@Sun

Sun Java™ System

Communications Services 6
Event Notification Service Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0109-10

2005Q1

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at ht t p: / / waw. sun. cont pat ent s and one or more
additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE OR
REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable
provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, DK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo, the Java Coffee
Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc. The Netscape
Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from
Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's
written license agreements.

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the export or import laws
in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited.
Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and
specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés a I'adresse

htt p://waw sun. cont pat ent s et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC. SON
UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET PREALABLE DE SUN
MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit peuvent étre dérivées des systémes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le logo Java Coffee
Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape Communications
Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.

L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts
de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun
détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place
l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Ce produit comprend du logiciel dévelopé par Computing Services a Carnegie Mellon University (http.//www.cmu.edu/computing/).

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de controle des
exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites figurant sur les listes d'exclusion d'exportation americaines, y
compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des
produits ou des services qui sont regi par la legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes,
sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Ccontents

List Of Tables . ..o e 7
PrefaCe ..o e 9
Who Should Use This BOOKo e e e e e 9
Before You Read This BOOKt e e e e 10
How This BOOK IS Organizedt e e e 10
Conventions Used in ThisS BOOK i e e 10
Typographic CONVENTIONSttt e e e e e 10
SYMIDOIS .« o 11
Default Paths and File Names e e e 12
Command Line PromMPtS e 12
Related DOCUMENTAtioNt 12
Messaging Server DOCUMENTSottt e e e e e 13
Calendar Server DOCUMENTSottt e e e e e e 13
Communications Services DOCUMENTSttt e e e 14
Where to Find This Manual Online e e 14
Accessing SUN Resources ONliNg it 14
Contacting Sun Technical SUPPOIto e e 15
Related Third-Party Web Site References e e 15
SUN Welcomes YouUr COmMMENTSttt ettt e e e e e e e 15
Chapter 1 Introduction to Event Notification Service i, 17
Event Notification SErviCe OVerVIBWt e et e e e 17
ENS N Calendar Server e 18
ENS in Messaging SerVer 18
EVENt REIEIENCES . ..o e 19
ENS Connection POolING o 20
Event Notification Service ArchiteCture i e e e 21
N Oty oo 22
SUDSCIIDE . . e 23

UNSUDSCIIDE ..o 23

How Calendar Server Interacts With ENS 23
How Messaging Server InteractsWith ENS 28
Event Notification Service API OVEIVIEW i e e 30
ENS C API OVEIVIBW . . e e e e e e e e e e e e 30
ENS Java APl OVEIVIEBW . .. oottt et e e e e e e e e e e e e 31
Building and Running Custom Applications i 32
Chapter 2 Event Notification Service C APl Reference 37
Publisher API FUNCLIONS LiSt oo e e e e 37
Subscriber API FUNCLIONS LISt e 38
Publish and Subscribe Dispatcher Functions List e 38
PUDLIShEr APl . . 39
PUDLISNEr t 39
publisher_ch t 40
PUDLI SNl _NEW & . . 40
PUDLI SNl NEW S o 41
PUDIISN @ . . 42
PUDLISN S 42
publisher_delete 43
publisher_get SUDSCrIDer 43
renl_create_publisher 44
renl_cancel_publisher 45
SUDSCIIDEr APl . L 45
SUBDSCIIEr L. . e 46
SUDSCIIPEION T . oo e 46
SUDSCIIEr Ch b . .. 46
subscriber_notify _Ch_t 47
SUDSCIIDEr NBW @ . 47
SUBDSCIIEr MW S .o e 48
SUDSCIIE A ... o 49
UNSUDSCIIE 8 ... i e e 50
SUBSCHIEr delete ... 50
subscriber_get_publisher e 51
renl_create SUDSCIIDEr e 51
renl_cancel SUDSCIIDEr e e 52
Publish and Subscribe Dispatcher APL 52
Pas_diSPatCher _t 52
Pas_diSpatCher_NeW 53
pas_dispatcher_delete 53
Pas_diSPatCh 54
PaS_SNULAOWN .. 54

4 Communications Services 6 2005Q1 « Event Notification Service Guide

Chapter 3 Event Notification Service Java (JMS) API Reference 55

Event Notification Service Java (JMS) APl Implementation 55
Prerequisites to Use the Java APl 55
Sample Java Programs 56
Instructions for Sample Programs 56

JAVa (JIMS) APL OVEIVIBW . . . oottt e e e e e e e e e e e e e e e e e e 59
New Proprietary Methods 59
com.iplanet.ens.jms.ENSTOPICCONNFACIONY ottt 59
com.iplanet.ens.JmS.ENSTOPIC ottt e 60

Implementation NOTES e 60
Shortcomings of the Current Implementation i 60
Notification DeliVery e 61
IMS HeAAEIS .« .o 61
MISCEIIANBOUS . . . o 62

Chapter 4 Messaging Server Specific Information 63

Event Notification Types and Parameterst e e e 63
P M Ol S . o 65
PaYl0ad ... 68
EXAMPIES . . 69

SaMPIE COE ... 69
Sample PUBIiSher 70
Sample SUBSCIIDEr 73

IMplementation NOTESt 75

Chapter 5 Calendar Server Specific Information 77

Calendar Server NOtIfications 77
Alarm NOtIficatioNSo 78
Calendar Update NOtifications i e 79
AAVANCEA TOPICS .« oottt e e 80
WCAP appid parameter and X-TOKENSttt e e e 80

ENS Sample Code for Calendar SErvert e e e 81
Sample Publisher and Subscriber 81
Reliable Publisher and Subscriber 87

Appendix A Debugging ENS 95

Environment Variables o 95
GAP _DEBUG ..ot e 96
GAP_LOG MODULES o e e 96
GAP _LOGFILE .. 97
XENP T RACE . .. 97
ENS DEBUG ...ttt e e e e 97

Contents 5

6

ENS_LOG_MODULES e 98

ENS LOGFILE .. 99
EN S ST AT S oo 99
SERVICEBUS _DEBUGttt e 99
How to Enable Debug TraCingt e e e 99
Sample Debugging SESSIONSt t 100
Example 1: For Messaging SerVert 101
Example 2: FOr Messaging SerVert e e 103
GlOSSarY . it e 105
IO EX . 107

Communications Services 6 2005Q1 « Event Notification Service Guide

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table A-1
Table A-2
Table A-3
Table A-4

List of Tables

Sample ENS Publish and Subscribe Cycle 27
ENS Publisher API FUNCtions LiSt ittt 37
ENS Subscriber APl Functions LiSt e 38
ENS Publish and Subscribe Dispatcher Functions List 38
BV BNt Ty S Lot e 63
Mandatory Event Reference Parameters i 65
Optional Event Reference Parameters ...ttt 66
Available Parameters for Each Event Typet 67
Payload Configuration Parameters i 68
Alarm NOtIfications 78
Calendar Update Notifications i 79
Advanced Topics Parameter e 80
Presence of appid and Value of X-Token X-NSCP-COMPONENT-SOURCE 81
Trace Level Values 96
GAP_LOG _MODULESVaAlUESttt i 97
ENS DEBUG Trace Level Values 98
ENS_LOG_MODULESValUESo 98

List of Tables 7

8 Communications Services 6 2005Q1 « Event Notification Service Guide

Preface

This manual describes the Event Notification Service (ENS) architecture and APIs
for Sun Java™ System Messaging Server and Sun Java™ System Calendar Server.
It gives detailed instructions on the ENS APIs that you can use to customize your
server installation.

Topics covered in this chapter include:

Who Should Use This Book

Before You Read This Book

How This Book Is Organized
Conventions Used in This Book

Related Documentation

Where to Find This Manual Online
Accessing Sun Resources Online
Contacting Sun Technical Support
Related Third-Party Web Site References

Sun Welcomes Your Comments

Who Should Use This Book

This manual is for programmers who want to customize applications in order to
implement Messaging Server and Calendar Server.

Before You Read This Book

Before You Read This Book

This book assumes that you are a programmer with a knowledge of C/C++ and
Java Messaging Service, and that you have a general understanding of the
following:

e The Internet and the World Wide Web

< Messaging and calendaring concepts

How This Book Is Organized

This manual contains the following chapters and appendix:

Table 1 How This Book Is Organized

Chapter Description
Chapter 1, “Introduction to Event Describes the Event Notification Service (ENS)
Notification Service” components, architecture, and Application Programming

Interfaces (APISs).

Chapter 2, “Event Notification Describes the ENS C API.
Service C API Reference”

Chapter 3, “Event Notification Describes the ENS Java API and provides sample code.
Service Java (JMS) API Reference”

Chapter 4, “Messaging Server Describes the Messaging Server event references and
Specific Information” provides sample Messaging Server code.

Chapter 5, “Calendar Server Specific Describes the Calendar Server event notifications and
Information” provides sample Calendar Server code

“Glossary”

Conventions Used in This Book

The tables in this section describe the conventions used in this book.

Typographic Conventions

The following table describes the typographic changes used in this book.

10 Communications Services 6 2005Q1 « Event Notification Service Guide

Conventions Used in This Book

Table 2 Typographic Conventions
Typeface Meaning Examples
AaBbCc123 Any text that appears on the Edit your. | ogi n file.
(Monospace) computer screen or text that you))
should type. Can be API and Use | s -atolistall files.
language elements, HTML tags,)
web site URLs, command names, % You have mail.
file names, directory path names,
onscreen computer output, sample
code.
AaBbCc123 Text you should type when it %su
(Monospace appears within a code example or Passwor d:
bold) other onscreen computer output.
AaBbCc123 Aplaceholderinacommandorpath The file is located in the
(Italic) name that you should replace with a msg_svr_base/ bi n directory.

real name or value (for example, a
variable).

Also can be a book title, new term,
or word to be emphasized.

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

Symbols

The following table describes the symbol conventions used in this book.

Table 3 Symbol Conventions
Symbol Description Example Meaning
[1] Contains optional command |s [-1] The -1 option is not
options. required.
{11} Contains a set of choicesfor -d {y| n} The - d option requires that
a required command option. you use either the y
argument or the n
argument.
Joins simultaneous multiple Control-A Press the Control key while
keystrokes. you press the A key.
+ Joins consecutive multiple Ctrl+A+N Press the Control key,
keystrokes. release it, and then press

the subsequent keys.

Preface 11

Related Documentation

Table 3 Symbol Conventions (Continued)

Symbol Description Example Meaning
> Indicates menu item File > New > Templates From the File menu, choose
selection in a graphical user New. From the New
interface. submenu, choose
Templates.

Default Paths and File Names

The following table describes the default paths and file names used in this book.

Table 4 Default Paths and File Names

Term Description

msg_svr_base Represents the base installation directory for Messaging Server.
The default value of the msg_svr_base installation is as follows:

Solaris™ systems: / opt / SUNWrsgsr
Linux systems: / opt / sun/ messagi ng

cal_svr_base Represents the base installation directory for Calendar Server. The
default value of the cal_svr_base installation is as follows:

Solaris™ systems: / opt / SUNW cs5
Linux systems: / opt / sun/ cal endar

Command Line Prompts

Command line prompts (for example, %for a C-Shell, or $ for a Korn or Bourne
shell) are not displayed in the examples. Depending on which operating system
you are using, you will see a variety of different command line prompts. However,
you should enter the command as it appears in the document unless specifically
noted otherwise.

Related Documentation

The http://docs. sun. con§™web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book
title or subject.

12 Communications Services 6 2005Q1 « Event Notification Service Guide

Related Documentation

Messaging Server Documents

Use the following URL to see all the Messaging Server documentation:

http://docs. sun. com col | / Messagi ngSer ver _05q1

The following documents are available:

Sun Java™ System Messaging Server Release Notes

Sun Java™ System Messaging Server Deployment Planning Guide
Sun Java™ System Messaging Server Administration Guide

Sun Java™ System Messaging Server Administration Reference
Sun Java™ System Messaging Server Developer’s Reference

Sun Java™ System Messaging Server Messenger Express Customization Guide

The Messaging Server product suite contains other products such as Sun Java™
System Console, Directory Server, and Administration Server. Documentation for
these and other products can be found at the following URL:

http: //docs. sun. coni db/ pr od/ sunone

In addition to the software documentation, see the Messaging Server Software
Forum for technical help on specific Messaging Server product questions. The
forum can be found at the following URL.:

http://sw orum sun. con jive/forumjsp?forunsl5

Calendar Server Documents

Use the following URL to see all the Calendar Server documentation:

http://docs. sun. coni col | / Cal endar Server _05q1

The following documents are available:

Sun Java™ System Calendar Server Release Notes
Sun Java™ System Calendar Server Administration Guide

Sun Java™ System Calendar Server Developer’s Guide

Preface 13

Where to Find This Manual Online

Communications Services Documents

Use either one of the following URLSs to see the documentation that applies to all
Communications Services products:

http://docs. sun. com col | / Messagi ngSer ver _05q1

or

http://docs. sun. coni col | / Cal endar Server _05q1

The following documents are available:

e SunJava™ System Communications Services Delegated Administrator Guide

e Sun Java System Communications Services Enterprise Deployment Planning Guide
= SunJava™ System Communications Services Schema Migration Guide

= SunJava™ System Communications Services Schema Reference

e SunJava™ System Communications Services Event Notification Service Guide

e SunJava™ System Communications Express Administration Guide

e SunlJava™ System Communications Express Customization Guide

Where to Find This Manual Online

You can find the Communications Services Event Notification Service Guide online in
PDF and HTML formats. This book can be found at the following URLSs:

http://docs. sun. com doc/ 819- 0109

Accessing Sun Resources Online

14

For product downloads, professional services, patches and support, and additional
developer information, go to the following:

= Download Center
htt p: // wws. sun. con sof t war e/ downl oad/

= Professional Services
http: //ww sun. con servi ce/ sunps/ sunone/ i ndex. ht n

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Contacting Sun Technical Support

= Sun Enterprise Services, Solaris Patches, and Support
http://sunsol ve. sun. cont

= Developer Information
http://devel opers. sun. com prodt ech/ i ndex. ht m

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the
product documentation, go to htt p: // waw. sun. con ser vi ce/ cont act i ng.

Related Third-Party Web Site References

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to htt p: // docs. sun. comand click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document. For example, the title of this book is Sun Java System
Communications Services 6 2005Q1 Event Notification Service Guide, and the part
number is 819-0109-10.

Preface 15

Sun Welcomes Your Comments

16 Communications Services 6 2005Q1 « Event Notification Service Guide

Chapter 1

Introduction to Event Notification
Service

This chapter provides an overview of the Event Notification Service (ENS)
components, architecture, and Application Programming Interfaces (APIs).

This chapter contains these sections:
< Event Notification Service Overview
< Event Notification Service Architecture

< Event Notification Service APl Overview

Event Notification Service Overview

The Event Notification Service (ENS) is the underlying publish-and-subscribe
service available in the following Sun Java™ System communications products:

e Calendar Server

= Messaging Server

NOTE See Appendix C in the Messaging Server Administration Guide for

instructions on enabling and administering ENS in Messaging
Server.

17

Event Notification Service Overview

18

ENS acts as a dispatcher used by Sun Java™ System applications as a central point
of collection for certain types of events that are of interest to them. Events are
changes to the value of one or more properties of a resource. In this structure, a URI
(Uniform Resource Identifier) represents an event. Any application that wants to
know when these types of events occur registers with ENS, which identifies events
in order and matches notifications with subscriptions.

Event examples include:

< Arrival of new mail to a user’s inbox
= User’s mailbox has exceeded its quota
= Calendar reminders

Specifically, ENS accepts reports of events that can be categorized, and notifies
other applications that have registered an interest in certain categories of events.

ENS provides a server and APIs for publishers and subscribers. A publisher makes
an event available to the notification service; and a subscriber tells the notification
service that it wants to receive notifications of a specific event. See “Event
Notification Service APl Overview” on page 30 for more information on the ENS
APIs.

ENS in Calendar Server

By default, ENS is enabled in Calendar Server. For Calendar Server you do not
need to do anything else to use ENS.

A user who wants to subscribe to notifications other than the alarms generated by
Calendar Server needs to write a subscriber.

Sample ENS C publisher and subscriber code is bundled with Calendar Server.
(See “ENS Sample Code for Calendar Server” on page 81.) Once Calendar Server is
installed, the code can be found in the following directory:

/ opt / SUNW cs5/ cal / csapi / sanpl es/ ens

ENS in Messaging Server

ENS and iBiff (the ENS publisher for Messaging Server, also referred to as the
notification plug-in to Messaging Server) are bundled in Messaging Server and
ENS is enabled. However, the iBiff plug-in file, | i bi bi f f, is not automatically
loaded at installation.

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service Overview

To subscribe to notifications, you need to first perform the following two actions on
the Messaging Server host:

= Load the iBiff notification plug-in
= Stop and restart the messaging server

See Appendix C in the Messaging Server Administration Guide for further
instructions.

A user who wants to subscribe to Messaging Server notifications needs to write a
subscriber to the ENS API. To do so, the subscriber needs to know what the various
Messaging Server notifications are. See Chapter 4, “Messaging Server Specific
Information” for that information.

Messaging Server comes bundled with sample ENS C publisher and subscriber
code. See “Sample Code” on page 69 for more information.

Sample Messaging Server code is provided with the product in the following
directory:

msg_server_base/ exanpl es

Event References

Event references identify an event handled by ENS. Event references use the
following URI syntax (as specified by RFC 2396):

scheme: / / authority resource/ [?paraml=valuel¶m2=value2¶m3=value3]
where:
= scheme is the access method, such as http, i map, ftp, or wcap.
For Calendar Server and Messaging Server, the ENS scheme is enp.
= authority is the DNS domain or host name that controls access to the resource.

= resource is the path leading to the resource in the context of the authority. It can
be composed of several path components separated by a slash (“/).

= param is the name of a parameter describing the state of a resource.
= value is its value. There can be zero or more parameter/value pairs.
In general, all Calendar Server events start with the following:

enp://lics

Chapter 1 Introduction to Event Notification Service 19

Event Notification Service Overview

The Messaging Server notification plug-in iBiff uses the following scheme and
resource by default:

enp://127.0.0.1/store

NOTE Although the event reference has a URI syntax, the scheme,
authority, and resource have no special significance. They are
merely used as strings with no further interpretation in ENS.

Calendar Server Event Reference Example

The following is an example event reference URI to subscribe to all event alarms
with a calendar ID of j ac:

enp:///ics/alarnPcal i d=j ac

NOTE This URI is not meant to be used by end users.

Messaging Server Event Reference Example

The following is an example event reference that requests a subscription to all
NewMsg events for a user whose user ID is bl im

enp://127.0. 0. 1/ st or e?evt Type=NewMsg&nai | boxNane=bl i m

When using ENS with Messaging Server, the user ID you specify is case sensitive.

NOTE This URI is not meant to be used by end users.

ENS Connection Pooling

The connection pooling feature of ENS enables a pool of subscribers to receive
notifications from a single event reference. For every event, ENS chooses one
subscriber from the pool to send the notification to. Thus, only one subscriber in
the pool receives the notification. The ENS server balances sending of notifications
among the subscribers. This enables the client to have a pool of subscribers that
work together to receive all notifications from a single event reference.

20 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service Architecture

For example, if notifications are being published to the event reference
enp://127.0. 0. 1/ st or e, a subscriber will normally subscribe to this event reference
to receive notifications. To have a pool of subscribers receive all the notifications to
this event reference, each subscriber in the pool only needs to subscribe to the event
reference enp+pool : //127. 0. 0. 1/ st or e instead. The ENS server chooses one
subscriber from the pool to send the notification to.

NOTE The publisher still sends notifications to the simple event reference,
in the example above enp: //127. 0. 0. 1/ st or e, that is, the publisher
has no knowledge of the subscriber pool.

Multiple Pool Extension

Connection pooling can support multiple pools of subscribers. That is, you can
have two pools of subscribers, each pool receiving all the notifications from the
event reference. The syntax of the event reference for the subscriber is:

enp+pool [. poolid] : / / domai n/ event

where poolid is a string using only base64 alphabet. (See RFC1521, Table 1, for what
the base64 alphabet contains.) So, for example, to have two pools of subscribers to
the event reference enp: //127. 0. 0. 1/ st or e, each pool could subscribe to the
following event references:

enp+pool . 1://127.0. 0. 1/ store — for first pool of subscribers
enp+pool . 2://127.0.0. 1/ store —for second pool of subscribers

Event Notification Service Architecture

On the Solaris platform, ENS runs as a daemon, enpd, along with other daemons in
various calendar or messaging server configurations, to collect and dispatch events
that occur to properties of resources. On Windows platforms, ENS runs as a
service, enpd. exe.

For ENS, an event is a change that happens to a resource, while a resource is an
entity such as a calendar or inbox. For example, adding an entry to a calendar (the
resource) generates an event, which is stored by ENS. This event can then be
subscribed to, and a notification would then be sent to the subscriber.

The ENS architecture enables the following three things to occur:

Chapter 1 Introduction to Event Notification Service 21

Event Notification Service Architecture

22

= Notification - This is a message that describes an event occurrence. Sent by the
event publisher, it contains a reference to the event, as well as any additional
parameter/value pairs added to the URI, and optional data (the payload) used
by the event consumers, but opaque to the notification service. Whoever is
interested in the event can subscribe to it.

= Subscription - This is a message sent to subscribe to an event. It contains an
event reference, a client-side request identifier, and optional parameter/value
pairs added to the URI. The subscription applies to upcoming events (that is, a
subscriber asks to be notified of upcoming events).

= Unsubscription - This message cancels (unsubscribes) an existing subscription.
An event subscriber tells ENS to stop relaying notifications for the specified
event.

Notify

ENS natifies its subscribers of an event by sending a notification. Notify is also
referred to as “publish.” A notification can contain the following items:

= Anevent reference (which, optionally, can contain parameter/value pairs)

= Optional application-specific data (“opaque” for ENS, but the publisher and
subscriber agree apriori to the format of the data)

The optional application-specific data is referred to as the “payload.”
There are two kinds of naotifications:

= Unreliable notification - Notification sent from an event publisher to a
notification server. If the publisher does not know nor care about whether
there are any consumers, or whether they get the notification, this request does
not absolutely need to be acknowledged. However, a publisher and a
subscriber, who are mutually aware of each other, can agree to set up a reliable
event notification link (RENL) between themselves. In this case, once the
subscriber has processed the publisher’s notification, it sends an
acknowledgment notification back to the publisher.

< Reliable notification - Notification sent from a server to a subscriber as a result
of a subscription. This type of notification should be acknowledged. A reliable
notification contains the same attributes as an unreliable notification.

See “Publisher API” on page 39 for more information.

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service Architecture

Subscribe

ENS receives a request to be notified of events. The request sent by the event
subscriber is a subscription. The subscription is valid during the life of the session,
or until it is cancelled (unsubscribed).

A subscription can contain the following items:
= Anevent reference (which, optionally, can contain parameter/value pairs)
= Arequest identifier

See “Subscriber API” on page 45 for more information.

Unsubscribe

ENS receives a request to cancel an existing subscription. See “Subscriber API” on
page 45 for more information.

How Calendar Server Interacts with ENS

Figure 1-1 on page 24 shows how ENS interacts with Calendar Server through the
alarm queue and two daemons, csadm nd and csnot i f yd.

Chapter 1 Introduction to Event Notification Service 23

Event Notification Service Architecture

Figure 1-1

ENS in Calendar Server Overview

csadmind csnotifyd

Subscription

Store
(In Memory)

Calendar Server Alarm Queue

ENS is an alarm dispatcher. This decouples alarm delivery from alarm generation.
It also enables the use of multiple delivery methods, such as email and wireless
communication. The csadnm nd daemon detects events by sensing changes in the
state of the alarm queue. The alarm queue’s state changes every time an alarm is
placed in the queue. An alarm is queued when a calendar event generates an
alarm. The following URIs represent these kind of events:

for events:

enp:///ics/evental arnPcal i d=calid&ui d=uid&r i d=rid&ai d=aid
for todos (tasks):

enp:///ics/todoal ar nPcal i d=calid&ui d=uid&r i d=rid&ai d=aid

24 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service Architecture

where:

= calid is the calendar ID.

= uid is the event/todo (task) ID within the calendar.

= rid is the recurrence id for a recurring event/todo (task).

= aid is the alarm ID within the event/todo (task). In case there are multiple
alarms, the aid identifies the correct alarm.

The publisher csadm nd dequeues the alarms and sends notifications to enpd. The
enpd daemon then checks to see if anyone is subscribed to this kind of event and
sends notifications to the subscriber, csnot i f yd, for any subscriptions it finds.
Other subscribers to alarm notifications (reminders) can be created and deployed
within an Calendar Server installation. These three daemons interacting together
implement event notification for Calendar Server.

Calendar Server Daemons

Calendar Server includes two daemons that communicate to the ENS daemon,
enpd:

e csadm nd

The csadni nd daemon contains a publisher that submits notifications to the
notification service by sending alarm events to ENS. It manages the Calendar
Server alarm queue. It implements a scheduler, which lets it know when an
alarm has to be generated. At such a point, csadni nd publishes an event. ENS
receives and dispatches the event naotification.

To ensure alarm transfer reliability, csadm nd requires acknowledgment for
certain events or event types. (See “Alarm Transfer Reliability” on page 26.)
The csadni nd daemon uses Reliable Event Notification Links (RENLS) to
accomplish acknowledgment.

e csnotifyd

The csnoti f yd daemon is the subscriber that expresses interest in particular
events (subscribes), and receives notifications about these subscribed-to events
from ENS, and sends notice of these events and todos (tasks) to its clients by
email.

Chapter 1 Introduction to Event Notification Service 25

Event Notification Service Architecture

26

Though the ability to unsubscribe is part of the ENS architecture, csnot i fyd
does not bother to unsubscribe to events for the following two reasons: there is
no need to unsubscribe or resubscribe during normal runtime; and due to the
temporary nature of the subscriptions store (it is held in memory), all
subscriptions are implicitly unsubscribed when the connection to ENS is
shutdown.

The csnoti f yd daemon subscribes to enp: ///i cs/ al arni . The todo (task) or
event is specified in a parameter.

Alarm Transfer Reliability

To ensure that no alarm ever gets lost, csadm nd and csnot i f yd use the RENL
feature of ENS for certain types of alarms. For these alarms, csadni nd requests an
end-to-end acknowledgment for each notification it sends, while csnoti f yd, after
successfully processing it, generates a notification acknowledgment for each RENL
alarm notifications it receives.

For these RENL alarms, should the network, the ENS daemon, or csnoti f yd fail to
handle a notification, csadm nd will not receive any acknowledgment, and will not
remove the alarm from the alarm queue. The alarm will, therefore, be published
again after a timeout.

Calendar Server Example

A typical ENS publish and subscribe cycle for Calendar Server resembles the
following:

1. The event subscriber, csnoti f yd, expresses interest in an event (subscribes).

2. The event publisher, csadni nd, detects events and sends notification
(publishes).

3. ENS publishes the event to the subscriber.

4. The event subscriber cancels interest in the event (unsubscribes). This step
happens implicitly when the connection to ENS is shutdown.

Figure 1-2 on page 27 illustrates this cycle and Table 1-1 on page 27 provides the
narrative for the figure.

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Figure 1-2

Event Publisher

Event Notification Service Architecture

Example Event Notification Service Publish and Subscribe Cycle for Calendar Server

Event Subscriber

1. Subscribe
csadmind csnotifyd
1
/
4. Unsubscribe /
7/
2. Publish - ~
ENS 3. Publish (relayed)
enpd

Table 1-1 Sample ENS Publish and Subscribe Cycle

Action ENS Response
1. The csnoti f yd daemon sends a subscription ENS stores the subscription in the subscriptions
request to ENS. database.
2. The csadm nd daemon sends a notification request ~ ENS queries the subscriptions database for subscriptions
to ENS. matching the notification.
3. The csnoti fyd daemon receives a notification from When ENS receives a notification from a publisher, it
ENS. looks up its internal subscription table to find
subscriptions matching the event reference of the
notification. Then for each subscription, it relays a copy of
the notification to the subscriber who owns this
subscription.
4. Currently, csnot i f yd does not bother sending Because the subscriptions store is in memory only (not in

cancellation requests to ENS.

a database), all subscriptions are implicitly unsubscribed
when the connection to ENS is shutdown.

Chapter 1 Introduction to Event Notification Service 27

Event Notification Service Architecture

28

How Messaging Server Interacts with ENS

Figure 1-3 on page 29 shows how ENS interacts with Messaging Server. In this
figure, each oval represents a process, and each rectangle represents a host
computer running the enclosed processes.

The ENS server delivers notifications from the Messaging Server notification
plug-in to ENS clients (that is, iBiff subscribers). There is no guarantee of the order
of notification prior to the ENS server because the events are coming from different
processes (MIA, st or ed, and i mapd).

Notifications flow from the iBiff plug-in in the MIA, st or ed, and i map processes to
ENS enpd. The ENS client subscribes to the ENS, and receives notifications. When
iBiff is enabled, Messaging Server publishes the notifications with the iBiff plug-in,
but no Messaging Server services subscribe to these notifications. A
customer-provided ENS subscriber or client should be written to consume the
notifications and do whatever is necessary. That is, Messaging Server itself does
not depend on or use the notifications for its functions, and this is why ENS and
iBiff are not enabled by default when you install Messaging Server.

The Messaging Server architecture enforces that a given set of mailboxes is served
by a given host computer. A given mailbox is not served by multiple host
computers. There are several processes manipulating a given mailbox but only one
computer host serving a given mailbox. Thus, to receive notifications, end-users
only need to subscribe to the ENS daemon that serves the mailbox they are
interested in.

Messaging Server enables you to have either one ENS server for all
mailboxes—that is, one ENS server for all the computer hosts servicing the
message store—or multiple ENS servers, perhaps one ENS server per computer
host. The second scenario is more scalable. Also, in this scenario, end users must
subscribe to multiple ENS servers to get the events for mailboxes they are
interested in.

Thus, the architecture requires an ENS server per computer host. The ENS servers
and the client processes do not have to be co-located with each other or with
messaging servers.

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Figure 1-3 ENS in Messagi

— >

Message Store

ng Server Overview

Event Notification Service Architecture

\

popd

iBiff

iBiff

A

iBiff

iBiff

i

ENS
enpd

Chapter

1

Introduction to Event Notification Service

29

Event Notification Service APl Overview

Event Notification Service APl Overview

30

This section provides an overview of the two APIs for ENS, a C APl and a Java API,
which is a subset of the Java Messaging Service (JMS) API. Two sample Java
subscribers are provided using the JIMS API.

For detailed information on the Java (JMS) API, see Chapter 3, “Event Notification
Service Java (JMS) API Reference.” For JMS documentation, use the following URL:

http://java. sun. com product s/ j ns/ docs. ht m

For detailed information on the ENS C API, see Chapter 2, “Event Notification
Service C API Reference.”

ENS C API Overview

ENS implements the following three APIs:
= Publisher API

A publisher sends notification of a subscribed-to event to ENS, which then
distributes it to the subscribers. Optionally, in Calendar Server, the application
can request acknowledgment of receipt of the notification. To do this, a
Reliable Event Notification Link (RENL) is necessary. An RENL has a
publisher, a subscriber, and a unique ID, which identify notifications that are
subject to acknowledgment. The publisher informs the application of the
receipt of an acknowledgment by invoking the end2end_ack callback passed to
publ i sh_a. Currently, only Calendar Server supports RENL.

e Subscriber API

A subscriber is a client to the notification service which expresses interest in
particular events. When the notification service receives a notification about
one of these events from a publisher, it relays the notification to the subscriber.

A subscriber may also unsubscribe, which cancels an active subscription.

In Calendar Server, to enable an RENL, the subscriber declares its existence to
ENS, which then transparently generates notification acknowledgment on
behalf of the subscriber application. The subscriber can revoke the RENL at
any time.

= Publish and Subscribe Dispatcher API

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service APl Overview

When an asynchronous publisher is used, ENS needs to borrow threads from a
thread pool in order to invoke callbacks. The application can either choose to
create its own thread pool and pass it to ENS, or it can let ENS create and
manage its own thread pool. In either case, ENS creates and uses a dispatcher
object to instantiate the dispatcher used (pas_di spat cher _t).

GDisp (I i basync) is the dispatcher supported.

ENS Java API Overview

The Java API for ENS uses a subset of the standard JMS API, with the addition of
two new proprietary methods:

e comiplanet.ens.jns. EnsTopi cConnFact ory
e comiplanet.ens.jns. EnsTopic

The following list of JIMS object classes is used in the Java API for ENS:
e javax.jms. Topi cSubscri ber

e javax.]jms. Topi cSession

e javax.]jms. Topi cPubl i sher

e javax.jnms. Topi cConnection

e javax.jms. Text Message

e javax.jms. Session

= javax.jms. MessagePr oducer

e javax.]jms. MessageConsuner

e javax.]jnms. Message

e javax.]jms. Connecti onMet aDat a

e javax.jms. Connection

NOTE The Java API for ENS does not implement all the JMS object classes.
When customizing, use only the object classes found on this list.

Chapter 1 Introduction to Event Notification Service 31

Event Notification Service APl Overview

32

Building and Running Custom Applications

To assist you in building your own custom publisher and subscriber applications,
Messaging Server and Calendar Server include sample code. This section tells you
where to find the sample code, where the APIs’ include (header) files are located,

and where the libraries are that you need to build and run your custom programs.

NOTE This section applies to the C APl only.

Location of Sample Code

Calendar Server

Calendar Server includes four simple sample programs to help you get started. The
code for these samples resides in the following directory:

cal_server_base/ cal / csapi / sanpl es/ ens

Messaging Server

Messaging Server 5.1 and higher contains sample programs to help you learn how
to receive notifications. These sample programs are located in the following
directory:

msg_server_base/ exanpl es

Location of Include Files

Calendar Server

The include (header) files for the publisher and subscriber APIs are: publ i sher. h,
suscri ber . h, and pasdi sp. h (publish and subscribe dispatcher). They are located in
the CSAPI i ncl ude directory. The default i ncl ude path is:

cal_server_base/ cal / csapi /i ncl ude

Messaging Server
The default i ncl ude path for Messaging Server is:

msg_server_base/ bi n/ nsg/ enssdk/ i ncl ude

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service APl Overview

Dynamically Linked/Shared Libraries

Calendar Server

Your custom code must be linked with the dynamically linked library | i bens,
which implements the publisher and subscriber APIs. On some platforms all the
dependencies of | i bens must be provided as part of the link directive. These
dependencies, in order, are:

1. libgap

2. libcyrus
3. libyasr
4, libasync
5. libnspr3
6. |ibplsd4
7. libplc3

Calendar Server uses these libraries; therefore, they are located in the server’s bi n
directory. The default | i bens path is:

[/ opt / cal_server_base/ cal / bi n

NOTE For Windows, in order to build publisher and subscriber
applications, you also need the archive files (. I i b files)
corresponding to all the earlier mentioned libraries. These are
located in the CSAPI library directory, | i b. The default | i b path is:

drive:\Prograntil es\i Pl anet\ Cal endar Ser ver 5\ cal \
csapi\lib

Messaging Server
The libraries for Messaging Server are located in the following directory:

msg_server_base/ bi n/ nsg/1ib

Refer to nsg_ser ver _base/ bi n/ nsg/ enssdk/ exanpl es/ Makefi | e. sanpl e to help
determine what libraries are needed.This makefile contains instructions on how to
compile and run the apub and asub programs. This file also describes what libraries
are needed, and what the LD LI BRARY_PATHshould be. Figure 1-4 shows a sample
makefile.sample file.

Chapter 1 Introduction to Event Notification Service 33

Event Notification Service APl Overview

Figure 1-4 Makef i | e. sanpl e File

#

Sanpl e nmakefile

#

your C conpiler

CC = gcc

LIBS

Your library path should include <nsg_server_base>/bin/nsg/lib
LIBS = -lens -1gap -Ixenp -lcyrus -lchartable -lyasr -lasync

all: apub asub

apub: apub. c
$(CC) -0 apub -1 ../include apub.c $(LIBS)
asub: asub.c
$(Q0) -0 asub -1 ../include asub.c $(LIBS)
run:
@cho 'run <nmsg_server_base>/start -ens’
@cho run asub | ocal host 7997
@cho run apub | ocal host 7997
34 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service APl Overview

NOTE

The Windows distribution includes the following additional files:
nmsg_server _base\ bi n\ nsg\ enssdk\ exanpl es
bi n\ msg\ enssdk\ exanpl es\ i bens.lib

bi n\ meg\ enssdk\ exanpl es\ i bgap.lib

bi n\ meg\ enssdk\ exanpl es\ i bxenp.lib

bi n\ msg\ enssdk\ exanpl es\ | i bcyrus.lib

bi n\ meg\ enssdk\ exanpl es\ | i bchartable.lib
bi N\ meg\ enssdk\ exanpl es\ i byasr.lib

bi n\ msg\ enssdk\ exanpl es\ | i basync.|ib

bi n\ msg\ enssdk\ exanpl es\ asub. dsw

bi n\ msg\ enssdk\ exanpl es\ apub. dsp

bi n\ msg\ enssdk\ exanpl es\ asub. dsp

To build on Windows platforms:

1. Asample VC++ workspace is provided in asub. dsw. It has two
projects in it: asub. dsp and apub. dsp.

The required . | i b files to link is in the same directory as asub. ¢
and apub. c.

2. Torun, it requires that the following DLLs are in your path.

l'ibens.dll

I'i bgap. dl |

I'i bxenp.dl|
I'ibcyrus.dll
libchartable.dll
I'i byasr.dl|

|'i basync. dl |

The simplest way to accomplish this is to include
nsg_server base in\nsg\|i b in your PATH.

Chapter 1 Introduction to Event Notification Service 35

Event Notification Service APl Overview

Runtime Library Path Variable

Calendar Server

In order for your custom programs to find the necessary runtime libraries, which
are located in the / opt / SUNW cs5/ cal / bi n directory, make sure your
environment’s runtime library path variable includes this directory. The name of
the variable is platform dependent:

e SunOSand Linux: LD LI BRARY PATH
e Windows: PATH
« HPUX: SH.I B PATH

Messaging Server

For Messaging Server, you need to set your LD LI BRARY_PATHto
nsg_server_base/ bi n/msg/ i b.

36 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Chapter 2

Event Notification Service C API
Reference

This chapter details the ENS C API; it is divided into three main sections:

e Publisher API

e Subscriber API

e Publish and Subscribe Dispatcher API

Publisher API| Functions List

This chapter includes a description of the following Publisher functions, listed in

Table 2-1:

Table 2-1 ENS Publisher API Functions List

Function

publi sher _t
publisher_cb_t

publ i sher _new a

publ i sher _new s
publish_a

publish_s

publ i sher _del ete

publ i sher _get subscri ber

renl _create_publisher

Description

Definition for a publisher.

Generic callback function acknowledging an asynchronous call.
Creates a new asynchronous publisher.

Creates a new synchronous publisher.

Sends an asynchronous notification to the notification service.
Sends a synchronous notification to the notification service.
Terminates a publish session.

Creates a subscriber using the publisher’s credentials.

Creates an RENL, which enables the invocation of end2end_ack.

37

Subscriber API Functions List

Table 2-1 ENS Publisher API Functions List (Continued)

renl _cancel _publisher Cancels an RENL.

Subscriber API Functions List

This chapter includes a description of following Subscriber functions, listed in
Table 2-2:

Table 2-2 ENS Subscriber APl Functions List

Function Description

subscri ber _t Definition of a subscriber.

subscription_t Definition of a subscription.

subscriber _cb_t Generic callback function acknowledging an asynchronous call.
subscriber_notify cb_t Synchronous callback; called upon receipt of a notification.
subscriber_new a Creates a new asynchronous subscriber.

subscri ber_new s Creates a new synchronous subscriber.

subscribe_a Establishes an asynchronous subscription.

unsubscri be_a Cancels an asynchronous subscription.

subscri ber_del ete Terminates a subscriber.

subscri ber_get _publ i sher Creates a publisher using the subscriber’s credentials.
renl _create _subscriber Creates the subscription part of the RENL.

renl _cancel _subscri ber Cancels an RENL.

Publish and Subscribe Dispatcher Functions List

This chapter includes a description of the following Publish and Subscribe
Dispatcher functions, listed in Table 2-3:

Table 2-3 ENS Publish and Subscribe Dispatcher Functions List

Function Description
pas_di spat cher _t Definition of a publish and subscribe dispatcher.
pas_di spat cher _new Creates a dispatcher.

38 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Publisher API

Table 2-3 ENS Publish and Subscribe Dispatcher Functions List (Continued)

pas_di spat cher _del ete Destroys a dispatcher created with pas_di spat cher _new.
pas_di spat ch Starts the dispatch loop of an event notification environment.
pas_shut down Stops the dispatch loop on an event notification environment started with

pas_di spat ch.

Publisher API

The Publisher API consists of one definition and nine functions:
e publisher_t

e publisher_cb_t

e publisher_new a

e publisher_new s

e publish_a

e publish_s

e publisher_delete

e publisher_get_subscri ber

e renl_create_publisher

= renl_cancel _publisher

publisher _t

Purpose.
A publisher.

Syntax
typedef struct enc_struct publisher_t;

Parameters
None.

Returns
Nothing.

Chapter 2 Event Notification Service C API Reference 39

Publisher API

publisher cb t

Purpose.
Generic callback function invoked by ENS to acknowledge an asynchronous call.

Syntax
typedef void (*publisher_cb t) (void *arg, int rc, void *data);

Parameters

arg Context variable passed by the caller.

rc The return code.

data For an open, contains a newly created context.
Returns

Nothing.

publisher_new_a

Purpose
Creates a new asynchronous publisher.

Syntax

voi d publisher_new a (pas_di spatcher_t *disp,
voi d *wor ker,
const char *host,
unsi gned short port,
publisher_cb_t chdone,
voi d *charg);

Parameters

di sp P&S thread pool context returned by pas_di spat cher _new.

wor ker Application worker. If not NULL, grouped with existing workers created by
ENS to service this publisher session. Used to prevent multiple threads from
accessing the publisher data at the same time.

host Notification server host name.

port Notification server port.

40 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Publisher API

cbdone The callback invoked when the publisher has been successfully created, or
could not be created.

There are three Parameters to cbdone:

« charg
The first argument.

e A status code.
If non-zero, the publisher could not be created; value specifies cause of
the failure.

¢ The new active publisher.

cbarg First argument of cbdone.

Returns
Nothing. It passes the new active publisher as third argument of cbdone callback.

publisher_new s

Purpose
Creates a new synchronous publisher.

Syntax

publisher _t *publisher_new s (pas_dispatcher_t *disp,
voi d *worker,
const char *host,
unsi gned short port);

Parameters

di sp P&S thread pool context returned by pas_di spat cher _new.

wor ker Application worker. If not NULL, grouped with existing workers created by ENS
to service this publisher session. Used to prevent multiple threads from
accessing the publisher data at the same time.

host Notification server host name.

port Notification server port.

Returns

A new active publisher (publ i sher t).

Chapter 2 Event Notification Service C API Reference 41

Publisher API

publish_a

Purpose

Sends an asynchronous notification to the notification service.

Syntax

voi d publish_a (publisher_t *publisher,

const char *event_ref,
const char *dat a,

unsi gned int datal en,

publ i sher _cb_t cbdone,

publi sher _cb_t end2end_ack,
voi d *charg,

unsi gned |ong timeout);

Parameters

publ i sher _t The active publisher.

event _ref The event reference. This is a URI identifying the modified resource.

data The event data. The body of the notification message. It is opaque to the
notification service, which merely relays it to the events’ subscriber.

dat al en The length in bytes of the data.

cbhdone The callback invoked when the data has been accepted or deemed

end2end_ack

cbarg
ti meout

unacceptable by the notification service. What makes a notification
acceptable depends on the protocol used. The protocol may choose to use
the transport acknowledgment (TCP) or use its own acknowledgment
response mechanism.

The callback function invoked after acknowledgment from the consumer peer
(in an RENL) has been received. Used only in the context of an RENL.

The first argument of cbdone or end2end_ack when invoked.

The length of time to wait for an RENL to complete.

Returns
Nothing.

publish_s

Purpose

Sends a synchronous notification to the notification service.

42 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Publisher API

Syntax

int publish_s (publisher_t *publisher,
const char *event ref,
const char *data,
unsigned int datal en);

Parameters

publ i sher The active publisher.

event ref The event reference. This is a URI identifying the modified resource.

dat a The event data. The body of the notification message. It is opaque to the
notification service, which relays it to the events’ subscriber.

dat al en The length in bytes of the data.

Returns

Zero if successful; a failure code if unsuccessful. If an RENL, the call does not
return until the consumer has completely processed the notification and has
successfully acknowledged it.

publisher_delete

Purpose
Terminates a publish session.

Syntax
voi d publisher_del ete (publisher_t *publisher);

Parameters

publ i sher The publisher to delete.

Returns
Nothing.

publisher_get subscriber

Purpose
Creates a subscriber using the credentials of the publisher.

Chapter 2 Event Notification Service C API Reference

43

Publisher API

Syntax
struct subscriber_struct * publisher_get_subscri ber (publisher_t
*publ i sher);

Parameters

publ i sher The publisher whose credentials are used to create the subscriber.

Returns
The subscriber, or NULL if the creation failed. If the creation failed, use the
subscriber_new to create the subscriber.

renl_create_publisher

Purpose

Declares an RENL, which enables the end2end_ack invocation. After this call
returns, the end2end_ack argument is invoked when an acknowledgment
notification matching the specified publisher and subscriber is received.

Syntax

voi d renl _create_publisher (publisher_t *publisher,
const char *renl _id,
const char *subscri ber,
publ i sher _cb_t cbdone,
voi d *charg);

Parameters

publ i sher The active publisher.

renl _id The unique RENL identifier. This allows two peers to be able to set up multiple
RENLs between them.

subscri ber The authenticated identity of the peer.

cbdone The callback invoked when the RENL is established.

charg The first argument of cbdone, when invoked.

Returns

Nothing.

44 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Subscriber API

renl_cancel _publisher

Purpose

This cancels an RENL. This does not prevent more notifications being sent, but
should a client acknowledgment be received, the end2end_ack argument of publish
will no longer be invoked. All RENLs are automatically destroyed when the
publisher is deleted. Therefore, this function does not need to be called to free
RENL-related memory before deleting a publisher.

Syntax
voi d renl _cancel _publisher (renl_t *renl);

Parameters

renl The RENL to cancel.

Returns
Nothing.

Subscriber API

The Subscriber API includes two definitions and ten functions:
e subscri ber _t

e subscription_t

e subscriber _cb t

e subscriber_notify cb t

= subscriber_new a

= subscriber_new s

e subscribe_a

e unsubscribe a

e subscriber _delete

e subscriber_get_publisher
e renl_create_subscriber

= renl_cancel _subscri ber

Chapter 2 Event Notification Service C API Reference 45

Subscriber API

subscriber _t

Purpose
A subscriber.

Syntax
typedef struct enc_struct subscriber _t;

Parameters
None.

Returns
Nothing.

subscription_t

Purpose
A subscription.

Syntax
typedef struct subscription_struct subscription_t;

Parameters
None.

Returns

Nothing.

subscriber _cb t

Purpose
Generic callback function invoked by ENS to acknowledge an asynchronous call.

Syntax

typedef void (*subscriber_cb t) (void *arg,
int rc,
voi d *data);

Parameters

arg Context variable passed by the caller.

46 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Subscriber API

rc The return code.

data For an open, contains a newly created context.
Returns

Nothing

subscriber_notify cb_t

Purpose
Subscriber callback; called upon receipt of a notification.

Syntax
typedef void (*subscriber_notify cb t) (void *arg,
char *event,

char *dat a,
int datalen);
Parameters
arg Context pointer passed to subscribe (noti fy_arg).
event The event reference (URI). The notification event reference matches the
subscription, but may contain additional information called event attributes, such
asauid.
data The body of the notification. A MIME object.
dat al en Length of the data.
Returns

Zero if successful, non-zero otherwise.

subscriber_new_a

Purpose
Creates a new asynchronous subscriber.

Chapter 2 Event Notification Service C API Reference 47

Subscriber API

Syntax

voi d subscriber_new a (pas_dispatcher_t *disp,
voi d *worker,
const char *host,
unsi gned short port,
subscri ber_cb_t cbhdone,
voi d *cbarg);

Parameters
di sp Thread dispatcher context returned by pas_di spat cher _new.
wor ker Application worker. If not NULL, grouped with existing workers created by ENS to
service this subscriber session. Used to prevent multiple threads from accessing
the subscriber data at the same time. Only usable if the caller creates and
dispatches the GDisp context.
host Notification server host name or IP address.
port Subscription service port number.
cbdone The callback invoked when the subscriber session becomes active and
subscriptions can be issued.
There are three parameters to cbdone:
« charg
The first argument.
* A status code.
If non-zero, the subscriber could not be created; value specifies cause of the
failure.
+ The new active subscriber (subscri ber _t).
charg First argument of chdone.
Returns

Nothing. It passes the new active subscriber as third argument of cbdone callback.

subscriber_new s

Purpose
Creates a new synchronous subscriber.

Syntax

subscriber_t *subscriber_new s (pas_di spatcher_t *di sp,
const char *host,
unsi gned short port);

48 Communications Services 6 2005Q1 < Event Notification Service Guide

Subscriber API

Parameters

di sp Publish and subscribe dispatcher returned by pas_di spat cher _new.

wor ker Application worker. If not NULL, grouped with existing workers created by ENS to
service this publisher session. Used to prevent multiple threads from accessing the
publisher data at the same time. Only usable if the caller creates and dispatches
the GDisp context.

host Notification server host name or IP address.

port Subscription service port number.

Returns

A new active subscriber (subscri ber _t).

subscribe_a

Purpose

Establishes an asynchronous subscription.

Syntax

voi d subscribe_a (subscriber_t *subscri ber,
const char *event ref,
subscriber_notify cb_t notify_cb,
void *notify_arg,
subscriber_cb_t cbdone,
voi d *cbarg):

Parameters
subscri ber The subscriber.
event ref The event reference. This is a URI identifying the event's source.
notify_cb The callback invoked upon receipt of a notification matching this subscription.
notify_ arg The first argument of not i fy_ar g. May be called at any time, by any thread,
while the subscription is still active.
cbdone Called when an unsubscribe completes. It has three Parameters:
« cbar g (see below).
* Status code.
« A pointer to an opaque subscription object.
charg The first argument of cbdone.

Chapter 2 Event Notification Service C API Reference 49

Subscriber API

Returns
Nothing.

unsubscribe_a

Purpose
Cancels an asynchronous subscription.

Syntax

voi d unsubscribe_a (subscriber_t *subscri ber,
subscription_t *subscription,
subscriber _cb t chdone,
voi d *cbarg);

Parameters

subscri ber The disappearing subscriber.

subscri ption The subscription to cancel.

cbhdone Called when an unsubscribe completes. It has three parameters:
« cbar g (see below).
e Status code.
* A pointer to an opaque subscription object.

cbarg The first argument of chdone.

Returns

Nothing.

subscriber_delete

Purpose
Terminates a subscriber.

Syntax
voi d subscriber_del ete (subscriber_t *subscriber);

Parameters

subscri ber The subscriber to delete.

50 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Subscriber API

Returns.
Nothing

subscriber_get_publisher

Purpose
Creates a publisher, using the credentials of the subscriber.

Syntax
struct publisher_struct *subscriber_get publisher (subscriber_t

*subscri ber);

Parameters

subscri ber The subscriber whose credentials are used to create the publisher.

Returns
The publisher, or NULL if creation failed. In case the creation fails, use the
publ i sher _new.

renl_create_subscriber

Purpose
Creates the subscription part of an RENL.

Syntax

renl _t *renl _create_subscriber (subscription_t *subscription,
const char *renl _id,
const char *publisher);

Parameters

subscri ption The subscription.

renl id The unique RENL identifier. This allows two peers to be able to set up
multiple RENLs between them.

publ i sher The authenticated identity of the peer.

Returns

The opaque RENL object.

Chapter 2 Event Notification Service C API Reference

51

Publish and Subscribe Dispatcher API

renl_cancel _subscriber

Purpose

This cancels an RENL. It does not cancel a subscription. It tells ENS not to
acknowledge any more notifications received for this subscription. It destroys the
RENL obiject, the application may no longer use this RENL. All RENLs are
automatically destroyed when the subscription is canceled. Therefore, this function
does not need to be called to free RENL-related memory before deleting a
subscriber.

Syntax
voi d renl _cancel _subscriber (renl_t *renl);

Parameters

renl The RENL to cancel.

Returns
Nothing.

Publish and Subscribe Dispatcher API

The Publish and Subscribe Dispatcher API includes one definition and four
functions:

= pas_di spatcher _t

= pas_di spat cher _new

e pas_dispatcher_del ete
e pas_dispatch

= pas_shut down

NOTE The only thread dispatcher supported is GDisp (libasync).

pas_dispatcher _t

Purpose
A publish and subscribe dispatcher.

52 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Publish and Subscribe Dispatcher API

Syntax
typedef struct pas_di spatcher_struct pas_dispatcher_t;

Parameters
None.

Returns
Nothing.

pas_dispatcher_new

Purpose
Creates or advertises a dispatcher.

Syntax
pas_di spat cher _t *pas_di spat cher _new (void *disp);

Parameters

di spcx The dispatcher context. If NULL, to start dispatching notifications, the application
must call pas_di spat ch.

If not NULL, the dispatcher is a | i basync dispatcher.

Returns
The dispatcher to use when creating publishers or subscribers (pas_di spat cher _t).

pas_dispatcher_delete

Purpose
Destroys a dispatcher created with pas_di spat cher _new.

Syntax
voi d pas_di spat cher _del ete (pas_di spatcher_t *disp);

Parameters

di sp The event notification client environment.

Chapter 2 Event Notification Service C API Reference 53

Publish and Subscribe Dispatcher API

Returns
Nothing.

pas_dispatch

Purpose
Starts the dispatch loop of an event notification environment. It has no effect if the
application uses its own thread pool.

Syntax
voi d pas_di spatch (pas_di spatcher_t *disp);

Parameters

di sp The new dispatcher.

Returns
Nothing.

pas_shutdown

Purpose

Stops the dispatch loop of an event notification environment started with

pas_di spat ch. It has no effect if an application-provided dispatcher was passed to
pas_di spat cher _new.

Syntax
voi d pas_shutdown (pas_dispatcher_t *disp);

Parameters

disp The dispatcher context to shutdown.

Returns
Nothing.

54 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Chapter 3

Event Notification Service Java (JMS)
API| Reference

This chapter describes the implementation of the Java (JMS) APl in ENS and the
Java API itself.

This chapter contains these sections:
= Event Notification Service Java (JMS) APl Implementation
= Java (JMS) API Overview

= Implementation Notes

Event Notification Service Java (JMS) API
Implementation

The ENS Java APl is included with Messaging Server and Calendar Server. The
Java API conforms to the Java Message Service specification (JMS).

ENS acts as a provider to Java Message Service. Thus, it provides a Java API to
ENS. The software consists of the base library plus a demo program.

Prerequisites to Use the Java API

To use the Java API, you need to load the ENS plug-in. For instructions on loading
the ENS plug-in, see Appendix C in the Messaging Server Administration Guide. By
default, ENS is already enabled.

In addition, you need to install the following software, which is not provided with
either Messaging Server or Calendar Server:

55

Event Notification Service Java (JMS) API Implementation

= Java Development Kit (JDK) 1.2 or later
= Java Message Service 1.0.2a or later (tested with 1.0.2a)
You can download this software from:

http://java. sun.com

Sample Java Programs

The Messaging Server sample programs, JnsSanpl e and JBi f f, are stored in the
following directory:

nsg_server_base/ bi n/ msg/ enssdk/ j ava/ coni i pl anet/ ens/ sanpl es

directory. JnsSanpl e is a generic ENS sample program. JBi ff is Messaging Server
specific.

For JBi ff, you will need the following additional items:

= Java Mail jar file (tested with JavaMail 1.2)

= Java Activation Framework (required by JavaMail, tested with JAF1.0.1)
You can download these items from:

http://java. sun.com

Instructions for Sample Programs

This section contains instructions for compiling and running the two sample
programs:

< JmsSample Program

= JBiff Sample Program

56 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Service Java (JMS) API Implementation

JmsSample Program
To compile the ImsSample program:

1. Set your CLASSPATHto include the following:
ens.jar file - ens. j ar

(For Messaging Server, the ens. j ar is located in the
nsg_server _base/javal/jars/ directory.)

Java Message Service - ful | -path/jms1.0.2/jns.jar
2. Change to the nsg_server _base/ bi n/ nsg/ enssdk/ j ava directory.
3. Run the following command:

javac coniipl anet/ens/ sanpl es/ JnsSanpl e. j ava

To run the JmsSample program:
1. Change to the nsg_server _base/ bi n/ nsg/ enssdk/ j ava directory.
2. Run the following command:

java comi pl anet. ens. sanpl es. JnsSanpl e

3. You are prompted for three items:

o ENS event reference (for example, for Messaging Server:
enp://127.0.0. 1/ store)

o ENS hostname
o ENS port (typically 7997)
4. Publish events.
For Messaging Server, the two ways to publish events are:

o You can use the apub C sample program for ENS. See “Sample Code” on
page 69 for more information.

o Ifyou have enabled ENS, configure iBiff to publish Messaging Server
related events.

For Calendar Server, events are published by the calendar server.

Chapter 3 Event Notification Service Java (JMS) API Reference 57

Event Notification Service Java (JMS) API Implementation

58

JBiff Sample Program
To compile the JBiff program:

1. Set your CLASSPATHto include the following:
ens.jar file - ens. j ar

(For Messaging Server, the ens. j ar is located in the
nsg_server _base/javal/jars/ directory.)

Java Message Service - ful | -path/jms1.0.2/jns.jar

JavaMail - ful | -path/javamail-1.2/mail.jar

Java Activation Framework - ful | - pat h/j af- 1. 0. 1/ acti vation. | ar
2. Change to the nsg_ser ver _base/ bi n/ nsg/ enssdk/ j ava directory.
3. Run the following command:

javac coniipl anet/ens/sanpl es/ JBiff.java
To run the JBiff sample program:

Prerequisite: To run the JBi ff sample program, you need to load the ENS (iBiff)
plug-in. See Appendix C in the Messaging Server Administrator’s Guide for
instructions.

NOTE The demo is currently hardcoded to use the ENS event reference
enp: //127.0.0. 1/ store. This is the default event reference used by
the iBiff notification plug-in.

1. Change to the nsg_server _base/ bi n/ nsg/ enssdk/ j ava directory.
2. Run the following:

java comi pl anet. ens. sanpl es. JBi f f
3. The program prompts for your userid, hostname, and password.

The code assumes that the ENS server and the IMAP server are running on
hostname. The userid and password are the IMAP username and password to
access the IMAP account.

The two test programs are ENS subscribers. You receive events from iBiff when
email messages flow through Messaging Server. Alternately you can use the apub C
sample program to generate events. See “Sample Code” on page 69 for more
information.

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Java (JMS) API Overview

Java (JMS) API Overview

The Java API for ENS uses a subset of the standard Java Messaging Service (JMS)
API, with the addition of two new proprietary methods:

e comiplanet.ens.jns. EnsTopi cConnFact ory
e comiplanet.ens.jns. EnsTopic

JMS requires the creation of a Topi cConnecti onFact ory and a Topi ¢, which is
provided by the two ENS proprietary classes.

For more information on the standard JMS classes and methods, see the JMS
documentation at:

http://java.sun.com/products/jms/docs.html

New Proprietary Methods

The two proprietary method classes are EnsTopi cConnFact ory and EnsTopi c.

com.iplanet.ens.jms.EnsTopicConnFactory

About the method

The method is a constructor that returns a j avax. j ns. Topi cConnecti onFact ory.
Instead of using a JNDI-style lookup to obtain the Topi cConnect i onFact ory object,
this method is provided.

Syntax
publi ¢ EnsTopi cConnFactory (String nare,
String hostnane,
int port,
Qut put Stream | ogSt r eam)

throws java.io. | CException

Chapter 3 Event Notification Service Java (JMS) API Reference 59

Implementation Notes

Arguments

Arguments Type Explanation

name String The client ID for the javax.jms.Connection
host nane String The hostname for the ENS server.

port int The TCP port for the ENS server.

| ogStream OutputStream Where messages are logged (cannot be null).

com.iplanet.ens.jms.EnsTopic

About this method
The method is a constructor that returns a j avax. j ns. Topi c. Instead of using a
JNDI-style lookup to obtain the j avax. j ms. Topi ¢, this method is provided.

Syntax
public EnsTopic (String eventRef)

Arguments
Arguments Type Explanation
event Ref String The ENS event reference.

Implementation Notes

60

This section describes items to be aware of when implementing the ENS Java API.

Shortcomings of the Current Implementation

The current implementation of the Java API does not supply an initial provider
interface.

JMS Topic Connection Factory and ENS Destination are called out explicitly. These
are com i pl anet . ens. j ms. EnsTopi cConnFact ory and

com i pl anet. ens. j ns. EnsTopi c. ENS does not use JNDI to get the

Topi cConnect i onFact ory and Topi ¢ objects.

Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Implementation Notes

Notification Delivery

The notification is delivered as a j avax. j ns. Text Message. The parameter/values of
the ENS event reference are provided as property hames to the TextMessage. The
payload is provided as the data of the TextMessage.

JMS Headers

JMSDeliveryMode is always set to NON_PERSI STENT (that is, no storing of
message for future delivery).

JMSRedelivered is always set to false.

JMSMessagelD is set to an internal id. Specifically it is not set to the SMTP
MessagelD in the header of the email message for Messaging Server.

The payload is always a j avax. j ms. Text Message. It corresponds to the ENS
payload.

JMSDestination is set to the full event reference (that is, it includes the
parameter/values specific to this notification).

JMSCorrelationID - Set to an internal sequence number.
JMSTimestamp - Set to the time the message was sent.

o For Messaging Server and iBiff, this corresponds to the ti nest anp
parameter.

o Thisis unused in Calendar Server.

JMSType - The type of notification.

o For Messaging Server and iBiff, this corresponds to the evt Type parameter.
o Thisis unused in Calendar Server.

Additional properties:

o Each parameter/value in the even reference becomes a property in the
header. All property values are of type String.

Unused headers are: IMSExpiration, JMSpriority, IMSReplyTo.

Chapter 3 Event Notification Service Java (JMS) API Reference 61

Implementation Notes

Miscellaneous

= MessageSelectors are not implemented.

= JMS uses the concept of durable and non-durable subscribers. A durable
subscriber is a feature where notifications are guaranteed to be sent to
subscribers even when they are offline, or if something catastrophic occurs,
such as the ENS server going down after receiving the notification from the
publisher but before delivering it to the subscriber.

o Non-durable subscribers are implemented.

o You can also use durable subscribers, however, the full functionality of
being a durable subscriber is not implemented.

o This aspect of being a durable subscriber is implemented: the publisher is
acknowledged only after the subscriber receives a message.

o This aspect of being a durable subscriber is not implemented: the message
is not persistent, and delivery is not made to offline subscribers (after they
come back online). In particular, IMSRedelivered is always set to false.

62 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Chapter 4

Messaging Server Specific
Information

This chapter describes the Messaging Server specific items you need to use the ENS
APIs.

This chapter contains these sections:
= Event Notification Types and Parameters
< Sample Code

« Implementation Notes

Event Notification Types and Parameters

For Messaging Server, there is only one event reference, which can be composed of
several parameters. There are various types of event notifications. Table 4-1 lists
the event types supported by Messaging Server and gives a description of each:

Table 4-1 Event Tyes

Event Types Description

Del et eMsg Messages marked as “Deleted” are removed from the
mailbox. This is the equivalent to IMAP expunge.

Logi n User logged in from IMAP, HTTP, or POP.

Logout User logged out from IMAP, HTTP, or POP.

NewVsg New message was received by the system into the user’s

mailbox. Can have a payload of message headers and body.

63

Event Notification Types and Parameters

Table 4-1 Event Tyes

Event Types Description

Over Quot a Operation failed because the user’s mailbox exceeded one of
the quotas (diskquota, msgquota). The MTA channel holds
the message until the quota changes or the user’s mail box
count goes below the quota. If the message expires while it is
being held by the MTA, it will be expunged.

Pur geMsg Message expunged (as a result of an expired date) from the
mailbox by the server process imexpire. This is a server side
expunge, whereas DeleteMsg is a client side expunge. This is
not a purge in the true sense of the word.

ReadMsg Message in the mailbox was read (in the IMAP protocol, the
message was marked Seen).
TrashMsg Message was marked for deletion by IMAP or HTTP. The

user may still see the message in the folder, depending on the
mail client’s configuration. The messages are to be removed
from the folder when an expunge is performed.

Under Quot a Quota went back to normal from OverQuota state.

Updat eMsg Message was appended to the mailbox (other than by
NewMsg). for example, the user copied an email message to
the mailbox. Can have a payload of message headers and
body.

The following applies to the above supported event types:

= For NewMsg and Updat eMsg, message pay load is turned off by default to
prevent overloading ENS. For information on how to enable the payload, see
“Payload” on page 68. No other event types support a payload.

= Event notifications can be generated for changes to the | NBOX alone, or to the
I NBOX and all other folders. The following configuration variable allows for
I NBOX only (value = 0), or for both the | NBOX and all other folders (value = 1):

| ocal . store. notifyplugi n. nonel nbox. enabl e

The default setting is for | NBOX only (value = 0).

NOTE There is no mechanism to select folders; all folders are included
when the variable is enabled (value = 1).

64 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Types and Parameters

= The NewMsg notification is issued only after the message is deposited in the
user mailbox (as opposed to “after it was accepted by the server and queued in
the message queue”).

= Every notification carries several pieces of information (called parameters)
depending on the event type, for example, NewMsg indicates the IMAP ui d of
the new message. For details on the parameters each event type takes, see
“Available Parameters for Each Event Type” on page 67.

= Events are not generated for POP3 client access.

= All event types can be suppressed by issuing XNOTNCOTI FY. For example, an
IMAP script used for housekeeping only (the users are not meant to be
notified) might issue it to suppress all events.

Parameters

iBiff uses the following format for the ENS event reference:
enp://127.0. 0. 1/ st or e?param=value¶ml=valuel¶m2=value2

The event key enp: // 127. 0. 0. 1/ st or e has no significance other than its
uniqueness as a string. For example, the hostname portion of the event key has no
significance as a hostname. It is simply a string that is part of the URI. However,
the event key is user configurable. The list of iBiff event reference parameters is
listed in Table 4-2 and Table 4-3 that follow.

The second part of the event reference consists of parameter-value pairs. This part
of the event reference is separated from the event key by a question mark (?). The
parameter and value are separated by an equals sign (=). The parameter-value
pairs are separated by an ampersand (&). Note that there can be empty values, for
which the value simply does not exist.

Table 4-2 on page 65 describes the mandatory event reference parameters that need
to be included in every notification.

Table 4-2 Mandatory Event Reference Parameters

Parameter Data Type Description
evt Type string Specifies the event type.
host nane string The hostname of the machine that generated the event.

Chapter 4 Messaging Server Specific Information 65

Event Notification Types and Parameters

Table 4-2 Mandatory Event Reference Parameters

Parameter Data Type Description

mai | boxName string Specifies the mailbox name in the message store. The
mailboxName has the format ui d@onai n, where ui d is
the user’s unique identifier, and donmi n is the domain
the user belongs to. The @onai n portion is added only
when the user does not belong to the default domain (i.e.
the user is in a hosted domain).

pid integer ID of the process that generated the event.

process string Specifies the name of the process that generated the event.

ti mestanp 64-bit integer Specifies the number of milliseconds since the epoch

(midnight GMT, January 1, 1970).

Table 4-3 describes optional event reference parameters, which might be seen in
the event depending on the event type (see Table 4-4).

Table 4-3 Optional Event Reference Parameters

Parameter Data Type Description
client IP address The IP address of the client logging in or out.
di skQuot a signed 32-bit integer Specifies the disk space quota in kilobytes. The value is set
to -1 to indicate no quotas.
di skUsed signed 32-bit integer Specifies the amount of disk space used in kilobytes.
hdr Len unsigned 32-bit Specifies the size of the message header. Note that this
integer might not be the size of the header in the payload, because
it might have been truncated.
i mpU d unsigned 32-bit Specifies the IMAP uid parameter.
integer
lastUid unsigned 32-bit Specifies the last IMAP uid value that was used.
integer
numbDel unsigned 32-bit Specifies the number of messages marked as deleted in
integer the mailbox.
numvsgs unsigned 32-bit Specifies the number of total messages in the mailbox.
integer
numMsgsMax signed 32-bitinteger Specifies the quota for the maximum number of

messages. The value is set to -1 to indicate no quotas.

66 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Event Notification Types and Parameters

Table 4-3 Optional Event Reference Parameters (Continued)

Parameter Data Type Description

numSeen unsigned 32-bit Specifies the number of messages in the mailbox marked
integer as seen (read).

si ze unsigned 32-bit Specifies the size of the message. Note that this may not
integer be the size of payload, since the payload is typically a

truncated version of the message.

uidvalidity unsigned 32-bit Specifies the IMAP uid validity parameter.

integer
NOTE Subscribers should allow for undocumented parameters when

parsing the event reference. This allows for future compatibility
when new parameters are added.

Table 4-4 shows the parameters that are available for each event type. For example,
to see which parameters apply to a Tr ashMsg event, look in the column header for
“ReadMsg, TrashMsg” and then note that these events can use nunDel , numvsgs,
nunSeen, and user Val i dity.

Table 4-4 Awvailable Parameters for Each Event Type

Parameter NewMsg, ReadMsg, DeleteMsg, Login, OverQuota,
UpdateMsg TrashMsg PurgeMsg Logout UnderQuota

client No No No Yes No

di skQuot a No No No No Yes

di skUsed No No No No Yes

hdr Len Yes No No No No

i mapU d Yes No Yes No No

lastUid No No Yes No No

nunDel No Yes No No No

nunmvsgs Yes Yes Yes No Yes

nunivsgs Max No No No No Yes

nunSeen No Yes No No No

si ze Yes No No No No

Chapter 4 Messaging Server Specific Information 67

Event Notification Types and Parameters

Table 4-4 Awvailable Parameters for Each Event Type (Continued)

Parameter NewMsg, ReadMsg, DeleteMsg, Login, OverQuota,
UpdateMsg TrashMsg PurgeMsg Logout UnderQuota

uidvalidity Yes Yes Yes No No

userid No No No Yes No

Payload

ENS allows a payload for two event types: News g, and Updat eMsg; the other event
types do not carry a payload. The payload portion of these two notifications can
contain any of the following data:

= No header or body data (default setting)
= Message header data only

= Message body data only

< Both message header and body data

The amount and type of data sent as the payload of the ENS event is determined by
the confiuration parameters found in Table 4-5.

Table 4-5 Payload Configuration Parameters

Configuration Paramter Description

I ocal . store. notifyplugi n. maxBodySi ze Specifies the maximum size (in bytes) of the body that
will be transmitted with the notification. Default setting is
zero (0).

I ocal . store. notifyplugi n. maxHeader Si ze Specifies the maximum size (in bytes) of the header that
will be transmitted with the notification. Default setting is
zero (0).

Note that both parameters are set to zero as the default so that no header or body
data is sent with ENS notifications.

68 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Sample Code

Examples

The following example shows a Newsg event reference (it is actually a single line
that is broken up to several lines for readability):

enp://127.0.0. 1/ st or e?evt Type=Newsg&t i nest anp=1047488403000&
host name=eman&pr ocess=i nt a&pi d=476&mai | boxNane=t est user &umvsgs=16
&ui dVal i di ty=1046993605& mapUi d=62&si ze=877&hdr Len=814

In this example, for the DeleteMsg event. Messages marked as deleted by IMAP or
HTTP were expunged. The user would not see the message in the folder any more.

enp://127.0. 0. 1/ st ore?evt Type=Del et eMsg&t i nest anp=1047488588000&
host name=enman&pr ocess=i mapd&pi d=419&nai | boxNane=t est user &
numvsgs=6&ui dVal i di t y=1046993605& mapUi d=61&l ast Ui d=62

And a third example shows a ReadMsg event. Message was marked as Seen by
IMAP or HTTP.

enp://127.0.0. 1/ st ore?evt Type=ReadMsgé&t i mest anp=1047488477000&
host name=emané&pr ocess=i mapd&pi d=419&mai | boxName=t est user &
ui dval i di t y=1046993605&nuntSeen=11&nunDel =9&nunmvsgs=16

Sample Code

The following two code samples illustrate how to use the ENS API. The sample
code is provided with the product in the following directory:

nsg_server_base/ exanpl es

How to Use the Sample Code

1. Before running the makefile, set your library search path to include the
directory:

nsg_server_base/lib

2. Compile the code using the Makefile.sample.

Chapter 4 Messaging Server Specific Information 69

Sample Code

3. Run apub and asub as follows in separate windows:
apub | ocal host 7997
asub | ocal host 7997

Whatever is typed into the apub window should appear on the asub window.
If you use the default settings, all i Bi f f notifications should appear in the asub
window.

4. Remove the msg_server_base/ | i b path from your library search path.

NOTE If you do not remove this from the library search path, you will not
be able to stop and start the directory server.

Sample Publisher

This sample code provides a simple interactive asynchronous publisher.

/*
* Copyright 2000 by Sun M crosystens, Inc.
* All rights reserved

*/

/*

*

* apub

* --

* a sinple interactive asynchronous publisher

* --

*

* This sinplistic program publishes events using the hard-coded
* event reference

* enp://127.0.0.1/store

* and the data entered at the pronpt as notification payl oad.

* Enter "." to end the program

*

* |f you happen to run the correspondi ng subscriber, asub, on the
* same notification server, you will notice the sent data printed
* out in the asub w ndow.

* Synt ax:

* $ apub <host> <port>

* where

* <host> is the notification server hostnane

* <port> is the notification server I[P port numnber

*

70 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Sample Code

#i nclude <stdlib. h>
#i ncl ude <stdi o. h>#i ncl ude "pasdi sp. h"
#i ncl ude "publisher.h"

static pas_dispatcher_t *disp = NULL;
static publisher_t * publisher = NULL;
static int _shutdown = O;
static void _read_stdin();

static void _exit_usage()

{
printf("\nUsage: \ napub host port\n");
exit(5);
}
static void _exit_error(const char *nsg)
{
printf("%\n", nsQ);
exit(1);
}
static void _call _shutdown()
{
_shutdown = 1;
pas_shut down(di sp);
}
static void _open_ack(void *arg, int rc, void *enc)
{

_publisher = (publisher_t *)enc;
(void *)arag;

if (! _publisher) {
printf("Failed to create publisher with status %@\n", rc);
_call _shutdown();
return;
}
_read_stdin();
return;

}

static void _publish_ack(void *arg, int rc, void *ignored)
{
(void *)ignored;
free(arqg)
if (rc!=0) {
printf("Publish failed with status %\n", rc);
_call _shutdown();
return;

Chapter 4 Messaging Server Specific Information 71

Sample Code

_read_stdin();

return;
}
static void _read_stdin()
{
static char input[1024];
printf("apub> ");
fflush(stdout);
while (! _shutdown) {
if (!'fgets(input, sizeof(input), stdin)) {
conti nue;
} else {
char *nessage
unsi gned int message_| en;
input[strlen(input) - 1] = 0; /* Strip off the \n */
if (*input =="." & input[1] == 0) {
publ i sher _del et e(_publisher);
_call _shut down();
br eak;
}
message = strdup(input);
message_|l en = strlen(nessage);
publ i sh(_publisher, "enp://127.0.0.1/store"
nessage, nessage_| en
_publish_ack, NULL, (void *)message, 0);
return;
}
}
return;
}
mai n(i nt argc, char **argv)
{

unsi gned short port = 7997;
char host|[256];
if (argc < 2) _exit_usage();

if (*(argv[1]) =="0") {
strcpy(host, "127.0.0.1");
}else {

strcpy(host, argv[1]);

if (argc > 2) {
port = (unsigned short)atoi (argv[2]);
}

di sp = pas_di spat cher _new(NULL) ;

if (disp == NULL) _exit_error("Can’t create publisher");
publ i sher _new_a(di sp, NULL, host, port, _open_ack, disp);

72 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Sample Code

pas_di spat ch(di sp);
_shutdown = 1;

pas_di spat cher _del et e(di sp);
exit(0);

Sample Subscriber

This sample code provides a simple subscriber.

~

* F X X X

Copyright 1997 by Sun M crosystens, Inc.
Al rights reserved

asub

a sinple subscriber

This sinmplistic program subscribes to events nmatching the
hard- coded event reference:

enp://127.0.0.1/store
It subsequently received nessages enmtted by the apub processes
if any are being used, and prints the payl oad of each received
notification to stdout.

Synt ax
$ asub <host> <port>

wher e
<host> is the notification server hostnane
<port> is the notification server I[P port numnber

* 0% Ok X X X X X X X X X X X X X X X X X

/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "pasdi sp. h"
#i ncl ude "subscri ber. h"

static pas_dispatcher_t *disp = NULL;

static subscriber_t *_subscriber = NULL;
static subscription_t *_subscription = NULL;
static renl _t *_renl = NULL;

Chapter 4 Messaging Server Specific Information 73

Sample Code

static void _exit_usage()

{
printf("\nUsage:\ nasub host port\n");
exit(5);
}
static void _exit_error(const char *nsg)
{
printf("%\n", mnsQg);
exit(1);
}
static void _subscribe_ack(void *arg, int rc, void *subscription)
{
(voi d)arg;
if ('rc) {
_subscription = subscription;
printf("Subscription successful\n");
subscri ber _keepal i ve(_subscri ber, 30000);
}else {
printf("Subscription failed - status %\ n", rc);
pas_shut down(di sp) ;
}
}
static void _unsubscribe_ack(void *arg, int rc, void *ignored)
{
(void *)ignored
(void *)arg
if (rc!=0) {
printf("Unsubscribe failed - status %\n", rc);
}
subscri ber _del et e(_subscri ber);
pas_shut down(di sp) ;
}
static int _handle_notify(void *arg, char *url, char *str, int |len)
{
(void *)arg;
printf("[%] %*s\n", url, len, (str) ? str : "(null)");
return O;
}
static void _open_ack(void *arg, int rc, void *enc)
{
_subscriber = (subscriber_t *)enc;
(void *)arg
if (rc) {

74 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Implementation Notes

printf("Failed to create subscriber with status %\n", rc);
pas_shut down(di sp) ;
return;

}

subscri be(_subscriber, "enp://127.0.0.1/store",
_handl e_notify, NULL,
_subscri be_ack, NULL);

return;
}
static void _unsubscribe(int sig)
{
(int)sig;
unsubscri be(_subscriber, _subscription, _unsubscribe_ack, NULL);
}
mai n(int argc, char **argv)
{
unsi gned short port = 7997;
char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) =="'0") {
strcpy(host, "127.0.0.1");
telse {
strcpy(host, argv[1]);
if (argc > 2) {
port = (unsigned short)atoi (argv[2]);
} disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");
subscri ber _new_ a(di sp, NULL, host, port, _open_ack, NULL);
pas_di spat ch(di sp);
pas_di spat cher _del et e(di sp);
exit(0);
}

Implementation Notes

The current implementation does not provide security on events that can be
subscribed to. Thus, a user could register for all events, and portions of all other
users’ mail. Because of this it is strongly recommended that the ENS subscriber be
on the “safe” side of the firewall at the very least.

Chapter 4 Messaging Server Specific Information 75

Implementation Notes

76 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Chapter 5

Calendar Server Specific Information

This chapter describes the Calendar Server specific items you need to use the ENS
APIs.

This chapter contains these sections:
= Calendar Server Notifications

o Alarm Notifications

v Calendar Update Notifications

o Advanced Topics

o WCAP appid parameter and X-Tokens
< ENS Sample Code for Calendar Server

Calendar Server Notifications

There are two parts to the format of an Calendar Server notification:
= The event reference — A URL identifying the event.

= The payload — The data describing the event. Three different payload formats
are supported: binary, text/calendar, and text/XML.

There are two types of calendar notifications:
« Alarm Notifications — relay reminders

« Calendar Update Notifications — distribute changes to the calendar database

7

Calendar Server Notifications

Alarm Notifications

Alarm notifications relay reminders. They are published by the csadni nd daemon
whenever it wants to send a reminder. The default subscriber for these alarms in
Communications Services is the csnot i f yd daemon. Notifications consumed by
csnot i fyd have a binary payload and are acknowledged (reliable).

Additionally, the server can be configured to generate one additional notification
for each reminder, which can be consumed by a third party notification
infrastructure.

Table 5-1 shows the configuration variables that enable these notifications.

Table 5-1 Alarm Notifications

ics.conf Default Value Descripton

cal db. serveral arans. bi nary. url enp:///ics/alarm Used by csadmind and csnotifyd to send SMTP
reminders.

cal db. serveral ar ns. bi nary. enabl e yes Enable or disable the default alarm (binary)
transport provided by the Calendar Server
product.

cal db. serveral arns. url NULL ENS topic URL for custom implementation. If
this is NULL, then no formatted messages will
be published. The i ¢s. conf value will be set
toenp:///ics/al arm

cal db. serveral arns. contentt ype text/xm Content MIME type of formatted message.

cal db. berkel eydb. al arnretrytime 300 Retry interval in seconds for failed deliveries.

Specify zero (0) to disable retry.

Event URL parameters are the same for either one:
= calid- Calendar ID

e uid-Component, either event or todo (task) ID
= rid-Recurrence ID

e aid-AlarmID

= conptype - An event or a todo (task)

= URI

78 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Table 5-2

Calendar Server Notifications

Calendar Update Notifications

Calendar update notifications distribute changes to the calendar database. They are

published by the cshtt pd or csdwpd daemons whenever a change is made to the

database (if the notification is enabled for this type of change).

There are eleven types of notifications. Table 5-2 lists each type of calendar update
notification, it’s i cs. conf parameters, and their default values.

Calendar Update Notifications

Types

i cs. conf Parameters

Default Value

Attendee refesh
actions

Attendee reply
action

Calendar
creation

Calendar
deletion

Calendar
modification

Event creation
Event
modification
Event deletion
Todo (task)
creation

Todo (task)
modification

caldb.berkeleydb.ensmsg.refreshevent

caldb.berkeleydb.ensmsg.refreshevent.
url

caldb.berkeleydb.ensmsg.refreshevent.
contenttype

caldb.berkeleydb.ensmsg.replyevent
caldb.berkeleydb.ensmsg.replyevent.url

caldb.berkeleydb.ensmsg.replyevent.
contenttype

cal db. ber kel eydb. ensnsg. creat eca
caldb.berkeleydb.ensmsg.createcal.url

cal db. ber kel eydb. ensnsg. del et eca
caldb.berkeleydb.ensmsg.deletecal.url

cal db. ber kel eydb. ensnsg. nodi f yca
caldb.berkeleydb.ensmsg.modifycal.url

cal db. ber kel eydb. ensnsg. cr eat eevent
caldb.berkeleydb.ensmsg.createevent.url

cal db. ber kel eydb. ensnsg. nodi f yevent
caldb.berkeleydb.ensmsg.modifyevent.url

cal db. ber kel eydb. ensnsg. del et eevent
caldb.berkeleydb.ensmsg.deleteevent.url

cal db. ber kel eydb. ensnsg. creat et odo
caldb.berkeleydb.ensmsg.createtodo.url

cal db. ber kel eydb. ensnsg. nodi f yt odo
caldb.berkeleydb.ensmsg.modifytodo.url

no

enp://lics/caleventrefresh

text/xml

no
enp://lics/caleventreply

text/xml

yes
enp://lics/calendarcreate
yes
enp://lics/calendardelete
yes
enp://lics/calendarmodify
yes
enp://lics/caleventcreate
yes
enp://lics/caleventmodify
yes
enp://lics/caleventdelete
yes
enp://lics/caltodocreate
yes
enp:///ics/caltodomodify

Chapter 5 Calendar Server Specific Information

79

Calendar Server Notifications

Table 5-2 Calendar Update Notifications (Continued)

Types i cs. conf Parameters Default Value
Todo (task) cal db. ber kel eydb. ensnsg. del et et odo yes
deletion caldb.berkeleydb.ensmsg.deletetodo.url enp:///ics/caltododelete

Event URL parameters include:
e calid- Calendar ID
e uid-Component, either event or todo (t ask) ID

e rid-Recurrence D

Advanced Topics

Normally, ENS notifications for attendee replies and organizer refreshes are
published to the cal db. ber kel eydb. ensnsg. nodi f yevent topic along with other
modifications. By setting the i cs. conf parameter

cal db. ber kel eydb. ensnsg. advancedt opi cs to “yes” (the default is “no”), the ENS
notifications can be published to separate modify, reply and refresh topics. This
allows the consumer of the notification to understand more precisely what type of
transaction triggered the notification.

Table 5-3 shows the topics ENS publishes notifications to depending on the setting
of the i cs. conf parmeter cal db. ber kel eydb. ensnsg. advancedt opi cs.

Table 5-3 Advanced Topics Parameter

Value of Advanced Topics Topics to Which ENS Publishes Attendee Notifications

Parameter

yes cal db. berkel eydb. ensnsg. nodi f yevent
cal db. berkel eydb. ensnsg. r ef reshevent
cal db. berkel eydb. ensnsg. repl yevent

no cal db. berkel eydb. ensnsg. nodi f yevent

WCAP appid parameter and X-Tokens

When ENS sends out notifications of modifications made to existing events, it
returns two X-Tokens with the notification, X- NSCP- COMPONENT- SCURCE and
X- NSCP- TR GGERED- BY.

80 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

ENS Sample Code for Calendar Server

The contents of the X- NSCP- COVPONENT- SOURCE X- Token varies depending on who
originated the event and the absence or presence of the appi d parameter in the
original WCAP command that requested the event.

If the appi d parameter is present in the original WCAP command, ENS returns its
value in the X- NSCP- COVPONENT- SQURCE X- Token. (Only certain commands take the
appi d parameter. See the Calendar Server Programmer’s Manual for further
information on the appi d parameter.) Using this mechanism, applications can “tag”
ENS notifications in order to detect which ones it originated. The value of the appi d
command is a character string of the application’s choosing. If the appi d parameter
is missing, standard values are assigned to the X-Token depending on the origin,
see Table 5-4 that follows for the standard values).

The X-Token, X- NSCP- TR GEERED- BY holds the name (ui d) of the organizer or
attendee that triggered the notification regardless of the absence or presence of the
appi d parameter.

Table 5-4 shows the effect of the presence of the appi d parameter in WCAP
commands on the value of the X-Token X- NSCP- COVPONENT- SOURCE.

Table 5-4 Presence of appid and Value of X-Token X-NSCP-COMPONENT-SOURCE
appid Present? Value of X-Token X-NSCP-COMPONENT-SOURCE (with Request Origin)

no WCAP (default)
CALENDAR EXPRESS (from Ul)
ADM N (from Admin tools)

yes Value of appi d

ENS Sample Code for Calendar Server

Calendar Server ships with a complete ENS implementation. If you wish to
customize it, you may use the ENS APIs to do so. The following four code samples,
a simple publisher and subscriber pair, and a reliable publisher and subscriber
pair, illustrate how to use the ENS API. The sample code is provided with the
product in the following directory:

/ opt / SUNW cs5/ cal / csapi / sanpl es/ ens

Sample Publisher and Subscriber

This sample code pair establishes a simple interactive asynchronous publisher and
subscriber.

Chapter 5 Calendar Server Specific Information 81

ENS Sample Code for Calendar Server

Publisher Code Sample

/*

* Copyright 2000 by Sun M crosystens, |nc.
* All rights reserved

*

* apub : sinple interactive asynchronous publisher using
*

* Syntax:

* apub host port

*/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "pasdi sp. h"
#i ncl ude "publisher.h"

static pas_dispatcher_t *disp = NULL;
static publisher_t * publisher = NULL;
static int _shutdown = 0;

static void _read_stdin();
)

static void _exit_usage(

{
printf("\nUsage:\napub host port\n");
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%\n", nsQ);
exit(1);
}
static void _call_shutdown()
{
_shutdown = 1;
pas_shut down(di sp);
}

static void _open_ack(void *arg, int rc, void *enc)

_publ i sher = (publisher_t *)enc;
(void *)arg;

82 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

ENS Sample Code for Calendar Server

if (!_publisher)

{
printf("Failed to create publisher with status %\n", rc);
_call _shutdown();
return;

}

_read_stdin();

return;
}

static void _publish_ack(void *arg, int rc, void *ignored)

{

(void *)ignored;
free(arg);

if (rc!1=0)
{
printf("Publish failed with status %\ n", rc);

_call _shutdown();

return;
}
_read_stdin();
return;
}
static void _read_stdin()
{

static char input[1024];
printf("apub> ");
fflush(stdout);

whi l e (! _shut down)

{
if (!'fgets(input, sizeof(input), stdin))
{
conti nue;
} else {

char *message;
unsi gned int message_| en;

input[strlen(input) - 1] =0; /* Strip off the \n */

Chapter 5 Calendar Server Specific Information 83

ENS Sample Code for Calendar Server

}

if (*input =="." && input[1l] == 0)
{
publ i sher _del et e(_publ i sher);
_call _shutdown();
br eak;

}

nmessage = strdup(input);

nessage_| en = strlen(nessage);

publi sh(_publisher, "enp://siroe.conm xyz", message,
nessage_| en,
_publish_ack, NULL, (void *)message, 0);

return;

}
}

return;

mai n(int argc, char **argv)

{

unsi gned short port = 7997,
char host[256];

if (argc < 2) _exit_usage();

if (*(argv[1]) =="0")
{

strcpy(host, "127.0.0.1");
} else {

strepy(host, argv[1]);

}
if (argc > 2)
{
port = (unsigned short)atoi (argv[2]);
}

di sp = pas_di spat cher _new(NULL) ;
if (disp == NULL) _exit_error("Can't create publisher");

publisher _new a(di sp, NULL, host, port, _open_ack, disp);
pas_di spat ch(di sp);

_shut down = 1,

pas_di spat cher _del ete(di sp);
exit(0);

84 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

ENS Sample Code for Calendar Server

Subscriber Code Sample

/*

* Copyright 2000 by Sun M crosystens, |nc.
* All rights reserved

asub : exanpl e asynchronous subscri ber

Synt ax:
asub host port

E . * *

*/
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "pasdi sp. h"
#i ncl ude "subscri ber. h"

static pas_dispatcher_t *disp = NULL;
static subscriber_t *_subscriber = NULL;
static subscription_t * subscription = NUL;
static renl _t * _renl = NULL;

static void _exit_usage()

{
printf("\nUsage:\nasub host port\n");
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%\n", nsQ);
exit(1);
}

static void _subscribe_ack(void *arg, int rc, void *subscription)

{
(void)arg;

if ('rc)

{
_Subscription = subscription;
printf("Subscription successful\n");

} else {
printf("Subscription failed - status %\n", rc);
pas_shut down(di sp);

Chapter 5 Calendar Server Specific Information 85

ENS Sample Code for Calendar Server

static void _unsubscribe_ack(void *arg, int rc, void *ignored)

{
(void *)ignored;
(void *)arg;
if (rc!1=0)
{
printf("Unsubscribe failed - status %l\n", rc);
}
subscri ber _del et e(_subscri ber);
pas_shut down(di sp);
}
static int _handl e _notify(void *arg, char *url, char *str, int len)
{
(void *)arg;
printf("[%] %*s\n", url, len, (str) ? str : "(null)");
return O;
}
static void _open_ack(void *arg, int rc, void *enc)
{
_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc)
{
printf("Failed to create subscriber with status %\ n", rc);
pas_shut down(di sp);
return;
}
subscri be(_subscri ber, "enp://siroe.conl xyz",
_handl e_notify, NULL,
_subscribe_ack, NULL);
return;
}
static void _unsubscribe(int sig)
{
(int)sig;
unsubscri be(_subscriber, _subscription, _unsubscribe_ack, NULL);
}

86 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

nai

{

n(int argc, char **argv)

unsi gned short port = 7997,
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0")
{

strcpy(host, "127.0.0.1");
} else {

strecpy(host, argv[1]);

}
if (argc > 2)
{
port = (unsigned short)atoi(argv[2]);
}

di sp = pas_di spat cher _new(NULL) ;

ENS Sample Code for Calendar Server

if (disp == NULL) _exit_error("Can't create publisher");

subscri ber _new a(disp, NULL, host, port, _open_ack, NULL);

pas_di spat ch(di sp);
pas_di spat cher _del ete(di sp);
exit(0);

Reliable Publisher and Subscriber

This sample code pair establishes a reliable asynchronous publisher and
subscriber.

Reliable Publisher Sample

/*

* Copyright 2000 by Sun M crosystens, |nc.

*

* * * * * * *

*
~

Al rights reserved

rpub : sinple *reliable* interactive asynchronous publisher.
It is designed to be used in conbination with rsub,

the reliable subscriber.

Synt ax:
rpub host port

Chapter 5

Calendar Server Specific Information

87

ENS Sample Code for Calendar Server

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "pasdi sp. h"
#i ncl ude "publisher.h"

static pas_dispatcher_t *disp = NULL;
static publisher_t * publisher = NULL;
static int _shutdown = 0;

static renl _t * _renl;

static void _read_stdin();

static void _exit_usage()

{
printf("\nUsage:\nrpub host port\n");
exit(5);
}
static void _exit_error(const char *nsg)
{
printf("%\n", nsQ);
exit(1);
}
static void _call_shutdown()
{
_shut down = 1,
pas_shut down(di sp);
}
static void _renl_create_cb(void *arg, int rc, void *ignored)
{
(void *)arg;
(void *)ignored;
if (! _publisher)
{
printf("Failed to create RENL - status %\n", rc);
_call _shutdown();
return;
}
_read_stdin();
return;
}

88 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

static void _publisher_new cb(void *arg, int rc,

{

_publ i sher = (publisher_t *)enc;
(void *)arg;

if (! _publisher)
{

ENS Sample Code for Calendar Server

voi d *enc)

printf("Failed to create publisher - status %l\n", rc);

_cal |l _shutdown();
return;

}

renl _create_publisher(_publisher, "renl _id",

NULL,

_renl _create_cb, NULL);

return;
}
static void _recv_ack(void *arg, int rc, void *ignored)
{
(void *)ignored;
if (rc <0)
{
printf("Acknow edgment Ti nmeout\n");
} elseif (rc =0) {
printf("Acknow edgrment Received\n");
fflush (stdout);
_read_stdin();
free(arg);
return;
}
static void _read_stdin()
{

static char input[1024];

printf("rpub> ");

fflush(stdout);

whil e (!_shut down)

{
if (!fgets(input, sizeof(input), stdin)
{

Chapter 5

Calendar Server Specific Information

89

ENS Sample Code for Calendar Server

conti nue;
} else {
char *message;
unsi gned i nt message_| en;

input[strlen(input) - 1] =0; /* Strip off the \n */
if (*input =="." & input[l] == 0)

publ i sher _del et e(_publ i sher);
_call _shutdown();
br eak;

}

nmessage = strdup(input);
nessage_| en = strlen(nessage);

/* five seconds tinmeout */

publi sh(_publisher, "enp://siroe.con xyz",
message, message_| en,
NULL, _recv_ack, nessage, 5000);

return;
}
}
return;
}
mai n(int argc, char **argv)
{

unsi gned short port = 7997,
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0")
{

strcpy(host, "127.0.0.1");
} else {
strcpy(host, argv[1]);

}
if (argc > 2)
{
port = (unsigned short)atoi (argv[2]);
}

di sp = pas_di spat cher _new(NULL) ;
if (disp == NULL) _exit_error("Can’t create publisher");

90 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

ENS Sample Code for Calendar Server

publisher _new a(disp, NUL, host, port, _publisher_new cb,
NULL) ;

pas_di spat ch(di sp);
_shutdown = 1;

pas_di spat cher _del ete(di sp);
exit(0);

Reliable Subscriber Sample

/*

* Copyright 2000 by Sun M crosystens, |nc.
* All rights reserved

*

* asub : exanpl e asynchronous subscri ber
*

* Syntax:

* asub host port

*/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "pasdi sp. h"
#i ncl ude "subscri ber. h"

static pas_dispatcher_t *disp = NULL;
static subscriber_t *_subscriber = NULL;
static subscription_t * subscription = NUL;
static renl _t * _renl = NULL;

static void _exit_usage()

{
printf("\nUsage:\nasub host port\n");
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%\n", nsQ);
exit(1);
}

static void _subscribe_ack(void *arg, int rc, void *subscription)

{
(void)arg;

Chapter 5 Calendar Server Specific Information 91

ENS Sample Code for Calendar Server

if ('rc)
{

_subscription = subscription;

printf("Subscription successful\n");

_renl = renl _create_subscriber(_subscription, "renl_id", NULL);
} else {

printf("Subscription failed - status %\ n", rc)

pas_shut down(di sp);

}
}
static void _unsubscribe_ack(void *arg, int rc, void *ignored)
{
(void *)ignored;
(void *)arg;
if (rc!1=0)
{
printf("Unsubscribe failed - status %l\n", rc);
}
subscri ber _del et e(_subscri ber);
pas_shut down(di sp);
}
static int _handl e _notify(void *arg, char *url, char *str, int len)
{
(void *)arg;
printf("[%] %*s\n", url, len, (str) ? str : "(null)");
return O;
}
static void _open_ack(void *arg, int rc, void *enc)
{
_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc)
{
printf("Failed to create subscriber with status %\n", rc);
pas_shut down(di sp);
return;
}
subscri be(_subscriber, "enp://siroe.conm xyz", handl e_notify,
NULL, _subscribe_ack, NULL);
return;
}

92 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

ENS Sample Code for Calendar Server

static void _unsubscribe(int sig)

{
(int)sig;
unsubscri be(_subscriber, _subscription, _unsubscribe_ack, NULL);

}
mai n(int argc, char **argv)

{
unsi gned short port = 7997,

char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =='0")

{

strcpy(host, "127.0.0.1");
} else {
strcpy(host, argv[1]);

}
if (argc > 2)

{
port = (unsigned short)atoi (argv[2]);

}

di sp = pas_di spat cher _new(NULL) ;

if (disp == NLL) _exit_error("Can’t create publisher");
subscri ber _new a(di sp, NULL, host, port, _open_ack, NULL);
pas_di spat ch(di sp);

pas_di spat cher _del ete(di sp);

exit(0);

Chapter 5 Calendar Server Specific Information 93

ENS Sample Code for Calendar Server

94 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Appendix A

Debugging ENS

This appendix contains instructions for obtaining trace information that can be
valuable for debugging problems with any program that uses the ENS API. This
includes all servers that send notifications through enpd, csadm nd, csnot i f yd, the
i Bi ff plug-in, stored, i mapd. Trace information can be obtained by setting several
environment variables.

This appendix is divided into the following topics:
= Environment Variables
< How to Enable Debug Tracing

= Sample Debugging Sessions

Environment Variables

Tracing can be done at both the GAP (generic request and reply protocol layer) and
ENP (publish and subscribe protocol layer) levels. Also, service bus traces can be
set. The default is for no logging or tracing.

The following environment variables can be set for GAP tracing:
e AP DEBUG

e (AP _LOG MODULES

e CAP_LOGILE (Cal endar Server only)

The following environment variables can be set for ENP tracing:
e XENP_TRACE

e ENS DEBUG

95

Environment Variables

= ENS LOG MODULES
e ENS LOGFI LE (Calendar Server only)
= ENS STATS

The following environment variable can be set for service bus tracing:
SERVI CEBUS_DEBUG

GAP_DEBUG

The value is a positive integer which indicates the trace level. Each higher trace
level includes the output from the levels below it. For example, if you set the trace
level to 7, level 1-6 traces are also included. The default value for this variable is 4,
but since GAP_LOG MIDULES defaults to zero (0), no logging is done.

While it is possible to set the variable to any integer value greater than 7 and less
than 100, the effect will be the same as setting it to 7.

Table A-1lists the trace levels for the variable GAP_DEBUG
Table A-1 Trace Level Values

Trace Level Trace Level Name Description

0 N/A No output except emergency messages

1 NSLOG_ALERT Alert messages

2 NSLOG CRIT Critical messages

3 NSLOG ERR Software error conditions

4 NSLOG_ WARNI NG Default; warning messages (user error conditions)
5 NSLOG_NOTI CE Normal but significant conditions

6 NSLOG | NFO Informational messages

7 NSLOG _DEBUG Debug messages

100 NSLOG_TRACE Full trace

GAP_LOG_MODULES

Use this variable to obtain trace information specific to one or more functional
modules in the GAP code. This variable is a bit map. That is, each bit set in the
variable turns on tracing for a particular module.

96 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Environment Variables

More than one module can be specified at once. To specify multiple modules, add
the individual values of the modules you want. For example, if you want to trace
both the connection layer and the transaction modules, you set the value of this
variable to 10; to get all modules, set the value to 15.

Table A-2 lists the values for the variable GAP_LOG MODULES:
Table A-2 GAP_LOG_MODULES Values

Value Value Name Description

0 N/A Default; no modules logged.

1 GAPLOG_CONNECTI ON Connection layer — socket input output calls

2 GAPLOG _SESSI ON Session layer — session setup and closing

4 GAPLOG_TRANSACTI ON Transaction creation — continuation and termination
8 GAPLOG DI SPATCHER Thread dispatcher code — GDisp tracing

GAP_LOGFILE

This variable is used for Calendar Server only. This variable tells the system where
to output GAP tracing. To send the output to a log file, set the variable to a text file
name. The default (variable set to zero) sends GAP tracing to standard out.

XENP_TRACE

Use this variable to generate encoded data traces. Any non-zero value activates the
trace.

ENS_DEBUG

Use this variable to trace functional (unencoded) client or server request responses.

The value is a positive integer which indicates the trace level. Each higher trace
level includes the output from the levels below it. For example, if you set the trace
level to 4, level 1-3 traces are also included.

While it is also possible to set the variable to any integer between 7 and 100, the
effect will be the same as setting it to 7. That is, anything less than 100 but greater
than 6 is treated the same.

Appendix A Debugging ENS 97

Environment Variables

Table A-3 lists the trace level values for the ENS DEBUG variable:
Table A-3 ENS_DEBUG Trace Level Values

Trace Level Trace Level Name Desciption

0 N/A No output except emergency messages

1 NSLOG ALERT Alert messages

2 NSLOG ORI T Critical messages

3 NSLOG_ERR Software error conditions

4 NSLOG_ WARN NG Warning messages (user error conditions)
5 NSLOG NOTI CE Normal but significant conditions

6 NSLGG | NFO Informational messages

7 NSLOG_DEBUG Debug messages

100 NSLOG TRACE Full trace

ENS_LOG_MODULES

Use this variable to obtain trace information specific to one or more functional
modules in the ENS code. This variable is a bit map. That is, each bit set in the
variable turns on tracing for a particular module.

More than one module can be specified at once. To specify multiple modules, add
the individual values of the modules you want. For example, if you want to trace
both the server and the RENL modules, you set the value of this variable to 10; to
get all modules, set the value to 31.

Table A-4 lists the values for the variable ENS_LOG MODULES:
Table A-4 ENS_LOG_MODULES Values

Values Value Names Description

0 N/A Default; no modules logged.

1 ENSLOG CLI ENT_API Client API generated transactions
2 ENSLOG _SERVER Server generated transactions

4 ENSLOG UPUB Publisher transactions

8 ENSLOG RENL Reliable event notifications

16 ENSLOG STCRE ENS message store transactions

98 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

How to Enable Debug Tracing

ENS_LOGFILE

This variable is used for Calendar Server only. This variable tells the system where
to output ENS tracing. To send the output to a log file, set the variable to a text file
name. The default (variable set to zero) sends ENS tracing to standard out.

ENS_STATS

To have statistics printed periodically, set this variable to a non-zero value.

SERVICEBUS_DEBUG

Service Bus is a process monitoring system based on ENS, and is used in ENS. Any
non-zero value causes service bus traces to be sent to standard out. There is no
logfile variable for service bus. To send the traces to a log file, temporarily redefine
standard out to a text file name. During this time, all standard out messages will
appear in the text file you create.

How to Enable Debug Tracing

In order to start tracing, follow these steps:

1. IfENSisrunning, stop enpd.
To start and stop enpd, you must be in the bi n directory.
For example:
o For Calendar Server on Unix, / opt / SUNW cs/ cal / bi n.

v For Calendar Server on Windows, C.\ Program Fi | es\ Sun ONE Cal endar
Server\..\.cal\bin.

NOTE You can enable debugging for specific services by stopping only that
service, for example st op csnot i f yd, instead of the entire ENS
server.

Appendix A Debugging ENS 99

Sample Debugging Sessions

2. Set all variables to the desired value.
For Unix:
o Bourne shell
variable_name=value; export variable_name
For example:
GAP_DEBUG=2; export GAP_DEBUG
o Cshell
setenv variable_name value
For example:
setenv GAP_DEBUG 2
For Windows:
setvari abl e_nane=val ue
For example,
set GAP_DEBUG=2

3. If you want the traces to print to a log file, set the appropriate logfile variables
(for END_LOGHI LE, or GAP_LQOGFI LE) or temporarily redefine standard out to a text
file.

4. Restart ENS—-start enpd

If you only disabled one service rather than the whole ENS server, you start
that service only, for example start csnoti f yd.

Sample Debugging Sessions

The following are sample debugging sessions on the Messaging Server and
Calendar Server.

Each example has three parts:
= Set Environment Variables
= Sample Trace Output

« Short Commentary

100 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Sample Debugging Sessions

Example 1: For Messaging Server

Set Environment Variables

setenv LD LI BRARY_PATH nsg_svr_base/li b/
st op- ens

set env SERVI CEBUS_DEBUG 1

setenv ENS DEBUG 1

setenv ENS LOG MODULES 1

setenv GAP _DEBUG 1

setenv GAP_LOG MDULES 1

setenv XENP_TRACE 1

setenv ENS STATS 1

nsg_svr_base/ bi n/ enpd

Sample Trace Output

1 | servbus 3451633705 [26321]: Starting Service Bus

2 | servbus 3451636227 [26321]: Service Bus subscriber created
successful ly

3 | servbus 3451636286 [26321]: Service Bus Ready

4 | XENP -> | en=36 servbus:///nonitor/ens|subs| 00010000
5 | XENP -> | en=60 servbus:///servicel ens&pi d=26321

&st at e=r unni ng| nt f y| 00000000

6 | XENP <- | en=36 servbus:///nonitor/ens|subs| 00010000
7 | XENP <- len=4 PAXK

8 | XENP <- | en=60 servbus:///servicel ens&pi d=26321

&st at e=r unni ng| nt f y| 00000000
9 |secs: pub: pub/s: pub/s(i): ntfy: ntfy/s :ntfy/s(i):

10| 5: 1: 0 :0: 0: 0: 0:
11 |10 : 1 0 : 0: 0: 0: 0:
12 | XENP <-

| en=232enp: //127. 0. 0. 1/ st or e?evt Type=NewMs&nai | boxNane=Ser vi ceAdni n&
ti mest anp=1027623669000&pr ocess=2637&host name=ket u&nunmvbgs=148&si ze=621
&ui dval i di t y=1025118712& mapU d=14&hdr Len=547&qUsed=16&qMax=- 1&
gMsgUsed=15&gMsgNVax=- 1| nt f y| 00000000

13| 15 : 2: 0 0: 0: 0 0
14 | 20 : 2: 0 0: 0: 0 0
15| 25 : 2: 0 0: 0: 0 0
16 | 30 : 2: 0 0: 0: 0 0
17 | 35: 2: 0 0: 0: 0 0
18 | 40 : 2: 0 0: 0: 0 0
19 | 45 : 2: 0 0: 0: 0 0
20 | 51: 2: 0 0: 0: 0 0:

21 | 56 : 2: 0 0: 0 0: 0

Appendix A Debugging ENS

101

Sample Debugging Sessions

22 | 61: 2: 0 : 0: 0: 0: 0
23 | 66 : 2: 0 : 0: 0: 0: 0:
24 | 71 2: 0 0: 0: 0: 0 :
25| 76 2: 0 : 0: 0: 0: 0:
26 | secs: pub: pub/s: pub/s(i): ntfy: ntfy/s :ntfy/s(i):
27 | 81 2: 0 : 0: 0: 0: 0:

28 | 86 : 2: 0 0: 0: 0: 0 :
29 | 91 2: 0 : 0: 0: 0: 0:
30| 96 : 2: 0 : 0: 0: 0: 0:
31 101: 22 O : 0: 0: 0: 0:
32 | 106 220 0: 0: 0: 0

33 111 220 0: 0: 0: 0

34 | 116 220 0: 0: 0: 0

35 121 220 0: 0: 0: 0

36 | 126 2: 0 0: 0: 0: 0

37 | 131 2: 0 0: 0: 0: 0

38 | 136 2: 0 0: 0: 0: 0

39 | 141 2: 0 0: 0: 0: 0

40 | 146 2: 0 0: 0: 0: 0

41 | 151 2: 0 0: 0: 0: 0

42 |~C

43 | XENP -> | en=60 servbus:///servicelens&pi d=26321

&st at e=st opped| nt f y| 00000000

44 | servbus 3466881202 [26321]: Service Bus goi ng away

45 | servbus 3466881542 [26321]: Failed to create subscri ber- error-1

Short Commentary
The following comments apply to the lines of the preceding trace output:

Li ne Number Comrent

1-8 Printed upon startup

9-11and 13-41 Periodic statistics print out

12 A message is sent

42 Control-c stopped operation. This was done to end the sample only.

Not recommended for stopping processes normally.

102 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Sample Debugging Sessions

Example 2: For Messaging Server

Set Environment Variables

1 | (293 root) setenv ENS_DEBUG 99
2 | (294 root) setenv ENS LOG MODULES 63
3 | (295 root) nsg_svr_base/ bi n/ enpd

Sanpl e Trace Qut put

4 | ENS 3588422667 [26400]: LOAN 2

5 | ENS 3588423361 [26400]: _enp_session_open_cb : new session id=2 created
6 | ENS 3588423380 [26400]: recorded new subscription : 0001

servbus: ///moni tor/ens

7 | ENS 3588423395 [26400]: subscribe

(event=servbus:///monitor/ens, sid=2) =0

8 | ENS 3588423403 [26400]: publish

(event =servbus: ///servi cel ens&pi d=264008&st at e=runni ng, si d=2)

9 | ENS 3588423414 [26400]: publish

(event =servbus: ///servi cel ens&pi d=264008&st at e=runni ng, sid=2) = 0

10 | ENS 3588423825 [26400]: _ens_recv_request _ch: sid=2

op=1 i d=00010000

11 | ENS 3588423842 [26400]: sinple|store_req

(servbus:///nonitor/ens#2) =2,servbus:///nonitor/ens

12 | ENS 3588423848 [26400]: sinple|store_evt

(servbus:///nonitor/ens#2) = 2,servbus:///monitor/ens

13 | ENS 3588423853 [26400]: SUBS 2 servbus:///nonitor/ens

00010000

14 | ENS 3588424389 [26400]: _ens_recv_request _ch: sid=2

op=2 i d=00000000

15 | ENS 3588424395 [26400]: NTFY 2 servbus:///servicelens

&pi d=264008&st at e=r unni ng

16 | ENS 3588424409 [26400]:ens_notify

(event =servbus: /// servi cel ens&pi d=264008&st at e=r unni ng

i d=00000000, si d=2): no match

17 | ENS 3588503451 [26400]: LCAN
18 | ENS 3588504099 [26400]: LCAN
19 | ENS 3588504938 [26400]: LCAN
20 | ENS 3588505284 [26400]: LOAN
21

22 | ENS 3591631839 [26400]: LOGAN 7

23 | ENS 3591637445 [26400]: _ens_recv_request _ch: sid=7

op=2 i d=00000000

24 | ENS 3591637452 [26400]: NTFY 7 enp://127.0.0. 1/ st or e?evt Type=Newhsg
&mai | boxName=Ser vi ceAdm né&t i nest anp=1027625056000&pr ocess=2646

&host nane=ket u&numvbgs=19&si ze=6218&ui dVal i di t y=1025118712

(oI &) NN V]

Appendix A Debugging ENS 103

Sample Debugging Sessions

& mapU d=19&hdr Len=5478qUsed=19&qMax=- 1&gMsgUsed=20&gMsghVax=- 1
25 | ENS 3591637467 [26400]:ens_notify

(event =enp: //127.0. 0. 1/ st or e?evt Type=NewMs g

&mai | boxName=Ser vi ceAdm né&t i nest anp=1027625056000&pr ocess=2646
&host nane=ket u&nunmvbgs=19&si ze=6218&ui dVal i di t y=1025118712

& mapU d=19&hdr Len=5478qUsed=19&qMax=- 1&MsgUsed=20
&Msghax=-1, i d=00000000, sid=7): no match

26 |

27 | ENS 3595049771 [26400]: session closing 7

28 | MCENS 3596193757 [26400]: publish

(event =servbus: /// servi cel ens&pi d=264008&st at e=st opped, si d=2)
29 | ENS 3596193782 [26400] : publish

(event =servbus: /// servi cel ens&pi d=264008&st at e=st opped, sid=2) = 0
30 | ENS 3596193987 [26400]: pas_dispatcher_delete : clean up
starting

31 | ENS 3596194018 [26400]: _enp_session_closing cb : closing
session id=2

32 | ENS 3596194024 [26400]: destroying subscription :0001
servbus: /// moni tor/ ens

33 | ENS 3596194041 [26400]: pas_di spatcher _delete : 0 client(s) have been
bunped

34 | ENS 3596194065 [26400]: session closing 2

35 | ENS 3596194075 [26400]: sinple|renov_evt

(2, servbus:///monitor/ens)

36 | ENS 3596194107 [26400]: session closing 3

37 | ENS 3596194216 [26400]: session closing 4

38 | ENS 3596194281 [26400]: session closing 5

39 | ENS 3596195039 [26400]: session closing 6

Short Commentary
The following comments apply to the lines of the preceding trace output:

Li ne Nurber Comrent

1-20 Initialization

22-26 Sent email message

27 Printed asynchronously

28 Control-c stopped operation. This was done to end the sample only.

Not recommended for stopping processes normally.

29-39 enpd exiting

104 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

Glossary

Refer to the Java Enterprise System Glossary (htt p: // docs. sun. coni doc/ 816- 6873) for
a complete list of terms that are used in this documentation set.

105

106 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

A

alarm transfer reliability 26
APls
ENS
publish and subscribe dispatcher 52
publisher 39
subscriber 45

C

Communications Services
documentation 14

configuration parameters
general 65, 66

custom applications
building and running 32

D

debugging ENS 99
debugging tips 95
documentation
overview 12
where to find Communications Services
documentation 14
where to find Messaging Server
documentation 13

Index

E

enabling ENS (iBiff) 18
enabling traces 99
ENS
code samples
publisher 81
daemons
csadmind 37
csnotifyd 37
debugging tips 95
enabling traces 99
environment variables
ENS_DEBUG 97
ENS_LOG_MODULES 98
ENS_LOGFILE 99
GAP_DEBUG 96
GAP_LOG_MODULES 96
GAP_LOGFILE 97
SERVICEBUS_DEBUG 99
XENP_TRACE 97
publish and subscribe dispatcher API 52
publisher API 39
RENL definition 39
subscriber API 45
subscriber_new_a function 47
ENS APIs
functions list
publish and subscribe dispatcher 52
publisher 39
subscriber 45
publish and subscribe dispatcher functions
pas_dispatch 54
pas_dispatcher_delete 53

107

Section |

pas_dispatcher_new 53
pas_dispatcher_t definition 52
pas_shutdown 54
publisher functions
publish_a 42
publish_s 42
publisher_cb_t 40
publisher_delete 43
publisher_new_a 40
publisher_new_s 41
publisher_t 39
renl_cancel_publisher 45
renl_create_publisher 44
subscriber functions
renl_cancel_subscriber 52
renl_create_subscriber 51
subscribe_a 49
subscriber_cb_t 46
subscriber_delete 50
subscriber_new_a 47
subscriber_new_s 48
subscriber_notify _cbh_t 47
subscriber_t 46
subscription_t 46
unsubscribe_a 50
ENS C API overview 30
ENS connection pooling 20
ENS Java API
overview 31
environment variables, for ENS tracing 95
Event Notification Service
API overview 30
architecture 21
enabling in Messaging Server 19
how Calendar Server interacts with 23
how Messaging Serer interacts with 28
in Calendar Server 18
in Messaging Server 18
overview 17
event references
Calendar Server example 20
Messaging Server example 20
overview 19

iBiff notification plug-in 18, 20
include files
location of 32

L
libibiff 18
Linux, default base directory for 12

M

Messaging Server
and ENS 18
documentation 13
enabling ENS 19

N

notification
overview 22
reliable 22
unreliable 22

P

pas_dispatch function (ENS) 54
pas_dispatcher_delete function (ENS) 53
pas_dispatcher_new function (ENS) 53
pas_dispatcher_t definition (ENS) 52
pas_shutdown function (ENS) 54

publish and subscribe dispatcher functions (ENS)
list 52
pas_dispatch 54
pas_dispatcher_delete 53
pas_dispatcher_new 53

108 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

pas_dispatcher_t definition t 52
pas_shutdown 54

publish_a function (ENS) 42
publish_s function (ENS) 42
publisher_cb_t function (ENS) 40
publisher_delete function (ENS) 43
publisher_new_a function (ENS) 40
publisher_new_s function (ENS) 41
publisher_t function (ENS) 39

R

Reliable Event Notification Link (RENL) (ENS) 30,
39

renl_cancel_publisher function (ENS) 45

renl_cancel_subscriber function (ENS) 52

renl_create_publisher function (ENS) 44

renl_create_subscriber function (ENS) 51

runtime library path variable 36

S

sample code
location of 32

shared libraries
Calendar Server 33
Messaging Server 33
Solaris
patches 15
support 15

subscribe_a function (ENS) 49
subscriber_cb_t function (ENS) 46
subscriber_delete function (ENS) 50
subscriber_new_a function (ENS) 47
subscriber_new_s function (ENS) 48
subscriber_t function (ENS) 46

subscription
overview 22

subscription_t function (ENS) 46

Section R

Sun Java™ System Calendar Server
alarm queue 24
and ENS 18
daemons 25
ENS example 26

support
Solaris 15

U

unsubscribe_a function (ENS) 50

unsubscription
overview 22

Index 109

Section U

110 Communications Services 6 2005Q1 ¢ Event Notification Service Guide

	Communications Services 6 Event Notification Service Guide
	Contents
	List of Tables
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Command Line Prompts

	Related Documentation
	Messaging Server Documents
	Calendar Server Documents
	Communications Services Documents

	Where to Find This Manual Online
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction to Event Notification Service
	Event Notification Service Overview
	ENS in Calendar Server
	ENS in Messaging Server
	Event References
	ENS Connection Pooling

	Event Notification Service Architecture
	Notify
	Subscribe
	Unsubscribe
	How Calendar Server Interacts with ENS
	How Messaging Server Interacts with ENS

	Event Notification Service API Overview
	ENS C API Overview
	ENS Java API Overview
	Building and Running Custom Applications

	Event Notification Service C API Reference
	Publisher API Functions List
	Subscriber API Functions List
	Publish and Subscribe Dispatcher Functions List
	Publisher API
	publisher_t
	publisher_cb_t
	publisher_new_a
	publisher_new_s
	publish_a
	publish_s
	publisher_delete
	publisher_get_subscriber
	renl_create_publisher
	renl_cancel_publisher

	Subscriber API
	subscriber_t
	subscription_t
	subscriber_cb_t
	subscriber_notify_cb_t
	subscriber_new_a
	subscriber_new_s
	subscribe_a
	unsubscribe_a
	subscriber_delete
	subscriber_get_publisher
	renl_create_subscriber
	renl_cancel_subscriber

	Publish and Subscribe Dispatcher API
	pas_dispatcher_t
	pas_dispatcher_new
	pas_dispatcher_delete
	pas_dispatch
	pas_shutdown

	Event Notification Service Java (JMS) API Reference
	Event Notification Service Java (JMS) API Implementation
	Prerequisites to Use the Java API
	Sample Java Programs
	Instructions for Sample Programs

	Java (JMS) API Overview
	New Proprietary Methods
	com.iplanet.ens.jms.EnsTopicConnFactory
	com.iplanet.ens.jms.EnsTopic

	Implementation Notes
	Shortcomings of the Current Implementation
	Notification Delivery
	JMS Headers
	Miscellaneous

	Messaging Server Specific Information
	Event Notification Types and Parameters
	Parameters
	Payload
	Examples

	Sample Code
	Sample Publisher
	Sample Subscriber

	Implementation Notes

	Calendar Server Specific Information
	Calendar Server Notifications
	Alarm Notifications
	Calendar Update Notifications
	Advanced Topics
	WCAP appid parameter and X-Tokens

	ENS Sample Code for Calendar Server
	Sample Publisher and Subscriber
	Reliable Publisher and Subscriber

	Debugging ENS
	Environment Variables
	GAP_DEBUG
	GAP_LOG_MODULES
	GAP_LOGFILE
	XENP_TRACE
	ENS_DEBUG
	ENS_LOG_MODULES
	ENS_LOGFILE
	ENS_STATS
	SERVICEBUS_DEBUG

	How to Enable Debug Tracing
	Sample Debugging Sessions
	Example 1: For Messaging Server
	Example 2: For Messaging Server

	Glossary
	Index

