
Sun Java™ System

Access Manager 6
Developer’s Guide

2005Q1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-7649

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l'adresse http://www.sun.com/patents et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans
les autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit peuvent être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

3

Contents

List of Figures . 17

List of Tables . 19

List of Procedures . 21

List of Code Examples . 23

Preface . 27

Who Should Use This Book . 27
Before You Read This Book . 28
Conventions Used in This Book . 28

Typographic Conventions . 28
Symbols . 29
Default Paths and File Names . 29
Shell Prompts . 30

Related Documentation . 31
Books in This Documentation Set . 31
Access Manager Policy Agent Documentation . 32
Other Server Documentation . 33

Accessing Sun Resources Online . 33
Contacting Sun Technical Support . 33
Related Third-Party Web Site References . 34
Sun Welcomes Your Comments . 34

Chapter 1 Introduction . 35
Access Manager Overview . 35

Data Management Components . 36
Access Manager Management Services . 37
Managing Access . 39

Web Access . 39

4 Access Manager 6 2005Q1 • Developer’s Guide

Application Access . 40
Extending Access Manager . 40

Service Definition With XML . 40
Console Customization . 41
Access Manager SDK . 41

Identity Management SDK . 41
Service Management SDK . 41
Authentication Programming Interfaces . 41
Utility API . 42
Logging API And Logging SPI . 42
Client Detection API . 42
SSO API . 42
Policy SDK . 42
SAML SDK . 42
Federation Management API . 43

Access Manager File System . 43
Client Browser Support . 43

Chapter 2 Using the Client SDK . 45
How the Client SDK Works . 45
JDK and CLASSPATH Requirements . 46
Configuring the Client SDK . 47

To Configure the Client SDK . 47
Initializing the Client SDK . 49

Using a Properties File . 49
To Set ClientSDK Properties in a Properties File . 49
Using the Java API . 50
Setting Individual Properties . 50

Naming URL Properties . 50
Debug Properties . 51
Notification URL Properties . 51

Setting Up a Client Identity . 52
To Set Username and Password Properties . 52
To Set an SSO Token Provider . 53

Building Custom Web Applications . 53
Building Stand-Alone Applications . 53

To Build a Stand-Alone Application . 53
Targets Defined in clientsdk . 54

About the Client SDK Samples . 54

Chapter 3 The Access Manager Console . 55
Overview . 55

Contents 5

Console Interface . 56
Generating The Console Interface . 57
Plug-In Modules . 58
Accessing The Console . 58

Customizing The Console . 58
The Default Console Files . 59
Creating Custom Organization Files . 59

To Create Custom Organization Files . 60
Alternate Customization Procedure . 61

Miscellaneous Customizations . 61
To Modify The Service Configuration Display . 61
To Modify The User Profile View . 62
Display Options For The User Profile Page . 63
To Localize The Console . 63
To Display Service Attributes . 63
To Customize Interface Colors . 63
To Change The Default Attribute Display Elements . 64
To Add A Module Tab . 68
To Display Container Objects . 68

Console API . 69
Precompiling The Console JSP . 70
Console Samples . 70

Modify User Profile Page . 70
Create A Tabbed Identity Management Display . 70
ConsoleEventListener . 71
Add Administrative Function . 71
Add A New Module Tab . 71
Create A Custom User Profile View . 72

Chapter 4 Single Sign-On And Sessions . 73
Overview . 73

Session Service Concepts . 74
Session . 74
Session ID . 74
SSOToken . 75

Single Sign-On Process . 75
Contacting A Protected Resource . 75
Providing User Credentials . 75

Cookies and Sessions . 76
Session Structure . 76

Fixed Attributes . 76
Protected And Custom Properties . 77

Protected Properties . 77

6 Access Manager 6 2005Q1 • Developer’s Guide

Custom Properties . 78
Cross-Domain Support For SSO . 78

Policy Agents . 79
Cross-Domain Controller . 79
A Cross-Domain SSO Scenario . 80
Enabling Cross-Domain Single Sign-On . 81

SSO API . 81
Java API Overview . 82

SSOTokenManager Class . 82
SSOTokenID Interface . 83
SSOToken Interface . 83
SSOTokenEvent . 85
SSOTokenListener . 85
Sample SSO Java Files . 86

C API Overview . 88
C SSO Include Files . 88
C SSO Properties . 88
C SSO interfaces . 89
C SSO Sample . 97

Java versus C API . 97
Non-Web-Based Applications . 99

SSO Samples . 99

Chapter 5 Customizing the
Authentication User Interface . 101
User Interface Files You Can Modify . 101

services.war File . 103
Java Server Pages . 104

Customizing the Login Page . 104
Customizing JSP Templates . 104

XML Files . 106
Callbacks Element . 108
ConfirmationCallback Element . 109

JavaScript Files . 110
Cascading Style Sheets . 110
Images . 111
Localization Files . 111

Customizing Branding and Functionality . 113
To Modify Branding and Functionality . 113

Customizing the Self-Registration Page . 115
To Modify the Self-Registration Page . 115

Updating and Redeploying services.war . 117
To Update services.war . 117

Contents 7

To Redeploy services.war . 118
On BEA WebLogic . 118
On Sun ONE Application Server . 118
On IBM WebSphere . 119

Chapter 6 Using Authentication APIs and SPIs . 121
Overview of Authentication APIs and SPIs . 121

How the Authentication Java APIs Work . 122
How the Authentication C-APIs Work . 123
XML/HTTP Interface for Other Applications . 124

Examples of XML Messages . 124
How the Authentication SPIs Work . 128

Extending the AMLoginModule Class . 129
Pluggable JAAS Module . 129
Authentication Post Processing . 129

Using Authentication APIs . 132
Running the Sample Authentication Programs . 132

Java API Code Samples and Their Locations . 132
To Compile and Execute the Java API Samples . 133
To Configure SSL for Java API Samples . 134

LDAPLogin Example . 135
CertLogin Example . 135
JCDI Module Example . 136
C-API Sample . 137

Using Authentication SPIs . 138
Implementing a Custom Authentication Module . 138

About the Login Module Sample . 138
Writing a Sample Login Module . 139
Compiling and Deploying the LoginModule program . 142
Loading the Login Module Sample into Access Manager . 143
Running the LoginModule Sample Program . 144
Deploying the Login Module Sample Program . 146

Implementing Authentication PostProcessing SPI . 146
About the PostProcessing SPI Sample . 147
To Compile the ISAuthPostProcessSample Program on Solaris Sparc/x86 or Linux 147
Configuring the Authentication Post Processing SPI . 148
Compiling On Windows2000 . 150

Generating an Authentication User ID . 150
To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux 151
To Deploy the UserIDGeneratorSample program . 151
Configuring the UserIDGeneratorSample Program . 152
Compiling the UserIDGeneratorSample Program on Windows 2000 . 153

Implementing A Pure JAAS Module . 154

8 Access Manager 6 2005Q1 • Developer’s Guide

Conventions Used in the Samples . 154
To Run the Sample on Solaris Sparc x86 or Linux: . 155
To Run the Sample on Windows 2000 . 156

Chapter 7 Identity Management . 159
Overview . 159

Access Manager Console . 160
ums.xml . 160
Identity Management Software Development Kit (SDK) . 160

Identity-related Objects . 160
Marker Object Classes . 161
Identity-related Objects As LDAP Entries . 162

Organizations . 162
Containers . 162
Users . 163
Groups . 163
Roles . 164

Object Templates And ums.xml . 164
Structure Of ums.xml . 164

Structure Templates . 165
Creation Templates . 165
Search Templates . 166

Modifying ums.xml . 166
Adding Custom Object Classes . 167

DAI Service . 167
amEntrySpecific.xml . 168
Identity Management SDK . 169

Interfaces . 170
AMAssignableDynamicGroup . 170
AMCallback . 170
AMConstants . 170
AMDynamicGroup . 170
AMEventListener . 170
AMFilteredRole . 171
AMGroup . 171
AMGroupContainer . 171
AMObject . 171
AMOrganization . 172
AMOrganizationalUnit . 172
AMPeopleContainer . 172
AMRole . 172
AMSearchControl . 172
AMStaticGroup . 173

Contents 9

AMStoreConnection . 173
AMTemplate . 173
AMUser . 174
AMUserPasswordValidation . 175

Search Methods In The SDK . 175
Search Method Parameters . 176
searchUsers Sample Code . 177
Search Groups Sample Code . 178

Email Notification And The SDK . 179
Caching And The SDK . 180
Installing The SDK Remotely . 180
Management Function Samples . 181

Creating Objects . 181
Retrieve Templates . 183

Identity Management Samples . 183
Adding User Attributes . 184
Creating Objects With The SDK . 184

Chapter 8 Service Management . 185
Overview . 185

XML Service Files . 186
Document Type Definition Structure Files . 186
Service Management SDK . 187

Defining A Custom Service . 187
Creating A Service File . 189

Service File Naming Conventions . 189
Service Attributes . 189
Attribute Inheritance . 192

Extending The Directory Server Schema . 193
To Extend The Directory Server LDAP Schema . 194
Adding Access Manager Object Classes To Existing Users . 195

Importing The XML Service File . 195
Configuring Console Localization Properties . 196

Localizing With Two Languages . 197
Updating Files For Abstract Objects . 197
Registering The Service . 197

DTD Files . 198
The sms.dtd Structure . 199

ServicesConfiguration Element . 199
Service Element . 200
Schema Element . 200
Service Attribute Elements . 202
SubSchema Element . 204

10 Access Manager 6 2005Q1 • Developer’s Guide

AttributeSchema Element . 204
The amAdmin.dtd Structure . 209

Requests Element . 210
OrganizationRequests Element . 211
ContainerRequests Element . 213
PeopleContainerRequests Element . 214
RoleRequests Element . 215
GroupRequests Element . 215
UserRequests Element . 216
ServiceConfigurationRequests Element . 216
AttributeValuePair Element . 217
CreateObject Elements . 218
DeleteObject Elements . 222
ModifyObject Elements . 224
GetObject Elements . 225
GetService Elements . 226
ActionServiceTemplate Element . 226
ActionServiceTemplateAttributeValues Element . 227
ActionServices Elements . 227
SchemaRequests Element . 228
Federation Management Elements . 230

XML Service Files . 231
Default XML Service Files . 231

Modifying A Default XML Service File . 233
Batch Processing With XML Templates . 234

XML Templates . 235
Modifying A Batch Processing XML Template . 237

Customizing User Pages . 237
Creating Users Using A Modified Directory Server Schema . 238

Service Management SDK . 239
ServiceSchemaManager Class . 239

Retrieve Logging Location . 239
Retrieve User Or Dynamic Attributes . 239

Retrieve Attribute Values . 240

Chapter 9 Policy Management . 249
Policy SDK . 249

Java SDK For Policy . 249
Policy API For Java . 250
Policy Plugin API For Java . 255

C Library For Policy . 256
Policy Evaluation API for C . 257

Extending the Policy Management Feature . 257

Contents 11

Compiling the Policy Samples . 258
Adding the Policy Service to Access Manager . 258
Developing Custom Subjects, Conditions and Referrals . 259

To Load the Modified Services . 260
Creating Policies for the Service . 261
Developing and Running Policy Evaluation Programs . 262

To Run the Policy Evaluation Program . 262
Constructing Policies Programmatically . 263

To Run PolicyCreator.java . 263
PolicyCreator.java . 264

Chapter 10 Using the JAAS Authorization Framework . 269
Overview of JAAS Authorization . 269

How Policy Enforcement Works . 271
How the JS2E Access Controller Works . 273

JAAS Authorization in Access Manager . 274
Custom APIs . 275
User Interface . 275

Enabling the JAAS Authorization Framework . 276

Chapter 11 SAML Service . 279
Overview . 279

Accessing The SAML Service . 281
SAML Component Details . 281

Profile Types . 282
Web Browser Artifact Profile . 282
Web Browser POST Profile . 284

Assertion Types . 285
SAML SOAP Receiver . 286

SOAP Messages . 287
Protecting The SOAP Receiver . 287

amSAML.xml . 288
SAML SDK . 289

com.sun.identity.saml . 289
com.sun.identity.saml.assertion . 290
com.sun.identity.saml.common . 290
com.sun.identity.saml.plugins . 291
com.sun.identity.saml.protocol . 292

AuthenticationQuery . 292
AttributeQuery . 293
AuthorizationDecisionQuery . 293

com.sun.identity.saml.xmlsig . 295

12 Access Manager 6 2005Q1 • Developer’s Guide

SAML Samples . 295

Chapter 12 Auditing Features . 297
Logging Service Overview . 297

Logging Architecture . 298
amLogging.xml . 299

Log Files . 299
Recorded Events . 300

Time . 300
Data . 300
ModuleName . 300
Domain . 300
Log Level . 300
Login ID . 301
IP Address . 301
Logged By . 301
Host Name . 301

Log File Formats . 301
Flat File Format . 301
Relational Database Format . 302

Java Enterprise System Installation Logs . 303
Access Manager Service Logs . 304

Session Logs . 304
Console Logs . 304
Authentication Logs . 304
Federation Logs . 305
Policy Logs . 305
Agent Logs . 305
SAML Logs . 306
amAdmin Logs . 306

Logging Features . 306
To Enable Secure Logging . 306
Command Line Logging . 307
Remote Logging . 307

Using Remote Logging . 307
Enabling Remote Logging . 308

Logging API . 309
Setting Environment Variables . 310

If Client Can Execute in the Local Access Manager Server . 310
If Client Executes Only in a Remote Server . 311
If SSL is Enabled . 313

Logger Class . 313
LogRecord Class . 313

Contents 13

Adding Log Data . 314
Caching Log Records . 314
Flushing Log Records . 314

Sample Logging Code . 314
Logging SPI . 315

Log Verifier Plugin . 315
Log Authorization Plugin . 315

Debug Files . 316
Debug Levels . 317
Debug Output Files . 317
Using Debug Files . 318
Multiple Access Manager Instances And Debug Files . 319

Chapter 13 Client Detection Service . 321
Overview . 321

Client Detection Process . 322
Enabling Client Detection . 322

Client Data . 324
HTML . 324
genericHTML . 325

Client Detection API . 326

Chapter 14 Access Manager Utilities . 327
Utility API . 327

AdminUtils . 327
AMClientDetector . 327
AMPasswordUtil . 328
Debug . 328
Locale . 328
SystemProperties . 329
ThreadPool . 329

Password API Plug-Ins . 329
Notify Password Sample . 330
Password Generator Sample . 330

Appendix A AMConfig.properties File . 331
Overview . 331
Deployment Properties . 332

Access Manager . 332
Installation . 332
Console . 332
Cookies . 333

14 Access Manager 6 2005Q1 • Developer’s Guide

Miscellaneous . 334
Directory Server . 334

Installation . 334
Directory Server Tree . 335

Configuration Properties . 335
Debug Service . 335
Stats Service . 336
Notification Service . 337
SDK Caching . 338
Online Certificate Status Protocol (OCSP) . 338
Identity Object Processing . 339
Security . 339
SSL . 339
Certificate Database . 339
Replication . 340
Event And LDAP Connection . 341

Event Connection . 341
LDAP Connection . 341

SAML . 342
Keystore Properties . 342

Miscellaneous Services . 343
Read-Only Properties . 343

Installation . 343
Deployment . 344
Shared Secret . 344
Session Properties . 345
Simple Mail Transfer Protocol (SMTP) . 346
Authentication . 346

LDAP . 346
SecurID . 347
Unix . 347

Security . 347
SecureRandom . 347
SocketFactory . 347
Encryption . 348

IP Address Checking . 348
Remote Policy API . 348
Policy . 350
Federation . 350
FQDN Map . 350
Encryption Key . 351

Contents 15

Appendix B serverconfig.xml File . 353
Overview . 353

Proxy User . 353
Admin User . 354

server-config Definition Type Document . 355
iPlanetDataAccessLayer Element . 355
ServerGroup Element . 355
Server Element . 355
User Element . 356

DirDN Element . 356
DirPassword Element . 356

BaseDN Element . 356
MiscConfig Element . 357

Failover Or Multimaster Configuration . 358

Appendix C WAR Files . 359
Overview . 359

Web Components . 360
Packaging Web Components . 360

WARs And Their Contents . 361
console.war . 361
password.war . 362
services.war . 363

Redeploying Modified WARs . 364
BEA WebLogic Server 6.1 . 365

To Deploy console.war On WebLogic . 365
To Deploy services.war on WebLogic . 365
To Deploy password.war on WebLogic . 365

Sun Java System Application Server 7.0 . 365
To Deploy console.war On Sun Java System Application Server . 365
To Deploy services.war On Sun Java System Application Server . 366
To Deploy password.war on Sun Java System Application Server . 366

IBM WebSphere Application Server . 366

Appendix D Notification Service . 367
Overview . 367

Appendix E Directory Server Concepts . 371
Overview . 371
Roles . 372

Managed Roles . 372
Definition Entry . 373

16 Access Manager 6 2005Q1 • Developer’s Guide

Member Entry . 373
How Access Manager Uses Roles . 374

Role Creation . 374
Role Location . 375
Displaying The Correct Login Start Page . 375

Access Control Instructions . 376
Defining ACIs . 377

iplanet-am-admin-console-role-default-acis . 377
iplanet-am-admin-console-dynamic-aci-list . 377

Format of Predefined ACIs . 377
Default ACIs . 378

Class Of Service . 380
CoS Definition Entry . 381

cosClassicDefinition . 381
CoS Template Entry . 381
Conflicts and CoS . 382

Glossary . 383

Index . 385

17

List of Figures

Figure 2-1 Client SDK Architecture . 46

Figure 3-1 The Access Manager Console . 57

Figure 3-2 Console With Three Tabs . 71

Figure 5-1 Default Login Page when authlevel=0 . 103

Figure 10-1 JAAS Authorization Framework . 274

Figure 11-1 SAML Interaction Within Access Manager . 280

Figure 12-1 Logging Service Architecture . 298

18 Access Manager 6 2005Q1 • Developer’s Guide

19

List of Tables

Table 1 Typographic Conventions . 28

Table 2 Symbol Conventions . 29

Table 3 Default Paths and File Names . 30

Table 4 Shell Prompts . 30

Table 5 Access Manager 6 2005Q1 Documentation Set . 31

Table 2-1 Contents of AccessManager-base/SUNWam/amclientsdk.jar . 47

Table 2-2 Contents of AccessManager-base/SUNWam/amclientsdk.war . 48

Table 3-1 Service Attribute Values and Corresponding Display Elements 65

Table 4-1 Comparison Between Java And C SSO API . 97

Table 5-1 Authentication User Interface Files and Their Locations at Installation 102

Table 5-2 List of Customizable JSP Templates . 105

Table 5-3 List of Authentication Module Configuration Files . 107

Table 5-4 List of JavaScript Files . 110

Table 5-5 List of Cascading Style Sheets . 110

Table 5-6 List of Sun Microsystems Branded GIF Images . 111

Table 5-7 List of Localization Properties Files . 112

Table 6-1 IndexName Values . 122

Table 6-2 Default directories for Solaris Sparc/x86 . 132

Table 6-3 Default directories for Linux . 133

Table 6-4 Default directories for Windows 2000 . 133

Table 6-5 Default directories for Solaris Sparc/x86 . 154

Table 6-6 Default directories for Linux . 154

Table 6-7 Default directories for Windows 2000 . 154

Table 7-1 Recorded Cache Properties . 180

Table 12-1 Log Files . 299

Table 12-2 Relational Database Log Format . 302

20 Access Manager 6 2005Q1 • Developer’s Guide

21

List of Procedures

To Create Custom Organization Files . 60

To Modify The Service Configuration Display . 61

To Modify The User Profile View . 62

Display Options For The User Profile Page . 63

To Localize The Console . 63

To Display Service Attributes . 63

To Customize Interface Colors . 63

To Change The Default Attribute Display Elements . 64

To Add A Module Tab . 68

To Display Container Objects . 68

Creating A Service File . 189

To Extend The Directory Server LDAP Schema . 194

Adding Access Manager Object Classes To Existing Users . 195

Importing The XML Service File . 195

Modifying A Default XML Service File . 233

Modifying A Batch Processing XML Template . 237

Creating Users Using A Modified Directory Server Schema . 238

To Enable Secure Logging . 306

Enabling Remote Logging . 308

Enabling Client Detection . 322

To Deploy console.war On WebLogic . 365

To Deploy services.war on WebLogic . 365

To Deploy password.war on WebLogic . 365

To Deploy console.war On Sun Java System Application Server . 365

To Deploy services.war On Sun Java System Application Server . 366

To Deploy password.war on Sun Java System Application Server . 366

22 Access Manager 6 2005Q1 • Developer’s Guide

23

List of Code Examples

Code Example 2-1 Setting ClientSDK Properties . 50

Code Example 3-1 The AMBase.jsp File . 60

Code Example 3-2 BODY.navFrame Portion of adminstyle.css . 63

Code Example 3-3 uitype XML Attribute Sample . 64

Code Example 3-4 Module Tab Key And Value Pairs . 68

Code Example 4-1 Sample Uses Of SSOTokenManager Code . 82

Code Example 4-2 Sample Use Of SSOToken . 84

Code Example 4-3 Sample Code To Create A Cookie From Session Token 85

Code Example 4-4 Sample Code For SSOToken Event And SSOToken Listener 86

Code Example 4-5 Code Sample For am_sso_init and am_cleanup . 90

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate, Invalidate, and Destroy
Interfaces 93

Code Example 4-7 Sample Implementation Of SSOToken Listener . 96

Code Example 5-1 Adding a Telephone Number as Requested Data . 116

Code Example 6-1 Initial AuthContext XML Message . 125

Code Example 6-2 AuthIdentifier XML Message Response . 125

Code Example 6-3 Second Request Message With Authentication Module Specified 126

Code Example 6-4 Return XML Message With Login Callbacks . 126

Code Example 6-5 Response Message With Callback Values . 127

Code Example 6-6 Successful Authentication XML Message . 127

Code Example 6-7 AMAgent.properties File . 137

Code Example 6-8 Module Configuration Sample . 139

Code Example 6-9 Adding the LoginModuleSample entry. . 143

Code Example 7-1 Organization Subschema of amEntrySpecific.xml 169

Code Example 7-2 Sample Code Using AMSearchControl . 173

Code Example 7-3 Sample Code To Find User Status . 174

Code Example 7-4 Available Search Methods For searchUsers . 175

24 Access Manager 6 2005Q1 • Developer’s Guide

Code Example 7-5 Sample Code For Search Methods . 177

Code Example 7-6 Search Groups Code Sample . 178

Code Example 7-7 Sample Code To Create A User . 181

Code Example 7-8 Retrieve Service’s Dynamic Template . 183

Code Example 8-1 ContainerDefaultTemplateRole LDIF Entry . 193

Code Example 8-2 Sample LDIF Listing For Mail Service . 194

Code Example 8-3 amClientDetection.Properties File . 196

Code Example 8-4 ServicesConfiguration and Service Element . 200

Code Example 8-5 i18nFileName, i18nKey and serviceHierarchy Attributes 201

Code Example 8-6 serviceObjectClass Defined As Global Element . 203

Code Example 8-7 AttributeSchema Element With Attributes . 205

Code Example 8-8 DefaultValues In amAuthLDAP.xml . 207

Code Example 8-9 Portion Of createRequests.xml . 211

Code Example 8-10 Another Portion Of createRequests.xml . 217

Code Example 8-11 SamplePolicy.xml . 221

Code Example 8-12 contCreateServiceTemplateRequests.xml File . 222

Code Example 8-13 orgDeleteRequests.xml . 222

Code Example 8-14 orgDeleteServiceTemplateRequests.xml . 223

Code Example 8-15 contModifyPeoplecontainerRequests.xml . 224

Code Example 8-16 Portion of Batch Processing File getRequests.xml . 225

Code Example 8-17 orgGetNumberOfServiceRequests.xml . 226

Code Example 8-18 orgRegisterServiceRequests.xml . 227

Code Example 8-19 schemaAddChoiceValuesRequests.xml . 229

Code Example 8-20 RemoveDefaultValues Element Code . 229

Code Example 8-21 AddDefaultValues Element Code . 230

Code Example 8-22 nsaccountlock Example Attribute . 233

Code Example 8-23 User Account Locked Example i18nKey . 234

Code Example 8-24 Retrieve Logging Location Sample . 239

Code Example 8-25 Retrieve User Or Dynamic Attributes . 239

Code Example 8-26 Sample Code To Retrieve Attribute Values . 240

Code Example 9-1 Public Methods For ProxyPolicyEvaluator . 252

Code Example 9-2 PolicyCreator.java . 264

Code Example 10-1 Example of a Java Security Policy . 270

Code Example 10-2 A Policy File Grant Statement . 270

Code Example 10-3 The Subject.doAs Method . 271

Code Example 10-4 Sample Code for Subject.doAS . 272

Code Example 10-5 Sample JAAS Authorization Code . 276

List of Code Examples 25

Code Example 11-1 Sample Authentication Assertion . 286

Code Example 11-2 Sample Code To Get An Attribute Value . 290

Code Example 11-3 AuthorizationDecisionQuery Code Sample . 294

Code Example 12-1 Flat File Record From amAuthentication.access . 302

Code Example 12-2 Sample Policy Log Records . 305

Code Example 12-3 Logging API Samples . 315

Code Example 13-1 Login.jsp Written In WML . 323

Code Example A-1 Portion of amSDKStats File . 336

Code Example A-2 Changes To Java Policy File . 339

Code Example B-1 Proxy User In serverconfig.xml . 354

Code Example B-2 Admin User In serverconfig.xml . 354

Code Example B-3 serverconfig.xml . 357

Code Example B-4 Configured Failover in serverconfig.xml . 358

Code Example 14-1 LDAP Definition Entry . 373

Code Example 14-2 LDAP Member Entry . 374

26 Access Manager 6 2005Q1 • Developer’s Guide

27

Preface

The Sun Java™ System Access Manager 6 2005Q1 Developer’s Guide offers
information on how to customize Sun Java System Access Manager (formerly
Sun™ ONE Identity Server) and integrate its functionality into an organization’s
current technical infrastructure. It also contains details about the programmatic
aspects of the product and its APIs. Topics in this Preface include the following:

• “Who Should Use This Book” on page 27

• “Before You Read This Book” on page 28

• “Conventions Used in This Book” on page 28

• “Related Documentation” on page 31

• “Accessing Sun Resources Online” on page 33

• “Contacting Sun Technical Support” on page 33

• “Related Third-Party Web Site References” on page 34

• “Sun Welcomes Your Comments” on page 34

Who Should Use This Book
This Developer’s Guide is intended for use by IT administrators and software
developers who implement an integrated identity management and web access
platform using Sun Java System servers and software. It is recommended that
administrators understand the following technologies:

• Lightweight Directory Access Protocol (LDAP)

• Java™ technology

• JavaServer Pages™ (JSP) technology

Before You Read This Book

28 Access Manager 6 2005Q1 • Developer’s Guide

• HyperText Transfer Protocol (HTTP)

• HyperText Markup Language (HTML)

• eXtensible Markup Language (XML)

Before You Read This Book
Access Manager is a component of Sun Java Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or
Internet environment. You should be familiar with the documentation provided
with Sun Java Enterprise System, which can be accessed online at
http://docs.sun.com/coll/entsys_04q4.

Because Sun Java System Directory Server is used as the data store in an Access
Manager deployment, you should be familiar with the documentation provided
with that product. Directory Server documentation can be accessed online at
http://docs.sun.com/coll/DirectoryServer_04q2.

Conventions Used in This Book
The tables in this section describe the conventions used in this book.

Typographic Conventions
The following table describes the typographic changes used in this book.

Table 1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123
(Monospace)

API and language elements, HTML
tags, web site URLs, command
names, file names, directory path
names, onscreen computer output,
sample code.

Edit your.login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123
(Monospace
bold)

What you type, when contrasted
with onscreen computer output.

% su
Password:

Conventions Used in This Book

Preface 29

Symbols
The following table describes the symbol conventions used in this book.

Default Paths and File Names
The following table describes the default paths and file names used in this book.

Example

AaBbCc123
(Italic)

Book titles, new terms, words to be
emphasized.

A placeholder in a command or path
name to be replaced with a real
name or value.

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

The file is located in the
install-dir/bin directory.

Table 2 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional command
options.

ls [-l] The -l option is not
required.

{ | } Contains a set of choices for
a required command option.

-d {y|n} The -d option requires that
you use either the y
argument or the n
argument.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key,
release it, and then press
the subsequent keys.

> Indicates menu item
selection in a graphical user
interface.

File > New > Templates From the File menu, choose
New. From the New
submenu, choose
Templates.

Table 1 Typographic Conventions (Continued)

Typeface Meaning Examples

Conventions Used in This Book

30 Access Manager 6 2005Q1 • Developer’s Guide

Shell Prompts
The following table describes the shell prompts used in this book.

Table 3 Default Paths and File Names

Term Description

AccessManager-base Represents the base installation directory for Access Manager. The
Access Manager 2005Q1 default base installation and product
directory depends on your specific platform:

Solaris™ systems: /opt/SUNWam

Linux systems: /opt/sun/identity

DirectoryServer-base Represents the base installation directory for Sun Java System
Directory Server. Refer to the product documentation for the
specific path name.

ApplicationServer-base Represents the base installation directory for Sun Java System
Application Server. Refer to the product documentation for the
specific path name.

WebServer-base Represents the base installation directory for Sun Java System
Web Server. Refer to the product documentation for the specific
path name.

Table 4 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%

C shell superuser on UNIX or Linux machine-name#

Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C:\

Related Documentation

Preface 31

Related Documentation
To access Sun technical documentation online, go to http://docs.sun.com.

You can browse the documentation archive or search for a specific book title, part
number, or subject.

Books in This Documentation Set

Table 5 Access Manager 6 2005Q1 Documentation Set
Title Description

Technical Overview

http://docs.sun.com/doc/817-7643

Provides a high-level overview of how Access Manager
components work together to consolidate identity
management and to protect enterprise assets and
web-based applications. Explains basic Access Manager
concepts and terminology

Deployment Planning Guide

http://docs.sun.com/doc/817-7644

Provides information about planning a deployment within
an existing information technology infrastructure

Administration Guide

http://docs.sun.com/doc/817-7647

Describes how to use the Access Manager console as
well as manage user and service data via the command
line.

Migration Guide

http://docs.sun.com/doc/817-7645

Describes how to migrate existing data and Sun Java
System product deployments to the latest version of
Access Manager. (For instructions about installing and
upgrading Access Manager and other products, see the
Sun Java Enterprise System 2005Q1 Installation Guide.)

Performance Tuning Guide

http://docs.sun.com/doc/817-7646

Describes how to tune Access Manager and its related
components.

Federation Management Guide

http://docs.sun.com/doc/817-7648

Provides information about Federation Management,
which is based on the Liberty Alliance Project.

Developer’s Guide

http://docs.sun.com/doc/817-7649

Offers information on how to customize Access Manager
and integrate its functionality into an organization’s current
technical infrastructure. Contains details about the
programmatic aspects of the product and its API.

Developer’s Reference

http://docs.sun.com/doc/817-7650

Provides summaries of data types, structures, and
functions that make up the Access Manager public
C APIs.

Related Documentation

32 Access Manager 6 2005Q1 • Developer’s Guide

Access Manager Policy Agent Documentation
Documentation for the Access Manager Policy Agents is available on the following
documentation Web site:

http://docs.sun.com/coll/S1_IdServPolicyAgent_21

Policy Agents for Access Manager are available on a different schedule than the
server product itself. Therefore, the documentation set for the policy agents is
available outside the core set of Access Manager documentation. The following
titles are included in the set:

• Policy Agents For Web and Proxy Servers Guide documents how to install and
configure an Access Manager policy agent on various web and proxy servers.
It also includes troubleshooting and information specific to each agent.

• J2EE Policy Agents Guide documents how to install and configure an Access
Manager policy agent that can protect a variety of hosted J2EE applications. It
also includes troubleshooting and information specific to each agent.

• The Release Notes are available online after a set of agents is released. The
Release Notes include a description of what is new in the current release, known
problems and limitations, installation notes, and how to report issues with the
software or the documentation.

Release Notes

http://docs.sun.com/doc/817-7642

Available after the product is released. Contains
last-minute information, including a description of what is
new in this current release, known problems and
limitations, installation notes, and how to report issues
with the software or the documentation.

Table 5 Access Manager 6 2005Q1 Documentation Set (Continued)

Title Description

Accessing Sun Resources Online

Preface 33

Other Server Documentation
For other server documentation, go to the following:

• Directory Server documentation
http://docs.sun.com/coll/DirectoryServer_05q1

• Web Server documentation
http://docs.sun.com/coll/WebServer_05q1

• Application Server documentation
http://docs.sun.com/coll/ApplicationServer8_ee_04q4

• Web Proxy Server documentation
http://docs.sun.com/prod/s1.webproxys#hic

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

Download Center
http://wwws.sun.com/software/download/

Sun Java System Services Suite
http://www.sun.com/service/sunps/sunone/index.html

Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

Developer Information
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, go to:

http://www.sun.com/service/contacting.

Related Third-Party Web Site References

34 Access Manager 6 2005Q1 • Developer’s Guide

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the guide or
at the top of the document.

For example, the title of this guide is Sun Java System Access Manager 6 2005Q1
Developer’s Guide, and the part number is 817-7649.

35

Chapter 1

Introduction

The Sun Java™ System Access Manager 6 2005Q1 Developer’s Guide describes the
programmatic and customization details of Access Manager. It includes
instructions on how to augment the application with new services using the
eXtensible Markup Language (XML) files for configuration, the public Java™
application programming interfaces (APIs) for integration and the JavaServer
Pages™ (JSP) for customization. This introductory chapter contains the following
sections:

• “Access Manager Overview” on page 35

• “Extending Access Manager” on page 40

• “Access Manager File System” on page 43

• “Client Browser Support” on page 43

Access Manager Overview
Sun Java System Access Manager integrates identity management with the ability
to create and enforce authentication processes and access to directory data and
corporate resources. These capabilities enable organizations to deploy a
comprehensive system that helps to secure and protect their assets and
information, as well as deliver their web-based applications. Towards this end,
Access Manager contains components and application management utilities or
services.

Access Manager Overview

36 Access Manager 6 2005Q1 • Developer’s Guide

Data Management Components
Access Manager provides the following components to simplify the administration
of identities and the management of data:

• Service Configuration—provides a solution for customizing and registering
configuration parameters or attributes into a service; the service can then be
integrated into, and managed using, Access Manager. The solution includes a
Document Type Definition (DTD) that defines the structure for creating a
service’s XML file, Java APIs that are used to integrate the XML file into the
deployment and the Access Manager console which is used to manage the
service.

• Identity Management—provides a solution for managing identities. It includes
an API for creating, modifying and removing Identity-related Objects (users,
roles, groups, containers, organizations, sub-organizations, etc.) as well as an
XML template that defines each object’s Lightweight Directory Access Protocol
(LDAP) attributes. This template allows for the object’s storage in the Sun Java
System Directory Server, the data store for Access Manager.

• Policy Management—provides a solution for defining and retrieving access
privilege settings (or policy) to protect an enterprise’s resources. It includes an
API that applications can use to retrieve an identity’s policy. The policy is then
used to determine an identity’s right to access the requested resource.

• Federation Management—provides a solution for defining authentication
domains, service providers and identity providers in order to give users the
functionality of federation. Federation allows a user to aggregate multiple
digital identities allowing single sign-on to affiliated sites. This module is
based on the Liberty Alliance Project’s Version 1.1 specifications.

• Current Sessions—provides a solution for an Access Manager administrator to
view and manage user session information. It keeps track of session times as
well as allowing the administrator to terminate a session.

NOTE An identity is a representation of an object used in a network environment. The
identity, which can be internal (an employee, a printer) or external (a customer, a
vendor), contains a set of attributes that uniquely identifies it. The simplest identity
might contain user name (or object identifier) and password attributes. More
complex identities might contain attributes for a phone number, social security
number, building location, or address.

Access Manager Overview

Chapter 1 Introduction 37

• Sun Java System Directory Server—provides the storage facility in an Access
Manager deployment. It holds all identity data as well as configured policies.
The majority of the data is stored in the Directory Server using LDAP; certain
of it is stored as XML.

Access Manager Management Services
When Access Manager is installed, a number of utilities (or services) are installed to
help manage the deployment. A service is actually a grouping of configuration
parameters (or attributes). The attributes can be randomly grouped together for
easy management or specifically grouped together for one purpose. Additional
information on services can be found in Chapter 8, “Service Management,” in this
manual and the Sun Java System Access Manager Administration Guide. The current
installed services include:

• Administration Service—provides properties for the configuration of the
Access Manager as well as attributes to customize the application specific to
each configured organization. Information on the Administration Service
attributes can be found in the Administration Service attributes chapter of the
Sun Java System Access Manager Administration Guide.

• Authentication Service—provides an interface for gathering user credentials
and issuing single sign-on (session) tokens. It also contains an SDK to write
plug-ins in order to integrate token validation and authentication credential
storage functionality for proprietary authentication servers. For information on
this service, see Chapter 5, “Authentication Service” of this manual and the
chapter on the Authentication Service attributes in the Sun Java System Access
Manager Administration Guide.

• Client Detection Service—allows Access Manager to detect the client type of an
accessing browser. Information on this service can be found in Chapter 13,
“Client Detection Service,” in this manual and the chapter on the Client
Detection Service attributes in the Sun Java System Access Manager
Administration Guide.

• Globalization Settings—contains properties to configure Access Manager for
different character sets. More information on this service, see the chapter on
the Globalization Settings attributes in the Sun Java System Access Manager
Administration Guide.

Access Manager Overview

38 Access Manager 6 2005Q1 • Developer’s Guide

• Auditing Features—provides a record-keeping functionality. Both file-based
logs and logs stored in a relational database are supported. Information on this
service can be found in Chapter 12, “Auditing Features,” in this manual and
the chapter on the Logging Service attributes in the Sun Java System Access
Manager Administration Guide.

• Naming Service—allows client browsers to locate the URL for services in a
deployment that is running more than one Access Manager ensuring that the
URL returned for the service is the one for the host on which the user session
was created. More information on this service can be found in the Naming
Service attributes chapter of the Sun Java System Access Manager Administration
Guide.

• Password Reset Service—contains properties that can be configured per
organization to implement the Password Reset Service. For information on this
service, see the chapter on the Password Reset Service attributes in the Sun Java
System Access Manager Administration Guide.

• Platform Service—provides configurable attributes for the Access Manager
deployment. For information on this service, see the chapter on the Platform
Service attributes in the Sun Java System Access Manager Administration Guide.

• Policy Configuration Service—provides properties for configuring the policy
function as well as attributes to configure the Policy Service for each
configured organization. For information on this service, see Chapter 9, “Policy
Management,” in this manual and the chapter on the Policy Configuration
Service attributes in the Sun Java System Access Manager Administration Guide.

• Security Assertion Markup Language (SAML) Service—provides an interface
integrating SAML service, Simple Object Access Protocol (SOAP) and https
for sending and receiving security information. This service encrypts data
passed between different security entities. An API is provided to this end. For
information on this service, see Chapter 11, “SAML Service,” in this manual
and the chapter on the SAML Service attributes in the Sun Java System Access
Manager Administration Guide.

• Session Service—provides attributes to configure session properties for all
authorized sessions in each configured organization. For information on this
service, see Chapter 4, “Single Sign-On And Sessions,” in this manual and the
chapter on the Session Service attributes in the Sun Java System Access Manager
Administration Guide.

• User Service—provides attributes to configure the user properties for all users
in each configured organization. For information on this service, see Chapter 7,
“Identity Management,” in this manual or the chapter on the User Service
attributes in the Sun Java System Access Manager Administration Guide.

Access Manager Overview

Chapter 1 Introduction 39

In addition to its configured services, Access Manager provides a graphical user
interface that allows the application user to manage identity objects, services and
policy information via a web browser. This console is built using the Sun Java
System Application Framework and can be called by all users, from top level
administrator to end users. The console can be customized for each configured
organization by modifying and integrating a set of JSP and related files.
Information on console customization can be found in Chapter 3, “The Access
Manager Console,” in this manual. Access Manager also offers data backup,
restoration and other software utilities. Information on these functionalities can be
found in Chapter 14, “Access Manager Utilities,” in this manual. Information on
command-line executables can be found in the Sun Java System Access Manager
Administration Guide.

Managing Access
Access Manager can manage access to its protected resources in either of two ways:
an user can authenticate and access Access Manager via a web browser or, an
external application can access Access Manager directly, requesting user
authentication information through the use of integrated Access Manager API.

Web Access
When a user requests access to a secure application or page using a web browser,
they must first be authenticated. The request is directed to the Authentication
Service which determines the type of authentication to initiate based on the
method associated with the requestor’s profile. For instance, if the user’s profile is
associated with LDAP authentication, the Authentication Service would send an
HTML form to their web browser asking for an LDAP user name and password.
(More complex types of authentication might include requesting information for
multiple.) Having obtained the user’s credentials, the Authentication Service calls
the respective provider to verify the credentials. (The provider in the LDAP
example would be the Directory Server.) Once verified, the service calls the SSO
API to generate a Single Sign-On (SSO) or session token which holds the user’s
identity. The API also generates a token ID, a random identification string
associated with the session token. The session token is then sent back to the
requesting browser in the form of a cookie while the authentication component
directs the user to the requested secure application or page. Additional information
on the Authentication Service can be found in Chapter 5, “Authentication Service,”
in this manual.

Extending Access Manager

40 Access Manager 6 2005Q1 • Developer’s Guide

Application Access
External applications can access Access Manager to request user information using
the Access Manager SDK. For example, a mail service might store its users’ mailbox
size information in Access Manager and the SDK can be used to retrieve this
information. To process the request, the system running the application must have
the Access Manager SDK installed. Additional information on both the C and Java
APIs can be found throughout this manual in the respective chapters.

Extending Access Manager
One of the architectural goals of Access Manager is to provide an extensible
interface. This interface is defined by the following functions:

1. Custom services can be defined for the deployment using XML.

2. Console templates can be modified and/or customized for each organization
using JSP.

3. Default services can be implemented using a set of Java API.

Service Definition With XML
Access Manager contains a number of management services. All Access Manager
services are written using the XML. Administrators or service developers can
modify the internal XML service files installed with Access Manager or configure
new XML service files to customize the application based on their need. More
information on services and how they are integrated into the Access Manager
deployment can be found in Chapter 8, “Service Management,” of this manual.

NOTE Web access might also include an additional security measure to evaluate a user’s
access privileges. This includes installed policy agents. Additional information can
be found in the Sun Java System Access Manager Web Policy Agents Guide and J2EE
Policy Agents Guide.

NOTE Access Manager services only manage attribute values that are stored in Sun Java
System Directory Server. They do not implement their behavior or dynamically
generate code to interpret them. It is up to an external application to interpret or
utilize these values.

Extending Access Manager

Chapter 1 Introduction 41

Console Customization
The Access Manager console is used for managing and monitoring identities,
services and protected resources throughout the Access Manager deployment. The
framework uses XML files, JSP templates and Cascading Style Sheets (CSS) to
control the look and feel of the console screens. These files can be duplicated and
then modified to make changes to the design for each configured organization; for
instance, an organization’s logo can be added in place of the Sun logo. The entire
template can also be replaced with an organization’s custom HTML page.
Additional information on customizing the Access Manager console can be found
in Chapter 3, “The Access Manager Console,” of this manual.

Access Manager SDK
The Access Manager SDK contains public interfaces to implement the behavior of
Access Manager’s default or customized services. Both Java and C interfaces are
provided. The packages include:

Identity Management SDK
Access Manager provides the framework to create and manage users, roles,
groups, containers, organizations, organizational units, and sub-organizations. The
Java package name is com.iplanet.am.sdk. There are currently no comparable C
interfaces.

Service Management SDK
The service management interfaces can be used by developers to register services
and applications, and manage their configuration data. The Java package name is
com.sun.identity.sm. There are currently no comparable C interfaces.

Authentication Programming Interfaces
Access Manager provides interfaces to extend the functionality of the
Authentication Service in two ways. The API provides interfaces that can be used
remotely by either Java or C applications to utilize the authentication features of
Access Manager. The SPI can be used to plug new authentication modules, written
in Java, into the Access Manager authentication framework.

Extending Access Manager

42 Access Manager 6 2005Q1 • Developer’s Guide

Utility API
This API provides a number of Java classes that can be used to manage system
resources. It includes thread management and debug data formatting. The Java
package name is com.iplanet.am.util. There are currently no comparable C
interfaces.

Logging API And Logging SPI
The Logging Service records, among other things, access approvals, access denials
and user activity. The Logging API can be used to enable logging for external Java
applications. The package names begin with com.sun.identity.log. The
Logging SPI are Java packages that can be used to develop plug-ins for customized
features. The package names begin with com.sun.identity.log.spi. There are
currently no comparable C interfaces.

Client Detection API
Access Manager can detect the type of client browser that is attempting to access its
resources and respond with the appropriately formatted pages. The Java package
used for this purpose is com.iplanet.services.cdm. There are currently no
comparable C interfaces.

SSO API
Access Manager provides Java interfaces for validating and managing SSO tokens,
and for maintaining the user’s authentication credentials. All applications wishing
to participate in the SSO solution can use this API. The Java package name is
com.iplanet.sso. The Session Service also includes an API for C applications.

Policy SDK
The Policy API can be used to evaluate and manage Access Manager policies as
well as provide additional functionality for the Policy Service. The Java package
names begin with com.sun.identity.policy. The Policy Service also includes an
API for C applications.

SAML SDK
Access Manager uses the SAML API to exchange acts of authentication,
authorization decisions and attribute information. The Java package names begin
with com.sun.identity.saml. There are currently no comparable C interfaces.

Access Manager File System

Chapter 1 Introduction 43

Federation Management API
Access Manager uses the Federation Management API to add functionality based
on the Liberty Alliance Project specifications. The Java package name is
com.sun.liberty. There are currently no comparable C interfaces.

Access Manager File System
Access Manager installs its packages and files in a directory named SUNWam. The
complete file system layout for Access Manager can be found in the Sun Java System
Access Manager Deployment Guide.

Client Browser Support
Access Manager 2005Q1 is supported on the following client browsers:

• Netscape™ Communciator 7.0

• Netscape Communicator 6.2.1

• Netscape Navigator™ 4.79

• Microsoft® Internet Explorer 6.0

• Microsoft Internet Explorer 5.5

Client Browser Support

44 Access Manager 6 2005Q1 • Developer’s Guide

45

Chapter 2

Using the Client SDK

The Sun Java™ System Access Manager 6 2005Q1 Client SDK package provides
Access Management Java libraries for implementing stand-alone and web
applications. You can use the Client SDK interfaces in your applications to take
advantage of Access Manger services such as authentication, Single Sign-On (SSO),
authorization, auditing and logging, user management, and Security Assertion
Markup Language (SAML). The client SDK libraries communicate with Access
Manager using XML (SOAP) over HTTP or HTTPS.

• “How the Client SDK Works” on page 45

• “JDK and CLASSPATH Requirements” on page 46

• “Configuring the Client SDK” on page 47

• “Initializing the Client SDK” on page 49

• “Setting Up a Client Identity” on page 52

• “Building Custom Web Applications” on page 53

How the Client SDK Works
The Client SDK is different from the SDK packages provided in previous versions
of Access Manager. The Access Manager 6.3 Client SDK has been streamlined to
include only the client-side classes and configuration properties you need to access
Access Manager services. These changes result in a smaller jar file, and eliminate

JDK and CLASSPATH Requirements

46 Access Manager 6 2005Q1 • Developer’s Guide

the dependency on connections to Directory Server when developing and
deploying client applications. In the Access Manager 6.3 architecture, the Client
SDK and client applications communicate with the Access Manager server. Only
the Access Manager server communicates directly with the Directory Server.

Figure 2-1 Client SDK Architecture

JDK and CLASSPATH Requirements
The Client SDK can be used with JDK versions J2SE 1.3.2, J2SE 1.4.2 and higher.

To use the Client SDK with JDK 1.3.2 add the following to the CLASSPATH:

Java Authentication and Authorization Service (JAAS). Available at the
following URL: JAAS hhtp://java.sun.com/products/jaas/

Java Web Services Developer Pack 1.3 (Java WSDP). Available at the
following URL: Java WSDP http://java.sun.com/products/jwsdp/

Java Secure Socket Extension (JSSE). Available at the following URL:
http://java.sun.com/products/jsse/

JDK Logging. The jar jdk_logging.jar can be obtained from SUNWamsdk
package for Solaris and sun-identity-sdk RPM for Linux

amclientsdk.jar. This jar is located in the directory
AccessManager-base/SUNWam/lib.

Configuring the Client SDK

Chapter 2 Using the Client SDK 47

servlet.jar. This jar can be obtained as part of the SUNWamsdk package, or from
the AccessManager-base/SUNWam/lib directory if Access Manger is installed.

Configuring the Client SDK
Before installing the Client SDK, an instance of Access Manager must be running,
and you must know the URL for accessing it. The client SDK libraries use this URL
to communicate with Access Manager using XML (SOAP) over HTTP or HTTPS.
The Client SDK is contained in the following file:

AccessManager-base/SUNWam/lib/amclientsdk.jar

Table 2-1 summarizes items included in the Client SDK.

To Configure the Client SDK
1. In Makefile.clientsdk, edit the following parameters to suit your

environment:

JAVA_HOME

SERVER_HOSTNAME

SERVER_PORT

2. If implementing User Management, SAML, or Policy, then edit the following
parameters to suit your environment:

NOTE To use the Client SDK with JDK 1.4.2 and higher versions, only amclientsdk.jar
and servlet.jar are required in the CLASSPATH.

Table 2-1 Contents of AccessManager-base/SUNWam/amclientsdk.jar

File Description

README.clientsdk ASCII version of this chapter. Contains information on
installing and using Access Manager client SDK.

lib/amclientsdk.jar Client SDK for stand-alone applications.

amclient.war Archive of Access Manager samples, web applications,
and Javadoc.

Makefile.clientsdk Defines objects and parameters for building sample
properties, stand-alone samples and web applications.

Configuring the Client SDK

48 Access Manager 6 2005Q1 • Developer’s Guide

APPLICATION_USERNAME

APPLICATION_PASSWORD

If an encrypted password or secret exists, then provide the following instead of
ADMIN_PASSWORD:

ENCRYPTED_PASSWORD

ENCRYPTION_KEY

3. Run the make command:

make -f Makefile.clientsdk

This generates a sample properties file in the directory temp, standalone
samples in the directory clientsdk-samples and a deployable war file,
amclientwebapps.war, that can be deployed in any Servlet 2.3 compliant
container. Table 2-2 summarizes the items included in the war file.

Table 2-2 Contents of AccessManager-base/SUNWam/amclientsdk.war

File Description

index.html Instructions for installing and using the Client SDK
packages

WEB-INF/web.xml Client SDK for stand-alone applications

WEB-INF/classes/AMClient.propert
ies

Archive of Access Manager samples, web applications,
and Javadoc

WEB-INF/classes/*.classes File for building stand-alone samples and web
applications

WEB-INF/docs Javadoc (Public Client SDK APIs)

WEB-INF/samples Sample stand-alone programs

WEB-INF/webapps Sample web applications

Initializing the Client SDK

Chapter 2 Using the Client SDK 49

Initializing the Client SDK
Before Access Manager Client SDK can communicate with Access Manager Server,
you must initialize some properties in the client SDK. You can set these properties
in one of three ways:

• Using a Properties File

• Using the Java API

• Setting Individual Properties

Using a Properties File
You can set properties in a properties file and then provide a path to it at runtime.
The properties files must be in the CLASSPATH. The default properties file name is
AMConfig.properties and is always read at start-up.

To Set ClientSDK Properties in a Properties File
1. Generate a sample AMConfig.properties by running the following command:

make -f Makefile.clientsdk properties

The AMConfig.properties will be present in the temp directory.

2. Edit properties to suit your environment.

3. At runtime if the file name is different from AMConfig, provide the edited
properties filename (without the .properties extension, and also with the
path. The path should be in the CLASSPATH) by declaring the JVM option:

-Damconfig=filname

Initializing the Client SDK

50 Access Manager 6 2005Q1 • Developer’s Guide

Using the Java API
The ClientSDK properties can also be set programatically using the class:
com.iplanet.am.util.SystemProperties. See Code Example 2-1:

Setting Individual Properties
You can set properties one at a time. For example, you can declare the following
JVM option at run time to assign a value to a particular property:

-DpropertyName=propertyValue

The following sections describe the properties expected by Access Manager Client
SDK. A client application deployed within a servlet container can register for
changes to session, user attributes and policy decisions.These properties must be
set to receive such notifications.

Naming URL Properties
com.iplanet.am.naming.url. This is a required property. The value of this property
represents the URL where the Client SDK would retrieve the URLs of Access
Manager internal services. This is the URI for the Naming Service. Example:

com.iplanet.am.naming.url=http://access_manager_host.domain_name:port/
amserver/namingservice

Code Example 2-1 Setting ClientSDK Properties

import com.iplanet.am.util.SystemProperties;
import java.util.Properties;
public static void main(String[] args) {

// To initialize a set of properties
Properties props = new Properties();
props.setProperty(‘com.iplanet.am.naming.url’,

‘http://sample.com/amserver/namingservice’);
props.setProperty(‘com.sun.identity.agents.app.username’, ‘amAdmin’);
props.setProperty(‘com.iplanet.am.service.password’, ‘11111111’);
SystemProperties.initializeProperties

(props) ;

// To initialize a single property
SystemProperties.initializeProperties(“com.iplanet.am.naming.url’,

‘http://sample.com/amserver/namingservice’);
// Application specific code ...

}

Initializing the Client SDK

Chapter 2 Using the Client SDK 51

com.iplanet.am.naming.failover.url. This is a required property. This property can
be used by any remote SDK application that wants failover in, for example, session
validation or getting the service URLs. Example:

com.iplanet.am.naming.failover.url=
http://access_manager_host.domain_name:port/amserver/failover

Debug Properties
com.iplanet.services.debug.level. Specifies the debug level.Possibe values are
levels are: off, error, warning, or message.

com.iplanet.services.debug.directory. The value of this property is the output
directory for the debug information. This directory should be writable by the
server process. Example:

com.iplanet.services.debug.directory=/var/opt/SUNWam/debug

Notification URL Properties
com.iplanet.am.notification.url.

The value of this property is the URI of the Notification Service running on the host
machine where you installed the Client SDK. Example:

com.iplanet.am.notification.url=
http://clientSDK_host.domain_name:port/amserver/notificationservice

com.sun.identity.agents.notification.enabled. This property enable or disables
notifications for remote policy API. Example:

com.sun.identity.agents.notification.enabled=false

com.sun.identity.agents.notification.url. This property defines the notification
URL for remote policy API.

Setting Up a Client Identity

52 Access Manager 6 2005Q1 • Developer’s Guide

Setting Up a Client Identity
Some of the Access Manager components such as SAML, User Management,
Policy, require an identity for the client. The client application reads configuration
data to identify the client. You can set up the identity for the client in one of two
ways:

• Set username and password properties can be authenticated

• Set an SSO Token Provider

To Set Username and Password Properties
The following properties can be used to set the username and password that can be
used by client SDK to obtain the configuration parameters. The authenticated
username should have permissions to read the configuration data for SAML and
User Management.

• The property to provide the user name is:
com.sun.identity.agents.app.username

• The property to provide the plain text password is:
com.iplanet.am.service.password

For scenarios where plain text password would be security concern, an encrypted
password can be provided using the property: com.iplanet.am.service.secret

NOTE Some of the configuration attributes (such as password) are encrypted and stored
in the data store as an Encryption/Decryption Key. If such attributes have to be
decrypted by the client, the property must be set, and must be the same as that of
the Access Manager Server.

This value is generated at installation time and stored in
/IdentityServer_base/SUNWam/lib/AMConfig.properties. More information on
this property can be found in the “Encryption” section of the Appendix A,
“AMConfig.properties File.”

Building Custom Web Applications

Chapter 2 Using the Client SDK 53

If an encrypted password is provided, the encryption key must also be provided
using the property: am.encryption.pwd

To Set an SSO Token Provider
Set the following property: com.sun.identity.security.AdminToken

This provides an implementation for the the interface, which returns the following
single-sign-on (SSO) token: com.sun.identity.security.AppSSOTokenProvider.

Building Custom Web Applications
The Client SDK package contains Makefile.clientsdk that you can use to
generate and build samples and web applications. The makefile defines targets to
build configuration properties, samples and web applications.

Building Stand-Alone Applications
Use these steps a template for building their identity-enabled web applications.

To Build a Stand-Alone Application
1. Install the Client SDK.

Follow the steps in the section“To Configure the Client SDK” on page 47.

2. Copy servlet.jar to ../lib directory.

3. If using JDK 1.3, follow these steps:

a. copy the following jars to the ../lib directory:

• jaas.jar

• jsse.jar jce1_2_1.jar

• jdk_logging.jar

b. Add the jar files the CLASSPATH definition in the file
clientsdk-samples/defines.mk.

4. Run the stand-alone application.

Change directory to respective components within clientsdk-samples. Each

Building Custom Web Applications

54 Access Manager 6 2005Q1 • Developer’s Guide

has a Readme.html file explaining the changes to done and a Makefile to
rebuild and run the program.

Targets Defined in clientsdk
For web deployment, amclientwebapps.war is ready to be deployed. However,
you can make changes in clientsdk-webapps directory and the war file can be
recreated.

Custom web applications can use the following as a template to build their identity
enabled web application.

properties: Generates AMConfig.properties in the temp directory that can
used as a template for setting AM SDK's properties

samples: Copies standalone samples and corresponding Makefiles to samples
directory.

webapp: Generates amclientwebapps.war that can be deployed on any Servlet
2.3 compliant web container.

About the Client SDK Samples
Sample files are included in the Client SDK. These demonstrate how to write
stand-alone programs and how to write web applications.The samples are located
under the directory where you generated the Makefile.clientsdk, and in the
following subdirectories:

.../clientsdk-samples/

.../clientsdk-webapps/

Clientsdk-samples includes samples for authentication, logging, policy and
SAML stand-alone programs.Clientsdk-webapps includes samples for user
management, service management, and policy programs. Each sample has a
Readme.html file with instructions on compiling and running the sample program..

55

Chapter 3

The Access Manager Console

The Sun Java™ System Access Manager 6 2005Q1 console is a web-based interface
for creating, managing, and monitoring the identities, web services, and
enforcement policies configured throughout an Access Manager deployment. It is
built with Sun Java System Application Framework, a Java™ 2 Enterprise Edition
(J2EE) framework used to help developers build functional web applications. XML
files, JavaServer Pages™ (JSP) and Cascading Style Sheets (CSS) are used to define
the look of the HTML pages. This chapter explains the console, its pluggable
architecture, and how to customize it. It contains the following sections:

• “Overview” on page 55

• “Customizing The Console” on page 58

• “Console API” on page 69

• “Precompiling The Console JSP” on page 70

• “Console Samples” on page 70

Overview
The Access Manager console is a web interface that allows administrators with
different levels of access to, among other things, create organizations, create (and
delete) users to (and from) those organizations, and establish enforcement policies
that protect and limit access to the organization’s resources. In addition,
administrators can view and terminate current user sessions and manage their
federation configurations (create, delete and modify authentication domains and
providers). Users without administrative privileges, on the other hand, can
manage personal information (name, e-mail address, telephone number, etc.),
change their password, subscribe and unsubscribe to groups, and view their roles.
All of these functionalities are accomplished using a web browser.

Overview

56 Access Manager 6 2005Q1 • Developer’s Guide

The console ships with four modules: Identity Management (including user and
policy management), Service Configuration, Current Sessions (including session
management) and Federation Management. Customization of these modules and
the Access Manager console can be achieved, in varying degrees, by modifying the
JSP and XML files that define the interface as well as extending the Sun Java
System Application Framework ViewBeans.

Console Interface
The console is divided into three frames as pictured in Figure 3-1: Header,
Navigation and Data. The Header frame displays corporate branding information
as well as the first and last name of the currently logged-in user as defined in their
profile. It also contains a set of tabs to allow the user to switch between the
management modules, a hyperlink to the Access Manager Help system, a Search
function and a Logout link. The Navigation frame on the left displays the object
hierarchy of the chosen management module, and the Data frame on the right
displays the attributes of the object selected in the Navigation frame.

NOTE The client web browser accessing the console must support JavaScript, version 1.2
and cookies.

NOTE A ViewBean is a Java class written specifically for rendering display. In Access
Manager, each identity object has its own profile ViewBean. For example, the user
profile has the UMUserProfileViewBean.

Overview

Chapter 3 The Access Manager Console 57

Figure 3-1 The Access Manager Console

Generating The Console Interface
When the Access Manager console receives an HTTP(S) request, it first determines
whether the requesting user has been authenticated. If not, the user is redirected to
the Access Manager login page supplied by the Authentication Service. After
successful authentication, the user is redirected back to the console which reads all
of the user’s available roles, and extracts the applicable permissions and behaviors.
The console is then dynamically constructed for the user based on this information.
For example, users with one or more administrative roles will see the
administration console view while those without any administrative roles will see
the end user console view. Roles also control the actions a user can perform and the
identity objects that a user sees. Pertaining to the former, the organization
administrator role allows the user read and write access to all objects within that
organization while a help desk administrator role only permits write access to the
users’ passwords. With regards to the latter, a person with a people container
administrator role will only see users in the relevant people container while the
organization administrator will see all identity objects. Roles also control read and
write permissions for service attributes as well as the services the user can access.

Customizing The Console

58 Access Manager 6 2005Q1 • Developer’s Guide

Plug-In Modules
An external application can be plugged-in to the console as a module, gaining
complete control of the Navigation and Data frames for its specific functionality. In
this case, a tab with the name of the custom application needs to be added to the
Header frame. The application developer would create the JSPs for both left and
right frames, and all view beans, and models associated with them. Information on
how to define a module tab can be found in “To Add A Module Tab” on page 68.

Accessing The Console
The Naming Service defines URLs used to access the internal services of Access
Manager. The URL used to access the Administration Console web application is:

http://identity_server_host.domain_name:port/amconsole

The first time Administration Console (amconsole) is accessed, it brings the user to
the Authentication web application (amserver) for authentication and
authorization purposes. After login, amserver redirects the user to the configured
success login URL as discussed in “The User Interface Login URL” on page 77 of
Chapter 5, “Authentication Service.” The default successful login URL is
http(s)://identity_server_host.domain_name:port/amconsole/base/AMAdminFrame.

Customizing The Console
The Access Manager console uses JSP and CSS to define the look and feel of the
pages used to generate its frames. A majority of the content is generated
dynamically—based on where, and at what, the user is looking. In that regard, the
modification of the content is somewhat restricted. Within the Navigation frame,
the layout of the controls (the view menu), the action buttons, and the table with
current objects in each JSP can be changed. In the Data frame, the content displayed
is dynamically generated based on the XML service file being accessed but the
layout, colors, and fonts are controlled by the adminstyle.css style sheet.

Customizing The Console

Chapter 3 The Access Manager Console 59

The Default Console Files
An administrator can modify the console by changing tags in the JSP and CSS. All
of these files can be found in the
IdentityServer_base/SUNWam/web-src/applications/console directory. The files
in this directory provide the default Sun Java System interface. Out of the box, it
contains the following sub-directories:

• base contains JSP that are not service-specific.

• css contains the adminstyle.css which defines styles for the console.

• federation contains JSP related to the Federation Management module.

• html contains miscellaneous HTML files.

• images contains images referenced by the JSP.

• js contains JavaScript™ files.

• policy contains JSP related to the Policy Service.

• service contains JSP related to the Service Management module.

• session contains JSP related to the Current Sessions (session management)
module.

• user contains JSP related to the Identity Management module.

Creating Custom Organization Files
To customize the console for use by a specific organization, the
IdentityServer_base/SUNWam/web-src/applications/console directory should
first be copied, renamed and placed on the same level as the default directory. The
files in this new directory can then be modified as needed.

NOTE Console-related JSP contain HTML and custom library tags. The tags are defined
in tag library descriptor files (.tld) found in the
IdentityServer_base/SUNWam/web-src/WEB-INF directory. Each custom tag
corresponds to a view component in its view bean. While the tags in the JSP can
be removed, new tags can not be added. For more information, see the Sun Java
System Application Framework documentation.

NOTE There is no standard to follow when naming the new directory. The new name can
be any arbitrarily chosen value.

Customizing The Console

60 Access Manager 6 2005Q1 • Developer’s Guide

For example, customized console files for the organization dc=new_org, dc=com
might be found in the
IdentityServer_base/SUNWam/web-src/applications/custom_directory
directory.

To Create Custom Organization Files
1. Change to the directory where the default templates are stored:

cd IdentityServer_base/SUNWam/web-src/applications

2. Make a new directory at that level.

The directory name can be any arbitrary value. For this example, it is named
IdentityServer_base/SUNWam/web-src/applications/custom_directory/.

3. Copy all the JSP files from the console directory into the new directory.

IdentityServer_base/SUNWam/web-src/applications/console contains the
default JSP for Access Manager. Ensure that any image files are also copied
into the new directory.

4. Customize the files in the new directory.

Modify any of the files in the new directory to reflect the needs of the specific
organization.

5. Modify the AMBase.jsp file.

In our example, this file is found in
IdentityServer_base/SUNWam/web-src/applications/custom_directory/bas
E. The line String console = "../console"; needs to be changed to String
console = "../new_directory_name";. The String consoleImages tag also
needs to be changed to reflect a new image directory, if applicable. The
contents of this file are copied in Code Example 3-1.

Code Example 3-1 The AMBase.jsp File

<!--
 Copyright © 2002 Sun Microsystems, Inc. All rights reserved.
 Use is subject to license terms.
-->

<% String console = "../console";
 String consoleUrl = console + "/";
 String consoleImages = consoleUrl + "images";
%>

Customizing The Console

Chapter 3 The Access Manager Console 61

6. Change the value of the JSP Directory Name attribute in the Administration
Service to match that of the directory created in Step 2 on page 60.

The JSP Directory Name attribute points the Authentication Service to the
directory which contains an organization’s customized console interface. Using
the console itself, display the services registered to the organization for which
the console changes will be displayed. If the Administration Service is not
visible, it will need to be registered. For information on registering services, see
Chapter 8, “Service Management” in this manual or the Sun Java System Access
Manager Administration Guide.

Once the new set of console files have been modified, the user would need to log
into the organization where they were made in order to see any changes.
Elaborating on our example, if changes are made to the JSP located in the
IdentityServer_base/SUNWam/web-src/applications/custom_directory
directory, the user would need to login to that organization using the URL
http://server_name.domain_name:port/service_deploy_uri/UI/Login?org=custom_directo
ry_organization.

Alternate Customization Procedure
The console can also be modified by simply replacing the default images in
IdentityServer_base/SUNWam/web-src/applications/console/images, with new,
similarly named images.

Miscellaneous Customizations
Included in this section are procedures for several specific customizations available
to administrators of the Access Manager console.

To Modify The Service Configuration Display
A service is a group of attributes that are managed together by the Access Manager
console. Out-of-the-box, Access Manager loads a number of services it uses to
manage its own features. For example, the configuration parameters of the Logging
Service are displayed and managed in the Access Manager console, while code
implementations within Access Manager use the attribute values to run the service.
There is a defined procedure for adding Access Manager services to the console.
For information on this procedure, see “Defining A Custom Service” on page 187

NOTE More information on this login URL and authentication URL parameters can be
found in Chapter 5, “Authentication Service” in this manual.

Customizing The Console

62 Access Manager 6 2005Q1 • Developer’s Guide

of Chapter 8, “Service Management.” Chapter 8 also contains information on how
to extend existing services, add or remove a service name from the Navigation
frame using the “serviceHierarchy Attribute” and change the default service
display using the “propertiesViewBeanURL Attribute”

To Modify The User Profile View
The Access Manager console creates a default User Service view based on
information defined in the amUser.xml service file.

A modified user profile view with functionality more appropriate to the
organization’s environment can be defined by creating a new ViewBean and/or a
new JSP. For example, an organization might want User attributes to be formatted
differently than the default vertical listing provided. Another customization option
might be to break up complex attributes into smaller ones. Currently, the server
names are listed in one text field as:

protocol://Access Manager_host.domain:port

Instead, the display can be customized with three text fields:

protocol_chooser_field://server_host_field:port_number_field

A third customization option might be to add JavaScript to the ViewBean to
dynamically update attribute values based on other defined input. The custom JSP
would be placed in the following directory:
IdentityServer_base/SUNWam/web-src/applications/console/user. The
ViewBean is placed in the classpath com.iplanet.am.console.user. The value of
the attribute User Profile Display Class in the Administration Service
(iplanet-am-admin-console-user- profile-class in the
amAdminConsole.xml service file) would then be changed to the name of the
newly created ViewBean. The default value of this attribute is
com.iplanet.am.console.user.UMUserProfileViewBean. More information on
this procedure can be found in “Console Samples” on page 70.

NOTE Attributes defined as User attributes in each service’s specific XML file can also be
displayed in the User Service. More information on how this is done can be found in
“Customizing User Pages” on page 237 of Chapter 8, “Service Management” in
this manual.

Customizing The Console

Chapter 3 The Access Manager Console 63

Display Options For The User Profile Page
There are a number of attributes in the Administration Service that can be selected
to display certain objects on the User Profile page. Display User’s Roles, Display
User’s Groups and User Profile Display Options specify whether to display the
roles assigned to a user, the groups to which a user is a member and the schema
attributes, respectively. More information on these service attributes can be found
in the Sun Java System Access Manager Administration Guide.

To Localize The Console
All textual resource strings used in the console interface can be found in the
amAdminModuleMsgs.properties file, located in
IdentityServer_base/SUNWam/locale/. The default language is English (en_US).
Modifying this file with messages in a foreign language will localize the console.

To Display Service Attributes
Service attributes are defined in XML service files based on the sms.dtd. In order
for a particular service attribute to be displayed in the console, it must be
configured with the any XML attribute. The any attribute specifies whether the
service attribute for which it is defined will display in the Access Manager console.
More information on this attribute can be found in “any Attribute” on page 208 of
Chapter 8, “Service Management” in this manual.

To Customize Interface Colors
All the colors of the console are configurable using the Access Manager style sheet
adminstyle.css located in the
IdentityServer_base/SUNWam/web-src/applications/console/css directory. For
instance, to change the background color for the navigation frame, modify the
BODY.navFrame tag; or to change the background color for the data frame, modify
the BODY.dataFrame. The tags take either a text value for standard colors (blue,
green, red, yellow, etc.) or a hexadecimal value (#ff0000, #aadd22, etc.). Replacing
the default with another value will change the background color of the respective
frame after the page is reloaded in the browser. Code Example 3-2 details the tag in
adminstyle.css.

Code Example 3-2 BODY.navFrame Portion of adminstyle.css

BODY.navFrame {
 color: black;
 background: #ffffff;
 }

Customizing The Console

64 Access Manager 6 2005Q1 • Developer’s Guide

To Change The Default Attribute Display Elements
The console auto-generates Data frame pages based on the definition of a service’s
attributes in an XML service definition file. As documented in “The sms.dtd
Structure” in Chapter 8, “Service Management” in this manual, each service
attribute is defined with the XML attributes type, uitype and syntax. Type
specifies the kind of value the attribute will take. uitype specifies the HTML
element displayed by the console. syntax defines the format of the value. The
values of these attributes can be mixed and matched to alter the HTML element
used by the console to display the values of the attributes. For example, by default,
an attribute of the single_choice type displays its choices as a drop down list in
which only one choice can be selected. This list can also be presented as a set of
radio buttons if the value of the uitype attribute is changed to radio. Code
Example 3-3 illustrates this concept.

Table 3-1 is a listing of the possible values for each attribute, and the corresponding
HTML element that each will display based on the different groupings.

Code Example 3-3 uitype XML Attribute Sample

 <AttributeSchema name="test-attribute"
 type="single_choice"
 syntax="string"
 any="display"
 uitype="radio"
 i18nKey="d105">
 <ChoiceValues>
 <ChoiceValue i18nKey="u200">Daily</ChoiceValue>
 <ChoiceValue i18nKey="u201">Weekly</ChoiceValue>
 <ChoiceValue i18nKey="u202">Monthly</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Daily</Value>
 </DefaultValues>
 </AttributeSchema>

Customizing The Console

Chapter 3 The Access Manager Console 65

Table 3-1 Service Attribute Values and Corresponding Display Elements

type Value syntax Value uitype Value Element Displayed In Console

single_choice string No value defined pull-down menu choices

radio radio button choices

Customizing The Console

66 Access Manager 6 2005Q1 • Developer’s Guide

Single boolean No value defined checkbox

radio radio button

string No value defined text field

link hyperlink

button clickable button

password No value defined text field

paragraph No value defined scrolling text field

Table 3-1 Service Attribute Values and Corresponding Display Elements (Continued)

type Value syntax Value uitype Value Element Displayed In Console

Customizing The Console

Chapter 3 The Access Manager Console 67

list string No value defined Add/Delete name list

name_value_list Add/Edit/Delete name list

multiple_choice string No value defined choice list

Table 3-1 Service Attribute Values and Corresponding Display Elements (Continued)

type Value syntax Value uitype Value Element Displayed In Console

Customizing The Console

68 Access Manager 6 2005Q1 • Developer’s Guide

To Add A Module Tab
“Plug-In Modules” on page 58 mentions the capability to plug-in external
applications as modules. Once this is accomplished, the module needs to be
accessible via the console by adding a new module tab. Label information for
module tabs are found in the amAdminModuleMsgs.properties console properties
file located in IdentityServer_base/SUNWam/locale/. To add label information for a
new module, add a key and value pair similar to module105_NewTab=My New Tab.
Code Example 3-4 illustrates the default pairs in the file.

The module name and a URL for the external application also need to be added to
the View Menu Entries attribute in the Administration Service (or
iplanet-am-admin-console-view-menu in the amAdminConsole.xml service
file). When a module tab in the Header frame is clicked, this defined URL is
displayed in the Navigation frame. For example, to define the display information
for the tab sample, an entry similar to
module105_NewTab|/amconsole/custom_directory/custom_NavPage would be
added to the View Menu Entries attribute in the Administration Service.

After making these changes and restarting Access Manager, a new tab will be
displayed with the name My New Tab. For information on the sample that explains
how to add a new tab, see “Console Samples” on page 70.

To Display Container Objects
In order to create and manage LDAP organizational units (referred to as containers
in the console), the following attributes need to be enabled (separately or together)
in the Administration Service.

Code Example 3-4 Module Tab Key And Value Pairs

module101_identity=Identity Management
module102_service=Service Configuration
module103_session=Current Sessions
module104_federation=Federation Management

NOTE The console retrieves all the entries from this attribute and sorts them by i18n key.
This determines the tab display order in the Header frame.

Console API

Chapter 3 The Access Manager Console 69

• Display Containers In Menu—Containers are organizational units as viewed
using the Access Manager console. If this option is selected, the menu choice
Containers will be displayed in the View menu for top-level Organizations,
Sub-Organizations and other containers.

• Show People Containers—People containers are organizational units
containing user profiles. If this option is selected, the menu choice People
Containers will be displayed in the View menu for Organizations, Containers
and Sub-Organizations.

• Show Group Containers—Group containers are organizational units
containing groups. If this option is selected, the menu choice Group Containers
will be displayed in the View menu for Organizations, Containers and Group
Containers.

Viewing any of these display options is also dependent on whether the Enable User
Management attribute is selected in the Administration Service. (This attribute is
enabled by default after a new installation.) More information on these attributes
can be found in the Sun Java System Access Manager Administration Guide.

Console API
The public console API package is named
com.iplanet.am.console.base.model. It contains interfaces that can be used to
monitor and react to events that occur in the console. This listener can be called
when the user executes an action on the console that causes an event. An event can
have multiple listeners registered on it. Conversely, a listener can register with
multiple events. Events that might be used to trigger a listener include:

• Displaying a tab in the Header frame.

• Creating or deleting identity-related objects.

• Modifying the properties of an identity-related object.

• Sending attribute values to the console ViewBean for display purposes.

When a listener is created all the methods of that interface must be implemented
thus, the methods in the AMConsoleListener interface must be implemented. The
AMConsoleListenerAdapter class provides default implementations of those
methods and can be used instead. Creating a console event listener includes the
following:

1. Write a console event listener class (or implement the default methods in the
AMConsoleListenerAdapter class).

Precompiling The Console JSP

70 Access Manager 6 2005Q1 • Developer’s Guide

2. Compile the code.

3. Register the listener in the Administration Service.

Access Manager includes a sample implementation of the ConsoleEventListener.
See “ConsoleEventListener” on page 71 for more information. The Access Manager
Javadocs also contains more detailed information on the listener interfaces and
class.

Precompiling The Console JSP
Each JSP is compiled when it is first accessed. Because of this, there is a delay when
displaying the HTML page on the browser. To avoid this delay, the system
administrator can precompile the JSP by running the following command:

WebServer_install_directory/servers/bin/https/bin/jspc -webapp
IdentityServer_base/SUNWam/web-src/applications

where, by default, WebServer_install_directory is /opt/SUNWwbsvr.

Console Samples
Sample files have been included to help understand how the Access Manager
console can be customized. The samples include instructions on how to:

Modify User Profile Page
This sample modifies the user interface by adding a hyperlink that allows an
existing user to change their configured password. It is in the
ChangeUserPassword directory.

Create A Tabbed Identity Management Display
This sample creates a custom user profile which displays the profile with three
tabs. Figure 3-2 contains a screenshot of a tabbed user profile. It is in the
UserProfile directory.

Console Samples

Chapter 3 The Access Manager Console 71

Figure 3-2 Console With Three Tabs

ConsoleEventListener
This sample displays the parameters passed to AMConsoleListener class in the
amConsole debug file. It is in the ConsoleEventListener directory.

Add Administrative Function
This sample adds functionality to the Identity Management module that allows an
administrator to move a user from one organization to other. It is in the MoveUser
directory.

Add A New Module Tab
This sample adds a new tab into the Header frame. This tab will connect to an
external application and can be configured using the console. It is in the NewTab
directory.

Console Samples

72 Access Manager 6 2005Q1 • Developer’s Guide

Create A Custom User Profile View
This sample creates a custom user profile view to replace the default user profile
view. A different user profile view can be created for each configured organization.
A custom class would need to be written that extends the default user profile view
bean. This class would then be registered in the User Profile Display Class attribute
of the Administration Service. There is an example of how to do this in the samples
directory. This sample is in the UserProfile directory.

These samples are located in IdentityServer_base/SUNWam/samples/console. Open
the README file in this directory for general instructions. Each specific sample
directory also contains a README file with instructions relevant to that sample.

NOTE The console samples are only available when Access Manager is installed on the
Solaris™ operating system.

73

Chapter 4

Single Sign-On And Sessions

The Session Service is a key component of the Sun Java™ System Access Manager 6
2005Q1 single sign-on (SSO) solution that enables users to authenticate once yet
access multiple resources. In other words, successive attempts by a user to access
protected resources will not require them to provide authentication credentials for
each attempt. This chapter explains the Session Service, the SSO solution, and the
SSO APIs. It contains the following sections:

• “Overview”

• “Cookies and Sessions” on page 76

• “Session Structure” on page 76

• “Cross-Domain Support For SSO” on page 78

• “SSO API” on page 81

• “SSO Samples” on page 99

Overview
A user wanting to access resources protected by Access Manager must first pass
validating credentials through the Authentication Service. A successful
authentication gives the user authorization to access the protected resources, based
on their assigned access privileges or policy. If a user wants to access several
resources protected by Access Manager, the Session Service provides proof of
authorization so there is no need to re-authenticate; this is single sign-on. As
different DNS domains generally have common users who need to gain access to
their services in a single session, Access Manager supports a cross-domain single
sign-on functionality.

Overview

74 Access Manager 6 2005Q1 • Developer’s Guide

The Session Service provides the functionality to maintain information about an
authenticated user’s session across all applications participating in a single sign-on.
It is responsible for:

• Generating session identifiers.

• Maintaining a master copy of the session’s state information.

• Implementing the time-dependent behavior of sessions.

• Implementing the session’s life cycle events (For example: logout, session
destruction).

• Generating the session’s life cycle event notifications.

• Implementing session failover facilities.

Session Service Concepts
The following concepts are closely tied together when discussing the Session
Service and SSO. To understand the differences between them, consider the
following definitions and how they will be used in this chapter.

Session
A session is a data structure held in the Access Manager memory that contains
session information about an authenticated user.

Session ID
A session identifier (ID) is an opaque, globally unique string that programmatically
identifies a specific session instance. With the session ID, a resource is able to
retrieve session information.

NOTE In an Access Manager deployment, all Access Manager instances must be located
in one primary cookie domain. The deployment may have multiple instances for
high-availability but they may not be located in multiple DNS domains.

NOTE The Sun Java System Access Manager Deployment Guide contains a detailed
section explaining the complete life cycle of a user session.

Overview

Chapter 4 Single Sign-On And Sessions 75

SSOToken
An SSOToken is a data structure, defined by the SSO API, that represents a
snapshot of the session local to the particular application’s memory.

Single Sign-On Process
The next sections describe the process that occurs when a user attempts to gain
access to a resource protected by Access Manager.

Contacting A Protected Resource
When a user attempts to access a protected resource via a web browser, a policy
agent installed on the server that hosts the resource intercepts the request and,
inspects it to see if it contains a Session ID. If none exists, the request is redirected
to Access Manager where the Session Service creates a Session for the requesting
user. Initially, the session is in an invalid state and does not contain user identity
information. It does though contain the aforementioned randomly-generated
session ID to represent the user’s session. Once the session/session ID is created,
the Authentication Service sets a cookie with the session ID only and sends it to the
client browser. Simultaneously, a login page is generated by the Authentication
Service and returned to the user based upon their configured method of
authentication (LDAP, RADIUS, etc.).

Providing User Credentials
The user, having received the login page (as well as the session ID) fills in the
appropriate credentials based on the type of authentication. After entering their
credentials, the data is sent to the authentication provider (LDAP server, RADIUS
server, etc.) for verification. Once the provider has successfully verified the
credentials, the user is authenticated. The user’s specific session information is
retrieved (using the session ID) and the session state is set to valid. The user can
now be redirected to the resource they were attempting to access.

NOTE For more information on the different methods of authentication, see
“Authentication Methods” on page 105 in Chapter 5, “Authentication Service,” of
this manual.

NOTE In reality, the user can only be redirected to the resource if their assigned policy
permits it. More information on the Policy Service can be found in Chapter 9,
“Policy Management,” of this manual.

Cookies and Sessions

76 Access Manager 6 2005Q1 • Developer’s Guide

Cookies and Sessions
A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server by which it has been generated. It does not imply that the user is
authenticated. Cookies are domain-specific; for example, a cookie generated by
DomainA cannot be used in DomainB. Cookies will only be passed to a server in
the domain for which the cookie is set. Conversely, servers may only set a cookie in
their own domain.

In an Access Manager deployment, the cookie contains the Session ID, an
encrypted string generated by the Session Service. With the session ID, a protected
resource can get access to the Session where the user’s session information is
stored. This information is then used for session validation.

Session Structure
When a user is successfully authenticated they are assigned a valid session. This
session contains a number of attributes and properties that define the user’s
identity and some time-dependent behaviors (for example, the maximum time before
the session expires). The following sections detail these attributes.

Fixed Attributes
The session token contains the following fixed attributes concerning the
authenticated user:

• ID—This is the Session ID, a randomly-generated session identifier.

• ClientDomain—This is the DNS domain in which the client is located.

• ClientID—This is the user DN or the application’s principal name.

NOTE Details on the attributes stored in the session token can also be found in
“Authentication Methods” on page 105 in Chapter 5, “Authentication Service,” of
this manual.

NOTE The values of most of these attributes and properties are set by services other than
the Session Service (primarily, the Authentication Service). The Session Service
only provides storage for session information and enforces some of the
time-dependent behavior.

Session Structure

Chapter 4 Single Sign-On And Sessions 77

• Type—This is the user or application type.

• State—This is the state of the session: valid, invalid, destroyed or inactive.

• maxIdleTime—This is the maximum time in minutes without activity before the
session will expire and the user must reauthenticate.

• maxSessionTime—This is the maximum time in minutes before the session
expires and the user must reauthenticate.

• maxCachingTime—This is the maximum time in minutes before the client
contacts Access Manager to refresh cached session information.

• latestAccessTime—This is the last time the user has accessed the resource.

• creationTime—This is the time at which the session token was set to a valid
state.

Protected And Custom Properties
The session token also contains an extensible set of properties that are divided into
two subsets: protected (or core) properties and custom properties. Protected
properties are set by Access Manager. Custom properties are set remotely by any
application that knows the Session ID.

Protected Properties
The current protected properties are:

• Organization—This is the DN of the organization to which the user belongs.

• Principal—This is the DN of the user.

• Principals—This is a list of names to which the user has authenticated. (This
property may have more then one value defined as a pipe separated list.)

• UserId—This is the user’s DN as returned by the module, or in the case of
modules other than LDAP or Membership, the user name. (All Principals
must map to the same user. The UserID is the user DN to which they map.)

• UserToken—This is a user name. (All Principals must map to the same user.
The UserToken is the user name to which they map.)

• Host—This is the host name or IP address for the client.

• authLevel—This is the highest level to which the user has authenticated.

Cross-Domain Support For SSO

78 Access Manager 6 2005Q1 • Developer’s Guide

• AuthType—This is a pipe separated list of authentication modules to which the
user has authenticated (For example module1|module2|module3).

• Role—Applicable for role-based authentication only, this is the role to which
the user belongs.

• Service—Applicable for service-based authentication only, this is the service to
which the user belongs.

• loginURL—This is the client’s login URL.

• Hostname—This is the host name of the client.

• cookieSupport—This attribute contains a value of true if the client browser
supports cookies.

• authInstant—This is a string that specifies the time at which the authentication
took place.

• SessionTimedOut—This attribute contains a value of true if the session has
timed out.

Custom Properties
The custom properties currently used are:

• clientType—This is the device type of the client browser.

• Locale—This is the locale of the client.

• CharSet—This is the determined character set for the client.

Cross-Domain Support For SSO
Access Manager supports cross-domain SSO. A user authenticated to Access
Manager in one DNS domain can access resources in another, integrated DNS
domain. This cross-domain functionality is achieved using the Cross-Domain
Controller servlet in Access Manager and Policy Agents installed in web
containers. The Controller communicates with the policy agent that resides on
servers where the protected resources are kept.

NOTE The Authentication Service handles SSO requests while the Cross-Domain
Controller servlet handles cross-domain SSO requests.

Cross-Domain Support For SSO

Chapter 4 Single Sign-On And Sessions 79

Policy Agents
A policy agent polices the web container on which a protected resource lives by
enforcing a user’s assigned policies. They are an integral part of the cross-domain
SSO functionality. Two types of policy agents are supported by Access Manager:
the web agent and the J2EE/Java agent. The web agent enforces URL-based policy
while the J2EE/Java agent enforces J2EE-based security and policy. Both types are
available for installation separately from Access Manager and can be downloaded.
Additional information can be found in the Sun Java System Access Manager Web
Policy Agents Guide and J2EE Policy Agents Guide. General information on the Policy
Service can be found in Chapter 9, “Policy Management,” of this manual.

Cross-Domain Controller
The Cross-Domain Controller is a servlet responsible for redirecting user requests.
The default URL for it is
http(s)://identity_server_host.domain_name:port/amserver/cdcservlet
. There are three scenarios where the Controller comes into play:

1. If a request for a protected resource contains no session ID, the agent redirects
the user to the Controller which, in turn, redirects the user to the appropriate
Authentication Service module. Assuming the user is authenticated, this
scenario would then follow the path outlined in either Step 2 or Step 3.

2. If a request for a protected resource already contains a session ID set in a
cookie for the same DNS domain in which the resource is deployed, the agent
retrieves it and sends an XML/HTTP request to the Naming, Session and
Policy Services to retrieve the identity, session and policy information for the
requesting user. The user is allowed or denied access to the resource based on
this information.

3. If a request for a protected resource does not contain a session ID set in a cookie
for the same DNS domain in which the resource is deployed (For example: it
carries a session ID set in a different DNS domain from the one in which the
Access Manager is deployed), the agent redirects the request to the Controller
with a Liberty AuthnRequest in the query string. The Controller then finds the
session ID, extracts it from the cookie, places it in a Liberty AuthnResponse
and sends it back to the agent. The agent finds the session ID, extracts it from

NOTE The authentication process itself is discussed in Chapter 5, “Authentication
Service,” of this manual.

Cross-Domain Support For SSO

80 Access Manager 6 2005Q1 • Developer’s Guide

the AuthnResponse, sets it in a cookie for the new domain, and sends an
XML/HTTP request to the Naming, Session and Policy Services to retrieve the
identity, session and policy information for the requesting user. The user is
allowed or denied access to the resource based on this information.

A Cross-Domain SSO Scenario
In one scenario, the Access Manager instance for DomainA is its authentication
provider. A user authenticates to Access Manager in DomainA and, after
authentication, the session is set for DomainA. ServerB, on the other hand, is
protected by a policy agent talking to an Access Manager in DomainB.

The Access Manager instance in DomainB recognizes the DomainA instance as an
authentication provider. If UserA, after authenticating to DomainA, requests a
resource on ServerB, the policy agent for DomainB checks for a session ID and will
find that there is none (authorizing access to DomainB, that is). The agent then
redirects the request to the Cross-Domain Controller running with the Access
Manager instance in DomainB. The servlet, following the path outlined in Step 3 on
page 79, finds the session ID from DomainA, extracts it from the cookie, places it in
a Liberty AuthnResponse and sends it back to the agent. The agent finds the
session ID and sets a cookie for DomainB using the session ID. The agent then
sends an XML/HTTP request to the Naming, Session and Policy Services deployed
in DomainB. Since the instance of Access Manager in DomianB recognizes the
instance of Access Manager in DomainA as an authentication provider, DomainB
retrieves identity, session and policy information for the requesting user from
DomainA. The user is then allowed or denied access to the resource based on this
information.

NOTE The Liberty AuthnRequest and AuthnResponse are part of the Federation
Management module. For more information, see the Access Manager
Federation Management Guide.

NOTE This is just one scenario; it is not obligatory to have an installed instance of Access
Manager in both domains to use the cross-domain feature.

NOTE Access Manager uses a combination of URL parameters and cookies to implement
cross-domain SSO. If a cookie is set in DomainA, the cookie value is carried over
to DomainB using the URL parameters, and a new cookie can be set for DomainB
with the same cookie name and value.

SSO API

Chapter 4 Single Sign-On And Sessions 81

Enabling Cross-Domain Single Sign-On
As described, in order to exchange session information across two different
domains, Policy Agents and the Cross-Domain Controller communicate with each
other. By default, Access Manager is installed with the servlet. Policy agents, on the
other hand, are installed separately. When installing the agent, the option to
configure it for CDSSO must be selected. The cookie domain for the agent must be
configured after installation. This is done by editing the AMAgent.properties file.
The com.sun.am.policy.agents.cookieDomainList property must be set with
the domain in which the agent is installed. If the field is left blank, the cookie
domain will be set to the FQDN of the web server on which the agent is installed.
Additional information on enabling cross-domain single sign-on can be found in
the Web Policy Agents Guide and the J2EE Policy Agents Guide.

SSO API
The Session Service provides Java and C API to allow external applications to
participate in the SSO functionality. All Access Manager services (except for
Authentication) require a valid session (programmatically referred to as SSOToken)
to process a HTTP request. External applications wishing to use the SSO
functionality must also use the SSOToken to authenticate the user’s identity. With
the SSO API, an external application can retrieve it and, in turn, the user’s identity,
session and policy information. The application then uses this information to
determine whether to provide user access to a protected resource.

After successfully authenticating to Access Manager, a user carries their Session ID
with them using browser cookies or URL query parameters. Now, each time a user
requests access to a protected application, the application needs to verify their
identity. Assume a user authenticates to http://www.orgA.com/Store
successfully and later tries to access http://www.orgA.com/UpdateInfo, a service
that is SSO-enabled. Rather than having the second application authenticate the user
again, it can use the API and the user’s session to determine if the user is already
authenticated. If the methods determine that the user has already been
authenticated (and the session is still valid), access to this page can be achieved.
Otherwise, the user would be prompted to authenticate again. The SSO API can
also be used to create or destroy a SSOToken, or to listen for SSOToken events. (An
event might be a SSOToken timing out because the user has reached the their
maximum time limit.) Following are both the Java API Overview and C API
Overview.

SSO API

82 Access Manager 6 2005Q1 • Developer’s Guide

Java API Overview
In Java, the main classes of the SSO API are SSOTokenManager, SSOToken and
SSOTokenListener. The SSOTokenManager class is used to get, destroy, validate,
and refresh a session token which is represented by the SSOToken class. The
SSOTokenListener class allows the application to be notified when a SSOToken
has become invalid, for example when a session has timed out.

SSOTokenManager Class
The SSOTokenManager class contains the methods needed to get, validate, destroy
and refresh session tokens. SSOTokenManager is implemented using the singleton
design pattern. In order to obtain an instance of SSOTokenManager, the
SSOTokenManager.getInstance() method must be called. An instance of
SSOTokenManager can then be used to instantiate an SSOToken object using one of
the overloaded forms of the createSSOToken() method.

The destroyToken() method would be called to invalidate and delete a token
when its session has ended. The isValidToken() and validateToken() methods
can be called to verify whether a token is valid, or authenticated. isValidToken()
returns true or false depending on whether the token is valid or invalid,
respectively. validateToken() throws an exception only when the token is
invalid; nothing happens if the token is valid. The refreshSession() method
resets the idle time of the session. Code Example 4-1 illustrates one way in which
the SSOTokenManager class can be used.

Code Example 4-1 Sample Uses Of SSOTokenManager Code

try {
 /* get an instance of the SSOTokenManager */
 SSOTokenManager ssoManager = SSOTokenManager.getInstance();

 /* The request here is the HttpServletRequest. Get
 /* SSOToken for session associated with this request. */
 SSOToken ssoToken = ssoManager.createSSOToken(request);

 /* use isValid method to check if token is valid or not.
 * This method returns true for valid token, false otherwise. */
 if (ssoManager.isValidToken(ssoToken)) {
 /* If token is valid, this information may be enough for
 * some applications to grant access to the requested
 * resource. A valid user represents a user who is
 * already authenticated. An application can further
 * utilize user identity information to apply
 * personalization logic.
 */
 } else {
 /* Token is not valid, redirect the user login page. */
 }

SSO API

Chapter 4 Single Sign-On And Sessions 83

SSOTokenID Interface
The SSOTokenID interface is used to identify the SSOToken object.

SSOToken Interface
The SSOToken interface represents a single sign-on token returned from the
SSOTokenManager.createSSOToken() method, and contains information such as
the authenticated principal name, authentication method, and session information
(session idle time, maximum session time, etc.). The SSOToken interface has
methods to get predefined session information, such as getAuthType() for the
authentication type, as well as a method getProperty() to get any information
about the session, predefined or otherwise (for example, information set by the
application). The method setProperty() can be used by the application to set
application-specific information in the session. The addSSOTokenListener()
method can be used to set a listener to be invoked when the session state has
become invalid.

 /* Alternative: use of validateToken method to check
 * if token is valid */
 try {
 ssoManager.validateToken(ssoToken);
 /* handle token is valid */
 } catch (SSOException e) {
 /* handle token is invalid */
 }

 /*refresh session. idle time should be 0 after refresh. */
 ssoManager.refreshSession(ssoToken);

 } catch (SSOException e) {
 /* An error has occurred. Do error handling here. */
 }

CAUTION The string value of SSOTokenID is globally unique and must only be known to the
client browser, Access Manager and the application code. Exposing it to
unauthorized users or applications can lead to a security breach by allowing a
malicious attacker to impersonate a user.

CAUTION The methods getTimeLeft() and getIdleTime() return values in
seconds while the methods getMaxSessionTime() and
getMaxIdleTime() return values in minutes.

Code Example 4-1 Sample Uses Of SSOTokenManager Code (Continued)

SSO API

84 Access Manager 6 2005Q1 • Developer’s Guide

Code Example 4-2 shows an example of SSOToken code.

Code Example 4-2 Sample Use Of SSOToken

/* get http request output stream for output */
 ServletOutputStream out = response.getOutputStream();

 /* get the sso token from http request */
 SSOTokenManager ssoManager = SSOTokenManager.getInstance();
 SSOToken ssoToken = ssoManager.createSSOToken(request);

 /* get the sso token ID from the sso token */
 SSOTokenID ssoTokenID = ssoToken.getTokenID();
 out.println("The SSO Token ID is "+ssoTokenID.toString());

 /* use validate method to check if the token is valid */
 try {
 ssoManager.validateToken(ssoToken);
 out.println("The SSO Token validated.");
 } catch (SSOException e) {
 out.println("The SSO Token failed to validate.");
 }

 /* use isValid method to check if the token is valid */
 if (!ssoManager.isValidToken(token)) {
 out.println("The SSO Token is not valid.");
 } else {
 /* get some values from the SSO Token */
 java.security.Principal principal = ssoToken.getPrincipal();
 out.println("Principal name is "+principal.getName());
 String authType = ssoToken.getAuthType();
 out.println("Authentication type is "+authType);
 int authLevel = ssoToken.getAuthLevel();
 out.println("Authentication level is "+authLevel);
 long idleTime = ssoToken.getIdleTime();
 out.println("Idle time is "+idleTime);
 long maxIdleTime = ssoToken.getMaxIdleTime();
 out.println("Max idle time is "+maxIdleTime);
 long maxTime = token.getMaxSessionTime();
 out.println("Max session time is "+maxTime);
 String host = ssoToken.getHostName();
 out.println("Host name is "+host);
 /* host name is a predefined information of the session,
 /* and can also be obtained the following way */
 String hostProperty = ssoToken.getProperty("HOST");
 out.println("Host property is "+hostProperty);
 /* set application specific information in session */
 String appPropertyName = "appProperty";
 String appPropertyValue = "appValue";
 ssoToken.setProperty(appPropertyName, appPropertyValue);
 /* now get the app specific information back */
 String appValue = ssoToken.getProperty(appPropertyName);
 if (appValue.equals(appPropertyValue)) {
 out.println("Property "+appPropertyName+", value
"+appPropertyValue+" verified to be set.");

SSO API

Chapter 4 Single Sign-On And Sessions 85

A code sample using the getTokenID method is illustrated in Code Example 4-3.
With this code, a cookie is created from an SSOToken in order to make SSO work
for protected resources not residing on the same server as Access Manager.

SSOTokenEvent
The SSOTokenEvent interface represents a token event. An event is, for example,
when a session has been idle for over a maximum idle time limit, or when a session
has reached its maximum allowed time.

SSOTokenListener
The SSOTokenListener interface represents a token notification object. An
implementation of the SSOTokenListener interface must be written, then
registered with the SSOTokenManager to be invoked when a token event occurs.

 } else {
 out.println("ALERT: Setting property "+appPropertyName+"
failed!");
 }
 }

Code Example 4-3 Sample Code To Create A Cookie From Session Token

// Get SSOToken string
String strToken = null;
strToken = getSSOToken().getTokenID().toString();
// Set it to response as cookies
String s = strToken;
String ssotokencookiename = "iPlanetDirectoryPro";
String ssotokencookiedomain = ".mydomain.com.tw";
String ssotokencookiepath = "/";
String gt = "/welcomepage.jsp";
Cookie cookie = new Cookie(ssotokencookiename,s);
cookie.setDomain(ssotokencookiedomain);
cookie.setPath(ssotokencookiepath);
response.addCookie(cookie);
response.sendRedirect(gt);

Code Example 4-2 Sample Use Of SSOToken (Continued)

SSO API

86 Access Manager 6 2005Q1 • Developer’s Guide

The SSOTokenListener interface provides a mechanism to notify applications
when a session token has become invalid due to, for instance, the session reaching
maximum idle time or the maximum session time. Applications wishing to be
notified must write an implementation of the SSOTokenListener interface, then
register the implementation through the SSOToken.addSSOTokenListener
method. When the SSOToken state has become invalid, the SSOTokenListener
implementation’s ssoTokenChanged method will be invoked with a
SSOTokenEvent object containing the event type, time, and SSOToken object with
the new SSOToken state and other properties of the SSOToken.

Sample SSO Java Files
Access Manager provides three groups of sample Java files. With these samples, a
developer can create a session token in several ways:

1. With the SSO Servlet Sample, a session token can be created for an application
that runs on the Access Manager server.

2. With the Remote SSO Sample, a session token can be created for an application
that runs on a server other than the Access Manager server.

Code Example 4-4 Sample Code For SSOToken Event And SSOToken Listener

public class SampleTokenListener implements SSOTokenListener {
 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();
 SSOTokenID id = token.getTokenID();
 System.out.println("Token id: " + id.toString() + "is not valid
anymore");
 /* redirect user to login */

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 }

 public SampleTestRoutine {
 ...
 SSOTokenManager ssoManager = SSOTokenManager.getInstance();
 SSOToken ssoToken = SSOManager.createSSOToken(request);
 SSOTokenListener sampleListener = new SampleTokenListener();
 ssoToken.addSSOTokenListener(sampleListener);
 ...
 }

SSO API

Chapter 4 Single Sign-On And Sessions 87

3. With the Command Line SSO Sample, a session token can be created by a
session ID string and passed through the command line.

The sample files are located in the IdentityServer_base/SUNWam/samples/sso
directory.

SSO Servlet Sample
This sample can be used to create a token for an application that resides on the
same server as the Access Manager application. The files used for this sample are:

• Readme.html

• SampleTokenListener.java

• SSOTokenSampleServlet.java

The instructions in Readme.html can be followed to run this code.

Remote SSO Sample
This sample can be used to create a token for an application that resides on a
different server from the one on which the Access Manager application lives. The
files used for this sample are:

• remote.html

• SSOTokenFromRemoteServlet.java

• SSOTokenSampleServlet.java

The instructions in remote.html can be followed to run this code.

Command Line SSO Sample
This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

• ssocli.txt

• CommandLineSSO.java

• SSOTokenSample.java

The instructions in ssocli.txt can be followed to run this code.

SSO API

88 Access Manager 6 2005Q1 • Developer’s Guide

C API Overview
The C API are provided in the SUNWamcom package which comes with Access
Manager or any of its downloadable agents. The package includes header files,
libraries and samples.

C SSO Include Files
Include files for the C SSO API are am_sso.h and am_notify.h. am_sso.h must be
included for any SSO routines. am_notify.h must be included for parsing
notification messages from the server and calling SSO listeners.

C SSO Properties
Certain properties must be read in and passed to am_sso_init(), the routine
which initializes C API. Because of this, am_sso_init() must be called before any
other SSO interface. The default properties file used is AMAgent.properties,
located in IdentityServer_base/SUNWam/config/. The following properties must be
set:

• The com.sun.am.namingURL property specifies the URL for the Naming
Service. This service is used to find the URL of the Session Service for the given
SSOToken ID. This property must be set as:

com.sun.am.namingURL =
https://myhost.mydomain.com:58080/amserver/namingservice

• The com.sun.am.notificationEnabled and com.sun.am.notificationURL
properties specify whether notification is enabled, and if enabled, a URL where
the application can listen for messages from Access Manager. These properties
must be set as:

com.sun.am.notificationEnabled=true

CAUTION Previous releases of Access Manager contained C libraries in
IdentityServer_base/lib/capi. The capi directory is being deprectated, and
is curently available for backward compatability. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD_LIBRARY_PATH, PATH, compiler options, etc.)

SSO API

Chapter 4 Single Sign-On And Sessions 89

com.sun.am.notificationURL=https://myhost.mydomain.com:8000/myU
RL

• The com.sun.am.sso.cacheEntryLifeTime property specifies how long, in
minutes, a session token can live in cache before it should be removed. This
property must be set as:

com.sun.am.sso.cacheEntryLifeTime=5

If not set, the default is 3 minutes.

• The com.sun.am.sso.checkCacheInterval property specifies how often, in
minutes, the cache should be checked for entries that have reached the cache
entry life time. This property must be set as:

com.sun.am.sso.checkCacheInterval=5

• The com.sun.am.sso.maxThreads specify the maximum number threads the
SSO API should invoke for handling notifications. The API maintains a thread
pool and invokes a thread for each notification. If the maximum number of
threads has been reached, the notification will wait until a thread is available. If
not specified the default maximum number of threads is 10. This property
must be set as:

com.sun.am.sso.maxThreads = 5

• The com.sun.am.cookieEnabled property specifies whether the session ID
found in the cookie is URL encoded. If true, it will be URL decoded before sent
to Access Manager for any session operation. This property must be set as:

com.sun.am.cookieEncoded = true|false

More information on properties in the AMAgent.properties file can be found in
the Web Policy Agents Guide and the J2EE Policy Agents Guide.

C SSO interfaces
The C SSO interfaces consist of the following routines. A detailed description of the
input and output parameters for each interface is in the header files.

• Initialization and Cleanup

• Get, Validate, Refresh And Destroy SSO Token

• Get Session Information Interfaces

NOTE If com.sun.am.notificationEnabled is not found in the properties file,
the default is false.

SSO API

90 Access Manager 6 2005Q1 • Developer’s Guide

• Get And Set Property Interfaces

• Listener And Notify Interfaces

Initialization and Cleanup
To use the C SSO API, the am_sso_init() routine needs to be called before any
other routines. This interface initializes the internal SSO module. At the end of all
SSO routines, am_cleanup() should be called to cleanup the internal SSO module.
Code Example 4-5 on page 90 is a code sample for these interfaces.

am_sso_init() initializes internal data structures for talking to the Session Service.
It takes a properties input parameter that contains name /value pairs from a
configuration or properties file, and returns a status on the success or failure of the
initialization. The properties used by the C SSO API are covered in “C SSO
Properties” on page 88.

am_cleanup() cleans up all internal data structures created by am_sso_init,
am_auth_init, or am_policy_init. am_cleanup() needs to be called only once
when using any of the Access Manager C API interfaces (authentication, SSO or
policy).

Code Example 4-5 Code Sample For am_sso_init and am_cleanup

 #include <am_sso.h>

 int main() {
 am_properties_t *properties;
 am_status_t status;

 /* create a properties handle */
 status = am_properties_create(&properties);
 if (status != AM_SUCCESS) {
 printf("am_properties_create failed.\n");
 exit(1);
 }

 /* load properties from a properties file */
 status = am_properties_load(properties, "./myPropertiesFile");
 if (status != AM_SUCCESS) {
 printf("am_properties_load failed.\n");
 exit(1);
 }

 /* initialize SSO module */
 status = am_sso_init(properties);
 if (status != AM_SUCCESS) {
 printf("am_sso_init failed.\n");
 return 1;
 }

 /* login through auth module, and do auth functions.

SSO API

Chapter 4 Single Sign-On And Sessions 91

Get, Validate, Refresh And Destroy SSO Token
A user needs to be authenticated to get the token ID for their login session. A token
can be obtained with the token ID and the am_sso_create_sso_token_handle
interface. This interface checks to see if the token is in its local cache and, if not,
goes to the server to get the session information associated with the token ID and
caches it. If the reset flag is set to true, this interface will refresh the idle time of the
token on the server. Here is the interface of am_sso_create_sso_token_handle:

• am_status_t
am_sso_create_sso_token_handle(am_sso_token_handle_t *
sso_token_handle_ptr, const char *sso_token_id, boolean_t
refresh_token);

Once a token handle is obtained, the caller can check if the session is valid with the
am_sso_is_valid_token interface. The am_sso_token_validate interface will
flush the token handle in the local cache (if any) and go to the server to fetch the
latest session information. The am_sso_refresh_token will also flush the token
handle in the local cache (if any) and go to the server to fetch the session
information. In addition, it will reset the idle time of the session on the server. Here
are the token-related interfaces:

 * ...
 */

 /* do sso functions
 * ...
 */

 /* done - cleanup. */
 status = am_cleanup();
 if (status != AM_SUCCESS) {
 printf("am_cleanup failed!\n");
 return 1;
 }
 /* free memory for properties */
 status = am_properties_destroy(properties);
 if (status != AM_SUCCESS) {
 printf("Failed to free properties.\n");
 return 1;
 }

 /* exit program successfully. */
 return 0;
 }

Code Example 4-5 Code Sample For am_sso_init and am_cleanup (Continued)

SSO API

92 Access Manager 6 2005Q1 • Developer’s Guide

• boolean_t am_sso_is_valid_token(am_sso_token_handle_t
sso_token_handle);

• am_status_t am_sso_validate_token(am_sso_token_handle_t
sso_token_handle);

• am_status_t am_sso_refresh_token(am_sso_token_handle_t
sso_token_handle);

When caller is done with a token handle, it must be freed by calling
am_sso_destroy_sso_token_handle to prevent memory leak. Here is that
interface:

• am_status_t am_sso_destroy_sso_token_handle(am_sso_token_handle_t
sso_token_handle);

The session associated with the token can be invalidated or ended with
am_sso_invalidate_token. Although this ends the session for the user, the
proper way to log out is through am_auth_logout. Using the former interface to
end a session will result in authentication resources associated with the session to
remain on the server unnecessarily until the session has timed out. Here is the
interface for am_sso_invalidate_token:

• am_status_t am_sso_invalidate_token(am_sso_token_handle_t
sso_token_handle);

Get Session Information Interfaces
The following interfaces make it convenient to get server-defined information (or
properties) about the session associated with a token. This can include the session
idle time, max session time, etc.

• const char * am_sso_get_sso_token_id(const
am_sso_token_handle_t sso_token_handle);

• const char * am_sso_get_auth_type(const
am_sso_token_handle_t sso_token_handle);

• unsigned long am_sso_get_auth_level(const
am_sso_token_handle_t sso_token_handle);

• time_t am_sso_get_idle_time(const
am_sso_token_handle_t sso_token_handle);

• time_t am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle);

• time_t am_sso_get_time_left(const
am_sso_token_handle_t sso_token_handle);

SSO API

Chapter 4 Single Sign-On And Sessions 93

• time_t am_sso_get_max_session_time(const
am_sso_token_handle_t sso_token_handle);

• const char * am_sso_get_principal(const
am_sso_token_handle_t sso_token_handle);

• am_string_set_t am_sso_get_principal_set(const
am_sso_token_handle_t sso_token_handle);

• const char * am_sso_get_host(const am_sso_token_handle_t
sso_token_handle);

Get And Set Property Interfaces
The get and set property interfaces allows an application to get any property
(server or application defined) and to set any property in a session. Note that
am_sso_set_property will update the sso_token_handle with the latest session
properties from Access Manager, including the new property that was set. In
addition, if the property that is given in prop_name is a protected property,
am_sso_set_property will return success, however the value given will not be set
as it is a property protected by Access Manager. These interfaces are:

• const char * am_sso_get_property(const am_sso_token_handle_t
sso_token_handle, const char *prop_name);

• am_status_t am_sso_set_property(am_sso_token_handle_t
sso_token_handle, const char *prop_name, const char
*prop_value);

Code Example 4-6 is a sample of the SSO get, set, create, refresh, validate,
invalidate, and destroy interfaces.

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces

 /* initialize sso as in previous sample */

 am_status_t status = NULL;
 am_sso_token_handle_t sso_handle = NULL;
 char *session_status = NULL;
 am_string_set_t principal_set = NULL;

 /* create sso token handle */
 status = am_sso_create_sso_token_handle(&sso_handle, sso_token_id,
false);
 if (status != AM_SUCCESS) {
 printf("Failed getting sso token handle for sso token id %s.\n",
sso_token_id);
 return 1;

SSO API

94 Access Manager 6 2005Q1 • Developer’s Guide

 }

 /* check if session is valid */
 session_status = am_sso_is_valid_token(sso_handle) ? "Valid" :
"Invalid";
 printf("Session state is %s\n", session_status);

 /* check if session is valid using validate. This also updates the
handle with info from the server */
 status = am_sso_validate_token(sso_handle);
 if (status == AM_SUCCESS) {
 printf("Session state is valid.\n");
 } else if (status == AM_INVALID_SESSION) {
 printf("Session status is invalid.\n");
 } else {
 printf("Error validating sso token.\n");
 return 1;
 }

 /* get info on the session */
 printf("SSO Token ID is %s.\n", am_sso_get_sso_token_id(sso_handle));
 printf("Auth type is %s.\n", am_sso_get_auth_type(sso_handle));
 printf("Auth level is %d.\n", am_sso_get_auth_level(sso_handle));
 printf("Idle time is %d.\n", am_sso_get_idle_time(sso_handle));
 printf("Max Idle time is %d.\n", am_sso_get_max_idle_time(sso_handle));
 printf("Time left is %d.\n", am_sso_get_time_left(sso_handle));
 printf("Max session time is %d.\n",
am_sso_get_max_session_time(sso_handle));
 printf("Principal is %s.\n", am_sso_get_principal(sso_handle));
 printf("Host is %s.\n", am_sso_get_host(sso_handle));
 principal_set = am_sso_get_principal_set(sso_handle);
 if (principal_set == NULL) {
 printf("ERROR: Principal set is NULL!\n");
 }else {
 printf("Principal set size %d.\n", principal_set->size);
 for (i = 0; i < principal_set->size; i++) {
 printf("Principal[%d] = %s.\n", i,
principal_set->strings[i]);
 }
 am_string_set_destroy(principal_set);
 }

 /* get "HOST" property on the session. Same as am_sso_get_host(). */
 printf("Host is %s.\n", am_sso_get_property(sso_handle, "HOST"));

 /* set a application defined property and get it back */
 status = am_sso_set_property(sso_handle, "AppPropName",
"AppPropValue");
 if (status != AM_SUCCESS) {
 printf("Error setting property.\n");
 return 1;
 }

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces (Continued)

SSO API

Chapter 4 Single Sign-On And Sessions 95

Listener And Notify Interfaces
Applications can be notified when a session has become invalid, possibly because it
has been idle over a time limit, or it has reached the maximum session time. This is
done by implementing a listener function of type
am_sso_token_listener_func_t, which takes a SSO token handle, event type,
event time, application-defined arguments handle, and a boolean argument to
indicate whether the listener function should be called in the calling thread or
dispatched to a thread from the internal thread pool managed by the C SDK. This
listener function must be registered to be invoked when the session has ended and
notification must be enabled for an application to receive notifications. Notification
is enabled by setting the property com.sun.am.notificationEnabled to true, and
by providing a URL where the application is receiving HTTP messages from
Access Manager. The URL where the application is receiving messages from the
Access Manager is expected to take any message from the server (as an XML

 printf("AppPropName value is %s.\n", am_sso_get_property(sso_handle,
"AppPropName");

 /* refresh token, idle time should be 0 after refresh */
 status = am_sso_refresh_token(sso_handle);
 if (status != AM_SUCCESS) {
 printf("Error refreshing token !\n");
 return 1;
 }
 printf("After refresh, idle time is %d.\n",
am_sso_get_idle_time(sso_handle));

 /* end this session abruptly. am_auth_logout() is the right way to end
session */
 status = am_sso_invalidate_token(sso_handle);
 if (status != AM_SUCCESS) {
 printf("Error invalidating token.\n");
 return 1;
 }

 /* we're done with sso token handle. free memory for sso handle. */
 status = am_sso_destroy_sso_token_handle(sso_handle);
 if (status != AM_SUCCESS) {
 printf("Failed to free sso token handle.\n");
 return 1;
 }

 /* call am_cleanup, and other cleanup routines as in previous sample */

Code Example 4-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces (Continued)

SSO API

96 Access Manager 6 2005Q1 • Developer’s Guide

string) and pass it to am_notify(). am_notify() will parse the message and
invoke session listeners or policy listeners depending on whether the message is a
session or policy notification. Code Example 4-7 is a sample implementation of
SSOToken listener and how to register it.

Code Example 4-7 Sample Implementation Of SSOToken Listener

 void sample_listener_func(
 am_sso_token_handle_t sso_token_handle,
 const am_sso_token_event_type_t event_type,
 const time_t event_time,
 void *opaque)
 {
 if (sso_token_handle != NULL) {
 const char *sso_token_id =
am_sso_get_sso_token_id(sso_token_handle);
 boolean_t is_valid = am_sso_is_valid_token(sso_token_handle);
 printf("sso token id is %s.\n",
 sso_token_id==NULL?"NULL":sso_token_id);
 printf("session state is %s.\n",
 is_valid == B_TRUE ? "valid":"invalid");
 printf("event type %d.\n", event_type);
 printf("event time %d.\n", event_time);
 }
 else {
 printf("Error: sso token handle is null!");
 }
 if (opaque)
 *(int *)opaque = 1;
 return;
 }

 int main(int argc, char *argv[]) {

 am_status_t status;
 char *sso_token_id = argv[1];
 int listener_func_done = 0;

 /* initialize sso as in previous samples */

 /* get sso token handle */
 status = am_sso_create_sso_token_handle(&sso_handle, sso_token_id,
false);

 /* register listener function. notification must be enabled, if not,
status AM_NOTIF_NOT_ENABLED will be returned. */
 status = am_sso_add_sso_token_listener(sso_handle, sample_listener_func,
&listener_func_done, B_TRUE);
 if (status != AM_SUCCESS) {
 printf("Failed to register sample listener function.\n");
 return 1;
 }

SSO API

Chapter 4 Single Sign-On And Sessions 97

C SSO Sample
A sample for the C SSO API is provided in the SUNWamcom package. The README
file in the samples directory contains information on each sample including
compile instructions and how to run the samples for testing. The sample for C SSO
is am_sso_test.c. The usage is am_sso_test -u [user] -p [password] [-f
properties file] [-l logfile]. Access Manager must be available with LDAP
authentication to test the sample. See the README file and the sample itself for more
information.

Java versus C API
The following table provides a side by side comparison of the Java and C SSO API.

Table 4-1 Comparison Between Java And C SSO API

Java Interface C Interface

SSOTokenManager

SSOTokenManager.getInstance()

am_status_t

am_sso_init(am_properties_t properties)

SSOToken

SSOTokenManager.createSSOToken(S
tring tokenId)

am_status_t

am_sso_create_sso_token_handle(
am_sso_token_handle_t *sso_token_handle_ptr,
const char *sso_token_id, am_bool_t reset_idle_timer)

boolean

SSOTokenManager.isValidToken(SSO
Token token)

boolean_t

am_sso_is_valid_token(const
am_sso_token_handle_t sso_token_handle)

void

SSOTokenManager.validateToken(SSO
Token token)

am_status_t

am_sso_validate_token(const
am_sso_token_handle_t sso_token_handle)

void

SSOTokenManager.destroyToken(SSO
Token token)

am_status_t

am_sso_invalidate_token(const
am_sso_token_handle_t sso_token_handle)

void

SSOTokenManager.refreshSession(SS
OToken token)

am_status_t

am_sso_refresh_session(am_sso_token_handle_t
sso_token_handle)

Principal

SSOToken.getPrincipal()

char *

am_sso_get_principal(const am_sso_token_handle_t
sso_token_handle)

SSO API

98 Access Manager 6 2005Q1 • Developer’s Guide

int

SSOToken.getAuthLevel()

unsigned long

am_sso_get_auth_level(const
am_sso_token_handle_t sso_token_handle)

String

SSOToken.getAuthType()

char *

am_sso_get_auth_type(const
am_sso_token_handle_t sso_token_handle)

String

SSOToken.getHostName()

char *

am_sso_get_host(const am_sso_token_handle_t
sso_token_handle)

long

SSOToken.getIdleTime()

time_t

am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle)

long

SSOToken.getMaxIdleTime()

time_t

am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle)

SSOTokenID

SSOToken.getTokenID()

char *

am_sso_get_sso_token_id(const
am_sso_token_handle_t sso_token_handle)

String

SSOToken. getProperty(java.lang.String
name)

char *

am_sso_get_property(const am_sso_token_handle_t
sso_token_handle, const char *property_name)

void

SSOToken.setProperty(String name,
String value)

am_status_t

am_sso_set_property(am_sso_token_handle_t
sso_token_handle, const char *name, const char
*value)

void

SSOToken.addSSOTokenListener(
SSOTokenListener listener)

am_status_t

am_sso_add_sso_token_listener(am_sso_token_han
dle_t sso_token_handle, const
am_sso_token_listener_func_t listener, void *args,
boolean_t dispatch_in_sep_thread)

String

SSOToken.getProperty("principals");

am_status_t

am_sso_get_principal_set(am_sso_token_handle_t
sso_handle)

N/A am_status_t

am_sso_destroy_sso_token_handle(am_sso_token_h
andle_t sso_handle)

Table 4-1 Comparison Between Java And C SSO API (Continued)

Java Interface C Interface

SSO Samples

Chapter 4 Single Sign-On And Sessions 99

Non-Web-Based Applications
Access Manager provides the SSO API primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

1. The application has to obtain the Access Manager cookie value and pass it into
the SSO client methods to get to the session token. The method used for this
process is application-specific.

2. Command line applications, such as amadmin, can be used. In this case, session
tokens can be created to access the Directory Server directly. There is no
session created, making the Access Manager access valid only within that
process or VM.

SSO Samples
Access Manager provides the files necessary to compile and run a sample SSO
application. There are three ways in which this can be done:

• Compiling and running a SSO application local to Access Manager.

• Installing and running the SSO SDK from a remote client.

• Running the SSO application from the command line.

More specific information on these samples can be found in “Sample SSO Java
Files” on page 86.

N/A void

am_cleanup()

Table 4-1 Comparison Between Java And C SSO API (Continued)

Java Interface C Interface

SSO Samples

100 Access Manager 6 2005Q1 • Developer’s Guide

101

Chapter 5

Customizing the
Authentication User Interface

The authentication service provides the web-based Graphical User Interface (GUI)
for all out-of-box and custom authentication modules installed in the Sun Java™
System Access Manager 6 2005Q1 deployment. This interface provides a dynamic
and customizable means for gathering authentication credentials by presenting the
web-based login requirement pages to a user requesting access.

The authentication service GUI is built on top of JATO (J2EE Assisted Take-Off), a
Java 2 Enterprise Edition (J2EE) presentation application framework. This
framework is used to help developers build complete functional Web applications.

The following topics are covered in this chapter:

• User Interface Files You Can Modify

• Customizing Branding and Functionality

• Customizing the Self-Registration Page

User Interface Files You Can Modify
The authentication GUI dynamically displays the required credentials information
depending upon the authentication module invoked at run time. The Table 5-1 lists
the types of files you can modify to convey custom representations of Login pages,
Logout pages, and error messages. Detailed information is provided in following
sections.

User Interface Files You Can Modify

102 Access Manager 6 2005Q1 • Developer’s Guide

To access the default Login page, use the following URL:
<server_protocol>://<server_host>.<server_domain>:<server_port>/

<service_deploy_uri>/UI/Login

To access the default Logout page, use the following URL:

<server_protocol>://<server_host>.<server_domain>:<server_port>/
<service_deploy_uri>/UI/Logout

The following image illustrates the first page seen for a login when all modules
have been configured for authlevel 0.

Table 5-1 Authentication User Interface Files and Their Locations at Installation

File Type Default Location

services.war File AccessManager-base/SUNWam/web-src/services

Java Server Pages AccessManager-base/SUNWam/web-src/services/config/auth/default

XML Files AccessManager-base/SUNWam/web-src/services/config/auth/default

JavaScript Files AccessManager-base/SUNWam/web-src/services/js

Cascading Style
Sheets

<AccessManager-base/SUNWam/web-src/services/css

Images AccessManager-base/SUNWam/web-src/services/login_images

Localization Files AccessManager-base/SUNWam/locale

User Interface Files You Can Modify

Chapter 5 Customizing the Authentication User Interface 103

Figure 5-1 Default Login Page when authlevel=0

services.war File
The services.war contains all the files you need to modify the authentication GUI.
When you install Access Manager on Sun ONE Application Server, on Sun Java ES
Web Server, or on WebLogic Web Server, services.war is automatically installed
and deployed. Its files and directories are installed by default in the following
location:

AccessManager-base/SUNWam/web-src/services

If you install Access Manager on other web containers, you may have to manually
deploy services.war. See the documentation that comes with the web container.

Once you’ve modified the authentication GUI files, in order to see the changes in
the actual GUI, you must update and then redeploy services.war. See “Updating
and Redeploying services.war” on page 117 in this chapter for instructions. See
Appendix C, “WAR Files” on page 359 for general information on updating and
redeploying Access Manager .war files.

User Interface Files You Can Modify

104 Access Manager 6 2005Q1 • Developer’s Guide

Java Server Pages
All authentication GUI pages are .jsp files with embedded JATO tags. You do not
need to understand JATO to customize Access Manager GUI pages. Java server
pages handle both the UI elements and disciplines displayed through peer
ViewBeans. By default, JSP pages are installed in the following directory:
AccessManager-base/SUNWam/web-src/services/config/auth/default

Note that Java server pages are looked up from the deployed location. In previous
Access Manager versions, the Java server pages were looked up from the installed
location.

Customizing the Login Page
The Login page is a common Login page used by most authentication modules
except for the Membership module. For all other modules, at run time the Login
page dynamically displays all necessary GUI elements for the required credentials.
For example, the LDAP authentication module Login page dynamically displays
the LDAP module header, LDAP User name, and Password fields.

You can customize the following Login page UI elements:

• Module Header text

• User Name label and field

• Password label and field

• Choice value label and field
Note, the field is a radio button by default, but can be change to a check box.

• Image (at the module level)

• Login button

Customizing JSP Templates
Use the JSP templates to customize the look and feel of presented in the graphical
user interface (GUI). See “To Modify Branding and Functionality” on page 113 for
detailed instructions. Table 5-2 contains provides descriptions of templates you can
customize. The templates are located in the following directory:

IdentityServer_base/SUNWam/web-src/services/config/auth/default

User Interface Files You Can Modify

Chapter 5 Customizing the Authentication User Interface 105

Table 5-2 List of Customizable JSP Templates

File Name Purpose

account_expired.jsp Informs the user that their account has expired and should
contact the system administrator.

auth_error_template.jsp Informs the user when an internal authentication error has
occurred. This usually indicates an authentication service
configuration issue.

authException.jsp Informs the user that an error has occurred during
authentication.

disclaimer.jsp This is a customizable disclaimer page used in the
Self-registration authentication module.

Exception.jsp Informs the user that an error has occurred.

invalidPCookieUserid.jsp Informs the user that a persistent cookie user name does
not exist in the persistent cookie domain.

invalidPassword.jsp Informs the user that the password entered does not
contain enough characters.

invalid_domain.jsp Informs the user that there is no such domain.

Login.jsp This is a Login/Password template.

login_denied.jsp Informs the user that no profile has been found in this
domain.

login_failed_template.jsp Informs the user that authentication has failed.

Logout.jsp Informs the user that they have logged out.

maxSessions.jsp Informs the user that the maximum sessions have been
reached.

membership.jsp A login page for the Self-registration module.

Message.jsp A generic message template for a general error not
defined in one of the other error message pages.

missingReqField.jsp Informs the user that a required field has not been
completed.

module_denied.jsp Informs the user that the user does not have access to the
module.

module_template.jsp A customizable module page.

new_org.jsp This page is displayed when a user with a valid session in
one organization wants to login to another organization.

noConfig.jsp Informs the user that no module configuration has been
defined.

User Interface Files You Can Modify

106 Access Manager 6 2005Q1 • Developer’s Guide

XML Files
XML files describe the authentication module-specific properties based on the
Authentication Module Properties DTD. Access Manager defines an authentication
module configuration file for each of the default authentication modules. By
default, Authentication XML files are installed in the following directory:
IdentityServer_base/SUNWam/web-src/services/config/auth/default. Table 5-3
provides descriptions of the authentication module configuration files.

noConfirmation.jsp Informs the user that the password confirmation field has
not been entered.

noPassword.jsp Informs the user that no password has been entered.

noUserName.jsp Informs the user that no user name has been entered. It
links back to the login page.

noUserProfile.jsp Informs the user that no profile has been found. It gives
them the option to try again or select New User and links
back to the login page.

org_inactive.jsp Informs the user that the organization they are attempting
to authenticate to is no longer active.

passwordMismatch.jsp This page is called when the password and confirming
password do not match.

profileException.jsp Informs the user that an error has occurred while storing
the user profile.

Redirect.jsp This page carries a link to a page that has been moved.

register.jsp A user self-registration page.

session_timeout.jsp Informs the user that their current login session has timed
out.

userDenied.jsp Informs the user that they do not possess the necessary
role (for role-based authentication.)

userExists.jsp This page is called if a new user is registering with a user
name that already exists.

userPasswordSame.jsp Called if a new user is registering with a user name field
and password field have the same value.

user_inactive.jsp Informs the user that they are not active.

wrongPassword.jsp Informs the user that the password entered is invalid.

Table 5-2 List of Customizable JSP Templates (Continued)

File Name Purpose

User Interface Files You Can Modify

Chapter 5 Customizing the Authentication User Interface 107

Note that XML files are looked up from the deployed location. In previous Access
Manager versions, the XML files were looked up from the installed location.

This following sections describe XML elements you can modify to customize the
authentication UI. For a comprehensive list of authentication elements defined in
the Authentication Module Properties DTD, see the Developer’s Reference.

Table 5-3 List of Authentication Module Configuration Files

File Name Purpose

AD.xml Defines a Login screen for use with Active Directory
authentication.

Anonymous.xml For anonymous authentication, although there are no
specific credentials required to authenticate.

Application.xml Needed for application authentication.

Cert.xml For certificate-based authentication although there are no
specific credentials required to authenticate.

HTTPBasic.xml Defines one screen with a header only as credentials are
requested via the user’s web browser.

JDBC.xml Defines a Login screen for use with Java Database
Connectivity (JDBC) authentication.

LDAP.xml Defines a Login screen, a Change Password screen and
two error message screens (Reset Password and User
Inactive).

Membership.xml Default data interface which can be used to customize for
any domain.

MSISDN.xml Defines a Login screen for use with Mobile Subscriber
ISDN (MSISDN).

NT.xml Defines a Login screen.

RADIUS.xml Defines a Login screen and a RADIUS Password
Challenge screen.

SafeWord.xml Defines two Login screens: one for User Name and the
next for Password.

SAML.xml Defines a Logins screen for Security Assertion Markup
Language (SAML) authentication.

SecurID.xml Defines five Login screens including UserID and
Passcode, PIN mode, and Token Passcode.

Unix.xml Defines a Login screen and an Expired Password screen.

User Interface Files You Can Modify

108 Access Manager 6 2005Q1 • Developer’s Guide

Callbacks Element
The Callbacks element is used to define the information a module needs to gather
from the client requesting authentication. Each Callbacks element signifies a
separate screen that can be called during the authentication process.

Nested Elements
The following table describes nested elements for the Callbacks element.

Attributes
The following table describes attributes for the Callbacks element.

Element Required Description

NameCallback * Requests data from the user; for example, a user
identification.

PasswordCallback * Requests password data to be entered by the user.

ChoiceCallback * Used when the application user must choose from
multiple values.

ConfirmationCallback * Sends button information such as text which needs
to be rendered on the module’s screen to the
authentication interface.

HttpCallback *

Attribute Default Description

length The number or length of callbacks

order Is the sequence of the group of callbacks

timeout 60 Number of seconds the user has to enter credentials
before the application times out.

template Defines the UI or page level attributes for the UI
customization

image Defines the UI or page level attributes for the UI
customization

header Authentication the text header information to be displayed on the UI

error false Indicates whether authentication framework/module
needs to terminate the authentication process. If
yes, then the value is true.

User Interface Files You Can Modify

Chapter 5 Customizing the Authentication User Interface 109

ConfirmationCallback Element
This element is used by the authentication module to send button information for
multiple buttons. An example is the button text which needs to be rendered on the
UI page. The element also receives the selected button information from the UI.

Nested Elements
The following table describes nested elements for the ConfirmationCallback
element.

Attributes
None

Details
If there is only one button on the UI page then module is not required to send this
callback.If Confirmation Callback is not provided through the Authentication
Module properties XML file, then the global UI i18n properties file for all modules
(anAuthUI.properties) will be used to pick and display the button text (label) for
Login button.

Callbacks length value should be adjusted accordingly after addition of the new
callback.

Example:

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> <required button text> </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

Element Required Description

OptionValues

User Interface Files You Can Modify

110 Access Manager 6 2005Q1 • Developer’s Guide

JavaScript Files
JavaScript files are parsed within the Login.jsp file. You can add custom functions
to the JavaScript files in the following directory:
IdentityServer_base/SUNWam/web-src/services/js.

The JavaScript files used by the Authentication Service are summarized in
Table 5-4.

Cascading Style Sheets
Modify the cascading style sheets (CSS) files to define the look and feel of the UI.
Characteristics such as fonts and font weights, background colors, and link colors
are specified in the CSS files. You must choose the appropriate .css file for your
browser in order to customize the look and feel on the User Interface.

In the appropriate .css file, change the background-color attribute. Examples:

.button-content-enabled { background-color: red; }

button-link:link, a.button-link:visited { color: #000;
background-color: red; text-decoration: none; }

There are a number of browser-based CSS files installed with Access Manager in
the following directory:

IdentityServer_base/SUNWam/web-src/ services/css.

Table 5-5 provides a brief description of each CSS file.

Table 5-4 List of JavaScript Files

File Name Purpose

auth.js Used by Login.jsp for parsing all module files to display
login requirement screens.

browserVersion.js Used by Login.jsp to detect the client type.

Table 5-5 List of Cascading Style Sheets

File Name Purpose

css_generic.css Configured for generic web browsers.

css_ie5win.css Configured specifically for Microsoft® Internet Explorer v.5
for Windows®.

User Interface Files You Can Modify

Chapter 5 Customizing the Authentication User Interface 111

Images
The default authentication GUI is branded with Sun Microsystems, Inc. logos and
images. By default, the GIF files are installed in the following directory:

SUNWam/web-src/services/login_images

These images can be replaced with images relevant to your company. Table 5-6
provides a brief description for each GIF image used for the default GUI.

Localization Files
 Location: <install-dir>/SUNWam/locale

These are "i18n" properties files global to the Access Manager instance. A
localization properties file, also referred to as an i18n (internationalization) properties
file specifies the screen text and error messages that an administrator or user will
see when directed to an authentication module’s attribute configuration page. Each
authentication module has its own properties file that follows the naming format

css_ns4sol.css Configured specifically for Netscape™ Communicator v. 4
for Solaris™.

css_ns4win.css Configured specifically for Netscape Communicator v.4 for
Windows.

styles.css Used in JSP pages as a default style sheet.

Table 5-6 List of Sun Microsystems Branded GIF Images

File Name Purpose

Identity_LogIn.gif Sun Java System Access Manager banner across
the top.

Registry_Login.gif No longer used.

bannerTxt_registryServer.gif No longer used.

logo_sun.gif Sun Microsystems logo in the upper right corner.

spacer.gif A one pixel clear image used for layout purposes.

sunOne.gif Sun Java System logo in the lower right corner.

Table 5-5 List of Cascading Style Sheets (Continued)

File Name Purpose

User Interface Files You Can Modify

112 Access Manager 6 2005Q1 • Developer’s Guide

amAuthmodulename.properties; for example, amAuthLDAP.properties. They are
located in IdentityServer_base/SUNWam/locale/. The default character set is
ISO-8859-1 so all values are in English, but Java applications can be adapted to
various languages without code changes by translating the values in the
localization properties file.

Table 5-7 contains a listing of the localization properties files configured for each
module. These files can be found in IdentityServer_base/SUNWam/locale.

Table 5-7 List of Localization Properties Files

File Name Purpose

amAuth.properties Defines the parent Core Authentication Service.

amAuthAD.properties Defines the Active Directory Authentication Module.

amAuthAnonymous.properties Defines the Anonymous Authentication Module.

amAuthApplication.properties For Access Manager internal use only. Do not
remove or modify this file.

amAuthCert.properties Defines the Certificate Authentication Module.

amAuthConfig.properties Defines the Authentication Configuration Module.

amAuthContext.properties Defines the localized error messages for the
AuthContext Java class.

amAuthContextLocal.propertie
s

For Access Manager internal use only. Do not
remove or modify this file.

amAuthHTTPBasic.properties Defines the HTTP Basic Authentication Module.

amAuthJDBC.properties Defines the Java Database Connectivity (JDBC)
Authentication Module.

amAuthLDAP.properties Defines the LDAP Authentication Module.

amAuthMembership.properties Defines the Membership Authentication Module.

amAuthMSISDN.properties Defines the Mobile Subscriber ISDN Authentication
Module.

amAuthNT.properties Defines the Windows NT Authentication Module.

amAuthRadius.properties Defines the RADIUS Authentication Module.

amAuthSafeWord.properties Defines the Safeword Authentication Module.

amAuthSAML.properties Defines the Security Assertion Markup Language
(SAML) Authentication Module.

amAuthSecurID.properties Defines the SecurID Authentication Module.

Customizing Branding and Functionality

Chapter 5 Customizing the Authentication User Interface 113

Customizing Branding and Functionality
You can modify JSP templates and module configuration properties files to reflect
branding or functionality specified for any of the following:

• Organization of the request

• SubOrganization of the request.

• Locale of the request

• Client Path

• Client Type information of the request

• Service Name (serviceName)

To Modify Branding and Functionality
1. Go to the directory where default JSP templates are stored.

cd AccessManager-base/SUNWam/web-src/services/config/auth

2. Create a new directory.

Use the appropriate customized directory path based on the level of
customization. Use the following forms:

org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

amAuthUI.properties Defines labels used in the authentication user
interface.

amAuthUnix.properties Defines the UNIX Authentication Module.

Table 5-7 List of Localization Properties Files

File Name Purpose

Customizing Branding and Functionality

114 Access Manager 6 2005Q1 • Developer’s Guide

default/orgPath/filePath

In these examples,

orgPath represents subOrg1/subOrg2

filePath represents clientPath + serviceName

clientPath represents clientType/sub-clientType

Note that Sub-org, Locale, Client Path, Service Name (which represents
orgPath and filePath) are optional. Note also that the organization name you
specify may match the organization attribute set in the Directory Server. For
example, if the organization attribute value is SunMicrosystems, then the
organization customized directory should also be SunMicrosystems. If no
organization attribute exists, then the lowercase value of the organization
name (sunmicrosystems) should be used.

For example, for the following attributes:

org = SunMicrosystems

locale = en

subOrg = solaris

clientPath = html/customerName/

serviceName = paycheck

customized directory paths would be:

SunMicrosystems_en/solaris/html/ustomerName/paycheck

SunMicrosystems/solaris/html/ustomerName/paycheck

default_en/solaris/html/ustomerName/paycheck

default/solaris/html/ustomerName/paycheck

3. Copy the default templates.

Copy all the JSP templates (*.jsp) and authentication module configuration
properties xml files (*.xml) from the default directory:

AccessManager-base/SUNWam/web-src/services/config/auth/default

to the new directory:

AccessManager-base/SUNWam/web-src/services/config/
auth/CustomizedDirectoryPath

Customizing the Self-Registration Page

Chapter 5 Customizing the Authentication User Interface 115

4. Customize the files in the new directory.

The files in the new directory can be customized if necessary, but not this is not
required. See “Customizing the Login Page” on page 104 and “Customizing
JSP Templates” on page 104 for information on what you can modify.

5. Update and redeploy services.war.

Once you’ve modified the authentication GUI files, in order to see the changes
in the actual GUI, you must update and then redeploy services.war. See
“Updating and Redeploying services.war” on page 117 in this chapter for
instructions. See Appendix C, “WAR Files” on page 359 for general
information on updating and redeploying Access Manager .war files.

6. Restart both Access Manager and the web container server.

Customizing the Self-Registration Page
You can customize the Self-registration page which is part of Membership
authentication module. The default data and interface provided with the
Membership authentication module is generic and can work with any domain.You
can configure it to reflect custom data and information.You can add custom user
profile data or fields to register or to create a new user.

To Modify the Self-Registration Page
1. Customize the Membership.xml file.

By default, the first three data fields are required in the default Membership
Module configuration:

❍ User name

❍ User Password

❍ Confirm User Password

You can specify which data is requested, which is required, and which is
optional. Code Example 5-1 on page 116 illustrates how to add a telephone
number as requested data.

You can specify or add data which should be requested from a user as part of
the User Profile. By default you can specify or add any attributes from the
following objectClasses:

Customizing the Self-Registration Page

116 Access Manager 6 2005Q1 • Developer’s Guide

❍ top

❍ person

❍ organizationalPerson

❍ inetOrgPerson

❍ iplanet-am-user-service

❍ inetuser

Administrators can add their own user attributes to the User Profile.

2. Update and redeploy services.war.

Once you’ve modified the authentication GUI files, in order to see the changes
in the actual GUI, you must update and then redeploy services.war. See
“Updating and Redeploying services.war” on page 117 in this chapter for
instructions. See Appendix C, “WAR Files” on page 359 for general
information on updating and redeploying Access Manager .war files.

3. Restart both Access Manager and the web container server.

Code Example 5-1 Adding a Telephone Number as Requested Data

<Callbacks length="9" order="16" timeout="300" header="Self Registration"
template="register.jsp" >

 <NameCallback isRequired="true" attribute="uid" >
 <Prompt> User Name: </Prompt>
 </NameCallback>

 <PasswordCallback echoPassword="false" isRequired="true"
attribute="userPassword" >
 <Prompt> Password: </Prompt>
 </PasswordCallback>

 <PasswordCallback echoPassword="false" isRequired="true" >
 <Prompt> Confirm Password: </Prompt>
 </PasswordCallback>

 <NameCallback isRequired="true" attribute="givenname" >
 <Prompt> First Name: </Prompt>
 </NameCallback>

 <NameCallback isRequired="true" attribute="sn" >
 <Prompt> Last Name: </Prompt>
 </NameCallback>

 <NameCallback isRequired="true" attribute="cn" >
 <Prompt> Full Name: </Prompt>
 </NameCallback>

Updating and Redeploying services.war

Chapter 5 Customizing the Authentication User Interface 117

Updating and Redeploying services.war
If Access Manager is installed on BEA WebLogic, IBM WebSphere, or Sun ONE
Application Server, you must update and redeploy services.war before you can
see any changes in the user interface. Once you’ve made changes to the
authentication GUI files, regardless of the brand of web container you’re using, it is
a good practice to update and redeploy the services.war file. When you update
and redeploy services.war, you overwrite the default GUI files with your
changes, and the changed files are placed in their proper locations. The section
“services.war File” on page 103 provides background information on this file.

To Update services.war
1. cd IdentityServer_base/SUNWam

This is the directory in which the WARs are kept.

 <NameCallback attribute="mail" >
 <Prompt> Email Address: </Prompt>
 </NameCallback>

 <NameCallback isRequired="true"attribute="telphonenumber">
 <Prompt> Tel:</Prompt>
 </NameCallback>

 <ConfirmationCallback>

 <OptionValues>
 <OptionValue>
 <Value> Register </Value>
 </OptionValue>
 <OptionValue>
 <Value> Cancel </Value>
 </OptionValue>
 </OptionValues>

 </ConfirmationCallback>

</Callbacks>

Code Example 5-1 Adding a Telephone Number as Requested Data (Continued)

Updating and Redeploying services.war

118 Access Manager 6 2005Q1 • Developer’s Guide

2. jar -uvf WARfilename.war <path_to_modified_file>

The -uvf option replaces the old file with the newly modified file. For example:

jar -uvf services.war newfile/index.html

replaces the index.html file in console.war with the index.html file located in
IdentityServer_base/SUNWam/newfile.

3. rm newfile/index.html

Deletes the modified file.

To Redeploy services.war
The services.war will be in the following directory:

AccessManager-base/SUNWam

Depending upon the brand of web container you are using, execute one of the
following commands.

On BEA WebLogic
java weblogic.deploy -url ServerURL -component {ServerDeployURI}:

{WL61 Server} deploy WL61AdminPassword {ServerDeployURI}

{AccessManager-base}/{SUNWam}/services.war

In this example,

ServerURL uses the form protocol://host:port
Example: http://abc.com:58080

ServerDeployURI represents the server Universal Resource Identifier
Example: amserver

WL61 Server represents the Weblogic Server name
Example: name.com

On Sun ONE Application Server
asadmin deploy -u IAS7Admin -w IAS7AdminPassword -H HostName -p
IAS7AdminPort --type web SECURE_FLAG --contextroot

Updating and Redeploying services.war

Chapter 5 Customizing the Authentication User Interface 119

ServerDeployURI --name amserver --instance IAS7Instance
{AccessManager-base}/{SUNWam}/services.war

On IBM WebSphere
See the deployment documentation that comes with the IBM WebSphere product.
websphere:

http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/
en/html/sdsscenario1.html

Updating and Redeploying services.war

120 Access Manager 6 2005Q1 • Developer’s Guide

121

Chapter 6

Using Authentication APIs and SPIs

This chapter provides information on using Sun Java™ System Access Manager 6
2005Q1 authentication programming interfaces to use and to extend the
Authentication Service.

This chapter contains the following sections:

• “Overview of Authentication APIs and SPIs” on page 121

• “Using Authentication APIs” on page 132

• “Using Authentication SPIs” on page 138

Overview of Authentication APIs and SPIs
Access Manager provides both Java APIs and C APIs for writing authentication
clients that remote applications can use to gain access to the Authenticate Service.
This communication between the APIs and the Authentication Service occurs by
sending XML messages over HTTP(S). The remote-auth.dtd is the template used
in formatting the XML request messages sent to Access Manager and for parsing
the XML return messages received by the external application. You can access
remote-auth.dtd in the directory AccessManager-base/SUNWam/dtd.

New authentication modules are added to Access Manager by using the
com.iplanet.authentication.spi package. The SPI implements the JAAS
LoginModule, and provides additional methods to access the Authentication
Service and module configuration properties files. Because of this architecture, any
custom JAAS authentication module will work within the Authentication Service.

• How the Authentication Java APIs Work

• How the Authentication C-APIs Work

• XML/HTTP Interface for Other Applications

Overview of Authentication APIs and SPIs

122 Access Manager 6 2005Q1 • Developer’s Guide

• How the Authentication SPIs Work

How the Authentication Java APIs Work
External Java applications can authenticate users with the Access Manager
Authentication Service by using the Authentication Java APIs. The APIs are
organized in a package called com.sun.identity.authentication and can be
executed locally or remotely. The classes and methods defined in this package are
used to initiate the authentication process and communicate authentication
credentials to the specific modules within the Authentication Service. The classes
and methods can be incorporated into a Java application to allow communication
with the Authentication Service.

The first step necessary for an external Java application to authenticate to Access
Manager is to create a new AuthContext object
(com.sun.identity.authentication.AuthContext). The AuthContext class is
defined for each authentication request as it initiates the authentication process.
Since Access Manager can handle multiple organizations, AuthContext is
initialized, at the least, with the name of the organization to which the requestor is
authenticating. Once an AuthContext object has been created, the login() method
is called indicating to the server what method of authentication is desired.

IndexName is the value of the authentication type. Table 6-1 summarizes
IndexName values and their corresponding authetnication types.

NOTE If contacting the Authentication Service directly through its URL
(http://identity_server_host.domain_name:port/service_deploy_uri/au
thservice) without the API, a detailed understanding of remote-auth.dtd
will be needed for generating and interpreting the messages passed between the
client and server. Sample response and return XML messages can be found in
“Examples of XML Messages” on page 124.

Table 6-1 IndexName Values

IndexName Value Authentication Type

AuthContext.IndexType.ROLE Role-based

AuthContext.IndexType.SERVICE Service-based

AuthContext.IndexType.USER User-based

AuthContext.IndexType.LEVEL Authentication Level-based

AuthContext.IndexType.MODULE_INS
TANCE

Module-based

Overview of Authentication APIs and SPIs

Chapter 6 Using Authentication APIs and SPIs 123

The getRequirements() method then calls the objects that will be populated by
the user. Depending on the parameters passed with the instantiated AuthContext
object and the two method calls, Access Manager responds to the client request
with the correct login requirement screens. For example, if the requested user is
authenticating to an organization configured for LDAP authentication only, the
server will respond with the LDAP login requirement screen to supply a user name
and a password. The client must then loop by calling the hasMoreRequirements()
method until the required credentials have been entered. Once entered, the
credentials are submitted back to the server with the method call
submitRequirements(). The final step is for the client to make a getStatus()
method call to determine if the authentication was successful. If successful, the
caller obtains a session token for the user; if not, a LoginException is thrown.

Because the Authentication Service is built on the JAAS framework, the
Authentication API can also invoke any authentication modules written purely
with the JAAS API.

For detailed information about Java APIs for authentication, see the Javadoc in the
following directory:

AccessManager-base/SUNWam/docs

How the Authentication C-APIs Work
C applications can authenticate users with the Access Manager Authentication
Service by using the Authentication C-API. The C application contacts the
Authentication Service to initiate the authentication process, and the
Authentication Service responds with a set of requirements. The client application
submits authentication credentials back to the Authentication Service and receives
further authentication requirements back until there are no more to fulfill. After all
requirements have been sent, the client makes one final call to determine if
authentication has been successful or has failed. The C API can be found in
IdentityServer_base/SUNWam/agents. This directory also includes a C API samples
directory.

CAUTION Previous releases of Access Manager contained C libraries in
IdentityServer_base/lib/capi. The capi directory is being deprecated, and
is currently available for backward compatibility. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD_LIBRARY_PATH, PATH, compiler options, etc.)

Overview of Authentication APIs and SPIs

124 Access Manager 6 2005Q1 • Developer’s Guide

The sequence of calls necessary to authenticate to Access Manager begins with the
function call am_auth_create_auth_context. This call will return an
AuthContext structure used for the rest of the authentication calls. Once an
AuthContext structure has been initialized, the am_auth_login function is called.
This indicates to the Authentication Service that an authentication is desired.
Depending on the parameters passed when creating the AuthContext structure
and making the am_auth_login function call, the Authentication Service will
determine the login requirements with which to respond. For example, if the
requested authentication is to an organization configured for LDAP authentication,
and no authentication module chaining is involved, the server will respond with
the requirements to supply a user name and a password. These attributes
correspond to elements in the remote-auth.dtd structure. The user name
corresponds to the NameCallback element; the password which corresponds to the
PasswordCallback element. The client loops on function call
am_auth_has_more_requirements (in this specific case there will be two). The
client then fills in the needed information and submits this back to the server with
function call am_auth_submit_requirements. The final step is to make function call
am_auth_get_status to determine if the authentication was successful or not.

XML/HTTP Interface for Other Applications
Applications written in a programming language other than Java or C can
exchange authentication information with Access Manager using the
XML/HTTP(s) interface. Using the URL
http://server_name.domain_name:port/service_deploy_uri/authservice, an application
can open a connection using the HTTP POST method and exchange XML messages
with the Authentication Service. The structure of the XML messages is defined in
remote-auth.dtd. In order to access the Authentication Service in this manner, the
client application must contain the following:

• A means of producing valid XML compliant with the remote-auth.dtd.

• HTTP 1.1 compliant client implementation to send XML-configured
information to Access Manager.

• HTTP 1.1 compliant server implementation to receive XML-configured
information from Access Manager.

• An XML parser to interpret the data received from Access Manager.

Examples of XML Messages
The following code examples illustrate how customers might configure the XML
messages posted to the Authentication Service.

Overview of Authentication APIs and SPIs

Chapter 6 Using Authentication APIs and SPIs 125

Code Example 6-1 illustrates the initial XML message sent to the Access Manager.
It opens a connection and asks for authentication requirements regarding the
exampleorg organization to which the user will login.

Code Example 6-2 illustrates the successful response from Access Manager that
contains the authIdentifier, the session identifier for the initial request.

Code Example 6-3 illustrates the client response message back to Access Manager.
It specifies the type of authentication module needed by the user to log in.

NOTE Although the client application need only write XML based on the
remote-auth.dtd, when these messages are sent they include additional
XML code produced by the Authentication API. This additional XML code is not
illustrated in the following examples.

Code Example 6-1 Initial AuthContext XML Message

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Request authIdentifier="0">
<NewAuthContext orgName="dc=exampleorg,dc=com">
</NewAuthContext>
</Request>
</AuthContext>

Code Example 6-2 AuthIdentifier XML Message Response

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Response
authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">
<LoginStatus status="in_progress">
</LoginStatus>
</Response>
</AuthContext>

Overview of Authentication APIs and SPIs

126 Access Manager 6 2005Q1 • Developer’s Guide

Code Example 6-4 illustrates the return message from Access Manager which
specifies the authentication module’s login requirements. In this case, the LDAP
requirements include a user name and password. Note the page time out value of
120 seconds.

Code Example 6-3 Second Request Message With Authentication Module Specified

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Request authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">
<Login>
<IndexTypeNamePair indexType="moduleInstance">
<IndexName>LDAP</IndexName>
</IndexTypeNamePair>
</Login>
</Request>
</AuthContext>

Code Example 6-4 Return XML Message With Login Callbacks

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Response
authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">

<GetRequirements>
<Callbacks length="3">
<PagePropertiesCallback isErrorState="false">
<ModuleName>LDAP</ModuleName>
<HeaderValue>This server uses LDAP Authentication</HeaderValue>
<ImageName></ImageName>
<PageTimeOut>120</PageTimeOut>
<TemplateName></TemplateName>
<PageState>1</PageState>
</PagePropertiesCallback>
<NameCallback>
<Prompt>User Name: </Prompt>
</NameCallback>

<PasswordCallback echoPassword="false">
<Prompt> Password: </Prompt>
</PasswordCallback>

</Callbacks>
</GetRequirements>
</Response>
</AuthContext>

Overview of Authentication APIs and SPIs

Chapter 6 Using Authentication APIs and SPIs 127

Code Example 6-5 illustrates the client responses to the call for login requirements.
They specify amadmin as the user and 11111111 for the password.

Code Example 6-6 illustrates that a successful authentication has occurred. As the
value of <Subject> uses the Java serialization, it can not be used by non-Java client
applications. It’s value is retrieved by all applications from the session token.

Code Example 6-5 Response Message With Callback Values

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Request authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">
<SubmitRequirements>
<Callbacks length="3">

<NameCallback>
<Prompt>User Name:</Prompt>
<Value>amadmin</Value>
</NameCallback>

<PasswordCallback echoPassword="false">
<Prompt>Password:</Prompt>
<Value>11111111</Value>
</PasswordCallback>
</Callbacks>
</SubmitRequirements>
</Request>
</AuthContext>

Code Example 6-6 Successful Authentication XML Message

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Response
authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">
<LoginStatus status="success"
ssoToken="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY="
successURL="http://torpedo.red.iplanet.com:/amconsole">

Overview of Authentication APIs and SPIs

128 Access Manager 6 2005Q1 • Developer’s Guide

How the Authentication SPIs Work
• Extending the AMLoginModule Class

• Pluggable JAAS Module

• Authentication Post Processing

Access Manager provides the capability to plug new, Java-based authentication
modules into its framework allowing proprietary authentication providers to be
managed using the Access Manager console. A custom authentication module
must first be created using Java. Once created, the custom module can be added to
the list of available authentication modules.

<Subject>AQICweczOhuelZ5TqD9kKOtiAepxqGP23q4oTnNMuJY//lI2S4KD1/gEN84uLwDGHl
llyFSthxoKLM7NDH
h2vwAvrDmpsomJvUnbqnJJ90DS+28njGiDv+lv8FqIVhhbxrctbiIUEOHYK0FzXnXjPYizdCmiW
XJ+9DJ8T2HbYIDxn9U6eVNAMPq3uVb/RFuErEm5MuPu7PnWeCic12SZre4ZEcw8TI45NKNjd/NZ
ZD97bcqL5gEV7SVHspFldZKmo9vA86aEkvMs9P53RiJtrusHN1FKt9+4JqSrdcVLKMzJVAr3z5E
ohwHh9/hzd7hgucO661gz7IqkT7WEpve/E8R4em0mg3HgHg7Bg7i3AkyX6YSkoAncdVXMdmWnb7
OV5cBgUjO8zs8Pp5/3dA1XlwACmOqjxshk6Y6Ld6TAQ90qRFwymC1RdLGGCRnrt33kmYVyB1lJy
JxT8utPKyDOEKFRHh57NlKTbFhBKc1IGcdQ2crHifpXawx6YouQgQSWGdsqW9IahY4+lqbBTPnG
DyZkKz9yy2ZKVjDR05Hwku8elvEwBE40XTJ3gF/mbwCGbh3cyprahLqRXboy8eoEQf3ubQmR2My
+bh+NrsRfzfFV5oCcpJE6DtvYE/4zO+uKk3FbG+/NUJzAAor920V/0prtYeS58ZPW8C7qwXINaW
0xdMQV+pgE3NZvMlp5GeZlSIMmSCtXD49n4tqopSlsoK+eiwPODKxp992+6/uJhhVHH5I0Ozuy6
CDM
dCJDGvnMENVCUZvki3+tb92fqQbVWixM4Ca6Nnz3jTIKk2uhm559jq9hra8gHHOfnnu4e5jZjzf
RdkO3GodiTMOHDnQATHtvT1PBXgorTfUwUa4ZjptvzFulHSi4eQaqs4Z8FAX2OAr8XGHRkhBwox
rhjYiCDBpkNmpEiFNhWnTT3bwkAUFhtoDg6836kwHfxeLXKAz3T6qyNQzT+larSXUxrt/TIjwDP
R3vg4GF4RzbHlWA1WQtUS/9Qe/N3aegEEEvxPvo9fWq</Subject>
</LoginStatus>
</Response>
</AuthContext>

NOTE This guide does not document the JAAS. For more information on these APIs, see
the Java Authentication And Authorization Service Developer’s Guide. Additional
information can be found at http://java.sun.com/products/jaas/.

Code Example 6-6 Successful Authentication XML Message

Overview of Authentication APIs and SPIs

Chapter 6 Using Authentication APIs and SPIs 129

Extending the AMLoginModule Class
Custom authentication modules extend the
com.sun.identity.authentication.spi.AMLoginModule class. The class must
also implement the init(), process() and getPrincipal() methods in order to
communicate with the authentication module configuration files. The callbacks are
then dynamically generated based on this file. Other methods that can be defined
include setLoginFailureURL and setLoginSuccessURL which defines URLs to
send the user to based on a failed or successful authentication, respectively.

Pluggable JAAS Module
The Java Authentication and Authorization Service (JAAS) is a set of APIs that
enable services to authenticate and enforce access controls upon users. It
implements a Java technology version of the standard Pluggable Authentication
Module (PAM) framework, and supports user-based authorization. Access
Manager supports pure JAAS pluggable authentication modules. In Access
Manager, pure JAAS modules extend the JAAS LoginModule rather than
AMLoginModule. A pure JAAS module is plugged in to the Authentication
framework using the Authentication API.

Authentication Post Processing
The Authentication SPI includes the AMPostAuthProcessInterface which can be
implemented for post-processing tasks. The following are examples of
post-processing tasks:

• Adding attributes to a user’s session after successful authentication

• Sending notification to an administrator after failed authentication

• General clean-up such as clearing cookies after logout or logging out of other
system components.

The Core Authentication Service contains the Authentication PostProcessing Class
attribute which contains the authentication post-processing class name as its value.
Custom post processing interfaces can also be implemented.

AMPostAuthProcessInterface can be implemented for post authentication
processing on authentication success, failure and logout. The SPI is configurable at
the organization , service and role levels. The Authentication Service invokes the
post processing SPI methods on successful, failed authentication and logout.

NOTE To make use of the account locking feature with custom authentication modules,
the InvalidPasswordException exception should be thrown when the
password is invalid.

Overview of Authentication APIs and SPIs

130 Access Manager 6 2005Q1 • Developer’s Guide

The AMPostProcessInterface class has 3 methods:

• onLoginSuccess

• onLoginFailure

• onLogout

Some supporting information on these methods is provided in the following
sections. For a comprehensive listing and detailed information on all Access
Manager methods, see the Javadoc installed in the following directory:

AccessManager-base/SUNWam/docs

onLoginSuccess
This method should be implemented for post-processing after a successful
authentication. Authentication Service will invoke this method on successful
authentication.

Method signature is:

where

❍ requestMap is a map containing HttpServletRequest parameters

❍ request HttpServletRequest object

❍ response HttpServletResponse object

com.sun.identity.authentication.spi.AuthenticationException is thrown on
error.

onLoginFailure
This method should be implemented for post processing after a failed
authentication. Authentication Service will invoke this method on failed
authentication.

 public void onLoginSuccess(Map requestParamsMap,

 HttpServletRequest request,

 HttpServletResponse response,

 SSOToken ssoToken)

 throws AuthenticationException;

Overview of Authentication APIs and SPIs

Chapter 6 Using Authentication APIs and SPIs 131

Method signature is:

where

❍ requestMap is a map containing HttpServletRequest parameters

❍ request HttpServletRequest object

❍ response HttpServletRequest object

com.sun.identity.authentication.spi.AuthenticationException is thrown on
error.

onLogout
This method should be implemented for post-processing on a logout request.
Authentication Service will invoke this method on logout.

Method signature is:

where

❍ request HttpServletRequest object is a map containing
HttpServletRequest parameters

❍ response HttpServletResponse object

❍ ssoToken authenticated user's single sign on token

com.sun.identity.authentication.spi AuthenticationException is thrown on
error.

 public void onLoginFailure(Map requestParamsMap,

 HttpServletRequest request,

 HttpServletResponse response)

 throws AuthenticationException;

 public void onLogout(HttpServletRequest request,

 HttpServletResponse response,

 SSOToken ssoToken)

 throws AuthenticationException;

Using Authentication APIs

132 Access Manager 6 2005Q1 • Developer’s Guide

Using Authentication APIs
Access Manager comes with a number of sample programs that demonstrate how
you can use the Authentication APIs to extend the functionality of the
authentication service and authentication modules.

• Running the Sample Authentication Programs

• LDAPLogin Example

• CertLogin Example

• JCDI Module Example

• C-API Sample

Running the Sample Authentication Programs
The source code and Makefile are provided for all sample programs. For some
sample programs, additional supporting files are also included.The instructions for
compiling and executing the sample programs are the same for all samples
described in this section. See “To Compile and Execute the Java API Samples.”
Instructions for configuring the sample programs to run in Secure Sockets Layer
(SSL) mode are also included in this section. See “To Configure SSL for Java API
Samples.”

Java API Code Samples and Their Locations
The following tables describe the locations of all the files you need to implement
the sample programs on various platforms, and the variable names used for
default directories in the source code and Makefiles. Table 6-2 summarizes file
locations and variable names used for Solaris Sparc/x86.l Table 6-3 summarizes
default directories for Linux. Table 6-4 summarizes default directories for
Windows 2000.

Table 6-2 Default directories for Solaris Sparc/x86

Variable Description Location

Api_sample_dir Directory that contains
authentication API
sample files

<install_root>/SUNWam/samples/authenitc
ation/api

Config_directory Directory that contains
configuration files

/etc/opt/SUNWam/config

Product_Directory Directory where Access
Manager is installed.

 install_root>/SUNWam

Using Authentication APIs

Chapter 6 Using Authentication APIs and SPIs 133

Table 6-3 Default directories for Linux

To Compile and Execute the Java API Samples
These steps are for all platforms.

1. In the Makefile, modify the following variables as necessary to suit your
Access Manager installation:

BASE_DIR: Enter the path to the directory where Access Manager is installed.

JAVA_HOME: Enter the path to the directory where the Java compiler is
installed.

DOMAIN: Enter the name of the organization to login to.

SHARE_LIB: Enter the path to the directory where Access Manager jar files are
stored.

JSS_JAR_PATH: Enter the path to the directory where JSS jar files are stored.

JSSPATH: Enter the path to the directory where JSS libraries are located.

Variable Description Location

Api_Sample_Dir Directory that contains
authentication API
sample files

<install_root>/sun/identity/samples/aut
hentication/api

Config_Directory Directory that contains
configuration files

/etc/opt/sun/identity/config

Product_Directory Directory where Access
Manager is installed.

 <install_root>/sun/identity

Table 6-4 Default directories for Windows 2000

Variable Description Location

Api_Sample_Dir Directory that contains
authentication API
sample files

<install_root>\samples\authentication\a
pi

Config_Directory Directory that contains
configuration files

<install_root>\lib

Product_Directory Directory where Access
Manager is installed.

 <install_root>

Using Authentication APIs

134 Access Manager 6 2005Q1 • Developer’s Guide

2. In the Certificate Sample Makefile only, modify the following as necessary:

CERTNICKNAME: Enter the Certificate nickname.

URL: Enter the Access Manger Server URL.

PASSWORD: Enter the Certificate DB Password.

3. Copy AMConfig.properties from Config_Directory in the Access Manager
server installation to the client machine.

(Note: For SSL check SSL Configuration Setup, step 2).

4. In the Makefile, update the classpath to include the location of the newly
created AMConfig.properties.

5. In the client machine, create a directory named locale. Then copy all the
property files from the locale directory in the Access Manager server
installation machine to the client machine. The locale directory on the server
machine can be found under the Product_Directory.

6. Update the classpath in the Makefile to include the location of newly created
locale files.

7. Include jaas.jar in your classpath if you are using a JDK version less than
JDK1.4

8. Compile the program.

❍ On Solaris Sparc/x86, Linux, run the gmake command.

❍ On Windows 2000, run the make command.

9. Run the sample program.

❍ On Solaris Sparc/x86 or Linux, run the following command: gmake run

❍ On Windows 2000, run the following command: make run

To Configure SSL for Java API Samples
1. In the Makefile, add this JVM property in the run target:

-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

2. Copy AMConfig.properties from Config_Directory in the Access Manager
server installation to the client machine.

Using Authentication APIs

Chapter 6 Using Authentication APIs and SPIs 135

3. Edit the following properties in AMConfig.properties.

com.iplanet.am.admin.cli.certdb.dir: Enter the path to the certificate database
directory.

com.iplanet.am.admin.cli.certdb.prefix: Enter the certificate database prefix.

4. In the LDAP and JCDI Samples only:

com.iplanet.am.server.protocol: Change the value to https.

com.iplanet.am.server.port: Enter the appropriate port number from the
server machine.

5. Create or copy the certificate database file to the certificate db directory. Use
the directory name in com.iplanet.am.admin.cli.certdb.dir.

6. Rename the file to use the prefix specified in the property
com.iplanet.am.admin.cli.certdb.prefix.

For the details, see the Javadoc for the Remote Client API.

LDAPLogin Example
The LDAPLogin sample is an example of a custom Java application that uses the
authentication remote APIs to authenticate to the LDAP module. You can modify
the sample source code to authenticate to other existing or customized
authentication modules. The sample source code, Makefile, and Readme.html are
located in the following directory:

IdentityServer_base/SUNWam/samples/authentication/LDAP

To compile and run the sample program, follow the steps in “To Compile and
Execute the Java API Samples” on page 133.

CertLogin Example
The CertLogin sample is an example of a custom Java application that uses digital
certificates for authentication. You can modify the sample source code to
authenticate to other existing or customized authentication modules. The sample
source code, Makefile, and Readme.html are located in the following file:

IdentityServer_base/SUNWam/samples/authentication/Cert

Using Authentication APIs

136 Access Manager 6 2005Q1 • Developer’s Guide

To Run the CertLogin Program
1. Enable SSL.

Follow the instructions in “To Configure SSL for Java API Samples” on
page 134.

2. Compile and execute the sample code.
“To Compile and Execute the Java API Samples” on page 133.

Using certutil for Client Certificate Management
Certutil is a command-line utility that can create and modify cert7.db and
key3.db database files. It can also list, generate, modify, or delete certificates within
the cert7.db file and create or change the password, generate new public and
private key pairs, display the contents of the key database, or delete key pairs
within the key3.db file. The key and certificate management process usually begins
with creating keys in the key database, then generating and managing certificates
in the certificate database.

JCDI Module Example
The JCDI Module Example demonstrates the use of Java Card Digital ID (JCDI)
authentication with Access Manager. The sample has two components:

• Remote client

• Server JCDI authentication module

The remote client component is located in the following directory:

Identity_Server_base/samples/authentication/api/jcdi

The server JCDI authentication module is located in the following directory:

Identity_Server_base/samples/authentication/spi/jcdi

The sample illustrates JCDI authentication using the Remote Authentication
API.You can modify the sample source code to authenticate to other existing or
customized authentication modules. The source code, Makefile, and Readme.html
are located in the following directory:

Identity_Server_base/samples/authentication/api/jcdi

To compile and run the sample program, follow the steps in “To Compile and
Execute the Java API Samples” on page 133.

Using Authentication APIs

Chapter 6 Using Authentication APIs and SPIs 137

C-API Sample
Access Manager provides a sample program to demonstrate how an external C
application can use the API to authenticate a user via Access Manager. The sample
can be found in IdentityServer_base/SUNWam/agents/samples/common/.

By default, the C Authentication sample checks the directory
IdentityServer_base/SUNWam/agents/config for a properties file named
AMAgent.properties.

C Authentication Sample Properties. Code Example 6-7 lists the properties that
are needed by the C Authentication API. Some of these are defined in
AMAgent.properties and some are not. Those that are not defined in
AMAgent.properties can be added to the file so they needn’t be identified for each
function call. For example, com.sun.am.auth.orgName, which identifies the
organization from which you want to authenticate, can be added to
AMAgent.properties.

C Header File. The C Authentication API header file, am_auth.h, can be found in
IdentityServer_base/SUNWam/agents/include. It contains the function prototypes
for the function calls available in the C Authentication API.

Code Example 6-7 AMAgent.properties File

SOME PROPERTIES LISTED ARE NOT PRE-EXISTING IN THE PROPERTIES FILE

the identity server naming service url
com.sun.am.namingURL=http://serverexample.domain.com:58080/amserver/namings
ervice
the directory to use for logging
com.sun.am.logFile=/home/uid/logs/auth-log
the logging level, all:5 being the highest and all:3 being medium
com.sun.am.logLevels=all:5
the directory containing the certificate and key databases
com.sun.am.sslCertDir=/home/level/certdir
the prefix of the cert7.db and key3.db files, if any
com.sun.am.certDbPrefix=
the password to the key3.db file
com.sun.am.certDBPassword=11111111
true to trust SSL certificates not in the client cert7.db
com.sun.am.trustServerCerts=true
the nick name of the client certificate in the cert7.db
com.sun.am.auth.certificateAlias=Cert-Nickname
the identity server organization desired for authentication
com.sun.am.auth.orgName=dc=sun,dc=com

Using Authentication SPIs

138 Access Manager 6 2005Q1 • Developer’s Guide

Using Authentication SPIs
Access Manager provides the following sample programs to demonstrate how you
can use the Authentication service provider interfaces (SPIs) to extend
authentication functionality:

• Implementing a Custom Authentication Module

• Implementing Authentication PostProcessing SPI

• Generating an Authentication User ID

• Implementing A Pure JAAS Module

Implementing a Custom Authentication Module
Access Manager contains a sample exercise for integrating a custom authentication
module with files that have already been created. This sample illustrates the steps
for integrating an authentication module into the Access Manager deployment. All
the files needed to compile, deploy and run the sample authentication module can
be found in the following directory:

IdentityServer_base/SUNWam/samples/authentication/providers

The following sections will use files from this sample as example code:

• Writing a Sample Login Module

• Compiling and Deploying the LoginModule program

• To Deploy the Login Module Sample Program

• Loading the Login Module Sample into Access Manager

• Running the LoginModule Sample Program

• Deploying the Login Module Sample Program

About the Login Module Sample
<PRODUCT_DIR> setting on different Platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam

Linux: <PRODUCT_DIR> = base-directory/sun/identity

W2K: <PRODUCT_DIR> = base-directory

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 139

Writing a Sample Login Module
Use the AMLoginModule SPI (Service Provider Interface) to write your own sample
login module. Three steps are required:

1. Create a Module Properties File.

2. Write the Principal Class.

3. Implement the LoginModule Interface.

The following are the default directories used in the sample exercise for the various
platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam

Linux: <PRODUCT_DIR> = base-directory/sun/identity

W2K: <PRODUCT_DIR> = base-directory

Create a Module Properties File
Create a Module properties XML file with the same name of the class (no package
name) and use the extension .xml. You must create an XML file with this naming
convention even if no states required

Based on this configuration file, the Authentication user interface will dynamically
generate a login page.

You can define page states in the module properties file as shown in Code
Example 6-8. Each callback element corresponds to one login page state. When an
authentication process is invoked, Callback[] values will be generated from the
user's Login Module for each state. All login state definitions start with 1. The
module controls the login process, and then determines what the next state is.

Auth_Module_Properties.dtd defines the data structure that will be used by each
authentication module to specify its properties. Auth_Module_Properties.dtd
provides definitions to initiate, construct and send required callbacks information
to the Authentication UI. Auth_Module_Properties.dtd is stored in the
<PRODUCT_DIR>/dtd directory.

Code Example 6-8 Module Configuration Sample

<ModuleProperties moduleName="LoginModuleSample" version="1.0" >
 <Callbacks length="2" order="1" timeout="60" header="This is a
sample login page" >
 <NameCallback>
 <Prompt> User Name </Prompt>
 </NameCallback>
 <NameCallback>
 <Prompt> Last Name </Prompt>

Using Authentication SPIs

140 Access Manager 6 2005Q1 • Developer’s Guide

In the module configuration sample in Code Example 6-8, page state one has two
callbacks. The first callback is for user ID, and second is for Last Name. When the
user fills in the callbacks, the following events occur:

1. The Callback[] values are sent to the module.

2. The process() routine validates the callback values, and then returns what?.

3. The module writer sets the next page state to 2.

Page state 2 has one callback to request the user to enter a password. The
process() routine is again called after the user submits the Callback[] values.
If the module writer throws a LoginException, then an Authentication Failed page
will be sent to the user. If no exception is thrown, the user is redirected to his or her
default page.

Write the Principal Class
After creating module configuration xml file, the next step is to write a Sample
Principal class which implements java.security.Principal. The constructor
takes the user’s username as an argument. If authentication is successful, the
module will return this principal to Authentication framework. The Authentication
framework populates a Subject with a SamplePrincipal representing the user.

Implement the LoginModule Interface
AMLoginModule is an abstract class which implements JAAS LoginModule.
AMLoginModule provides methods for accessing Access Manager services and the
module XML configuration. Login Module writers must subclass AMLoginModule
class and implement the following methods:

• init()

• process()

• getPrincipal()

 </NameCallback>
 </Callbacks>
 <Callbacks length="1" order="2" timeout="60" header="You made it to
page 2" >
 <PasswordCallback echoPassword="false" >
 <Prompt> Just enter any password </Prompt>
 </PasswordCallback>
 </Callbacks>

</ModuleProperties>

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 141

For detailed descriptions, syntax, and parameters, see the Javadoc. The following
provides some supporting information about these methods.

init() This is an abstract method, Module writer should implement to initialize
this LoginModule with the relevant information. If this LoginModule does not
understand any of the data stored in sharedState or options parameters, the data
can be ignored. This method is called by a AMLoginModule after this
SampleLoginModule has been instantiated, and prior to any calls to its other public
methods. The method implementation should store away the provided arguments
for future use. The init method may additionally peruse the provided sharedState
to determine what additional authentication state it was provided by other
LoginModules, and may also traverse through the provided options to determine
what configuration options were specified to affect the LoginModule's behavior. It
may save option values in variables for future use.

process() The process method is called to authenticate a Subject. This method
implementation should perform the actual authentication. For example, it may
cause prompting for a user name and password, and then attempt to verify the
password against a password database. If your LoginModule requires some form
of user interaction (retrieving a user name and password, for example), it should
not do so directly. That is because there are various ways of communicating with a
user, and it is desirable for LoginModules to remain independent of the different
types of user interaction. Rather, the LoginModule's process method should invoke
the handle method of the CallbackHandler passed to this method to perform the
user interaction and set appropriate results, such as the user name and password
and the AMLoginModule internally passes the UI an array of appropriate
Callbacks, for example a NameCallback for the user name and a PasswordCallback
for the password, and the UI performs the requested user interaction and sets
appropriate values in the Callbacks.

Consider the following points while writing the process() method:

• Perform the authentication. If Authentication succeeded, save the principal
who has successfully authenticated.

• Return -1 if authentication succeeds, or throw a LoginException such as
AuthLoginException if authentication fails or return relevant state specified in
module configuration XML file

• If multiple states are available to the user, the Callback array from a previous
state may be retrieved by using the getCallbak(int state) methods. The
underlying login module keeps the Callback[] from the previous states until
the login process is completed.

Using Authentication SPIs

142 Access Manager 6 2005Q1 • Developer’s Guide

• If a module writer needs to substitute dynamic text in next state, the writer
could use the getCallback() method to get the Callback[] for the next state,
modify the output text or prompt, then call replaceCallback() to update the
Callback array. This allows a module writer to dynamically generate
challenges, passwords or user IDs. Note: Each authentication session will
create a new instance of your Login Module Java class. The reference to the
class will be released once the authentication session has either succeeded or
failed. It is important to note that any static data or reference to any static data
in your Login module must be thread-safe.

getPrincipal() This method should be called once at the end of a successful
authentication session. A login session is deemed successful when all pages in the
Module properties XML file have been sent and the module has not thrown an
exception. The method retrieves the authenticated token string that the
authenticated user will be known by in the Access Manager environment.

Compiling and Deploying the LoginModule program
If you are writing your own Custom Authentication module based on the
AMLoginModule SPI or a pure JAAS module, then you can skip this step. Otherwise,
after writing the sample Login Modue, compile and deploy the sample found
under AccessManager-base/samples/authentication/spi/providers.

To compile the Login Module
1. Set the following environment variables.

These variables will be used to run the gmake command. You can also set these
variables in the Makefile. This Makefile is in the following directory:
AccessManager-base/samples/authentication/spi/providers.

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the Idetnity_base/lib directory. (Note: Include jaas.jar in your classpath if
you are using JDK version less than JDK1.4)

BASE_DIR: Set this variable to the directory where the Access Manager is
installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 143

2. In the AccessManager-base/samples/authentication/spi/providers directory,
run gmake.

To Deploy the Login Module Sample Program
1. Copy LoginModuleSample.jar from JAR_DIR to

AccessManager-base/web-src/services/WEB-INF/lib.

2. Copy LoginModuleSample.xml from
AccessManager-base/samples/authentication/spi/providers to
AccessManager-base/web-src/services/config/auth/default.

3. Redeploy the amserver.war file.

See Appendix C, “WAR Files” on page 359 for detailed information on
deploying Access Manager .war files.

Loading the Login Module Sample into Access Manager
Once you’ve compiled and deployed the login module, you must load the login
module into Access Manager. You can load the login module by using either the
Access Manager administration console, or by using the amadmin command.

To Load the Login Module Using the Administration Console
1. Login to Access Manager Console as amadmin, using the URL:

http://<host>.<domain>:<port>/<Console-Deploy-URL>

2. Click Service Configuration.

3. In Service Configuration frame, under Authentication, click Core.

4. Add class file name
com.iplanet.am.samples.authentication.spi.providers.

LoginModuleSample
to the Pluggable Auth Modules Classes list.

5. Click Save.

To Load the Login Module Using using the Command Line
1. Write a sample XML file as shown in Code Example 6-9, which will add the

LoginModuleSample auth module entry into the allowed modules and an
authenticators list.

Code Example 6-9 Adding the LoginModuleSample entry.

 <!--
 Copyright (c) 2003 Sun Microsystems, Inc. All rights reserved

Using Authentication SPIs

144 Access Manager 6 2005Q1 • Developer’s Guide

2. Use amadmin to load sample.xml:

<AMADMIN> --runasdn uid=amAdmin,ou=People,<root_suffix> --password
<password> --data sample.xml

Solaris Sparc/x86: AMADMIN = <PRODUCT_DIR>/bin/amadmin

On W2K: AMADMIN = <PRODUCT_DIR>\bin\amadmin

Running the LoginModule Sample Program
This sections provides instructions for running the login module on Solaris and on
Windows platforms.

To Run the LoginModule on Solaris
1. Use the following URL to log in to Access Manager console as amAdmin:

http://<host>.<domain>:<port>/<Console-Deploy-URI>

2. Click Identity Management, and in the Identity Management view select your
organization.

3. From the View menu, select Services.

 Use is subject to license terms.
 -->

 <!DOCTYPE Requests
 PUBLIC "-//iPlanet//iDSAME 5.0 Admin CLI DTD//EN"
 "jar://com/iplanet/am/admin/cli/amAdmin.dtd"
 >

 <Requests>

 <SchemaRequests serviceName="iPlanetAMAuthService"
SchemaType="Global">
 <AddDefaultValues>
 <AttributeValuePair>
 <Attribute name="iplanet-am-auth-authenticators"/>

<Value>com.iplanet.am.samples.authentication.spi.providers.LoginModuleSampl
e</Value>
 </AttributeValuePair>
 </AddDefaultValues>

 </SchemaRequests>
 </Requests>

Code Example 6-9 Adding the LoginModuleSample entry.

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 145

4. In the navigation frame, under Authentication, click Core.

5. Select LoginModuleSample to add it to the list of highlighted modules in
Organization Authentication Modules.

Make sure LDAP module is also selected. If not selected, you will not be able to
login to Access Manager Console. You can use Control + mouse click to add
additional modules.

6. Click Save.

7. Log out.

8. Enter the following URL:

http://<host>.<domain>:<port>/<Service-Deploy-URI>/UI/Login?module=
LoginModuleSample

If you choose to use an organization other than the default, be sure to specify
that in the URL using the org parameter.

To Run the Login Module on Windows 2000
1. Set the following environment variables. These variables will be used to run

the make command. You can also set these variables in the Makefile.

This Makefile is in the same directory as the Login Module Sample program
files: AccessManager-base\samples\authentication\spi\providers

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

BASE: Set this variable to base-directory

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the base-directory\lib directory. (Note: Include jaas.jar in your classpath if
you are using JDK version less than JDK1.4)

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

2. In the base-directory\samples\authentication\spi\providers directory, run
the make command.

Using Authentication SPIs

146 Access Manager 6 2005Q1 • Developer’s Guide

Deploying the Login Module Sample Program

To Deploy the Login Module
1. Copy LoginModuleSample.jar from JAR_DIR to

AccessManager-base\web-src\services\WEB-INF\lib

2. In the Web Container from which this sample has to run, update the classpath
with LoginModuleSample.jar.

3. Update server.xml with the new classpath and server.xml locations:

❍ Sun Java System Web Server :
<WS-install-dir>\https-<WS-instance-name>\config\server.xml

❍ Sun Java System Application Server:
<AS-install-dir>\domain\<appserver domain>\<appserver_instance>

\config\server.xml
Example:
<AS-install-dir>\domain\domain1\server1\config\server.xml

4. Copy LoginModuleSample.xml from
base-directory\samples\authentication\spi\providers to
base-directory\web-src\services\config\auth\default.

5. Restart the web container

WebServer: <WS-home-dir>\https-<WS-instance-name>\restart

Application Server: AppServer-home-dir>\domains\
<domain name>\<server_instance>\bin\restartserv

Implementing Authentication PostProcessing
SPI
The Authentication SPI includes the AMPostAuthProcessInterface which can be
implemented for post-processing tasks. The AMPostProcessInterface Javadocs are
available at:

AccessManager-base/SUNWam/docs/com/sun/identity/authentication/spi/
AMPostAuthProcessInterface.html

The SPI is configurable at the organization, service and role levels. The
Authentication Service invokes the post processing SPI methods on successful or
failed authentication and on logout.

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 147

About the PostProcessing SPI Sample
<PRODUCT_DIR> or AccessManager-base directory on different Platforms:

• Solaris Sparc/x86: AccessManager-base/SUNWam

• Linux: AccessManager-base/sun/identity

To Compile the ISAuthPostProcessSample Program on Solaris
Sparc/x86 or Linux
Follow these steps given below to compile the sample found under
AccessManager-base/samples/authentication/spi/postprocess .

1. Set the following environment variables.

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the AccessManager-base/lib directory. (Note: Include jaas.jar in your
classpath if you are using JDK version less than JDK1.4)

BASE_DIR: Set this variable to the directory where the Access Manager is
installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

These variables will be used to run the gmake command. You can also set these
variables in the Makefile. This Makefile is in the following directory:
AccessManager-base/samples/authentication/spi/postprocess.

2. In the directory
AccessManager-base/samples/authentication/spi/postprocess, run the
gmake command.

To Deploy the ISAuthPostProcess Sample Program
1. Copy ISAuthPostProcess.jar from JAR_DIR to AccessManager-base/lib.

Using Authentication SPIs

148 Access Manager 6 2005Q1 • Developer’s Guide

2. Update the Web Container configuration file server.xml.

Add ISAuthPostProcessSample.jar to the classpath. The server.xml file for
different web containers can be found at the following locations:

Web Server:<WS-home-dir>/https-<WS-instance-name>/config/

Application Server:<AS-home-dir>/domain/domain1/server1/config/

For all other web containers consult, the manufacturer’s documentation.

3. Restart the web container.

WebServer: <WS-home-dir>/https-<WS-instance-name>/restart

Application Server: <AS-install-dir>/<domains>/<domain name>/<server
instance>/bin/restartserv
Example: /<AS-home-dir>/domains/domain1/server1/bin/restartserv

For all other web containers consult their documentation.

Configuring the Authentication Post Processing SPI
The Authentication PostProcessing Sample can be configured at the
Organization,Service or Role level.

To Configure ISAuthPostProcess Sample for an Organization
1. Log in to Access Manager console as amAdmin. Use the following URL:

http://<host>.<domain>:<port>/<Console-Deploy-URI>

2. Click Identity Management, and select your organization.

3. From the View menu, click Services.

4. In the navigation frame, under Authentication, click Core.

5. Add the following to the Authentication PostProcessing Class attribute:

com.iplanet.am.samples.authentication.spi.postprocess

6. Add the following to the Authentication PostProcessing Class attribute:

ISAuthPostProcessSample

7. Click Save.

8. Log out.

9. Go to the following URL
http://<host>.<domain>:<port>/<Service-Deploy-URI>/UI/Login

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 149

If you choose to use an organization other than the default, be sure to specify
that in the URL using the 'org' parameter.

The postprocessing SPI will be executed on successful authentication, on failed
authentication, and on Logout.

To Configure the ISAuthPostProcess Sample for a Service
1. Log in to Access Manager console as amAdmin. Use the following URL:

http://<host>.<domain>:<port>/<Console-Deploy-URI>

2. Click Identity Management, and select your organization.

3. From the View menu, select Services.

4. Select Authentication Configuration

5. From the Service Instance frame, select New Instance.

6. Enter a name for the service.

7. Add the following to the Authentication PostProcessing Class attribute:
com.iplanet.am.samples.authentication.spi.postprocess.

ISAuthPostProcessSampl

8. Click Submit to save the changes.

9. Click Service Name and define the Authentication Configuration for the new
service.

10. Log out.

11. Go to the following URL:
http://<host>.<domain>:<port>/<Service-Deploy-URI>/UI/

Login?service=<servicename>

If you choose to use an organization other than the default, be sure to specify
that in the URL using the org parameter.

The postprocessing SPI will get executed on successful authentication, failed
authentication and on Logout for the service accessed.

To Configure ISAuthPostProcess Sample for a Role
1. Log in to Access Manager console as amAdmin. Use the following URL:

http://<host>.<domain>:<port>/<Console-Deploy-URI>

2. Click the Identity Management tab, and select your organization.

3. From the View menu, select Roles to view the role properties.

4. From the View menu, select Services.

Using Authentication SPIs

150 Access Manager 6 2005Q1 • Developer’s Guide

5. Click Edit to edit the authentication configuration.

6. Add the following to the Authentication post Processing Class attribute:

com.iplanet.am.samples.authentication.spi.postprocess.
ISAuthPostProcessSample

7. Click Submit to save the changes.

8. Log out.

9. Go to the following URL:
http://<host>.<domain>:<port>/<Service-Deploy-URI>/UI/Login?role=roleName

If you choose to use an organization other than the default, be sure to specify
that in the URL using the org parameter. Example: org=orgName

The postprocessing SPI will be executed for the service accessed on successful
authentication, on failed authentication, and on Logout.

Compiling On Windows2000
Go to the base-directory\samples\authentication\spi\postprocess directory and
run make.

To Deploy the ISAuthPostProcessSample Program
1. Copy ISAuthPostProcess.jar from JAR_DIR to base-directory\lib

2. In the Web Container from which this sample has to run, update the classpath
with ISAuthPostProcess.jar.

3. Restart Access Manager.

base-directory\bin\amserver start

To Configure Authentication Post Processing SPI
This sample can be can be set in the Core Auth Service for Organization and
Authentication Configuration Service for Role OR Service.

See the section “Configuring the Authentication Post Processing SPI” on page 148.

Generating an Authentication User ID
This file explains how to compile, deploy and configure the Authentication User ID
Generation SPI Sample.

• To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 151

• To Deploy the UserIDGeneratorSample program

• Configuring the UserIDGeneratorSample Program

• Compiling the UserIDGeneratorSample Program on Windows 2000

In the following sections, the PRODUCT_DIR setting depends on which platform
you’re using:

Solaris Sparc/x86: PRODUCT_DIR = <install_root>/SUNWam

Linux: PRODUCT_DIR = <install_root>/sun/identity

To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux
The sample is located in the following directory:

AccessManager-base/samples/authentication/spi/genuid

1. Set the following environment variables.

These variables will be used to run the gmake command. You can also set these
variables in the Makefile which is located in the following directory:

AccessManager-base/samples/authentication/spi/genuid

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be
version 1.3.1_06 or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found
in the <PRODUCT_DIR>/lib directory. (Note: Include jaas.jar in your
classpath if you are using JDK version less than JDK1.4)

BASE_DIR: Set this variable to the directory where the Access Manager is
installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample
compiled classes are located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample
compiled classes will be created.

2. In the directory AccessManager-base/samples/authentication/spi/genuid,
run the gmake command:

To Deploy the UserIDGeneratorSample program
1. Copy UserIDGeneratorSample.jar from JAR_DIR to AccessManager-base/lib.

2. in the Web Container from which this sample has to run, update the classpath
with UserIDGeneratorSample.jar.

Using Authentication SPIs

152 Access Manager 6 2005Q1 • Developer’s Guide

❍ On Sun ONE Web Server, go to server instance's config directory:
<WS-home-dir>/https-<WS-instance-name>/config/

❍ On Sun ONE Application Server, in the directory
<AS-home-dir>/domain/domain1/server1/config/ update server.xml
with the new classpath.

❍ For all other containers, consult the documentation that came with the
product.

3. Restart web container.
<WS-home-dir>/https-<WS-instance-name>/start

<AS-home-dir>/domains/domain1/server1/bin/start

Configuring the UserIDGeneratorSample Program
The Authentication User ID Generation Sample can be configured at the
Organization level, and then used or invoked by the out-of-box Membership/Self-
registration authentication module.

To Configure UserIDGeneratorSample for an Organization
1. Log in to Access Manager console as amAdmin. Use the following URL:

http://<host>.<domain>:<port>/<Console-Deploy-URI>

2. Click the Identity Management tab, and select your organization.

3. From the View menu, select Services.

4. In the navigation frame, under Authentication, click Core.

5. Add the following to the “Pluggable User Name Generator Class" attribute:
com.iplanet.am.samples.authentication.spi.genuid.

UserIDGeneratorSample

6. Click Save to save the changes.

7. Log out.

To Access an Authentication Module for an Organization
This module is the one which invokes the UserIDGenerator SPI implementation
class. By default, only the Membership/Self-registration authentication module
calls this SPI implementation.

1. Make sure that you have registered and enabled the Membership
authentication module, and that you have created a template for the
organization.

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 153

2. Enter the following URL:

http://<host>.<domain>:<port>/<Service-Deploy-URI>/UI/
Login?module=Membership

If you choose to use an organization other than the default, be sure to specify
that in the URL using the org parameter. Example: org=orgName

3. Click New User.

You should be able to register any existing username or user ID.

The UserIDGeneratorSample will be executed. You will be presented with the
generated User IDs choice menu to choose any one username or user ID.

Compiling the UserIDGeneratorSample Program on Windows 2000
In the <install-root>\samples\authentication\spi\genuid directory, run the
make command.

To deploy the UserIDGeneratorSample Program
1. Copy UserIDGeneratorSample.jar from JAR_DIR to <install-root>\lib

2. In the Web Container from which this sample has to run, update the classpath
with UserIDGeneratorSample.jar.

3. Restart Access Manager.

<install-root>\bin\amserver start

To Configure the UserIDGeneratorSample Program
Configuring the program on Windows 2000 is similar to configuring the program
on Solaris. See “Configuring the Authentication Post Processing SPI” on page 148.

Using Authentication SPIs

154 Access Manager 6 2005Q1 • Developer’s Guide

Implementing A Pure JAAS Module
A sample program demonstrates how to write pure a JAAS module to replay
callbacks by authenticating using Access Manager Auth Remote API. It will
authenticate a user by replaying the callbacks required by Access Manager the
Authentication Module. You can modify this program to use other existing or
customized Access Manager Authentication modules. This sample module can be
plugged in into any standard JAAS framework using the JAAS API.

Conventions Used in the Samples
Table 6-5 Default directories for Solaris Sparc/x86

Table 6-6 Default directories for Linux

NOTE For detailed information on JAAS, see the Sun Developer Documentation at the
following URL: http://java.sun.com/products/jaas/. For detailed information on
how to write a JAAS module, see the JAAS LoginModule Developer’s Guide at the
following URL:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html

Variable Description Location

Config_directory Directory that contains
configuration files

/CONFIG_DIR = /etc/opt/SUNWam/config

Product_Directory Directory where Access
Manager is installed.

 PRODUCT_DIR = <install_root>/SUNWam

Variable Description Location

Config_Directory Directory that contains
configuration files

CONFIG_DIR = /etc/opt/sun/identity/config

Product_Directory Directory where Access
Manager is installed.

 PRODUCT_DIR = <install_root>/sun/identity

Table 6-7 Default directories for Windows 2000

Variable Description Location

Config_Directory Directory that contains
configuration files

CONFIG_DIR = <install_root>\lib

Product_Directory Directory where Access
Manager is installed.

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 155

To Run the Sample on Solaris Sparc x86 or Linux:
1. In the Makefile, set the following variables:

BASE: Enter the path to the directory where Access manager is installed.

JAVA_HOME: Enter the path to the directory where Java compiler is installed

CONFIG: Enter the entry specified in the login configuration file. This entry
will be used to do the user authentication

2. Copy AMConfig.properties from Access Manager server installation machine
location <CONFIG_DIR> to the client machine where the sample will be run.

3. On the client machine, be sure the following are in your classpath:

❍ am_services.jar

❍ jaas.jar

❍ jss3.jar

❍ AMConfig.properties

Include jaas.jar in your classpath if you are using a JDK version less than
JDK1.4

4. A sample configuration file purejaassample.config is provided for testing
this sample. It contains only one entry named Sample. Sample is the name to be
entered for CONFIG in the Makefile.:

The entry specifies that the LoginModule to be used to do the user authentication is
the PureJAASSampleLoginModule and that this SampleLoginModule must succeed
in order for authentication to be considered successful. It passes options with
ORG_NAME as the organization name and INDEX_NAME as the Access Manager
authentication module to which this sample must authenticate.

If you must use a different login configuration, modify the Makefile. For example,
change the following:

-Djava.security.auth.login.config=purejaassample.config

to this:

Sample {
 PureJAASSampleLoginModule required ORG_NAME="dc=iplanet,dc=com"
INDEX_NAME="LDAP" debug=true;
 };

Using Authentication SPIs

156 Access Manager 6 2005Q1 • Developer’s Guide

-Djava.security.auth.login.config=<yourj_jaas_config_file.config>

5. To compile, run the gmake command.

6. To run the sample program run the gmake run command.

To Enable SSL
1. In the sample client program, add this JVM property:

-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

2. In the AMConfig.properties file, edit the following properties:

com.iplanet.am.admin.cli.certdb.dir: <PRODUCT_DIR>/servers/alias

com.iplanet.am.admin.cli.certdb.prefix: https-machine1.com-machine1-

com.iplanet.am.server.protocol: https

com.iplanet.am.server.port: Enter the appropriate port on the server machine
where machine1 is the host name of the server

To Run the Sample on Windows 2000
1. In make.bat, set the following properties:

BASE: Enter the path to the directory where Access manager is installed

JAVA_HOME: Enter the path to the directory where the Java compiler is
installed.

CONFIG: Enter the entry which will be used for user authentication. This
entry is specified in the login configuration file.

2. Copy AMConfig.properties from Access Manager server installation machine
location <CONFIG_DIR> to the client machine where this sample will be run.

3. On the client machine, make sure the following are in your classpath:

❍ am_services.jar

❍ jaas.jar

❍ jss3.jar

❍ AMConfig.properties

Include jaas.jar in your classpath if you are using JDK version less than
JDK1.4.

Using Authentication SPIs

Chapter 6 Using Authentication APIs and SPIs 157

4. A sample configuration file purejaassample.config is provided for testing
this sample. It contains only one entry named.Sample. Sample is the name to
be entered for CONFIG in the Makefile.

The entry specifies that the LoginModule to be used to do the user
authentication is the PureJAASSampleLoginModule. SampleLoginModule is
must succeed in order for authentication to be considered successful. It passes
options with ORG_NAME as the organization name and INDEX_NAME as the
Access Manager authentication module to which this sample has to
authenticate.

If you must use a different login configuration, modify the Makefile. For
example, change the following:

-Djava.security.auth.login.config=purejaassample.config

to this:

-Djava.security.auth.login.config=<yourj_jaas_config_file.config>

5. To compile, run the make command.

6. To run the sample program, run the make run command.

To Enable SSL
1. In the sample client program, add this JVM property:

-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

2. Edit the following properties in the AMConfig.properties file:

com.iplanet.am.admin.cli.certdb.dir:
<ISinstall-dir>\SUN\IdentityServer6\Servers\alias

com.iplanet.am.admin.cli.certdb.prefix:
https-machine1.red.iplanet.com-machine1-

com.iplanet.am.server.protocol: https

com.iplanet.am.server.port: Enter the appropriate port on the server machine
where machine1 is the host name of the server

Sample {
 PureJAASSampleLoginModule required ORG_NAME="dc=iplanet,dc=com"
INDEX_NAME="LDAP" debug=true;
 };

Using Authentication SPIs

158 Access Manager 6 2005Q1 • Developer’s Guide

For the detailed information, see the Javadoc for Remote Client APIs. By default,
Access Manager Javadoc is installed in the following directory:

AccessManager-base/SUNWam/docs

For the detailed information on how to plug the Login Module into the standard
JAAS Context, see the JAAS Reference Guide at
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html.

159

Chapter 7

Identity Management

The Identity Management module of Sun Java™ System Access Manager 6 2005Q1
contains an XML template file and application programming interfaces (APIs) that
provide the functionality to, among other operations, create, delete and manage
identity entries in the Sun Java System Directory Server used for data storage. This
chapter offers information on these identity-related features. It contains the
following sections:

• “Overview” on page 159

• “Identity-related Objects” on page 160

• “Object Templates And ums.xml” on page 164

• “amEntrySpecific.xml” on page 168

• “Identity Management SDK” on page 169

• “Identity Management Samples” on page 183

Overview
The Identity Management module allows for the management of Identity-related
Objects using the Access Manager console or command line tools. These objects,
that are created and managed via Access Manager, are actually stored as LDAP
entries in Directory Server. To bridge the gap between the two products, Access
Manager provides interfaces that are used to create and delete identity-related
objects as well as get, add, modify, or remove their attributes.

Identity-related Objects

160 Access Manager 6 2005Q1 • Developer’s Guide

Access Manager Console
All aspects of the Access Manager console are covered in Chapter 3, “The Access
Manager Console,” of this manual and the Sun Java System Access Manager
Administration Guide.

ums.xml
This file defines a set of templates that contain the configuration information needed
to set up each identity-related object created with Access Manager as an LDAP
entry in the Directory Server data store. More information on ums.xml can be found
in “Object Templates And ums.xml” on page 164.

Identity Management Software Development Kit
(SDK)
The SDK is used to integrate the management functions of Access Manager into
external applications or services. More information on the SDK can be found in
“Identity Management SDK” on page 169.

Identity-related Objects
Access Manager defines and manages the following identity-related objects:

• Organizations

• Containers

❍ Organizational Units (referred to as containers in the console)

❍ People Containers

❍ Group Containers

• Users

• Groups

❍ Static Groups

❍ Assignable Groups (Dynamic)

Identity-related Objects

Chapter 7 Identity Management 161

❍ Filtered Groups

• Roles

❍ Static Roles

❍ Filtered Roles

These identity-related objects are not LDAP objects as defined in the Directory
Server schema. These objects are configured using an Access Manager schema,
managed using the Access Manager application and only stored in Directory
Server. In other words, an identity-related object in Access Manager does not
necessarily correspond to its LDAP counterpart in Directory Server. But, because
they are stored in Directory Server, these Access Manager objects must be mapped
to the existing Directory Server schema. Thus, Access Manager object entries are
appended with marker object classes.

Marker Object Classes
An identity-related object stored in Directory Server is identified as such through
the use of special marker object classes appended to its LDAP entry. These object
classes are defined in the Access Manager schema, ds_remote_schema.ldif,
located in IdentityServer_base/SUNWam/ldif. When a marker object class is added to
a Directory Server entry, Access Manager is able to access and manage that entry
using its console or command line tools. For example, an enterprise’s existing
directory schema may use organizational unit as its root rather than the default
organization; by adding the Access Manager organization marker object class,
sunManagedOrganization, to the LDAP entries of the organizational unit, Access
Manager can manage it as the organization’s root. It is through the use of marker
object classes that Access Manager can manage most existing directory structures.
The marker object classes are:

• sunManagedOrganization

• iplanet-am-managed-org-unit

• iplanet-am-managed-people-container

• iplanet-am-managed-group-container

• iplanet-am-managed-person

• iplanet-am-managed-static-group

• iplanet-am-managed-group

• iplanet-am-managed-assignable-group

Identity-related Objects

162 Access Manager 6 2005Q1 • Developer’s Guide

• iplanet-am-managed-filtered-group

• iplanet-am-managed-role

• iplanet-am-managed-filtered-role

For information on how to configure an existing directory tree within Access
Manager, see the Sun Java System Access Manager Migration Guide.

Identity-related Objects As LDAP Entries
Following is a discussion of the Access Manager objects and how they map to
LDAP entries in Directory Server.

Organizations
Represented by the marker object class sunManagedOrganization, organization is
the root entry of an Access Manager tree. It generally maps to an LDAP
organization or organizationalUnit object class.

Containers
Functionally, there are three types of containers in Access Manager.

Organizational Units
Represented by the marker object class iplanet-am-managed-org-unit, an
organizational unit is referred to as a container in the Access Manager console. It
generally maps to the LDAP organizationalUnit object class and can contain
sub-organizations, other containers, roles, groups, and users.

People Containers
Represented by the marker object class iplanet-am-managed-people-container,
a people container is an organizational unit which is a parent for user entries. It
generally maps to the LDAP organizationalUnit object class and can contain
sub-people containers and users.

Group Containers
Represented by the marker object class iplanet-am-managed-group-container,
a group container is an organizational unit which is a parent for any number of
group entries. It generally maps to the LDAP organizationalUnit object class
and can only contain groups and other group containers.

Identity-related Objects

Chapter 7 Identity Management 163

Users
Represented by the markerobject class iplanet-am-managed-person, a user is the
representation of a person. It maps to an LDAP inetOrgPerson. It is a leaf node
that may not contain other entries.

Groups
Functionally, there are three types of groups in Access Manager. Assignable
Groups (Dynamic) (by default) and Static Groups are configured using the
Membership By Subscription option in the console. Filtered Groups are configured
by choosing the Membership By Filter option in the console.

Assignable Groups (Dynamic)
Represented by the marker object class iplanet-am-managed-assignable-group,
an assignable group is one in which an administrator wants to explicitly add the
user to a group. For example, Larry wants to give Ramona permission to look at his
employees’ telephone numbers so he adds her to the ReadPhoneNumbers group.
In Directory Server, member entries contain the memberof LDAP attribute
(inetAdmin object class) and the group membership is dynamically established.

Static Groups
Represented by the marker object class iplanet-am-managed-static-group, a
static group is one in which members are added by appending the
groupOfUniqueNames object class to the LDAP group entry itself. It can contain
users, filtered groups or other static sub-groups. This type of group can be enabled
using the Administration Service in the console. By default, it is disabled and all
groups created are of the type “Assignable Groups (Dynamic).”

Filtered Groups
Represented by the marker object class iplanet-am-managed-filtered-group, a
filtered group is created through the use of an LDAP filter. All user entries are
funneled through the filter and dynamically assigned to the group. The filter
would look for a specified attribute in an entry and return those entries that contain
the attribute as a member of the group.

NOTE Assignable groups are referred to as Dynamic when seen in the console as,
technically, they are created with an LDAP filter albeit a static one.

Object Templates And ums.xml

164 Access Manager 6 2005Q1 • Developer’s Guide

Roles
Functionally, there are two types of roles in Access Manager. Roles can only be
created in organizations, suborganizations and generic containers; they can not be
configured in people containers.

Static Roles
Represented by the marker object class iplanet-am-managed-role, a static role is
a role entry in which the members are added by appending the
groupOfUniqueNames object class to the role entry itself. It can contain users.

Filtered Roles
Represented by the marker object class iplanet-am-managed-filtered-role, a
filtered role is created through the use of an LDAP filter. All user entries are
funneled through the filter and dynamically assigned to the role. The filter would
look for a specified attribute in an entry and return those entries that contain the
attribute as a member of the role.

Object Templates And ums.xml
The ums.xml provides a set of parameters, or templates, that contain the LDAP
configuration information for all Identity-related Objects managed using Access
Manager. The templates are used to create LDAP entries for the identity-related
objects so they can be stored in Directory Server. In addition, the templates are
used for the dynamic generation of roles and the construction of object searches.
The file can be found in the IdentityServer_base/SUNWam/config/ums directory; it is
based on the sms.dtd which is defined in Chapter 8, “Service Management,” of
this manual.

Structure Of ums.xml
The ums.xml defines three types of templates: Structure, Creation and Search.
Structure templates define the Directory Server information tree attributes for the
object. Creation templates define an LDAP template for the object being created.
Search templates define guidelines for performing searches using LDAP.

NOTE These templates can be modified by administrators to alter the behavior of the Java
interfaces. But, if ums.xml is modified and reloaded, there will be inconsistencies
between the entries created prior to the modifications and the newer ones.

Object Templates And ums.xml

Chapter 7 Identity Management 165

Structure Templates
Structure templates define the form an Access Manager object will take within the
Directory Server information tree. In other words, these templates define the child
nodes (roles, groups, containers) that are created IN ADDITION to the creation of
the object itself. There are six attributes that need to be defined for each object’s
structure.

• class—This attribute represents the name of the Java class that will
implement the object. This attribute is fixed and should never be modified.

• name—This attribute defines the Relative Distinguished Name (RDN) for the
object. RDN is "ou=People" or "cn=ContainerDefaultTemplateRole". For the
core structure templates such as Organization or OrganizationaUnit, the value
defined at run time (when you create Org's or containers from console or CLI).
Thats why you don't see the RDN value for the core ones. Where as for others
such as PeopleContainer & DefaultOrgRole, you see the RDN's. You can
specify the RDN values for the PeopleContainers, Groups that can be created.
A note of caution that the naming attribute specified in the RDN, for example
ou from ou=Groups should match the naming attribute defined in the Group
Creation template. For example, an organization has o=org as its naming
attribute while a people container uses ou=People.

• childNode—This attribute specifies the child nodes (roles, groups, containers)
that will be created in tandem with the object. The value is the name of the
structure template for the respective object.

• template—This attribute specifies the name of the Creation template used to
create this object.

• filter—This attribute is not currently used.

• priority—For internal use only, the value of this attribute should always
remain 0.

Creation Templates
Every identity object that Access Manager creates has a corresponding creation
template which defines the LDAP schema for the object. It specifies which object
classes and attributes are mandatory or optional and which default values, if any,
should be set. This conforms to the actual LDAP entry in the Directory Server.
There are six attributes that need to be defined for each object’s template.

• name—This attribute defines the type of object that the template will create. It is
also the name of the template itself. This attribute should not be modified.

Object Templates And ums.xml

166 Access Manager 6 2005Q1 • Developer’s Guide

• javaclass—This attribute defines the name of the Java class used to
instantiate the object. This attribute should not be modified.

• required—This attribute defines the required LDAP object classes and
attributes for the object.

• optional—This attribute defines the optional LDAP object classes and
attributes for the object.

• validated—This attribute is reserved for future use.

• namingattribute—This attribute specifies the LDAP attribute used to name
the object. For instance, the Basic User creation template has as its
namingattribute the value of the LDAP attribute, uid.

Search Templates
Search templates are used to define how searches for identity-related objects are
performed in Directory Server. This template defines a default search filter and the
attributes returned in the search. For example, a search filter is constructed which
defines and specifies which attributes and values are to be retrieved from the
Directory Server.

• name—This attribute defines the name of the search template.

• searchfilter—This attribute defines the value the search will look for.

• attrs—This attribute specifies the LDAP attributes that need to be returned.

Modifying ums.xml
Any LDAP attributes or object classes not already present in the Directory Server
LDAP schema must be added to the ums.xml file in order for them to be
recognized by the Access Manager. In most cases, the attributes that service
developers might want to add may already exist in the inetorgperson and the
inetuser object classes. If, for example, a custom mail service is being added with,
specifically, an employeeNumber attribute, the ums.xml file does not need to be
modified because this attribute already exists in the inetorgperson object class.
Generally, the ums.xml file does not need to be modified. Some circumstances
where this file would need to be modified are:

• if Access Manager is being installed against a legacy DIT.

NOTE For a listing of interfaces applicable to each identity-related objects, see
“amEntrySpecific.xml” on page 168.

Object Templates And ums.xml

Chapter 7 Identity Management 167

• if new object classes are being added to users or organizations.

• if service developers want to change the default organizations or roles.

• if service developers need to change an entry’s naming attribute.

Additional information on when and how to modify the ums.xml file is covered in
the section on installing against a legacy DIT in the Sun Java System Access Manager
Migration Guide.

Adding Custom Object Classes
If a service developer wants to add new or customized object classes to the
Directory Server for Access Manager’s use, they would need to modify the
templates in the ums.xml file. The DAI Service would then need to be deleted from
Directory Server and the modified ums.xml reloaded using the amadmin command
line tool.

Once ums.xml has been modified, the new object classes and attributes must be
defined in an XML service file which would then be imported into Access Manager
using the procedures described in Chapter 8, “Service Management,” of this
manual. This configures Access Manager to manage the new object classes from the
console.

DAI Service
When Access Manager is installed, the ums.xml file is stored in Directory Server as
the Directory Access Instructions (DAI) service. The DAI service is only available
for modification through the Directory Server; it is not available through the Access
Manager console or command line interface. The Access Manager SDK gets the
configuration information from this directory tree node, when needed, to create an
identity-related object or perform a search. Any attribute specified in the ums.xml
can be set for a created object. If ums.xml is modified, the DAI Service would need
to be deleted from Directory Server and reloaded using the amadmin command line
tool. To delete the DAI Service from Directory Server, delete the DAI branch

CAUTION It is recommended that the ums.xml configuration file be backed up before any
modifications are made.

NOTE umsExisting.xml contains objectclasses and user object class tags which will
be replaced after installation and is used when installing Access Manager with an
existing directory server information tree.

amEntrySpecific.xml

168 Access Manager 6 2005Q1 • Developer’s Guide

(ou=DAI,ou=services,root-suffix) or use the amadmin command line tool with the
-r option. To reload ums.xml, use amadmin and the -s option. (The administrator
user and password options will also be used for both.) For more detailed
information on the command line tools, see the Sun Java System Access Manager
Administration Guide.

amEntrySpecific.xml
The purpose of the amEntrySpecific.xml service file is to define attributes from
an existing directory to display on the Access Manager console’s functional pages
for all Identity-related Objects. These functional pages are as follows:

• Create—The Create page is displayed when the administrator clicks New.

• Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an object is clicked.

• Search—The Search link is in the top left frame of the Access Manager console.

Each object can have its own schema definition in the amEntrySpecific.xml file
which is based on the sms.dtd as described in Chapter 8, “Service Management,”
of this manual.

If a service developer wants to customize the console’s functional pages with
attributes that are not default to the Access Manager tree, they would modify the
amEntrySpecific.xml file. For example, to display an attribute on the group
page, the new attribute needs to be added to the amEntrySpecific.xml file. Any
object with customized attributes in the Directory Server would need to have those
attributes reflected in the amEntrySpecific.xml file also. (Most often, a service
developer would only be customizing the organization pages.) Code Example 7-1

NOTE When using the amadmin command line tool to reload ums.xml, the full DN of
the amadmin user must be used as a parameter. If not, the LDAP Authentication
Service will not be able to find the administrator in its search for the user DN. For
example, instead of using amadmin -u amadmin -w 11111111 -s ums.xml
file path, the input command would be:

amadmin -u
"uid=amadmin,ou=people,dc=example_org,dc=com" -w
11111111 -s ums.xml file path

NOTE Dynamic attributes are not supported in amEntrySpecific.xml.

Identity Management SDK

Chapter 7 Identity Management 169

is the organization attribute subschema that defines the display of an
organization’s Organization Status and its choice values. Note that based on the
information in“any Attribute” on page 208, this Organization Status attribute will
be displayed on the Search page and is not an attribute requiring a value for
creation.

If the type attribute is not specified in amEntrySpecific.xml, the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the Access Manager console.

All the attributes listed in the schema definitions in the amEntrySpecific.xml file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the amEntrySpecific.xml file, the Access
Manager console will not display the attribute.

Identity Management SDK
The Access Manager SDK contains an API for identity management. These
interfaces can be used by developers to integrate management functions into
external applications or services that will be managed by Access Manager. The API
functions to create or delete identity-related objects as well as get, modify, add or
delete the object’s attributes. The com.iplanet.am.sdk package contains all the
interfaces and classes necessary to perform these operations in Directory Server.

Code Example 7-1 Organization Subschema of amEntrySpecific.xml

...
<SubSchema name="Organization">
 <AttributeSchema name="inetdomainstatus"
 type="single_choice"
 syntax="string"
 any="optional|filter"
 i18nKey="o2">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 </ChoiceValues>
 </AttributeSchema>
 </SubSchema>
...

NOTE The User service is not configured in the amEntrySpecific.xml file but in its
own amUser.xml file.

Identity Management SDK

170 Access Manager 6 2005Q1 • Developer’s Guide

Interfaces
Below are brief explanations of the Identity Management API.

AMAssignableDynamicGroup
The AMAssignableDynamicGroup interface provides the methods used to manage
“Assignable Groups (Dynamic).” This class extends the base AMGroup interface.
Associated with this object are the following ums.xml templates that define its
behavior at runtime. The creation template used is the
BasicAssignableDynamicGroup; and the search template used is the
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

AMCallback
AMCallBack is a plug-in class that needs to be extended by external applications in
order to do special pre/post-processing for the creation, deletion and modification
operations for users, organizations, roles and groups.

AMConstants
AMConstants is the base interface for all identity-related objects. It is used to define
constants for use with the SDK (constants associated with searches, etc.).

AMDynamicGroup
The AMDynamicGroup interface provides the methods used to manage dynamic
groups. This class extends the base AMGroup interface. Associated with this object
are the following ums.xml templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMEventListener
The AMEventListener interface that can be used to monitor and react to events.
This listener can be called when an identity-related object is removed, renamed or
modified. It must be implemented using the following procedure:

NOTE All operations performed using the API open and close LDAP connections via a
connection pool. The connection pool size can be set in the serverconfig.xml file.
For more information, see Appendix B, “serverconfig.xml File,” in this manual.

Identity Management SDK

Chapter 7 Identity Management 171

1. Implement the AMEventListener interface.

2. Get an instance of the object to which AMEventListener will listen.

For example, get an AMUser object and add the listener:
AMUser.addEventListener().

3. When an event changes something in this object, the listener will be called.

AMFilteredRole
The AMFilteredRole interface provides the methods used to manage “Filtered
Roles.” Associated with this object are the following ums.xml templates that define
its behavior at runtime. The creation template used is BasicFilteredRole; and the
search template used is BasicFilteredRoleSearch. It does not have a pre-defined
structural template.

AMGroup
The AMGroup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMGroupContainer
The AMGroupContainer interface provides the methods used to manage “Group
Containers.” Associated with this object are the following ums.xml templates that
define its behavior at runtime. The structural template used by this class is
GroupContainer; the creation template used is BasicGroupContainer, and the search
template is BasicGroupContainerSearch.

AMObject
AMObject provides basic methods to manage identity-related objects. Since this is a
generic class, it does not have any templates (as defined in “Object Templates And
ums.xml” on page 164) associated with it.

CAUTION Access Manager does not currently support attaching an event listener to template
creation code.

Identity Management SDK

172 Access Manager 6 2005Q1 • Developer’s Guide

AMOrganization
The AMOrganization interface provides the methods used to manage
“Organizations.” Associated with this interface are the following ums.xml
templates that define its behavior at runtime. The structural template used by this
class is Organization; the creation template used is BasicOrganization, and the search
template is BasicOrganizationSearch.

AMOrganizationalUnit
The AMOrganizationalUnit interface provides the methods used to manage
“Organizational Units.” Associated with this object are the following ums.xml
templates that define its behavior at runtime. The structural template used by this
class is OrganizationalUnit; the creation template used is BasicOrganizationalUnit,
and the search template is BasicOrganizationalUnitSearch.

AMPeopleContainer
The AMPeopleContainer interface provides the methods used to manage “People
Containers.” Associated with this object are the following ums.xml templates that
define its behavior at runtime. The structural template used by this class is
PeopleContainer; the creation template used is BasicPeopleContainer, and the search
template is BasicPeopleContainerSearch.

AMRole
The AMRole interface provides the methods used to manage “Roles.” Associated
with this object are the following ums.xml templates that define its behavior at
runtime. The creation template used is BasicManagedRole; and the search template
used is BasicManagedRoleSearch. It does not have a pre-defined structural template.

AMSearchControl
The AMSearchControl class provides a way to customize search behavior.
Common behaviors are time limit, result limit and virtual list view.

NOTE The AMOrganization interface contains methods that can be used to search
through identity-related objects in Directory Server. More information can be found
in “Search Methods In The SDK” on page 175.

Identity Management SDK

Chapter 7 Identity Management 173

AMStaticGroup
The AMStaticGroup interface provides the methods used to manage “Static
Groups.” This class extends the base AMGroup interface. The name of the creation
template used with this class is BasicGroup; and the search template used is
BasicGroupSearch. It does not have a pre-defined structural template.

AMStoreConnection
The AMStoreConnection class provides the means to establish a connection to the
data store Directory Server and provides methods to create, remove and get
different types of identity-related objects. A SSOToken is required in order to
instantiate a AMStoreConnection object.

AMTemplate
The AMTemplate interface represents a service template associated with AMObject.
Access Manager distinguishes between virtual and entry attributes. As defined for
Sun Java System Directory Server, a virtual attribute is an attribute not physically
stored in an LDAP entry but still returned with it as a result of a LDAP search.
Virtual attributes are analogous to inherited attributes. An entry attribute is a
non-inherited attributes.

Code Example 7-2 Sample Code Using AMSearchControl

SSOTokenManager manager = SSOTokenManager.getInstance();
SSOToken token = manager.createSSOToken(new
AuthPrincipal("uid=amadmin,ou=People,dc=example,dc=com"), "11111111");
suo = getSampleUserOperations(token);
amsc = new AMStoreConnection(token);
//System.out.println(suo.createUser(amsc));
AMSearchControl amc = new AMSearchControl();
amc.setTimeOut (2000);
amc.setSearchScope (AMConstants.SCOPE_ONE);
AMPeopleContainer amp =
amsc.getPeopleContainer("ou=people,dc=example,dc=com");
Set userset = (amp.searchUsers(amc, "(uid=u*)")).getSearchResults();
Object users[] = userset.toArray();
System.out.println((String)users[0]);
System.exit(0);

NOTE More information on virtual attributes can be found in “Virtual Attribute” on
page 373 of Appendix E, “Directory Server Concepts,” in this manual.

Identity Management SDK

174 Access Manager 6 2005Q1 • Developer’s Guide

For AMOrganization, AMOrganizationalUnit and AMRole, virtual attributes can
be grouped in a template on a per-service basis; there may be one service template
for each service for any given AMObject. Such templates determine the service
attributes inherited by the users within the scope of this object. The templates are:
DYNAMIC_TEMPLATE and ORGANIZATION_TEMPLATE. DYNAMIC_TEMPLATE are
implemented using CoS; ORGANIZATION_TEMPLATE does not have virtual attributes
or LDAP attributes.

Template Priority
When an object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), the conflict is
resolved through template priorities. (This conflict will only occur with services
that contain “Dynamic Attributes.”) The priority is defined by the value of the
“cosQualifier Attribute” as discussed in Chapter 8, “Service Management,” of this
manual. (The comparison values are default, override, and merge-schemes.)
The priority level for a service template is set when then template is created using
the Access Manager console. The levels are Highest, Higher, High, Medium, Low,
Lower, and Lowest. Templates with higher priorities will be favored over
templates with lower priorities when default is the value of cosQualifier. In the
case where two or more templates are being considered for inheritance of an
attribute value, and they have the same (or no) priority, the result is merged. If the
value is override, the priority level of the template takes precedence over any
priority specified in the user profile. Merge-schemes signifies that the priority
values will not be used, but a merged list of attribute values from all templates will
be assigned. Templates which do not have an explicitly assigned priority are
considered to have the lowest priority possible, or no priority.

AMUser
The AMUser interface provides the methods used to manage “Users.” Associated
with this object are the following ums.xml templates that define its behavior at
runtime. The creation template used is BasicUser; and the search template used is
BasicUserSearch. It does not have a pre-defined structural template.

Default Implementation Of AMUser
There is a default implementation of AMUser. Assuming an SSOToken and a user
DN, the code to find the user status is illustrated in Code Example 7-3.

Code Example 7-3 Sample Code To Find User Status

AMStoreConnection conn = new AMStoreConnection (ssoToken) ;
AMUser user = conn.getUser (userDN) ;
if (user.isActivated()) {
....

Identity Management SDK

Chapter 7 Identity Management 175

AMUserPasswordValidation
AMUserPasswordValidation is an interface to plugin external modules to validate
user names and passwords. The methods of this class must be overridden by the
implementation plugin modules. The modules will be invoked whenever a userID
or password value is being added or modified using Access Manager console, the
amadmin CLI or the SDK directly.

Search Methods In The SDK
The SDK provides a variety of methods to conduct searches throughout the
organizational tree. They are provided within the AMOrganization interface.
Criteria is needed by the API to perform a search. Typically, the criteria is a LDAP
search filter string, the scope of the search (one level or sub-tree), and where the
search will begin (the base DN). The SDK provides the APIs to conduct searches
and obtain results for all identity objects.

This section specifically discusses one of the search methods: searchUsers. (For
information on all of the search methods, refer to the Access Manager Javadocs.)
Code Example 7-4 is the set of different search methods available for searchUsers.

} else {
....
}

NOTE The SDK always includes the objectclass used to search so it is not required to
explicitly include the filter. For example if searching for users, the SDK will include
the default user search filter provided in the BasicUserSearch search template in
the ums.xml.

Code Example 7-4 Available Search Methods For searchUsers

 public Set searchUsers(String wildcard, int level)
 throws AMException, SSOException;

 public Set searchUsers(String wildcard, Map avPairs, int level)
 throws AMException, SSOException;

Code Example 7-3 Sample Code To Find User Status (Continued)

Identity Management SDK

176 Access Manager 6 2005Q1 • Developer’s Guide

Search Method Parameters
Here are brief descriptions of some of the search method parameters.

AMSearchControl
This class provides a way to specify detailed search criteria such as the scope of the
search, the maximum results, time out value, etc. It must be implemented for all
searches to set these criteria.

wildCard
This parameter can be used to specify the wild card used for naming attributes. For
example, if searching for all users whose naming attributes (uid or cn) start with
"Ma", then the wild card could be Ma*.

avPair
This parameter is a map of attribute/value pairs that need to be added to a search
filter. The key of the map is the attribute name and the value is a set of values. The
SDK will construct a filter from this avPair map. Each of the pairs in the map will
be OR ("|") and not AND (&) to construct the filter.

avFilter
In most cases it will be sufficient to OR the attributes, but this parameter provides
flexibility for applications to pass their own search filter to meet search criteria.
Such filters could be a complex LDAP search filter as in the following example:

(&(objectclass=iplanet-am-managed-person)((customEmployeeNumer=12*)
&(customDepartment=3459932)))

This example illustrates when two conditions (the employee number and
department number) need to be met. For this purpose, AND (&) is used.

 public AMSearchResults searchUsers(String wildcard, Map avPairs,
AMSearchControl searchControl)
 throws AMException, SSOException;

 public AMSearchResults searchUsers(String wildcard,
 AMSearchControl searchControl)
 throws AMException, SSOException

 public AMSearchResults searchUsers(String wildcard,
 AMSearchControl searchControl, String avfilter)
 throws AMException, SSOException;

Code Example 7-4 Available Search Methods For searchUsers

Identity Management SDK

Chapter 7 Identity Management 177

searchUsers Sample Code
Code Example 7-5 demonstrates how to search for all users in an organization (DN:
dc=example,dc=com) who belong to department 3459932 and whose user names
end with smith.

NOTE The methods that return a java.util.Set will throw an exception if the search
fails as a result of exceeding the search limit or the time limit. In such cases, even
partial results of the failed search will not be returned. To obtain the partial results
in such cases, the methods that return an AMSearchResults object must be
used. The error code can be verified by using the class methods to check if the
search was successful.

Code Example 7-5 Sample Code For Search Methods

// Note obtain a valid token of a principal who has privileges to
// perform this operation.
SSOToken token = getSSOToken();

// Create an AMStoreConnection and obtain an AMOrganization
// instance for dc=example, dc=com
AMStoreConnection amc = new AMStoreConnection(token);
AMOrganization amOrg = amc.getOrganization("dc=example,dc=com");

// Construct the search filter
// Need to retrieve all usernames ending with smith
String wildCard = "*smith"
Map avPair = new HashMap();
Set departmentValue = new HashSet();
departmentValue.add("3459932");
avPair.put("customDepartment", departmentValue);

// Set the search control
AMSearchControl = new AMSearchControl();
// Sub tree search
searchControl.setSearchScope(AMConstants.SCOPE_SUB);
// Time out 3000 milliseconds.
searchControl.setTimeOut(3000);
// Would like to get only first 100 results
searchControl.setMaxResults(100);

// Perform the search
AMSearchResults results = amOrg.searchUsers(wildcard, avPair,
 searchControl);
// Check if any time out or size limit errors occured.
if (results.getErrorCode == AMSearchResults.SUCCESS) {
 // Process the results
} else {
 // Verify the error condition and take appropriate action
}

Identity Management SDK

178 Access Manager 6 2005Q1 • Developer’s Guide

Here the filter to conduct the search will look like:

(&(uid=*smith)(objectclass=inetorgperson)((customerDepartment="3459
932")))

To add an additional department, one more value can be added to the search as in:

(&(uid=*smith)(objectclass=inetorgperson)((customerDepartment="3459
932")|(customerDepartment="3459933")))

Search Groups Sample Code
Code Example 7-6 uses interfaces from the com.iplanet.am.sdk package to
search groups.

Code Example 7-6 Search Groups Code Sample

try {
 Set orgSet1 = new HashSet();
 Set orgSet2 = new HashSet();
 Set orgSet3 = new HashSet();
 Set orgSet4 = new HashSet();
 AMSearchResults results = null;
 AMSearchControl ctl = new AMSearchControl(); //use default values
 String DN = "ou=Groups,dc=idp1,dc=com";
 AMOrganizationalUnit org = conn.getOrganizationalUnit(DN);
 if (org.isExists()) {
 //get all groups in this OU:
 orgSet1 = org.getAssignableDynamicGroups(AMConstants.SCOPE_SUB);
//get Assignable Dynamic Groups
 orgSet2 = org.getDynamicGroups(AMConstants.SCOPE_SUB); //get Dynamic
Groups
 orgSet3 = org.getStaticGroups(AMConstants.SCOPE_SUB); //get Static
Groups

 //set up the avPairs for the search on attribute within group
 Map avPairs = new HashMap();
 Set set = new HashSet(1);
 set.add("true");
 avPairs.put("iplanet-am-group-subscribable", set);
 results = org.searchAssignableDynamicGroups("*", avPairs, ctl);
//returns all subscribable groups
 orgSet4 = results.getSearchResults();
 }
 //Print the results
 return "Assignable Dynamic Groups: " + orgSet1.toString() +
 "Dynamic Groups: " + orgSet2.toString() +
 "Static Groups: " + orgSet3.toString() +
 "Group with subscribable=true:" + orgSet4.toString();
 } catch (Exception ex) {
 ex.printStackTrace();

Identity Management SDK

Chapter 7 Identity Management 179

Email Notification And The SDK
amProfile.properties is the localization file for the SDK. All strings that may be
visible via an error message or a feature are stored in this file as key=value pairs.
The file itself is located in IdentityServer_base/SUNWam/locale. Although all of the
properties are not discussed in this section, there are some worth noting that
pertain to email notification. The Administration Service has a number of
notification attributes: User Creation, User Deletion and User Modification
notification lists. When a user profile is created, deleted or modified, a notification
email will be sent to the addresses listed as values of these attributes. To modify the
message that is sent, the following key=value pairs in amProfile.properties
need to be modified.

• 490=The user creation email subject can be defined with this key. The default is
WARNING: user creation notice.

• 491=The user deletion email subject can be defined with this key. The default is
WARNING: user deletion notice.

• 492=The user modification email subject can be defined with this key. The
default is WARNING: user modification notice.

• 493=The user creation email body text can be defined with this key. The default
is user is created: followed by the DN of the user.

• 494=The user deletion email body text can be defined with this key. The
default is user is deleted: followed by the DN of the user.

• 495=The user modification email body text can be defined with this key. The
default is user is modified: user_DN. attribute is changed: attribute
old_value: original_value new value: modified_value

• 497=The entity from which the email comes is defined with this key. The
default is Identity-Server.

More information on the Administration Service and the notification attributes
themselves can be found in the Sun Java System Access Manager Administration
Guide.

 return "got errors";
 }

Code Example 7-6 Search Groups Code Sample

Identity Management SDK

180 Access Manager 6 2005Q1 • Developer’s Guide

Caching And The SDK
Caching in the Identity Management SDK is used for storing all AMObject
attributes (For example, attributes of identity-related objects) that are retrieved
from Directory Server. The cache does not hold AMObject directly, only its
attributes. All attributes retrieved from Directory Server using the methods
AMObject.getAttributes(), AMObject.getAttribute(String name) or
AMObject.getAttributes(setAttributeNames) will be cached. Table 7-1
contains a listing of the recorded cache properties.

Cache properties can be configured by modifying attributes in the
AMConfig.properties file. For more information see “SDK Caching” on page 338
of Appendix A, “AMConfig.properties File,” in this manual.

Installing The SDK Remotely
It is possible for an external application to perform management functions on the
Directory Server without installing the full Access Manager application at the
external location. By installing the SUNWamsdk package using the pkgadd utility (or
the installer), the Identity Management SDK can be installed on a non-Access
Manager machine. For more details on the Identity Management SDK only
installation option, refer to the Java Enterprise System Installation Guide.

Table 7-1 Recorded Cache Properties

Information Name What is recorded

Number of requests during
this interval

Number of get requests during the specified interval

Number of cache hits
during this interval

Number of hits during the specified interval

Hit ratio for this interval Hit ratio for the specified interval

Total number of requests
since server start

Overall number of get requests since a server re-start

Total number of cache hits
since server start

Overall number of hits since a server re-start

Overall Hit ratio Overall hit ratio since a server re-start

Total Cache Size The total size of the cached information

Identity Management SDK

Chapter 7 Identity Management 181

Management Function Samples
Following are several samples that illustrate identity management functions using
the Identity Management SDK.

Creating Objects
Typically, three steps are involved in creating an object with the SDK. The
following three steps are specific to creating users but can be modified for any
object.

To Create A User
1. Get AMStoreConnection object to connect to the data store.

2. From the AMStoreConnection, get AMPeopleContainer object where the users
will be created.

3. In AMPeopleContainer object, create users.

NOTE If the SUNWamsdk package is installed remotely and Access Manager is running
in SSL mode, a certificate database needs to be created. Create the database
using the Sun Java System Web Server command line tool certutil or the Web
Server console and then copy the database to the remote machine. For more
information, see the Sun Java System Web Server documentation set.

NOTE Access Manager can authenticate and authorize against directories other than Sun
Java System Directory Server (for example, Microsoft™ Active Directory), but
Access Manager can not perform management functions against these directories
such as creating users or deleting organizations.

Code Example 7-7 Sample Code To Create A User

/**
 * This method will describe the SDK usage for creating a user.
 * It uses AMStoreConnection to get the organization object
 * It also uses the Set Parameters to store the different
 * attributes of the user. It throws
 * an AMException if it's unble to create it and we throw
 * message "unable to create" to the GUI by catching the same
 */

 public String createUser(HttpServletRequest req, Set parameters,
AMStoreConnection conn) {
 try {

Identity Management SDK

182 Access Manager 6 2005Q1 • Developer’s Guide

To Create An Organization
1. Get AMStoreConnection object to connect to the data store.

2. From the AMStoreConnection, get AMOrganization object for the top level
organization.

3. In AMOrganization object, create sub-organization.

 Map userAttributeMap = new HashMap();
 if (parameters.contains("uid")) {
 uid = req.getParameter("uid");
 storeUserAttributes("uid", uid, userAttributeMap);
 }
 if(parameters.contains("firstname")) {
 firstName = req.getParameter("firstname");
 storeUserAttributes("givenname", firstName,
userAttributeMap);
 }
 if(parameters.contains("lastname")) {
 lastName = req.getParameter("lastname");
 storeUserAttributes("sn", lastName, userAttributeMap);
 }
 if(parameters.contains("password")) {
 passWord = req.getParameter("userPassword");
 storeUserAttributes("userPassword", passWord,
userAttributeMap);
 }

 Map userMap1 = new HashMap();
 userMap1.put(uid, userAttributeMap);
 String orgDN = req.getParameter("orgName");
 String dn = "ou=People" + "," + orgDN;
 AMPeopleContainer ampc = conn.getPeopleContainer(dn);
 ampc.createUsers(userMap1);
 userDN = "uid=" + uid + "," + dn;
 /*
 * This is to keep the context of the user
 */
 contextUser = conn.getUser(userDN);
 return showCreateUserSuccess();
 } catch (Exception ex) {
 ex.printStackTrace();
 return "Unable to create";
 }

NOTE org.createUsers creates users directly under the organization. In order to
create users in a people container, use the AMPeopleContainer object.

Code Example 7-7 Sample Code To Create A User (Continued)

Identity Management Samples

Chapter 7 Identity Management 183

Retrieve Templates
Code Example 7-8 retrieves a service’s dynamic templates by opening a connection
to Directory Server with AMStoreConnection. It retrieves a service’s dynamic
template by defining the DN of the top organization (toporg.com) as well as the
string attribute of the specific service to be retrieved.

Identity Management Samples
Access Manager contains samples that illustrate user management functions. These
include a sample to add an attribute to the user profile and one to illustrate how to
create organizations, users, roles, and services using the SDK. They can be found in
IdentityServer_base/SUNWam/samples/um.

Code Example 7-8 Retrieve Service’s Dynamic Template

...
 // instantiate a store connector from SSO Token
 AMStoreConnection amsc = new AMStoreConnection(ssoToken);
 // retrieve top level organization by DN
 AMOrganization org = amsc.getOrganization("dc=toporg,dc=com");
 // retrieve Dynamic type AMTemplate for iPlanetAMSessionService
 AMTemplate template = org.getTemplate("iPlanetAMSessionService",
AMTemplate.DYNAMIC_TEMPLATE);
 // retrieve attributes
 String maxSessionTime =
template.getStringAttribute("iplanet-am-session-max-session-time");
 ...

TIP As an alternative to creating a new XML service file, amUser.xml can be
modified. In this case, unregister the old amUser service file, modify it and
re-register the modified file. Attribute/value pairs need to be integrated into the
amUser.properties file for newly-defined internationalization keys.
ums.xml does not need to be modified for this option.

Identity Management Samples

184 Access Manager 6 2005Q1 • Developer’s Guide

Adding User Attributes
This sample explains how to add new attributes to the User profile so that those
new attributes can be managed via the user page in the Access Manager console.
There are 2 ways this can be achieved: modify the existing amUser.xml, or create a
new XML service file and import it into Access Manager.

Creating Objects With The SDK
This sample contains sample Java code that can be generated and run to create
some identity-related objects including an organization, roles and users. The
defined SampleOrgOperations.java creates an organization, gets the registered
services, and adds them. SampleUserOperations.java and
SampleRoleOperations.java can also be used for their respective purposes.

185

Chapter 8

Service Management

Sun Java™ System Access Manager 6 2005Q1 provides a mechanism for the
definition and management of services and their configuration data. Both
eXtensible Markup Language (XML) files and Java™ interfaces are used for this
purpose. This chapter provides information on how to define a service, the
structure of the XML files and the service management application programming
interfaces (API). It contains the following sections:

• “Overview” on page 185

• “Defining A Custom Service” on page 187

• “DTD Files” on page 198

• “XML Service Files” on page 231

• “Service Management SDK” on page 239

Overview
A service is a group of attributes that are managed together by the Access Manager
console. The attributes can be the configuration parameters of a software module or
they might just be related information with no connection to a software
application. As an example of the first scenario, after creating a payroll module, a
developer can create an XML service file that might include attributes to define an
employee name, an hourly pay rate and an income tax rate. This XML file is then
integrated into the Access Manager deployment so that these three attributes and
their corresponding values can be stored in, and managed from, the Sun Java
System Directory Server data store and Access Manager console, respectively.

Overview

186 Access Manager 6 2005Q1 • Developer’s Guide

Access Manager provides the necessary tools for administrators to define, integrate
and manage groups of attributes as a service. Creating a service for management
using the Access Manager console involves preparing an XML service file,
configuring an LDAP Data Interchange Format (LDIF) file with any new object
classes and importing both, the XML service file and the new LDIF schema, into the
Directory Server. Administrators can then register, customize and manage the
service using the Access Manager console. More specific information on this
process can be found in “Defining A Custom Service” on page 187.

XML Service Files
XML service files enable Access Manager to manage attributes that are stored in
Directory Server. It is important to remember that Access Manager does not
implement any behavior or dynamically generate any code to interpret the
attributes; it can only set or get the attribute values. Out-of-the-box though, Access
Manager loads a number of services it uses to manage the attributes of its own
features; it manages and uses these values. For example, the Logging attributes are
displayed and managed in the Access Manager console, while code
implementations within the Access Manager use these configured attributes to
record the operations of the application. All XML service files are located in
/etc/opt/SUNWam/config/xml. For more specific information on the XML files
used in service management, see “XML Service Files” on page 231.

Document Type Definition Structure Files
The format of an XML file is based on a structure defined in a DTD file. In general,
a DTD file defines the elements and qualifying attributes needed to write a
well-formed and valid XML document. Access Manager exposes the DTD files that
are used to define the structure for the different types of XML files it uses. The

NOTE Throughout this chapter, the term attribute is used to illustrate two concepts. An
Access Manager or service attribute refers to the configuration parameters of a
defined service. An XML attribute refers to the parameters that qualify an XML
element in an XML service file.

NOTE Any application with LDAP attributes can have its data managed using the Access
Manager console by configuring a custom XML service file and loading it into the
Directory Server. For more information, see “Defining A Custom Service” on
page 187.

Defining A Custom Service

Chapter 8 Service Management 187

DTDs are located in IdentityServer_base/SUNWam/dtd. This chapter primarily
concerns itself with sms.dtd, the file that defines the structure for all XML service
files. Additional information on Access Manager DTDs can be found in “DTD
Files” on page 198.

Service Management SDK
Access Manager also provides a service management SDK that gives application
developers the interfaces necessary to register and un-register services as well as
manage schema and configuration information. These interfaces are bundled in a
package called com.sun.identity.sm. More information on the SDK can be found
in “Service Management SDK” on page 239.

Defining A Custom Service
To define a service for management using Access Manager, the developer must
create an XML service file as well as configure an LDIF file for any object classes
not already defined in Directory Server. Both, the XML service file and the new
LDIF schema, must then be imported into Directory Server. Once imported, the
service can be registered to an organization using Access Manager and its
attributes managed and customized by the Access Manager administrator. The
following steps detail the procedure used to define a service. The sections
following the procedure explain each step in more detail.

1. Create an XML service file containing a group of attributes.

This XML service file must conform to the sms.dtd. A simple way to create a
new XML service file would be to copy and modify an existing one. More
information on creating an XML service file can be found in “Creating A
Service File” on page 189. An explanation of the DTD syntax can be found in
“The sms.dtd Structure” on page 199.

NOTE Knowledge of XML is necessary to understand DTD elements and how they are
integrated into Access Manager. When creating an XML file, it might be helpful to
print out the relevant DTD and a corresponding sample XML file.

Defining A Custom Service

188 Access Manager 6 2005Q1 • Developer’s Guide

2. Extend the LDAP schema in Directory Server using ldapmodify, if necessary.

Loading an LDIF file into Directory Server will add any newly defined or
modified LDAP object classes and attributes to the directory tree. This step is
only necessary when defining dynamic, policy and user attributes. (Using
Access Manager-specific object classes and attributes do not require that
changes be made to the LDAP schema.) Instructions on extending the LDAP
schema can be found in “Extending The Directory Server Schema” on
page 193. Additional information on identity-related objects and the Access
Manager schema can be found in Chapter 7, “Identity Management,” of this
manual and the Sun Java System Access Manager Deployment Planning Guide,
respectively. The Sun Java System Directory Server documentation contains
information on the LDAP schema.

3. Import the XML service file into Directory Server using amadmin.

Information on importing an XML service file and the amadmin command line
utility can be found in “Importing The XML Service File” on page 195 and the
Sun Java System Access Manager Administration Guide, respectively.

4. Configure a localization properties file and copy it into the
IdentityServer_base/SUNWam/locale directory.

The localization properties file must be created with accurate i18nKey fields.
These console names map to fields defined in the XML service file. If no
localization properties file exists, Access Manager will display the actual
attribute names. More information on the localization properties file can be
found in “Configuring Console Localization Properties” on page 196 and
“Localization Properties Files” on page 90 of Chapter 5, “Authentication
Service,” in this manual.

5. Update the amEntrySpecific.xml or amUser.xml files, if necessary.

The amEntrySpecific.xml file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the Access Manager
abstract objects. The amUser.xml file can be modified to add User attributes to
the User Service. (Alternately, User attributes can be defined in the actual XML
service file in which case, amUser.xml would not need to be modified.)
Information on abstract objects and updating amEntrySpecific.xml can be
found in Chapter 7, “Identity Management,” of this manual. Information on
modifying amUser.xml can be found in “Modifying A Default XML Service
File” on page 233.

Defining A Custom Service

Chapter 8 Service Management 189

6. Register the service using Access Manager console.

After importing the service into Directory Server, it can be registered to an
organization and the attributes managed through the Access Manager console.
Information on how this can be done is in the Service Configuration chapter in
the Sun Java System Access Manager Administration Guide. Information on how
to register the service using the command line can be found in “Registering
The Service” on page 197.

Creating A Service File
The information in this section corresponds to Step 1 on page 187, creating an XML
service file. The XML service file defines the attributes of an Access Manager
service. It must follow the structure defined in the sms.dtd which enforces the
service developer to combine attributes into one of five groups, allowing the
developer to differentiate between those attributes applicable to, for example, a
service instance or a user. The DTD syntax can be found in “The sms.dtd Structure”
on page 199.

Service File Naming Conventions
When creating a new XML service file, there are some naming conventions that
must be followed.

• The name of a service (other than an authentication module service) as defined
in the XML service file can be any string as long as it is unique.

• The name of an authentication module service as defined in the XML service
file must be in the form iPlanetAMAuthmodule_nameService.)

• Any defined authentication level attribute must be configured as
iplanet-am-auth-module_name-auth-level.

Service Attributes
The sms.dtd requires the service developer to define attributes into one of five
groups. These groups differentiate between those attributes applicable to, for
example, the Access Manager deployment as a whole, a specific service or a single
user.

Defining A Custom Service

190 Access Manager 6 2005Q1 • Developer’s Guide

Global Attributes
Global attributes are defined for the entire Access Manager installation and are
common to all data trees, service instances and integrated applications within the
configuration. Global attributes can not be applied to users, roles or organizations
as their purpose is to configure Access Manager itself. Server names, port numbers,
service plug-ins, cache size, and maximum number of threads are examples of
global attributes that are configured with one value. For example, when Access
Manager performs logging functions, the log files are written into a directory. The
location of this directory is defined as a global attribute in the Logging Service and
all Access Manager logs, independent of their purpose, are written to it. Access
Manager administrators can modify these default values using the console. Global
attributes are stored in Directory Server using specially-defined LDAP attributes so
the LDAP schema does not need to be extended to add a new global attribute.

Organization Attributes
Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication Service are a good example. When the
Authentication Service is registered, attributes are configured depending on the
organization to which it is registered. The LDAP Server and the DN To Start
User Search would be defined at the organization level as this information is
dependent on the address of an organization’s LDAP server and the structure of
their directory tree, respectively. Organization attributes are stored in Directory
Server using specially-defined LDAP attributes so the LDAP schema does not need
to be extended to add a new organization attribute.

Dynamic Attributes
Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations and roles which, in general, have access to any service
assigned to its parent organization. Dynamic attributes are inherited by users that
possess a role or belong to the organization. Because dynamic attributes are

NOTE If a service has only global attributes, it can not be registered to an organization nor
can a service template be created. An example of this would be the Platform
Service.

NOTE Organization attributes are not inherited by sub-organizations. Only dynamic
attributes can be inherited. For additional information, see “Attribute Inheritance” on
page 192.

Defining A Custom Service

Chapter 8 Service Management 191

assigned to roles or organizations instead of set in a user entry, they are virtual
attributes inherited by users using the concept of Class of Service (CoS). When these
attributes change, the administrator only has to change them once, in the role or
organization, instead of a multitude of times in each user entry.

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in
the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

Policy Attributes
Policy attributes specify the access control actions (or privileges) associated with a
service. They become a part of the rules when rules are added to a policy. Examples
include canForwardEmailAddress and canChangeSalaryInformation. The
actions specified by these attributes can be associated with a resource if the
IsResourceNameAllowed element is specified in the attribute definition. For
example, in the web agent XML service file, amWebAgent.xml, GET and POST are
defined as policy attributes with an associated URL resource as
IsResourceNameAllowed is specified.

User Attributes
User attributes are defined for a single user. User attributes are not inherited from
the role, organization, or sub-organization levels. They are typically different for
each user, and any changes to them would affect only the particular user. User
attributes could be an office telephone number, a password or an employee ID. The
values of these attributes would be set in the user entry and not in a role or
organization. For example, if 70 attributes are user-defined and an organization has
two million users, each attribute is stored two million times. This, of course, only

NOTE Dynamic attributes are modeled using class of service (CoS) and roles. For
information on these features, see Appendix E, “Directory Server Concepts,” in this
manual or refer to the Sun Java System Directory Server documentation.

NOTE Out of the box, only the Policy Configuration Service uses policy attributes although
they can be defined for any number of services.

Defining A Custom Service

192 Access Manager 6 2005Q1 • Developer’s Guide

occurs if the service is assigned to the user and a value is set for them. User
attributes can be a part of any service but, for convenience, Access Manager has
grouped a number of the most widely-used attributes into a service defined by the
amUser.xml service file. User attributes are stored within the Directory Server as
LDAP objects, making it feasible to use traditional LDAP tools to manage them. A
Directory Server LDAP schema needs to be defined for these attributes.

Attribute Inheritance
After creating and loading an XML service file, an administrator can assign the
service’s attributes by registering it and creating a service template. Then, when a
user possesses a role or belongs to an organization to which the service is
registered, they inherit the dynamic attributes of the role or the service,
respectively. Inheritance only occurs, though, when the service possessed is
explicitly assigned to the user. A user can inherit attributes from multiple roles or
parent organizations.

ContainerDefaultTemplateRole Attribute
Dynamic attributes are used in an XML service file if an administrator wants to
define a particular attribute as one which is inherited by all identity objects to
which the service is registered. After uploading the XML service file and
registering the service to an organization or role, all users in the sub-trees of the
organization or role will inherit the dynamic attributes. To accomplish this, Access
Manager uses classic CoS and role templates (as described in Appendix E,
“Directory Server Concepts”). ContainerDefaultTemplateRole is a default
filtered role configured for each organization in which the LDAP object class
iplanet-am-managed-person is the default filter. Every user in Access Manager is
a member of iplanet-am-managed-person so every user in the organization
possesses ContainerDefaultTemplateRole. Access Manager creates a separate

NOTE When defining user attributes in an XML service file (other than amUser.xml),
the service must be assigned to the user for the user attributes to be displayed on
their User Profile page. In addition, the User Profile Display Option in the
Administration Service must be set to Combined. For more information, see the
Sun Java System Access Manager Administration Guide.

TIP Service templates created for a parent organization contain attributes that trickle
down to sub-organizations. Therefore it is not necessary to create templates for
sub-organizations unless the attribute values are being customized. Creating a
large number of service templates will have a performance impact.

Defining A Custom Service

Chapter 8 Service Management 193

CoS template for each registered service which points to the service’s dynamic
attributes. Because of this, any user who has ContainerDefaultTemplateRole (all
of them, by default) will inherit the dynamic attributes of the service. The LDIF
entry for ContainerDefaultTemplateRole is illustrated in Code Example 8-1.

Modifying Inheritance
The nsRoleFilter attribute (as displayed in Code Example 8-1 may be modified
to allow objects other than users to inherit from ContainerDefaultTemplateRole.
Formatting its value as, for example,
(|(objectclass=iplanet-am-managed-person)(objectclass=organization)
) allows users and organizations to inherit the dynamic attributes. Any valid filter
syntax can be used although typically it would be limited to attributes or
objectclasses in the user entries. In addition, the relevant objectclass from the LDAP
attributes must also be added to the entry.

Extending The Directory Server Schema
The information in this section corresponds to Step 2 on page 188, extending the
LDAP schema in Directory Server. When configuring an XML service file for
Access Manager, it might also be necessary to modify the Directory Server schema.
First, any customized dynamic, policy or user attributes defined in an Access
Manager service that are not already defined in the Directory Server schema need
to be associated with an LDAP object class. Then the attribute(s) and object
class(es) need to be added to the LDAP schema using the ldapmodify command
line tool and an LDIF file as input.

Code Example 8-1 ContainerDefaultTemplateRole LDIF Entry

dn: cn=ContainerDefaultTemplateRole,o=example
objectClass: top
objectClass: nscomplexroledefinition
objectClass: nsfilteredroledefinition
objectClass: nsroledefinition
objectClass: ldapsubentry
nsRoleFilter: (objectclass=iplanet-am-managed-person)

NOTE The order in which the LDAP schema is extended or the XML service file is loaded
into Directory Server is not important.

Defining A Custom Service

194 Access Manager 6 2005Q1 • Developer’s Guide

To Extend The Directory Server LDAP Schema
1. Create an LDIF file to define any new or modified LDAP object classes and

attributes.

2. Change to the Access Manager bin directory.

cd IdentityServer_base/SUNWam/bin

3. Run ldapmodify using the LDIF file as input.

The syntax is ldapmodify -D userid_of_DSmanager -w password -f
path_to_LDIF_file. By default, userid_of_DSmanager is cn=Directory Manager. If
the LDIF was created correctly, the result of this command would be to modify
the entry cn=schema.

4. Run ldapsearch to ensure that the schema has been created.

The syntax is ldapsearch -b cn=schema -s base -D userid_of_DSmanager -w
password (objectclass=*) | grep -i servicename. If the LDIF was created
correctly, the result of this command would be a listing of the object classes as
illustrated in Code Example 8-2.

NOTE After extending the schema, it is not necessary to restart the Directory Server but,
as ldapmodify is server-specific, the schema needs to be extended on all
configured servers. Information on how this is done can be found in the Sun Java
System Directory Server documentation.

Code Example 8-2 Sample LDIF Listing For Mail Service

objectClasses: (1.2.NEW
 NAME 'am-sample-mail-service'
 DESC 'SampleMail Service' SUP top AUXILIARY
 MAY (am-sample-mail-service-status $
 am-sample-mail-root-folder $
 am-sample-mail-sentmessages-folder $
 am-sample-mail-indent-prefix $
 am-sample-mail-initial-headers $
 am-sample-mail-inactivity-interval $
 am-sample-mail-auto-load $
 am-sample-mail-headers-perpage $
 am-sample-mail-quota $
 am-sample-mail-max-attach-len $
 am-sample-mail-can-save-address-book-on-server)
 X-ORIGIN ’user defined’)
attributeTypes: (11.24.1.996.1
 NAME ’am-sample-mail-service-status’
 DESC ’SampleMailService Attribute’

Defining A Custom Service

Chapter 8 Service Management 195

Adding Access Manager Object Classes To Existing Users
If a new service is created and the service’s users already exist, the service’s object
classes need to be added to the user’s LDAP entries. To do this, Access Manager
provides migration scripts for performing batch updates to already-existing user
entries. No LDIF file need be created. These scripts and the procedures are
described in the Sun Java System Access Manager Migration Guide. Alternatively,
registered services can be added to each user by selecting the service on their
Properties page although, for an organization with many users, this would be
time-consuming.

Importing The XML Service File
The information in this section corresponds to Step 3 on page 188, importing an
XML service file into Access Manager. This step is important as it serves to
populate Directory Server and Access Manager with the newly defined service
attributes.

1. Change to the Access Manager install directory:

cd IdentityServer_base/SUNWam/bin

2. Run following command line application: ./amadmin --runasdn
DN_of_directory_server_administrator --password
password_directory_server_administrator --verbose --schema xml_service_file_path.

More information on the amadmin command line tool can be found in the Sun
Java System Access Manager Administration Guide

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 X-ORIGIN ’user defined’)

CAUTION It is not recommended to use ldapmodify to extend the schema.

NOTE If changing an existing service, the original XML service file must be deleted before
importing the newly modified XML service file. Information on this function can be
found in the Sun Java System Directory Server documentation.

Code Example 8-2 Sample LDIF Listing For Mail Service

Defining A Custom Service

196 Access Manager 6 2005Q1 • Developer’s Guide

Configuring Console Localization Properties
The information in this section corresponds to Step 4 on page 188, configuring a
localization properties file. A localization properties file specifies the locale-specific
screen text that an administrator or user will see when directed to a service’s
attribute configuration page.

The localization properties files are located in the
IdentityServer_base/SUNWam/locale directory. They are generally named using the
format amservice_name.properties. Code Example 8-3 is the localization
properties file for the Client Detection service named
amClientDetection.properties.

The localization properties files consist of a series of key=value pairs. The value of
each pair will be displayed on the service’s Properties page in the Access Manager
console. The keys (a1, a2, etc.) map to the i18nKey fields defined for each attribute
in a service in the XML service file. The keys also determine the order in which the
fields are displayed on screen as the keys are displayed in the order of their ASCII

NOTE For certain services, this file also localizes error messages, Java exceptions and
email notification specifics. This section though concerns itself only with
service-related values. Additional information can be found in “Localization
Properties Files” on page 90 of Chapter 5, “Authentication Service,” in this manual.

Code Example 8-3 amClientDetection.Properties File

...
attr descriptions msgs
#
iplanet-am-client-detection-service-description=Client Detection
a100=Client Types
a101=Default Client Type
a102=Client Detection Class
a103=Client Detection Enabled
a100.link=Edit
unknown_key=requested key is not available in the property
null_key=null key passed to getProperty
null_clientType=client type is null
unknown_clientType=requested clientType doesn't exist
update_error=notification received between setproperty and store. Need to do
setproperty again.

Defining A Custom Service

Chapter 8 Service Management 197

characters (a1 is followed by a10, followed by a2, followed by b1). For example, if
an attribute needs to be displayed at the top of the service attribute page, the
alphanumeric key should have a value of a1. The second attribute could then have
a value of either a10, a2 or b1, and so forth.

Localizing With Two Languages
When one instance of Access Manager is localized with two languages, the
localization properties files still go into the same directory. Each file name would
be appended with a suffix to match the locale. For example, if French localization
packages are added, the file name would be amservice_name_fr.properties. If
Spanish localization packages are added, that properties file name would be
amservice_name_es.properties.

Updating Files For Abstract Objects
For information corresponding to Step 5 on page 188, updating the
amEntrySpecific.xml, see Chapter 7, “Identity Management,” of this manual. For
information corresponding to Step 5, updating the amUser.xml, see “XML Service
Files” on page 231.

Registering The Service
The information in this section corresponds to Step 6 on page 189, registering a
new service to an identity object. The preferred way to register a service is to use
the Access Manager console. Information on how this is done can be found in the
Sun Java System Access Manager Administration Guide. An alternate process to
register a service is to use the amAdmin.dtd, batch processing templates and the
command line. Information can be found in “The amAdmin.dtd Structure” on
page 209 and “Batch Processing With XML Templates” on page 234.

TIP If a localization properties file is modified, Access Manager needs to be restarted to
see the changes. If importing a new localization properties file, Access Manager
does not need to be restarted.

NOTE Information on downloading and installing localized versions of Access Manager
can be found at http://wwws.sun.com/software/download/
inter_ecom.html.

DTD Files

198 Access Manager 6 2005Q1 • Developer’s Guide

DTD Files
Access Manager contains numerous DTD files to define the structures for the XML
files used in Access Manager. The DTDs are located in
IdentityServer_base/SUNWam/dtd and include:

• Auth_Module_Properties.dtd—defines the structure for XML files used by
each authentication module to specify the properties for the Authentication
Service interface. Information on this document can be found in
“Authentication Programming Interfaces” on page 155 in Chapter 5,
“Authentication Service,” of this manual.

• amAdmin.dtd—which defines the structure for XML files used to perform
batch LDAP operations on the directory tree using the command line tool
amAdmin. Information on this document can be found in “The amAdmin.dtd
Structure” on page 209.

• amWebAgent.dtd—defines the structure for XML files used to handle requests
from, and send responses to, web agents. This file is deprecated and remains
for purposes of backward compatibility.

• policy.dtd—defines the structure for XML files used to store policies in
Directory Server. Information on this document can be found in the Access
Manager Administration Guide.

• remote-auth.dtd—defines the structure for XML files used by the
Authentication Service’s remote Authentication API. Information on this
document can be found in “The remote-auth.dtd Structure” on page 137 of
Chapter 5, “Authentication Service,” of this manual.

• server-config.dtd—defines the structure for serverconfig.xml which
details ID, host and port information for all server and user types. Information
on this document can be found in Appendix B, “serverconfig.xml File,” in this
manual.

• sms.dtd—which defines the structure for XML service files. Information on
this document can be found in “The sms.dtd Structure” on page 199.

NOTE To register a service, ensure that Access Manager is properly binding to the
Directory Server.

DTD Files

Chapter 8 Service Management 199

• web-app_2_2.dtd—defines the structure for XML files used by the Access
Manager deployment container to deploy J2EE applications. The
corresponding XML file is called a deployment descriptor which specifies
container options and describes specific configuration requirements to be
resolved by the deployer.

The sms.dtd Structure
The sms.dtd defines the data structure for all XML service files. It is located in the
IdentityServer_base/SUNWam/dtd directory. The sms.dtd enforces the developer to
define each service attribute as one of five types which are then stored and
managed differently. For instance, some of the attributes are applicable to an entire
Access Manager installation (such as a port number or server name), while others
are applicable only to individual users (such as a password). The attribute types
are Global, Organization, Dynamic, Policy, and User. More information on these
types can be found in “Service Attributes” on page 189.

An explanation of the main elements defined by the sms.dtd follows. Each element
includes a number of XML attributes which are also explained. Explanations of the
remaining elements can be found in the sms.dtd file itself. Access Manager
currently supports only about some of the elements contained in sms.dtd; this
section discusses only those elements.

ServicesConfiguration Element
ServicesConfiguration is the root element of the XML service file. It allows for the
definition of multiple services per one XML file. Its immediate sub-element is the
Service Element. Code Example 8-4 on page 200 illustrates the ServicesConfiguration
element as defined in the amClientDetection.xml service file located in
/etc/opt/SUNWam/config/xml.

CAUTION None of the DTD files should be modified. The APIs and their internal parsing
functions are based on the installed definitions. Any alterations to the DTD files will
hinder the operation of Access Manager.

NOTE Customized attribute names in XML service files should be written in lower case as
Access Manager converts all attribute names to lower case when reading from the
Directory Server.

DTD Files

200 Access Manager 6 2005Q1 • Developer’s Guide

Service Element
The Service element defines the schema for one given service. A number of different
services can be defined in one XML file using this element, although this is not
recommended. Currently, Access Manager supports the following sub-elements:
Schema Element (which defines the service’s attributes as either Global,
Organization, Dynamic, User or Policy) and Configuration. The required XML
attributes for the Service element are the name of the service, such as
iPlanetAMLogging, and the version number of the XML service file itself. Code
Example 8-4 on page 200 also illustrates the Service element, its attributes and the
opening Schema tag.

Schema Element
The Schema element is the parent of the family of elements that define the service’s
attributes and their default values. The sub-elements can be the Global Element,
Organization Element, Dynamic Element, User Element or Policy Element. The
required XML attributes of the Schema element include the serviceHierarchy
Attribute, the i18nFileName Attribute, the i18nKey Attribute, and the
propertiesViewBeanURL Attribute.

serviceHierarchy Attribute
When a new service is configured, its name will be dynamically displayed in the
Navigation frame of the console based on the value of this attribute. The value is a
"/" separated string. Each "/" portion of the string represents a level in the
hierarchy. Code Example 8-5 on page 201 illustrates the serviceHierarchy
attribute as defined in amClientDetection.xml. iPlanetAMClientDetection is
the name of the service. The name used for display in the console, though, is
defined by the i18nKey (or i18nKey Attribute), and retrieved from the service’s
localization file defined by the i18nFileName Attribute. In this example, the value
of iplanet-am-client-detection-service-description will be found in
amClientDetection.properties and its value displayed. The service name will

Code Example 8-4 ServicesConfiguration and Service Element

...
<ServicesConfiguration>
<Service name=”iPlanetAMClientDetection” version=”1.0”>
<Schema...>
...

DTD Files

Chapter 8 Service Management 201

be displayed below the Access Manager Configuration header in the left frame of
the Service Configuration module. To prevent a service from displaying in the
console, either remove the serviceHierarchy attribute or set it’s value to "", as in
serviceHierarchy="".

i18nFileName Attribute
The i18nFileName attribute refers to the localization properties files. It takes a
value equal to the name of the localization properties file for the defined service
(minus the .properties file extension). For example, Code Example 8-5 defines
the name of the properties file as amClientDetection.

i18nKey Attribute
The value of the %i18nIndex attribute maps to the final, localized name of the
service to be displayed in the Access Manager console as it is defined in the
localization properties file.

NOTE DSAMEConfig as used in Code Example 8-5 and all XML service files refers to
the Access Manager Configuration header. The use of DSAME is a holdover from
the previous name of Access Manager. This is defined in the
amAdminModuleMsgs.properties file located in
IdentityServer_base/SUNWam/locale.

Code Example 8-5 i18nFileName, i18nKey and serviceHierarchy Attributes

...
<Schema
 serviceHierarchy="/DSAMEConfig/iPlanetAMClientDetection"
 i18nFileName="amClientDetection"
 i18nKey="iplanet-am-client-detection-service-description">
...

NOTE The %i18nIndex attribute is defined as an entity at the top of the sms.dtd. In
the configured XML service files, %i18nIndex is replaced by i18nKey and its
corresponding value.

DTD Files

202 Access Manager 6 2005Q1 • Developer’s Guide

For example, Code Example 8-5 refers to the value of the
iplanet-am-client-detection-service-description attribute as defined in
amClientDetection.properties. This value is the name of the service as it will
be displayed in the Access Manager console; in this case, Client Detection is the
name defined in amClientDetection.properties. (Remember, the value of the
defined attribute might not be in English.) More information on the localization
properties file can be found in Chapter 5, “Authentication Service,” of this manual.

propertiesViewBeanURL Attribute
The default display for a service is a simple table showing the attribute name and
its value. The propertiesViewBeanURL attribute provides the URL to the Java
bean used by the console to generate this display. It is possible to override the
default display by creating a new class and defining the URL to this class as a value
of this attribute. If no value is specified, the display is created by the console.

Service Attribute Elements
The next five elements are sub-elements of the “Schema Element” on page 200;
they are the declarations of the service’s Access Manager attributes. When defining
a service, each attribute must be defined as either a Global Element, an
Organization Element, a Dynamic Element, a User Element, or a Policy Element.
Any configuration of these elements (all of them or none of them) can be used
depending on the service. Each attribute defined within these elements is itself
defined by an AttributeSchema Element.

Global Element
The Global element defines Access Manager attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Global Attributes” on page 190.

serviceObjectClasses Attribute. The serviceObjectClasses attribute is a global
attribute defined in an XML service file that contains either dynamic or user
elements (attributes). The value of this attribute is an object class set in the LDAP
entries (stored in Directory Server) for users whom are registered to the service. It
allows any user with this object class to be dynamically assigned the service’s
dynamic or user attributes, if any exist.

NOTE If the i18nKey value is blank (i18nKey=""), the Access Manager console will
not display the attribute.

DTD Files

Chapter 8 Service Management 203

Multiple values can be defined for the serviceObjectClasses attribute. For
example, if a service is created with two attributes each from three other services,
the serviceObjectClasses attribute would need to list all three object classes as
DefaultValues. Code Example 8-6 illustrates a serviceObjectClasses attribute
with a defined object class from amClientDetection.xml.

Organization Element
The Organization element defines Access Manager attributes that are modifiable
per organization or sub-organization. For example, a web hosting environment
using Access Manager would have different configuration data defined for each
organization it hosts. A service developer would define different values for each
organization attribute per organization. These attributes are only accessible using
the Access Manager SDK. For additional information, see “Organization
Attributes” on page 190.

Dynamic Element
The Dynamic element defines Access Manager attributes that can be inherited by
all user objects. Examples of Dynamic elements would be user-specific session
attributes, a building number, or a company mailing address. Dynamic attributes
use the Directory Server features, CoS and roles. For additional information, see
“Dynamic Attributes” on page 190.

CAUTION If the serviceObjectClasses attribute is not specified and the service has
defined dynamic or user attributes, an object class violation is called when an
administrator tries to create a user under that organization, and assign this service.

Code Example 8-6 serviceObjectClass Defined As Global Element

...
<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-client-detection-service</Value>
 </DefaultValues>
 </AttributeSchema>
 </Global>
 ...

DTD Files

204 Access Manager 6 2005Q1 • Developer’s Guide

User Element
The User element defines Access Manager attributes that exist physically in the
user entry. User attributes are not inherited by roles or organizations. Examples
include password and employee identification number. They are applied to a
specific user only. For additional information, see “User Attributes” on page 191.

Policy Element
The Policy element defines Access Manager attributes intended to provide actions
(or privileges). This is the only attribute element that uses the ActionSchema
element to define its parameters as opposed to the AttributeSchema element.
Generally, privileges are GET, POST, and PUT; examples of privileges might include
canChangeSalaryInformation and canForwardEmailAddress. For additional
information, see “Policy Attributes” on page 191.

SubSchema Element
The SubSchema element can specify multiple sub-schemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. The required XML
attributes of the SubSchema element include name which defines the name of the
sub-schema, inheritance which defines whether this schema can be inherited by
one or more nodes on the directory tree, maintainPriority which defines
whether priority is to be honored among its peer elements, and “i18nKey
Attribute” on page 201.

AttributeSchema Element
The AttributeSchema element is a sub-element of the five schema elements
discussed in “Service Attribute Elements” on page 202 as well as the SubSchema
element described in “SubSchema Element” on page 204. It defines the structure
for each configurable parameter (or attribute) of a service. The sub-elements that
qualify the AttributeSchema can include IsOptional?, IsServiceIdentifier?,
IsResourceNameAllowed?, IsStatusAttribute?, ChoiceValues?,
BooleanValues?, DefaultValues?, or Condition. The XML attributes that define
each portion of the attribute value are the “name Attribute”, the “type Attribute”,
the “uitype Attribute”, the “syntax Attribute”, the “cosQualifier Attribute”,
rangeStart, rangeEnd, minValue, maxValue, validator, the “any Attribute”, the

NOTE The SubSchema element is used only in the amEntrySpecific.xml file. It
should not be used in any external XML service files.

DTD Files

Chapter 8 Service Management 205

“propertiesViewBeanURL Attribute” on page 202 and, the “i18nKey Attribute” on
page 201. Code Example 8-7 on page 205 illustrates an AttributeSchema element
taken from amUser.xml, its attributes and their corresponding values. Note that
this example attribute is a Dynamic attribute.

name Attribute
This required XML attribute defines the a name for the attribute. Any string format
can be used but attribute names must be in lower-case. Code Example 8-7 on
page 205 defines it with a value of iplanet-am-user-login-status.

type Attribute
This attribute specifies the kind of value the attribute will take. The default value
for type is list but it can be defined as any one of the following:

• single specifies that the user can define one value.

• list specifies that the user can define a list of values.

• single_choice specifies that the user can choose a single value from a list of
options. A default value must be defined from the list.

• multiple_choice specifies that the user can choose multiple values from a
list of options. A default value must be defined from the list.

Code Example 8-7 AttributeSchema Element With Attributes

...
<Dynamic>
 <AttributeSchema name="iplanet-am-user-login-status"
 type="single_choice"
 syntax="string"
 any="display"
 i18nKey="d105">
 <ChoiceValues>
 <ChoiceValue i18nKey="u200">Active</ChoiceValue>
 <ChoiceValue i18nKey="u200">Inactive</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>
 </AttributeSchema>
...

DTD Files

206 Access Manager 6 2005Q1 • Developer’s Guide

ChoiceValues Sub-Element. If the type attribute is specified as either
single_choice or multiple_choice, the ChoiceValues sub-element must also be
defined in the AttributeSchema element. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValues sub-element,
ChoiceValue. Code Example 8-7 on page 205 defines the type as single_choice;
the ChoiceValues attribute defines the list of options as Active and Inactive
with the DefaultValue as Active.

syntax Attribute
The syntax attribute defines the format of the value. The default value for syntax is
string but, it can be defined as any one of the following:

• boolean specifies that the value is either true or false.

• string specifies that the value can be any string.

• password specifies that user must enter a password, which will be encrypted.

• dn specifies that the value is a LDAP Distinguish Name.

• email specifies that the value is an email address.

• url specifies that the value is a URL address.

• numeric specifies that the value is a number.

• percent specifies that the value is a percentage.

• number specifies that the value is a number.

• decimal_number specifies that the value is a number with a decimal point.

• number_range specifies that the value is a range of numbers.

• decimal_range specifies that the value is a range of numbers that might
include a decimal figure.

NOTE If creating policy, note that the policy schema only supports boolean, string,
password, dn, email, numeric, percent, number, decimal_number, and
number_range. It does not support paragraph, encrypted_password,
decimal_range, xml, and date (some of which are not defined above).

DTD Files

Chapter 8 Service Management 207

uitype Attribute
This attribute specifies the HTML element that will be displayed in the Access
Manager console. Possible values include radio, link, button, or
name_value_list. No value defined for this attribute displays a default element
based on the information in Table 3-1 on page 65 of Chapter 3, “The Access Manager
Console.”

DefaultValues Sub-Element. Defining a syntax might also necessitate defining a
value for the DefaultValue sub-element. A default value will then be displayed in
the Access Manager console; this default value can be changed for each
organization when creating a new template for the service.

For example, all instances of the LDAP Authentication Service use the port
attribute so a default value of 389 is defined in the XML service file. Once
registered, this value can be modified for each organization using the Access
Manager console. (The default value is also used by integrated applications when a
service template has not been registered to an organization.) Code Example 8-8 on
page 207 from amAuthLDAP.xml illustrates this scenario.

NOTE The “type Attribute”specifies the kind of value an attribute will take. The “syntax
Attribute” defines the format of that value. The “uitype Attribute” specifies the HTML
element. The values of these attributes can be mixed and matched to alter the
console display. See “To Change The Default Attribute Display Elements” on
page 64 of Chapter 3, “The Access Manager Console,” in this manual for
information on how these attributes work together.

CAUTION Default values of User attributes are not inherited by users when the service is
assigned using the Access Manager console.

Code Example 8-8 DefaultValues In amAuthLDAP.xml

...
<Organization>
 <AttributeSchema name="iplanet-am-auth-ldap-server"
 type="list"
 syntax="string"
 i18nKey="a101">
 <DefaultValues>
 <Value>identity_server_host.com:389</Value>
 </DefaultValues>
 </AttributeSchema>
...

DTD Files

208 Access Manager 6 2005Q1 • Developer’s Guide

cosQualifier Attribute
This attribute defines how Access Manager resolves conflicting dynamic attribute
values assigned to the same user object. The value of cosQualifier will appear as
a qualifier to the cosAttribute in the LDAP entry of the CoS definition.

The value of cosQualifier can be defined as:

• default indicates that if there are two conflicting attributes assigned to the
same user object, the one with the highest priority takes precedence. For more
information on CoS conflicts, see Appendix E, “Directory Server Concepts,” in
this manual.

• override indicates that the CoS template value defined at the service itself
overrides any priority value defined in the user entry; that is, CoS takes
precedence over a defined user entry value.

• merge-schemes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS template values. For example , if there are
multiple templates for a particular service that contains dynamic attributes and
they are applied to a user (based on the user’s roles), a merged list of attributes
will be returned. merge-schemes works only for dynamic (or COS) type
attributes.

If the cosQualifier attribute is not defined, the default behavior is for the user
entry value to override the CoS value in the organization or role. The default value
is default. (The operational value is reserved for future use.)

any Attribute
The any attribute specifies whether the attribute for which it is defined will display
in the Access Manager console. It has six possible values that can be multiply
defined using the “|” (pipe) construct:

• display specifies that the attribute will display on both the administrator and
end user profile pages. The attribute is read/write for administrators and end
users. The attribute will display on the Create page with an asterisk signifying
it as a required field.

NOTE The priority level is defined by the Conflict Resolution Level attribute. More
information on this attribute can be found in the Sun Java System Access Manager
Administration Guide.

DTD Files

Chapter 8 Service Management 209

• adminDisplay specifies that the attribute will display on the administrator
profile page only. It will not appear on the end user page; the attribute is
read/write for administrators only.

• userReadOnly specifies that the attribute is read/write for administrators but
is read only for end users. It is displayed on the end user profile pages as a
non-editable label.

• required specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk signifying it as a required field.

• optional specifies that a value for the attribute is not required in order for the
object to be created. The attribute will display on the Create page without an
asterisk signifying it as an optional field.

• filter specifies that the attribute will display on the Advanced Search page.

The required or optional keywords and the filter and display keyword can
be specified with a pipe symbol separating the options (any=required|display or
any=optional|display|filter). If the any attribute is set to display, the
qualified attribute will display in Access Manager console when the properties for
the Create page are displayed. If the any attribute is set to required, an asterisk
will display in that attribute’s field, thus the administrator or user is required to
enter a value for the object to be created in Access Manager console. If the any
attribute is set to optional, it will display on the Create page, but users are not
required to enter a value in order for the object to be created. If the any attribute is
set to filter, the qualified attribute will display as a criteria attribute when Search
is clicked from the User page.

The amAdmin.dtd Structure
The amAdmin.dtd defines the data structure for an XML file which can be used to
perform batch operations on the directory tree using the amAdmin command line
tool. The file reflects the structure of the Access Manager SDK and is located in the
IdentityServer_base/SUNWam/dtd directory. Possible command line operations
include reads and gets on the attributes as well as creations and deletions of Access
Manager objects (roles, organizations, users, people containers, and groups).

NOTE Setting the any attribute to "" (any="") will prevent the attribute to
which it refers from being displayed in the console.

DTD Files

210 Access Manager 6 2005Q1 • Developer’s Guide

The following sections explain the elements and attributes of the amAdmin.dtd
using the sample XML templates installed with Access Manager for illustration.
These samples can be found in
IdentityServer_base/SUNWam/samples/admin/cli/bulk-ops.

Requests Element
The Requests element is the root element of the XML file. It must contain at least one
sub-element to define the object(s) (Organization, Container, People Container,
Role and/or Group, et. al.) upon which the configured actions can be performed.
The Requests element must contain at least one of the following sub-elements:

• OrganizationRequests

• SchemaRequests

• ServiceConfigurationRequests

• ContainerRequests

• PeopleContainerRequests

• RoleRequests

• GroupRequests

• UserRequests

• ListAccts

To enable batch processing, the root element can take more than one of these
sub-element requests.

Code Example 8-9 illustrates the Requests element tag and its corresponding
OrganizationRequests sub-element which details the creation of two roles, two
groups, a suborganization, a container, and a people container in the organization
with the LDAP Distinguished Name (DN), dc=example,dc=com.

NOTE XML files that are created based on the amAdmin.dtd are used as input with the
amAdmin command line tool. More information on this tool can be found in the
Sun Java System Access Manager Administration Guide.

CAUTION If multiple sub-elements are specified, they must occur in the order in which they
appear in the amAdmin.dtd. For example, a CreateUser cannot come before
a CreateRole in the same OrganizationRequests element.

DTD Files

Chapter 8 Service Management 211

OrganizationRequests Element
The OrganizationRequests element defines actions that can be performed on
Organization objects. The required XML attribute for this element is the LDAP DN
of the organization on which the configured requests will be performed. This
element can have one or more sub-elements. (Different OrganizationRequests
elements can be defined in one file to modify more than one organization.) Code
Example 8-9 defines a myriad of objects to be created under the top level
organization, dc=example,dc=com. The sub-elements of OrganizationRequests include:

• CreateSubOrganization

• CreateContainer

• CreatePeopleContainer

• CreateGroupContainer

• CreateRole

• CreateUser

• CreateGroup

• CreatePolicy

• RegisterServices

• ModifySubOrganization

• ModifyServiceTemplate

Code Example 8-9 Portion Of createRequests.xml

...
<Requests>
<OrganizationRequests DN="dc=example,dc=com">

 <CreateSubOrganization createDN="SubOrg1"/>
 <CreateContainer createDN="Container1"/>
 <CreatePeopleContainer createDN="People2"/>
 <CreateRole createDN="ManagerRole"/>
 <CreateRole createDN="EmployeeRole"/>
 <CreateGroup createDN="ContractorsGroup"/>
 <CreateGroup createDN="EmployeesGroup"/>

</OrganizationRequests>
...

DTD Files

212 Access Manager 6 2005Q1 • Developer’s Guide

• AddServiceTemplateAttributeValues

• RemoveServiceTemplateAttributeValues

• GetServiceTemplate

• DeleteServiceTemplate

• ModifyPeopleContainer

• ModifyRole

• GetSubOrganizations

• GetPeopleContainers

• GetRoles

• GetGroups

• GetUsers

• CreateServiceTemplate

• UnregisterServices

• GetRegisteredServiceNames

• GetNumberOfServices

• DeleteRoles

• DeleteGroups

• DeletePolicy

• DeletePeopleContainers

• DeleteSubOrganizations

• AddSubConfiguration

• DeleteSubConfiguration

• CreateAuthenticationDomain

• CreateHostedProvider

• CreateRemoteProvider

• DeleteAuthenticationDomain

• DeleteProvider

DTD Files

Chapter 8 Service Management 213

• GetProvider

• GetAuthenticationDomain

• ModifyHostedProvider

• ModifyRemoteProvider

• ModifyAuthenticationDomain

ContainerRequests Element
The ContainerRequests element defines actions that can be performed on Container
objects. The required XML attribute for this element is the LDAP DN of the
container on which the configured requests will be performed. This element can
have one or more sub-elements. (Different ContainerRequests elements can be
defined in one file to modify more than one container.) The syntax for this element
is basically the same as that of the OrganizationRequests element illustrated in Code
Example 8-9 on page 211. The sub-elements of ContainerRequests can include:

• CreateSubContainer

• CreatePeopleContainer

• CreateGroupContainer

• CreateRole

• CreateGroup

• CreateServiceTemplate

• ModifyServiceTemplate

• AddServiceTemplateAttributeValues

• RemoveServiceTemplateAttributeValues

• GetServiceTemplate

• ModifySubContainer

• ModifyPeopleContainer

• ModifyRole

• GetSubContainers

• GetPeopleContainers

• GetRoles

DTD Files

214 Access Manager 6 2005Q1 • Developer’s Guide

• GetGroups

• GetUsers

• CreateUser

• RegisterServices

• UnregisterServices

• DeleteServiceTemplate

• GetRegisteredServiceNames

• GetNumberOfServices

• DeleteRoles

• DeleteGroups

• DeletePeopleContainers

• DeleteSubContainers

PeopleContainerRequests Element
The PeopleContainerRequests element defines actions that can be performed on
People Container objects. The required XML attribute for this element is the LDAP
DN of the people container on which the configured requests will be performed.
This element can have one or more sub-elements. (Different
PeopleContainerRequests elements can be defined in one document to modify more
than one people container.) The syntax for this element is basically the same as that
of the OrganizationRequests element illustrated in Code Example 8-9 on page 211.
The sub-elements of PeopleContainerRequests can include:

• CreateSubPeopleContainer

• ModifyPeopleContainer

• CreateUser

• ModifyUser

• GetNumberOfUsers

• GetUsers

• GetSubPeopleContainers

• DeleteUsers

• DeleteSubPeopleContainers

DTD Files

Chapter 8 Service Management 215

RoleRequests Element
The RoleRequests element defines actions that can be performed on roles. The
required XML attribute for this element is the LDAP DN of the role on which the
configured requests will be performed. This element can have one or more
sub-elements. (Different RoleRequests elements can be defined in one document to
modify more than one role.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 8-9 on page 211. The
sub-elements of RoleRequests can include:

• CreateServiceTemplate

• ModifyServiceTemplate

• GetServiceTemplate

• GetNumberOfUsers

• GetUsers

• RemoveUsers

• AddUsers

GroupRequests Element
The GroupRequests element defines actions that can be performed on Group objects.
The required XML attribute for this element is the LDAP DN of the group on which
the configured requests will be performed. This element can have one or more
sub-elements. (Different GroupRequests elements can be defined in one document to
modify more than one group.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 8-9 on page 211. The
sub-elements of GroupRequests can include:

• CreateSubGroup

• GetSubGroups

• GetNumberOfUsers

• GetUsers

• ModifySubGroups

• AddUsers

• RemoveUsers

• DeleteSubGroups

DTD Files

216 Access Manager 6 2005Q1 • Developer’s Guide

UserRequests Element
The UserRequests element defines actions that can be performed on User objects.
The required XML attribute for this element is the LDAP DN of the user on which
the configured requests will be performed. This element can have one or more
sub-elements. (Different UserRequests elements can be defined in one document to
modify more than one user.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 8-9 on page 211. The
sub-elements of UserRequests can include:

• RegisterServices

• UnregisterServices

ServiceConfigurationRequests Element
The ServiceConfigurationRequests element defines actions that can be performed on a
specific service. The required XML attribute for this element is serviceName; it
specifies the service on which the configured requests will be performed. This
element can have one or more sub-elements. The syntax for this element is the
same as that of the OrganizationRequests element illustrated in Code Example 8-9 on
page 211. The sub-elements of ServiceConfigurationRequests can include:

• AddSubConfiguration

• DeleteSubConfiguration

• DeleteAllServiceConfiguration

AddSubConfiguration Element
The AddSubConfiguration element adds a secondary schema to an existing service.
The AttributeValuePair Element must be defined for each attribute configured in
the subconfiguration. The required XML attributes are subConfigName,
subConfigID, priority and serviceName.

DeleteSubConfiguration Element
The DeleteSubConfiguration element deletes an existing secondary schema from a
service. The required XML attributes are subConfigName and serviceName which
takes a string value.

NOTE Attributes defined for a subconfiguration are validated against attributes defined in
a subschema based on sms.dtd. A subconfiguration is defined for an organization,
choosing from attributes globally defined in the subschema. For more information,
see “SubSchema Element.”

DTD Files

Chapter 8 Service Management 217

DeleteAllServiceConfiguration Element
The DeleteAllServiceConfiguration element deletes all configurations relating to a
service and removes them from the data store. The required XML attribute is
userAtt which specifies whether to delete the user attributes related to the service.

AttributeValuePair Element
The AttributeValuePair element can be a sub-element of many of the batch
processing requests. It can have two sub-elements, Attribute and Value, neither of
which may have sub-elements. Code Example 8-10 illustrates that a sub-people
container, ou=SubPeople2,ou=People2,dc=example,dc=com, and a user, dpUser, will
be created with the attributes of the two objects defined as per the attribute/value
pairs.

Attribute Element
The Attribute element must be paired with a Value element. The Attribute element
itself contains no other elements. The required XML service attribute for the
Attribute element is name which is equal to the name of the attribute that is being
processed. Any string format can be used without spaces.

Value Element
The Value element defines the value of the Attribute element. More than one Value
element can be specified for an Attribute. The Value element contains no other
elements and it contains no XML service attributes.

Code Example 8-10 Another Portion Of createRequests.xml

...
<PeopleContainerRequests DN="ou=People2,dc=example,dc=com">

 <CreateSubPeopleContainer createDN="SubPeople2">
 <AttributeValuePair>
 <Attribute name="description"/>
 <Value>SubPeople description</Value>
 </AttributeValuePair>
 </CreateSubPeopleContainer>

 <CreateUser createDN="dpUser">
 <AttributeValuePair>
 <Attribute name="cn"/>
 <Value>dpUser</Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="sn"/>
 <Value>dpUser </Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="userPassword"/>

DTD Files

218 Access Manager 6 2005Q1 • Developer’s Guide

CreateObject Elements
The CreateSubOrganization, CreateContainer, CreatePeopleContainer, CreateRole,
CreateGroup, CreateServiceTemplate, CreateUser, CreateSubContainer, CreateSubGroup,
CreateSubPeopleContainer elements create a sub-organization, container, people
container, role, group, service template, user, sub-container, sub-group, and
sub-people container, respectively. The object is created in the DN that is defined in
the <Object>Requests element under which the particular Create<Object> element is
being defined. AttributeValuePair Elements may be defined (or not). The required
XML attribute for each element is createDN; it takes the DN of the object to be
created. Code Example 8-10 on page 217 illustrates an example of
CreateSubPeopleContainer and CreateUser. The DN is defined in the
PeopleContainerRequests element as ou=People2,dc=example,dc=com.

CreatePolicy Element
The CreatePolicy element creates one or more policy attributes. It takes the Policy
element as a sub-element; createDN is the required XML attribute which takes the
DN of the organization where the policy will be created. This and the following
nested elements are illustrated in Code Example 8-11 on page 221. This file is
SamplePolicy.xml, part of the policy sample application located in
IdentityServer_base/SUNWam/samples/policy.

 <Value>12345678</Value>
 </AttributeValuePair>
 </CreateUser>
...

NOTE CreateGroup/CreateSubGroup and CreateRole each have an additional attribute:
groupType and roleType, respectively. groupType defines whether it is a
static group, a filtered group or an assignable (dynamic) group. roleType defines
whether it is a static role or a filtered role.

NOTE The following policy elements are the elements extracted from amAdmin.dtd for
inclusion into the policy.dtd. More information can be found in the Access
Manager Administration Guide.

Code Example 8-10 Another Portion Of createRequests.xml (Continued)

DTD Files

Chapter 8 Service Management 219

Policy Element. The Policy sub-element defines the permissions or rules of the
policy and to whom/what the rule applies or the subject. It also defines whether or
not the policy is a referral (delegated) policy and whether there are any restrictions
(or conditions) to the policy. It may contain one or more of the following
sub-elements: Rule, Conditions, Subjects, or Referrals. The required XML attributes
are name which specifies the name of the policy and referralPolicy which
identifies whether or not the policy is a delegated one.

Rule Element. The Rule sub-element defines the specific permission of the policy
and can take three sub-elements. The required XML attribute is name which defines
a name for the rule. The three sub-elements are:

• ServiceName Element

The ServiceName element defines the name of the service to which the policy
applies. This element represents the service type. It contains no other elements.
The value is exactly as that defined in the service’s XML file (based on the
sms.dtd). The XML service attribute for the ServiceName element is the name
of the service (which takes a string value).

• ResourceName Element

The ResourceName element defines the object that will be acted upon. The
policy has been specifically configured to protect this object. It contains no
other elements. The XML service attribute for the ResourceName element is the
name of the object. Examples of a ResourceName might be
http://www.sunone.com:8080/images on a web server or
ldap://sunone.com:389/dc=iplanet,dc=com on a directory server. A more
specific resource might be
salary://uid=jsmith,ou=people,dc=iplanet,dc=com where the object
being acted upon is the salary information of John Smith.

• AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“AttributeValuePair Element” on page 217.

Subjects Element. The Subjects sub-element identifies a collection of objects to
which the policy applies; this overview collection is chosen based on membership
in a group, ownership of a role or individual users. It takes the Subject sub-element.
The XML attributes it can be defined with are name which defines a name for the
collection, description which takes a description and includeType which
defines whether the collection is as defined or its inverse (For example: the policy
applies to users who are NOT members of the subject).

DTD Files

220 Access Manager 6 2005Q1 • Developer’s Guide

Subject Element. The Subject sub-element identifies a collection of objects to
which the policy applies; this collection pinpoints more specific objects from the
collection defined by the Subjects element. Membership can be based on roles,
group membership or simply a listing of individual users. It takes as a sub-element
the AttributeValuePair Element. Its required XML attribute is type which
identifies a generic collection of objects from which the specifically defined subjects
are taken. Other XML attributes include name which defines a name for the
collection and includeType which defines whether the collection is as defined or
its inverse (For example: the policy applies to users who are NOT members of the
subject).

Referrals Element. The Referrals sub-element identifies a collection of policy
assignments. It takes the Referral sub-element. The XML attributes it can be defined
with are name which defines a name for the collection and description which
takes a description. (Code Example 8-11 is not an example of a referral policy so
there is not a Referrals element definition.)

Referral Element. The Referral sub-element identifies a specific policy assignment.
It takes as a sub-element the AttributeValuePair Element. Its required XML
attribute is type which identifies a generic collection of assignments from which
the specifically defined referrals are taken. It can also include the name attribute
which defines a name for the collection. (Code Example 8-11 is not an example of a
referral policy so there are no Referral elements definition.)

Conditions Element. The Conditions sub-element identifies a collection of policy
restrictions (time range, authentication level, et.al.). It must contain one or more of
the Condition sub-element. The XML attributes it can be defined with are name
which defines a name for the collection and description which takes a
description.

Condition Element. The Condition sub-element identifies a specific policy
restriction (time range, authentication level, et.al.). It takes as a sub-element the
AttributeValuePair Element. Its required XML attribute is type which identifies a
generic collection of restrictions from which the specifically defined conditions are
taken. It can also include the name attribute which defines a name for the collection.

NOTE The Condition element might be used to configure policy for different URIs on the
same domain. For example, http://org.example.com/hr can only be
accessed by org.example.net from 9 am to 5 pm yet
http://org.example.com/finance can be accessed by
org.example2.net from 5 am to 11 pm. By defining an IP Condition
attribute/value pair together with a SimpleTime Condition attribute/value pair and
specifying http://org.example.com/hr/*.jsp as the resource, the
policy would apply to all the JSPs under http://org.example.com/hr.

DTD Files

Chapter 8 Service Management 221

Code Example 8-11 SamplePolicy.xml

<Requests>
<OrganizationRequests DN="dc=iplanet,dc=com">

<CreatePolicy createDN="dc=iplanet,dc=com">
<Policy name="PolicyOne" referralPolicy="false" >
<Rule name="dsdasd">
<ServiceName name="SampleWebService" />
<ResourceName name="http://www.sun.com/public" />

<AttributeValuePair>
<Attribute name="GET" />
<Value>allow</Value>

</AttributeValuePair>
<AttributeValuePair>

<Attribute name="DELETE" />
<Value>allow</Value>

</AttributeValuePair>
<AttributeValuePair>

<Attribute name="PUT" />
<Value>allow</Value>

</AttributeValuePair>
<AttributeValuePair>

<Attribute name="POST" />
<Value>allow</Value>

</AttributeValuePair>
</Rule>
<Subjects name="Subjects1" description="">
<Subject name="subject1" type="Organization">

<AttributeValuePair>
<Attribute name="Values"/>
<Value>dc=iplanet,dc=com</Value>
<Value>o=nicp,dc=iplanet,dc=com</Value>

</AttributeValuePair>
</Subject>
</Subjects>
<Conditions name="Conditions1" description="">
<Condition name="condition1" type="SampleCondition">

<AttributeValuePair>
<Attribute name="userNameLength"/><Value>5</Value>

</AttributeValuePair>
</Condition>
</Conditions>
</Policy>

</CreatePolicy>

</OrganizationRequests>
</Requests>

DTD Files

222 Access Manager 6 2005Q1 • Developer’s Guide

CreateServiceTemplate Element
The CreateServiceTemplate element creates a service template for the organization
defined under the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
serviceName which takes a string value. Code Example 8-12 illustrates a User
service template being registered to ou=Container1,dc=example,dc=com.

DeleteObject Elements
The DeleteSubOrganizations, DeletePeopleContainers, DeleteGroups, DeleteRoles,
DeleteSubContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteUsers
elements delete a sub-organization, people container, group, role, sub-container,
sub-group, sub-people container and user, respectively. The object is deleted from
the DN that is defined in the <Object>Requests element under which the particular
Delete<Object> element is being defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the
listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all sub-trees can be avoided; it’s
default value is false. The DN sub-element takes a character value equal to the DN of
the object to be deleted. Code Example 8-13 illustrates an example of some of these
concepts. The DN is defined in the OrganizationRequests element as
dc=example,dc=com.

Code Example 8-12 contCreateServiceTemplateRequests.xml File

...
<Requests>
<ContainerRequests DN="ou=Container1,dc=example,dc=com">

 <CreateServiceTemplate>
 <Service_Name>iPlanetAMUserService</Service_Name>
 </CreateServiceTemplate>

</ContainerRequests>
</Requests>

Code Example 8-13 orgDeleteRequests.xml

...
<Requests>
<OrganizationRequests DN="dc=example,dc=com">

DTD Files

Chapter 8 Service Management 223

DeletePolicy Element
The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: deleteDN. It takes a value equal to
the DN of the policy to be deleted.

DeleteServiceTemplate Element
The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are serviceName which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 8-14 illustrates the deletion of the Membership
Authentication Service from dc=example,dc=com.

 <DeleteRoles>
 <DN>cn=ManagerRole,dc=example,dc=com</DN>
 <DN>cn=EmployeeRole,dc=example,dc=com</DN>
 </DeleteRoles>

 <DeleteGroups deleteRecursively="true">
 <DN>cn=EmployeesGroup,dc=example,dc=com</DN>
 <DN>cn=ContractorsGroup,dc=example,dc=com</DN>
 </DeleteGroups>

 <DeletePeopleContainers deleteRecursively="true">
 <DN>ou=People1,dc=example,dc=com</DN>
 </DeletePeopleContainers>

 <DeleteSubOrganizations deleteRecursively="true">
 <DN>o=sun.com,dc=example,dc=com</DN>
 </DeleteSubOrganizations>

</OrganizationRequests>
</Requests>

Code Example 8-14 orgDeleteServiceTemplateRequests.xml

<Requests>
<OrganizationRequests DN="dc=example,dc=com">
 <DeleteServiceTemplate serviceName="iPlanetAMAuthMembershipService"
schemaType="organization"/>

Code Example 8-13 orgDeleteRequests.xml (Continued)

DTD Files

224 Access Manager 6 2005Q1 • Developer’s Guide

ModifyObject Elements
The ModifySubOrganization, ModifyPeopleContainer, ModifySubContainer, ModifyRole,
and ModifySubGroups elements change the specified object. AttributeValuePair
Elements can be defined for the listed elements. The required XML attribute is
modifyDN which takes the DN of the object to be modified. Code Example 8-15
illustrates how the people container’s description can be modified.

ModifyServiceTemplate Element
The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair Element must be defined for ModifyServiceTemplate to change
the values. The required XML attributes are serviceName which takes a string
value, schemaType which defines the attribute group (Global, Organization,
Dynamic, User or Policy) and roleTemplate. A search level attribute can also be
defined. It takes a value of either SCOPE_ONE or SCOPE_SUB. SCOPE_ONE will
retrieve just the groups at that node level; SCOPE_SUB gets groups at the node level
and all those underneath it.

</OrganizationRequests>
</Requests>

Code Example 8-15 contModifyPeoplecontainerRequests.xml

<Requests>
<ContainerRequests DN="dc=sun,dc=com">

 <ModifyPeopleContainer
modifyDN="ou=Test,ou=Test1,ou=People1,dc=sun,dc=com">
 <AttributeValuePair>
 <Attribute name="Description"/>
 <Value>Sun ONE Identity Server Modify</Value>
 </AttributeValuePair>
 </ModifyPeopleContainer>

</ContainerRequests>
</Requests>

Code Example 8-14 orgDeleteServiceTemplateRequests.xml (Continued)

DTD Files

Chapter 8 Service Management 225

GetObject Elements
The GetSubOrganizations, GetUsers, GetSubGroups, GetGroups, GetSubContainers,
GetRoles, GetPeopleContainers and GetSubPeopleContainers elements get the specified
object. A DN may be defined as a sub-element (or not). If none is specified, ALL of
the specified objects at all levels will be returned within the organization that is
defined in the <Object>Requests element under which the particular Get<Object>
element is being defined. The required XML attribute for all but GetGroups and
GetRoles is DNsOnly and takes a true or false value. (This attribute is explained in
more detail in DNs Only Attribute.) The required XML attribute of GetGroups and
GetRoles is level which takes a value of either SCOPE_ONE or SCOPE_SUB.
SCOPE_ONE will retrieve just the groups at that node level; SCOPE_SUB gets groups
at the node level and all those underneath it. Code Example 8-16 illustrates how
these elements can be modeled. The top-level DN is defined in the
OrganizationRequests element as o=isp.

DNs Only Attribute
For all objects using the DNsOnly attribute, the Get elements work as stated below:

• If the element has the required XML attribute DNsOnly set to true and no
sub-element DN is specified, only the DNs of the objects asked for will be
returned.

• If the element has the required XML attribute DNsOnly set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

• If sub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnly is set to true or false.

Code Example 8-16 Portion of Batch Processing File getRequests.xml

...
<Requests>

<OrganizationRequests DN="o=isp">

<GetSubOrganizations DNsOnly="false">
 <DN>o=example1.com,o=isp</DN>
 <DN>o=example2.com,o=isp</DN>
</GetSubOrganizations>

<GetPeopleContainers DNsOnly="false">
 <DN>ou=People,o=example1.com,o=isp</DN>
 <DN>ou=People,o=example2.com,o=isp</DN>
</GetPeopleContainers>

<GetRoles level="SUB_TREE"/>

<GetGroups level="SUB_TREE"/>

DTD Files

226 Access Manager 6 2005Q1 • Developer’s Guide

GetService Elements
The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 8-17 illustrates
the GetNumberOfServices element.

ActionServiceTemplate Element
The GetServiceTemplate and DeleteServiceTemplate elements get or delete a service
template for the organization defined under the OrganizationRequests element,
respectively. There are no sub-elements; the elements themselves must be empty.
The required XML attributes are serviceName which takes a string value and
schemaType.

<GetUsers DNsOnly="false">
 <DN>cn=puser,ou=People,o=example1.com,o=isp</DN>
</GetUsers>

</OrganizationRequests>
...

Code Example 8-17 orgGetNumberOfServiceRequests.xml

<Requests>

<OrganizationRequests DN="dc=example,dc=com">

 <GetNumberOfServices/>

</OrganizationRequests>

</Requests>

Code Example 8-16 Portion of Batch Processing File getRequests.xml

...
<Requests>

DTD Files

Chapter 8 Service Management 227

ActionServiceTemplateAttributeValues Element
The AddServiceTemplateAttributeValues and RemoveServiceTemplateAttributeValues
elements get or delete attribute values defined in a service template for the
organization defined under the OrganizationRequests element, respectively.
AttributeValuePair Element must be defined for each attribute to be added or
removed. The required XML attributes are serviceName which takes a string
value, roleTemplate and schemaType which defines the attribute group (Global,
Organization, Dynamic, User or Policy). A search level attribute can also be
defined. It takes a value of either SCOPE_ONE or SCOPE_SUB. SCOPE_ONE will
retrieve just the groups at that node level; SCOPE_SUB gets groups at the node level
and all those underneath it.

ActionServices Elements
The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

Service Action Caveats
• The XML service file for the service must be loaded using the command line

interface amadmin before a service can be acted upon.

• If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

• If no Service_Name element is specified, the request will be ignored.

Code Example 8-18 illustrates how the RegisterServices element is modeled.

Code Example 8-18 orgRegisterServiceRequests.xml

<Requests>
<OrganizationRequests DN="dc=sun,dc=com">

 <RegisterServices>
 <Service_Name>sampleMailService</Service_Name>
 </RegisterServices>

</OrganizationRequests>

</Requests>

DTD Files

228 Access Manager 6 2005Q1 • Developer’s Guide

SchemaRequests Element
The SchemaRequests element consists of all requests to be performed on the XML
file that defines a particular service. It has two required XML attributes:
serviceName takes a value equal to the name of the service where the schema lives,
and SchemaType defines the attribute group (Global, Organization, Dynamic, User
or Policy). The “i18nFileName Attribute” on page 201 or a SubSchema (which
specifies the complete hierarchy of the subschema separated by a “/”) can also be
defined.

This element can have one or more sub-elements. (Different SchemaRequests
elements can be defined in one document to modify more than one service.) The
sub-elements of SchemaRequests can include:

• RemoveDefaultValues

• RemovePartialDefaultValues

• AddDefaultValues

• ModifyDefaultValues

• GetServiceDefaultValues

• AddChoiceValues

• RemoveChoiceValues

• ModifyType

• ModifyUIType

• Modifyi18nKey

• ModifySyntax

• AddPropertiesViewBean

• AddStartRange

• AddEndRange

• AddSubSchema

• AddAttributeSchema

• RemoveSubSchema

• RemoveAttributeSchema

NOTE See “Service File Naming Conventions” on page 189 for information on how the
name is defined.

DTD Files

Chapter 8 Service Management 229

Code Example 8-19 illustrates the opening of the Requests element tag and its
corresponding SchemaRequests sub-element. The file is adding the choice Deleted to
the Default User Status drop-down menu in the User Service.

RemoveDefaultValues Element
The RemoveDefaultValues element removes the default values from the service
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
that specifies the service attribute which contains the values to be removed. The
Attribute sub-element itself must be empty; it takes no sub-element. There is no
required XML attribute. The syntax for this element is the same as that illustrated
in Code Example 8-20.

Code Example 8-19 schemaAddChoiceValuesRequests.xml

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"
 SchemaType="dynamic"
 i18nKey="">
<AddChoiceValues>
 <AttributeValuePair>
 <Attribute name="iplanet-am-user-login-status"/>
 <Value>Active</Value>
 <Value>Inactive</Value>
 <Value>Deleted</Value>

 </AttributeValuePair>

</AddChoiceValues>
</SchemaRequests>
</Requests>

Code Example 8-20 RemoveDefaultValues Element Code

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"

 SchemaType="dynamic">
<RemoveDefaultValues>
 <Attribute name="preferredlanguage"/>
</RemoveDefaultValues>
</SchemaRequests>
</Requests>

DTD Files

230 Access Manager 6 2005Q1 • Developer’s Guide

AddDefaultValues and ModifyDefaultValues Elements
The AddDefaultValues and ModifyDefaultValues elements add or change the default
values from the specified schema, respectively. They take an AttributeValuePair
Element which specifies the name of the attribute and the new default value; one or
more attribute/value pairs can be defined. Code Example 8-21 illustrates how the
AddDefaultValues element can be modeled.

GetServiceDefaultValues Element
The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

Federation Management Elements
The following elements consist of requests that can be performed on Access
Manager configured federations. They are:

• CreateAuthenticationDomain

• DeleteAuthenticationDomain

• GetAuthenticationDomain

• ModifyAuthenticationDomain

• CreateRemoteProvider

• CreateHostedProvider

• DeleteProvider

Code Example 8-21 AddDefaultValues Element Code

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"

 SchemaType="dynamic">
<AddDefaultValues>

 <AttributeValuePair>
 <Attribute name="iplanet-am-user-auth-modules"/>
 <Value>Cert</Value>
 </AttributeValuePair>

</AddDefaultValues>
</SchemaRequests>
</Requests>

XML Service Files

Chapter 8 Service Management 231

• GetProvider

• IDPAuthContextInfo

• SPAuthContextInfo

• AuthMethodQueryString

• ModifyRemoteProvider

• ModifyHostedProvider

• ListAccts

For more information on these elements, see the DTD file itself located in the
IdentityServer_base/SUNWam/dtd directory.

XML Service Files
Access Manager uses XML files to define service attributes as well as perform batch
processing operations. This section contains information on the XML files included
with Access Manager and how they are used.

Default XML Service Files
Access Manager installs services to manage the configurations of its components.
The attributes for these services are managed using the Access Manager console; in
addition, Access Manager provides code implementations to use them. These
default XML service files are based on the sms.dtd and are located in
etc/opt/SUNWam/config/xml. They include:

• amAdminConsole.xml—Defines attributes for the Administration service.

• amAuth.xml—Defines attributes for the Core Authentication service.

• amAuthAnonymous.xml—Defines attributes for the Anonymous
Authentication service.

• amAuthCert.xml—Defines attributes for the Certificate-based Authentication
service.

• amAuthConfig.xml—Defines configuration attributes for the Authentication
service.

• amAuthHTTPBasic.xml—Defines attributes for the HTTP Basic Authentication
service.

XML Service Files

232 Access Manager 6 2005Q1 • Developer’s Guide

• amAuthLDAP.xml—Defines attributes for the LDAP Authentication service.

• amAuthMembership.xml—Defines attributes for the Membership-based
Authentication service.

• amAuthNT.xml—Defines attributes for the Windows-based NT Authentication
service.

• amAuthRadius.xml—Defines attributes for the Radius Authentication service.

• amAuthSafeWord.xml—Defines attributes for the SafeWord Authentication
service.

• amAuthSecurID.xml—Defines attributes for the SecurID Authentication
service.

• amAuthUnix.xml—Defines attributes for the Unix Authentication service.

• amAuthenticationDomainConfig.xml—Defines attributes for the
Authentication Configuration service.

• amClientData.xml—Defines client types for the Client Detection service.

• amClientDetection.xml—Defines attributes for the Client Detection service.

• amEntrySpecific.xml—Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

• amDSS.xml—Defines attributes for the Certificate Security service.

• amG11NSettings.xml—Defines attributes for the Globalization Settings
service.

• amLogging.xml—Defines attributes for the Logging service.

• amNaming.xml—Defines attributes for the Naming service.

• amPasswordReset.xml—Defines attributes for the Password Reset service.

• amPlatform.xml—Defines attributes for the Platform service.

• amPolicy.xml—Defines attributes for the Policy service.

• amPolicyConfig.xml—Defines configuration attributes for the Policy service.

• amProviderConfig.xml—Defines attributes for Federation Management
service.

• amSAML.xml—Defines attributes for the SAML service.

• amSession.xml—Defines session attributes for single sign-on.

XML Service Files

Chapter 8 Service Management 233

• amUser.xml—Defines attributes for the User service.

• amWebAgent.xml—Defines attributes for the policy agents.

Modifying A Default XML Service File
Administrators can display and manage any attribute in the Access Manager
console using XML service files. The new attribute(s) would need to be added to an
existing XML service file. Alternately, they can be grouped into a new service by
creating a new XML service file although the simplest way to add an attribute is
just to extend an existing one. For example, an administrator wants to manage the
nsaccountlock attribute which will give users the option of locking the account it
defines. To manage it through Access Manager, nsaccountlock must be defined in
a service. One option would be to add it to the amUser.xml service,
iPlanetAMUserService. This is the service that, by default, includes many
common attributes from the inetOrgPerson and inetUser object classes.
Following is an example of how to add the nsaccountlock attribute to the
amUser.xml service file.

1. Add the code illustrated in Code Example 8-22 to the SubSchema name=User
element in IdentityServer_base/SUNWam/config/xml/amUser.xml.

2. Update the IdentityServer_base/SUNWam/locale/en_US/amUser.properties
file with the new i18nKey tag u13 as illustrated in Code Example 8-23
(including the text to be used for display).

Code Example 8-22 nsaccountlock Example Attribute

...
<AttributeSchema name="nsaccountlock"
type="single_choice"
syntax="string"
any="filter"
isChangeableByUser="yes"
i18nKey="u13">
<ChoiceValues>
 <Value>true</Value>
 <Value>false</Value>
</ChoiceValues>
<DefaultValues>
 <Value>false</Value>
</DefaultValues>
</AttributeSchema>
...

XML Service Files

234 Access Manager 6 2005Q1 • Developer’s Guide

3. Remove the service
ou=iPlanetAMUserService,ou=services,dc=sun,dc=com using the
command line tool amadmin.

For information on the amadmin command line syntax, see Sun Java System
Access Manager Administration Guide.

4. Reload the modified XML service file, amUser.xml, using the command line
tool amadmin.

For information on the amadmin command line syntax, see Sun Java System
Access Manager Administration Guide.

Batch Processing With XML Templates
The --data or -t option of amadmin is used to perform batch processing via the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

• Create, delete and read roles, users, organizations, groups, people containers
and services.

• Get roles, people containers, and users.

• Get the number of users for groups, people containers, and roles.

• Import, register and unregister services.

• Get registered service names or the total number of registered services for an
existing organization.

• Execute requests in multiple XML files.

Code Example 8-23 User Account Locked Example i18nKey

...
u13=User Account Locked
...

NOTE When modifying a default XML service file, be sure to also modify the Directory
Server by extending the LDAP schema, if necessary. For more information, see
“Defining A Custom Service” on page 187.

XML Service Files

Chapter 8 Service Management 235

The preferred way to perform most of these functions is to use the Access Manager
console. The batch processing templates have been provided for ease of use with
bulk updates although they can also be used for single configuration updates. This
section provides an overview of the batch processing templates which can be
modified to perform batch updates in the Directory Server.

XML Templates
All of the batch processing XML templates perform operations on the DIT; they
create, delete, or get attribute information on user objects. These XML templates
follow the structure defined by the amAdmin.dtd and are located in
IdentityServer_base/SUNWam/samples/admin/cli/bulk-ops. The batch processing
XML templates provided with Access Manager include:

• contCreateRoleRequests.xml—Creates a role for a container object.

• contCreateServiceTemplateRequests.xml—Creates a service template for
a container object.

• contModifyPeoplecontainerRequests.xml—Modifies a people container
object.

• contModifyRoleRequests.xml—Modifies a role assigned to a container
object.

• contModifySubcontainerRequests.xml—Modifies a sub-container object.

• createRequests.xml—Creates a multitude of objects.

• deleteGroupRequests.xml—Deletes the sub-group of a group container.

• getRequests.xml—Passes information about a multitude of objects in a
specific organization.

• orgCreateServiceTemplateRequests.xml—Creates service templates for
anorganization.

• orgDeleteRequests.xml—Deletes a multitude of objects under a specific
organization.

• orgDeleteServiceTemplateRequests.xml—Deletes a service template
under a specific organization.

NOTE Only XML files can be used as input for the amadmin tool. If an administrator
wants to populate the directory tree with user objects, or perform batch reads (gets)
or deletes, the necessary XML input files, based on the amAdmin.dtd or
sms.dtd, must be written.

XML Service Files

236 Access Manager 6 2005Q1 • Developer’s Guide

• orgGetNumberOfServiceRequests.xml—Passes a listing of an organization’s
total number of registered services.

• orgGetRegisteredServiceRequests.xml—Passes a listing the names of an
organization’s registered services.

• orgModifyRequests.xml—Changes values for identity-related objects in an
organization.

• orgModifyServiceTemplateRequests.xml—Changes values for the
registered service template of an organization.

• orgRegisterServiceRequests.xml—Registers services for an organization.

• orgUnRegisterServiceRequests.xml—Unregisters services for an
organization.

• pcDeleteRequests.xml—Deletes attributes for a people container object.

• pcModifyUserRequests.xml—Modifies user attributes in a people container
object.

• roleCreateServiceTemplateRequests.xml—Creates a service template for
a role.

• roleModifyServiceTemplateRequests.xml—Changes values for the
registered service template of a role.

• schemaAddChoiceValuesRequests.xml—Adds a selection of values to an
existing service’s attribute from which the user can choose.

• schemaAddDefaultValuesRequest.xml—Adds a default value to an existing
service’s attribute.

• schemaDeleteChoiceValueRequest.xml—Deletes a value from an existing
service’s attribute choices.

• schemaDeleteDefaultValueRequest.xml—Deletes a default value from an
existing service’s attribute.

• schemaGetServiceDefaultValueRequest.xml—Retrieves a default value
from an existing service’s attribute.

• schemaModifyDefaultValueRequest.xml—Changes the default value of an
existing service’s attribute.

XML Service Files

Chapter 8 Service Management 237

Modifying A Batch Processing XML Template
Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadmin executable to upload the
changes to Directory Server.

Customizing User Pages
The User profile page and what attributes it displays will vary, depending on what
the service developer defines. By default, every attribute in the amUser.xml file
that has an i18nKey attribute specified and the any attribute set to display
(any=display) will display in the Access Manager console. Alternately, if an
attribute is specified to be of type User in another XML service file, the Access
Manager console will also display it if the service is assigned to the user. Thus,
User display pages in the Access Manager console can be modified to add new
attributes in either of two ways:

• The User attribute schema definition in the specific XML service file can be
modified.

• A new User schema attribute definition can be added to the User service (the
amUser.xml service file).

For information on modifying XML service files, see “Modifying A Default XML
Service File” on page 233.

NOTE The final XML templates (serviceConfigurationRequests.xml,
serviceAddSubConfigurationRequests.xml, and
serviceDeleteSubConfigurationRequests.xml) follow the
sms.dtd format and are used for service sub-configurations. One use for these
can be found in “Multi-LDAP Authentication Module Configuration” on page 128 of
Chapter 5, “Authentication Service,” in this manual.

NOTE Be aware that creations of roles, groups, and organizations is a time-intensive
operation.

NOTE Any service can describe an attribute that is for a user only. The amUser.xml
file is just the default placeholder for user attributes that are not tied to a particular
service.

XML Service Files

238 Access Manager 6 2005Q1 • Developer’s Guide

Creating Users Using A Modified Directory Server Schema
There might be a need to modify the Directory Server LDAP schema in order to
create users with new object classes. The procedure follows:

1. Modify the Directory Server LDAP schema with the new object classes and
attributes.

For more information on how to do this, see the Sun Java System Directory
Server documentation.

2. Write a new XML service file which contains the definitions for the new object
classes and attributes.

When writing this file, the object classes should be defined under the Global
element and the attributes should be defined under the User element. More
information can be found in Chapter 8, “Service Management.”

3. Write a new authentication module credentials file and put it in the
IdentityServer_base/SUNWam/lib directory.

This file contains the attribute-value pairs for the internationalization keys
used in the file created in Step 2. More information can be found in
“Configuring The Authentication Module” on page 146 of Chapter 5,
“Authentication Service,” in this manual.

4. Load the XML service file using the amadmin command line interface.

More information on this tool can be found in the Sun Java System Access
Manager Administration Guide.

5. Register the new service to the desired organization using the Access Manager
console.

For more details about registering a new service, refer to the Sun Java System
Access Manager Administration Guide.

6. Select the new service to create a user with the additional object classes.

When creating new user there is an option to select the newly configured
service.

NOTE Alternately, the path to the module configuration properties file can be put in the
classpath of the web container’s JVM.

Service Management SDK

Chapter 8 Service Management 239

Service Management SDK
The Access Manager provides a Java API for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data. The interfaces and methods can be found in
com.sun.identity.sm.

ServiceSchemaManager Class
The ServiceSchemaManager class in the com.sun.identity.sm package provides
interfaces to manage a service’s schema. It must implement ServiceSchema which
represents a single schema element in the service.

Retrieve Logging Location
Code Example 8-24 uses the ServiceSchemaManager class to retrieve the
iplanet-am-logging-location attribute value from the Logging Service at the
following DN: ou=iPlanetAMLoggingService,ou=services,o=isp.

Retrieve User Or Dynamic Attributes
Code Example 8-25 uses the ServiceSchemaManager to define the ServiceSchema
user attributes. AMUser.getAttributes(..) is then called to obtain the
attribute/value pairs.

Code Example 8-24 Retrieve Logging Location Sample

SSOTokenManager manager = SSOTokenManager.getInstance();
SSOToken token = manager.createSSOToken(new
AuthPrincipal("uid=amadmin,ou=People,dc=org,dc=com"), "11111111");
ServiceSchemaManager ssm = new ServiceSchemaManager(token,
"iPlanetAMLoggingService", "1.0");
ServiceSchema ss = ssm.getGlobalSchema();
Map p = ss.getAttributeDefaults();

Code Example 8-25 Retrieve User Or Dynamic Attributes

ServiceSchemaManager ssm = new ServiceSchemaManager(serviceName, token);
ServiceSchema sm = ssm.getSchema(SchemaType.USER);
if (sm != null) {

Service Management SDK

240 Access Manager 6 2005Q1 • Developer’s Guide

Retrieve Attribute Values
Code Example 8-26 illustrates one way to retrieve attribute values from a service.

 Set userAttributes = ss.getAttributeSchemaNames();
 // Since USER or DYNAMIC attributes are stored as ldap attributes you
can call..
 amUser.getAttributes(userAttributes);
}

Code Example 8-26 Sample Code To Retrieve Attribute Values

package com.iplanet.am.samples.sdk;

import java.io.*;
import java.net.*;
import java.util.*;
import com.iplanet.sso.*;
import com.iplanet.am.sdk.*;
import com.sun.identity.authentication.internal.*;
import com.sun.identity.sm.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SampleUserOperations {

 SSOToken token = null;

/**
* This user will be used for further sample operations on the
* same object
*/
 private static AMUser contextUser = null;
 private static String passWord = null;
 private static String uid = null;
 private static String lastName = null;
 private static String firstName = null;
 String userDN = null;

 private static Map scuObjMap = new HashMap();

 public static AMStoreConnection amsc = null;
 public static SampleUserOperations suo;

//Here we will try to get the value of the organization type
//attribute "iplanet-am-auth-ldap-bind-dn" of the service
//"iPlanetAMAuthLDAPService" for the organization
//DN "dc=iplanet,dc=com".

Code Example 8-25 Retrieve User Or Dynamic Attributes

Service Management SDK

Chapter 8 Service Management 241

 public static void main(String args[]) {
 try {
 SSOTokenManager manager = SSOTokenManager.getInstance();
//If possible create the token using the tokneid or httprequest.
 SSOToken token = manager.createSSOToken(new
AuthPrincipal("uid=amadmin,ou=People,dc=iplanet,dc=com"), "11111111");
 suo = getSampleUserOperations(token);
 amsc = new AMStoreConnection(token);
 ServiceConfigManager scm = new ServiceConfigManager(token,
"iPlanetAMAuthLDAPService", "1.0");
 String orgName = "dc=iplanet,dc=com";
 ServiceConfig sc = scm.getOrganizationConfig(orgName, null);
 Map mp = sc.getAttributes();
 Iterator itr =
((HashSet)mp.get("iplanet-am-auth-ldap-bind-dn")).iterator();
 System.out.println("bind dn for the org -" + orgName + "-is-" +
(String)itr.next());
 System.exit(0);
 } catch (Exception e) {
 System.out.println("Exception Message: " + e.getMessage());
 e.printStackTrace();
 }
 }

/* Basic Constructor */

 public SampleUserOperations(SSOToken token) {
 this.token = token;
 scuObjMap.put(token, this);
 }

/* Use the same object for multiple operations */

 public static SampleUserOperations getSampleUserOperations(SSOToken
token) {
 SampleUserOperations scuObj =
(SampleUserOperations)scuObjMap.get(token);
 if (scuObj == null) {
 scuObj = new SampleUserOperations(token);
 }
 return scuObj;
 }

/**
* This method will describe the SDK usage for creating a user.
* It uses AMStoreConnection to get the organization object
* It uses the Set Parameters to store the different attributes of
* the user. This method is used for command line.
* It throws an AMException if unable to create it and we throw
* message "unable to create" to the GUI by catching the same
*/
 public String createUser(AMStoreConnection conn) {
 try {
 Map userAttributeMap = new HashMap();

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

242 Access Manager 6 2005Q1 • Developer’s Guide

 uid = "user";
 storeUserAttributes("uid", uid, userAttributeMap);
 firstName = "user";
 storeUserAttributes("givenname", firstName,
userAttributeMap);
 lastName = "one";
 storeUserAttributes("sn", lastName, userAttributeMap);
 passWord = "userone";
 storeUserAttributes("userPassword", passWord,
userAttributeMap);

 Map userMap1 = new HashMap();
 userMap1.put(uid, userAttributeMap);
/**
* Provide the DN according to the DIT
*/
 String dn = "ou=People,o=iplanet.com,o=isp";
 AMPeopleContainer ampc = conn.getPeopleContainer(dn);
 ampc.createUsers(userMap1);
 userDN = "uid=" + uid + "," + dn;
/*
* This is to keep the context of the user
*/
 contextUser = conn.getUser(userDN);
 return "Successfully added the user: " + uid;
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return "Unable to create";
 }

/**
* This method will describe the SDK usage for creating a user.
* It uses AMStoreConnection to get the organization object
* It uses the Set Parameters to store the different attributes of
* the user.
* It throws an AMException if unable to create it and we throw
* message "unable to create" to the GUI by catching the same
*/

 public String createUser(HttpServletRequest req, Set parameters,
AMStoreConnection
conn) {
 try {
 Map userAttributeMap = new HashMap();
 if (parameters.contains("uid")) {
 uid = req.getParameter("uid");
 storeUserAttributes("uid", uid, userAttributeMap);
 }
 if(parameters.contains("firstname")) {
 firstName = req.getParameter("firstname");
 storeUserAttributes("givenname", firstName,
userAttributeMap);
 }

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

Chapter 8 Service Management 243

 if(parameters.contains("lastname")) {
 lastName = req.getParameter("lastname");
 storeUserAttributes("sn", lastName, userAttributeMap);
 }
 if(parameters.contains("password")) {
 passWord = req.getParameter("userPassword");
 storeUserAttributes("userPassword", passWord,
userAttributeMap);
 }

 Map userMap1 = new HashMap();
 userMap1.put(uid, userAttributeMap);
 String orgDN = req.getParameter("orgName");
 String dn = "ou=People" + "," + orgDN;
 AMPeopleContainer ampc = conn.getPeopleContainer(dn);
 ampc.createUsers(userMap1);
 userDN = "uid=" + uid + "," + dn;
 /*
 * This is to keep the context of the user
 */
 contextUser = conn.getUser(userDN);
 return showCreateUserSuccess();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return "Unable to create";
 }

/**
* This method describes the SDK usage for modifying the user.
*/
 public String modifyUser(HttpServletRequest req) {
 HashMap modifyMap = new HashMap();
 lastName = req.getParameter("lastname");
 storeUserAttributes("sn", lastName, modifyMap);
 firstName = req.getParameter("firstname");
 storeUserAttributes("givenname", firstName, modifyMap);
 passWord = req.getParameter("userpassword");
 storeUserAttributes("userPassword", passWord, modifyMap);

 try {
 contextUser.setAttributes(modifyMap);
 contextUser.store();
 return showModifyUserSuccess();
 } catch (Exception ex) {
 System.out.println("Exception occured");
 }
 return "Unable to modify";
 }

/**
* This method describes the SDK usage for deleting the user.
*/

 public String deleteUser() {

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

244 Access Manager 6 2005Q1 • Developer’s Guide

 try {
 contextUser.delete(false);
 return "Deleted successfully";
 } catch (Exception ex) {
 System.out.println("Exception occured");
 }
 return "Unable to delete";
 }

/* This method is for the GUI purposes */

 public String showCreateUser() {
 StringBuffer sb = new StringBuffer();
 sb.append("<HTML>");
 sb.append("<HEAD>");
 sb.append("</HEAD>");
 sb.append("<BODY>");
 sb.append("<FORM name=\"allattributes\" METHOD=POST
ACTION=\"/amserver/sdksample\">");
 sb.append("<TABLE>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>Login ID</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"text\" NAME=\"uid\"
VALUE=\"\"
SIZE=32 MAXLENGTH=64></TD><TD>Under Organization</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"text\" NAME=\"orgName\"
VALUE=\"\"
SIZE=32 MAXLENGTH=64></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>First Name</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"text\" NAME=\"firstname\"
VALUE=\"\" SIZE=32 MAXLENGTH=64></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>Last Name</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"text\" NAME=\"lastname\"
VALUE=\"\"
SIZE=32 MAXLENGTH=64></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>Password</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"password\"
NAME=\"userpassword\"
VALUE=\"\" SIZE=12></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>Confirm
Password</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"password\"
NAME=\"passwordagain\"
VALUE=\"\" SIZE=12></TD>");
 sb.append("</TR>");
 sb.append("<TR>");

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

Chapter 8 Service Management 245

 sb.append("<TD><input type=SUBMIT NAME=\"usersubmit\">");
 sb.append("</TD></TR>");
 sb.append("</TABLE>");
 sb.append("</FORM>");
 sb.append("</BODY>");
 sb.append("</HTML>");
 return sb.toString();
 }

 private void storeUserAttributes(String attribute, String value, Map
userMap) {
 Set userSet = new HashSet();
 userSet.add(value);
 userMap.put(attribute, userSet);
 }

/* This method is for the GUI purposes */

 private String showCreateUserSuccess() {
 StringBuffer sb = new StringBuffer();
 sb.append("<HTML>");
 sb.append("<HEAD>");
 sb.append("</HEAD>");
 sb.append("<BODY>");
 sb.append("Created Successfully");
 sb.append("<FORM name=\"usersuccessful\" METHOD=POST
ACTION=\"/amserver/sdksample\">");
 sb.append("<TABLE>");
 sb.append("<TR>");
 sb.append("<TD><input type=SUBMIT NAME=\"modifyuser\"
VALUE=\"Modify\">");
 sb.append("</TD></TR>");
 sb.append("</TABLE>");
 sb.append("</FORM>");
 sb.append("</BODY>");
 sb.append("</HTML>");
 return sb.toString();
 }

 /* This method is for the GUI purposes */

 public String showModifyUser() {
 StringBuffer sb = new StringBuffer();
 sb.append("<HTML>");
 sb.append("<HEAD>");
 sb.append("</HEAD>");
 sb.append("<BODY>");
 sb.append("uid:" + uid);
 sb.append("<FORM name=\"showmodify\" METHOD=POST
ACTION=\"/amserver/sdksample\">");
 sb.append("<TABLE>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>First Name</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"text\" NAME=\"firstname\"

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

246 Access Manager 6 2005Q1 • Developer’s Guide

VALUE=\"");
 sb.append(firstName + "\" SIZE=32 MAXLENGTH=64></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>Last Name</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"text\" NAME=\"lastname\"
VALUE=\"");
 sb.append(lastName + "\" SIZE=32 MAXLENGTH=64></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD ALIGN=LEFT VALIGN=MIDDLE>Password</TD>");
 sb.append("<TD VALIGN=MIDDLE><INPUT TYPE=\"password\"
NAME=\"userpassword\"
VALUE=\"");
 sb.append(passWord + "\" SIZE=12></TD>");
 sb.append("</TR>");
 sb.append("<TR>");
 sb.append("<TD><input type=SUBMIT NAME=\"modifyusersubmit\">");
 sb.append("</TD></TR>");
 sb.append("</TABLE>");
 sb.append("</FORM>");
 sb.append("</BODY>");
 sb.append("</HTML>");
 return sb.toString();
 }

/* This method is for the GUI purposes */

 private String showModifyUserSuccess() {
 StringBuffer sb = new StringBuffer();
 sb.append("<HTML>");
 sb.append("<HEAD>");
 sb.append("</HEAD>");
 sb.append("<BODY>");
 sb.append("Modified Successfully");
 sb.append("<FORM name=\"modifyusersuccessful\" METHOD=POST
ACTION=\"/amserver/sdksample\">");
 sb.append("<TABLE>");
 sb.append("<TR>");
 sb.append("<TD><input type=SUBMIT NAME=\"deleteusersubmit\"
VALUE=\"Delete\">");
 sb.append("</TD></TR>");
 sb.append("</TABLE>");
 sb.append("</FORM>");
 sb.append("</BODY>");
 sb.append("</HTML>");
 return sb.toString();
 }

/* This method is for the GUI purposes */

 public String showDeleteUser() {
 StringBuffer sb = new StringBuffer();
 sb.append("<HTML>");
 sb.append("<HEAD>");

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

Chapter 8 Service Management 247

 sb.append("</HEAD>");
 sb.append("<BODY>");
 sb.append("<FORM name=\"showdelete\" METHOD=POST
ACTION=\"/amserver/sdksample\">");
 sb.append("<TABLE>");
 sb.append("<TR>");
 sb.append("<TD><input type=SUBMIT NAME=\"deleteusersubmit\">");
 sb.append("</TD></TR>");
 sb.append("</TABLE>");
 sb.append("</FORM>");
 sb.append("</BODY>");
 sb.append("</HTML>");
 return sb.toString();
 }

}

Code Example 8-26 Sample Code To Retrieve Attribute Values (Continued)

Service Management SDK

248 Access Manager 6 2005Q1 • Developer’s Guide

249

Chapter 9

Policy Management

Sun Java™ System Access Manager 6 2005Q1 includes a Policy Management
feature that allows you to define, manage, and enforce policies that control access
to protected resources. It allows administrators to configure and administer these
conditions for applications, resources, and identities managed within the Access
Manager deployment. This chapter explains the Policy Management feature and its
architecture. It contains the following sections:

• “Policy SDK” on page 249

• “Extending the Policy Management Feature” on page 257

Policy SDK
The Policy SDK provides Java and C APIs to allow external applications to
participate in its functionality. With the SDK, applications can determine privileges
and manage policies.

The Sun Java™ System Access Manager Developer’s Reference provides summaries of
data types, structures, and functions that make up the public Access Manager C
APIs. You will find the Javadoc for Access Manager Java APIs in this location:

IdentityServer_base/SUNWam/docs/am_public_javadocs.jar

Java SDK For Policy
The crux of the Policy Service is the Java SDK. It defines the following packages:

• com.sun.identity.policy provides the APIs for administering (creating,
deleting, modifying) and evaluating policies. It is used by the Access Manager
console and/or the command line interface.

Policy SDK

250 Access Manager 6 2005Q1 • Developer’s Guide

• com.sun.identity.policy.interfaces provides source interfaces used to
implement custom subjects, conditions, referrals and resource comparators.

• com.sun.identity.policy.client are APIs used by remote Java
applications that need to evaluate policies and get policy decisions.

Policy API For Java
The com.sun.identity.policy package provides the classes and methods to
manage, administer and evaluate policies. They can be used by the Access
Manager console or the amadmin command line interface tool. Select classes and
methods are discussed in this section.

Policy Evaluation Classes
The following information introduces some of the classes that can be used to
evaluate configured policies for access to a protected resource.

PolicyEvaluator Class com.sun.identity.policy.PolicyEvaluator can be
integrated into Java applications to evaluate policy privileges and provide policy
decisions. This class provides support for both boolean and non-boolean type
policies. A PolicyEvaluator is created by calling the constructor with a service
name. Public methods of this class include:

• isAllowed—evaluates the policy associated with the given resource and
returns a boolean value indicating whether the policy evaluation resulted in an
allow or deny.

❍ Returns a boolean value of:

• true if access is allowed.

• false if access is denied.

❍ Arguments:

TIP AMConfig.properties must be copied from Access Manager to a client
machine as well as the respective jars to run test code in a remote environment.
Some properties (like the notification url for remote client) need to be modified for
their functionality to work.

NOTE A boolean false value overrides a boolean true value. Once an action is determined
to have a false value, other values are not evaluated.

Policy SDK

Chapter 9 Policy Management 251

• com.iplanet.sso.SSOToken: The SSOToken associated with the
principal for which the policy will be evaluated.

• java.lang.String resourceName: A string representing the
requested resource.

• java.lang.String actionName: The action for which the policy will
be evaluated. In a typical web application scenario, the action could be
GET or POST.

• java.util.Map envParameters: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

❍ Exceptions:

• Throws com.iplanet.sso.SSOException if the given session token is
not valid or has expired.

• Throws com.sun.identity.policy.PolicyException if the result
could not be computed for any reason other than a token problem.

• getPolicyDecision—evaluates the policy and ascertains privileges for
non-boolean decisions. It returns a decision that gives a user permission to
perform a specific action on a specific resource. This method can also check
permissions for multiple actions.

❍ Returns com.sun.identity.policy.PolicyDecision.

❍ Arguments:

• com.iplanet.sso.SSOToken: The SSO token associated with the
principal for which the policy will be evaluated.

• java.lang.String resourceName: A string representing the
requested resource.

• java.util.Set actionName: A collection of actions for which the
policy will be evaluated.

• java.util.Map envParameters: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

❍ Exceptions:

• Throws com.iplanet.sso.SSOException if the given session token is
not valid or expired.

Policy SDK

252 Access Manager 6 2005Q1 • Developer’s Guide

• Throws com.sun.identity.policy.PolicyException if the result
could not be computed for any reason other than a token problem.

• getResourceResult—obtains the policy and ascertains privileges for
non-boolean decisions. Possible values for the scope of this method are self
and subtree. self gets the policy decision for the specified resource only.
subtree includes the policy decisions for all resources (defined in the policies)
which are sub-resources of the specified resource.

To illustrate, the PolicyEvaluator class can be used to display the links for a list
of resources to which an authenticated user has access. The getResourceResult
method would be used to get the list of resources. The resourceName parameter
would be http://host.domain:port which would return all the resources to
which the user has access on that server. These resources are returned as a
PolicyDecision based on the user’s defined policies. If the user is allowed to
access resources on different servers, this method needs to be called for each server.

ProxyPolicyEvaluator Class
com.sun.identity.policy.ProxyPolicyEvaluator allows a privileged user
(top level administrator, organization administrator, policy administrator, or
organization policy administrator) to get policy privileges and evaluate policy
decisions for any user in their respective scope of administration.
com.sun.identity.policy.ProxyPolicyEvaluatorFactory is the singleton
class used to get ProxyPolicyEvaluator instances.

NOTE Not all resources that have policy decisions are accessible to the user. The
ActionDecision(s) contained in policy decisions carry this information.

Code Example 9-1 Public Methods For ProxyPolicyEvaluator

 /**
 * Evaluates a simple privilege of boolean type. The privilege
 * indicates if the user identified by the principalName
 * can perform specified action on the specified resource.
 *
 * @param principalName principal name for whom to

 * compute the privilege.
 * @param resourceName name of the resource
 * for which to compute policy result.
 * @param actionName name of the action the user is trying to
 * perform on the resource
 * @param env run time environment parameters
 *
 * @return the result of the evaluation as a boolean value
 *
 * @throws PolicyException exception form policy framework

Policy SDK

Chapter 9 Policy Management 253

 * @throws SSOException if sso token is invalid
 *
 */
 public boolean isAllowed(String principalName, String resourceName,
 String actionName, Map env) throws PolicyException, SSOException;

 /**
 * Gets policy decision for the user identified by the
 * principalName for the given resource
 *
 * @param principalName principal name for whom to compute the
 * policy decision
 * @param resourceName name of the resource for which to
 * compute policy decision
 * @param env run time environment parameters
 *
 * @return the policy decision for the principal for the given
 * resource
 * @throws PolicyException exception form policy framework
 * @throws SSOException if sso token is invalid
 *
 */
 public PolicyDecision getPolicyDecision(String principalName,
 String resourceName, Map env)
 throws PolicyException, SSOException;

 /**
 * Gets protected resources for a user identified by the
 * principalName. Conditions defined in the policies
 * are ignored while computing protected resources.
 * Only resources that are subresources of the given
 * rootResource or equal to the given rootResource would
 * be returned.
 * If all policies applicable to a resource are
 * only referral policies, no ProtectedResource would be
 * returned for such a resource.
 * @param principalName principal name for whom
 * to compute the privilege.
 * @param rootResource only resources that are subresources
 * of the given rootResource or equal to the given
 * rootResource would be returned. If
 * <code>PolicyEvaluator.ALL_RESOURCES</code>
 * is passed as rootResource, resources under
 * all root resources of the service
 * type are considered while computing protected
 * resources.
 *
 * @return set of protected resources. The set contains
 * ProtectedResource objects.
 *
 * @throws PolicyException exception form policy framework
 * @throws SSOException if sso token is invalid
 * @see ProtectedResource
 *
 */

Code Example 9-1 Public Methods For ProxyPolicyEvaluator (Continued)

Policy SDK

254 Access Manager 6 2005Q1 • Developer’s Guide

PolicyEvaluator Class com.sun.identity.policy.client.PolicyEvaluator
evaluates policies and provides policy decisions for remote applications which do
not have a direct access to Directory Server (for example, if there is a firewall). The
com.sun.identity.policy.client.PolicyEvaluator defined in
“PolicyEvaluator Class” on page 250 requires direct LDAP access to policies stored
in Directory Server. This class
com.sun.identity.policy.client.PolicyEvaluator is implemented using
XML over HTTP(s). It stores a cache of policy decisions for faster responses and
maintains the cache in sync with the Policy Service on the instance of Access
Manager using the notification and polling mechanism.

Policy Management Classes
The following classes can be used by system administrators to manage policies in
Access Manager. The interfaces for this functionality are also found in the
com.sun.identity.policy package.

PolicyManager com.sun.identity.policy.PolicyManager is the top level
administrator class for policy management, providing methods that allow an
administrator to create, modify or delete an organization’s policies. The
PolicyManager can be obtained by passing a privileged user’s session token or by
passing a privileged user’s session token with an organization name. Some of this
class’s more widely used methods include:

• getPolicyNames - retrieves all named policies created for the organization for
which the policy manager was instantiated. This method can also take a
pattern (filter) as an argument.

• getPolicy - retrieves a policy when given the policy’s name.

 public Set getProtectedResourcesIgnoreConditions(String principalName,
 String rootResource) throws PolicyException, SSOException

NOTE The PolicyEvaluator class can be used in a deployment container running Access
Manager, or in a stand alone Java Virtual Machine (JVM) running the Access
Manager SDK. Respective to the JVM, a property must be defined to point to
serverconfig.xml which, in turn, points to Directory Server. This is done by
launching the JVM with the following argument:

-D
"com.iplanet.coreservices.configpath=/etc/opt/SUNWam/
config/ums"

Code Example 9-1 Public Methods For ProxyPolicyEvaluator (Continued)

Policy SDK

Chapter 9 Policy Management 255

• addPolicy - adds a policy to the specified organization. If a policy with the
same name already exists, it will be overwritten.

• removePolicy - removes a policy from the specified organization.

Policy com.sun.identity.policy.Policy represents a policy definition with
all its intended parts (rules, subjects, referrals and conditions). The policy object is
saved in the data store only when the store method is called or if the addPolicy
or replacePolicy methods from the PolicyManager class are invoked. This class
contains methods to add, remove, replace or get any of the parts of a policy
definition.

PolicyEvent com.sun.identity.policy.PolicyEvent represents a happening
in a policy that could potentially change the current access status. For example, a
policy event would be created and passed to the registered policy listeners
whenever there is a change in a policy rule. This class works with the
PolicyListener class in the com.sun.identity.policy.interface package.

Policy Plugin API For Java
The following classes are used by service developers and policy administrators
who need to provide additional policy features as well as support for legacy
policies. The package for these classes is com.sun.identity.policy.interfaces.
The interfaces include:

ResourceName
ResourceName provides methods to determine the hierarchy of the resource names
for a determined service type. For example, these methods can check to see if two
resources names are the same or if one is a sub-resource of the other.

Subject
Subject defines methods that can determine if an authenticated user (possessing
an SSOToken) is a member of the given subject.

Referral
Referral defines methods used to delegate the policy definition or evaluation of a
selected resource (and its sub-resources) to another organization or policy server.

Condition
Condition provides methods used to constrain a policy; for example, time of day
or IP address. This interface allows the pluggable implementation of the
conditions.

Policy SDK

256 Access Manager 6 2005Q1 • Developer’s Guide

PolicyListener
PolicyListener defines an interface to register for policy events when a policy is
added, removed or changed. It is used by the policy service to send notifications
and by listeners to review policy change events.

C Library For Policy
Access Manager also provides a library of policy evaluation APIs to enable
integration of the policy functionality into for C applications. The C library
provides a comprehensive set of interfaces that query policy results of an
authenticated user for a given action on a given resource. The result of the policy
evaluation is called an action value and may not always be binary (allow/deny or
yes/no); action values can also be non-boolean. For example, John Smith has a
mailbox quota of 100MB. 100 is the value defined by a policy. As policy evaluation
results in string values only, the policy evaluation returned is 100 numeric not
100MB. It is up to the application developer to define metrics for the values
obtained appropriately.

As the first step of policy implementation, the API abstracts how a resource is
represented by mandating that any resource be represented in a string format. For
example, on a web server, resources may be represented as URLs. The policy
evaluation engine cares only about the relative relevance of one resource to other.
There are five relative relevances defined between two resources, namely: exact
match, no match, subordinate match, superior match or exact pattern match. Having
represented the resources in string format, the service developer must provide
interfaces that establish the relevant relationship between resources.

CAUTION Previous releases of Access Manager contained C libraries in
IdentityServer_base/lib/capi. The capi directory is being deprecated, and
is currently available for backward compatibility. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD_LIBRARY_PATH, PATH, compiler options, etc.)

NOTE Exact pattern match is a special case where resources may be represented
collectively as patterns. The information is abstracted from the policy service and
the comparison operation must take a boolean parameter to trigger a pattern
matched comparison. During the caching of policy information, the policy engine
does not care about patterns, whereas during policy evaluation, the comparisons
are pattern sensitive.

Extending the Policy Management Feature

Chapter 9 Policy Management 257

The service developer must also provide a method to extract the root of the given
resource. For example, in a URL, the
protocol://identity_server_host.domain_name:port portion represents the root. The
three functions (has_patterns, get_resource_root and compare_urls) are
specializations of resource representations. The set of characteristics needed to
define a resource is called a resource trait. Resource traits are taken as a parameter
during service initialization in the am_resource_traits_t structure. Using the
resource traits, the policy service constructs a resource graph for policy evaluation.
In a web server policy sense, the relation between all the resources in the system
spans out like a tree with the protocol://identity_server_host.domain_name:port/
being the root of the tree.

Policy Evaluation API for C
Two opaque data structures are defined: am_map_t and am_properties_t.
am_map_t provides a key to multiple value mapping and am_properties_t
provides a key to single value mapping. am_properties_t provides the additional
functionality of loading a configuration file and getting values of specific data
types. These are simple data structures that are only used for information exchange
to and from the policy evaluation interfaces.

Extending the Policy Management Feature
Out of the box, Access Manager provides the URL Policy Agent service for policy
enforcement. However, you can use the Policy API to extend the functionality of
the default policy service. Through the API, you can create a new policy service to
fit your needs.

Access Manager provides a collection of sample files to illustrate how to use the
Policy API. This section explains how to use the samples to develop and add
custom subjects, conditions and referrals to existing policy, to programatically
construct new policies, and to develop and run policy evaluation programs.In
order to successfully execute the policy samples, the following tasks must be
completed in order:

1. Compiling the Policy Samples

2. Adding the Policy Service to Access Manager

NOTE The policy management system is generic and makes no assumptions about any
particular policy definition requirement.

Extending the Policy Management Feature

258 Access Manager 6 2005Q1 • Developer’s Guide

3. Developing Custom Subjects, Conditions and Referrals

4. Creating Policies for the Service

5. Developing and Running Policy Evaluation Programs

The samples and all associated files are located in the following directories:

IdentityServer_base/SUNWam/samples/policy (Solaris)

IdentityServer_base/identity/samples/policy (Linux)

Compiling the Policy Samples
Before you can use the files included with the samples, you must compile them. To
compile the samples:

1. Update the following variables in the Makefile:

BASE - Set this variable to refer IdentityServer_base/SUNWam.

JAVA_HOME - Set this variable to your installation location of JDK. The JDK
version should be higher than JDK 1.3.1.

CLASSPATH - Set this variable to refer to all of the jar files

2. Compile the samples by running gmake all.

Adding the Policy Service to Access Manager
Before you use the API to customize the interface, you must add the
SampleWebService.xml file to Access Manager. For information on adding new
policy services, see the “Policy Management” chapter of the Access Manager
Administration Guide.

NOTE Throughout the rest of this chapter, only the Solaris directory information will be
given. Please note that the directory structure for Linux is different.For more
information, please see “Conventions Used in This Guide” on page 30.

Extending the Policy Management Feature

Chapter 9 Policy Management 259

Developing Custom Subjects, Conditions and
Referrals
The Policy API provides a means to customize a policy service interface, which
provides the variables that define the policy itself. This sample shows how to
customize the subject, condition and rule interfaces for SampleWebService.

The interfaces used to implement the customization are as follows:

• SampleSubject.java - Implements the Subject interface. This subject applies to
all authenticated users who have valid SSOTokens.

• SampleConditon.java - Implements the Condition interface. This condition
makes the policy applicable to users whose name length is grater or equal to
the length spcified in the condition.

• SampleReferral.java - Implements the Referral interface. This referral
retrieves the referral policy decision from the SampleReferral.properties file.
This file is located in the same directory as the rest of the sample files.

The subject, condition and referral implementations need to be added to
iPlanetAMPolicyServicea and iPlanetAMPolicyConfigService services in order
to make them available for policy definitions. (These services are loaded into
Access Manager during installation.) To add the sample implementations to the
policy framework, you must first modify the iPlanetAMPolicy service and
iPlanetAMPolicyConfig service. The policy samples provide a modified XML file
for use with each service. The iPlanetAMPolicyServicea service uses
amPolicy.xml and the iPlanetAMPolicyConfigService uses
amPolicyConfig.xml.

The following XML attribute values in amPolicyConfig.xml must be changed to
reflect your installation before they are loaded to Access Manager:

• iplanet-am-policy-config-ldap-server

• iplanet-am-policy-config-ldap-base-dn

• iplanet-am-policy-config-ldap-bind-dn

• iplanet-am-policy-config-ldap-bind-password.

When setting the iplanet-am-policy-config-ldap-bind-password attribute, the
encrypted value must be used. The ampassword command can be used to generate
encrypted password (for more information, see “The ampassword Command Line
Tool” in the Access Manager Administration Guide”). Alternatively, they can be
set to correct values when the policy configuration service is registered for the
organizations.

Extending the Policy Management Feature

260 Access Manager 6 2005Q1 • Developer’s Guide

To Load the Modified Services
1. Back up iPlanetAMPolicy and iPlanetAMPolicyConfig services using the

db2ldif utility. For example:

cd DirectoryServer_base/slapd-hostname

db2ldif -n userRoot -s
"ou=iPlanetAMPolicyService,ou=services,root_suffix"

db2ldif -n userRoot -s
"ou=iPlanetAMPolicyConfigService,ou=services,root_suffix"

2. Remove the existing iPlanetAMPolicy and iPlanetAMPolicyConfig services
by running the following commands:

IdentityServer_base/SUNWam/bin/amadmin

 --runasdn "uid=amAdmin,ou=People,default_org,root_suffix"

 --password password

 --deleteservice iPlanetAMPolicyService

IdentityServer_base/SUNWam/bin/amadmin

 --runasdn "uid=amAdmin,ou=People,<default_org>,root_suffix"

 --password password

 --deleteservice iPlanetAMPolicyConfigService

3. Add the modified services back to the server. The XML attributes values must
be modified to your installation before running these commands):

IdentityServer_base/SUNWam/bin/amadmin

 --runasdn "uid=amAdmin,ou=People,default_org,root_suffix"

 --password password

 --schema IdentityServer_base/SUNWam/samples/policy/amPolicy.xml

IdentityServer_base/SUNWam/bin/amadmin

 --runasdn "uid=amAdmin,ou=People,default_org,root_suffix"

 --password password

 --schema
IdentityServer_base/SUNWam/samples/policy/amPolicyConfig.xml

The original services XML files for these two services are located in
IdentityServer_base/SUNWam/config/xml.

Extending the Policy Management Feature

Chapter 9 Policy Management 261

4. Change the properties files with the following commands:

cd IdentityServer_base/SUNWam/locale

mv amPolicy.properties amPolicy.properties.bak

mv amPolicy_en.properties amPolicy_en.properties.bak

mv amPolicyConfig.properties amPolicyConfig.properties.bak

mv amPolicyConfig_en.properties amPolicyConfig_en.properties.bak

cp IdentityServer_base/SUNWam/samples/policy/amPolicy.properties

cp IdentityServer_base/SUNWam/samples/policy/amPolicy_en.properties

cp IdentityServer_base/SUNWam/samples/policy/amPolicyConfig.properties

cp
IdentityServer_base/SUNWam/samples/policy/amPolicyConfig_en.properties

5. To deploy the sample plugins copy SampleSubject.class,
SampleCondition.class and SampleReferral.class from the sample
directory to IdentityServer_base/SUNWam/lib.

6. Restart Access Manager.

7. Login into Access Manager console and register policy configuration service to
the organization. (For more information, see the “Policy Management” chapter
of the Access Manager Administration Guide.)

You can also use amadmin tool to register policy configuration service to
organizations.

8. Enter the LDAP Bind password for the LDAP Bind User.

The sample subject, condition and referral implementations are now available
for policy management through the Access Manager console or the amadmin
tool.

Creating Policies for the Service
After you add the SampleWebService service to Access Manager and develop the
custom interfaces, you need to create a policy for the service. Access Manager
provides the following sample policy definitions for the SampleWebService:

• SamplePolicy.xml - Defines a normal policy.

• SamplereferralPolicy.xml - Defines a referral policy.

Extending the Policy Management Feature

262 Access Manager 6 2005Q1 • Developer’s Guide

For information on adding new policy services, see the “Policy Management”
chapter of the Access Manager Administration Guide.

Developing and Running Policy Evaluation
Programs
The Policy API provides a Policy Evaluation API that allows you to write a policy
evaluation program to ensure that the policy service, and the policy definitions that
the service contains, function properly.

The Policy Evaluation API has one java class, PolicyEvaluator, and the package
for this class is com.sun.identity.policy.PolicyEvaluator. Based on this class,
Access Manager provides a sample policy evaluation program called
PolicyEvaluation.java.

The sample policy evaluation program uses the PolicyEvaluation.properties
file, in which you specify the input for the evaluation program such as service
name, action names, condition environment parameters, user name, user password
and so forth. The following properties can be set as input to the evaluation
program:

• Set the value of pe.servicename to the service name (SampleWebService).

• Set the pe.resoucename to the resource name against which you want to
evaluate the policy.

• Specify the action names in the pe.actionnames. Separate the action names
with ':'. If you want to get all the action values, you can simply leave the
pe.actionnames blank.

• Set other required properties like pe.username, pe.password.

• Set the optional properties pe.authlevel, pe.authscheme, pe.requestip,
pe.dnsname, pe.time if you use the corresponding conditions in your policy
definitions.

To Run the Policy Evaluation Program
1. Set the environment variable LD_LIBRARY_PATH to /usr/lib/mps/secv1.

NOTE Before you run the policy evaluation program, make sure that you have set up the
policy definitions.

Extending the Policy Management Feature

Chapter 9 Policy Management 263

2. Run the evaluation sample program, use the gmake command.

The policy decision from the policy evaluation program is displayed on the
terminal.

Constructing Policies Programmatically
The Policy API provides Policy Management API that allows you to
programatically create, add, update and remove policies. Access Manager provides
a sample program, PolicyCreator.java, which demonstrates how to construct
policies and add them to the policy store. For your reference, the
PolicyCreator.java code is listed at the end of this section.

In this sample, the following two policies are created:

• policy1- Normal policy, which contains one subject of each subject type and
one condition of each condition type that are provided by Access Manager out
of box

• refpolicy1- Referral policy.

To Run PolicyCreator.java
1. Compile sample Java programs. See “Compiling the Policy Samples” on

page 258 for more information.

2. Set the environment variable LD_LIBRARY_PATH to /usr/lib/mps/secv1.

In the Access Manager console, create a suborganization called org1, a user called
user1, a group called group1 and role called role1. Make sure that all of these
identity objects are created in your top-level organization. For more information on
creating these objects, see the Access Manager Administration Guide.

3. Set the values of following properties in the PolicyEvaluation.properties
file:

❍ pe.orgname - DN of the top level organazation.

❍ pe.username - userid to authenticate.

❍ pe.password - password to use to authenticate.

4. Use the following command to create the policies:

gmake createPolicies

5. In the Access Manager console, verify that policy1 and refpolicy1 were
added.

Extending the Policy Management Feature

264 Access Manager 6 2005Q1 • Developer’s Guide

PolicyCreator.java
The following section lists the PolicyCreator.java code.

Code Example 9-2 PolicyCreator.java
import com.sun.identity.policy.PolicyManager;
import com.sun.identity.policy.ReferralTypeManager;
import com.sun.identity.policy.SubjectTypeManager;
import com.sun.identity.policy.ConditionTypeManager;
import com.sun.identity.policy.Policy;
import com.sun.identity.policy.Rule;
import com.sun.identity.policy.interfaces.Referral;
import com.sun.identity.policy.interfaces.Subject;
import com.sun.identity.policy.interfaces.Condition;
import com.sun.identity.policy.PolicyException;

import com.iplanet.sso.SSOToken;
import com.iplanet.sso.SSOException;

import java.util.Set;
import java.util.HashSet;
import java.util.Map;
import java.util.HashMap;

public class PolicyCreator {

 public static final String DNS_NAME="DnsName";
 public static final String DNS_VALUE="*.red.iplanet.com";
 public static final String START_TIME="StartTime";
 public static final String START_TIME_VALUE="08:00";
 public static final String END_TIME="EndTime";
 public static final String END_TIME_VALUE="21:00";
 public static final String AUTH_LEVEL="AuthLevel";
 public static final String AUTH_LEVEL_VALUE="0";
 public static final String AUTH_SCHEME="AuthScheme";
 public static final String AUTH_SCHEME_VALUE="LDAP";

 private String orgDN;
 private SSOToken ssoToken;
 private PolicyManager pm;

 private PolicyCreator() throws PolicyException, SSOException {
 BaseUtils.loadProperties();
 orgDN = BaseUtils.getProperty("pe.orgname");
 System.out.println("orgDN = " + orgDN);
 ssoToken = BaseUtils.getToken();
 pm = new PolicyManager(ssoToken, orgDN);
 }

 public static void main(String[] args) {
 try {
 PolicyCreator pc = new PolicyCreator();
 pc.addReferralPolicy();

Extending the Policy Management Feature

Chapter 9 Policy Management 265

 pc.addNormalPolicy();
 System.exit(0);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 private void addNormalPolicy() throws PolicyException, SSOException
{
 System.out.println("Creating normal policy in org:" + orgDN);
 PolicyManager pm = new PolicyManager(ssoToken, orgDN);
 SubjectTypeManager stm = pm.getSubjectTypeManager();
 ConditionTypeManager ctm = pm.getConditionTypeManager();

 Policy policy = new Policy("policy1", "policy1 description");
 Map actions = new HashMap(1);
 Set values = new HashSet(1);
 values.add("allow");
 actions.put("GET", values);
 String resourceName = "http://myhost.com:80/hello.html";
 Rule rule = new Rule("rule1", "iPlanetAMWebAgentService",
 resourceName, actions);
 policy.addRule(rule);

 Subject subject = stm.getSubject("Organization");
 Set subjectValues = new HashSet(1);
 subjectValues.add(orgDN);
 subject.setValues(subjectValues);
 policy.addSubject("organization", subject);

 subject = stm.getSubject("LDAPUsers");
 subjectValues = new HashSet(1);
 String userDN = "uid=user1,ou=people" + "," + orgDN;
 subjectValues.add(userDN);
 subject.setValues(subjectValues);
 policy.addSubject("ldapusers", subject);

 subject = stm.getSubject("LDAPGroups");
 subjectValues = new HashSet(1);
 String groupDN = "cn=group1,ou=groups" + "," + orgDN;
 subjectValues.add(groupDN);
 subject.setValues(subjectValues);
 policy.addSubject("ldapgroups", subject);

 subject = stm.getSubject("LDAPRoles");
 subjectValues = new HashSet(1);
 String roleDN = "cn=role1" + "," + orgDN;
 subjectValues.add(roleDN);
 subject.setValues(subjectValues);
 policy.addSubject("ldaproles", subject);

 subject = stm.getSubject("IdentityServerRoles");
 subjectValues = new HashSet(1);

import com.sun.identity.policy.PolicyManager;

Extending the Policy Management Feature

266 Access Manager 6 2005Q1 • Developer’s Guide

 roleDN = "cn=role1" + "," + orgDN;
 subjectValues.add(roleDN);
 subject.setValues(subjectValues);
 policy.addSubject("is-roles", subject);

 Condition condition = ctm.getCondition("IPCondition");
 Map conditionProperties = new HashMap(1);
 Set propertyValues = new HashSet(1);
 propertyValues.add(DNS_VALUE);
 conditionProperties.put(DNS_NAME, propertyValues);
 condition.setProperties(conditionProperties);
 policy.addCondition("ip_condition", condition);

 condition = ctm.getCondition("SimpleTimeCondition");
 conditionProperties = new HashMap(1);
 propertyValues = new HashSet(1);
 propertyValues.add(START_TIME_VALUE);
 conditionProperties.put(START_TIME, propertyValues);
 propertyValues = new HashSet(1);
 propertyValues.add(END_TIME_VALUE);
 conditionProperties.put(END_TIME, propertyValues);
 condition.setProperties(conditionProperties);
 policy.addCondition("time_condition", condition);

 condition = ctm.getCondition("AuthLevelCondition");
 conditionProperties = new HashMap(1);
 propertyValues = new HashSet(1);
 propertyValues.add(AUTH_LEVEL_VALUE);
 conditionProperties.put(AUTH_LEVEL, propertyValues);
 condition.setProperties(conditionProperties);
 policy.addCondition("auth_level_condition", condition);

 condition = ctm.getCondition("AuthSchemeCondition");
 conditionProperties = new HashMap(1);
 propertyValues = new HashSet(1);
 propertyValues.add(AUTH_SCHEME_VALUE);
 conditionProperties.put(AUTH_SCHEME, propertyValues);
 condition.setProperties(conditionProperties);
 policy.addCondition("auth_scheme_condition", condition);

 pm.addPolicy(policy);

 System.out.println("Created normal policy");
 }

 private void addReferralPolicy()
 throws PolicyException, SSOException {
 System.out.println("Creating referral policy for org1");
 ReferralTypeManager rtm = pm.getReferralTypeManager();
 String subOrgDN = "o=org1" + "," + orgDN;
 Policy policy = new Policy("refpolicy1", "ref to org1" true);

import com.sun.identity.policy.PolicyManager;

Extending the Policy Management Feature

Chapter 9 Policy Management 267

 Map actions = new HashMap(1);
 Rule rule = new Rule("rule1",
"iPlanetAMWebAgentService","http://myhost.com:80/org1", actions);
 policy.addRule(rule);
 Referral referral = rtm.getReferral("SubOrgReferral");
 Set referralValues = new HashSet(1);
 referralValues.add(subOrgDN);
 referral.setValues(referralValues);
 policy.addReferral("ref to org1" , referral);
 pm.addPolicy(policy);
 System.out.println("Created referral policy for org1");
 }

}

import com.sun.identity.policy.PolicyManager;

Extending the Policy Management Feature

268 Access Manager 6 2005Q1 • Developer’s Guide

269

Chapter 10

Using the JAAS Authorization
Framework

Previous versions of Access Manager (Identity Server 6.0 and 6.1) provide custom
policy APIs to define and evaluate access policies. This model provided centralized
management of policies in its own policy store, the Sun ONE or Java Enterprise
System (JES) Directory Server. In Sun Java™ System Access Manager 6 2005Q1 and
beyond, the authorization segment of the Java Authentication and Authorization
Service (JAAS) framework is added to the original model. This new model is based
on JAAS 1.0 and Java 2 Platform, Standard Edition (J2SE) 1.3.1.

Access Manager now bridges the gap between J2SE and Access Manager APIs. In
this new framework, Access Manager maps its private APIs to JAAS interfaces.
This makes it possible for you to use the JAAS interface to access the Access
Manager policy framework.

The topics covered in this chapter are:

• “Overview of JAAS Authorization” on page 269

• “JAAS Authorization in Access Manager” on page 274

• “Enabling the JAAS Authorization Framework” on page 276

Overview of JAAS Authorization
JAAS is a set of APIs that enable services to authenticate and enforce access
controls upon users. It implements a Java technology version of the standard
Pluggable Authentication Module (PAM) framework, and supports user-based
authorization. JAAS authorization extends the Java security architecture which

Overview of JAAS Authorization

270 Access Manager 6 2005Q1 • Developer’s Guide

uses a security policy to specify what access rights are granted to executing code.
That architecture, introduced in the Java 2 platform, is code-based. The
permissions are granted based on code characteristics such as where the code is
coming from, whether it is digitally signed, and if so, the identity of the signer.

Code Example 10-1 illustrates a Java security policy. This grants the code in the
am_services.jar file, located in the current directory, the specified permission. No
signer is specified, so it doesn't matter whether the code is signed or not.

JAAS authorization adds user centric access control that applies control based on
what code is running as well as on who is running it.

By default, JAAS comes with a reference implementation of Policy
(com.sun.security.auth.PolicyFile) which is file-based. This implementation
parses the Java.policy file ${java.home}/lib/security directory and uses that to direct
the associations of permissions to code. You can change the pointer to some other
PolicyFile implementation or use a combination of files. By default, two files are
consulted to evaluate policy. One is com.sun.security.auth.PolicyFile,
mentioned above, and the other is .java.policy as defined in user's home
directory.

To make JAAS authorization take place, include a Principal field in the grant
statement or statements in your policy file. A Principal field indicates which user
executing the code is allowed the designated permissions. The Policy file grant
statements can now optionally include one or more Principal fields. Including
Principal field in the grant statement indicates that the user represented by the
specified Principal, who is executing the specified code, has the designated
permissions. See the Principal field example in Code Example 10-2.

Code Example 10-1 Example of a Java Security Policy

grant codebase Cfile:./am_services.jar" {
 permission javax.security.auth.AuthPermission
 "createLoginContext.AMLoginContext";
 };

Code Example 10-2 A Policy File Grant Statement

 grant codebase "file:./am_services.jar",
 Principal javax.security.auth.XXXprincipal
 "your_user_name@your_domain" {

 permission java.util.PropertyPermission "java.home", "read";

Overview of JAAS Authorization

Chapter 10 Using the JAAS Authorization Framework 271

How Policy Enforcement Works
The Java 2 runtime enforces access controls via the java.lang.SecurityManager,
which is consulted any time untrusted code attempts to perform a sensitive
operation (accesses to the local file system, for example). To determine whether the
code has sufficient permissions, the SecurityManager implementation delegates
responsibility to the java.security.AccessController, which first obtains an
image of the current AccessControlContext, and then ensures that the retrieved
AccessControlContext contains sufficient permissions for the operation to be
permitted.

JAAS supplements this architecture by providing the method Subject.doAs to
dynamically associate an authenticated subject with the current
AccessControlContext. As subsequent access control checks are made, the
AccessController can base its decisions upon both the executing code itself, and
upon the principals associated with the subject. Access Manager provides support
for JAAS authentication, which results in the population of the subject with
Principals that represents the user.

Code Example 10-3 The Subject.doAs Method

To illustrate a usage scenario for the doAs method, consider a service that
authenticates a remote subject, and then performs some work on behalf of that
subject. For security reasons, the server should run in an AccessControlContext
bound by the subject's permissions. Using JAAS, the server can ensure this by
preparing the work to be performed as a java.security.PrivilegedAction. Then,
by invoking the doAs method, the server provides both the authenticated subject
and the prepared PrivilegedAction. The doAs implementation associates the

 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
 };

public final class Subject {
 ...
 // associate the subject with the current
 // AccessControlContext and execute the action
 public static Object doAs(Subject s,
 java.security.PrivilegedAction action) { }
 }

Code Example 10-2 A Policy File Grant Statement

Overview of JAAS Authorization

272 Access Manager 6 2005Q1 • Developer’s Guide

subject with the current AccessControlContext and then executes the action.
When security checks occur during execution, the Java 2 SecurityManager queries
the JAAS policy, updates the current AccessControlContext with the permissions
granted to the subject and the executing codesource, and then performs its regular
permission checks. When the action is completed, the doAs method removes the
subject from the current AccessControlContext, and returns the result back to the
caller. Code Example 10-4 illustrates this flow.

Code Example 10-4 Sample Code for Subject.doAS

public static void main(String[] args) {
 try {
 // Create an SSOToken
 AuthContext ac = new AuthContext("dc=iplanet,dc=com");
 ac.login();
 Callback[] callbacks = null;
 if (ac.hasMoreRequirements()) {
 callbacks = ac.getRequirements();

 if (callbacks != null) {
 try {
 addLoginCallbackMessage(callbacks); // this method

sets appropriate responses in the callbacks.
 ac.submitRequirements(callbacks);
 } catch (Exception e) { }
 }
 }
 if (ac.getStatus() == AuthContext.Status.SUCCESS) {
 Subject subject = ac.getSubject(); // get the authenticated

subject
 FilePermission perm = new FilePermission("/tmp/test",

"read");
 Subject.doAs(subject, new PrivilegedExceptionAction() {
 /* above statement means execute run() method of the

Class PrivilegedExceptionAction()
 as the specified subject */
 public Object run() throws IOException {
 // if the above run() was not throwing Exception

could have created an instance of PrivilegedAction
 // instead of PrivilegedExceptionAction here
 AccessController.checkPermission(perm);
 File = new File("/tmp/test");
 return null;
 }
 });
 }
 }

Overview of JAAS Authorization

Chapter 10 Using the JAAS Authorization Framework 273

In this example, the AccessController is checking the application's current policy
implementation. If any permission defined in the policy file implies the requested
permission, the method will simply return; otherwise an AccessControlException
will be thrown. The check is actually redundant in this example, because the
constructor for the default File implementation performs the same check. This
samples is meant to illustrate the flow.

How the JS2E Access Controller Works
AccessController works with the java.security.Policy implementation to
securely process application requests. In JS2E, a typical
checkPermission(Permission p) method call on the AccessController class
might result in the following sequence:

1. The AccessController invokes the getPermisisons() method of the
javax.security.auth.policy passing in the subject and the code source.

2. The getPermissions() method returns a PermissionCollection class
instance, which represents a collection of same types of permissions.

3. The elements() method of the returned PermissionCollection gets called,
which returns an enumeration of the permissions held in this
PermissionCollection.

4. For each of the permissions returned in the enumeration (in step 3), the
perm.newPermissionCollection() method gets called to obtain the
PermissionCollection used to store the permission.

5. PermissionCollection.add(perm) gets called by the J2SE internal code to
store the permission in its PermissionCollection.

6. The AccessController calls the implies(Permission p) method of the
PermissionCollection returned in step 2.

7. Once the implies() of PermissionCollection is called, it in turn triggers the
calling of implies(Permission p) of the individual permission objects
contained in the PermissionCollection. These methods return true if the
current permission object in the collection implies the specified permission; the
methods return false the current permission object in the collection does not
imply the specified permission. This outcome is implementation dependent
and can be changed.

JAAS Authorization in Access Manager

274 Access Manager 6 2005Q1 • Developer’s Guide

JAAS Authorization in Access Manager
Access Manager provides a custom implementation of the JAAS
javax.security.auth.Policy. The customized implementation leverages the J2SE
access controller and security manager to provide policy evaluation for all Access
Manager related permissions. The customized implementation also falls back on
the J2SE default Policy implementation com.sun.security.auth.PolicyFile for
access to system level resources. Access Manager policy does not control access to
com.sun.security.auth.PolicyFile.

Figure 10-1 illustrates how the JAAS framework works within the Access Manager
policy framework.

Figure 10-1 JAAS Authorization Framework

Access Manager uses both JAAS and J2SE's file-based policy for all the resources
for which Access Manager does not provide access control. For Access Manager
resources such as URLs and so forth, new policy and permissions are defined. This
model leverages the best of JAAS and the best of J2SE in one solution. It uses the
JAAS framework for its default access control where needed, and then enhances

JAAS Authorization in Access Manager

Chapter 10 Using the JAAS Authorization Framework 275

the framework to incorporate the Access Manager policy evaluation. In this way,
you can use the Access Manager policy implementation to make policy evaluations
pertaining to Access Manager policies, but revert back to the default method of
controlling access to resources not under Access Manager control.

Custom APIs
Access Manager provides the following custom APIs:.

• Package com.sun.identity.policy.jaas

This package includes classes for performing policy evaluation against Access
Manager using JAAS (Java Authentication and Authorization) framework.

• ISPermission

This class provides the support for JAAS Authorization service. It is a new
JAAS Permission which extends the Permission class and is defined to evaluate
permission against the Access Manager policy framework.

• ISPolicy

This is an implementation of abstract class javax.security.auth.Policy for
representing the system security policy for a Java application environment. It
performs policy evaluation against the Access manager policy service instead
of against the default file-based PolicyFile.

For a comprehensive listing of related APIs, see the Javadoc in the following
directory: AccessManager-base/SUNWam/docs.

User Interface
The user interface for entering permissions and policy is the Access Manager
administration console which works with the policy administration API. Once the
policy is defined, the evaluation is done using the J2SE architecture and enhanced
policy implementation.

ISPermission covers the case when additional policy services are defined and
imported, provided they only have boolean action values. In fact boolean
evaluation is all that can be done using JAAS since JAAS permissions have a
boolean result.

Enabling the JAAS Authorization Framework

276 Access Manager 6 2005Q1 • Developer’s Guide

Enabling the JAAS Authorization Framework
You enable the JAAS authorization framework by resetting policy. Use the
Policy.setPolicy(Policy) API to reset policy during run time. In Code
Example 10-5, Policy.setPolicy(com.sun.identity.policy.jaas.ISPolicy)
resets the policy. In this example, the client application wants to use JAAS
authorization API to communicate with the Access Manger and to perform policy
evaluation. Access Manager provides the support needed to use Access Manager
policy so that policy can be defined through the new ISPermission.

Code Example 10-5 Sample JAAS Authorization Code

 public static void main(String[] args) {
 try {
 // Create an SSOToken

AuthContext ac = new AuthContext("dc=iplanet,dc=com");
 ac.login();
 Callback[] callbacks = null;
 if (ac.hasMoreRequirements()) {
 callbacks = ac.getRequirements();

 if (callbacks != null) {
 try {
 addLoginCallbackMessage(callbacks); // this method

sets appropriate responses in the callbacks.
 ac.submitRequirements(callbacks);
 } catch (Exception e) { }
 }
 }
 if (ac.getStatus() == AuthContext.Status.SUCCESS) {
 Subject subject = ac.getSubject(); // get the authenticated

subject
 Policy.setPolicy(new ISPolicy()); // change the

policy to our own Policy
 ISPermission perm = new

("iPlanetAMWebAgentService",
 "http://www.sun.com:80", "GET");
 Subject.doAs(subject, new PrivilegedExceptionAction() {
 /* above statement means execute run() method of the

Class PrivilegedExceptionAction()
 as the specified subject */
 public Object run() throws Exception {
 AccessController.checkPermission(perm);
 // the above will return quietly if the Permission

has been granted else will throw access denied
 // Exception, so if the above highlighed

ISPermission had not been granted, this
code would have

 // thrown an Exception.
 return null;
 }

Enabling the JAAS Authorization Framework

Chapter 10 Using the JAAS Authorization Framework 277

 });
 }
 }

Code Example 10-5 Sample JAAS Authorization Code (Continued)

Enabling the JAAS Authorization Framework

278 Access Manager 6 2005Q1 • Developer’s Guide

279

Chapter 11

SAML Service

Sun Java™ System Access Manager 6 2005Q1 uses the Security Assertion Markup
Language (SAML) for exchanging security information. SAML defines an
eXtensible Markup Language (XML) framework to achieve inter-operability across
different vendor platforms that provide SAML assertions. This chapter explains
SAML and defines how it is used within Access Manager. It contains the following
sections:

• “Overview” on page 279

• “SAML Component Details” on page 281

• “amSAML.xml” on page 288

• “SAML SDK” on page 289

• “SAML Samples” on page 295

Overview
SAML is an open-standard protocol that uses an XML framework to exchange
security information between an authority and a trusted partner site. The security
information concerns itself with authentication status, access authorization
decisions and subject attributes. The Organization for the Advancement of
Structured Information Standards (OASIS) drives the development of the SAML
specifications. The latest SAML information and specifications can be found at the
Oasis Security Services Technical Committee home page.

SAML security information is expressed in the form of an assertion about a subject.
A subject is an entity in a particular domain, either human or machine, with which
the security information concerns itself. (A person identified by an email address is
a subject as might be a printer.) An assertion is a package of verified security
information that supplies one or more statements concerning a subject’s

Overview

280 Access Manager 6 2005Q1 • Developer’s Guide

authentication status, access authorization decisions or attributes. Assertions are
issued by a SAML authority. (An authority is a platform or application that has
been integrated with the SAML SDK, allowing it to relay security information.) The
assertions are received by partner sites defined within the authority as trusted.
SAML authorities use different sources to configure the assertion information
including external data stores or assertions that have already been received and
verified. Figure 11-1 illustrates how the SAML Service interacts with the other
Access Manager components.

Figure 11-1 SAML Interaction Within Access Manager

The SAML Service allows Access Manager to work in the following ways:

• Users can authenticate against Access Manager and access trusted partner sites
without having to reauthenticate. (This is a single sign-on process independent
of the proprietary Access Manager process discussed in Chapter 4, “Single
Sign-On And Sessions,” of this manual.)

• Access Manager acts as a policy decision point (PDP), allowing external
applications to access user authorization information for the purpose of
granting or denying access to their resources.

SAML Component Details

Chapter 11 SAML Service 281

• Access Manager acts as both an attribute authority (allowing trusted partner
sites to query a subject’s attributes) and an authentication authority (allowing
trusted partner sites to query a subject’s authentication information.)

• Two parties in different security domains can validate each other for the
purpose of performing business transactions.

• The SAML SDK can be used to build Authentication, Authorization Decision
and Attribute Assertions.

• The SAML Service provides pluggable XML-based digital signature signing
and verifying.

Accessing The SAML Service
The SAML Service can be accessed using a web browser or the SAML SDK. An end
user would authenticate to Access Manager using a web browser and, when
authorized to do so, access URLs from trusted partner sites. Developers, on the
other hand, would integrate the API into their applications to enable them to
exchange security information with Access Manager. For example, a Java
application can use the SAML API to accomplish single sign-on. After obtaining a
SSOToken from Access Manager, the application can call the doWebArtifact()
method of the SAMLClient class which will send a SOAP request for authorization
information to Access Manager and, if applicable, redirect the application to the
destination site.

SAML Component Details
The following sections explain specific details of the components of the SAML
Service. They include:

• Profile Types

• Assertion Types

• SAML SOAP Receiver

NOTE Although the Federation Management module integrates aspects of the SAML
specifications, it is independent of the Access Manager SAML Service as
described in this chapter.

SAML Component Details

282 Access Manager 6 2005Q1 • Developer’s Guide

Profile Types
A set of rules describing how to embed and extract SAML assertions is called a
profile. The profile describes how the assertions can be combined with other objects
by an authority, transported from the authority and, subsequently, processed at the
trusted partner site. Access Manager supports two profiles that use HTTP: the Web
Browser Artifact Profile and the Web Browser POST profile. Either of these profiles
can be used in the case of single sign-on between two SAML-enabled entities,
allowing an already authenticated user to access resources from a trusted partner
site. Each profile has its benefits that include:

• Because Web Browser POST profile does not require the SOAP, it is more
firewall-friendly and involves less steps and server side processing.

• Web Browser Artifact Profile requires less processing overhead because there
is no assertion signing as there is in Web Browser POST profile.

• Web Browser Artifact Profile works without Javascript-enabled browsers.

Web Browser Artifact Profile
The Web Browser Artifact Profile defines interaction between three parties: a user
equipped with a web browser, an authority site, and a trusted partner site. When
an authenticated user attempts to access a trusted partner site (generally by
clicking a link), they are directed to a transfer service at the authority site. In Access
Manager, the transfer service is the SAML Aware Servlet. The base of the transfer
URL is
http(s)://identity_server_host.domain_name:port/server_deploy_uri/SAMLAwareServle
t; it is appended with the URL of the location to which the user is requesting access
(?TARGET=URL_of_destination). The SAML Aware Servlet then provides the
following functions as part of the Web Browser Artifact Profile:

1. It compares the SAML Service’s configured list of Trusted Partner Sites against
the user’s TARGET location.

Only targets configured in the Trusted Partner Sites attribute of the SAML
Service can access the SAML Service. Configured targets specify a domain
and/or a port number. More information on this attribute can be found in the
Sun Java System Access Manager Administration Guide.

NOTE The profile methods can be initiated through a web browser or the SAML API. More
information on the API method can be found in “SAML SDK” on page 289.

SAML Component Details

Chapter 11 SAML Service 283

2. Assuming the TARGET location was found in the list of Trusted Partner Sites,
the SAML Aware Servlet looks for and validates the session token from the
inbound request.

Without a valid session token, Access Manager will not create an assertion.

3. The SAML Aware Servlet then creates an artifact and a corresponding assertion.

An artifact is carried as part of the URL and points to an assertion and its
source; it is not, and does not contain, the security information itself. The
assertion contains the security information and is built from the user’s session
information and optional attribute information from the
siteAttributeMapper class. (More information on the
siteAttributeMapper can be found in “com.sun.identity.saml.plugins” on
page 291.) The assertion can be signed.

4. It redirects the user’s browser to the Artifact Receiver URL with a query string
containing the artifact and the original TARGET location.

The Artifact Receiver URL is based on mapping configurations defined in the
SAML Service. More information on this can be found in the SAML Service
Attributes chapter of the Sun Java System Access Manager Administration Guide.

5. At the Artifact Receiver URL, the artifact is extracted from the query string to
find the SOAP Receiver URL.

The SAML SDK extracts the source ID from the artifact and uses it to find the
SOAP Receiver URL in the SAML Service configuration. “SAML SOAP
Receiver” on page 286 has more information on the use of SOAP, a
communications specification integrating XML and HTTPS.

6. A SAML request containing the artifact is then sent to the SOAP Receiver URL
at the trusted partner site requesting the assertion to which the artifact points.

The Artifact Receiver URL uses SOAP binding to request the assertion.

NOTE The need to send an artifact rather than the assertion itself is dictated by the
restrictions on URL size imposed by many web browsers.

NOTE In Access Manager, the Artifact Receiver URL and the SAML Aware Servlet are
one and the same. Other SAML implementations might not integrate the two
servlets.

SAML Component Details

284 Access Manager 6 2005Q1 • Developer’s Guide

7. The SOAP Receiver URL accepts the returned artifact query from the trusted
partner site and responds by sending the correct assertion in a SOAP response.

8. The assertion is processed, mapping the user account information from the
trusted partner site to the target site’s user account.

The user is either granted or denied access to the trusted partner site. If access
is granted a SSOToken is generated, a cookie is set to the browser and the user
is redirected to the TARGET location.

Web Browser POST Profile
The Web Browser POST Profile allows security information to be supplied to a
trusted partner site using the HTTP POST method (and without the use of an
artifact). It consists of two interactions: the first between a user with a web browser
and the Access Manager, and the second between the same user and a trusted
partner site.

When an authenticated user attempts to access a trusted partner site using a web
browser (usually by clicking a link), they are redirected to a transfer service in the
authority site. In Access Manager, the transfer service is the SAML Post Profile
Servlet. The base of the transfer URL is
http(s)://identity_server_host.domain_name:port/server_deploy_uri/SAMLPOSTProfile
Servlet; it is appended with the URL of the location to which the user is
requesting access (?TARGET=URL_of_destination). The SAML POST Profile
Servlet provides functions for the two POST Profile interactions. In the first
interaction between the user and Access Manager:

1. Access Manager obtains the TARGET location from the request and retrieves
the trusted partner site URL from the SAML Service.

Again, only targets configured in the Trusted Partner Sites attribute of the
SAML Service can access the SAML Service. More information on this can be
found in the SAML Service Attributes chapter of the Sun Java System Access
Manager Administration Guide.

2. It generates an assertion using the AssertionManager class of the SAML SDK.

“com.sun.identity.saml” on page 289 contains information on the
AssertionManager class.

3. It forms, signs and Base64 encodes a SAMLResponse containing the assertion.

NOTE A sample has been provided to test the Web Browser Artifact Profile
function. “SAML Samples” on page 295 has more information.

SAML Component Details

Chapter 11 SAML Service 285

4. It generates an HTML form, containing both the SAMLResponse and the
TARGET as parameters, and posts the form as an HTTP response back to the
user’s browser.

5. The user’s browser is then directed to the location based on this information.

In the second interaction between the user and the trusted partner site:

1. The trusted partner site obtains the TARGET and SAMLResponse from the
request.

2. It Base64 decodes the SAMLResponse.

3. It verifies the signature on the SAMLResponse and obtains and verifies the
SAML response itself.

It also verifies the assertion inside the SAMLResponse and enforces single-sign
on policy.

4. It obtains or creates an SSOToken and redirects the authenticated user to the
TARGET location.

The POST profile function is provided by either of two means: an HTTP request
using the SAMLPOSTProfileServlet, or an SAMLClient API call [doWebPost()]
to a Java application.

Single Use Policy With POST Profile
According to the SAML specifications, the trusted partner site MUST ensure a
single-use policy for SSO assertions communicated by the Web POST Profile. Thus,
the SAMLPOSTProfileServlet maintains a store of SSO assertion IDs and the time
they expire. When an assertion is received, the servlet first checks for an entry in
the map. If one exists, the servlet returns an error. If not, the assertion ID and
expiration time is saved to the map. The POSTCleanUpThread removes expired
assertion IDs periodically.

Assertion Types
SAML assertions are represented as XML constructs based on a schema located at
http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-a
ssertion-01.xsd. The SAML specification provides for several types of assertions
that are also defined in the SAML Service:

NOTE A sample has been provided to test the Web Browser POST Profile function.
“SAML Samples” on page 295 has more information.

SAML Component Details

286 Access Manager 6 2005Q1 • Developer’s Guide

• An authentication assertion declares that the specified subject has been
authenticated by a particular means at a particular time. In Access Manager,
the Authentication Service is the authentication authority. Code Example 11-1
illustrates a sample authentication assertion.

• An attribute assertion declares that the specified subject is associated with the
specified attribute. In Access Manager, the Identity Management module is the
attribute authority.

• An authorization decision assertion declares that the specified subject’s request
for access to a specified resource has been granted or denied. In Access
Manager, the Policy Service is the authorization authority.

One assertion may contain many different statements made by the authority.

SAML SOAP Receiver
Assertions are exchanged between Access Manager and inquiring parties using the
request and response XML-based protocol defined in the SAML specification.
These SAML assertions are then integrated into a standard communication
protocol for transport purposes.

Code Example 11-1 Sample Authentication Assertion

<?xml version="1.0" encoding="UTF-8" ?>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
MajorVersion="1"
MinorVersion="0" AssertionID="random-182726" Issuer="sunserver.example.com"
IssueInstant="2001-11-05T17:23:00GMT-02:00">
 <saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2001-11-05T17:22:00GMT-02:00">
 <saml:Subject>
 <saml:NameIdentifier NameQualifier="example.com">John
Doe</saml:NameIdentifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
</saml:Assertion>

NOTE Access Manager uses SOAP, a message communications specification integrating
XML and HTTPS, to transport requests and responses in its “Web Browser Artifact
Profile” on page 282.

SAML Component Details

Chapter 11 SAML Service 287

SOAP binding defines how SAML request and response message exchanges are
integrated into SOAP exchanges. The SAML SOAP Receiver is a servlet that
processes the message. It receives a SOAP message, extracts the SAML request and
responds with another SOAP message containing the requested assertion. It
responds to queries for authentication, attributes or authorization decisions as well
as those that include an assertion identifier reference or artifact by returning
assertions.

SOAP Messages
SOAP messages consist of three parts: an envelope, header data and a message
body. (The SAML request/response elements are enclosed in the message body.)
A client, acting as a SAML requestor, transmits a <Request> element within the
body of a SOAP message to an entity acting as a SAML Receiver. In answer, the
SAML Receiver MUST return either a <Response> element within the body of
another SOAP message or a SOAP fault code (or error message).

A SAML Request may contain queries for any of the following: authentication
status, authorization decisions, attribute information and one or more assertion
identifier references or artifacts. A SAML Response is sent back to the requesting
party for every Request received.

Protecting The SOAP Receiver
The Access Manager administrator has the option of protecting the SAML SOAP
Receiver using authentication. The available methods are:

• NOAUTH

• BASICAUTH

NOTE The access URL for the SAML SOAP Receiver is
http(s)://identity_server_host.domain_name:port/server_deploy_uri/SAMLSOA
PReceiver. The SAML SOAP Receiver only supports the POST method.

NOTE The SAML requestor and the SAML Receiver MUST NOT include more than one
SAML request or response per SOAP message or any additional XML elements in
the SOAP body.

NOTE The SAML SDK and the Java API for XML Messaging (JAXM) are used to
construct SOAP messages and send them to the SOAP Receiver.

amSAML.xml

288 Access Manager 6 2005Q1 • Developer’s Guide

• SSL

• SSLWITHBASICAUTH

This option is configured in the Trusted Partner Sites attribute of the SAML Service
in the form:

SourceID=source_id_of_site|SOAPUrl=url_of_site|AuthType=chosen_auth_option|Us
er=user_id

The default authentication type is NOAUTH. If SSL authentication is to be
specified, it is configured in the SOAPUrl field with the https URL prefix. More
information on the Trusted Partner Sites and other SAML Service attributes can be
found in the SAML Attributes chapter of the Sun Java System Access Manager
Administration Guide.

amSAML.xml
amSAML.xml is the XML service file that defines the attributes for the SAML
Service. All of the attributes in the SAML Service can be managed through either
the Access Manager console or the XML service file except two. These attributes
can only be managed through amSAML.xml using the amadmin command line
interface.

• iplanet-am-saml-cleanup-interval is used to specify how often the
internal thread is run in order to cleanup expired assertions from the internal
data store. The default is 180 seconds.

• iplanet-am-saml-assertion-max-number is used to specify the maximum
number of assertions the server can hold at one time. No new assertion will be
created if the maximum number is reached. The default value is 0 which means
there is no limit.

To change the values of these attributes, the amSAML.xml service file needs to be
modified, the old amSAML.xml service file needs to be deleted, and the newly
modified file reloaded using amadmin. Information on how to use amadmin can be
found in The amadmin Command Line Tool chapter of the Sun Java System Access
Manager Administration Guide. Information on the other SAML Service attributes
can also be found in the Sun Java System Access Manager Administration Guide.

NOTE The value user=user_id is used only with the Basic Authentication and SSL With
Basic Authentication options.

SAML SDK

Chapter 11 SAML Service 289

SAML SDK
Access Manager contains a SAML SDK made up of several Java packages.
Administrators can use these packages to integrate the SAML functionality and
XML messages into their applications and services. The SDK supports all types of
assertions and operates with the Access Manager authorities to process external
SAML requests and generate SAML responses. The packages include:

• com.sun.identity.saml

• com.sun.identity.saml.assertion

• com.sun.identity.saml.common

• com.sun.identity.saml.plugins

• com.sun.identity.saml.protocol

• com.sun.identity.saml.xmlsig

com.sun.identity.saml
This package contains the AssertionManager and SAMLClient classes. The
AssertionManager provides interfaces and methods to create and get assertions,
authentication assertions and assertion artifacts; it is the connection between the
SAML specification and the Access Manager. Some of the methods included are:

• createAssertion—creates an assertion with an authentication statement
based on an Access Manager SSO Token ID.

• createAssertionArtifact—creates an artifact that references an assertion
based on an Access Manager SSO Token ID.

• getAssertion—returns an assertion based on the given parameter (given
artifact, assertion ID or query).

The SAMLClient provides methods to execute either the Artifact or POST profile
from within an application as opposed to a web browser. Its methods include:

• getAssertionByArtifact—returns an assertion for a corresponding artifact.

• doWebPOST—is designed to do the SAML web-browser POST profile.

• doWebArtifact—is designed to do the SAML web-browser profile with
artifact.

SAML SDK

290 Access Manager 6 2005Q1 • Developer’s Guide

com.sun.identity.saml.assertion
This package contains the classes needed to create, manage, and integrate, an XML
assertion into an application. For example, Code Example 11-2 illustrates how to
use the Attribute class and getAttributeValue method to get the value of an
attribute. From an Assertion, call the getStatement() method to retrieve a set of
statements. If a statement is an AttributeStatement, call the getAttribute()
method to get a list of attributes. From there, call getAttributeValue() to retrieve
the AttributeValue.

com.sun.identity.saml.common
This package defines classes common to all SAML elements including site_ID,
issuer name and server host. It also contains all SAML-related exceptions.

Code Example 11-2 Sample Code To Get An Attribute Value

// get statement in the assertion
Set set = assertion.getStatement();
//assume there is one AttributeStatement
//should check null& instanceof
AttributeStatement statement = (AttributeStatement) set.iterator().next();
List attributes = statement.getAttribute();
// assume there is at least one Attribute
Attribute attribute = (Attribute) attributes.get(0);
List values = attribute.getAttributeValue();

CAUTION The date format, yyyy-MM-dd'T'HH:mm:ss'+/-'HH:mm , which was used in
JDK 1.3.1 with IS 6.0 is no longer supported in IS 6.1. The correct format in JDK
1.4.1 for use in Access Manager 6.1 is:

yyyy-MM-dd'T'HH:mm:ss'+/-'HHmm

or

yyyy-MM-dd'T'HH:mm:ss'GMT''+/-'HH:mm

For example, the following are correct:

2003-04-22T01:20:02 -0001 (with a space before the zone sign)

2003-04-22T01:20:02GMT-00:01

2003-04-22T01:20:02-0001

SAML SDK

Chapter 11 SAML Service 291

com.sun.identity.saml.plugins
Access Manager provides four SPIs, three of them with default implementations.
The implementations of these SPIs can be altered, or brand new ones written, based
on the specifications of a particular customized service. These can then be used to
integrate the SAML Service into the custom service. Currently, the APIs include the
AccountMapper, ActionMapper, AttributeMapper and SiteAttributeMapper.

• AccountMapper is used to map external partner site user accounts to Access
Manager user accounts for purposes of single sign-on. A default account
mapper implementation is provided. If a site-specific account mapper is not
configured, this default mapper is used.

For example, assume the single sign-on is configured from site A to site B, then
a site-specific account mapper can be developed and added to site B’s Trusted
Partner Sites listing in this format:

sourceid=site_A_source_id | accountmapper=class_name_of_site
specific_account_mapper | ...

When site B processes the assertion received through either SAML profile, it
finds out the source ID of the originating site and locates the account mapper
corresponding to that site.

• AttributeMapper is used in the AttributeQuery case. When a site receives an
AttributeQuery, this mapper is called to obtain the SSOToken or an Assertion
containing AuthenticationStatement from the query. It is also used to
convert the attribute in the query to an attribute Access Manager understands.
A default attribute mapper is provided. A site-specific attribute mapper can be
developed in this format:

sourceid=site_source_id |
attributemapper=class_name_of_site_specific_attribute_mapper |...

NOTE The default account mapper class is
com.sun.identity.saml.plugin.DefaultAccountMapper.

NOTE Turning on the Debug Service in AMConfig.properties file, would log
additional information concerning the account mapper. For example, was it loaded
or what is the user name and organization to which it has been mapped.
Information on this can be found in Appendix A, “AMConfig.properties File,” in this
manual.

SAML SDK

292 Access Manager 6 2005Q1 • Developer’s Guide

• ActionMapper is used to get SSO information and to map partner actions to
Access Manager authorization decisions. A default action mapper
implementation is provided. If a site-specific action mapper is not supplied,
this default mapper is used. A site-specific action mapper can be developed in
this format:

sourceid=site_source_id |
actionmapper=class_name_of_site_specific_action_mapper|...

• SiteAttributeMapper is also used for SSO. The default functionality of
Access Manager is that when no mapper is specified and an assertion is
created, either through the web browser Artifact or POST profiles, it only
contains AuthenticationStatement(s). If a site wants to include
AttributeStatement(s), it can use this SPI to obtain the attributes. It creates
AttributeStatement(s) from those attributes, and puts them inside the
assertion. A site attribute mapper can be developed in this format:

sourceid=site’s source ID |
siteattributemapper=class_name_of_site_specific_siteattribute_mapper|...

com.sun.identity.saml.protocol
This package contains classes that parse the request and response XML messages
used to exchange assertions and their authentication, attribute or authorization
information.

AuthenticationQuery
The AuthenticationQuery class represents an authentication query. An
application sends a SAML request with an AuthenticationQuery inside. The
Subject of the AuthenticationQuery must contain a SubjectConfirmation element.
In this element, ConfirmationMethod needs to be set to urn:com:sun:identity,
and SubjectConfirmationData needs to be set to the SSOToken id of the Subject. If
the Subject contains a NameIdentifier, then the info in the NameIdentifier should
be the same as the one in the SSOToken.

NOTE The default behavior is that no attribute statements are returned unless specified in
the plug-in.

SAML SDK

Chapter 11 SAML Service 293

AttributeQuery
The AttributeQuery class represents a query concerning an identity’s attributes.
An application sends a SAML request with an AttributeQuery inside. The
application develops an AttributeMapper to obtain either a SSOToken ID or an
Assertion containing an AuthenticationStatement from the query and the mapper
is then used to retrieve the attributes for the Subject. If no AttributeMapper for the
querying site is found, then the DefaultAttributeMapper will be used. To use the
DefaultAttributeMapper, the application should put either the SSOToken ID or
an assertion containing an AuthenticationStatement in the
SubjectConfirmationData element of the Subject in the query. If an SSOToken ID
is used, then the ConfirmationMethod must be set to urn:com:sun:identity:. If
an assertion is used, then this assertion should be issued by the Access Manager
instance processing the query or a server that is trusted by the Access Manager
instance processing the query.

For a query using the DefaultAttributeMapper, any matching attributes found in
the Identity Management module will be returned. If no AttributeDesignator is
specified in the AttributeQuery, all attributes from the services defined under the
userServiceNameList in amSAML.properties will be returned.
userServiceNameList’s value is user service names separated by a comma.

AuthorizationDecisionQuery
The AuthorizationDecisionQuery class represents a query concerning an
identity’s authority to access protected resources. An application sends a SAML
request with an AuthorizationDecisionQuery inside. The application develops
an ActionMapper to obtain an SSOToken ID. The mapper is then used to retrieve
the authentication decisions for the actions defined in the query.

If no ActionMapper for the querying site is found in the configuration, a
DefaultActionMapper will be used. To use the DefaultActionMapper, the
application should put the SSOToken ID in the SubjectConfirmationData element
of the Subject in the query. If SSOToken ID is used, then the ConfirmationMethod
must be set to urn:com:sun:identity:. If a NameIdentifier is present, then the
info in the SSOToken must be the same as the one in the NameIdentifier.

NOTE In DefaultAttributeMapper, it is possible to query a subject's attributes
using another subject's SSOToken as long as the SSOToken has the privilege of
retrieving those attributes.

SAML SDK

294 Access Manager 6 2005Q1 • Developer’s Guide

The application may also pass in the authentication information through the
Evidence element in the query. The Evidence could be an AssertionIDReference or
an assertion containing an AuthenticationStatement issued by the Access Manager
instance processing the query, or an assertion issued by a server that is trusted by
the Access Manager instance processing the query. The Subject in the
AuthenticationStatement as the evidence should be the same as the one in the
query.

AuthorizationDecisionQuery Sample
There are many ways to form an authorization decision query and have the
decision assertion returned. Code Example 11-3 illustrates one way to do it.

NOTE The DefaultActionMapper handles actions in action namespace
urn:oasis:names:tc:SAML:1.0:ghpp only. The
iPlanetAMWebAgentService is used to serve the policy decisions for this
action namespace.

NOTE Policy conditions can be passed in through AttributeStatements of Assertion(s)
inside the Evidence of the query. If the value of an attribute contains TEXT node
only, then the condition is set as
attributeName=attributeValueString; otherwise, the condition is set
as attributename=attributeValueElement.

Code Example 11-3 AuthorizationDecisionQuery Code Sample

 // testing getAssertion(authZQuery): no SC, with ni, with
 // evidence(AssertionIDRef, authN, for this ni):
 String nameQualifier = "dc=iplanet,dc=com";
 String pName = "uid=amadmin,ou=people,dc=iplanet,dc=com";
 NameIdentifier ni = new NameIdentifier(pName, nameQualifier);
 Subject subject = new Subject(ni);
 String actionNamespace = "urn:test";
 // policy should be added to this resource with these
 // actions for the subject
 Action action1 = new Action(actionNamespace, "GET");
 Action action2 = new Action(actionNamespace, "POST");
 List actions = new ArrayList();
 actions.add(action1);
 actions.add(action2);
 String resource = "http://www.sun.com:80";
 eviSet = new HashSet();
 // this assertion should contain authentication assertion for
 // this subject and should be created by a trusted server
 eviSet.add(eviAssertionIDRef3);
 evidence = new Evidence(eviSet);

SAML Samples

Chapter 11 SAML Service 295

com.sun.identity.saml.xmlsig
All SAML assertions, requests and responses may be signed using this signature
API. This is an SPI in which the interfaces can be implemented and proprietary
XML/signature implementations can be plugged in. This package contains the
classes needed to sign and verify. By default, the keystore provided with the JDK is
used and the key type is DSA. The configuration properties for this functionality
are in AMConfig.properties. Information on these properties can be found in
“SAML” on page 342 of Appendix A, “AMConfig.properties File.” See “SAML
Samples” for information on the signature functionality.

SAML Samples
There are several samples that can be accessed from the Access Manager
installation. They are located in IdentityServer_base/SUNWam/samples/saml. These
samples illustrate how the SAML service can be used in different ways. They
include:

• A sample that serves as the basis for using the SAML client API. This sample is
located in IdentityServer_base/SUNWam/samples/saml/client.

• A sample that illustrates how to form a Query, and write an AttributeMapper
as well as how to send and process a SOAP message using the SAML SDK.
This sample is located in IdentityServer_base/SUNWam/samples/saml/query.

• A sample application for achieving SSO using either the Web Browser Artifact
or the Web Browser POST profiles. This sample is located in
IdentityServer_base/SUNWam/samples/saml/sso.

• A sample that illustrates how to use the XMLSIG API. It details how to
configure for XML signing and is located in
IdentityServer_base/SUNWam/samples/saml/xmlsig.

 authzQuery = new AuthorizationDecisionQuery(eviSubject1, actions,
 evidence, resource);
 try {
 assertion = am.getAssertion(authzQuery, destID);
 } catch (SAMLException e) {
 out.println("--failed. Exception:" + e);
 }

Code Example 11-3 AuthorizationDecisionQuery Code Sample (Continued)

SAML Samples

296 Access Manager 6 2005Q1 • Developer’s Guide

A README file is included with each sample with information and instructions on
how to use it.

297

Chapter 12

Auditing Features

Sun Java™ System Access Manager 6 2005Q1 provides a Logging Service to record
information such as user activity, traffic patterns, and authorization violations. The
Logging API allow external applications to take advantage of the Logging Service.
In addition, the debug files allow administrators to troubleshoot their installation.
This chapter explains these auditing features. It contains the following sections:

• “Logging Service Overview” on page 297

• “Log Files” on page 299

• “Logging Features” on page 306

• “Logging API” on page 309

• “Logging SPI” on page 315

• “Debug Files” on page 316

Logging Service Overview
The Logging Service enables all Access Manager services to record information
that might be useful to the administrator in one centralized location. The
information may include access denials and approvals, authorization violations
and code exceptions. Logging allows administrators to analyze user activity,
Access Manager traffic patterns and authorization violations. As with all Access
Manager services, the Logging Service uses a global service configuration file,
named amLogging.xml, to define its attributes (such as maximum log size and log
location, or whether the log information is written to a flat file or a relational
database). The default location for all log files is /var/opt/SUNWam/logs.

Logging Service Overview

298 Access Manager 6 2005Q1 • Developer’s Guide

Logging Architecture
Java applications use the Logging API to access the Logging Service. These
interfaces may reside on a remote server or on the same server as Access Manager.
An application accesses the Logging Service by calling the Logging API. (If remote,
the API uses a XML over HTTP layer to send the logging request to the Logging
Service.) The Access Manager SDK loads the configuration data (stored in
Directory Server) into the Logging Service when Access Manager starts up or when
any logging configuration data is changed via the console. This data includes the
log message format, log file name, maximum log size, and the number of history
files. Any exception message will be logged, based on the configuration values.
Figure 12-1 illustrates the architecture of the Logging Service.

Figure 12-1 Logging Service Architecture

NOTE This default log directory can be reconfigured after installation by modifying the Log
Location attribute in the Logging Service. More information can be found in the
Logging Service Attributes chapter in the Sun Java System Access Manager
Administration Guide.

Log Files

Chapter 12 Auditing Features 299

amLogging.xml
The Logging Service holds the attributes and values for the logging function. These
attributes and values are defined in the amLogging.xml service file located in
/etc/opt/SUNWam/config/xml. These values are applied across the Access
Manager deployment and inherited by every configured organization. The
structure of amLogging.xml is defined by the sms.dtd. Information on this
document can be found in “The sms.dtd Structure” on page 199 of Chapter 8,
“Service Management.” Specific information on the Logging Service attributes can
be found in the Logging Service Attributes chapter in the Sun Java System Access
Manager Administration Guide.

Log Files
The log files record a number of events for each of the services it monitors. These
files should be checked by the administrator on a regular basis. The default
directory for the log files is /var/opt/SUNWam/logs. The log file directory can be
configured in the Logging Service by using the Access Manager console.

Table 12-1 describes the files in the logs directory. Note that in database formats,
the period (.) separator is converted to an underscore (_). Also in databases, table
names may be converted to all upper case. For example, amConsole.access may be
converted to AMCONSOLE_ACCESS, or it may be converted to amConsole_access.

Table 12-1 Log Files

File or Table Information Logged

amAuthLog Policy denies

amPolicy.access Policy allows

amConsole.access console events

amAuthentication.access authentication successes

amAuthentication.error authentication failures

amPasswordReset.access password reset events

amSSO.access SSO creates/destroys

amSAML.access SAML successful events

amSAML.error SAML error events

amLiberty.access Liberty successful events

Log Files

300 Access Manager 6 2005Q1 • Developer’s Guide

Recorded Events
The Logging Service logs information passed to the LogRecord class by the client.
Out-of-the-box, the contents of the LogRecord that will be logged are:

Time
This record is the date (YYYY-MM-DD) and time (HH:MM:SS) at which the log
message was recorded.

Data
This record details the description of the user activity, errors or other useful
information which the application wants to log.

ModuleName
This record is the name of the Access Manager service or application being logged.
Additional information on the value of this field can be found in “Adding Log
Data” on page 314.

Domain
This field records the Access Manager domain to which the user belongs.

Log Level
This record corresponds to the Java 2 Platform, Standard Edition (J2SE) version 1.4
log level of the log record.

amLiberty.error Liberty error events

amFederation.access Federation successful events

amFederation.error Federation error events

amAdmin.access amadmin CLI successful events

amAdmin.error amadmin CLI error events

Table 12-1 Log Files

File or Table Information Logged

Log Files

Chapter 12 Auditing Features 301

Login ID
This field is the ID of the user attempting to access the application. The information
(the user to whom the log information belongs) is taken from the session token.

IP Address
This field records the IP address from which the operation was performed.

Logged By
This field is the user who writes the log record. The information is taken from the
session token passed during logger.log(logRecord, ssoToken).

Host Name
This field is the host name from which the operation was performed.

Additional fields can also be logged. The new field names must first be added to
the amLogging.xml service file and the modified service file then reloaded into the
Directory Server. The new values for these fields would then be included in the
LogRecord Class passed to the Logging Service. More information on how to
modify and load an XML service file can be found in “Defining A Custom Service”
on page 187 of Chapter 8, “Service Management.”

Log File Formats
Access Manager can record events in flat text files or a relational database. (The
JDK SPI allows extending existing handlers or adding new ones.)

Flat File Format
The default flat file format is the W3C Extended Log Format (ELF). In leveraging
this format, the Logging Service records the default logging fields in each log
record. Code Example 12-1 illustrates an authentication log record formatted for a
flat file. In order, the fields for these values are TIME, DATA, MODULENAME,
DOMAIN, LOGLEVEL, LOGINID, IPADDR, LOGGEDBY, and HOSTNAME.

NOTE Only the flat file format can accommodate new logging fields. Other formats might
contain steps not documented here. An example would be the database table
where a new column must also be added to the table.

Log Files

302 Access Manager 6 2005Q1 • Developer’s Guide

Relational Database Format
For Java applications using a relational database to log messages, the message is
stored in a database table. Access Manager uses Java Database Connectivity (JDBC)
to access the data. Oracle® and MySQL databases are currently supported.

Table 12-2 contains the schema for a relational database.

Code Example 12-1 Flat File Record From amAuthentication.access

"08-07-2003 07:58:26" "Login Success service->adminconsoleservice" LDAP
dc=example,dc=com INFO uid=amAdmin,ou=People,dc=example,dc=com
129.149.247.58 "cn=dsameuser,ou=DSAME Users,dc=example,dc=com"
cache1nwk.SFBay.Sun.COM

NOTE JDBC technology is an API for accessing tabular data source using Java. It
provides connectivity to a wide range of SQL databases, and access to other
tabular data sources, such as spreadsheets or flat files.

Table 12-2 Relational Database Log Format

Column Name Data Type Description

TIME VARCHAR2(30) Date of the log in the format YYYY-MM-DD
HH:MM:SS.

DATA VARCHAR2(1024) The log message itself.

MODULENAME VARCHAR2(255) The name of the Access Manager service invoking
the log record.

DOMAIN VARCHAR2(255) Access Manager domain of the user.

LOGLEVEL VARCHAR2(255) JDK 1.4 log level of the log record.

LOGINID VARCHAR2(255) Login ID of the user who performed the logged
operation.

IPADDR VARCHAR2(255) IP Address of the machine from which the logged
operation was performed.

LOGGEDBY VARCHAR2(255) Login ID of the user who writes the log record.

HOSTNAME VARCHAR2(255) Host name of machine from which the logged
operation was performed.

Log Files

Chapter 12 Auditing Features 303

Oracle Database
In order to log to an Oracle database, the Log Location attribute in the Access
Manager Logging Service and the driver variable in the database itself need to be
modified. Using the Access Manager console, change the value of the Log Location
attribute to:

jdbc:oracle:thin:@hostname:1521:database_name

In the database itself, change the value for the driver to:

oracle.jdbc.driver.OracleDriver

MySQL Database
In order to log to an MySQL database, the Log Location attribute in the Access
Manager Logging Service and the driver variable in the database itself need to be
modified.

Using the Access Manager console, change the value of the Log Location attribute
to:

jdbc:mysql://hostname:port/database_name

In the database itself, change the value for the driver to:

com.mysql.jdbc.Driver

Java Enterprise System Installation Logs
Events recorded during installation are stored in /var/sadm/install/logs. As
Access Manager is installed via Java Enterprise System (JES), the events are
recorded by the JES installer. The four installation logs are:

• Java_Enterprise_System_Config_Log

• Java_Enterprise_System_Summary_Report_install

• Java_Enterprise_System_install

NOTE There is a limitation in the data length for MySQL JDBC logging as MySQL does
not support data of more than 255 characters.

CAUTION When MySQL is installed on Solaris or other Unix platforms and modifications are
made to the Logging Service, logging into the MySQL database shows the warning
message Syntax error or access violation.

Log Files

304 Access Manager 6 2005Q1 • Developer’s Guide

• Java_Enterprise_System_shared_component_install

Access Manager Service Logs
There are two different types of service log files: access and error. Access log files
record general auditing information concerning the deployment (successful or
failed authentications, new federations, etc.). Error log files record errors that occur
within the application. Flat log files are appended with the .error or .access
extension; database column names end with _ERROR or _ACCESS. For example, a
flat file logging console events would be named amConsole.access while a
database column logging the same events would be called AMCONSOLE_ACCESS. The
following sections describe the log files recorded by the Logging Service.

Session Logs
The Logging Service records the following events for the Session Service:

• Login

• Logout

• Session Idle TimeOut

• Session Max TimeOut

• Failed To Login

• Session Reactivation

• Session Destroy

The session logs are prefixed with amSSO.

Console Logs
The Access Manager console logs record the creation, deletion and modification of
identity-related objects, policies and services including, among others,
organizations, organizational units, users, roles, policies and groups. It also records
modifications of user attributes including passwords and the addition or removal
of users to or from roles and groups. The console logs are prefixed with amConsole.

Authentication Logs
The Authentication component logs user logins and logouts. The authentication
logs are prefixed with amAuthentication.

Log Files

Chapter 12 Auditing Features 305

Federation Logs
The Federation component logs federation-related events including, but not
limited to, the creation of an Authentication Domain and the creation of a Hosted
Provider. The federation logs are prefixed with Federation.

Policy Logs
The Policy component records policy-related events including, but not limited to,
policy administration (policy creation, deletion and modification) and policy
evaluation. The policy logs are prefixed with amPolicy. Code Example 12-2 on
page 305 is a collection of sample records that might appear in the policy logs.

Agent Logs
The policy agent logs are responsible for logging exceptions regarding log
resources that were either allowed or denied to a user. The agent logs are prefixed
with amAgent. amAgent logs reside on the agent server only. Agent events are
logged on the Access Manager machine in the Authentication Logs. For more
information on this function, see the correct documentation for the policy agent in
question.

Code Example 12-2 Sample Policy Log Records

#Fields: time Data ModuleName Domain LogLevel LoginID
IPAddr LoggedBy HostName

"08-07-2003 11:08:19" "Created policy test successfully in
Organization dc=iplanet,dc=com" amPolicy.access "Not Available"
INFO uid=amAdmin,ou=People,dc=iplanet,dc=com /192.18.120.236
uid=amAdmin,ou=People,dc=iplanet,dc=com 192.18.120.236

"08-07-2003 11:08:55" "Modified policy test successfully in
Organization dc=iplanet,dc=com" amPolicy.access "Not Available"
INFO uid=amAdmin,ou=People,dc=iplanet,dc=com /192.18.120.236
uid=amAdmin,ou=People,dc=iplanet,dc=com 192.18.120.236

"08-07-2003 11:09:05" "Removed policy test successfully in
Organization dc=iplanet,dc=com" amPolicy.access "Not Available"
INFO uid=amAdmin,ou=People,dc=iplanet,dc=com /192.18.120.236
uid=amAdmin,ou=People,dc=iplanet,dc=com 192.18.120.236

"08-07-2003 11:15:43" "Policy Evaluation result of Policy test in
Organization dc=iplanet,dc=com for service iPlanetAMWebAgentService,
resource http://moonshadow.red.iplanet.com:80/*.html and action names
[GET, POST] is GET=[allow]\\n." amPolicy.access "Not Available" INFO
uid=amAdmin,ou=People,dc=iplanet,dc=com /192.18.120.236
uid=amAdmin,ou=People,dc=iplanet,dc=com 192.18.120.236

Logging Features

306 Access Manager 6 2005Q1 • Developer’s Guide

SAML Logs
The SAML component records SAML-related events including, but not limited to,
assertion and artifact creation or removal, response and request details, and SOAP
errors. The session logs are prefixed with amSAML.

amAdmin Logs
The command line logs record event errors that occur during operations using the
command line tools. These include, but are not limited to, loading a service
schema, creating policy and deleting users. The command line logs are prefixed
with amAdmin. More information can be found in “Command Line Logging” on
page 307.

Logging Features
The Logging Service has a number of special features which can be enabled for
additional functionality. They include To Enable Secure Logging, Command Line
Logging and Remote Logging.

To Enable Secure Logging
This optional feature adds additional security to the logging function. Secure
Logging enables detection of unauthorized changes to, or tampering of, the
security logs. No special coding is required to leverage this feature. Secure Logging
is accomplished by using a pre-registered certificate configured by the system
administrator. This Manifest Analysis and Certification (MAC) is generated and
stored for every log record. A special “signature” log record is periodically inserted
that represents the signature for the contents of the log written to that point. The
combination of the two records ensures that the logs have not been tampered with.
Secure Logging can be enabled by performing the following steps:

1. Create a certificate with the name Logger and install it in the deployment
container running Access Manager.

Refer to the documentation that comes with the deployment container for
details.

2. Turn on Secure Logging in the Logging Service configuration using the Access
Manager console and save the change.

The administrator can also modify the default values for the other attributes in
the Logging Service.

Logging Features

Chapter 12 Auditing Features 307

3. Create a file in the IdentityServer_base/SUNWam/config directory that contains
the certificate database password and name it .wtpass.

Ensure that the deployment container user is the only administrator with read
permissions to this file for security reasons.

4. Restart the server after making these changes.

Command Line Logging
The amadmin command line tool has the ability to create, modify and delete
identity objects (organizations, users, and roles, for example) in Directory Server.
This tool can also load, create, and register service templates. The Logging Service
can record these command line actions by invoking the -t option. If the
com.iplanet.am.logstatus property in AMConfig.properties is enabled
(ACTIVE) then a log record will be created. (This property is enabled by default.)
The command line logs are prefixed with amAdmin. More information can be found
in Chapter 8, “The amadmin Command Line Tool” in the Sun Java System Access
Manager Administration Guide.

Remote Logging
Access Manager supports remote logging. This allows a client using the Access
Manager SDK to create log records on an instance of Access Manager deployed on
a remote machine.

Using Remote Logging
Remote logging can be initiated in any of the following scenarios:

• When the logging URL in the Naming Service of one Access Manager instance
points to a remote instance and there is a trust relationship configured between
the two, logs will be written to the remote Access Manager instance.

NOTE The file name and the path to it is configurable in the AMConfig.properties file. For
more information see the “Certificate Database” on page 339 of Appendix A,
“AMConfig.properties File.”

Logging Features

308 Access Manager 6 2005Q1 • Developer’s Guide

• When the Access Manager SDK is installed against a remote Access Manager
instance and a client (or a simple Java class) running on the SDK server uses
the logging APIs, the logs will be written to the remote Access Manager
machine.

• When logging APIs are used by Access Manager agents.

Enabling Remote Logging
To enable remote logging, ensure that the following information is regarded.

• If using Sun Java System Web Server, the following environment variables
need to be set in the server.xml configuration file.

a. java.util.logging.manager=com.sun.identity.log.LogManager

b. java.util.logging.config.file=/IdentityServer_base/SUNwam/lib/LogC
onfig.properties

m If the Java™ 2 Platform, Standard Edition being used is 1.4 or later, this is
accomplished by invoking the following at the command line:

java -cp
/IdentityServer_base/SUNWam/lib/am_logging.jar:/IdentityServer_base/S
UNWam/lib/xercesImpl.jar:/IdentityServer_base/SUNWam/lib/xmlPars
erAPIs.jar:/IdentityServer_base/SUNWam/lib/jaas.jar:/IdentityServer_
base/SUNWam/lib/xmlParserAPIs.jar:/IdentityServer_base/SUNWam/lib
/servlet.jar:/IdentityServer_base/SUNWam/locale:/IdentityServer_base/
SUNWam/lib/am_services.jar:/IdentityServer_base/SUNWam/lib/am_sd
k.jar:/IdentityServer_base/SUNWam/lib/jss311.jar:/IdentityServer_base
/SUNWam/lib:.

-Djava.util.logging.manager=com.sun.identity.log.LogManager

-Djava.util.logging.config.file=/IdentityServer_base/SUNwam/lib/
LogConfig.properties <logTestClass>

m If the Java 2 Platform, Standard Edition being used is earlier than 1.4, this is
accomplished by invoking the following at the command line:

java
-Xbootclasspath/a:/IdentityServer_base/SUNWam/lib/jdk_logging.ja
r -cp
/IdentityServer_base/SUNWam/lib/am_logging.jar:/IdentityServer_base/S
UNWam/lib/xercesImpl.jar:/IdentityServer_base/SUNWam/lib/xmlPars
erAPIs.jar:/IdentityServer_base/SUNWam/lib/jaas.jar:/IdentityServer_
base/SUNWam/lib/xmlParserAPIs.jar:/IdentityServer_base/SUNWam/lib

Logging API

Chapter 12 Auditing Features 309

/servlet.jar:/IdentityServer_base/SUNWam/locale:/IdentityServer_base/
SUNWam/lib/am_services.jar:/IdentityServer_base/SUNWam/lib/am_sd
k.jar:/IdentityServer_base/SUNWam/lib/jss311.jar:/IdentityServer_base
/SUNWam/lib:.

-Djava.util.logging.manager=com.sun.identity.log.LogManager

-Djava.util.logging.config.file=/IdentityServer_base/SUNwam/lib/
LogConfig.properties <logTestClass>

• Ensure that the following parameters are configured in
LogConfig.properties located in IdentityServer_base/SUNWam/lib.

a. iplanet-am-logging-remote-handler=com.sun.identity.log.handler
s.RemoteHandler

b. iplanet-am-logging-remote-formatter=com.sun.identity.log.handl
ers.RemoteFormatter

c. iplanet-am-logging-remote-buffer-size=1

Remote logging supports buffering on the basis of the number of log
records. This value defines the log buffer size by the number of records.
Once the buffer is full, all buffered records will be flushed to the server.

d. iplanet-am-logging-buffer-time-in-seconds=3600

This value defines the time-out period in which to invoke the log
buffer-cleaner thread.

e. iplanet-am-logging-time-buffering-status=OFF

This value defines whether log buffering (and the buffer-cleaner thread) is
enabled or not. By default this feature is turned off.

Logging API
The Logging API provides log management tools for all Access Manager services
as well as providing a set of Java classes for external applications to create, retrieve,
submit, or delete log information. The Access Manager Logging API extend the
core logging API in the Java™ 2 Standard Edition Development Kit (JDK) 1.4. Only
the Logger and LogRecord classes are enhanced. They are contained in the
package com.sun.identity.log.

Logging API

310 Access Manager 6 2005Q1 • Developer’s Guide

Setting Environment Variables
The following shared library environment variables must be set in the executable
for an application that is using the Logging Service. You can determine how to set
the variables depending upon three things:

• Whether the application can execute in the local Access Manager server, or
executes only a in remote server

• Whether or not you want the Access Manager LogManager class to override
the native LogManager class

• Whether or not SSL is enabled in your deployment

If Client Can Execute in the Local Access Manager Server
When the client application can execute in either the local Access Manager server
JVM or in a remote server JVM, choose one of the following two configurations:

• If it is acceptable for the native LogManager class to be overridden by the
Access Manager LogManager class in the JDK1.4 environment, then follow
these steps:

a. Set the following variables:

-D"java.util.logging.manager=com.sun.identity.log.LogManager"

-D"java.util.logging.config.class=com.sun.identity.log.s1is.
LogConfigReader"

b. If you are using JDK1.3, add the following:

-Xbootclasspath/a:/IdentityServer_base/SUNWam/lib/
jdk_logging.jar

In this case, Access Manager will automatically determine whether to
configure regular or remote handlers. Note also that Access Manager must be
able to access Directory Server in this case.

TIP An overview of the JDK 1.4 logging function can be found at
http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/
overview.html The Javadocs for the JDK 1.4 logging API themselves can be
found at
http://java.sun.com/j2se/1.4.1/docs/api/java/util/loggi
ng/package-summary.html.

Logging API

Chapter 12 Auditing Features 311

• If it is not acceptable for the native LogManager class to be overridden by the
Access Manager LogManager class in the JDK1.4 environment, then follow
these steps:

a. Set the following variables:

-DLOG_COMPATMODE=Off

-Ds1is.java.util.logging.config.class=com.sun.identity.log.s1is.
LogConfigReader

b. (Optional) If you are using JDK1.3, add the following:

-Xbootclasspath/a:/IdentityServer_base/SUNWam/lib/
jdk_logging.jar

In this case, Access Manager will automatically determine whether to
configure regular or remote handlers. Note also that Access Manager must be
able to access Directory Server in this case.

If Client Executes Only in a Remote Server
When the client application can execute only in a remote server JVM, choose one of
the following two configurations:

• If it is acceptable for the native LogManager class to be overridden by the
Access Manager LogManager class in the JDK1.4 environment, then follow
these steps:

a. Set the following variables:

-Djava.util.logging.manager=com.sun.identity.log.LogManager

-Djava.util.logging.config.file=/IdentityServer_base/SUNwam/lib/
LogConfig.properties

Logging API

312 Access Manager 6 2005Q1 • Developer’s Guide

b. In LogConfig.properties, or in the logging.properties file supplied by
JDK, set the following properties:

iplanet-am-logging-remote-handler=com.sun.identity.log.handlers.
RemoteHandler

iplanet-am-logging-remote-formatter=com.sun.identity.log.
handlers.RemoteFormatter

iplanet-am-logging-remote-buffer-size=1

iplanet-am-logging-buffer-time-in-seconds=3600

iplanet-am-logging-time-buffering-status=OFF

c. If you are using JDK1.3, add the following:

-Xbootclasspath/a:/IdentityServer_base/SUNWam/lib/
jdk_logging.jar

In this case, the Logging API will configure a remote handler for all logs. Note
that access to Directory Server is not required in this case.

• If it is not acceptable for the native LogManager class to be overridden by the
Access Manager LogManager class in the JDK1.4 environment, then follow
these steps:

a. Set the following variables:

-DLOG_COMPATMODE=Off

-Ds1is.java.util.logging.config.file=/IdentityServer_base/
SUNwam/lib/LogConfig.properties

b. In LogConfig.properties, or in the logging.properties file supplied by
JDK, set the following properties:

iplanet-am-logging-remote-handler=com.sun.identity.log.handlers.
RemoteHandler

iplanet-am-logging-remote-formatter=com.sun.identity.log.
handlers.RemoteFormatter

iplanet-am-logging-remote-buffer-size=1

iplanet-am-logging-buffer-time-in-seconds=3600

iplanet-am-logging-time-buffering-status=OFF

Logging API

Chapter 12 Auditing Features 313

c. If you are using JDK1.3, add the following:

-Xbootclasspath/a:/IdentityServer_base/SUNWam/lib/
jdk_logging.jar

The Client SDK APIs use this logging configuration by default. In this case, the
Logging API will configure a remote handler for all logs. Note that access to the
Directory Server is not required in this case.

If SSL is Enabled
If SSL is enable and uses JSS for Access Manager, set the following paramter:

-D"java.protocol.handler.pkgs=com.iplanet.services.comm"

Logger Class
This Logger class provides the methods for applications to use in creating log files
and writing log information to them.

• The getLogger() method returns a logger object and simultaneously creates a
log record (LogRecord) in the designated logging location.

• The log() method records a single piece of log information or a LogRecord. It
allows an application to submit a logging message to a predetermined log.

m Logger.log(logRecord, String credential) had been added to call
the authorization hook. The credential is accepted as a ssoToken string.
The default authorization hook checks validitity of the ssoToken. Data is
not logged at all if this check fails.

m Logger.log(logRecord) simply calls Logger(logRecord, String
cred) with credential value of null. And thus the default authorization
check does not allow logging when an application uses this interface.

LogRecord Class
The LogRecord class provides the means to represent the information that needs to
be logged. Each instance represents a single piece of log information or logRecord
that comes from the application. The ssoToken is passed to the logRecord
constructor and used to populate the log fields discussed in “Recorded Events” on
page 300. The session token passed during the logger.log(logRecord,
ssoToken) log request is used to authorize the user. The user can only log with a
valid ssoToken.

Logging API

314 Access Manager 6 2005Q1 • Developer’s Guide

Adding Log Data
The following sections illustrate ways to use the Logging API for adding log file
information.

Adding ModuleName Data
The ModuleName value can be added to a log file using the
logRecord.addLogInfo(key, value) API. If a module name is not added, the
name of the log will be used to populate this field. For example, authentication
information is logged in the amAuthentication.access file using an internal
session token ("dsameuser" ssoToken). If user Joe123 attempts to authenticate,
the LoginID will be Joe123, and the LoggedBy user will be dsameuser.

If the authentication module information (such as LDAP, Membership, etc.) is not
added by the APIs, amAuthentication.access will be the value of the
ModuleName field.

Adding Log Level Data
A LogLevel is passed in the LogRecord constructor using the following code:

LogRecord(Level level, String msg)

While using the logging APIs, any JDK 1.4 defined log levels can be passed.

Caching Log Records
Access Manager supports log record caching both locally and remotely based on
the configurable buffering properties discussed in “Remote Logging” on page 307.
Caching is supported for either type of log file although not when secure logging is
enabled.

Flushing Log Records
Access Manager provides Logger.flush() to expunge all the cached log records.

Sample Logging Code
Code Example 12-3 provides sample code to illustrate one way in which the
logging API can be used to write Access Manager records.

NOTE The LoggedBy entry is populated from the SSOToken passed during
logger.log(logRecord, ssoToken) call.

Logging SPI

Chapter 12 Auditing Features 315

Logging SPI
The Logging SPI are Java packages that can be used to develop plug-ins for
customized features. The SPI are organized in the com.sun.identity.log.spi
package. More information on the SPI can be found in the Javadocs located at
IdentityServer_base/SUNWam/docs.

Log Verifier Plugin
If secure logging is enabled, the log files are verified periodically to detect any
attempt of tampering. If tampering is detected, the action taken can be customized
by following the steps below.

1. Implement the com.sun.identity.log.spi.IVerifierOutput interface
with the desired functionality.

2. Add the implementing class in the classpath of Access Manager.

3. Modify the property iplanet-am-logging-verifier-action-class in the
/etc/opt/SUNWam/config/xml/amLogging.xml file with the name of the
new class.

Log Authorization Plugin
The Logging Service allows a class to be plugged in that will determine whether a
LogRecord is logged or discarded based on the authorization of the owner of the
session token performing the event.

Code Example 12-3 Logging API Samples

Logger logger = Logger.getLogger("SampleLogFile");
// Creates the file or table in the LogLocation specified in the
amLogging.xml and returns the Logger object.

LogRecord lr = new LogRecord(Level.INFO, "SampleData", ssoToken);
// Creates the LogRecord filling details from ssoToken.

logger.log(lr,ssoToken);
// Writes the info into the backend file, db or remote server.

Debug Files

316 Access Manager 6 2005Q1 • Developer’s Guide

There are several ways to accomplish this. For example:

1. Get the applicable role or DN of the user from the SSOToken and check it
against a pre-configured (or hardcoded) list of roles/users that are allowed
access. The administrator must configure a role and assign all policy agents
and entities (for example, applications) that can possibly log to Access
Manager to this role.

2. Instantiate a PolicyEvaluator and call
PolicyEvaluator.isAllowed(ssotoken, logname);. This entails defining a
policy XML to model log access and registering it with Access Manager.

In general:

1. Implement the com.sun.identity.log.spi.IAuthorizer interface with the
desired functionality.

2. Add the implementing class in the classpath of Access Manager.

3. Modify the property iplanet-am-logging-authz-class in the
/etc/opt/SUNWam/config/xml/amLogging.xml file with the name of the
new class.

Debug Files
The debug files are not a feature of, nor generated by, the Logging Service. They
are written using different APIs which are independent of the logging APIs. Debug
files are stored in /var/opt/SUNWam/debug. This location, along with the level of
the debug information, is configurable in the AMConfig.properties file, located in
the IdentityServer_base/SUNWam/lib/ directory. For more information on the debug
properties, see Appendix A, “AMConfig.properties File.”

NOTE The IAuthorizer interface accepts a SSOToken and the log record being
written.

NOTE The Access Manager Javadocs can be accessed from any browser by copying the
complete IdentityServer_base/SUNWam/docs/ directory into the
IdentityServer_base/SUNWam/public_html directory and pointing the
browser to
http://identity_server_host.domain_name:port/docs/index.html.

Debug Files

Chapter 12 Auditing Features 317

Debug Levels
There are several levels of information that can be recorded to the debug files. The
debug level is set using the com.iplanet.services.debug.level property in
AMConfig.properties.

1. Off—No debug information is recorded.

2. Error—This level is used for production. During production, there should be
no errors in the debug files.

3. Warning—Currently, using this level is not recommended.

4. Message—This level alerts to possible issues using code tracing. Most Access
Manager modules use this level to send debug messages.

Debug Output Files
A debug file does not get created until a module writes to it. Therefore, in the
default error mode no debug files may be generated. The debug files that get
created on a basic login with the debug level set to message include:

• amAuth

• amAuthConfig

• amAuthContextLocal

• amAuthLDAP

• amCallback

• amClientDetection

• amConsole

• amFileLookup

• amJSS

• amLog

• amLoginModule

• amLoginViewBean

CAUTION Warning and Message levels should not be used in production. They cause severe
performance degradation and an abundance of debug messages.

Debug Files

318 Access Manager 6 2005Q1 • Developer’s Guide

• amNaming

• amProfile

• amSDK

• amSSOProvider

• amSessionEncodeURL

• amThreadManager

The most often used files are the amSDK, amProfile and all files pertaining to
authentication. The information captured includes the date, time and message type
(Error, Warning, Message).

Using Debug Files
The debug level, by default, is set to error. The debug files might be useful to an
administrator when they are:

• Writing a custom authentication module.

• Writing a custom application using the Access Manager SDKs. The amProfile
and amSDK debug files capture this information.

• Troubleshooting access permissions while using the console or SDK. The
amProfile and amSDK debug files also capture this information.

• Troubleshooting SSL.

• Troubleshooting the LDAP authentication module. The amAuthLDAP debug file
captures this information.

The debug files should go hand in hand with any troubleshooting guide we might
have in the future. For example when SSL fails, someone might turn on debug to
message and look in the amJSS debug file for any specific cert errors.

Debug Files

Chapter 12 Auditing Features 319

Multiple Access Manager Instances And Debug
Files
Access Manager contains the ammultiserverinstall script that can be used to
configure numerous instances of the server. If the multiple server instances are
configured to use different debug directories, each individual instance has to have
both read and write permissions to the debug directories. More information on the
ammultiserverinstall script can be found in the Sun Java System Access Manager
Administration Guide.

Debug Files

320 Access Manager 6 2005Q1 • Developer’s Guide

321

Chapter 13

Client Detection Service

The Sun Java™ System Access Manager 6 2005Q1 Authentication Service has the
capability of being accessed from many client types, whether HTML-based,
WML-based or other protocols. In order for this function to work, Access Manager
must be able to identify the client type. The Client Detection Service is used for this
purpose. This chapter offers information on the service, and how it can be used to
recognize the client type. It contains the following sections:

• “Overview” on page 321

• “Client Data” on page 324

• “Client Detection API” on page 326

Overview
The Access Manager Authentication Service has the capability to process requests
from multiple browser type clients. Thus, the service can be used to authenticate
users attempting to access applications based in HTML, WML or other protocols.

The client detection API can be used to determine the protocol of the requesting
client browser and retrieve the correctly formatted pages for the particular client
type.

CAUTION The Access Manager console though can not be accessed from any client type
except HTML.

NOTE Out of the box, Access Manager only defines client data for supported HTML client
browsers. A list of supported browsers can be found in Chapter 1, “Introduction”
under the section “Client Browser Support” on page 43.

Overview

322 Access Manager 6 2005Q1 • Developer’s Guide

Client Detection Process
Since any user requesting access to Access Manager must first be successfully
authenticated, browser type client detection is accomplished within the
Authentication Service. When a client’s request is passed to Access Manager, it is
directed to the Authentication Service. Within this service, the first step in user
validation is to identify the browser type using the User-Agent field stored in the
HTTP request.

The User-Agent information is then matched to browser type data defined and
stored in the amClientData.xml file.

Based on this Client Data, correctly formatted browser pages are sent back to the
client for authentication (for example, HTML or WML pages). Once the user is
validated, the client type is added to the session token (as the key clientType)
where it can be retrieved and used by other Access Manager services. (If there is no
matching client data, the default type is returned.)

Enabling Client Detection
By default, the client detection capability is disabled; this then assumes the client to
be of the genericHTML type (For example Access Manager will be accessed from a
HTML browser). The preferred way to enable the Client Detection Service is to use
the Access Manager console and select the option in the Client Detection Service
itself. For more information, see the Sun Java System Access Manager Administration

NOTE The User-Agent field contains product tokens which contains information about
the browser type client originating the HTTP request. The tokens are a standard
used to allow communicating applications to identify themselves. The format is
software/version library/version.

CAUTION User-Agent information is defined in amClientData.xml but this information is stored
in Directory Server under Client Detection Service.

NOTE The userAgent must be a part of the client data configured for all browser type
clients. It can be a partial string or the exact product token.

Overview

Chapter 13 Client Detection Service 323

Guide. To enable client detection using the amClientDetection.xml, the
iplanet-am-client-detection-enabled attribute must be set to true.
amClientDetection.xml must then be deleted from Directory Server and reloaded
using amAdmin. The following procedure illustrates the complete enabling process.

1. Import client data XML file using the amadmin command
/IdentityServer_base/SUNWam/bin/amadmin -u amadmin_DN -w
amadmin_password -t name_of_XML_file

This step is only necessary if the client data is not already defined in
amClientData.xml. The XML file is based on the “The sms.dtd Structure” on
page 199 of Chapter 8, “Service Management.”

2. Restart Access Manager.

3. Login to Access Manager console.

4. Go to Service Configuration and click the ClientDetectionproperties.

5. Enable Client Detection.

6. Make sure the imported data can be viewed with Access Manager console.

Click on the Edit button next to the Client Data attribute.

7. Create a directory for new client type and add customized JSPs.

Create a new directory in
/IdentityServer_base/SUNWam/web-src/services/config/auth/default/ and add
JSPs for the new client type. Code Example 13-1 on page 323 is a login page
written for a WML browser.

Code Example 13-1 Login.jsp Written In WML

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright Sun Microsystems, Inc. All Rights Reserved -->

<wml>
<head>
<meta http-equiv="Cache-Control" content="max-age=0"/>
</head>

 <card id="authmenu" title="Username">
<do type="accept" label="Enter">

<go method="get" href="/wireless">
<postfield name="TOKEN0" value="$username"/>

Client Data

324 Access Manager 6 2005Q1 • Developer’s Guide

Client Data
In order to detect client types, Access Manager needs to recognize their identifying
characteristics. These characteristics identify the features of all supported types
and are defined in the amClientData.xml service file. The full scope of client data
available is defined as a schema in amClientData.xml. The configured Access
Manager client data available for HTML-based browsers is defined as
sub-configurations of the overall schema: genericHTML and its parent HTML.

HTML
HTML is a base style containing properties common to HTML-based browsers. It
might have several branches including web-based HTML (or genericHTML),
cHTML (Compact HTML) and others. All configured devices for this style could
inherit these properties which include:

• parentId—identifies the base profile. The default value is HTML.

• clientType—an arbitrary string which uniquely identifies the client. The
default value is HTML.

• filePath—is used to locate the client type files (templates and JSP files). The
default value is html.

<postfield name="TOKEN1" value="$password"/>
</go>
</do>
<p>
Enter username:
<input type="text" name="password"/>
</p>
<p>
Enter password:
<input type="text" name="username"/>
</p>
</card>
</wml>

NOTE Parent profiles (or styles, as they are referred to in the Access Manager console)
are defined with properties that are common to its configured child devices. This
allows for the dynamic inheritance of the parent properties to the child devices
making the device profiles easier to mange.

Code Example 13-1 Login.jsp Written In WML

Client Data

Chapter 13 Client Detection Service 325

• contentType—defines the content type of the HTTP request. The default value
is text/html.

• genericHTML—defines a client that will be treated as HTML. The default value
is true.

• cookieSupport—defines whether cookies are supported by the client browser.
The default value is true which sets a cookie in the response header. The other
two values could be False which sets the cookie in the URL and Null which
allows for dynamic cookie detection. In the first request, the cookie is set in
both the response header and the URL; the actual mode is then detected and
set from the subsequent request.

• CcppAccept-Charset—defines the character encoding used by Access Manager
to send a response to the browser. The default value is UTF-8.

genericHTML
genericHTML is a configured device that inherits properties from the HTML style as
well as defining its own properties. It refers to a HTML browser (Netscape
Navigator™, Microsoft® Internet Explorer, or Mozilla™). Its properties include:

• parentId—identifies the base profile for the configured device. The default
value is HTML.

• clientType—an arbitrary string which uniquely identifies the client. The
default value is genericHTML.

• userAgent—a search filter used to compare/match the user agent defined in
the HTTP header. The default value is Mozilla/4.0.

NOTE This attribute does not refer to the similarly named genericHTML style.

NOTE Although the Client Detection Service supports a cookieless mode, Access
Manager console does not. Therefore, enabling this function will not allow login to
the console. This feature is provided for wireless applications and others that will
support it.

Client Detection API

326 Access Manager 6 2005Q1 • Developer’s Guide

• CcppAccept-Charset—defines the character encoding set supported by the
browser. The default values are
UTF-8;ISO-8859-1;ISO-8859-2;ISO-8859-3;ISO-8859-4;ISO-8859-5;ISO-8859-6
;ISO-8859-7;ISO-8859-8;ISO-8859-9;ISO-8859-10;ISO-8859-14;ISO-8859-15;S
hift_JIS;EUC-JP;ISO-2022-JP;GB18030;GB2312;BIG5;EUC-KR;ISO-2022-KR;TIS-
620;KOI8-R.

Client Detection API
Access Manager is packaged with a Java API which can implement the client
detection functionality. The client detection API are in a package called
com.iplanet.services.cdm. This package provides the interfaces and classes
needed to retrieve client properties. The client detection procedure would include
defining the client type characteristics (as stated in “Client Data” on page 324) as
well as implementing the client detection API within the external application.

The client detection capability is provided by ClientDetectionInterface, a
pluggable interface (not an API invoked by a regular application). It provides a
getClientType method. The getClientType method extracts the client data from the
browser’s incoming HttpRequest, matches the user agent information and returns
the ClientType as a string. Upon successful authentication, the client type is added
to the user’s session token. The ClientDetectionException handles any error
conditions.

NOTE The character set can be configured for any given locale by adding
charset_locale=codeset where the code set name is based on the Internet
Assigned Numbers Authority (IANA) standard.

327

Chapter 14

Access Manager Utilities

Sun Java™ System Access Manager 6 2005Q1 provides scripts to backup and
restore data as well as application programming interfaces (API) that are used by
the server itself or by external applications. This chapter explains the scripts and
the API. It contains the following sections:

• “Utility API” on page 327

• “Password API Plug-Ins” on page 329

Utility API
The utilities package is called com.iplanet.am.util. It contains utility programs
that can be used by external applications accessing Access Manager. Following is a
summary of the utility API and their functions.

AdminUtils
This class contains the methods used to retrieve TopLevelAdmin DN and
password. The information comes from the server configuration file,
serverconfig.xml, located in /IdentityServer_base/SUNWam/config/ums.

AMClientDetector
The AMClientDetector interface executes the Client Detection Class configured in
the Client Detection Service to get the client type.

Utility API

328 Access Manager 6 2005Q1 • Developer’s Guide

AMPasswordUtil
The AMPasswordUtil interface has two purposes:

1. Encrypting and decrypting any string.

2. Encrypting and decrypting special user passwords such as the password for
dsameuser or proxy user.

Debug
Debug allows an interface to file debug and exception information in a uniform
format. It supports different levels of information (in the ascending order): OFF,
ERROR, WARNING, MESSAGE and ON. A given debug level is enabled if it is set to at
least that level. For example, if the debug state is ERROR, only errors will be filed. If
the debug state is WARNING, only errors and warnings will be filed. If the debug
state is MESSAGE, everything will be filed. MESSAGE and ON are the same level except
MESSAGE writes to a file, whereas ON writes to System.out.

Locale
This class is a utility that provides the functionality for applications and services to
internationalize their messages.

NOTE Any remote application using this utility should have the value of the AMConfig
property am.encryption.pwd copied to a properties file on the client side.
This value is generated at installation time and stored in
/IdentityServer_base/SUNWam/lib/AMConfig.properties. More
information on this property can be found in the Encryption section of the
Appendix A, “AMConfig.properties File.”

NOTE Debugging is an intensive operation and can hurt performance. Java evaluates the
arguments to message() and warning() even when debugging is turned off.
It is recommended that the debug state be checked before invoking any
message() or warning() methods to avoid unnecessary argument evaluation
and maximize application performance.

Password API Plug-Ins

Chapter 14 Access Manager Utilities 329

SystemProperties
This class provides functionality that allows single-point-of-access to all related
system properties. First, the class tries to find AMConfig.class, and then a file,
AMConfig.properties, in the CLASSPATH accessible to this code. The class takes
precedence over the flat file. If multiple servers are running, each may have their
own configuration file. The naming convention for such scenarios is
AMConfig_serverName.

ThreadPool
ThreadPool is a generic thread pool that manages and recycles threads instead of
creating them when a task needs to be run on a different thread. Thread pooling
saves the virtual machine the work of creating new threads for every short-lived
task. In addition, it minimizes the overhead associated with getting a thread started
and cleaning it up after it dies. By creating a pool of threads, a single thread from
the pool can be reused any number of times for different tasks. This reduces
response time because a thread is already constructed and started and is simply
waiting for its next task.

Another characteristic of this thread pool is that it is fixed in size at the time of
construction. All the threads are started, and then each goes into a wait state until a
task is assigned to it. If all the threads in the pool are currently assigned a task, the
pool is empty and new requests (tasks) will have to wait before being scheduled to
run. This is a way to put an upper bound on the amount of resources any pool can
use up. In the future, this class may be enhanced to provide support growing the
size of the pool at runtime to facilitate dynamic tuning.

Password API Plug-Ins
The Password API plug-ins can be used to integrate password functions into
applications. They can be used to generate new passwords as well as notify users
when their password has been changed. These interfaces are PasswordGenerator
and NotifyPassword, respectively. They can be found in the
com.sun.identity.password.plugins package.

Password API Plug-Ins

330 Access Manager 6 2005Q1 • Developer’s Guide

There are samples (which include sample code) for these API that can be accessed
from the Access Manager installation. They are located in
IdentityServer_base/SUNWam/samples/console. They include:

Notify Password Sample
This sample details how to build a plug-in which an administrator can define their
own method of notification when a user has reset a password. Instructions for this
sample are in the Readme.txt or Readme.html file located in
IdentityServer_base/SUNWam/samples/console/NotifyPassword.

Password Generator Sample
This sample details how to build a plug-in which an administrator can define their
own method of random password generation when a user’s password is reset
using the Password Reset Service. Instructions for this sample are in the
Readme.txt or Readme.html file located in
IdentityServer_base/SUNWam/samples/console/PasswordGenerator.

NOTE The Access Manager Javadocs can be accessed from any browser by copying the
complete IdentityServer_base/SUNWam/docs/ directory into the
IdentityServer_base/SUNWam/public_html directory and pointing the
browser to http://identity_server_host.domain_name:port/docs/
index.html.

331

Appendix A

AMConfig.properties File

AMConfig.properties is the resource configuration file for Sun Java™ System
Access Manager 6 2005Q1. It provides instructions for the Access Manager
deployment. This chapter explains the attributes of AMConfig.properties. It
contains the following sections:

• “Overview” on page 331

• “Deployment Properties” on page 332

• “Configuration Properties” on page 335

• “Read-Only Properties” on page 343

Overview
Access Manager is configured by placing application properties in plain text
configuration files. These configuration files contain one property per line and each
has a corresponding value. Properties and their values are case-sensitive.
Indentation of the properties is consistent throughout the file. Lines which begin
with the characters “/*” are comments, and ignored by the application. Comments
are completed with a last line that contains the closing characters “*/”. The main
configuration file for Access Manager is AMConfig.properties located in
IdentityServer_base/SUNWam/lib. The following sections describe the properties and
default values of AMConfig.properties.

NOTE The Access Manager must be restarted for any modification in
AMConfig.properties to take effect.

Deployment Properties

332 Access Manager 6 2005Q1 • Developer’s Guide

Deployment Properties
Following are the deployment-specific attributes configured in
AMConfig.properties.

Access Manager
This section describe properties that define the Access Manager application.

Installation
These properties are defined during installation.

• com.iplanet.am.server.host=identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Access Manager is located.

• com.iplanet.am.server.port=58080

The value of this property is the port number used by the Access Manager. The
default is 58080.

• com.iplanet.am.jdk.path=/IdentityServer_base/SUNWam/java

The value of this property is the path to the JDK used by the Access Manager.

• com.sun.identity.authentication.super.user=uid=amAdmin,ou=People,dc=top_le
vel_org,dc=com

This property identifies the full LDAP DN of the super user configured during
installation of Access Manager; it is amadmin by default. This user must always
log in using LDAP authentication as they will always be authenticated against
the Directory Server. The UID alone is generally used to login but the full DN
as defined in this property can also be used.

Console
These properties are specific to the Access Manager console.

• com.iplanet.am.console.host=identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Access Manager console is located.

• com.iplanet.am.console.protocol=http

The value of this property is the protocol used to communicate with the Access
Manager. The default is http.

Deployment Properties

Appendix A AMConfig.properties File 333

• com.iplanet.am.console.port=58080

The value of this property is the port number of the machine on which the
Access Manager console is located. The default is 58080.

The following directives can be added to the AMConfig.properties file to add their
respective functionality to the Access Manager console.

• com.iplanet.am.console.display.off=orgs,users,groups

If specified, Access Manager will not perform the initial search for a specified
identity object that is done in the Navigation frame when the view menu is
changed. For example, after a successful login, the default console view is the
organization view. When the view is changed to Users, the Navigation frame is
redrawn to display all users; a search is performed to obtain this information.
With a large number of users, disabling this search can drastically reduce the
time it takes to load the Access Manager console. A filter can then be used to
find the desired users. This option is available for any of the view menu types.
To disable the search, add any of the following values: orgs, orgUnits, users,
policies, groups, roles, groupContainers, and peopleContainers. If more than
one value, they are comma-separated.

• com.iplanet.am.console.set.cn=true

If specified, the user common name (cn) will not be displayed in the Create
User screen but it will be generated based on information entered in the First
Name (givenname), Initial and Last Name (sn) fields of the User profile page
and displayed as a read-only value on screen.

Cookies
These properties are specific to Access Manager cookies.

• com.iplanet.am.cookie.name=iPlanetDirectoryPro

The value of this property is the name of the cookie. In an Access Manager
deployment with more than one instance, it is recommended that the value of
this property for one of the instances is changed.

CAUTION The service attribute in the Access Manager console that corresponds to this
property is Display Options, an organization attribute in the Administration Service.
This console option takes precedence over any value defined in
com.iplanet.am.console.display.off. If configuring this property in
AMConfig.properties, do not configure it using the console (or vice versa).

Deployment Properties

334 Access Manager 6 2005Q1 • Developer’s Guide

• com.iplanet.am.pcookie.name=DProPCookie

The value of this property is the name of the persistent cookie if that function is
enabled.

• com.iplanet.am.cookie.secure=false

This property allows the Access Manager cookie to be set in a secure mode in
which the browser will only return the cookie when a secure protocol like
HTTP(s) is used.

• com.iplanet.am.cookie.encode=COOKIE_ENCODE

This property allows Access Manager to URLencode the cookie value which
converts characters to ones that are understandable by HTTP.

Miscellaneous
This section is a catch-all for some miscellaneous and self-explanatory values.

• com.iplanet.am.daemons=unix

• com.iplanet.am.locale=en_US

• com.iplanet.am.logstatus=ACTIVE

• com.iplanet.am.version=6.1

• com.iplanet.services.configpath=/etc/opt/SUNWam/config/ums

The value of this property is the path to the serverconfig.xml file. This file is
discussed in Appendix B, “serverconfig.xml File.”

Directory Server
This section describe the properties for the Directory Server data store.

Installation
These properties define the Directory Server to which the Access Manager points.

• com.iplanet.am.directory.host=identity_server_host.domain_name

NOTE The cookie name defined as com.iplanet.am.cookie.name is the Access
Manager cookie and needs to be defined in a sticky load balancing situation. Do
not use the HTTP session cookie as in some cases it is not retained.

Configuration Properties

Appendix A AMConfig.properties File 335

The value of this property is the DNS domain name of the machine on which
the Directory Server is located.

• com.iplanet.am.directory.port=389

The value of this property is the port number of the machine on which the
Directory Server is located. The default is 389.

• com.iplanet.am.server.protocol=http

The value of this property is the protocol used to communicate with the
machine on which the Directory Server is located.

Directory Server Tree
The values of these properties are the top-level organization of the Directory Server
tree defined during the installation process.

• com.iplanet.am.defaultOrg=dc=top_level_org,dc=com

• com.iplanet.am.rootsuffix=dc=top_level_org,dc=com

• com.iplanet.am.domaincomponent=dc=top_level_org,dc=com

Configuration Properties
There are a number of services configured in AMConfig.properties that can not be
configured using the Access Manager console. These back-end services, and
several attributes for other services, are defined in this section.

Debug Service
The Debug Service logs developer information in the case of application errors.
(The Logging Service writes logs to be monitored by the application administrator.)
More information on the Debug Service can be found in “Debug Files” on page 316
of Chapter 12, “Auditing Features.”

• com.iplanet.services.debug.level=error

The possible values for this property are: off | error | warning | message. They
indicate the level of information recorded in the debug files.

• com.iplanet.services.debug.directory=/var/opt/SUNWam/debug

Configuration Properties

336 Access Manager 6 2005Q1 • Developer’s Guide

The value of this property is the output directory for the debug information.
This directory should be writable by the server process.

Stats Service
The following properties are used to configure the Stats Service for recording
service statistics. This service is used by the Access Manager SDK and the Session
Service. Code Example A-1 is a portion of the stats file to illustrate the information
that is recorded. The file is named amSDKStats by default.

• com.iplanet.am.stats.interval=3600

The statistics interval should be at least 5 seconds to avoid CPU saturation.
Access Manager will assume that any value less than that is 5 seconds.

• com.iplanet.services.stats.directory=/var/opt/SUNWam/debug

This property specifies the output directory for the statistics files. By default, it
is the same as the debug directory.

• com.iplanet.services.stats.state=off

NOTE In defining values for the Debug Service, remember that trailing spaces are
significant. Also, on a Microsoft® Windows® system, use forward slashes “/” to
separate directories.Finally, spaces in the file name are allowed only on a Windows
system.

Code Example A-1 Portion of amSDKStats File

11/26/2002 01:46:18:592 PM PST: Thread[Thread-10,5,main]
SDK Cache Statistics

Interval: 214
Hits during interval: 38
Hit ratio for this interval: 0.17757009345794392
Total number of requests: 214
Total number of Hits: 38
Overall Hit ratio: 0.17757009345794392
Total Cache Size: 72

Configuration Properties

Appendix A AMConfig.properties File 337

Possible values for this directive are: off | file | console. file will write to a
file named amSDKStats under the directory specified in the
com.iplanet.services.stats.directory property and console will write into
the deployment container log files.

Notification Service
The Notification Service allows Access Manager to send notifications to registered
applications when an event has occurred (session destroyed, session timeout, etc.).
This service also allows the single sign-on cache to stay up to date. The notification
is basically a HTTP post message containing the component notification in its body.

• com.iplanet.am.notification.url=
http://identity_server_host.domain_name:port/amserver/notificationservice

The value of this property is the URI of the Notification Service.

When a notification task comes in, it is processed in the task queue. If it reaches the
maximum length, further incoming requests will be rejected along with a
ThreadPoolException, until the queue has vacancy

• com.iplanet.am.notification.threadpool.size=10

This parameter is used to define the session thread pool for notification
handling. It specifies the size of the pool as the total number of threads
allowed.

• com.iplanet.am.notification.threadpool.threshold= 100

This parameter specifies the maximum size of the task queue in the thread
pool. A task is queued when no thread is available. If the number of
unprocessed tasks reaches the value specified, no additional notification tasks
will be accepted until there are vacancies. This value is dependent on the
system memory resource; each task takes about 3k.

NOTE In defining values for the Stats Service, remember that trailing spaces are
significant. On a Windows system, use forward slashes “/” to separate directories.
Spaces in the file name are also allowed on a Windows system.

Configuration Properties

338 Access Manager 6 2005Q1 • Developer’s Guide

SDK Caching
The caching function in Access Manager is memory-based therefore when an
identity-related object is created, deleted or modified, the cache is cleaned up. Each
SDK cache entry stores a set of attributes and values of AMObject for a user. Because
the size of each object is dependent upon the number of attributes it has, modifying
these properties will affect the performance of Access Manager.

• com.iplanet.am.sdk.cache.maxSize=10000

This property configures the size of the cache when caching is enabled. The
value refers to the number of objects cached and should be an integer greater
than 0; if not, the default 10000 will be used.

• com.iplanet.am.session.maxSessions=5000

This property specifies the maximum number of concurrent sessions. Logging
in when the maximum sessions has been met would send a Maximum Sessions
error.

Online Certificate Status Protocol (OCSP)
OCSP is a protocol that specifies the syntax for communication between a server
which holds certificate status and a client which is informed of said status.When a
user attempts to access a server, OCSP sends a request for certificate status
information and receives back a response of current, expired or unknown. If these
properties are set, the certificate in question must be in the deployment container’s
certificate database. If the OCSP URL is set, the OCSP responder nickname must
also be set or both will be ignored. If neither is set, the OCSP responder URL
presented in the user’s certificate will be used. If there is none in the user’s
certificate, no OCSP validation will be performed.

• com.sun.identity.authentication.ocsp.responder.url

The value of this directive is the global OCSP responder URL for this instance
of Access Manager, For example http://ocsp.example.com/ocsp.

• com.sun.identity.authentication.ocsp.responder.nickname

The OCSP responder nickname refers to the Certificate Authority for the
responder. This nickname is used to reference the Certificate Authority in the
certificate itself.

Configuration Properties

Appendix A AMConfig.properties File 339

Identity Object Processing
This property has a value equal to the implementation class of the module used for
processing user creates, deletes, and modifies.

• com.iplanet.am.sdk.userEntryProcessingImpl=

Security
This property is used to enable Java security permissions. This permission is used
to protect the Access Manager resources which should only be accessed by trusted
resources. This permission is used to protect the admin DN and password as well
as access to the encryption and decryption methods used to encrypt passwords.
The default value is false. If enabled, modifications must be made to the deployed
web container’s Java policy file. This should be done as detailed in Code
Example A-2.

• com.sun.identity.security.checkcaller=false

SSL
This property is used to enable Secure Socket Layers (SSL). The default is false.

• com.iplanet.am.directory.ssl.enabled=false

Certificate Database
These properties are used by the command line utilities and SDK as well as the
LDAP and Certificate-based authentication modules when initiating SSL
connections to the Directory Server. It is also used when opening HTTP(S)
connections from within the servlet container in the deployment container.

Code Example A-2 Changes To Java Policy File

grant codeBase "file:{directory where jars are located}/-" {
 com.sun.identity.security.ISSecurityPermission "access",
 "adminpassword,crypt";
 };

Configuration Properties

340 Access Manager 6 2005Q1 • Developer’s Guide

• com.iplanet.am.admin.cli.certdb.dir=/IdentityServer_base/SUNWam/servers/alia
s

The value of this property is the name of the path to the certificate database.

• com.iplanet.am.admin.cli.certdb.prefix=https-identity_server_host.domain_nam
e-identity_server_host-

The value of this property is the certificate database prefix.

• com.iplanet.am.admin.cli.certdb.passfile=/IdentityServer_base/SUNWam/config/
.wtpass

The value of this property is the name of the file that contains the password for
the certificate database.

Replication
These two properties are not required to support replication but they may be
helpful in limiting errors due to latency. Enabling them may have a negative
impact on performance but, if replication has significant latency, the retries may be
enough to prevent Entry Not Found errors. For example, assume an Access
Manager console is pointing to a read-only consumer configured to refer writes to
a master. If a new organization is created, all write requests are referred to the
master and then replicated back to the consumer. If Access Manager reads the
organization back before it has been replicated to the consumer, it will get an Entry
Not Found error.

NOTE When installing Access Manager, these values do not point to a configured
certificate database. After creating the certificate database, these values should be
reset to point to the Application Server as follows:

• com.iplanet.am.admin.cli.certdb.dir=/install_directory/SUNWappserve
r7/domain/server_instance/config

• com.iplanet.am.admin.cli.certdb.prefix=

• com.iplanet.am.admin.cli.certdb.passfile=/install_directory/SUNWap
pserver7/domain/server_instance/config/.wtpass

Access Manager should be restarted after the modifications.

NOTE It is not recommended to run the Access Manager console against a read-only
consumer. The exception to this rule is when operating against user entries whose
creations and modifications do not have the same latency problems as the SDK
has special behavior to prevent such problems for these entries.

Configuration Properties

Appendix A AMConfig.properties File 341

• com.iplanet.am.replica.num.retries=0

This specifies the number of times to retry. When an Entry Not Found error is
returned to the SDK, it will retry n times where n is the value of this property.

• com.iplanet.am.replica.delay.between.retries=1000

This property specifies the delay time (in milliseconds) between the number of
retries defined in the key above.

Event And LDAP Connection
These sets of properties are implemented when load balancers are used between
the Identity SDK and the Directory Server. When the SDK performs an operation
which fails, it will retry the operation as long as the exception is one defined in the
ldap.error.codes property. These properties are necessary for failover
configuration when it is accomplished via a load balancer as not all load balancers
return the same error codes.

Event Connection
• com.iplanet.am.event.connection.num.retries=3

This value specifies the number of time to retry an event connection.

• com.iplanet.am.event.connection.delay.between.retries=3000

This value specifies the delay time (in milliseconds) between the number of
retries defined in the key above.

• com.iplanet.am.event.connection.ldap.error.codes.retries=80,81,91

This key specifies the LDAPException errors for which the retries will occur. The
value is any valid LDAP error code.

LDAP Connection
The following keys are used to configure an LDAP connection for the add, delete
modify, read and search methods.

• com.iplanet.am.ldap.connection.num.retries=3

This value specifies the number of time to retry an LDAP connection.

• com.iplanet.am.ldap.connection.delay.between.retries=1000

This value specifies the delay time (in milliseconds) between the number of
retries defined in the key above.

Configuration Properties

342 Access Manager 6 2005Q1 • Developer’s Guide

• com.iplanet.am.ldap.connection.ldap.error.codes.retries=80,81,91

This key specifies the LDAPException errors for which the retries will occur. The
value is any valid LDAP error code.

SAML
These properties identify SAML-related configurations including properties
relating to the Access Manager keystore file.

• com.sun.identity.saml.removeassertion=false

This property indicates if assertions associated with artifacts and now
de-referenced should be removed from the cache. If set to true, assertions will
be removed. Otherwise, the assertion will be kept in memory and removed
only when it is expired itself.

Keystore Properties
Each Access Manager has a keystore file used to store the certificates used for XML
signing and verification. A stored certificate might include a partner site’s
certificate and the public key used by Access Manager to verify SAML responses
and assertions from the partner. The keystore also holds the Access Manager
certificate and the private key it uses to sign assertions. For more information on
generating the keystore, certificate aliases and other functions, read about the
keytool, a key and certificate management utility, in the Readme.html and
keystore.html files located in the IdentityServer_base/SUNWam/samples/saml/ xmlsig
directory.

• com.sun.identity.saml.xmlsig.keystore=/IdentityServer_base/SUNWam/lib/keysto
re.jks

The value of this property is the name and location of the keystore file.
Although, upon installing Access Manager, this property has a default value,
the file itself is not initially generated and the name and location of the file can
be changed.

• com.sun.identity.saml.xmlsig.storepass=/IdentityServer_base/SUNWam/config/.s
torepass

The value of this property is the location of the password to the keystore.

• com.sun.identity.saml.xmlsig.keypass=/IdentityServer_base/SUNWam/config/.key
pass

Read-Only Properties

Appendix A AMConfig.properties File 343

The value of this property is the location of the password to the private key
which is used to sign the XML document.

• com.sun.identity.saml.xmlsig.certalias=test

All entries (keys and trusted certificate entries) in the keystore file are accessed
using unique aliases. The value of this property is the certificate alias of the
Access Manager certificate which links to the private key used for signing
assertions.

Miscellaneous Services
The following directives define the URIs for miscellaneous services.

• com.iplanet.am.profile.host=identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Access Manager (and thus the Profile Service) is located.

• com.iplanet.am.profile.port=58080

The value of this property is the port number used by the Access Manager (and
thus the Profile Service). The default is 58080.

• com.iplanet.am.naming.url=http://identity_server_host.domain_name:port/amserv
er/namingservice

The value of this property represents the URL where a request by the Access
Manager or a remote single sign-on client will be sent to retrieve the URLs of
Access Manager internal services. This is the URI for the Naming Service.

Read-Only Properties
The following properties are read-only and should not be modified. Any changes
to these directives may render the Access Manager unusable.

Installation
These properties identify values defined during the installation process.

• com.iplanet.am.installdir=/IdentityServer_base/SUNWam

This value is the base directory for the application.

Read-Only Properties

344 Access Manager 6 2005Q1 • Developer’s Guide

• com.iplanet.am.install.basedir=/IdentityServer_base/SUNWam/web-src/services/
WEB-INF

This value is the base directory for the services.

• com.iplanet.am.iASConfig=false

This property defines whether the Sun Java System Access Manager is running
on the Sun Java System Application Server. The value is set during installation
and must not be changed.

• com.iplanet.am.console.remote=false

This property defines whether the console is installed on a remote or local
machine. It is used by the Authentication Service and the console.

Deployment
These properties are used to identify the URIs for specific services and agents.

• com.iplanet.am.services.deploymentDescriptor=/amserver

• com.iplanet.am.console.deploymentDescriptor=/amconsole

• com.iplanet.am.policy.agents.url.deploymentDescriptor=AGENT_DEPLOY_URI

This last property contains the name of the deployment container. Possible
values here are BEA6.1, IBM 4.0.5, S1AS7.0, or WS.

• com.sun.identity.webcontainer=WEB_CONTAINER

Shared Secret
This property is the shared secret for the Authentication Service.

• com.iplanet.am.service.secret=AQIC5wM2LY4SfczLlj6134qMTx0nkE5XiFMg

NOTE Although the servlet and JSPs are deployment container independent, servlet 2.3
API request.setCharacterEncoding() (used to correctly decode incoming
non-English characters) will not work if Access Manager is deployed on Sun Java
System Web Server 6.0 or Sun Java System Application Server 7.0.

Read-Only Properties

Appendix A AMConfig.properties File 345

Session Properties
These properties are configurations for the Session Service.

• com.iplanet.am.session.failover.enabled=false

This property is used to enable or disable the session failover feature. The
following properties are used when this property is set to true.

❍ com.iplanet.am.localserver.protocol=http

❍ com.iplanet.am.localserver.host=identity_server_host.domain_name

❍ com.iplanet.am.localserver.port=58080

• com.iplanet.am.session.httpSession.enabled=true

When this property is set to true, an HttpSession will be created for the
authenticated user in addition to an Access Manager session. This property is
also related to session failover.

• com.iplanet.am.session.invalidsessionmaxtime=3

This property disables a session if it is created and the user does not login
before the time defined. The value is in minutes (for example, 3 minutes is the
default value).

• com.iplanet.am.session.client.polling.enable=false

If set to true, the client cache will invalidate itself after the amount of time
defined in the next property, forcing data to reload.

• com.iplanet.am.session.client.polling.period=180

This property defines the default polling period as 180 seconds.

• com.sun.am.session.logging.enableHostLookUp=false

This property allows the session server (For example Access Manager) to look
for the IP address from the host property and log it. If set to true, a reverse
DNS lookup will be used to obtain the Domain Name from the IP address for
logging purposes. If false, the IP address will be used thus, increasing
performance.

• com.iplanet.am.session.purgedelay=60

NOTE This value should always be greater than the time-out value in your authentication
module properties file.

Read-Only Properties

346 Access Manager 6 2005Q1 • Developer’s Guide

This property defines the purge delay period in minutes. After a session times
out, this is the extended time period for which the token will reside in the
Session Service. This can be used by the client application to check if the
session has timed out or not (using the SSO APIs). After this time period, the
session is destroyed. The session token is in the INVALID state during this
extended period.

• com.iplanet.am.naming.failover.url=

This property can be used by any remote SDK application that wants failover
in, for example, session validation or getting the service URLs.

Simple Mail Transfer Protocol (SMTP)
The following directives can be set to any valid SMTP server and port.

• com.iplanet.am.smtphost=localhost

• com.sun.identity.sm.smptpport=25

Authentication
The following sections define properties used by the Authentication Service.

LDAP
• com.iplanet.am.auth.ldap.createUserAttrList=<attr1,attr2,attr3...>

This property specifies a list of user attributes whose values will be retrieved
from an external Directory Server during LDAP Authentication if the
Authentication Service is configured for dynamically creating users. The new
user created in the local Directory Server will have the values for these
attributes retrieved from the external Directory Server.

NOTE The session does not remain for this extended life if the user logs out or the
session is explicitly destroyed by another Access Manager component.

NOTE Because of how Microsoft® Windows 2000 processes this information, the default
value of this directive, localhost, should be replaced by the actual mail server
host name and the Access Manager should be restarted.

Read-Only Properties

Appendix A AMConfig.properties File 347

SecurID
• securidHelper.ports=58943

The value of this property is a space-separated list used by the SecurID
Authentication module and helper(s).

Unix
• unixHelper.port=58946

The value of this property is used in the Unix Authentication Service.

• unixHelper.ipaddrs=

The value of this property can contain a list of trusted IP addresses. The IP
addresses specified in this list are space-separated and will be read by the
amserver script and passed to the Unix helper when starting it.

Security
Following are properties that define parameters for security purposes.

SecureRandom
This property specifies the factory class name for SecureRandomFactory.

• com.iplanet.security.SecureRandomFactoryImpl=com.iplanet.am.util.JSSSe
cureRandomFactoryImpl

The available implementation classes are:

a. com.iplanet.am.util.JSSSecureRandomFactoryImpl (uses JSS)

b. com.iplanet.am.util.SecureRandomFactoryImpl (pure Java)

SocketFactory
This property specifies the factory class name for LDAPSocketFactory.

• com.iplanet.security.SSLSocketFactoryImpl=com.iplanet.services.ldap.JS
SSocketFactory

Available classes are:

a. com.iplanet.services.ldap.JSSSocketFactory (uses JSS)

b. netscape.ldap.factory.JSSESocketFactory (pure Java)

Read-Only Properties

348 Access Manager 6 2005Q1 • Developer’s Guide

Encryption
These properties specify encryption information.

• com.iplanet.security.encryptor=com.iplanet.services.util.JSSEncryption

The value specifies the encrypting class implementation. Available classes are:

a. com.iplanet.services.util.JCEEncryption

b. com.iplanet.services.util.JSSEncryption.

• am.encryption.pwd=BcN2Vaek2TUcs3tvO7uW9bRIrcy/Koeo

This is the Data Encryption Standard (DES) encryption key password. The
client needs this to decrypt the session ID for token creation. If decryption fails,
the client will not be able to retrieve the protocol, server host and the server
port information to construct the URL needed to search for a service. Do not
change the value of this property without also re-encrypting the passwords in
serverconfig.xml. For information, see Appendix B, “serverconfig.xml File.”

IP Address Checking
This property specifies whether the IP address of the client will be checked in
SSOToken creations and validations.

• com.iplanet.am.clientIPCheckEnabled=false

Remote Policy API
These properties are defined for the Remote Policy API to use with policy agents.

• com.sun.identity.agents.app.username=UrlAccessAgent

This property specifies the username for the Application authentication
module.

• com.sun.identity.agents.server.log.file.name=amRemotePolicyLog

NOTE When installing the Access Manager SDK remotely, the value of this property
should be copied into the installation field labeled The key used for
encryption of passwords. For information on how to install the Access
Manager SDK remotely, see the Sun Java System Access Manager Migration
Guide.

Read-Only Properties

Appendix A AMConfig.properties File 349

This property specifies the name of the file to use for logging remote policy
messages. The directory where this file is located is defined in Logging Service
settings.

• com.sun.identity.agents.cache.size=1000

This property specifies the size of the cache created on the server where the
policy agent resides.

• com.sun.identity.agents.polling.interval=3

The polling interval is the duration of time for refreshing the cache

• com.sun.identity.agents.notification.enabled=false

This property enable or disables notifications for remote policy API.

• com.sun.identity.agents.notification.url=

This property defines the notification URL for remote policy API.

• com.sun.identity.agents.logging.level=NONE

This property controls the granularity of logging for the remote policy API.
The valid values are ALLOW, DENY, BOTH and NONE. The default value is NONE.

• com.sun.identity.agents.use.wildcard=true

This property indicates whether to use wildcard for resource name
comparison.

• com.sun.identity.agents.header.attributes=cn,ou,o,mail,employeenumber,
c

This property defines the attributes to be returned by policy evaluator. The
specification is of the format a[,...] where a is the attribute in the data store that
will be fetched.

• com.sun.identity.agents.resource.comparator.class=com.sun.identity.pol
icy.plugins.PrefixResourceName

• com.sun.identity.agents.resource.wildcard=*

• com.sun.identity.agents.resource.delimiter=/

• com.sun.identity.agents.resource.caseSensitive=false

This is to indicate whether case sensitivity is turned on or off during policy
evaluation. The default value is false or off.

• com.sun.identity.agents.true.value=allow

Read-Only Properties

350 Access Manager 6 2005Q1 • Developer’s Guide

This value is ignored if the application does not access the method
PolicyEvaluator.isAllowed.

Policy
This property defines weights for policy subjects, rules and conditions. These
weights influence the order in which these components are evaluated. The value is
three integers delimited by ":". These integers indicate the proportional CPU cost
for evaluating the three components, respectively.

• com.sun.identity.policy.Policy.policy_evaluation_weights=10:10:10

Federation
These properties configure information for the Federation Management module.

• com.sun.identity.federation.fedCookieName=fedCookie

This property defines the name of the federation cookie.

• com.sun.identity.federation.services.signingOn=false

This property defines whether federation requests and responses will be
signed before sending. It also defines whether federation requests and
responses that are received will be verified for signature validity. The default is
false.

FQDN Map
The Fully Qualified Domain Name (FQDN) Map is a simple map that enables the
Authentication Service to take corrective action in the case where a user may have
typed in an incorrect URL either by specifying partial hostname or IP address to
access a protected resource.

Valid values must comply with the syntax of this property which represent invalid
FQDN values mapped to correct counterparts. The valid format for specifying
these maps is:

com.sun.identity.server.fqdnMap[invalid_name]=valid_name

where invalid_name is a possible invalid FQDN host name that may be used by the
user, and valid_name is the FQDN host name to which the filter will redirect the user.

Read-Only Properties

Appendix A AMConfig.properties File 351

This property can also be used for creating a mapping for more than one host
name. This may be the case when applications hosted on a server are accessible by
more than one host name. It may also be used to configure Access Manager to NOT
take corrective action for certain hostname URLs. For example, if no corrective
action (such as a redirect) is desired for users who access application resources
using a raw IP address, the map entry would look like:

com.sun.identity.server.fqdnMap[IP_address]=IP_address

Any number of values may be specified as long as they are valid and conform to
the above stated requirements.

Examples of FQDN mapping might be:

• com.sun.identity.server.fqdnMap[isserver]=isserver.mydomain.com

• com.sun.identity.server.fqdnMap[isserver.mydomain]=isserver.mydomain.c
om

• com.sun.identity.server.fqdnMap[IP_address]=isserver.mydomain.com

• com.sun.identity.server.fqdnMap[invalid_name]=valid_name

Encryption Key
The value of this property is the password used to generate a symmetric key to
encrypt and decrypt other sensitive data including the shared secret.

am.encryption.pwd=ro/LiN3pOxMXxtvbwf+owRFyzDYwxRTw

CAUTION Ensure that there are no invalid or overlapping values for the same invalid FQDN
name.

Read-Only Properties

352 Access Manager 6 2005Q1 • Developer’s Guide

353

Appendix B

serverconfig.xml File

The file serverconfig.xml provides configuration information for Sun Java™
System Access Manager 6 2005Q1 regarding the Sun Java System Directory Server
that is used as its data store. This chapter explains the elements of the file and how
to configure it for failover, how can you have multiple instances, how can you
undeploy the console and remove console files from a server. It contains the
following sections:

• “Overview” on page 353

• “server-config Definition Type Document” on page 355

• “Failover Or Multimaster Configuration” on page 358

Overview
serverconfig.xml is located in /IdentityServer_base/SUNWam/config/ums. It contains
the parameters used by the Identity SDK to establish the LDAP connection pool to
Directory Server. No other function of the product uses this file. Two users are
defined in this file: user1 is a Directory Server proxy user and user2 is the Directory
Server administrator.

Proxy User
The Proxy User can take on any user’s privileges (for example, the organization
administrator or an end user). The connection pool is created with connections
bound to the proxy user. Access Manager creates a proxy user with the DN of
cn=puser,ou=DSAME Users,dc=example,dc=com. This user is used for all queries
made to Directory Server by IAccess Manager. It benefits from a proxy user ACI
already configured in the Directory Server and, therefore, can perform actions on

Overview

354 Access Manager 6 2005Q1 • Developer’s Guide

behalf of a user when necessary. It maintains an open connection through which all
queries are passed (retrieval of service configurations, organization information,
etc.). The proxy user password is always encrypted. Code Example B-1 illustrates
where the encrypted password is located in serverconfig.xml.

Admin User
dsameuser is used for binding purposes when the Access Manager SDK performs
operations on Directory Server that are not linked to a particular user (for example,
retrieving service configuration information). Proxy User performs these
operations on behalf of dsameuser, but a bind must first validate the dsameuser
credentials. During installation, Access Manager creates cn=dsameuser,ou=DSAME
Users,dc=example,dc=com. Code Example B-1 illustrates where the encrypted
dsameuser password is found in serverconfig.xml.

Code Example B-1 Proxy User In serverconfig.xml

<User name="User1" type="proxy">
<DirDN>
cn=puser,ou=DSAME Users,dc=example,dc=com
</DirDN>
<DirPassword>
AQICkc3qIrCeZrpexyeoL4cdeXih4vv9aCZZ
</DirPassword>
</User>

Code Example B-2 Admin User In serverconfig.xml

 <User name="User2" type="admin">
 <DirDN>
 cn=dsameuser,ou=DSAME Users,dc=example,dc=com
 </DirDN>
 <DirPassword>
 AQICkc3qIrCeZrpexyeoL4cdeXih4vv9aCZZ
 </DirPassword>
 </User>

server-config Definition Type Document

Appendix B serverconfig.xml File 355

server-config Definition Type Document
server-config.dtd defines the structure for serverconfig.xml. It is located in
IdentityServer_base/SUNWam/dtd. This section defines the main elements of the DTD.
Code Example B-3 on page 357 is an example of the serverconfig.xml file.

iPlanetDataAccessLayer Element
iPlanetDataAccessLayer is the root element. It allows for the definition of multiple
server groups per XML file. Its immediate sub-element is the ServerGroup
Element. It contains no attributes.

ServerGroup Element
ServerGroup defines a pointer to one or more directory servers. They can be master
servers or replica servers. The sub-elements that qualify the ServerGroup include
Server Element, User Element, BaseDN Element and MiscConfig Element. The
XML attributes of ServerGroup are the name of the server group, and minConnPool
and maxConnPool which define the minimum (1) and maximum (10) connections
that can be opened for the LDAP connection pool. More than one defined
ServerGroup element is not supported.

Server Element
Server defines a specific Directory Server instance. It contains no sub-elements. The
required XML attributes of Server are a user-friendly name for the server, the host
name, the port number on which the Directory Server runs, and the type of LDAP
connection that must be opened (either simple or SSL).

NOTE Access Manager uses a connection pool to access Directory Server. All
connections are opened when Access Manager starts and are not closed. They are
reused.

NOTE For an example of automatic failover using the Server element, see “Failover Or
Multimaster Configuration” on page 358.

server-config Definition Type Document

356 Access Manager 6 2005Q1 • Developer’s Guide

User Element
User contains sub-elements that define the user configured for the Directory Server
instance. The sub-elements that qualify User include DirDN and DirPassword. It’s
required XML attributes are the name of the user, and the type of user. The values
for type identify the user’s privileges and the type of connection that will be opened
to the Directory Server instance. Options include:

• auth—defines a user authenticated to Directory Server.

• proxy—defines a Directory Server proxy user. See “Proxy User” on page 353
for more information.

• rebind—defines a user with credentials that can be used to rebind.

• admin—defines a user with Directory Server administrative privileges. See
“Admin User” on page 354 for more information.

DirDN Element
DirDN contains the LDAP Distinguished Name of the defined user.

DirPassword Element
DirPassword contains the defined user’s encrypted password.

BaseDN Element
BaseDN defines the base Distinguished Name for the server group. It contains no
sub-elements and no XML attributes.

CAUTION It is important that passwords and encryption keys are kept consistent throughout
the deployment. For example, the passwords defined in this element are also
stored in Directory Server. If the password is to be changed in one place, it must be
updated in both places. Additionally, this password is encrypted using the key
defined in Appendix A, “AMConfig.properties File.” If the encryption key defined in
the am.encryption.pwd property is changed, all passwords in
serverconfig.xml must be re-encrypted using ampassword --encrypt
password. More information on this encryption utility can be found in the Sun Java
System Access Manager Administration Guide.

server-config Definition Type Document

Appendix B serverconfig.xml File 357

MiscConfig Element
MiscConfig is a placeholder for defining any LDAP JDK features like cache size. It
contains no sub-elements. It’s required XML attributes are the name of the feature
and its defined value.

Code Example B-3 serverconfig.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--
 Copyright (c) 2002 Sun Microsystems, Inc. All rights reserved.

 Use is subject to license terms.

-->
<iPlanetDataAccessLayer>
 <ServerGroup name="default" minConnPool="1" maxConnPool="10">
 <Server name="Server1" host="identity_server_host.domain_name"
port="389"
type="SIMPLE" />
 <User name="User1" type="proxy">
 <DirDN>
 cn=puser,ou=DSAME Users,dc=example,dc=com
 </DirDN>
 <DirPassword>
 AQICkc3qIrCeZrpexyeoL4cdeXih4vv9aCZZ
 </DirPassword>
 </User>
 <User name="User2" type="admin">
 <DirDN>
 cn=dsameuser,ou=DSAME Users,dc=example,dc=com
 </DirDN>
 <DirPassword>
 AQICkc3qIrCeZrpexyeoL4cdeXih4vv9aCZZ
 </DirPassword>
 </User>
 <BaseDN>
 dc=example,dc=com
 </BaseDN>
 </ServerGroup>
</iPlanetDataAccessLayer>

Failover Or Multimaster Configuration

358 Access Manager 6 2005Q1 • Developer’s Guide

Failover Or Multimaster Configuration
Access Manager allows automatic failover to any Directory Server defined as a
Server Element in serverconfig.xml. More than one server can be configured for
failover purposes or multimasters. If the first configured server goes down, the
second configured server will takeover. Code Example B-4 illustrates
serverconfig.xml with automatic failover configuration.

Code Example B-4 Configured Failover in serverconfig.xml

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<!--
PROPRIETARY/CONFIDENTIAL. Use of this product is subject to license terms.
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
-->
<iPlanetDataAccessLayer>
 <ServerGroup name="default" minConnPool="1" maxConnPool="10">
 <Server name="Server1" host="identity_server_host1.domain_name" port="389"
type="SIMPLE" />
 <Server name="Server2" host="identity_server_host2.domain_name" port="389"
type="SIMPLE" />
 <Server name="Server3" host="identity_server_host3.domain_name" port="390"
type="SIMPLE" />
 <User name="User1" type="proxy">
 <DirDN>
 cn=puser,ou=DSAME Users,dc=example,dc=com
 </DirDN>
 <DirPassword>
 AQIC5wM2LY4Sfcy+AQBQxghVwhBE92i78cqf
 </DirPassword>
 </User>
 <User name="User2" type="admin">
 <DirDN>
 cn=dsameuser,ou=DSAME Users,dc=example,dc=com
 </DirDN>
 <DirPassword>
 AQIC5wM2LY4Sfcy+AQBQxghVwhBE92i78cqf
 </DirPassword>
 </User>
 <BaseDN>
 o=isp
 </BaseDN>
 </ServerGroup>
</iPlanetDataAccessLayer>

359

Appendix C

WAR Files

Sun Java™ System Access Manager 6 2005Q1 contains a number of web
application archive (WAR) files. These packages contain Java™ servlets and
JavaServer Pages™ (JSP) pages that add functionality to the application. This
chapter explains WAR files in general, their contents in an Access Manager
deployment and which files can be modified. It contains the following sections:

• “Overview” on page 359

• “WARs And Their Contents” on page 361

• “Updating Modified WARs” on page 364

• “Redeploying Modified WARs” on page 364

Overview
The Java 2 Platform, Enterprise Edition (J2EE) platform (on which Access Manager
is built) uses a component model to create full-scale applications. A component is
self-contained functional software code assembled with other components into a
J2EE application. The J2EE application components (which can be deployed
separately on different servers) include:

1. Client components (including dynamic web pages, applets, and a Web
browser) that run on the client machine.

2. Web components (including servlets and JSP) that run within a web container.

3. Business components (code that meets the needs of a particular enterprise
domain such as banking, retail, or finance) that also run within the web
container.

4. Enterprise infrastructure software that runs on legacy machines.

Overview

360 Access Manager 6 2005Q1 • Developer’s Guide

The web components tier in the Access Manager model can be customized based on
each organization’s needs. This appendix concerns itself with this tier.

Web Components
When a web browser executes a J2EE application, it deploys server-side objects
called web components. There are two types of web components: Servlets and
JavaServer Pages (JSP).

• Servlets are small Java programs that dynamically process requests and
construct responses from a web browser; they run within web containers.

• JSP are text-based documents that contain static template data [HTML,
Scalable Vector Graphics (SVG), Wireless Markup Language (WML), or
eXtensible Markup Language (XML)], and elements that construct dynamic
content (in the case of Access Manager, servlets).

When a J2EE application is called, the JSP and corresponding servlets are
constructed by the web browser.

Packaging Web Components
In general, all J2EE components are packaged separately and bundled together into
an Enterprise Archive (EAR) file for application deployment. The Web
Components, in particular, are packaged in web application archives (WAR). Each
WAR contains the servlets and/or JSP, a deployment descriptor, and related
resource files.

Static HTML files and JSP are stored at the top level of the WAR directory. The
top-level directory contains the WEB-INF sub-directory which contains the
following:

• Server-side classes (Servlets, JavaBean components and related Java class files)
must be stored in the WEB-INF/classes directory.

• Auxiliary JARs (tag libraries and any utility libraries called by server-side
classes) must be stored in the WEB-INF/lib directory.

NOTE The WAR is the same format as a JavaARchive (JAR). However, an eXtensisible
Markup Language (XML) deployment descriptor file must also be created.

WARs And Their Contents

Appendix C WAR Files 361

• web.xml—the web component deployment descriptor is stored in the
WEB-INF directory.

• Tag library descriptor files

When modifying the files included in Access Manager WARs, customers are
changing web components and thus, customizing their deployment.

WARs And Their Contents
Access Manager contains a number of WARs that can be modified to customize an
Access Manager deployment. The WARs themselves are located in
IdentityServer_base/SUNWam and include:

• console.war—files pertaining to the Access Manager console application.

• password.war—files pertaining to the Access Manager password reset service.

• services.war—contains files pertaining to Access Manager services.

The following sections detail the files within each WAR that can be modified and
those that SHOULD NOT be modified.

console.war
The following sections detail the modifiable and non-modifiable documents
contained within console.war. The path names are based on the directory structure
discussed in Packaging Web Components.

console.war Modifiable Files
These directories contain files that can be modified.

• web.xml and related XML files used for constructructing it are located in
IdentityServer_base/SUNWam/web-src/applications/WEB-INF/.

• Modifiable JavaScript files are located in
IdentityServer_base/SUNWam/web-src/applications/console/js/.

• Modifiable JSP are located in the following directories dependant upon the
service that deploys them:

NOTE Be aware of any loss of the customized data during patch or upgrade.

WARs And Their Contents

362 Access Manager 6 2005Q1 • Developer’s Guide

❍ IdentityServer_base/SUNWam/web-src/applications/console/auth/

❍ IdentityServer_base/SUNWam/web-src/applications/console/federation/

❍ IdentityServer_base/SUNWam/web-src/applications/console/policy/

❍ IdentityServer_base/SUNWam/web-src/applications/console/service/

❍ IdentityServer_base/SUNWam/web-src/applications/console/session/

❍ IdentityServer_base/SUNWam/web-src/applications/console/user/

• Modifiable image files are located in
IdentityServer_base/SUNWam/web-src/applications/console/images/.

• Modifiable stylesheets are located in
IdentityServer_base/SUNWam/web-src/applications/console/css/.

console.war Non-Modifiable Files
These directories contain files that SHOULD NOT be modified.

• JARs are located in
IdentityServer_base/SUNWam/web-src/applications/WEB-INF/lib/.

• Tag Library Descriptor (.tld) files are located in
IdentityServer_base/SUNWam/web-src/applications/WEB-INF/.

password.war
The following sections detail the modifiable and non-modifiable documents
contained within password.war. The path names are based on the directory
structure discussed in Packaging Web Components.

password.war Modifiable Files
These directories contain files that can be modified.

• web.xml and related XML files used for constructructing it are located in
IdentityServer_base/SUNWam/web-src/password/WEB-INF/.

• Modifiable JSP are located in
IdentityServer_base/SUNWam/web-src/password/password/ui/.

• Modifiable image files are located in
IdentityServer_base/SUNWam/web-src/password/password/images/.

• Modifiable stylesheets are located in
IdentityServer_base/SUNWam/web-src/password/password/css/.

WARs And Their Contents

Appendix C WAR Files 363

password.war Non-Modifiable Files
These directories contain files that SHOULD NOT be modified.

• Non-modifiable JARs are located in
IdentityServer_base/SUNWam/web-src/password/WEB-INF/lib/.

• Non-modifiable tag library descriptor (.tld) files are located in
IdentityServer_base/SUNWam/web-src/password/WEB-INF/.

services.war
The following sections detail the modifiable and non-modifiable documents
contained within services.war. The path names are based on the directory
structure discussed in Packaging Web Components.

services.war Modifiable Files
These directories contain files that can be modified.

• web.xml and related XML files used for constructructing it are located in
IdentityServer_base/SUNWam/web-src/services/WEB-INF/.

• JavaScript files are located in IdentityServer_base/SUNWam/web-src/services/js/.

• JSP are located in the following directories dependant upon the service that
requires the customization:

❍ IdentityServer_base/SUNWam/web-src/services/config/auth/default/

❍ IdentityServer_base/SUNWam/web-src/services/config/federation/default/

• Image files are located in the following directories dependant upon the service
to which the images apply:

❍ IdentityServer_base/SUNWam/web-src/services/images/

❍ IdentityServer_base/SUNWam/web-src/services/fed_images/

❍ IdentityServer_base/SUNWam/web-src/services/login_images/

• Stylesheets are located in the following directories dependant upon the service
to which they apply:

❍ IdentityServer_base/SUNWam/web-src/services/css/.

❍ IdentityServer_base/SUNWam/web-src/services/fed_css/.

Redeploying Modified WARs

364 Access Manager 6 2005Q1 • Developer’s Guide

services.war Non-Modifiable Files
These directories contain files that SHOULD NOT be modified.

• Non-modifiable JARs are located in
IdentityServer_base/SUNWam/web-src/services/WEB-INF/lib/.

• Non-modifiable Tag Library Descriptor (.tld) files are located in
IdentityServer_base/SUNWam/web-src/services/WEB-INF/.

Updating Modified WARs
Once a file within a WAR is modified, the WAR itself needs to be updated with the
newly modified file. Following is the procedure to update a WAR.

1. cd IdentityServer_base/SUNWam

This is the directory in which the WARs are kept.

2. jar -uvf WARfilename.war <path_to_modified_file>

The -uvf option replaces the old file with the newly modified file. For example:

jar -uvf console.war newfile/index.html

replaces the index.html file in console.war with the index.html file located in
IdentityServer_base/SUNWam/newfile.

3. rm newfile/index.html

Delete the modified file.

Redeploying Modified WARs
Once updated, the WARs need be redeployed to their web container. The web
container provides services such as request dispatching, security, concurrency, and
life cycle management. It also gives the web components access to the J2EE APIs.
The following procedures are specific to each particular WAR and web container.
After redeploying the war files, all related servers need to be restarted.

NOTE The BEA WebLogic Server 6.1 and Sun Java System Application Server web
containers do not require WARs to be exploded. They are deployed as WARs.

Redeploying Modified WARs

Appendix C WAR Files 365

BEA WebLogic Server 6.1
The following commands are used on BEA WebLogic Server 6.1 to redeploy Access
Manager WARs.

To Deploy console.war On WebLogic
java weblogic.deploy -url protocol://server_host:server_port -component
amconsole:WL61 _server_name deploy WL61_admin_password amconsole
IdentityServer_base/SUNWam/console.war

To Deploy services.war on WebLogic
java weblogic.deploy -url protocol://server_host:server_port -component
amserver:WL61 _server_name deploy WL61_admin_password amserver
IdentityServer_base/SUNWam/services.war

To Deploy password.war on WebLogic
java weblogic.deploy -url protocol://server_host:server_port -component
ampassword:WL61 _server_name deploy WL61_admin_password ampassword
IdentityServer_base/SUNWam/password.war

Sun Java System Application Server 7.0
The following commands are used on Sun Java System Application Server 7.0 to
redeploy Access Manager WARs.

To Deploy console.war On Sun Java System Application Server
asadmin deploy -u S1AS_administrator -w S1AS_administrator_password -H
console_server_host -p S1AS_server_port --type web secure_flag --contextroot
console_deploy_uri --name amconsole --instance S1AS_instance
IdentityServer_base/SUNWam/console.war

NOTE amconsole, amserver and ampassword are the default console, server and
password deploy URIs, respectively.

NOTE For more complete information on the Java utility weblogic.deploy and its
options, see the BEA WebLogic Server 6.1 documentation.

Redeploying Modified WARs

366 Access Manager 6 2005Q1 • Developer’s Guide

To Deploy services.war On Sun Java System Application Server
asadmin deploy -u S1AS_administrator -w S1AS_administrator_password -H
server_host -p S1AS_server_port --type web secure_flag --contextroot server_deploy_uri
--name amserver --instance S1AS_instance IdentityServer_base/SUNWam/services.war

To Deploy password.war on Sun Java System Application Server
asadmin deploy -u S1AS_administrator -w S1AS_administrator_password -H
console_server_host -p S1AS_administrator_server_port --type web secure_flag
--contextroot password_deploy_uri --name ampassword --instance S1AS_instance
IdentityServer_base/SUNWam/password.war

IBM WebSphere Application Server
For detailed instructions on how to deploy WARs in an IBM WebSphere
Application Server container, see the documentation at
http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/en/htm
l/sdsscenario1.html.

NOTE For more complete information on the asadmin deploy command and its options,
see the Sun Java System Application Server 7.0 Developer’s Guide.

367

Appendix D

Notification Service

Sun Java™ System Access Manager 6 2005Q1 Notification Service allows for
session notifications to be sent to remote web containers. It is necessary to enable
this service for use by SDK applications running remotely from the Access
Manager server itself. This chapter explains how to enable a remote web container
to receive the notifications. It contains the following sections:

• “Overview” on page 367

• “Enabling The Notification Service” on page 368

Overview
The Notification Service allows for session notifications to be sent to web
containers that are running the Access Manager SDK remotely. The notifications
apply to the Session, Policy and Naming Services only. In addition, the remote
application must be running in a web container. The purpose of the notifications
would be:

• To sync up the client side cache of the respective services.

• To enable more real time updates on the clients. (Polling is used in absence of
notifications.)

• No client application changes are required to support notifications.

Note that the notifications can be received only if the remote SDK is installed on a
web container.

Overview

368 Access Manager 6 2005Q1 • Developer’s Guide

Enabling The Notification Service
Following are the steps to configure the remote SSO SDK to receive session
notifications. Setting up clients to receive notifications

1. Install Access Manager on Machine 1.

2. Install Sun Java System Web Server on Machine 2.

3. Install the SUNWamsdk on the same machine as the Web Server.

For instructions on installing the Access Manager SDK remotely, see the Sun
Java™ Enterprise System 2005Q1 Installation Guide.

4. Ensure that the following are true concerning the machine where the SDK is
installed.

a. Ensure that the right access permissions are set for the
/remote_SDK_server/SUNWam/lib and /remote_SDK_server/SUNWam/locale
directories on the server where the SDK is installed.

These directories contains the files and jars on the remote server.

b. Ensure that the following permissions are set in the Grant section of the
server.policy file of the Web Server.

server.policy is in the config directory of the Web Server installation.
These permissions can be copied and pasted, if necessary:

permission java.security.SecurityPermission
"putProviderProperty.Mozilla-JSS"

permission java.security.SecurityPermission
"insertProvider.Mozilla-JSS";

c. Ensure that the correct classpath is set in server.xml.

server.xml is also in the config directory of the Web Server installation. A
typical classpath would be:

<JAVA javahome="/export/home/ws61/bin/https/jdk"
serverclasspath="/export/home/ws61/bin/https/jar/webserv-rt.jar:
${java.home}/lib/tools.jar:/export/home/ws61/bin/https/jar/webse
rv-ext.jar:/export/home/ws61/bin/https/jar/webserv-jstl.jar:/exp
ort/home/ws61/bin/https/jar/nova.jar"
classpathsuffix="::/IS_CLASSPATH_BEGIN_DELIM://usr/share/lib/xal
an.jar:/export/SUNWam/lib/xmlsec.jar://usr/share/lib/xercesImpl.
jar://usr/share/lib/sax.jar://usr/share/lib/dom.jar:/export/SUNW
am/lib/dom4j.jar:/export/SUNWam/lib/jakarta-log4j-1.2.6.jar:/usr

Overview

Appendix D Notification Service 369

/share/lib/jaxm-api.jar:/usr/share/lib/saaj-api.jar://usr/share/
lib/jaxrpc-api.jar://usr/share/lib/jaxrpc-impl.jar:/export/SUNWa
m/lib/jaxm-runtime.jar:/usr/share/lib/saaj-impl.jar:/export/SUNW
am/lib:/export/SUNWam/locale://usr/share/lib/mps/jss3.jar:/expor
t/SUNWam/lib/am_sdk.jar:/export/SUNWam/lib/am_services.jar:/expo
rt/SUNWam/lib/am_sso_provider.jar:/export/SUNWam/lib/swec.jar:/e
xport/SUNWam/lib/acmecrypt.jar:/export/SUNWam/lib/iaik_ssl.jar:/
/usr/share/lib/jaxp-api.jar://usr/share/lib/mail.jar://usr/share
/lib/activation.jar:/export/SUNWam/lib/servlet.jar:/export/SUNWa
m/lib/am_logging.jar:/usr/share/lib/commons-logging.jar:/IS_CLAS
SPATH_END_DELIM:" envclasspathignored="true" debug="false"
debugoptions="-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n"
javacoptions="-g" dynamicreloadinterval="2">

5. Use the SSO samples installed on the remote SDK server for configuration
purposes.

a. Change to the /remote_SDK_server/SUNWam/samples/sso directory.

b. Run gmake.

c. Copy the generated class files from
/remote_SDK_server/SUNWam/samples/sso to
/remote_SDK_server/SUNWam/lib/.

6. Copy the encryption value of am.encryption.pwd from the
AMConfig.properties file installed with Access Manager to the
AMConfig.properties file on the remote server to which the SDK was installed.

The value of am.encryption.pwd is used for encrypting and decrypting
passwords.

7. Login into Access Manager as amadmin.

http://AccessManager_host:3000/amconsole

Overview

370 Access Manager 6 2005Q1 • Developer’s Guide

8. Execute the servlet by entering
http://remote_SDK_host:58080/servlet/SSOTokenSampleServlet into the
browser location field and validating the SSOToken.

SSOTokenSampleServlet is used for validating a session token and adding a
listener. Executing the servlet will print out the following message:

SSOToken host name: 192.18.149.33 SSOToken Principal name:
uid=amAdmin,ou=People,dc=red,dc=iplanet,dc=com Authentication type
used: LDAP IPAddress of the host: 192.18.149.33 The token id is
AQIC5wM2LY4SfcyURnObg7vEgdkb+32T43+RZN30Req/BGE= Property: Company
is - Sun Microsystems Property: Country is - USA SSO Token
Validation test Succeeded

9. Set the property com.iplanet.am.notification.url= in AMConfig.properties of
the machine where the Client SDK is installed:

com.iplanet.am.notification.url=http://clientSDK_host.domain:port/servlet
com.iplanet.services.comm.client.PLLNotificationServlet

10. Restart the Web Server.

11. Login into Access Manager as amadmin.

http://AccessManager_host:3000/amconsole

12. Execute the servlet by entering
http://remote_SDK_host:58080/servlet/SSOTokenSampleServlet into the
browser location field and validating the SSOToken again.

When the machine on which the remote SDK is running receives the
notification, it will call the respective listener when the session state is changed.
Note that the notifications can be received only if the remote SDK is installed
on a web container.

371

Appendix E

Directory Server Concepts

Sun Java™ System Access Manager 6 2005Q1 uses Sun Java System Directory
Server to store its data. Certain features of the LDAP-based Directory Server are
used by Access Manager to help manage its data. This chapter contains
information on these Directory Server features and how they are used. It contains
the following sections:

• “Overview” on page 371

• “Roles” on page 372

• “Access Control Instructions” on page 376

• “Class Of Service” on page 380

Overview
Because Access Manager needs an underlying data store, it has been built to work
with Sun Java System Directory Server. They are complementary in architecture
and design data. Use of Directory Server, though, may not be exclusive to Access
Manager and therefore, needs to be treated as a completely separate deployment.
For more information on Directory Server deployment, see the Sun Java System
Directory Server documentation.

This appendix explains three Directory Server functions that are used by the
Access Manager. A role is an identity grouping mechanism; an access control
instruction (ACI) defines rules to allow or deny access to Directory Server data, and
class of service is an attribute grouping mechanism.

Roles

372 Access Manager 6 2005Q1 • Developer’s Guide

Roles
Roles are a Directory Server entry mechanism similar to the concept of a group. A
group has members; a role has members. A role’s members are LDAP entries that
are said to possess the role. The criteria of the role itself is defined as an LDAP entry
with attributes, identified by the Distinguished Name (DN) attribute of the entry.
Directory Server has a number of different types of roles but Access Manager can
only manage one of them: the managed role.

Users can possess one or more roles. For example, a contractor role which has
attributes from the Session Service and the URL Policy Agent Service might be
created. Thus, when new contractors start, the administrator can assign them this
role rather than setting separate attributes in the contractor entry. If the contractor
were then to become a full-time employee, the administrator would just re-assign
the user a different role.

Managed Roles
With a managed role, membership is defined in each member entry and not in the
role definition entry. An attribute which designates membership is placed in each
LDAP entry that possesses the role. This is in sharp contrast to a traditional static
group which centrally lists the members in the group object entry itself.

An administrator assigns the role to a member entry by adding the nsRoleDN
attribute to it. The value of nsRoleDN is the DN of the role definition entry. The
following apply to managed roles:

• Multiple managed roles can be created for each organization or
sub-organization.

• A managed role can be enabled with any number of services.

• Any user that possesses a role with a service will inherit the service attributes
from that role.

NOTE The other Directory Server role types can still be used in a directory deployment;
they just can not be managed by Access Manager.

NOTE By inverting the membership mechanism, the role will scale better than a static
group. In addition, the referential integrity of the role is simplified, and the roles of
an entry can be easily determined.

Roles

Appendix E Directory Server Concepts 373

Definition Entry
A role’s definition entry is a LDAP entry in which the role’s characteristic attributes
are defined. These attributes are passed onto the member entry. Below is a sample
LDAP entry that represents the definition entry of a manager role.

The nsManagedRoleDefinition object class inherits from the LDAPsubentry,
nsRoleDefinition and nsSimpleRoleDefinition object classes.

Member Entry
A role’s member entry is a LDAP entry to which the role is applied. An LDAP
entry that contains the attribute nsRoleDN and its value DN indicates that the entry
has the characteristics defined in the value DN entry. In Code Example 14-2 below,
the DN identifies Code Example 14-1 above as the role definition entry:
cn=managerrole,dc=siroe,dc=com.

Virtual Attribute
When a member entry that contains the nsRoleDN attribute is returned by a
Directory Server search, nsRoleDN will be duplicated as the nsRole attribute in the
same entry. nsRole will carry a value of any managed, filtered or nested roles
assigned to the user (such as ContainerDefaultTemplateRole). Code Example 14-2
on page 374 includes this virtual attribute when returned by Directory Server only.

NOTE All Access Manager roles can only be configured directly under organization or
sub-organization entries.

Code Example 14-1 LDAP Definition Entry

dn: cn=managerrole,dc=siroe,dc=com
 objectclass: top
 objectclass: LDAPsubentry
 objectclass: nsRoleDefinition
 objectclass: nsSimpleRoleDefinition
 objectclass: nsManagedRoleDefinition
 cn: managerrole
 description: manager role within company

Roles

374 Access Manager 6 2005Q1 • Developer’s Guide

How Access Manager Uses Roles
Access Manager uses roles to apply Access Control Instructions. When first
installed, the Access Manager configures ACI that define administrator
permissions to directory data. These ACI are then designated in roles (such as
Organization Admin Role and Organization Help Desk Admin Role) which, when
assigned to a user, define the user’s level of access. For a list of roles created for
each Access Manager object configured, see “Access Control Instructions” on
page 376.

Role Creation
When a role is created, it contains the auxiliary LDAP object class
iplanet-am-managed-role. This object class, in turn, contains the following allowed
attributes:

• iplanet-am-role-managed-container-dn contains the DN of the identity-related
object that the role was created to manage.

• iplanet-am-role-type contains a value used by the Access Manager console for
display purposes. After authentication, the console gets the user’s roles and
checks this attribute for the correct page to display based on which of the
following three values it has:

❍ 1 for top-level administrator only.

Code Example 14-2 LDAP Member Entry

dn: uid=managerperson,ou=people,dc=siroe,dc=com
 objectclass: top
 objectclass: person
 objectclass: inetorgperson
 uid: managerperson
 gn: manager
 sn: person
 nsRoleDN: cn=managerrole,ou=people,dc=siroe,dc=com
 nsRole: cn=managerrole,ou=people,dc=siroe,dc=com
 nsRole: cn=containerdefaulttemplaterole,ou=people,dc=siroe,dc=com
 description: manager person within company

NOTE Managed groups in Access Manager are modeled almost the same as roles. They
add an attribute to an LDAP entry to make the entry a member of the dynamic
group

Roles

Appendix E Directory Server Concepts 375

❍ 2 for all other administrators.

❍ 3 for user.

If the user has no administrator roles, the User profile page will display. If the
user has an administrator role, the console will start the user at the top-most
administrator page based on which value is present.

Role Location
All roles in an organization are viewed from the organization’s top-level. For
example, if an administrator wants to add a user to the administrator role for a
people container, the administrator would go to the organization above the people
container, look for the role based on the people container’s name, and add the user
to the role.

Displaying The Correct Login Start Page
The attribute iplanet-am-user-admin-start-dn can be defined for a role or a user; it
would override the iplanet-am-role-type attribute by defining an alternate
display page URL. Upon a user’s successful authentication:

1. Access Manager checks the iplanet-am-user-admin-start-dn for the user.

This attribute is contained in the User service. If it is set, the user is started at
this point. If not, Access Manager goes to step 2.

NOTE When Access Manager attempts to process two templates that are set to the same
priority level, Directory Server arbitrarily picks one of the templates to return. For
more information, see the Sun Java System Directory Server documentation.

NOTE Alternately, an administrator might go to the user profile and add the role to the
user.

NOTE The value of iplanet-am-user-admin-start-dn can override the
administrator’s start page. For example, if a group administrator has read access to
the top-level organization, the default starting page of the top-level organization,
taken from iplanet-am-role-type, can be overridden by defining
iplanet-am-user-admin-start-dn to display the group’s start page.

Access Control Instructions

376 Access Manager 6 2005Q1 • Developer’s Guide

2. Access Manager checks the user for the value of iplanet-am-role-type.

If the attribute defines an administrator-type role, the value of
iplanet-am-role-managed-container-dn is retrieved and the highest point in
the directory tree is displayed as a starting point. For more information on the
iplanet-am-role-type attribute, see “Role Creation” on page 374.

Access Control Instructions
Control over access to directory information is implemented in Access Manager
using roles. Users inherit access permissions based on their role membership and
parent organization. Access Manager installs pre-configured administrator roles
that define different levels of permission for administrators to access directory
information; these roles are dynamically created when a group, organization,
container or people container object is configured. They are:

• Organization Admin

• Organization Help Desk Admin

• Group Admin

• Container Admin

• Container Help Desk Admin

• People Container Admin.

These default roles, when possessed by a user entry, define that user’s level of
access to Directory Server data. For example, when an organization is created, the
Access Manager SDK creates an Organization Admin role and an Organization Help
Desk Admin role. The permissions are read and write access to all entries in the
organization and read access to all entries in the organization, respectively.

NOTE If the attribute has no value, a search from Access Manager root is performed for
all container-type objects; the highest object in the directory tree that corresponds
to the iplanet-am-role-type value is where the user starts. Although rare, this
step is memory-intensive in very large directory trees with many container entries.

NOTE This section refers to ACIs as they are applied to administrative roles only. Policy is
another form of access control which are created and used in Access Manager but
apply to web resources not Directory Server data.

Access Control Instructions

Appendix E Directory Server Concepts 377

Defining ACIs
ACIs are defined in the Access Manager console administration XML service file,
amAdminConsole.xml. This file contains two global attributes that define ACIs for
use in Access Manager: iplanet-am-admin-console-role-default-acis and
iplanet-am-admin-console-dynamic-aci-list.

iplanet-am-admin-console-role-default-acis
This global attribute defines which Access Permissions are displayed in the Create
Role screen of the Access Manager console. By default, Organization Admin,
Organization Help Desk Admin and No Permissions are displayed. If other default
permissions are desired, they must be added to this attribute.

iplanet-am-admin-console-dynamic-aci-list
This global attribute is where all of the defined administrator-type ACIs are stored.
For information on how ACIs are structured, see “Format of Predefined ACIs” on
page 377.

Format of Predefined ACIs
ACIs defined in Access Manager for use with administrator-type roles follow a
different format than those defined using Directory Server. The format of the
predefined Access Manager ACI is permissionName | ACI Description | DN:ACI
DN:ACI ## DN:ACI where:

• permissionName—The name of the permission which generally includes the
object being controlled and the type of access. For example, Organization
Admin is an administrator that controls access to an organization object.

NOTE The Access Manager SDK gets the ACIs from the attribute
iplanet-am-admin-console-dynamic-aci-list (defined in the
amAdminConsole.xml service file) and sets them in the roles after they have
been created.

NOTE Because ACIs are stored in the role, changing the default permissions in
iplanet-am-admin-console-dynamic-aci-list after a role has been
created will not affect it. Only roles created after the modification has been made
will be affected.

Access Control Instructions

378 Access Manager 6 2005Q1 • Developer’s Guide

• ACI Description—A text description of the access the ACI allows.

• DN:ACI—There can be any number of DN:ACI pairs separated by the ## symbols.
The SDK will get and set each pair in the entry named by DN. This format also
supports tags which can be dynamically substituted when the role is created.
Without these tags, the DN and ACI would be hard-coded to specific
organizations in the directory tree which would make them unusable as
defaults. For example, if there is a default set of ACIs for every Organization
Admin, the organization name should not be hard-coded in this role. The
supported tags are ROLENAME, ORGANIZATION, GROUPNAME, and PCNAME. These tags
are substituted with the DN of the entry when the corresponding entry type is
created. See the “Default ACIs” on page 378 for examples of ACI formats.
Additionally, more complete ACI information can be found in the Sun Java
System Directory Server documentation.

Default ACIs
Following are the default ACIs installed by Access Manager. They are copied from
a Access Manager configuration whose top-level organization is configured as
o=isp.

• Top Level Admin|Access to all entries|o=isp:aci:
(target="ldap:///o=isp")(targetattr="*")(version 3.0; acl "Proxy
user rights"; allow (all) roledn = "ldap:///ROLENAME";)

• Organization Admin|Read and Write access to all organization
entries|o=isp:aci:(target="ldap:///($dn),o=isp")(targetfilter=(!(|(
nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level Help
Desk Admin Role,o=isp))))(targetattr = "*")(version 3.0; acl
"Organization Admin Role access allow"; allow (all) roledn =
"ldap:///cn=Organization Admin Role,[$dn],o=isp";)##o=isp:aci:
(target="ldap:///cn=Organization Admin
Role,($dn),o=isp")(targetattr="*")(version 3.0; acl "Organization
Admin Role access deny"; deny (write,add,delete,compare,proxy)
roledn = "ldap:///cn=Organization Admin Role,($dn),o=isp";)

• Organization Help Desk Admin|Read access to all organization
entries|ORGANIZATION:aci:(target="ldap:///ORGANIZATION")(targetfilt
er=(!(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top
Level Help Desk Admin Role,o=isp)(nsroledn=cn=Organization Admin
Role,ORGANIZATION))))(targetattr = "*") (version 3.0; acl

NOTE If there are duplicate ACI within the default permissions, the SDK will print a debug
message.

Access Control Instructions

Appendix E Directory Server Concepts 379

"Organization Help Desk Admin Role access allow"; allow
(read,search) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:
(target="ldap:///ORGANIZATION")(targetfilter=(!(|(nsroledn=cn=Top
Level Admin Role,o=isp)(nsroledn=cn=Organization Admin
Role,ORGANIZATION))))(targetattr = "userPassword") (version 3.0; acl
"Organization Help Desk Admin Role access allow"; allow
(write)roledn = "ldap:///ROLENAME";)

• Container Admin|Read and Write access to all organizational unit
entries|o=isp:aci:(target="ldap:///($dn),o=isp")(targetfilter=(!(|(
nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level Help
Desk Admin Role,o=isp))))(targetattr = "*")(version 3.0; acl
"Container Admin Role access allow"; allow (all) roledn =
"ldap:///cn=Container Admin Role,[$dn],o=isp";)o=isp:aci:
(target="ldap:///cn=Container Admin
Role,($dn),o=isp")(targetattr="*")(version 3.0; acl "Container Admin
Role access deny"; deny (write,add,delete,compare,proxy) roledn =
"ldap:///cn=Container Admin Role,($dn),o=isp";)

• Container Help Desk Admin|Read access to all organizational unit
entries|ORGANIZATION:aci:(target="ldap:///ORGANIZATION")(targetfilt
er=(!(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top
Level Help Desk Admin Role,o=isp)(nsroledn=cn=Container Admin
Role,ORGANIZATION))))(targetattr = "*") (version 3.0; acl "Container
Help Desk Admin Role access allow"; allow (read,search) roledn =
"ldap:///ROLENAME";)##ORGANIZATION:aci:
(target="ldap:///ORGANIZATION")(targetfilter=(!(|(nsroledn=cn=Top
Level Admin Role,o=isp)(nsroledn=cn=Container Admin
Role,ORGANIZATION))))(targetattr = "userPassword") (version 3.0; acl
"Container Help Desk Admin Role access allow"; allow (write) roledn
= "ldap:///ROLENAME";)

• Group Admin|Read and Write access to all group
members|ORGANIZATION:aci:(target="ldap:///GROUPNAME")(targetattr =
"*") (version 3.0; acl "Group and people container admin role";
allow (all) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:
(target="ldap:///ORGANIZATION")(targetfilter=(!(|(!FILTER)(|(nsrole
dn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level Help Desk
Admin Role,o=isp)(nsroledn=cn=Organization Admin
Role,ORGANIZATION)(nsroledn=cn=Container Admin
Role,ORGANIZATION)))))(targetattr !=
"iplanet-am-web-agent-access-allow-list ||
iplanet-am-web-agent-access-not-enforced-list ||

Class Of Service

380 Access Manager 6 2005Q1 • Developer’s Guide

iplanet-am-domain-url-access-allow ||
iplanet-am-web-agent-access-deny-list")(version 3.0;acl "Group
admin's right to the members"; allow (read,write,search) roledn =
"ldap:///ROLENAME";)

• People Container Admin|Read and Write access to all
users|ORGANIZATION:aci:(target="ldap:///PCNAME")(targetfilter=(!(|(
nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level Help
Desk Admin Role,o=isp)(nsroledn=cn=Organization Admin
Role,ORGANIZATION)(nsroledn=cn=Container Admin
Role,ORGANIZATION))))(targetattr !=
"iplanet-am-web-agent-access-allow-list ||
iplanet-am-web-agent-access-not-enforced-list ||
iplanet-am-domain-url-access-allow ||
iplanet-am-web-agent-access-deny-list") (version 3.0; acl "People
container admin role"; allow (all) roledn = "ldap:///ROLENAME";)

Class Of Service
Both dynamic and policy attributes use class of service (CoS), a feature of the
Directory Server that allows attributes to be created and managed in a single
central location, and dynamically added to user entries as the user entry is called.
Attribute values are not stored within the entry itself; they are generated by CoS as
the entry is sent to the client browser. Dynamic and policy attributes using CoS
consist of the following two LDAP entries:

• CoS Definition Entry—This entry identifies the type of CoS being used (Classic
CoS). It contains all the information, except the attribute values, needed to
generate an entry defined with CoS. The scope of the CoS is the entire sub-tree
below the parent of the CoS definition entry.

• Template Entry—This entry contains a list of the attribute values that are
generated when the target entry is displayed. Changes to the attribute values
in the Template Entry are automatically applied to all entries within the scope
of the CoS.

NOTE Access Manager generates a Top Level Admin and Top Level Help Desk
Admin during installation. These roles can not be dynamically generated for any
other identity-type objects but the top-level organization.

Class Of Service

Appendix E Directory Server Concepts 381

The CoS Definition entry and the Template entry interact to provide attribute
information to their target entries; any entry within the scope of the CoS. Only
those services which have dynamic or policy attributes use the Directory Server
CoS feature; no other services do.

CoS Definition Entry
CoS definition entries are stored as LDAP subentries under the organization level
but can be located anywhere in the DIT. They contain the attributes specific to the
type of CoS being defined. These attributes name the virtual CoS attribute, the
template DN and, if necessary, the specifier attribute in target entries. By default,
the CoS mechanism will not override the value of an existing attribute with the
same name as the CoS attribute. The CoS definition entry takes the
cosSuperDefinition object class and also inherits from the following object class
that specifies the type of CoS:

cosClassicDefinition
The cosClassicDefinition object class determines the attribute and value that will
appear with an entry by taking the base DN of the template entry from the
cosTemplateDN attribute in the definition entry and combining it with the target
entry specifier as defined with the cosSpecifier attribute, also in the definition
entry. The value of the cosSpecifier attribute is another LDAP attribute which is
found in the target entry; the value of the attribute found in the target entry is
appended to the value of cosTemplateDN and the combination is the DN of the
template entry. Template DNs for classic CoS must therefore have the following
structure cn=specifierValue,baseDN.

CoS Template Entry
CoS Template entries are an instance of the cosTemplate object class. The CoS
Template entry contains the value or values of the virtual attributes that will be
generated by the CoS mechanism and displayed as an attribute of the target entry.
The template entries are stored under the definition entries.

NOTE For additional information on the CoS feature, see the Sun Java System Directory
Server documentation.

NOTE When possible, definition and template entries should be located at the same level
for easier management.

Class Of Service

382 Access Manager 6 2005Q1 • Developer’s Guide

Conflicts and CoS
There is the possibility that more than one CoS can be assigned to a role or
organization, thus creating conflict. When this happens, Access Manager will
display either the attribute value based on a pre-determined template priority level
or the aggregate of all attribute values defined in the cosPriority attribute. For
example, an administrator could create and load multiple services, register them to
an organization, create separate roles within the organization and assign multiple
roles to a particular user. When Access Manager retrieves this user entry, it sees the
CoS object classes, and adds the virtual attributes. If there are any priority conflicts,
it will look at the cosPriority attribute for a priority level and return the
information with the lowest priority number (which is the highest priority level).
For more information on CoS priorities, see “cosQualifier Attribute” on page 208 of
Chapter 8, “Service Management” or the Sun Java System Directory Server
documentation.

NOTE Conflict resolution is decided by the Directory Server before the entry is returned to
Access Manager. Access Manager allows only the definition of the priority level
and CoS type.

383

Glossary

For a list of terms that are used in this documentation set, refer to the Sun Java™
Enterprise System Glossary (http://docs.sun.com/doc/816-6873)

384 Access Manager 6 2005Q1 • Developer’s Guide

385

Index

A
access control instructions (ACIs) 376

default 378
defined 377
format 377

Access Manager
client browser support 43
file system 43
overview 35

console customization 41
extending 40
managing access 39
service definition 40

Access Manager Console. See console
Access Manager SDK

overview 41
Access Managerr

overview
data management components 36

Accesss Manager
overview

application management services 37
ACIs 376

default 378
defined 377
format 377

agent-related logs 305
amAdmin.dtd 209
AMConfig.properties 331

authentication 346
certificates 339
configuration directives 335

console 332
cookies 333
debug service 335
deployment 344
deployment directives 332
Directory Server 334
event connection 341
federation 350
FQDN Map 350
installation 332
installation read-only 343
IP address checking 348
LDAP connection 341
notification service 337
overview 331
policy 350
read-only directives 343
remote policy API 348
replication 340
SAML 342
security read-only 347
session 345
shared secret 344
SMTP 346
stats service 336

amEntrySpecific.xml 168
amLogging.xml 299
amSAML.xml 288
APIs

authentication
C 123
Java 122
non-Java and C options 124

Section C

386 Access Manager 6 2005Q1 • Developer’s Guide

client detection 326
console event listener 69
identity management SDK 169

caching 180
email notification 179
remote installation 180
samples 181
search methods 175

logging 309
sample code 314

password plugins 329
policy SDK

C 256
Java 249
policy evaluation API 250
policy management API 254
policy plugin API 255

remote policy
in AMConfig.properties 348

SAML SDK 289
service management SDK 239
SSO 81

and non-web-based applications 99
C 88
Java 82
Java versus C 97

utility
Java 327

architecture
logging 298

assertion types
and SAML 285

attribute display element customization 64
attribute inheritance 192

and service files 192
auditing 297
authentication

APIs
C 123
Java 122
non-Java and C options 124

FQDN mapping 350
in AMConfig.properties 346
SPIs

JAAS 154
Java 132

post-processing 129
authentication-related logs 304

C
C

policy SDK 256
certificates

database in AMConfig.properties 339
in AMConfig.properties 339

class of service 380
and dynamic attributes 191
conflicts 382
definition entry 381
template entry 381

client browser support 43
client data

in client detection 324
client detection 321

API 326
client data 324
overview 321

command line logging 306, 307
configuration directives

in AMConfig.properties 335
console

and naming service 58
API

event listener 69
customization 58

alternate procedure 61
attribute display elements 64
creating custom interface 59
display container objects 68
display service attributes 63
interface colors 63
localizing the console 63
service configuration display 61
user profile display options 63
user profile view 62

default interface files 59
generating the 57
interface 56
localization properties filesconfigure 196

Section D

Index 387

overview 55
plug-in modules 58

add module tab 68
precompiling JSP 70
samples 70

console properties
in AMConfig.properties 332

console.war 361
console-related logs 304
container objects

displaying 68
ContainerDefaultTemplateRole

and attribute inheritance 192
cookie properties

in AMConfig.properties 333
cookies

and sessions 76
CoS 380

conflicts 382
definition entry 381
template entry 381

create
custom console 59

alternate procedure 61
cross-domain

scenario 80
cross-domain controller

and SSO 79
cross-domain SSO 78

enable 81
custom properties

in session structure 78
customization

console 58
add module tab 68
attribute display elements 64
display container objects 68
display service attributes 63
interface colors 63
localizing 63
service configuration display 61
user profile display options 63

creating custom console 59
alternate procedure 61

user profile view 62

D
DAI service 167
debug files 316
debug service

in AMConfig.properties 335
default files

console 59
definition

ViewBean 56
deployment

in AMConfig.properties 344
deployment directives

in AMConfig.properties 332
Directory Server

ACIs 376
default 378
defined 377
format 377

class of service 380
conflicts 382
definition entry 381
template entry 381

concepts 371
extend LDAP schema 193
LDAP

adding object classes 195
roles 372

Access Manager and 374
managed roles 372

Directory Server properties
in AMConfig.properties 334

display service attributes 63
DTD files

amAdmin.dtd 209
server-config.dtd 355
sms.dtd 199

dynamic attributes
and service files 190

E
email notification 179

Section F

388 Access Manager 6 2005Q1 • Developer’s Guide

encryption key 351
event connection

in AMConfig.properties 341

F
failover configuration

in serverconfig.xml 358
federation

in AMConfig.properties 350
federation-related logs 305
fixed attributes

in session structure 76
FQDN Map 350
FQDN mapping

and authentication 350

G
global attributes

and service files 190
glossary, Sun Java Enterprise System 383

I
identity management 159

identity-related object templates 164
identity-related objects

and LDAP 162
marker object classes 161
overview 159
samples 183
SDK 169

caching 180
email notification 179
remote installation 180
search methods 175

SDK samples 181
ums.xml

modify 166
XML

amEntrySpecific.xml 168
identity-related object templates 164
identity-related objects

and LDAP 162
marker object classes 161

inheritance
attributes 192

installation logs 303
installation properties

in AMConfig.properties 332
installation read-only

in AMConfig.properties 343
interface colors

customization 63
IP address checking

in AMConfig.properties 348

J
Java

APIs
client detection 326
utility 327

identity management SDK 169
caching 180
email notification 179
remote installation 180
search methods 175

policy SDK 249
SAML SDK 289
service management SDK 239
SPIs

logging 315
java

policy SDK
policy evaluation API 250
policy management API 254
policy plugin API 255

JavaServer Pages. See JSP
JSP

console-related definition 59

Section K

Index 389

precompiling console 70

K
keystore

in AMConfig.properties 342

L
LDAP

adding object classes 195
LDAP connection

in AMConfig.properties 341
LDAP schema

extending 193
Linux, default base directory for 30
localization

console 63
with two languages 197

localization properties files 196
configure 196

log authorization plugin 315
log files

defined 299
flat file format 301
install logs 303
relational database format 302

MySQL 303
oracle 303

service logs 304
log types

agent-related logs 305
authentication-related logs 304
command line logs 306
console-related logs 304
federation-related logs 305
policy-related logs 305
SAML-related logs 306
SSO-related logs 304

log verifier plugin 315
logging

amLogging.xml 299
API 309

sample code 314
architecture 298
command line 307
log files 299
log types

agent-related logs 305
authentication-related logs 304
command line logs 306
console-related logs 304
federation-related logs 305
policy-related logs 305
SAML-related logs 306
SSO-related logs 304

overview 297
remote logging 307
secure logging 306
SPI 315

M
managed roles 372
marker object classes 161
modify

service configuration display 61
user profile view 62

module tabs
add 68

MySQL database log files 303

N
naming service

and console 58
notification

email and SDK 179
notification service 367

in AMConfig.properties 337
nsaccountlock attribute 233

Section O

390 Access Manager 6 2005Q1 • Developer’s Guide

O
Oracle database log files 303
organization attributes

and service files 190
overview

Access Manager 35
file system 43

Access Manager SDK 41
AMConfig.properties 331
application management services 37
client browser support 43
client detection 321
console 55
console customization 41
cross-domain SSO 78
data management components 36
extending Access Manager 40
identity management 159
logging 297
managing access 39
policy 249
SAML 279
service definition 40
service management 185
SSO 73
SSO concepts 74
SSO process 75
WAR files 359

P
password API plugins 329
password.war 362
plug-in modules

console 58
add module tab 68

policy 249
in AMConfig.properties 350
overview 249
remote policy in AMConfig.properties 348
SDK

C 256
Java 249

policy evaluation API 250
policy management API 254
policy plugin API 255

policy agents
and SSO 79

policy attributes
and service files 191

policy evaluation API 250
policy management API 254
policy plugin API 255
policy-related logs 305
post-processing

authentication 129
precompiling console JSP 70
processes

generating the console 57
profile types

and SAML 282
web artifact profile 282
web POST profile 284

protected properties
in session structure 77

R
read-only directives

in AMConfig.properties 343
redeploying WAR files 364
register services 197
remote logging 307
remote policy API

in AMConfig.properties 348
replication

in AMConfig.properties 340
roles

Access Manager
roles and 374

Access Manager and 374
in Directory Server 372
managed roles 372

Section S

Index 391

S
SAML 279

access to 281
amSAML.xml 288
assertion types 285
in AMConfig.properties 342
overview 279
profile types 282

web artifact profile 282
web POST profile 284

SAML SOAP receiver 286
SOAP messages 287

samples 295
SDK 289

SAML SOAP receiver 286
SOAP messages 287

SAML-related logs 306
samples

console 70
identity management 183
identity management SDK 181
logging

code 314
notify password 330
password generator 330
SAML 295
SSO 86, 99

command line SSO 87
remote SSO 87
SSO servlet 87

Search 175
secure logging 306
security read-only

in AMConfig.properties 347
server-config.dtd 355
serverconfig.xml 353

and failover 358
service attributes

and sms.dtd 189
inheritance 192
virtual attributes 191

service files
amSAML.xml 288
attribute inheritance 192
attributes 189

dynamic 190
global 190
organization 190
policy 191
user 191

batch processing
batch processing service files 234

batch processing templates
batch processing templates 235

ContainerDefaultTemplateRole 192
create 189
default 231
importing 195
modify 233
ums.xml 164
user pages

customize 237
service management 185

DTD files
amAdmin.dtd 209

localization properties files 196
overview 185
SDK 239
service files

create 189
services

defining 187
sms.dtd 199

services
adding new object classes to LDAP 195
defining 187
Directory Server

extend LDAP schema 193
logs 304
policy 249
registering 197
Session

session structure 76
Session and SSO 73

services.war 363
session

definition 74
in AMConfig.properties 345
structure 76

Session and SSO
concepts 74

Section T

392 Access Manager 6 2005Q1 • Developer’s Guide

process 75
session ID

definition 74
Session Service. See SSO
sessions

and cookies 76
shared sceret

in AMConfig.properties 344
Simple Mail Transfer Protocol.See SMTP.
Single Sign On. See SSO
sms.dtd 199
SMTP

in AMConfig.properties 346
SOAP messages 287
SPIs

authentication
JAAS 154
Java 132
post-processing 129

logging 315
SSO 73

API 81
and non-web-based applications 99
C 88
Java 82
Java versus C 97

concepts 74
cookies and sessions 76
cross-domain 78

cross-domain controller 79
policy agents 79
scenario 80

cross-domain SSO
enable 81

overview 73
process overview 75
samples 86, 99

command line SSO 87
remote SSO 87
SSO servlet 87

session structure 76
SSO-related logs 304
SSOToken

definition 75
stats service

in AMConfig.properties 336
style sheets

customizing console colors 63

T
terms, glossary 383

U
ums.xml

DAI service 167
identity-related object templates 164
modify 166

updating WAR files 364
user attributes

and service files 191
user interface

console 56
user interface. See also console
user pages

customize 237
user profile display options 63
utilities 327
utility

API 327

V
ViewBean

definition 56
virtual attributes

and dynamic attributes 191

W
WAR files 359

Section X

Index 393

console.war 361
contents 361
password.war 362
redeploying 364
services.war 363
updating 364

web artifact profile 282
web POST profile 284

X
XML

amEntrySpecific.xml 168
amSAML.xml 288
default service files 231

modify 233
serverconfig.xml 353
service file

import 195
service files

amLogging.xml 299
attribute inheritance 192
attributes 189, 190, 191
batch processing 234
batch processing templates 235
ContainerDefaultTemplateRole 192
create 189
user pages 237

ums.xml
and identity-related objects 164
modify 166

virtual attributes 191

Section X

394 Access Manager 6 2005Q1 • Developer’s Guide

	Access Manager 6 Developer’s Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	List of Code Examples
	Preface
	Who Should Use This Book
	Before You Read This Book
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Related Documentation
	Books in This Documentation Set
	Access Manager Policy Agent Documentation
	Other Server Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction
	Access Manager Overview
	Data Management Components
	Access Manager Management Services
	Managing Access
	Web Access
	Application Access

	Extending Access Manager
	Service Definition With XML
	Console Customization
	Access Manager SDK
	Identity Management SDK
	Service Management SDK
	Authentication Programming Interfaces
	Utility API
	Logging API And Logging SPI
	Client Detection API
	SSO API
	Policy SDK
	SAML SDK
	Federation Management API

	Access Manager File System
	Client Browser Support

	Using the Client SDK
	How the Client SDK Works
	JDK and CLASSPATH Requirements
	Configuring the Client SDK
	To Configure the Client SDK

	Initializing the Client SDK
	Using a Properties File
	To Set ClientSDK Properties in a Properties File
	Using the Java API
	Setting Individual Properties
	Naming URL Properties
	Debug Properties
	Notification URL Properties

	Setting Up a Client Identity
	To Set Username and Password Properties
	To Set an SSO Token Provider

	Building Custom Web Applications
	Building Stand-Alone Applications
	To Build a Stand-Alone Application
	Targets Defined in clientsdk

	About the Client SDK Samples

	The Access Manager Console
	Overview
	Console Interface
	Generating The Console Interface
	Plug-In Modules
	Accessing The Console

	Customizing The Console
	The Default Console Files
	Creating Custom Organization Files
	To Create Custom Organization Files
	Alternate Customization Procedure

	Miscellaneous Customizations
	To Modify The Service Configuration Display
	To Modify The User Profile View
	Display Options For The User Profile Page
	To Localize The Console
	To Display Service Attributes
	To Customize Interface Colors
	To Change The Default Attribute Display Elements
	To Add A Module Tab
	To Display Container Objects

	Console API
	Precompiling The Console JSP
	Console Samples
	Modify User Profile Page
	Create A Tabbed Identity Management Display
	ConsoleEventListener
	Add Administrative Function
	Add A New Module Tab
	Create A Custom User Profile View

	Single Sign-On And Sessions
	Overview
	Session Service Concepts
	Session
	Session ID
	SSOToken

	Single Sign-On Process
	Contacting A Protected Resource
	Providing User Credentials

	Cookies and Sessions
	Session Structure
	Fixed Attributes
	Protected And Custom Properties
	Protected Properties

	Custom Properties

	Cross-Domain Support For SSO
	Policy Agents
	Cross-Domain Controller
	A Cross-Domain SSO Scenario
	Enabling Cross-Domain Single Sign-On

	SSO API
	Java API Overview
	SSOTokenManager Class
	SSOTokenID Interface
	SSOToken Interface
	SSOTokenEvent
	SSOTokenListener
	Sample SSO Java Files

	C API Overview
	C SSO Include Files
	C SSO Properties
	C SSO interfaces
	C SSO Sample

	Java versus C API
	Non-Web-Based Applications

	SSO Samples

	Customizing the Authentication User Interface
	User Interface Files You Can Modify
	services.war File
	Java Server Pages
	Customizing the Login Page
	Customizing JSP Templates

	XML Files
	Callbacks Element
	Nested Elements
	Attributes
	ConfirmationCallback Element
	Nested Elements
	Attributes
	Details

	JavaScript Files
	Cascading Style Sheets
	Images
	Localization Files

	Customizing Branding and Functionality
	To Modify Branding and Functionality

	Customizing the Self-Registration Page
	To Modify the Self-Registration Page

	Updating and Redeploying services.war
	To Update services.war
	To Redeploy services.war
	On BEA WebLogic
	On Sun ONE Application Server
	On IBM WebSphere

	Using Authentication APIs and SPIs
	Overview of Authentication APIs and SPIs
	How the Authentication Java APIs Work
	How the Authentication C-APIs Work
	XML/HTTP Interface for Other Applications
	Examples of XML Messages

	How the Authentication SPIs Work
	Extending the AMLoginModule Class
	Pluggable JAAS Module
	Authentication Post Processing

	Using Authentication APIs
	Running the Sample Authentication Programs
	Java API Code Samples and Their Locations
	To Compile and Execute the Java API Samples
	To Configure SSL for Java API Samples

	LDAPLogin Example
	CertLogin Example
	JCDI Module Example
	C-API Sample

	Using Authentication SPIs
	Implementing a Custom Authentication Module
	About the Login Module Sample
	Writing a Sample Login Module
	Compiling and Deploying the LoginModule program
	Loading the Login Module Sample into Access Manager
	Running the LoginModule Sample Program
	Deploying the Login Module Sample Program

	Implementing Authentication PostProcessing SPI
	About the PostProcessing SPI Sample
	To Compile the ISAuthPostProcessSample Program on Solaris Sparc/x86 or Linux
	Configuring the Authentication Post Processing SPI
	Compiling On Windows2000

	Generating an Authentication User ID
	To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux
	To Deploy the UserIDGeneratorSample program
	Configuring the UserIDGeneratorSample Program
	Compiling the UserIDGeneratorSample Program on Windows 2000

	Implementing A Pure JAAS Module
	Conventions Used in the Samples
	To Run the Sample on Solaris Sparc x86 or Linux:
	To Run the Sample on Windows 2000

	Identity Management
	Overview
	Access Manager Console
	ums.xml
	Identity Management Software Development Kit (SDK)

	Identity-related Objects
	Marker Object Classes
	Identity-related Objects As LDAP Entries
	Organizations
	Containers
	Users
	Groups
	Roles

	Object Templates And ums.xml
	Structure Of ums.xml
	Structure Templates
	Creation Templates
	Search Templates

	Modifying ums.xml
	Adding Custom Object Classes

	DAI Service

	amEntrySpecific.xml
	Identity Management SDK
	Interfaces
	AMAssignableDynamicGroup
	AMCallback
	AMConstants
	AMDynamicGroup
	AMEventListener
	AMFilteredRole
	AMGroup
	AMGroupContainer
	AMObject
	AMOrganization
	AMOrganizationalUnit
	AMPeopleContainer
	AMRole
	AMSearchControl
	AMStaticGroup
	AMStoreConnection
	AMTemplate
	AMUser
	AMUserPasswordValidation

	Search Methods In The SDK
	Search Method Parameters
	searchUsers Sample Code
	Search Groups Sample Code

	Email Notification And The SDK
	Caching And The SDK
	Installing The SDK Remotely
	Management Function Samples
	Creating Objects
	Retrieve Templates

	Identity Management Samples
	Adding User Attributes
	Creating Objects With The SDK

	Service Management
	Overview
	XML Service Files
	Document Type Definition Structure Files
	Service Management SDK

	Defining A Custom Service
	Creating A Service File
	Service File Naming Conventions
	Service Attributes
	Attribute Inheritance

	Extending The Directory Server Schema
	To Extend The Directory Server LDAP Schema
	Adding Access Manager Object Classes To Existing Users

	Importing The XML Service File
	Configuring Console Localization Properties
	Localizing With Two Languages

	Updating Files For Abstract Objects
	Registering The Service

	DTD Files
	The sms.dtd Structure
	ServicesConfiguration Element
	Service Element
	Schema Element
	Service Attribute Elements
	SubSchema Element
	AttributeSchema Element

	The amAdmin.dtd Structure
	Requests Element
	OrganizationRequests Element
	ContainerRequests Element
	PeopleContainerRequests Element
	RoleRequests Element
	GroupRequests Element
	UserRequests Element
	ServiceConfigurationRequests Element
	AttributeValuePair Element
	CreateObject Elements
	DeleteObject Elements
	ModifyObject Elements
	GetObject Elements
	GetService Elements
	ActionServiceTemplate Element
	ActionServiceTemplateAttributeValues Element
	ActionServices Elements
	SchemaRequests Element
	Federation Management Elements

	XML Service Files
	Default XML Service Files
	Modifying A Default XML Service File

	Batch Processing With XML Templates
	XML Templates
	Modifying A Batch Processing XML Template

	Customizing User Pages
	Creating Users Using A Modified Directory Server Schema

	Service Management SDK
	ServiceSchemaManager Class
	Retrieve Logging Location
	Retrieve User Or Dynamic Attributes

	Retrieve Attribute Values

	Policy Management
	Policy SDK
	Java SDK For Policy
	Policy API For Java
	Policy Plugin API For Java

	C Library For Policy
	Policy Evaluation API for C

	Extending the Policy Management Feature
	Compiling the Policy Samples
	Adding the Policy Service to Access Manager
	Developing Custom Subjects, Conditions and Referrals
	To Load the Modified Services

	Creating Policies for the Service
	Developing and Running Policy Evaluation Programs
	To Run the Policy Evaluation Program

	Constructing Policies Programmatically
	To Run PolicyCreator.java
	PolicyCreator.java

	Using the JAAS Authorization Framework
	Overview of JAAS Authorization
	How Policy Enforcement Works
	How the JS2E Access Controller Works

	JAAS Authorization in Access Manager
	Custom APIs
	User Interface

	Enabling the JAAS Authorization Framework

	SAML Service
	Overview
	Accessing The SAML Service

	SAML Component Details
	Profile Types
	Web Browser Artifact Profile
	Web Browser POST Profile

	Assertion Types
	SAML SOAP Receiver
	SOAP Messages
	Protecting The SOAP Receiver

	amSAML.xml
	SAML SDK
	com.sun.identity.saml
	com.sun.identity.saml.assertion
	com.sun.identity.saml.common
	com.sun.identity.saml.plugins
	com.sun.identity.saml.protocol
	AuthenticationQuery
	AttributeQuery
	AuthorizationDecisionQuery

	com.sun.identity.saml.xmlsig

	SAML Samples

	Auditing Features
	Logging Service Overview
	Logging Architecture
	amLogging.xml

	Log Files
	Recorded Events
	Time
	Data
	ModuleName
	Domain
	Log Level
	Login ID
	IP Address
	Logged By
	Host Name

	Log File Formats
	Flat File Format
	Relational Database Format

	Java Enterprise System Installation Logs
	Access Manager Service Logs
	Session Logs
	Console Logs
	Authentication Logs
	Federation Logs
	Policy Logs
	Agent Logs
	SAML Logs
	amAdmin Logs

	Logging Features
	To Enable Secure Logging
	Command Line Logging
	Remote Logging
	Using Remote Logging
	Enabling Remote Logging

	Logging API
	Setting Environment Variables
	If Client Can Execute in the Local Access Manager Server
	If Client Executes Only in a Remote Server
	If SSL is Enabled

	Logger Class
	LogRecord Class
	Adding Log Data
	Caching Log Records
	Flushing Log Records

	Sample Logging Code

	Logging SPI
	Log Verifier Plugin
	Log Authorization Plugin

	Debug Files
	Debug Levels
	Debug Output Files
	Using Debug Files
	Multiple Access Manager Instances And Debug Files

	Client Detection Service
	Overview
	Client Detection Process
	Enabling Client Detection

	Client Data
	HTML
	genericHTML

	Client Detection API

	Access Manager Utilities
	Utility API
	AdminUtils
	AMClientDetector
	AMPasswordUtil
	Debug
	Locale
	SystemProperties
	ThreadPool

	Password API Plug-Ins
	Notify Password Sample
	Password Generator Sample

	AMConfig.properties File
	Overview
	Deployment Properties
	Access Manager
	Installation
	Console
	Cookies
	Miscellaneous

	Directory Server
	Installation
	Directory Server Tree

	Configuration Properties
	Debug Service
	Stats Service
	Notification Service
	SDK Caching
	Online Certificate Status Protocol (OCSP)
	Identity Object Processing
	Security
	SSL
	Certificate Database
	Replication
	Event And LDAP Connection
	Event Connection
	LDAP Connection

	SAML
	Keystore Properties

	Miscellaneous Services

	Read-Only Properties
	Installation
	Deployment
	Shared Secret
	Session Properties
	Simple Mail Transfer Protocol (SMTP)
	Authentication
	LDAP
	SecurID
	Unix

	Security
	SecureRandom
	SocketFactory
	Encryption

	IP Address Checking
	Remote Policy API
	Policy
	Federation
	FQDN Map
	Encryption Key

	serverconfig.xml File
	Overview
	Proxy User
	Admin User

	server-config Definition Type Document
	iPlanetDataAccessLayer Element
	ServerGroup Element
	Server Element
	User Element
	DirDN Element
	DirPassword Element

	BaseDN Element
	MiscConfig Element

	Failover Or Multimaster Configuration

	WAR Files
	Overview
	Web Components
	Packaging Web Components

	WARs And Their Contents
	console.war
	password.war
	services.war

	Redeploying Modified WARs
	BEA WebLogic Server 6.1
	To Deploy console.war On WebLogic
	To Deploy services.war on WebLogic
	To Deploy password.war on WebLogic

	Sun Java System Application Server 7.0
	To Deploy console.war On Sun Java System Application Server
	To Deploy services.war On Sun Java System Application Server
	To Deploy password.war on Sun Java System Application Server

	IBM WebSphere Application Server

	Notification Service
	Overview

	Directory Server Concepts
	Overview
	Roles
	Managed Roles
	Definition Entry
	Member Entry

	How Access Manager Uses Roles
	Role Creation
	Role Location
	Displaying The Correct Login Start Page

	Access Control Instructions
	Defining ACIs
	iplanet-am-admin-console-role-default-acis
	iplanet-am-admin-console-dynamic-aci-list

	Format of Predefined ACIs
	Default ACIs

	Class Of Service
	CoS Definition Entry
	cosClassicDefinition

	CoS Template Entry
	Conflicts and CoS

	Glossary
	Index

