@Sun

Sun Java™ System

Application Server
Enterprise Edition 8.1
Performance Tuning Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0084

2005Q1

Copyright © 2004-2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. hasintellectual property rights relating to technology embodied in the product that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at ht t p: / / www. sun. cond pat ent s and one or more
additional patents or pending patent applicationsin the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSY STEMS, INC. USE, DISCLOSURE OR
REPRODUCTION ISPROHIBITED WITHOUT THE PRIOR EXPRESSWRITTEN PERMISSION OF SUN MICROSY STEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable
provisions of the FAR and its supplements.

Useissubject to license terms. This distribution may include materials devel oped by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer Pages, JSP,
JDBC, JDK, VM, JavaNaming and Directory Interface, JavaMail, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX isaregistered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biologica weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject
to U.S. embargo or to entitiesidentified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationalslistsis
strictly prohibited.

DOCUMENTATION ISPROVIDED “ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERSARE HELD TO BE LEGALLY INVALID.

Copyright © 2004-2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuel s relatifs & la technol ogie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sanslimitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a |’ adresse

http://wmv sun. coni pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etat -Unis et dans les autres pays.

CE PRODUIT CONTIENT DESINFORMATIONS CONFIDENTIELLESET DES SECRETS COMMERCIAUX DE SUN MICROSY STEMS, INC. SON
UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’ AUTORISATION EXPRESSE, ECRITE ET PREALABLE
DE SUN MICROSY STEMS, INC.

L’ utilisation est soumise auix termes de la Licence. Cette distribution peut comprendre des composants dével oppés par des tierces parties.

Sun, Sun Microsystems, lelogo Sun, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer Pages, JSP,
JDBC, DK, VM, Java Naming and Directory Interface, JavaMail, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’ autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d’ autres pays. L es produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d' autres pays et licenciée exclusivement par X/Open Company, Ltd.

Ce produit est soumis alalégidation américaine en matiere de contrdle des exportations et peut étre soumis a la réglementation en vigueur dans d' autres pays
dans le domaine des exportations et importations. L es utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. L es exportations ou réexportations vers les pays sous embargo
américain, ou vers des entités figurant sur les listes d’ exclusion d’ exportation américaines, y compris, mais de maniére non exhaustive, laliste de personnes qui
font objet d’ un ordre de ne pas participer, d' une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régis par lalégislation
américaine en matiere de contrdle des exportations et laliste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITERELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ ABSENCE DE
CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

cContents

Preface ..o 7
Who Should Use ThiSBOOKo e e e e e 7
Before You Read ThiSBOOK e e e e e s 8
How ThisB0oOK ISOrganizedt e e e e e et 8
ConventionsUsed in ThISBOOK e e e 9
Typographic CONVENLIONSottt et e e e e e e e e e e e e e e i e 9
SYMIDOIS . . 9
Default Pathsand FIIe NamMeS i e e e 10
ShEll PrOMIPDES . ..o 11
Related DOCUMENTAiONttt et e e et e e e e e e e e e e 11
Booksin ThisDocumentation Sett e e 12
Other Server DOCUMENTAtiONttt et ettt e et et et e e e et 13
Accessing SUN RESOUrCES ONlINEot e e e e e e e et e e 13
Contacting Sun Technical SUPPOIT oot e e et e e 13
Related Third-Party Web Site REferenceso e 14
SuN Welcomes Y our COMIMENES oo ottt ettt e e e e e et e e et et e et e e 14
Chapter 1 Overview of Sun Java System Application Server Performance 15
PrOCESS OVEIVIBIW . . .ottt ettt e e e e e e e e e e e 15
Performance TUNING SEOUENCEo\ttt et e e et e e e e e e e ettt 16
Understanding Operational REQUITEMENTSottt ettt e e e e e e e 16
Application ArChiteCIUrE ot 17
SECUNTY REOUITEMENES . ..ottt ettt e e e et e e e 18
HardWar@ RESOUICES ittt e e e e e e e e e e e e e e e e 19
General TUNING CONCEPS . .ottt ettt et ittt et e e e e et e e e e e 20
CapaCity Planningo vt e 21
USEr EXPECIAIiONS « . o vttt ettt e e et e e e e 22
Further INfOrmation o 23

4

Chapter 2 Tuning Your Application 25

Java Programming GUIJEIINGESt e e 25
Java Server Page and Serviet TUNINGot e e e e e 28
Suggested Coding PraCliCeSottt e e e e 28
EJB PerformanCe TUNING oo oottt e e e e e e e e e et e e 30
G0alS . o 31
Monitoring EJB COMPONENES oo ottt ittt e et e et e e et e et e e 31
General GUIAEIINESt e 34
Using Local and Remote Interfaces o 36
Improving Performance of EJB TransaCtionsttt 37
Using Special TECNNIQUESottt et e e e e e et e e e e e e e e e e 39
Tuning Tips for Specific Typesof EJB COMPONENtS oottt a e e 42
JDBC and Datahase ACCESS oo ittt e e e e e e 46
Tuning Message-Driven BEANS it e e 47
Chapter 3 Tuning the Application Server i 49
DEPlOYMENt SEttiNGS . .ottt 49
Disabling AUto-deplOyMENtt e 50
Using Pre-compiled JavaServer Pagesot 50
Disabling Dynamic Application Reloadingt e 50
L OgEr SEtiNgS . o\ vttt ettt e 51
GENEral SEiNGS . .ottt e 51
O L BVEIS .ot 51
WED CONtaiNEr . . oo 51
Session Properties: Session TIMEOULttt et e e ettt 52
Manager Properties: Reap INterval i 52
Disabling Dynamic JSPReloadingot 53
N1 0 g =1 = 53
Monitoring the EJB CoNtaiNerottt ettt e e e e e e 53
TUNING the EJB CONtaiNer . .. oottt ettt e e e e e e e e e e e e e e 53
JAV A M ESSAgE SNV . . ittt it ettt e 59
TranSaClioN SEIVICEottt et et e e e e e et e e e 59
Monitoring the TranSaCtion SErVICEot teee eeeeeee 59
Tuning the TransaCtion SEIVICE ottt e e e et e 60
HT TP SorViCE ot e e e 61
Monitoring the HT TP SErVICE . ..o e e e e e e 62
TUNING the HT TP SarViCE . . o .ottt e e e e e e e e 66
Tuning HTTP Listener SEttingso vttt e e e et et e 73
Migrating FrOm VerSiON 7 . ..o e e e e e 75
O R B . ..ttt 75
(@Y= = 75
MOoNitorNG the ORBttt et e e e e 76
TUNINGThE ORB . .. o e e e 77

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Thread POOl SIZiNGo 79

Examining [IOP MESSA0ES« .ttt ittt e e e e e e e e e e 80
Improving ORB Performance with Java Serialization i 81
Thread POOIS e 82
Tuning Thread Pools (Unix /LINUX ONIY)t e e e e e e e e e 82
RESOUICES . . . e e 82
JDBC CoNNECLION POOISottt et e e e e e e e e e e e 83
Connector CoNNECtioN POOIS i 86
Chapter 4 Tuning the Java Runtime System i 89
JavaVirtual Machine SEttiNGSot e 89
Managing Memory and Garbage Collection e 20
Tuning the Garbage ColleCtor i e 90
Tracing Garbage ColleCtion o e e e 92
Other Garbage Collector SEttiNGSottt e e 93
TuningtheJavaHeap o e 93
Rebasing DLLSON WINAOWSo e e e e e e e e e e e e 96
Further INformation o e 97
Chapter 5 Tuning the Operating System e 99
SEIVEN SCAlING . . . e 99
01075 o] £ 99
IO Y ettt e e 100
DSk SPaCE . oot 100
N OTKING .« oottt e e e e e e e e 100
TUNING fOr SOlariS ..ottt e e e 101
TUNING ParameterS . oottt e e e e e e 101
File DeSCriptor SEttiNg . .. oottt ettt e e e e 102
Using Alternate Threadsottt e e e e e 103
TUNiNG fOr SOlariS ON XB6 . .. oottt ettt et e e e e e 104
Semaphoresand Shared MemMOrYot e e 104
L] =S o o] o) = 105
[P StaCK SEttiNgS . . . v vttt 105
Tuning for Linux platforms oo 106
L] =S o o] o) = 106
VirUA M OMOrY .ottt e e 107
Network Interfaceo o 108
Disk /O SEtiNgS . o vttt ettt et e e e e 108
LI = 1] 0 108
Chapter 6 Tuning for High-Availability 111
TUNING HA D B . .o e e e e 111

Contents 5

Memory AlIOCAHION e 113
PEr OIMANCE . . o 114
Operating System Configurationt e e 121
Tuning the Application Server for High-Availability i 122
Tuning Session PersistenCe FreqQUENCYo oottt ettt e e et 123
SESSION PErSISIENCE SCOPE - . o .ttt ittt et e e 124
SESSI 0N Sz oottt 124
Checkpointing Stateful SESSION BEANSt 125
Configuring the JIDBC Connection POlot 125
Configuringthe Load BalanCer i e e 126
Enabling the Health Checker e e 127
IO EX . 129

6 Application Server Enterprise Edition 2005Q1 ¢ Performance Tuning Guide

Preface

This Performance Tuning Guide describes how to get the maximum performance,
scalability, and reliability from applications and the Application Server.

Who Should Use This Book

This guide hel ps you tune the Application Server for maximum performance and reliability.
This guide isintended for server administrators, J2EE applications devel opers, network
administrators, and evauators.

This guide assumes you are familiar with:
* Internet and World Wide Web
e Javaprogramming
e J2EE application model
e Application servers
e Your operating system:
o Solaris™
o Linux

o Solarison x86

Before You Read This Book

Before You Read This Book

Application Server isacomponent of Sun Java Enterprise System, a software infrastructure
that supports enterprise applications distributed across a network or Internet environment.
Y ou should be familiar with the documentation provided with Sun Java Enterprise System,
which can be accessed online at htt p: // docs. sun. coni col | / ent sys. 05q1#hi c.

How This Book Is Organized

Thefirst chapter of this book provides an overview of tuning. Chapters 2 through 6 provide
more detailed information on tuning applications, the server, and the environment on which
the server runs. The following table summarizes the content of this book.

8

Table 1 How This Book |s Organized

Chapter

Description

Chapter 1, “Overview of Sun Java
System Application Server
Performance”

Chapter 2, “Tuning Your Application”

Chapter 3, “Tuning the Application
Server”

Chapter 4, “Tuning the Java Runtime
System”

Chapter 5, “Tuning the Operating
System”

Chapter 6, “Tuning for
High-Availability”

General concepts and processes for tuning Application
Server.

Programming practices and application configuration
settings to achieve maximum performance.

How to configure the application server for best
performance and reliability.

How to configure the Java Virtual Machine to work
optimally with the Application Server.

How to configure the operating system to work optimally
with the Application Server.

How to tune the high-availability database (HADB) used
for storing persistent session state for use with the
Application Server. It also discusses how you can
configure the high availability features of Application
Server for your application.

Application Server Enterprise Edition 2005Q1 ¢ Performance Tuning Guide

Conventions Used in This Book

Conventions Used in This Book

The tables in this section describe the conventions used in this book.

Typographic Conventions
The following table describes the typographic changes used in this book.

Table 2 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 APl and language elements, HTML Edit your. | ogi n file.
(Monospace) tags, web site URLs, command
names, file names, directory path Use | s -atolist al files.
names, onscreen computer output,

samp|e code. %YOU have ITHI I .
AaBbCc123 What you type, when contrasted %su
(Monospace with onscreen computer output. Passwor d:
bold)
AaBbCc123 Book titles, new terms, words to be Read Chapter 6 in the User’s Guide.
(Italic) emphasized.

A placeholder in a command or path These are called class options.

name to be replaced with a real

Do not save thefile.
name or value.

Thefileislocated in the
install-dir/ bi n directory.

Symbols

The following table describes the symbol conventions used in this book.

Table 3 Symbol Conventions

Symbol Description Example Meaning
[1] Contains optional command |s [-1] The -1 option is not
options. required.
{11} Contains a set of choicesfor -d {y| n} The - d option requires that
a required command option. you use either the y
argument or the n
argument.

Preface 9

Conventions Used in This Book

Table 3 Symbol Conventions (Continued)

Symbol Description Example Meaning
Joins simultaneous multiple Control-A Press the Control key while
keystrokes. you press the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key,
keystrokes. release it, and then press

the subsequent keys.

> Indicates menu item File > New > Templates From the File menu, choose

selection in a graphical user New. From the New

interface.

submenu, choose
Templates.

Default Paths and File Names

The following table describes the default paths and file names used in this book.

Table 4

Default

Paths and File Names

Term

Description

install_dir

By default, the Application Server installation directory is located here:

e Sun Java Enterprise System installations on the Solaris™ platform:

/ opt / SUN\Wappser ver / appser ver

e Sun Java Enterprise System installations on the Linux platform:

/ opt / sun/ appser ver/

user’shomedirectory/ SUNVappser ver

Other Solaris and Linux installations, non-root user:

e Other Solaris and Linux installations, root user:

/ opt / SUN\Wappser ver

¢ Windows, all installations:
SystemDrive: \ Sun\ AppSer ver

10 Application Server Enterprise Edition 2005Q1 ¢ Performance Tuning Guide

Related Documentation

Table 4 Default Paths and File Names

Term

Description

domain_root_dir

domain_dir

instance_dir

By default, the directory containing all domains is located here:

e Sun Java Enterprise System installations on the Solaris platform:
/ var/ opt/ SUN\Wappser ver / donai ns/
e Sun Java Enterprise System installations on the Linux platform:
[var/ opt/ sun/ appser ver/ donai ns/
» All other installations:
ingall_dir/ donai ns/
By default, each domain directory is located here:
domain_root_dir/ domein dir
In configuration files, you might see domain_dir represented as follows:
${com sun. aas. i nst anceRoot }

By default, each instance directory is located here:

domain_dir/ instance _dir

Shell Prompts

The following table describes the shell prompts used in this book.

Table5 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%
C shell superuser on UNIX or Linux machine-name#
Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C\

Related Documentation

Thehttp: //docs. sun. cont web site enables you to access Sun technical documentation
online. Y ou can browse the archive or search for a specific book title or subject.

Preface 11

Related Documentation

Books in This Documentation Set

The Sun Java System Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML).

The following table summarizes the books included in the Application Server core
application documentation set.

Table 6 Books in This Documentation Set
Book Title Description
Release Notes Late-breaking information about the software and the documentation. Includes a

Quick Start Guide
Installation Guide

Deployment Planning Guide

Developer’s Guide

J2EE 1.4 Tutorial

Administration Guide

High Availability Administration
Guide

Administration Reference

Upgrade and Migration Guide

Performance Tuning Guide
Troubleshooting Guide
Error Message Reference

Reference Manual

comprehensive, table-based summary of the supported hardware, operating
system, JDK, and JDBC/RDBMS.

How to get started with the Sun Java System Application Server product.
Installing the Sun Java System Application Server software and its components.

Evaluating your system needs and enterprise to ensure that you deploy Sun Java
System Application Server in a manner that best suits your site. General issues and
concerns that you must be aware of when deploying an application server are also
discussed.

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components and APlIs. Includes general
information about developer tools, security, assembly, deployment, debugging, and
creating lifecycle modules.

Using J2EE 1.4 platform technologies and APIs to develop J2EE applications and
deploying the applications on the Sun Java System Application Server.

Configuring, managing, and deploying the Sun Java System Application Server
subsystems and components from the Administration Console.

Post-installation configuration and administration instructions for the high-availability
database.

Editing the Sun Java System Application Server configuration file, domai n. xm .

Migrating your applications to the new Sun Java System Application Server
programming model, specifically from Application Server 6.x and 7. This guide also
describes differences between adjacent product releases and configuration options
that can result in incompatibility with the product specifications.

Tuning the Sun Java System Application Server to improve performance.
Solving Sun Java System Application Server problems.
Solving Sun Java System Application Server error messages.

Utility commands available with the Sun Java System Application Server; written in
manpage style. Includes the asadni n command line interface.

12 Application Server Enterprise Edition 2005Q1 ¢ Performance Tuning Guide

Accessing Sun Resources Online

Other Server Documentation

For other server documentation, see the following:

* Message Queue documentation
http://docs. sun. com db?p=pr od/ s1. slnsgqu

» Directory Server documentation
http://docs. sun. com col | / D rect oryServer _04qg2

* Web Server documentation
http://docs. sun. com col | / S1_websvr61_en

Accessing Sun Resources Online

For product downloads, professional services, patches and support, and additional
developer information, go to the following:

» Download Center
http://wws. sun. con sof t war e/ downl oad/

* Professional Services
htt p: // ww. sun. con ser vi ce/ sunps/ sunone/ i ndex. ht m

e Sun Enterprise Services, Solaris Patches, and Support
http://sunsol ve. sun. con

e Developer Information
http: // devel opers. sun. coni pr odt ech/ i ndex. ht ni

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the product
documentation, go to ht t p: // waw sun. comd ser vi ce/ cont act i ng.

Preface 13

http://docs.sun.com/db?p=prod/s1.s1msgqu
http://docs.sun.com/coll/DirectoryServer_04q2
http://docs.sun.com/coll/S1_websvr61_en

Related Third-Party Web Site References

Related Third-Party Web Site References

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or loss
caused or alleged to be caused by or in connection with use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments

Sun isinterested in improving its documentation and wel comes your comments and
suggestions.

To share your comments, go to htt p: // docs. sun. comand click Send Comments. In the
online form, provide the document title and part number. The part number is a seven-digit
or nine-digit number that can be found on the title page of the book or at the top of the
document. For example, the title of this book is Sun Java System Application Server
2005Q1 Performance Tuning Guide, and the part number is 819-0084.

14 Application Server Enterprise Edition 2005Q1 ¢ Performance Tuning Guide

Chapter 1

Overview of Sun Java System
Application Server Performance

Y ou can significantly improve performance of the Sun Java System Application Server and
of applications deployed to it by adjusting afew deployment and server configuration
settings. However, it isimportant to understand the environment and performance goals. An
optimal configuration for a production environment might not be optimal for adevel opment
environment.

This chapter discusses the following topics:

* Process Overview

» Understanding Operational Reguirements
e General Tuning Concepts

* Further Information

Process Overview

The following table outlines the overall administration process, and shows were
performance tuning fits in the sequence.

Table 1-1 Performance Tuning Roadmap

Step Description of Task Location of Instructions

1 Design: Decide on the high-availability Deployment Planning Guide
topology and set up the Application Server
and high-availability database (HADB)
systems.

2 Capacity Planning: Make sure the systems Deployment Planning Guide
have sufficient resources to perform well.

15

Understanding Operational Requirements

Table 1-1 Performance Tuning Roadmap

Step Description of Task Location of Instructions

3 Installation: Install the HADB software with Installation Guide
or without the Application Server software

4 Deployment: Install and run your Administration Guide
applications. Familiarize yourself with how to
configure and administer the Application
Server subsystems and components.

5 Tuning: Tune applications, the Java Runtime Performance Tuning Guide
System, operating system, HADB, and the
Application Server.

Performance Tuning Sequence

Application developers should tune applications prior to production use. Tuning
applications often produces dramatic performance improvements. System administrators
perform the remaining steps in the following list after tuning the application, or when
application tuning has to wait and you want to improve performance as much as possiblein
the meantime.

Ideally, follow this sequence of steps when you are tuning performance;
1. Tuneyour application, described in Chapter 2, “Tuning Y our Application.”
2. Tunethe server, described in Chapter 3, “Tuning the Application Server.”

3. Tunethe high availability database, described in Chapter 6, “ Tuning for
High-Availability.”

4. Tune the Java runtime system, described in Chapter 4, “Tuning the Java Runtime
Waernlﬂ

5. Tunethe operating system, described in Chapter 5, “Tuning the Operating System.”

Understanding Operational Requirements

Before you begin to deploy and tune your application on the Application Server, it is
important to clearly define the operational environment. The operational environment is
determined by high-level constraints and requirements such as.

» Application Architecture
* Security Requirements

16 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Understanding Operational Requirements

e Hardware Resources

Application Architecture

The J2EE Application model, as shown in the following figure, is very flexible; allowing
the application architect to split application logic functionally into many tiers. The
presentation layer is typically implemented using servlets and JSP technology and executes
in the web container.

Client-Side Server-Side Server-Side Enterprise
Presentation) Presentation _Busmaas Loglc‘ ln[gyﬂg}h{m

Browser . Web

Pure
HTML

Java
Applet

Desktop

Java . Java
Application Serviet

Other Device

JZEE
Client

Figure 1-1 J2EE Application Model

Moderately complex enterprise applications can be devel oped entirely using servlets and
JSP technology. More complex business applications often use Enterprise JavaBeans (EJB)
components. The Application Server integrates the web and EJB containersin asingle
process. Local accessto EJB components from servletsis very efficient. However, some
application deployments may require EJB components to execute in a separate process, and
be accessible from standalone client applications as well as servlets. Based on the
application architecture, the server administrator can employ the Application Server in
multiple tiers, or simply host both the presentation and business logic on asingle tier.

Chapter 1 Overview of Sun Java System Application Server Performance 17

Understanding Operational Requirements

18

It isimportant to understand the application architecture before designing a new
Application Server deployment, and when deploying a new business application to an
existing application server deployment.

Security Requirements

Most business applications require security. This section discusses security considerations
and decisions.

User Authentication and Authorization

Application users must be authenticated. The Application Server provides three different
choices for user authentication: file-based, LDAP, and Solaris.

The default file based security realm is suitable for developer environments, where new
applications are developed and tested. At deployment time, the server administrator can
choose between the Lighweight Directory Access Protocol (LDAP) or Solaris security
realms. Many large enterprises use LDAP-based directory serversto maintain employee
and customer profiles. Small to medium enterprises that do not already use a directory
server may find it advantageous to leverage investment in Solaris security infrastructure.

For more information on security realms, see the Sun Java System Application Server
Administration Guide.

The type of authentication mechanism chosen may require additional hardware for the
deployment. Typically a directory server executes on a separate server, and may also
require a backup for replication and high availability. Refer to Sun Java System Directory
Server documentation for more information on deployment, sizing, and avail ability
guidelines.

An authenticated user’ s access to application functions may also need authorization checks.
If the application uses the role-based J2EE authorization checks, the application server
performs some additional checking, which incurs additional overheads. When you perform
capacity planning, you must take this additional overhead into account.

Encryption

For security reasons, sensitive user inputs and application output must be encrypted. Most
business-oriented web applications encrypt all or some of the communication flow between
the browser and Application Server. Online shopping applications encrypt traffic when the
user is completing a purchase or supplying private data. Portal applications such as news
and media typically do not employ encryption. Secure Sockets Layer (SSL) is the most
common security framework, and is supported by many browsers and application servers.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Understanding Operational Requirements

The Application Server supports SSL 2.0 and 3.0 and contains software support for various
cipher suites. It also supportsintegration of hardware encryption cards for even higher
performance. Security considerations, particularly when using the integrated software
encryption, will impact hardware sizing and capacity planning.

Consider the following when assessing the encryption needs for a deployment:

* What isthe nature of the applications with respect to security? Do they encrypt all or
only apart of the application inputs and output? What percentage of the information
needs to be securely transmitted?

» Arethe applications going to be deployed on an application server that is directly
connected to the Internet? Will aweb server exist in a demilitarized zone (DM Z)
separate from the application server tier and backend enterprise systems?

A DMZ-style deployment is recommended for high security. It is also useful when the
application has asignificant amount of static text and image content and some business
logic that executes on the Application Server, behind the most secure firewall.
Application Server provides secure reverse proxy pluginsto enable integration with
popular web servers. The Application Server can aso be deployed and used as aweb
server in DMZ.

* Isencryption required between the web serversin the DMZ and application serversin
the next tier? The reverse proxy plugins supplied with Application Server support SSL
encryption between the web server and application server tier. If SSL is enabled,
hardware capacity planning must be take into account the encryption policy and
mechanisms.

» |f software encryption is to be employed:

o What isthe expected performance overhead for every tier in the system, given the
security requirements?

o What are the performance and throughput characteristics of various choices?

NOTE For information on how to encrypt the communication between web servers
and Application Server, please refer to Sun Java System Application Server
Administration Guide.

Hardware Resources

Thetype and quantity of hardware resources available greatly influence performance tuning
and site planning.

Chapter 1 Overview of Sun Java System Application Server Performance 19

General Tuning Concepts

The Application Server provides excellent vertical scalability. It can scale to efficiently
utilize multiple high-performance CPUs, using just one application server process. A
smaller number of application server instances makes maintenance easier and
administration less expensive. Also, deploying several related applications on fewer
application servers can improve performance, due to better data locality, and reuse of
cached data between co-located applications. Such servers must also contain large amounts
of memory, disk space, and network capacity to cope with increased load.

The Application Server can also be deployed on large “farms” of relatively modest
hardware units. Business applications can be partitioned across various server instances.
Using one or more external load balancers can efficiently spread user access across all the
application server instances. A horizontal scaling approach may improve availability, lower
hardware costs and is suitable for some types of applications. However, this approach
requires administration of more application server instances and hardware nodes.

General Tuning Concepts

Some key concepts that affect performance tuning are;
* User load

» Application scalability

* Margins of safety

The following table describes these concepts, and how they are measured in practice. The
left most column describes the general concept, the second column gives the practical
ramifications of the concept, the third column describes the measurements, and the right
most column describes the val ue sources.

Table 1-2 Factors That Affect Performance: Concept, In Practice, and M easurement
Concept In practice Measurement Value sources
User Load Concurrent sessions Transactions Per (Max. number of concurrent users) * (expected
at peak load Minute (TPM) response time) / (time between clicks)
Web Interactions Per Example:

Second (WIPS) (200 users * 2 sec) / 10 sec = 20

20 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

General Tuning Concepts

Table 1-2 Factors That Affect Performance: Concept, In Practice, and M easurement
Concept In practice Measurement Value sources
Application Transaction rate TPM or WIPS Measured from workload benchmark. Perform at
Scalability measured on one each tier.
CPU
Vertical scalability: Percentage gain per Based on curve fitting from benchmark. Perform
increase in additional CPU tests while gradually increasing the number of
performance from CPUs. Identify the “knee” of the curve, where
additional CPUs additional CPUs are providing uneconomical gains
in performance. Requires tuning as described in
this guide. Perform at each tier and iterate if
necessary. Stop here if this meets performance
requirements.
Horizontal scalability: ~ Percentage gain per Use a well-tuned single application server
increase in additional server instance, as in previous step. Measure how much
performance from process and/or each additional server instance and hardware
additional servers hardware node. node improves performance.
Safety High availability If the system must cope Different equations used if high availability is
Margins requirements with failures, size the required.

Slack for unexpected
peaks

system to meet
performance
requirements assuming
that one or more
application server
instances are non
functional

It is desirable to
operate a server at less
than its benchmarked
peak, for some safety
margin

80% system capacity utilization at peak loads may
work for most installations. Measure your
deployment under real and simulated peak loads.

Capacity Planning

The previous discussion guides you towards defining a deployment architecture. However,
you determine the actual size of the deployment by a process called capacity planning.

Capacity planning enables you to predict:

» The performance capacity of a particular hardware configuration.

e The hardware resources required to sustain specified application load and performance.

Y ou can estimate these values through careful performance benchmarking, using an
application with realistic data sets and workloads.

Chapter 1

Overview of Sun Java System Application Server Performance 21

General Tuning Concepts

22

The basic steps in capacity planning are:

1.

Determine performance on a single CPU.

First determine the largest load that a single processor can sustain. Y ou can obtain this
figure by measuring the performance of the application on a single-processor machine.
Either leverage the performance numbers of an existing application with similar
processing characteristics or, ideally, use the actual application and workload in a
testing environment. Make sure that the application and data resources are tiered
exactly as they would be in the final deployment.

Determine vertical scalability.

Determine how much additional performance you gain when you add processors. That
is, you are indirectly measuring the amount of shared resource contention that occurs
on the server for a specific workload. Either obtain thisinformation based on additional
load testing of the application on a multiprocessor system, or leverage existing
information from a similar application that has already been load tested.

Running a series of performance tests on one to eight CPUs, in incremental steps,
generally provides a sense of the vertical scalability characteristics of the system. Be
sure to properly tune the application, Application Server, backend database resources,
and operating system so that they do not skew the results.

Determine horizontal scalability.

If sufficiently powerful hardware resources are available, a single hardware node may
meet the performance requirements. However for better availability, you can cluster
two or more systems. Employing external load balancers and workload simulation,
determine the performance benefits of replicating one well-tuned application server
node, as determined in step (2).

User Expectations

Application end-users generally have some performance expectations. Often you can
numerically quantify them. To ensure that customer needs are met, you must understand
these expectations clearly, and use them in capacity planning.

Consider the following questions regarding performance expectations:

What do users expect the average response times to be for various interactions with the
application? What are the most frequent interactions? Are there any extremely
time-critical interactions? What is the length of each transaction, including think time?
In many cases, you may need to perform empirical user studies to get good estimates.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Further Information

What are the anticipated steady-state and peak user loads? Are there are any particular
times of the day, week, or year when you observe or expect to observe load peaks?
While there may be several million registered customers for an online business, at any
one time only afraction of them are logged in and performing business transactions. A
common mistake during capacity planning isto use the total size of customer

popul ation as the basis and not the average and peak numbers for concurrent users. The
number of concurrent users also may exhibit patterns over time.

What is the average and peak amount of data transferred per request? Thisvalueisalso
application-specific. Good estimates for content size, combined with other usage
patterns, will help you anticipate network capacity needs.

What is the expected growth in user load over the next year? Planning ahead for the
future will help avoid crisis situations and system downtimes for upgrades.

Further Information

For details on performance guidelines regarding J2EE applications, see
http://java. sun. con bl uepri nts/ per f or mance/ i ndex. ht ni

For details on optimizing EJB components, see
http://devel oper.java. sun. com devel oper/t echni cal Arti cl es/ ebeans/ sevenrul e
s/

For details on profiling, see the Application Server Developer’s Guide, chapter
“Developing J2EE Applications,” specifically the section titled Profiling Tools.

For more details on SNMP monitoring see the Application Server Administration
Guide, the chapter on Monitoring and Managing Applications.

For more details on the donai n. xn file see the Application Server Administration
Reference.

For information on J2SE performance, see
http://java. sun. con docs/ hot spot /i ndex. ht m

For general information on Java performance, see
http://java. sun. con docs/ per f or rance

Chapter 1 Overview of Sun Java System Application Server Performance 23

http://java.sun.com/blueprints/performance/index.html
http://java.sun.com/docs/hotspot/index.html
http://java.sun.com/docs/performance
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/

Further Information

24 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Chapter 2

Tuning Your Application

This chapter provides information on tuning applications for maximum performance. A
complete guide to writing high performance Java and J2EE applicationsis beyond the scope
of this document.

This chapter discusses the following topics:
e JavaProgramming Guidelines

e Java Server Page and Servlet Tuning

» EJB Performance Tuning

Java Programming Guidelines

This section covers issues related to Java coding and performance. The guidelines outlined
are not specific to Application Server, but are general rules that are useful in many
situations. For a complete discussion of Java coding best practices, refer to the Java
BluePrints at http://java.sun.com/blueprints/performance/index.html.

Avoid Serialization and Deserialization

Serialization and deserialization of objectsis a CPU-intensive procedure and islikely to
slow down your application. Use thet ransi ent keyword to reduce the amount of data
serialized. Additionally, customized readbj ect () andwr i t ebj ect () methods may be
beneficial in some cases.

Use StringBuffer to Concatenate Strings

To improve performance, instead of using string concatenation, use
StringBuf fer. append() .

25

http://java.sun.com/blueprints/performance/index.html

Java Programming Guidelines

26

String objects are immutable—they never change after creation. For example, consider the
following code:

String str = "testing";
str = str + "abc";

The compiler trandates this code as:

String str = "testing";

StringBuffer tnp = new StringBuffer(str);
t mp. append(" abc");

str = tnp.toString();

Therefore, copying isinherently expensive and overusing it can reduce performance
significantly.

Assign null to Variables That Are No Longer Needed

Explicitly assigning anull value to variables that are no longer needed hel ps the garbage
collector to identify the parts of memory that can be safely reclaimed. Although Java
provides memory management, it does not prevent memory leaks or using excessive
amounts of memory.

An application may induce memory leaks by not releasing object references. Doing so
prevents the Java garbage collector from reclaiming those objects, and resultsin increasing
amounts of memory being used. Explicitly nullifying references to variables after their use
allows the garbage collector to reclaim memory.

One way to detect memory leaksis to employ profiling tools and take memory snapshots
after each transaction. A leak-free application in steady state will show a steady active heap
memory after garbage collections.

Declare Methods as final Only If Necessary

Modern optimizing dynamic compilers can perform inlining and other inter-procedural
optimizations, even if Java methods are not declared fi nal . Use the keyword fi nal asit
was originally intended: for program architecture reasons and maintainability.

Only if you are absolutely certain that a method must not be overridden, use thefi nal
keyword.

Declare Constants as static final

The dynamic compiler can perform some constant folding optimizations easily, when you
declare constantsasstatic final variables.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Java Programming Guidelines

Avoid Finalizers

Adding finalizers to code makes the garbage collector more expensive and unpredictable.
The virtual machine does not guarantee the time at which finalizers are run. Finalizers may
not always be executed, before the program exits. Releasing critical resourcesin
finalize() methods may lead to unpredictable application behavior.

Declare Method Arguments final

Declare method argumentsfi nal if they are not modified in the method. In general, declare
al variablesfinal if they are not modified after being initialized or set to some value.

Synchronize Only When Necessary

Do not synchronize code blocks or methods unless synchronization is required. Keep
synchronized blocks or methods as short as possible to avoid scalability bottlenecks. Use
the Java Collections Framework for unsynchronized data structures instead of more
expensive aternatives such ag ava. uti | . HashTabl e.

Use DataHandlers for SOAP Attachments

Using aj avax. acti vati on. Dat aHandl er for a SOAP attachment will improve performance.
JAX-RPC specifies:

* A mapping of certain MIME types to Javatypes.

* Any MIME typeis mappableto aj avax. acti vati on. Dat aHandl er .

Asaresult, send an attachment (. gi f or XML document) as a SOAP attachment to an RPC
style web service by utilizing the Java type mappings. When passing in any of the mandated
Java type mappings (appropriate for the attachment’s MIME type) as an argument for the
web service, the JAX-RPC runtime handles these as SOAP attachments.

For example, to send out ani nage/ gi f attachment, usej ava. awt . | nage, or create a
DataHandler wrapper over your image. The advantages of using the wrapper are:

* Reduced coding

Reuse generic attachment code to handle the attachments because the DataHandler
determines the content type of the contained data automatically. Thisfeatureis
especialy useful when using a document style service. Since the content is known at
runtime, there is no need to make callsto at t achnent . set Cont ent (st ri ngCont ent ,
"i mage/ gi f"), for example.

* Improved Performance

Chapter 2 Tuning Your Application 27

Java Server Page and Servlet Tuning

Informal tests have shown that using DataHandler wrappers doubl es throughput for
i mage/ gi f MIME types, and multiplies throughput by approximately 1.5 for t ext / xn
orjava. awt . | nage for i nage/ * types.

Java Server Page and Servlet Tuning

Many applications running on the Application Server use servlets or JavaServer Pages
(JSP) technology in the presentation tier. This section describes how to improve
performance of such applications, both through coding practices and through deployment
and configuration settings.

Suggested Coding Practices

This section provides some tips on coding practices that improve servlet and JSP
application performance.

General Guidelines
Follow these general guidelines to increase performance of the presentation tier:

* Minimize Java synchronization in servlets.
» Don't usethe single thread model for servlets.
* Usetheservlet's init() method to perform expensive one-time initialization.

e Avoidusing Systemout. println() cals.

Avoid Shared Modified Class Variables

In the servlet multithread model (the default), a single instance of a servlet is created for
each application server instance. All requests for a servlet on that application instance share
the same servlet instance. This can lead to thread contention if there are synchronization
blocksin the servlet code. So, avoid using shared modified class variables, since they create
the need for synchronization.

HTTP Session Handling

Follow these guidelines when using HTTP sessions:

» Create sessions sparingly. Session creation is not free. If asession is not required, do
not create one.

28 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Java Server Page and Servlet Tuning

e Usejavax.servlet.http. HtpSession.invalidate() torelease sessionswhen they
are no longer needed.

» Keep session size small, to reduce response times. If possible, keep session size below
seven KB.

» Usethedirective <%age sessi on="fal se" % in JSP filesto prevent the Application
Server from automatically creating sessions when they are not necessary.

» Avoid large object graphsin an H t pSessi on. They force serialization and add
computational overhead. Generally, do not store large objectsas H t pSessi on
variables.

e Don't cache transaction datain Ht t pSessi on. Accessto datain an H t pSessi on is not
transactional. Do not use it as a cache of transactional data, which is better kept in the
database and accessed using entity beans. Transactions will rollback upon failuresto
their original state. However, stale and inaccurate data may remain in H t pSessi on
objects. The Application Server provides “read-only” bean-managed persistence entity
beans for cached access to read-only data.

Configuration and Deployment Tips

The following configuration tips also improve performance. These tips are intended for
production environments, not development environments.

» Toimprove class loading time, avoid having excessive directories in the server
CLASSPATH. Put application-related classes into JAR files.

» HTTP response times are dependent on how the keep-alive subsystem and the HTTP
server istuned in general. For more information, see “HTTP Service.”

e If youareusing Solaris 8, optimize SSL by using the m nal | oc library that provides a
collection of mal | oc routines for concurrent access to heap space. To usent nal | oc:

a. Get patch 111308-03 from http://sunsolve.sun.com/ and install it.

b. Editthe startserv script located in bi n/ st art ser v for your domain, and define
the LD_PRELOAD environment variable to be:

fusr/lib/libntmalloc.so
The exact syntax to define an environment variable depends on the shell you use.

» Cache servlet results when possible. For more information, see the Application Server
Developer’s Guide chapter Devel oping Web Applications.

» |If an application does not contain any EJB components, deploy the application as a
WAR file, not an EAR file.

Chapter 2 Tuning Your Application 29

EJB Performance Tuning

Disable Security Manager

The security manager is expensive because calls to required resources must call the

doPri vi | eged() method and must also check the resource with the ser ver . pol i cy file. If
you are sure that no malicious code will be run on the server and you do not use
authentication within your application, then you can disable the security manager.

To disable use of the ser ver. pol i cy file, use the Admin Console. Under Configurations
> config-name > JVM Settings (VM Options) delete the option that looks like this:

-D ava. security. pol i cy=${ com sun. aas. i nst anceRoot }/ confi g/ server. pol i cy

EJB Performance Tuning

The Application Server’s high-performance EJB container has numerous parameters that
affect performance. Individual EJB components also have parameters that affect
performance. The value of individual EJB component’ s parameter overrides the value of the
same parameter for the EJB container. The default values are designed for a
single-processor computer system—change them to optimize for other system
configurations.

This section covers the following topics:

+ Gods

e Monitoring EJB Components

* General Guidelines

» Using Loca and Remote Interfaces

* Improving Performance of EJB Transactions

» Using Special Techniques

e Tuning Tipsfor Specific Types of EJB Components
+ JDPBC and Database Access

e Tuning Message-Driven Beans

30 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

Goals

The goals of EJB performance tuning are:

* Increased speed - Cache as many beansin the EJB caches as possible to increase
speed (equivalently, decrease response time). Caching eliminates CPU-intensive
operations. However, since memory isfinite, as the caches become larger,
house-keeping for them (including garbage collection) takes longer.

e Decreased memory consumption - Beans in the pools or caches consume memory
from the Java virtual machine heap. Very large pools and caches degrade performance
because they require longer and more frequent garbage collection cycles.

e Improved functional properties- Functional properties such as user time-out,
commit options, security, and transaction options, are mostly related to the
functionality and configuration of the application. Generally, they do not compromise
functionality for performance. In some cases, you might be forced to make a
“trade-off” decision between functionality and performance. This section offers
suggestionsin such cases.

Monitoring EJB Components

When the EJB container has monitoring enabled, you can examine statistics for individual
beans based on the bean pool and cache settings.

For example, the monitoring command below gives the Bean Cache statistics for a stateful
session bean.

asadm n get --user admn --host e4800-241-a --port 4848 -m
specj cnp. appl i cati on. SPEC) AppSer ver . ej b- nodul e.
suppl i er_jar. stateful -sessi on- bean. Buyer Ses. bean- cache. *

The following is a sample of the monitoring output:

resize-quantity = -1
cache-msses = 0

i dl e-timeout-in-seconds = 0

num passi vations = 0

cache-hits = 59

num passi vation-errors = 0

tot al - beans-in-cache = 59

num expi r ed- sessi ons-renmoved = 0
max- beans-i n- cache = 4096

num passi vati on-success = 0

Chapter 2 Tuning Your Application 31

EJB Performance Tuning

32

The monitoring command below gives the bean pool statistics for an entity bean:

asadmin get --user adnin --host e4800-241-a --port 4848 -m
specj cnp. appl i cati on. SPEG AppSer ver. ej b- nodul e. supplier_jar.
stateful -entity-bean.|tenknt. bean-pool . *

i dl e-tinmeout-in-seconds = 0
st eady- pool -si ze = 0

total - beans-destroyed = 0
numt hreads-waiting = 0
num beans-i n- pool = 54

max- pool - si ze = 2147483647
pool -resi ze-quantity = 0
total -beans-created = 255

The monitoring command below gives the bean pool statistics for a stateless bean.

asadmn get --user adnmin --host e4800-241-a --port 4848 -m
test. application.testE bMn. e b-nodul e. sl sb. st at el ess-sessi on- bean.
sl sh. bean- pool . *

i dl e-tineout-in-seconds = 200
st eady- pool -si ze = 32

total - beans-destroyed = 12
numt hreads-waiting = 0

num beans-i n-pool = 4

max- pool -si ze = 1024

pool -resi ze-quantity = 12
total -beans-created = 42

Tuning the bean involves charting the behavior of the cache and pool for the beanin
question over a period of time.

If too many passivations are happening and the VM heap remains fairly small, then the
max- cache- si ze or the cache-i dl e-ti neout - i n- seconds can be increased. If garbage
collection is happening too frequently, and the pool size is growing, but the cache hit rateis
small, then the pool -i dl e-ti meout - i n- seconds can be reduced to destroy the instances.

NOTE Specifying anax- pool - si ze of zero (0) means that the pool is unbounded.
The pooled beans remain in memory unlessthey are removed by specifying
asmall interval for pool -i dl e-ti meout - i n- seconds. For production
systems, specifying the pool as unbounded is NOT recommended.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

Monitoring Individual EJB Components
To gather method invocation statistics for all methods in a bean, use this command:
asadm n get -m nonitorabl ethject.*

where monitorableObject is afully-qualified identifier from the hierarchy of monitorable
objects, shown below.

serverlnstance. appl i cati on. appl i cati onNane
e .ej b-nodul e. nodul eNane (for x.jar, nodul eNane is x_jar)

o .statel ess-sessi on- bean. beanNane
. bean- pool
. bean- net hod. net hodNare

o .stateful -session-bean. beanNane
. bean- cache
. bean- net hod. net hodNarre

o .entity-bean. beanNane
. bean- cache
. bean- pool
. bean- net hod. net hodNane

o . message-driven-bean. beanNane
. bean- pool
. bean- net hod. net hodNanme (et hodNane = onMessage)

For standal one beans, use this pattern:

serverlnstance. appl i cati on. appl i cati onNane

e . standal one- ej b- nodul e. modul eNane
(same possibilities as for gjb-module, above)

For example, to get statistics for a method in an entity bean, use this command:

asadm n get -m serverlnstance. application. appNare. ej b- nodul e
. nodul eNarre. ent i t y- bean. beanNane. bean- net hod. net hodNane. *

To find the possible objects (applications, modules, beans, and methods) and object
attributes that can be monitored, use the Admin Console or the asadni n |i st command, as
described in the Administration Guide chapter on monitoring the Application Server.

For statistics on stateful session bean passivations, use this command:

asadm n get -mserverlnstance. application. appNare. ej b- nodul e
. nodul eNarre. st at ef ul - sessi on- bean. beanNarre. bean- cache. *

Chapter 2 Tuning Your Application 33

EJB Performance Tuning

34

From the attribute values that are returned, use the following:

num passi vati ons
num passi vati on-errors
num passi vat i on- success

General Guidelines

The following guidelines can improve performance of EJB components. Keep in mind that
decomposing an application into many EJB components creates overhead and can degrade
performance. EJB components are not simply Java objects. They are components with
semantics for remote call interfaces, security, and transactions, as well as properties and
methods.

Use High Performance Beans
The types of EJB components are listed below, from the highest performance to the lowest:

1. Stateless Session Beans and Message Driven Beans

2. Stateful Session Beans

3. Container Managed Persistence (CMP) entity beans configured as read-only
4. Bean Managed Persistence (BMP) entity beans configured as read-only

5. CMP beans

6. BMP beans

Using high-performance beans as much as possible improves the overall performance of
your application. See Tuning Tips for Specific Types of EJB Components for information
on how to improve performance for each bean type.

Use Caching

Caching can greatly improve performance when used wisely. For example:

e CacheEJB references: To avoid a INDI lookup for every request, cache EJB
referencesin servlets.

e Cachehomeinterfaces: Since repeated lookups to a home interface can be expensive,
cache references to EJBHomesin servlets i ni t () methods.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

e CacheEJB resources: Use set Sessi onCont ext () or e bCreat e() to cache bean
resources. Thisis again an example of using bean lifecycle methods to perform
application actions only once where possible. Remember to rel ease acquired resources
in the ej bRemove() method.

Use the Appropriate Stubs

The stub classes needed by EJB applications are generated dynamically at runtime when an
EJB client needs them. This means that it is not necessary to generate the stubs or retrieve
the client JAR file when deploying an application with remote EJB components. When
deploying an application, it is no longer necessary to specify the- - r et ri eve option, which
can speed up deployment.

If you have alegacy rich-client application that directly uses the CosNaming service (not a
recommended configuration), then you must generate the stubs for your application
explicitly using RMIC. See the Troubleshooting Guide for more details.

Remove Unneeded Stateful Session Beans

Removing unneeded stateful session beans avoids passivating them, and the attendant disk
operations.

Cache and Pool Tuning Tips

Here are some further tuning tips:

» Explicitly call remove() : Allow stateful session EJB components to be removed from
the container cache by explicitly calling of the renove() method in the client.

e Tunethe entity EJB component’s pool size: Entity Beans use both the EJB pool and
cache settings. Tune the entity EJB component’ s pool size to minimize the creation and
destruction of beans. Populating the pool with anon-zero steady size before hand is
useful for getting better response for initial requests.

e Cache bean-specific resources. Usethe set Enti t yCont ext () method to cache bean
specific resources and release them using the unSet Ent i t yCont ext () method.

» Load related data efficiently for container-managed relationships (CMRs). For more
information, see “Pre-fetching Container Managed Relationship (CMR) Beans.”.

» ldentify read-only beans: Configure read-only entity beans for read only operations.
For more information, see “Read-Only Entity Beans.”

Chapter 2 Tuning Your Application 35

EJB Performance Tuning

36

Using Local and Remote Interfaces

This section describes some considerations when EJB components are used by local and
remote clients.

Prefer Local Interfaces

An EJB component can have remote and local interfaces. Clients not located in the same
application server instance as the bean (remote clients) use the remote interface to access
the bean. Calls to the remote interface require marshalling arguments, transportation of the
marshalled data over the network, un-marshaling the arguments, and dispatch at the
receiving end. Thus, using the remote interface entails significant overhead.

If an EJB component has alocal interface, then local clients in the same application server
instance can use it instead of the remote interface. Using the local interface is more
efficient, since it does not require argument marshalling, transportation, and
un-marshalling.

If abean isto be used only by local clients then it makes sense to provide only the local
interface. If, on the other hand, the bean is to be location-independent, then you should
provide both the remote and local interfaces so that remote clients use the remote interface
and local clients can use the local interface for efficiency.

Using Pass-By-Reference Semantics

By default, the Application Server uses pass-by-value semantics for calling the remote
interface of a bean, eveniif it is co-located. This can be expensive, since clients using
pass-by-value semantics must copy arguments before passing them to the EJB component.

However, local clients can use pass-by-reference semantics and thus the local and remote
interfaces can share the passed objects. But this means that the argument objects must be
implemented properly, so that they are shareable. In general, it is more efficient to use
pass-by-reference semantics when possible.

Using the remote and local interfaces appropriately means that clients can access EJB
components efficiently. That is, local clients use the local interface with pass-by-reference
semantics, while remote clients use the remote interface with pass-by-value semantics.

However, in some instances it might not be possible to use the local interface, for example
when:

e The application predates the EJB 2.0 specification and was written without any local
interfaces.

» There are bean-to-bean calls and the client beans are written without making any
co-location assumptions about the called beans.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

For these cases, the Application Server provides a pass-by-reference option that clients can
use to pass arguments by reference to the remote interface of a co-located EJB component.

Y ou can specify the pass-by-reference option for an entire application or asingle EJB
component. When specified at the application level, all beansin the application use
pass-by-reference semantics when passing arguments to their remote interfaces. When
specified at the bean level, all callsto the remote interface of the bean use pass-by-reference
semantics. See the Developers Guide for more details about the pass-by-reference flag.

To specify that an EJB component will use pass by reference semantics, use the following
tag in the sun- ej b-j ar. xn deployment descriptor:

<pass- by-r ef erence>t r ue</ pass- by- r ef erence>.

Thisavoids copying arguments when the EJB component’ s methods are invoked and avoids
copying results when methods return. However, problems will ariseif the datais modified
by another source during the invocation.

Improving Performance of EJB Transactions

This section provides some tips to improve performance when using transactions.

Use Container-Managed Transactions

Container-managed transactions are preferred for consistency, and provide better
performance.

Don’t Encompass User Input Time

To avoid resources being held unnecessarily for long periods, a transaction should not
encompass user input or user think time.

Identify Non-Transactional Methods

Declare non-transactional methods of session EJB components with Not Suppor t ed or Never
transaction attributes. These attributes can be found in the ej b-j ar. xm deployment
descriptor file. Transactions should span the minimum time possible since they lock
database rows.

Use TX_REQUIRED for Long Transaction Chains

For very large transaction chains, use the transaction attribute TX_REQU RED. To ensure EJB
methodsin acall chain, use the same transaction.

Chapter 2 Tuning Your Application 37

EJB Performance Tuning

Use Lowest Cost Database Locking

Use the lowest cost locking available from the database that is consistent with any
transaction. Commit the data after the transaction compl etes rather than after each method
cal.

Use XA-Capable Data Sources Only When Needed

When multiple database resources, connector resources or JM S resources are involved in
one transaction, adistributed or global transaction needs to be performed. This requires XA
capable resource managers and data sources. Use XA capable data sources, only when two
or more data source are going to be involved in atransaction. If a database participatesin
some distributed transactions, but mostly in local or single database transactions, it is
advisable to register two separate JDBC resources and use the appropriate resource in the
application.

Configure JDBC Resources as One-Phase Commit Resources

To improve performance of transactions involving multiple resources, the Application
Server uses last agent optimization (LAO), which allows the configuration of one of the
resourcesin a distributed transaction as a one-phase commit (1PC) resource. Since the
overhead of multiple-resource transactions is much higher for a JDBC resource than a
message queue, LAO substantially improves performance of distributed transactions
involving one JDBC resource and one or more message queues. To take advantage of LAO,
configure a JDBC resource as a 1PC resource. Nothing special needs to be doneto
configure JM S resources.

In global transactions involving multiple JDBC resources, LAO will still improve
performance, however, not as much as for one JDBC resource. In this situation, one of the
JDBC resources should be configured as 1PC, and all others should be configured as XA.

Use the Least Expensive Transaction Attribute

Set the following transaction attributes in the EJB deployment descriptor file

(ej b-j ar.xm). Options are listed from best performance to worst. To improve
performance, choose the least expensive attribute that will provide the functionality your
application needs:

1. NEVER
2. TX_NOTSUPPORTED
3. TX_MANDATORY
4. TX_SUPPORTS

5. TX_REQUIRED

38 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

6. TX_REQUIRESNEW

Using Special Techniques

This section discusses two specia performance-enhancing techniques: version consistency
and reguest partitioning.

Version Consistency

Use version consistency to improve performance while protecting the integrity of datain the
database. Since the application server can use multiple copies of an EJB component
simultaneously, an EJB component’ s state can potentially become corrupted through
simultaneous access.

The standard way of preventing corruption isto lock the database row associated with a
particular bean. This prevents the bean from being accessed by two simultaneous
transactions and thus protects data. However, it also decreases performance, since it
effectively serializes all EJB access.

Version consistency is another approach to protecting EJB data integrity. To use version
consistency, you specify a column in the database to use as a version number. The EJB
lifecycle then proceeds like this:

» Thefirst timethe bean is used, the ej bLoad() method loads the bean as normal,
including loading the version number from the database.

 Theej bStore() method checks the version number in the database versusits value
when the EJB component was |oaded.

o If theversion number has been modified, it meansthat there has been simultaneous
access to the EJB component and ej bSt or e() throwsa
Concurrent Mdi fi cati onExcepti on.

o Otherwise, e] bSt ore() storesthe dataand completes as normal.

NOTE Theej bSt ore() method performs this validation at the end of the
transaction regardl ess of whether any datain the bean was modified.

Subsequent uses of the bean behave similarly, except that the ej bLoad() method loads its
initial data (including the version number) from an internal cache. This saves atrip to the
database. When the ej bSt or e() method is called, the version number is checked to ensure
that the correct data was used in the transaction.

Chapter 2 Tuning Your Application 39

EJB Performance Tuning

40

Version consistency is advantageous when you have EJB components that are rarely
modified, because it allows two transactions to use the same EJB component at the same
time. Because neither transaction modifies the data, the version number is unchanged at the
end of both transactions, and both succeed. But now the transactions can run in parallel. If
two transactions occasionally modify the same EJB component, one will succeed and one
will fail and can be retried using the new values—which can still be faster than serializing
all accessto the EJB component if the retries are infrequent enough (though now your
application logic has to be prepared to perform the retry operation).

To use version consistency, the database schema for a particular table must include a
column where the version can be stored. Y ou then specify that tablein the
sun- cnp- mappi ng. xm deployment descriptor for a particular bean:

<entity- mappi ng>
<cnp-fi el d- mappi ng>

</ cnp-fi el d- mappi ng>
<consi st ency>
<check- ver si on- of - accessed- i nst ances>
<col um- nane>Qr der Tabl e. VC_VERSI ON_NUMBER</ col umm- name>
</ check- ver si on- of - accessed- i nst ances>
</ consi st ency>
</entity-mappi ng>

In addition, you must establish atrigger on the database to automatically update the version
column when datain the specified table is modified. The Application Server requires such a
trigger to use version consistency. Having such atrigger also ensures that external
applications that modify the EJB datawill not conflict with EJB transactionsin progress.

For example, the following DDL illustrates how to create atrigger for the Order table:

CREATE TRI GGER Order Tri gger
BEFCRE UPDATE ON O der Tabl e
FOR EACH ROV
WHEN (new. VC_VERSI ON_NUMBER = ol d. VC_VERSI ON_NUMBER)
DECLARE
BEG N
: NEW VC_VERSI ON_NUMBER : = : OLD. VC_VERSI ON_ NUMBER + 1;
END;

Request Partitioning

Request partitioning enables you to assign a request priority to an EJB component. This
givesyou theflexibility to make certain EJB components execute with higher priorities than
others.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

An EJB component which has arequest priority assigned to it will have its requests
(services) executed within an assigned threadpool. By assigning a threadpool to its
execution, the EJB component can execute independently of other pending requests. In
short, request partitioning enables you to meet service-level agreements that have differing
levels of priority assigned to different services.

Request partitioning applies only to remote EJB components (those that implement a
remote interface). Local EJB components are executed in their calling thread (for example,
when a servlet callsalocal bean, the local bean invocation occurs on the servlet’s thread).

To enable request partitioning:
1. Configure additional threadpools for EJB execution using the Admin Console.

2. Addthe additional threadpool IDsto the Application Server’s ORB. Y ou can do thisby
editing the domai n. xm file or through the Admin Console.

For exampl e, enabl e thread pools named priority-1 and priority-2 to the <orb> element
asfollows:

<orb max- connections="1024" nessage-fragnent-si ze="1024"
use-t hread- pool -ids="t hread-pool -1, priority-1,priority-2"/>

3. Includethe threadpool ID inthe use-t hr ead- pool -i d element of the EJB
component’ssun- ej b-j ar. xm deployment descriptor.

Thefollowing is an example sun- ej b-j ar. xm for an EJB component named
“TheGreeter” which is assigned to a thread pool named priority-2:

<sun-ej b-j ar>
<enterpri se- beans>
<uni que-i d>1</ uni que- i d>
<ej b>
<ej b- nane>TheQ eet er </ ej b- name>
<j ndi - nanme>gr eet er </ j ndi - nane>
<use-t hread- pool -i d>priority- 1</ use-t hread- pool -i d>
</ ej b>
</ enterprise-beans>
</sun-ejb-jar>

4. Restart the Application Server.

Chapter 2 Tuning Your Application 41

EJB Performance Tuning

42

Tuning Tips for Specific Types of EJB
Components

This section provides tips for tuning various specific types of EJB components:
e Entity Beans

+ Stateful Session Beans

» Stateless Session Beans

* Read-Only Entity Beans

* Prefetching Container Managed Relationship (CMR) Beans

Entity Beans

Depending on the usage of a particular entity bean, one should tune max-cache-size so that
beans that are used less (for example, an order that is created and never used after the
transaction is over) are cached less, and beansthat are used frequently (for example, an item
in the inventory that gets referenced very often), are cached more in numbers.

Stateful Session Beans

When a stateful bean represents a user, a reasonable max- cache- si ze of beansisthe
expected number of concurrent users on the application server process. If thisvalue istoo
low (in relation to the steady load of users), beans would be frequently passivated and
activated, causing a negative impact on the response times, due to CPU intensive
serialization and deserialization as well asdisk 1/0.

Another important variable for tuning is cache-i dl e-ti nmeout - i n- seconds where at
periodic intervals of cache-i dl e-ti meout -i n- seconds, all the beans in the cache that have
not been accessed for more than cache-i dl e- ti meout - i n- seconds time, are passivated.
Similar to an HTTP session time-out, the bean is removed after it has not been accessed for
renoval -ti meout - i n- seconds. Passivated beans are stored on disk in serialized form. A
large number of passivated beans could not only mean many files on the disk system, but
also dower response time as the session state has to be de-serialized before the invocation.

Checkpoint only when needed

In high availability mode, when using stateful session beans, consider checkpointing only
those methodsthat alter the state of the bean significantly. This reduces the number of times
the bean state has to be checkpointed into the persistent store.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

Stateless Session Beans

Statel ess session beans are more readily pooled than entity or the stateful session beans.
Valid valuesfor st eady- pool - si ze, pool - resi ze- quant i t y and max- pool - si ze are the best
tunables for these type of beans. Set the st eady- pool - si ze to greater than zero if you want
to pre-populate the pool. This way, when the container comes up, it creates a pool with

st eady- pool - si ze number of beans. By pre-populating the poal it is possible to avoid the
object creation time during method invocations.

Setting the st eady- pool si ze to avery large value can cause unwanted memory growth and
can result in large garbage collection times. pool - resi ze- quant i t y determines the rate of
growth as well asthe rate of decay of the pool. Setting it to a small valueis better asthe
decay behaves like an exponential decay. Setting a small max- pool - si ze can cause
excessive object destruction (and as a result excessive object creation) as instances are
destroyed from the pooal if the current pool size exceeds max- pool - si ze.

Read-Only Entity Beans

Read-only entity beans cache data from the database. Application Server supports read-only
beans that use both bean-managed persistence (BM P) and contai ner-managed persistence
(CMP). Of the two types, CM P read-only beans provide significantly better performance. In
the EJB lifecycle, the EJB container callsthe ej bLoad() method of aread-only bean once.
The container makes multiple copies of the EJB component from that data, and since the
beans do not update the database, the container never callsthe ej bSt or e() method. This
greatly reduces database traffic for these beans.

If there is a bean that never updates the database, use a read-only bean in its place to
improve performance. A read-only bean is appropriate if either:

» Database rows represented by the bean do not change.
e Theapplication can tolerate using out-of-date values for the bean.

For example, an application might use aread-only bean to represent atop-ten best-seller list
of books. Although the list might change occasionally in the database (say, from another
bean entirely), the change need not be reflected immediately in an application.

The ej bLoad() method of aread-only bean is handled differently for CMP and BMP
beans. For CMP beans, the EJB container callsej bLoad() only onceto load the data from
the database; subsequent uses of the bean just copy that data. For BM P beans, the EJB
container callsej bLoad() thefirst time abean isused in atransaction. Subsequent uses of
that bean within the transaction use the same values. The container callsej bLoad() for a
BMP bean that doesn’t run within a transaction every time the bean is used. Therefore,
read-only BMP beans still make a number of callsto the database.

Chapter 2 Tuning Your Application 43

EJB Performance Tuning

44

To create aread-only bean, add the following to the EJB deployment descriptor
sun-ej b-jar. xn:

<i s-read- onl y- bean>t rue</i s- read- onl y- bean>
<refresh- peri od- i n- seconds>600</ r ef r esh- peri od- i n- seconds>

Refresh period

An important parameter for tuning read-only beansis the refresh period, represented by the
deployment descriptor entity r ef r esh- peri od- i n- seconds. For CMP beans, the first
access to a bean loads the bean’ s state. The first access after the refresh period reloads the
data from the database. All subsequent uses of the bean uses the newly refreshed data (until
another refresh period elapses). For BMP beans, an ej bLoad() method within an existing
transaction uses the cached data unless the refresh period has expired (in which case, the
container callsej bLoad() again).

This parameter enables the EJB component to periodically refresh its “ snapshot” of the
database valuesit represents. If the refresh period islessthan or equal to 0, the bean is never
refreshed from the database (the default behavior if no refresh period is given).

Pre-fetching Container Managed Relationship (CMR) Beans

If acontainer-managed relationship (CMR) existsin your application, loading one bean will
load all itsrelated beans. The canonical example of CMR is an order-orderline relationship
where you have one Order EJB component that has related OrderLine EJB components. In
previous releases of the application server, to use all those beans would require multiple
database queries: one for the Order bean and one for each of the OrderLine beansin the
relationship.

In general, if abean has n relationships, using all the data of the bean would require n+1
database accesses. Use CMR pre-fetching to retrieve all the data for the bean and all its
related beans in one database access.

For example, you have thisrelationship defined in the gj b-j ar. xn file:

<rel ati onshi ps>
<ej b-relation>
<descri pti on>Qr der - O der Li ne</ descri pti on>
<ej b-rel ati on- name>Q der - O der Li ne</ ej b-rel ati on- name>
<ej b-rel ationship-rol e>
<ej b-rel ationshi p-rol e- name>
O der - has- N Order Li nes
</ ej b-rel ati onshi p-rol e- nane>
<nultiplicity>ne</mltiplicity>
<rel ati onshi p-rol e- source>
<ej b- nane>Qr der EJB</ ej b- nane>
</rel ati onshi p-rol e-sour ce>

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

<cnr-field>
<cnr - fi el d- nane>or der Li nes</ cnr-fi el d- nane>
<cnr-field-type>java.util.Collection</cnm-field-type>
</fcmr-field>
</ ej b-rel ati onshi p-rol e>
</ ejb-rel ati on>
</rel ati onshi ps>

When a particular Order isloaded, you can load its related OrderLines by adding thisto the
sun- cnp- mappi ng. xm file for the application:

<entity- mappi ng>
<ej b- nane>Qr der </ ej b- name>
<t abl e- nane>. . . </t abl e- nane>
<cnp-fi el d-mappi ng>. .. </ cnp-fi el d- mappi ng>
<cnr-fi el d- mappi ng>
<cnr-fi el d- name>or der Li nes</ cnr-fi el d- nane>
<col um- pai r >
<col um- nane>Qr der Tabl e. Order | D</ col umm- name>
<col utm- name>Qr der Li neTabl e. Or der Li ne_Cr der | D</ col unn- name>
</ col umm- pai r >
<fetched-with>
<def aul t >
</ f et ched- wi t h>
</cnr-fiel d- mappi ng>
</entity-mapppi ng>

Now when an Order is retrieved, the CMP engine issues SQL to retrieve all related
OrderLineswith a SELECT statement that has the following WHERE clause:

O derTabl e. OrderI D = OrderLi neTabl e. OrderLi ne_Order | D

This clause indicates an outer join. These OrderLines are pre-fetched.

Pre-fetching generally improves performance because it reduces the number of database
accesses. However, if the business logic often uses Orders without referencing their
OrderLines, then this can have a performance penalty, that is, the system has spent the effort
to pre-fetch the OrderLines that are not actually needed.

Avoid pre-fetching for specific finder methods; this can often avoid that penalty. For
example, consider an order bean has two finder methods: afi ndByPri mar yKey method
that uses the orderlines, and af i ndByCust oner | d method that returns only order
information and hence doesn’t use the orderlines. If you' ve enabled CMR pre-fetching for
the orderlines, both finder methods will pre-fetch the orderlines. However, you can prevent
pre-fetching for the f i ndByCust oner | d method by including this information in the
sun-ej b-jar.xm descriptor:

Chapter 2 Tuning Your Application 45

EJB Performance Tuning

46

<ej b>
<ej b- nane>QCr der Bean</ ej b- name>
<cnp>
<pr ef et ch- di sabl ed>
<quer y- net hod>
<net hod- nane>f i ndByCQust oner | d</ net hod- nane>
</ query- net hod>
</ pref et ch- di sabl ed>
</ cnp>
</ ej b>

JDBC and Database Access

Here are some tips to improve the performance of database access.

Use JDBC Directly

When dealing with large amounts of data, such as searching a large database, use JDBC
directly rather than using Entity EJB components.

Encapsulate Business Logic in Entity EJB Components

Combine business |ogic with the Entity EJB component that holds the data needed for that
logic to process.

Close Connections
To ensure that connections are returned to the pool, always close the connections after use.

Minimize the Database Transaction Isolation Level

Use the default isolation level provided by the JIDBC driver rather than calling
set Transact i onl sol ati onLevel (), unlessyou are certain that your application behaves
correctly and performs better at adifferent isolation level.

Reduce the database transaction isolation level when appropriate. Reduced isolation levels
reduce work in the database tier, and could lead to better application performance.
However, this must be done after carefully analyzing the database table usage patterns.

Set the database transaction isolation level with the Admin Console on the Resources >
JDBC > Connection Pools > PoolName page. For more information on tuning JDBC
connection pools, see JDBC Connection Pools.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Performance Tuning

Tuning Message-Driven Beans

This section provides some tips to improve performance when using JM S with
message-driven beans (MDBS).

Use getConnection()

JMSS connections are served from a connection pool. This means that calling
get Connecti on() on aQueue connection factory isfast.

Warning: Previousto version 8.1, it was possible to reuse a connection with a servlet or
EJB component. That is, the servlet could call get Connect i on() initsi nit () method and
then continually call get Sessi on() for each servlet invocation. If you use IMS within a
global transaction, that no longer works: applications can only call get Sessi on() oncefor
each connection. After than, the connection must be closed (which doesn’t actually close
the connection; it merely returns it to the pool). Thisisageneral feature of portable J2EE
1.4 applications; the Sun Java System Application Server enforces that restriction where
previous (J2EE 1.3-based) application servers did not.

Tune the Message-Driven Bean’s Pool Size

The container for message-driven beans (MDB) is different than the containers for entity
and session beans. In the MDB container, sessions and threads are attached to the beansin
the MDB pool. This design makes it possible to pool the threads for executing
message-driven requests in the container.

Tune the Message-Driven bean’ s pool size to optimize the concurrent processing of
messages. Set the size of the MDB pool to, based on all the parameters of the server (taking
other applications into account). For example, a value greater than 500 is generally too
large.

Y ou can configure MDB pool settingsin the Admin Console at Configurations >
config-name > EJB Container (MDB Settings). Y ou can also set it with asadm n as
follows:

asadm n set server. ndb-cont ai ner. max- pool - si ze = val ue
Cache Bean-Specific Resources

Use the set MesssageDri venCont ext () or ej bOr eat e() method to cache bean specific
resources, and release those resources from the ej bRenove() method.

Chapter 2 Tuning Your Application 47

EJB Performance Tuning

Limit Use of IMS Connections

When designing an application that uses JMS connections make sure you use a
methodology that sparingly uses connections, by either pooling them or using the same
connection for multiple sessions.

The JM S connection uses two threads and the sessions use one thread each. Since these
threads are not taken from a pool and the resultant objects aren’t pooled, you could run out
of memory during periods of heavy usage.

One workaround is to move cr eat eTopi cConnect i on into thei nit of the servlet.

Make sure to specifically close the session, or it will stay open, which ties up resources.

48 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Chapter 3

Tuning the Application Server

This chapter describes some ways to tune the Application Server for optimum performance,
including the following topics:

* Web Container
e Logger Settings
* Web Container
* EJB Container
» JavaMessage Service
* Transaction Service
+ HTTP Service
« ORB
* Thread Pools
* Resources:
o JDBC Connection Pools

o Connector Connection Pools

Deployment Settings

Deployment settings can have significant impact on performance. Follow these guidelines
when configuring deployment settings for best performance:

» Disabling Auto-deployment

49

Deployment Settings

e Using Pre-compiled JavaServer Pages
» Disabling Dynamic Application Reloading

Disabling Auto-deployment

Enabling auto-deployment will adversely affect deployment, though it isaconvenienceina
development environment. For a production system, disable auto-deploy to optimize
performance. If auto-deployment is enabled, then the Reload Poall Interval setting can havea
significant performance impact.

Disable auto-deployment with the Admin Console under Stand-Alone Instances > server
(Admin Server) on the Advanced/Applications Configuration tab.

Using Pre-compiled JavaServer Pages

Compiling JSP files is resource intensive and time consuming. Pre-compiling JSP files
before deploying applications on the server will improve application performance. When
you do so, only the resulting servlet class files will be deployed.

Y ou can specify to precompile JSP files when you deploy an application through the Admin
Console or DeployTool. Y ou can also specify to pre-compile JSP files for a deployed
application with the Admin Console under Stand-Alone Instances > server (Admin Server)
on the Advanced/Applications Configuration tab.

Disabling Dynamic Application Reloading

If dynamic reloading is enabled, the server periodically checks for changes in deployed
applications and automatically reloads the application with the changes. Dynamic rel oading
isintended for development environments and is also incompatible with session
persistence. To improve performance, disable dynamic class reloading.

Disable dynamic class rel oading for an application that is already deployed with the Admin
Console under Stand-Alone Instances > server (Admin Server) on the
Advanced/Applications Configuration tab.

50 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Logger Settings

Logger Settings

The Application Server produces writes |og messages and exception stack trace output to
thelog file in the logs directory of the instance,

appser ver - r oot / domai ns/ domai n- nane/ | ogs. Naturally, the volume of log activity
can impact server performance; particularly in benchmarking situations.

General Settings

In general, writing to the system log slows down performance slightly; and increased disk
access (increasing the log level, decreasing the file rotation limit or time limit) also slows
down the application.

Also, make sure that any custom log handler doesn’t log to aslow device like anetwork file
system since this can adversely affect performance.

Log Levels

Set the log level for the server and its subsystemsin the Admin Console Logger Settings
page, Log Levelstab. The page enables you to specify the default log level for the server
(labeled Root), the default log level for j avax. ent er pri se. syst emsubsystems (labeled
Server) such as the EJB Container, MDB Container, Web Container, Classloader, JINDI
naming system, and Security, and for each individual subsystem.

Log levels vary from FINEST, which provides maximum log information, through
SEVERE, which logs only eventsthat interfere with normal program execution. The default
log level isINFO. Theindividual subsystem log level overridesthe Server setting, whichin
turn overrides the Root setting.

For example, the MDB container can produce log messages at a different level than server
default. To get more debug messages, set the log level to FINE, FINER, or FINEST. For
best performance under normal conditions, set the log level to WARNING. Under
benchmarking conditions, it is often appropriate to set the log level to SEVERE.

Web Container

Set Web container properties with the Admin Console at Configurations > config-name >
Web Container.

e Session Properties: Session Timeout

Chapter 3 Tuning the Application Server 51

Web Container

e Manager Properties. Reap Interval
» Disabling Dynamic JSP Reloading

Session Properties: Session Timeout

Session timeout determines how long the server maintains a session if auser does not
explicitly invalidate the session. The default valueis 30 minutes. Tune this value according
to your application requirements. Setting avery large value for session timeout can degrade
performance by causing the server to maintain too many sessionsin the session store.
However, setting avery small value can cause the server to reclaim sessions too soon.

Manager Properties: Reap Interval

Modifying the reap interval canimprove performance, but setting it without considering the
nature of your sessions and business logic can cause data inconsistency, especially for
time-based persistence-frequency.

For example, if you set the reap interval to 60 seconds, the value of session datawill be
recorded every 60 seconds. But if a client accesses a servlet to update a value (for example,
bidding price) at 20 second increments, then inconsistencies will result.

For example, consider this scenario:

» Bidding starts at $5, in 60 seconds the value recorded will be $8 (three 20 second
intervals).

» During the next 40 seconds, the client startsincrementing the price. The value the client
seesis $10.

» During the client’s 20 second rest, the Application Server stops and startsin 10
seconds. As aresult, the latest value recorded at the 60 second interval ($8) is be loaded
into the session.

» Theclient clicks again expecting to see $11; but instead sees is $9, which isincorrect.

So, to avoid datainconsistencies, take into the account the expected behavior of the
application when adjusting the reap interval.

52 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Container

Disabling Dynamic JSP Reloading

On a production system, improve web container performance by disabling dynamic JSP
reloading. To do so, edit thedef aul t -web. xni fileintheconfi g directory for each
instance. Change the servlet definition for a JSP fileto look like this:

<serv| et>
<servl et - name>j sp</ servl et - name>
<servl et - cl ass>or g. apache. j asper. servl et. JspServl et </ servl et - cl ass>

<l oad- on- st art up>3</| oad- on- st art up>
</servlet>

EJB Container

The EJB Container has many tunable settings that affect performance. Aswith other areas,
use monitor the EJB Container to track its execution and performance.

Monitoring the EJB Container

Monitoring the EJB container is disabled by default. Enable monitoring with the Admin
Console under Configurations > config-name > Monitoring. Set the monitoring level to
LOW for to monitor all deployed EJB components, EJB pools, and EJB caches. Set the

monitoring level to HIGH to also monitor EJB business methods.

Tuning the EJB Container

The EJB container caches and pools EJB components for better performance. Tuning the
cache and pool properties can provide significant performance benefits to the EJB
container. Set EJB cache and pool settings in the Admin Console Configurations >
config-name > EJB Container (EJB Settings).

The pool settings are valid for stateless session and entity beans while the cache settings are
valid for stateful session and entity beans.

Overview of EJB Pooling and Caching

Both statel ess session beans and entity beans can be pooled to improve server performance.
In addition, both stateful session beans and entity beans can be cached to improve
performance.

Chapter 3 Tuning the Application Server 53

EJB Container

Table 3-1 Bean Type Pooling or Caching

Bean Type Pooled Cached
Stateless Session Yes No
Stateful Session No Yes
Entity Yes Yes

The difference between a pooled bean and a cached bean is that pooled beans are all
equivalent and indistinguishable from one another. Cached beans, on the contrary, contain
conversational state in the case of stateful session beans, and are associated with a primary
key in the case of entity beans. Entity beans are removed from the pool and added to the
cache on ej bAct i vat ¢() and removed from the cache and added to the pool on

ej bPassi vat e() . ej bActi vat e() iscalled by the container when a needed entity bean is not
in the cache. ej bPassi vat e() is called by the container when the cache grows beyond its
configured limits.

Tuning the EJB Pool

A bean in the pool represents the pooled state in the EJB lifecycle. This meansthat the bean
does not have an identity. The advantage of having beansin the pool isthat the time to
create a bean can be saved for arequest. The container has mechanisms that create pool
objects in the background, to save the time of bean creation on the request path.

Statel ess session beans and entity beans use the EJB pool. Keeping in mind how you use
statel ess session beans and the amount of traffic your server handles, tune the pool size to
prevent excessive creation and deletion of beans.

EJB Pool Settings

Anindividual EJB component can specify cache settings that override those of the EJB
container in the <bean- pool > element of the EJB component’s sun-ej b-j ar. xm
deployment descriptor.

The EJB pool settings are:

* Initial and Minimum Pool Size: theinitia and minimum number of beans maintained
in the pool. Valid values are from 0 to MAX | NTEGER and the default valueis 8. The
corresponding EJB deployment descriptor attribute is st eady- pool - si ze.

Set this property to a number greater than zero for amoderately loaded system. Having
avalue greater than zero ensures that there is always a pooled instance to process an
incoming request.

54 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Container

* Maximum Pool Size: the maximum number of connections that can be created to
satisfy client requests. Valid values are from zero to MAX_| NTEGER., and the default is
32. A value of zero means that the size of the pool is unbounded. The potential
implication is that the VM heap will be filled with objects in the pool. The
corresponding EJB deployment descriptor attribute is nax- pool - si ze.

Set this property to be representative of the anticipated high load of the system. An
very large pool wastes memory and can slow down the system. A very small pool is
also inefficient due to contention.

* Pool Resize Quantity: the number of beans to be created or deleted when the cache is
being serviced by the server. Valid values are from zero to MAX | NTEGER and default is
16. The corresponding EJB deployment descriptor attributeisresi ze- quantity.

Be sure to re-calibrate the pool resize quantity when you change the maximum pool
size, to maintain an equilibrium. Generally, alarger maximum pool size should have a
larger pool resize quantity.

» Pool Idle Timeout: the maximum time that a statel ess session bean, entity bean, or
message-driven bean is allowed to beidle in the pool. After thistime, the beanis
destroyed if the bean in case is a statel ess session bean or amessage driver bean. Thisis
ahint to server. The default value is 600 seconds. The corresponding EJB deployment
descriptor attribute is pool -i dl e-ti meout - i n- seconds.

If there are more beans in the pool than the maximum pool size, the pool drains back to
initial and minimum pool size, in steps of pool resize quantity at an interval specified
by the poal idle timeout. If the resize quantity istoo small and theidle timeout large,
you will not see the pool draining back to steady size quickly enough.

Tuning the EJB Cache

A bean in the cache represents the ready state in the EJB lifecycle. This means that the bean
has an identity (for example, a primary key or session D) associated with it.

Beans moving out of the cache have to be passivated or destroyed according to the EJB
lifecycle. Once passivated, a bean has to be activated to come back into the cache. Entity
beans are generally stored in databases and use some form of query language semanticsto
load and store data. Session beans have to be serialized when storing them upon passivation
onto the disk or a database; and similarly have to be deserialized upon activation.

Any incoming request using these “ready” beans from the cache avoids the overhead of
creation, setting identity, and potentially activation. So, theoreticaly, it is good to cache as
many beans as possible. However, there are drawbacks to caching:

* Memory consumed by all the beans affects the heap available in the Virtual Machine.

Chapter 3 Tuning the Application Server 55

EJB Container

Increasing objects and memory taken by cache means longer, and possibly more
frequent, garbage collection.

The application server might run out of memory unless the heap is carefully tuned for
peak loads.

Keeping in mind how your application uses stateful session beans and entity beans, and the
amount of traffic your server handles, tune the EJB cache size and time-out settings to
minimize the number of activations and passivations.

EJB Cache Settings

Anindividual EJB component can specify cache settings that override those of the EJB
container in the <bean- cache> element of the EJB component’ ssun- ej b-j ar. xm
deployment descriptor.

The EJB cache settings are:

Max Cache Size: the maximum number of beans in the cache. Make this setting
greater than one. The default value is 512. A value of zero indicates the cacheis
unbounded, which means the size of the cacheis governed by Cache Idle Timeout and
Cache Resize Quantity. The corresponding EJB deployment descriptor attribute is
max- cache- si ze.

Cache Resize Quantity: the number of beans to be created or deleted when the cache
isserviced by the server. Valid values are from zero to MAX_INTEGER, and the
default is 16. The corresponding EJB deployment descriptor attribute is

resi ze-quantity.

Removal Timeout: the amount of time that a stateful session bean remains passivated
(idleinthe backup store). If abean was not accessed after thisinterval of time, thenitis
removed from the backup store and will not be accessible to the client. The default
value is 60 minutes. The corresponding EJB deployment descriptor attributeis
renmoval -timeout - i n-seconds.

Removal Selection Policy: the algorithm used to remove objects from the cache.
Choices are:

o NRU (not recently used). Thisisthe default, and is actually pseudo-random
selection policy.

o FIFO (firstin, first out)
o LRU (least recently used)
The corresponding EJB deployment descriptor attributeisvi cti m sel ecti on-pol i cy.

56 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

EJB Container

e Cacheldle Timeout: the maximum time that a stateful session bean or entity bean is
allowed to beidlein the cache. After thistime, the bean is passivated to the backup
store. The default value is 600 seconds. The corresponding EJB deployment descriptor
attribute iscache-i dl e-ti neout -i n- seconds.

» Refresh period (read-only beans only): Rate at which the read-only-bean is refreshed
from the data source. Zero (0) means that the bean is never refreshed. The default is
600 seconds. The corresponding EJB deployment descriptor attribute is
ref resh- peri od-i n- seconds. Note: this setting does not have a custom field in the
Admin Console. To set it, use the Add Property button in the Additional Properties
section.

Pool and Cache Settings for Individual EJB Components

Individual EJB pool and cache settingsin the sun- ej b-j ar. xm deployment descriptor
override those of the EJB container. The following tablelists the cache and pool settings for
each type of EJB component.

Table 3-2 EJB Cache and Pool Settings

Cache Settings Pool Settings
5
(2]
[
5 S " =
3} c S o
1] o 2 S
Q 8 > o 7]
> c » © o ¢
= v [= (] > c
= = = o " = =
5] © 2 < oy c © £ 5
. 2 2 15 3 3 S g 2
c) %] = () - o | o N
© N) b 1= Q = °] » £
o -— 2 & E 2 5 S & . =
o] S S o o o =] B °©)
5 3 8 @ g : G > | R
e = x < e = o ® 5 x 5
g Q @ g IS ° = o S @ S
[o £ o Q B Q ® a S o
Stateful X X X X X
Session
Stateless X X X X
Session
Entity X X X X X X X X X
(BMP/CMP)
Entity X X X X X X X X X X
Read-only
Message X X X
Driven Bean

Chapter 3 Tuning the Application Server 57

EJB Container

Commit Option

The commit option controls the action taken by the EJB container when an EJB component
completes a transaction. The commit option has a significant impact on performance.

There are two possible values for the commit option:

» Commit option B: When atransaction completes, the bean is kept in the cache and
retains itsidentity. The next invocation for the same primary key can use the cached
instance. The EJB container will call the bean’s ej bLoad() method before the method
invocation to synchronize with the database.

» Commit option C: When atransaction completes, the EJB container calls the bean’s
ej bPassi vat ¢() method, the bean is disassociated from its primary key and returned to
the free pool. The next invocation for the same primary key will haveto get afree bean
from the pool, set the Pri mar yKey on this instance, and then call ej bActi vat e() on the
instance. Again, the EJB container will call the bean’sej bLoad() before the method
invocation to synchronize with the database.

Option B avoids ej bAci vat e() and ej bPassi vat () calls. So, in most casesit performs
better than option C since it avoids some overhead in acquiring and releasing objects back
to pooal.

However, there are some cases where option C can provide better performance. If the beans
in the cache are rarely reused and if beans are constantly added to the cache, then it makes
no sense to cache beans. With option C is used, the container puts beans back into the pool
(instead of caching them) after method invocation or on transaction completion. This option
reuses instances better and reduces the number of live objects in the VM, speeding garbage
collection.

Determining the best commit option
How do you decide whether to use commit option B or commit option C?

First take alook at the cache-hits value using the monitoring command for the bean. If the
cache hits are much higher than cache misses, then option B is an appropriate choice. Y ou
might till have to change the max- cache- si ze and cache-resi ze- quanti ty to get the best
result.

If the cache hits are too low and cache misses are very high, then the application is not
reusing the bean instances and hence increasing the cache size (using max- cache- si ze) will
not help (assuming that the access pattern remains the same). In this case you might use
commit option C. If there is no great difference between cache-hits and cache-misses then
tune max- cache- si ze, and probably cache-i dl e-ti meout - i n- seconds.

58 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Java Message Service

Java Message Service

The Type attribute that determines whether the Java Message Service (JMS) ison local or
remote system affects peformance. Local IM S performance is better than remote IMS
performance. However, aremote cluster can provide failover capabilities and can be
administrated together, so there may be other advantages of using remote JMS. For more
information on using IM S, see the Sun Java System Application Server Administration
Guide.

Transaction Service

The transaction manager makes it possible to commit and roll back distributed transactions.

A distributed transactional system writes transactional activity into transaction logs so that
they can be recovered later. But writing transactional logs has some performance penalty.

Monitoring the Transaction Service

Transaction Manager monitoring is disabled by default. Enable monitoring of the
transaction service with the Admin Console at Configurations > config-name >
Monitoring.

Y ou can also enable monitoring with these commands:

set serverlnstance.transaction-servi ce. monitoringEnabl ed=true
reconfig serverlnstance

Viewing Monitoring Information
When you have enabled monitoring of the transaction service, view results

* With Admin Console at Standalone Instances > server-name (Monitor | Monitor).
Select transaction-service from the View dropdown.

* With asadni n, with this command:
asadm n get -m serverlnstance.transaction-service.*
The following statistics are gathered on the transaction service:

e total-tx-conpleted
Completed transactions.

Chapter 3 Tuning the Application Server 59

Transaction Service

e total -tx-rolled-back
Total rolled back transactions.

e total-tx-inflight
Total inflight (active) transactions.

* isFrozen
Whether transaction system is frozen (true or false)

e inflight-tx
List of inflight (active) transactions.

Here is a sample of the output using asadm n:

kkkkkhkkkkk*k Stats for JTS kkkkkkhkkxkkk%x
total -tx-conpl eted = 244283

total -tx-roll ed-back = 2640

total -tx-inflight = 702

i sFrozen = Fal se

inflight-tx =

Transaction Id , Status, E apsedTi me(nsec)
000000000003C95A 00, Active, 999

Tuning the Transaction Service

This property can be used to disable the transaction logging, where the performance is of
utmost importance more than the recovery. This property, by default, won't exist in the
server configuration.

Disable Distributed Transaction Logging

To disable distributed transaction logging with the Admin Console, go to Configurations >
config-name > Transaction Service. Click on Add Property, and specify:

* Name: disable-distributed-transaction-logging
* Vadue true
Y ou can also set this property with asadni n, for example:

asadnmin set
server 1. transacti on-servi ce. di sabl e-di stri but ed-transacti on-| oggi ng=t rue

Setting this attribute to true disables transaction logging, which can improve performance.
Setting it to false (the default), makes the transaction service write transactional activity to
transaction logs so that transactions can be recovered. If Recover on Restart is checked, this
property isignored.

60 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

Set this property to true only if performance is more important than transaction recovery.

Recover On Restart (Automatic Recovery)

To set the Recover on Restart attribute with the Admin Console, go to Configurations >
config-name > Transaction Service. Click the Recover check box to set it to true (checked,
the default) or false (un-checked).

Y ou can also set automatic recovery with asadm n, for example:
asadm n set serverl.transaction-service. automatic-recovery=fal se

When Recover on Restart istrue, the server will always perform transaction logging,
regardless of the Disable Distributed Transaction L ogging attribute. If Recover on Restart is
false, then:

» |f Disable Distributed Transaction Logging is false (the default), then the server will
write transaction logs.

» |f Disable Distributed Transaction Logging is true, then the server will not write
transaction logs.

Not writing transaction logs will give approximately twenty percent improvement in
performance, but at the cost of not being able to recover from any interrupted transactions.
The performance benefit applies to transaction-intensive tests. Gainsin real applications
may beless.

Keypoint Interval

The keypoint interval determines how often entries for completed transactions are removed
from the log file. Keypointing prevents a process log from growing indefinitely.

Frequent keypointing is detrimental to performance. The default value of the Keypoint
Interval is 2048, which is sufficient in most cases.

HTTP Service

Monitoring and tuning the HTTP server instances that handle client requests are important
parts of ensuring peak Application Server performance.

e Monitoring the HTTP Service

e Tuningthe HTTP Service

e Tuning HTTP Listener Settings
» Migrating From Version 7

Chapter 3 Tuning the Application Server 61

HTTP Service

Monitoring the HTTP Service

Enable monitoring statistics for the HTTP service using either Admin Console or asadmi n.
In the Admin Console, the monitoring level (LOW or HIGH) has no effect on monitoring
the HTTP Service.

With asadm n, use the following command to list the monitoring parameters available:

list --user admin --port 4848
-m server-i nst ance- nane. htt p-service. *

where ser ver - i nst ance- nane is the name of the server instance.

Use the following command to get the values:

get --user admn --port 4848 -mserver. http-service. par aret er - nane. *
where par anet er - nane is the name of the parameter to monitor.

Y ou can aso view monitoring statistics with the Admin Console. The information is
divided into the following categories:

e General HTTP Statistics (http-service)
» DNS Cache Information (dns)

» Connection Queue

» File Cache Information (file-cache)

» KeepAlive (keep-alive)

e Thread Pool (pwc-thread-pool)

General HTTP Statistics (http-service)
The Admin Console provides the following performance-related HTTP statistics:

» Averageload for last minute

* IsVirtualServer Overflow enabled?

e HttpServer Version

* HttpServer ID

e Rate at which bytes are being received
* Maximum amount of threads

» HttpServer Time Started

62 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

+ Maximum amount of virtual servers

» Isprofiling enabled?

» Timein seconds HttpService has been running
» Averageload for last 15 minutes

e Averageload for last 5 minutes

» Rate at which bytes are being transmitted

DNS Cache Information (dns)

The DNS cache caches |P addresses and DNS names. Y our server’s DNS cacheis disabled
by default. Inthe DNS Statistics for Process ID All page under Monitor in the web-based
Administration interface the following statistics are displayed:

Enabled
If the DNS cacheis disabled, the rest of this section is not displayed.

By default, the DNS cache is off. Enable DNS caching with the Admin Console by setting
the DNS value to “Perform DNS lookups on clients accessing the server”.

CacheEntries (CurrentCacheEntries / MaxCacheEntries)

The number of current cache entries and the maximum number of cache entries. A single
cache entry represents asingle IP address or DNS name lookup. Make the cache aslarge as
the maximum number of clients that access your web site concurrently. Note that setting the
cache size too high is awaste of memory and degrades performance.

Set the maximum size of the DNS cache by entering or changing the value in the Size of
DNS Cache field of the Performance Tuning page.

HitRatio (CacheHits / CachelLookups)
The hit ratio displays the number of cache hits versus the number of cache lookups.

This setting is not tunable.

NOTE If you turn off DNS lookups on your server, host name restrictions will not
work and hostnames will not appear in your log files. Instead, you'll see IP
addresses.

Chapter 3 Tuning the Application Server 63

HTTP Service

Caching DNS Entries

It ispossibleto also specify whether to cache the DNS entries. If you enable the DNS cache,
the server can store hostname information after receiving it. If the server needs information
about the client in the future, the information is cached and available without further
querying. specify the size of the DNS cache and an expiration time for DNS cache entries.
The DNS cache can contain 32 to 32768 entries; the default value is 1024. Values for the
time it takes for a cache entry to expire can range from 1 second to 1 year specified in
seconds; the default value is 1200 seconds (20 minutes).

Limit DNS Lookups to Asynchronous

It isrecommended that you do not use DNS lookupsin server processes because they are so
resource-intensive. If you must include DNS lookups, be sure to make them asynchronous.

Enabled
If asynchronous DNS is disabled, the rest of this section will not be displayed.

NamelLookups
The number of name lookups (DNS name to | P address) that have been done since the
server was started.

This setting is not tunable.

AddrLookups
The number of address loops (1P address to DNS name) that have been done since the
server was started.

This setting is not tunable.

LookupsInProgress
The current number of lookupsin progress.

Connection Queue

e Total Connections Queued: Total connections queued is the total number of times a
connection has been queued. Thisincludes newly accepted connections and
connections from the keep-alive system.

» Average Queuing Delay: Average queueing delay is the average amount of time a
connection spends in the connection queue. This represents the delay between when a
regquest connection is accepted by the server, and a request processing thread (also
known as a session) begins servicing the request.

64 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

File Cache Information (file-cache)

The file cache caches static content so that the server handles requests for static content
quickly. The file-cache section provides statistics on how your file cacheis being used.

For information on tuning the file cache, see “HTTP File Cache” on page 72.

Number of Hits on Cached File Content
Number of Cache Entries

Number of Hits on Cached File Info

Heap Space Used for Cache

Number of Misses on Cached File Content
Cache Lookup Misses

Number of Misses on Cached File Content

Max Age of a Cache Entry: The maximum age displays the maximum age of avalid
cache entry.

Max Number of Cache Entries
Max Number of Open Entries

Is File Cached Enabled?: If the cache is disabled, the other statistics are not displayed.
The cache is enabled by defaullt.

Maximum Memory Map to be Used for Cache
Memory Map Used for cache
Cache Lookup Hits

Open Cache Entries. The number of current cache entries and the maximum number of
cache entries are both displayed. A single cache entry representsasingle URI. Thisisa
tunable setting.

Maximum Heap Space to be Used for Cache

Keep Alive (keep-alive)
The Admin Console provides the following performance-related keep-alive statistics:

Connections Terminated Due to ClientConnection Timed Out
Max Connection Allowed in Keep-alive

Number of Hits

Chapter 3 Tuning the Application Server 65

HTTP Service

e Connectionsin Keep-alive Mode

» Connections not Handed to Keep-alive Thread Due to too Many Persistent Connections
* TheTimein Seconds Before Idle Connections are Closed

» Connections Closed Due to Max Keep-alive Being Exceeded

Thread Pool (pwc-thread-pool)
The Admin Console provides the following thread pool statistics:

» ldle/Peak/Limit: Idle indicates the number of threads that are currently idle. Peak
indicates the peak number in the pool. Limit indicates the maximum number of native
threads allowed in the thread pool, and is determined by the setting of
Nat i vePool MaxThr eads.

* Work Queue Length /Peak /Limit: These numbers refer to a queue of server requests
that are waiting for the use of a native thread from the pool.

o TheWork Queue Length is the current number of requests waiting for a native
thread.

o Peak isthe highest number of requests that were ever queued up simultaneously
for the use of anative thread since the server was started. This value can be viewed
as the maximum concurrency for requests requiring a native thread.

o Limitisthe maximum number of requests that can be queued at one time to wait
for anative thread, and is determined by the setting of Nat i vePool QueueSi ze.

Tuning the HTTP Service

The settings for the HTTP service are divided into the following categories in the Admin
Console:

* AccessLog

* Request Processing
 KeepAlive

» Connection Pool

* HTTP Protocol

* HTTPFileCache

66 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

Access Log

Disable access logging when performing benchmarking. Access Logging is enabled by
default. To disableit, in HTTP Service click Add Property, and add the following property:

e name: accessLoggingEnabled
* vaue fase
Y ou can set the following access log properties:

» Rotation (enabled/disabled). Enable rotation to ensure that the logs don't run out of
disk space.

* Rotation Policy: "Time" or "Size" based. Size is the default option.

e Rotation Interval.

Request Processing

On the Request Processing tab of the HTTP Service page, tune the following HT TP request
processing settings:

* Thread Count

* Initial Thread Count

* Request Timeout

» Buffer Length

Thread Count

The Thread Count parameter specifies the maximum number of simultaneous reguests the
server can handle. The default valueis 128. When the server has reached the limit or request
threads, it defers processing new requests until the number of active requests drops below
the maximum amount. Increasing this value will reduce HTTP response latency times.

In practice, clients frequently connect to the server and then do not complete their requests.
In these cases, the server waits alength of time specified by the Request Timeout
parameter.

Also, some sites do heavyweight transactions that take minutes to complete. Both of these
factors add to the maximum simultaneous requests that are required. If your siteis
processing many requests that take many seconds, you might need to increase the number of
maximum simultaneous requests.

Chapter 3 Tuning the Application Server 67

HTTP Service

Adjust the thread count value based on your load and the length of time for an average
request. In general, increase this number if you have idle CPU time and requests that are
pending; decrease it if the CPU becomes overloaded. If you have many HTTP 1.0 clients
(or HTTP 1.1 clients that disconnect frequently), adjust the timeout val ue to reduce thetime
aconnection is kept open.

Suitable Request Thread Count values range from 100 to 500, depending on the load. If
your system has extra CPU cycles, keep incrementally increasing thread count and monitor
performance after each incremental increase. When performance saturates (stops
improving), then stop increasing thread count.

Initial Thread Count

The Initial Thread Count property specifies the minimum number of threads the server
initiates upon start-up. The default value is 48. Initial Thread Count represents a hard limit
for the maximum number of active threads that can run simultaneously, which can become
a bottleneck for performance.

Request Timeout

The Request Timeout property specifies the number of seconds the server waits between
accepting a connection to a client and receiving information from it. The default setting is
30 seconds. Under most circumstances, changing this setting is unnecessary. By setting it to
less than the default 30 seconds, it is possible to free up threads sooner. However,
disconnecting users with slower connections also helps.

Buffer Length

The size (in bytes) of the buffer used by each of the request processing threads for reading
the request data from the client.

Adjust the value based on the actual request size and observe the impact on performance. In
most cases the default should suffice. If the request size islarge, increase this parameter.

Keep Alive

Both HTTP 1.0 and HTTP 1.1 support the ability to send multiple requests across asingle
HTTP session. A server can receive hundreds of new HTTP requests per second. If every
request was allowed to keep the connection open indefinitely, the server could become
overloaded with connections. On Unix/Linux systems, this could easily lead to afiletable
overflow.

68 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

The Application Server's Keep Alive system addresses this problem. A waiting keep alive
connection has completed processing the previous request, and is waiting for a new request
to arrive on the same connection. The server maintains a counter for the maximum number
of waiting keep-alive connections. If the server has more than the maximum waiting
connections open when a new connection waits for a keep-alive request, the server closes
the oldest connection. This algorithm limits the number of open waiting keep-alive
connections.

If your system has extra CPU cycles, incrementally increase the keep alive settings and
monitor performance after each increase. When performance saturates (stops improving),
then stop increasing the settings.

The following HTTP keep alive settings affect performance:
* Thread Count

* Max Connections

* TimeOut

» Keep Alive Query Mean Time

* KeepAlive Query Max Sleep Time

Thread Count

Thread Count determines the number of threads in the Keep Alive subsystem. Adjust this
setting to be a small multiple of the number of processors on the system. For example, a
two-CPU system can have two or four keep-alive threads.

The default is one. Do not change the default for a server with a small number of users and
Max Connections.

Max Connections

Max Connections control s the maximum number of keep-alive connections the server
maintains. The possible rangeis zero to 32768, and the default is 256.

Adjust this setting based on number of keep alive connections the server is expected to
service and the server’s load, because it will add up to resource utilization and might
increase latency.

The number of connections specified by Max Connectionsis divided equally among the
keep alive threads. If Max Connections is not equally divisible by Thread Count, the server
can allow slightly more than Max Connections simultaneous keep alive connections.

Chapter 3 Tuning the Application Server 69

HTTP Service

Time Out

Time Out determines the maximum time (in seconds) that the server holds open an HTTP
keep alive connection. A client can keep a connection to the server open so that multiple
reguests to one server can be serviced by a single network connection. Since the number of
open connections that the server can handle is limited, a high number of open connections
will prevent new clients from connecting.

The default time out value is 30 seconds. Thus, by default, the server will close the
connection if idle for more than 30 seconds. The maximum value for this parameter is 300
seconds (5 minutes).

The proper value for this parameter depends upon how much time is expected to elapse
between requests from a given client. For example, if clients are expected to make requests
frequently then, set the parameter to a high value; likewise, if clients are expected to make
requests rarely, then set it to alow value.

Keep Alive Query Mean Time

Keep Alive Query Mean Time specifies the interval between polling keep alive
connections. If this parameter has a value of n milliseconds, the response time seen by a
client that has requested a keep alive connection will have an overhead between 0 and n
milliseconds.

The default value of this parameter is one millisecond, which works well for an expected
concurrent load of less than 300 keep alive connections. The default value can severely
reduce the scal ability with higher concurrent loads. For applications with higher connection
loads, increase the default value.

Set this parameter with asadmi n or in Admin Console HTTP Service page, by choosing
Add Property and specifying:

 Name: keep-al i ve- query-nean-time

e Vaue: number of milliseconds

Keep Alive Query Max Sleep Time

Keep Alive Query Max Sleep Time specifies the maximum time (in milliseconds) to wait
that after polling keep alive connections for further requests. If your system has extra CPU
cycles, keep incrementally increasing this parameter and monitor performance after each
incremental increase. When performance saturates (stops improving), then stop increasing
the settings.

Set this parameter with asadmi n or in the Admin Console HT TP Service page, by choosing
Add Property and specifying:

* Name: keep-al i ve- query- max- sl eep-time

70 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

e Vaue: number of milliseconds

Connection Pool

Connection queue information shows the number of sessions in the queue, and the average
delay before the connection is accepted.

If your system has extra CPU cycles, keep incrementally increasing connection pool
settings and monitor performance after each incremental increase. When performance
saturates (stops improving), then stop increasing the settings.

Connection pool settings that affect performance are:
e Max Pending Count

* Queue Size

Max Pending Count

Max Pending Count specifies the maximum number of pending connections on the listen
socket. Adjust Max Pending Count only when there is a heavy load on the system. For low
to medium loads, the default will be acceptable.

After observing system behavior, change the value accordingly, otherwise the server will
start dropping connections. Connections that time out on a listen socket whose backlog
queue isfull will fail. If Max Pending Count is close to the limit, increase the maximum
connection queue size to avoid dropping connections under heavy load.

Queue Size

Queue Size specifies the number of outstanding (yet to be serviced) connections that the
server can have. For heavily loaded systems (with many users) that have limited request
processing threads, adjust this setting to a higher value.

CAUTION Setting the connection queue size too high can degrade server performance.
It was designed to prevent the server from becoming overloaded with
connectionsit cannot handle. If the server is overloaded, increasing the
connection queue size will increase the latency of request handling, and the
connection queue will fill up again.

Send Buffer Size
Specifies the size (in bytes) of the send buffer used by sockets.

Receive Buffer Size
Specifies the size (in bytes) of the receive buffer used by sockets.

Chapter 3 Tuning the Application Server 71

HTTP Service

The Send Buffer Size and Receive Buffer Size are the buffer sizes allocated for output and
input buffers, respectively. To tune these parameters, increase them methodically and
observe the impact on performance. Stop increasing the values when performance saturates
(does not increase significantly).

HTTP Protocol

The only HTTP Protocol attribute that significantly affects performance is DNS L ookup
Enabled.

DNS Lookup Enabled

This setting specifies whether the server performs DNS (domain name service) lookups on
clientsthat access the server. When DNS lookup is not enabled, when a client connects, the
server knows the client’ s IP address but not its host name (for example, it knows the client
as 198.95.251.30, rather than www. xyz. con). When DS lookup is enabled, the server will
resolve the client’s IP address into a host name for operations like access control, common
gateway interface (CGI) programs, error reporting, and access logging.

If the server responds to many requests per day, reduce the load on the DNS or NIS
(Network Information System) server by disabling DNSlookup. Enabling DNS lookup will
increase the latency and load on the system—do so with caution.

HTTP File Cache

The Application Server uses afile cache to serve static information faster. The file cache
contains information about static files such as HTML, CSS, image, or text files. Enabling
the HTTP file cache will improve performance of applications that contain static files.

Set the file cache attributes in the Admin Console under Configurations > config-name >
HTTP Service (HTTP File Cache).

Max Files Count

Max Files Count determines how many files are in the cache. If the valueistoo big, the
server caches little-needed files, which wastes memory. If the value istoo small, the benefit
of caching islost. Try different values of this attribute to find the optimal solution for
specific applications—generally, the effects will not be great.

Hash Init Size

Hash Init Size affects memory use and search time, but rarely will have a measurable effect
on performance.

Max Age

This parameter controls how long cached information is used after afile has been cached.
An entry older than the maximum age is replaced by a new entry for the samefile.

72 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTP Service

If your web site’ s content changes infrequently, increase this value for improved
performance. Set the maximum age by entering or changing the value in the Maximum Age
field of the File Cache Configuration page in the web-based Admin Console for the HTTP
server node and selecting the File Caching Tab.

Set the maximum age based on whether the content is updated (existing files are modified)
on aregular schedule or not. For example, if content is updated four times a day at regular

intervals, you could set the maximum age to 21600 seconds (6 hours). Otherwise, consider
setting the maximum age to the longest time you are willing to serve the previous version of
a content file after the file has been modified.

Small/Medium File Size and File Size Limit

The cache treats small, medium, and large files differently. The contents of medium files
are cached by mapping thefileinto virtual memory (Unix/Linux platforms). The contents of
small files are cached by allocating heap space and reading the fileinto it. The contents of
large files are not cached, although information about large filesis cached.

The advantage of distinguishing between small files and medium filesisto avoid wasting
part of many pages of virtual memory when there are lots of small files. So the Small File
Size Limit istypically adlightly lower value than the VM page size.

File Transmission

When File Transmission is enabled, the server caches open file descriptors for filesin the
file cache, rather than the file contents. Also, the distinction normally made between small,
medium, and large files no longer applies since only the open file descriptor is being
cached.

By default, File Transmission is enabled on Windows, and disabled on UNIX. On UNIX,
only enable File Transmission for platforms that have the requisite native OS support:
HP-UX and AIX. Don’t enable it for other UNIX/Linux platforms.

Tuning HTTP Listener Settings

Change HTTP listener settings in the Admin Console under Configurations > config-name
> HTTP Service > HTTP Listeners > listener-name.

Network Address

For machines with only one network interface card (NIC), set the network addressto the IP
address of the machine (for example, 192.18.80.23 instead of default 0.0.0.0). If you specify
an | P address other than 0.0.0.0, the server will make one less system call per connection.
Specify an |P address other than 0.0.0.0 for best possible performance. If the server has
multiple NIC cards then create multiple listeners for each NIC.

Chapter 3 Tuning the Application Server 73

HTTP Service

Acceptor Threads

The Acceptor Threads setting specifies how many threads you want in accept mode on a
listen socket at any time. It isagood practice to set thisto less than or equal to the number
of CPUsin your system.

In the Application Server, acceptor threads on an HT TP Listener accept connections and put
them onto a connection queue. Session threads then pick up connections from the queue and
service the requests. The server posts more session threads if required at the end of the
request.

The policy for adding new threads is based on the connection queue state:

» Eachtime anew connection is returned, the number of connections waiting in the
gueue (the backlog of connections) is compared to the number of session threads
already created. If it is greater than the number of threads, more threads are scheduled
to be added the next time a request compl etes.

» The previous backlog is tracked, so that n threads are added (where nisthe HTTP
Service's Thread Increment parameter) until one of the following istrue:

o The number of threads increases over time.
o Theincreaseisgreater than n.
o The number of session threads minus the backlog is less than n.

To avoid creating too many threads when the backlog increases suddenly (such asthe
startup of benchmark |oads), the server makes the decision whether more threads are needed
only once every 16 or 32 connections, based on how many session threads already exist.

Blocking Enabled

The bl ocki ng- enabl ed parameter determines whether the listen socket and the accepted
socket are put in to blocking mode. Enabling this will often improve performance.

Enable blocking with asadni n, using the flag

- - bl ocki ngenabl ed=t rue

For example:

asadm n> create-http-listener --user admn --host foo --port 7070 --address
0.0.0.0 --instance serverl --listenerport 7272 --defaul tvs serverl
--servernane foo.bar.com--fanily inet6 --acceptorthreads 2

-- bl ocki ngenabl ed=t rue --securityenabl ed=fal se --enabl ed=fal se

sanpl eLi st ener

74 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

ORB

ORB

Migrating From Version 7

If you are migrating an existing installation from Application Server version 7.x to version
8, consult the following table to see the mapping of tunable parameters.

Table 3-3 Mapping of tunable settings from version 7 to version 8

Tunable Setting in version 7.x

Tunable Setting in version 8.1

RqThrottle

RqgThrottleMin

ConnQueueSize
KeepAliveThreads
KeepAliveTimeout
MaxKeepAliveConnections
KeepAliveQueryMeanTime
KeepAliveQueryMaxSleepTime
ListenQ

AcceptTimeout

HeaderBufferSize

Thread Count (thread-count)

Initial Thread Count (initial-thread-count)
Queue Size (queue-size-in-bytes)
Thread Count (keep-alive-thread-count)
Time Out (timeout-in-seconds)

Max Connections (max-connections)
keep-alive-query-mean-time
keep-alive-query-max-sleep-time
Thread Count (max-pending-count)
Request Time Out

Buffer Length

The Application Server includes a high performance and scalable CORBA Object Request
Broker (ORB). The ORB is the foundation of the EJB Container on the server.

Overview

The ORB is primarily used by EJB components via:

e RMI/IIOP path from an application client (or rich client) using the application client

container.

* RMI/IIOP path from another Application Server instance ORB.

* RMI/IIOP path from another vendor’s ORB.

» In-process path from the Web Container or MDB (message driven beans) container.

Chapter 3 Tuning the Application Server 75

ORB

When a server instance makes a connection to another server instance ORB, the first
instance acts as a client ORB. SSL over I1OP uses afast optimized transport with
high-performance native implementations of cryptography algorithms.

It isimportant to remember that EJB local interfaces do not use the ORB. Using alocal
interface passes all arguments by reference and does not require copying any objects.

Monitoring the ORB

ORB datistics are disabled by default. To gather ORB statistics, enable monitoring with
thisasadni n command:

set serverlnstance.iiop-service.orb. system nonitoringEnabl ed=true
reconfig serverlnstance

Connection Statistics
The following statistics are gathered on ORB connections:

e total -i nbound- connecti ons
Total inbound connections to ORB.

e total - out bound- connecti ons
Total outbound connections from ORB.

Use this command to get ORB connection statistics:

asadm n get --nonitor
serverlnstance.iiop-service.orb. system orb-connection.*

Thread Pools
The following statistics are gathered on ORB thread poals:

e thread- pool -si ze
Number of threads in ORB thread pool.

* waiting-thread-count
Number of thread pool threads waiting for work to arrive.

Use this command to get ORB thread pool statistics:

asadm n get --nonitor
serverlnstance.iiop-service.orb. system orb-thread-pool . *

76 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

ORB

Tuning the ORB

Tune ORB performance by setting ORB parameters and ORB thread pool parameters. Y ou
can often decrease response time by leveraging load-balancing, multiple shared
connections, thread pool and message fragment size. Y ou can improve scalability by load
balancing between multiple ORB servers from the client, and tuning the number of
connection between the client and the server.

The following table summarizes the tunable ORB parameters.

Table 3-4 Tunable ORB Settings

Path ORB modules Server settings
RMI/ IIOP from application client to communication steady-thread-pool-size,
application server infrastructure, thread pool max-thread-pool-size,

idle-thread-timeout-in-seconds

RMI/ 1IOP from ORB to communication steady-thread-pool-size,
Application Server infrastructure, thread pool max-thread-pool-size,
idle-thread-timeout-in-seconds
RMI/ [IOP from a vendor ORB parts of communication steady-thread-pool-size,
infrastructure, thread pool max-thread-pool-size,

idle-thread-timeout-in-seconds

In-process thread pool steady-thread-pool-size,
max-thread-pool-size,
idle-thread-timeout-in-seconds

Tunable ORB Parameters
Tune the following ORB parameters using the Admin Console;

» Thread Pool ID: Name of the thread pool to use.

* Max Message Fragment Size: Messages larger than this number of byteswill be
fragmented. In CORBA GIOPv1.2, a Request, Reply, LocateRequest and LocateReply
message can be broken into multiple fragments. The first message is aregular Request
or Reply message with more fragments bit in the flags field set to true. If inter-ORB
messages are for the most part larger than the default size (1024 bytes), increase the
fragment size to decrease latencies on the network.

» Total Connections: Maximum number of incoming connections at any time, on all
listeners. Protects the server state by allowing finite number of connections. Thisvalue
equals the maximum number of threads that will actively read from the connection.

* |IOP Client Authentication Required (true/false)

Chapter 3 Tuning the Application Server 77

ORB

78

ORB Thread Pool Parameters

The ORB thread pool contains atask queue and a pool of threads. Tasks or jobs areinserted
into the task queue and free threads pick tasks from this queue for execution. Do not set a
thread pool size such that the task queue is always empty. It isnormal for alarge
application’s Max Pool Size to be ten times the size of the current task queue.

The Application Server uses the ORB thread pool to:
* Execute every ORB request.
* Trim EJB pools and caches.

Thus, even when one is not using ORB for remote-calls (viaRMI/ 110P), set the size of the
threadpoal to facilitate cleaning up the EJB pools and caches.

Set ORB thread pool attributes under Configurations > config-name > Thread Pools >
thread-pool-1D, where thread-pool-I1D is the thread pool 1D selected for the ORB. Thread
pools have the following attributes that affect performance.

e Minimum Pool Size: The minimum number of threads in the ORB thread pool. Set to
the average number of threads needed at a steady (RMI/ 110P) |oad.

* Maximum Pool Size: The maximum number of threads in the ORB thread pool.

» |dle Timeout: Number of secondsto wait before removing an idle thread from pool.
Allows shrinking of the thread pool.

e Number of Work Queues

In particular, the maximum pool size isimportant to performance. For more information,
see “Thread Pool Sizing” on page 79.

Client ORB Properties
Specify the following properties as command-line arguments when launching the client
program. Y ou do this by using the following syntax when starting the Java VM:

- Dpropert y=val ue

Controlling connections between client and server ORB

When using the default JDK ORB on the client, a connection is established from the client
ORB to the application server ORB every timean initial context is created. To pool or share
these connections when they are opened from the same process by adding to the
configuration on the client ORB.

-Dj ava. nam ng. factory.ini tial =com sun. appserv. nam ng. SLASCQ xFact ory

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

ORB

Using multiple connections

When using the context factory, (com sun. appser v. nani ng. SLASQt xFact or y), you can
specify the number of connections to open to the server from the client ORB with the
property com sun. appserv. i i op. or bconnect i ons.

The default value is one. Using more than one connection may improve throughput for
network-intense applications. The configuration changes are specified on the client ORB(S)
by adding the following jvm-options:

-Dj ava. nam ng. factory.ini tial =com sun. appserv. nam ng. SLASCQ xFact ory

-Dcom sun. appserv. i i op. orbconnect i ons=val ue

Load Balancing

To configure RMI/110OP for multiple application server instances in a cluster, refer to the
Application Server Administration Guide chapter on RMI-110P Load Balancing.

When tuning the client ORB for load-balancing and connections, consider the number of
connections opened on the server ORB. Start from alow number of connections and then
increase it to observe any performance benefits. A connection to the server trandates to an
ORB thread reading actively from the connection (these threads are not pooled, but exist
currently for the lifetime of the connection).

Thread Pool Sizing

After examining the number of inbound and outbound connections as explained above, tune
the size of the thread pool appropriately. This can affect performance and response times
significantly.

The size computation takes into account the number of client requests to be processed
concurrently, the resource (number of CPUs and amount of memory) available on the
machine and the response times required for processing the client requests.

Setting the size to avery small value can affect the ability of the server to process requests
concurrently, thus affecting the response times since requests will sit longer in the task
gueue. On the other hand, having alarge number of worker threads to service requests can
also be detrimental because they consume system resources, which increases concurrency.
This can mean that threads take longer to acquire shared structuresin the EJB container,
thus affecting response times.

The worker thread pool is aso used for the EJB container’ s housekeeping activity such as
trimming the pools and caches. This activity needs to be accounted for also when
determining the size. Having too many ORB worker threadsis detrimental for performance
since the server has to maintain all these threads. The idle threads are destroyed after the
idle thread timeout period.

Chapter 3 Tuning the Application Server 79

ORB

80

Examining IIOP Messages

It is sometimes useful to examine the I1OP messages passed by the Application Server. To
make the server save |1 OP messages to the ser ver . | og file, set the VM option
- Dcom sun. CCRBA. CRBDebug=gi op. Use the same option on the client ORB.

The following is an example of 110P messages saved to the server log:

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QORE3282: stdout:
e

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QOCRE3282: stdout: Message(Thread] CRB
Qient-side Reader, conn to 192.18.80.118: 1050, 5, mai n]) :

createFronBtream type is 4 <

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QOORE3282: stdout:
MessageBase(Thread[CRB O i ent-side Reader, conn to
192.18. 80. 118: 1050, 5, mai n]) : Message G OP version: 1.2

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QORE3282: stdout:
MessageBase(Thread[CRB O i ent-si de Reader, conn to
192.18.80. 118: 1050, 5, main]): ORB Max G CP Version: 1.2

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QORE3282: stdout: Message(Thread[ORB
Qient-side Reader, conn to 192.18. 80. 118: 1050, 5, mai n]): creat eFr onBt ream
nessage construction conpl ete.

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QOORE3282: stdout:
comsun. corba. ee.internal .iiop. MessageMedi at or (Thread[ORB Qi ent - si de
Reader, conn to 192.18.80.118:1050,5, mai n]): Received message:

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): OORE3282: stdout: ----- I nput Buf fer

[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): QORE3282: stdout: Qurrent index: O
[29/ Aug/ 2002: 22: 41: 43] | NFO (27179): OORE3282: stdout: Total length : 340

[29/ Aug/ 2002: 22: 41: 43] I NFO (27179): CORE3282: stdout: 47 49 4f 50 01 02 00
04 0 0 00 01 48 00 00 00 05 GCP....... H...

NOTE Theflag - Dcom sun. CORBA. ORBdebug=gi op generates many debug messages
in the logs. Thisisused only when you suspect message fragmentation.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

ORB

In this sample output above, the cr eat eFr onBt r eamtype is shown as 4. Thisimplies that
the message is afragment of a bigger message. To avoid fragmented messages, increase the
fragment size. Larger fragments mean that messages are sent as one unit and not as
fragments, saving the overhead of multiple messages and corresponding processing at the
receiving end to piece the messages together.

If most messages being sent in the application are fragmented, increasing the fragment size
islikely to improve efficiency. On the other hand, if only afew messages are fragmented, it
might be more efficient to have alower fragment size that requires smaller buffers for

writing messages.

Improving ORB Performance with Java
Serialization

It is possible to improve ORB performance by using Java Serialization instead of standard
Common Data Representation (CDR) for datafor transport over the network. This
capability is called Java Serialization over GIOP (General Inter-ORB Protocal), or JSG.

In some cases, JSG can provide better performance throughput than CDR. The performance
differences depend highly on the application. Applications with remote objects having
small amounts data transmitted between client(s) and server(s) will most often perform
better using JSG.

Y ou must set this property on all serversthat you want to use JSG. Add this system property
through the Admin Console, as follows:

* Inthetree component, expand the Configurations node.
e Expand the desired node.
e Select the VM Settings node
* IntheJVM Settings page, choose the VM Options tab.
» Click Add VM Option, and enter the following value:
- Dcom sun. OORBA. encodi ng. CRBEnabl eJavaSeri al i zati on=true
» Click Save
» Restart the Application Server.

Chapter 3 Tuning the Application Server 81

Thread Pools

Using JSG for Application Clients

If an application will use standalone non-web clients (application clients), and you want to
use JSG, you must also set a system property for the client applications. A common way to
do thisisto add the property to the Java command line used to start the client application,
for example:

java -Dcom sun. OCRBA. encodi ng. ORBEnabl eJavaSerial i zati on=true \
- Dor g. ong. CORBA. CRBI ni ti al Host =gol | um \

- Dor g. ong. OORBA. CRBI ni ti al Port=35309 \

M/d i ent Program

Thread Pools

Y ou can both monitor and tune thread pool settings through the Admin Console. To
configure monitoring with the Admin Console, open the page Configurations >
config-name > Monitoring. To view monitoring information with the Admin Console, open
the page Stand-Alone Instances > instance-name (Monitor).

Tuning Thread Pools (Unix /Linux only)

Configure thread pool settings through the Admin Console at Configurations >
config-name > Thread Pools.

Since threads on Unix/Linux are always operating system (OS)-scheduled, as opposed to
user-scheduled, Unix/Linux users do not need to use native thread pools. Therefore, this
option is not offered in a Unix/Linux user interface. However, it is possible to edit the
OS-scheduled thread pools and add new thread poals, if needed, using the Admin Console.

Resources

 JDBC Connection Pools

e Connector Connection Pools

82 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Resources

JDBC Connection Pools

For optimum performance of database-intensive applications, tune the JDBC Connection
Pools managed by the Application Server. These connection pools maintain numerous live
database connections that can be reused to reduce the overhead of opening and closing
database connections. This section describes how to tune JDBC Connection Pools to
improve performance.

J2EE applications use JDBC Resources to obtain connections that are maintained by the
JDBC Connection Pool. More than one JDBC Resource is allowed to refer to the same
JDBC Connection Poal. In such a case, the physical connection pool is shared by all the
resources.

Monitoring JDBC Connection Pools

Statistics-gathering is enabled by default for JDBC Connection Pools. The following
attributes are monitored:

e numConnFailedValidation (count)
Number of connections that failed validation.

e numConnUsed (range)
Number of connections that have been used.

* numConnFree (count)
Number of free connectionsin the pool.

* numConnTimedOut (bounded range)
Number of connections in the pool that have timed out.

To get the statistics, use these commands:

asadm n get --nonitor=true
serverl nstance. resour ces. j dbc- connect i on- pool . *
asadm n get --nonitor=true
serverl nstance. resour ces. j dbc- connecti on-pool . pool Nare. * *

Tuning JDBC Connection Pools

Set IDBC Connection Poal attributes with the Admin Console under Resources > JDBC >
Connection Pools > PoolName. The following attributes affect performance:

* Pool Size Settings
e Timeout Settings
* Isolation Level Settings

Chapter 3 Tuning the Application Server 83

Resources

e Connection Validation Settings

Pool Size Settings
The following settings control the size of the connection pool:

* Initial and Mimimum Pool Size: size of the pool when created, and its minimum
allowable size.

e Maximum Pool Size

e Pool Resize Quantity: number of connections to be removed when the idle timeout
expires. Connections that have idled for longer than the timeout are candidates for
removal. When the pool size reaches theinitial and minimum pool size, removal of
connections stops.

When sizing connection pools, keep the following pros and consin mind:

Table 3-5 Connection Pool Sizing

Connection pool Pros Cons
Small Connection pool Faster access on the connection May not have enough connections to
table. satisfy requests.
Requests may spend more time in
the queue.
Large Connection pool More connections to fulfill requests. Slower access on the connection
table.

Requests will spend less (or no) time
in the queue

Timeout Settings
There are two timeout settings:

e Max Wait Time: Amount of time the caller (the code requesting a connection) will
wait before getting a connection timeout. The default is 60 seconds. A value of zero
forces caller to wait indefinitely.

To improve performance set Max Wait Time to zero (0). This essentially blocks the
caller thread until a connection becomes available. Also, this allows the server to
alleviate the task of tracking the elapsed wait time for each request and increases
performance.

» ldleTimeout: Maximum time in seconds that a connection can remain idlein the pool.
After thistime, the pool can close this connection. This property does not control
connection timeouts on the database server.

84 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Resources

Keep this timeout shorter than the database server timeout (if such timeouts are
configured on the database), to prevent accumulation of unusable connection in
Application Server.

For best performance, set Idle Timeout to zero (0) seconds, so that idle connectionswill
not be removed. This ensures that there is normally no penalty in creating new
connections and disables the idle monitor thread. However, thereisarisk that the
database server will reset a connection that is unused for too long.

Isolation Level Settings

Two settings control the connection pool’ s transaction isolation level on the database
server:

Transaction Isolation Level: specifies the transaction isolation level of the pooled
database connections. If this parameter is unspecified, the pool uses the default
isolation level provided by the JDBC Driver.

Isolation L evel Guaranteed: Ensuresthat every connection obtained from the pool\ is
guaranteed to have theisolation specified by the Transaction Isolation Level parameter.
Applicable only when the Transaction Isolation Level is specified. The default valueis
true.

This setting can have some performance impact on some JDBC drivers. Set to false
when certain that the application does not change the isolation level before returning
the connection.

Avoid specifying Transaction Isolation Level. If that is not possible, consider setting
Isolation Level Guaranteed to false and make sure applications do not programmeatically
alter the connections' isolation level.

If you must specify isolation level, specify the best-performing level possible. The isolation
levelslisted from best performance to worst are:

1.
2.
3.
4.

READ_UNCOMMITTED
READ_COMMITTED
REPEATABLE_READ
SERIALIZABLE

Choose the isolation level that provides the best performance, yet still meets the
concurrency and consistency needs of the application.

Chapter 3 Tuning the Application Server 85

Resources

Connection Validation Settings
The following settings determine whether and how the pool performs connection validation.

e Connection Validation Required: If true, the pool validates connections (checks to
find out if they are usable) before providing them to an application.

If possible, keep the default value, false. Requiring connection validation forces the
server to apply the validation algorithm every time the pool returns a connection, which
adds overhead to the latency of get Connect i on() . If the database connectivity is
reliable, you can omit validation.

» Validation Method: Type of connection validation to perform. Must be one of:
o auto-commit: attempt to perform an auto-commit on the connection.
o metadata: attempt to get metadata from the connection.

v table (performing a query on a specified table). Must also set Table Name. You
may have to use this method if the JDBC driver caches callsto set Aut oCormi t ()
and get Met aDat a() .

e Table Name: the table name to query when Validation Method is “table.”

e Close All Connections On Any Failure: Whether to close all connections in the pool
if asingle validation check fails. The default is false. One attempt will be madeto
re-establish failed connections.

Connector Connection Pools

From a performance standpoint, connector connection pools are similar to JDBC
connection pools. Follow all the recommendations in the previous section, “Tuning JDBC
Connection Pools’ on page 83.

Transaction Support

Y ou may be able to improve performance by overriding the default transaction support
specified for each connector connection pool.

For example, consider a case where an Enterprise Information System (EIS) has a
connection factory that supports local transactions with better performance than global
transactions. If aresource from this EIS needs to be mixed with aresource coming from
another resource manager, the default behavior forces the use of XA transactions, leading to
lower performance. However, by changing the EIS's connector connection pool to use

86 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Resources

L ocal Transaction transaction support and leveraging the Last Agent Optimization feature
previously described, you could leverage the better-performing EIS Local Transaction
implementation. For more information on LA O, see “ Configure JDBC Resources as
One-Phase Commit Resources.”

In the Admin Console, specify transaction support when you create a new connector
connection pool, and when you edit a connector connection pool at Resources >
Connectors > Connector Connection Pools.

Also set transaction support using asadni n. For example, the following asadm n command
could be used to create a connector connection pool “TESTPOOL” with the
transaction-support as“LOCAL".

asadm n> creat e- connect or - connect i on-pool --raname jdbcra
--connectiondefinition javax.sql.DataSource -transacti onsupport
Local Transacti on TESTPOCL

Chapter 3 Tuning the Application Server 87

Resources

88 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Chapter 4

Tuning the Java Runtime System

This chapter discusses the following topics:
e JavaVirtual Machine Settings
e Managing Memory and Garbage Collection

e Further Information

Java Virtual Machine Settings
J2SE 5.0 provides two implementations of the HotSpot Java virtual machine (JVM):

» Theclient VM istuned for reducing start-up time and memory footprint. Invoke it by
usingthe-cl i ent VM command-line option.

e Theserver VM isdesigned for maximum program execution speed. Invoke it by using
the - server VM command-line option.

By default, the Application Server uses the JVM setting appropriate to the purpose:

» Platform Edition, targeted at application developers, usesthe-cl i ent VM flagto
optimize startup performance and conserve memory resources.

» Enterprise Edition, targeted at production deployments, uses the default VM startup
mode. With J2SE 5.0, the HotSpot VM provides server-class machine detection, which
will usethe server VM if it detects “ server-class’ hardware (at least two CPUs and two
GB of physical memory).

Y ou can override the default by changing the VM settings in the Admin Console under
Configurations > config-name > JVM Settings (JVM Options).

For more information on server-class machine detection in J2SE 5.0, see
http://java. sun. com j 2se/ 1. 5. 0/ docs/ gui de/ vii ser ver - cl ass. ht m .

89

http://java.sun.com/j2se/1.5.0/docs/guide/vm/server-class.html

Managing Memory and Garbage Collection

For more information on the VM in J2SE 5.0, see
http://java. sun. con j 2se/ 1. 5. 0/ docs/ gui de/ vii i ndex. ht ni .

Managing Memory and Garbage Collection

90

The efficiency of any application depends on how well memory and garbage collection are
managed. The following sections provide information on opti mizing memory and allocation
functions:

e Tuning the Garbage Collector

e Tracing Garbage Collection

» Other Garbage Collector Settings
* Tuning the Java Heap

* Rebasing DLLson Windows

* Further Information

Tuning the Garbage Collector

Garbage collection (GC) reclaims the heap space previoudly allocated to objects no longer
needed. The process of locating and removing the dead objects can stall any application and
consume as much as 25 percent throughput.

Almost all Java Runtime Environments come with a generational object memory system
and sophisticated GC agorithms. A generational memory system divides the heap into a
few carefully sized partitions called generations. The efficiency of a generational memory
system is based on the observation that most of the objects are short lived. As these objects
accumulate, alow memory condition occurs forcing GC to take place.

The heap space is divided into the old and the new generation. The new generation includes
the new object space (eden), and two survivor spaces. The VM allocates new objectsin the
eden space, and moves longer lived objects from the new generation to the old generation.

The young generation uses a fast copying garbage collector which employs two
semi-spaces (survivor spaces) in the eden, copying surviving objects from one survivor
space to the second. Objects that survive multiple young space collections are tenured,
meaning they are copied to the tenured generation. Thetenured generation islarger and fills
up less quickly. So, it is garbage collected less frequently; and each collection takes longer
than ayoung space only collection. Collecting the tenured spaceis also referred to as doing
afull generation collection.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html

Managing Memory and Garbage Collection

The freguent young space collections are quick (a few milliseconds), while the full
generation collection takes alonger (tens of millisecondsto afew seconds, depending upon
the heap size).

Other GC algorithms, such as the Concurrent Mark Sweep (CMS) algorithm, are
incremental. They divide the full GC into several incremental pieces. This provides a high
probability of small pauses. This process comes with an overhead and is not required for
enterprise web applications.

When the new generation fills up, it triggers a minor collection in which the surviving
objects are moved to the old generation. When the old generation fills up, it triggers a major
collection which involves the entire object heap.

Both HotSpot and Solaris JDK use thread local object allocation pools for lock-free, fast,
and scalable object alocation. So, custom object pooling is not often required. Consider
pooling only if object construction cost is high and significantly affects execution profiles.

Choosing the Garbage Collection Algorithm

Pauses during afull GC of more than four seconds can cause intermittent failuresin
persisting session datainto HADB.

While GC isgoing on, the Application Server isn’t running. If the pauseislong enough, the
HADB times out the existing connections. Then, when the application server resumes its
activities, the HADB generates errors when the application server attempts to use those
connections to persist session data. It generates errors like, “Failed to store session data,”
“Transaction Aborted,” or “Failed to connect to HADB server.”

To prevent that problem, use the CMS collector as the GC algorithm. This collector can
cause adrop in throughput for heavily utilized systems, because it is running more or less
congtantly. But it prevents the long pauses that can occur when the garbage collector runs
infrequently.

To use the CMS collector:
1. Make sure that the system is not using 100 percent of its CPU.
2. Configure HADB timeouts, as described in the Administration Guide.

3. Configurethe CMS callector in the server instance by adding the following VM
options:

- XX: +UseConcMar kSneepQC - XX: Sof t Ref LRUPol i cyMsPer MB=1
Additional Information

Usethejvnstat utility to monitor HotSpot garbage collection. (See “ Further Information”
on page 97.)

Chapter 4 Tuning the Java Runtime System 91

Managing Memory and Garbage Collection

92

For detailed information on tuning the garbage collector, see
http://java. sun. com docs/ hot spot/ gc5. 0/ gc_tuning 5. htni.

Tracing Garbage Collection

The two primary measures of garbage collection performance are throughput and pauses.
Throughput is the percentage of the total time spent on other activities apart from GC.
Pauses are times when an application appears unresponsive due to GC.

Two other considerations are footprint and promptness. Footprint is the working size of the
JVM process, measured in pages and cache lines. Promptness is the time between when an
object becomes dead, and when the memory becomes available. Thisis an important
consideration for distributed systems.

A particular generation size makes a trade-off between these four metrics. For example, a
large young generation likely maximizes throughput, but at the cost of footprint and
promptness. Conversely, using asmall young generation and incremental GC will minimize
pauses, and thus increase promptness, but decrease throughput.

JVM diagnostic output will display information on pauses due to GC. If you start the server
in verbose mode (use the command asadni n start-donmai n --verbose donai n), then
the command line argument "- ver bose: gc" prints information for every collection. Here is
an example of output of the information generated with this VM flag:

[GC 50650K- >21808K(76868K), 0. 0478645 secs]
[GC 51197K- >22305K(76868K), 0. 0478645 secs]
[GC 52293K- >23867K(76868K), 0. 0478645 secs]
[Full GC 52970K->1690K(76868K), 0.54789968 secs]

On each line, the first number is the combined size of live objects before GC, the second
number is the size of live objects after GC, the number in parenthesisis the total available
space, which isthe total heap minus one of the survivor spaces. The final figureisthe
amount of time that the GC took. This example shows three minor collections and one
major collection. In the first GC, 50650 KB of objects existed before collection and 21808
KB of objects after collection. This means that 28842 KB of objects were dead and
collected. Thetotal heap sizeis 76868 KB. The collection process required 0.0478645
seconds.

Other useful monitoring options include:
e -XX +PrintQDetail s for more detailed logging information

e -Xoggc: filetosavetheinformationinalog file

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

Managing Memory and Garbage Collection

Other Garbage Collector Settings

For applications that do not dynamically generate and load classes, the size of the
permanent generation affectsto GC performance. For applications that dynamically
generate and load classes (for example, JSP applications), the size of the permanent
generation does affect GC performance, since filling the permanent generation can trigger a
Full GC. Tune the maximum permanent generation with the - XX: MaxPer n&i ze option.

Although applications can explicitly invoke GC with the Syst em gc() method, doing soisa
bad idea since this forces magjor collections, and inhibits scalability on large systems. It is
best to disable explicit GC by using the flag - XX: +Di sabl eExpl i ci t GC.

The Application Server uses RMI in the Administration module for monitoring. Garbage
cannot be collected in RMI-based distributed applications without occasional local
collections, so RMI forces a periodic full collection. Control the frequency of these
collections with the property - sun. rmi . dgc. cli ent. gcl nterval . For example, - java
-Dsun. rni . dgc. client. gcl nt erval =3600000 specifies explicit collection once per hour
instead of the default rate of once per minute.

To specify the attributes for the Java virtual machine, use the Admin Console and set the
property under config-name > JVM settings (JVM options).

Tuning the Java Heap

This section discusses topics related to tuning the Java Heap for performance.
e Guidelinesfor Java Heap Sizing

e Heap Tuning Parameters

» Sample Heap Configuration on Solaris

Guidelines for Java Heap Sizing

Maximum heap size depends on maximum address space per process. The following table
shows the maximum per-process address values for various platforms:

Table 4-1 Maximum Address Space Per Process

Operating System Maximum Address Space Per
Process

Redhat Linux 32 bit 2GB

Redhat Linux 64 bit 3GB

Windows 98/2000/NT/Me/XP 2GB

Chapter 4 Tuning the Java Runtime System 93

Managing Memory and Garbage Collection

94

Table 4-1 Maximum Address Space Per Process

Solaris x86 (32 bit) 4GB
Solaris 32 bit 4GB
Solaris 64 bit Terabytes

Maximum heap space is aways smaller than maximum address space per process, because
the process a so needs space for stack, libraries, and so on. To determine the maximum heap
space that can be allocated, use a profiling tool to examine the way memory is used. Gauge
the maximum stack space the process uses and the amount of memory taken up libraries and
other memory structures. The difference between the maximum address space and the total
of those valuesis the amount of memory that can be allocated to the heap.

Y ou can improve performance by increasing your heap size or using a different garbage
collector. In general, for long-running server applications, use the J2SE throughput
collector on machines with multiple processors (- XX: +Aggr essi veHeap) and aslarge a
heap as you can fit in the free memory of your machine.

Heap Tuning Parameters
Y ou can control the heap size with the following VM parameters:

¢ - Xnsvalue

o - Xnxvalue

e - XX M nHeapFr eeRat i o=minimum
e - XX MaxHeapFr eeRat i o=maximum
o - XX NewRat i o=ratio

o - XX NewSi ze=size

o - XX MaxNewSi ze=5ze

e - XX +Aggressi veHeap

The - Xms and - Xnx parameters define the minimum and maximum heap sizes, respectively.
Since GC occurs when the generations fill up, throughput isinversely proportional to the
amount of the memory available. By default, the VM grows or shrinksthe heap at each GC
to try to keep the proportion of free space to the living objects at each collection within a
specific range. Thisrange is set as a percentage by the parameters

- XX: M nHeapFr eeRat i o=minimum and - XX: MaxHeapFr eeRat i o=maximum; and the total size
bounded by - Xms and - Xnx.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Managing Memory and Garbage Collection

Set the values of - Xms and - Xnx equal to each other for afixed heap size. When the heap
grows or shrinks, the VM must recal culate the old and new generation sizes to maintain a
predefined NewRat i o.

The NewS ze and MaxNewSi ze parameters control the new generation’s minimum and
maximum size. Regulate the new generation size by setting these parameters equal. The
bigger the younger generation, the less often minor collections occur. The size of the young
generation relative to the old generation is controlled by NewRat i 0. For example, setting

- XX: NewRat i 0=3 means that the ratio between the old and young generation is 1:3, the
combined size of eden and the survivor spaces will be fourth of the heap.

By default, the Application Server isinvoked with the Java HotSpot Server VM. The
default NewRat i o for the Server VM is 2: the old generation occupies 2/3 of the heap while
the new generation occupies 1/3. The larger new generation can accommodate many more
short-lived objects, decreasing the need for slow major collections. The old generation is
still sufficiently large enough to hold many long-lived objects.

To size the Java heap:

e Decide the total amount of memory you can afford for the VM. Accordingly, graph
your own performance metric against young generation sizesto find the best setting.

» Make plenty of memory available to the young generation. The default is calculated
from NewRat i 0 and the - Xnx setting.

» Larger eden or younger generation spaces increase the spacing between full GCs. But
young space collections could take a proportionally longer time. In general, keep the
eden size between one fourth and one third the maximum heap size.

The old generation must be larger than the new generation.

Survivor Ratio Sizing

The Sur vi vor Rati o parameter controls the size of the two survivor spaces. For example,

- XX Sur vi vor Rat i 0=6 sets the ratio between each survivor space and eden to be 1:6, each
survivor space will be one eighth of the young generation. The default for Solarisis 32. If
survivor spaces are too small, copying collection overflows directly into the old generation.
If survivor spaces are too large, they will be empty. At each GC, the VM determines the
number of times an object can be copied before it is tenured, called the tenure threshold.
This threshold is chosen to keep the survivor space half full.

Use the option - XX: +Pri nt Tenuri ngDi st ri but i on to show the threshold and ages of the
objects in the new generation. It is useful for observing the lifetime distribution of an
application.

Chapter 4 Tuning the Java Runtime System 95

Managing Memory and Garbage Collection

96

Sample Heap Configuration on Solaris

Thisisasample heap configuration used by Application Server on Solaris for large
applications:

- Xn53584m

- Xnx3584m

-verbose: gc

-Dsun. rm . dgc. client. gcl nterval =3600000

Further Information

For more information on tuning the VM in J2SE 5.0, see
http://java. sun. com docs/ hot spot/ gc5. 0/ gc_t uni ng_5. htni .

For up-to-date defaults, seehtt p: / /] ava. sun. com docs/ hot spot / VMt i ons. ht m .

Rebasing DLLs on Windows

When the JVM initializes, it tries to allocate its heap using the - Xms setting. The base
addresses of Application Server DLLs can restrict the amount of contiguous address space
available, causing VM initialization to fail. The amount of contiguous address space
available for Java memory varies depending on the base addresses assigned to the DLLSs.

Y ou can increase the amount of contiguous address space available by rebasing the
Application Server DLLs.

To prevent load address collisions, set preferred base addresses with the rebase utilty that
comes with Visua Studio and the Platform SDK. Use the rebase utility to reassign the base
addresses of the Application Server DLLsto prevent relocations at |oad time and increase
the available process memory for the Java heap.

There are afew Application Server DLLs that have non-default base addresses that can
cause collisions. For example:

* Thenspr libraries have a preferred address of 0x30000000.
* Thei cu libraries have the address of 0x4A?200000.

Move these libraries near the system DLLs (msvert. dl | isat 0x78000000) to increase the
available maximum contiguous address space substantially. Since rebasing can be done on
any DLL, rebaseto the DLLs after installing the Application Server.

To perform rebasing, you need:
* Windows 2000
* Visua Studio and the Microsoft Framework SDK rebase utility

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/VMOptions.html

Further Information

To rebase the Application Server'sDLLSs:

1. Makeinstall _dir\bi nthedefault directory.
cd install _dir\bin

2. Enter thiscommand:
rebase -b 0x6000000 *.dI |

3. Usethedependencywal ker utility to make surethe DLLs were rebased correctly. For
more information, see waww. dependencywal ker . com

4. Increasethe size for the Java heap, and set the VM Option accordingly on the VM
Settings page in the Admin Console.

5. Restart the Application Server.
For more information on rebasing, see:

o http://nsdn. mcrosoft.comlibrary/defaul t.asp?url=/library/en-us/tool s/tool s/
rebase. asp

o http://nsdn. mcrosoft.com nsdnnag/ nett op. asp?page=/ nsdnnmag/ i ssues/ 0500/ hood/ h
00d0500. asp

Further Information

For more information on tuning the VM, see:
e JavaHotSpot VM Optionsht t p: //j ava. sun. conf docs/ hot spot / VMt i ons. ht ni

* Frequently Asked Questions About the Java HotSpot Virtual Machine
http://java. sun. coni docs/ hot spot / Per f or manceFAQ ht ni

e Additional documents on HotSpot tuning
http://java. sun. coni docs/ hot spot /

» The main Java performance web page:
http://java. sun. conl per f or mance/

e Monitoring and Management for the Java Platform (J2SE 5.0):
http://java. sun. con j 2se/ 1. 5. 0/ docs/ gui de/ managenent /

e Thejvnstat monitoring utility
htt p:// devel opers. sun. coni dev/ cool stuff/jvnstat/v2/ docs. ht ni

Chapter 4 Tuning the Java Runtime System 97

http://developers.sun.com/dev/coolstuff/jvmstat/v2/docs.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/
http://java.sun.com/docs/hotspot/VMOptions.html
http://msdn.microsoft.com/msdnmag/nettop.asp?page=/msdnmag/issues/0500/hood/hood0500.asp
http://java.sun.com/docs/hotspot/PerformanceFAQ.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/rebase.asp
http://java.sun.com/performance/
http://java.sun.com/docs/hotspot/

Further Information

98 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Chapter 5

Tuning the Operating System

This chapter discusses tuning the operating system (OS) for optimum performance. It
discusses the following topics:

* Server Scaling
e Tuning for Solaris
e Tuning for Solaris on x86

e Tuningfor Linux platforms

Server Scaling

This section provides recommendations for optimal performance scaling server for the
following server subsystems:

* Processors
e Memory

e Disk Space
* Networking

Processors

The Application Server automatically takes advantage of multiple CPUs. In general, the
effectiveness of multiple CPUs varies with the operating system and the workload, but
more processors will generally improve dynamic content performance.

99

Server Scaling

Static content involves mostly input/output (1/O) rather than CPU activity. If the server is
tuned properly, increasing primary memory will increase its content caching and thus
increase the relative amount of time it spendsin /O versus CPU activity. Studies have
shown that doubling the number of CPUs increases servlet performance by 50 to 80 percent.

Memory

See the Sun Java System Application Server Release Notes for specific memory
recommendations for each supported operating system.

Disk Space

It is best to have enough disk space for the OS, document tree, and log files. In most cases
2GB total is sufficient.

Put the OS, swap/paging file, Application Server logs, and document tree each on separate
hard drives. Thisway, if thelog filesfill up the log drive, the OS does not suffer. Also, its
easy to tell if the OS paging fileis causing drive activity, for example.

OS vendors generally provide specific recommendations for how much swap or paging
space to allocate. Based on Sun testing, Application Server performs best with swap space
equal to RAM, plus enough to map the document tree.

Networking

To determine the bandwidth the application needs, determine the following values:
* The number of peak concurrent users (N,,) the server needs to handle.

» Theaverage request size on your site, r. The average request can include multiple
documents. When in doubt, use the home page and all its associated files and graphics.

» Decide how long the average user will be willing to wait for a document, t, at peak
utilization.

Then, the bandwidth required is:
(Npeak [T1)/t

For example, to support apeak of 50 users with an average document size of 24 Kbytes, and
transferring each document in an average of 5 seconds, requires 240 Kbytes (1920 Khit/s).
So the site needs two T1 lines (each 1544 Kbit/s). This bandwidth also allows some
overhead for growth.

100 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning for Solaris

The server’s network interface card must support more than the WAN to whichiit is
connected. For example, if you have up to three T1 lines, you can get by with a 10BaseT
interface. Up to a T3 line (45 Mbit/s), you can use 100BaseT. But if you have more than 50
Mbit/s of WAN bandwidth, consider configuring multiple 100BaseT interfaces, or look at
Gigabit Ethernet technology.

Tuning for Solaris

e Tuning Parameters
» File Descriptor Setting
e Using Alternate Threads

Tuning Parameters

Tuning Solaris TCP/IP settings benefits programs that open and close many sockets. Since
the Application Server operates with asmall fixed set of connections, the performance gain
might not be significant.

The following table shows Solaris tuning parameters used for performance and scalability
benchmarking. These values are examples of how to tune your system for best performance.

Table 5-1 Tuning Parameters for Solaris

Parameter Scope Default Tuned Value Comments

rlim_fd_max /etc/system 1024 8192 Process open file descriptors limit;
should account for the expected
load (for the associated sockets,
files, pipes if any).

rlim_fd_cur /etc/system 1024 8192

sg_max_size letc/system 2 0 Controls streams driver queue size;
setting to 0 makes it infinity so the
performance runs won't be affected
by lack of buffer space. Set on
clients too.

tcp_close_wait_interval ndd /dev/tcp 240000 60000 Set on clients too.

tcp_time_wait_interval ndd /dev/tcp 240000 60000

tcp_conn_req_max_q ndd /dev/tcp 128 1024

tcp_conn_req_max_g0 ndd /dev/tcp 1024 4096

Chapter 5 Tuning the Operating System 101

Tuning for Solaris

Table 5-1 Tuning Parameters for Solaris

Parameter Scope Default Tuned Value Comments

tcp_ip_abort_interval ndd /dev/tcp 480000 60000

tcp_keepalive_interval ndd /dev/tcp 7200000 900000 For high traffic web sites, lower this
value.

tcp_rexmit_interval_initial ndd /dev/tcp 3000 3000 If retransmission is greater than
30-40%, increase this value.

tcp_rexmit_interval_max ndd /dev/tcp 240000 10000

tcp_rexmit_interval_min ndd /dev/tcp 200 3000

tcp_smallest_anon_port ndd /dev/tcp 32768 1024 Set on clients, too.

tcp_slow_start_initial ndd /dev/tcp 1 2 Slightly faster transmission of small

amounts of data.

tcp_xmit_hiwat ndd /dev/tcp 8129 32768 Size of transmit buffer.
tcp_recv_hiwat ndd /dev/tcp 8129 32768 Size of transmit buffer.
tcp_recv_hiwat ndd /dev/tcp 8129 32768 Size of receive buffer.
tcp_conn_hash_size ndd /dev/tcp 512 8192 Size of connection hash table. See

Sizing the Connection Hash Table

Sizing the Connection Hash Table

The connection hash table keeps all the information for active TCP connections. Use the
following command to get the size of the connection hash table:

ndd -get /dev/tcp tcp_conn_hash

This value does not limit the number of connections, but it can cause connection hashing to
take longer. The default sizeis 512.

To make lookups more efficient, set the value to half of the number of concurrent TCP
connections that are expected on the server. Y ou can set thisvalue only in/ et ¢/ syst em
and it becomes effective at boot time.

Use the following command to get the current number of TCP connections.

netstat -nP tcp|wc -I

File Descriptor Setting

On Solaris, setting the maximum number of open files property using ul i ni t hasthe
biggest impact on efforts to support the maximum number of RMI/11OP clients.

102 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning for Solaris

To increase the hard limit, add the following command to / et ¢/ syst emand reboot it once:
set rlimfd nax = 8192

Verify this hard limit by using the following command:
ulimt -a-H

Once the above hard limit is set, increase the value of this property explicitly (up to this
[imit) using the following command:

ulimt -n 8192
Verify thislimit by using the following command:
ulimt -a

For example, with the default ul i mi t of 64, asimple test driver can support only 25
concurrent clients, but with ul i mi t set to 8192, the same test driver can support 120
concurrent clients. The test driver spawned multiple threads, each of which performed a
JNDI lookup and repeatedly called the same business method with athink (delay) time of
500ms between business method calls, exchanging data of about 100KB.

These settings apply to RMI/IIOP clients (on Solaris). For more information on setting the
file descriptor limits, see the online Solaris documentation at
http://docs. sun. con db/ prod/ sol ari s.

Using Alternate Threads

The Solaris operating environment by default supports a two-level thread model (up to
Solaris 8). Application-level Javathreads are mapped to user-level Solaris threads, which
are multiplexed on alimited pool of light weight processes (LWPs). To conserve kernel
resources and maximize system efficiency, you need only as many LWPs asthere are
processors on the system. This helpswhen there are hundreds of user-level threads. Y ou can
choose from multiple threading models and different methods of synchronization within the
model, depending on the JVM.

Try to load the alternate | i bt hread. so in/usr/1ib/ 1w/ on Solaris 8 by changing the
LD LI BRARY PATHto include/usr/ i b/l wp before/usr/1ib. Both give better throughput
and system utilization for certain applications; especially those using fewer threads.

By default, the Application Server uses/ usr/1i b/ | wp. Change the default settings to not
usethe LWP by removing/ usr/li b/l wp fromthelLD LI BRARY_PATHinthestart serv script,
but avoid doing this unlessit is absolutely required.

Chapter 5 Tuning the Operating System 103

Tuning for Solaris on x86

For applications using many threads, / usr/ i b/l i bt hread. so isthe best library to use. Of
course, see using - Xconcur rent i o for applications with many threads as this will not only
turn on LWP based sync, the default in 1.4, but also turn off TLABS, or thread local
allocation buffers, which can chew up the heap and cause premature garbage collection.

Further Information

For more information on Solaris threading issues with Java, see
http://java.sun.com/docs/hotspot/threads/threads.html

For additional information on tuning the HotSpot VM, see “Further Information” on
page 97.

For further information on tuning Solaris system see the Solaris Tunable Parameters
reference manual located at http://docs.sun.com/db/doc/806-7009.

Tuning for Solaris on x86

The following are some options to consider when tuning Solaris on x86 for Application
Server and HADB:

e |P Stack Settings
e FileDescriptors
e Virtua Memory

Some of the values depend on the system resources available. After making any changesto
/ et c/ syst em reboot the machines.

Semaphores and Shared Memory

Add (or edit) the following linesin the/ et ¢/ syst emfile:

set shnsys: shm nfo_shnmax=0xffffffff
set shnsys: shm nfo_shnseg=128

set sensys: sem nfo_senmmu=1024

set sensys: sem nfo_senmap=128

set sensys: sem nfo_senmi =400

set sensys: sem nfo_senmms=1024

These settings affect the number of semaphores and the shared memory. These are more
relevant for the machine on which HADB server is running than for Application Server.

104 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

http://docs.sun.com/db/doc/806-7009
http://java.sun.com/docs/hotspot/threads/threads.html

Tuning for Solaris on x86

File Descriptors

Add (or edit) the following linesin the/ et ¢/ syst emfile:

set rlimfd nax=65536

set rlimfd _cur=65536

set sqg_max_si ze=0

set tcp:tcp_conn_hash_si ze=8192
set aut oup=60

set pcisch: pci_stream buf _enabl e=0

These settings affect the file descriptors.

IP Stack Settings

Add (or edit) the following linesin the/ et ¢/ syst emfile:

set ip:tcp_squeue_wput =1

set ip:tcp_squeue_cl ose=1

set ip:ip_squeue_bi nd=1

set ip:ip_squeue_worker_ wait=10
set ip:ip_squeue_profile=0

These settings tune the | P stack.

To preserve the changes to the file between system reboots, place the following changesto
the default TCP variablesin a startup script that gets executed when the system reboots:

ndd -set /dev/tcp tcp_tine_wait_interval 60000
ndd -set /dev/tcp tcp_conn_req_max_q 16384

ndd -set /dev/tcp tcp_conn_req_nax_q0 16384

ndd -set /dev/tcp tcp_ip_abort_interval 60000
ndd -set /dev/tcp tcp_keepalive_interval 7200000
ndd -set /dev/tcp tcp_rexmt _interval _initial 4000
ndd -set /dev/tcp tcp_rexmt _interval _min 3000
ndd -set /dev/tcp tcp_rexmt _interval _max 10000
ndd -set /dev/tcp tcp_smallest_anon_port 32768
ndd -set /dev/tcp tcp_slow start_initial 2

ndd -set /dev/tcp tcp_xmt_hiwat 32768

ndd -set /dev/tcp tcp_recv_hiwat 32768

Chapter 5 Tuning the Operating System 105

Tuning for Linux platforms

Tuning for Linux platforms

To tune for maximum performance on Linux, you need to make adjustments to the
following:

» FileDescriptors

e Virtua Memory

* Network Interface
* Disk I/O Settings
* TCP/IP Settings

File Descriptors

Y ou may need to increase the number of file descriptors from the default. Having a higher
number of file descriptors ensures that the server can open sockets under high load and not
abort requests coming in from clients.

Start by checking system limits for file descriptors with this command:

% cat /proc/sys/fs/file-max
8192

The current limit shown is 8192. To increase it to 65535 (as root):
echo "65535" > /proc/sys/fs/file-mx

To make this value to survive a system reboot, add it to/ et ¢/ sysct | . conf and specify the
maximum number of open files permitted:

fs.file-max = 65535

Note: The parameter isnot proc. sys. fs. fi | e- max, as one might expect.
To list the available parameters that can be modified using sysct | :
%sysctl -a

To load new values from the sysct | . conf file:

%sysctl -p /etc/sysctl.conf

106 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning for Linux platforms

To check and modify limits per shell:

%limt

cputime unlimted
filesize unlimted
dat asi ze unlimted
st acksi ze 8192 kbyt es
cor edunpsi ze 0 kbytes
nenor yuse unlimted

descriptors 1024
menor yl ocked unlimted
naxpr oc 8146
openfiles 1024

Theopenfil es and descri pt ors show alimit of 1024. To increase the limit to 65535 for all
users, edit / et ¢/ security/linits. conf asroot, and modify or add the "nofile" (number of
file) entries:

* sof t nofile 65535
* hard nofile 65535

The character “*” isawildcard that identifies all users. Y ou could also specify a user ID
instead.

Then edit / et ¢/ pam d/ | ogi n and add the line:

session required /lib/security/pamlinits.so

On Red Hat, you aso need to edit / et ¢/ pam d/ sshd and add the following line:
session required /lib/security/pamlints.so

On many systems, this procedure will be sufficient. Log in asaregular user and try it before
doing the remaining steps. The remaining steps might not be required, depending on how
pluggable authentication modules (PAM) and secure shell (SSH) are configured.

Virtual Memory

To change virtual memory settings, add the followingto /etc/rc. | ocal :
echo 100 1200 128 512 15 5000 500 1884 2 > /proc/sys/vm bdf| ush
For more information, view the man pages for bdf | ush.

For HADB settings, refer to Chapter 6, “ Tuning for High-Availability”.

Chapter 5 Tuning the Operating System 107

Tuning for Linux platforms

Network Interface

To ensure that the network interface is operating in full duplex mode, add the following
entry into/etc/rc. | ocal :

mi-tool -F 100baseTx-FD eth0

where eth0 is the name of the network interface card (NIC).

Disk 1/0 Settings

To tune disk 1/0 performance for non SCSI disks, do the following:
1. Test the speed using:
/ sbin/ hdparm -t /dev/ hdX
2. Enable DMA, using the following:
/ sbi n/ hdparm -d1 /dev/ hdX
3. Check the speed again using the hdpar mcommand.

Given that DMA is not enabled by default, the transfer rate might have improved
considerably. In order to do this at every reboot, add the/ sbi n/ hdpar m-d1 / dev/ hdXlineto
/etc/conf.d/local.start,/etc/init.d/rc.local,or whatever the startup script is called.

For information on SCSI disks, see:
http:// peopl e. redhat. con al i ki ns/ syst em t uni ng. ht n #scsi

TCP/IP Settings

To tune the TCP/IP settings, follow this procedure:
1. Addthefollowingentry to/etc/rc. | ocal

echo 30 > /proc/sys/net/ipva/tcp_fin_tinmeout

echo 60000 > /proc/sys/net/ipva/tcp_keepalive_ time
echo 15000 > /proc/sys/net/ipv4/tcp_keepalive_intvl
echo 0 > /proc/sys/net/ipv4/tcp_w ndow scaling

2. Addthefollowingto/etc/sysctl.conf

Di sabl es packet forwarding
net.ipvd.ip_forward = 0

108 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning for Linux platforms

Enabl es source route verification
net.ipv4. conf.default.rp filter =1

Disabl es the nagi c-sysrq key
kernel .sysrq = 0

net.ipv4.ip_local _port_range = 1204 65000
net.core.rmemmax = 262140
net.core.rnmemdefault = 262140
net.ipv4. tcp_rmem= 4096 131072 262140
net.ipv4. tcp_wrem = 4096 131072 262140
net.ipv4.tcp_sack =0

net.ipv4. tcp_timestanps = 0
net.ipv4.tcp_w ndow scaling = 0
net.ipv4.tcp_keepal ive_time = 60000
net.ipv4.tcp_keepalive_intvl = 15000
net.ipvd. tcp_fin_tineout = 30

Add the following asthe last entry in/etc/rc. | ocal

sysctl -p /etc/sysctl.conf

Reboot the system.

Finally, use this command to increase the size of the transmit buffer:

tcp_recv_hiwat ndd /dev/tcp 8129 32768

Chapter 5 Tuning the Operating System 109

Tuning for Linux platforms

110 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Chapter 6

Tuning for High-Availability

This chapter discusses the following topics:

Tuning HADB
Tuning the Application Server for High-Availability
Configuring the Load Balancer

Tuning HADB

The Application Server uses the high-availability database (HADB) to store persistent
session state data. To optimize performance, tune the HADB according to the load of the
Application Server. The data volume, transaction frequency, and size of each transaction
can affect the performance of the HADB, and consequently the performance of Application
Server.

This section discusses following topics:

Disk Use
Memory Allocation
Performance

Operating System Configuration

Disk Use

This section discusses how to calculate HADB data device size and explains the use of
separate disks for multiple data devices.

111

Tuning HADB

Calculating HADB Data Device Size

When the HADB database is created, specify the number, and size of each data device.
These devices must have room for all the user data to be stored. In addition, allocate extra
space to account for internal overhead as discussed in the following section.

If the database runs out of device space, the HADB returns error codes 4593 or 4592 to the
Application Server.

NOTE See the Application Server Error Message Reference for more information
on these error messages.

HADB also writes these error messages to history files. In this case, HADB blocks any
client requeststo insert, or update data. However, it will accept delete operations.

HADB stores session states as binary data. It serializes the session state and storesit asa
BLOB (binary large object). It splits each BLOB into chunks of approximately 7KB each
and stores each chunk as a database row (context row is synonymous with tuple, or record)
in pages of 16K B.

There is some small memory overhead for each row (approximately 30 bytes). With the
most compact allocation of rows (BLOB chunks), two rows are stored in a page. Internal
fragmentation can result in each page containing only one row. On average, 50% of each
page contains user data.

For availahility in case of node failure, HADB always replicates user data. An HADB node
storesits own data, plus a copy of the data from its mirror node. Hence, all datais stored
twice. Since 50% of the space on anode is user data (on average), and each node is
mirrored, the data devices must have space for at |east four times the volume of the user
data

In the case of data refragmentation, HADB keeps both the old and the new versions of a
table while the refragmentation operation is running. All application requests are performed
on the old table while the new tableis being created. Assuming that the databaseis
primarily used for one huge table containing BLOB data for session states, this means the
device space requirement must be multiplied by another factor of two. Consequently, if you
add nodes to a running database, and want to refragment the data to use all nodes, you must
have eight times the volume of user data available.

Additionally, you must also account for the device space that HADB reservesfor itsinternal
use (four times that of the LogBuf f er S ze). HADB uses this disk space for temporary
storage of the log buffer during high load conditions.

112 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning HADB

Tuning Data Device Size
To increase the size of the HADB data devices, use the following command:
hadbm set Tot al Dat adevi ceSi zePer Node

This command restarts all the nodes, one by one, to apply the change. For more information
on using this command, see the Application Server Administration Guide, “ Configuring the
High-Availability Database” chapter.

NOTE The current version of hadbmdoes not add data devicesto arunning
database instance.

Placing HADB files on Physical Disks

For best performance, data devices should be allocated on separate physical disks. This
appliesif there are nodes with more than one data device, or if there are multiple nodes on
the same host.

Place devices belonging to different nodes on different devices. Doing thisis especially
important for Red Hat AS 2.1, because HADB nodes have been observed to wait for
asynchronous I/O when the same disk is used for devices belonging to more than one node.

An HADB node writes information, warnings, and errors to the history file synchronously,
rather than asynchronously, as output devices normally do. Therefore, HADB behavior and
performance can be affected any time the disk waits when writing to the history file. This
situation isindicated by the following message in the history file:

BEWARE - |ast flush/fputs took too |ong

To avoid this problem, keep the HADB executable files and the history files on physical
disks different from those of the data devices.

Memory Allocation

Itisessential to allocate sufficient memory for HADB, especially when it is co-located with
other processes.

The HADB Node Supervisor Process (NSUP) tracks the time elapsed since the last time it
performed monitoring. If the time exceeds a specified maximum (2500 ms, by default),
NSUP restarts the node. The situation islikely when there are other processesin the system
that compete for memory, causing swapping and multiple page faults. When the blocked
node restarts, all active transactions on that node are aborted.

Chapter 6 Tuning for High-Availability =~ 113

Tuning HADB

If Application Server throughput slows and requests abort or time out, make sure that
swapping is not the cause. To monitor swapping activity on Unix systems, use this
command:

vinstat -S

In addition, look for this message in the HADB history files. It is written when the HADB
node is restarted, where M is greater than N:

Process bl ocked for .M sec, nmax block time is .N sec
The presence of aborted transactions will be signaled by the error message
HADB00224: Transaction tined out or HADB00208: Transaction aborted.

Performance

For best performance, all HADB processes (cl u_xxx_srv) must fit in physical memory.
They should not be paged or swapped. The same applies for shared memory segmentsin
use.

Y ou can configure the size of some of the shared memory segments. If these segments are
too small, performance suffers, and user transactions are delayed or even aborted. If the
segments are too large, then the physical memory is wasted.

Y ou can configure the following parameters:
» DataBufferPoolSize

* LogBufferSize

e InternalLogbufferSize

* NumberOfLocks

e Timeouts

DataBufferPoolSize

The HADB stores data on data devices, which are allocated on disks. The data must bein
the main memory before it can be processed. The HADB node allocates a portion of shared
memory for this purpose. If the allocated database buffer is small compared to the data
being processed, then disk 1/0 will waste significant processing capacity. In a system with
write-intensive operations (for example, frequently updated session states), the database
buffer must be big enough that the processing capacity used for disk 1/0 does not hamper
request processing.

114 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning HADB

The database buffer is similar to a cachein afile system. For good performance, the cache
must be used as much as possible, so there is no need to wait for a disk read operation. The
best performance is when the entire database contents fitsin the database buffer. However,
in most cases, thisis not feasible. Aim to have the “working set” of the client applicationsin
the buffer.

Also monitor the disk 1/0. If HADB performs many disk read operations, this means that
the database islow on buffer space. The database buffer is partitioned into blocks of size
16K B, the same block size used on the disk. HADB schedules multiple blocks for reading
and writing in one /O operation.

Use the hadbm devi cei nf o command to monitor disk usage, for example:
% adbm devi ceinfo --details

NodeNo Total Size FreeSize Usage
0 512 504 1%
1 512 504 1%

The columns in the output are:

* TotalSize: size of devicein MB.
* FreeSize: freesizein MB.

e Usage: percent used.

Use the hadbm r esour cei nf o command to monitor resource usage, for example the
following command displays data buffer pool information:

% adbm r esour cei nf o - - dat abuf

NodeNo Avai | Free Access M sses Copy-on-wite
0 32 0 205910260 8342738 400330
1 32 0 218908192 8642222 403466

The columns in the output are:
e Avalil: Size of buffer, in Mbytes.

» Free: Free size, when the data volume is larger than the buffer. (The entire buffer is
used at all times.)

» Access; Number of times blocks that have been accessed in the buffer.

* Misses: Number of block requests that “missed the cache” (user had to wait for a disk
read)

e Copy-on-write: Number of times the block has been modified whileit is being written
to disk.

Chapter 6 Tuning for High-Availability 115

Tuning HADB

For awell-tuned system, the number of misses (and hence the number of reads) must be
very small compared to the number of writes. The example numbers above show amissrate
of about 4% (200 million access, and 8 million misses). The acceptability of these figures
depends on the client application requirements.

Tuning DataBufferPoolSize
To change the size of the database buffer, use the following command:

hadbm set Dat aBuf f er Pool Si ze

This command restarts al the nodes, one by one, for the change to take effect. For more
information on using this command, see the Application Server Administration Guide,
“Configuring the High-Availability Database” chapter.

LogBufferSize

Before it executes them, HADB logs all operations that modify the database, such as
inserting, deleting, updating, or reading data. It places |og records describing the operations
in aportion of shared memory referred to as the (tuple) log buffer. HADB uses these log
records for undoing operations when transactions are aborted, for recovery in case of node
crash, and for replication between mirror nodes.

The log records remain in the buffer until they are processed locally and shipped to the
mirror node. The log records are kept until the outcome (commit or abort) of the transaction
iscertain. If the HADB node runs low on tuple log, the user transactions are delayed, and
possibly timed out.

Tuning the Attribute

Begin with the default value. Look for H GH LQAD informational messages in the history
files. All the relevant messages will contain t upl e | og or simply | og, and a description of
theinternal resource contention that occurred.

Under normal operation the log is reported as 70 to 80% full. Thisis because space
reclamation is said to be “lazy.” HADB requires as much datain the log as possible, to
recover from a possible node crash.

Use the following command to display information on log buffer size and use:
hadbm resour cei nfo - -1 ogbuf

For example, output might look like this:

Node No. Avai | Free Size
0 44 42
1 44 42

116 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning HADB

The columns in the output are:
* Node No.:The node number.
» Avalil: Size of buffer, in megabytes.

» Free Size: Freesize, in MB, when the data volume is larger than the buffer. The entire
buffer is used at all times.

Change the size of the log buffer with the following command:
hadbm set Logbuf ferSi ze

This command restarts al the nodes, one by one, for the change to take effect. For more
information on using this command, see the Application Server Administration Guide,
“Configuring the High-Availability Database” chapter.

InternalLogbufferSize

The node internal log (ni | og) contains information about physical (as opposed to logical,
row level) operations at the local node. For example, it provides information on whether
there are disk block allocations and deallocations, and B-tree block splits. This buffer is
maintained in shared memory, and is also checked to disk (a separate log device) at regular
intervals. The page size of this buffer, and the associated data device is 4096 bytes.

Large BLOBSs necessarily allocate many disk blocks, and thus create a high load on the
node internal log. Thisis normally not a problem, since each entry in theni | og issmall.

Tuning the Attribute

Begin with the default value. Look out for H G4 LOADinformational messagesin the history
files. The relevant messages contain ni | og, and a description of the internal resource
contention that occurred.

Use the following command to display node internal log buffer information:
hadbm resour cei nfo --ni | ogbuf

For exampl e, the output might look something like this:

Node No. Avai | Free Size
0 11 11
1 11 11

To change the size of the ni | og buffer, use the following command:

hadbm set | nternal Logbuf f er Si ze

Chapter 6 Tuning for High-Availability 117

Tuning HADB

The hadbmrestarts all the nodes, one by one, for the change to take effect. For more
information on using this command, see the Application Server Administration Guide,
“Configuring the High-Availability Database” chapter.

NOTE If the size of theni | og buffer is changed, the associated 1og device (located
in the same directory as the data devices) also changes. The size of the
internal log buffer must be equal to the size of the internal log device. The
command hadbm set | nt er nal LogBuf f er Si ze ensures this requirement. It
stops anode, increases the | nt er nal LogBuf f er Si ze, reinitializes the
internal log device, and brings up the node. This sequenceis performed on
all nodes.

NumberOfLocks

Each row level operation requires alock in the database. L ocks are held until atransaction
commits or rolls back. Locks are set at the row (BLOB chunk) level, which means that a
large session state requires many locks. Locks are needed for both primary, and mirror node
operations. Hence, a BLOB operation allocates the same number of locks on two HADB
nodes.

When atable refragmentation is performed, HADB needs extralock resources. Thus,
ordinary user transactions can only acquire half of the locks all ocated.

If the HADB node has no lock objects available, errors are written to the log file. See error
codes HADB02080 and HADB02096 in the Application Server Error Message Reference for a
description of the error message and how to correct the error.

Calculating the number of locks
To calculate the number of locks needed, estimate the following parameters:

* Number of concurrent users that request session data to be stored in HADB (one
session record per user)

e Maximum size of the BLOB session

e Persistence scope (max session data size in case of session/modified session and
maximum number of attributesin case of modified session). This requires
setAttribut e() tobe called every time the session datais modified.

e xisthe maximum number of concurrent users, that is, x session datarecords are present
inthe HADB, and

» yisthesession size (for session/modified session) or attribute size (for modified
attribute),

118 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning HADB

Then the number of records written to HADB is:
xy/7000 + 2x

Record operations such as insert, delete, update and read will use one lock per record.

NOTE Locks are held for both primary records and hot-standby records. Hence,

for insert, update and del ete operations a transaction will need twice as

many locks as the number of records. Read operations need locks only on

the primary records. During refragmentation and creation of secondary
indices, log records for the involved table are also sent to the fragment

replicas being created. In that case, a transaction needs four times as many
locks as the number of involved records. (Assuming al queries are for the

affected table.)

Summary
If refragmentation is performed, the number of locks to be configured is:

N, s = 4X (/7000 + 2) = 2xy/3500 + 2x
Otherwise, the number of locks to be configured is:

Nioas = 2X(y/7000 + 2) = xy/3500 + 4x

locks

Tuning the Attribute

Start with the default value. Look for exceptions with the indicated error codes in the
Application Server log files. Remember that under normal operations (no ongoing
refragmentation) only half of the locks might be acquired by the client application.

To get information on allocated locks and locks in use, use the following command:

hadbm resour cei nfo --1ocks
For example, the output displayed by this command might look something like this:

Node No. Avai | Free Wiits
0 50000 50000 na
1 50000 50000 na

e Avail: Number of locks available.
e Free: Number of locksin use.

* Waits: Number of transactions that have waited for alock.
“na’ (not applicable) if all locks are available.

Chapter 6 Tuning for High-Availability

119

Tuning HADB

To change the number of locks, use the following command:
hadbm set Nunber O Locks

The hadbmrestarts all the nodes, one by one, for the change to take effect. For more
information on using this command, see the Application Server Administration Guide,
“Configuring the High-Availability Database” chapter.

Timeouts
This section describes some of the timeout values that affect performance.

TIP Timeouts are documented in the DTD files. In particular, see
sun-donai n_1_1. dt d for load balancer timeouts, and ser ver. dt d for server
timeouts.

JDBC connection pool timeouts

These values govern how much time the server waits for a connection from the pool before
it times out. In most cases, the default values work well. For detailed tuning information,
see “Tuning JDBC Connection Pools’ on page 83.

Load Balancer timeouts
Some values that may affect performance are:

* response-timeout-in-seconds - The time for which the load balancer plug-in will wait
for aresponse before it declares an instance dead and fails over to the next instance in
the cluster. Make this value large enough to accommodate the maximum latency for a
request from the server instance under the worst (high load) conditions.

» health checker: interval-in-seconds - Determines how frequently the load balancer
pingsthe instanceto seeif it is healthy. Default value is 30 seconds. If the
response-timeout-in-seconds is optimally tuned, and the server doesn’t have too much
traffic, then the default value works well.

e health checker: timeout-in-seconds - How long the load balancer waits after
“pinging” an instance. The default value is 100 seconds.

The combination of the health checker’ s interval-in-seconds and timeout-in-seconds values
determine how much additional traffic goes from the load balancer plug-in to the server
instances.

HADB timeouts
The sql_client time out value may affect performance.

120 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning HADB

Operating System Configuration

The following section describes configuration of the operating system.

Semaphores
If the number of semaphoresistoo low, HADB can fail and display this error message:

No space |eft on device

This can occur either while starting the database, or during run time. Since the semaphores
are provided as a global resource by the operating system, the configuration depends on all
processes running on the host, and not the HADB aone. In Solaris, configure the
semaphore settings by editing the/ et ¢/ syst emfile.

To run the nodes, NNODES (the number of nodes submitted implicitly by - - host s option
to the HADB) and NCONNS connections (HADB configuration parameter
Nunber O Sessi ons, default value being 100) per host, use the following semaphore settings:

<def aul t =10> + NNCDES

<def aul t =10> + NNCDES

<def aul t =60> + (NNCDES * 8)
<def aul t =30> + NNCDES + NCONNS

set sensys: sem nf o_semmap
set sensys: sem nf o_semmi
set sensys: sem nfo_senmms
set sensys: sem nfo_semmu

If you plan to run multiple nodes per host, make sure semmap = NNCDES. Use the sysi nf o
and sysdef commands to inspect the settings.

Shared Memory

Set the maximum shared memory size to the total amount of physical RAM. Additionally,
set the maximum number of shared memory segments per process to six or more to
accommodate the HADB processes. Set the number of system-wide, shared memory
identifiers based on the number of nodes running on the host.

Solaris

In Solaris 9, because of the kernel changes, the hnsys: shmi nf o_shnseg variable is obsolete.
In Solaris 8, add the following settingsto the/ et ¢/ syst emfile;

set shnsys: shminfo_shnmax = Oxffffffff
set shnsys: shm nfo_shnseg = <def aul t =6>
set shnsys: shm nfo_shmmi = <defaul t=100> + (6 * NNCDES)

Default values are provided for Solaris 8. The HADB resource requirements should be
added to the previous value of the variables regardless of whether these are the default
values or not.

NOTE Y ou must reboot the host after changing these settings.

Chapter 6 Tuning for High-Availability =~ 121

Tuning the Application Server for High-Availability

Linux
To increase the shared memory to 512 MB, run the following:

echo 536870912 > /proc/ sys/ kernel / shrmax
echo 536870912 > /proc/sys/ kernel / shral |

Where the file shnmax contains the maximum size of a single shared memory segment, and
shmal | contains the total shared memory to be made available.

Thisvalueislarge enough for astandard HADB node that uses default values. If the default
values are changed, consider changing these values, as well.

To make these changes permanent, add those linesto/ et c/rc. | ocal onyour Linux
machine. With Redhat Linux, you can also modify sysct| . conf to set the kernel
parameters.

Tuning the Application Server for High-Availability

This section discusses how you can configure the high availability features of Application
Server. This section discusses the following topics:

e Tuning Session Persistence Frequency
e Session Persistence Scope

* Session Size

» Checkpointing Stateful Session Beans
» Configuring the JDBC Connection Pool

To ensure highly available web applications with persistent session data, the high
availability database (HADB) provides a backend store to save HT TP session data.
However, there is a overhead involved in saving and reading the data back from HADB.
Understanding the different schemes of session persistence and their impact on
performance and availability will help you make decisionsin configuring Application
Server for high availability.

In general, maintain twice as many HADB nodes as there are application server instances.
Every application server instance requires two HADB nodes.

122 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning the Application Server for High-Availability

Tuning Session Persistence Frequency

The Application Server provides HTTP session persistence and failover by writing session
datato HADB. Y ou can control the frequency at which the server writesto HADB by
specifying the persistence frequency.

Specify the persistence frequency in the Admin Console under Configurations >
config-name > Availability Service (Web Container Availability).

The choices for persistence frequency are:
* web-method
* time-based

All else being equal, time-based persistence frequency provides better performance but less
availability than web-method persistence frequency. Thisis because the session stateis
written to the persistent store (HADB) at the time interval specified by the reap interval
(default is 60 seconds). If the server instance fails within that interval, the session state will
lose any updates since the last time the session information was written to HADB.

Web-method

With web-method persistence frequency, the server writesthe HTTP session stateto HADB
before it responds to each client request. This can have an impact on response time that

depends on the size of the data being persisted. Use this mode of persistence frequency for
applications where availability is critical and some performance degradation is acceptable.

For more information on web-method persistence frequency, see the “ Configuring
Availability and Session Persistence” chapter in the Application Server Administration
Guide.

Time-based

With time-based persistence frequency, the server stores session information to the
persistence store at a constant interval, called the reap interval. Y ou specify the reap
interval under Configurations > config-name > Web Container (Manager Properties),
where config-name is the name of the configuration. By default, the reap interval is 60
seconds. Every time the reap interval elapses, a special thread “wakes up,” iterates over all
the sessionsin memory, and saves the session data.

In general, time-based persistence frequency will yield better performance than
web-method, since the server’ s responses to clients are not held back by saving session
information to the HADB. Use this mode of persistence frequency when performanceis
more important than availability.

Chapter 6 Tuning for High-Availability =~ 123

Tuning the Application Server for High-Availability

Session Persistence Scope

Y ou can specify the scope of the persistence in addition to persistence frequency on the
same page in the Admin Console where you specify persistence frequency, Configurations
> config-name > Availability Service (Web Container Availability).

For detailed description of different persistence scopes, see the “ Configuring Availability
and Session Persistence” chapter in the Application Server Administration Guide.

Persistence scope can be one of:
* session
» modifed-session

* modified-attribute

session

With the session persistence scope, the server writes the entire session data to
HADB—regardless of whether it has been modified. This mode ensures that the session
datain the backend store is always current, but it degrades performance, since all the
session datais persisted for every request.

modified-session

With the modified-session persistence scope, the server examines the state of the HTTP
session. If and only if the data has been modified, the server saves the session data to
HADB. This mode yields better performance than session mode, because callsto HADB to
persist data occur only when the session is modified.

modified-attribute

With the modified-attribute persistence scope, there are no cross-references for the
attributes, and the application usesset Attri but e() andget Attri but e() to manipulate
HTTP session data. Applications written thisway can take advantage of this session scope
behavior to obtain better performance.

Session Size

It iscritical to be aware of the impact of HTTP session size on performance. Performance
has an inverse relationship with the size of the session data that needs to be persisted.
Session dataiis stored in HADB in aserialized manner. There is an overhead in serializing
the data and inserting it asa BLOB and also deserializing it for retrieval.

124 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Tuning the Application Server for High-Availability

Tests have shown that for a session size up to 24K B, performance remains unchanged.
When the session size exceeds 100K B, and the same back-end store is used for the same
number of connections, throughput drops by 90%.

Itisimportant to pay attention while determining the HT TP session size. If you are creating
large HTTP session objects, calculate the HADB nodes as discussed in “Tuning HADB” on
page 111.

Checkpointing Stateful Session Beans

Checkpointing saves a stateful session bean (SFSB) state to the HADB so that if the server
instance fails, the SFSB isfailed over to another instance in the cluster and the bean state
recovered. The size of the data being checkpointed and the frequency at which
checkpointing happens determine the additional overhead in response time for agiven
client interaction.

Y ou can enable SFSB checkpointing at numerous different levels:
* For the entire server instance or EJB container

» For the entire application

» For aspecific EJB module

* Per method in anindividual EJB module

For best performance, specify checkpointing only for methods that alter the bean state
significantly, by adding the <checkpoi nt ed- met hods> tag in the sun- ¢ b-j ar. xm file.

For more details, refer to the Application Server Developer’s Guide, chapter “Using
Enterprise JavaBeans Technology.”

Configuring the JDBC Connection Pool

The Application Server uses JDBC to store and retrieve HADB data. For best performance,
configure the JDBC connection pool for the fastest possible HADB read/write operations.

Configure the JDBC connection pool in the Admin Console under Resources > JDBC >
Connection Pools > pool-name. The connection pool configuration settings are:

e [|nitial and Minimum Pool Size: Minimum and initial number of connections
maintained in the pool (default is 8)

e Maximum Pool Size: Maximum number of connectionsthat can be created to satisfy
client requests (default is 32)

Chapter 6 Tuning for High-Availability =~ 125

Configuring the Load Balancer

e Pool Resize Quantity: Number of connections to be removed when idle timeout timer
expires

» ldleTimeout: Maximum time (seconds) that a connection can remain idle in the pool.
(default is 300)

 Max Wait Time: Amount of time (milliseconds) caller waits before connection
timeout is sent

For optimal performance, use a pool with eight to 16 connections per node. For example, if
you have four nodes configured, then the steady-pool size must be set to 32 and the
maximum pool size must be 64. Adjust the Idle Timeout and Pool Resize Quantity values
based on monitoring statistics.

For the best performance, use the following settings:

e Connection Validation: Required

* Validation Method: meta-data

» Transaction Isolation Level: repeatable-read

In addition to the standard attributes, add the two following properties:
» cacheDatabaseMetaData: false

» eiminateRedundantEndTransaction: true

To add a property, click the Add Property button, then specify the property name and value,
and click Save.

For more information on configuring the JIDBC connection pool, see “Tuning JDBC
Connection Pools’ on page 83. A more detailed discussion can be found in the Application
Server Administration Guide, chapter, “Monitoring the Application Server.”

Configuring the Load Balancer

126

The Application Server provides aload balancer plugin that can balance the load of requests
among multiple instances which are part of the cluster. For more information on
configuring the load balancer, see the Application Server Administration Guide,
“Configuring the Load Balancer.”

Note: Thefollowing section assumes that the server istuned effectively to serviceincoming
requests.

Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Configuring the Load Balancer

Enabling the Health Checker

The load balancer periodically checks all the configured Application Server instances that
are marked as unhealthy, based on the values specified in the heal t h- checker element in
thel oadbal ancer. xn file. Enabling the health checker is optional. If the health checker is
not enabled, periodic health check of unhealthy instancesis not performed.

The load balancer’ s health check mechanism communicates with the application server
instance using HTTP. The health checker sends an HTTP request to the URL specified and
walits for aresponse. The status code in the HT TP response header should be between 100
and 500 to consider the instance to be healthy.

To enable the health checker, edit the following properties:

e url: Specifiesthelistener’s URL that the load balancer checks to determine its state of
health.

e interval-in-seconds: Specifies theinterval at which health checks of instances occur.
The default is 30 seconds.

» timeout-in-seconds: Specifies the timeout interval within which a response must be
obtained for alistener to be considered healthy. The default is 10 seconds.

If the typical response from the server takes n seconds and under peak |oad takes m seconds,
then configure the health checker asfollows:

"

<heal t h- checker url="http://hostname. domai n: port" interval-in-seconds="n"

ti meout - i n- seconds="m+n"/ >

For more information, see the “Configuring the Load Balancer” chapter in the Application
Server Administration Guide.

Chapter 6 Tuning for High-Availability =~ 127

Configuring the Load Balancer

128 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

A

Acceptor Threads 74
accesslog 67
AddrLookups 64
application
architecture 17
scalability 21
tuning 25
arrays 25
authentication 18
authorization 18
automatic recovery 61
Average Queuing Delay 64

B

B commit option 58

bandwidth 100

best practices 25

Blocking Enabled 74

BluePrints 25

Buffer Length, HTTP Service 68

C

C commit option 58

Index

cacheDatabaseM etaData 126

CacheEntries 63

caching
EJB components 53
message-driven beans 47
servlet results 29

capacity planning 21
checkpointing 42, 125
class variables, shared 28
Client ORB Properties 78

Close All Connections On Any Failure, JDBC Connection
Pool 86

CMS collector 91

coding guidelines 25

commit options 58

Common Data Representation (CDR) 81
configuration tips 29

connection hash table 102

connection pool, HTTP Service
Max Pending Count 71
Queue Size 71
Receive Buffer Size 71
Send Buffer Size 71

Connection Validation Required, JDBC Connection
Pool 86

Connection Validation Settings, JDBC Connection
Pool 86

connector connection pools 86
constants 26

container-managed relationship 44
container-managed transactions 37

129

Section D

context factory 79 entity beans 42, 53
expectations 22

D
datadevice size 112 F
datavolume 111 file cache 65, 72
database buffer 115 file descriptors 105, 106
DataBufferPool Size 114 File Size Limit, HTTP file cache 73
demilitarized zone (DMZ) 19 File Transmission, HTTP file cache 73
deployment final, methods 26
settings 49 finalizers, avoiding 27
tips 29 footprint 92
deserialization 25 fragmented messages 81
disk 1/0O performance 108
disk space 100
distributed transaction logging, disabling 60
DNS cache 63 G
DNS lookups 64, 72
documentation Garbage Collector 90
overview 11 generational object memory 90
dynamic reloading, disabling 50
H
E HADB 111
EJB components data devicesize 111, 112
cachetuning 34, 35, 55 database buffer 115
commit options 58 history files 112
monitoring individual 33 JDBC connection pool 125
performance of types 34 locks 118
pool tuning 35, 54 memory 113
stubs, using 35 timeouts 120
transactions 37 hardware resources 19
EJB container 53 Hash Init Size, HTTP file cache 72
cache settings 56 hash table, connection 102
caching vs pooling 53 health checker 127
monitoring 31, 53 high-availability database 111
flj’r:?'nze‘gagssgm history files, HADB 112
HitRatio 63

eliminateRedundantEndTransaction 126

encryption 18 horizontal scalability 22

HotSpot 91, 97

130 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

HTTPfile cache 72
Hash Init Size 72
Max Age 72
Max Files Count 72
Small/Medium File Size 73
HTTP listener settings 73
HTTP protocol 72
HTTP Service 61
Buffer Length 68
connection pool 71
Initial Thread Count 68
keep-alive settings 68
monitoring 62
Request Timeout 68
Thread Count 67
tuning 66
HTTP sessions 28, 29

idle timeout

EJB cache 57

EJB pool 55

JDBC connection pool 84
ldle/Peak/Limit 66
I1OP Client Authentication Required 77
11OP messages 80
Initial and Minimum Pool Size

EJB pool 54

JDBC Connection Pool 84

Initial Thread Count, HTTP Service 68
InternalLogbufferSize 117
IP stack 105

|solation Level Guaranteed, JDBC Connection Pool 85

J

Java BluePrints 25
Java coding guidelines 25
JavaHeap 93

Section |

Java seridization 81
Java Virtual Machine (JVvM) 89
JAX-RPC 27
JDBC
resources 38
tips 46
JDBC Connection Pool 83
Close All Connections On Any Failure 86
Connection Validation Required 86
Connection Validation Settings 86
HADB 125
Idle Timeout 84
Initial and Minimum Pool Size 84
Isolation Level Guaranteed 85
Max Wait Time 84
Maximum Pool Size 84
Pool Resize Quantity 84
Table Name 86
Transaction Isolation Level 85
Validation Method 86
IMS
connections 48
local vsremote service 59
tips 47
JSPfiles 28
pre-compiling 50
reloading 53
tuning 28
jvmstat utility 91

K

keep-alive
max connections 69
query max sleep time 70
query meantime 70
settings 68
statistics 65
thread count 69
timeout 70

Index

131

Section L

L

last agent optimization (LAO) 38
light weight processes 103
Lighweight Directory Access Protocol (LDAP) 18
Linux 106, 122

load balancer 126

locks, HADB 118

log level 51

LogBufferSize 112, 116

logger settings 51
LookupslinProgress 64

lwps 103

M

Max Age, HTTPfile cache 72

Max Files Count, HTTP file cache 72

Max Message Fragment Size, ORB 77

Max Pending Count, connection pool 71
Max Wait Time, JDBC Connection Pool 84
max-cache-size 56

Maximum Pool Size, JDBC Connection Pool 84
MaxNewSize 95

max-pool-size 55

memory 100, 113

message-driven beans 47

migrating, performance considerations 75

monitoring
EJB container 31
file cache 65
HTTP service 62
JDBC connection pools 83
ORB 76
transaction service 59

N

NamelL ookups 64
Network Address 73

network interface 108

NewRatio 95

NewSize 95

Node Supervisor Process (NSUP) 113
null, assigning 26

NumberOfLocks 118

O

open files 102, 107
operating system, tuning 99
operational requirements 16
ORB 75
Client properties 78
I1OP Client Authentication Required 77
Max Message Fragment Size 77
monitoring 76
Thread Pool ID 77
thread pools 76
Total Connections 77
tuning 77

P

pass-by-reference 36
pass-by-value 36

pauses 92

persistence frequency 123
persistence scope 124

Pool Resize Quantity, JDBC Connection Pool 84
pool size, message-driven bean 47
pre-compiled JSP files 50
pre-fetching EJB components 44
processors 99

programming guidelines 25
promptness 92

132 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

Q

Queue Size, connection pool 71

R

read-only beans 43

refresh period 44, 57
reap interval 52
Receive Buffer Size, connection pool 71
recover on restart 61
refresh period

read-only beans 44, 57
remote vs local interfaces 36
removal selection policy 56
removal timeout 56
reguest processing settings 67
Request Timeout, HTTP Service 68
resize quantity

EJB cache 56

EJB pool 55

JDBC connection pool 84

restart recovery 61
rlim_fd_cur 101
rlim_fd_max 101

S

safety margins 21

scalability 22

Secure Sockets Layer 18

security considerations 18

security manager 30

semaphores 104, 121

Send Buffer Size, connection pool 71

separate disks 111, 113
multiple data devices 111

serialization 25, 81
server tuning 49
servlets 28

Section Q

initialization 28
results caching 29
synchronization 28
tuning 28

session
persistence frequency 123
persistence scope 124
size 124
dtate, storing 111
timeout 52

shared memory 104, 121
Small/Medium File Size, HTTP file cache 73
SOAP attachments 27

Solaris 121
JDK 91
patches 13
support 13
TCP/IP settings 101
version 8 29

sq_max_size 101

SSL 18

stateful session beans 42, 53, 125
stateless session beans 43, 53
storing persistent session state 111
StringBuffer 25

Strings 25
-sun.rmi.dgc.client.gcinterval 93

support
Solaris 13

Survivor Ratio Sizing 95
synchronization, in serviets 28
synchronizing code 27
System.gc() 93

T

Table Name, JDBC Connection Pool 86
TCP/IP settings 101, 108

tcp_close wait_interval 101
tcp_conn_hash_size 102

tcp_conn_req max_q 101
tcp_conn_req max_qg0 101

Index

133

Section U

tcp_ip_abort_interval 102
tcp_keepalive_interval 102
tcp_recv_hiwat 102
tep_rexmit_interval_initial 102
tcp_rexmit_interval_max 102
tcp_rexmit_interval_min 102
tcp_slow_start_initial 102
tcp_smallest_anon_port 102
tcp_time wait_interval 101
tcp_xmit_hiwat 102
Thread Count, HTTP Service 67
thread model 103
thread pool

sizing 79

stetistics 66, 76

tuning 82
Thread Pool ID, ORB 77
throughput 92
timeouts, HADB 120
Total Connections Queued 64
Total Connections, ORB 77
transactions

connector connection pools 86

EJB components 37

EJB transaction attributes 38

frequency 111

isolation level 46, 85

management for CMT 85

monitoring 59

size 111

tuning 60
tuning

applications 25

EJB cache 55

EJB pool 54

JDBC connection pools 83

sequence 16

Solaris TCP/IP settings 101

the server 49

thread pools 82

U

ulimit 102
user load 20

\Y

Validation Method, JDBC Connection Pool 86
variables, assigning null to 26

vertical scalability 22

victim-selection-policy 56

virtual memory 107

W

web container 51
Work Queue Length 66

X

x86 104

XA-capable data sources 38

-Xms 94

-Xmx 94

-XX
+DisableExplicitGC 93
+UseConcMarkSweepGC 91
MaxHeapFreeRatio 94
MaxPermSize 93
MinHeapFreeRatio 94
SoftRefL RUPolicyM SPerMB 91

134 Application Server Enterprise Edition 2005Q1 « Performance Tuning Guide

	Application Server Enterprise Edition 8.1 Performance Tuning Guide
	Contents
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Related Documentation
	Books in This Documentation Set
	Other Server Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Overview of Sun Java System Application Server Performance
	Process Overview
	Performance Tuning Sequence

	Understanding Operational Requirements
	Application Architecture
	Security Requirements
	User Authentication and Authorization
	Encryption

	Hardware Resources

	General Tuning Concepts
	Capacity Planning
	User Expectations

	Further Information

	Tuning Your Application
	Java Programming Guidelines
	Avoid Serialization and Deserialization
	Use StringBuffer to Concatenate Strings
	Assign null to Variables That Are No Longer Needed
	Declare Methods as final Only If Necessary
	Declare Constants as static final
	Avoid Finalizers
	Declare Method Arguments final
	Synchronize Only When Necessary
	Use DataHandlers for SOAP Attachments

	Java Server Page and Servlet Tuning
	Suggested Coding Practices
	General Guidelines
	Avoid Shared Modified Class Variables
	HTTP Session Handling
	Configuration and Deployment Tips

	EJB Performance Tuning
	Goals
	Monitoring EJB Components
	Monitoring Individual EJB Components

	General Guidelines
	Use High Performance Beans
	Use Caching
	Use the Appropriate Stubs
	Remove Unneeded Stateful Session Beans
	Cache and Pool Tuning Tips

	Using Local and Remote Interfaces
	Prefer Local Interfaces
	Using Pass-By-Reference Semantics

	Improving Performance of EJB Transactions
	Use Container-Managed Transactions
	Don’t Encompass User Input Time
	Identify Non-Transactional Methods
	Use TX_REQUIRED for Long Transaction Chains
	Use Lowest Cost Database Locking
	Use XA-Capable Data Sources Only When Needed
	Configure JDBC Resources as One-Phase Commit Resources
	Use the Least Expensive Transaction Attribute

	Using Special Techniques
	Version Consistency
	Request Partitioning

	Tuning Tips for Specific Types of EJB Components
	Entity Beans
	Stateful Session Beans
	Stateless Session Beans
	Read-Only Entity Beans
	Pre-fetching Container Managed Relationship (CMR) Beans

	JDBC and Database Access
	Use JDBC Directly
	Encapsulate Business Logic in Entity EJB Components
	Close Connections
	Minimize the Database Transaction Isolation Level

	Tuning Message-Driven Beans
	Use getConnection()
	Tune the Message-Driven Bean’s Pool Size
	Cache Bean-Specific Resources
	Limit Use of JMS Connections

	Tuning the Application Server
	Deployment Settings
	Disabling Auto-deployment
	Using Pre-compiled JavaServer Pages
	Disabling Dynamic Application Reloading

	Logger Settings
	General Settings
	Log Levels

	Web Container
	Session Properties: Session Timeout
	Manager Properties: Reap Interval
	Disabling Dynamic JSP Reloading

	EJB Container
	Monitoring the EJB Container
	Tuning the EJB Container
	Overview of EJB Pooling and Caching
	Tuning the EJB Pool
	Tuning the EJB Cache
	Pool and Cache Settings for Individual EJB Components
	Commit Option

	Java Message Service
	Transaction Service
	Monitoring the Transaction Service
	Viewing Monitoring Information

	Tuning the Transaction Service
	Disable Distributed Transaction Logging
	Recover On Restart (Automatic Recovery)
	Keypoint Interval

	HTTP Service
	Monitoring the HTTP Service
	General HTTP Statistics (http-service)
	DNS Cache Information (dns)
	Connection Queue
	File Cache Information (file-cache)
	Keep Alive (keep-alive)
	Thread Pool (pwc-thread-pool)

	Tuning the HTTP Service
	Access Log
	Request Processing
	Keep Alive
	Connection Pool
	HTTP Protocol
	HTTP File Cache

	Tuning HTTP Listener Settings
	Network Address
	Acceptor Threads
	Blocking Enabled

	Migrating From Version 7

	ORB
	Overview
	Monitoring the ORB
	Connection Statistics
	Thread Pools

	Tuning the ORB
	Tunable ORB Parameters
	ORB Thread Pool Parameters
	Client ORB Properties

	Thread Pool Sizing
	Examining IIOP Messages
	Improving ORB Performance with Java Serialization
	Using JSG for Application Clients

	Thread Pools
	Tuning Thread Pools (Unix /Linux only)

	Resources
	JDBC Connection Pools
	Monitoring JDBC Connection Pools
	Tuning JDBC Connection Pools

	Connector Connection Pools
	Transaction Support

	Tuning the Java Runtime System
	Java Virtual Machine Settings
	Managing Memory and Garbage Collection
	Tuning the Garbage Collector
	Choosing the Garbage Collection Algorithm
	Additional Information

	Tracing Garbage Collection
	Other Garbage Collector Settings
	Tuning the Java Heap
	Guidelines for Java Heap Sizing
	Heap Tuning Parameters
	Sample Heap Configuration on Solaris
	Further Information

	Rebasing DLLs on Windows

	Further Information

	Tuning the Operating System
	Server Scaling
	Processors
	Memory
	Disk Space
	Networking

	Tuning for Solaris
	Tuning Parameters
	Sizing the Connection Hash Table

	File Descriptor Setting
	Using Alternate Threads
	Further Information

	Tuning for Solaris on x86
	Semaphores and Shared Memory
	File Descriptors
	IP Stack Settings

	Tuning for Linux platforms
	File Descriptors
	Virtual Memory
	Network Interface
	Disk I/O Settings
	TCP/IP Settings

	Tuning for High-Availability
	Tuning HADB
	Disk Use
	Calculating HADB Data Device Size
	Tuning Data Device Size
	Placing HADB files on Physical Disks

	Memory Allocation
	Performance
	DataBufferPoolSize
	LogBufferSize
	InternalLogbufferSize
	NumberOfLocks
	Timeouts

	Operating System Configuration
	Semaphores
	Shared Memory

	Tuning the Application Server for High-Availability
	Tuning Session Persistence Frequency
	Web-method
	Time-based

	Session Persistence Scope
	session
	modified-session
	modified-attribute

	Session Size
	Checkpointing Stateful Session Beans
	Configuring the JDBC Connection Pool

	Configuring the Load Balancer
	Enabling the Health Checker

	Index

