attributes for the Anonymous
Authentication service.

e amAut hCert . xnml —Defines attributes for the Certificate-based Authentication
service.

= amAut hConfi g. xm —Defines configuration attributes for the Authentication
service.

e amAut hHTTPBasi c. xml —Defines attributes for the HTTP Basic Authentication
service.

Chapter 8 Service Management 231

XML Service Files

amAut hLDAP. xm —Defines attributes for the LDAP Authentication service.

amAut hMenber shi p. xm —Defines attributes for the Membership-based
Authentication service.

amAut hNT. xm —Defines attributes for the Windows-based NT Authentication
service.

amAut hRadi us. xnl —Defines attributes for the Radius Authentication service.

amAut hSaf ewr d. xm —Defines attributes for the SafeWord Authentication
service.

amAut hSecur | D. xm —Defines attributes for the SecurlD Authentication
service.

amAut hUni x. xml —Defines attributes for the Unix Authentication service.

amAut hent i cat i onDomai nConf i g. xm —Defines attributes for the
Authentication Configuration service.

amd i ent Dat a. xm —Defines client types for the Client Detection service.
and i ent Det ect i on. xml —Defines attributes for the Client Detection service.

anknt r ySpeci fi c. xmi —Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

anDSS. xm —Defines attributes for the Certificate Security service.

anmGl1NSet t i ngs. xm —Defines attributes for the Globalization Settings
service.

anloggi ng. xm —Defines attributes for the Logging service.

amNam ng. xm —Defines attributes for the Naming service.

anPasswor dReset . xm —Defines attributes for the Password Reset service.
anPl at f or m xml —Defines attributes for the Platform service.

anPol i cy. xm —Defines attributes for the Policy service.

anPol i cyConfi g. xm —Defines configuration attributes for the Policy service.

anPr ovi der Conf i g. xm —Defines attributes for Federation Management
service.

amBAM.. xm —Defines attributes for the SAML service.

anBessi on. xm —Defines session attributes for single sign-on.

232 Access Manager 6 2005Q1 « Developer's Guide

XML Service Files

e anmker. xm —Defines attributes for the User service.

= anm/ébAgent . xmi —Defines attributes for the policy agents.

Modifying A Default XML Service File

Administrators can display and manage any attribute in the Access Manager
console using XML service files. The new attribute(s) would need to be added to an
existing XML service file. Alternately, they can be grouped into a new service by
creating a new XML service file although the simplest way to add an attribute is
just to extend an existing one. For example, an administrator wants to manage the
nsaccount | ock attribute which will give users the option of locking the account it
defines. To manage it through Access Manager, nsaccount | ock must be defined in
a service. One option would be to add it to the amJser . xnl service,

i Pl anet AMJser Ser vi ce. This is the service that, by default, includes many
common attributes from the i net O gPer son and i net User object classes.
Following is an example of how to add the nsaccount | ock attribute to the

amker . xm service file.

1. Add the code illustrated in Code Example 8-22 to the SubSchema nane=User
element in IdentityServer_base/ SUN\Vam conf i g/ xm / amJser . xm .

Code Example 8-22 nsaccount | ock Example Attribute

<Attribut eSchema name="nsaccount| ock"
type="si ngl e_choi ce"
syntax="string"
any="filter"
i sChangeabl eByUser ="yes"
i 18nKey="u13">
<Choi ceVal ues>

<Val ue>t r ue</ Val ue>

<Val ue>f al se</ Val ue>
</ Choi ceVal ues>
<Def aul t Val ues>

<Val ue>f al se</ Val ue>

</ Def aul t Val ues>
</ Attribut eSchena>

2. Update the IdentityServer_base/ SUN\WANT | ocal e/ en_US/ amser. properti es
file with the new i 18nKey tag ul3 as illustrated in Code Example 8-23
(including the text to be used for display).

Chapter 8 Service Management 233

XML Service Files

Code Example 8-23 User Account Locked Example i18nKey

iflézUser Account Locked

3. Remove the service
ou=i Pl anet AMJser Ser vi ce, ou=servi ces, dc=sun, dc=comusing the
command line tool amadni n.

For information on the amadm n command line syntax, see Sun Java System
Access Manager Administration Guide.

4. Reload the modified XML service file, amJser . xni , using the command line
tool amadm n.

For information on the amadm n command line syntax, see Sun Java System
Access Manager Administration Guide.

NOTE When modifying a default XML service file, be sure to also modify the Directory
Server by extending the LDAP schema, if necessary. For more information, see
“Defining A Custom Service” on page 187.

Batch Processing With XML Templates

The - - dat a or -t option of amadmi n is used to perform batch processing via the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

= Create, delete and read roles, users, organizations, groups, people containers
and services.

= Getroles, people containers, and users.
= Get the number of users for groups, people containers, and roles.
= Import, register and unregister services.

= Get registered service names or the total number of registered services for an
existing organization.

= Execute requests in multiple XML files.

234 Access Manager 6 2005Q1 « Developer's Guide

XML Service Files

The preferred way to perform most of these functions is to use the Access Manager
console. The batch processing templates have been provided for ease of use with
bulk updates although they can also be used for single configuration updates. This
section provides an overview of the batch processing templates which can be
modified to perform batch updates in the Directory Server.

NOTE Only XML files can be used as input for the amadm n tool. If an administrator
wants to populate the directory tree with user objects, or perform batch reads (gets)
or deletes, the necessary XML input files, based on the amAdm n. dt d or
sms. dt d, must be written.

XML Templates

All of the batch processing XML templates perform operations on the DIT; they
create, delete, or get attribute information on user objects. These XML templates
follow the structure defined by the amAdni n. dt d and are located in
IdentityServer_base/ SUNWANT sanpl es/ admi n/ cl i / bul k- ops. The batch processing
XML templates provided with Access Manager include;

= cont O eat eRol eRequest s. xm —Creates a role for a container object.

= cont O eat eServi ceTenpl at eRequest s. xm —Creates a service template for
a container object.

= cont Modi f yPeopl econt ai ner Request s. xmi —Modifies a people container
object.

= cont Modi f yRol eRequest s. xm —Modifies a role assigned to a container
object.

= cont Modi f ySubcont ai ner Request s. xmi —Modifies a sub-container object.
« createRequests. xmi —Creates a multitude of objects.
= del et eG oupRequest s. xm —Deletes the sub-group of a group container.

= get Request s. xm —Passes information about a multitude of objects in a
specific organization.

= orgCreateServi ceTenpl at eRequest s. xm —Creates service templates for
anorganization.

« orgDel et eRequest s. xm —Deletes a multitude of objects under a specific
organization.

« orgDel et eServi ceTenpl at eRequest s. xm —Deletes a service template
under a specific organization.

Chapter 8 Service Management 235

XML Service Files

or gGet Nunmber O Ser vi ceRequest s. xml —Passes a listing of an organization’s
total number of registered services.

or gGet Regi st er edSer vi ceRequest s. xml —Passes a listing the names of an
organization’s registered services.

or ghodi f yRequest s. xm —Changes values for identity-related objects in an
organization.

or ghodi f ySer vi ceTenpl at eRequest s. xmi —Changes values for the
registered service template of an organization.

or gRegi st er Ser vi ceRequest s. xm —Registers services for an organization.

or gunRegi st er Ser vi ceRequest s. xm —Unregisters services for an
organization.

pcDel et eRequest s. xm —Deletes attributes for a people container object.

pcModi f yUser Request s. xm —Modifies user attributes in a people container
object.

rol eOr eat eSer vi ceTenpl at eRequest s. xnl —Creates a service template for
arole.

rol eModi f ySer vi ceTenpl at eRequest s. xmi —Changes values for the
registered service template of a role.

schemaAddChoi ceVal uesRequest s. xmi —Adds a selection of values to an
existing service’s attribute from which the user can choose.

schemaAddDef aul t Val uesRequest . xmi —Adds a default value to an existing
service’s attribute.

schemaDel et eChoi ceVal ueRequest . xml —Deletes a value from an existing
service’s attribute choices.

schemaDel et eDef aul t Val ueRequest . xm —Deletes a default value from an
existing service’s attribute.

schemaGet Ser vi ceDef aul t Val ueRequest . xml —Retrieves a default value
from an existing service’s attribute.

schemaModi f yDef aul t Val ueRequest . xmi —Changes the default value of an
existing service’s attribute.

236 Access Manager 6 2005Q1 « Developer's Guide

XML Service Files

NOTE The final XML templates (ser vi ceConf i gur at i onRequest s. xm ,
servi ceAddSubConf i gur ati onRequest s. xni , and
servi ceDel et eSubConfi gur at i onRequest s. xm) follow the
sns. dt d format and are used for service sub-configurations. One use for these
can be found in “Multi-LDAP Authentication Module Configuration” on page 128 of
Chapter 5, “Authentication Service,” in this manual.

Modifying A Batch Processing XML Template

Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadmi n executable to upload the
changes to Directory Server.

NOTE Be aware that creations of roles, groups, and organizations is a time-intensive
operation.

Customizing User Pages

The User profile page and what attributes it displays will vary, depending on what
the service developer defines. By default, every attribute in the anser . xni file
that has an i 18nKey attribute specified and the any attribute set to display

(any=di spl ay) will display in the Access Manager console. Alternately, if an
attribute is specified to be of type User in another XML service file, the Access
Manager console will also display it if the service is assigned to the user. Thus,
User display pages in the Access Manager console can be modified to add new
attributes in either of two ways:

= The User attribute schema definition in the specific XML service file can be
modified.

= A new User schema attribute definition can be added to the User service (the
amser . xm service file).

For information on modifying XML service files, see “Modifying A Default XML
Service File” on page 233.

NOTE Any service can describe an attribute that is for a user only. The anJser . xm
file is just the default placeholder for user attributes that are not tied to a particular
service.

Chapter 8 Service Management 237

XML Service Files

Creating Users Using A Modified Directory Server Schema

There might be a need to modify the Directory Server LDAP schema in order to
create users with new object classes. The procedure follows:

1.

Modify the Directory Server LDAP schema with the new object classes and
attributes.

For more information on how to do this, see the Sun Java System Directory
Server documentation.

Write a new XML service file which contains the definitions for the new object
classes and attributes.

When writing this file, the object classes should be defined under the Global
element and the attributes should be defined under the User element. More
information can be found in Chapter 8, “Service Management.”

Write a new authentication module credentials file and put it in the
IdentityServer_base/ SUNVANT | i b directory.

This file contains the attribute-value pairs for the internationalization keys
used in the file created in Step 2. More information can be found in
“Configuring The Authentication Module” on page 146 of Chapter 5,
“Authentication Service,” in this manual.

NOTE Alternately, the path to the module configuration properties file can be put in the

classpath of the web container’s JVM.

Load the XML service file using the amadm n command line interface.

More information on this tool can be found in the Sun Java System Access
Manager Administration Guide.

Register the new service to the desired organization using the Access Manager
console.

For more details about registering a new service, refer to the Sun Java System
Access Manager Administration Guide.

Select the new service to create a user with the additional object classes.

When creating new user there is an option to select the newly configured
service.

238 Access Manager 6 2005Q1 ¢ Developer's Guide

Service Management SDK

Service Management SDK

The Access Manager provides a Java API for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data. The interfaces and methods can be found in
comsun.identity.sm

ServiceSchemaManager Class

The Ser vi ceSchenaManager class in the com sun. i denti ty. smpackage provides
interfaces to manage a service’s schema. It must implement Ser vi ceSchena which
represents a single schema element in the service.

Retrieve Logging Location

Code Example 8-24 uses the Ser vi ceSchemaManager class to retrieve the
i pl anet - am | oggi ng- | ocat i on attribute value from the Logging Service at the
following DN: ou=i Pl anet AM_oggi ngSer vi ce, ou=servi ces, 0=i sp.

Code Example 8-24 Retrieve Logging Location Sample

kkkkkkkk*

SSOrokenManager nanager = SSOTokenManager . get | nst ance();

SSOroken token = manager . cr eat eSSOToken(new

Aut hPri nci pal (" ui d=anadni n, ou=Peopl e, dc=or g, dc=cont), "11111111");
Servi ceSchemaManager ssm = new Ser vi ceSchenmaManager (t oken,

"i Pl anet AMLoggi ngServi ce", "1.0");

Servi ceSchema ss = ssm get @ obal Schenma() ;

Map p = ss.getAttributeDefaults();

kkhkkkhkkkkkkkk*

Retrieve User Or Dynamic Attributes

Code Example 8-25 uses the Ser vi ceSchemaManager to define the Ser vi ceSchena
user attributes. AMJser . get At tri but es(. .) is then called to obtain the
attribute/value pairs.

Code Example 8-25 Retrieve User Or Dynamic Attributes

Servi ceSchenmaManager ssm = new Ser vi ceSchenaManager (servi ceNane, t oken);
Servi ceSchema sm = ssm get Schema(SchemaType. USER) ;
if (sm!=null) {

Chapter 8 Service Management 239

Service Management SDK

Code Example 8-25 Retrieve User Or Dynamic Attributes

Set userAttributes = ss.getAttribut eSchemaNames();

/1 Since USER or DYNAM C attributes are stored as |dap attributes you
can call..

amUser.get Attributes(userAttributes);
}

Retrieve Attribute Values

Code Example 8-26 illustrates one way to retrieve attribute values from a service.

Code Example 8-26 Sample Code To Retrieve Attribute Values

package comi pl anet.am sanpl es. sdk;

inport java.io.?*;

inport java.net.*;

inport java.util.?*;

i nport comi pl anet. sso. *;

i nport comi pl anet.am sdk. *;

inport comsun.identity.authentication.internal.*;
inport comsun.identity.sm?*;

i nport javax.servlet.*;

i nport javax.servlet.http.*;

public class Sanpl eUser Operations {
SSOroken token = nul | ;

/**
* This user will be used for further sanple operations on the
* sane obj ect
*/
private static AMker contextUser = null;
private static String passWrd = nul | ;
private static String uid = null;
private static String | astNare = nul | ;
private static String firstNane = null;
String userDN = nul | ;

private static Map scuChj Map = new HashMap();

public static AVBtoreConnection ansc = null;
public static Sanpl eUser Qperations suo;

/IHere we will try to get the value of the organization type
[lattribute "iplanet-amauth-|dap-bind-dn" of the service
/1"i Pl anet AMAut hLDAPSer vi ce” for the organi zation

/DN "dc=i pl anet, dc=conf'.

240 Access Manager 6 2005Q1 « Developer's Guide

Service Management SDK

Code Example 8-26 Sample Code To Retrieve Attribute VValues (Continued)

public static void main(String args[]) {
try {
SSOrokenManager manager = SSOTokenManager . get | nst ance();
/11f possible create the token using the tokneid or httprequest.
SSOroken token = manager . cr eat eSSOToken(new
Aut hPri nci pal ("ui d=anadni n, ou=Peopl e, dc=i pl anet, dc=coni), "11111111");
suo = get Sanpl eUser Qper ati ons(t oken);
ansc = new AVBt or eConnect i on(token);
Servi ceConfi gManager scm = new Servi ceConf i gManager (t oken,
"i Pl anet AMAut hLDAPSer vi ce", "1.0");
String orgName = "dc=i pl anet, dc=conf’;
Servi ceConfig sc = scmget O gani zati onConfi g(orgNane, null);
Map np = sc.getAttributes();
Iterator itr =
((HashSet) np. get ("i pl anet - am aut h- | dap- bi nd-dn")).iterator();
Systemout.printin("bind dn for the org -" + orgNane + "-is-" +
(String)itr.next());
Systemexit(0);
} catch (Exception e) {
Systemout. println("Exception Message: " + e.get Message());
e.printStackTrace();

}

/* Basic Constructor */

publ i c Sanpl eUser Qper at i ons(SSOToken t oken) {
this.token = token;
scuChj Map. put (t oken, this);

/* Use the same object for nultiple operations */

public static Sanpl eUser Qperations get Sanpl eUser Qper ati ons(SSOToken
t oken) {
Sanpl eUser Cper at i ons scuChj =
(Sanpl eUser Qper at i ons) scuChj Map. get (t oken);
if (scuQj == null {
scuChj = new Sanpl elser Qperati ons(token);

return scuChj;

/**

* This nethod will describe the SDK usage for creating a user.
* |t uses AMBtoreConnection to get the organization object
* |t uses the Set Paraneters to store the different attributes of
* the user. This nethod is used for conmand |ine.
* |t throws an AVException if unable to create it and we throw
* message "unable to create" to the GJ by catching the same
*
/
public String createUser (AVBt oreConnection conn) {

try {
Map userAttributeMap = new HashMap();

Chapter 8 Service Management 241

Service Management SDK

242

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

uid = "user",
storeUser Attributes("uid", uid, userAttributeMp);
firstName = "user";
storeUser Attributes("givennane", firstNane,
user At tri buteMap);
| ast Nane = "one";
storeUser Attributes("sn", |astName, userAttributeMap);
passWrd = "userone";
storeUser Attri but es("user Password", pass\Wrd,
user At tri but eMap);

Map user Mapl = new HashMap();
user Mapl. put (ui d, userAttributeMap);

/**

* Provide the DN according to the DT

*/
String dn = "ou=Peopl e, o=i pl anet. com o=i sp";
AMPeopl eCont ai ner anpc = conn. get Peopl eCont ai ner (dn) ;
anpc. creat eUser s(user Mapl) ;
userDN = "uid=" + uid +"," + dn;

/*

* This is to keep the context of the user

*/
cont ext User = conn. get User (user DN) ;
return "Successfully added the user: " + uid;

} catch (Exception ex) {
ex. printStackTrace();
return "Unable to create";
}

*

/*
* This nethod will describe the SDK usage for creating a user.
* |t uses AMBtoreConnection to get the organization object
* |t uses the Set Paraneters to store the different attributes of
* the user.

* |t throws an AVException if unable to create it and we throw

* message "unable to create" to the GJ by catching the same

*

/

public String createUser (HtpServl et Request req, Set paraneters,
AMBt or eConnect i on
conn) {
try {
Map userAttributeMap = new HashMap();
if (paraneters.contains("uid")) {
uid = req.get Parameter ("uid");
storeUserAttributes("uid", uid, userAttributeMp);

i f(parameters. contains("firstnane")) {
firstName = req. getParameter("firstname");
storeUser Attributes("givennane", firstNane,

user Attri but eMap) ;
}

Access Manager 6 2005Q1 « Developer's Guide

Service Management SDK

Code Example 8-26 Sample Code To Retrieve Attribute VValues (Continued)

i f(paramet ers. contains("lastname")) {
| ast Nanme = req. get Paranet er ("I ast nane");
storeUser Attributes("sn", |astName, userAttributeMap);

i f (pararmet ers. contai ns("password")) {
passWrd = req. get Paranet er (" user Passwor d") ;
storeUser Attribut es("user Password", pass\Wrd,

user At tri but eMap) ;
}

Map user Mapl = new HashMap();
user Mapl. put (ui d, userAttributeMap);
String orgDN = req. get Paranet er (" or gNane") ;
String dn = "ou=People" + "," + orgD\
AMPeopl eCont ai ner anpc = conn. get Peopl eCont ai ner (dn) ;
anpc. creat eUser s(user Mapl) ;
userDN = "uid=" + uid +"," + dn;
/*
* This is to keep the context of the user
*/
cont ext User = conn. get User (user DN) ;
return showCr eat eUser Success();

} catch (Exception ex) {
ex. print StackTrace();

return "Unable to create";

/**

* This nmethod describes the SDK usage for modifying the user.

*

/

public String modi fyUser (HtpServl et Request req) {

HashMap rodi fyMap = new HashMap() ;
| ast Name = req. get Paranmet er ("I ast name") ;
storelUserAttributes("sn", |astNanme, nodifyMap);
firstNane = req. get Paraneter ("firstname");
storeUser Attributes("gi vennane", firstNane, nodifyMap);
passWord = req. get Paranet er ("user password");
storeUser Attribut es("user Passwor d", passWrd, nodifyMap);

try {
cont ext User. set At tri but es(nodi f yMap) ;

context User. store();
return showhodi f yUser Success();
} catch (Exception ex) {
Systemout . println("Exception occured");

return "Unable to nodify";
/**

* This nethod describes the SDK usage for deleting the user.
*/

public String deleteUser() {

Chapter 8 Service Management 243

Service Management SDK

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

try {
cont ext User. del et e(fal se);

return "Del eted successful ly";
} catch (Exception ex) {
Systemout . println("Exception occured");

return "Unable to del ete";

}
/* This method is for the QU purposes */

public String showCeateUser() {

StringBuffer sb = new StringBuffer();

sb. append(" <HTM.>") ;

sh. append(" <HEAD>") ;

sbh. append(" </ HEAD>") ;

sh. append(" <BODY>") ;

sb. append(" <FORM narme=\"al l attri but es\" METHOD=PCST
ACTI ONR\ "/ anser ver / sdksanpl e\ ">") ;

sbh. append(" <TABLE>") ;

sb. append("<TR>");

sh. append(" <TD ALI G\N=LEFT VALI GN=M DDLE>Logi n | D</ B></ TD>") ;
sb. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAMVE=\"uid\"
VALUE=\ "\ "
SI ZE=32 MAXLENGTH=64></ TD><TD>Under O gani zati on</ B></ TD>");
sb. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAVE=\"orgNane\"
VALUE=\ "\ "
Sl ZE=32 NAXLENGTH=64></ TD>") ;

sb. append("</ TR>");

sb. append("<TR>");

sb. append("<TD ALI G\N=LEFT VALI G\eM DDLE>Fi rst Name</ B></ TD>") ;

sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAME=\"fi rstnane\"
VALUE=\ "\" S| ZE=32 NAXLENGTH=64></ TD>");

sb. append("</ TR>");

sb. append("<TR>");

sh. append(" <TD ALI G\FLEFT VALI G\=M DDLE>Last Nane</ B></ TD>");

sbh. append(" <TD VALI G\=eM DDLE><I NPUT TYPE=\"text\" NAVE=\"| ast nare\ "
VALUE=\ "\ "
Sl ZE=32 NAXLENGTH=64></ TD>") ;

sb. append("</ TR>");

sb. append("<TR>");

sb. append("<TD ALI G\N=LEFT VALI G\=M DDLE>Passwor d</ B></ TD>") ;

sb. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"passwor d\"
NAME=\ " user passwor d\ "
VALUE=\ "\" S| ZE=12></ TD>") ;

sb. append("</ TR>");

sb. append("<TR>");

sb. append("<TD ALI G\NELEFT VALI G\eM DDLE>Confirm
Passwor d</ B></ TD>") ;

sb. append(" <TD VALI G\=M DDLE><| NPUT TYPE=\"passwor d\"
NAME=\ " passwor dagai n\ "
VALUE=\ "\" S| ZE=12></ TD>") ;

sb. append("</ TR>");

sb. append("<TR>");

244 Access Manager 6 2005Q1 « Developer's Guide

Service Management SDK

Code Example 8-26 Sample Code To Retrieve Attribute VValues (Continued)

sb. append(" <TD><i nput type=SUBM T NAME=\"usersubm t\">");
sbh. append(" </ TD></ TR>") ;

sh. append("</ TABLE>") ;

sbh. append(" </ FCRW") ;

sh. append(" </ BADY>") ;

sbh. append(" </ HTM.>") ;

return sbh.toString();

}

private void storeUserAttributes(String attribute, String value, Map

user Map) {
Set userSet = new HashSet ();
user Set . add(val ue);
user Map. put (attribute, userSet);

/* This method is for the QU purposes */

private String showCr eat eUser Success() {
StringBuffer sb = new StringBuffer();
sbh. append(" <HTM.>") ;
sh. append(" <HEAD>") ;
sbh. append(" </ HEAD>")
sh. append(" <BODY>") ;
sb append(" Oreat ed Successfully");
b. append(" <FORM narme=\" user successful \ " METHOD=POST
ACTI ONR " /anserver/sdksanpl e\">");
sh. append(" <TABLE>") ;
sb. append("<TR>");
sb. append(" <TD><i nput type=SUBM T NAME=\"nodi f yuser\"
VALUE=\ " Modi fy\">");
sb. append(" </ TD></ TR>") ;
sbh. append(" </ TABLE>") ;
sh. append(" </ FCRW") ;
sh. append(" </ BADY>");
sh. append(" </ HTM.>") ;
return sh.toString();

}
/* This method is for the GU purposes */

public String show\bdifyUser() {
StringBuffer sb = new StringBuffer();
sh. append(" <HTM.>") ;
sb. append(" <HEAD>") ;
sh. append(" </ HEAD>") ;
sb. append(" <BODY>") ;
sbh. append("uid:" + uid);
sbh. append(" <FORM nane=\ " shownodi f y\" METHCD=PCST
ACTI ONR\ "/ anser ver / sdksanpl e\ ">") ;
sbh. append(" <TABLE>") ;
sb. append("<TR>");
sh. append(" <TD ALI G\N=LEFT VALI GN=M DDLE>First Name</ B></ TD>") ;
sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAME=\"firstnane\"

Chapter 8 Service Management 245

Service Management SDK

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

VALUER\"");

sh. append(fl rstName + "\" Sl ZE=32 MAXLENGTH=64></ TD>");

sb. append("</ TR>");

sb. append("<TR>");

sbh. append(" <TD ALI G\FLEFT VALI G\=M DDLE>Last Nane</ B></ TD>");

sb. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAME=\"I| astnane\"
VALUER\"");

sh. append(l astNane + "\" S| ZE=32 MAXLENGTH=64></ TD>");

sb. append("</ TR>");

sb. append("<TR>");

sh. append(" <TD ALI G\FLEFT VALI G\=M DDLE>Passwor d</ B></ TD>") ;
sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"passwor d\ "

NAME=\ " user passwor d\ "

VALUER\"");
sh. append(passVV)rd + "\" Sl ZE=12></ TD>");
sb. append("</ TR>");
sb. append("<TR>");
sb. append(" <TD><i nput type=SUBM T NAME=\"nodi f yuser submi t\">");
sbh. append(" </ TD></ TR>") ;
sh. append(" </ TABLE>") ;
sbh. append(" </ FCRW") ;
sh. append(" </ BADY>") ;
sbh. append(" </ HTM.>") ;

return sh.toString();

}
/* This method is for the QU purposes */

private String showhodi fyUser Success() {
StringBuffer sb = new StringBuffer();
sbh. append(" <HTM.>") ;
sh. append(" <HEAD>") ;
sbh. append(" </ HEAD>") ;
sh. append(" <BODY>") ;
sb append("Modi fied Successful ly");
b. append(" <FORM nare=\"nodi f yuser successful \" METHCD=PCST
ACTI ONR " /anserver/sdksanpl e\">");
sh. append(" <TABLE>") ;
sb. append("<TR>");
sh. append(<TD><i nput type=SUBM T NAME=\"del et euser subm t\"
VALUE=\"Del et e\ " >)
sb. append(" </ TD></ TR>") ;
sbh. append(" </ TABLE>") ;
sh. append(" </ FCRW") ;
sbh. append(" </ BCDY>") ;
sh. append(" </ HTM.>") ;
return sh.toString();

}
/* This method is for the GU purposes */

public String showbel et eUser () {
StringBuffer sb = new StringBuffer();
sh. append(" <HTM.>") ;
sbh. append(" <HEAD>") ;

246 Access Manager 6 2005Q1 « Developer's Guide

Code Example 8-26

Service Management SDK

Sample Code To Retrieve Attribute Values (Continued)

sb. append("
sbh. append("
sb. append("
ACTI ON=\ "/ anser ver /
sb. append("
sh.
sh.
sh.
sh.
sh.
sh.
sh.
return sb.t

"<TD><i nput type=SUBM T NAME=\"del et euser submi t\">");
"</ TD></ TR");

"</ TABLB>");

"</ FORM>"
"</ BADY>"
"</ HTM.>"

</ HEAD>") ;

<BCDY>");

<FORM nane=\""showdel et e\ "
sdksanpl e\ ">");

<TABLE>");

<TR>");

METHOD=POST

~————

oSt ring(

Chapter 8 Service Management 247

Service Management SDK

248 Access Manager 6 2005Q1 « Developer's Guide

Chapter 9

Policy Management

Sun Java™ System Access Manager 6 2005Q1 includes a Policy Management
feature that allows you to define, manage, and enforce policies that control access
to protected resources. It allows administrators to configure and administer these
conditions for applications, resources, and identities managed within the Access
Manager deployment. This chapter explains the Policy Management feature and its
architecture. It contains the following sections:

= “Policy SDK” on page 249

< “Extending the Policy Management Feature” on page 257

Policy SDK

The Policy SDK provides Java and C APIs to allow external applications to
participate in its functionality. With the SDK, applications can determine privileges
and manage policies.

The Sun Java™ System Access Manager Developer’s Reference provides summaries of
data types, structures, and functions that make up the public Access Manager C
APIs. You will find the Javadoc for Access Manager Java APIs in this location:

IdentityServer_base/ SUN\Vm docs/ am publ i ¢c_j avadocs. j ar

Java SDK For Policy

The crux of the Policy Service is the Java SDK. It defines the following packages:

e comsun.identity. policy providesthe APIs for administering (creating,
deleting, modifying) and evaluating policies. It is used by the Access Manager
console and/or the command line interface.

249

Policy SDK

e comsun.identity.policy.interfaces provides source interfaces used to
implement custom subjects, conditions, referrals and resource comparators.

e comsun.identity. policy.client are APIs used by remote Java
applications that need to evaluate policies and get policy decisions.

TIP AMConf i g. properti es must be copied from Access Manager to a client
machine as well as the respective jars to run test code in a remote environment.
Some properties (like the notification url for remote client) need to be modified for
their functionality to work.

Policy API For Java

The com sun. identity. policy package provides the classes and methods to
manage, administer and evaluate policies. They can be used by the Access
Manager console or the amadni n command line interface tool. Select classes and
methods are discussed in this section.

Policy Evaluation Classes

The following information introduces some of the classes that can be used to
evaluate configured policies for access to a protected resource.

PolicyEvaluator Class com sun.identity. policy. Pol i cyEval uat or can be
integrated into Java applications to evaluate policy privileges and provide policy
decisions. This class provides support for both boolean and non-boolean type
policies. A Pol i cyEval uat or is created by calling the constructor with a service
name. Public methods of this class include:

= i sA | oned—evaluates the policy associated with the given resource and
returns a boolean value indicating whether the policy evaluation resulted in an
allow or deny.

¢ Returns a boolean value of:
« true if access is allowed.

« fal seifaccessis denied.

NOTE A boolean false value overrides a boolean true value. Once an action is determined
to have a false value, other values are not evaluated.

o Arguments:

250 Access Manager 6 2005Q1 « Developer's Guide

Policy SDK

com i pl anet . sso. SSOToken: The SSOToken associated with the
principal for which the policy will be evaluated.

java.lang. String resourceNare: A string representing the
requested resource.

java.lang. String acti onNane: The action for which the policy will
be evaluated. In a typical web application scenario, the action could be
GET or POST.

java.util.Myp envParanet ers: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

v Exceptions:

Throws com i pl anet . sso. SSCExcept i on if the given session token is
not valid or has expired.

Throws com sun. i dentity. policy. PolicyExcepti on if the result
could not be computed for any reason other than a token problem.

get Pol i cyDeci si on—eVvaluates the policy and ascertains privileges for
non-boolean decisions. It returns a decision that gives a user permission to
perform a specific action on a specific resource. This method can also check
permissions for multiple actions.

o Returnscom sun.identity. policy. PolicyDecision.

o Arguments:

com i pl anet . sso. SSOToken: The SSO token associated with the
principal for which the policy will be evaluated.

java.lang. String resourceName: A string representing the
requested resource.

java.util.Set actionNane: A collection of actions for which the
policy will be evaluated.

java.util.Mp envParanet ers: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

o Exceptions:

Throws com i pl anet . sso. SSCExcept i on if the given session token is
not valid or expired.

Chapter 9 Policy Management 251

Policy SDK

»+ Throwscom sun.identity. policy.PolicyException if the result
could not be computed for any reason other than a token problem.

= get Resour ceResul t —obtains the policy and ascertains privileges for
non-boolean decisions. Possible values for the scope of this method are sel f
and subt r ee. sel f gets the policy decision for the specified resource only.
subt r ee includes the policy decisions for all resources (defined in the policies)
which are sub-resources of the specified resource.

To illustrate, the Pol i cyEval uat or class can be used to display the links for a list
of resources to which an authenticated user has access. The get Resour ceResul t
method would be used to get the list of resources. The r esour ceNane parameter
would be htt p: // host . domai n: port which would return all the resources to
which the user has access on that server. These resources are returned as a

Pol i cyDeci si on based on the user’s defined policies. If the user is allowed to
access resources on different servers, this method needs to be called for each server.

NOTE Not all resources that have policy decisions are accessible to the user. The
Act i onDeci si on(s) contained in policy decisions carry this information.

ProxyPolicyEvaluator Class

com sun. i dentity. policy.ProxyPolicyEval uat or allows a privileged user
(top level administrator, organization administrator, policy administrator, or
organization policy administrator) to get policy privileges and evaluate policy
decisions for any user in their respective scope of administration.

com sun. i dentity. policy.ProxyPol i cyEval uat or Fact ory is the singleton
class used to get Pr oxyPol i cyEval uat or instances.

Code Example 9-1 Public Methods For ProxyPolicyEvaluator

*

/
Eval uates a sinple privilege of boolean type. The privil ege
indicates if the user identified by the principal Name

can performspecified action on the specified resource.

@ar am princi pal Nane principal name for whomto

conpute the privil ege.

@ar am r esour ceNane nane of the resource

for which to conpute policy result.

@ar am act i onNarme name of the action the user is trying to
performon the resource

@aramenv run time environnent paraneters

@eturn the result of the evaluation as a bool ean val ue

R I R R I

@hrows PolicyException exception formpolicy framework

252 Access Manager 6 2005Q1 « Developer's Guide

Policy SDK

Code Example 9-1 Public Methods For ProxyPolicyEvaluator (Continued)

* @hrows SSCException if sso token is invalid

*

*/

public bool ean i sAll owed(String principal Nanme, String resourceNane,
String actionName, Map env) throws PolicyException, SSCExcepti on;

/**

* Gets policy decision for the user identified by the

* principal Nane for the given resource

*

* @aram princi pal Nane principal name for whomto conpute the
* policy decision

* @aram resourceName name of the resource for which to

* conput e policy decision

* @aramenv run time environnment parameters

*

* @eturn the policy decision for the principal for the given
* resource

* @hrows PolicyException exception formpolicy framework

* @hrows SSCException if sso token is invalid

*

*/

public PolicyDecision getPolicyDecision(String principal Nang,
String resourceNane, Map env)
throws PolicyException, SSCException;

*

CGets protected resources for a user identified by the
princi pal Nane. Conditions defined in the policies

are ignored while conputing protected resources.

Only resources that are subresources of the given
root Resource or equal to the given rootResource woul d
be ret urned.

If all policies applicable to a resource are

only referral policies, no ProtectedResource woul d be
returned for such a resource.

@ar am princi pal Nane princi pal name for whom

to conpute the privilege.

@ar am r oot Resource only resources that are subresources
of the given rootResource or equal to the given

root Resource woul d be returned. |f

<code>Pol i cyEval uat or. ALL_RESOURCES</ code>

i s passed as root Resource, resources under

all root resources of the service

type are considered while conputing protected

r esour ces.

@eturn set of protected resources. The set contains
Pr ot ect edResour ce obj ect s.

@hrows PolicyException exception formpolicy framework
@hrows SSCException if sso token is invalid
@ee ProtectedResource

E R T I I I . T . I

-~

Chapter 9 Policy Management 253

Policy SDK

Code Example 9-1 Public Methods For ProxyPolicyEvaluator (Continued)

public Set getProtectedResourcesl gnoreConditions(String principal Nane,
String root Resource) throws PolicyException, SSCException

PolicyEvaluator Class com sun.identity.policy.client.PolicyEval uator
evaluates policies and provides policy decisions for remote applications which do
not have a direct access to Directory Server (for example, if there is a firewall). The
com sun.identity.policy.client. PolicyEval uat or definedin
“PolicyEvaluator Class” on page 250 requires direct LDAP access to policies stored
in Directory Server. This class

com sun. identity.policy.client. PolicyEval uator isimplemented using
XML over HTTP(s). It stores a cache of policy decisions for faster responses and
maintains the cache in sync with the Policy Service on the instance of Access
Manager using the notification and polling mechanism.

NOTE The PolicyEvaluator class can be used in a deployment container running Access
Manager, or in a stand alone Java Virtual Machine (JVM) running the Access
Manager SDK. Respective to the JVM, a property must be defined to point to
server confi g. xm which, in turn, points to Directory Server. This is done by
launching the JVM with the following argument:

-D
"com i pl anet. coreservi ces. confi gpat h=/ et c/ opt / SUNVanm
confi g/ uns"

Policy Management Classes

The following classes can be used by system administrators to manage policies in
Access Manager. The interfaces for this functionality are also found in the
com sun. i dentity. pol i cy package.

PolicyManager com sun.identity. policy. PolicyManager is the top level
administrator class for policy management, providing methods that allow an
administrator to create, modify or delete an organization’s policies. The

Pol i cyManager can be obtained by passing a privileged user’s session token or by
passing a privileged user’s session token with an organization name. Some of this
class’s more widely used methods include:

= get Pol i cyNanes - retrieves all named policies created for the organization for
which the policy manager was instantiated. This method can also take a
pattern (filter) as an argument.

= getPol i cy - retrieves a policy when given the policy’s name.

254 Access Manager 6 2005Q1 « Developer's Guide

Policy SDK

« addPol i cy - adds a policy to the specified organization. If a policy with the
same name already exists, it will be overwritten.

= renovePol i cy - removes a policy from the specified organization.

Policy comsun.identity. policy.Policy represents a policy definition with
all its intended parts (rules, subjects, referrals and conditions). The policy object is
saved in the data store only when the st or e method is called or if the addPol i cy
or r epl acePol i cy methods from the Pol i cyManager class are invoked. This class
contains methods to add, remove, replace or get any of the parts of a policy
definition.

PolicyEvent com sun.identity. policy.PolicyEvent represents a happening
in a policy that could potentially change the current access status. For example, a
policy event would be created and passed to the registered policy listeners
whenever there is a change in a policy rule. This class works with the

Pol i cyLi st ener class in the com sun.identity. policy.interface package.

Policy Plugin API For Java

The following classes are used by service developers and policy administrators
who need to provide additional policy features as well as support for legacy
policies. The package for these classes iscom sun. i denti ty. policy.interfaces.
The interfaces include:

ResourceName

Resour ceNane provides methods to determine the hierarchy of the resource names
for a determined service type. For example, these methods can check to see if two
resources names are the same or if one is a sub-resource of the other.

Subject

Subj ect defines methods that can determine if an authenticated user (possessing
an SSOToken) is a member of the given subject.

Referral

Ref erral defines methods used to delegate the policy definition or evaluation of a
selected resource (and its sub-resources) to another organization or policy server.

Condition

Condi ti on provides methods used to constrain a policy; for example, time of day
or IP address. This interface allows the pluggable implementation of the
conditions.

Chapter 9 Policy Management 255

Policy SDK

PolicyListener

Pol i cyLi st ener defines an interface to register for policy events when a policy is
added, removed or changed. It is used by the policy service to send notifications
and by listeners to review policy change events.

C Library For Policy

Access Manager also provides a library of policy evaluation APIs to enable
integration of the policy functionality into for C applications. The C library
provides a comprehensive set of interfaces that query policy results of an
authenticated user for a given action on a given resource. The result of the policy
evaluation is called an action value and may not always be binary (allow/deny or
yes/no); action values can also be non-boolean. For example, John Smith has a
mailbox quota of 100MB. 100 is the value defined by a policy. As policy evaluation
results in string values only, the policy evaluation returned is 100 numeric not
100MB. It is up to the application developer to define metrics for the values
obtained appropriately.

CAUTION Previous releases of Access Manager contained C libraries in
IdentityServer_base/ | i b/ capi . The capi directory is being deprecated, and
is currently available for backward compatibility. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD LI BRARY _PATH, PATH, compiler options, etc.)

As the first step of policy implementation, the API abstracts how a resource is
represented by mandating that any resource be represented in a string format. For
example, on a web server, resources may be represented as URLs. The policy
evaluation engine cares only about the relative relevance of one resource to other.
There are five relative relevances defined between two resources, namely: exact
match, no match, subordinate match, superior match or exact pattern match. Having
represented the resources in string format, the service developer must provide
interfaces that establish the relevant relationship between resources.

NOTE Exact pattern match is a special case where resources may be represented
collectively as patterns. The information is abstracted from the policy service and
the comparison operation must take a boolean parameter to trigger a pattern
matched comparison. During the caching of policy information, the policy engine
does not care about patterns, whereas during policy evaluation, the comparisons
are pattern sensitive.

256 Access Manager 6 2005Q1 ¢ Developer's Guide

Extending the Policy Management Feature

The service developer must also provide a method to extract the root of the given
resource. For example, in a URL, the

pr ot ocol : // identity_server_host.domain_name: port portion represents the root. The
three functions (has_patt erns, get _resour ce_r oot and conpare_url s) are
specializations of resource representations. The set of characteristics needed to
define a resource is called a resource trait. Resource traits are taken as a parameter
during service initialization in the am resour ce_trai ts_t structure. Using the
resource traits, the policy service constructs a resource graph for policy evaluation.
In a web server policy sense, the relation between all the resources in the system
spans out like a tree with the pr ot ocol : / / identity_server_host.domain_name: port/
being the root of the tree.

NOTE The policy management system is generic and makes no assumptions about any
particular policy definition requirement.

Policy Evaluation API for C

Two opaque data structures are defined: am map_t and am properties_t.

am map_t provides a key to multiple value mapping and am properties_t
provides a key to single value mapping. am properti es_t provides the additional
functionality of loading a configuration file and getting values of specific data
types. These are simple data structures that are only used for information exchange
to and from the policy evaluation interfaces.

Extending the Policy Management Feature

Out of the box, Access Manager provides the URL Policy Agent service for policy
enforcement. However, you can use the Policy API to extend the functionality of
the default policy service. Through the API, you can create a new policy service to
fit your needs.

Access Manager provides a collection of sample files to illustrate how to use the
Policy API. This section explains how to use the samples to develop and add
custom subjects, conditions and referrals to existing policy, to programatically
construct new policies, and to develop and run policy evaluation programs.In
order to successfully execute the policy samples, the following tasks must be
completed in order:

1. Compiling the Policy Samples
2. Adding the Policy Service to Access Manager

Chapter 9 Policy Management 257

Extending the Policy Management Feature

3. Developing Custom Subjects, Conditions and Referrals

4. Creating Policies for the Service

5. Developing and Running Policy Evaluation Programs

The samples and all associated files are located in the following directories:
| dentityServer_base/SUNVANT sanpl es/ pol i cy (Solaris)
IdentityServer_base/ i dent i ty/ sanpl es/ pol i cy (Linux)

NOTE Throughout the rest of this chapter, only the Solaris directory information will be
given. Please note that the directory structure for Linux is different.For more
information, please see “Conventions Used in This Guide” on page 30.

Compiling the Policy Samples

Before you can use the files included with the samples, you must compile them. To
compile the samples:

1. Update the following variables in the Makefi | e:
BASE - Set this variable to refer IdentityServer_base/ SUN\VAmM

JAVA HOME - Set this variable to your installation location of JDK. The JDK
version should be higher than JDK 1.3.1.

CLASSPATH - Set this variable to refer to all of the j ar files

2. Compile the samples by running gmake al I .

Adding the Policy Service to Access Manager

Before you use the API to customize the interface, you must add the

Sanpl eWebSer vi ce. xm file to Access Manager. For information on adding new
policy services, see the “Policy Management” chapter of the Access Manager
Administration Guide.

258 Access Manager 6 2005Q1 « Developer's Guide

Extending the Policy Management Feature

Developing Custom Subjects, Conditions and
Referrals

The Policy API provides a means to customize a policy service interface, which
provides the variables that define the policy itself. This sample shows how to
customize the subject, condition and rule interfaces for Sanpl eWebSer vi ce.

The interfaces used to implement the customization are as follows:

« Sanpl eSubj ect . j ava - Implements the Subject interface. This subject applies to
all authenticated users who have valid SSOTokens.

= Sanpl eCondi ton. java - Implements the Condition interface. This condition
makes the policy applicable to users whose name length is grater or equal to
the length spcified in the condition.

< Sanpl eReferral . java - Implements the Referral interface. This referral
retrieves the referral policy decision from the SampleReferral.properties file.
This file is located in the same directory as the rest of the sample files.

The subject, condition and referral implementations need to be added to

i Pl anet AMPol i cyServi cea and i Pl anet AMPol i cyConf i gServi ce services in order
to make them available for policy definitions. (These services are loaded into
Access Manager during installation.) To add the sample implementations to the
policy framework, you must first modify the i Pl anet AMPol i cy service and

i Pl anet AMPol i cyConfi g service. The policy samples provide a modified XML file
for use with each service. The i Pl anet AMPol i cySer vi cea service uses

anPol i cy. xm and the i Pl anet AMPol i cyConf i gServi ce uses

anPol i cyConfi g. xm .

The following XML attribute values in anPol i cyConfi g. xm must be changed to
reflect your installation before they are loaded to Access Manager:

e iplanet-ampolicy-config-I|dap-server

e iplanet-ampolicy-config-I|dap-base-dn

e iplanet-ampolicy-config-Idap-bind-dn

e iplanet-ampolicy-config-Idap-bind-password.

When setting the i pl anet - am pol i cy- confi g- | dap- bi nd- passwor d attribute, the
encrypted value must be used. The anpasswor d command can be used to generate
encrypted password (for more information, see “The ampassword Command Line
Tool” in the Access Manager Administration Guide”). Alternatively, they can be
set to correct values when the policy configuration service is registered for the
organizations.

Chapter 9 Policy Management 259

Extending the Policy Management Feature

260

To Load the Modified Services

1.

Back up i Pl anet AVPol i cy and i Pl anet AMPol i cyConfi g services using the
db2l di f utility. For example:

cd DirectoryServer_base/ sl apd- host nanme

db2l dif -n userRoot -s
"ou=i Pl anet AMPol i cySer vi ce, ou=ser vi ces, root _suffi x"

db2l di f -n userRoot -s
"ou=i Pl anet AMPol i cyConfi gServi ce, ou=servi ces, root _suffix"

Remove the existing i Pl anet AMPol i cy and i Pl anet AMPol i cyConfi g services
by running the following commands:

IdentityServer_base/ SUNVAn1 bi n/ amadni n
--runasdn "ui d=amAdnm n, ou=Peopl e, default_org,root_suffix"
--password passwor d
--del eteservice i Pl anet AVPol i cyServi ce
IdentityServer_base/ SUNVAn1 bi n/ amadni n

n

--runasdn "ui d=amAdni n, ou=Peopl e, <def aul t _or g>, r oot_suffix"
- - passwor d password
--del eteservice iPl anet AWPolicyConfigService

Add the modified services back to the server. The XML attributes values must
be modified to your installation before running these commands):

I dentityServer_base/ SUNVN bi n/ anadm n
--runasdn "ui d=amAdni n, ou=Peopl e, default_org, root_suffix"
- - password passwor d

- - schema IdentityServer_base/ SUNVan sanpl es/ pol i cy/ anPol i cy. xm

I dentityServer_base/ SUNVN bi n/ anmadm n

n

--runasdn "ui d=amAdni n, ou=Peopl e, def aul t _org, root _suf fi x"
- - password passwor d

--scherma
I dentityServer_base/ SUN\Van sanpl es/ pol i cy/ anPol i cyConfi g. xm

The original services XML files for these two services are located in
IdentityServer_base/ SUNVANT confi g/ xmi .

Access Manager 6 2005Q1 « Developer's Guide

Extending the Policy Management Feature

Change the properties files with the following commands:

cd IdentityServer_base/ SUN\n | ocal e

nv anPol i cy. properties anPolicy. properties. bak

nv anPol i cy_en. properties anPol i cy_en. properti es. bak

nv anPol i cyConfi g. properties anPol i cyConfig. properties. bak

nv anPol i cyConfi g_en. properties anPol i cyConfig_en. properti es. bak

cp ldentityServer_base/ SU\ni sanpl es/ pol i cy/ anPol i cy. properties

cp ldentityServer_base/ SU\éni sanpl es/ pol i cy/ anPol i cy_en. properties

cp ldentityServer_base/ SU\éni sanpl es/ pol i cy/ anPol i cyConfi g. properties

cp
I dentityServer_base/ SUN\n sanpl es/ pol i cy/ anPol i cyConfi g_en. properties
To deploy the sample plugins copy Sanpl eSubj ect . cl ass,

Sanpl eCondi ti on. cl ass and Sanpl eRef erral . cl ass from the sample
directory to IdentityServer_base/ SUNVAnNT | i b.

Restart Access Manager.

Login into Access Manager console and register policy configuration service to
the organization. (For more information, see the “Policy Management” chapter
of the Access Manager Administration Guide.)

You can also use amadni n tool to register policy configuration service to
organizations.

Enter the LDAP Bind password for the LDAP Bind User.

The sample subject, condition and referral implementations are now available
for policy management through the Access Manager console or the amadmi n
tool.

Creating Policies for the Service

After you add the Sanpl eWebSer vi ce service to Access Manager and develop the
custom interfaces, you need to create a policy for the service. Access Manager
provides the following sample policy definitions for the Sanpl eVebSer vi ce:

SamplePolicy.xml - Defines a normal policy.

SamplereferralPolicy.xml - Defines a referral policy.

Chapter 9 Policy Management 261

Extending the Policy Management Feature

For information on adding new policy services, see the “Policy Management”
chapter of the Access Manager Administration Guide.

Developing and Running Policy Evaluation
Programs

The Policy API provides a Policy Evaluation API that allows you to write a policy
evaluation program to ensure that the policy service, and the policy definitions that
the service contains, function properly.

The Policy Evaluation API has one java class, Pol i cyEval uat or, and the package
for this class is com sun. i dentity. policy. Pol i cyEval uat or. Based on this class,
Access Manager provides a sample policy evaluation program called

Pol i cyEval uati on. j ava.

The sample policy evaluation program uses the Pol i cyEval uat i on. properties
file, in which you specify the input for the evaluation program such as service
name, action names, condition environment parameters, user name, user password
and so forth. The following properties can be set as input to the evaluation
program:

= Set the value of pe. servi cenane to the service name (Sanpl eVe¢bSer vi ce).

= Set the pe. resoucenarne to the resource name against which you want to
evaluate the policy.

= Specify the action names in the pe. act i onnanes. Separate the action names
with ", If you want to get all the action values, you can simply leave the
pe. act i onnanes blank.

= Set other required properties like pe. user nane, pe. passwor d.

= Set the optional properties pe. aut hl evel , pe. aut hschere, pe. requesti p,
pe. dnsnare, pe.tine if you use the corresponding conditions in your policy
definitions.

NOTE Before you run the policy evaluation program, make sure that you have set up the
policy definitions.

To Run the Policy Evaluation Program
1. Setthe environment variable LD LI BRARY_PATHto / usr/1i b/ nps/ secvl.

262 Access Manager 6 2005Q1 « Developer's Guide

Extending the Policy Management Feature

2. Run the evaluation sample program, use the gnake command.

The policy decision from the policy evaluation program is displayed on the
terminal.

Constructing Policies Programmatically

The Policy API provides Policy Management API that allows you to
programatically create, add, update and remove policies. Access Manager provides
a sample program, Pol i cyCr eat or . j ava, which demonstrates how to construct
policies and add them to the policy store. For your reference, the

Pol i cyCreat or. j ava code is listed at the end of this section.

In this sample, the following two policies are created:

= policyl- Normal policy, which contains one subject of each subject type and
one condition of each condition type that are provided by Access Manager out
of box

= refpolicyl- Referral policy.

To Run PolicyCreator.java

1. Compile sample Java programs. See “Compiling the Policy Samples” on
page 258 for more information.

2. Set the environment variable LD LI BRARY PATHto /usr/li b/ nps/secvl.

In the Access Manager console, create a suborganization called or g1, a user called
user 1, a group called groupl and role called r ol el. Make sure that all of these
identity objects are created in your top-level organization. For more information on
creating these objects, see the Access Manager Administration Guide.

3. Set the values of following properties in the Pol i cyEval uat i on. properties
file:

o pe.orgnane - DN of the top level organazation.

o pe.usernane - userid to authenticate.

o pe.password - password to use to authenticate.
4. Use the following command to create the policies:

gmake createPolicies

5. Inthe Access Manager console, verify that pol i cyl and r ef pol i cyl were
added.

Chapter 9 Policy Management 263

Extending the Policy Management Feature

PolicyCreator.java

The following section lists the Pol i cyCreat or. j ava code.

Code Example 9-2

PolicyCreator.java

inport java.util.Set;
inport java.util.HashSet;
inport java.util.Map;
inport java.util.HashMap;

import comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.
inport comsun.identity.policy.

public class PolicyCreator {

public static final String
public static final String
public static final String
public static final String

Pol'i cyManager;

Ref erral TypeManager ;
Subj ect TypeManager ;
Condi ti onTypeManager ;
Pol i cy;

Rul e;

interfaces. Referral ;
i nterfaces. Subject;
interfaces. Condition;
Pol i cyExcepti on;

i nport comi pl anet . sso. SSOToken;
i nport comi pl anet.sso. SSCExcept i on;

DNS_NAVE="DnsNane";

DNS VALUE="*. red. i pl anet. cont;
START_TIME="Start Ti ne";
START_TI ME_VALUE="08: 00";

public static final String END TIME="EndTi ne";

public static final String END TI ME_ VALUE="21: 00";
public static final String AUTH LEVEL="AuthLevel ";
public static final String AUTH LEVEL VALUE="0";
public static final String AUTH SCHEME="Aut hSchene";
public static final String AUTH SCHEME VALUE="LDAP';

private String orgDN
private SSOToken ssoToken;
private PolicyManager pm

private PolicyCQeator() throws PolicyException, SSCException

BaseW il s. | oadProperties();

orgDN = Baselti | s. get Property(" pe. orgnanme");

Systemout.printIn("orgDN =" + orgDN);
ssoToken = Basel il s. get Token();
pm = new Pol i cyManager (ssoToken, orgDN);

public static void main(String[] args) {
try {

Pol i cyCreator pc = new PolicyCQeator();

pc. addRef erral Pol i cy();

264 Access Manager 6 2005Q1 « Developer's Guide

Extending the Policy Management Feature

inport comsun.identity.policy.PolicyManager;

pc. addNor mal Pol i cy();
Systemexit(0);

} catch(Exception e) {
e. print StackTrace();

}
private voi d addNormal Pol i cy() throws PolicyException, SSCException

Systemout.printIn("CGeating normal policy in org:" + orgDN;
Pol i cyManager pm = new Pol i cyManager (ssoToken, or gDN);

Subj ect TypeManager stm = pm get Subj ect TypeManager () ;

Condi ti onTypeManager ctm = pm get Condi ti onTypeManager () ;

Policy policy = new Policy("policyl", "policyl description");
Map actions = new HashMap(1);
Set val ues = new HashSet (1);

val ues. add("al | ow') ;

actions. put ("CeT", val ues);

String resourceName = "http://nyhost.com 80/ hello.htm";

Rule rule = new Rul e("rul el", "i Pl anet AMAébAgent Servi ce",
resour ceNane, actions);

pol i cy. addRul e(rul e);

Subj ect subj ect = stm get Subj ect (" O gani zation");
Set subj ect Val ues = new HashSet (1);

subj ect Val ues. add(or gDN) ;

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect (" organi zation", subject);

subj ect = stm get Subj ect ("LDAPUsers");

subj ect Val ues = new HashSet (1);

String userDN = "ui d=user 1, ou=peopl e" + "," + orgDN
subj ect Val ues. add(user DN) ;

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("I dapusers”, subject);

subj ect = st m get Subj ect (" LDAPG oups");

subj ect Val ues = new HashSet (1);

String groupDN = "cn=groupl, ou=groups" + "," + orgDN\
subj ect Val ues. add(gr oupDN) ;

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("I dapgr oups", subject);

subj ect = stm get Subj ect (" LDAPRol es");
subj ect Val ues = new HashSet (1);

String rol eDN = "cn=rolel" + "," + orgDN\
subj ect Val ues. add(rol eDN);

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("I daprol es", subject);

subj ect = stm get Subj ect ("1 dentityServerRol es");
subj ect Val ues = new HashSet (1);

Chapter 9 Policy Management

265

Extending the Policy Management Feature

import com sun.identity.policy.PolicyManager;
roleDN = "cn=rolel" + "," + orgDN
subj ect Val ues. add(rol eDN);
subj ect . set Val ues(subj ect Val ues) ;
pol i cy. addSubj ect ("i s-rol es", subject);

Condi tion condition = ctmgetCondition("lPCondition");
Map conditionProperties = new HashMap(1);

Set propertyVal ues = new HashSet(1);

proper t yVal ues. add(DNS_VALUE) ;

condi ti onProperties. put (DNS_NAME, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi tion("i p_condition", condition);

condition = ctmget Condition("Sinpl eTi neCondi tion");
condi tionProperties = new HashMap(1);

propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(START_TI ME_VALUE) ;

condi ti onProperties. put (START_TI ME, propertyVal ues);
propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(END_TI ME_VALUE) ;

condi tionProperties. put (END_TI ME, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi tion("time_condition", condition);

condition = ctm get Condi tion("AuthLevel Condition");
condi tionProperties = new HashMap(1);

propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(AUTH_LEVEL_VALUE) ;

condi ti onProperties. put (AUTH LEVEL, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi tion("auth_l evel condition", condition);

condition = ctm get Condi ti on("Aut hScheneCondi tion");
condi tionProperties = new HashMap(1);

propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(AUTH_SCHEME_VALUE) ;

condi ti onProperties. put (AUTH SCHEME, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi ti on("auth_scheme_condition", condition);

pm addPol i cy(policy);

Systemout.printin("Geated normal policy");

}

private voi d addReferral Policy()
throws PolicyException, SSCException {
Systemout.printIn("Creating referral policy for orgl");
Ref erral TypeManager rtm = pm get Ref erral TypeManager () ;
String subQgDN = "o=orgl" + "," + orgDN
Policy policy = new Policy("refpolicyl®, "ref to orgl" true);

266 Access Manager 6 2005Q1 ¢ Developer's Guide

Extending the Policy Management Feature

import comsun.identity.policy.PolicyManager;
Map actions = new HashMap(1);
Rule rule = new Rul e("rul el",

"i Pl anet AMAtbAgent Servi ce", "http: //nyhost.com 80/ orgl", actions);
pol i cy. addRul e(rul e);
Referral referral = rtmgetReferral
Set referral Val ues = new HashSet(1);
referral Val ues. add(subQrgDN) ;
referral . setVal ues(referral Val ues);
policy.addReferral ("ref to orgl" , referral);
pm addPol i cy(policy);
Systemout.printin("Ceated referral policy for orgl");

"SubCOrgReferral);

Chapter 9 Policy Management

267

Extending the Policy Management Feature

268 Access Manager 6 2005Q1 « Developer's Guide

Chapter 10

Using the JAAS Authorization
Framework

Previous versions of Access Manager (Identity Server 6.0 and 6.1) provide custom
policy APIs to define and evaluate access policies. This model provided centralized
management of policies in its own policy store, the Sun ONE or Java Enterprise
System (JES) Directory Server. In Sun Java™ System Access Manager 6 2005Q1 and
beyond, the authorization segment of the Java Authentication and Authorization
Service (JAAS) framework is added to the original model. This new model is based
on JAAS 1.0 and Java 2 Platform, Standard Edition (J2SE) 1.3.1.

Access Manager now bridges the gap between J2SE and Access Manager APIs. In
this new framework, Access Manager maps its private APIs to JAAS interfaces.
This makes it possible for you to use the JAAS interface to access the Access
Manager policy framework.

The topics covered in this chapter are:

= “Overview of JAAS Authorization” on page 269

= “JAAS Authorization in Access Manager” on page 274

= “Enabling the JAAS Authorization Framework™ on page 276

Overview of JAAS Authorization

JAAS is a set of APIs that enable services to authenticate and enforce access
controls upon users. It implements a Java technology version of the standard
Pluggable Authentication Module (PAM) framework, and supports user-based
authorization. JAAS authorization extends the Java security architecture which

269

Overview of JAAS Authorization

270

uses a security policy to specify what access rights are granted to executing code.
That architecture, introduced in the Java 2 platform, is code-based. The
permissions are granted based on code characteristics such as where the code is
coming from, whether it is digitally signed, and if so, the identity of the signer.

Code Example 10-1 illustrates a Java security policy. This grants the code in the
am_services.jar file, located in the current directory, the specified permission. No
signer is specified, so it doesn't matter whether the code is signed or not.

Code Example 10-1 Example of a Java Security Policy

grant codebase Cfile:./amservices.jar" {
per nm ssi on j avax. security. aut h. Aut hPer m ssi on
"creat eLogi nCont ext . AM.ogi nCont ext";

b

JAAS authorization adds user centric access control that applies control based on
what code is running as well as on who is running it.

By default, JAAS comes with a reference implementation of Policy

(com sun. security. aut h. Pol i cyFi | €) which is file-based. This implementation
parses the Java.policy file ${j ava. hone}/|i b/ security directory and uses that to direct
the associations of permissions to code. You can change the pointer to some other
Pol i cyFi | e implementation or use a combination of files. By default, two files are
consulted to evaluate policy. One is com sun. security. auth. PolicyFile,
mentioned above, and the other is . j ava. pol i cy as defined in user's home
directory.

To make JAAS authorization take place, include a Principal field in the grant
statement or statements in your policy file. A Principal field indicates which user
executing the code is allowed the designated permissions. The Policy file grant
statements can now optionally include one or more Principal fields. Including
Principal field in the grant statement indicates that the user represented by the
specified Principal, who is executing the specified code, has the designated
permissions. See the Principal field example in Code Example 10-2.

Code Example 10-2 A Policy File Grant Statement

grant codebase "file:./amservices.jar",
Princi pal javax.security.auth. XXXprinci pal
"your _user _nane@our _domnai n"

perm ssion java.util.PropertyPerm ssion "java. home", "read";

Access Manager 6 2005Q1 « Developer's Guide

Overview of JAAS Authorization

Code Example 10-2 A Policy File Grant Statement

permssion java. util.PropertyPerm ssion "user. hone", "read",
perm ssion java.io.FilePermssion "foo.txt", "read";
b

How Policy Enforcement Works

The Java 2 runtime enforces access controls via the j ava. | ang. Securi t yManager,
which is consulted any time untrusted code attempts to perform a sensitive
operation (accesses to the local file system, for example). To determine whether the
code has sufficient permissions, the SecurityManager implementation delegates
responsibility to the j ava. security. AccessControl | er, which first obtains an
image of the current AccessControlContext, and then ensures that the retrieved
AccessControlContext contains sufficient permissions for the operation to be
permitted.

JAAS supplements this architecture by providing the method Subj ect . doAs to
dynamically associate an authenticated subject with the current

AccessCont rol Cont ext. As subsequent access control checks are made, the
AccessControl | er can base its decisions upon both the executing code itself, and
upon the principals associated with the subject. Access Manager provides support
for JAAS authentication, which results in the population of the subject with
Principals that represents the user.

Code Example 10-3 The Subj ect. doAs Method

public final class Subject {

/] associate the subject with the current
/1 AccessControl Context and execute the action
public static Chject doAs(Subject s,
java.security. Privil egedAction action) { }

To illustrate a usage scenario for the doAs method, consider a service that
authenticates a remote subject, and then performs some work on behalf of that
subject. For security reasons, the server should run in an AccessCont r ol Cont ext
bound by the subject's permissions. Using JAAS, the server can ensure this by
preparing the work to be performed as a j ava. security. Privil egedActi on. Then,
by invoking the doAs method, the server provides both the authenticated subject
and the prepared Pri vi | egedActi on. The doAs implementation associates the

Chapter 10 Using the JAAS Authorization Framework 271

Overview of JAAS Authorization

272

subject with the current AccessCont r ol Cont ext and then executes the action.
When security checks occur during execution, the Java 2 Securi t yManager queries
the JAAS policy, updates the current AccessCont r ol Cont ext with the permissions
granted to the subject and the executing codesour ce, and then performs its regular
permission checks. When the action is completed, the doAs method removes the
subject from the current AccessCont r ol Cont ext, and returns the result back to the
caller. Code Example 10-4 illustrates this flow.

Code Example 10-4 Sample Code for Subj ect . doAS

public static void main(String[] args) {
try {
Il Oeate an SSOToken
Aut hCont ext ac = new Aut hCont ext (" dc=i pl anet, dc=cont') ;
ac.login();
Cal I back[] call backs = null;
i f (ac.hashoreRequirenents()) {
cal | backs = ac. get Requirenents();

if (callbacks '=null) {
try {
addLogi nCal | backMessage(cal | backs); // this nethod
sets appropriate responses in the cal | backs.
ac. subm t Requi renent s(cal | backs);
} catch (Exceptione) { }

}
if (ac.getStatus() == AuthContext. Status. SUCCESS) {
Subj ect subject = ac.getSubject(); // get the authenticated
subj ect
Fi | ePerm ssion perm= new Fil ePernission("/tnp/test",
"read");
Subj ect . doAs(subj ect, new Privil egedExceptionAction() {
/* above statement nmeans execute run() nethod of the
A ass Privil egedExceptionAction()
as the specified subject */
public Qoject run() throws | CException {
/1 if the above run() was not throw ng Exception
coul d have created an instance of PrivilegedAction
/] instead of PrivilegedExceptionAction here
AccessControl | er. checkPerm ssi on(pernm;
File = new File("/tnp/test");
return null;

Access Manager 6 2005Q1 « Developer's Guide

Overview of JAAS Authorization

In this example, the AccessControl | er is checking the application's current policy
implementation. If any permission defined in the policy file implies the requested
permission, the method will simply return; otherwise an AccessControlException
will be thrown. The check is actually redundant in this example, because the
constructor for the default File implementation performs the same check. This
samples is meant to illustrate the flow.

How the JS2E Access Controller Works

AccessControl | er works with the j ava. securi ty. Pol i cy implementation to
securely process application requests. In JS2E, a typical

checkPer m ssi on(Perm ssion p) method call on the AccessControl | er class
might result in the following sequence:

1. The AccessControl | er invokes the get Per m si sons() method of the
j avax. securi ty. aut h.policy passing in the subject and the code source.

2. The get Perm ssions() method returns a Perm ssi onCol | ecti on class
instance, which represents a collection of same types of permissions.

3. Theel enent s() method of the returned Perm ssi onCol | ecti on gets called,
which returns an enumeration of the permissions held in this
Per m ssi onCol | ecti on.

4. For each of the permissions returned in the enumeration (in step 3), the
per m newPer ni ssi onCol | ecti on() method gets called to obtain the
Per m ssi onCol | ecti on used to store the permission.

5. Perm ssionCol | ection. add(pernj gets called by the J2SE internal code to
store the permission in its Per m ssi onCol | ect i on.

6. The AccessControl | er calls thei nplies(Perm ssion p) method of the
Per ni ssi onCol | ecti on returned in step 2.

7. Oncetheinplies() of PernissionCol | ectionis called, it in turn triggers the
calling of i npl i es(Perm ssion p) of the individual permission objects
contained in the Per m ssi onCol | ecti on. These methods return t r ue if the
current permission object in the collection implies the specified permission; the
methods return f al se the current permission object in the collection does not
imply the specified permission. This outcome is implementation dependent
and can be changed.

Chapter 10 Using the JAAS Authorization Framework 273

JAAS Authorization in Access Manager

JAAS Authorization in Access Manager

Access Manager provides a custom implementation of the JAAS

javax. security. aut h. Policy. The customized implementation leverages the J2SE
access controller and security manager to provide policy evaluation for all Access
Manager related permissions. The customized implementation also falls back on
the J2SE default Policy implementation com sun. security. auth. Poli cyFil e for
access to system level resources. Access Manager policy does not control access to
com sun. security.auth. PolicyFile.

Figure 10-1 illustrates how the JAAS framework works within the Access Manager
policy framework.

Figure 10-1 JAAS Authorization Framework

Access Manager Policy Framework

Client

Policy APIs J25E

JAAS Policy APls

Policy Service

JAAS Policy Service

Policy SDK

Directory Server

Access Manager uses both JAAS and J2SE's file-based policy for all the resources
for which Access Manager does not provide access control. For Access Manager
resources such as URLs and so forth, new policy and permissions are defined. This
model leverages the best of JAAS and the best of J2SE in one solution. It uses the
JAAS framework for its default access control where needed, and then enhances

274 Access Manager 6 2005Q1 « Developer's Guide

JAAS Authorization in Access Manager

the framework to incorporate the Access Manager policy evaluation. In this way,
you can use the Access Manager policy implementation to make policy evaluations
pertaining to Access Manager policies, but revert back to the default method of
controlling access to resources not under Access Manager control.

Custom APIs

Access Manager provides the following custom APIs:..
e Package comsun.identity.policy.|aas

This package includes classes for performing policy evaluation against Access
Manager using JAAS (Java Authentication and Authorization) framework.

e | SPerm ssi on

This class provides the support for JAAS Authorization service. It is a new
JAAS Permission which extends the Permission class and is defined to evaluate
permission against the Access Manager policy framework.

e |SPolicy

This is an implementation of abstract class j avax. securi ty. aut h. Pol i cy for
representing the system security policy for a Java application environment. It
performs policy evaluation against the Access manager policy service instead
of against the default file-based Pol i cyFi | e.

For a comprehensive listing of related APIs, see the Javadoc in the following
directory: AccessManager-base/ SUNVani docs.

User Interface

The user interface for entering permissions and policy is the Access Manager
administration console which works with the policy administration API. Once the
policy is defined, the evaluation is done using the J2SE architecture and enhanced
policy implementation.

| SPer ni ssi on covers the case when additional policy services are defined and
imported, provided they only have boolean action values. In fact boolean
evaluation is all that can be done using JAAS since JAAS permissions have a
boolean result.

Chapter 10 Using the JAAS Authorization Framework 275

Enabling the JAAS Authorization Framework

Enabling the JAAS Authorization Framework

You enable the JAAS authorization framework by resetting policy. Use the

Pol i cy. set Pol i cy(Pol i cy) API to reset policy during run time. In Code
Example 10-5, Pol i cy. set Pol i cy(com sun.identity. policy.jaas.|SPolicy)
resets the policy. In this example, the client application wants to use JAAS
authorization API to communicate with the Access Manger and to perform policy
evaluation. Access Manager provides the support needed to use Access Manager
policy so that policy can be defined through the new | SPer m ssi on.

Code Example 10-5 Sample JAAS Authorization Code

public stafic void min(String[] args) {
try {
/1 Oreate an SSOToken

AuthContext ac = new Aut hCont ext (" dc=i pl anet, dc=conl') ;
ac.login();
Cal I back[] cal | backs = null;
i f (ac. hashoreRequirenents()) {
cal | backs = ac. get Requirenent s();

if (callbacks !'=null) {
try {
addLogi nCal | backMessage(cal | backs); // this method
sets appropriate responses in the call backs.
ac. subm t Requi renent s(cal | backs);
} catch (Exceptione) { }

}
if (ac.getStatus() == AuthContext. Status. SUCCESS) {
Subj ect subject = ac.getSubject(); // get the authenticated
subj ect
Pol icy.setPolicy(new | SPolicy()); // change the
policy to our own Policy
| SPer mi ssi on perm = new
("i Pl anet AMAebAgent Servi ce",
“http://ww sun. com 80", "CGET");
Subj ect . doAs(subj ect, new Privil egedExcepti onAction() {
/* above statement means execute run() method of the
A ass Privil egedExceptionAction()
as the specified subject */
public Qbject run() throws Exception {
AccessCont rol | er. checkPerm ssi on(perm;
/] the above will return quietly if the Perm ssion
has been granted el se will throw access denied
/] Exception, so if the above highlighed
| SPerm ssion had not been granted, this
code woul d have
/1 thrown an Excepti on.
return null;

276 Access Manager 6 2005Q1 « Developer's Guide

Enabling the JAAS Authorization Framework

Code Example 10-5 Sample JAAS Authorization Code (Continued)

1)

Chapter 10 Using the JAAS Authorization Framework 277

Enabling the JAAS Authorization Framework

278 Access Manager 6 2005Q1 « Developer's Guide

Chapter 11

SAML Service

Sun Java™ System Access Manager 6 2005Q1 uses the Security Assertion Markup
Language (SAML) for exchanging security information. SAML defines an
eXtensible Markup Language (XML) framework to achieve inter-operability across
different vendor platforms that provide SAML assertions. This chapter explains
SAML and defines how it is used within Access Manager. It contains the following
sections:

= “Overview” on page 279

e “SAML Component Details” on page 281
e “amSAML.xmI” on page 288

e “SAML SDK” on page 289

e “SAML Samples” on page 295

Overview

SAML is an open-standard protocol that uses an XML framework to exchange
security information between an authority and a trusted partner site. The security
information concerns itself with authentication status, access authorization
decisions and subject attributes. The Organization for the Advancement of
Structured Information Standards (OASIS) drives the development of the SAML
specifications. The latest SAML information and specifications can be found at the
Oasis Security Services Technical Committee home page.

SAML security information is expressed in the form of an assertion about a subject.
A subject is an entity in a particular domain, either human or machine, with which
the security information concerns itself. (A person identified by an email address is
a subject as might be a printer.) An assertion is a package of verified security
information that supplies one or more statements concerning a subject’s

279

Overview

authentication status, access authorization decisions or attributes. Assertions are
issued by a SAML authority. (An authority is a platform or application that has
been integrated with the SAML SDK, allowing it to relay security information.) The
assertions are received by partner sites defined within the authority as trusted.
SAML authorities use different sources to configure the assertion information
including external data stores or assertions that have already been received and
verified. Figure 11-1 illustrates how the SAML Service interacts with the other
Access Manager components.

Figure 11-1 SAML Interaction Within Access Manager

Applications Authority
[] * 4 © 4

Aun|facy

Browser Auserlion I

(e

Assftion

Post Profile Awvare Servlet SOAP Receiver

The lighter colored boxes are components of the SAML service.

The SAML Service allows Access Manager to work in the following ways:

= Users can authenticate against Access Manager and access trusted partner sites
without having to reauthenticate. (This is a single sign-on process independent
of the proprietary Access Manager process discussed in Chapter 4, “Single
Sign-On And Sessions,” of this manual.)

= Access Manager acts as a policy decision point (PDP), allowing external
applications to access user authorization information for the purpose of
granting or denying access to their resources.

280 Access Manager 6 2005Q1 « Developer's Guide

SAML Component Details

= Access Manager acts as both an attribute authority (allowing trusted partner
sites to query a subject’s attributes) and an authentication authority (allowing
trusted partner sites to query a subject’s authentication information.)

= Two parties in different security domains can validate each other for the
purpose of performing business transactions.

e The SAML SDK can be used to build Authentication, Authorization Decision
and Attribute Assertions.

= The SAML Service provides pluggable XML-based digital signature signing
and verifying.

NOTE Although the Federation Management module integrates aspects of the SAML
specifications, it is independent of the Access Manager SAML Service as
described in this chapter.

Accessing The SAML Service

The SAML Service can be accessed using a web browser or the SAML SDK. An end
user would authenticate to Access Manager using a web browser and, when
authorized to do so, access URLs from trusted partner sites. Developers, on the
other hand, would integrate the API into their applications to enable them to
exchange security information with Access Manager. For example, a Java
application can use the SAML API to accomplish single sign-on. After obtaining a
SSOroken from Access Manager, the application can call the doVWebArti f act ()
method of the SAMLA i ent class which will send a SOAP request for authorization
information to Access Manager and, if applicable, redirect the application to the
destination site.

SAML Component Details

The following sections explain specific details of the components of the SAML
Service. They include;

= Profile Types
= Assertion Types

e SAML SOAP Receiver

Chapter 11 ~ SAML Service 281

SAML Component Details

282

Profile Types

A set of rules describing how to embed and extract SAML assertions is called a
profile. The profile describes how the assertions can be combined with other objects
by an authority, transported from the authority and, subsequently, processed at the
trusted partner site. Access Manager supports two profiles that use HTTP: the Web
Browser Artifact Profile and the Web Browser POST profile. Either of these profiles
can be used in the case of single sign-on between two SAML-enabled entities,
allowing an already authenticated user to access resources from a trusted partner
site. Each profile has its benefits that include:

= Because Web Browser POST profile does not require the SOAP, it is more
firewall-friendly and involves less steps and server side processing.

= Web Browser Artifact Profile requires less processing overhead because there
is no assertion signing as there is in Web Browser POST profile.

= Web Browser Artifact Profile works without Javascript-enabled browsers.

NOTE The profile methods can be initiated through a web browser or the SAML API. More
information on the API method can be found in “SAML SDK” on page 289.

Web Browser Artifact Profile

The Web Browser Artifact Profile defines interaction between three parties: a user
equipped with a web browser, an authority site, and a trusted partner site. When
an authenticated user attempts to access a trusted partner site (generally by
clicking a link), they are directed to a transfer service at the authority site. In Access
Manager, the transfer service is the SAML Aware Servlet. The base of the transfer
URL is

ht t p(s):// identity_server_host.domain_name: port/ server_deploy_uri/ SAMLAwar eSer vl e
t; it is appended with the URL of the location to which the user is requesting access
(?TARGET=URL_of _dest i nati on). The SAML Aware Servlet then provides the
following functions as part of the Web Browser Artifact Profile:

1. Itcompares the SAML Service’s configured list of Trusted Partner Sites against
the user’s TARGET location.

Only targets configured in the Trusted Partner Sites attribute of the SAML
Service can access the SAML Service. Configured targets specify a domain
and/or a port number. More information on this attribute can be found in the
Sun Java System Access Manager Administration Guide.

Access Manager 6 2005Q1 « Developer's Guide

SAML Component Details

2. Assuming the TARGET location was found in the list of Trusted Partner Sites,
the SAML Aware Servlet looks for and validates the session token from the
inbound request.

Without a valid session token, Access Manager will not create an assertion.
3. The SAML Aware Servlet then creates an artifact and a corresponding assertion.

An artifact is carried as part of the URL and points to an assertion and its
source; it is not, and does not contain, the security information itself. The
assertion contains the security information and is built from the user’s session
information and optional attribute information from the

si teAttribut eMapper class. (More information on the

siteAttribut eMapper can be found in “com.sun.identity.saml.plugins” on
page 291.) The assertion can be signed.

NOTE The need to send an artifact rather than the assertion itself is dictated by the
restrictions on URL size imposed by many web browsers.

4. It redirects the user’s browser to the Artifact Receiver URL with a query string
containing the artifact and the original TARGET location.

The Artifact Receiver URL is based on mapping configurations defined in the
SAML Service. More information on this can be found in the SAML Service
Attributes chapter of the Sun Java System Access Manager Administration Guide.

NOTE In Access Manager, the Artifact Receiver URL and the SAML Aware Servlet are
one and the same. Other SAML implementations might not integrate the two
servlets.

5. At the Artifact Receiver URL, the artifact is extracted from the query string to
find the SOAP Receiver URL.

The SAML SDK extracts the source ID from the artifact and uses it to find the
SOAP Receiver URL in the SAML Service configuration. “SAML SOAP
Receiver” on page 286 has more information on the use of SOAP, a
communications specification integrating XML and HTTPS.

6. A SAML request containing the artifact is then sent to the SOAP Receiver URL
at the trusted partner site requesting the assertion to which the artifact points.

The Artifact Receiver URL uses SOAP binding to request the assertion.

Chapter 11 ~ SAML Service 283

SAML Component Details

7. The SOAP Receiver URL accepts the returned artifact query from the trusted
partner site and responds by sending the correct assertion in a SOAP response.

8. The assertion is processed, mapping the user account information from the
trusted partner site to the target site’s user account.

The user is either granted or denied access to the trusted partner site. If access
is granted a SSOToken is generated, a cookie is set to the browser and the user
is redirected to the TARGET location.

NOTE A sample has been provided to test the Web Browser Artifact Profile
function. “SAML Samples” on page 295 has more information.

Web Browser POST Profile

The Web Browser POST Profile allows security information to be supplied to a
trusted partner site using the HTTP POST method (and without the use of an
artifact). It consists of two interactions: the first between a user with a web browser
and the Access Manager, and the second between the same user and a trusted
partner site.

When an authenticated user attempts to access a trusted partner site using a web
browser (usually by clicking a link), they are redirected to a transfer service in the
authority site. In Access Manager, the transfer service is the SAML Post Profile
Servlet. The base of the transfer URL is

ht t p(s): // identity_server_host.domain_name: port/ server_deploy_uri/ SAMLPCSTPr of i | e
Servl et ; it is appended with the URL of the location to which the user is
requesting access (?TARGET=URL_of _dest i nati on). The SAML POST Profile
Servlet provides functions for the two POST Profile interactions. In the first
interaction between the user and Access Manager:

1. Access Manager obtains the TARGET location from the request and retrieves
the trusted partner site URL from the SAML Service.

Again, only targets configured in the Trusted Partner Sites attribute of the
SAML Service can access the SAML Service. More information on this can be
found in the SAML Service Attributes chapter of the Sun Java System Access
Manager Administration Guide.

2. It generates an assertion using the Asserti onManager class of the SAML SDK.

“com.sun.identity.saml” on page 289 contains information on the
Asserti onMVanager class.

3. Itforms, signs and Base64 encodes a SAM_Response containing the assertion.

284 Access Manager 6 2005Q1 « Developer's Guide

SAML Component Details

4. It generates an HTML form, containing both the SAMLResponse and the
TARGET as parameters, and posts the form as an HTTP response back to the
user’s browser.

5. The user’s browser is then directed to the location based on this information.
In the second interaction between the user and the trusted partner site:

1. The trusted partner site obtains the TARGET and SAM_Response from the
request.

2. It Base64 decodes the SAMLResponse.

3. It verifies the signature on the SAMLResponse and obtains and verifies the
SAML response itself.

It also verifies the assertion inside the SAM_Response and enforces single-sign
on policy.

4. It obtains or creates an SSOToken and redirects the authenticated user to the
TARGET location.

The POST profile function is provided by either of two means: an HTTP request
using the SAMLPCSTPr of i | eSer vl et, or an SAMLd i ent API call [doWebPost ()]
to a Java application.

NOTE A sample has been provided to test the Web Browser POST Profile function.
“SAML Samples” on page 295 has more information.

Single Use Policy With POST Profile

According to the SAML specifications, the trusted partner site MUST ensure a
single-use policy for SSO assertions communicated by the Web POST Profile. Thus,
the SAMLPOSTPr of i | eSer vl et maintains a store of SSO assertion IDs and the time
they expire. When an assertion is received, the servlet first checks for an entry in
the map. If one exists, the servlet returns an error. If not, the assertion ID and
expiration time is saved to the map. The POSTA eanUpThr ead removes expired
assertion IDs periodically.

Assertion Types

SAML assertions are represented as XML constructs based on a schema located at
ht t p: / / www. oasi s-open. org/ commi tt ees/ security/docs/cs-sstc-schena-a
ssertion-01. xsd. The SAML specification provides for several types of assertions
that are also defined in the SAML Service:

Chapter 11 ~ SAML Service 285

SAML Component Details

286

= An authentication assertion declares that the specified subject has been
authenticated by a particular means at a particular time. In Access Manager,
the Authentication Service is the authentication authority. Code Example 11-1
illustrates a sample authentication assertion.

Code Example 11-1 Sample Authentication Assertion

<?xm version="1.0" encodi ng="UTF-8" ?>
<sanl : Assertion xm ns: sam ="urn: oasi s: names: t c: SAM.: 1. 0: asserti on"
Maj or Ver si on="1"
M nor Ver si on="0" Assertionl D="random 182726" |ssuer="sunser ver. exanpl e. conf
| ssuel nst ant ="2001- 11- 05T17: 23: 00GMI- 02: 00" >
<sam : Aut henti cati onSt at enent
Aut hent i cat i onMet hod="ur n: oasi s: nanes: t ¢c: SAM.: 1. 0: am passwor d"
Aut henti cati onl nst ant ="2001- 11- 05T17: 22: 00GMVI- 02: 00" >
<sani : Subj ect >
<sani : Nanel dentifier NameQualifier="exanpl e. cont >John
Doe</ sam : Nanel denti fier>
</ sam : Subj ect >
</sani: Aut henti cati onSt at enent >
</sani: Assertion>

= An attribute assertion declares that the specified subject is associated with the
specified attribute. In Access Manager, the ldentity Management module is the
attribute authority.

= An authorization decision assertion declares that the specified subject’s request
for access to a specified resource has been granted or denied. In Access
Manager, the Policy Service is the authorization authority.

One assertion may contain many different statements made by the authority.

SAML SOAP Receiver

Assertions are exchanged between Access Manager and inquiring parties using the
request and r esponse XML-based protocol defined in the SAML specification.
These SAML assertions are then integrated into a standard communication
protocol for transport purposes.

NOTE Access Manager uses SOAP, a message communications specification integrating
XML and HTTPS, to transport requests and responses in its “Web Browser Artifact
Profile” on page 282.

Access Manager 6 2005Q1 « Developer's Guide

SAML Component Details

SOAP hinding defines how SAML r equest and r esponse message exchanges are
integrated into SOAP exchanges. The SAML SOAP Receiver is a servlet that
processes the message. It receives a SOAP message, extracts the SAML request and
responds with another SOAP message containing the requested assertion. It
responds to queries for authentication, attributes or authorization decisions as well
as those that include an assertion identifier reference or artifact by returning
assertions.

NOTE The access URL for the SAML SOAP Receiver is
htt p(s)://identity_server_host.domain_name: port/ server_deploy_uri/ SAMLSOA
PRecei ver . The SAML SOAP Receiver only supports the POST method.

SOAP Messages

SOAP messages consist of three parts: an envelope, header data and a message
body. (The SAML r equest /r esponse elements are enclosed in the message body.)
A client, acting as a SAML requestor, transmits a <Request > element within the
body of a SOAP message to an entity acting as a SAML Receiver. In answer, the
SAML Receiver MUST return either a <Response> element within the body of
another SOAP message or a SOAP fault code (or error message).

NOTE The SAML requestor and the SAML Receiver MUST NOT include more than one
SAML request or response per SOAP message or any additional XML elements in
the SOAP body.

A SAML Request may contain queries for any of the following: authentication
status, authorization decisions, attribute information and one or more assertion
identifier references or artifacts. A SAML Response is sent back to the requesting
party for every Request received.

NOTE The SAML SDK and the Java API for XML Messaging (JAXM) are used to
construct SOAP messages and send them to the SOAP Receiver.

Protecting The SOAP Receiver

The Access Manager administrator has the option of protecting the SAML SOAP
Receiver using authentication. The available methods are:

= NOAUTH
= BASICAUTH

Chapter 11 ~ SAML Service 287

amSAML.xml

- SSL
= SSLWITHBASICAUTH

This option is configured in the Trusted Partner Sites attribute of the SAML Service
in the form:

Sour cel D=source_id_of site] SOAPUr | =url_of_site| Aut hType=chosen_auth_option| Us
er =user_id

NOTE The value user =user_id is used only with the Basic Authentication and SSL With
Basic Authentication options.

The default authentication type is NOAUTH. If SSL authentication is to be
specified, it is configured in the SOAPUr | field with the ht t ps URL prefix. More
information on the Trusted Partner Sites and other SAML Service attributes can be
found in the SAML Attributes chapter of the Sun Java System Access Manager
Administration Guide.

amSAML.xml

anmBAML. xm is the XML service file that defines the attributes for the SAML
Service. All of the attributes in the SAML Service can be managed through either
the Access Manager console or the XML service file except two. These attributes
can only be managed through anSAM.. xni using the amadm n command line
interface.

e iplanet-am sanl -cl eanup-i nt erval is used to specify how often the
internal thread is run in order to cleanup expired assertions from the internal
data store. The default is 180 seconds.

e iplanet-amsanl -asserti on-max- nunber is used to specify the maximum
number of assertions the server can hold at one time. No new assertion will be
created if the maximum number is reached. The default value is 0 which means
there is no limit.

To change the values of these attributes, the anSAM_. xmi service file needs to be
modified, the old anSAML. xm service file needs to be deleted, and the newly
modified file reloaded using anadmni n. Information on how to use amadm n can be
found in The amadmin Command Line Tool chapter of the Sun Java System Access
Manager Administration Guide. Information on the other SAML Service attributes
can also be found in the Sun Java System Access Manager Administration Guide.

288 Access Manager 6 2005Q1 « Developer's Guide

SAML SDK

SAML SDK

Access Manager contains a SAML SDK made up of several Java packages.
Administrators can use these packages to integrate the SAML functionality and
XML messages into their applications and services. The SDK supports all types of
assertions and operates with the Access Manager authorities to process external
SAML requests and generate SAML responses. The packages include:

e comsun.identity.sam

e comsun.identity.sam.assertion
e comsun.identity.sam .common

e comsun.identity.san.plugins

e comsun.identity.samn . protocol

e comsun.identity.sam.xmsig

com.sun.identity.saml

This package contains the Asserti onManager and SAM.O i ent classes. The
Asserti onManager provides interfaces and methods to create and get assertions,
authentication assertions and assertion artifacts; it is the connection between the
SAML specification and the Access Manager. Some of the methods included are:

e createAsserti on—creates an assertion with an authentication statement
based on an Access Manager SSO Token ID.

e createAssertionArtifact—creates an artifact that references an assertion
based on an Access Manager SSO Token ID.

= getAsserti on—returns an assertion based on the given parameter (given
artifact, assertion ID or query).

The SAMLd i ent provides methods to execute either the Artifact or POST profile
from within an application as opposed to a web browser. Its methods include:

e getAssertionByArtifact—returns an assertion for a corresponding artifact.
e doWebPOST—is designed to do the SAML web-browser POST profile.

e doWbArtifact —is designed to do the SAML web-browser profile with
artifact.

Chapter 11 ~ SAML Service 289

SAML SDK

com.sun.identity.saml.assertion

This package contains the classes needed to create, manage, and integrate, an XML
assertion into an application. For example, Code Example 11-2 illustrates how to
use the Attribute class and get At t ri but eVal ue method to get the value of an
attribute. From an Assertion, call the get St at enent () method to retrieve a set of
statements. If a statement is an Att ri but eSt at enent, call the get Att ri but e()
method to get a list of attributes. From there, call get At t ri but eVal ue() toretrieve
the AttributeValue.

Code Example 11-2 Sample Code To Get An Attribute Value

/] get statenent in the assertion

Set set = assertion.getStatenent();

/lassume there is one AttributeStatenent

//shoul d check nul | & i nst anceof

AttributeStatement statement = (AttributeStatenent) set.iterator().next();
List attributes = statement.getAttribute();

/] assune there is at least one Attribute

Attribute attribute = (Attribute) attributes.get(0);

List values = attribute.getAttributeVal ue();

com.sun.identity.saml.common

This package defines classes common to all SAML elements including site_ID,
issuer name and server host. It also contains all SAML-related exceptions.

CAUTION The date format, yyyy- MAdd' T' HH mm ss' +/ - ' HH nm, which was used in
JDK 1.3.1 with IS 6.0 is no longer supported in IS 6.1. The correct format in JDK
1.4.1 for use in Access Manager 6.1 is:

yyyy-MWhdd' T' HH nm ss' +/ - HHm

or

yyyy-Midd' T' HH mm ss' GV ' +/-' HH nm

For example, the following are correct:

2003-04-22T01:20:02 -0001 (with a space before the zone sign)
2003-04-22T01:20:02GMT-00:01

2003-04-22T01:20:02-0001

290 Access Manager 6 2005Q1 « Developer's Guide

SAML SDK

com.sun.identity.saml.plugins

Access Manager provides four SPIs, three of them with default implementations.
The implementations of these SPIs can be altered, or brand new ones written, based
on the specifications of a particular customized service. These can then be used to
integrate the SAML Service into the custom service. Currently, the APIs include the
Account Mapper, Act i onMapper, Attri but eMapper and SiteAttri but eMapper.

Account Mapper is used to map external partner site user accounts to Access
Manager user accounts for purposes of single sign-on. A default account
mapper implementation is provided. If a site-specific account mapper is not
configured, this default mapper is used.

NOTE The default account mapper class is

comsun.identity.sani. pl ugin. Def aul t Account Mapper.

For example, assume the single sign-on is configured from site A to site B, then
a site-specific account mapper can be developed and added to site B’s Trusted
Partner Sites listing in this format:

sour cei d=site_A source_id | account mapper =class_name_of site
specific_account_mapper |

When site B processes the assertion received through either SAML profile, it
finds out the source ID of the originating site and locates the account mapper
corresponding to that site.

NOTE Turning on the Debug Service in AMConf i g. properti es file, would log

additional information concerning the account mapper. For example, was it loaded
or what is the user name and organization to which it has been mapped.
Information on this can be found in Appendix A, “AMConfig.properties File,” in this
manual.

Attribut eMapper isusedinthe Attri but eQuery case. When a site receives an
Attri but eQuery, this mapper is called to obtain the SSOToken or an Assertion
containing Aut hent i cati onSt at enent from the query. It is also used to
convert the attribute in the query to an attribute Access Manager understands.
A default attribute mapper is provided. A site-specific attribute mapper can be
developed in this format:

sour cei d=site_source_id |
at t ri but emapper =class_name_of_site_specific_attribute_mapper | . . .

Chapter 11 ~ SAML Service 291

SAML SDK

< ActionMapper is used to get SSO information and to map partner actions to
Access Manager authorization decisions. A default action mapper
implementation is provided. If a site-specific action mapper is not supplied,
this default mapper is used. A site-specific action mapper can be developed in
this format:

sour cei d=site_source_id |
act i onmapper =class_name_of site_specific_action_mapper] . . .

e SiteAitribut eMapper is also used for SSO. The default functionality of
Access Manager is that when no mapper is specified and an assertion is
created, either through the web browser Artifact or POST profiles, it only
contains Aut hent i cat i onSt at enent (s) . If a site wants to include
Attribut eStatenent(s), itcan use this SPI to obtain the attributes. It creates
Attribut eStat enent (s) from those attributes, and puts them inside the
assertion. A site attribute mapper can be developed in this format:

sour cei d=site’s source ID |
siteattribut emapper =class_name_of site_ specific_siteattribute_mapper] . . .

NOTE The default behavior is that no attribute statements are returned unless specified in
the plug-in.

com.sun.identity.saml.protocol

This package contains classes that parse the request and response XML messages
used to exchange assertions and their authentication, attribute or authorization
information.

AuthenticationQuery

The Aut hent i cat i onQuery class represents an authentication query. An
application sends a SAML request with an Aut hent i cati onQuery inside. The
Subject of the Aut hent i cat i onQuer y must contain a SubjectConfirmation element.
In this element, ConfirmationMethod needs to be set to ur n: com sun: i denti ty,
and SubjectConfirmationData needs to be set to the SSOToken id of the Subject. If
the Subject contains a Nameldentifier, then the info in the Nameldentifier should
be the same as the one in the SSOToken.

292 Access Manager 6 2005Q1 « Developer's Guide

SAML SDK

AttributeQuery

The At t ri but eQuery class represents a query concerning an identity’s attributes.
An application sends a SAML request with an At t ri but eQuery inside. The
application develops an At t ri but eMapper to obtain either a SSOToken ID or an
Assertion containing an AuthenticationStatement from the query and the mapper
is then used to retrieve the attributes for the Subject. If no At t ri but eMapper for the
guerying site is found, then the Def aul t Att ri but eMapper will be used. To use the
Def aul t At t ri but eMapper, the application should put either the SSOToken ID or
an assertion containing an AuthenticationStatement in the

Subj ect Confi r mat i onDat a element of the Subject in the query. If an SSOToken ID
is used, then the ConfirmationMethod must be set to ur n: com sun: i dentity:. If
an assertion is used, then this assertion should be issued by the Access Manager
instance processing the query or a server that is trusted by the Access Manager
instance processing the query.

NOTE In Def aul t At t ri but eMapper , itis possible to query a subject's attributes
using another subject's SSOToken as long as the SSOToken has the privilege of
retrieving those attributes.

For a query using the Def aul t At t ri but eMapper , any matching attributes found in
the Identity Management module will be returned. If no AttributeDesignator is
specified in the AttributeQuery, all attributes from the services defined under the
user Servi ceNaneLi st in anSAM.. pr operti es will be returned.

user Servi ceNaneLi st ’s value is user service names separated by a comma.

AuthorizationDecisionQuery

The Aut hori zat i onDeci si onQuery class represents a query concerning an
identity’s authority to access protected resources. An application sends a SAML
request with an Aut hori zat i onDeci si onQuery inside. The application develops
an Act i onMapper to obtain an SSOToken ID. The mapper is then used to retrieve
the authentication decisions for the actions defined in the query.

If no Acti onMapper for the querying site is found in the configuration, a

Def aul t Act i onMapper will be used. To use the Def aul t Acti onMapper , the
application should put the SSOToken ID in the SubjectConfirmationData element
of the Subject in the query. If SSOToken ID is used, then the ConfirmationMethod
must be set to ur n: com sun: i dentity:. If a Nameldentifier is present, then the
info in the SSOToken must be the same as the one in the Nameldentifier.

Chapter 11 SAML Service 293

SAML SDK

NOTE The Def aul t Act i onMapper handles actions in action namespace
urn: oasi s: nanes: tc: SAML: 1. 0: ghpp only. The
i Pl anet AMAébAgent Ser vi ce is used to serve the policy decisions for this
action namespace.

The application may also pass in the authentication information through the
Evidence element in the query. The Evidence could be an AssertionlDReference or
an assertion containing an AuthenticationStatement issued by the Access Manager
instance processing the query, or an assertion issued by a server that is trusted by
the Access Manager instance processing the query. The Subject in the
AuthenticationStatement as the evidence should be the same as the one in the

query.

NOTE Policy conditions can be passed in through AttributeStatements of Assertion(s)
inside the Evidence of the query. If the value of an attribute contains TEXT node
only, then the condition is set as
attri buteName=at tri but eVal ueSt ri ng; otherwise, the condition is set
asattributenanme=attributeVal ueEl enent.

AuthorizationDecisionQuery Sample

There are many ways to form an authorization decision query and have the
decision assertion returned. Code Example 11-3 illustrates one way to do it.

Code Example 11-3 AuthorizationDecisionQuery Code Sample

/] testing getAssertion(authZQuery): no SC, with ni, wth

/'l evidence(AssertionlDRef, authN, for this ni):
String nameQualifier = "dc=ipl anet, dc=con;
String pNane = "ui d=anadni n, ou=peopl e, dc=i pl anet, dc=coni’;
Narel dentifier ni = new Narel dentifier(pNanme, naneQualifier);
Subj ect subj ect = new Subj ect(ni);
String actionNamespace = "urn:test";
/'l policy should be added to this resource with these
/'l actions for the subject
Action actionl = new Action(acti onNanespace, "CET");
Action action2 = new Action(actionNanespace, "POST");
List actions = new ArrayList();
actions. add(actionl);
actions. add(action2);
String resource = "http://ww sun.com 80";
evi Set = new HashSet ();
/] this assertion should contain authentication assertion for
/1 this subject and should be created by a trusted server
evi Set . add(evi Asserti onl DRef 3) ;
evi dence = new Evi dence(evi Set);

294 Access Manager 6 2005Q1 « Developer's Guide

SAML Samples

Code Example 11-3 AuthorizationDecisionQuery Code Sample (Continued)

aut hzQuery = new Aut hori zat i onDeci si onQuery(evi Subj ect1, actions,
evi dence, resource);
try {
assertion = amget Assertion(aut hzQuery, destlD);
} catch (SAM.Exception e) {
out.printIn("--failed. Exception:" + e);

com.sun.identity.saml.xmlsig

All SAML assertions, requests and responses may be sighed using this signature
API. This is an SPI in which the interfaces can be implemented and proprietary
XML/signature implementations can be plugged in. This package contains the
classes needed to sign and verify. By default, the keystore provided with the JDK is
used and the key type is DSA. The configuration properties for this functionality
are in AMConfig.properties. Information on these properties can be found in
“SAML” on page 342 of Appendix A, “AMConfig.properties File.” See “SAML
Samples” for information on the signature functionality.

SAML Samples

There are several samples that can be accessed from the Access Manager
installation. They are located in IdentityServer_base/ SUN\VanT sanpl es/ sanl . These
samples illustrate how the SAML service can be used in different ways. They
include:

= Asample that serves as the basis for using the SAML client API. This sample is
located in IdentityServer_base/ SUN\WANT sanpl es/ sani / cli ent.

= Asample that illustrates how to form a Query, and write an At t ri but eMapper
as well as how to send and process a SOAP message using the SAML SDK.
This sample is located in IdentityServer_base/ SUNVan1 sanpl es/ sam / query.

= Asample application for achieving SSO using either the Web Browser Artifact
or the Web Browser POST profiles. This sample is located in
IdentityServer_base/ SUN\VanT sanpl es/ sam / sso.

= Asample that illustrates how to use the XMLSIG API. It details how to
configure for XML signing and is located in
IdentityServer_base/ SUN\VAnT sanpl es/ sam / xn si g.

Chapter 11 ~ SAML Service 295

SAML Samples

A README file is included with each sample with information and instructions on
how to use it.

296 Access Manager 6 2005Q1 « Developer's Guide

Chapter 12

Auditing Features

Sun Java™ System Access Manager 6 2005Q1 provides a Logging Service to record
information such as user activity, traffic patterns, and authorization violations. The
Logging API allow external applications to take advantage of the Logging Service.
In addition, the debug files allow administrators to troubleshoot their installation.
This chapter explains these auditing features. It contains the following sections:

= “Logging Service Overview” on page 297
e “Log Files” on page 299

= “Logging Features” on page 306

< “Logging API” on page 309

< “Logging SPI” on page 315

= “Debug Files” on page 316

Logging Service Overview

The Logging Service enables all Access Manager services to record information
that might be useful to the administrator in one centralized location. The
information may include access denials and approvals, authorization violations
and code exceptions. Logging allows administrators to analyze user activity,
Access Manager traffic patterns and authorization violations. As with all Access
Manager services, the Logging Service uses a global service configuration file,
named antoggi ng. xni , to define its attributes (such as maximum log size and log
location, or whether the log information is written to a flat file or a relational
database). The default location for all log files is/ var / opt / SUN\WANT | ogs.

297

Logging Service Overview

NOTE This default log directory can be reconfigured after installation by modifying the Log
Location attribute in the Logging Service. More information can be found in the
Logging Service Attributes chapter in the Sun Java System Access Manager
Administration Guide.

Logging Architecture

Java applications use the Logging API to access the Logging Service. These
interfaces may reside on a remote server or on the same server as Access Manager.
An application accesses the Logging Service by calling the Logging API. (If remote,
the API uses a XML over HTTP layer to send the logging request to the Logging
Service.) The Access Manager SDK loads the configuration data (stored in
Directory Server) into the Logging Service when Access Manager starts up or when
any logging configuration data is changed via the console. This data includes the
log message format, log file name, maximum log size, and the number of history
files. Any exception message will be logged, based on the configuration values.
Figure 12-1 illustrates the architecture of the Logging Service.

Figure 12-1 Logging Service Architecture
Application

Logging API
{on remote server)

Logging
Configuration
from Directory
Server

298 Access Manager 6 2005Q1 ¢ Developer's Guide

Log Files

amLogging.xml

The Logging Service holds the attributes and values for the logging function. These
attributes and values are defined in the anlLoggi ng. xm service file located in

/et c/ opt/ SU\VanT confi g/ xml . These values are applied across the Access
Manager deployment and inherited by every configured organization. The
structure of anmLoggi ng. xm is defined by the sns. dt d. Information on this
document can be found in “The sms.dtd Structure” on page 199 of Chapter 8,
“Service Management.” Specific information on the Logging Service attributes can
be found in the Logging Service Attributes chapter in the Sun Java System Access
Manager Administration Guide.

Log Files

The log files record a number of events for each of the services it monitors. These
files should be checked by the administrator on a regular basis. The default
directory for the log files is / var / opt / SUN\WANT | ogs. The log file directory can be
configured in the Logging Service by using the Access Manager console.

Table 12-1 describes the files in the logs directory. Note that in database formats,
the period (.) separator is converted to an underscore (_). Also in databases, table
names may be converted to all upper case. For example, anConsol e. access may be
converted to AMCONSOLE ACCESS, or it may be converted to anConsol e_access.

Table 12-1 Log Files

File or Table

Information Logged

amAut hLog

anPol i cy. access
anmConsol e. access

amAut hent i cati on. access
amAut henti cati on. error
amPasswor dReset . access
anSSQO access

anmBAM.. access

amSAM.. error

anli berty. access

Policy denies

Policy allows

console events
authentication successes
authentication failures
password reset events
SSO creates/destroys
SAML successful events
SAML error events

Liberty successful events

Chapter 12 Auditing Features

299

Log Files

Table 12-1 Log Files

File or Table Information Logged

anli berty. error Liberty error events

anfeder at i on. access Federation successful events
anfederation. error Federation error events
amAdm n. access amadmin CLI successful events
amAdm n. error amadmin CLI error events

Recorded Events

The Logging Service logs information passed to the LogRecor d class by the client.
Out-of-the-box, the contents of the LogRecor d that will be logged are:

Time
This record is the date (YYYY- Mt DD) and time (HH: MM SS) at which the log
message was recorded.

Data

This record details the description of the user activity, errors or other useful
information which the application wants to log.

ModuleName

This record is the name of the Access Manager service or application being logged.
Additional information on the value of this field can be found in “Adding Log
Data” on page 314.

Domain
This field records the Access Manager domain to which the user belongs.

Log Level

This record corresponds to the Java 2 Platform, Standard Edition (J2SE) version 1.4
log level of the log record.

300 Access Manager 6 2005Q1 « Developer's Guide

Log Files

Login ID
This field is the ID of the user attempting to access the application. The information
(the user to whom the log information belongs) is taken from the session token.

IP Address

This field records the IP address from which the operation was performed.

Logged By

This field is the user who writes the log record. The information is taken from the
session token passed during | ogger . | og(| ogRecord, ssoToken).

Host Name
This field is the host name from which the operation was performed.

Additional fields can also be logged. The new field names must first be added to
the anlLoggi ng. xm service file and the modified service file then reloaded into the
Directory Server. The new values for these fields would then be included in the
LogRecord Class passed to the Logging Service. More information on how to
modify and load an XML service file can be found in “Defining A Custom Service”
on page 187 of Chapter 8, “Service Management.”

NOTE Only the flat file format can accommodate new logging fields. Other formats might
contain steps not documented here. An example would be the database table
where a new column must also be added to the table.

Log File Formats

Access Manager can record events in flat text files or a relational database. (The
JDK SPI allows extending existing handlers or adding new ones.)

Flat File Format

The default flat file format is the W3C Extended Log Format (ELF). In leveraging
this format, the Logging Service records the default logging fields in each log
record. Code Example 12-1 illustrates an authentication log record formatted for a
flat file. In order, the fields for these values are TIME, DATA, MODULENAME,
DOMAIN, LOGLEVEL, LOGINID, IPADDR, LOGGEDBY, and HOSTNAME.

Chapter 12 Auditing Features 301

Log Files

302

Code Example 12-1 Flat File Record From amAuthentication.access

"08-07-2003 07:58: 26" "Logi n Success servi ce->adni nconsol eservice" LDAP
dc=exanpl e, dc=com | NFO ui d=amAdmi n, ou=Peopl e, dc=exanpl e, dc=com
129. 149. 247. 58 "cn=dsaneuser, ou=DSAME User s, dc=exanpl e, dc=cont

cachelnwk. SFBay. Sun. COM

Relational Database Format

For Java applications using a relational database to log messages, the message is
stored in a database table. Access Manager uses Java Database Connectivity (JDBC)
to access the data. Oracle® and MySQL databases are currently supported.

NOTE JDBC technology is an API for accessing tabular data source using Java. It
provides connectivity to a wide range of SQL databases, and access to other
tabular data sources, such as spreadsheets or flat files.

Table 12-2 contains the schema for a relational database.

Table 12-2 Relational Database Log Format

Column Name Data Type Description

TI ME VARCHAR2(30) Date of the log in the format YYYY- MM DD
HH MM SS.

DATA VARCHAR2(1024) The log message itself.

MCDULENAME VARCHARZ2(255) The name of the Access Manager service invoking
the log record.

DOVAI N VARCHAR2(255) Access Manager domain of the user.

LOAEVEL VARCHAR2(255) JDK 1.4 log level of the log record.

LOA N D VARCHAR2(255) Login ID of the user who performed the logged
operation.

| PADDR VARCHAR2(255) IP Address of the machine from which the logged
operation was performed.

LOGEEDBY VARCHAR2(255) Login ID of the user who writes the log record.

HOSTNAVE VARCHAR2(255) Host name of machine from which the logged

operation was performed.

Access Manager 6 2005Q1 « Developer's Guide

Log Files

Oracle Database

In order to log to an Oracle database, the Log Location attribute in the Access
Manager Logging Service and the driver variable in the database itself need to be
modified. Using the Access Manager console, change the value of the Log Location
attribute to:

j dbc: oracl e: t hi n; @ostname: 1521: database_name
In the database itself, change the value for the driver to:
oracle.jdbc.driver.Oacl eDriver

MySQL Database

In order to log to an MySQL database, the Log Location attribute in the Access
Manager Logging Service and the driver variable in the database itself need to be
modified.

NOTE There is a limitation in the data length for MySQL JDBC logging as MySQL does
not support data of more than 255 characters.

Using the Access Manager console, change the value of the Log Location attribute
to:

j dbc: nysql : // hostname:port/ database_name
In the database itself, change the value for the driver to:

com nysql . jdbc. Driver

CAUTION When MySQL is installed on Solaris or other Unix platforms and modifications are
made to the Logging Service, logging into the MySQL database shows the warning
message Syntax error or access violation.

Java Enterprise System Installation Logs

Events recorded during installation are stored in/ var/ sadnii nstal | /| ogs. As
Access Manager is installed via Java Enterprise System (JES), the events are
recorded by the JES installer. The four installation logs are:

« Java Enterprise_System_Config_Log
« Java Enterprise_System_Summary_Report_install

« Java _Enterprise_System_install

Chapter 12 Auditing Features 303

Log Files

= Java Enterprise_System_shared_component_install

Access Manager Service Logs

There are two different types of service log files: access and error. Access log files
record general auditing information concerning the deployment (successful or
failed authentications, new federations, etc.). Error log files record errors that occur
within the application. Flat log files are appended with the . error or. access
extension; database column names end with _ERRORor _ ACCESS. For example, a
flat file logging console events would be named anConsol e. access while a
database column logging the same events would be called AMOCONSOLE_ACCESS. The
following sections describe the log files recorded by the Logging Service.

Session Logs
The Logging Service records the following events for the Session Service:

e Login

= Logout

e Session Idle TinmeCut
= Session Max Ti meQut
e Failed To Login

= Session Reactivation
e Session Destroy

The session logs are prefixed with anSSO

Console Logs

The Access Manager console logs record the creation, deletion and modification of
identity-related objects, policies and services including, among others,
organizations, organizational units, users, roles, policies and groups. It also records
modifications of user attributes including passwords and the addition or removal
of users to or from roles and groups. The console logs are prefixed with anConsol e.

Authentication Logs

The Authentication component logs user logins and logouts. The authentication
logs are prefixed with amAut hent i cati on.

304 Access Manager 6 2005Q1 « Developer's Guide

Log Files

Federation Logs

The Federation component logs federation-related events including, but not
limited to, the creation of an Authentication Domain and the creation of a Hosted
Provider. The federation logs are prefixed with Feder at i on.

Policy Logs

The Policy component records policy-related events including, but not limited to,
policy administration (policy creation, deletion and modification) and policy
evaluation. The policy logs are prefixed with anPol i cy. Code Example 12-2 on
page 305 is a collection of sample records that might appear in the policy logs.

Code Example 12-2 Sample Policy Log Records

#Fields: time Data Modul eNarre Domai n LogLevel Logi nl D
| PAddr LoggedBy Host Nane

"08-07-2003 11:08: 19" "Created policy test successfully in
Organi zation dc=i pl anet, dc=cont anPol i cy. access "Not Avail abl e"
I NFO ui d=anmAdm n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236

ui d=amAdni n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

"08-07-2003 11:08:55" "Modified policy test successfully in
Organi zation dc=i pl anet, dc=cont anPol i cy. access "Not Avai | abl e"
| NFO ui d=amAdm n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236
ui d=amAdmi n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

"08-07-2003 11:09: 05" "Renoved policy test successfully in
Organi zation dc=i pl anet, dc=cont anPol i cy. access "Not Avail abl e"
I NFO ui d=anmAdm n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236

ui d=amAdni n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

"08-07-2003 11:15:43" "Policy Evaluation result of Policy test in
Organi zation dc=i pl anet, dc=com for service i Pl anet AMMbAgent Servi ce,
resource http://noonshadow. red.ipl anet.com80/*. htm and action nanes
[GET, PCST] Is GET=[allowj\\n." anPolicy.access "Not Available" | NFO
ui d=amAdmi n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236

ui d=amAdmi n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

Agent Logs

The policy agent logs are responsible for logging exceptions regarding log
resources that were either allowed or denied to a user. The agent logs are prefixed
with amAgent . amAgent logs reside on the agent server only. Agent events are
logged on the Access Manager machine in the Authentication Logs. For more
information on this function, see the correct documentation for the policy agent in
guestion.

Chapter 12 Auditing Features 305

Logging Features

SAML Logs

The SAML component records SAML-related events including, but not limited to,
assertion and artifact creation or removal, response and request details, and SOAP
errors. The session logs are prefixed with anBAM..

amAdmin Logs

The command line logs record event errors that occur during operations using the
command line tools. These include, but are not limited to, loading a service
schema, creating policy and deleting users. The command line logs are prefixed
with amAdm n. More information can be found in “Command Line Logging” on
page 307.

Logging Features

The Logging Service has a number of special features which can be enabled for
additional functionality. They include To Enable Secure Logging, Command Line
Logging and Remote Logging.

To Enable Secure Logging

This optional feature adds additional security to the logging function. Secure
Logging enables detection of unauthorized changes to, or tampering of, the
security logs. No special coding is required to leverage this feature. Secure Logging
is accomplished by using a pre-registered certificate configured by the system
administrator. This Manifest Analysis and Certification (MAC) is generated and
stored for every log record. A special “signature” log record is periodically inserted
that represents the signature for the contents of the log written to that point. The
combination of the two records ensures that the logs have not been tampered with.
Secure Logging can be enabled by performing the following steps:

1. Create a certificate with the name Logger and install it in the deployment
container running Access Manager.

Refer to the documentation that comes with the deployment container for
details.

2. Turnon Secure Logging in the Logging Service configuration using the Access
Manager console and save the change.

The administrator can also modify the default values for the other attributes in
the Logging Service.

306 Access Manager 6 2005Q1 « Developer's Guide

Logging Features

3. Create a file in the IdentityServer_base/ SUN\Vam conf i g directory that contains
the certificate database password and name it . wt pass.

NOTE The file name and the path to it is configurable in the AMConfig.properties file. For
more information see the “Certificate Database” on page 339 of Appendix A,
“AMConfig.properties File.”

Ensure that the deployment container user is the only administrator with read
permissions to this file for security reasons.

4. Restart the server after making these changes.

Command Line Logging

The amadn n command line tool has the ability to create, modify and delete
identity objects (organizations, users, and roles, for example) in Directory Server.
This tool can also load, create, and register service templates. The Logging Service
can record these command line actions by invoking the -t option. If the

com i pl anet . am | ogst at us property in AMConf i g. properti es is enabled
(ACTIVE) then a log record will be created. (This property is enabled by default.)
The command line logs are prefixed with amAdni n. More information can be found
in Chapter 8, “The amadmin Command Line Tool” in the Sun Java System Access
Manager Administration Guide.

Remote Logging

Access Manager supports remote logging. This allows a client using the Access
Manager SDK to create log records on an instance of Access Manager deployed on
a remote machine.

Using Remote Logging
Remote logging can be initiated in any of the following scenarios:

= When the logging URL in the Naming Service of one Access Manager instance
points to a remote instance and there is a trust relationship configured between
the two, logs will be written to the remote Access Manager instance.

Chapter 12 Auditing Features 307

Logging Features

< When the Access Manager SDK is installed against a remote Access Manager
instance and a client (or a simple Java class) running on the SDK server uses
the logging APIs, the logs will be written to the remote Access Manager
machine.

= When logging APIs are used by Access Manager agents.

Enabling Remote Logging
To enable remote logging, ensure that the following information is regarded.

= Ifusing Sun Java System Web Server, the following environment variables
need to be set in the server. xm configuration file.

a.

b.

java. util .l oggi ng. manager =com sun. i dentity. | og. LogManager

java. util .l ogging.config.file=/IldentityServer_base/ SUNwani | i b/ LogC
onfig.properties

If the Java™ 2 Platform, Standard Edition being used is 1.4 or later, this is
accomplished by invoking the following at the command line:

java -cp

/ IdentityServer_base/ SUNVANT | i b/ am | oggi ng. j ar : / IdentityServer_base/ S
UNVan | i b/ xer cesl npl . j ar: / IdentityServer_base/ SUNVand | i b/ xm Par s

er APl s. j ar: / ldentityServer_base/ SUNVani | i b/ j aas. j ar: / IdentityServer_
base/ SUNVnT | i b/ xm Par ser APl s. j ar: / IdentityServer_base/ SUNVand | i b

[servl et . jar:/ ldentityServer_base/ SUNVani | ocal e: / IdentityServer_base/
SUNVanNT | i b/ am ser vi ces. j ar: / ldentityServer_base/ SUNVani | i b/ am sd

k. j ar:/ IdentityServer_base/ SUN\Van | i b/ j ss311. j ar: / IdentityServer_base
/ SUNVan | i b: .

-Oava. util .l oggi ng. manager =com sun. i dentity. | og. LogManager

-D ava. util .l oggi ng. config. fil e=/ ldentityServer_base/ SUNwani | i b/
LogConfi g. properties <l ogTestd ass>

If the Java 2 Platform, Standard Edition being used is earlier than 1.4, this is
accomplished by invoking the following at the command line:

java

- Xboot cl asspat h/ a: / IdentityServer_base/ SUN\Van | i b/ j dk_| oggi ng. j a

r -cp

/ IdentityServer_base/ SUNVANT | i b/ am | oggi ng. j ar: / IdentityServer_base/ S
UNVan | i b/ xer cesl npl . j ar: / IdentityServer_base/ SUNVanT | i b/ xnd Par s

er APl s. j ar: / ldentityServer_base/ SUNVanT | i b/ j aas. j ar: / IdentityServer
base/ SUNVnT | i b/ xmd Par ser API s. j ar: / IdentityServer_base/ SUN\Vani | i b

308 Access Manager 6 2005Q1 « Developer's Guide

Logging API

/servl et.jar:/ IdentityServer_base/ SUN\VaNi | ocal e: / IdentityServer_base/
SUNVANT | i b/ am ser vi ces. j ar: / IdentityServer_base/ SUN\Vani | i b/ am sd
k. j ar:/ IdentityServer_base/ SUN\Va | i b/ j ss311. | ar:/ IdentityServer_base
/ SUNvant 1i b: .

-O ava. util .l oggi ng. manager =com sun. i dentity. | og. LogManager

-D ava. util .l oggi ng. config. fil e=/ ldentityServer_base/ SUNwani | i b/
LogConfi g. properties <l ogTestd ass>

= Ensure that the following parameters are configured in
LogConfi g. properti es located in IdentityServer_base/ SUN\WANT | i b.

a. iplanet-aml oggi ng-renote-handl er=co