Sun Java™ System

Messaging Server 6
MTA Developer’'s Reference

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0107-10

2005Q1

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at ht t p: / / waw. sun. cond pat ent s and one or more additional patents
or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE OR
REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of
the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo, the Java Coffee Cup
logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc. The Netscape
Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from
Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written
license agreements.

This product includes software developed by Computing Services at Carnegie Mellon University (ht t p: / / waw. cru. edu/ conput i ng/).

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés & I'adresse ht t p: // waw sun. cond pat ent s et
un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans les autres pays.

CEPRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC. SON UTILISATION,
SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET PREALABLE DE SUN MICROSYSTEMS,
INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit peuvent étre dérivées des systemes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque déposée aux Etats-Unis
et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le logo Java Coffee Cup,
le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape Communications Corp
est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.

L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun détient
une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place I'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Ce produit comprend du logiciel dévelopé par Computing Services a Carnegie Mellon University (ht t p: / / waw. cmu. edu/ conput i ng/).

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de controle des exportations
et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes
nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui
sont regi par la legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT
FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE
RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Part

Contents

Preface .. 11
Who Should Use This BOOK o e 11
Before You Read This BOOK i e 12
How This Book IS Organized e 12
Conventions Used in ThiS BOOKo e 13
Typographic CONVENTIONSttt e e e et e e 13
SYMIDOIS .« 13
Default Paths and File Names e 14
Command Line PromPtS e 14
Related DOCUMENTAtION o e e e e e e e e e 15
Messaging Server DOCUMENTSttt et e ettt e e e e e 15
Communications Services DOCUMENTSttt 15
Accessing SUN Resources ONlINe e 16
Contacting Sun Technical SUPPOIt o e 16
Related Third-Party Web Site References e 16
Sun Welcomes YOUr COMIMENTSttt ettt e e e e e e e e e 16
M A SDK o 19
Chapter 1 MTA SDK Concepts and OVEIrVIEWt aee 21
Channel Programs and Message QUEUINGottt ettt it 21
Managing Multiple Threads: CONtEXISttt e i 22
ENQUEUING IMIBSSA0ES . . o v vttt ettt e e e e e e e e e e e e e e e e 22
Message COMPONENTSottt et e e et e e e e e e e e e 23
ENVEIODE .. 23

Contents 3

4

HeaEr .. e 23

BOAY . 24
EXAMIE . 24
Threads and Enqueue CONTEXTS ottt e e e e e et 24
Enqueuing Dequeued Mail 25
DeqUEUING IMEBSSATES . . .« ot ittt et e et e e e e e e e e 25
Threads and Dequeue CONTEXES ottt e e e e e e 26
Message Processing Threads e 26
String-valued Call ArgUMENTSo e e 27
Item Codes and Item LiStS o 28
Chapter 2 MTA SDK Programming Considerations 31
Running Your Enqueue and Dequeue Programsttt e 31
Debugging Programs and Logging DiagnostiCsiiuiine e 33
Required Privilegeso 33
Compiling and LinkKing Programs e e e e 34
COMPIIING .. 34
Linking Instructions for SOIaris 34
RUNNING YOUr TESE PrOQraIMSottt et e et e e e e e e e e e 34
Preventing Mail Loops when Re-enqueuing Mail il 37
Miscellaneous Programming Considerationst 38
RetrieVing Error COdeso 38
Writing Output From a Channel Program e 38
Considerations for Persistent Programs 38
Refreshing Stale Configuration Information i i, 39
Keeping the Log File Available For Update 39
Chapter 3 ENQUEUING MESSAJES . . .ottt ittt e e e e e e 41
Basic Steps t0 ENQUEUE MESSA0ES vttt t ettt et e e e e e e 42
OrigiNating MESSAgES\ ottt ettt et e e e e 43
A Simple Example of ENQUeUING @ MESSA0Eottt e 43
Enqueuing a Message Example Qutput i 45
Transferring Messages iNto the MT A e e e e 46
Intermediate Processing Channels e 46
Delivery Processing Options: Envelope fields i i i 47
Order DePENAENCIES . . . oottt et e et e 47
Chapter 4 DequeUiNg MESSATES . ..ottt ittt et e e e e e 49
How Dequeuing WOTKS 50
BasiC DeqUEUING STEPSttt 50
Caller-Supplied Processing ROULINE i 51
The process_message() ROULINE i e 54

Messaging Server 6 2005Q1 « MTA Developer's Reference

A Simple Dequeue EXample 56

Explanatory Text for Numbered Comments ittt 59
Output from the Simple Dequeue Example 60
Processing the Message QUEUEottt et e e e e e e et e e 60
The process_done() ROULINE e 62
A Complex Dequeuing EXample 63
Explanatory Text for Numbered Comments i, 69
Output from the Complex Dequeue Example i 71
Intermediate processing channels 71
Preserve Envelope Information 72
USe MTA _ENY T O .. e e 72
Use Rewrite Rules to Prevent Message LOOPS . ..ot e e 73
Intermediate Channel EXample 73
Explanatory Text for Numbered Comments ittt 78
Sample Input Message for the Intermediate Channel Example 80
Output from the Intermediate Channel Example i .. 80
Thread Creation Loop in mtaDequeueStart i 80
Multiple Calls to mtaDequeUeStartt e 82
Calling Order DepPendenCiesttt e e e e 82
Chapter 5 Decoding MESSAgesottt e e e e 85
Usage Modes for mtaDecodeMesSage() . ..o vv vt 85
TRE INPUL SOUICE e e e e e e e 87
Dequeue CoNteXt 87
Caller-Supplied INPUt ROULINE e 87

The INSpection ROULINE o e e e e 88
A Simple Decoding EXample 89
Explanatory Text for Numbered COmMmMEeNtSttt 92
MIME Message Decoding Simple Example Output 93

The Output DEeSTINALION e e e e e e e e e e e 93
Enqueue ConteXt 93
Caller-Supplied OULPUL ROULINE o e 94
DeCode CONTEXTES . .. oottt e e e e e 94
A Simple Virus Scanner EXample 95
Example Option File 106
Sample INPUEIMESSAGEot e e e 106
Explanatory Text for Numbered COmments, 107
Decoding MIME Messages Complex Example Output, 108
Chapter 6 MTA SDK Reference e e 111
Summary of SDK ROULINES 111
AAAreSS Parsingot 112

Contents 5

6

DB UEBUE .. e 112

ENQUEUE . e 113
Error Handlingo 113
INTtIAliZAtION 113
Logging and DiagnosStiCSttt e 114
MIME Parsing and Decodingt e 114
MISCEIANEOUS . . . oot e e e 114
Option File ProCessiNgo e e e 115
MTA SDK ROULINES . oot e e e e e 116
MEaACCOUNTINGLOGCIOSE ot 117
MEaAAAresSSFINISNo 118
MEAAAArESSGEIN ... o 118
MEAAAANESSPaISE . . . oottt 121
mtaAddressTOChannel 123
MEaBIOCKSIZE 126
MtaChannelGetNaAME 127
MEaChannelTOHOSE e 129
MDA TIMIE o . 131
MtAD UG . . . e 133
MEADECOAEMESSAGE . . . oottt e 135
INSPECtioN ROULINE e e e e 137
OULPUL ROULINEo e e e e e e e e 138
Dequeue CoNtEXt e 139
Caller-Supplied INnpUt ROULINE e 139
Enqueue ConteXt e 140
Caller-Supplied OULPUL ROULINE o e e 141
Decode ConteXt QUEIIESttt e e e e e e e 142

M COOES 143
mtaDecodeMessagelnfolnt e 145
mtaDecodeMessagelnfoParams e 147
mtaDecodeMessagelnfoString 149
mtaDecodeMessagePartCOPYottt et e 151
mtaDecodeMessagePartDelete e 152
MtaDequUeUEINTO 156
MtaDequeUelINENeXt e 160
mtaDequeueMessageFinish 162
mtaDequeueRecipientDISPOSITION e 165
mtaDequeUueReCiPIENTNEXEo e 169
MtaDeqUEUEREWING e 171
MEAD EQUEUESTAIT . . . o e 172
Other Considerations for mtaDequeueStart 176
Multiple Calls to mtaDequeueStartt 177
MESSAge PrOCESSING . .ottt e e e e e e e 177

Messaging Server 6 2005Q1 « MTA Developer's Reference

Message Processing Proceduret 177

Process_message ROULINE it e e et 178
process_done() ROULINE et 180
Thread Creation LOOPot e e e e e e 181
mtaDequeueThreadld e 182
MEADONE 183
MEAENQUEUECOPYIMESSATE . . . oot ettt et e e e e e e e e 183
MEAENQUEUEEITOr . e et e e e e e 185
MtaENqUEUERINISN ... 187
MtaENQUEUEINTO . . . 189
MEAENQUEUESTANT e e e 193
MEAENQUEUE T O . .o e e e e e e 200
MEAENQUEUEWVTITE . . e 206
MtaENQUEUEWIITELING e 209
MBI . . 211
AN . . 212
7= 5 T 215
AL OV . o . e e 217
MtaOPtIONFINISN .. o e 218
MtaOPtIONFIOat 219
MEAO DI ONINt . .o 220
MEAOPIIONSTAIT . . . o e 222
MEAOPTIONSTIING . . oo e 225
MEAPOSIMASIErAAAIESSo e 227
MEASTACKSIZE 229
MOt I O . 230
MEAUNIQUESTIING .« o oot e e e e e e e e e e e 230
MEAVEISIONM G Or . ..o e 231
MEAVEISIONMINOT . . o e e 232
MEAVErSIONREVISION . .. o e e e e 232
Part 1l Callable Send 235
Chapter 7 Using Callable Send: mtaSend 237
SeNAiNG @ MESSAQE . .. oot ittt e 237
Envelope and Header From: AdAreSSesttt e e 238
To:, Cc,and BeC: AdAIESSES ..ottt e 239
Message Headers and CONENT i e e e 240
Required Privilegeso 241
MEASENADISPOSE . . ottt 241
Compiling and Linking Programs e 242

Contents 7

8

Examples of Using mtaSend e 242

Example 1: Sending a Simple Messageot 243
Example L OULPUL . ..o 244
Example 2: Specifying an Initial Message Header i .. 244
Example 2 InpuUt File o 245
Example 2 OULPUL . ..o 245
Example 3: Sending a Message to Multiple Recipients 245
Example 3 OULPUL 247
Example 4: Using an Input Procedure to Generate the MessageBody 247
Chapter 8 mtaSend Routine Specification 249
MEASENA SYNTAX . . . oottt e e e e e e e e e e 251
V1= 251
ATGUIMEBNES .ottt e e e e e e e e 251
Item Descriptor Fields 252
DESCIIPLION . . e 252
M COOES . .o 253
MTA _ADR _NOST ATUS . 253
MT A ADR ST ATUS . 253
M A B C . 253
M A BLANK L 253
M A G o e 254
MTA CHANNEL . 254
MTA _CFILENAME . .. e 254
MTA_CFILENAME _NONE . . . e s 254
M A T Y PE o 254
MTA _ENC BASEBA ... 255
MT A ENC BASESS ... 255
MT A ENC BINHEX . . e e 255
MT A ENC BT O A e 255
MTA_ENC_COMPRESSED_BASEG4t s 255
MTA_ENC_COMPRESSED_BINARY ... s 255
MTA_ENC_COMPRESSED_UUENCODE s 256
MTA_ENC_HEXADECIMAL . .. s 256
MTA ENC _NONE .. e 256
MTA_ENC _PATHWORKS .. s 256
MTA_ENC_QUOTED _PRINTABLE e 256
MTA_ENC_UNKNOWN .. e s 256
MTA_ENC_UUENCODE s 257
MT A EN DD L ST o 257
MT A ENV _FROM L 257
MT A BNV T O o 257
MTA_FRAGMENT _BLOCKS ... e 257

Messaging Server 6 2005Q1 « MTA Developer's Reference

MTA_FRAGMENT _LINES .. . 258

M A FROM L 258
MT A _HDR _ADRS . . 258
MTA HDR BCC . ..ottt e 259
MTA HDR CC .t 259
MTA _HDR _FILE .. e e e 259
MTA _HDR _LINE . . e 259
MTA _HDR _NOAD RS . 259
MTA_HDR _NORESENT .. e e s 260
MTA_HDR PROC . . e 260
MTA _HDR _RESENT .. e e 260
MTA HDR TO e e 260
MTA HDRMSG FILE . . e e e e e e 260
MTA HDRMSG PROC ... e e e e e e e 261
MTA IGNORE _ERRORS ... e e e e e e e 261
MT A INTERACTIVE .. e e e e e e e e 261
MT A ITEM LI ST o e e e e e e e 261
MTA MAX TO e 261
MTA MODE BINARY . e e e e e e e e 261
MT A MODE TEXT . e e e e e e e 262
MTA MSG FILE . e e 262
MTA MSG PROC .. e e e e 262
MT A NOBLANK e e e e 262
MTA NOIGNORE ERRORS . .. e e e e e e e e e 263
MTA PRIV _DISABLE PROC ... e e e e e e e 263
MTA PRIV _ENABLE PROC ... e e e e e e e e e 263
MT A SUBAD D RESS .. . e e e 263
M A SUBIECT . e e e e 264
M A T O o e e e 264
M A USER . e e e 264
Appendix A Error Status Codes SUMMaArYttt 265
GlOS S ANy . ot e 269
IO EX . oot e 271

Contents 9

10 Messaging Server 6 2005Q1 « MTA Developer’s Reference

Preface

This manual describes the Sun™ Java System Messaging Server 6 2005Q1 Message
Transfer Agent (MTA) Software Development Kit (SDK) and Callable Send facility.

Topics covered in this chapter include:

= Who Should Use This Book

= Before You Read This Book

< How This Book Is Organized

= Conventions Used in This Book

= Related Documentation

= Accessing Sun Resources Online

« Contacting Sun Technical Support

= Related Third-Party Web Site References

e Sun Welcomes Your Comments

Who Should Use This Book

While this document is primarily intended for system programmers writing mail
software, system managers wishing to become more familiar with the inner
workings of the MTA may also benefit from a casual reading of this manual.

Programmers wishing to write gateways or channels should use the MTA SDK.
Programmers writing code merely to send mail will probably find the Callable
Send facility sufficient for their needs.

11

Before You Read This Book

Before You Read This Book

A working knowledge of the following material is essential to programmers
writing software that will create electronic mail messages with the MTA SDK:

= SunJava System Messaging Server
= RFC 2822 - the successor to RFCs 822 and 1123

Understanding this RFC is essential for programmers writing software that
creates electronic mail messages with this SDK.

= RFCs 2045, 2046, 2047, and 2049

These RFCs are useful for programmers interested in creating MIME compliant
messages.

How This Book Is Organized

12

This manual describes two distinct interfaces. Each interface has an introductory
chapter and a reference chapter and corresponding appendixes. The chapters are
described in the table below.

Table 1

How This Book Is Organized

Chapter

Description

Chapter 1, “MTA SDK Concepts and
Overview”

Chapter 2, “MTA SDK Programming
Considerations”

Chapter 3, “Enqueuing Messages”

Chapter 4, “Dequeuing Messages”
Chapter 5, “Decoding Messages”
Chapter 6, “MTA SDK Reference”

Chapter 7, “Using Callable Send:
mtaSend”

Chapter 8, “mtaSend Routine
Specification”

Appendix A, “Error Status Codes
Summary”

Provides an overview and description of general
concepts of the MTA SDK.

Describes procedures and run time instructions.

Describes the process of submitting a message to the
MTA for delivery.

Describes the process of dequeing messages.
Describes the process of decoding messages.
Contains definitions of the MTA SDK routines.

Describes the MTA Callable Send facility which is used to
send mail messages from the local host.

Provides syntax and item codes for the mtaSend()
routine.

Describes the error status codes returned by the MTA
SDK and mtaSend().

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Conventions Used in This Book

Conventions Used in This Book

The tables in this section describe the conventions used in this book.

Typographic Conventions

The following table describes the typographic changes used in this book.

Table 2

Typographic Conventions

Typeface

Meaning

Examples

AaBbCc123
(Monospace)

AaBbCc123
(Monospace
bold)

AaBbCc123
(italic)

Any text that appears on the
computer screen or text that you
should type. Can be APl and
language elements, HTML tags,
web site URLs, command names,
file names, directory path names,
onscreen computer output, sample
code.

Text that you should type when it
appears within a code example or
other onscreen computer output.

A placeholder in a command or path
name that you should replace with a
real name or value (for example, a
variable).

Also can be a book title, new term,
or word to be emphasized.

Edit your. | ogi n file.
Use |'s -ato list all files.

% You have mail .

%su
Passwor d:

The file is located in the
msg_svr_base/ bi n directory.

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

Symbols

The following table describes the symbol conventions used in this book.

Table 3 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional command |s [-1] The -1 option is not
options. required.

Preface

13

Conventions Used in This Book

Table 3 Symbol Conventions (Continued)
Symbol Description Example Meaning
{11} Contains a set of choicesfor -d {y| n} The - d option requires that
a required command option. you use either the y
argument or the n
argument.
Joins simultaneous multiple Control-A Press the Control key while
keystrokes. you press the A key.
+ Joins consecutive multiple Ctrl+A+N Press the Control key,

keystrokes.

Indicates menu item
selection in a graphical user
interface.

File > New > Templates

release it, and then press
the subsequent keys.

From the File menu, choose
New. From the New
submenu, choose
Templates.

Default Paths and File Names

The following table describes the default paths and file names used in this book.

Table 4

Default Paths and File Names

Term

Description

msg_svr_base

Represents the base installation directory for Messaging Server.

The default value of the msg_svr_base installation is as follows:
Solaris™ systems: / opt / SUNWrsgsr
Linux systems: / opt / sun/ messagi ng

Command Line Prompts

Command line prompts (for example, %for a C-Shell, or $ for a Korn or Bourne
shell) are not displayed in the examples. Depending on which operating system
you are using, you will see a variety of different command line prompts. However,
you should enter the command as it appears in the document unless specifically
noted otherwise.

14 Messaging Server 6 2005Q1 « MTA Developer’s Reference

Related Documentation

Related Documentation

The http://docs. sun. conf™ web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book
title or subject.

Messaging Server Documents

Use the following URL to see all the Messaging Server documentation:
http: //docs. sun. coni col | / Messagi ngSer ver _05q1

The Messaging Server product suite contains other products such as Sun Java™
System Console, Directory Server, and Administration Server. Documentation for
these and other products can be found at the following URL:

htt p: // docs. sun. coni db/ pr od/ sunone

In addition to the software documentation, see the Messaging Server Software
Forum for technical help on specific Messaging Server product questions. The
forum can be found at the following URL.:

http://sw orum sun. com j i ve/ f orum j sp?f or un¥15

Communications Services Documents

Use either one of the following URLSs to see the documentation that applies to all
Communications Services products:

http: //docs. sun. coni col | / Messagi ngSer ver _05q1
The following documents are available:
e SunJava™ System Communications Services Delegated Administrator Guide

e SunJava™ System Communications Services Enterprise Deployment Planning
Guide

« SunJava™ System Communications Services Schema Migration Guide
= SunJava™ System Communications Services Schema Reference
e SunJava™ System Communications Services Event Notification Service Guide

e SunJava™ System Communications Express Administration Guide

Preface 15

Accessing Sun Resources Online

e SunJava™ System Communications Express Customization Guide

Accessing Sun Resources Online

For product downloads, professional services, patches and support, and additional
developer information, go to the following:

= Download Center
http: //wws. sun. coni sof t war e/ downl oad/

= Professional Services
htt p: // ww. sun. cond ser vi ce/ sunps/ sunone/ i ndex. ht m

= Sun Enterprise Services, Solaris Patches, and Support
http://sunsol ve. sun. com

= Developer Information
http://devel opers. sun. con prodt ech/ i ndex. ht m

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the
product documentation, go to htt p: //ww. sun. coni servi ce/ cont act i ng.

Related Third-Party Web Site References

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

16 Messaging Server 6 2005Q1 « MTA Developer’s Reference

Sun Welcomes Your Comments

To share your comments, go to htt p:// docs. sun. comand click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document. For example, the title of this book is Sun Java System
Messaging Server 2005Q1 MTA Developer’s Reference, and the part number is
819-0107-10.

Preface 17

Sun Welcomes Your Comments

18 Messaging Server 6 2005Q1 « MTA Developer’s Reference

Part |

MTA SDK

Chapter 1, “MTA SDK Concepts and Overview”
Chapter 2, “MTA SDK Programming Considerations”
Chapter 3, “Enqueuing Messages”

Chapter 4, “Dequeuing Messages”

Chapter 5, “Decoding Messages”

Chapter 6, “MTA SDK Reference”

Chapter 1

MTA SDK Concepts and Overview

The Sun Java System Messaging Server MTA SDK is a low-level interface, with
routines falling into three categories: those that enqueue messages, those that
dequeue messages, and miscellaneous routines that typically query or set MTA
states, or parse message structures, such as lists of RFC 822 addresses.

The Callable Send facility, described in Chapter 5 and Chapter 6 and used only for
originating mail from the local host, can be used simultaneously with the MTA
SDK.

This chapter contains the following topics:

“Channel Programs and Message Queuing” on page 21
= “Managing Multiple Threads: Contexts” on page 22

= “Enqueuing Messages” on page 22

= “Dequeuing Messages” on page 25

= “String-valued Call Arguments” on page 27

= “Item Codes and Item Lists” on page 28

Channel Programs and Message Queuing

Message enqueuing and dequeuing are generally done by channel programs also
referred to simply as channels. There are two types of channel programs, master
channel that dequeue messages, and channels (sometimes referred to as slave
channels) that enqueue messages. Each MTA channel has its own message queue,
referred to as a channel queue. Channel programs may also perform intermediate

21

Managing Multiple Threads: Contexts

roles by dequeuing messages from one message queue and re-enqueuing them to
another while, typically, processing the message at the same time. For example, the
message processing might be to convert the message body from one format to
another.

Managing Multiple Threads: Contexts

A number of SDK operations require multiple, sequential calls to the SDK routines.
To manage this, the SDK provides the caller with a pointer to an opaque data
structure called a context. This mechanism allows for management of state
information across calls to the SDK. Use of the contexts allows multiple threads
within a single program to make simultaneous calls to the same SDK routine. The
only limitation is that a single, specific context may not be simultaneously used by
different threads in calls to the SDK. When such usage is detected in an SDK call,
an MTA_THREAD error results.

In some cases these contexts are automatically created for you, such as dequeue
and decode contexts. In all other cases, for example for enqueue contexts, you must
make an explicit call to create them. The calls that automatically create contexts
also automatically dispose of them. In all other cases, a call must be made to
explicitly dispose of a context. It is important to dispose of contexts when you no
longer need them as so doing releases resources such as virtual memory.

For more information on contexts, see “Threads and Enqueue Contexts” on
page 24, and “Threads and Dequeue Contexts” on page 26.

Enqueuing Messages

22

Messages are introduced to the MTA by enqueuing them. Each enqueued message
contains two required components, the message envelope and the message header,
and may optionally contain a third component, the message body. The contents of
the envelope and header must be provided by the program using the SDK.

For instructions on how to enqueue messages, see Chapter 2, “MTA SDK
Programming Considerations.”

For an example of how to enqueue a message, see Code Example 3-1 on page 44.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Enqueuing Messages

Message Components

This section describes the three message components: envelope, header and body.

Envelope

The message envelope contains the envelope From: address, and the list of
envelope To: addresses. The envelope is created by the SDK as the message is
enqueued. The addresses to be placed in the envelope must conform to RFC 2822.
The envelope To: addresses are often referred to as envelope recipient addresses.

Programs should rely solely upon the MTA SDK routines to read and write
envelope information, since the queued message file formats are subject to change.
Using the SDK routines insulates programmers from format changes.

The routines nt aEnqueueSt art () and nt aEnqueueTo() are used to construct a
message envelope.

Header

The message header contains RFC 2822 style header lines. The program enqueuing
the message has nearly complete control over the contents of the header and can
specify as many or as few header lines as it sees fit, with a few exceptions. A header
must have at a minimum three lines: From , Dat e: , and at least one recipient header
line, such as To:, Cc:, or Bec: .

As the message is enqueued, the SDK will do its best to supply any mandatory
header lines that are missing as well as take some measures to ensure that the
contents of the header lines conform to any relevant standards. If the From header
line is omitted by the program using the SDK, the SDK code will construct a
default header line from the envelope From address. This may not always be
appropriate; for instance, when mail is addressed to a mailing list that specifies an
Errors-to: address, then the Errors-to: address should be used as the envelope
From address. In this case, it is not appropriate to derive the header From line from
the envelope From address. If the Dat e: header line is omitted, the SDK code will
supply it, as well as a Dat e- war ni ng: header line. Finally, if no recipient header
lines are present, then the SDK code will generate them using the envelope
recipient addresses.

Any addresses appearing in the message header should conform to RFC 2822.

The header is written line-by-line using the routines nt aEnqueueWite() and
nt aEnqueueW i t eLi ne().

Chapter1 MTA SDK Concepts and Overview 23

Enqueuing Messages

Body

The optional message body contains the content of the message. As with the
message header, the program enqueuing the message has nearly complete control
over the contents of the message body. The only exception to this is when the
message is structured with multiple parts or requires encoding, for example if it
contains binary data, or lines requiring wrapping. In such cases, the SDK wiill
ensure that the message body conforms to MIME standards (RFCs 2045 — 2049).

As with the message header, message body lines are written with the routines
nt aEnqueueWite() and nt aEnqueueWi teLine().

Example

Enqueued messages may be seen in the MTA queue directories and are merely
ASCII text files. In the following sample message, lines 1 and 2 are the message
envelope, the next four lines are the header, and the rest of the lines are the body.

j doe@iroe. com
msm t h@i r oe. com

Date: Tues, 1 Apr 2003 15:01 PST
From John Doe

To: Mke Smith

Subj ect: Lunch today

M ke,
Just confirnming our lunch appointnent today |I'Il meet you at the
restaurant at noon.
John
NOTE As stated earlier, do not directly read from or write messages to the

MTA message queues. Always use the SDK routines or Callable
Send. The file structure of messages in the MTA queues are subject
to change. In addition, site specific constraints may be placed on
things such as encodings, and character set usage. The SDK routines
automatically handle these and other issues.

Threads and Enqueue Contexts

Each individual message being enqueued to the MTA is represented within the
SDK by an opaque enqueue context of type nt a_ng_t . This enqueue context is
created by nt aEnqueueSt art () and destroyed by nt aEnqueueFi ni sh() . Throughout
the enqueue process, the message being enqueued is referenced through its

24 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Dequeuing Messages

enqueue context. A program using the SDK may simultaneously enqueue multiple
messages, each message represented by its own enqueue context. Indeed, multiple
threads may simultaneously enqueue one or more messages per thread. The only
requirement is that a specific enqueue context not be simultaneously used by two
or more threads. In the event that the SDK detects simultaneous usages, it returns
the MTA_THREAD error.

Enqueuing Dequeued Mail

If a message being enqueued is the result of dequeuing a message, then all
envelope fields can automatically be carried over from the old message to the new
message. Both per-message fields (such as envelope IDs) and per-recipient fields
(such as delivery receipt requests) can be preserved. This preservation is achieved
by supplying the associated dequeue context to the routines nt aEnqueueSt art (), or
nt aEnqueueTo(), or both. Supplying the dequeue context to nt aEnqueueSt art ()
preserves per-message envelope fields, while supplying the dequeue context to

m aEnqueueTo() preserves the per-recipient fields for the specified envelope
recipient.

For information on message dequeuing and message dequeue contexts, see
“Dequeuing Messages” on page 25.

Dequeuing Messages

Messages stored in the MTA message queues are removed from their queues by
dequeuing them. This is typically done by channel programs (see “Channel
Programs and Message Queuing” on page 21). When a message is dequeued, it is
literally removed from the MTA message queues and, as far as the MTA is
concerned, no longer exists. That is, dequeuing a message relieves the MTA of all
further responsibility for the message—the responsibility is assumed to have been
passed on to some other entity such as another MTA or a message store.

Chapter1 MTA SDK Concepts and Overview 25

Dequeuing Messages

The channel name used by the program identifies the MTA message queue being
serviced by the program. The channel name can either be explicitly specified by the
program or determined from the run time environment using the PVDF_CHANNEL
environment variable.

NOTE Channel naming conventions: the name must be 32 bytes or less,
should be in lower case, and if the channel will have multiple
instantiations, then it should be given a generic name, such ast cp,
and then each instantiation can be given a specific version of it, such
astcp_local ,tcp_auth, tcp_intranet.

Multiple programs may simultaneously process the same message queue. The SDK
and Job Controller will automatically coordinate such efforts, using file locks to
prevent two or more programs or threads from simultaneously processing the
same message. When the message processing program (see “Dequeue Message
Processing Routine Tasks” on page 52) is called, the message to be processed is
locked so that no other jobs may access that message. The message is then unlocked
when nt aDequeueMessageFi ni sh() is called, or when the program exits, normally or
abnormally.

Threads and Dequeue Contexts

Each individual message being dequeued from the MTA is represented within the
SDK by an opaque dequeue context of type nt a_dq_t . Each dequeue context is
created by nt aDequeueSt art () and passed to a caller-supplied processing
procedure. Each dequeue context is then destroyed when

nt aDequeueMessageFi ni sh() is called. Throughout the dequeue process, the
message being dequeued is referenced through its dequeue context. Under typical
usage, a program will have multiple threads operating, each simultaneously
dequeuing a message. However, it is not permitted for two threads to
simultaneously use the same dequeue context in calls to the SDK. In the event the
SDK detects simultaneous usages, it returns the MTA_THREAD error.

Message Processing Threads

When nt aDequeueSt art () is called, a communication path with the MTA Job
Controller is established. The Job Controller is then asked if there are messages to
be processed for the channel. Typically there will be messages to process since the
Job Controller normally only starts channel programs when there are queued

26 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

String-valued Call Arguments

messages in need of processing. Based upon information obtained from the Job
Controller, nt aDequeueSt art () will then begin to create non-joinable processing
threads. Each processing thread immediately begins processing the queued
messages.

For further information about the exact steps a message processing thread goes
through, see “Debugging Programs and Logging Diagnostics” on page 33

String-valued Call Arguments

Strings passed as call arguments to the MTA SDK routines also have an associated
length argument. Use of the length argument is optional; that is, if you do not
know the length or do not wish to supply it, then supply a value of zero for the
length argument. However, in that case the supplied string must be NULL
terminated so that the SDK routine can determine the string’s length. When a
non-zero length is supplied, then the string does not need to be NULL terminated.
Wherever possible, the SDK routines return pointers to output strings rather than
returning the strings themselves. These pointers are always thread safe; however,
when associated with an SDK context they often are only valid as long as the
context itself is valid. Such limits will be noted in the description of the individual
routines in Chapter 4, “Dequeuing Messages”. In some cases, an output string
buffer must be supplied, as with the nt aDat eTi me() and nt alhi queString()
routines.

It is worthwhile to note that internally, the MTA has several basic string sizes.
Users of the SDK generally do not need to concern themselves with this fact.
However, at times it may be helpful to be aware of them as they can provide an
upper bound on the length of various strings you might encounter. As shown in
the following table, for instance, channel names will never be longer than
CHANLENGTH bytes; channel option values will never exceed a length of B GALFA S| ZE
bytes; and envelope addresses will never exceed a length of ALFA S| ZE bytes:

Value in
Symbolic Names Bytes Typical Usage

ALFA SI ZE 256 Upper limit on the length of an address
Bl GALFA Sl ZE 1024 Upper limit on the length of message line and channel option value
CHANLENGTH 32 Upper limit on the length of a channel name

Chapter1 MTA SDK Concepts and Overview 27

Item Codes and ltem Lists

ltem Codes and Item Lists

A number of the MTA SDK routines accept a variable length list of item code
arguments. For instance, ntal ni t () has the call syntax:

int malnit(int itemcode, ...)

That is to say, it accepts one or more integer-valued call arguments. These call
arguments are referred to as an “item code list” or, more simply, an “item list.”
Each item list must be terminated by a call argument with the value 0. As such, the
call syntax for ntal ni t () can be expressed as

int malnit([int itemcode[, ...]], 0)

There can be zero or more item codes with non-zero values which must then be
followed by an item code with the value zero.

In the MTA SDK, item lists serve two purposes. First, they allow code using the
SDK to specify optional behaviors and actions to the SDK. Second, they provide an
extension mechanism for future versions of the SDK to extend the functionality of
routines through the introduction of new item codes.

However, there is a drawback to the use of item lists; the number of items passed to
an SDK routine must be known at compile time. That is, it is difficult if not
impossible for a program at run time to adjust the number of item codes that it
wishes to pass. In recognition of this limitation, all SDK routines that accept an
item code list also accept a pointer to an arbitrary length array of item codes. Such
an array is referred to as an “item list array” and is specified with the

MTA | TEM LI ST item code. This mechanism allows programs to dynamically
construct the array at run time, while still using a fixed number of arguments at
compile time.

The MIA | TEM LI ST item code is always followed by an additional call argument
whose value is a pointer to an array of nta_item|ist_t type elements. Each array
entry has the following five fields:

Fields

Description

int itemcode

An item code value indicating an action to be effected. The permitted item code
values are routine specific.

const void *itemaddress The caller-suppled address of data to be used in conjunction with the action

specified by the i t em code field. Not all actions require use of this field.

28 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Item Codes and ltem Lists

Fields (Continued)

Description

size_t item_length

int item_status

When the item code has an associated string value, this field optionally provides
the length in bytes of the string, not including any NULL terminator. If a value of
zero is supplied, then the string pointed at by the i t em addr ess field must be
NULL terminated.

When the item code has an associated integral value, this field supplies that value.
Not all actions require the use of this field.

Only used by nt aSend() . Not used by other MTA SDK routines.

const char *item_smessage Only used by nt aSend() . Not used by other MTA SDK routines.

The end of the array is signified by an array entry whose item_code field has the
value zero (MTA_END LI ST). As an example of using MIA_| TEM LI ST, consider the
following ntal nit() call:

istat = nialnit{MIA DEBUG SDK, MIA _DEBUG CS, MIA DEBUG W 4,
MIA_DEBUG DEQUEUE, MTA DEBUG DECODE, 0);

In the above call, the decision to enable the listed debug modes is made at compile
time. Using an item list array allows the decision to be made at run time as
illustrated in the following example:

ma itemlist t itemlist[6];
int index;

index = 0;
i f (debug_sdk)

itemlist[index++].itemcode = MIA DEBUG SDXK;
if (debug_os)
itemlist[index++].itemcode = MIA DEBUG C5;

i f (debug_mm

{
itemlist[index].itemcode = MIA DEBUG W
itemlist[index++].itemlength = 4;

}
i f (debug_dq)

itemlist[index++].itemcode = MIA DEBUG DEQUEUE;
i f (debug_decode)

itemlist[index++].itemcode = MIA_DEBUG DECCDE;
itemlist[index].itemcode = MIA END LI ST;
istat = ntalnit(MA_ITEMCODE, itemlist, 0);

Chapter1 MTA SDK Concepts and Overview 29

Item Codes and ltem Lists

30

Note that the list of item code arguments must still be terminated with a call
argument with value zero. Further, note that item codes may simultaneously be
passed as distinct call arguments and also in item list arrays. For example:

ftarni t (MIA DEBUG SDK, MIA TTEMLTST, itemlistl,

MIA | NTERACTI VE, MIA ITEMLIST, itemlist2, 0);

In the above, the item codes MIA DEBUG SDK, MIA | TEM LI ST, MIA_| NTERACTI VE, and
MTA_| TEM LI ST are all explicitly passed as call arguments. Additional item codes are
passed via the item listarraysitemlistlanditemlist2.

When processing item codes, they are processed from left to right as the call
argument list is interpreted. Using the above example, ntal nit () processes
MIA_DEBUG SDK, then MIA | TEM LI ST, MTA_| NTERACTI VE, MTA_| TEM LI ST, and finally
the terminating 0 call argument which terminates the item code processing. When
processing the first occurrence of MTA | TEM LI ST, the entries of i tem | i st 1 are
processed starting with the first entry (index 0), then the second, and so on until an
entry with an item code value of 0 is encountered. The same processing occurs for
itemlist2.

If two item codes set the same underlying option or value, the last processed
instance of that item code will prevail. For example, the call:

ntal ni t (MIA_DEBUG ENQUEUE, MIA DEBUG MM 10, 0);

will leave the enqueue debug level set to 10. While the MTA DEBUG_ENQUEUE item
code sets it to 5, the subsequent MTA_DEBUG MVlitem code changes the setting to 10.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Chapter 2

MTA SDK Programming
Considerations

This chapter describes procedures and run time instructions useful for
programmers using the Sun Java System Messaging Server MTA SDK. It includes
the following topics:

= “Running Your Enqueue and Dequeue Programs” on page 31
= “Debugging Programs and Logging Diagnostics” on page 33
= “Required Privileges” on page 33

e “Compiling and Linking Programs” on page 34

= “Running Your Test Programs” on page 34

= “Preventing Mail Loops when Re-enqueuing Mail”” on page 37

= “Miscellaneous Programming Considerations” on page 38

Running Your Engqueue and Dequeue Programs

At run time, when your program enqueues a message to, or dequeues a message
from the MTA, the SDK must be able to determine the name of the MTA channel
under which to perform the enqueue or dequeue. If this name cannot be
determined, then the enqueue or dequeue operation will fail. Consequently, when
calling nt aEnqueueSt art () or nt aDequeueSt art (), a channel name can be specified.
Whether or not you need to specify this channel name depends upon the
conditions under which your program runs. While developing your program and

31

Running Your Enqueue and Dequeue Programs

32

manually running it, you may either code the channel name into your program or
specify it through your run time environment with the PNMDF_CHANNEL environment
variable. For example, to do the latter on UNIX® platforms use a command of the
following form:

PMDF_CHANNEL=channel - name program nane

where channel-name is the name of the channel and program-name is the name of the
executable program to run.

In production, if your program will run as a master or slave channel program
under the MTA Job Controller, then you do not need to specify the channel name;
it will automatically be set by the Job Controller using the PVDF_CHANNEL
environment variable. If, however, your program will be run manually or as a
server, then either the program can specify its channel name through code or using
the PMDF_CHANNEL environment variable. For the latter, setting the environment
variable is typically achieved by wrapping your executable program with a shell
script. The shell script would set the environment and then invoke your program,
as illustrated in the following code example:

#7Dbin/sh

PMDF_CHANNEL=channel - nane
PMVDF_CHANNEL_CPTI ON=opt i on-fil e-path
export PMDF_CHANNEL PMDF_CHANNEL_CPTI ON
pr ogr am name

exit

Note that the option-file-path shown in the previous example is the full, absolute
path to the channel’s option file, if any.

A program can query the SDK to determine what channel name is being used with
either the nt aChannel Get Nane(), nt aEnqueuel nfo(), or nt aDequeuel nfo() routines.
The former returns the channel name the SDK will use when no other name is
explicitly specified through code. The latter two return the name specifically being
used with a given enqueue or dequeue context.

NOTE The SDK only reads the PMDF_CHANNEL environment variable once
per program invocation. As such, running code cannot expect to
change its channel name by changing the value of the environment
variable.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Debugging Programs and Logging Diagnostics

Debugging Programs and Logging Diagnostics

The SDK has diagnostic facilities that may help in tracking down unusual
behavior. Enable SDK diagnostics in one of two ways: either when the SDK is
initialized with nt al ni t () or afterwards with nt aDebug() . The following table lists
the diagnostics types that may be enabled through either routine:

Diagnostic Type Description

MIA_DEBUG_SDK Provide diagnostics whenever the SDK returns an error status
MI'A_DEBUG_DEQUEUE Provide diagnostics from the MTA low-level dequeue library
MI'A_DEBUG_ENQUEUE Provide diagnostics from the MTA low-level enqueue library
MIA_DEBUG OS5 Provide diagnostics from the MTA low-level, operating-system

dependent library

All diagnostic output is written to st dout . In the case of a channel program, this is
typically the channel’s debug file. Message enqueue and dequeue activities
performed through the MTA SDK (and Callable Send facility) will be logged when
the channels involved are marked with the | oggi ng channel keyword.

Required Privileges

Use of the MTA SDK often requires access rights to the MTA message queues and
configuration data. Indeed, were such rights not required, then any user capable of
logging in to the operating system of the machine running Messaging Server could
read messages out of the MTA message queues and send fraudulent mail
messages. Consequently, any programs using the MTA SDK need read access to
the MTA configuration, possibly including files with credentials required to bind
to either the Job Controller or an LDAP server or both. Additionally, programs that
will enqueue messages to the MTA need write access to the MTA message queues.
Programs that will dequeue messages from the MTA need read, write, and delete
access to the MTA message queues.

To facilitate this access, site-developed programs that will enqueue or dequeue
messages should be owned and run by the account used for Messaging Server. The
programs do not need to run as a superuser with r oot access in order to enqueue or
dequeue mail to the MTA. However, it is safe to allow them to do so, if needed for
concerns outside the scope of Messaging Server. For instance, if the program will
be performing other functions requiring system access rights, it needs to run as a
superuser with r oot access.

Chapter 2 MTA SDK Programming Considerations 33

Compiling and Linking Programs

Compiling and Linking Programs

This section contains information useful for compiling and linking your C
programs.

Compiling

To declare the SDK routines, data structures, constant, and error codes, C
programs should use the nsg_server _base/ i ncl ude/ nt asdk. h header file.

Linking Instructions for Solaris

The linking instructions that follow are for the Solaris platform:

The table that follows shows the link command used to link a C program to the
SDK:

% SERVER ROOT=msQ_Svr_base
%cc -0 program programc \
-1 $SERVER ROOT/ i ncl ude \
-L$SERVER ROOT/ lib \
-1 mtasdk

In the example, msg_server_base is the directory path to the top-level messaging
Server directory, and program is the name of your program.

If running the program in a standalone mode, that is, not under the Job Controller,

then the CONFI GROOT, | NSTANCEDI R, | MTA_TAI LCR, and the LD_LI BRARY_PATH

environment variables must be defined. See the i nsi nt a shell script used to launch

MTA programs and utilities for details.

Running Your Test Programs

34

This section describes the tasks that are typically required for running your test
programs that enqueue or dequeue messages. The tasks are divided into two
groups, those used to run your test programs in a fully functional messaging
environment, and those needed if you want to run them manually:

< “Running in a Messaging Environment” on page 35

= “Manually Running Your Test Programs” on page 36

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Running Your Test Programs

Running in a Messaging Environment

Perform the following tasks:

1. Add atest channel to the bottom of the i nt a. cnf file as illustrated in the
following example:

(Tequired blrank Iine)
X-test
X-t est - daenon

2. Add rewrite rules to the top of the i nt a. cnf file as illustrated in the following
code fragment:

Xx-test $UK-t est @-t est-daenon

3. To enable your test channel so that mail can be addressed to user @- t est,
recompile your configuration and restart the SMTP server using the
instructions found in the following code example:

Fimsinta cnbuild
imsinta restart dispatcher

4. Create thejob_controller.site textfile. The file should be owned by the
Messaging Server and reside in the same directory as the j ob_control | er. cnf
file. The following code example shows the lines you must add to the file:

[CHANNEL=X_T est |
mast er _command=fil e-path

In the above example, file-path is the full path to your executable program.

5. Make sure your executable has permissions and ownership such that the
Messaging Server can run it.

6. Restart the Job Controller with the command found in the following code
example:

insinta restart job_controller

Chapter 2 MTA SDK Programming Considerations 35

Running Your Test Programs

36

If the program performing enqueues is also a channel that will be dequeuing
messages, and more specifically, is doing intermediate processing that leaves the
envelope recipient addresses unchanged, then special rewrite rules must be used to
prevent a message loop in that the channel just enqueues the mail back to itself. For
directions on how to prevent a message loop, see “Preventing Mail Loops when
Re-enqueuing Mail” on page 37. For other specific examples of rewrite rules, see
the examples in “Preventing Mail Loops when Re-enqueuing Mail”” on page 37.

Manually Running Your Test Programs

Perform the following tasks:

1. If the program does not explicitly set the channel name, then you must define
the PMDF_CHANNEL environment variable. The value of that variable must be the
name of your channel. The following example shows how to set the
PMDF_CHANNEL environment variable:

PVDF_CHANNEL=x_{ est
export PMDF_CHANNEL

For further information, see “Running Your Enqueue and Dequeue Programs”
on page 31.

2. Ensure that any environment variables required to run a program linked
against the MTA SDK are defined. See “Compiling and Linking Programs” on
page 34 for additional information.

3. Under some circumstances, it might be useful to comment out the
mast er _command= line in the j ob_control | er. si t e file. That way, you can
enqueue mail to your test channel but not have the Job Controller actually run
your channel program.

4. When repeatedly testing your channel program, it is often necessary to restart
the Job Controller before each manual test run. Otherwise, the Job Controller
will hand off messages to your program on the first manual run but not the
second manual run. The Job Controller will think that retries of the messages
need to be delayed by several hours. By restarting the Job Controller, you cause
it to “forget” which queued messages are to be deferred. Thus, when you run
your channel again, it will be presented with all of the queued messages.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Preventing Mail Loops when Re-enqueuing Mail

Preventing Mail Loops when Re-enqueuing Mall

This section shows how to add a new rewrite rule to prevent a message loop from
happening if the program is doing intermediate processing that leaves the
envelope recipient addresses unchanged. Otherwise, the channel would just
enqueue the mail back to itself.

For discussion purposes, suppose that the channel is to provide intermediate
processing for mail addressed to user @i r oe. com Further, the i nt a. cnf file has the
following rewrite rule for siroe.com:

si roe. com $U@i r oe. com

For example, as shown in the code example that follows, assume that the
intermediate processing channel’s name is “xloop_test.” Near the bottom of the
i nta.cnf file with other channel definitions, you would see the following
definition:

XIoop_t est
X- | oopt est - daenon

Then, as shown in the following example, a new rewrite rule for si r oe. comneeds to
be added to the top of the i nta. cnf file:

siroe. com $U%i r oe. conma- | oopt est - daemon$NKI oop_t est
si roe. com $U@i r oe. com

The new rewrite rule causes the following to happen:

= When a new inbound or outbound message for user @i r oe. comis enqueued to
the xI oop_t ext channel , it processes the message and re-enqueues it to
user @i r oe. com

= Inthe new rewrite rule, $Nsays that the first (new) rewrite rule is to be ignored
when the x| oop_t est channel itself enqueues a message.

= Therefore, after the xI oop_t est channel does its processing and re-enqueues
the message to user @i r oe. com the first (new) rewrite rule is ignored and the
second (old) rule is then applied, causing the message to be routed as it would
have been before the xl oop_t est channel was added to the MTA.

Chapter 2 MTA SDK Programming Considerations 37

Miscellaneous Programming Considerations

Miscellaneous Programming Considerations

38

This section covers miscellaneous topics of interest to programmer’s using the
SDK:

= “Retrieving Error Codes” on page 38
e “Writing Output From a Channel Program” on page 38

= “Considerations for Persistent Programs” on page 38

Retrieving Error Codes

With few exceptions, all routines in the SDK return an integer-valued result with a
value of zero (0) indicating success. When a non-zero value is returned, it is also
saved in a per-thread data section, which may be retrieved with either the

nt aErrno() function or the nta_errno C pre-processor macro.

The exceptional routines either return nothing (that is, always succeed), or return a
string pointer, and signify an error with a return value of NULL.

Writing Output From a Channel Program

The C runtime library st dout input-output destination may be usurped by the
SDK, depending upon the context under which a channel program has been
invoked. As such, programs that will operate as channels should use the nt aLog()
routine to write information to their log file. Such programs should never write
output directly to st dout or stderr or other generic 1/0 destinations, such as
Pascal’s out put , or FORTRAN'’s default output logical unit. There’s no telling
where such output might go: it might go to the Job Controller’s log file, it might
even go down a network pipe to a remote client or server.

NOTE The channel log file is a different file than the MTA log file. The
mt aLog() and nt aAccount i ngLogd ose() are unrelated routines.

Considerations for Persistent Programs

There are two main problems to consider when creating programs that persist over
long periods of time (for weeks or months):

= Refreshing Stale Configuration Information

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Miscellaneous Programming Considerations

= Keeping the Log File Available For Update

Refreshing Stale Configuration Information

Some programs, once started, run indefinitely (for weeks or months). An example
of this kind of program is a server that listens continually for incoming mail
connections, enqueuing received messages. Site-specific configuration information
is loaded at initialization. In the case of these long running programs, the
information can become stale due to changes to configuration information, such as
rewrite rules or channel definitions. Subsequent calls to ntal ni t () do not
accomplish this task. A program must exit and restart in order to ensure that all
configuration information is reloaded.

Keeping the Log File Available For Update

A program that enqueues and dequeues messages may open the MTA log file,

mai | . | og_current. For persistent programs, care should be taken that this log file is
not left open during periods of inactivity. Otherwise, activities that require
exclusive access to this file will be blocked. Before going idle, persistent programs
should call nt aAccount i ngLogd ose() . The log file will automatically reopened
when needed.

NOTE The MTA log file, mai | . | og_current, is not the log written to by
mtalLog().

Chapter 2 MTA SDK Programming Considerations 39

Miscellaneous Programming Considerations

40 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Chapter 3

Enqueuing Messages

The MTA SDK provides routines with which to construct a mail message and then
submit the message to the MTA. The MTA then effects delivery of the message to
its recipients. The act of submitting a message to the MTA for delivery is referred to
as “enqueuing a message.” This choice of terminology reflects the fact that each
message submitted to the MTA for delivery is placed into one or more message
gueues. Using its configuration, the MTA determines how to route each message to
its destination and which message queues to place each the message into.
However, programs enqueuing messages do not need to concern themselves with
these details; they merely supply the message’s list of recipients and the message
itself. The recipients are specified one-by-one as RFC 2822 conformant Internet
email addresses. The message header and content is supplied in the form of an
RFC 2822 and MIME conformant email message.

When starting a coding project to enqueue messages to the MTA, always stop to
consider whether simply using SMTP will be acceptable. The advantage of using
SMTP is that it will work with any MTA SMTP server, making it portable. The
disadvantages are poorer performance and lack of flexibility and control.

This chapter covers the following enqueuing topics:

“Basic Steps to Enqueue Messages” on page 42
“Originating Messages” on page 43

“A Simple Example of Enqueuing a Message” on page 43
“Transferring Messages into the MTA” on page 46
“Intermediate Processing Channels” on page 46

“Delivery Processing Options: Envelope fields” on page 47

“Order Dependencies” on page 47

41

Basic Steps to Enqueue Messages

Basic Steps to Enqueue Messages

42

The basic steps necessary to enqueue one or more messages to the MTA are:

1. Initialize SDK resources and data structures with ntal nit ().
2. For each message to enqueue, perform the following steps:

a. Specify the message envelope with nt aEnqueueSt art () and
nt aEnqueueTo() .

b. Specify the message header with nt aEnqueueWite() or
nt aEnqueueW i t eLi ne().

c. Optionally, if a message body is to be supplied, terminate the message
header and start the message body by writing a blank line to the message
with mt aEnqueueWi t e() or nt aEnqueueWi t eLi ne().

d. Optionally if a message body is to be supplied, write the message body
with nt aEnqueueWi t e() or nt aEnqueueWi t eLi ne().

e. Submit the message with nt aEnqueueFi ni sh() .

3. When you have completed enqueuing messages, deallocate SDK resources and
data structures with nt aDone() .

In Step 2e, nmt aEnqueueFi ni sh() commits the message to disk. As part of the
enqueue process, the MTA performs any access checks, size checks, format
conversions, address rewritings, and other tasks called for by the site’s MTA
configuration. After these steps are completed and the message has been
successfully written to disk, nt aEnqueueFi ni sh() returns.

Other MTA processes controlled by the MTA Job Controller then begin processing
the new message so as to effect its delivery. In fact, these processes may begin
handling the new message before nt aEnqueueFi ni sh() even returns. As such,

nt aEngeueueFi ni sh() doesn’t block waiting on these processes; it returns as soon as
all requisite copies of the enqueued message have been safely written to disk. The
subsequent handling of the newly enqueued message is performed by other MTA
processes, and the program which enqueued the message isn’t left waiting for
them.

A message submission can be aborted at any point in Step 2 by calling either
nt aEnqueueFi ni sh() with the MTA_ABCRT option specified or nt aDone() . Using the
first method, nt aEnqueueFi ni sh() aborts only the specified message enqueue
context while allowing additional messages to be enqueued. Whereas, nt aDone()

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Originating Messages

aborts all active message enqueue contexts in all threads, and deallocates SDK
resources disallowing any further submission attempts until the SDK is again
initialized.

Originating Messages

Messages enqueued to the MTA fall into one of two broad classes: new messages
being originated and messages which were originated elsewhere and which are
being transferred into the MTA. The former are typically the product of a local user
agent or utility which uses the MTA SDK. The latter are generated by remote user
agents, and received by local programs such as SMTP or HTTP servers which then
enqueue them to the MTA for routing or delivery or both. In either case, it is the job
of the MTA to route the message to its destination, be it a local message store or a
remote MTA.

The only distinction the MTA SDK makes between these two cases occurs when
the message’s recipient addresses are specified. For new messages being
originated, the recipient addresses should be added to both the message’s header
and its envelope. For messages originated elsewhere, the recipient addresses
should only be added to the message’s envelope. For a discussion of messages
originated elsewhere, see “Transferring Messages into the MTA” on page 46, and
“Intermediate Processing Channels” on page 46.

When originating a new message, it is easiest to use the MTA TO, MTA_CC, and
MFA_BCC item codes with nt aEnqueueTo() . That tells the SDK to use the specified
addresses as both the envelope recipient list and to put them into the message’s
header. When using this approach, do not specify any From, To:, Cc: , or Bec:
header lines in the supplied message’s header; the SDK will add them
automatically.

An example of using this approach is found in the section that follows.

A Simple Example of Enqueuing a Message

The program shown in Code Example 3-1 demonstrates how to enqueue a simple
“Hello World” message. The originator address associated with the message is that
of the MTA postmaster. The recipient address can be specified on the invocation
command line.

After the Messaging Server product is installed, this program can be found in the
following location:

Chapter 3 Enqueuing Messages 43

A Simple Example of Enqueuing a Message

nsg_server_base/ exanpl es/ nt asdk/

Note that certain lines of code have numbered comments immediately preceding
them of the format:

/* This generates output line N */

where N corresponds to the numbers found next to certain output lines in the
sample output.

Refer to “Running Your Test Programs” on page 34 for information on how to run
the sample program.

Code Example 3-1 Enqueuing a Message

I helTo_world.c -- Asinple "HelTo Wrldl™ enqueue exanple */
#i ncl ude <stdio. h>

#include <stdlib. h>

#i ncl ude "ntasdk. h"

nta_ng_t *ctx = NULL;
static void quit(void);
#define CHECK(x) if(x) quit();

void main(int argc, const char *argv[])
char buf[100];

/* Initialize the SDK */
CHECK(ntalnit(0));

[* Start a new nmessage; From postnaster*/

/* This generates output line 1 */

CHECK(nt aEnqueueSt art (&t x, ntaPost mast er Addr ess(NULL, NULL,
0), 0, 0));

/* Enqueue the message to argv[1l] or root */
/* This generates output line 2 */
CHECK(nt aEnqueueTo(ctx, (argv[1l] ? argv[1] : "root"), 0, 0));

/* Date: header line */
/* This generates output line 3 */
CHECK(nt aEnqueueW i teLine(ctx, "Date: ", 0, ntaDateTi me(buf,

NULL, sizeof(buf), 0), 0, NULL))

/* Subject: header line */
/* This generates output line 4 */

CHECK(nt aEnqueueW i teLine(ctx, "Subject: " _FILE , O,
NULL)) ;

/* Blank |ine ending the header, starting the nmessage body */

/* This generates output line 5 */

CHECK(mt aEnqueueWi teLine(ctx, "", 0, NULL));

/* Text of the nmessage body (2 |ines) */
/* This generates output line 6 */

44 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Example of Enqueuing a Message

Code Example 3-1 Enqueuing a Message (Continued)

CHECK(i aEnqueueW i teLi ne(ctx, "HelTo™, U, NULL));
/* This generates output line 7 */
CHECK(nt aEnqueueWi teLine(ctx, " World!", 0, NULL));
/* Enqueue the nmessage */

CHECK(nt aEnqueueFi ni sh(ctx, 0));
[* Al done */
nt aDone() ;

}

voi d quit(void)

{
fprintf(stderr, "The MIA SDK returned the error code %\ n

%", nta_errno, maStrError(nta_errno, 0));
if (ctx)
nt aEnqueueFi ni sh(ctx, MIA ABORT, 0);
exit(1);
}

Enqueuing a Message Example Output

The example that follows shows the output generated by the enqueuing example.
Comment numbers correspond to the numbered comments in Code Example 3-1.

Comment
Number Output Lines
Recei ved: from si roe. com by siroe.com (SunONE Messagi ng Server 6.0)id
<01GP37SOPRWAIKZFV@i r oe. con; Fri, 21 Mar 2003 09: 07: 32 - 0800(PST)
3 Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)
1 From post naster @i roe. com
2 To: root @iroe.com
4 Subj ect: enqueui ng_exanpl e. ¢
Message-id: <01GP37SOPRRAIKZFV@i r oe. conp
Content-type: TEXT/ PLAIN, CHARSET=US- ASCl |
Content-transfer-encoding: 7Bl T
5
6 Hel | o
7 Worl d!

Chapter 3 Enqueuing Messages 45

Transferring Messages into the MTA

Transferring Messages into the MTA

When transferring a message originated elsewhere into the MTA, programs should
use the MTA_ENV_TOitem code with nt aEnqueueTo() . This way, each of the recipient
addresses will only be added to the message’s envelope, and not to its already
constructed header. Additionally, supply the message’s header as-is. Do not
remove or add any origination or destination header lines unless necessary. Failure
to use the MTA_ENV_TOitem code will typically cause the SDK to add Resent - header
lines to the message’s header.

“A Complex Dequeuing Example” on page 63, and “A Simple Virus Scanner
Example” on page 95 both illustrate the use of the MTA_ENV_TOitem code.

Intermediate Processing Channels

46

Like programs which transfer messages into the MTA, intermediate processing
channels should also use the MTA_ENV_TOitem code with nt aEnqueueTo() . When
re-enqueuing a message, intermediate processing channels should also preserve
any MTA envelope fields present in the message being re-enqueued. This is done
using the MTA_DQ CONTEXT item code in conjunction with nt aEnqueueStart () and
nt aEnqueueTo() . Failure to preserve these envelope fields can result in loss of
delivery receipt requests, special delivery flags, and other flags which influence
handling and delivery of the message.

“A Complex Dequeuing Example” on page 63, and “A Simple Virus Scanner
Example” on page 95 both illustrate the use of the MTA_ENV_TQ, and MI'A_DQ CONTEXT
item codes. Both of those examples represent intermediate processing channels
that handle previously constructed messages. As such, they do not need to alter the
existing message header, and they preserve any MTA envelope fields.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Delivery Processing Options: Envelope fields

Delivery Processing Options: Envelope fields

A variety of delivery processing options may be set through the MTA SDK. These
options are then stored in the message’s envelope and are generically referred to as
“envelope fields.” Options which pertain to the message as a whole are set with

nt aEnqueueSt ar t () . Options which pertain to a specific recipient of the message are
set with nt aEnqueueTo() . These options, per message and per recipient, include the
following:

Delivery flags

Notification flags

These flags are used to communicate information between channels. For instance, a
scanning channel might set the flag to indicate suspected spam content. A delivery channel
could then see that the flag is set and, at delivery time, add a header line indicating potential
spam content. These flags may also be set using the del i ver yf | ags channel keyword.

These flags influence whether delivery or non-delivery notification messages are generated.
They can be set on a per recipient basis. Typically, they are used to request a delivery
receipt. Another common usage is for bulk mail to request no notifications, neither delivery
nor non-delivery.

Original recipient address This field is specified on a per recipient basis. It is used to indicate the original form of the

Envelope ID

Fragmentation size

associated recipient’s address. This original address can then be used in any notification
messages. Its use allows the recipient of the notification to see the original address they
specified rather than its evolved form. For example, the recipient would see the name of the
mailing list they posted to rather than the failed address of some member of the list.

Set on a per message basis, this is an RFC 1891 envelope ID and can appear in RFC 1892
- 1894 conformant notifications about the message.

Set on a per message basis, this controls if and when the message is fragmented into
smaller messages using the MIME message/ parti al mechanism.

For additional information, see the descriptions of nt aEnqueueSt art (), and
nt aEnqueueTo() .

Order Dependencies

When you are constructing programs, there is a calling order for the MTA SDK
routines that must be observed; for a given enqueue context, some routines must
be called before others.

Figure 3-1 visually depicts the calling order dependency of the message enqueue
routines. To the right of each routine name appears a horizontal line segment,
possibly broken across a column, for example, nt aEnqueueWi t e() . Routines for
which two horizontal line segments, one atop the other, appear are required
routines; that is, routines that must be called in order to successfully enqueue a

Chapter 3 Enqueuing Messages 47

Order Dependencies

message. These routines are nt aEnqueueSt art (), nt aEnqueueTo(), and

nt aEnqueueFi ni sh() . To determine at which point a routine may be called, start in
the leftmost column and work towards the rightmost column. Any routine whose
line segment lies in the first (leftmost) column may be called first. Any routine
whose line segment falls in the second column may next be called, after which any
routine whose line segment falls in the third column may be called, and so forth.
When more than one routine appears in the same column, any or all of those
routines may be called in any order. Progression from left to right across the
columns is mandated by the need to call the required routines. Of the required
routines, only nt aEnqueueTo() may be called multiple times for a given message.

Figure 3-1 Calling Order Dependency for Message Enqueue Routines

mtaInit %==% .
mtaEnqueueStart : =——
mtaEnqueueTo : :
mtaEnqueueWrite
mtaEnqueueWriteLine
mtaEnqueueCopyMessage
mtaEnqueueInfo :
mtaEnqueueError
mtaEnqueueFinish :

‘ IIII

48 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Chapter 4

Dequeuing Messages

Once enqueued to the MTA, messages are processed using the SDK dequeue
routines. These routines provide channel programs and MTA utilities with
programmatic access to queued messages. With these routines, a channel program
can process its queue of messages, accessing the message’s envelope information
and message content.

This chapter discusses the following dequeuing topics:

“How Dequeuing Works” on page 50

= “Basic Dequeuing Steps” on page 50

= “Caller-Supplied Processing Routine” on page 51
= “The process_message() Routine” on page 54

= “ASimple Dequeue Example” on page 56

= “Processing the Message Queue” on page 60

= “The process_done() Routine” on page 62

e “A Complex Dequeuing Example” on page 63

= “Intermediate processing channels” on page 71

= “Intermediate Channel Example” on page 73

= “Thread Creation Loop in mtaDequeueStart” on page 80
= “Multiple Calls to mtaDequeueStart” on page 82
« “Calling Order Dependencies” on page 82

49

How Dequeuing Works

How De

gueuing Works

Channel programs wishing to dequeue messages from the MTA must associate
themselves with a specific MTA channel or channels. Without this information, the
MTA SDK does not know which channel queue to draw messages from. This
information can be provided implicitly with the PVMDF_CHANNEL environment
variable, or explicitly by specifying the name of the MTA channel to process when
calling nt aDequeueStart ().

The dequeue process is initiated by calling the routine nt aDequeueStart (). A key
piece of required information passed to nt aDequeueSt art () is the address of a
caller-supplied routine designed to process a single message. This routine will be
repeatedly called by nt aDequeueSt art () until there are no more queued messages
in need of processing. One call is made per message to be processed.

Unless otherwise instructed, nt aDequeueSt art () will use multiple threads of
execution to process queued messages. Each thread of execution will repeatedly
invoke the caller-supplied routine, once for each message to be processed. Thus, by
default the caller-supplied routine is expected to be “thread-safe.” That is, it is
expected to support being called simultaneously by more than one thread of
execution. If the caller-supplied routine is not thread safe, then nt aDequeueStart ()
can be instructed to use a single thread of execution, as illustrated in “A Complex
Dequeuing Example” on page 63.

Basic Dequeuing Steps

50 Messaging Serve

The following basic steps are necessary to dequeue messages:
1. Initialize SDK resources and data structures with ntalnit().

2. Call ntabDequeueSt art (), passing it the address of the caller-supplied routine
that is to be used to process each message.

When nt aDequeueSt art () is called, it does not return until all queued messages
requiring processing have been processed, thus blocking the thread calling it
until it is finished.

r 6 2005Q1 * MTA Developer's Reference

Caller-Supplied Processing Routine

3. Foreach queued message requiring processing, an execution thread created by
nt aDequeueSt art () calls the routine whose address was provided in Step 2.

Threads created by nt aDequeueSt art () each sequentially process multiple
messages. That is, nt aDequeueSt art () does not create a distinct thread for each
and every queued message to be processed.

For a list of the tasks the processing routine should do, see “Caller-Supplied
Processing Routine” on page 51.

NOTE The nt aDequeueSt art () routine will use one or more threads, with
each thread calling the message processing routine. The maximum
number of threads allowed can be set when calling
m aDequeueSt art () . Consequently, a program that does not support
threading should specify a maximum of one thread when it calls
m aDequeueStart ().

For a list of the tasks the processing routine should do, see “Dequeue Message
Processing Routine Tasks.”

4. After nt aDequeueSt art () returns, deallocate SDK resources and data structures
with a call to nt aDone() .

Caller-Supplied Processing Routine

Channel programs typically perform some form of processing on each message
they dequeue. For instance, virus scanning, MMS conversion, decryption, delivery
to a proprietary messaging system, and so forth. When using the MTA SDK,
channel programs must provide a routine which initiates this processing on a per
message basis. That is, programs must supply a routine that to be called to process
a single queued message. Throughout the rest of this text, this caller-supplied
routine will be referred to as “the caller-supplied processing routine,” or, for short,
“the processing routine.”

When called by one of the nt aDequeueStart () execution threads, the processing
routine uses the SDK to access the message’s envelope, header, and any content.
Upon completion of processing, the message is then either removed from the MTA
gueues, or, in the event of a temporary error, left in its queue for a later processing
attempt.

Chapter 4 Dequeuing Messages 51

Caller-Supplied Processing Routine

52

Dequeue Message Processing Routine Tasks

The processing routine processes a single queued message per invocation. The
specific steps that a processing routine takes are:

1. Read the envelope recipient list with repeated calls to
nt aDequeueReci pi ent Next () .

When nt aDequeueReci pi ent () returns the MTA_ECF status code, the list has been
exhausted and all envelope recipient addresses have been provided. All
gueued messages are guaranteed by the MTA to always have at least one
envelope recipient address.

2. Read the message, both header and body, with repeated calls to
nt aDequeueLi neNext () .

When nt aDequeueLi neNext () returns the MTA_ECF status code, the message has
been exhausted; that is, there is no more message text to retrieve. The message
will be an RFC 2822 conformant message. As such, the division between the
message’s header and content will be demarked by a blank line (a line with a
length of zero). A message may have no content; that is, a message may have
just a header.

3. Process the message.

The processing in this step could be almost anything, including possibly
enqueuing a new message or messages with the MTA SDK. The details of this
step will depend upon the purpose of the program itself. Programs needing to
do MIME parsing should consider using the nt aDecodeMessage() routine.

For further information about message processing threads and caller-supplied
message processing routines, see “Processing the Message Queue” on page 60.

4. Report the disposition of each envelope recipient with per recipient calls to
nt aDequeueReci pi ent Di sposi tion(), or a single call to
nt aDequeueMessageFi ni sh() with the MTA_DI SP item code.

The following table lists the valid recipient dispositions:

Symbolic Name Description

MIA DI SP_DEFERRED Unable to process this recipient address. Processing has failed
owing to a temporary problem, such as the network is down, a
remote host is unreachable, or a mailbox is busy. Retry delivery
for this recipient at a later time as determined by the
configuration of the channel.

MIA_Di SP_DELI VERED Recipient address successfully delivered. Generate a delivery
status natification if required.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Caller-Supplied Processing Routine

Symbolic Name (Continued) Description

MIA DI SP_FAI LED Unable to process this recipient address. Processing has failed
owing to a permanent problem, such as an invalid recipient
address, or recipient over quota. No further delivery attempts
should be made for this recipient. Generate a non-delivery
notification if required.

MIA DI SP_RELAYED Recipient address forwarded to another address or sent into a
non-RFC 1891 (NOTARY) mail system. The message’s
NOTARY information was, however, preserved. There is no
need to generate a “relayed” notification message.

MIA DI SP_RELAYED FCREI GN Recipient address forwarded to another address or gatewayed to
a non-RFC 1891 (NOTARY) mail system; the messages
NOTARY information was not preserved; generate a relayed
notification message if required.

MIA_ Dl SP_RETURN For this recipient, return the message as undeliverable.
Generate a non-delivery notification if required. This disposition
is intended for use by queue management utilities. It is not
intended for channel programs.

MIA DI SP_TI MEDOUT Unable to process this recipient address. Processing failed due
to timing out. This disposition is intended for use by the MTA
Return Job. Channel programs should not use this disposition.

5. Dequeue the message with nt aDequeueMessageFi ni sh() .

The message is not actually removed from the channel queue until this final
step. This helps ensure that mail is not lost should the channel program fail
unexpectedly, or some other unexpected disaster occurs.

When this routine is called, the resulting processing depends on the
disposition of the envelope recipient addresses reported with
nt aDequeueReci pi ent Di sposi tion() (see Step 4 in this task list).

If all recipients have a permanent disposition (all of the ones listed in the
previous table, except MTA_ Dl SP_DEFERRED), then any required non-delivery
notifications are generated and the message is permanently removed from the
MTA queue.

If all recipients are to be deferred (MTA_Di SP_DEFERRED), then no notifications are
generated and the message is left in the queue for later delivery attempts.

If, however, some recipients have a permanent disposition and others are
deferred, then the following happens:

Chapter 4 Dequeuing Messages 53

The process_message() Routine

a. Notifications are generated for those recipients with permanent
dispositions that require notifications.

b. A new message is enqueued for just the deferred recipients.
c. The original message is removed from the queue.

Note that deferred messages will not be processed by this routine more than
once, unless another delivery attempt is made for the deferred message while
the process is still running. How long a message is deferred is configured as
part of a channel’s definition, using the backof f channel keyword.

When finished, the processing routine should return with a status code of zero
(0) to indicate a success, and an appropriate MTA_ status code in the event of an
error.

If the processing routine returns before calling nt aDequeueFi ni sh(), then the
message that was being handled is left in its queue for a subsequent processing
attempt. It will be as if the MTA_ DI SP_ DEFFERED disposition was set for all of the
message’s recipients. This will be the case even if the processing routine
returns a success status code of zero.

In the event that the processing routine needs to abort processing of a single
message, it should call nt aDequeueMessageFi ni sh() with the MTA_ABCRT flag set.
If the processing routine returns with a status code of MTA_ABCRT, then the
execution thread that called the processing routine will perform an orderly
exit. Consequently, the program can prematurely terminate itself in a graceful
fashion by causing its processing routine to begin returning the MTA_ABORT
status code each time it is called.

The process_message() Routine

54

This caller-supplied routine is invoked by the processing threads to do the actual

processing of the messages.

The following code example shows the required syntax for a pr ocess_nessage()
routine:

int process_nessage(voi d **cixZ, void *cixI, mia_dg_t *dg_ctX,
const char *env_from int env_fromlen);

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

The process_message() Routine

The following table lists the required arguments for a pr ocess_nessage routine, and
gives a description of each.

Arguments Description

ctx2 A writable pointer that the pr ocess_nessage() routine can use to store a
pointer to a per-thread context. See the description that follows for further details.

ct x1 The caller-supplied private context passed as ct x1 to nt aDequeueStart ().

dg_ctx A dequeue context created by nt aDequeueSt art () and representing the
message to be processed by this invocation of the pr ocess_nessage()
routine.

env_from A pointer to the envelope Fr om address for the message to be processed.

Since Internet messages are allowed to have zero length envelope Fr om
addresses, this address can have zero length. The address will be NULL
terminated.

env_fromlen The lengthin bytes of the envelope Fr om string. This length does not include
any NULL terminator.

When a processing thread first begins running, it sets the value referenced by ct x2
to NULL. This assignment is made only once per thread and is done before the first
call to the process_message() routine. Consequently, on the first call to the
process_nessage routine by a given execution thread, the following test is true:

*ctx2 == NULL

That test will remain true until such time that the process_nessage() routine itself
changes the value by making an assignment to *ct x2. If the process_nessage()
routine needs to maintain state across all calls to itself by the same processing
thread, it can allocate memory for a structure to store that state in, and then save a
pointer to that memory with ct x2. The following code snippet demonstrates this:

int process_nessage(voi d **ctx2, void *ctxI, const char *env_irom
size_t env_fromlen)

struct our_state_t *state;

(our_state t *)(*ctx2);

/*

* First call for this thread.

* Allocate a structure in which to store the state

* information

*/

state = (our_state_t *)calloc(1l, sizeof(our_state_t));
if (!state) return(MA _ABCRT);

*ctx2 = (void *)state;

Chapter 4 Dequeuing Messages 55

A Simple Dequeue Example

/*

* Set any appropriate initial values for the state
* structure

*/

For a sample process_nessage() routine, see the example code in the section that
follows.

A Simple Dequeue Example

56

The program shown in Code Example 4-1 constitutes a simplified batch-SMTP
channel that reads messages from a message queue, converting each message to
batch SMTP format, and writes the result to st dout . If the conversion is successful,
then the message is dequeued, otherwise it is deferred.

Some lines of code are immediately preceded by a comment of the format:
/* See explanatory comment N */
where N is a number.

The numbers are links to some corresponding explanatory text in the section that
follows this code, see “Explanatory Text for Numbered Comments” on page 69.
Find the sample output in “Output from the Simple Dequeue Example” on

page 60.

Code Example 4-1 A Simple Dequeue Example

[* dequeue_sinple.Cc -- Asinple dequeue exanple: wite BSMIP to stdout
*/

#i ncl ude <stdio. h>

#include <stdlib. h>

#i ncl ude "nt asdk. h"

static nta_dg_process_nessage_t process_nessage;
int main()

int ires;

| *

* Initialize the MIA SDK
*/

i{f ((ires = ntalnit(0)))

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Dequeue Example

Code Example 4-1 A Simple Dequeue Example (Continued)

nmiatog("ntalnit() returned Y, Ys\n", ires,
maStrError(ires, 0));
return(l);

*
* Start the dequeue loop. Since this exanple uses stdout
* for output, we indicate that we only support a single
* thread:

* (MIA_THREAD_MAX_THREADS = 1).

*

/* See explanatory commrent 1 */

ires = mtaDequeueStart(NULL, process_message, NULL,
MIA_THREAD MAX_THREADS, 1, 0);

/*
* Check the return status
*/
/* See explanatory comment 2 */
if (lires)
/* Success */
return(0);
/*
* Print an error nmessage to stderr
*/

/* See explanatory comment 3 */
ntaLog("ntaDequeueStart () returned %l; %\n", ires,
ires, maStrError(ires, 0));

/* And exit with an error */
return(l);

}

/* See explanatory comrent 4 */

static int process_nessage(void **ny_ctx_2, void *ny_ctx_1,
nma_dqg_t *dg, const char *env_from
size_t env_fromlen)

int ires; _
const char *to, *line;
size_ t len;

/* See explanatory comment 5 */
if (!(*ny_ctx_2))
{

*ny_ctx_2 = (void *)1;
printf("HELON");

el se
printf("RSET\n");

Chapter 4 Dequeuing Messages

57

A Simple Dequeue Example

Code Example 4-1 A Simple Dequeue Example (Continued)

[* Qutput the command:
* MAI L FROM <from adr>
*/

printf("MANL FROM <%>\n", env_fronj;

/*

* Qutput the command:

* RCPT TO <to-adr>

* for each recipient address

*/

/* See explanatory comment 6 */

while (!(ires = ntaDequeueReci pi ent Next (dq, &t o,

&en, 0)))

{

printf("RCPT TO <%>\n", to);

/* See explanatory comrent 7 */

m aDequeueReci pi ent Di sposi tion(dg, to, |len,

MIA DI SP_DELI VERED, 0);

}
/*

* |f ires == MIA_ ECF, then we exited the | oop nornally;

* otherwise, there’s been an error of sonme sort.

*/

if (ires I'= MA ECF)
/* See explanatory comrent 8 */
return(ires);

/*

* Now output the nessage itself

*/

printf("DATAN");

/* See explanatory coment 9 */

while (!(ires = ntaDequeueLi neNext (dg, & ine, &en)))
/* See explanatory comrent 10 */
printf("%*s\n", len, line);

/*
* |f ires == MIA ECF, then we exited normal | y;
* otherwi se, there's been an error of sone sort.
*/
if (ires = MIA ECF)
/* See explanatory comment 8 */
return(ires);

/*

* Qutput the “.” command to terninate this message
*/

printf(".\n");

/*

* And dequeue the message

*/

/* See explanatory coment 11 */

58 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Dequeue Example

Code Example 4-1 A Simple Dequeue Example (Continued)

iTes = ntaDequeueMessager ni sh(dg, 0);

/*

* Al done; return ires as our result
*/

/* See explanatory coment 12 */
return(ires);

Explanatory Text for Numbered Comments

The numbered explanatory text that follows corresponds to the numbered
comments in Code Example 4-1 on page 56:

1 To start the dequeue processing, nt aDequeueStart () is called, and it calls
process_nessage(), which processes each queued message. Since
process_nessage() uses st dout for its output, only one message can be processed at
a time. To effect that behavior, nt aDequeueStart () is called with the

MIA_THREAD MAX_THREADS set to one.

2 If the call to nt aDequeueSt art () succeeds, the program exits normally.

3 If the call to nt aDequeueStart () fails, a diagnostic error message is displayed
and the program exits with an error status.

4 process_message() is called by nt aDequeueSt art () for each queued message.

5 The private context in process_nessage() tracks whether or not this is the first
time the routine has been called. On the first call, the memory pointed at by
ny_ctx_2 is guaranteed to be NULL.

6 The routine obtains each envelope recipient address, one at a time, using calls to
nt aDequeueReci pi ent Next () .

7 Each recipient is marked as delivered using nt aDequeueReci pi ent Di spostion().
An actual channel program would typically not make this call until after
processing the message further.

8 Ifprocess_nessage() returns without first dequeuing the message,
nt aDequeueSt art () defers the message for a later delivery attempt.

9 The routine calls nt aDequeueLi neNext () to read the message header and body,
one line at a time. When there are no more lines to read, nt aDequeueLi neNext ()
returns a status of MTA_ECF. When a line is read successfully, nt aDequeueLi neNext ()
returns a status of MTA K.

Chapter 4 Dequeuing Messages 59

Processing the Message Queue

10 The lines returned by nt aDequeueLi neNext () might not be NULL terminated
because the returned line pointer might reference a line in a read-only,
memory-mapped file.

11 Once the message has been processed and all the disposition of all recipients
set, nt aDequeueMessageFi ni sh() is called. This actually dequeues the message.

12 When all message processing is complete, process_nessage() exits. It is called
again for each additional message to be processed.

Output from the Simple Dequeue Example

HELO

MAI L FROM <sue@i r oe. con®

RCPT TO <dan@i r oe. con®

DATA

Recei ved: from si roe. com by siroe.com (SunONE Messaging Server 6.0)id
<01GP37SCPRWAIKZFV@i r oe. conp; Fri, 21 Mar 2003 09: 07: 32 - 0800(PST)

Date: Fri, 21 Mar 2003 09:07: 41 -0800 (PST)

From post mast er @i roe. com

To: root @iroe.com

Subj ect: ntasdk_exanpl el. ¢

Message-i d: <01GP37SCPRRAIKZFV@i r oe. comp

Content-type: TEXT/ PLAIN, CHARSET=US- ASCl |

Content -transfer-encoding: 7Bl T

Hell o
wor | d!

QT

Processing the Message Queue

60

This section describes the steps undertaken by each execution thread created by
nt aDequeueSt art () . Each execution thread processes a subset of the channel’s
gueued messages by repeatedly calling the caller-supplied processing routine,
process_nessage() .

To process queued messages, a processing thread takes the following steps:
1. The thread sets ct x2 to have the value NULL:
ctx2 = NULL;

For information on the process_nessage() arguments, see “The
process_message() Routine” on page 54.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Processing the Message Queue

2. The execution thread communicates with the Job Controller to obtain a
message file to process. If there are no more message files to process, then go to
Step 9.

3. For the message file, the execution thread creates a dequeue context that
maintains the dequeue processing state for that message file.

4. The execution thread then invokes the caller-supplied pr ocess_nessage()
routine, passing to it the dequeue context created in Step 3, as shown in the
example that follows:

istat = process_nessage(&ctx2, ctxl, &q_ctx, env_from
env_fromlen);

For information on the call arguments for process_nessage(), see “The
process_message() Routine” on page 54.

5. The process_nessage() routine then attempts to process the message,
ultimately removing it from the channel’s queue, or leaving the message file
for a later processing attempt.

6. If m aDequeueMessageFi ni sh() was not called before process_nessage()
returned, then the queued message is deferred. That is, its underlying message
file is left in the channel’s queue and a later processing attempt is scheduled.

7. The dequeue context is destroyed.

8. Ifthe process_nessage() routine did not return the MTA_ABCRT status code, then
repeat this cycle starting at Step 2.

9. [Ifacaller-supplied process_done() routine was passed to nt aDequeueStart (), it
is called now, for example:

process_done(&ctx2, ctxl);

Through the process_done() routine, the program can perform any cleanup
necessary for the execution thread. For example, freeing up any private context
and associated resources stored in the ct x2 call argument.

For a description of the process_done() routine, see “The process_done()
Routine” that follows, as well as “process_done() Routine” on page 180.

10. The thread exits.

For an example of how state (context) may be preserved within an execution thread
and across calls to process_nessage(), “A Complex Dequeuing Example” on
page 63. That example also illustrates the use of the process_done() routine.

Chapter 4 Dequeuing Messages 61

The process_done() Routine

The process_done() Routine

To assist in cleaning up state information for a thread, callers can provide a routine
pointed to by the process_done call argument of nt aDequeueStart ().

The following code example shows the required syntax for a process_done()
routine.

[voird process_done(vord *ctxZ, voird *ctxl)

The following table lists the arguments required for a process_done() routine, and
gives a description of each.

Required Arguments Description

ctx2 The value of the last pointer stored by pr ocess_message() in the
ct X2 call argument for this thread.

ctx1 The caller-supplied private context passed as Ct X1 to
mt aDequeueStart ().

The following code example demonstrates the type of actions taken by a
process_done routine.

voi d process_done(ctxZ, ctxI)

struct our_state_t *state = (struct our_state_t *)ctx2;
if (!state)

return;
/*

* Take steps to undo the state
* (for exanple, close any sockets or files)

*/

/*

* Free the nenory al l ocated by process_nessage()
* to store the state

*|

free(state)

62 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Complex Dequeuing Example

A Complex Dequeuing Example

The program shown in Code Example 4-2 is a more complicated version of the
simple example (see “A Simple Dequeue Example” on page 56). In this example,
more than one concurrent dequeue thread is permitted. Additionally, better use is
made of the context support provided by nt aDequeueStart (), and a procedure to
clean up and dispose of per-thread contexts is provided.

After the Messaging Server product is installed, these programs can be found in the
following location:

nsg_server _base/ exanpl es/ nt asdk/

Some lines of code are immediately preceded by a comment of the format:
/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory
text in the section that follows this code, see “Explanatory Text for Numbered
Comments” on page 69.

For the output generated by this code, see “Output from the Complex Dequeue
Example” on page 71.

Code Example 4-2 A Complex Dequeue Example

/ *
* dequeue_conpl ex. ¢
*

* Dequeuing with nore than one thread used.
*

*/
#i ncl ude <stdio. h>
#include <stdlib. h>
#if defined(_WN32)
#i ncl ude <uni std. h>
#endi f
#incl ude <string. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#include <fcntl. h>
#i ncl ude <errno. h>
#i ncl ude "ntasdk. h"

/* See explanatory coment 1 */
typedef struct {
i nt debug; /* Debug flag */
int max_count;/* Maxi num nunber of nessages per BSMIP file */
} ny_gl obal _context _t;

/* See explanatory coment 2 */

typedef struct {
int id; /* Dequeue thread' s id */
FILE *fp; /* Dequeue thread’ s current output file */

Chapter 4 Dequeuing Messages 63

A Complex Dequeuing Example

64

Code Example 4-2 A Complex Dequeue Example (Continued)

int count; [Messages outpuf by this dequeue thread ¥/
} ny_thread_context t;

static const char *NotifyToStr(int ret_type, char *buf);

static const char *Uni queNane(char *buf, size t maxbuf,
const char *suffix);

static nta_dg_process_done_t process_done;

static nta_dg_process_nessage_t process_nessage;

int main()
ny_gl obal _context t gctx;
int ires;
/*
* |nitialize the MTA SDK
*/

if ((ires = ntalnit(0)))

nmtalLog(“ntalnit() returned %; %\n", ires,
maStrError(ires, 0));

return(l);
}
/*
* The global context is shared by all dequeue threads
* calling process_nessage() as a result of a given call
* to mtaDequeueStart(). The global context in this
* exanpl e provides process_nessage() with the follow ng:
* (1) How many nessages to put into a BSMIP file before
* closing it and starting a new one, and
* (2) Wether or not to produce diagnostic debug out put.
*/
/* See expl anatory conment 3 */
gct x. debug ;

gct x. max_count 5;

[* Start the dequeue | oop */

/* See explanatory coment 4 */

ires = nmtabDequeueStart ((void *)&gctx, process_nessage,
process_done, 0);

[* Check the return status */
/* See expl anatory conment 5 */
if (lires)

/* Success */

return(0);

/* Produce an error nmessage */

/* See explanatory conment 6 */

ntaLog(" nt aDequeueStart () returned %l; %", ires,
nmaStrError(ires, 0));

/* And exit with an error */

returnh(1);

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Complex Dequeuing Example

Code Example 4-2 A Complex Dequeue Example (Continued)

[* process_done() -- CallTed by niaDequeueStart() to clean up

* and destroy a per-thread context created by process_message().
* See explanatory comment 7

*/

static void process_done(void *ny_ctx_2, void *ny_ctx_1)

ny_gl obal _context t *gctx = (ny_gl obal context _t *)ny_ctx_1;
ny_thread_context t *tctx = (ny_thread_context _t *)ny_ctx_2;
if (ltetx)

return;

/* Cenerate any requested diagnostic output requested? */
/* See explanatory coment 8 */
if (gctx &% gctx->debug)
nt aLog(" Dequeue thread done: id=%l; context=%,; "
"messages=%l", tctx->id, tctx, tctx->count);

/* Now clean up and destroy the context */
if (tctx->fp)

fprintf(tctx->fp, "QUT\n");
fclose(tctx->fp);

}
free(tctx);

}

/*

* process_nessage() -- Called by ntaDequeueStart() to process a

* si ngl e nessage.

* See explanatory coment 9

*

/

static int process_message(void **ny_ctx_2, void *ny_ctx_1,
nta_dg_t *dg, const char *env_from
size_t env_fromlen)

ny_gl obal _context t *gctx;
ny_thread context t *tctx;

int ires, ret_type;

const char *to, *env_id, *line;
size_t len;

char notify_buf[100];

/* This should never happen, but just to be safe we check */
if (Iny_ctx_1 || 'ny_ctx_2)
ret ur n(MIA_ABCRT) ;

/* The pointer to our global context was passed as ny_ctx_1 */
/* See explanatory conment 10 */
gctx = (ny_gl obal _context _t *)ny_ctx_1;

/

In this exanple, we just use the per-thread context to:

(1) Track the output file for this dequeue thread across
repeated calls, and

(2) to count how many messages have been output by this
dequeue t hread.

E R S

Chapter 4 Dequeuing Messages

65

A Complex Dequeuing Example

66

Code Example 4-2 A Complex Dequeue Example (Continued)

¥ See explanatory coment 11

*/
if (!(*ny_ctx_2))

/* First call to process_nessage() by this dequeue thread.
* Store a pointer to our context.
*
/
tctx = (nmy_thread_context_t *)
calloc(1, sizeof(ny_thread _context t));
if (!tetx)
[* Insufficient virtual nenory; give up now */
return(MTA_ABCRT) ;
*my_ctx_2 = (void *)tctx;

/* Debug output? */
i f (gctx->debug)
{

tctx->id = ntaDequeueThreadl d(dq);
nt aLog(" Dequeue thread starting: id=%l; context=%",
tctx->id, tctx);

* This dequeue thread has already called
* process_message() previously.
*
/
tctx = (nmy_thread_context _t *)(*ny_ctx_2);

/* Send a HELO or a RSET? */
if (0 == (tctx->count % gctx->max_count))

char buf[1024];
int fd;

/* Need to send a HELO */

/* Send a QUT if we've already sent a HELO previously */
if (tctx->count > 0 && tctx->fp)
{
fprintf(tctx->fp, "QUT\n");
fclose(tctx->fp);
tctx->fp = NULL;
}

/* Now open a file */
fd = open(Uni queNarme(buf, sizeof (buf), ".bsntp"),
O WRONLY | O CREAT | O EXQ., 0770);

if (fd <O || !"(tctx->fp = fdopen(fd, "w')))
ret urn(MIA_ABCRT) ;

/* Now send the HELO */
fprintf(tctx->fp, "HELO %\ n", ntaChannel ToHost (NULL,

NULL, MIA DQ CONTEXT, dg, 0));

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Complex Dequeuing Example

Code Example 4-2 A Complex Dequeue Example (Continued)

else
{
/*
* \W've already sent a HELO Send a RSET to start a new
* message.
*/

fprintf(tctx->fp, "RSET\n");

t ct x->count ++,

/*

* Qutput the comand

* MAIL FROM <fromadr> RET=return-type ENVI D=i d
*/

env_id = NULL;

/* See explanatory conment 12 */
ret _type = MIA_NOTI FY_DEFAULT;
nt aDequeuel nfo(dg, MIA ENV_ID, &nv_id, NULL,
MIA_ NOTT FY_FLAGS, &ret_type, 0)
fprintf(tctx->fp, "MA L FROM <%> RET=%%9%\n", env_from
Noti fyToStr(ret_type, NULL),
(env_id ? " ENVID=" : ""),(env_id ? env_id : ""));
/* Qutput the conmand
* RCPT TG <to-adr> NOTI FY=noti fy-type
* for each recipient address
* See explanatory comment 13
*/
while (!(ires =
nt aDequeueReci pi ent Next (dq, & o, & en,
MIA_NOTI FY_FLAGS,

&ret_type, 0)))

{
fprintf(tctx->fp, "RCPT TO <%> NOTI FY=%\n", to,
NotifyToStr(ret_type, notify_buf));
/* Indicate that delivery to this recipient succeeded */
/* See explanatory comrent 14 */
nt aDequeueReci pi ent Di sposi tion(dg, to, len,
MIA Dl SP_DELI VERED, 0);
),
* |f ires == MIA ECF, then we exited the | oop nornally;
* otherwi se, there's been an error of sone sort.
* See explanatory coment 15
*

if (ires = MIA EOF)
return(ires);

/* Now out put the message itself */

fprintf(tctx->fp, "DATAN");

/* See explanatory conmment 16 */

while (!(ires = ntaDequeueLi neNext (dq, & ine, & en)))

/* Check to see if we need to dot-stuff the link */
if (len==128&1line[0] ==".")

Chapter 4 Dequeuing Messages

67

A Complex Dequeuing Example

Code Example 4-2 A Complex Dequeue Example (Continued)

}

/*

/
/*
static const char *

NotifyToStr(int ret_type, char *buf)

fprintf(fctx-5fp, ™. ")

/* Now output the line */
/* See explanatory comrent 17 */

fprintf(tctx->fp, "%*s\n", len, line);

/*
* |f ires == MIA_ ECF, then we exited the | oop nornally;
If ires == MIA_ ECF, then we exited the | oop nornally;
* otherwise, there's been an error of sone sort.
*/
if (ires I'= MIA ECF)
return(ires);

/* Qutput the "." command to terninate this nessage */
fprintf(tctx->fp, ".\n");

/* And dequeue the nessage */
/* See explanatory conment 18 */
ires = ntaDequeueMessageFi ni sh(dg, 0);

[* Al done; mght as well return ires as our result */
return(ires);

Convert a bitmask of MIA NOTIFY_ flags to a readable string

See expl anatory coment 19 */

if (!buf)
/* Doing a RET= paraneter to a MAIL FROM command */
return((ret_type & MIA_NOTI FY_CONTENT_FULL) ?
"FULL" : "HDRS");
buf[0] ='\0";

if (ret_type & MIA NOTI FY_SUCCESS)
strcat (buf, "SUCCESS');

if (ret_type & MIA NOTI FY_FAl LURE)
if (buf[0])
strcat (buf, ",");
strcat (buf, "FAILURE");
}
if (ret_type & MIA NOTI FY_DELAY)
if (buf[0])

strcat (buf, ",");
strcat (buf, "DELAY");

if (1buf[0])

68 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Complex Dequeuing Example

Code Example 4-2 A Complex Dequeue Example (Continued)

strcat (buf, "NEVER");
return(buf);

/* Generate a unique string suitable for use as a file name */
/* See explanatory coment 20 */

static const char *

Uni queNane(char *buf, size_t maxbuf, const char *suffix)

strepy(buf, "/tnp");

nt alni queSt ri ng(buf +5, NULL, maxbuf-5);
strcat (buf, suffix);

return(buf);

Explanatory Text for Numbered Comments

The numbered list that follows has explanatory text that corresponds to the
numbered comments in Code Example 4-2 on page 63:

1 The global context data structure for this example. This is passed to
nt aDequeueSt art (), as the ct x1 call argument.

2 Per-thread data structure used by dequeue threads. While nt aDequeueStart ()
creates each dequeue thread, it is up to the process_nessage() routine to actually
create any per-thread context it might need.

3 Initialize the global context before calling nt aDequeueStart ().

4 Initiate dequeue processing by calling nt aDequeueSt art () . The first call
argument is a pointer to the global context. Each time nt aDequeueStart () calls
process_nessage(), it passes in the global context pointer as the second argument.
In this example, nt aDequeueSt art () is not told to limit the number of dequeue
threads it uses.

5 If the call to nt aDequeueSt art () succeeds, the program exits normally.

6 If the call to nt aDequeueSt art () fails, then a diagnostic error message is
displayed and the program exits with an error status.

7 Each dequeue thread calls process_done() as it exits. This program cleans up
and destroys any per-thread contexts created by the process_nessage() routine.

8 The program generates optional diagnostic output. Calling nt aLog() directs the
output to the appropriate location: st dout if the program is run manually, and the
channel log file if the program is run by the Job Controller.

Chapter 4 Dequeuing Messages 69

A Complex Dequeuing Example

70

9 ntaDequeueStart () calls process_nessage() once for each queued message to be
processed. On the first call, the memory pointed at by ny_ct x_2 is guaranteed to be
NULL. The value of the first call argument passed to nt aDequeueStart () is passed to
process_nessage() as the ny_ctx_1 call argument.

10 The global context contains information pertinent to all the dequeue threads
generated by the call nt aDequeueStart ().

11 process_nessage() uses a per-thread context to save data across all calls to
itself by a single dequeue thread.

12 ntaDequeuel nfo() is used to obtain the envelope ID and RFC 1891 notification
flags, if any, associated with the message being processed.

13 nt aDequeueReci pi ent Next () is used to obtain each envelope recipient address,
one address per call. When there are no more recipient addresses to obtain, the
routine returns the status MTA_ECF.

14 Each recipient is marked as delivered with a call to
m aDequeueReci pi ent Di sposi tion(). An actual channel program would typically
not make this call until after processing the message further.

15 |If process_nessage() returns without dequeuing the message,
nt aDequeueSt art () defers the message for a later delivery attempt.

16 The message header and body are read one line at a time with
nt aDequeueLi neNext () . When there are no more lines to read, it returns a status of
MIA_ECF.

17 Lines returned by nt aDequeueLi neNext () might not be NULL terminated
because the returned line pointer might point to a line in a read-only,
memory-mapped file.

18 nt aDequeueMessageFi ni sh() is called once the message had been fully
processed and the disposition of all its recipients set with

nt aDequeueReci pi ent Di sposi tion(). The message is not truly dequeued until this
happens.

19 The routine Noti fyToStr() converts a bitmap encoded set of RFC 1891
notification flags to an ASCII text string.

20 The Uni queNane() routine generates a unique string suitable for the use as a file
name. This is used to generate the unique portion of the file name. This routine can
be called concurrently by multiple threads and always generates a string unique
amongst all processes and threads on the system.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Intermediate processing channels

For information on how to run this sample program, see “Running Your Enqueue
and Dequeue Programs” on page 31

Output from the Complex Dequeue Example

The output that follows shows the result of 100 queued messages processed with
the program in Code Example 4-2 on page 63.

11:01:16. 827 Dequeue thread starting: id=10; context=32360
11: 01: 16. 87: Dequeue thread starting: id=1; context=32390

11: 01: 16. 93: Dequeue thread starting: |d:2, cont ext =325e8
11: 01: 17. 00: Dequeue thread starting: id=3; context=32600
11: 01: 17. 04: Dequeue thread starting: id=4; context=32618
11: 01: 17. 09: Dequeue thread starting: id=5; context=32630
11: 01: 17. 14: Dequeue thread starting: id=6; context=78e50
11: 01: 17.19: Dequeue thread starting: id=7; context=88al8
11:01:17. 23: Dequeue thread starting: id=9; context=8ab78
11: 01: 17.51: Dequeue thread starting: id=8; context=8ab60

11:01:19. 96: Dequeue thread done: id= 2 cont ext =325e8; nessages=12
11: 01: 19. 96: Dequeue thread done: cont ext =32630; nessages=22
11: 01: 19. 97: Dequeue thread done: i context:78e50; nmessages=11
11: 01: 19. 97: Dequeue thread done: i cont ext =32618; nessages=5
11: 01: 19. 98: Dequeue thread done: i cont ext =8ab60; nessages=16
11: 01: 20. 00: Dequeue thread done: i cont ext =8ab78; nessages=5
11: 01: 20. 00: Dequeue thread done: i cont ext =32600; nessages=12
11: 01: 20. 01: Dequeue thread done: i cont ext =32390; nessages=7
11: 01: 20. 02: Dequeue thread done: 0 cont ext 32360 messages=6
11: 01: 20. 03: Dequeue thread done: i ; context =88al8; nessages=4

[eNoNeoNoNoNoNoNoRNoN

\‘H'—.‘('?S?O?-'?c.’m

Intermediate processing channels

Special attention is warranted for intermediate processing channels. Intermediate
processing channels are channels which re-enqueue back to the MTA the mail they
dequeue from it. For example, a virus scanner or a conversion channel, which, after
scanning or converting a message, re-enqueues it back to the MTA for further
routing or delivery. Such channels should do the following:

= Preserve Envelope Information
e Use MTA_ENV_TO
= Use Rewrite Rules to Prevent Message Loops

The sample code, “Intermediate Channel Example” on page 73, illustrates the SDK
usage required to effect the first two preceding points.

Chapter 4 Dequeuing Messages 71

Intermediate processing channels

72

Preserve Envelope Information

All queued messages have envelope fields which are unique to the message. For
instance, a message will have the RFC 1891 envelope ID that was either assigned by
the MTA when the message was first enqueued, or was specified by a remote MTA
and transmitted over SMTP. The same applies to the RFC 1891 original recipient
address fields that specify the original form of each of the message’s envelope
recipient addresses. Furthermore, there may be other envelope fields which have
non-default settings such as notification handling flags. Whenever possible, this
information should be preserved as the message flows from MTA channel to MTA
channel. In order to preserve this information, it must be copied from the message
being dequeued to the new message being enqueued. This copying process is best
done using the MTA_DQ CONTEXT item code in conjunction with the

nt aEnqueueSt art () and nt aEnqueueTo() routines. When used with the former, it
causes per-message envelope information to be automatically copied from the
message being dequeued to the new message being enqueued. When used with the
latter, it causes per-recipient information to be automatically copied.

Note that channel programs should not attempt to explicitly copy envelope
information other than the envelope From and envelope recipient addresses. The
MIA_DQ CONTEXT item code should always be used to implicitly perform the copy.
The reason for this is straightforward: if a program attempts to do the copy
explicitly by querying the fields one by one from the message being dequeued, and
then setting them one by one in the message being enqueued, then any new
envelope fields introduced in later versions of Messaging Server will be lost unless
the program is updated to explicitly know about those new fields too.

Use MTA_ENV_TO

Intermediate processing channels should use the MTA ENV_TOitem code with

nt aEnqueueTo() rather than the MTA TQ MIA CC, and MTA BCC item codes. This tells
the MTA that the recipient address being specified should be added to only the
message’s envelope and not also to a Resent - To: , Resent - Cc: , or Resent - Bcc:
header line. Code Example 4-3 on page 73, and Code Example 5-2 on page 96
illustrate the use of the MTA ENV_TOitem code. Both of those examples represent
intermediate processing channels which are handling a previously constructed
message. As such, they do not need to alter the existing message header.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Intermediate Channel Example

Use Rewrite Rules to Prevent Message Loops

Finally, intermediate processing channels often require special rewrite rules in
order to prevent message loops. Specifically, loops in which mail re-enqueued by
the intermediate processing channel is queued back to the intermediate processing
channel. See “Preventing Mail Loops when Re-enqueuing Mail” on page 37 for
further information on this topic.

Intermediate Channel Example

The sample program in this section, in Code Example 4-3, converts the body of

each queued message and then re-enqueues the converted messages back to the
MTA. The conversion process involves applying the “rot 13” encoding used by

some news readers to encode potentially offensive message content.

To configure the MTA to run this channel, see “Running Your Enqueue and
Dequeue Programs” on page 31. Also refer to “Preventing Mail Loops when
Re-enqueuing Mail” on page 37, which discusses configuring special rewrite rules
for programs re-enqueuing dequeued email.

Some lines of code in this example are immediately preceded by a comment of the
format:

/* See explanatory comment N */
where N is a number.

The numbers are links to some corresponding explanatory text found in
“Explanatory Text for Numbered Comments” on page 78.

Code Example 4-3 Intermediate Channel Example

¥ intermedi ai e_channel. ¢
* A channel programthat re-enqueues queued nessages after first
* transformng their content with the "rot13" transfornation.
*/

#i ncl ude <stdio. h>

#include <stdlib. h>

#i ncl ude "nm asdk. h"

typedef struct {
size_t maxlen;
char *puf ;

} rot13 buf t;

static nta_dg_process_done_t process_done;
static nta_dg_process_message t process_nessage;
static char rot13(char c);

Chapter 4 Dequeuing Messages 73

Intermediate Channel Example

74

Code Example 4-3 Intermediate Channel Example (Continued)

static const char *rot I3str(rof I3_buf_t **dst, const char *src,
size_t srclen);

int main()
int ires;

/*

* Initialize the MTA SDK
*/

if ((ires =nalnit(0)))

ntaLog(“ntalnit() returned %; %\n", ires,
maStrError(ires, 0));
return(l);

/*

* Start the dequeue | oop

* See explanatory comment 1

*/

ires = mabDequeueStart(NULL, process_nessage,
process_done, 0);

/*
* Check the return status
* See expl anatory coment 2

*/

if (lires)
/*
* Success
*/
return(0);

* Produce an error nessage

* See explanatory coment 3 */

*/

ntaLog(" nt aDequeueStart () returned %l; %", ires,
ntaStrError(ires, 0));

/*
* And exit with an error
*/
return(l);
}
/*

* process_done -- Gean up the private context ny_ctx_2 used by
* process_nessage.

* See explanatory comment 4

*/

static void process_done(void *ny_ctx_2, void *ny_ctx_1)

rot13 _buf t *rbuf;

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Intermediate Channel Example

Code Example 4-3 Intermediate Channel Example (Continued)

it (Ty_ctx_2)
return;
rbuf = (rot13 buf t *)ny_ctx_2;
i f (rbuf->buf)
free(rbuf->buf);

free(rbuf);
}
/*
* process_nessage -- Process a single nessage by re-enqueui ng but
* with its nessage body converted to the rot13
* set. The private ny_ctx_1 context is not
* used. The private ny_ctx_2 context is used
* for a rotl3 translation context.
* See explanatory coment 5
*/
static int process_nessage(void **ny_ctx_2, void *ny_ctx_1,
nta_dg_t *dq,
{
size_t len;
const char *line, *to;
int in_header;
nta_ng_t *nq;
/*
* Start a nessage enqueue
*/
ng = NULL;

/* See explanatory conment 6 */
if (nmtaEnqueueStart (&g, env_from env_fromlen,
MIA_DQ CONTEXT, dq, 0))
got o(defer);

/*
* Process the envel ope recipient |ist
* See explanatory coment 7 */
*/
whi | e (!ntaDequeueReci pi ent Next (dg, & o, &en, 0))
/* See expl anatory comment 7 */
if (maEnqueueTo(nqg, to, len, MIA DQ CONTEXT, ddg,
MIA_ENV_TO 0) ||
/* See explanatory conment 8 */
nt aDequeueReci pi ent Di sposi tion(dg, to, |en,
MFA DI SP_DELI VERED, 0))
/* See explanatory conment 9 */

goto defer;
if (ma_errno = MA ECF)
goto defer;

/*

* First, get the message’s header and wite it
* unchanged to the new nessage bei ng enqueued.
* See explanatory comment 10

*/

Chapter 4 Dequeuing Messages

75

Intermediate Channel Example

76

Code Example 4-3 Intermediate Channel Example (Continued)

in_header = T,
whi l e (in_header && !ntaDequeueLineNext(dq, & ine, & en))

if (maEnqueueWiteLine(ng, line, len, 0))

goto defer;
if (!len)
i n_header = 0;
}
/*
* Determine why we exited the while | oop
*/

if (in_header)

/*
* \\ exited before seeing the body of the message
* See expl anatory coment 12

*/
if (ma_errno == MIA _ECF)
/*
* Message read conpletely: it must have no body
*/
goto done;
el se
/*
* Error condition of sone sort
*/
goto defer;
}
/*

* Now rot13 the body of the message
* See explanatory conment 13
*/

whi | e (!ntaDequeueLi neNext (dg, & ine, & en))
if (maEnqueueWiteLine(nq,
rot13str((rot13_buf t **)ny_ctx_2,
line, len), len, 0))
goto defer;

/*
* |f ma_errno == MITA_ECF, then we exited the | oop
* nornal ly; otherwi se, there’s been an error of sone sort

*/

if (ma_errno != MA ECF)
goto defer;

/*

* Al done, enqueue the new nessage

* See explanatory coment 14

*

/
done:

i f (!ntaEnqueueFinish(ng, 0) &&
I nt aDequeueMessageFi ni sh(dg, 0))
return(0);

/*

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Intermediate Channel Example

Code Example 4-3 Intermediate Channel Example (Continued)
*Fal'T through to defer the message
*/
ng = NULL;
/*

* A processing error of sone sort has occurred: defer the
* message for a later delivery attenpt
* See explanatory comrent 15
*/
defer:
nt aDequeueMessageFi ni sh(dgq, MIA _ABCRT, 0);
it (nq)
nt aEnqueueFi ni sh(ng, MIA_ABORT, 0);
return(MIA_NO ;
}

/*

* rotl3 -- an inplnentation of the rotate-by-13 translation
* See explanatory coment 16

*/

static char rotl13(char c)

if CA <=cé&&c<='27)

return (((c - "A +13) %26) +'A);
elseif ("a’ <=c & c<="7")

return (((c - "a + 13) %26) + 'a’);
el se return (c);

/*

* rotl3str -- Performa rotl3 translation on a string of text

* See explanatory coment 17

*/

static const char *rot13str(rot13_buf _t **dst, const char *src,
size_t srclen)

{

size t i;
char *ptr;
rot13 _buf t *rbuf = *dst;

/*

* First call? If so, then allocate a rot13_buf_t structure
*/

if (!rbuf)

{

rbuf = calloc(1, sizeof(rotl3_buf _t));
if (!rbuf)

return(NULL);
*dst = rbuf;

/*

* Need a larger buffer?

* |f so, then increase the length of rbuf->buf
*/

if (rbuf->maxlen < srclen || !rbuf->buf)

Chapter 4 Dequeuing Messages

77

Intermediate Channel Example

78

Code Example 4-3 Intermediate Channel Example (Continued)
{ .
size t |;
char *tnp;

/* Round size up to the nearest 2k */
| = 2048 * (int)((srclen + 2047) / 2048);
tmp = (char *)malloc(l);
if ('tnp)
return(NULL);
i f (rbuf->buf)
free(rbuf->buf);

r buf - >buf = tnp;
rbuf->maxlen = |;

}

/*

* Now rot13 our input

*/

ptr = rbuf->buf;

for (i =0; i <srclen; i+4)
*ptr++ = rot 13(*src++);

/*

* Al done

*/

return(rbuf ->buf);

Explanatory Text for Numbered Comments

1 The dequeue processing is initiated by calling nt aDequeueStart (). In this
example, no global context is used; hence, the first call argument to
nt aDequeueSt art () is NULL.

2 If the call to mtaDequeueStart() succeeds, then the program exits normally.

3 If the call to nt aDequeueStart () fails, a diagnostic error message is displayed
and the program exits with an error status.

4 Each dequeue thread calls process_done() as it exits. The intent is to allow the
program to clean up and destroy any per-thread contexts created by the
process_nessage() routine. In this case, the buffer used by rot 13str () is
deallocated.

5 The ntaDequeueStart () routine calls process_nessage() once for each queued
message to be processed. On the first call by a dequeue thread, the memory
pointed at by ny_ctx_2 is NULL.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Intermediate Channel Example

6 A message enqueue starts. The dequeue context, dq, is provided so that
per-message envelope fields can be carried over to the new message from the
message being dequeued.

7 Each envelope recipient address is obtained, one at a time, with
nt aDequeueReci pi ent Next () . When there are no more recipient addresses to obtain,
nt aDequeueReci pi ent Next () returns the status MTA_ECF.

8 Each envelope recipient address is added to the recipient list for the new
message being enqueued. The MTA_ENV_TOoption for nt aEnqueueTo() is specified so
that the address is to be added to the new message’s envelope only. It should not
also be added to the message’s RFC 822 header. The new message’s header will be
a copy of the header of the message being dequeued. This copy is performed at the
code location marked by comment 12.

9 Each recipient is marked as delivered with nt aDequeueReci pi ent Di sposi tion().

10 Inthe event of an error returned from either nt aEnqueueTo() or

nt aDequeueReci pi ent Di sposi tion(), or an unexpected error return from

nt aDequeueReci pi ent Next (), the ongoing enqueue is cancelled and the processing
of the current message is deferred.

11 Each line of the current message is read and then copied to the new message
being enqueued. This copying continues until a blank line is read from the current
message. (A blank line signifies the end of the RFC 822 message header and the
start of the RFC 822 message content.)

12 The code here needs to determine why it exited the read loop: because of an
error, or because the transition from the message’s header to body was detected.

13 The remainder of the current message is read line by line and copied to the
new message being enqueued. However, the line enqueued is first transformed
using the “rot13” transformation. The per-thread context ny_ct x_2 is used to hold
an output buffer used by the rot 13str () routine.

14 The enqueue of the new message is finished. If that step succeeds, then the
message being dequeued is removed from the MTA queues.

15 In the event of an error, the new message enqueue is cancelled and the current
message left in the queues for later processing.

16 The rotl3 character transformation.

17 A routine that applies the rot13 transformation to a character string.

Chapter 4 Dequeuing Messages 79

Thread Creation Loop in mtaDequeueStart

Sample Input Message for the Intermediate Channel Example

The example that follows is a sample input message from the queue to be
processed by the program found in Code Example 4-3 on page 73.

Received: fromfrodo. west.siroe. comby frodo. west. siroe. com

(Sun Java System Messagi ng Server 6 2004Q(built Mr 24 2004))id
<OHCHO0301E6B0700@ r odo. west . si roe. com> for sue@esta.com Fri,
28 Mar 2003 14:51:52 -0800 (PST)

Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)

From root @rodo. west. siroe.com

Subj ect: Testing

To: sue@esta.com

Message-i d: <OHCHO0303E6GO700@ r odo. west . si r oe. cony

M Me-version: 1.0

This is a test message.

Output from the Intermediate Channel Example

This example shows the output generated by the dequeue and re-enqueue
program (Code Example 4-3 on page 73).

Received: from sesta. com by frodo. west. siroe.com

(Sun Java System Messagi ng Server 6 2004Q (built Mar 24 2003))id
<OHCHO0301E7DOHO0@ r odo. west . wi r oe. com» for sue@esta.com Fri,

28 Mar 2003 14:51:58 -0800 (PST)

Recei ved: from frodo. west.siroe.comby frodo. west.siroe.com

(Sun Java System Messagi ng Server 6 2004Q (built Mar 24 2003))id
<OHCHO0301E7DOHO0@ r odo. west . wi r oe. com» for sue@esta.com Fri,

28 Mar 2003 14:51:52 -0800 (PST)

Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)

From root @rodo. west. siroe.com

Subj ect: Testing

To: sue@esta.com

Message-i d: <OHCHO0303E6GO700@ r odo. west . si r oe. cony

M Me-version: 1.0

Quvf vf n grfg zrffntr.

Thread Creation Loop in mtaDequeueStart

After m aDequeueSt art () performs any necessary initialization steps, it then starts a
loop whereby it communicates with the MTA Job Controller. Based upon
information from the Job Controller, it then creates zero or more execution threads
to process queued messages.

80 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Thread Creation Loop in mtaDequeueStart

While any execution threads are running, the thread that invoked

nt aDequeueSt ar t () (the primal thread) executes a loop containing a brief pause
(that is, a sleep request). Each time the primal thread awakens, it communicates
with the Job Controller to see if it should create more execution threads. In
addition, the Job Controller itself has logic to determine if more threads are needed
in the currently running channel program, or if it should create additional
processes to run the same channel program.

To demonstrate, the following code example shows pseudo-code of the
nt aDequeueSt art () loop.

threads_running = 0
threads_max = MIA THREAD MAX THREADS

attemtps = MIA_JBC MAX_ATTEMPTS

LOOP:
whil e (threads_running < threads_nax)
{

G to DONE i f a shut down has been requested

pendi ng_nessages = Ask the Job Controller how many
nesssages there are to be processed

/1 1f there are no pendi ng nessages
/1 then consider what to do next
i f (pending_nessages = 0)
{
/1 Continue to wait?
if (attenpts <= 0)
go to DONE

/] Decrenent attenpts and wait
attenpts = attenpts - 1;
go to SLEEP

}
/] Reset the attenpts counter
attenpts = MIA JBC MAX ATTEMPTS

t hreads_needed = Ask the Job Controller how many
processing threads are needed

/1 Cannot run nore then threads_nax threads per process
if (threads_needed > threads_max)
t hreads_needed = threads_nax

| Oreate additional threads if needed
f (threads_needed > threads_runni ng)

Create (threads_needed - threads_running) more threads
t hreads_runni ng = threads_needed

Chapter 4 Dequeuing Messages 81

Multiple Calls to mtaDequeueStart

Sleep fTor MIA_JBC RETRY TNTERVAL seconds
-- a shut down request will cancel the sleep
go to LOCP

DONE:
Wait up to MIA THREAD WAI T_TI MEQUT seconds
for all processing threads to exit

Return to the caller of maDequeueStart()

Multiple Calls to mtaDequeueStart

A channel program can call nt aDequeueSt art () multiple times, either sequentially
or in parallel. In the latter case, the program would need to create threads so as to
effect multiple, simultaneous calls to nt aDequeueSt art () . However, just because
this can be done does not mean that it is appropriate to do so. In the former case of
multiple sequential calls, there is no need to be making repeated calls. When

nt aDequeueSt art () returns, the channel no longer needs immediate processing and
has been in that state for the number of seconds represented by the following
formula:

MIA_JBC ATTEMPTS MAX * MTA JBC RETRY_| NTERVAL

Instead, the channel program should exit thereby freeing up system resources. The
Job Controller will start a new channel program running when there are more
messages to process.

In the latter case of multiple parallel calls, there is again no need to do so. If there is
an advantage to running more threads than a single call generates, then the
channel’s t hr eaddept h channel keyword setting should be increased so that a single
call does generate more threads.

The only exception to either of these cases might be if the multiple calls are each for
a different channel. Even then, however, the advantage of so doing is dubious as
the same effect can be achieved through the use of multiple processes, one for each
channel.

Calling Order Dependencies

82

When you are constructing programs, there is a calling order for the MTA SDK
routines that must be observed; some routines must be called before others.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Calling Order Dependencies

Figure 4-1 visually depicts the calling order dependency of the message dequeue
routines. To the right of each routine name appears a horizontal line segment,
possibly broken across a column, for example, nt aDequeueReci pi ent Next () .
Routines for which two horizontal line segments, one atop the other, appear are
required routines; that is, routines that must be called in order to successfully
enqueue a message. The required routines are ntal ni t (), nt aDequeueStart (),

nt aDequeueReci pi ent Next (), and m aDqueueMessageFi ni sh().

To determine at which point a routine may be called, start in the leftmost column
and work towards the rightmost column. Any routine whose line segment lies in
the first (leftmost) column may be called first. Any routine whose line segment falls
in the second column may next be called, after which any routine whose line
segment falls in the third column may be called, and so forth. When more than one
routine appears in the same column, any or all of those routines may be called in
any order. Progression from left to right across the columns is mandated by the
need to call the required routines.

After calling nt aDequeueRewi nd(), the read point into the underlying queued
message file is reset to the start of the message’s outermost header; that is, you’re
back in the third column.

Figure 4-1 Calling Order Dependency for Message Dequeue Routines

mtaInit : . .
mtaDequeueStart : b .

mtaDequeueRecipientNext . i %==#==%
mtaDequeueRecipientDisposition : | | —— .
mtaDequeueLineNext : ; 5 [
mtaDequeueRewind | | | | = ——
mtaEnqueueCopyMessage : | | | = ——
mtaDequeueInfo é i F——%——%——ﬂ
mtaDequeueThreadId | | ———— :
mtaDequeueMessageFinish

Chapter 4 Dequeuing Messages 83

Calling Order Dependencies

84 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Chapter 5

Decoding Messages

The MTA has facilities for parsing and decoding single and multipart messages
formatted using the MIME Internet messaging format. Additionally, these facilities
can convert messages with other formats to MIME. For example, messages with
BINHEX or UUENCODE data, the RFC 1154 format, and many other proprietary
formats. The nmt aDecodeMessage() routine provides access to these facilities, parsing
either a queued message or a message from an arbitrary source such as a disk file
or a data stream.

This chapter discusses the following topics:

“Usage Modes for mtaDecodeMessage()” on page 85
e “The Input Source” on page 87

= “The Inspection Routine” on page 88

= “ASimple Decoding Example” on page 89

= “The Output Destination” on page 93

= “Decode Contexts” on page 94

< “ASimple Virus Scanner Example” on page 95

Usage Modes for mtaDecodeMessage()

There are two usage modes for nt aDecodeMessage() . In the first mode, messages are
simply parsed, any encoded content decoded, and each resulting, atomic message
part presented to an inspection routine. This mode of usage is primarily of use to
channels which interface the MTA to non-Internet mail systems such as SMS and
X.400. The second mode of operation allows the message to be rewritten after
inspection. The output destination for this rewriting may be either the MTA
channel queues, or an arbitrary destination via a caller-supplied output routine.

85

Usage Modes for mtaDecodeMessage()

86

During the inspection process in this second usage mode, individual, atomic
message parts may be discarded or replaced with text. This operational mode is
primarily of use to intermediate processing channels which need to scan message
content or perform content conversions. For example, virus scanners and
encryption software. “A Simple Decoding Example” on page 89 illustrates the first
usage mode, while “A Simple Virus Scanner Example” on page 95 the second.

For the first usage mode, the calling routine must supply the following items:
1. Aninput source for the message.

2. Aninspection routine which will be passed each atomic message part of the
parsed and decoded message.

For the second usage mode, the calling routine must supply the same two
items as listed for the first usage mode, and in addition a third item must be
supplied:

3. An output destination to direct the resulting message to.

The input source can be either a queued message file, represented by a dequeue
context, or it can be provided by a caller-supplied input routine. Use the former
when processing queued messages and the latter when processing data from disk
files, data streams, or other arbitrary input sources. Since the parser and decoder
require only a single, sequential pass over its input data, it is possible to stream
data to nt aDecodeMessage() .

The output destination can be a message being enqueued and represented either
by an enqueue context, or by a caller-supplied output routine. Use an enqueue
context when submitting the message to the MTA. In all other cases, use a
caller-supplied output routine.

The following are some common usage cases and their associated input sources
and output destinations.

= Send to the MTA (slave channel). For this case, a caller- supplied routine
accepts incoming messages from a source outside of the MTA and then
enqueues it to the MTA. The caller-supplied input routine is used in
conjunction with an enqueue context as the output source. Doing a MIME
parse and decode isn’t usually called for in this case. However, specialized
services might be constructed this way. For instance, a custom server that
accepts MIME formatted messages, and strips a control attachment before
submitting the remainder of the message to the MTA.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

The Input Source

= Anintermediate processing channel. For this case, an example is a virus
scanner that scans queued mail messages, re-enqueuing them to the MTA for
delivery. In this case, a dequeue context is used as the input source and an
enqueue context as the output source.

= Send from the MTA (master channel). For this case, queued messages are
gatewayed to another mail system. A dequeue context is used for the input
source and an output destination is often not needed; the inspection routine
usually suffices. Channels of this sort are common place when interfacing
Messaging Server to systems that do not support MIME and for which
conversion of MIME formatted messages to other formats is required (for
example, X.400 and SMS).

< A command line utility to parse a message. For this case, a caller-supplied
input routine is used. No output destination is needed; an inspection routine
usually suffices.

The Input Source

The message to be decoded is provided as either a dequeue context or a
caller-supplied routine.

Dequeue Context
When using a dequeue context, you must observe the following:

1. Pass the dequeue context from nt aDecodeSt art () to nt aDecodeMessage() along
with the MTA_DECCDE DQitem code.

2. The recipient list of the message being dequeued must have already been read
by nt aDequeueReci pi ent Next () before calling nt aDecodeMessage() .

3. ntaDequeueMessageFi ni sh() must not yet have been called for the dequeue
context.

After using a dequeue context with nt aDecodeMessage(), further calls to
nt aDequeueReci pi ent Next () can’t be made. Calls to nt aDequeueLi neNext () can only
be performed after a call to nt aDequeueRewi nd() .

Caller-Supplied Input Routine

To use a caller-supplied input routine, pass the address of the input routine along
with the MTA_DECCDE_PRCC item code to nt aDecodeMessage() . In Code Example 5-1
on page 89, the caller-supplied routine’s name is decode_read() .

Chapter 5 Decoding Messages 87

The Inspection Routine

When using a caller-supplied input routine, each block of data returned by the
routine must be a single line of the message. This is the default expectation of

nt aDecodeMessage() and corresponds to the MTA_TERM NONE item code. If, instead,
the MTA TERM CR _CRLF, _LF, or _LFCRitem code are specified, then the block of data
need not correspond to a single, complete line of message data; it may be a portion
of a line, multiple lines, or even the entire message.

On each successful call, the input routine should return a status code of zero
(MrA_OX). When there is no more message data to provide, then the input routine
should return MTA_ECF. The call that returns the last byte of data should return zero;
it is the subsequent call that must return MTA_ECF. In the event of an error, the input
routine should return a non-zero status code other than MIA_ECF (for example,
MIA_NO). This terminates the message parsing process and nt aDecodeMessage()
returns an error.

The Inspection Routine

88

Whenever nt aDecodeMessage() is called, an “inspection” routine must be supplied
by the caller. In Code Example 5-1 on page 89, the inspection routine’s name is
decode_i nspect ().

As the message is parsed and decoded, nt aDecodeMessage() presents each atomic
message part to the inspection routine one line at a time. The presentation begins
with the part’s header lines. Once all of the header lines have been presented, the
lines of content are presented.

So that the inspection routine can tell if it is being presented with a line from the
header or content of the message, a data type indicator is supplied to the inspection
routine each time it is called. In regards to lines of the message’s content, the data
type indicator discriminates between text and binary content. Text content is
considered any content with a MIME content type of t ext or message (for example,
text/plain,text/htni, message/ rfc822), while binary content is all other MIME
content types (appl i cati on, i mage, and audi o).

When writing an inspection routine for use with nt aDecodeMessage() , the following
points apply:

= Message parts need not have any content. A common case is a single part
message with no content for which the sender used the Subj ect : header line to
express their communique.

= In the case of a non-multipart message, the message has a single part. The
header for this sole part is the header for the message itself. As noted
previously, there may or may not be any content to this single part.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Decoding Example

= In the case of a multipart message, individual parts need not have a part
header. In such cases, MIME’s defaults apply and imply that the content is
text/ pl ai n using the US-ASCII character set.

= Regardless of the value of the Cont ent - t r ansf er - encodi ng header line, the
content presented will no longer be encoded.

= Inthe case of a multipart message, the outermost header is not presented.
However, it may be inspected by means of an output routine (see “The Output
Destination” on page 93).

A Simple Decoding Example

This sample program found in Code Example 5-1 decodes a MIME formatted
message using nt aDecodeMessage() . This is not a channel program. The actual
message to be decoded is compiled into the program rather than being drawn from
a channel queue.

After the Messaging Server product is installed, these programs can be found in the
following location:

nsg_server_base/ exanpl es/ nt asdk/
Some lines of code are immediately preceded by a comment of the format:
/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory
text in the section that follows this code, see “Explanatory Text for Numbered
Comments” on page 92.

For the sample output generated by this program, see “MIME Message Decoding
Simple Example Output” on page 93.

Code Example 5-1 Decoding MIME Messages

/*
* decode_sinple.c

*

* Decode a multipart M ME nessage.
*
*/

#i ncl ude <stdio. h>

#include <string. h>

#incl ude "ntasdk. h"

/*

* Inline data for a sanple nmessage to decode
* See explanatory coment 1

*/

Chapter 5 Decoding Messages 89

A Simple Decoding Example

90

Code Example 5-1 Decoding MIME Messages (Continued)

static const char nessage[] =
"From sue@iroe.comn"
"Date: 31 Mar 2003 09: 32:47 -0800\n"
"Subj ect: test message\n"
"Content-type: nultipart/mxed; boundary=BoundaryMarker\n"
“\'n\n"
"- - Boundar yMar ker\ n"
"Content-type: text/plain; charset=us-ascii\n"
"Content-disposition: inline\n"
e
"This is a\n"
" test message!\n"
"- - Boundar yMar ker\ n"
"Content-type: application/postscript\n”
"Content-disposition: attachment; filenane="a.ps'\n"
"Cont ent -t ransf er - encodi ng: base64\ n"
H\ nu
" | yFQUw0xX MDAgMTAW GLvdnmVOby Az MDAgMz AWl Gxpbn/0by BzdHIva2UKc2hv"
"Z2UK\ n"
"--Boundar yMar ker--\n";

static nta_decode_read_t decode_read;
static nta_decode_i nspect _t decode_i nspect;
typedef struct {

const char *cur_position;

const char *end_position;
} position_t;

mai n()
position_t pos;

/*

* Initialize the MTA SDK
*/

if ((ires =ntalnit(0)))
{

nmtaLog(“ntalnit() returned %; %\n", ires,
maStrError(ires, 0));
return(l);

—~

*
* For a context to pass to ntaDecodeMessage(), we pass a
* pointer to the message data to be parsed. The
* decode_read() routine uses this information when
* supplying data to ntaDecodeMessage().
See expl anatory comrent 2

pos. cur _position = message;
pos. end_position = nmessage + strlen(nmessage);

I nvoke m aDecodeMessage():
* 1. Use decode_read() as the input routine to supply the
* nmessage to be MM decoded,

"3Bh\ n"

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Decoding Example

Code Example 5-1 Decoding MIME Messages (Continued)

L N

* 2. Use decode_inspect() as the routine to inspect each
* M ME decoded message part,

* 3. Do not specify an output routine to wite the

* resulting, M ME nessage, and

* 4. Indicate that the input nessage source uses LF

* record termnators.

* See explanatory coment 3

*/

nt aDecodeMessage(

(void *)&pos, MIA DECCDE_PRCC,
(voi d *)decode_read,
0, NULL, decode_inspect, MIA TERMLF, 0);

decode_read -- Provide nessage data to ntaDecodeMessage().
The entire message coul d just as easily be
given to ntaDecodeMessage()at once. However,
for illustration purposes, the message is
provided in 200 byte chunks.

See expl anatory coment 4

static int decode_read(void *ctx, const char **line, size_t

{

-~

E R R

*/

static int decode_inspect (void *ctx, nma_decode t *dctx, int

*[ine_len)
position_t *pos = (position_t *)ctx;

if (!pos)

return(MA_NO ;

el se if (pos->cur_position >= pos->end_position)

return(MTA_ECF) ;

*|ine = pos->cur_position;

*line_len = ((pos->cur_position + 200) <
pos->end_position) ? 200 :
(pos->end_position - pos->cur_position);

pos->cur_position += *[ine_len;

return(MIA_CK) ;

decode_i nspect -- Called by ntaDecodeMessage() to output a
aline of the parsed nessage. The line is
sinply output with additional information
i ndi cating whether the Iine comes froma
header, text part, or binary part.

See expl anatory comment 5

data_type, const char *data,
size_t data_len)
static const char *types[] = {"N', "H', "T", "B'};
/* See explanatory coment 6 */

if (data_type == MIA_DATA NONE)
return(MA X);

Chapter 5 Decoding Messages

91

A Simple Decoding Example

Code Example 5-1 Decoding MIME Messages (Continued)

[* See explanatory conment 7 */
printf("%l%: %*s\n",
nt aDecodeMessagel nf ol nt (dct X,
MIA_DECCDE_PART _NUMBER),
types[data_type], data_len,
data);

return(MIA_X);

Explanatory Text for Numbered Comments

The following numbered explanatory text corresponds to the numbered comments
in Code Example 5-1 on page 89.

1 The MIME message to be decoded. It is a multipart message with two parts. The
first part contains text, the second part a PostScript™ attachment.

2 The private context to be passed to nt aDecodeMessage() and, in turn, passed by
it to the supplied input routine, decode_read(). The input routine uses this context
to track how many bytes of the input message it has supplied to

nt aDecodeMessage() .

3 The call to nt aDecodeMessage() . An input routine, decode_r ead(), is supplied to
provide the message to be decoded. Since the message source has each record
terminated by line feeds, the MTA_TERM LF option is also specified. The routine
decode_i nspect () is passed for use as an inspection routine.

4 The input routine, decode_read() . This routine provides the message to be
decoded 200 bytes at a time. Note that providing only 200 bytes at a time is
arbitrary: the routine could, if it chose, provide the entire message, or 2000 bytes at
atime, or arandom number of bytes on each call. After the entire message has been
supplied, subsequent calls to decode_read() return the MTA_ECF status.

5 The inspection routine, decode_i nspect () . For each atomic message part, this
routine is called repeatedly. The repeated calls provide, line by line, the part’s
header and decoded content.

6 For a given message part, the final call to decode i nspect () provides no part
data. This final call serves to give decode_i nspect () a last chance to accept or
discard the part when outputting the final form of the message via an optional
output routine supplied to nt aDecodeMessage() . That optional routine is not used
here.

92 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

The Output Destination

7 The part number for this message part is obtained with a call to
nt aDecodeMessagel nfol nt () .

MIME Message Decoding Simple Example Output

This example shows the output generated by the program in Code Example 5-1 on
page 89.

IH Content-type: text/plain, charset=us-ascili

1H Content-disposition: inline

IT: This is a

1T: test nessage!

2H Content-type: application/postscript

2H Content-transfer-encodi ng: base64

2H Content-di sposition: attachment; filename="a.ps"
2B #!PS

100 100 noveto 300 300 |ineto stroke

showpage

The Output Destination

When an optional output destination is supplied to nt aDecodeMessage() , the
processed input message is subsequently written to the output destination. When
conversion to MIME is requested, the output message will be the result of the
conversion. Additionally, the written message will reflect any changes made by the
inspection routine with nt aDecodeMessagePar t Del et e() . That routine may be used
to delete an atomic part or replace the part with new, caller-supplied content.

The output destination can be either a message submission to the MTA (that is, an
ongoing enqueue) or an arbitrary destination represented by a caller-supplied
output routine.

Enqueue Context
When using a message enqueue context, you must do the following:

1. Supply the enqueue context along with the MTA_DECCDE_NQitem code.

2. Specification of the message’s recipient list must have already been completed
with m aEnqueueTo() before calling nt aDecodeMessage() .

3. ntaEnqueueFi ni sh() must not yet have been called for the enqueue context.

Chapter 5 Decoding Messages 93

Decode Contexts

After the call to nt aDecodeMessage() has completed successfully, complete the
message enqueue with nt aEnqueueFi ni sh() . In the event of an error, the message
submission should be cancelled with nt aEnqueueFi ni sh() . nt aDecodeMessage()
writes the entire message header and content. There is no need for the caller to
write anything to the message’s header or content.

Caller-Supplied Output Routine

To use a caller-supplied output routine (for example, decode_write()), supply the
address of the output routine along with the MTA_DECODE_PROC item code to
nt aDecodeMessage() .

Each line passed to the output routine represents a complete line of the message to
be output. The output routine must add to the line any line terminators required by
the output destination (for example, carriage return, line feed pairs if transmitting
over the SMTP protocol, line feed terminators if writing to a UNIX® text file, and
so forth).

Decode Contexts

When nt aDecodeMessage() calls either a caller-supplied inspection or output
routine, it passes a decode context to those routines. Through SDK routine calls,
this decode context can be queried to obtain information about the message part
currently being processed, as shown in the following table:

Message Code

Description

MIA_DECCDE_CCHARSET The character set specified with the CHARSET parameter of the part's

Cont ent - t ype: header line. If the part lacks a CHARSET specification, then the
value us- asci i will be returned. Obtain with mt aDecodeMessagel nf oString() .

MFA DECCDE_CDI SP Value of the Cont ent - di sSposi ti on: header line, less any optional parameters. Will

be a zero length string if the part lacks a Cont ent - di sposi ti on: header line.
Obtain with mt aDecodeMessagel nf oSt ring() .

MIA DECCDE CDi SP_PARAMS Parameter list to the Cont ent - di sposi ti on: header line, if any. The parsed list is

returned as a pointer to an option context. For further information, see
nt aDecodeMessagel nf oPar ans() .

MIA_DECCDE_CSUBTYPE The content subtype specified with the part's Cont ent - t ype: header line (for

example, pl ai nfortext/ pl ai n, gi f fori mage/ gi f). Defaults to pl ai n when the
part lacks a Cont ent - t ype: header line.

Obtain with nmt aDecodeMessagel nf oString() .

94 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Message Code (Continued) Description

MIA_DECCDE _CTYPE The major content type specified with the part's Cont ent -t ype: header line (for
example, t ext fortext/pl ain, i mage for i mage/ gi f). Defaults to t ext when the
part lacks a Cont ent - t ype: header line.

Obtain with mt aDecodeMessagel nf oStri ng() .
MIA DECCDE_CTYPE PARAMS Parameter list to the Cont ent - t ype: header line, if any. The parsed list is returned

as a pointer to an option context. For further information, see
nt aDecodeMessagel nf oPar ans() .

MI'A_DECCDE_DTYPE Data type associated with this part. Obtain with mt aDecodeMessagel nfol nt ().

MIA DECCDE _PART NUMBER Sequential part number for the current part. The first message part is part 0, the
second part is 1, the third part is 2, and so on. Obtain with
mt aDecodeMessagel nfol nt ().

A Simple Virus Scanner Example

Code Example 5-2 that follows shows how to use the nt aDecodeMessage() routine
to write an intermediate processing channel that converts messages with formats
other than MIME, for example UUENCODE content, to MIME output. It then
decodes the MIME message, scanning it for potentially harmful attachments. (In
this example, an attachment is any message part.) Any harmful attachments are
removed from the message after which it is re-enqueued for delivery. The list of
harmful MIME media types and file name extensions is read from a channel option
file. An example option file for the channel is shown in “Example Option File” on
page 106.

In this example, the MIME Cont ent - t ype: and Cont ent - di sposi ti on: header lines
are used to detect potentially harmful message attachments such as executable
files. This example could be extended to also scan the content of the attachments,
possibly passing the contents to a virus scanner. Further, the example could be
modified to return as undeliverable any messages containing harmful attachments.

NOTE To configure the MTA to run this channel, see “Running Your
Enqueue and Dequeue Programs” on page 31. The
PMDF_CHANNEL_COPTI ONenvironment variable must give the absolute
file path to the channel’s option file. Also, for a discussion on
configuring special rewrite rules for re-enqueuing dequeued mail,
see “Preventing Mail Loops when Re-enqueuing Mail” on page 37.

For the output generated by this sample program, see “Decoding MIME Messages
Complex Example Output” on page 108.

Chapter 5 Decoding Messages 95

A Simple Virus Scanner Example

After the Messaging Server product is installed, these programs can be found in the
following location:

nsg_server_base/ exanpl es/ nt asdk/
Some lines of code are immediately preceded by a comment of the format:
/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory
text in the section that follows this code, see “Explanatory Text for Numbered
Comments” on page 107.

Code Example 5-2 Decoding MIME Messages Complex Example

/*
* virus_scanner_sinple.c
*

* Renove potentially harnful content from queued messages.

*

*/

#incl ude <stdio. h>
#include <stdlib. h>
#include <string. h>
#i ncl ude <ctype. h>
#include "ntasdk. h"

/*
* Astructure to store our channel options
*/
typedef struct {
/* Produce debug out put? */
int debug;

/* Unwanted M ME content types */
char bad_m ne_t ypes[Bl GALFA_S| ZE+3] ;
/* Length of bnt string */
size_t bnt_|en;
/* UnV\antedflIetypes */
char bad_file_types[Bl GALFA S| ZE+3] ;
/* Length of bft string */
size t bft_len;
} our_options_t;
/*
* Forward decl arations
*/
static void error_exit(int ires, const char *nsg);
static void error_report(our_options_t *options, int ires, const
char *func);
static int is_bad_m me_type(our_options_t *options, nma_decode_t
*dctx, char *buf, size_t maxbuflen);
static int is_bad file type(our_options_t *options, nta_opt_t
*parans, const char *param nane,
char *buf, size_t maxbuflen);
static int |oad_options(our_options_t *options);

96 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

static nta_dg_process_message_t process_nessage;
static nta_decode_read_t decode_read;
static nta_decode_inspect_t decode_i nspect;

/*
* min() -- Initialize the MTA SDK, | oad our options, and then
start the nessage processing | oop.
*/
int main()
int ires;
our_options_t options;
/*
* Initialize the MTA SIK
* See explanatory coment 1
*/
if ((ires = nalnit(0)))
error_exit(ires, "Unable to initialize the MIA SDK");
/*
* Load our channel options
* See explanatory conment 2
*/
if ((ires = load_options(&options)))
error_exit(ires, "Unable to load our channel options");
/*
* Now process the queued messages. Be sure to indicate a
* thread stack size sufficient to acconodate nessage
* engqueue processing.
* See explanatory conment 3
*/
if ((ires = ntaDequeueStart((void *)&options,
process_nessage, NULL, 0)))
error_exit(ires, "Error during dequeue processing");
/*
* Al done
*/
nt aDone() ;
return(0);
}
/*
* process_message() -- This routine is called by
* nt aDequeueStart () to process each queued
* nessage. W don’t nake use of ctx2, but
* ctxl is a pointer to our channel options.
* See expl anatory comment 4
*/

static int process_nessage(void **ctx2, void *ctxl, nta dgq_t *dq,

const char *env_from size_t
env_fromlen)

Chapter 5 Decoding Messages

97

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

const char *adr;
int disp, ires;

size_t len;

nta_ng_t *nq;

our_options_t *options = (our_options_t *)ctxl;

/*

* lnitializations

*/

ng = NULL;

/*

* Alittle macro to do error checking on nta*() calls
*/

#define CHECK(f,x) \
if ((ires =x)) { error_report(options, ires, f); goto \
done_bad; }
/*
* Start a message enqueue. Use the dequeue context to copy
* envelope flags front the current message to this new
* message bei ng enqueued.
* See explanatory comment 5
*/
CHECK(" nt aEnqueueStart ",
nt aEnqueueSt art (&g, env_from env_fromlen,
MIA_DQ CONTEXT, dg, 0));

/*
* Process the envel ope recipient |ist
* See explanatory comment 6

*/
while (!(ires = ntaDequeueReci pi ent Next (dq, &dr, & en, 0)))
{ '
* Add this envel ope recipient address to the message
* being enqueued. Use the dequeue context to copy
* envelope flags for this recipient fromthe current
* nessage to the new nessage.
*/
ires = ntaEnqueueTo(ng, adr, len, MIA_DQ CONTEXT,
dg, MIA ENV.TQ 0);
/* See explanatory conment 7 */
disp = (ires) ? MIA D SP_DEFERRED : MIA DI SP_RELAYED;
CHECK(" nt aDequeueReci pi ent D sposi tion",
m aDequeueReci pi ent Di sposi tion(dg, adr, |en,
disp, 0));
}
/*

* Anormal exit fromthe | oop occurs when
nt aDequeueReci pi ent Next () returns an MIA ECF status.
Any other status signifies an error.
*/
if (ires = MIA EOF)
{

98 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

error_report(options, ires, "niaDequeueRecipi ent Nexti");
got o done_bad,;

/*
* Begin the MM decode of the nessage
* See explanatory conment 8

*/
CHECK(" nt aDecodeMessage",
nt aDecodeMessage(
/* Private context is our options */
(void *)options,
[* Input I's the message bei ng dequeued */
MIA DECCDE DQ (void *)dq,
/* Qutput Is the nessage bei ng enqueued */
MIA DECCDE NQ (void *)nqg,
/* Inspection routine */
decode_i nspect,
/* Convert non-M ME formats to MM */
MIA_DECCDE_THURMAN, 0));
/*
* Finish the enqueue
* NOTE IT S | MPCRTANT TO DO TH S before DO NG THE
* DEQUEUE. YOU WLL LOSE MAIL | F YOQU DO THE DEQUEUE FI RST
* and then THE ENQUEUE FAI LS.
* See explanatory text 9
*/
CHECK(" nt aEnqueueFi ni sh", m aEnqueueFi ni sh(ng, 0));
ng = NULL;
/*
* Finish the dequeue
*/
CHECK(" nt aDequeueFi ni sh", nt aDequeueMessageFi ni sh(dg, 0));
/*
* Al done with this nessage
*/
return(MIA_X);
done_bad:
/*
* Abort any ongoi ng enqueue or dequeue
*/
if (nq)
nt aEnqueueFi ni sh(ng, MIA_ABCRT, 0);
if (do)
nt aDequeueMessageFi ni sh(dgq, MIA ABCRT, 0);
/*
* And return our error status
*/

return(ires);

Chapter 5 Decoding Messages

99

A Simple Virus Scanner Example

100

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

#undet CHECK

/*
* decode_inspect() -- This is the routine that inspects each
* message part, deciding whether to accept
* or reject it.

* See explanatory coment 10
*/

static int decode_inspect(void *ctx, nta_decode_t *dctx,

int data_type, const char *data,
size_t data_len)

char buf[BI GALFA SI ZE * 2 + 10];
int i;
our_options_t *options = (our_options_t *)ctx;

/*

* See if the part has:

*

* 1. A bad MM content-type,

* 2. Abad file name extension in the (deprecated)
* NAME= content-type paraneter, or

* 3. Abad file name extension in the

* FI LENAME= cont ent - di sposition paraneter.

*/

i =0;

if ((i =is_bad_mme_type(ctx, dctx, buf, sizeof(buf))) ||

is_bad_file_type(ctx,
nt aDecodeMessagel nf oPar ans(dct X,
MIA_DECCDE_CTYPE _PARAMS, NULL),
"NAME', buf, sizeof(buf)) ||
is_bad file_type(ctx,
nt aDecodeMessagel nf oPar ans(dct X,
MIA_DECCDE_CDI SP_PARAMS, NULL),
"FI LENAME', buf, sizeof (buf)))

char nsg[Bl GALFA Sl ZE*4 + 10];

/*

* Replace this part with a text message indicating
* that the part’s content has been del eted.

* See explanatory coment 11

*

/
if (i)

I = sprintf(msg,
"The content of this message part has been renoved.\n"
"It contained a potentially harnful nedia type of %*s",
strlen(buf)-2, buf+l);

el se
i = sprintf(msg,
"The content of this message part has been removed.\n"
"It contained a potentially harnful file naned '%'", buf);
ret urn(m aDecodeMessagePart Del et e(dct x,
MIA REASON, nsg, i,
MIA_DECCDE_CTYPE, "text", 4,

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

MIA_DECCDE_CSUBTYPE, "plain™, 5,
MIA_DECCDE_CCHARSET, "us-ascii", 8,
MIA_DECCDE_CDI SP, "inline", 6,
MIA_DECCDE_CLANG, "en", 2, 0));

}
el se
/*
* Keep the part
* See explanatory coment 12
*/
ret ur n(nt aDecodeMessagePar t Copy(dctx, 0));
}
/*
* is_bad mne_type() -- See if the part’s nedia type is in our
* bad M ME content types, for exanple:
* appl i cation/ vbscri pt
* See expl anatory comment 13
*/

static int is_bad_mne_type(our_options_t *options,
nta_decode t *dctx, char *buf,
size_t maxbufl en)

const char *csubtype, *ctype;
size_t i, lenl, len2;
char *ptr;

/*
* Sanity checks
*/
if ('options || !options->bm _len ||
loptions->bad_m ne_types[0] ||
Idct x)
return(0);

/*
* Get the MME content type
*/
ctype = ntaDecodeMessagel nfoString(dctx, MIA DECCDE CTYPE,
NULL, & enl);
csubtype = m aDecodeMessagel nf oSt ri ng(dct x,
MI'A_DECCDE_CSUBTYPE,

NULL, & en2);

/*
* Build the string: <0x01>type/ subt ype<0x01><0x00>
*/
ptr = buf;
*ptr++ = (char)0x01;
for (i =0; i <lenl; i++)

*ptr++ = tol ower(*ctype++);
*ptr++ = 1/1 7

for (i =0; i <len2; i++)

*ptr++ = tol ower (*csubtype++);
*ptr++ = (char)0x01;
*ptr = '\0";

Chapter 5 Decoding Messages 101

A Simple Virus Scanner Example

102

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

/*

* Nowsee if the literal just built occurs in the |ist of
* bad M ME content types

*/

return((strstr(options->bad_nine_types, buf)) ? -1: 0);

}

/*

* is_bad file type() -- See if the part has an associated file
* name whose file extension is in our |ist
* of bad file names, such as .vbs.

* See explanatory comment 14

*/

static int is_bad file type(our_options_t *options,

nta_opt _t *parans,
const char *paramnane, char *buf,
size_t maxbufl en)

const char *ptri;
char fext[Bl GALFA SI ZE+2], *ptr2;
size t i, len;

/*

* Sanity checks

*/

if ('options || !options->bft_len || !parans || !param nane)
return(0);

len = 0;
buf[0] ="\0";
if (maQptionString(paranms, paramnane, 0, buf, & en,

maxbuflen - 1) ||
'len || !'buf[0])
/*

* No file name paraneter specified
*/

return(0);

/*

* Afile nane paraneter was specified. Parse it to
* extract the file extension portion, if any.

*/
ptrl = strrchr(buf, ".");
if (!ptrl)
/*
* No file extension specified
*/
return(0);
/*
* Now store the string created earlier in fext[]
* Note that we drop the '.’ fromthe extension.
*/
ptrl++; /* Skip over the '.’ */
ptr2 = fext;

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

*ptr2++ = (char)Ox07T;

len =len - (ptrl - buf);

for (i =0; i <len; i+
*ptr2++ = tol over (*ptrl++);

*ptr2++ = (char)0x01;

*ptr2++ = '\0";

/*
* Nowreturn -1 if the string occurs in
* options->bad_file_types.

*/
return((strstr(options->bad_file_types, fext))
?-1:0);
}
/*
* |oad_options() -- Load our channel options fromthe channel’s
* option file
* See explanatory comment 15
*/

static int |oad_options(our_options_t *options)

char buf[Bl GALFA_SI ZE+1] ;
size_t buflen, i;
nta_opt _t *channel _opts;

int ires;

const char *ptroQ;

char *ptr1l,;

/*

* Initialize the our private channel option structure
*/

nenset (options, 0, sizeof(our_options_t));

/*

* Access the channel’s option file

* See explanatory comment 16

*/

channel _opts = NULL;

if ((ires = maQptionStart(&hannel opts, NULL, 0, 0)))

malLog(" Unabl e to access our channel option file");
return(ires);

/ *
* DEBUG-0| 1
*/
opti ons->debug = 0;
nmtaQpt i onl nt (channel _opts, "DEBUG', 0, &options->debug);
i f (options->debug)
nt aDebug(MTA_DEBUG SDK, 0);

/*

* BAD M ME_TYPES=t ypel/ subtypel[, type2/ subtype2[,...]]
*/

Chapter 5 Decoding Messages 103

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

BUf[0] = VO ;

ntaQptionString(channel _opts, "BAD M ME_TYPES', 0, buf,
&bufl en, sizeof (buf));

Now transl ate the coma separated list:

Typel/ Subt ypel[, Type2/ Subtype2[,...]]

* % k% k% %
—
o

<0x01>t ypel/ subt ypel[<Ox01>t ype2/ subt ype2[<0x01>...]] <0x01>

*/

ptr0 = buf;

ptrl = options->bad_ni me_types;
*ptrl++ = (char)0x01;

for (i =0; i < buflen; i++)

{

if (*ptr0o!=",")
*ptrl++ = tol ower (*ptr0++);
el se

*ptrl++ = (char)0x01;
ptrO++

}

*ptrl++ = (char)0x01;

*ptrl ="\0";

options->bnt_len = ptrl - options->bad_m ne_types;

/*

* BAD FILE TYPESS[". "] Ext1[,["."]Ext2[,...]]
*/

buf[0] ='\0";

bufl en = 0;

ntaQoti onstri ng(channel _opts, "BAD FILE TYPES', 0, buf,
&bufl en, sizeof (buf));

/*

* Now translate the comma separated |ist:

N A 1= R AR L= PR)

* to

*

* <0x01>ext 1[<0Ox01>ext 2[<0x01>. . .]] <0x01>
*/

ptr0 = buf;

ptrl = options->bad file_types;

*ptrl++ = (char)0x01;
for (i =0; i < buflen; i++)

swi tch(*ptr0)

defaul t : /* copy after translating to | ower case */
*ptrl++ = tol ower (*ptrO++);

104 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Code Example 5-2 Decoding MIME Messages Complex Example (Continued)

break;
case '.' : [* discard */
br eak;

case ',’ : [/* end current type */
*ptrl++ = (char)0x01;
ptrO++;
br eak;
) }
*ptrl++ = (char)0x01;
*ptrl ="\0";

options->bft_len = ptrl - options->bad_file_types;

/*
* Dispose of the ma_opt_t context
* See explanatory coment 17

*/
nt aOpt i onFi ni sh(channel _opts);
/*
* And return a success
*/
return(MTA_OK) ;
}
/*

* error_report() —Report an error condition when debugging is
* enabl ed.
*/
static void error_report(our_options_t *options, int ires,
const char *func)

{

i f (options->debug)

nmtalLog("%() returned %; %",
(func ? func : "?"), ires, nmaStrError(ires));

}
/*
* error_exit() -- Exit with an error status and error nessage.
*/
static void error_exit(int ires, const char *nsg)

ntalLog("%%%", (nsg ? nsg : ""), (nmsg ?2 "; " : ""),

nmaStrError(ires));
exit(1);

Chapter 5 Decoding Messages 105

A Simple Virus Scanner Example

106

Example Option File

This example lists the MIME media types and file extensions this program is to
consider potentially harmful.

DEBUG-1
BAD M ME_TYPES=appl i cati on/ vbscri pt
BAD FI LE TYPES=bat, comdl |, exe, vb, vbs

Sample Input Message

The example that follows is the text of a sample input message the program in
Code Example 5-2 on page 96 is to process. The second message part is a file
attachment. The attached file name is tr oj an_hor se. vbs. Consequently when this
message is processed by the channel, it should remove the attachment as the file
extension . vbs is in the list of harmful file extensions. The sample program replaces
the attachment with a text attachment indicating the content has been deleted.

Received: from[129. 153, 12, 22] ([129. 153.12. 22)
by frodo. siroe.com (Sun Java System Messaging Server 6 2004Q2 (built Apr 7
2003)) with SMIP id <OHD70010230YDAOO@r odo. si roe. conm> for
for sue@esta.com Fri, 11 Apr 2003 13:03:23 -0700 (PDT)

Date: Fri, 11 Apr 2003 13:03:08 -0700

From sue@esta.com

Subj ect: test message

Message-i d: <OHD7001033P1DA00@ odo. si r oe. conp

Content-type: multipart/mxed; boundary=BoundaryMNarke

- - Boundar yMar ker
Content-type: text/plain; charset=us-ascii
Content -di sposition: inline

This is a
test nessage!

- - Boundar yMar ker

Content-type: application/octet-stream

Content -di sposition: attachment; filename="trojan_horse. vbs"
Cont ent -transf er-encodi ng: base64

| yFQUAOXMDAGMT AW GLvdrmVOby Az MDAgMz Aw GxpbrmVOby BzdHIva2UKc2hvd3Bh
22K

- - Boundar yMar ker - -

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Explanatory Text for Numbered Comments

1 The MTA SDK is explicitly initialized. This call is not really necessary as the
MTA SDK will implicitly initialize itself when nt aDequeueStart () is called.
However, for debugging purposes, it can be useful to make this call at the start of a
program so that an initialization failure will show clearly in the diagnostic output.
If the call is omitted, initialization failure will be less obvious. The failure will still
be noted in the diagnostic output, but it will be obscured through the routine call
that triggered implicit initialization.

2 Channel options are loaded via a call to the | oad_opti ons() routine. That
routine is part of this example and, as discussed later, uses the SDK routines for
obtaining channel option values from the channel’s option file.

3 The message dequeue processing loop is initiated with a call to
nt aDequeueStart ().

4 For each queued message to be processed, process_nessage() will be called by
nt aDequeueStart().

5 A message enqueue is started. This enqueue is used to re-enqueue the queued
message currently being processed. As the message is processed, its non-harmful
content will be copied to the new message being enqueued.

6 The envelope recipient list is copied from the queued message to the new
message being enqueued.

7 Since this is an intermediate channel, that is, it doesn’t effect final delivery of a
message, successful processing of a recipient address is associated with a
disposition of MTA DI SP_RELAYED.

8 After processing the message’s envelope, nt aDecodeMessage() is invoked to
decode the message, breaking it into individual MIME message parts.

nt aDecodeMessage() is told to use the current dequeue context as the input source
for the message to decode. This supplies the queued message being processed as
input to the MIME decoder. Further, the current enqueue context is supplied as the
output destination for the resulting message. This directs nt aDecodeMessage() to
output the resulting parsed message to the message being enqueued, less any
harmful attachments that are explicitly deleted by the inspection routine. The
routine decode_i nspect () is supplied as the inspection routine. If the call to

nt aDecodeMessage() fails, the CHECK() macro causes the queued message to be
deferred and the message enqueue to be cancelled.

Chapter 5 Decoding Messages 107

A Simple Virus Scanner Example

108

9 After a successful call to nt aDecodeMessage() , the message enqueue is
committed. It is important that this be done before committing the dequeue. If the
operation is done in the other order — dequeue finish followed by enqueue finish —
then mail may be lost. For example, the message would be lost if the dequeue
succeeds and then deletes the underlying message file before the enqueue, and
then the enqueue fails for some reason, such as insufficient disk space.

10 The inspection routine, decode_i nspect () . This routine checks the MIME
header lines of each message part for indication that the part may contain harmful
content.

11 Message parts with harmful content are discarded with a call to
nt aDecodeMessagePar t Del et e() . The discarded message part is replaced with a text
message part containing a warning about the discarded harmful content.

12 Message parts with safe content are kept by copying them to the output
message with nt aDecodeMessagePar t Copy() .

13 Using the configured channel options, this routine determines if a message
part’s media type is in the list of harmful types.

14 Using the configured channel options, this routine determines if a filename
appearing in the MIME header lines has an extension considered harmful.

15 Theload_options() routine is used to load the channel’s site-configured
options from a channel option file.

16 The channel option file, if any, is opened and read by ntaQpti onStart (). Since
an explicit file path is not supplied, the file path specified with the
PMDF_CHANNEL_CPTI ON environment variable gives the name of the option file to
read.

17 After loading the channel’s options, the option file context is disposed of with
a call to nmt aCpt i onFi ni sh().

Decoding MIME Messages Complex Example Output

The example that follows shows the output generated by the MIME decoding
program found in Code Example 5-2 on page 96.

Received: from sesta. comby frodo. Siroe.com

Sun Java System Messagi ng Server Version 6 2004 Q(built Apr 7 2003))

i d <OHDEOOCD1BFK6500@r odo. si roe. con> for sue@esta.com Tue, 11

Apr 2003 13:03:29 -0700 (PDT)

Recei ved: from[129.153.12.22] ([129.153.12.22])

by frodo. siroe.com (Sun Java System Messaging Server 6 2004 @ (built Apr 7
2003)) with SMIP id <OHD70010230YDAOO@r odo. si roe. conm for

sue@esta.com Fri, 11 Apr 2003 13:03:23 -0700 (PDT)

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

A Simple Virus Scanner Example

Date: Fri, 11 Apr 2003 13:03:08 -0700
From sue@esta.com
Subj ect: test message
To: sue@esta.com
Message-i d: <OHD7001033P1DA00@r odo. si r oe. con
Content-type: multipart/m xed;
boundar y="Boundary_(1D _XI | wKLBET2/ DDbPzRI 7yzQ "

--Boundary_(1D_XI | wKLBET2/ DDbPzRI 7yzQ
Content-type: text/plain; charset=us-ascii
Cont ent -di sposition: inline

This is a
test message!

--Boundary_(1 D_XI | wKLBET2/ DDbPzR! 7yzQ)
Content-type: text/plain; charset=us-ascii
Cont ent -1 anguage: en

Cont ent - di sposition: inline

The content of this message part has been renoved.

It contained a potentially harnful file named "trojan_horse. vbhs"

--Boundary_ (1D X! | wKLBET2/ DDbPzR! 7yzQ) - -

Chapter 5

Decoding Messages

109

A Simple Virus Scanner Example

110 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Chapter 6

MTA SDK Reference

The Sun Java System Messaging Server MTA SDK consists of numerous routines
used to facilitate the enqueuing and dequeuing of messages. This reference chapter
contains definitions of all of the SDK routines, and has the following sections:

Summary of SDK Routines

This section contains a collection of tables, representing a logical grouping of
the routines. Each table lists the routines in that group.

MTA SDK Routines

The actual reference material is organized in alphabetical order by routine
name.

Summary of SDK Routines

This sections contains a series of tables, one for each of the following logical groups
of commands:

“Address Parsing” on page 112

“Dequeue” on page 112

“Enqueue” on page 113

“Error Handling” on page 113
“Initialization” on page 113

“Logging and Diagnostics” on page 114
“MIME Parsing and Decoding” on page 114

“Miscellaneous” on page 114

111

Summary of SDK Routines

= “Option File Processing” on page 115

Each table lists the routines that comprise the group and gives a brief description of
each.

Address Parsing

Address parsing routines are used to parse and extract message addresses.

Routine Name Description

nt aAddr essFi ni sh() Dispose of an address context

nt aAddr essCet N() Extract the Nth individual address from a list of parsed addresses
nt aAddr essPar se() Parse a list of addresses, producing an address context
Dequeue

Dequeue routines are used for dequeuing messages.

Routine Name Description

nt aDequeuel nf o() Obtain information about a queued message

mt aDequeueLi neNext () Obtain the next message line from a queued message
mtaDequeueMessageFinish() Complete or cancel a message dequeue

nt aDequeueReci pi ent Di sposit Set the disposition of a recipient address

ion()

mt aDequeueReci pi ent Next () Obtain the next recipient address from a queued message

nt aDequeueRew nd() Move the read point for a queued message back to the
start of its outermost header

nt aDequeueSt art () Begin processing queued messages

mt aDequeueThr ead! d() Return the thread ID associated with the specified

dequeue context.

112 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Summary of SDK Routines

Enqueue

Enqueue routines are used for enqueuing messages.

Routine Name Description

nt aEnqueueCopyMessage() Copy a message from a dequeue context

nt aEnqueueFi ni sh() Complete or cancel a message submission

nt aEnqueuel nf o() Obtain information about a message submission
nt aEnqueueStart () Begin a message submission

nt aEnqueueTo() Add recipients to a message

nt aEnqueueWite() Output a line to the message header or body

nt aEnqueueWi t eLi ne() Output a line to the message header or body

Error Handling

Error handling routines used for error status retrieval.

Routine Name Description

nt akrrno() Obtain the value of the last error status for this thread
ntaStrError() Map an error status code to a printable string
Initialization

These routines are used for initialization.

Routine Name Description

nt aDone() Release resources used by the MTA SDK
ntalnit() Initialize the MTA SDK

Chapter 6 MTA SDK Reference

113

Summary of SDK Routines

Logging and Diagnostics

Logging and diagnostics routines are used to write diagnostic messages to debug

log files.

Routine Name Description

nt aDebug() Write internal diagnostic information to the debug log file
ntaLog() Write to the debug log file

nt aLogv() Write to the debug log file

MIME Parsing and Decoding

These routines are used to parse and decode a MIME formatted message.

Routine Name Description

mt aDecodeMessage() Decode a MIME formatted message; can also convert
non-MIME formats to MIME

nt aDecodeMessagePar t Copy() Copy a message part

mt aDecodeMessagePart Del et e(Delete a message part

)

m aDecodeMessagel nf ol nt () Obtain the value of an integer-valued parameter

nt aDecodeMessagel nfoString(Obtain the value of a string-valued parameter

)

nt aDecodeMessagel nf oPar ans(Obtain the Cont ent -t ype or Cont ent - di sposi ti on
) parameter list

Miscellaneous

These routines are used for miscellaneous tasks.

Routine Name Description

nt aAccount i ngLogd ose Close the MTA accounting log file
0

nt aAddr essToChannel () Determine which channel an address rewrites to

nmt aBl ockSi ze() Obtain the value of the MTA BLOCK_SI ZE option

114 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Summary of SDK Routines

Routine Name (Continued) Description

nt aChannel Get Nane() Obtain the channel name for the running program
nt aChannel ToHost () Determine the host name associated with a channel
nt aDat eTi me() Generate a date-time string for use in an RFC 822 Dat e: header

line

nt aPost mast er Addr ess(Obtain the postmaster’s address

)
nt aSt ackSi ze()

nt alni queSt ri ng(
nt aVer si onMj or (
nt aVer si onM nor (

nt aVer si onRevi si

)
)
)
0

Obtain the minimum thread stack size needed for arbitrary SDK
operations

Generate a unique string
Obtain the major version nhumber of the MTA SDK
Obtain the minor version number of the MTA SDK

n() Obtain the revision number of the MTA SDK

Option File Processing

The following table lists the routines used to process option files and gives a brief
description of them.

Routine Name

Description

ntaQptionStart (
)

ntaQptionlnt ()

nt aOpt i onFl oat (
)
ntaQptionString
0

nt aQpt i onFi ni sh
0

Open and read a channel option file

Obtain the value associated with an integer-valued option

Obtain the value associated with a real-valued option

Obtain the value associated with a string-valued option

Dispose of an option file context

Chapter 6 MTA SDK Reference

115

MTA SDK Routines

MTA SDK Routines

This section describes each MTA SDK routine, including its syntax, arguments and
return values, and gives a description of the routine. The following table lists the
routines in alphabetical order, as they are found in this section:

Routine Name and Page

“mtaAccountingLogClose” on page 117
“mtaAddressFinish” on page 118
“mtaAddressGetN” on page 118
“mtaAddressParse” on page 121
“mtaAddressToChannel” on page 123
“mtaBlockSize” on page 126
“mtaChannelGetName” on page 127
“mtaChannelToHost” on page 129
“mtaDateTime” on page 131

“mtaDebug” on page 133
“mtaDecodeMessage” on page 135
“mtaDecodeMessagelnfolnt” on page 145
“mtaDecodeMessagelnfoParams” on page 147
“mtaDecodeMessagelnfoString” on page 149
“mtaDecodeMessagePartCopy” on page 151
“mtaDecodeMessagePartDelete” on page 152
“mtaDequeuelnfo” on page 156
“mtaDequeueLineNext” on page 160
“mtaDequeueMessageFinish” on page 162
“mtaDequeueRecipientDisposition” on page 165
“mtaDequeueRecipientNext” on page 169
“mtaDequeueRewind” on page 171
“mtaDequeueStart” on page 172
“mtaDequeueThreadld” on page 182
“mtaDone” on page 183
“mtaEnqueueCopyMessage” on page 183

“mtaEnqueueError” on page 185

116 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaAccountingLogClose

Routine Name and Page (Continued)

“mtaEnqueueFinish” on page 187
“mtaEnqueuelnfo” on page 189
“mtaEnqueueStart” on page 193
“mtaEnqueueTo” on page 200
“mtaEnqueueWrite” on page 206
“mtaEnqueueWriteLine” on page 209
“mtaErrno” on page 211

“mtalnit” on page 212

“mtaLog” on page 215

“mtaLogv” on page 217
“mtaOptionFinish” on page 218
“mtaOptionFloat” on page 219
“mtaOptionint” on page 220
“mtaOptionStart” on page 222
“mtaOptionString” on page 225
“mtaPostmasterAddress” on page 227
“mtaStackSize” on page 229
“mtaStrError” on page 230
“mtaUniqueString” on page 230
“mtaVersionMajor” on page 231
“mtaVersionMinor” on page 232

“mtaVersionRevision” on page 232

mtaAccountingLogClose

Close the MTA accounting log file, mai | . | og_current.

Syntax
voi d ntaAccounti ngd ose(voi d)

Arguments
None

Chapter 6 MTA SDK Reference 117

mtaAddressFinish

Description

Long running programs should periodically close the MTA accounting log file
with this routine. Interactive programs that use the MTA SDK should use the
MTA_| NTERACTI VE item code when initializing the SDK with ntal ni t ().

Return Values
None

Example
None

mtaAddressFinish

Dispose of an address context.

Syntax
voi d ntaAddressFinish(nta_adr_t *adr_ctx);

Arguments

Argument Description

adr_ctx An address context created by a previous call to
nt aAddr essPar se() .

Description

Address contexts created with nt aAddr essPar se() must be disposed of by calling
nt aAddr essFi ni sh() . Failure to do so will result in memory leaks.

Return Values
None

Example
None

mtaAddressGetN

Extract an address from a list of parsed addresses.

118 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaAddressGetN

Syntax
Int ntaAddressGetN(nta_adr_t *adr_ctx,
size t addr ess_i ndex,
const char **address,
size t *address_| en,
int el enents);
Arguments
Arguments Description
adr_ctx An address context created by a previous call to it aAddr essPar se() .
addr ess_i ndex Index of the address to retrieve. It is an index into a list of addresses. The
first address has an index of 0.
addr ess Pointer to receive the selected address (a pointer to a buffer within the
address context). The address will be NULL terminated. A NULL may be
passed for this call argument if you do not wish to receive the pointer.
address_| en The length in bytes of the selected address, not including any NULL
terminator. NULL may be passed for this call argument if you do not wish
to receive the length.
el ement s A bitmask indicating which RFC 822 mailbox elements of the address to
return, such as phrase, route, local-part, or domain. Any combination of
these elements may be returned.
Description

This routine retrieves the Nth address from a list of parsed addresses. The list of
addresses must first be parsed with nt aAddr essPar se() .

Either the entire address or just a portion of it may be retrieved.

Elements Argument
Using the nomenclature of RFC 822, an address has the following four-element
format:

phrase <@oute: | ocal - part @onai n>

NOTE The @out e: element is referred to as a source route and is rarely seen.

An example address with all four elements is:

Judy Smth <@iroe.comjudy.smth@nmail.siroe.conp

Chapter 6 MTA SDK Reference 119

mtaAddressGetN

The el enent s argument is a bitmask indicating which of these elements to return.
The bitmask is formed by a logical OR of the following symbolic constants defined
in the nt asdk. h header file:

e MIA_ADDR PHRASE - In the example, the phrase part is Judy Snith.

= MIA_ADDR RQUTE - In the example,the route part is @i r oe. com.

= MIA_ADDR LQCAL - In the example, the local part is j udy. sm th.

< MIA_ADDR DOMAI N— In the example, the domain part is emai | . si r oe. com

For example, to select just the local and domain parts, use the following value for
the el enent s argument:

MIA_ADDR LOCAL | MTA ADDR DOVAI N

When a value of zero is supplied for elements the following default bitmask is
assumed:

MIA_ADDR ROUTE | MTA ADDR LOCAL | MIA_ADDR DOMAI N

Address Argument

This routine returns a pointer to the retrieved address and not the address itself.
This pointer is to a buffer within the address context. Each time the routine is called
with the same address context, that buffer is overwritten. Therefore, care must be
taken when specifying the address argument. The following code example
correctly specifies how the argument should be used when multiple calls are
involved:

nt aAddressGtN(adr_ctx, 0, &pir, NULL, MIA_ADDR LOCAL);
strepy(buf, ptr);
strcat(buf, "@);
m aAddressGet N(adr _ctx, 0, &ptr, NULL, MIA_ADDR DOVAIN);
strcat (buf, ptr);

Alternately, it could also be coded as shown in the following code fragment:

nt aAddressGet N(adr_ctx, 0, &ptr, NULL,
MIA_ADDR LOCAL | MIA_ADDR DOVAI N) ;
strepy(buf, ptr);

120 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaAddressParse

However, since the pointer points to the same buffer for each call, and is
overwritten at each call, it would be incorrect to code it as shown in the following
code example:

nt aAddressGt N adr_ctx, 0, & ocal, NULL, MIA_ADDR LCCAL);
m aAddr essGet N(adr _ctx, 0, &domain, NULL, MIA ADDR DOVAIN);
strcpy(buf, local);

strcat(buf, "@);

strcat (buf, domain);

Return Values

Return Value Description
0 Normal, successful completion
MIA_BADARGS One of the following conditions occurred:

1. A NULL value for the adr _cont ent argument
2. Aninvalid address context
3. Aninvalid bitmask for elements

MIA ECF The value supplied for the addr ess_i ndex is equal to or greater than the
number of addresses in the address list.

Example
The following is a code fragment that parses and displays the individual addresses
from a list of two addresses, using nt aAddr essGet N() :

ires = niaAddressParse(&dr_ctx, &adr_count,
"Judy Public <judy.public@iroe.con>, sue@iroe.cont,
0, 0);

for (i =0; I < adr_count; i++)

nt aAddressCGet N(adr _ctx, i, &ptr, NULL,
MIA_ADDR LOCAL | MIA_ADDR DOVAIN);
printf("Address %l: %\n", i, ptr);

mtaAddressParse

Parse a list of comma separated RFC 822 addresses.

Chapter 6 MTA SDK Reference 121

mtaAddressParse

Syntax
Int ntaAddressParse(nia_adr_t **adr_ctXx,
size_t *addr ess_count,
const char *address_|ist,
size_t address_list_len
i nt itemcode, ...);
Arguments
Argument Description
adr_ctx The address context created for the parsed list of addresses.
addr ess_count The number of addresses parsed.
address_| i st A character string containing the list of comma separated RFC 822

addresses to be parsed. The string must be NULL terminated if a value
of zero is passed for address_| i st _| en.

address_list _len The length in bytes of the string of addresses to parse, not including
any NULL terminator. If a value of zero is passed for this argument,
then the length of addr ess_| i st will automatically be determined.

i tem code An optional list of item codes. The list must be terminated with an
integer argument with value 0.

Description

This routine parses a list of one or more comma separated RFC 822 addresses. The
input list can be of any arbitrary length. The result of the parse is represented by an
address context and a count of the parsed addresses. Each parsed address can then
be individually extracted from the parsed list with a call to nt aAddr esGet N() . The
address context should be disposed of with a call to nt aAddr essFi ni sh() . When
there are no valid addresses in the input line, the returned context will be NULL
and the count zero.

NOTE There are two item codes that can be used in the i t em code
argument. A NULL value can be passed for either or both of the
adr _ct x and addr ess_count arguments. When NULL is passed for
both, all that is learned by calling the routine is whether or not the
address list is syntactically valid.

122 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaAddressToChannel

The following table lists the item codes for this routine, their additional required
arguments, and gives a description of each.

Item Codes Additional Arguments

Description

MIA_DOVAI N const char *donain
size_t domain_|len

MIA | TEM LI ST ma_itemlist_t
*itemlist

Specify a domain name to append to short-form addresses,
such as sue, in order to create a fully qualified address, for
example, sue@i r oe. com

It must be followed by two additional call arguments: the domain
name to use and the length in bytes of that domain name. If a
value of 0 is passed for the length, then the domain name must
be NULL terminated.

Specify a pointer to an item list array. The array must be
terminated with a final array entry with an item code value of 0.
For further information on item lists, see “Item Codes and ltem
Lists” on page 28.

Return Values

Return Value Description
0 Normal, successful completion.
MIA BADARGS A NULL value was supplied for the addr ess_| i st argument or an

optional item code argument.

MIA_NO Unable to parse the address list. The likely cause is that one or more
addresses in the list is syntactically invalid.

MIA_NOVEM Insufficient virtual memory.

MIA_NOSUCH TEM An invalid item code was supplied.

MIA_STRTRUERR Item code string argument is too long.

Example

See the code example for nt aAddr essGet N() for a sample code fragment that uses

nt aAddr essPar se() .

mtaAddressToChannel

Determine which channel an address rewrites to.

Chapter 6 MTA SDK Reference 123

mtaAddressToChannel

124

Syntax

const char *nt aAddr essToChannel (char

*channerl,

size_t *channel _| en,
size_t channel _| en_nax,
const char *address,

si ze_t address_| en,

i nt address_type,

i nt itemcode, ...);

Arguments

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name. To
avoid possible truncation of the channel name, this buffer must be at
least CHANLENGTH+1 bytes long.

channel | en An optional pointer to a Si ze_t to receive the length in bytes of the

channel _I| en_max

addr ess

address_| en

address_type

i tem code

returned channel name. This length does not include the NULL
terminator that terminates the channel name.

The maximum size in bytes of the buffer pointed at by the channel
argument.

The address to rewrite. The length of this address, not including any
NULL terminator, should not exceed ALFA_S| ZE bytes. If a value of O is
passed for the addr ess_| en argument, then this string must be NULL
terminated.

The length in bytes of the address string, addr ess. This length does
not include any NULL terminator. If a value of O is passed for this
argument, the address string must be NULL terminated.

Indicates what type of address is being rewritten. There are two types:
envelope or header. In addition it can be either forward or reverse
pointing. See the description for a list of the possible values.

Reserved for future use. Presently, a value of 0 must be supplied for
this argument.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaAddressToChannel

Description

Use this routine to determine which channel an address rewrites to. The address to
be rewritten can be an envelope or header address, and can be forward or reverse
pointing. The nature of the address is specified with the addr ess_t ype argument.
The following table lists the possible values for each combination: forward
pointing envelope, reversing pointing envelope, forward pointing header, reverse
pointing header:

Types of Address Value

Forward pointing envelope address 0, MTA_BCC, MTA_CC, MTA_ ENV_TQ MIA_TO
Reverse pointing envelope address MIA_ENV_FROM

Forward pointing header address MIA_HDR BCC, MTA_HDR _CC, MTA_ HDR TO
Reverse pointing header address MIA HDR_FROM

In most cases, a value of MTA_ENV_TOis appropriate. Other values will typically give
the same result, unless the MTA configuration has rewrite rules that are sensitive
to the distinctions between the four types of addresses.

Return Values

On successful operation, the routine returns the value of the channel argument. In
the event of an error, the value returned is NULL and the nta_errno variable is set
with an error status code. The following table lists the error status codes and gives
a description of each.

Error Status
Codes Description

MIA_BADARGS There are two reasons to get this return value:
1. A NULL value was supplied for the address argument.

2. Aninvalid value was supplied for the addr ess_t ype.

MIA_FOPEN Unable to initialize the MTA SDK; can't read one or more configuration
files. Issue the following command for further information:

insinta test -rewite

Chapter 6 MTA SDK Reference 125

mtaBlockSize

Error Status Codes
(Continued) Description

MIA_NO There are two reasons to get this return value:

1. Unable to rewrite the supplied address. Either the address is
syntactically invalid, or it does not match any channel.

2. Unable to initialize the MTA_SDK. Issue the following command for
further information:

insinta test -rewite

MI'A_NOSUCH TEM An invalid item code was specified.

MIA_STRTRUERR There are two reasons to get this return value:

1. Supplied address string is too long; length can not exceed ALFA S| ZE
bytes.

2. The supplied buffer to receive the channel name is too small.

Example
None

mtaBlockSize

Obtain the size in bytes of an MTA block size unit.

Syntax
size_t ntaBl ockSi ze(void);

Arguments
None

Description

The MTA measures message sizes in units of blocks. Units of blocks are used, for
instance, when logging message sizes, and for the MTA_ FRAGVENT BLOCKS item code
in the m aEnqueueSt art () routine. By default, a block is 1024 bytes. However, sites
can change this setting with the BLOCK S| ZE option in the opt i on. dat file.

Programs using the SDK can translate units of bytes to blocks by dividing the
number of bytes by the value returned by nt aBl ockSi ze(), that is:

byt es_per _bl ock = ntaBl ockSi ze();
block limt = byte limt / bytes_per_bl ock;

126 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaChannelGetName

Return Values

In the event of a failure, the routine returns the value zero and sets nt a_err no with
an error status code. This routine only fails when initialization of the MTA SDK
fails. The following table lists the error status codes set in nt a_er rno when there is
an error returned by nt aBl ockSi ze().

Error Status Codes Description

MIA_FCPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. Issue the following command for further information:

imsinta test -rewite

MIA_NO Unable to initialize the MTA SDK. Issue the following command for
further information:

imsinta test -rewite

Example
The following code fragment displays the MTA block size setting:

[printf ("BLOK SIZE = Ya\n", niaBl ockS ze())]

mtaChannelGetName

Determine the channel name for the currently running program.

Chapter 6 MTA SDK Reference 127

mtaChannelGetName

Syntax

const char *ntaChannel Get Nane(char *channel,
size_t *channel _| en,
size_t channel _| en_nax);

Arguments

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name. To
avoid possible truncation of the channel name, this buffer must be at
least CHANLENGTH+1 bytes long.

channel | en An optional pointer to a Si ze_t to receive the length in bytes of the
returned channel name. This length does not include the NULL
terminator that terminates the channel name.

channel _| en_nax The maximum size in bytes of the buffer pointed at by the channel
argument.

Description

A running program can discover its channel name with this routine. The channel
name is typically set using the PMDF_CHANNEL environment variable.

Return Values
In the event of an error, the routine returns NULL. The error status code is set in
nta_errno.

Error Status Codes Description

MI'A_BADARGS A NULL value passed for the channel argument.

MIA_NO Unable to determine the channel name from the runtime environment.
MIA_STRTRUERR Channel buffer too small to receive the channel name. The buffer must

be at least CHANLENGTH+1 bytes long.

Example
The following code fragment uses this routine to print the channel name.

char buf [CHANLENGTH+I] ;

printf("Channel nane: %\n",
nt aChannel Get Name(buf, NULL, sizeof (buf)));

128 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaChannelToHost

mtaChannelToHost

Determine the host name associated with a channel.

Syntax

const char *nt aChannel ToHost (Cchar **host,
size_t *host _|en,

i nt itemcode, ...);

Arguments

Arguments Description

host A pointer to receive the host name. The host name will be NULL terminated.
NULL can be passed for this call argument.

host | en An optional pointer to a Si ze_t to receive the length in bytes of the returned
host name. This length does not include the NULL terminator that terminates
the host name. A value of NULL can be passed for this call argument.

i tem code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description

This routine is used to determine the host name associated with a particular

channel.

The channel name can be specified in one of three ways:

= Implicitly specified. For this case, no item codes other than the terminating 0
are specified and the channel name is the one for the running program. The
channel name is set using the PMDF_CHANNEL environment variable.

= Explicitly specified with the MTA_CHANNEL item code.

= Set using the MTA_DQ CONTEXT item code, which is taken to be the channel name
associated with a specified dequeue context.

In all cases, the official host name of the selected channel is the host name that is
returned. The official host name for a channel is the one that appears on the second
line of the channel definition in the MTA configuration file, i nt a. conf .

Chapter 6 MTA SDK Reference 129

mtaChannelToHost

The following table lists the item codes and any associated arguments;

Item Codes Additional Arguments Description

MI'A_CHANNEL const char *channel Explicitly specify a channel name for the official host name.
. t ch | This item code must be followed by the two additional call
Stze_t channel_fen arguments, specifying:

1. The channel name.

2. The length in bytes of that channel name.

If a value of 0 is passed for the length, the channel name
must be NULL terminated.

MIA_DQ CONTEXT ma_dg_t *dg_ctx Use the channel associated with the specified dequeue
context. This item code must be followed by one additional
call argument: a pointer to a dequeue context generated by

nt aDequeueStart ().
MIA | TEM LI ST nma itemlist t Specify a pointer to an item list array that is terminated with
*itemlist a final array entry that has an item code value of 0. For

further information on item lists, see “ltem Codes and Item
Lists” on page 28.

When none of the above item codes are specified, the channel name is taken from
the runtime environment, using PMDF_CHANNEL environment variable.

On successful completion, the host name is stored in the buffer pointed at by the
host argument, and the value of the host argument is returned.

Return Values
In the event of an error, nt aChannel ToHost () will return NULL, but will set
nta_errno. The following table lists the error status codes for this routine.

Error Status Codes Description

MIA_BADARGS A NULL value was supplied for either of these two argument:
1. The host argument in the routine call.

2. An argument to an item code.

MIA_FCPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. Issue the following command for further information:

imsinta test -rewite

130 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDateTime

Error Status Codes Description

MIA_NO One of the following errors occurred:

1. Unable to determine the channel name from the runtime
environment.

2. Unable to initialize the MTA SDK. For further information, issue the
following command:

imsinta test -rewite

MI'A_NOSUCHCHAN The selected channel name does not appear in the MTA configuration
file, i nta. cnf.

MI'A_NOSUCH TEM An invalid item code was specified.

Example

printf("Host name: 98\n",
mt aChannel ToHost (NULL, NULL, MIA_CHANNEL,
"tcp_local", 0, 0));

mtaDateTime
Obtain the current date and time in an RFC 822 and RFC 1123 complaint format.

Chapter 6 MTA SDK Reference 131

mtaDateTime

Syntax

const char *niaDateTime(char *dafe,
size_t *date_len,
size_t date_|en_nax,
time_t time);

Arguments

Arguments Description

date A pointer to a buffer to receive the NULL terminated date and time string. To
avoid possible truncation of the string, this buffer should be at least 81 bytes
long.

date_| en An optional pointer to a Si ze_t to receive the length in bytes of the returned
date and time string. This length does not include the NULL terminator that
terminates the host name. A value of NULL can be passed for this call
argument.

date_| en_nmax The maximum size in bytes of the buffer pointed at by the dat e argument.

tinme The date and time for which to generate the string representation. To use the
current local time, pass a value of zero for this argument.

Description

This routine generates an RFC 2822 compliant date and time string suitable for use
in an RFC 822 Dat e: header line. To generate a date and time string for a specific
time, supply the time as the ti ne argument. Otherwise, supply a value of 0 for the
ti me argument and a date and time string will be generated for the current local
time.

On successful completion, the date and time string is stored in the buffer pointed at
by the dat e argument, and the value of the dat e argument is returned.

Return Values

In the event of an error, nt aDat eTi ne() will return NULL. It will set the error status
code in nt a_errno.

Error Status Codes Description

MI'A_BADARGS A value of NULL was supplied for the dat e argument.
MIA_STRTRU The dat e buffer is too small; the returned value has been truncated to
fit.

132 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDebug

Example
char buf [80+1]:

printf("The current date and tine is %\n",
nt aDat eTi me(buf, NULL, sizeof(buf), (tine_t)O0);

mtaDebug

Enable generation of MTA SDK diagnostic output.

Syntax
int nmtabDebug(int itemcode, ...);

Arguments

Arguments Description

i tem code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description

Many of the low-level MTA subroutine libraries can produce diagnostic output as
can the MTA SDK itself. This output, when enabled, is directed to st dout . When a
channel program is run by the Job Controller, st dout is directed to the channel’s
debug log file. Use this diagnostic output when developing programs.

NOTE nt aDebug() may also be used in production programs; however,
caution should be used, as it can be quite verbose and voluminuous,
thereby degrading performance and consuming disk space.

As described in the following table, item codes are used to select specific types of
diagnostic output.

Additional
Item Codes Arguments Description
MI'A_DEBUG DECCDE None Enable diagnostic output from the low-level MIME decoding

routines. This might be helpful when trying to understand MIME
conversions that occur either when enqueuing messages (and
the destination channel is configured to invoke MIME
conversions, for example, marked with channel keywords such
athurman ori nner), or when using nt aDecodeMessage() .

Chapter 6 MTA SDK Reference 133

mtaDebug

Item Codes (Continued)

Additional
Arguments

Description

MIA_DEBUG DEQUEUE

MIA_DEBUG ENQUEUE

MIA_DEBUG MM

MIA_DEBUG 0S8

MIA_DEBUG SDK

MTA_| TEM LI ST

None

None

size_t level

None

None

nmaitemlist_t
*itemlist

Enable diagnostic output from low-level queue processing
routines. Use this when trying to understand issues around
reading and processing of queued message files. This will not
help diagnose the selection of queued messages, which is
handled by the Job Controller.

Enabling this diagnostic output is the equivalent of setting
DEQUEUE_DEBUG=1 in the option file, opt i on. dat .

Enables output from low-level message enqueue routines. Can
be used to diagnose the address rewriting process, destination
channel selection, header processing, and other types of
processing that occurs when a message is enqueued.

Enabling this diagnostic output is the equivalent of setting
MVI_DEBUG=5 in the opt i on. dat file.

Enable diagnostic output from the low-level message enqueue
routines. The item code must be followed by one additional call
argument: the debug level to use. The value of level ranges
from 0 to 20. Enqueue diagnostics can be used to diagnose the
address rewriting process, destination channel selection,
header processing and other types of processing that occurs
when a message is enqueued.

Enabling this diagnostic output is equivalent to setting
DEQUEUE_DEBUGHI evel in the opti on. dat file.

Enable diagnostic output from the low-level operating system
dependent routines. This output is helpful when diagnosing
problems associated with creating, opening, writing, or reading
files. This typically happens when attempting to enqueue
messages, which requires permissions to create and write
messages in the MTA queues.

Enabling this output is equivalent to setting O5_DEBUG=1 in the
opti on. dat file.

Enable diagnostic output for the MTA SDK. When this is
enabled, diagnostic information will be output whenever the
SDK returns an error result.

Specify a pointer to an item list array. The item list array must be
terminated with a final array entry with an item code value of 0.
For further information on item lists, see “Iltem Codes and Item

Lists” on page 28.

134 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Return Values

mtaDecodeMessage

Return Values

Description

0
MTA BADARGS
MIA_FOPEN

MIA NO

MIA_NOSUCH TEM

Successful, normal completion.
A NULL value was supplied for a pointer to an item list array.

Unable to initialize the MTA SDK. Unable to read one or more
configuration files. For further information, issue the following command:

imsinta test -rewite

Unable to initialize the MTA SDK. For further information issue the
following command:

imsinta test -rewite

An invalid item code was specified.

Example

nt aDebug(MIA_DEBUG SDK, MIA_ MM DEBUG 8, 0);

mtaDecodeMessage
Decode a MIME formatted message; optionally convert non-MIME formats to
MIME.
Syntax
int niabDecodeMessage(voi d X,
i nt i nput _type,
voi d *input,
i nt out put _type,
voi d *out put,
nt a_decode_i nspect _t *inspect,
i nt itemcode, ...);
Arguments
Arguments Description
ctx Optional pointer to a caller-supplied context or other data type. This pointer

will be passed as the Ct X argument to any caller-supplied routines, such as
the one supplied as the i nspect argument. A value of NULL can be passed
for this argument.

Chapter 6 MTA SDK Reference 135

mtaDecodeMessage

Arguments Description

i nput _type Input type indicator describing the input source to use, either a dequeue
context or a caller-supplied routine. There are only two valid values:
MIA_DECCDE_DQ MIA_DECCDE_PRCC.

i nput For i nput _t ype=MIA_DECCDE_DQ input must be a pointer to a dequeue
context created by nt aDequeueStart ().

Fori nput _t ype=MI'A_DECODE_PRCC, input must be the address of a routine
of type nt a_decode_read_t.

out put _type Optional output type indicator describing the output destination to use, either
an enqueue context or a caller-supplied routine. Valid values are: 0,
MI'A_DECCDE_NQ MIA_DECODE_PROC. When a value of 0 is supplied, the
out put argument is ignored.

out put For out put _t ype=MI'A_DECCDE_NQ output must be a pointer to an enqueue
context created with nt aEnqueueSt art ().

For out put _t ype=MI'A_DECODE_PROC, output must be the address of a
routine to type Nt a_decode_write_t. This argument is ignored when a
value of O is supplied for out put _t ype.

i nspect The address of an inspection routine of type nt a_decode_i nspect _t .

i tem code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description

The MTA has powerful facilities for parsing and decoding single and multipart
messages formatted using the MIME Internet messaging format. Additionally,
these facilities can convert messages with other formats to MIME, for example, text
parts with BINHEX or UUENCODE data, the RFC 1154 format, and many other
proprietary formats. The nt aDecodeMessage() routine provides access to these
facilities, parsing either a queued message or a message from an arbitrary source
such as a disk file or a data stream.

There are two usage modes for nt aDecodeMessage() . In the first mode, messages are
simply parsed, any encoded content decoded, and each resulting, atomic message
part presented to an inspection routine. This mode of usage is primarily of use to
channels that interface the MTA to non-Internet mail systems such as SMS and
X.400. The second mode of operation allows the message to be rewritten after
inspection by an output routine. The output destination for this rewriting may be
either the MTA channel queues, or an arbitrary destination via a caller-supplied
output routine.

136 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessage

During the inspection process in this second usage mode, individual, atomic
message parts may be discarded or replaced with text. This operational mode is
primarily of use to intermediate processing channels that need to scan message
content or perform content conversions, for example, virus scanners and
encryption software.

“Decoding MIME Messages” on page 89 illustrates the first usage mode, while
“Decoding MIME Messages Complex Example” on page 96 illustrates the second.

Inspection Routine

Key to either usage mode for nt aDecodeMessage() is the inspection routine, pointed
to with the i nspect argument. The nt aDecodeMessage() routine presents each
atomic message part to the inspection routine one line at a time. The presentation
begins with the part’s header lines. Once all of the header lines have been
presented, the lines of content are presented next. The following points should also
be noted:

< Message parts need not have any content. A common example is a single part
message with no content for which the sender used the Subj ect : header line to
express their message.

< In the case of a non-multipart message, the message has a single part. The
header for this sole part is the header for the message itself. As noted
previously, there may or may not be any content to this single part.

= In the case of a multipart message, individual parts need not have a part
header. In such cases, MIME defaults apply and imply that the content is
text/ pl ai n using the US-ASCII character set.

= Regardless of the value of the Cont ent - t r ansf er - encodi ng: header line, the
content presented will no longer be encoded.

= In the case of a multipart message, the outermost header is not presented.
However, it may be inspected by means of an output routine. For a discussion
of the output routine, see Output Routine that follows.

The following code fragment shows the required syntax of an inspection routine:

int inspection_routine(void *cix,
nta_decode t *dctx,
i nt dat a_t ype,
const char *dat a,
size_t data_l en);

Chapter 6 MTA SDK Reference 137

mtaDecodeMessage

The following table lists each of the inspection routine’s arguments, and gives a
description of each.

Arguments Description
ctx The caller-supplied private context.
dct x A decode context created by nt aDecodeMessage() . This decode context

represents the current part being processed. This context is to be used with
calls to the other decode routines requiring a decode context. This context is
automatically disposed of by nt aDecodeMessage() .

data_type The nature of the data being presented:
» For a header line: MTA_DATA HEADER

« For aline of text-based content: MTA_DATA TEXT
« For aline of binary content: MTA_DATA Bl NARY
+ Nodata at all: MTA_DATA NONE.

Atomic part content with a MIME content type of t ext / * or message/ * is
considered to be text-based. Such content is given the data type

MIA_DATA TEXT. All other atomic part content (audi o/ *, i mage/ *, and
appl i cation/*) is considered to be binary and denoted by the data type
MI'A_DATA BI NARY. The data type MTA_DATA_NONE is only presented when
using an optional output routine (supplied with the out put argument in

m aDecodeMessage()).

dat a A pointer to the data being presented. Message lines will not have
carriage-return or line-feed terminators, nor is the data itself NULL terminated.
(However, in the case of binary data, there may be carriage returns, line feeds,
or even NULLs embedded within the data itself.)

data_| en The length in bytes of the data being presented. This length may be 0, which
indicates a blank line and not the absence of any data (MTA_DATA_NCONE).

Output Routine

When an output routine is not used, the inspection routine can detect the transition
from one message part to another by observing the part number on each call. The
part number is obtained by calling nt aDecodeMessagel nf oSt ri ng() with an item
value of MTA_DECCDE_PART_NUMBER.

When the optional output routine (pointed to by the out put argument) is used, an
additional data type, MTA_DATA NONE, is presented to the inspection routine. It is
presented to the inspection routine after the part’s header and entire content have
been presented. However, no data is actually presented for the MTA_DATA NONE type.
As such, this data type merely serves to (1) let the inspection routine know that the
entire part has now been presented, and (2) allows the inspection routine a final

138 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessage

chance to delete the part from the data being output to the output routine. For
example, it allows a virus scanner to be activated and a judgment passed. Based
upon the result of the virus scan, the part can then either be copied to the output or
not.

If it is not copying the part to the output, the inspection routine must call

nt aDecodeMessagePar t Del et e() . That call will either delete the part entirely, or
optionally replace it with caller-supplied content. Calling

nt aDecodeMessagePar t Copy() makes the copy operation explicit; if neither routine is
called, then the part will be implicitly copied to the message being output.

When using an output routine, the inspection routine may call

nt aDecodeMessagePar t Del et e() or nt aDecodeMessagePart Copy() at any time. It is
not necessary to wait until the inspection routine is called with a data type of
MIA_DATA_NONE. For instance, a virus scanner may want to discard a part when it
sees that the part’s content type indicates an executable program. However, once
either of these routines is called, the inspection routine will not be called any
further for that message part.

Dequeue Context

The message to be decoded is supplied by either a dequeue context or a
caller-supplied input routine. When using a dequeue context, observe the
following points:

e Specify MTA_ DECCDE DQfor the i nput _t ype call argument.
= Pass the dequeue context from nt aDequeueStart () as the input argument.

= The recipient list of the message being dequeued must have already been read
by nt aDequeueReci pi ent Next () before calling nt aDecodeMessage() .

= ntaDequeueMessageFi ni sh() must not yet have been called for the dequeue
context.

= After using a dequeue context with nt aDecodeMessage(), no further calls to
nt aDequeueReci pi ent Next () can be made.

e Calls to nt aDequeueLi neNext () can only be performed after a call to
nt aDequeueRewi nd() .

Caller-Supplied Input Routine

When using a caller-supplied input routine to supply the message to be decoded,
specify MTA_DECCDE_PROC for the i nput _t ype argument, and pass the address of the
input routine as the i nput argument.

Chapter 6 MTA SDK Reference 139

mtaDecodeMessage

The following code fragment shows the syntax of a caller-supplied input routine:

int inpuf_routine(void *cix,
const char **line,
size t * line_len);

The following table lists the arguments for a caller-supplied input routine, and
gives a description of each.

Arguments Description
ctx The caller-supplied private context.
line A pointer to the start of the next line or section of data to return. The line or data

does not need to be NULL terminated.

line_len The length in bytes of the line or block of data being returned. A zero length
signifies zero bytes of data. That is, a zero length does not cause
nt aMessageDecode() to automatically determine the length by searching for
a NULL terminator.

On each successful call, the input routine should return a status code of 0 (MIA_(X).
When there is no more message data to provide, then the input routine should
return MTA_ECF. The call that returns the last byte of data should return 0; it is the
subsequent call that must return MTA_ECF. In the event of an error, the input routine
should return a non-zero status code other than MTA_ECF, such as MTA_NO This will
terminate the message parsing process and nt aDecodeMessage() will return an
error.

NOTE By default, each block of data must be a single line of the message.
This corresponds to the MTA_TERM NONE item code. If the MTA_ TERM CR
MIA_TERM CRLF, MTA_TERM LF, or MTA TERM LFCRitem code is specified,
then the block of data need not correspond to a single, complete line
of message data It may be a portion of a line, multiple lines, or even
the entire message. See “Item Codes” on page 143 for information
about nt aDecodeMessage() item codes.

Enqueue Context

The parsed message may be output either as a message enqueue or written to an
arbitrary destination via a caller-supplied output routine. When using a message
enqueue context, observe the following points:

= Specify MTA_DECODE_NQfor the out put _t ype call argument.

140 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessage

= Pass the enqueue context from nt aEnqueueSt art () as the output.

= Specification of the message’s recipient list must have already been completed
with m aEnqueueTo() before calling nt aDecodeMessage() .

= ntaEnqueueFi ni sh() must not yet have been called for the enqueue context.

= After the call to nt aDecodeMessage() has completed successfully, complete the
message enqueue with nt aEnqueueFi ni sh() .

= Inthe event of an error, the message submission should be cancelled, with
nt aEnqueueFi ni sh() .

« nmtaDecodeMessage() will write the entire message header and content. There is
no need for the caller to write anything to the message’s header or content.

Caller-Supplied Output Routine

To use a caller-supplied output routine, specify the MTA_ DECCDE_PRCC for the
out put _t ype call argument, and pass the address of the output routine as the
out put argument.

This code fragment shows the syntax of a caller-supplied output routine.

int output_routine(void *CiX,
nma decode t *dctx,
const char **line,
size t *line_len);

The following table lists the arguments for a caller-supplied output routine, and
gives a description of each.

Arguments Description
ctx The caller-supplied private context passed as Ct X to nt aDecodeMessage() .
dect x A decode context created by nt aDecodeMessage() . This decode context

should be used with calls to the other decode routines requiring a decode
context. This context is automatically disposed of by nt aDecodeMessage() .

l'i ne Pointer to a line of the message to output. This line is not NULL terminated. The
line will also lack any carriage return or line feed record terminators.

line len The length in bytes of the message line to output. A length of 0 indicates a blank
line. The maximum line length presented will be Bl GALFA_SI ZE bytes (1024
bytes).

Chapter 6 MTA SDK Reference 141

mtaDecodeMessage

Each line passed to the output routine represents a complete line of the message to
be output. The output routine must add to the line any line terminators required by
the output destination (for example, carriage return, line feed pairs if transmitting
over the SMTP protocol, or line feed terminators if writing to a UNIX® text file).
Supplying a value of zero for the out put _t ype call argument, causes the output
argument to be ignored. In this case no output routine will be used.

Decode Context Queries

When nt aDecodeMessage() calls either a caller-supplied inspection or output
routine, it passes to those routines a decode context. Through various SDK routine
calls, this decode context may be queried to obtain information about the message
part currently being processed.

The following table lists the informational message codes that can be obtained
about a message part being processed, and gives a description of each, including
the SDK routine used to obtain it.

Message Code Description

MIA_DECCDE_CCHARSET The character set specified with the CHARSET parameter of the part's
Cont ent -t ype: header line. If the part lacks a CHARSET specification, then
the value us-asci i will be returned. Obtain with
m aDecodeMessagel nfoString() .

MFA_DECCDE_CDI SP Value of the Cont ent - di sposi ti on: header line, less any optional
parameters. Will be a zero length string if the part lacks a
Cont ent - di sposi ti on: header line. Obtain with
mt aDecodeMessagel nfoString() .

MIA DECCDE_CDi SP_PARAMS Parameter list to the Cont ent - di sposi tion: header line, if any. The parsed
list is returned as a pointer to an option context. For further information, see
m aDecodeMessagel nf oPar ans() .

MIA_DECCDE_CSUBTYPE The content subtype specified with the part's Cont ent - t ype: header line (for
example, pl ai nfort ext/ pl ai n, gi f fori mage/ gi f). Defaults to pl ai n
when the part lacks a Cont ent -t ype: header line.

Obtain with nt aDecodeMessagel nf oSt ring() .

MIA_DECCDE_CTYPE The major content type specified with the part's Cont ent -t ype: header line
(for example, t ext fort ext/pl ai n, i mage for i mage/ gi f). Defaults to t ext
when the part lacks a Cont ent -t ype: header line.

Obtain with m aDecodeMessagel nf oString() .
MIA_DECCDE_CTYPE_PARANS Parameter list to the Cont ent - t ype: header line, if any. The parsed list is

returned as a pointer to an option context. For further information, see
m aDecodeMessagel nf oPar ans() .

MIA_DECCDE_DTYPE Data type associated with this part. Obtain with
mt aDecodeMessagel nfol nt ().

142 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessage

Message Code (Continued)

Description

MIA DECCDE_PART_NUVBER

Sequential part number for the current part. The first message part is part 0, the

second part is 1, the third part is 2, and so on. Obtain with
mt aDecodeMessagel nfol nt ().

ltem Codes

The table that follows lists the item codes for the i t em code argument passed to

nt aDecodeMessage() . The list of item codes must be terminated with an item code
with a value of 0.

Additional
Item Codes Arguments Description

MIA_DECCDE LEVELS MAX max_| evel s

MIA_DECCDE_PARTS MAX max_parts

MIA_DECCDE_THRURMAN None

MIA | TEM LI ST ma_itemlist_t
*itemlist

MIA_TERM CR None

Place an upper limit on the depth of nested MIME
multiparts that will be parsed. When this limit is reached

no further parsing of deeper, nested multiparts is
performed and the parts handed over for inspection

include as text content these deeper, nested multiparts.
By default, no limit is imposed. When dealing with looping

notification messages, it is possible for the looping

message to become deeply nested.

This item code must be followed by one additional call

argument whose value is the integer-valued upper limit to

impose: max_levels.

is imposed.

Place an upper limit on the total number of message
parts that will be parsed. When this limit is reached, no
further parsing of parts is performed. By default, no limit

This item code must be followed by one additional call

argument whose value is the integer-valued part limit to

impose: nax_parts.

non-MIME formatted data to MIME.
translation is not performed.

When specified, the MIME parser will first translate

By default this

Specify a pointer to an item list array. The item list array
must be terminated with a final array entry with an item
code value of 0. For further information on item lists, see

“Item Codes and Item Lists” on page 28.

Data supplied by the input routine, pointed to by the

i nput argument, uses a single byte carriage return

terminator to terminate each line of message data. This

option is ignored when i nput _t ype has the value

MIA_DECCDE_DQ

Chapter 6

MTA SDK Reference

143

mtaDecodeMessage

Item Codes (Continued)

Additional
Arguments

Description

MIA_TERM CRLF

MIA TERM LF

MIA_TERM LFCR

MIA_TERM NONE

None

None

None

None

Data supplied by the input routine, pointed to by the

i nput argument, uses a two byte carriage-return
line-feed terminator to terminate each line of message
data. This option is ignored when i nput _t ype has the
value MTA_DECODE_DQ

Data supplied by the input routine, pointed to by the

i nput argument, uses a single byte line-feed terminator
to terminate each line of message data. This option is
ignored when i nput _t ype has the value
MIA_DECCDE _DQ

Data supplied by the input routine, pointed to by the

i nput argument, uses a two byte line-feed
carriage-return terminator to terminate each line of
message data. This option is ignored when i nput _t ype
has the value MTA_DECCDE_DQ

Data supplied by the input routine, pointed to by the

i nput argument, uses no line terminators. Each call to
the input routine returns a single, complete line of
message data. This option is ignored when i nput _t ype
has the value MTA_DECCDE_DQ.

144 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Return Values

mtaDecodeMessagelnfolnt

Return Values

Description

0
MIA_BADARGS

MIA_FOPEN

MIA_NO

MIA_NOVEM
MIA_NOSUCH TEM

Successful, normal completion.

Two conditions cause this error:

1. A NULL value was supplied for input, output (when output_type is
non-zero), or a required argument to an item code.

2. Aninvalid value supplied for either i nput _t ype or out put _t ype.

Unable to initialize the MTA SDK. Unable to read one or more
configuration files. For further information issue the following command:
imsina text -rewite

Can be sent for one of three reasons:
1. Error parsing the supplied message.

2. An error reading from the queued message file when
MIA_DECCDE _DQis supplied for i nput _t ype.

3. Unable to initialize the MTA SDK. In this case, issue the command:
insinta test -rewite

Insufficient virtual memory.

An invalid item code was specified.

Example

For examples of using nt aDecodeMessage, see “Decoding MIME Messages” on
page 89 and “Decoding MIME Messages Complex Example” on page 96.

mtaDecodeMessagelnfolnt

Obtain integer-valued information relating to the current message part.

Chapter 6 MTA SDK Reference 145

mtaDecodeMessagelnfolnt

146

Syntax
I'nt ntaDecodeMessagel nfol nt(nta_decode_t *dctx,
int item;
Arguments
Arguments Description
dect x A decode context created by nt aMessageDecode() .
item Item identifier specifying which value to return. See the description that follows
for the list of permitted values for this argument.
Description

This routine is used to obtain integer-valued information about the current
message part. (When nm aDecodeMessage() calls either a user-supplied inspection or
output routine, it provides a decode context describing the current message part
being processed.)

The following table lists the values for the i t emargument, and gives a description
of each.

Values Description

MIA_DECCDE_DTYPE Data type associated with this part. The returned values will be
MIA_DATA NONE, MTA_DATA HEADER, MI'A_DATA TEXT, or
MIA_DATA Bl NARY.

MIA_DECCDE_PART_NUMBER Sequential part number for the current part. The first message
part is part 0, the second part is 1, the third part is 2, and so
on.

Return Values

Upon normal, successful completion the value of the requested item is returned. In
the event of an error, a value of - 1 is returned and nt a_err no is set to indicate the
error status code. The following table lists the error status codes for this routine,
and gives an example of each.

Error Status Codes Description

MI'A_BADARGS A NULL value was supplied for the dct X call argument.

MI'A_NOSUCH TEM An invalid value was supplied for the i t emcall argument.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessagelnfoParams

Example
part _nunber = ntaDecodeMessagel nf ol nt (dctx, MIA PART_NUMBER);

mtaDecodeMessagelnfoParams

Obtain an option context describing the current message part’s content parameters.

Syntax
nta_opt _t *niaDecodeMessagel nf oParans(nta_decode_t *dctx,
int item
na_opt_t **parans);
Arguments
Arguments Description
dct x A decode context created by nt aMessageDecode() .
item Item identifier specifying which content parameter list to return. See the
description that follows for the list of permitted values for this argument.
par ams An optional pointer to receive the address of the option context describing the
requested parameter list.
Description

This routine returns the parameter lists for either the Cont ent - t ype: or

Cont ent - di sposi ti on: header lines. (When nt aDecodeMessage() calls either a
user-supplied inspection or output routine, it provides a decode context describing
the current part being processed.)

The following table lists the values for the item argument, and gives a description
of each.

Values Description

MFA_DECCDE_CDI SP_PARAMS Parameters associated with the Cont ent - di sposi ti on:
header line, if any.

MI'A_DECCDE_CTYPE_PARANS Parameters associated with the Cont ent - t ype: header
line, if any.

Chapter 6 MTA SDK Reference 147

mtaDecodeMessagelnfoParams

148

The option context returned upon normal completion does not need to be disposed
of with ntaQpt i onFi ni sh() . It will automatically be disposed of by

nt aDecodeMessage() . The values of individual parameters can be queried using
ntaQptionString(),ntaQtionlnt(),andntaQti onFl oat ().Program code need not
worry about whether the underlying header line exists in the parts header. If it
does not, then calls to obtain individual parameter values will succeed, but return
no value.

NOTE If the Cont ent - t ype: header line is not present, nt aQpt i onStri ng()
returns an empty string. This is in contrast to what happens when
mt aDecodeMessagel nf oSt ri ng() is used. It always returns a value for
the CHARSET parameter of the Cont ent -t ype: header line. If the
Cont ent -t ype: header line is not present, it returns the MIME
default value us-asci i .

It is important to note that the option contexts returned by this routine are only
valid during the lifetime of the associated decode context. They are not valid after
inspection or output of a new message part begins, nor are they valid after

nt aDecodeMessage() returns.

Return Values

Upon normal, successful completion, a pointer to an option context is returned. In
the event of an error, a NULL value is returned, and nt a_err no is set to indicate the
error status code. The following table lists the error status codes, and gives a
description of each:

Error Status Codes Description

MI'A_BADARGS A NULL value was supplied for the dct x call argument, or an invalid
decode context was supplied for dct x.

MIA_NOSUCH TEM An invalid value was supplied for the i t emcall argument.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessagelnfoString

Example
char buf [64];

strcpy(buf, "us-ascii");
maQotionString(
nt aDecodeMessagel nf oPar ans(dct x, MIA DECCDE CTYPE_PARANE,
NULL), “"charset", 0, buf, NULL, sizeof (buf));
printf("Message part’s character set is %\n", buf);

mtaDecodeMessagelnfoString

Obtain string-valued information relating to the current message part.

Syntax
const char *niaDecodeMessagel nfoString(nta_decode_t *dctx,
int item
const char **str,
size_t *[en);
Arguments
Arguments Description
dct x A decode context created by nt aMessageDecode() .
item Item identifier specifying which string-value item to return. See the description
that follows for the list of permitted values for this argument.
str An optional pointer to receive the address of the requested string. The string
will be NULL terminated. A value of NULL may be passed for this argument.
| en An optional pointer to receive the length of the requested string. This length is
measured in bytes and does not include the NULL terminator at the end of the
string. A value of NULL may be passed for this argument.
Description

This routine is used to obtain string-valued information about the current message
part. (When nt aDecodeMessage() calls either a user-supplied inspection or output
routine, it provides a decode context describing the current message part being
processed.)

Chapter 6 MTA SDK Reference 149

mtaDecodeMessagelnfoString

150

The following table lists the values for the i t emcall argument, and gives a
description of each.

Values Description

MIA_DECCDE_CCHARSET The character set specified with the CHARSET parameter of the
part's Cont ent - t ype: header line. If the part lacks a CHARSET
specification, then the value us- asci i will be returned.

MIA DECCDE CDI SP Value of the Cont ent - di sposi ti on: header line, less any
optional parameters. If the part lacks a Cont ent - di sposi ti on:
header line, the returned value will be a zero length string.

MIA_DECCDE_CSUBTYPE The content subtype specified with the part's Cont ent - t ype:
header line (for example, pl ai n fort ext/ pl ai n, gi f for
i mage/ gi f). Defaults to pl ai n when the part lacks a
Cont ent -t ype: header line.

MI'A_DECCDE_CTYPE The major content type specified with the part's Cont ent - t ype:
header line (for example, t ext for t ext/ pl ai n, i mage for
i mage/ gi f). Defaults to t ext when the part lacks a
Cont ent -t ype: header line.

Return Values

nt aDecodeMessagel nf oSt ri ng() always returns a value for the CHARSET parameter of
the Cont ent - t ype: header line. When the Cont ent - t ype: header line is not present,
it returns the MIME default value, us- asci i .

Upon normal, successful completion a pointer to the requested string is returned.
In addition, if pointers were provided in the str and | en call arguments, the
address of the string and its length are returned.

In the event of an error, a NULL value is returned and nt a_er r no is set to indicate
the error status code. The following table lists the error status codes, and gives a
description of each.

Error Status Codes Description

MI'A_BADARGS A NULL value was supplied for the dct x call argument, or an invalid
decode context was supplied for dct x.

MI'A_NOSUCH TEM An invalid value was supplied for the i t emcall argument.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessagePartCopy

Example

printf (" The nessage part’ s character set is %\n",
nt aDecodeMessagel nf oStri ng(dctx, MIA DECODE_CCHARSET,

NULL, NULD));

mtaDecodeMessagePartCopy

Explicitly copy a message part to the message being written.

Syntax

int niaDecodeMessagePar t Copy(nia_decode_t *dctX,

int itemcode, ...);

Arguments
Arguments Description
det x A decode context created by nmt aMessageDecode() .
i tem code Reserved for future use. A value of zero must be supplied for this argument.
Description

When an output routine is used in conjunction with nt aDecodeMessage() , the
inspection routine can explicitly request that the current message part be copied to
the output destination. After the inspection routine calls

nt aDecodeMessagePar t Copy(), it will no longer be called for that message part.

If the inspection routine is called with a data type of MTA_DATA NONE, the message
part copy is implicitly done, even if the inspection routine does not call either

nt aDecodeMessagePar t Copy() or nt aDecodeMessagePart Del et e() . Therefore, the
only advantage to making an explicit call to nt aDecodeMessagePar t Copy() is that
once that call is made, the inspection routine will no longer be called for that
particular message part.

Chapter 6 MTA SDK Reference 151

mtaDecodeMessagePartDelete

Return Values

Values Description

0 Normal, successful completion.

MIA_BADARGS A NULL value was supplied for the dct x call argument, or an invalid decode
context was supplied for dct X.

MIA_NO Invalid call to this routine. Either no output routine is being used, or the call
was made from the output routine itself.

Output errors encountered while attempting to write the output may also
result in this error.

Example
This routine is used in “Decoding MIME Messages Complex Example” on page 96.

mtaDecodeMessagePartDelete

152

Prevent a message part from being written or replace it with a text part.

Syntax
i'nt ntaDecodeMessagePar t Del et e(nfa_decode_t *dctX,
int itemcode, ...);

Arguments

Arguments Description

dct x A decode context created by nt aMessageDecode() .

i tem code An optional list of item codes. See the description section that follows for a list
of item codes. The list must be terminated with an integer argument with value
0.

Description

When an output routine is used in conjunction with nt aDecodeMessage() , the
inspection routine may discard the current message part by calling this routine. As
an alternative to discarding the part, it may be replaced with a part containing
caller-supplied data such as a warning message. This replacement is achieved
through the use of item codes.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessagePartDelete

Once nt aDecodeMessagePar t Del et e() has been called, the inspection routine will no
longer be called for that message part. As such, calling the routine is final and
cannot be undone short of cancelling the entire message decode operation itself
(for example, by having the caller-supplied read routine return an error, or after
nt aDecodeMessage() completes, cancelling the dequeue and enqueue operations
with nt aDequeueMessageFi ni sh() and nt aEnqueueFi ni sh()).

The following table lists the item codes for this routine, any additional item code
arguments each item code requires, and gives a description of each.

Iltem Codes Additional Arguments

Description

MIA_DECCDE_CCHARSET const char *charset
size_t charset_len

MIA_DECCDE_CDI SP const char *di sposition
size_t disposition_|len

MIA_DECCDE CLANG const char *|anguage
size_t language_l en

Specify the character set used for the message
part (for example, US- asci i , i So0- 8859- 1).
This item code must be followed by two
additional call arguments:

1. The name of the character set
2. The length in bytes of that name

If a value of zero is passed for the length, then
the name must be NULL terminated.

Specify the content disposition for the message
part (for example, i nl i ne, at t achnent ;

fil enane=a. doc). This disposition information
will be placed in a Cont ent - di sposi tion:
header line. The item code must be followed by
two additional call arguments:

1. The disposition string
2. The length in bytes of that string

If a value of zero is passed for the length, then
the disposition string must be NULL terminated.

Specify the language used for the message part
(for example, en, f r). This language information
will be placed in a Cont ent - | anguage: header
line. The item code must be followed by two
additional call arguments:

1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the length, then
the string must be NULL terminated.

Chapter 6 MTA SDK Reference 153

mtaDecodeMessagePartDelete

Item Codes (Continued)

Additional Arguments

Description

MIA_DECCDE_CSUBTYPE

MIA_DECCDE_CTYPE

MTA_| TEM LI ST

MIA_REASON

const char *subtype
size_t subtype_len

const char *type
size t type_len

ma itemlist t
*itemlist

const char *text
size_t text_len

Specify the content subtype for the message part
(for example, pl ai norht m fortext/pl ai nor
text/ ht m). This subtype information will be
combined with the t ype and char set
information and placed in a Cont ent - t ype:
header line. The item code must be followed by
two additional call arguments:

1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the length, then
the string must be NULL terminated.

Specify the major content type for the message
part (for example, t ext fort ext/pl ai nor
text/ ht m). This major type information will be
combined with the subtype and charset
information and placed in a Cont ent - t ype:
header line. The item code must be followed by
two additional call arguments:

1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the length, then
the string must be NULL terminated.

Specify a pointer to an item list array. The item
list array must be terminated with a final array

entry with an item code value of 0. For further

information on item lists, see “Item Codes and
Item Lists” on page 28.

Specifies the content and length of
caller-supplied text or data used to replace the
deleted message part.

The item code must be followed by two
additional call arguments:

1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the length, then
the string must be NULL terminated.

154 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDecodeMessagePartDelete

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS Returned for one of two reasons:

1. A NULL value was supplied for the dct x call argument, an invalid
decode context was supplied for dct x.

2. Arequired argument to an item code was NULL.

MIA_NO Returned for one of two reasons:

1. Invalid call. Either no output routine is being used, or the call was
made from the output routine itself.

2. Output errors encountered while attempting to write the output.

MIA_NOSUCH TEM An invalid item code was specified.

Example
The following code fragment shows how the routine is used to discard the message
part:

nt aDecodeMessagePart Del et e(dctx, 0);

The following code fragment shows how to replace the message part with a text
warning:

M aDecodeMessagePar t Del et e(dct X,
MIA_REASON, "Warning: virus infected message part was
discarded.”, 0,”
MIA_DECCDE_CLANG "en", 2,
MIA_DECODE_CCHARSET, "us-ascii", 8, 0);

The following code fragment shows the output generated by the preceding code
example.

Content-type: text/plain; charsef=us-ascil
Cont ent -1 anguage: en

Varning: virus infected message part was discarded.

See also “Decoding MIME Messages Complex Example” on page 96

Chapter 6 MTA SDK Reference 155

mtaDequeuelnfo

mtaDequeuelnfo

Obtain information associated with an ongoing message dequeue.
Syntax
int ntaDequeuelnfo(nta_dg_t *dq_ctx,
int itemcode, ...);
Arguments
Arguments Description
dg_ctx A dequeue context created by mtaDequeueStart().
i tem code An optional list of item codes. See the description section that follows for a list of
item codes. The list must be terminated with an integer argument with value 0.
Description

Information associated with an ongoing message dequeue may be obtained with
nt aDequeuel nf o() . The information to obtain is specified through the use of item
codes.

NOTE The pointers returned by nt aDequeuel nf o() are only valid during
the life of the dequeue context. Once the dequeue has been
completed for that particular message, the pointers are no longer

valid.
Item Codes Additional Arguments Description
MI'A_CHANNEL const char **channel Obtain the name of the channel for which messages

are being dequeued. The channel name will be
NULL terminated.

This item code must be followed by two additional
call arguments:

size_t *channel _|len

1. the address of a pointer to receive the address
of the NULL terminated channel name.

2. The address of a Si ze_t to receive the length
of the channel name.

A NULL value may be passed for the channel _| en
argument.

156 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeuelnfo

Item Codes (Continued)

Additional Arguments

Description

MTA DELI VERY_FLAGS

MIA DOVAI N

size_ t *dfl ags

const char **domain
size_t *domain_len

Return the envelope delivery flags for either the
entire message or for a particular recipient. If called
before the first call to

mt aDequeueReci pi ent Next (), then the delivery
flags for the entire message are returned. If called
after the first call to

m aDequeueReci pi ent Next (), then the delivery
flags are returned for the most recently reported
envelope recipient address. The value of the
delivery flags is a logical OR of the

del i veryf I ags channel keyword values on each
channel the message has been enqueued to as it
flows through the MTA.

This item code must be followed by one additional
call argument, the address of a Si ze_t to receive
the delivery flag setting.

Retrieve the destination domain name, if any, the
Job Controller has associated with this dequeue
thread. When the channel is marked with the

singl e_sys channel keyword, then the Job
Controller tries to give each dequeue thread for that
channel all messages destined for the same host as
determined by the domain name in the recipient
envelope addresses.

This item code must be followed by two additional
call arguments:

1. The address of a pointer to receive the address
of the NULL terminated destination domain
name.

2. The address of a Si ze_t to receive the length
of that domain name.

A NULL value may be passed for the domai n_| en
argument.

Chapter 6 MTA SDK Reference 157

mtaDequeuelnfo

Item Codes (Continued)

Additional Arguments

Description

Obtain the envelope ID associated with this
message. If the message was submitted to the MTA
using the SMTP NOTARY extension (RFC 1891),
then this will be the value of the ENVI D parameter
supplied with the SMTP MAI L FROMcommand. In
all other cases, it will be an envelope ID assigned by
the MTA.

This item code must be followed by two additional
call arguments:

1. The address of a pointer to receive the address
of the NULL terminated envelope ID.

2. The address of a Si ze_t to receive the length
of that envelope id.

A NULL value may be passed for the env_id_| en
argument.

Return the envelope recipient address last returned
by nt aDequeueReci pi ent Next () . If that routine
has not yet been called for the dequeue context,
then an MTA_NO error code will be returned.

This item code must be followed by two additional
call arguments:

1. The address of a pointer to receive the address
of the NULL terminated recipient address.

2. The address of a Si ze_t to receive the length
of that address.

A NULL value can be passed for the env_t o_| en
argument.

MIA ENV_I D const char **env_id
size_t *env_id_len

MIA_ENV_TO const char **env_to
size_t *env_to_len

158 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeuelnfo

Item Codes (Continued)

Additional Arguments

Description

MIA_ENV_FROM

MIA_| RCPT_TO

MTA_| TEM LI ST

const char **env_from
size_t *env_fromlen

const char **ircpt_to
size_t *ircpt_to_len

ma itemlist_t
*itemlist

Obtain the envelope Fr om address for the
message. It is possible for this to be an empty string
(that is, a string of zero length). This is not
uncommon and is mandated by Internet standards
for automatically generated notification addresses.
Notifications must never be sent for messages with
an empty envelope Fr om address. The MTA SDK
adheres to this rule when generating any requested
notification messages.

This item code must be followed by two additional
call arguments:

1. The address of a pointer to receive the address
of the NULL terminated envelope Fr om
address.

2. The address of a Si ze_t to receive the length
of that address.

A NULL value can be passed for the
env_from| en argument.

Return the intermediate form of the last envelope
recipient address returned by

mt aDequeueReci pi ent Next () . If that routine

has not yet been called for the dequeue context,

then an MTA_NOerror code will be returned.

This item code must be followed by two additional
call arguments:

1. The address of a pointer to receive the address
of the NULL terminated intermediate recipient
address

1. The address of a Si ze_t to receive the length
of that address.

A NULL value can be passed for the
ircpt_to_| enargument.

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry with
an item code value of zero. For further information
on item list usage, see “ltem Codes and Item Lists”
on page 28.

Chapter 6 MTA SDK Reference 159

mtaDequeueLineNext

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS Received for one of three reasons:

1. A NULL value was supplied for the dg_ct X call argument
2. Aninvalid dequeue context was supplied for dg_ct x
3. Avrequired argument to an item code was NULL.

MIA_NO An attempt was made to retrieve recipient information before calling
nt aDequeueReci pi ent Next () .

MIA_NOSUCH TEM An invalid item code was specified.

MIA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two
different threads.

Example
The following code fragment illustrates how this routine is used to retrieve the
delivery flags and intermediate recipient address for each recipient address.

int dflags, istat;
const char *to, *ito;

while (!(istat = ntaDequeueReci pi ent Next (dg, & o, NULL, 0)))

nt aDequeuel nf o(dqg, MFA_DELI VERY FLAGS, &dfl ags,
MIA | RCPT_TO, & to, NULL, 0);
printf("Delivery flags: %\ n"
"Intermedi ate recipient address: %\n", dflags, ito);

}
if (istat !'= MIA EOF)
printf("An error occured; %\n", ntaStrError(istat));

mtaDequeueLineNext

Read the next line of the message from the queued message file.

160 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueLineNext

Syntax

int ntaDequeueli neNext (nta_dq_t *dg_ctx,
const char **line,

size_t *| en);
Arguments
Arguments Description
dg_ctx A dequeue context created by nt aDequeueStart ().
line Optional address of a pointer to receive the address of the next line of the

message. The line will not be NULL terminated. A value of NULL may be passed
for this argument.

| en Optional address of a Si ze_t to receive the length of the returned line. A value of
NULL may be passed for this argument.

Description

After exhausting a message’s list of envelope recipients by repeated calls to

nt aDequeueReci pi ent Next (), begin reading the message’s header and content with
nt aDequeueLi neNext () . Each call will return one line of the message, with the first
call returning the first line of the message, the second call the second line, and so
on. Once the message has been completely read, the status code MTA_ECF will be
returned.

The returned lines of the message will not be NULL terminated. This is because the
underlying message file is often mapped into memory. When that is the case, then
the returned pointer is a pointer into that memory map. Since the message files
themselves do not contain NULL terminators and the file is mapped read-only, it is
not possible for the SDK to add a NULL terminator to the end of the line without
copying it first to a writable portion of memory.

The returned lines of the message will not have any line terminators such as a line
feed or a carriage return. It is up to the calling routine to supply whatever line
terminators might be appropriate (for example, adding a carriage-return line-feed
pair when transmitting the line over SMTP.)

It is possible to call nt aDequeueLi neNext () with NULL values for both the | i ne and
| en call arguments. But this is of limited use; one example is when writing a
channel that deletes all queued messages after first counting the number of lines in
each message for accounting purposes. More typical of such a channel would be to
supply NULL for the | i ne argument but pass a non-zero address for the | en
argument. That would then allow the channel to count up the number of bytes in
the deleted message.

Chapter 6 MTA SDK Reference 161

mtaDequeueMessageFinish

Return Values

Return Values Description

0 Normal, successful completion.

MIA_BADARGS A NULL value was supplied for the dg_ct x call argument, or an invalid
dequeue context was supplied for dg_ct x.

MIA_ECF Message file has been completely read; no further lines to return.
Example

int istaf;

const char *line;

size_t len;

while (!(istat = ntaDequeueLi neNext(dg_ctx, & ine, &en)))
printf("%*s\n", len, line);

if (istat I'= MIA_ECF)
printf("An error occured; %\n", ntaStrError(istat));

mtaDequeueMessageFinish

162

Complete a message dequeue or defer a message for later processing.

Syntax
int ntaDequeueMessageFi ni sh(nta_dg_t *dg_ctx,
int itemcode, ...);

Arguments

Arguments Description

dg_ctx A dequeue context created by nt aDequeueStart ().

i tem code An optional list of item codes. See the description section the follows for a list
of item codes. The list must be terminated with an integer argument with value
0.

Description

Before completing processing of a queued message, the disposition of each
envelope recipient must be set either by repeated calls to

nt aDequeueReci pi ent Di sposi tion(), or by means of the MTA DI SP item code for
nt aDequeueMessageFi ni sh() . For the former, a call should be made for each

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueMessageFinish

envelope recipient address. For the latter, the disposition set with MTA_DI SP applies
to all envelope recipients, overriding any previous settings made with

nt aDequeueReci pi ent Di sposi tion(). It is important that the dispositions be set
correctly because they influence whether or not the message is deleted from the
channel’s queue by nt aDequeueMessageFi ni sh() . Incorrectly setting the dispositions
can lead to duplicate message delivery, or, worse yet, lost mail.

To complete processing of a queued message, call nt aDequeueMessageFi ni sh() .
Upon being called, the routine performs one of three possible actions:

= Ifall recipients have a disposition indicating successful processing or a
permanent failure, then the underlying message file is deleted from the
channel’s queue and any necessary notification messages are sent. This
corresponds to the dispositions: MTA_ DI SP_DELI VERED, MTA DI SP_FAl LED,
MTIA_DI SP_RELAYED, MIA DI SP_RELAYED FOREl G\, MTA DI SP_RETURN, and
MTA_DI SP_TI MEDOUT.

- Ifall recipients have a disposition indicating a temporary processing problem
or if the MTA_ABCRT item code is specified, then the message file is left in the
channel’s queue and a subsequent processing attempt is scheduled. The
MFA_Di SP_DEFERRED disposition is the only disposition that indicates a
temporary processing problem. Generation of delay notifications is handled by
a special MTA process referred to as the return job. Generation of delay
notifications is not handled by nt aDequeueMessageFi ni sh() .

= Ifonly a subset of the recipients have a disposition indicating a temporary
processing problem, then a new message is placed in the channel’s queue. This
new message is identical to the current message being processed except that its
envelope recipient list contains just those recipients whose disposition
indicates a temporary processing problem. The current message being
processed is then removed from the channel’s queue and any necessary
notifications are sent for the recipients that had dispositions indicating
successful processing or a permanent failure.

After m aDequeueMessageFi ni sh() is called, the dequeue context passed to it is no
longer valid, regardless of the status it returns. When it returns an error status, it
also defers the message and all of its recipients for later processing. This is done
regardless of the disposition of the recipients. Doing otherwise could potentially
lead to lost mail.

Internet standards require that notifications concerning a message be directed to
the message’s envelope From address. In addition, the following two rules apply:

= Automatically generated notification messages themselves must have an
empty envelope From address.

Chapter 6 MTA SDK Reference 163

mtaDequeueMessageFinish

= Notifications must not be sent for messages with an empty envelope From
address.

These two rules combine to prevent certain broad classes of message loops. The
MTA SDK strictly adheres to these Internet requirements.

Whenever a temporary processing error occurs and the channel can no longer
process a queued message, processing of the message should be deferred until a
later time. Processing for all recipients is deferred regardless of any prior
disposition settings. Temporary processing errors include such errors as:
insufficient virtual memory, network problems, disk errors, and other unexpected
processing errors.

The following table lists the item codes for this routine, the additional arguments
they take, and gives a description of each one.

Iltem Codes Additional Arguments Description

MIA_ABCRT None When this item code is specified, processing of the
message is deferred for all recipients of the message. The
message is left in the channel’'s queue and a later
processing attempt is scheduled.

MIA_DI SP size_t disposition Use the MTA_DI SP item code to set the disposition for all
recipients of the message. This disposition will override any
prior disposition settings.

This item code must be followed by one additional call
argument: the disposition value to set. See the description
of m aDequeueReci pi ent D sposition() fora
discussion of the disposition settings.

MIA | TEM LI ST naitemlist _t Specify a pointer to an item list array. The item list array
*itemlist must be terminated with a final array entry with an item
code value of zero. For further information on item list
usage, see “Item Codes and Item Lists” on page 28.

MIA_REASON const char *reason When deferring processing of a message, the reason for
the deferral may be saved as part of the messages delivery
history. This delivery history may be viewed by system
managers with the MTA gmutility. It may also be reported in
delay notifications.

size_t reason_len

This item code must be followed by two additional call
arguments:

1. The address of the string containing the reason text.

1. The length in bytes of the reason text. If a value of zero
is passed for the length, then the reason text must be
NULL terminated.

164 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueRecipientDisposition

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS Received for one of two reasons:

1. ANULL value was supplied for the dg_ct X call argument, an invalid
dequeue context was supplied for dq_ct x,.

2. Avrequired argument to an item code was NULL.

MIA_NO Unable to dequeue the message. This error can result from an attempt
to enqueue a new message to a subset of recipients.

MIA_NOSUCH TEM An invalid item code was specified.

MIA_CRDER Call made out of sequence. The call was made either before the
recipient list has been exhausted with
nt aDequeueReci pi ent Next (), or after the message had been
dequeued or deferred with it aDequeueMessageFi ni sh() .

MIA_THREAD The MTA SDK detected simultaneous use of the dequeue context by
two different threads.

Example
There are three code examples, each showing variations on deferring a message.

The following code fragment shows how to use this routine to defer processing of a
message until a later time by calling the routine with the MTA_ABCRT item code:

nt aDequeueMessageFi ni sh(dg_ctx, MIA ABCRT, 0);

The following code fragment shows how to use this routine to defer processing of a
message and setting the disposition:

nt aDequeueMessageFi ni sh(dg_ctx, MIA D SP, MIA DI SP_DEFERRED, 0);

The following code fragment shows how to use this routine to defer processing of a
message with a text string explaining the reason for the deferral:

Nt aDequeueVessageri ni Sh{dg_ct X, MIA_ABORT, MIA_REASON,
"Tenporary network error", 0, 0);

mtaDequeueRecipientDisposition

Specify the delivery status (disposition) of an envelope recipient address.

Chapter 6 MTA SDK Reference 165

mtaDequeueRecipientDisposition

Syntax
int ntaDequeueReci pientD sposition(nta_dq_t *dg_ctx,
const char *env_to,
size_t env_to_|en,
size t di sposition,
i nt itemcode, ...);
Arguments
Arguments Description
dg_ctx A dequeue context created by nt aDequeueStart ().
env_to The recipient address to effect the setting for. This must be the recipient’s
envelope To: address as returned by nt aDequeueReci pi ent Next () and
not some transformation of that address. If a value of zero is passed for the
env_t o_| en argument, then this string must be NULL terminated.
env_to_len The length in bytes of the recipient address, env_t 0. This length does not
include any NULL terminator. If a value of zero is passed for this argument,
then the recipient address string must be NULL terminated.
di sposition The delivery status disposition to set for this recipient address. See the
description section that follows for further details.
i tem code An optional list of item codes. See the description section that follows for a
list of item codes. The list must be terminated with an integer argument with
value 0.
Description

Before completing processing of a queued message, the disposition of each
envelope recipient must be set either by repeated calls to

nt aDequeueReci pi ent Di sposi tion(), or by means of the MTA Di SP item code for

nt aDequeueMessageFi ni sh() . For the former, a call should be made for each
envelope recipient address. For the latter, the disposition set with MTA DI SP applies
to all envelope recipients, overriding any previous settings made with

nt aDequeueReci pi ent Di sposi tion(). The delivery status dispositions, and their
descriptions are listed in the table that follows. Pass one of these values for the
disposition argument.

Delivery Status Dispositions Description

MIA_DI SP_DEFERRED Processing for this recipient has experienced a temporary failure (for
example, the network is temporarily down, the disk is currently full, the
recipient is presently over quota). Schedule a later processing attempt for this
recipient.

166 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueRecipientDisposition

Delivery Status Dispositions

Description

MTA DI SP_DELI VERED

MIA_Di SP_FAI LED

MIA_DI SP_RELAYED

MIA DI SP_RELAYED FCREI GN

MIA DI SP_RETURN

MIA DI SP_TI MEDOUT

Final delivery has been effected for this recipient address. Any required
delivery notifications should be generated. Intermediate processing channels
should use MTA_DI SP_RELAYED rather than MTA_DI SP_DEL| VERED. Use of
MIA_Di SP_DELI VERED by an intermediate processing channel might
incorrectly generate a delivery status notification when final delivery has not
yet been effected.

Processing for this recipient has experienced a permanent failure. The
message is and will remain undeliverable for this recipient. No further delivery
attempts are to be made for this recipient. Any required non-delivery
notifications should be generated.

The message has been successfully processed for this recipient. No further
processing by this channel is needed for this recipient address. No delivery
status notification is generated as final delivery will be effected by another
entity capable of generating any needed notification messages. This
disposition should be used by intermediate processing channels. It should
also be used by gateways that transfer the message to other mail systems
capable of generating the necessary notification messages.

The message has been successfully processed for this recipient. No further
processing by this channel is needed for this recipient address; however, a
relayed delivery status notification should be generated if delivery notification
was requested for this recipient. This disposition should be used by gateways
that transfer the message to other mail systems incapable of generating the
necessary notification messages.

Generate a postmaster non-delivery notification for this recipient and, for this
recipient, remove the message from the channel’s queue. This disposition is
not intended for use by channels. Instead, it should be used by postmaster
utilities that allow the postmaster to manually return mail messages.

Generate a timed-out non-delivery notification indicating that the message
has been undeliverable for too long and no further delivery attempts will be
made. This disposition is not intended for use by channels. Instead, it is meant
for use by the MTA return job that scans the MTA queues, returning old,
undeliverable messages to their originators.

Chapter 6 MTA SDK Reference 167

mtaDequeueRecipientDisposition

This table lists the item codes for this routine, and the additional required
arguments, and gives a description of each.

Item Codes Additional Arguments

Description

MIA D SP size_t disposition

MIA_| TEM LI ST nma_itemlist_t

*itemlist

MIA_REASON const char *reason

size_t reason_len

Use the MTA_DI SP item code to set the disposition for all
recipients of the message. This disposition will override any prior
disposition settings. This item code must be followed by one
additional call argument: the disposition value to set. See the
description of nt aDequeueReci pi ent Di sposi ti on() for a
discussion of the disposition settings.

Specify a pointer to an item list array. The item list array must be
terminated with a final array entry with an item code value of
zero. For further information on item list usage, see “ltem Codes
and Item Lists” on page 28.

The reason for ascribing the disposition to this recipient address.
This reason might then appear in any delivery or non-delivery
status notification for that recipient.

This item code must be followed by two additional call
arguments:

1. the address of the string containing the reason text.

2. The length in bytes of the reason text. If a value of zero is
passed for the length, then the reason text must be NULL
terminated.

168

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueRecipientNext

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS This value was returned for one of the following reasons:

1. A NULL value was supplied for the dg_ct x call argument.
2. Aninvalid dequeue context was supplied for dg_ct x.
3. Avrequired argument to an item code was NULL.

MIA_NOSUCH TEM An invalid item code was specified.

MIA_THREAD The MTA SDK detected simultaneous use of the dequeue context by
two different threads.

Example
This code fragment assumes a condition in which the recipient address is invalid. It
returns a disposition of MTA_Di SP_FAI LEDwith an explanation.

i aDequeueReci pi ent Di Sposi Ti on{
dg_ctx, "sue@iroe.cont, 0, MIA D SP_FAl LED,
MIA REASON, "Invalid recipient address: no such user", 0, 0);

mtaDequeueRecipientNext

Obtain the next envelope recipient address for the queued message file.

Chapter 6 MTA SDK Reference 169

mtaDequeueRecipientNext

170

Syntax

int ntaDequeueReci pi ent Next (nta_dq_t *dq_ctx,
const char **env_to,

size_t *env_to_len,
int itemcode, ...);
Arguments
Argument Description
dg_ctx A dequeue context created by nt aDequeueStart ().
env_to Optional address of a pointer to receive the memory address of the next

envelope recipient address. The recipient address will not be NULL terminated.

env_to_len Optional address of a Si ze_t to receive the length of the returned recipient
address. A value of NULL may be passed for this argument.

i tem code An optional list of item codes. See the description section that follows for a list
of item codes. The list must be terminated with an integer argument with value
0.

Description

The first step in processing a queued message is to retrieve its list of envelope
recipient addresses. This is done by repeatedly calling nt aDequeueReci pi ent Next ()
until a status code of MTA_ECF is returned. Note that each call that returns a recipient
address will return a status code of 0 (MTA_OK). The final call, which returns MTA_ECF,
will not return a recipient address.

The processing of the list of envelope recipient addresses will, in general, be unique
to each channel. Intermediate processing channels should simply re-enqueue a
new message and copy the envelope recipient list verbatim over to the new
message being enqueued, being sure to specify the MTA ENV_TOand MIA_DQ CONTEXT
item codes to nt aEnqueueTo() . The envelope recipient list must be read in its
entirety before attempting to read the message itself with nt aDequeueLi neNext () .
Failure to do so will result in an MTA_ORDER error being returned by

nt aDequeueLi neNext () .

This routine accepts the same item codes as nt aDequeuel nf o() . The code fragments
are equivalent also, (compare the examples). Consequently, the nt aDequeuel nf o()
routine might appear superfluous. However, it also serves as a means of obtaining,
in a single, non-repeated call, information about the overall message itself, such as
the message’s envelope ID.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueRewind

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS This value was returned for one of the following reasons:

1. A NULL value was supplied for the dg_ct x call argument.
2. Aninvalid dequeue context was supplied for dq_ct x.

3. A NULL value was supplied for a required item code argument.

MIA_NOVEM Insufficient virtual memory.

MIA_ECF The recipient list has been completely read; there are no further recipient
addresses to return.

MIA_THREAD Concurrent use of the dequeue context by two different threads has been
detected.

Example

This code fragment illustrates an intermediate processing channel using this
routine to fetch recipient addresses.

int dffags, istat;
const char *to, *ito;
while (!(istat = maDequeueReci pi ent Next (dg, & o, NULL,
MIA DELI VERY_FLAGS, &dfl ags,
MIA_| RCPT_TQ, & to, NULL, 0)))
printf("Delivery flags: %\ n"
"Intermedi ate recipient address: 9%\n", dflags, ito);
if (istat != MIA ECF)
printf("An error occured; %\n", ntaStrError(istat));

mtaDequeueRewind

Reset the read point to the start of the message.

Syntax
i nt ntaDequeueLi neNext (nta_dq_t *dg_ctx);

Chapter 6 MTA SDK Reference 171

mtaDequeueStart

Arguments

Arguments Description

dg_ctx A dequeue context created by nt aDequeueStart ().

Description
Repositions the read point back to the start of the message.

After obtaining a message’s recipient list by repeated calls to

nt aDequeueReci pi ent Next (), the read point into the underlying message file is
positioned at the start of the actual message. Specifically, at the start of the
message’s outermost header. Calling nt aDequeueLi neNext () advances this read
point, with each call moving it towards the end of the message. To reposition the
read point back to the start of the message (that is, to the start of the message’s
outermost header), call nt aDequeueRewi nd() . Use this call if a program needs to
make a second pass through a message. For example, a program might scan a
message’s content before actually processing it.

Return Values

Return Values Description

0 Normal, successful completion.

MIA_BADARGS A NULL value was supplied for the dg_ct X call argument, or an invalid
dequeue context was supplied for dg_ct x.

MIA_CRDER Call made out of sequence. The call was made either before the recipient list
has been exhausted with nt aDequeueReci pi ent Next (), or after the
message had been dequeued or deferred with
nt aDequeueMessageFi ni sh() .

MI'A_THREAD The MTA SDK detected simultaneous use of the dequeue context by two
different threads.

Example
None

mtaDequeueStart

Initiate message dequeue processing.

172 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueStart

Syntax
int niaDequeueStart(void *cixT,

ma_dg_process_nessage_t *process_nessage,
nt a_dq_process_done_t *process_done,
i nt itemcode, ...);

Arguments

Arguments Description

ctx1 Optional pointer to a caller-supplied context or other data type. This

process_nessage

process_done

pointer will be passed as the ct X1 argument to the caller-supplied
routines process_nessage and process_done. A value of NULL

may be passed for this argument.

The address of a caller-supplied routine to process each message.

Optional address of a caller-supplied clean up routine. A NULL value

may be passed for this argument.

i tem code An optional list of item codes. See the description section that follow for
a list of item codes. The list must be terminated with an integer
argument with value 0.

Description

The nt aDequeueSt art () routine initiates processing of messages queued to a
specific channel. By default, the channel serviced will be determined from the
PMDF_CHANNEL environment variable. However, a channel name can be explicitly
specified with the MTA_CHANNEL item code.

All of the item codes, their additional arguments, and a description of each are
included in the table that follows.

Item Codes

Additional Arguments Description

MIA_CHANNEL

const char *channel
size_t channel Ien

Explicitly specify the name of the channel name
to perform dequeue processing for. This item
code must be followed by two additional call

arguments: the name of the channel and the
length in bytes of that channel name. If a value of
zero is passed for the length, then the channel

name must be NULL terminated.

When this item code is not specified, the name of
the channel to process queued messages for is
taken from the PMDF_CHANNEL environment

variable.

Chapter 6 MTA SDK Reference 173

mtaDequeueStart

Iltem Codes (Continued)

Additional Arguments

Description

MTA | TEM LI ST

MIA_JBC_MAX_ATTEMPTS

MIA_JBC_RETRY_| NTERVAL

MIA_THREAD MAX_THREADS

MIA_THREAD STACK S| ZE

nma itemlist _t
*itemlist

Size t attenpts

size_t seconds

size_t threads

size_t bytes

Specify a pointer to an item list array. The item
list array must be terminated with a final array
entry with an item code value of zero. For further
information on item list usage, see “ltem Codes
and ltem Lists” on page 28.

Specify the maximum number of contiguous
attempts that will be made to sleep and then
re-query the Job Controller for work after being
told by the Job Controller that there are no more
messages to process. The default value for this
setting is 5 attempts. If an attempt succeeds in
providing additional work, the count of attempts
is reset to zero. (The duration of each sleep may
be specified with the

MIA_JBC_RETRY_I| NTERVAL item code.)

This item code must be followed by an additional
argument: the maximum number of contiguous
attempts to make.

Set the number of seconds

nt aDequeueMessage() sleeps before again
querying the Job Controller for additional work.
When not specified, a value of 10 seconds is
used. This item code must be followed by one
additional argument: the number of seconds to
sleep for.

Specify the maximum number of processing
threads to run concurrently. If not specified, then
a limit of 20 threads is assumed.

This item code must be followed by one
additional argument: the maximum number of
concurrent threads to permit.

By default, the processing threads will have a
stack whose size is sufficient for MTA SDK
operations. This is the size returned by the

nt aSt ackSi ze() routine. To request a larger
size, use this item code to specify the desired
size. Note that specification of a smaller size is
ignored: nt aDequeueMessage() will never use
a stack size smaller than that returned by

nt aSt ackSi ze() .

This item code must be followed by one
additional argument: the minimum size in bytes
for each thread'’s stack.

174 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueStart

Item Codes (Continued) Additional Arguments Description

MIA_THREAD MAX_MESSACGES size_t messages The number of messages to allocate per
processing thread. The channel program will aim
to run N processing threads where N is
computed as follows: N = (count of pending
queued messages) /

MIA_THREAD NMAX_MESSACES. For example, if
there are 100 queued messages and
MIA_THREAD MAX_MESSACES has its default
value of 20 messages, then 5 processing
threads are started.

This value does not control the total number of
messages presented to a single processing
thread.

This item code must be followed by one
additional argument: the number of messages
for each processing thread.

MIA THREAD WAI T_TI MEQUT size t seconds Once nt aDequeueMessage() determines that
there are no more messages to process, it waits
for all processing threads to complete their work
and exit. By default, nt aDequeueMessage()
will wait no longer than 1800 seconds (30
minutes).

This item code must be followed by one
additional argument: the maximum number of
seconds to wait.

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS This value is returned for one of following reasons:

1. A NULL value was supplied for the dg_ct x call argument.

2. Aninvalid dequeue context was supplied for dg_ct x.

3. ANULL value was specified for the pr ocess_nessage routine.
4. A NULL value was supplied for a required item code argument.

MIA_FCPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files.

For further information, issue the following command:
insinta test -rewite

Chapter 6 MTA SDK Reference 175

mtaDequeueStart

176

Return Values

Description

MIA_NETWORK
MIA NO

MIA_NOVEM
MIA_NOSUCHCHAN

MIA_NOSUCH TEM

Error communicating with the Job Controller.

Unable to initialize the MTA SDK.
For further information, issue the following command:
insinma test -rewite

Insufficient virtual memory.

Specified channel is not defined in the MTA configuration file. If no
channel was explicitly specified, then the channel name specified with
the PMDF_CHANNEL environment variable is not defined in the MTA
configuration file. This error may also be returned when the Job
Controller’s configuration file lacks a CHANNEL section matching the
specified channel.

An invalid item code was specified.

Example

For an example of nt aDequeueSt art (), see “Decoding MIME Messages Complex
Example” on page 96.

Other Considerations for mtaDequeueStart

This section contains supplementary information concerning nt aDequeueSt art () . It
covers the following topics:

= “Multiple Calls to mtaDequeueStart” on page 177

= “Message Processing” on page 177

= “Message Processing Procedure” on page 177

= “process_message Routine” on page 178

e “process_done() Routine” on page 180

= “Thread Creation Loop” on page 181

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueStart

Multiple Calls to mtaDequeueStart

A channel program can call nt aDequeueSt art () multiple times: either sequentially
or in parallel. In the latter case, the program would need to create threads so as to
effect multiple, simultaneous calls to nt aDequeueSt art () . However, just because
this can be done does not mean that it is appropriate to do so. In the former case of
multiple sequential calls, there’s no need to be making repeated calls. When

nt aDequeueSt art () returns, the channel no longer needs immediate processing and
has been in that state for

MIA JBC ATTEMPTS MAX * MIA_JBC RETRY_| NTERVAL

seconds. Instead, the channel program should exit thereby freeing up system
resources. The Job Controller will start a new channel program running when there
are more messages to process. In the latter case of multiple parallel calls, there is
again no need to do so. If there is an advantage to running more threads than a
single call generates, then the channel’s t hr eaddept h channel keyword setting
should be increased so that a single call does generate more threads. The only
exception to either of these cases might be if the multiple calls are each for a
different channel. Even then, however, the advantage of so doing is dubious as the
same effect can be achieved through the use of multiple processes, one for each
channel.

Message Processing

When nt aDequeueSt art () is called, a communication path with the MTA Job
Controller is established. The Job Controller is then asked if there are messages to
be processed for the channel. Typically there will be messages to process since it is
the Job Controller that normally starts channel programs, and it does so when there
are queued messages in need of processing. Based upon information obtained from
the Job Controller, nt aDequeueSt art () will then begin to create non-joinable
processing threads. Each processing thread immediately begins processing the
queued messages.

Message Processing Procedure
To process queued messages, a processing thread takes the following steps:

1. The thread sets ct x2 to have the value NULL:
ctx2 = NULL;

For information on the process_nessage arguments, see “process_message
Routine” on page 178.

2. The thread communicates with the Job Controller to obtain a message file to
process. If there are no more message files to process, then go to Step 9.

Chapter 6 MTA SDK Reference 177

mtaDequeueStart

3. For the message file, the thread creates a dequeue context that maintains the
dequeue processing state for that message file.

4. The thread then invokes the caller-supplied pr ocess_nessage routine, passing
to it the dequeue context created in Step 3, for example:

i stat = process_nessage(&ctx2, ctxl, &q_ctx, env_from
env_fromlen);

For a description of the process_nessage routine, see “process_message
Routine” on page 178.

5. The process_nessage routine then attempts to process the message, ultimately
removing it from the channel’s queues or leaving the message file for a later
processing attempt.

6. If mtaDequeueMessageFi ni sh() was not called before the process_nessage
routine returned, then the queued message is deferred. That is, its underlying
message file is left in the channel’s queue and a later processing attempt is
scheduled.

7. The dequeue context is destroyed.

8. Ifthe process_message routine did not return the MTA_ABCRT status code, then
repeat this cycle starting at Step 2.

9. The caller-supplied process_done routine is called, for example:
process_done(&ctx2, ctxl);

For a description of the process_done routine, see “process_done() Routine” on
page 180.

10. The thread exits.

process_message Routine
This caller-supplied routine is invoked by the processing threads to do the actual
processing of the messages.

The following code fragment shows the required syntax for a process_message
routine.

int process_nessage(voi d **cix2,
voi d *ctx1,
nma dg_t *dg_ctx,
const char *env_from
i nt env_fromlen);

178 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueStart

The following table lists the required arguments for a pr ocess_nessage routine, and
gives a description of each.

Arguments Description

ct x2 A writable pointer that the pr ocess_nessage routine can use to store a
pointer to a per-thread context. See the description that follows for further
details.

ctxl The caller-supplied private context passed as Ct X1 to
nt aDequeueStart ().

dg_ctx A dequeue context created by nmt aDequeueSt art () and representing the
message to be processed by this invocation of the pr ocess_nessage
routine.

env_from A pointer to the envelope Fr om address for the message to be processed.

Since Internet messages are allowed to have zero length envelope Fr om
addresses, this address can have zero length. The address will be NULL
terminated.

env_froml|en The length in bytes of the envelope Fr om string. This length does not
include any NULL terminator.

When a processing thread first begins running, it sets the value referenced by ct x2
to NULL. This assignment is made only once per thread and is done before the first
call to the process_message routine. Consequently, on the first call to the
process_nessage routine, the following test is true:

*ctx2 == NULL

That test will remain true until such time that the process_nessage routine itself
changes the value by making an assignment to *ct x2. As demonstrated in the
following code fragment, if the process_message routine needs to maintain state
across calls to itself by the same processing thread, it can allocate memory for a
structure to store that state in, and then save a pointer to that memory with ct x2.

int process_nessage(void **ctx2, void *ctxl,
const char *env_from size_t env_fromlen)

struct our_state_t *state;

(our_state_ t *)(*ctx2);

/*

* First call for this thread.

* Allocate a structure in which to store the state

* information

*/

state = (our_state_t *)calloc(1l, sizeof(our_state_t));

Chapter 6 MTA SDK Reference 179

mtaDequeueStart

it (Tstate) refurn{MIA_ABCRI);
*ctx2 = (void *)state;

/*

* Set any appropriate initial values for the state
* structure

*/

For a sample process_nessage routine, see Code Example 5-2 on page 96.

process_done() Routine

To assist in cleaning up state information for a thread, callers can provide a routine
pointed to by the process_done argument.

The following code fragment shows the required syntax for a pr ocess_done routine.

VOi d process_done(voi d *Ctx2,

void *ctx1);

The following table lists the arguments required for a pr ocess_done routine, and
gives a description of each.

Required Arguments Description

ctx2 The value of the last pointer stored by pr ocess_nessage in the ct x2
call argument for this thread.

ctxl The caller-supplied private context passed as Ct X1 to
m aDequeueStart ().

The following code fragment demonstrates the type of actions taken by a
process_done routine.

VOi d process_done(ctx2, Ctxl)

struct our_state_t *state = (our_state_t *)ctx2;
if (!state)

return;
/*

* Take steps to undo the state
* (for exanple, close any sockets or files)
*/

180 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDequeueStart

I*
* Free the nenory all ocated by process_nessage()
* to store the state
*/

free(state)

Thread Creation Loop

While the processing threads are running, the thread that invoked
nt aDequeueSt art () executes a loop containing a brief pause (that is, a sleep

request). Each time the nt aDequeueSt art () thread awakens, it communicates with

the Job Controller to see if it should create more processing threads. In addition,
the Job Controller itself has logic to determine if more threads are needed in the

currently running channel program, or if it should create additional processes to

run the same channel program.

To demonstrate, the following code fragment shows pseudo code of the
nt aDequeueSt art () loop.

threads_running = 0
t hreads_max = MIA THREAD MAX_ THREADS

attentps = MIA_JBC MAX_ATTEMPTS

LQoP;
whil e (threads_running < threads_max)
{

G to DONE if a shut down has been requested

pendi ng_nessages = Ask the Job Controller how many
nmesssages there are to be processed

/1 1f there are no pending nessages
/1 then consider what to do next

i f (pending_nmessages = 0)

{

/] Continue to wait?
if (attenpts <= 0)
go to DONE

/] Decrenment attenpts and wait
attenpts = attenpts - 1;
go to SLEEP

}
/] Reset the attenpts counter
attenpts = MIA_JBC MAX ATTEMPTS

t hreads_needed = Ask the Job Controller how many
processing threads are needed

/1 Cannot run nore then threads_nax threads per process
if (threads_needed > threads_max)

Chapter 6 MTA SDK Reference

181

mtaDequeueThreadld

threads_needed = threads_nax

/I Oreate additional threads if needed
i f (threads_needed > threads_running)

Create (threads_needed - threads_running) nore threads
t hreads_runni ng = threads_needed

}
}
SLEEP:
Sl eep for MIA_JBC RETRY_|I NTERVAL seconds

-- a shut down request will cancel the sleep
go to LOOP

DONE:
Vit up to MIA THREAD WAI T_TI MEQUT seconds
for all processing threads to exit

Return to the caller of maDequeueStart()

mtaDequeueThreadld

Return the thread ID associated with the specified dequeue context.

Syntax
int ntaDequeueThreadld(nta_dg_t *dg_ctx);

Arguments

Arguments Description

dg_ctx A dequeue context created by nt aDequeueStart ().
Description

Each processing thread is assigned a unique integer identifier referred to as a
thread ID. This thread ID is intended as a diagnostic aid when debugging channel
programs. Showing it with diagnostic messages helps to differentiate the work of
one thread from another in the channel’s debug log file.

The thread ID can also be obtained with nt aDequeuel nf o() .

182 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaDone

Return Values
In the event of an error, the value - 1 is returned and nt a_errno is set to indicate the
error status code.

Error Status Code Description

MI'A_BADARGS A NULL value was supplied for the dg_ct X call argument, or an invalid
dequeue context was supplied for dq_ct x.

Example

mi aLog("v®8d: process_nessage() called with dg_Ctx=%",
nt aDequeueThr eadl d(dg_ct x), dg_ctx);

mtaDone
Release resources used by the MTA SDK.

Syntax
voi d nt aDone(voi d);

Arguments
None

Description

Once use of the MTA SDK has been finished, nt aDone() should be called to release
any resources used by the MTA SDK. The routine should be called while the
calling process is single threaded.

Return Values
None

Example
nt aDone() ;

mtaEnqueueCopyMessage

Copy a queued message to a new message being enqueued.

Chapter 6 MTA SDK Reference 183

mtaEnqueueCopyMessage

184

Syntax

int ntaEnqueueCopyMessage(nia_ng_t *ng_ctx,
nma dg_t *dg_ctx,

i nt rew nd);
Arguments
Arguments Description
ng_ctx Message submission to copy the message data to. Ng_ct X must be an enqueue

context created by nt aEnqueueStart ().

dg_ct x Queued message to copy the message data from. Must be a a dequeue context
created by m aDequeueStart ().

rew nd Supply a value of 1 to move the read point in the queued message file to the start
of the message before commencing the copy operation. Supply a value of zero to
leave the message read point unchanged before copying.

Description

Intermediate processing channels often need to copy verbatim a message from a
channel queue to a new message being enqueued. That is, intermediate processing
channels often re-enqueue an existing, queued message. This verbatim copy can be
accomplished with nt aEnqueueCopyMessage() . Using this routine is significantly
faster than using nt aDequeueLi neNext () and nt aEnqueueWi t eLi ne() in a read and
write loop.

When nt aEnqueueCopyMessage() is called, the copy begins at the current read point
of the queued message file associated with the supplied dequeue context, dg_ct x.
The message file from that point to its end is copied to the new message being
enqueued. To start at the beginning of the queued message (that is, to start at the
beginning of its outermost header), specify a value of 1 for the r ew nd call
argument. So doing is equivalent to first calling nt aDequeueRewi nd() before

nt aEnqueueCopyMessage() .

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Return Values

mtaEnqueueError

Return Values

Description

0
MIA_BADARGS

MIA_FCREATE

MIA_FI O
MIA_ORDER

MIA_THREAD

Normal, successful completion.

This value is returned for one of the following reasons:

1. A NULL value was supplied for either the nq_ct x or dq_ct x call
arguments.

2. Invalid contexts were passed for either or both of those call arguments.

Unable to create a temporary file to hold data for the new message being
enqueued.

An 1/O error occurred while attempting to write data to a message file.

Call made out of order. Either no recipients have yet been specified for the
new message with nt aEnqueueTo(), or the recipient list of the queued
message has not been completely read with

nt aDequeueReci pi ent Next () .

Simultaneous use of either the enqueue or dequeue context by two different
threads was detected.

Example

The following code fragment specifies starting at the beginning of the queued
message by using the rew nd call argument.

nt aEnqueueMessageCopy(ng_ctx, dg_ctx, 1);

The code fragment that follows illustrates a second, less efficient way of copying

the message.

nt aDequeueRew nd(dq_ct x)
whi | e (!m aDequeueLi neNext (dg_ctx, & ine, & en))
nt aEnqueueWiteline(ng_ctx, line, len, NULL);

mtaEnqueueError

Retrieve an extended error message.

Chapter 6 MTA SDK Reference 185

mtaEnqueueError

Syntax
const char *nmiaEnqueueError(nta_ng_t *ng_ctx, const char **nessage,
size t *message_| en,
i nt itemcode);
Arguments
Arguments Description
ng_ct x An enqueue context created by nt aEnqueueStart ().
nessage Optional address of a pointer to receive the address of the NULL terminated error

message text. A NULL value may be supplied for this argument.

nmessage_| en Optional address of a Si ze_t to receive the length in bytes of the error message
text. A NULL value may be supplied for this argument.

item_code Reserved for future use. A value of zero must be supplied for this call argument.

Description

When nt aEnqueueTo() returns an MTA_NOerror message, there is often extended
error information available, which takes the form of a text string suitable for
writing as diagnostic output. To retrieve this information, issue nt aEnqueueEr r or ()
immediately after receiving an MTA_NOerror return from nt aEnqueueTo() .

Return Values

In the event of an error from nt aEnqueueEr ror (), a NULL value will be returned and
nt a_errno is set to indicate the error status code. The following table lists the error
status codes, and gives a description of them.

Error Status Codes Description

0 Normal, successful completion.

MI'A_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the ng_ct X call argument.

2. Aninvalid context was passed for ng_ct X.

MIA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example

None

186 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueFinish

mtaEnqueueFinish
Complete or cancel a message enqueue operation.
Syntax
it ntaBEnqueuer ni sh{nta_nq_t *ng_ctx,
int itemcode, ...);
Arguments
Arguments Description
ng_ctx An enqueue context created by mt aEnqueueStart ().
i tem code An optional list of item codes. See the description section that follows for a list
of item codes. The list must be terminated with an integer argument with value
0.
Description

Call nmt aEnqueueFi ni sh() to complete an enqueue operation, submitting a new
message to the MTA for transport and delivery. Alternatively, call

nt aEnqueueFi ni sh() with the MTA_ABCRT item code to cancel an enqueue operation
without submitting a new message. In either case, when nt aEnqueueFi ni sh() is
called the enqueue context passed to it, ng_ct x, is disposed of and may no longer be
used regardless of whether a success or error status code is returned.

When completing an enqueue operation, the MTA does much of the actual
enqueue work, such as, performing any configured header rewriting, content
transformation, and actually writing the message copy or copies to the MTA
channel queues. Consequently, errors returned by this routine are typically caused
by either site imposed limits (that is, the message size exceeds a site configured
limit), or file system related problems (for example, the disk is full, write errors to
the disk).

When nt aEnqueueFi ni sh() returns an MTA_NOerror message, there is often extended
error information available. This information may be retrieved with the MTA_ REASON
item code. This extended error information takes the form of a text string suitable
for writing as diagnostic output.

Before calling nt aEnqueueFi ni sh() to complete an enqueue operation, be sure that
the envelope recipient list has been specified with nt aEnqueueTo() and any header
lines and content have been written with nt aEnqueueWite() or

nt aEnqueueW i t eLi ne().

Chapter 6 MTA SDK Reference 187

mtaEnqueueFinish

When cancelling an enqueue operation, no message is submitted to the MTA, and
any temporary files that may have been created are disposed of. To cancel an
enqueue operation, specify the MTA_ABCRT item code.

The following table lists the item codes for this routine, their additional arguments,
and gives a description of each.

Item Codes Additional Arguments

Description

MIA_ABCRT None

MA ITEMLIST nta_itemlist_t

*itemlist

MIA_REASON const char **errnsg

size_t *errmsg_len

Cancel the current enqueue operation. The message
represented by the enqueue context will not be enqueued to the
MTA.

Specify a pointer to an item list array. The item list array must be
terminated with a final array entry with an item code value of
zero. For further information on item list usage, see “ltem Codes
and Item Lists” on page 28.

Provide the address of a string pointer to receive any extended
error message information. In the event of an error associated
with submitting the message to the MTA, then the MTA may
return additional information. By providing this pointer, that
additional information may be obtained for diagnostic purposes.

This item code should be followed by two additional item codes:

1. The address of a pointer to receive the address of the NULL
terminated error text.

2. The address of a Si ze_t to receive the length of that error
text.

A value of NULL may be passed for the er r nsg_| en argument.

188

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Return Values

mtaEnqueuelnfo

Return Values

Description

0
MIA_BADARGS

MIA_FOREATE
MIA_FI O

MIA NO

MIA_NOSUCH TEM

Normal, successful completion.

This value is returned for one of the following reasons:

1. A NULL value was supplied for the ng_ct x call argument.
2. Aninvalid enqueue context was supplied for nq_ct X.

3. Avrequired argument to an item code was NULL.

Insufficient disk space or other 1/O error encountered while attempting to
create or close a message file or a temporary file.

An 1/O error occurred while writing message files to the MTA channel
gueues or while reading from a temporary file.

Error terminating the message temporary file, there appears to be
insufficient disk space to write the message copies, or there is a problem
with a configured content scanner (for example, a virus or spam filter).

An invalid item code was supplied.

MIA_ORDER The call was made out of order. Either no envelope recipient addresses
have been specified or no message content has been provided.

MIA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

NOTE In case of an error, the MTA_REASON item code can be used to receive

extended error message information

As shown in the preceding table, in the case of an error, the MTA_REASON item code
can be used to receive extended error message information

Example

See “A Simple Example of Enqueuing a Message” on page 43.

mtaEnqueuelnfo

Obtain information associated with an ongoing message enqueue.

Chapter 6 MTA SDK Reference 189

mtaEnqueuelnfo

Syntax

int ntaEnqueuelnfo(nia_ng_t *ng_ctx,
int itemcode, ...);

int mtaEnqueuel nfo(nta_ng_t *ng_ctx,

Arguments

Arguments Description

ng_ctx An enqueue context created by nt aEnqueueStart ().

i tem code An optional list of item codes. See the description section that follows for a list of
item codes. The list must be terminated with an integer argument with value O.

Description

Information associated with an ongoing message enqueue operation may be
obtained with nt aEnqueuel nf o() . The information to obtain is specified through the
use of item codes. Arguments to the item codes provide memory addresses
through which to return the requested data.

String pointers returned by nt aEnqueuel nf o() are only valid during the life of the
enqueue context. Once the enqueue has been completed, the associated pointers
are no longer valid.

The following table lists the item codes for this routine, their additional arguments,
and gives a description of each.

Item Codes Additional Arguments Description

MIA_ALI AS_EXPAND size_t *val ue Return the setting of the alias expansion flag. Normally,
this flag has a nonzero value that indicates that alias
expansion should be done for all envelope recipient
addresses. When the flag has a value of zero, alias
expansion will not be performed. The value of the flag is
set with the nt aEnqueueSt art () routine.

This item code must be followed by one additional
argument: the address of Si ze_t to store the setting’s
value in.

190 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueuelnfo

Item Codes (Continued) Additional Arguments Description

MIA_ADR_SCRT size_t *val ue Obtain the setting of the address sorting flag. Normally,
this flag has a non-zero value that indicates that the list of
envelope recipients written to each message copy in the
MTA channel queues are to be sorted in ascending order
based upon US-ASCII ordinal values. When this flag has a
value of zero, the list of envelope recipient addresses will
not be sorted. This item code must be followed by one
additional argument: the address of Si ze_t to store the
setting’s value in.

MIA_CHANNEL char **channel Obtain the name of the channel that this message is being

size_t *channel |en enqueued by.

This item code must be followed by two additional call
arguments:

1. The address of a pointer to receive the address of the
NULL terminated channel name.

2. The address of a Si ze_t to receive the length of the
channel name. A NULL value may be passed for the
channel _| en argument.

MIA DELI VERY _FLAGS size_t *dflags Return the envelope delivery flags set for the entire
message by nt aEnqueueStart ().

This item code must be followed by one additional call
argument: the address of a Si ze_t to receive the delivery
flag setting.

MIA_ENV_FROM const char **env_from Retrieve the envelope Fr om address specified when the

. . enqueue was started with nt aEnqueueSt art ().
size t *env_fromlen
This item code must be followed by two additional call

arguments:

1. The address of a pointer to receive the address of the
NULL terminated envelope From address.

2. The address of a Si ze_t to receive the length of that
address. A NULL value may be passed for the
env_from | en argument.

MA ENV_I D const char **env_id Obtain the envelope ID specified with
nt aEnqueueStart ().

This item code must be followed by two additional call
arguments:

size_t *env_id_len

1. The address of a pointer to receive the address of the
NULL terminated envelope ID.

2. The address of a Si ze_t to receive the length of that
envelope ID. A NULL value may be passed for the
env_i d_| en argument.

Chapter 6 MTA SDK Reference 191

mtaEnqueuelnfo

Item Codes (Continued) Additional Arguments

Description

MIA EXPAND LIM T size_t *value

MIA_FRAGVENT_BLOCKS size_t *val ue

MIA_FRAGVENT_LINES size_t *val ue

MIFA_NOTI FY_FLAGS size_ t *nflags

Retrieve the expand limit setting specified with

nt aEnqueueSt art () . The returned value will be a
positive integer value. When no expand limit has been set,
the returned value will be a large integer value (for
example, 2,147,483,647 on 32-bit processors).

This item code must be followed by one additional
argument: the address of a Si ze_t to store the setting’s
value in.

Obtain the value, if any, specified for the
MI'A_FRAGVENT_BLQOCKS setting when the message
enqueue was initiated. The returned value will be a
positive integer value. When no value was set, the
returned value will be a large integer value (for example,
2,147,483,647 on 32-bit processors).

This item code must be followed by one additional
argument: the address of a Si ze_t to store the setting’s
value in.

Obtain the value specified for the MTA_FRAGVENT_LI NES
setting when the message enqueue was initiated. The
returned value will be a positive integer value. When no
value was set, the returned value will be a large integer
value (for example, 2,147,483,647 on 32-bit processors).

This item code must be followed by one additional
argument: the address of a Si ze_t to store the setting’s
value in.

Return the delivery status notification flags set for the
entire message when the enqueue was started. The
returned value is a bit map constructed using the
MIA_NOTI FY_ constants defined in nt asdk. h. If no
setting was effected with nt aEnqueueSt art (), then the
returned value will be the MTA default of:

MIA_NOTI FY_DELAY| MIA_NOTI FY_FAI LURE |
MIA_NOTI FY_CONTENT_FULL

This item code must be followed by one additional call
argument: the address of a Si ze_t to receive the setting
of the delivery status notification flags.

192 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueStart

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the ng_ct x call argument.

2. Aninvalid enqueue context was supplied for nq_ct X.

3. Avrequired argument to an item code was NULL.
MI'A_NOSUCH TEM An invalid item code was specified.

MIA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example
The following code fragment obtains the name of the channel used as the source
channel for the enqueue.

ma_ng_t *nq;
const char *channel;

nt aEnqueueStart (&g, "sue@iroe.cont, 0, 0);
mt aEnqueuel nfo(ng, MIA_CHANNEL, &channel, NULL, 0);
printf("Source channel = %\n", channel);

mtaEnqueueStart

Initiate a message submission.

Chapter 6 MTA SDK Reference 193

mtaEnqueueStart

Syntax

int ntaBnqueueStart(nia_ng_t **nq,
const char *env_from

size_t env_from|en,
i nt itemcode, ...);
Arguments
Arguments Description
ng_ct x On a successful return, a pointer to an enqueue context created by
nt aEnqueueSt art () . This enqueue context represents the message
enqueue operation initiated by the call.
env_from Optional pointer to the address to use as the envelope Fr om address for

the message being submitted. The address must be compliant with RFC
2822. When used as an envelope address, the MTA will reduce it to an RFC
2821 compliant transport address. The string must be NULL terminated if a
value of zero is passed for env_f rom | en. The length of this string, not
including any NULL terminator, may not exceed ALFA S| ZE bytes.

A value of NULL may be supplied for this argument. When that is done, the
env_from | en argument is ignored and an empty envelope Fr om
address is used for the message submission.

env_fromlen The length in bytes, not including any NULL terminator, of the envelope
From address supplied with env_f r om If a value of zero is passed for this
argument, then the envelope Fr om address string must be NULL
terminated.

i tem code An optional list of item codes. See the description section that follows for a
list of item codes. The list must be terminated with an integer argument with
value 0.

Description

To submit a message to the MTA for delivery, an enqueue operation must be
initiated. This is achieved by calling nt aEnqueueSt art () . When the call is
successful, an enqueue context representing the enqueue operation will be created
and a pointer to the context returned via the ng_ct x call argument. This context
must then be used to specify the message’s envelope recipient list and content, both
header and body. Once the recipient list and content have been specified, the
submission may be completed with nt aEnqueueFi ni sh() . That same routine is also
used to cancel an enqueue operation. For further information on message enqueue
processing, see “Basic Steps to Enqueue Messages” on page 42.

Enqueue contexts are disposed of with nt aEnqueueFi ni sh(), either as part of
completing or cancelling a message enqueue operation.

194 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueStart

When initiating an enqueue operation, the envelope From address for the message
should be specified with the env_f romand env_from | en call arguments, or through
use of a dequeue context with the MTA_DQ CONTEXT item code. In either case, it is
important to keep in mind the usage of the envelope From address. MTAs
transporting the message use it as a return path, that is, the address to which
notifications about the message should be returned. Specifically, it is the address to
which the message will be returned in the form of a non-delivery notification
(NDN) should the message prove undeliverable. It is also the address to which any
delivery status notifications (DSNs) will be sent. As such, the envelope From
address specified should be an address suitable for receiving such notifications.

NOTE Automatically generated messages such as NDNs and DSNs are
required to have an empty envelope From address, that is, a zero
length address. These rules are mandated by Internet standards so
as to prevent broad classes of looping messages. It is imperative that
they be observed; failure to do so may result in exponentially
growing mail loops that affect not only your own mail system but
possibly mail systems of other sites with which you exchange mail.

When explicitly specifying the envelope From address via the env_f romand
env_from | en call arguments, note the following points:

= The length of the address may not exceed 256 bytes. This is the length limit
imposed by RFCs 2821 and 2822. It is also the size denoted by the ALFA S| ZE
constant.

 Older MTAs may not support envelope addresses of lengths exceeding 129
bytes. This is the length limit imposed by RFC 821.

= To specify an empty envelope From address, supply an empty string for
env_fromand a length of zero for env_from | en, or supply a value of NULL for
env_fromand any value for env_from | en.

When using a dequeue context to supply the envelope From address, simply
supply a value of NULL and zero for, respectively, the env_fromand env_from | en
call arguments. Be sure to also supply the dequeue context with the

MIA_DQ CONTEXT item code. For example:

ires = ntaEnqueueStart(&nq, NULL, 0, MIA DQ CONTEXT, dg, 0);

Chapter 6 MTA SDK Reference 195

mtaEnqueueStart

If the submitted message lacks a From header line, then the address supplied as the
envelope From address will also be used to generate a From header line. This is the
reason why nt aEnqueueSt art () allows an RFC 2822 compliant address to be
supplied for the envelope From address. When placing the supplied address into
the envelope, the MTA reduces it to an RFC 2821 compliant address (for example,
removes any RFC 2822 phrases or comment fields).

When submitting a message, the MTA requires a source channel to associate with
the enqueue operation. By default, the name of the source channel will be derived
from the PMDF_CHANNEL environment variable. However, this may be overridden
one of two ways: by supplying a dequeue context with the MTA_DQ CONTEXT item
code, or by explicitly specifying the channel name with the MTA_CHANNEL item code.
Use of a dequeue context implicitly specifies the source channel name to be the
name of the channel associated with the dequeue context.

NOTE An explicitly specified channel name will take precedence over a
channel name specified with a dequeue context.

As part of initiating a message submission, item codes may be used to specify
additional envelope information for the message as well as select non-default
values for MTA parameters that influence message enqueue processing.

The following table lists the items codes for this routine, their additional
arguments, and gives a description of each.

Item Codes

Additional
Arguments Description

MIA_ALI AS_EXPAND None When this item code is specified, each envelope recipient address

is allowed to undergo alias expansion (for example, mailing list
expansion). This is the default behavior.

MIA_ALI' AS_NCEXPAND None Use of this item code inhibits alias expansion for the envelope

MIA_ADR NOSCRT

MIA ADR SORT

recipient addresses. The default behavior is to permit alias
expansion.

None Inhibit sorting of the envelope recipient list in the message copies
written to the MTA channel queues. By default, the envelope
recipient address list is sorted. Use this option if it is imperative
that the envelope recipients be processed in some specific order.
Maintaining the order requires control of all MTA channels that the
message will pass through.

None Allow the envelope recipient list to be sorted in the message
copies written to the MTA channel queues. This is the default
behavior.

196 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueStart

Additional
Item Codes (Continued) Arguments Description
MIA CHANNEL char *channel Explicitly specify the name of the channel under which to enqueue
P this message. That is, explicitly specify the name of the source
sl ze t) . S
h -] channel to use for this message submission. The name specified
channel _1 en will override any name implicitly specified with the
MIA_DQ CONTEXT item code.
This item code must be followed by two additional call arguments:
1. The address of the string containing the channel name.
2. The length in bytes of that channel name. If a value of zero is
specified for the length, then the channel name string must be
NULL terminated.
MIA_DELI VERY_FLAGS size_t dflags Specify additional envelope delivery flags to set for this message.

MIA DELI VERY_FLAGS ABS size_t dflags

MIA_DQ CONTEXT ma_dq_t
*dg_ctx

The logical OR of any existing setting and the value here supplied
will be used for the message’s delivery flag setting. In general, the
delivery flag setting associated with a message will be the logical
OR of the values set by each channel a message has travelled
through. Note that channels also can set this value with the

del i veryf | ags channel keyword. When this item code is not
used, the delivery flags inherited from a supplied dequeue context
will be used. If no dequeue context is supplied, then the value of
the delivery flags will be set to zero.

This item code should be followed by an additional call argument:
the value to combine with any existing setting.

Ignore any previous envelope delivery flag setting for the
message and replace the setting with the value specified with this
item code.

This item code should be followed by an additional call argument:
the delivery flag setting to effect.

When a dequeue context is supplied with this item code, the
message submission will take all of its envelope fields, except for
the recipient list, from the envelope of the queued message
represented by the dequeue context, including the envelope
From field. These assumed settings can then be overridden on
an individual basis through the use of other item codes, and the
env_fromand env_from | en call arguments.

Use of this item code changes the defaults for the envelope fields
from the MTA defaults to the values used in the dequeue context.

Intermediate processing channels are strongly encouraged to use
this item code. Use of this feature allows envelope information to
be automatically copied from the queued message being

processed to the new message that will be enqueued as a result.

This item code must be followed by one additional argument: the
pointer to the dequeue context to use.

Chapter 6 MTA SDK Reference 197

mtaEnqueueStart

Additional
Item Codes (Continued) Arguments Description
MA ENV_I D const char Explicitly specify an envelope ID string for the message. The
*env id supplied value must conform to the syntax of an Xt ext object in
o RFC 1891 and may not have a length exceeding 100 bytes. The
size_t value specified with this item code will override any value implicitly
env_id_len

MIA EXPAND LIM T

MIA_FRAGVENT BLOCKS

size t linmt

size_t bl ocks

specified with the MTA_DQ_CONTEXT item code. If no value is
supplied either explicitly or implicitly, then the MTA will generate a
unique envelope ID for the message.

This item code must be followed by two additional call arguments:
1. The address of the envelope ID string.

2. The length in bytes of that string. If a value of zero is supplied
for the length, then the string must be NULL terminated.

If the message has more envelope recipients than the specified
limit, then processing of the recipient list (that is, alias expansion)
will be deferred. This deferral is performed by enqueuing the
message to the reprocess channel. At a later time, and running in
a separate process, the reprocess channel will complete the
processing of the envelope recipient list.

This item code must be followed by one additional argument: the
limit to impose. By default, no limit is imposed.

A large enqueued message may automatically be fragmented into
several, smaller messages using MIME’s message/ parti al
content type. At the destination MTA system, these smaller
messages may automatically be re-assembled back into one
single message. The MTA_FRAGVENT_BLQOCKS item code allows
specification of a size threshold for which messages larger than
the threshold will automatically be fragmented. The limit specified
is measured in units of blocks. (By default, a block is 1024 bytes.)
However, sites may change that size with the MTA BLOCK_SI ZE
option. Consequently, code using this option should use the

nt aBl ockSi ze() option should they need to convert some other
unit to blocks.

This item code must be followed by one additional argument: the
block size threshold to impose. By default, no threshold is
imposed.

198 Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueStart

Item Codes (Continued)

Additional
Arguments

Description

MIA_FRAGVENT LI NES

MIA_NOTI FY_FLAGS

size t lines

size_t nflags

A large enqueued message can be automatically fragmented into
several, smaller messages using the MIME content type
message/ parti al . At the destination MTA system, these
smaller messages can be automatically re-assembled back into
one single message. The MTA_FRAGVENT_LI NES item code
allows specification of a line count threshold for which messages
exceeding the threshold will automatically be fragmented.

This item code must be followed by one additional argument: the
line count threshold to impose. By default, no threshold is
imposed.

Specify the delivery status notification flags to be set for the entire
message. The specified value is a bit map constructed using the
MIA_NOTI FY_ constants defined in nt asdk. h. If no setting is
made, then the value from a supplied dequeue context will be
used. If no dequeue context is supplied, then the MTA default
value is used. The default value is:

MIA_NOTI FY_DELAY | MTA NOTI FY_FAl LURE |
MIA_NOTI FY_CONTENT_FULL

Flags for individual recipient address may be specified when
nt aEnqueueTo() is called.

This item code must be followed by one additional call argument:
the address of an integer to receive the setting of the delivery
status notification flags.

Chapter 6 MTA SDK Reference 199

mtaEnqueueTo

Return Values

Return Values

Description

0 Normal, successful completion.

MI'A_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the ng_ct x call argument.
2. Aninvalid enqueue context was supplied for ngq_ct X.
3. Arequired argument to an item code was NULL.

MIA_NO Unable to determine the channel name from the PVDF_CHANNEL
environment variable,

MIA_NOVEM Insufficient virtual memory.

MI'A_NCSUCHCHAN Specified channel name does not exist in the MTA configuration.

MIA_NCSUCH TEM An invalid item code was specified.

MIA_STRTRUERR The supplied envelope From: address is too long; it may not exceed a
length of ALFA_SI ZE bytes. Or the supplied channel name has a length
exceeding CHANLENGTH bytes.

Example

This routine is used as part of “Decoding MIME Messages Complex Example” on

page 96.

mtaEnqueueTo

200

Add an envelope recipient to a message being submitted.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueTo

Syntax

int ntaEnqueueTo(nta_ng_t *ng_ctx,
const char *to_adr,

size_t to_adr_|en,
i nt itemcode, ...);
Arguments
Arguments Description
ng_ctx Pointer to an enqueue context created with it aEnqueueStart ().
to_adr An address to add to the message being enqueued. The address must be
compliant with RFC 2822. When used as an envelope address, the MTA will
reduce it to an RFC 2821 compliant transport address. If a value of zero is
passed fort 0_adr _| en the address string must be NULL terminated. The
length of this string, not including any NULL terminator, may not exceed
ALFA S| ZE bytes.
to_adr_len The length in bytes, not including any NULL terminator, of the address
supplied with t 0_adr . If a value of zero is passed for this argument, then the
address string must be NULL terminated.
i tem code An optional list of item codes. See the description section below for a list of
item codes. The list must be terminated with an integer argument with value
0.
Description

After initiating a message enqueue operation with nt aEnqueueStart (), the
envelope recipient list for the message must to be constructed. This list is the actual
list of recipients to which the message is to be delivered. A message must have at
least one envelope recipient address; otherwise, there is no one to deliver the
message to. In the envelope there is no distinction between To: , Cc:, or Bec:
addressees. Additionally, the list of addressees appearing in the message’s header
need not be the same as those appearing in the envelope. This is the case with
list-oriented mail. The address in the message’s header is often the list’s mail
address; whereas, the addresses in the envelope are the those of the list’s
individual members.

By default, when an address is added to a message with nt aEnqueueTo(), it is
added as both an envelope recipient address as well as a To: addressee in the
message’s To: header line. The address is therefore considered to be an active
transport address as well as a header address. This case corresponds to the MTA_TO
item code. To instead mark an active transport address for addition to either a Cc:
or Bcc: header line, use the MTA_CC or MTA_BCC item code.

Chapter 6 MTA SDK Reference 201

mtaEnqueueTo

Addresses that only appear in the message’s header are sometimes referred to as
inactive addresses. Such addresses added with nt aEnqueueTo() may be noted as
such with the MTA HDR TO, MTA_HDR CC, and MI'A_HDR_BCC item codes. They can also
be manually added by constructing the To: , Cc:, or Bcc: header lines with

nt aEnqueueWi te() or m aEnqueueWit eLine().

NOTE The MTA SDK will automatically generate multiple message copies when Bcc:
recipients exist for the message. Specifically, when a message has N envelope
recipient addresses which are Bcc: recipients, the MTA SDK will automatically
generate N+1 message copies: one copy for each of the Bcc: recipients and an
additional copy for the remaining, non-Bcc: recipients. Each copy for a Bcc:
recipient will only disclose that BCC: recipient in the message’s header. The
message copy for all of the non-Bcc: recipients will disclose none of the Bcc:
recipients in its header

An address may be added as only an active transport address without addition to
any header line. This is done with the MTA_ENV_TOitem code. This item code should
be used by intermediate processing channels that copy verbatim the outer message
header from the old message to the new, which prevents duplication of addresses
in the new message’s header.

When an active transport address is added to a message, it is possible that the MTA
will reject the address. For example, the address can be rejected when there is a
mapping table, such as the SEND_ACCESS mapping table. When an address is
rejected by the MTA, extended error text is made available by the MTA. This
extended information can be captured through use of the MTA_REASON item code.

The following table lists the item codes for this routine, their additional arguments,
and gives a description of each.

Item Codes

Additional Arguments Description

MIA_BOC

MIA_CC

None The address is an active transport address that
should also appear in a Bcc: header line. The
address will be added to both the envelope
recipient list as well as the message’s header. For
further information about Bcc: , see the note on
page 202.

None The address is an active transport address that
should also appear in a Cc: header line. As such,
the address will be added to both the envelope
recipient list as well as the message’s header.

202 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaEnqueueTo

Item Codes (Continued) Additional Arguments Description

MI'A_DELI VERY_FLAGS size_t dflags Specify additional envelope delivery flags to set
for this recipient. The logical OR of any existing
setting for the recipient and the value here
supplied will be used for the recipient’s delivery
flag setting. The existing setting for the recipient
will be either the message’s setting, which was set
with nt aEnqueueSt art (), or any setting copied
over from the dequeue context for this recipient
with the MTA_DQ_CONTEXT item code.

This item code should be followed by one
additional call argument: the value to combine
with any existing setting.

MI'A_DELI VERY_FLAGS_ABS size_t dflags Ignore any previous envelope delivery flag setting
for the recipient and replace the setting with the
value specified with this item code.

This item code should be followed by one
additional call argument: the delivery flag setting
to effect.

MIA_DQ_CONTEXT ma_dg_t *dg_ctx When a dequeue context is supplied using this
item code, the specified envelope recipient
address is compared to the envelope recipient list
for the queued message represented by the
dequeue context. If a match is found, envelope
fields for the recipient are copied from the queued
message to the new message being enqueued. If
no match is found, an MTA_NOerror status is
returned.

This item code must be followed by one additional
argument: the pointer to the dequeue context to
use.

MIA_ENV_TO None The address is an active transport address; add it
to the envelope recipient list. Do not add it to any
header lines. This designation is often used by
intermediate processing channels.

MIA_HDR BCC None The address is not an active transport address; do
not add it to the envelope recipient list. The
address should, however, be added to a Bcc:
header line. Note that since a Bcc: header line is
usually only placed in the message copy destined
to the Bcc: recipient, use of this item code only
arises when the BcC: recipient’'s header address
differs from their transport address and,
consequently, the two need to be added with
separate calls to mt aEnqueueTo() .

Chapter 6 MTA SDK Reference 203

mtaEnqueueTo

Item Codes (Continued)

Additional Arguments

Description

MIA HDR CC None

MIA_ HDR TO None

MIA_NOTI FY_FLAGS

MIA_ORCPT_TO

size_t nflags

size_t orcpt_len

const char *orcpt

The address is not an active transport address; do
not add it to the envelope recipient list. The
address should, however, be added to a Cc:
header line.

The address is not an active transport address; do
not add it to the envelope recipient list. The
address should, however, be added to a To:
header line.

Delivery status notification flags specific to this
envelope recipient address. A value specified with
this item code overrides any setting made for the
message itself when the enqueue context was
created. It also overrides any value inherited from
a dequeue context. Note that this item code has
no effect when MTA_HDR _BCC, MTA_HDR_CC, or
MIA_HDR_TOis specified; notification flags only
apply to active transport addresses. For further
details, see the description of this item code for
“mtaEnqueueStart” on page 193.

This item code must be followed by one additional
call argument: the address of an integer to receive
the setting of the delivery status notification flags.

Specify the original envelope recipient address in
RFC 1891 original-recipient address format (for
example, rfc822; sue@iroe.com for
sue@i roe. com.

This item code must be followed by two additional
arguments:

1. The pointer to the original recipient address.

2. The length in bytes of that address. If a value
of zero is supplied for the length, then the
address string must be NULL terminated.

204

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueTo

Item Codes (Continued)

Additional Arguments

Description

MIA_REASON

MIA_TO

const char **errnsg
size_t *errmsg_len

None

Provide the address of a string pointer to receive
any extended error message information. In the
event of an error associated with submitting the
recipient to the MTA, then the MTA may return
additional information. By providing this pointer,
that additional information may be obtained for
diagnostic purposes.

This item code should be followed by two
additional item codes:

1. The address of a pointer to receive the
address of the NULL terminated error text.

2. The address of a Si ze_t to receive the
length of that error text. A value of NULL can
be passed for the er r msg_| en argument.

The address is an active transport address that
should also appear in a To: header line. This is
the default interpretation of addresses added with
nt aEnqueueTo() .

Chapter 6 MTA SDK Reference 205

mtaEnqueueWrite

Return Values

Return Values

Description

0
MIA_BADARGS

MIA_NO

MIA_NOSUCH TEM

Normal, successful completion.

This value is returned for one of the following reasons:
1. A NULL value was supplied for the ng_ct x call argument.
2. Aninvalid enqueue context was supplied for ngq_ct X.

3. Avrequired argument to an item code was NULL.

If MTA_DQ CONTEXT was specified, then the supplied envelope To:
address does not match any envelope recipient address in the queued
message represented by the supplied dequeue context. Otherwise, the
MTA rejected the envelope recipient address. It could be syntactically
invalid, refused by a mapping table, such as SEND_ACCESS. Consider
using the MTA_REASONitem code.

An invalid item code was specified.

MIA_ORDER The call was made out of order: the message’s envelope recipient list has
already been terminated by a call to nt aEnqueueWite() or
mt aEnqueueWi t eLi ne() .

MIA_STRTRUERR The supplied envelope To: address or original envelope To: address is
too long. Neither may exceed a length of ALFA S| ZE bytes.

Example

This routine is used in “Decoding MIME Messages Complex Example” on page 96.

mtaEnqueueWrite

Write message data to the message being submitted.

206

Syntax

it maEnqueuewite(nta ng_t *NQ_Ci X,

const char *strl,
size_t | enl,
const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of
pairs must be terminated by a NULL call argument.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaEnqueueWrite

Arguments

Arguments Description

ng_ctx Pointer to an enqueue context created with it aEnqueueStart ().

strl Pointer to a string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for | enl.

| enl The length in bytes, not including any NULL terminator, of the string str 1. If a
value of zero is passed for this argument, then the string St r 1 must be NULL
terminated.

str2 Pointer to a second string of text to write to the message. The string must be
NULL terminated if a value of zero is passed for | en2. If only supplying a single
string, then pass a NULL value for this argument.

Description

After a message’s list of envelope recipient addresses has been supplied with

nt aEnqueueTo(), the message itself must be supplied. This is done by repeatedly
calling nt aEnqueueW i t e() . First the message’s header should be supplied, followed
by a blank line, followed by any message content. Each line of message data must
be terminated by a US-ASCII line-feed character (0x0A). Each call to

nt aEnqueueWi t e() can supply one or more bytes of the message’s data. Unlike

nt aEnqueueW i t eLi ne(), a single call to nt aEnqueueWi t e() does not necessarily
correspond to a single, complete line of message data; it could correspond to a
partial line, a complete line, multiple lines, or even one or more complete lines plus
a partial line. This flexibility with nt aEnqueueWi t () exists because it is up to the
caller to supply the message line terminators. Calling either nt aEnqueueWi te() or
nt aEnqueueW i t eLi ne() terminates the message’s envelope recipient list. Once
either of these routines have been called, nt aEnqueueTo() can no longer be called
for the same enqueue context.

Chapter 6 MTA SDK Reference 207

mtaEnqueueWrite

Return Values

Return Values Description
0 Normal, successful completion.
MIA_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the ng_ct x call argument.

2. Aninvalid enqueue context was supplied for nq_ct X, or a required
argument to an item code was NULL.

MIA_FCREATE Unable to create a disk file.

MIA FI O Error writing to a disk.

MIA_ORDER Call made out of order. No envelope recipient addresses have been
supplied.

MIA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example

The code fragment that follows shows two ways to produce the same results. They
both write two header lines to the message:

ni aEnqueueWite(ng, "From sue@iroe.comn™, 0, NULL);
m aEnqueueWite(ng, "Subject: test\n", 0, NULL);

mt aEnqueueWite(ng, "From sue@iroe.comnSubject: test\n", 0,

The following code fragment shows the two header lines output by each code
fragment in the preceding code example.

From Sue@iroe. com
Subj ect: test

This code fragment demonstrates how to terminate the message header by writing
a blank line.

nt aEnqueueWite(ng, "\n", 0, NULL);

208 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaEnqueueWriteLine

The following code fragment shows a single call to mt aEnqueueW i t e() that writes
out an entire header, including the terminating blank line.

ni aEnqueueWite(ng, "Date: today\nFrom Sue@iroe.comn”
"To: bob@iroe.com nSubject: test\n\n", O,

NULL) ;

The following code example shows an alternate way of writing the routine call, but
with one pair per line.

m aEnqueueWite(nq, "Dafe. today\n™, O,
"From sue@iroe.comn", O,
"To: bob@iroe.comn", O,
"Subj ect: test\n", O,
"\n", 0,
NULL) ;

mtaEnqueueWriteLine

Write a complete, single line of message data to the message being submitted.

Syntax
int nmiaEnqueueWite(nta_ng_t *ng_ct X,
const char *stri,
size_t | enl,
const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of
pairs must be terminated by a NULL call argument.

Chapter 6 MTA SDK Reference 209

mtaEnqueueWriteLine

Arguments

Arguments Description

ng_ctx Pointer to an enqueue context created with mt aEnqueueStart ().

strl Pointer to a string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for | enl.

| enl The length in bytes, not including any NULL terminator, of the string str 1. If a
value of zero is passed for this argument, then the string St r 1 must be NULL
terminated.

str2 Pointer to a second string of text to write to the message. The string must be
NULL terminated if a value of zero is passed for | en2. If only supplying a single
string, then pass a NULL value for this argument.

Description

After a message’s list of envelope recipient addresses has been supplied with

nt aEnqueueTo(), the message itself must be supplied. This can be done by
repeatedly calling m aEnqueueW i t eLi ne() . First the message’s header should be
supplied, followed by a blank line, followed by any message content. Each call to
this routine must supply a single, complete line of the message. The line should not
include a line-feed terminator as nt aEnqueueW i t eLi ne() will supply the terminator
automatically.

Calling nt aEnqueueW i t eLi ne() terminates the message’s envelope recipient list.
Once the routine is called, nt aEnqueueTo() can no longer be called for the same
enqueue context.

Return Values

Return Values Description
0 Normal, successful completion.
MI'A_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the ng_ct x call argument.

2. Aninvalid enqueue context was supplied for nq_ct X, or a required
argument to an item code was NULL.

MIA_FCREATE Unable to create a disk file.

MIA FI O Error writing to a disk.

MIA_ORDER Call made out of order. No envelope recipient addresses have been
supplied.

MIA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

210 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaErrno

Example
This code fragment writes out two header lines.

ni aEnqueueWiteline(ng, "From sue@iroe.con’, 0, NULL);
m aEnqueueWiteLine(ng, "Subject: test", 0, NULL);

This code fragment shows the header output as a result of the preceding code
example.

From sue@iroe.com
Subj ect: test

The following code fragment shows how to terminate the header by writing a
blank line.

nt aEnqueueWiteLine(ng, "", 0, NULL);

The following code fragment that produces a Dat e: header line.

char buf [64];

mt aEnqueueWi t eLi ne(nq,

"Date: ", O,
nt aDat eTi me(buf, NULL, sizeof(buf), 0), O,
NULL) ;

mtaErrno

Obtain the last returned error status for the calling thread.

Syntax
int mtaErrno(void);

Arguments
None

Description

When an MTA SDK routine is called by a processing thread and returns an error
status code, the SDK saves that status code in thread-specific data. The same
processing thread can obtain the most recently saved status code for its own thread
of execution by calling nt aErrno() .

For convenience purposes, the nt asdk. h header file also defines nta_errno as a
macro that calls nt aEr r no() . Specifically:

Chapter 6 MTA SDK Reference 211

mtalnit

mtalnit

#define nta_errno ntaErrno()

Return Values
The last error return status code returned by an MTA SDK routine called by this
processing thread.

For a description of the MTA SDK error status codes, see Appendix A, “Error
Status Codes Summary” on page 265.

Example
The following code fragment demonstrates how to obtain the most recent error
status code for its own thread.

it (TntaEnqueueStart(&nq, fromadr, 0, 0))
printf("Error returned: %\n", ntaErrno());

Initialize the MTA SDK.

Syntax

int malnit(int itemcode, ...);

Arguments

Arguments Description

i tem code An optional list of item codes. See the description section that
follows for a list of item codes. The list must be terminated with an
integer argument with value 0.

Description

Call the ntal ni t () routine to initialize the MTA SDK. As part of the initialization
process, the SDK will load the MTA configuration. This loading process will be the
typical cause of initialization failures; either there’s an error in a configuration file,
a missing but required configuration file, or a configuration file can’t be accessed
for reading. To prevent that last error case, ensure that your programs run under a
UID that has read access to the MTA configuration files, especially the compiled
configuration file produced by the i nsi nt a cnbui | d utility.

While there is no benefit to doing so, it is safe to call ntal ni t () multiple times,
either before or after calling nt aDone() . (To de-initialize the SDK, use nt aDone() .)

212 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtalnit

Although the MTA SDK is self-initializing, the initialization must occur while the
process is single-threaded. As such, multi-threaded programs must call nt al ni t ()
and must do so while still single threaded.

When the SDK is initialized, the SDK can be told using an item code whether or not
the calling program will be functioning as an interactive utility or not. When being
used by an interactive utility, such as a management utility or a user agent, the
SDK ensures that accounting files are closed after every operation that records
accounting information. This prevents the accounting file from being left open by a
single process for long periods of time. To specify that the SDK will be used by an
interactive utility, specify the MIA_| NTERACTI VE item code. By default, the SDK
assumes that it will be run by a channel program or other program that wishes to
achieve maximum performance while using the SDK. This corresponds to the
MIA_CHANNEL item code. Also, when the SDK self-initializes itself, it assumes
MIA_CHANNEL and not MIA_| NTERACTI VE. As part of initializing the SDK, a number of
diagnostic facilities can be enabled. These are enabled using the MTA DEBUG_item
codes described in the following table. These diagnostic facilities may also be
enabled at any time using the nt aDebug() routine.

Item Code

Additional
Arguments Description

MI'A_CHANNEL

None Indicate that the SDK is being used by a channel program or other
non-interactive program. By default this is the assumed usage.
Interactive programs should use the MTA_| NTERACT| VE item code.

MIA_DEBUG DECCDE None Enable diagnostic output from the low-level MIME decoding routines

used by the MTA SDK. This diagnostic output may prove helpful when
attempting to understand any MIME conversions that occur either
when enqueuing messages to the MTA and the destination channel is
configured to invoke MIME conversions (for example, marked with
channel keywords such as t hur man or i nner), or when using the
SDK message decoding routine, nt aDecodeMessage() .

MIA DEBUG DEQUEUE None Enable diagnostic output from the low-level queue processing routines

used by the MTA SDK. Use this diagnostic output when attempting to
understand issues surrounding reading and processing of queued
message files. This diagnostic output will not help diagnose the
selection of queued messages as that is handled by a separate
process: the MTA Job Controller.

Enabling this diagnostic output is equivalent to setting
DEQUEUE_DEBUG=1 in the MTA option file, opt i on. dat .

Chapter 6 MTA SDK Reference 213

mtalnit

Additional
Item Code (Continued) Arguments Description
MIA DEBUG ENQUEUE None Enable diagnostic output from the low-level message enqueue

MIA_DEBUG MM

MIA_DEBUG 0S8

MIA_DEBUG SDK

MTA | TEM LI ST

MTI'A_| NTERACTI VE

size_t level

None

None

ma_ itemlist_t
*itemlist

None

routines used by the MTA SDK. Enqueue diagnostics can be used to
diagnose the address rewriting process, destination channel selection,
header processing, and other types of processing that occurs when a
message is enqueued to the MTA.

Enabling this diagnostic output is equivalent to setting MM DEBUG=5 in
the MTA option file.

Enable diagnostic output from the low-level message enqueue
routines used by the MTA SDK.

This item code must be followed by one additional call argument: the
debug level to use.

The debug level is an integer value in the range 0- 20. Enqueue
diagnostics may be used to diagnose the address rewriting process,
destination channel selection, header processing, and other types of
processing that occurs when a message is enqueued to the MTA.

Enabling this diagnostic output is equivalent to setting
DEQUEUE_DEBUG=I evel in the MTA option file.

Enable diagnostic output from the low-level operating system
dependent routines used by the MTA SDK. Use of this diagnostic
output is helpful when diagnosing problems associated with creating,
opening, writing, or reading files. Such problems typically arise when
attempting to enqueue messages to the MTA, a process that requires
permissions to create and write messages in the MTA queues.

Enabling this diagnostic output is equivalent to setting O5_DEBUG=1 in
the MTA option file.

Enable diagnostic output for the MTA SDK. When this output is
enabled, diagnostic information will be output whenever the SDK
returns an error result.

Specify a pointer to an item list array. The item list array must be
terminated with a final array entry with an item code value of zero. For
further information on item list usage, see “Iltem Codes and Item Lists”
on page 28.

Indicate that the SDK will be used by an interactive program. In an
interactive scenario, the SDK manages some of the MTA resources
differently than when running as a channel program. For instance,
closing the MTA log file after every completed message submission or
dequeue operation.

214 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtalLog

Return Values

Return Values Description

0 Normal, successful completion.

MI'A_BADARGS A required argument to an item code was NULL.

MIA_FCPEN Unable to initialize the MTA SDK. Unable to read one or more configuration

files. Issue the following command for further information:
insinta test -rewite

MIA_NO Unable to initialize the MTA SDK. Issue the following command for further
information:

insinta test -rewite

MIA_NCSUCH TEM An invalid item code was specified.

Example
For normal use:

ntalnit(0);
To select SDK diagnostics:
mt al ni t (MTA_DEBUG SDK, 0);

mtalog
Write diagnostic output to the channel’s log file.
Syntax
voi d ntalLog(const char *fm, ...);

Chapter 6 MTA SDK Reference 215

mtalLog

Arguments

Arguments Description

fmt Pointer to a pri nt f () formatting string. The string must be NULL terminated. See
your platform’s C run-time library documentation for information on the formatting
substitutions accepted by printf ().

Description

Programs that wish to write diagnostic output should use nt aLog() and nt aLogv() .
These two routines ensure that diagnostic output is directed to the same output
stream as other diagnostic information generated by the MTA SDK. With one
exception, consider a call to nt aLog() as being identical to calling the C run-time
library routine printf (). The call arguments for the two routines are identical,
including the formatting argument, f nt. The single exception is that, unlike
printf(),acalltonalog() always produces a single line of output to the channel’s
log file. Consequently, do not attempt to write either partial or multiple lines with a
single call to ntaLog() .

Do not include a terminating line feed or other record terminator in the output.
That is, do not put a\ n at the end of the formatting string.

A time stamp with a resolution of hundredths of a second prefaces each line of
diagnostic output generated with nt aLog() . The time stamp uses the system clock
and is reported in the local time zone.

Return Values
None

Example

char buf [64]

mtalLog(" Version: %l. %l- %",

nt aVer si onMaj or (), maVersi onM nor (),

m aVer si onRevi sion());
malLog("Date/time: %",

nt aDat eTi me(buf, NULL, sizeof(buf), 0));
mt aLog(" Post mast er address: %",

nt aPost mast er Addr ess(NULL, NULL));

The following output is generated by the preceding code example.

12:43:24.62: Version. 6.0-0
12:43:24.62: Date/time: Thu, 01 May 2003 12:43:24 -0700
12: 43: 24. 63: Postnaster address: postman@rai | hub. si roe. com

216 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaLogv

mtalLogv

Write diagnostic output to the channel’s log file.

Syntax

voi d ntatogv(const char *fni
va_list ap);

Arguments

Arguments Description

fnt Pointer to a pri nt f () formatting string. The string must be NULL terminated.
See your platform’s C run-time library documentation for information on the
formatting substitutions accepted by printf ().

ap Ava_li st structure as defined by the system st dar g. h header file.

Description

The nmt aLogv() routine is provided for programs that either need to provide a
diagnostic interface accepting ava_| i st argument, or want to provide some
generalization of nt aLog() . Use of nt aLogv() ensures that diagnostic output is
directed to the same output stream as other diagnostic information generated by
the MTA SDK.

With one exception, consider a call to nt aLogv() as being identical to calling the C
run-time library routine vprint f (). The call arguments for the two routines are
identical including the formatting argument, f nt . The single exception is that,
unlike vprintf (), acall to ntaLogv() always produces a single line of output to the
channel’s log file. Consequently, do not attempt to write either partial or multiple
lines with a single call to mt aLogv() .

Do not include a terminating line feed or other record terminator in the output.
That is, do not put a\ n at the end of the formatting string.

Return Values
None

Example
The following code fragment demonstrates a way to provide a generalization of
m alLog() using ntalLogv().

#nclude <stdarg. h>

voi d ourLog(our_context _t *ctx, const char *fnmt, ...)

Chapter 6 MTA SDK Reference 217

mtaOptionFinish

{
char new fnt[10240];
va_list ap;
/*

* Genrate a new formatting string that includes as a prefix
* the value of ctx->id then followed by the contents of the
* supplied formatting string.

*/

snprintf(new fnt, sizeof(newfnt)
"id=%; 9%", ctx->id, fnt);

va_start(ap, fnt);

malLogv(new fnt, ap);

va_end(ap);

mtaOptionFinish

Dispose of an option context.

Syntax
voi d ntaQpti onFini sh(nta_opt_t *opt_ctx);

Arguments

Arguments Description

opt_ctx An option context created by mt aQpti onStart ().
Description

Option contexts should be disposed of with a call to nt aOpt i onFi ni sh() . The one
exception to this rule are option contexts returned by

nt aDecodeMessagel nf oPar ans() . While those contexts may be passed to

mt aOpt i onFi ni sh(), they do not need to be because nt aDecodeMessage() will
automatically dispose of them.

Return Values
None

Example
m aOpt i onFi ni sh(opt);

218 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaOptionFloat

mtaOptionFloat

Interpret and return an option’s value as a floating point number.

Syntax
int nmaCptionFloat (mMa_opt_t ~*opt_ctx,
const char *nare,
size_t | en,
doubl e *val);

Arguments

Arguments Description

opt _ctx An option context created by mt aQpt i onSt art () . A NULL value is permitted for
this argument. When a NULL is passed, then no option value is returned.

nane Name of the option to obtain the value for. The length of this string should not
exceed ALFA Sl ZE bytes. This string must be NULL terminated if a value of zero
is passed for len.

len Length in bytes, not including any NULL terminator, of the option name supplied
with name. If a value of zero is supplied, then the option name string must be NULL
terminated.

val Pointer to a floating point of type double to receive the option’s value. If the option

was not specified in the option file, then the value referenced by this pointer will be
left unchanged.

Description

Use nt aQpt i onFl oat () to retrieve the value of an option, interpreting its value as a
floating point number. If the option is specified in the option file and its value is a
valid floating point number, then its value will be returned using the val call
argument. If the option is not specified or its value does not correctly specify a
floating point number, then no value is returned and the memory pointed at by val
is left unchanged.

The ntaQpt i onFl oat () routine can be called with a NULL value for the opt _ct x
argument. When this is done, nt aCpt i onFl oat () immediately returns with a status
code of zero and no value is returned.

This routine does not provide an indication of whether or not the option was
specified in the option file. If it is important to know whether or not the option was
specified, then use ntaQptionString() to test to see if the option was specified.

Chapter 6 MTA SDK Reference 219

mtaOptionint

Return Values

Return Values Description

0 Normal, successful completion.

MIA_STRTRUERR The supplied option name is too long. Its length must not exceed
ALFA S| ZE bytes.

Example

The following code example retrieves the value of an option named aspect _rati o.
Before calling nt aOpt i onFl oat (), a default value is set for the variable to receive the
value of the option. If the option was not specified in the option file, then the
variable will retain that default setting. If the option was specified, then the
variable will assume the value set in the file.

ratio = 1.0,
m aQpt i onFl oat (opt, "aspect _ratio", 0, &atio);

If it is important to know whether or not the option was specified, then use

mt aOpt i onStri ng() to test to see if the option was specified as shown in the
following code example. In this example, when the routine returns, the code
determines that the option was specified by whether or not the value of the buf | en
variable has changed.

char buf[1];
size_t buflen;

buflen = Oxffffffff;

maQptionString(opt, "aspect _ratio", 0, buf, &buflen,
si zeof (buf));

ratio_specified = (buflen != Oxffffffff) 2 1: 0

mtaOptionint

Interpret and return an option’s value as an integer number.

220 Messaging Server 6 2005Q1 < MTA Developer's Reference

mtaOptionint

Syntax
int maCptionini(nia_opf_t ~*opf_ctx,
const char *nane,
size_t | en,
int *val);

Arguments

Arguments Description

opt _ctx An option context created by mt aCpt i onSt art () . A NULL value is permitted for
this argument. When a NULL is passed, then no option value is returned.

name Name of the option to obtain the value for. The length of this string should not
exceed ALFA_SI ZE bytes. This string must be NULL terminated if a value of zero
is passed for | en.

| en Length in bytes, not including any NULL terminator, of the option name supplied
with name. If a value of zero is supplied, then the option name string must be
NULL terminated.

val Pointer to an integer of type i Nt to receive the option’s value. If the option was
not specified in the option file, then the value referenced by this pointer will be left
unchanged.

Description

Use ntaQptionl nt () to retrieve the value of an option, interpreting its value as an
integer-valued number. If the option is specified in the option file and its value is a
valid integer, then its value will be returned using the val call argument. If the
option is not specified or its value does not correctly specify an integer, then no
value is returned and the memory pointed at by val is left unchanged.

The routine can be called with a NULL value for the opt _ct x argument. When this
is done, nt aQpt i onl nt () immediately returns with a status code of zero and no
value is returned.

This routine does not provide an indication of whether or not the option was
specified in the option file. If it is important to know whether or not the option was
specified, then use nt aCpt i onSt ring() to test to see if the option was specified as
shown in the code example.

Chapter 6 MTA SDK Reference 221

mtaOptionStart

Return Values

Return Values Description

0 Normal, successful completion.

MIA_STRTRUERR The supplied option name is too long. Its length must not exceed
ALFA_SI ZE bytes.

Example

In the following code example, the value of an option named max_bl ocks is
retrieved. Before calling nt aOpt i onl nt (), a default value is set for the variable to
receive the value of the option. If the option was not specified in the option file,
then the variable will retain that default setting. If the option was specified, then
the variable will assume the value set in the file.

bl'ocks = 1024;
maQotionlnt(opt, "max_bl ocks", 0, &bl ocks);

The following code example illustrates how upon return from nt aQpt i onStri ng(),
the code determines that the option was specified by whether or not the value of
the buf | en variable has changed.

char buf[1];
size_t buflen;

buflen = Oxffffffff;
maQptionString(opt, "max_blocks", 0, buf, &buflen, sizeof(buf));
bl ocks_specified = (buflen !'= Oxffffffff) 2 1 : O;

mtaOptionStart

Open, parse, and load into memory an MTA option file.

222 Messaging Server 6 2005Q1 < MTA Developer's Reference

mtaOptionStart

Syntax

int ntaCptionStart(nia_opt _t **opf_ctx,
const char *path,

size_t | en,
int i temcode);
Arguments
Arguments Description
opt _ctx On successful return, a pointer to an option context created by
maQotionStart (). This option context represents the options read from the
option file.
path Optional file path to the option file to read. If not specified, then the path
specified by the PMDF_CHANNEL _ CPTI ON environment variable will be used. If
a value of zero is supplied for | en, and there is a non-NULL value for pat h, the
value must be NULL terminated. The length of the file path, not including any
NULL terminator, may not exceed ALFA S| ZE bytes.
| en Length in bytes, not including any NULL terminator, of the file path. This
argument is ignored when a NULL is passed for pat h. When pat h is
non-NULL and a value of zero is supplied for | en, then the file path string must
be NULL terminated.
i tem code Reserved for future use. A value of zero must be supplied for this call
argument.
Description

MTA option files such as channel option files may be read, parsed, and loaded into
memory with nt aQpti onStart (). Once loaded into memory, the values of
individual options may be retrieved with the routines shown in the table that
follows:

Routine Names Description

nt aOpt i onFl oat () Retrieve the value of a floating point valued option.
ntaQptionlnt () Retrieve the value of an integer valued option.

nt aOptionString() Retrieve the string representation of an options value.

These routines are designed such that if the requested option does not exist, then
no value is returned. This allows code to assign to a variable an option’s default
value, then attempt to retrieve an explicitly set value from the option file. During
the retrieval, the address of the variable can be passed. If the option is specified in

Chapter 6 MTA SDK Reference 223

mtaOptionStart

the option file, then the value of the variable will be replaced with the value from
the option file. If the option is not specified, then the default value stored in the
variable is left unchanged. Code examples of such usage are provided in the
individual routine descriptions.

Once finished obtaining the values of any options, unload the options from
memory and dispose of the option context with nt aQpt i onFi ni sh() .

When the underlying option file does not exist, mt aCpti onStart () still returns a
success status code. However, a NULL value is returned for the pointer to the
option context. The other option routines accept a NULL value for an option
context pointer and will behave as though the requested option is not specified in
the option file. This behavior reflects the fact that MTA option files are considered
optional. If a channel’s option file does not exist, then the channel is supposed to
use its default settings for its options. This also simplifies coding, allowing
programs not to have to worry about whether or not the option file exists and
whether or not the option context pointer is NULL. If, however, the existence of an
option file is mandatory, then a program can detect that the file does not exist by
seeing if the returned value for the option context pointer is NULL as shown in the
code example section that follows.

If an explicit option file path is specified with the pat h call argument, then the path
can be a relative file path or an absolute file path. File paths can be prefixed with
any of the symbolic MTA directory names specified in theinta_tail or file. For
example, the entry shown in the following code fragment specifies a file named
msc_gat eway. cnf located in the nnsc subdirectory of the MTA configuration
directory. Note that a colon separates the symbolic name from the remainder of the
path.

| MTA_TABLE: / nmsc/ nmsc_gat eway. cnf

If no file path is specified, then the file specified with the PMDF_CHANNEL_CPTI ON
environment variable will be opened and read. That environment variable is
established by the Job Controller for the channel programs that it runs. It will
always have the following format:

| MTA_TABLE: channel-name_opt i on

where channel - nane is the name of the channel being run. The following example
demonstrates how the environment variable settings are effected for t cp_| ocal
channel:

PNDF_CHANNEL=t cp_T ocal

PVDF_CHANNEL _CPTI ON=I MTA_TABLE: t cp_| ocal _opti on

224 Messaging Server 6 2005Q1 < MTA Developer's Reference

Return Values

mtaOptionString

Return Values

Description

0
MIA_BADARGS
MIA_FOPEN

MIA_NO
MIA_NOVEM
MIA_STRTRUERR

Normal, successful completion.
A NULL value was supplied for the opt _ct X call argument.

Unable to open the option file. File access permissions are the likely cause
for this error.

An error occurred while reading or parsing the option file.
Insufficient virtual memory.

The supplied file path is too long. Its length must not exceed ALFA_SI ZE
bytes.

Example

*/

opt_ctx = NULL;
if (maQptionStart(&pt_ctx, NUL, 0, 0))
/*

* Error loading the option file
else if (lopt_ctx)
/*

* ption file did not exist
)

mtaOptionString

Return an option’s value as a string.

Chapter 6 MTA SDK Reference 225

mtaOptionString

Syntax

int ntaCptionString(nta_opt_t *opt_ctx,

const char *nane,

size_t | en,

const char *str,

size_t *str_len,
size_t str_| en_max);

Arguments

Arguments

Description

opt _ctx

nane

| en

str

str_len

str_| en_max

An option context created by nt aCpti onStart (). A NULL value is
permitted for this argument. When a NULL is passed, then no option value is
returned.

Name of the option to obtain the value for. The length of this string should not
exceed ALFA S| ZE bytes. This string must be NULL terminated if a value of
zero is passed for | en.

Length in bytes, not including any NULL terminator, of the option name
supplied with name. If a value of zero is supplied, then the option name
string must be NULL terminated.

A pointer to a buffer to receive the NULL terminated value of the specified
option. The MTA allows channel options to have a maximum length of

Bl GALFA_SI ZE bytes. As a result, this buffer should in general have a
length of at least Bl GALFA_SI ZE+1 bytes. If the option was not specified in
the option file, then the contents of the buffer is left untouched.

An optional pointer to a Si ze_t to receive the length in bytes of the returned
option value string, st r. A value of NULL may be passed for this call
argument.

The maximum size in bytes of the buffer pointed at by St r.

Description

Use ntaQptionString() to retrieve the string representation of an option’s value. If
the option is specified in the option file, then its value and length will be returned
viathe str and str_| en call arguments. If the option is not specified then no value
is returned and the memory pointed at by str and str_| en are left unchanged. This
routine can be called with a NULL value for the opt _ct x argument. When this is
done, mtaQpt i onSt ring() immediately returns with a status code of zero and no
option value is returned.

226 Messaging Server 6 2005Q1 < MTA Developer's Reference

mtaPostmasterAddress

Return Values

Return Values Description
0 Normal, successful completion.
MIA_STRTRU Supplied buffer pointed at by buf is too small. The returned value has

been truncated to fit. Truncated value is NULL terminated. The buffer
should have a length of at least Bl GALFA_SI ZE+1 bytes.

MIA_STRTRUERR The supplied option name is too long. Its length must not exceed
ALFA S| ZE bytes.

Example

In the code example that follows, the value of an option named nai | _url is
retrieved. Before calling mt aQpt i onStri ng(), a default value is set for the variable to
receive the value of the option. If the option was not specified, then the variable
will retain that default setting. If the option was specified, then the variable will
assume the value set by that specification.

char url[1024];

strepy(url, "mail _to:webmaster @iroe.cont');
maQptionString(opt, "mail _url", 0, url, NULL, sizeof(url));

mtaPostmasterAddress
Obtain the MTA local postmaster address.

Chapter 6 MTA SDK Reference 227

mtaPostmasterAddress

228

Syntax
const char *niaPostnaster Address(const char **address,
size_t *| en,
i nt itemcode, ...)
Arguments
Arguments Description
addr ess Optional pointer to receive the memory address of the string buffer containing the

MTA local postmaster address. The string will be NULL terminated. A value of
NULL may be passed for this argument.

| en Optional address of a Si ze_t to receive the length in bytes of the postmaster
address. A value of NULL may be passed for this argument.

i tem code Reserved for future use. A value of zero (0) must be passed for this argument.

Description

This routine returns a pointer to a NULL terminated string containing the MTA
local postmaster address. This address is suitable, for instance, for inclusion in the
From header line of notification messages as shown in the code example for this
routine.

It is usually not a good idea for programs to send mail to the postmaster’s address.
In many situations, sending mail to the postmaster when failures occur can lead to
mail loops if the mail sent to the postmaster itself fails, and generates a message to
the postmaster, which then fails, and generates yet another message to the
postmaster, and so on.

On a successful completion, the address of the string buffer containing the
postmaster’s address is returned using the addr ess call argument. That same
address is also returned as the return status.

Return Values
In the event of an error, a value of NULL is returned as the status and nta_errno is
set with a status code indicating the underlying error.

Error Status Codes Description

MIA_FCPEN Unable to initialize the MTA SDK. Unable to read one or more configuration
files. For further information, issue the following command:

insinta test -rewite

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

mtaStackSize

Error Status Codes Description

MIA_NO Unable to initialize the MTA SDK. For further information, issue the following
command:

insinta test -rewite

Example
The following example shows how to use this routine to include the postmaster
address in the From header line of a notification message:

m aEnqueueWiteLine(ng, "From Postmaster <7, O,
nt aPost mast er Addr ess(NULL, NULL, 0), O,
">" 0, NULL);

mtaStackSize

Obtain the minimum thread stack size required when using the MTA SDK.

Syntax
size_t ntaStackSi ze(void);

Arguments
None

Description

A number of the run-time libraries used by the MTA SDK make intensive use of
stack variables. As a result, some MTA SDK operations can require a larger than
usual thread stack size. The minimum thread stack size required for typical MTA
SDK operations, such as message dequeue and engqueue operations, can be
obtained with nt aSt ackSi ze() . When writing multi-threaded code, ensure that any
threads that will be calling SDK routines have a stack size at least as large as the
value returned by nt aSt ackSi ze() . Failure to do may result in abnormal process
terminations when a thread overruns its stack.

Return Values
The minimum thread stack size required for MTA SDK operations.

Example
None

Chapter 6 MTA SDK Reference 229

mtaStrError

mtaStrError

Obtain a text description of an error status code.

Syntax

const char *mtaStrerror(int code,
int itemcode);

Arguments

Arguments Description

code The MTA SDK error status to obtain a text description for.

i tem code Reserved for future use. A value of zero must be supplied for this call argument.
Description

UsentaStrError() to obtain English language descriptions of MTA SDK error
codes. These descriptions are intended solely for use in fine-grained diagnostic
output. They are not intended for reading by end users of programs written using
the MTA SDK.

Return Values
A pointer to a NULL terminated string containing the error code description.

Example

ires = makenqueueStart(&nq, from 0, 0);
if (ires)
printf("ntaEnqueueStart() returned %; %\n",
ires, naStrError(ires, 0));

mtaUniqueString

Generate a system-wide unique string.

230 Messaging Server 6 2005Q1 < MTA Developer's Reference

mtaVersionMajor

Syntax
const char *ntaUni queString(char *buf,
size_t *len,
size_t max_len);
Arguments

Arguments Description

buf A pointer to a buffer to receive the NULL terminated unique string. The buffer
should be at least 20 bytes long.

I en An optional pointer to a Si ze_t to receive the length in bytes of the returned
unique string. This length does not include the NULL terminator that terminates
the returned unique string. A value of NULL can be passed for this call argument.

| en_max The maximum size in bytes of the buffer pointed at by buf .

Description

The nt aUni queStri ng() routine may be used to generate a system-wide unique
string. The strings generated are suitable for use as MIME boundary markers and
file names. On a successful completion, the unique string is stored in the buffer
pointed at by the buf argument. Additionally, the value of the buf argument is
returned as the routines return status.

Return Values

In the event of an error, nt alni queSt ri ng() will return NULL. The error status code
may be obtained by examining the value of nt a_errno.

Error Status
Codes Description

MIA_BADARGS A value of NULL was supplied for the buf argument.
MIA_STRTRUERR The buf buffer is too small.

Example
This routine is used in “Decoding MIME Messages Complex Example” on page 96.

mtaVersionMajor

Obtain the major version number associated with the MTA SDK library.

Chapter 6 MTA SDK Reference 231

mtaVersionMinor

Syntax
int mtaVersionMj or(void);

Arguments
None

Description
Return the major version number associated with the MTA SDK library.

Return Values
The SDK major version number.

Example

printf("MA SDK Version %l. %l- %\ n"
mt aVer si onMgj or (), ntaVersionM nor (),
nt aVer si onRevi si on())

mtaVersionMinor

Obtain the minor version number associated with the MTA SDK library.

Syntax
int ntaVersionM nor(void);

Arguments
None

Description
Return the minor version number associated with the MTA SDK library.

Return Values
The SDK minor version number.

Example
printf("MIA SDK Version Y. %@- %\ n”

nt aVer si onMaj or (), ntaVersionM nor (),
nt aVer si onRevi sion());

mtaVersionRevision
Obtain the revision level associated with the MTA SDK library.

232 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaVersionRevision

Syntax
int ntaVersionRevision(void);

Arguments
None

Description
Return the revision level associated with the MTA SDK library.

Return Values
The SDK revision level.

Example

printf("MA SDK Version %l %- %\ n"
nt aVer si onMyj or (), ntaVersi onM nor (), ntaVersionRevision());

Chapter 6 MTA SDK Reference 233

mtaVersionRevision

234 Messaging Server 6 2005Q1 < MTA Developer's Reference

Part Il

Callable Send

Chapter 7, “Using Callable Send: mtaSend”

Chapter 8, “mtaSend Routine Specification”

Chapter 7

Using Callable Send: mtaSend

The Sun Java System Messaging Server MTA Callable Send facility, nt aSend(), is a
single procedure that is used to send (enqueue) mail messages of local origin; that
is, to originate mail from the local host. Because the nt aSend() routine is not as
flexible as the SDK routines and will take possibly undesirable, but necessary,
authentication steps (such as, the addition of a Sender : header line), the MTA SDK
routines should generally be used by programs that need to resend, forward, send
through a gateway, or otherwise route mail messages.

The mt aSend() routine may be used simultaneously with the MTA SDK routines.

This chapter covers the following topics:

Sending a Message

Envelope and Header From: Addresses
To:, Cc:, and Bec: Addresses

Message Headers and Content
Required Privileges

mtaSendDispose

Compiling and Linking Programs

Examples of Using mtaSend

Sending a Message

Each message sent with nt aSend() must have a corresponding item list describing
the message. The entries in this item list specify the message’s From and To:
addresses as well as input sources for the content of the message.

237

Envelope and Header From: Addresses

The basic steps in sending a message with nt aSend() are:
1. Build an item list to pass to nt aSend() .
To build an item list, complete the following steps:

o Specify any special processing options, such as MTA_BLANK, or
MIA_| GNORE_ERRCRS.

o Specify the message’s envelope From address with the MTA_USER item.

o Specify the message’s To:, Cc: , and Bcc: addresses with the MTA TO, MTA CC,
and MTA BCCitems.

o Specify an initial message header in one of two ways:

I. Specify an input source that supplies each of the initial message header
lines (MIA_HDR FI LE, MTA_HDR_PRQCC).

Il. Specify the content of individual message header lines with individual
item codes (MTA_SUBJECT, MTA HDR LI NE).

o Specify the input sources for the message body with the MTA_ MSG FI LE or
MIA_MSG_PRCC items.

o Terminate the item list with an item code of value 0 (MTA_END LI ST).
2. Pass the item list to nt aSend() .
3. Check the return status from nt aSend() .

For a description of all item codes and their return status values, see Chapter 8,
“mtaSend Routine Specification.”

To enqueue additional messages, simply repeat these steps.

Envelope and Header From: Addresses

The envelope From address for a message should be specified with the MTA USER
item code. With this item code, only the local part of a mail address may be
specified, that is, the user name. The nt aSend() routine will automatically append
the official local host name to the user name so as to produce a valid mail address.

The MTA_ENV_FROMitem code may be used to explicitly specify a complete envelope
From address but this is usually not necessary. Applications that enqueue nonlocal
mail should probably be using the SDK routines rather than nt aSend() .

238 Messaging Server 6 2005Q1 < MTA Developer's Reference

To:, Cc:

To:, Cc:, and Bcc: Addresses

If neither MTA_USER nor MTA_ENV_FROMare specified, then the user name associated
with the current process will be used for the envelope From address. When
MIA_USERis used, the From header line will be derived from the envelope From
address. When MTA_ENV_FRQMis used, the From header line will be derived from the
user name of the current process. In either case, if a From header line is supplied in
an initial header, then a Sender : header line will be added to the message header.
The initial From header line will be left intact and the address specified, and
Sender : address will be derived from either the envelope From address (MTA_USER)
or from the user name of the current process, that is, from MITA_ENV_FROM

Only privileged users may use MTA_USERto specify a user name different than that
of the current process. To be considered a “privileged” process on UNIX® systems,
the process must have the same (real) user ID (U D) as either the r oot or Messaging
Server account.

~and Bcc: Addresses

The list of To:, Cc:, and Bcc: addresses to send a message to is built up, one address
at a time, with item-list entries. Each item-list entry specifies the type of address
(To:, Cc:, or Bee:) and a string containing the address.

The type of address is denoted by the item code, MTA TO MIA CC, or MTA_BCC,
associated with the item-list entry. The nt aSend() routine uses this information to
build the message envelope To: address list and To:, Cc:, and Bcc: header.

To specify an envelope-only address that should not appear in the message header
(for example, an active transport address), use MTA_ ENV_TO. Likewise, to specify a
header-only address that should not appear in the envelope, such as, an inactive
address, use MTA_ HDR TO, MTA_HDR_CC, or MTA_HDR BCC, as appropriate.

When one or more of the To: , Cc:, or Bcc: addresses is illegal, the nt aSend() routine
will not, by default, indicate which addresses were in error. However, the
differentiation can be achieved by using the MTA_ADR STATUS item code. When this
item code is used, the i t em st at us field associated with an address will be set
either to zero (0) if the address was accepted, or to a non-zero value if there was an
error processing the address.

When i tem st at us is zero, i t em snessage points to a NULL terminated string
containing the rewritten form of the address. When i t em st at us has a non-zero
value, i t em snessage points to a NULL terminated string containing an error
message suitable for printing for diagnostic purposes.

Chapter 7 Using Callable Send: mtaSend 239

Message Headers and Content

Message Headers and Content

240

The body of a message, that is, the message content, is built up from zero or more
input files or procedures. The input files and procedures are read or invoked in the
order specified in the item list passed to the nt aSend() routine. The message body
is built up by appending the next input source to the end of the previous input
source. A blank line will be inserted in the message as a separator between input
sources if the MTA_BLANK item is requested in the item list. The MTA_MSG FI LE and
MIA_MBG_PRCC item codes are used to specify the name or address of input files or
procedures.

An initial message header may be supplied from either an input file or procedure.
The message header will then be modified as needed when the message is
enqueued. The MTA HDR FI LE and MTA HDR _PRCC items are used to specify the name
or address of an input file or procedure. If an initial message header is to be
supplied, it must appear in the item list before any MTA_ MG FI LE or MTA_ MSG PROC
items. A blank line must be supplied at the end of the message header, or at the
start of the first message-body input source. This blank line will automatically be
supplied when the MTA_BLANK item code is specified in the item list.

The MTA_MODE_ and MTA_ENC_ items control the access mode and encodings applied
to message body input sources. These items set the current access mode and
encoding to be applied to all subsequent input sources that appear in the item list.
The default access mode is MTA_MODE_TEXT, which uses text mode access. The
default encoding is MTA_ENC_UNKNOWN, which results in no encoding of the data.

The binary access mode will not be applied to input procedures. The access mode
and encoding item codes do not apply to input sources for an initial message
header, which is always accessed using the default access mode and never
encoded.

Input procedures use the following calling format:
ssize_t proc(const char **bufadr)

where const char **buf adr is the address of pointer to the starting memory
location of the next piece of input data.

The return value is ssi ze_t, which gives the length of the input data. A value that
is equal to or greater than zero (0) indicates success. A value of minus one (- 1)
indicates that there is no further data to return (ECF). Any other negative value
indicates an error for which processing should be aborted.

The procedure will be repeatedly called until a negative value is returned, which
indicates all input data has been retrieved or an error occurred.

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Required Privileges

Required Privileges

Like the MTA SDK routines, privileges are required in order to use nt aSend() .
Enqueuing messages requires privileges sufficient to create, open, read from, and
write to the MTA message queue directories. On UNIX, this is accomplished by
having your executable program owned and run by the MTA account or,
alternatively, owned by the MTA and have the set ui d attribute set.

In order to submit mail under a user name that differs from that of the calling
process, privileges are required. On UNIX platforms, the process must have the
same (real) U Das either the root or Messaging Server account.

In some applications, it is important to keep strict control over when privileges are
enabled and disabled. To this end, the MTA PR V_ENABLE PROCCand

MIA_PRIV_Di SABLE PRQC item codes may be used to specify the addresses of two
procedures to call immediately prior to and immediately after enqueuing a
message. This allows the required privileges to be enabled only when they are
needed, that is, when the message is enqueued, and to remain disabled at all other
times.

The nt aSend() routine does not use a condition handler, so if a fatal error occurs
while enqueuing a message, it is up to the calling program to trap the error and, if
necessary, disable any privileges that should be disabled. These procedures, if
specified, should accept no arguments and return no function result (return value).

The privileges to be enabled must either be granted to the program using

nt aSend() (for example, the program may have been installed with privileges), or
the process running the program must have the requisite privileges. The nt aSend()
routine and the MTA do not provide these privileges.

mtaSendDispose

For each call to nt aSend() where MTA_ADR_STATUS is used, there should be a
subsequent call to nt aSendDi spose() .

Syntax
voi d ntaSendD spose(nta_itemlist t *itemlist)

Chapter 7 Using Callable Send: mtaSend 241

Compiling and Linking Programs

Arguments

Argument Description

itemlist Pointer to an array with elements of type mta_item | i st _t. This
should be an array previously passed to nmt aSend() .

Description

Each call to this routine disposes of virtual memory allocated by mtaSend() for
returning address status information requested with the MTA_ADR_STATUS item code.

Return Values
None

Example

i tem |ist[index++.item code=MIA_ADR STATUS;
itemlist[index++].item code=MIA_| TEM END,
istat=ntaSend(itemlist);

nt aSendDi spose(itemlist);

Compiling and Linking Programs

Programs that use nt aSend() are linked using the same steps as the MTA SDK
routines. For details, see Chapter 2, “MTA SDK Programming Considerations.”

Examples of Using mtaSend

Several example programs, written in C, are provided in this section:

= Example 1: Sending a Simple Message

= Example 2: Specifying an Initial Message Header

< Example 3: Sending a Message to Multiple Recipients

= Example 4: Using an Input Procedure to Generate the Message Body

The example routines shown in this section may be found in the exanpl es/ nt a/ sdk
directory.

242 Messaging Server 6 2005Q1 « MTA Developer's Reference

Examples of Using mtaSend

Example 1: Sending a Simple Message

The program shown in Code Example 7-1 demonstrates how to send a simple
message to the root account. The source code itself is used as the input source for
the body of the message to be sent. The From address associated with the message
is that of the process running the program. Comments in the program example
explain the sample output line they generate.

Code Example 7-1 Send a Simple Message

¥ send_sinple.c Send a Sinple nessage */
#include <string. h>
#include "ntasdk. h"

/* Push an entry onto the itemlist */

#define ITEMitemadr) itemlist[index].itemcode = item)\
itemlist[index].itemaddress = adr;\
itemlist[index].itemlength adr ? strlen(adr) : 0; \
itemlist[index].itemstatus = 0;\
itemlist[index++].itemsnessage = NULL

main ()

ma itemlist_t itemlist[4];
int index = 0;

| TEMMIA TO "root"); /* Becones the To: line in the output */
| TEM MTA_SUBJECT, "send_sinple.c");

| TEM MTA_ MBG FILE, _ FILE_);/* Becones the Subject: line */

| TEM MTA_END LI ST, 0);

exit(ntaSend(itemlist));

Chapter 7 Using Callable Send: mtaSend 243

Examples of Using mtaSend

244

Example 1 Output

Date: 04 Oct 1992 22:24:07 -0700 (PDT)
From jdoe@esta.com

Subj ect: send_sinple.c

To: root @esta. com

Message-i d: <01GPKF10JI B8ILVIVIK@est a. conp
M ME-version: 1.0

Content-type: TEXT/ PLAIN CHARSET=US- ASCI |
Content -transfer-encoding: 7B T

/* send_sinple.c -- Send a sinple nessage */
#incl ude <string. h>
#include "ntasdk. h"

Example 2: Specifying an Initial Message
Header

The program shown in Code Example 7-2 illustrates the use of the MTA_HDRVSG FI LE
and MTA_HDR_ADRS item codes to enqueue a message that has already been
composed, including the headers, and stored in a file. The input file is given in the
Example 2 Input File. The resulting message is shown in Example 2 Output.

When the entire message, header and body, is contained in a single file, use the
MIA_HDRVSG FI LE item code in place of the MTA HDR FI LE and MIA_MSG FI LE item
codes.

Code Example 7-2 Specify an Initial Message Header

¥ send_header.c -- Send a nessage wth initial header */
#include <string. h>
#i ncl ude "ntasdk. h"

/* Push an entry onto the itemlist */

#define ITEMitemadr) itemlist[index].itemcode = item)\
itemlist[index].itemaddress = adr;\
itemlist[index].itemlength adr ? strlen(adr) : 0;\
itemlist[index].itemstatus = 0;\
itemlist[index++].itemsnessage = NULL

main ()

MIA itemlist_t itemlist[3];
int index = 0;

| TEM MTA_HDR ADRS, 0);

| TEM MITA_HDRVSG FI LE, "send_header.txt");
| TEM MTA_END LI ST, 0);
exit(naSend(itemlist));

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Examples of Using mtaSend

Example 2 Input File

Subj ect: MIA SIK cal | abl e Send exanpl e

To: root @esta. com

M ME-version: 1.0

Content-type: TEXT/ PLAIN CHARSET=US- ASCl |
Content-transfer-encoding: 7Bl T

Comments: lgnore this message -- it's just a test

This is a test of the emergency broadcasting systeni

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Example 2 Output

Date: 04 Jan 2003 22:42:25 -0800 (PST)

From systen@esta.com

Subj ect: MIA SDK cal | abl e Send exanpl e

To: systenm@esta. com

Message-i d: <01GPKFNPUQF8ILVIVK@est a. conp

M ME-version: 1.0

Content -type: TEXT/ PLAIN, CHARSET=US- ASC |
Content -transfer-encoding: 7BI T

Comments: lgnore this message -- it’'s just a test

This is a test of the emergency broadcasting systeni

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Example 3: Sending a Message to Multiple
Recipients

The program given in Code Example 7-3 demonstrates the following points:
< Sending a message to multiple recipients.

= Obtaining the status (legal, illegal) of each envelope recipient address (that is,
active transport address).

The message is sent to one To: address, a Cc: address, and a Bcc: address. After
nt aSend() is called, any status message associated with each address is displayed.

Chapter 7 Using Callable Send: mtaSend 245

Examples of Using mtaSend

The log output produced by running the program is shown in Example 3 Output.
The following items of note are identified in the comments in the program:

= Instruct ntaSend() to return a status message for each envelope recipient
address.

= Specify some To:, Cc:, and Becc: addresses.
« Send the message.

= Display any returned status messages.

Code Example 7-3 Sending a Message to Multiple Recipients

/¥ send_multi.c -- Send a message to nmultiple recipients */
#i ncl ude <stdio. h>

#include <string. h>

#i ncl ude "ntasdk. h"

#define ITEMitemadr) itemlist[index].itemcode = item)\
itemlist[index].itemaddress = adr;\
itemlist[index].itemlength = adr ? strlen(adr) : 0;\
itemlist[index].itemstatus 0;\
itemlist[index++].itemsnessage = NULL

main ()

int index =0, istat, i;
maitemlist_t itemlist[7];

/* Specify the Subject: header |ine and nmessage input source */
| TEM MTA_SUBJECT, "send_nulti.c");
| TEM MTA MSG FILE, _ FITE);

/* Return per address status/error messages */

| TEM MTA_ADR _STATUS, 0); /* Instructs ntaSend() to return a */
/* status message for each envel ope */
/* recipient address

/* Specify regular Bcc:, To:, and Cc: addresses */
| TEM MTA_BCC, "root");

| TEM MTA_TQ "abuse@anpl e. cont);

| TEM MTA_CC, "post nast er @anpl e. com');

/* Nowtermnate the itemlist */
| TEM MTA_END LI ST, 0);

/* And send the message */
istat = ntaSend(itemlist);/* Sends the message. */

/* Display the address status messages provided that no */
/* error other than MIA HOST has occurred

246 Messaging Server 6 2005Q1 < MTA Developer's Reference

Examples of Using mtaSend

Code Example 7-3 Sending a Message to Multiple Recipients (Continued)

for (i =0; i <index; i++) /* Display any returned status */
[* messages */
if (itemlist[i].itemsnessage)
printf ("9%: % - %\n",
(const char *)itemlist[i].itemaddress,
itemlist[i].itemstatus ? "Failed" :
"Succeeded",
itemlist[i].itemsnessage);

/* Dispose of status nessages */
nt aSendDi spose(itemlist);
exit(istat);

Example 3 Output

Succeeded: root @anpl e. com
Succeeded: abuse@anpl e. com
Succeeded: post mast er @anpl e. com

Example 4: Using an Input Procedure to
Generate the Message Body

The program shown in Code Example 7-4 uses an input procedure as the source for
the body of a message to be sent. In the program, the input procedure nsg_pr oc will
read input until the runtime library routine f get s() signals an EOF condition, for
example, a cont r ol - Dhas been input. The address of the procedure nsg_proc is
passed to nt aSend() using a MTA_MSG PRCCitem code. The nt aSend() routine
repeatedly calls the nsg_pr oc procedure, until a negative value is returned by the
procedure.

Chapter 7 Using Callable Send: mtaSend 247

Examples of Using mtaSend

248

Code Example 7-4 Using an Input Procedure to Generate the Message Body

¥ send_input.c -- Denonstrate the use of MIA_NEG PROC */
#i ncl ude <stdio. h>

#include <stdlib. h>

#incl ude <string. h>

#i ncl ude "ntasdk. h"

#ifdef _WN32
typedef |ong ssize_t;
#endi f

/* Push an entry onto the itemlist */
#define ITEMitemadr) itemlist[index].itemcode = item\

itemlist[index].itemaddress = adr;\
itemlist[index].itemlength = 0;\
itemlist[index].itemstatus = 0;\

itemlist[index++].itemsnmessage = NULL
ssize_t nsg_proc(const char **bufadr)
static char buf[1024];

if (!bufadr)
return(-2); /* Call error; abort */

printf("input: ");
if (fgets(buf, sizeof(buf), stdin))
{

*puf adr = buf;

bufl en = strlen(buf);

if (buf[buflen-1] =="\n")
buflen -= 1;

return(buflen);

el se
return(-1); [/* ECF */

main ()

int istat, index = 0;
nma itemlist_t itemlist[4];

STRI TEM MIA_SUBJECT, "send_input.c");
STRITEM MIA_TO, "root");

| TEM MTA_MBG PROC, nsg_proc);

| TEM MTA_END LI ST, 0);
exit(naSend(itemlist));

Messaging Server 6 2005Q1 « MTA Developer’'s Reference

Chapter 8

mtaSend Routine Specification

This chapter contains the functional specification of the nt aSend() routine. It
includes the following sections:

mtaSend Syntax

Item Codes

“MIA_ADR_NCSTATUS” on page 253
“MIA_ADR _STATUS" on page 253

“MIA_BCC' on page 253

“MIA_BLANK" on page 253

“MIA_CC' on page 254

“MIA_CHANNEL” on page 254

“MIA_CFI LENAME" on page 254

“MIA_CFl LENAME_NONE” on page 254
“MIA_CTYPE" on page 254

“MIA_ENC BASE64" on page 255

“MIA_ENC BASE85" on page 255
“MIA_ENC BI NHEX" on page 255

“MIA_ENC BTQA" on page 255

“ MIA_ENC_COVPRESSED BASE64”" on page 255
“ MIA_ENC_COVPRESSED Bl NARY” on page 255
“MIA_ENC_COWPRESSED UUENCCDE’ on page 256
“MIA_ENC_HEXADECI MAL” on page 256

249

“MIA_ENC_NONE' on page 256
“MIA_ENC_PATHWORKS® on page 256
“MIA_ENC_QUOTED PRI NTABLE" on page 256
“MIA_ENC_UNKNOW' on page 256
“MIA_ENC_UUENCCDE’ on page 257
“MIA_END LI ST" on page 257
“MIA_ENV_FROM' on page 257

“ MIA_FRAGVENT_BLOCKS' on page 257
“MIA_FRAGMVENT_LINES’ on page 258
“MIA_ENV_TO' on page 257
“MIA_FROM on page 258

“MIA_HDR _ADRS" on page 258
“MIA_HDR BCC' on page 259
“MIA_HDR CC' on page 259

“MIA_ HDR FILE’ on page 259
“MIA_HDR LI NE" on page 259
“MIA_HDR_NCQADRS" on page 259
“MIA_HDR_NCRESENT” on page 260
“MIA_HDR PROC' on page 260
“MIA_HDR RESENT” on page 260
“MIA_HDR TO' on page 260
“MIA_HDRVSG FI LE’ on page 260
“MIA_HDRVMSG PROC' on page 261
“MIA_| GNCRE_ERRCRS’ on page 261
“MFA_| NTERACTI VE' on page 261
“MIA_| TEM LI ST” on page 261
“MIA_MAX_TO' on page 261
“MIA_MODE _BI NARY” on page 261
“MIA_MODE_TEXT” on page 262

250 Messaging Server 6 2005Q1 « MTA Developer's Reference

mtaSend Syntax

“MIA_MBG _FI LE' on page 262
“MIA_MSG PROC' on page 262
“MIA_NCBLANK” on page 262

“MIA_NQ GNORE_ERRCRS’ on page 263
“MIA_PRIV_D SABLE_PROC' on page 263
“MIA_PRIV_ENABLE PRCC’ on page 263
“MIA_SUBADDRESS" on page 263
“MIA_SUBJECT" on page 264

“MIA_TO' on page 264

“MIA_USER’ on page 264

mtaSend Syntax

Syntax
int maSend(nta_itemlist t *itemlist)

Arguments

item_list

The ntaSend() routine takes only one argument, i tem | i st, which is a pointer to an
array of item descriptors. Each item descriptor specifies an action to be taken, and
provides the information needed to perform that action.

The list of item descriptors is terminated with an entry containing the MTA_END LI ST
(0) item code.

Each item descriptor has the following C-style structure declaration:

struct {
int i tem code;
const void *item address;
i nt i teml ength;
int i tem status;
const char *item snessage;
} nmtaitemlist_t;

Chapter 8 mtaSend Routine Specification 251

mtaSend Syntax

Item Descriptor Fields

item_code

Integer item code specifying an action to be taken by nt aSend() . The include file
described in Chapter 1, “MTA SDK Concepts and Overview” defines these codes.
Each item code is described later in this chapter, starting at “Item Codes” on
page 253.

item_address

The caller-supplied address of data to be used in conjunction with the action
specified by the i t em code field. Not all actions require that an i t em addr ess be
supplied.

item_length

When the item code has an associated string value, this field optionally provides
the length in bytes of the string, not including any NULL terminator. If a value of
zero (0) is supplied, then the string pointed to by i t em addr ess must be NULL
terminated, so that nt aSend() can automatically determine the string’s length.

When the item code has an associated integer value, this field supplies that value.

item_status
When the item code MIA_ADR STATUS is specified, this field will contain processing
status for the associated envelope recipient address.

item_smessage

When the item code MIA_ADR STATUS is specified, this field will contain the
rewritten form of the envelope recipient address when the returned value of
i tem st at us is zero, or a textual error message when the returned value of

i t em st at us is non-zero.

Description

Use nt aSend() to send a message. The routine performs the processing carried out
to address the message, generate the message’s header and body, and enqueue the
message as specified with the i tem | i st argument. For instructions on how to use
nt aSend() , see Chapter 7, “Using Callable Send: mtaSend.”

252 Messaging Server 6 2005Q1 « MTA Developer's Reference

Item Codes

ltem Codes

MTA_ADR_NOSTATUS

Do not return status messages for To: , Cc: , and Bcc: addresses. This is the default
setting.

Theitem address anditem | ength fields are ignored for this item code.

MTA_ADR_STATUS

Return textual status messages for each envelope recipient address (that is, an
active transport address) specified with any of these item codes: MTA_TO, MTA_CC,
MFA_BCC, MTA HDR TO, MTA_HDR _CC, or MTA_HDR BCC. When a recipient address is
successfully processed, the value of the associated i t em st at us field will be zero
and i t em smessage will be a pointer to a NULL terminated string containing the
rewritten form of the address. When a recipient address fails to be processed
successfully, the value of the associated i t em st at us field will be non-zero and

i t em snmessage will be a pointer to a NULL terminated error message string.

After calling nmt aSend() with MTA_ADR STATUS, call the nt aSendD spose() function to
dispose of any dynamic memory allocated by nt aSend() .

Theitem address anditem | ength fields are ignored for this item code.

MTA_BCC

Specify a blind carbon copy (Bcc:) address. Theitem address anditem|ength
fields specify the address and length of a string containing a Bcc: address. The
length of the address may not exceed ALFA_SIZE bytes.

MFA_BCCis used to specify a Bcc: address that should appear in both the message’s
header and envelope.

MTA_BLANK

When processing multiple input sources, insert a blank line between the input
from each source. Ordinarily, the input files are appended one after the other with
no delimiters or separators. This is the action selected with the MTA_NOBLANK item
code. By specifying the MTA BLANK action, nt aSend() inserts a blank line between
each input file. This is especially useful when the first input file is to be treated as a
source of header information and the second as the message body or part thereof.
This produces the requisite blank line between the message header and body.

Theitem address anditem | ength fields are ignored for this item code.

Chapter 8 mtaSend Routine Specification 253

Item Codes

MTA _CC

Specify a carbon copy (Cc:) address. The it em address and i t em | engt h fields
specify the address and length of a string containing a Cc: address. The length of
the address may not exceed ALFA_SIZE bytes.

MIA_CCis used to specify a Cc: address that should appear in both the message’s
header and envelope.

MTA_CHANNEL

Specify the channel to act as, when enqueuing the message. If not specified, then
mail will be enqueued as though sent from the local, | , channel. The i t em addr ess
anditem | engt h fields specify the address and length of a text string containing the
name of the channel to act as. The length of the string may not exceed
CHANLENGTH bytes.

MTA_CFILENAME

When MIA_CFI LENAME is specified, the name of the message input file will be
included as a parameter in the MIME Cont ent - t ype: header line. This action, when
specified, will hold for all subsequent input files until an
MTA_CFILENAME_NONE action is seen in the same item list.

MFA_FI LENAVE NONE is the default.

MTA_CFILENAME_NONE

The default action for including or not including the name of the message input file
as a parameter in the MIME Cont ent - t ype: header line. This item code specifies
that no input file is to be included.

When MTA_CFILENAME has been specified, it will hold for all subsequent input
files until an MTA_CFILENAME_NONE action is seen in the same item list.

Theitem address anditem | ength fields are ignored for this item code.

MTA_CTYPE

Specify the body of a Cont ent - t ype: header line. The i t em addr ess and

i tem | engt h fields specify the address and length of a text string to place in the
body of a Cont ent -t ype: header line. The length of the string may not exceed
ALFA S| ZE bytes. Only one Cont ent - t ype: body may be specified.

254 Messaging Server 6 2005Q1 « MTA Developer's Reference

Item Codes

MTA _ENC_BASE64

Encode data from all subsequent input sources using MIME’s BASE64 encoding.
This setting may be changed with any of the other MTA_ ENC _item codes. The default
encoding is MTA ENC UNKNOM. The i t em address and i t em | engt h fields are ignored
for this item code.

MTA_ENC_BASES5

Encode data from all subsequent input sources using Adobe’s ASCII85 encoding
(BASES5). This setting may be changed with any of the other MTA_ENC_ item codes.
The default encoding is MTA_ ENC_UNKNOM. The i t em addr ess and i t em | engt h fields
are ignored for this item code.

MTA_ENC_BINHEX

Encode data from all subsequent input sources using the BINHEX encoding. This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ ENC UNKNOM. The i t em address and i t em | engt h fields are ignored
for this item code.

MTA_ENC BTOA

Encode data from all subsequent input sources using the UNIX® binary-to-ASCII
(BTOA) encoding. This setting may be changed with any of the other MTA_ENC_ item
codes. The default encoding is MTA_ ENC_ UNKNOM. The i t em addr ess and

i tem | engt h fields are ignored for this item code.

MTA_ENC_COMPRESSED BASEG64

Encodes data from all subsequent input sources using MIME’s BASE64 encoding
after first compressing it using Gnu zip. This setting may be changed with any of
the other MTA_ENC_ item codes. The default encoding is MTA_ ENC_UNKNOM. The

i tem address and i t em | engt h fields are ignored for this item code.

MTA _ENC_COMPRESSED_BINARY

Compress the data with Gnu zip. No other encoding of the data will be done. This
setting may be changed with any of the other MTA_ ENC item codes. The default
encoding is MTA_ENC_ UNKNOM. The i t em address and i t em | engt h fields are ignored
for this item code.

Chapter 8 mtaSend Routine Specification 255

Item Codes

MTA_ENC_COMPRESSED UUENCODE

Encode data from all subsequent input sources using UUENCODE, after first
compressing the data with Gnu zip. This setting may be changed with any of the
other MTA_ ENC_item codes. The default encoding is MTA ENC_UNKNOWN. The

i tem address and i tem | engt h fields are ignored for this item code.

MTA_ENC_HEXADECIMAL

Encode data from all subsequent input sources using a hexadecimal encoding. This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ ENC UNKNOM. The i t em address and i t em | engt h fields are ignored
for this item code.

MTA_ENC_NONE

Data from all subsequent input sources is left unencoded (that is, not encoded).
This setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ ENC UNKNOM. The i t em address and i t em | engt h fields are ignored
for this item code.

MTA_ENC_PATHWORKS

Encodes multipart and binary message contents using the OpenVMS Pathworks
format. This setting may be changed with any of the other MTA_ENC_ item codes. The
default encoding is MTA ENC UNKNOM. The i t em address and i t em | engt h fields are
ignored for this item code.

MTA ENC_QUOTED PRINTABLE

Encode data from all subsequent input sources using MIME’s quoted printable
encoding. This setting may be changed with any of the other MTA_ENC_ item codes.
The default encoding is MTA_ ENC UNKNOM. The i t em addr ess and i t em | engt h fields
are ignored for this item code.

MTA _ENC_UNKNOWN

Data from all subsequent input sources is left unencoded (that is, not encoded).
This setting may be changed with any of the other MTA_ENC item codes. The default
encoding is MTA_ENC_ UNKNOM. The i t em address and i t em | engt h fields are ignored
for this item code.

256 Messaging Server 6 2005Q1 < MTA Developer's Reference

Item Codes

MTA_ENC_UUENCODE

Encode data from all subsequent input sources using UUENCODE. This setting
may be changed with any of the other MTA_ ENC item codes. The default encoding is
MIA_ENC UNKNOM. Thei t em addr ess and i t em | engt h fields are ignored for this item
code.

MTA_END _LIST

Terminate an item list. This item code, when encountered, signals the end of the
item list. The i tem address and i t em | engt h fields are ignored for this item code.

MTA_ENV_FROM

Specify the envelope From address to associate with a message. The i t em addr ess
anditem | engt h fields specify the address and length of a text string containing the
envelope From address to use for the message submission. The length of the string
may not exceed ALFA S| ZE bytes. Only one envelope From address may be
specified.

The MTA_ENV_FROMaction should be used when the envelope From address is not a
local address. When the address is a local address, then only the user name should
be specified using the MTA_USER action.

If this action and the MIA_USER actions are not specified, then the user name
associated with the current process will be used.

Do not use this item code in conjunction with the MTA_USER or MTA_SUB_USER item
codes.

MTA ENV_TO

Specify an envelope-only To: address (that is, an active recipient), which should
not appear in the message’s header. The i t em address and i t em | engt h fields
specify the address and length of a string containing a To: address. The length of
the address may not exceed ALFA S| ZE bytes.

MTA_FRAGMENT_BLOCKS

Specify the maximum number of blocks per message. If, when the message is
enqueued, the message size exceeds this limit, then the message will be fragmented
into smaller messages, each fragment no larger than the specified block size. The
individual fragments are MIME compliant messages that use MIME’s

Chapter 8 mtaSend Routine Specification 257

Item Codes

nmessage/ parti al content type. MIME compliant mailers or user agents that receive
the fragments may automatically re-assemble the fragmented message. (MTA
channels must be marked with the def ragnent keyword in order for automatic
message re-assembly to occur.)

The size of a block may vary from site to site. Sites can change this value from its
default value of 1,024 bytes. Use the MTA SDK routine nt aBLOXK_SI ZE to determine
the size in bytes of a block.

Theitem | engt h field specifies the maximum block size per message or message
fragment. By default, no limit is imposed.

MTA_FRAGMENT_LINES

Specify the maximum number of message lines per message. If, when the message
is enqueued, the number of message lines exceeds this limit, then the message will
be fragmented into smaller messages, each fragment with no more than the
specified number of lines. The individual fragments are MIME compliant messages
that use MIME’s nessage/ parti al content type. MIME compliant mailers or user
agents that receive the fragments may automatically re-assemble the fragmented
message. (MTA channels must be marked with the def ragnent keyword in order
for automatic message re-assembly to occur.)

Theitem | engt h field specifies the maximum number of message lines per
message or message fragment. By default, no limit is imposed.

MTA_FROM

Specify the address to use in the message header’s From header line. The

i tem address and i t em | engt h fields specify the address and length of a text string
containing the From address. The length of the string may not exceed ALFA S| ZE
bytes. Only one From address may be specified.

If this action is not used, then the Fr om header line will be derived from the
envelope From address.

MTA HDR_ADRS

Specify MTA_ HDR_ADRS to request that the message also be sent to recipient addresses
found in any input header files. The i t em address and i t em | engt h fields are
ignored for this item code.

258 Messaging Server 6 2005Q1 < MTA Developer's Reference

Item Codes

MTA HDR_BCC

Specify a header-only Bcc: address (that is, an inactive recipient), which should
only appear in the message’s header. The i t em address and i t em | engt h fields
specify the address and length of a string containing a Bcc: address. The length of
the address may not exceed ALFA S| ZE bytes.

MTA_HDR_CC

Specify a header-only carbon copy (Cc:) address (that is, an inactive recipient),
which should only appear in the message’s header. The i t em addr ess and

i tem | engt h fields specify the address and length of a string containing a Cc:
address. The length of the address may not exceed ALFA S| ZE bytes.

MTA_HDR_FILE

Specify the name of an input file containing message header lines. The first input
file may be a file containing a message header. In this case, it should be specified
using this item code rather than MTA_MSG FI LE. This will ensure that the input file
receives the proper processing (such as, is not encoded, accessed using text mode
access). The nt aSend() routine uses the header lines from the input file to form an
initial message header. This initial header is then modified as necessary. This
functionality is useful when forwarding mail.

Note that any recipient addresses in the header file will be ignored unless
MIA_HDR _ADRS is also specified.

Theitem address anditem | ength fields specify the address and length of a text
string containing the input file’s name. The length of the string may not exceed
ALFA Sl ZE bytes.

MTA_HDR_LINE

Specify an additional header line to include in the message header. The

i tem address and i t em | engt h fields specify the address and length of the header
line (field name and body) to place in the message header. The length of the string
may not exceed ALFA Sl ZE bytes. Any number of header lines may be added. Use

one item list entry per header line.

MTA_HDR_NOADRS

Recipient addresses must be explicitly specified and any addresses in an input
header file will be ignored (but will still appear in the message header). The
i tem address and i t em | engt h fields are ignored for this item code.

Chapter 8 mtaSend Routine Specification 259

Item Codes

This is the default action for recipient addresses found in input header files.

MTA HDR_NORESENT

Specify MTA_ HDR_NORESENT to cause additional addresses to be added to existing
header lines rather than through the introduction of Resent- header lines.

Theitem address anditem | ength fields are ignored for this item code.

MTA HDR_PROC

Specify the address of a procedure that will return, one line at a time, header lines
for the message header. The i t em addr ess field specifies the address of the
procedure to invoke. Theitem | engt h field is ignored.

The calling format that must be used by the procedure is given in “Message
Headers and Content” on page 240 in this manual.

MTA HDR_RESENT

The MTA HDR RESENT action selects the default behavior whereby Resent - header
lines are added as necessary to the message header when the associated header line
appears in any input header files. For instance, a Resent -t o: header line will be
added if a To: header line already appears. Theitem address anditemlength
fields are ignored for this item code.

MTA_HDR_TO

Specify a header-only To: address (that is, an inactive recipient), which should only
appear in the message’s header. The i t em address and i t em | engt h fields specify
the address and length of a string containing a To: address. The length of the
address may not exceed ALFA S| ZE bytes.

MTA_HDRMSG_FILE

Specify the name of an input file containing both the message header and message
body. The content of the file represents an RFC 2822 formatted message with at
least one blank line separating the RFC 2822 header from the message body. The
nt aSend() routine uses the header lines from the input file to form an initial
message header. This initial header is then modified as necessary.

Theitem address anditem | ength fields specify the address and length of a text
string containing the input file’s name. The length of the string may not exceed
ALFA SI ZE bytes.

260 Messaging Server 6 2005Q1 « MTA Developer's Reference

Item Codes

MTA _HDRMSG _PROC

Specify the address of a procedure that will return, one line at a time, each line of
an RFC 822 formatted message. The RFC 822 header must come first, followed by
at least one blank line, followed by the message body. The i t em addr ess field
specifies the address of the procedure to invoke. The calling format that must be
used by the procedure is given in “Message Headers and Content” on page 240.

MTA_IGNORE_ERRORS

Send the message as long as at least one To: address was okay and at least one
input source was okay. By default, the message will not be sent if any of the To:
addresses are illegal (such as, bad syntax, restricted, unknown host), or if any of the
input sources proved to be bad (such as, could not open an input file). The

i tem address and i tem | engt h fields are ignored for this item code.

MTA_INTERACTIVE

Do not ignore user-to-channel access checks when enqueuing mail. This should, in
general, be used by programs such as user agents that enqueue mail for users.

Theitemaddress anditem | ength fields are ignored for this item code.

MTA_ITEM_LIST

The nt aSend() routine immediately begins processing the list of item descriptors
pointed at by i t em addr ess. This new list will be used immediately; any remaining
items in the current list will be ignored.

Theitem | ength field is ignored for this item code.

MTA_MAX_TO

Specify the maximum number of envelope To: addresses per message copy. If,
when the message is enqueued, the number of envelope To: addresses for the
message exceeds this limit, then the message will be broken into multiple copies,
each copy with no more than the specified number of envelope To: addresses.

Theitem | engt h field specifies the maximum number of envelope To: addresses
per message copy. By default, no limit is imposed.

MTA_MODE_BINARY

Read subsequent input files as raw binary files. This setting may be changed with
the MTA_MODE_TEXT item code. The default access mode is MTA_MODE_TEXT.

Chapter 8 mtaSend Routine Specification 261

Item Codes

Theitem address anditem | ength fields are ignored for this item code.

MTA MODE_TEXT

Read subsequent input files as record-oriented text files. This setting may be
changed with the MTA_ MODE_BI NARY item code. The default access mode is
MFA_MODE_TEXT.

Theitem address anditem | ength fields are ignored for this item code.

MTA _MSG_FILE

Specify an input file to read and include in the message body. The file will be read
using the current access mode and encoded using the current encoding as specified
by MTA MCDE_and MIA ENC_item codes.

Theitem address anditem | ength fields specify the address and length of a text
string containing the name of the input file. The length of the string may not exceed
ALFA S| ZE bytes.

MTA _MSG_PROC

Specify the address of a procedure that will return, one line at a time, data for the
message body. Each line of input obtained from the procedure will be treated using
the current access mode and encoded using the current encoding as specified by
MIA_ MODE_and MIA ENC _item codes. Note, however, that the block access mode will
not be applied to input procedures.

The i t em addr ess field specifies the address of the procedure to invoke. The
i tem | engt h field is ignored.

The calling format that must be used by the procedure is given in “Message
Headers and Content” on page 240.

MTA_NOBLANK

When processing multiple input source, do not insert a blank line between the
input from one source and the next. This is the default behavior: the input from
each input source is appended one after the other with no delimiters or separators
marking the transition between sources.

Theitem address anditem | ength fields are ignored for this item code.

262 Messaging Server 6 2005Q1 < MTA Developer's Reference

Item Codes

MTA_NOIGNORE_ERRORS

Send the message only if all To: addresses are okay and all input sources are okay.
This is the default.

Theitem address anditem | ength fields are ignored for this item code.

MTA_PRIV_DISABLE_PROC

The address of a procedure to invoke immediately after enqueuing a message so as
to disable process privileges. See the description of MTA PRI V_ENABLE PRCC for
details on the use of this item code.

This item code must be used in conjunction with MTA PRI V_ENABLE PRCCitem.

Theitem | ength field is ignored for this item code.

MTA_PRIV_ENABLE_PROC

The address of a procedure to invoke immediately before enqueuing a message so
as to enable process privileges.

Privileges are required to enqueue messages. It is possible to provide nt aSend()
with the address of two procedures to call. One procedure is called immediately
prior to enqueuing a message thereby allowing process privileges to be enabled.
The second procedure is then called immediately after the message has been
enqueued thereby allowing process privileges to be disabled.

For further details on the use of this item code, see “Required Privileges” on
page 241.

This item code must be used in conjunction with MTA PR V_Dl SABLE PRCC.

Theitem | ength field is ignored for this item code.

MTA_SUBADDRESS

Specify a subaddress to use when generating a return address from a user name
specified with the MTA_USER item code. The i t em addr ess and i t em | engt h fields
specify the address and length of a text string containing the subaddress. The
length of the string may not exceed ALFA_SI ZE bytes. Only one subaddress may be
specified per message.

The MIA_USER action must be used in conjunction with this item code.

Chapter 8 mtaSend Routine Specification 263

Item Codes

MTA_SUBJECT

Specify the body of a Subj ect : header line. The item address anditem|ength
fields specify the address and length of a text string to place in the body of a
Subj ect: header line. The length of the string may not exceed ALFA S| ZE bytes.
Only one Subj ect: body may be specified.

MTA_TO

Specify a To: address that should appear in both the message’s header and
envelope. The i tem address and i t em | engt h fields specify the address and length
of a string containing a To: address. The length of the address may not exceed
ALFA S| ZE bytes.

MTA_USER

Specify the user name to use for the envelope From and header line From
addresses. Theitem address anditem | engt h fields specify the address and
length of a text string containing the user name.

Use this item code when the envelope From address is a local address.

If the envelope From address is not a local address, then the MTA_ ENV_FROMaction
should be used.

If this action and the MTA_ENV_FROMactions are not specified, then the user name
associated with the current process will be used.

On UNIX, the process must have the same (real) U Das the r oot or nta account. If
the process lacks sufficient privileges, the MTA_ACCESS error will be returned.

Do not use this item code in conjunction with the MTA_ENV_FROMitem code.

264 Messaging Server 6 2005Q1 « MTA Developer's Reference

Appendix A

Error Status Codes Summary

This appendix describes the error status codes returned by the MTA SDK and

nt aSend() . The table that follows lists the error status codes, with a generic
interpretation of each. For usage-specific interpretations, refer to the specific MTA
SDK routine descriptions in Chapter 6, and the nt aSend() item code descriptions in

Chapter 8.

Return Code

Numeric
Value

Description

MIA_OK
MTA_ACCESS

MIA_AGAI N

MI'A_BADARGS

MIA_ECF

0
1

Normal, successful completion.

This error typically indicates that a site-supplied access mapping table has
refused an envelope recipient address with a permanent error. These access
mapping tables include: SEND_ACCESS, ORI G_SEND ACCESS, MAI L_ACCESS,
and ORI G_MAI L_ACCESS.

This error may also result when a mailing list has access controls which do not
allow the attempted message submission to the list.

A temporary processing error has occurred. A number of conditions may
generate this error including connectivity problems to LDAP servers, virus
scanners, spam scanners, as well as quota problems.

When the error is the result of an attempt to add an envelope recipient address
or to complete a message enqueue, additional information may be obtained by
either enabling SDK diagnostics with nt aDebug() or using the MTA_REASON
item code of Nt aEnqueueTo() or nt aEnqueueFi ni sh() . In the case of

m aEnqueueTo() , nt aEnqueueEr r or () may also be used to obtain the
extended information returned with the MTA_REASON item code.

Bad call arguments supplied to the called routine. Typically, this will be the
result of passing an invalid context or a NULL value for a required parameter.

End of data reached. When returned by nt aDequeueLi neNext () or

mt aDequeueReci pi ent Next (), this value does not indicate an error, but
rather that there are, respectively, no more message lines or recipients to
return.

265

Return Code

Numeric
Value

Description

MIA_FCREATE

MTA FI O

MIA_COPEN

MIA_NETWORK

MIA NO

MIA_NCOVEM
MIA_NOCP

MI'A_NOSUCHCHAN

MI'A_NOSUCHHOST

5

10
11

12

13

Unable to create a disk file. Typically, this will be the result of insufficient disk
space, insufficient access rights to the channel queue directories, or a file
system error of some sort. The MTA SDK creates both temporary files and
message files in the channel queue directories. The temporary files result when
a message being submitted exceeds in size the value of the MTA option:
MAX_| NTERNAL_BLOCKS.

An error occurred while writing to a disk file. Typically, this will be the result of
insufficient disk space or a file system error. This error is only reported when
writing message files, either temporary files, or writing them in the channel
queue directories.

An error occurred while attempting to open a disk file. In regards to channel
option files, this indicates that the channel option file exists but cannot be
opened. Usually this is caused by insufficient access rights or a file system
error.

This error may also be returned when the MTA SDK is initialized and an MTA
configuration file cannot be opened. Again, this usually indicates a problem with
permissions or the file system. Usethe i msi mta test -rewite utility to
obtain additional diagnostic information. That utility often reports the name of
the underlying configuration file associated with the error.

A network read or write error has occurred. This error is associated with
message dequeue processing and indicates that a communication error has
occurred while attempting to contact or exchange information with the MTA Job
Controller. Ensure that the Job Controller is running.

Generic error message. This error message is issued in a variety of situations.
In all cases, it indicates that the attempted call has failed. Consult the routine’s
description for an interpretation specific to the called routine. Also, consider
enabling MTA SDK diagnostics with m aDebug() .

Insufficient virtual memory; cannot perform the requested operation.

This error code is not presently used by the MTA SDK. In general, it is used to
indicate that the requested operation was completed by doing nothing (for
example, a message enqueued to zero envelope recipients is simply deleted).

The specified channel name does not exist in the MTA configuration. The
channel name may have been specified explicitly with a supplied call argument
or implicitly with the PMDF_CHANNEL environment variable.

The MTA configuration lacks the necessary information to route the specified
envelope recipient address. This error typically comes up when an
unrecognized, top-level domain name is used. As such, this usually indicates a
syntactically valid recipient address which specifies an invalid top-level domain
name (for example, sue@i r oe. si r oe). Other addressing errors, including
syntax errors, may elicit this status code.

266 Messaging Server 6 2005Q1 < MTA Developer's Reference

Return Code

Numeric
Value

Description

MIA_NCSUCH TEM

MIA_CRDER

MTA_SI ZE

MIA_STRTRU

MIA_STRTRUERR

MIA_THREAD

MIA_TI MEDOUT

14

15

16

17

18

19

20

An invalid item code was supplied. Either the supplied item code value does not
represent a known item code or it is not an item code supported by the called
routine.

Routine called out of order. For example, an attempt to read the text of a
gueued message file was made before first reading the message’s entire
recipient list. Or, an attempt was made to write the content of a message being
submitted before first specifying the message’s recipients. Refer to the call
order diagrams in for further details.

The message being submitted cannot be enqueued: its size exceeds a
site-configured size limit. Such limits are configured with a variety of options,
including the MTA options BLOCK_LI M T and LI NE_LI M T, as well as the
channel keywords bl ockl imt and linelimt.

The supplied buffer was not large enough to receive the result string. The result
string was truncated to fit. The result string is nonetheless NULL terminated.

The supplied buffer was not larger enough to receive the result string.
Truncating the result is not meaningful or has potential for causing problems or
both. Alternatively, a supplied string was too long.

Threading error detected. Specifically, the MTA SDK detected the simultaneous
use of a single SDK context by two or more processing threads. This is not
permitted.

This error code is not presently used by the MTA SDK. In general, it is used to
indicate a timeout related error.

Appendix A Error Status Codes Summary

267

268 Messaging Server 6 2005Q1 « MTA Developer's Reference

Glossary

Refer to the Java Enterprise System Glossary (htt p: // docs. sun. coni doc/ 816- 6873)
for a complete list of terms that are used in this documentation set.

269

270 Messaging Server 6 2005Q1 < MTA Developer's Reference

A

aborting
dequeuing messages 54, 162
enqueue 187
message submission (enqueue) 42
access rights
callable send 241
configuration 33
accessing queued messages 49
address parsing routines
mtaAddressFinish 118
mtaAddressGetN 118
mtaAddressParse 121
addresses
bcc 202
cc 202
from 193
mapping to channel 123
parsing 118, 121
postmaster 227
to 205
ALFA_SIZE=256, defined 27
aliases, inhibiting 196

B

bcc addresses 202, 239

Section A

Index

BIGALFA_SIZE=1024, defined 27
block size 126
body 24

C

callable send

access privileges 241

basic steps for sending a message 237

bcc 239

cc 239

compiling and linking programs 242

envelope addresses 238

example
sending a message to multiple recipients 245
sending a simple message 243
specifying an initial message header 244
using an input procedure to generate the

message body 247

header from addresses 238

message content (body) 240

message header 240

to 239

caller-supplied routines

decode_inspect() 88

decode_read() 87

decode_write() 94

process_done() 62

Index 271

Section D

process_message() 54 errno 211
calling order SDK diagnostic facility 33
dependencies 82 writing debug output 215, 217
routines 47 decode context 94
cc addresses 202, 239 decode_inspect() routine 88
CHANLENGTH=32, defined 27 decode_read() routine 87
channel configuration, message deferral 54 decode_write() routine 94
channels decoding caller-supplied routines
backoff keyword 54 decode_inspect() 88
channel definition 39 decode_read() 87
channel name 26 decode_write() 94
channel program 21, 38 decoding messages
channel programs 21 contexts 94
channel queue, defined 21 input sources 87
intermediate 21 MIME format 85
log file 38 output destination 93
logging keyword 33 simple sample decoding program 89
master 21 simple virus scanner sample program 95
message queue 21 decoding routines
name determination 31, 32 mtaDecodeMessage 135
naming conventions 26 mtaDecodeMessagelnfolnt 145
slave 21 mtaDecodeMessagelnfoParams 147
Communications Services mtaDecodeMessagelnfoString 149
documentation 15 mtaDecodeMessagePartCopy 151
compiling mtaDecodeMessagePartDelete 152
mtaSend programs 242 deferred messages
compiling programs channel configuration 54
MTA SDK 34 definition 54
configuration disposition 52
access rights 33 notifications 53
refreshing stale 39 deferring recipients 54
contexts delivery receipts 199, 204
defined 22 dequeue context 25, 26
dequeue 25, 26 dequeuing caller-supplied routines
enqueue 24 process_done() 62
global 64 process_message() 54
threads 22 dequeuing messages
aborting 54, 162
accessing queued messages 49
basic steps 50
D calling order 82
complex dequeuing sample program 63
date 131 ending 162
debugging envelope fields 156
enabling 133 intermediate channel sample program 73

272 Messaging Server 6 2005Q1 « MTA Developer's Reference

intermediate channels 71
Job Controller 26
processing routine tasks 52
pseudo-code thread creation loop 81
reading 160
recipient disposition 165
recipients 169
removing messages 25
re-reading 171
rewinding 171
sample program 56
starting 172
threads 26
dequeuing routines
mtaDequeuelnfo 156
mtaDequeueLineNext 160
mtaDequeueMessageFinish 162
mtaDequeueRecipientDisposition 165
mtaDequeueRecipientNext 169
mtaDequeueRewind 171
mtaDequeueStart 172
mtaDequeueThreadld 182
diagnostic facility, enabling 33
documentation
overview 15
where to find Communications Services
documentation 15
where to find Messaging Server
documentation 15

E

enqueue context 24
enqueuing messages
aborting 42, 187
basic steps 42
bce 200
body 24
calling dependencies 47
cc 200
completing 187
components 22
copying 183
delivery receipts 199, 204

Section E

envelope 23
envelope fields 47, 189
error reporting 185
example 24
finishing 187
from address 193
headers 23
intermediate channel sample program 73
intermediate channels 46
intermediate processing channels 71
recipients 200
sample program 43
starting 193
threads 24
to 200
writing 206, 209
enqueuing routines
mtaEnqueueCopyMessage 183
mtaEnqueueError 185
mtaEnqueueFinish 187
mtaEnqueuelnfo 189
mtaEnqueueStart 193
mtaEnqueueTo 200
mtaEnqueueWrite 206
mtaEnqueueWriteLine 209
envelope
fields for enqueuing 47
message component 23
recipient disposition 52
error codes, retrieving 38
error handling routines
mtaErrno 211
mtaStrError 230
examples
complex dequeuing program 63
intermediate processing channel 73
pseudo-code thread creation loop 81
simple decoding program 89
simple dequeuing program 56
simple enqueuing program 43
simple virus scanner program 95
executing programs 31, 34

Index

273

Section G

G

global context 64

H

headers, deriving 23

initial message header example 244
initialization routines

mtaDone 183

mtalnit 212
input routine, decode_read() 87
inspection routine. decode_inspect() 88
intermediate channels

defined 21

re-enqueuing 71

sample enqueuing and dequeuing program 73

item codes 28
item list, defined 28

J

Job Controller 26

K

keywords
backoff 54
logging 33

274 Messaging Server 6 2005Q1 < MTA Developer's Reference

L

linking instructions
MTA SDK 34
mtaSend 242
Linux, default base directory for 14
list of MTA SDK routines 116
log file, mail.log_current 39
logging and diagnostic routines
mtaDebug 133
mtaLog 215
mtaLogv 217
loop, message 37

M

mail loops 37
mail.log_current 39
manually running programs 32
master channels, defined 21
message components
body 23
envelope 23
header 23
message loop, avoiding 37
message processing
procedure 60
process_done() routine 62
syntax and arguments 54
messages
dequeuing tasks 52
enqueuing 22
locking 25
Messaging Server
documentation 15
MIME decoding routines
mtaDecodeMessagelnfoint 145
mtaDecodeMessagelnfoParams 147
mtaDecodeMessagelnfoString 149
mtaDecodeMessagePartCopy 151
mtaDecodeMessagePartDelete 152
MIME parsing 85
miscellaneous routines

mtaAccountingLogClose 117
mtaAddressToChannel 123
mtaBlockSize 126
mtaChannelGetName 127
mtaChannelToHost 129
mtaDateTime 131
mtaPostmasterAddress 227
mtaStackSize 229
mtaUniqueString 230
mtaVersionMajor 231
mtaVersionMinor 232
mtaVersionRevision 232
mtaAccountingLogClose 114, 117
mtaAddaressParse 112
mtaAddressFinish 112
mtaAddressGetN 112,118
mtaAddressParse 121
mtaAddressToChannel 114,123
mtaBlockSize 114, 126
mtaChannelGetName 114, 127
mtaChannelToHost 114, 129
mtaDateTime 114, 131
mtaDebug 114, 133
mtaDecodeMessage 114, 135
mtaDecodeMessagelnfolnt 114, 145
mtaDecodeMessagelnfoParams 114, 147
mtaDecodeMessagelnfoString 114, 149
mtaDecodeMessagePartCopy 114, 151
mtaDecodeMessagePartDelete 114, 152
mtaDequeuelnfo 112, 156
mtaDequeueLineNext 112, 160
mtaDequeueMessageFinish 112, 162
mtaDequeueRecipientDispoistion 112
mtaDequeueRecipientDisposition 165
mtaDequeueRecipientNext 112, 169
mtaDequeueRewind 112, 171
mtaDequeueStart 112, 172
mtaDequeueStart,multiple calls to 82
mtaDequeueThreadld 182
mtaDone 113, 183
mtaEnqueueCopyMessage 113, 183
mtaEnqueueError 185
mtaEnqueueFinish 113, 187

Section O

mtaEnqueuelnfo 113, 189
mtaEnqueueStart 113, 193
mtaEnqueueTo 113, 200
mtaEnqueueWrite 113, 206
mtaEnqueueWriteLine 113, 209
mtaErrno 113, 211
mtalnit 113, 211, 212
mtaLog 114, 215
mtalLog() vs. MTA log file 39
mtaLogv 114, 217
mtaOptionFinish 115, 218
mtaOptionFloat 115, 219
mtaOptionint 115, 220
mtaOptionStart 115, 222
mtaOptionString 115, 225
mtaPostmasterAddress 114, 227
mtaSend
access privileges 241
basic steps for sending a message 237
compiling and linking programs 242
envelope addresses 238
header from addresses 238
message content (body) 240
message header 240
sample programs
input procedure generates message body 247
sending a message to multiple recipients 245
sending a simple message 243
specifying an initial message header 244
to, cc, and bcc addresses 239
mtaStackSize 114, 229
mtaStrError 113, 230
mtaUniqueString 114, 230
mtaVersionMajor 114, 231
mtaVersionMinor 114, 232
mtaVersionRevision 114, 232

O

option processing
finishing 218
floating point values 219

Index 275

Section P

integer values 220
reading an option file 222
starting 222
string values 225
option processing routines
mtaOptionFinish 218
mtaOptionFloat 219
mtaOptionint 220
mtaOptionStart 222
mtaOptionString 225
output routine, decode_write() 94
output, channel program 38

P

persistent programs
considerations 38
log file considerations 39
refreshing 39
postmaster address 227
privileges, required 33, 241
process_done() routine 62
process_message() routine 54
processing messages
Job Controller 26
gqueued 60
processing routine tasks 52
production, running programs 32
programming considerations 38

R

recipient disposition
deferred 52
delivered 52
dequeued messages 52
failed 53
mtaDequeueRecipientDisposition 165
relayed 53
relayed foreign 53
returned 53

276 Messaging Server 6 2005Q1 « MTA Developer's Reference

timed out 53
rewrite rules, preventing message loops 37
root, running as 33
running test programs
in a messaging environment 34
manually 34, 36
runtime considerations 31

S

sample programs

complex dequeuing program 63

intermediate channel program 73

mtaSend, sending a message to multiple
recipients 245

mtaSend, sending a simple message 243

mtaSend, specifying an initial message
header 244

mtaSend, using an input procedure to generate

the message body 247

pseudo-code thread creation loop 81

simple decoding program 89

simple dequeuing program 56

simple enqueuing program 43

simple virus scanner program 95

SDK routines

address parsing
mtaAddressFinish 112, 118
mtaAddressGetN 112,118
mtaAddressParse 112,121

dequeuing
mtaDequeuelnfo 112, 156
mtaDequeueLineNext 160
mtaDequeueMessageFinish 112, 162
mtaDequeueRecipientDisposition 165
mtaDequeueRecipientNext 112, 169
mtaDequeueRewind 112, 171
mtaDequeueStart 112, 172
mtaDequeueThreadld 182

enqueuing
mtaEnqueueCopyMessage 113, 183
mtaEnqueueError 185
mtaEnqueueFinish 113, 187
mtaEnqueuelnfo 113, 189

mtaEnqueueStart 113, 193
mtaEnqueueTo 113, 200
mtaEnqueueWrite 113, 206
mtaEnqueueWriteLine 113, 209
error handling
mtaErrno 113, 211
mtaStrError 113, 230
initialization
mtaDone 113, 183
mtalnit 113, 211, 212
list of 116
logging and diagnostic
mtaDebug 133
mtaLog 215
mtaLogv 217
logging and diagnostics
mtaDebug 114
mtalLog 114
mtaLogv 114
MIME decoding
mtaDecodeMessage 114, 135
mtaDecodeMessagelnfolnt 114, 145
mtaDecodeMessagelnfoParams 114, 147
mtaDecodeMessagelnfoString 114, 149
mtaDecodeMessagePartCopy 114, 151
mtaDecodeMessagePartDelete 114, 152
miscellaneous
mtaAccountingLogClose 114, 117
mtaAddressToChannel 114, 123
mtaBlockSize 114, 126
mtaChannelGetName 114, 127
mtaChannelToHost 114, 129
mtaDateTime 114, 131
mtaPostmasterAddress 114, 227
mtaStackSize 114, 229
mtaUniqueString 114, 230
mtaVersionMajor 114, 231
mtaVersionMinor 114, 232
mtaVersionRevision 114, 232
option processing
mtaOptionFinish 115, 218
mtaOptionFloat 115, 219
mtaOptionint 115, 220
mtaOptionStart 115, 222
mtaOptionString 115, 225

slave channels, defined 21
Solaris

Section T

patches 16
support 16
stack size 229
state information management 22
stdout and other generic I/0 destinations 38
string call arguments 27
string size constants 27
support
Solaris 16

T

test programs, steps for running manually 36
threads

contexts 22

dequeue contexts 26

enqueuing messages 24

stack size 229

thread creation loop 80
time 131

to addresses 205, 239

V

version routines
mtaVersionMajor 231
mtaVersionMinor 232
mtaVersionRevision 232

virus scanner example 95

W

writing output, use of stdout 38

Index

277

Section W

278 Messaging Server 6 2005Q1 « MTA Developer's Reference

	Messaging Server 6 MTA Developer’s Reference
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Command Line Prompts

	Related Documentation
	Messaging Server Documents
	Communications Services Documents

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments
	MTA SDK

	MTA SDK Concepts and Overview
	Channel Programs and Message Queuing
	Managing Multiple Threads: Contexts
	Enqueuing Messages
	Message Components
	Threads and Enqueue Contexts
	Enqueuing Dequeued Mail

	Dequeuing Messages
	Threads and Dequeue Contexts
	Message Processing Threads

	String-valued Call Arguments
	Item Codes and Item Lists

	MTA SDK Programming Considerations
	Running Your Enqueue and Dequeue Programs
	Debugging Programs and Logging Diagnostics
	Required Privileges
	Compiling and Linking Programs
	Compiling
	Linking Instructions for Solaris

	Running Your Test Programs
	Running in a Messaging Environment
	Manually Running Your Test Programs

	Preventing Mail Loops when Re-enqueuing Mail
	Miscellaneous Programming Considerations
	Retrieving Error Codes
	Writing Output From a Channel Program
	Considerations for Persistent Programs

	Enqueuing Messages
	Basic Steps to Enqueue Messages
	Originating Messages
	A Simple Example of Enqueuing a Message
	Transferring Messages into the MTA
	Intermediate Processing Channels
	Delivery Processing Options: Envelope fields
	Order Dependencies

	Dequeuing Messages
	How Dequeuing Works
	Basic Dequeuing Steps
	Caller-Supplied Processing Routine
	Dequeue Message Processing Routine Tasks

	The process_message() Routine
	A Simple Dequeue Example
	Processing the Message Queue
	The process_done() Routine
	A Complex Dequeuing Example
	Intermediate processing channels
	Preserve Envelope Information
	Use MTA_ENV_TO
	Use Rewrite Rules to Prevent Message Loops

	Intermediate Channel Example
	Thread Creation Loop in mtaDequeueStart
	Multiple Calls to mtaDequeueStart
	Calling Order Dependencies

	Decoding Messages
	Usage Modes for mtaDecodeMessage()
	The Input Source
	The Inspection Routine
	A Simple Decoding Example
	The Output Destination
	Decode Contexts
	A Simple Virus Scanner Example

	MTA SDK Reference
	Summary of SDK Routines
	Address Parsing
	Dequeue
	Enqueue
	Error Handling
	Initialization
	Logging and Diagnostics
	MIME Parsing and Decoding
	Miscellaneous
	Option File Processing

	MTA SDK Routines
	mtaAccountingLogClose
	mtaAddressFinish
	mtaAddressGetN
	mtaAddressParse
	mtaAddressToChannel
	mtaBlockSize
	mtaChannelGetName
	mtaChannelToHost
	mtaDateTime
	mtaDebug
	mtaDecodeMessage
	mtaDecodeMessageInfoInt
	mtaDecodeMessageInfoParams
	mtaDecodeMessageInfoString
	mtaDecodeMessagePartCopy
	mtaDecodeMessagePartDelete
	mtaDequeueInfo
	mtaDequeueLineNext
	mtaDequeueMessageFinish
	mtaDequeueRecipientDisposition
	mtaDequeueRecipientNext
	mtaDequeueRewind
	mtaDequeueStart
	Other Considerations for mtaDequeueStart

	mtaDequeueThreadId
	mtaDone
	mtaEnqueueCopyMessage
	mtaEnqueueError
	mtaEnqueueFinish
	mtaEnqueueInfo
	mtaEnqueueStart
	mtaEnqueueTo
	mtaEnqueueWrite
	mtaEnqueueWriteLine
	mtaErrno
	mtaInit
	mtaLog
	mtaLogv
	mtaOptionFinish
	mtaOptionFloat
	mtaOptionInt
	mtaOptionStart
	mtaOptionString
	mtaPostmasterAddress
	mtaStackSize
	mtaStrError
	mtaUniqueString
	mtaVersionMajor
	mtaVersionMinor
	mtaVersionRevision
	Callable Send

	Using Callable Send: mtaSend
	Sending a Message
	Envelope and Header From: Addresses
	To:, Cc:, and Bcc: Addresses
	Message Headers and Content
	Required Privileges
	mtaSendDispose
	Compiling and Linking Programs
	Examples of Using mtaSend
	Example 1: Sending a Simple Message
	Example 2: Specifying an Initial Message Header
	Example 3: Sending a Message to Multiple Recipients
	Example 4: Using an Input Procedure to Generate the Message Body

	mtaSend Routine Specification
	mtaSend Syntax
	Syntax
	Arguments
	Item Descriptor Fields
	Description

	Item Codes
	MTA_ADR_NOSTATUS
	MTA_ADR_STATUS
	MTA_BCC
	MTA_BLANK
	MTA_CC
	MTA_CHANNEL
	MTA_CFILENAME
	MTA_CFILENAME_NONE
	MTA_CTYPE
	MTA_ENC_BASE64
	MTA_ENC_BASE85
	MTA_ENC_BINHEX
	MTA_ENC_BTOA
	MTA_ENC_COMPRESSED_BASE64
	MTA_ENC_COMPRESSED_BINARY
	MTA_ENC_COMPRESSED_UUENCODE
	MTA_ENC_HEXADECIMAL
	MTA_ENC_NONE
	MTA_ENC_PATHWORKS
	MTA_ENC_QUOTED_PRINTABLE
	MTA_ENC_UNKNOWN
	MTA_ENC_UUENCODE
	MTA_END_LIST
	MTA_ENV_FROM
	MTA_ENV_TO
	MTA_FRAGMENT_BLOCKS
	MTA_FRAGMENT_LINES
	MTA_FROM
	MTA_HDR_ADRS
	MTA_HDR_BCC
	MTA_HDR_CC
	MTA_HDR_FILE
	MTA_HDR_LINE
	MTA_HDR_NOADRS
	MTA_HDR_NORESENT
	MTA_HDR_PROC
	MTA_HDR_RESENT
	MTA_HDR_TO
	MTA_HDRMSG_FILE
	MTA_HDRMSG_PROC
	MTA_IGNORE_ERRORS
	MTA_INTERACTIVE
	MTA_ITEM_LIST
	MTA_MAX_TO
	MTA_MODE_BINARY
	MTA_MODE_TEXT
	MTA_MSG_FILE
	MTA_MSG_PROC
	MTA_NOBLANK
	MTA_NOIGNORE_ERRORS
	MTA_PRIV_DISABLE_PROC
	MTA_PRIV_ENABLE_PROC
	MTA_SUBADDRESS
	MTA_SUBJECT
	MTA_TO
	MTA_USER

	Error Status Codes Summary
	Glossary
	Index

